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Abstract 
In response to the slow adoption of artificial intelligence (AI) trends in the construction 

sector, this study is one of the pioneers to tackle the challenges of subjective decision-

making practice in construction project management using machine learning (ML) 

techniques. A neural network-based Decision Support System (DSS) is developed to 

model significant correlations among various decision factors as well as identifying 

critical success factors (CSFs) such that decision outcomes can be enhanced with greater 

accuracy and reduced subjectivity.  

Existing methods for HPO using learning curve prediction are limited in their ability to 

predict unseen learning curves on the same dataset. The current gap in predicting full 

learning curves without running all configurations limits the efficiency of these 

approaches and constrains their application. A key contribution of this study is the 

development of a novel hyperparameter optimisation (HPO) algorithm, namely 

SEquential Learning Curve Training (SELECT), grounded in learning curve prediction 

which can help to improve both modelling efficiency and effectiveness. Leveraging a 

Convolutional Gated Recurrent Neural Network (CGRNN), the SELECT method predicts 

learning curves for unseen hyperparameter configurations without the need to train 

them. Comparative validation of SELECT against existing HPO methods such as Tree 

Parzen’s Estimator, Bayesian Optimisation with Gaussian Process, Hyperband and 
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Random Search were conducted, with prediction accuracies ranging between 7%-68% 

better than the benchmarks in the experiments. Further to this, the computational 

expense for the SELECT method is less than that of the benchmarks, with the closest 

benchmark requiring 25% more time to find optimum hyperparameters, averaging over 

all datasets. The consistency of allocated computational resources is also another benefit 

with the standard deviation between experiments being 81s for the SELECT method, 

while the closest benchmark had a standard deviation of 427s averaged over 5 datasets 

and 5-fold splits of each. This underscores its superiority in prediction accuracy and 

computational efficiency. The SELECT algorithm exhibits the capability to find high 

performing hyperparameter configurations across different well-known datasets, 

including synthetic and real-world scenarios, and demonstrates a high capability for 

identifying CSFs through feature importance analysis. 

The validation of the DSS, involving feedback from senior industry experts, reflects 

positive performance evaluations, with an average score of 3.93 out of 5 on a Likert scale 

over all questions with a standard deviation of 0.84. These experts, intrigued by the 

system's potential, express strong interest in collaborative efforts for future 

development. This research, adeptly navigating industry challenges, provides not only 

objective decision support in construction project management but also introduces a 

novel HPO approach that transcends the confines of the construction sector, with 

applicability in the greater field of AI. 
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1 IntroducƟon 
1.1 ConstrucƟon Sustainability and Intelligent 

Decision Support Systems  
Throughout history, construcƟon has been one of the key industries which has 

contributed to both the funcƟon and evoluƟon of society, broadly covering the 

development of housing and infrastructure as well as commercial and industrial sectors 

(Carty Gerard, 1995). It is a field of engineering which is crucially important throughout 

all areas of the planet but one which comes with its own unique challenges. Each 

construcƟon project covers new ground, with new work locaƟons, variaƟons in labour 

costs and experƟse, material and equipment requirements, logisƟcs, safety, and 

regulatory requirements. This leads to a significant amount of uncertainty which can 

result in project overspending, delays for project Ɵmelines, disputes with customers, 

contractors, and employees if decision-makers make the incorrect choices (OrƟz-

Gonzalez et al., 2022). 

The difficulƟes in decision making do not just relate to the project nature in the 

construcƟon industry, the task of making the correct decision can be further impacted by 

the tradiƟonal methods of construcƟon project management. The tradiƟonal approach 

relies primarily on the knowledge of experts to make decisions with tacit knowledge and 

limited data availability(You and Wu, 2019). The methods of collecƟng and uƟlising data 

have been through manual means, with decentralised storage which comes with its own 

disadvantages. This can result in data acquisiƟon and use being slow, with flaws and 
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missing informaƟon, resulƟng in the potenƟal for the wrong conclusions being made with 

substanƟal consequences (Andújar-Montoya et al., 2015). 

In recent years, even the criƟcal success factors (CSF) of projects have been evolving to 

consider not only the economic success of construcƟon projects but also the 

environment and social impact as well (Kiani Mavi and Standing, 2018). The change in 

CSF has become evident through the evoluƟon of societal needs towards sustainable 

pracƟces at the beginning of this century. The focus is no longer prioriƟsing just project 

scheduling, cost, and quality, but also other tangible and intangible factors as well (Salma 

Ahmed, 2021). Environmental success in construcƟon requires further consideraƟons 

regarding the material usage, energy efficiency, waste management and recycling, 

adhering to environmental standards, while the social factors relate to how a company 

structure and each project impacts both the employee’s safety and saƟsfacƟon and the 

same for the surrounding community. All these factors combine to create enormous 

challenges in relaƟon to decision making in the construcƟon industry with so many 

components to consider and there being significant financial, environmental, and social 

impacts of making the wrong choices.  

Further to this, it can be difficult for decision makers to fully understand and control the 

projects when there are so many decision variables. Even with years of experience and 

collaboraƟon, decision makers may struggle to uncover useful observaƟons from the data 

having the 5V’s - velocity, volume, value, variety, and veracity. Intelligent tools that can 
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idenƟfy and visualise CSFs would help to overcome the inherent limitaƟon of human 

decision makers (Nikmehr et al., 2021). 

In the realm of construcƟon project management, the need for effecƟve decision making 

is more criƟcal than ever, given the intrinsic complexiƟes involved and the impact on 

construcƟon sustainability. To address the limitaƟons of tradiƟonal methods, the 

evoluƟon of integrated decision support systems (DSSs) has emerged as a pracƟcal 

soluƟon, aiming to streamline decision-making processes within the industry (Galjanić et 

al., 2022). By leveraging technology and data driven insights, these systems facilitate 

informed decision-making for projects of varying scales and complexiƟes. They are also 

tailored to manage the intricacies of construcƟon projects and provide real-Ɵme analyses 

and predicƟve models, enabling project managers and key stakeholders to make well 

informed decisions, allocate resources efficiently, and manage risks effecƟvely. With user-

friendly interfaces and customisable features, these systems promote adaptability and 

efficiency in construcƟon project management, enhancing overall project sustainability. 

ComplemenƟng the advancements of DSSs, the evoluƟon and uƟlisaƟon of AI and ML 

has emerged as a key driver in improving decision making within the construcƟon 

industry. By harnessing the power of AI driven analyƟcs and ML algorithms, project 

managers gain access to predicƟve insights and trend analyses, empowering them to 

make strategic decisions that miƟgate risks and opƟmise project performance (Pan and 

Zhang, 2021). Through the integraƟon of AI and ML into DSSs, project managers can 

navigate the complexiƟes of the field with beƩer precision, enabling them to adapt to 
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evolving project CSF, detect and prepare for potenƟal challenges, and ensure opƟmal 

resource allocaƟon. As AI conƟnues to advance, its role in improving decision making 

processes at all stages of the construcƟon industry is set to redefine how the sector 

operates, enabling more efficient and adaptable approaches to project management 

with increased sustainability in the future. 

1.2 The Research Problem 
The inspiraƟon for this research began with the industrial sponsor’s moƟvaƟon to 

digitalise their methods of project management and to move away from the tradiƟonal 

approaches to project management in the construcƟon sector. Because of this, the opted 

for a collaboraƟon with the University of Strathclyde to carry out research into intelligent 

DSSs for construcƟon project sustainability. This study is believed to be the first step in a 

direcƟon of employing new digital technologies for improving their project management 

methods. Given the advancements of intelligent DSSs in construcƟon and the evoluƟon 

of the CSF in construcƟon projects with a focus on sustainability, this research journey 

began with an iniƟal invesƟgaƟon to address two quesƟons: 

(i) What are the current trends of DSS technologies in relaƟon to the use of AI 

throughout the construcƟon project lifecycle? 

(ii) What are the current trends of DSSs in relaƟon to construcƟon project 

sustainability? 

Hence, a systemaƟc literature review was conducted to resolve these two quesƟons 

which provided insight over knowledge gaps.  
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1.3 Research Focus  

In the pursuit of enhancing construcƟon project sustainability through an intelligent DSS, 

various approaches were explored. The most significant was focused on opƟmising the 

DSS performance. This not only contributes to the efficacy of the DSS for construcƟon 

but also contributes to the field of hyperparameter opƟmisaƟon (HPO) in AI as a whole. 

The literature review uncovered that the most used ML algorithm for predicƟon was the 

neural network. Nevertheless, it became apparent that the methods employed to 

establish the hyperparameters of the neural network models generally lacked a reliable 

approach to opƟmise the network architecture hyperparameters, resulƟng in subopƟmal 

outcomes(Mohammad Kabir Yaqubi, 2019, Bala et al., 2014). It was also established that 

HPO is a crucial component of implemenƟng ML in the construcƟon industry (Bilal and 

Oyedele, 2020). With this, a newfound emphasis on HPO was determined, resulƟng in 

the potenƟal impact of the findings and developments of this research extending beyond 

the original goal. HPO can be applied across a broader spectrum of applicaƟons, serving 

as a fundamental addiƟon to the comprehensive body of knowledge surrounding AI. 

It was established through the literature review that there is a significant gap in the field 

of learning curve predicƟon for HPO. Previous studies have primarily focused on using 

meta-learning to predict learning curves on new datasets by studying previous ones 

(Wistuba and PedapaƟ, 2020, Klein et al., 2017). Moreover, exisƟng approaches to 

learning curve predicƟon have concentrated on halƟng poorly performing learning 
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curves (Domhan et al., 2015). This leaves a gap for an approach that can incorporate both 

the training and predicƟon of learning curves on the same dataset, allowing for the 

predicƟon of the performance of fully unseen learning curves based on training a subset 

of the hyperparameter search space. 

1.4 Research Aim and ObjecƟves 

This study aims to advance the field of hyperparameter opƟmisaƟon (HPO) and learning 

curve predicƟon by developing an innovaƟve approach that overcomes exisƟng 

limitaƟons in current methodologies. The specific objecƟves of this aim include: 

1. Overcoming LimitaƟons in Learning Curve PredicƟon: Address the constraints of 

exisƟng learning curve predicƟon methods with a more integrated framework 

that uƟlises both training and predicƟon within the same dataset. 

2. CreaƟng a New HPO Approach: Introduce a novel hyperparameter opƟmisaƟon 

technique that leverages the newly developed learning curve predicƟon model, 

enhancing predicƟve accuracy and efficiency. 

3. ValidaƟng Against ExisƟng Benchmarks: Conduct comprehensive validaƟon of 

the new HPO method against established benchmarks to demonstrate its 

effecƟveness and reliability in pracƟcal applicaƟons. 

4. IntegraƟng the HPO Method into a Feature Importance Analysis Tool: Develop a 

tool that combines the HPO method with feature importance analysis techniques, 
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enabling users to gain insights into the criƟcal factors affecƟng model 

performance. 

5. DemonstraƟng Industrial Significance in a Decision Support System (DSS): 

Showcase the applicability and relevance of the developed methodologies within 

a pracƟcal DSS, highlighƟng their potenƟal to contribute to informed decision-

making in real-world scenarios. 

By addressing these objecƟves, this study aims to offer a valuable academic contribuƟon 

in the form of a novel HPO approach which harnesses learning curve predicƟon and deep 

learning. A mechanism, Ɵtled SEquenƟal LEarning Curve Training (SELECT), which can 

generate top performing neural network hyperparameters efficiently when compared to 

exisƟng HPO methods based on the same computaƟonal effort. AddiƟonally, the 

integraƟon of the SELECT method into a decision-making tool can guide project managers 

in idenƟfying the CSF related to project success with a capability to adapt to sustainability 

criteria in the future. The implementaƟon of the proposed HPO method is anƟcipated to 

not only enhance current pracƟces but also pave the way for more effecƟve and 

sustainable construcƟon project management strategies. 

1.5 Research Novelty 
A key novelty of the SELECT HPO mechanism is a method of transforming observed 

learning curve data into a sequenced and windowed training set, tailored for training a 

ConvoluƟonal Gated Recurrent Neural Network (CGRNN). This method, for the first Ɵme, 

addresses the challenges related to the significant variaƟons in learning curves for new 
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datasets and hyperparameter configuraƟons. This novel approach is combined into a 

machine learning pipeline which culminates in a new HPO method. This novel HPO 

method can achieve high predicƟve accuracy, computaƟonal efficiency, as well as 

computaƟonal consistency. Further to this, this method is able to select high performing 

models which find the important relaƟonships with data, verified through thorough 

analysis. This novel method contributes significantly to the field of HPO by enabling a 

more effecƟve and efficient applicaƟon of learning curve predicƟon. The impact of this 

novel method is explicitly demonstrated through all experiments in this study. 

1.6 Thesis Structure 

The structure of the thesis is described below. 

 Chapter 2 Literature Review: The thesis will begin with a thorough review of 

relevant literature, providing context for the study and leading to the chosen gaps 

related to the opƟmisaƟon of decision support systems and objecƟve feature 

importance analysis for sustainable CSFs.  

 Chapter 3 Hyperparameter OpƟmisaƟon: The next chapter will delve into the 

development of the SELECT HPO method, outlining the method, the validaƟon 

against mulƟple benchmarks, and the findings of high accuracy, computaƟonal 

efficiency and consistency.  

 Chapter 4 Feature Importance Analysis: The combinaƟon of the SELECT HPO 

method and feature importance tools will be explored in detail, starƟng with a 
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comparison between exisƟng HPO methods for feature importance, then analysis 

of the SELECT method combined with mulƟple feature importance tools. This will 

be conducted on both syntheƟc and real-world datasets, shedding light on its role 

and implicaƟons for detecƟng the relaƟonships for CSFs. 

 Chapter 5 Decision Support System Development: Insights into the construcƟon 

of the DSS is provided, emphasising the seamless integraƟon of the SELECT HPO 

and feature importance aspects, while presenƟng the addiƟonal funcƟonaliƟes 

of project trend predicƟon and the analysis of past project performance.  

 Chapter 6 ValidaƟng the Decision Support System: The validaƟon of the DSS will 

be presented and discussed. This will be in the form of a survey distributed to 

industry experts for a qualitaƟve analysis of the DSS in its current level of 

development.  

 Chapter 7 Conclusion: The conclusion chapter will summarise the key findings 

and implicaƟons derived from the study, providing a comprehensive wrap-up of 

the thesis. 

1.7 Summary  

The introducƟon of the thesis highlights the research aims and objecƟves. It starts by 

addressing the significant challenges in decision-making within the construcƟon industry, 

parƟcularly related to the nature of construcƟon projects and the tradiƟonal approaches 

taken for decision making. With the evolving inclusion of sustainability criteria in the CSF 
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for construcƟon projects, there is a growing need for more intelligent decision-making 

techniques that can manage addiƟonal complexiƟes and uncertainƟes. Intelligent DSSs 

have emerged as a viable soluƟon, using advanced AI to manage complex data for 

pracƟcal interpretaƟon. The introducƟon also discusses the research problem, leading to 

the primary goal of developing an innovaƟve approach of HPO. This method aims to 

advance the field of hyperparameter opƟmisaƟon with learning curve predicƟon. It will 

then be used to enhance the performance of a DSS in construcƟon project management 

with the aid of feature importance analysis. 

  



29 | P a g e  
 

2 Literature Review 

2.1 IntroducƟon 

The key focus of this chapter is to invesƟgate the current literature on DSS technologies 

in construcƟon project management with the use of AI for improving sustainability. More 

specifically, the two iniƟal research quesƟons to invesƟgate were: 

RQ1: What are the trends in research for using AI in DSS during the construcƟon project 

lifecycle? 

RQ2: What are the trends in relaƟon to DSS and construcƟon project sustainability? 

This systemaƟc literature review involved a comprehensive search within specific 

databases, using relevant keywords and strict inclusion and exclusion criteria to ensure 

the selecƟon of relevant literature. CategorisaƟon of the literature was done based on its 

applicaƟon in the field of construcƟon, the advancements for DSSs in relaƟon to AI, and 

the trends in relaƟon to sustainability, emphasising the gaps and limitaƟons in the 

exisƟng methods used. The literature findings highlighted the need of incorporaƟng 

feature importance analysis within the context of sustainability goals. This also suggests 

the criƟcal need for advanced HPO techniques to improve predicƟve accuracy of DSSs.  

Building upon the established raƟonale, the review then delved into a thorough analysis 

of various HPO methods, emphasising the shortcomings and inefficiencies in exisƟng 
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pracƟces, as well as a focus on the significance of learning curve predicƟon within the 

context of HPO, parƟcularly on the limitaƟons.  These points will be addressed in Chapter 

3 of this thesis. 

2.2 Chapter Structure 

This chapter is structured by first explaining background informaƟon related to DSSs, 

sustainability, AI, and the construcƟon project lifecycle. The method of the literature 

review will then be explained, followed by the findings of the review. Specifically, the 

chosen gap related to the opƟmisaƟon of AI for improving sustainability in decision-

making will be jusƟfied. This helps to create the basis for further invesƟgaƟon into the 

current tools for HPO, especially the crucial gap in relaƟon to learning curve predicƟon 

for HPO. 

2.3 Background 

To address RQ1 and RQ2, it is important to first discuss key concepts and terminology. 

The background informaƟon will cover what DSSs are, sustainability, key aspects in 

relaƟon to AI and this study, and the construcƟon project lifecycle. 

2.3.1 Decision Support Systems 

DSSs are a computer-based tool designed to aid project managers in complex decision-

making tasks (Rao et al., 1994, Keen, 1980). IniƟally, DSSs were more passive, operaƟng 

strictly based on user input and with limited decision-making capabiliƟes (Rao et al., 
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1994). However, recent advancements in AI have significantly enhanced the capabiliƟes 

of DSSs in the construcƟon domain. Figure 2-1 illustrates the three fundamental 

components of a typical DSS. The system includes a user interface facilitaƟng human-

computer interacƟon, allowing users to input data for analysis and receive 

recommendaƟons in a comprehensible format. At the core of the system lies the 

inference engine, employing mathemaƟcs, logic, and AI algorithms to perform complex 

reasoning and computaƟons. UƟlising data from the knowledge base and user inputs, 

the inference engine generates decisions or soluƟons to the presented problems. The 

knowledge base serves as a repository for decision-making logics and historical data, 

conƟnuously updated with new knowledge from user interacƟons and real-world 

problem-solving scenarios. This constant updaƟng process contributes to the 

advancement of the knowledge base and the overall intelligence of the DSS. 

 

Figure 2-1 The three key components of a DSS 
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2.3.2 Sustainability 

Project sustainability is dependent on the principle that the project should fulfil current 

requirements while safeguarding the concerns of the future. A commonly embraced 

perspecƟve on sustainability revolves around the concept of the three pillars of 

sustainability: economic, environmental, and social objecƟves (Ranjbari et al., 2021). 

These are more informally referred to as the "three Ps": profit, planet, and people (Böcker 

and Meelen, 2017). The specific objecƟves of each are explained in the following sub-

secƟons. 

Economic Sustainability 

The focus of economic sustainability is to ensure that there is a posiƟve financial outcome 

in relaƟon to the resources invested. This involves generaƟng value and profits while also 

saving through careful cost reducƟon (Azapagic and Perdan, 2000). Common pracƟces in 

relaƟon to economic sustainability encompass efficient project management, adherence 

to established standards and regulaƟons, as well as adept risk management and 

miƟgaƟon strategies. 

Environmental Sustainability 

Looking further than business consideraƟons, the objecƟve of environmental 

sustainability is to minimise the adverse effects of operaƟons on the natural surroundings 

and to preserve and enhance the environment. This involves curbing energy 

consumpƟon, restricƟng material usage, and adopƟng eco-friendly materials (Hong et al., 
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2021). The pursuits of environmental sustainability are frequently intertwined with 

economic sustainability, as the reducƟon of waste and the reducing the impact of 

inefficient pracƟces can lead to financial savings and enhanced profits. 

Social Sustainability 

The aim of social sustainability is to uphold and enhance the standard of human life, 

encompassing customers, employees, contractors, and all other stakeholders affected by 

project acƟviƟes. This is achieved through the enhancement of health and well-being, 

robust training and development iniƟaƟves, the promoƟon of workplace diversity, and 

acƟve contribuƟons to societal beƩerment (Fatourehchi and Zarghami, 2020). The 

advantages of prioriƟsing social sustainability include boosted morale and well-being 

among company personnel, improved relaƟonships with suppliers, customers, and 

involved parƟes, and the enhancement of local and global reputaƟons. 

2.3.3 ArƟficial Intelligence 

AI refers to an area of science where systems are able to perform tasks normally requiring 

human intelligence, such as visual percepƟon, reasoning, learning and decision-

making(Nath et al., 2024). This research will primarily concentrate on the uƟlisaƟon of AI 

for decision-making purposes. The subsequent secƟon will outline different types of AI 

and HPO as well as feature engineering and feature importance. 
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Machine Learning 

Machine learning (ML) is the process of developing computer programs that learn from 

past data to make predicƟons without being explicitly programmed to do so, with data 

driving the operaƟon, rather than the programmers (Ethem, 2021). The learning methods 

include supervised learning; for labelled datasets where both the inputs and desired 

results are known in the training set, unsupervised learning; for unlabelled data where 

the desired result is unknown, and the dataset is analysed to recognise paƩerns and 

relaƟonships between groups of data. There is also reinforcement learning (RL) for 

mapping from situaƟons to acƟons to maximise rewards (Abioye et al., 2021). Examples 

of machine learning algorithms encompass mulƟvariate-linear regression (MLR), logisƟc 

regression (LR), support vector machine (SVM), decision tree (DT), random forest (RF), K-

means, Bayesian inference (BI), and arƟficial neural network (ANN). 

Fuzzy Logic 

In the real world, parƟcularly in project management, there arise instances where human 

judgment is necessary for decision-making, oŌen in the presence of uncertainƟes 

regarding the opƟmal choice. Fuzzy logic (FL) serves as a tool to address these situaƟons, 

iniƟally proposed in 1965 by Loƞi Zadeh (Bělohlávek and Klir, 2011). It is a technique to 

gauge the degree of accuracy of uncertain data, finding widespread applicaƟons in real-

world systems to tackle intricate and ambiguous problems characterised by incomplete 

or imprecise informaƟon (Chen and Pan, 2021). Rather than measure something to be 

true or false, fuzzy logic enables the quanƟficaƟon the level of truth. Within the scope of 
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the arƟcles examined in this study, FL is predominantly employed to quanƟfy expert 

knowledge derived from ranked quesƟonnaires (Awad and Fayek, 2012), effecƟvely 

capturing human reasoning for diverse decision-making applicaƟons. 

Natural Language Processing 

Human communicaƟon primarily relies on natural language such as English or Mandarin, 

in contrast to computer programming languages. To enable computers to interpret 

natural language, the applicaƟon of natural language processing (NLP) becomes crucial 

(Hapke et al., 2019). NLP focuses on developing computaƟonal models that emulate 

human linguisƟc capabiliƟes, encompassing reading, wriƟng, listening, and speaking 

funcƟons (Bilal et al., 2016). It serves to convert natural language into a machine-

readable format, finding diverse applicaƟons in social media, customer service, e-

commerce, educaƟon, entertainment, finance, and healthcare sectors (Hagiwara, 2021). 

Within the domain of construcƟon project management, NLP facilitates the analysis of 

typed documentaƟon and reports, enabling knowledge extracƟon for various purposes. 

For instance, NLP can aid in evaluaƟng accident reports in the construcƟon sector to 

idenƟfy precursors for potenƟal accidents (Baker et al., 2020). 

EvoluƟonary Algorithms 

EvoluƟonary algorithms represent an interdisciplinary tool bridging biology, AI, numerical 

opƟmisaƟon, and decision support, finding widespread applicaƟons across various 

engineering domains. These algorithms uƟlise organic evoluƟon models to achieve 
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intelligent opƟmisaƟon (Back, 1996). Intelligent opƟmisaƟon tasks typically involve the 

exploraƟon for the most opƟmal outcome, either to minimise or maximise an objecƟve 

funcƟon within specified constraints (Pan and Zhang, 2021). An illustraƟve example of 

such an algorithm is the geneƟc algorithm (GA). The GA iniƟalises with a populaƟon of 

potenƟal soluƟons to a problem, with each soluƟon then evaluated against its fitness to 

solving the problem and the best of these soluƟons then selected for a new populaƟon. 

Selected individual soluƟons are paired together, combining their characterisƟcs for the 

next generaƟon of soluƟons and the addiƟon of random changes, or mutaƟons. This 

process is repeated unƟl terminaƟon, with the GA converging through the evoluƟon of 

generaƟons of paired soluƟons (Kuptametee et al., 2024). This can be harnessed to 

opƟmise system outcomes, thereby enhancing model performance for decision-making 

in construcƟon project management contexts (Cheng et al., 2010). 

Hyperparameter OpƟmisaƟon 

During the training of ML models, parameters represent the changing variables that 

adapt to the training data, opƟmising their values to achieve the best performance. On 

the other hand, hyperparameters, established outside of training, serve as control values 

that govern the funcƟoning of the ML model. The configuraƟon of these 

hyperparameters significantly impacts model performance, emphasising the importance 

of aƩaining the opƟmal hyperparameter seƫngs during training to yield the best results. 

Consequently, HPO has emerged as a criƟcal area of research in recent years (Yang and 

Shami, 2020). With the increasing complexity of models, the number and nature of 
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hyperparameters can significantly influence performance. HPO is the process of 

determining the best possible hyperparameter configuraƟon to opƟmise model 

performance. This usually involves exploring a variety of hyperparameter configuraƟons 

and determining how they impact the performance of the model (Shaziya and Zaheer, 

2021), the beƩer performing hyperparameters are then selected for use in predicƟon. 

Feature Engineering and Feature Importance 

Feature engineering is a process in ML that selects the most relevant features from the 

raw data to improve the performance of predicƟve models (Wei et al., 2019). Feature 

importance, a key aspect of feature engineering, refers to the technique used to 

determine the significance of each feature in predicƟng the target variable. It helps 

idenƟfy the most influenƟal features that contribute the most to the model's predicƟve 

power (Musolf et al., 2022), allowing only the most important features to be used for 

predicƟve models, which can lead to increased accuracy and efficiency. By understanding 

feature importance, beƩer informed decisions can be made about which features to 

prioriƟse and how to opƟmise the overall performance and interpretability of the ML 

models. 

2.3.4 ConstrucƟon Project Lifecycle 

The construcƟon industry encompasses a wide range of acƟviƟes, including the 

construcƟon, extension, installaƟon, repair, and maintenance of various structures and 

infrastructures, such as buildings, transport routes, and water services (Ofori, 1990). This 
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encompasses both commercial and residenƟal applicaƟons, as well as the development 

of essenƟal infrastructure components like water service staƟons and pipelines. Projects 

in the construcƟon industry typically progress through five key stages: iniƟaƟon, 

planning, execuƟon, controlling, and closing (Vargas, 2001). A brief explanaƟon of each 

stage is bulleted below. 

 IniƟaƟon: The iniƟal project approval marks the stage where the project's 

primary scope is established, and key stakeholders are idenƟfied. 

 Planning: During this phase, the project plan is formulated, outlining the 

deliverables and requirements, the selecƟon of human, machine, and material 

resources, and the documentaƟon of a project delivery schedule. 

 ExecuƟon: This phase signifies the pracƟcal implementaƟon of the documented 

plan established in the previous stage, represenƟng a crucial period during which 

a sizeable porƟon of the project's allocated Ɵme and resources are dedicated to 

the execuƟon of planned acƟviƟes and tasks. 

 Controlling: This phase involves the thorough assessment of project execuƟon 

outcomes in comparison to the iniƟally documented plan, aiming to idenƟfy any 

dispariƟes and subsequently address and recƟfy these discrepancies. 

 Closing: The concluding stage of the project lifecycle typically involves the 

preparaƟon of a comprehensive report detailing the project's outcomes, 

alongside the handover of deliverables to the client. Simultaneously, all services 
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and contracts are finalised, ensuring the relevant stakeholders are duly informed 

of the project's closure. 

The studies discussed in this chapter of the thesis will be viewed through the five stated 

construcƟon project lifecycle categories, with the research applicaƟon of DSS in one or 

more of these stages. 

2.4 Literature Review Methodology 

The aim of a systemaƟc approach to reviewing literature is to idenƟfy all the empirical 

evidence within a pre-specified inclusion criteria to answer a parƟcular research 

hypothesis (Snyder, 2019).  The nature of this method reduces subjecƟvity in the 

research, leading to a reducƟon in bias. This method also allows for a quanƟtaƟve 

analysis of papers to determine overall trends and relaƟonships within a study. This 

literature review was conducted using a systemaƟc approach with three key stages, 

idenƟficaƟon, screening, and assessment as shown in Figure 2-2. 

2.4.1 Paper IdenƟficaƟon 

This review is to invesƟgate the current state of AI-based DSS techniques in the 

construcƟon sector to improve project sustainability. The key words, thus, were decision 

support system, construcƟon, project sustainability, AI, and ML for literature searching 

within the three well-known databases: Scopus, Science Direct, and ProQuest. The search 

was conducted on the arƟcle Ɵtles, keywords, and abstracts. Only papers wriƩen in 
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English between 2010 to present and peer-reviewed arƟcles were included. The relevant 

disciplines were Engineering; Computer Science; MathemaƟcs; Business, Management, 

and AccounƟng; and Decision Sciences. This resulted in a total of 624, 1494, and 570 

papers from Scopus, Science Direct, and ProQuest, respecƟvely, for a grand total of 2688 

papers to screen. 

 

Figure 2-2 The systemaƟc approach of literature review. 
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2.4.2 Screening 

For screening, the abstracts were read for each of the idenƟfied papers. As there is a 

variety of frameworks that can be defined as a DSS (Kersten, 2000), papers were deemed 

as relevant only if DSSs or decision making were examined. Among all relevant papers, 

two levels were defined to differenƟate relevance among them. The top level of 

relevance focused on papers that included research adopƟng AI with sustainability goals 

of construcƟon projects. The second level of relevance included papers invesƟgaƟng any 

two of the three of adopƟng AI, sustainability goals, and construcƟon projects for 

decision making and DSSs. These two levels of significance were used for the screening 

the papers. If papers achieved either of the two stated levels of relevance in the abstract, 

they would be included for full-arƟcle assessment. If these levels of relevance were not 

achieved, then the papers would be eliminated from the study. This resulted in ninety-

one papers selected for the next stage of the review, which is the full-arƟcle assessment. 

2.4.3 Assessment 

The full content of each of the 91 remaining papers was assessed with respect to the 

criteria shown in Table 2-1, using a similar approach to (Zhang et al., 2019). A further 

fourteen papers were eliminated from the review at this stage; hence, only 77 papers 

remained, which included 9 literature reviews and 68 research papers for in-depth 

analysis. 
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Table 2-1 The assessment criteria of the literature review. 

Data to Collect Description 
Task Intended task of the DSS 
Title Title of the paper 

Author (s) List of authors 
Contribution Contribution to literature  
Limitations Potential improvements 

Year Year of publication 
AI Type of AI algorithm used 

Sustainability Economic, environmental, or social goal considerations 
Stage of Construction Lifecycle stage of operation 

Institution Location of the institution which carried out the study 
Case study Where is the case study located 

2.5 Review Findings 

This secƟon describes the findings of this research. This will start with the categorisaƟon 

of the papers by the task of the DSSs in all assessed papers and followed by the findings 

related to AI, sustainability, and the project lifecycle. 

2.5.1 Categorising the Task of the DSSs 

The areas in which a DSS may be applied in the construcƟon project lifecycle varies in the 

forms of data being used, the tasks of the inference system, and when in the cycle these 

tools may be applied. The sixty-eight papers listed in this study have been organised into 

six disƟnct categories based on the task of the DSS. There is early-stage project predicƟon 

(EPP), which takes up 50% of all studies, with sub-categories focusing on various metrics 

for performance measurement; there is dynamic performance predicƟon (DPP), which 

takes up 17% of all studies; and then, there are papers focused on contractor and supplier 
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evaluaƟon, site logisƟcs, design opƟmisaƟon, and safety risk assessments (SRA). Looking 

at Figure 2-3, there has been an increase in studies over the second half of the last 

decade, which would suggest an increase in interest in this field. It can also be noƟced 

that the EPP has a near-consistent level of interest throughout the decade with other 

areas such as SRA, site logisƟcs, DPP, design opƟmisaƟon, and supplier evaluaƟon having 

more studies from 2016 onward. This shows a growth in the quanƟty of studies over this 

period but also a growth through increased variety of applicaƟon. 

Each of the chosen categories of DSS applicaƟon were analysed against the type of AI 

used, the consideraƟons for sustainability, and what stage in the construcƟon lifecycle 

the system operates. The findings can be seen in Table 2-2. The following sub-secƟons 

will discuss the categories in more detail, followed by discussion on the use of AI, 

sustainability, and the project lifecycle. 

 
Figure 2-3  DSS ApplicaƟons count by year of publicaƟon. 
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Table 2-2 DSS ApplicaƟon by AI type, sustainability criteria, and the stage of the construcƟon project lifecycle 

 

Contractor and Supplier EvaluaƟon 

An area of research where DSSs have been applied with sustainability criteria using AI is 

for evaluaƟng contractors and material suppliers. (Fallahpour et al., 2017) refined 

sustainability criteria for the selecƟon of suppliers with the assistance of academics and 

DSS Category Type of AI Used 
Sustain
ability 
Crit. 

Stage of 
Lifecycle 

Category 
Name 

Example 
References 

A
N

N
 

BI 
CBR 
CN

N
 

D
T 

FL 
G

A 
G

D
 

M
LR 

RF 
RL 

SVM
 

Eco 
Env 
Soc 
Init. 
Plan. 
Exec. 
Cont. 
Close 

A
ll 

Contractor 
and Supplier 
EvaluaƟon 

 (Omar et al., 2016, 
Khan et al., 2018, 
Awad and Fayek, 

2012) 

          6             7 5 6 1 1         

Design 
OpƟmisaƟon 

 (Minhas et al., 2018, 
Ferreiro-Cabello et 

al., 2018) 
1                   1   4 4 2   4         

Early-stage 
Project 
PredicƟon 

 (Ghazimoradi et al., 
2016, Son et al., 2012, 

Wang et al., 2012, 
Soto and Adey, 2016, 

Shi et al., 2016) 

19   6   1 11 6   6 1   4 33 7 8 11 22         

Dynamic 
Performance 
PredicƟon 

 (Choi et al., 2021, 
Marzoughi and 

Arthanari, 2016, 
Assaad et al., 2020) 

3 1 1   2 2 1     1   2 10 2 3     1     8 

Safety Risk 
Assessment 

 (2020, Tixier et al., 
2016a) 2     1   1   1   1   1     4     4       

Site logisƟcs 

 (Papadaki and 
Chassiakos, 2016, 
Greif et al., 2020, 

Jeong and Ramírez-
Gómez, 2018) 

          1 1           4 3 3   2 2       

  Total 25 1 7 1 3 21 8 1 6 3 1 7 58 21 26 12 29 7     8 
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industry experts for defining the importance of applicability of criteria taken from the 

literature. Fuzzy preference programming was then used to allocate weights to each of 

the sustainability criteria, resulƟng in graded levels of importance reducing from 

economic to environmental to social criteria. Fuzzy Technique for Order of Preference by 

Similarity to Ideal SoluƟon (FTOPSIS) was then used for supplier selecƟon. Others have 

also used a similar approach, with (Kannan et al., 2020) also using fuzzy logic for weight 

definiƟon but using VIKOR for the selecƟon of the projects. Another example is (Luthra 

et al., 2017), who used VIKOR for project selecƟon but with analyƟcal hierarchy 

processing (AHP) for the weight definiƟon. The sustainable selecƟon criteria in all these 

studies are great examples of a drive towards sustainability, and these are just some 

examples of the few studies into supplier selecƟon in manufacturing (Kannan et al., 

2020). It can be seen in these studies that all the evaluaƟon criteria are defined through 

subjecƟve opinions of experts related to the work, and there is a lack of quanƟtaƟve data. 

Combining these two data types may prove beneficial for supplier selecƟons. These are 

all focused on the manufacturing industry, which does have a different format from the 

construcƟon industry for supplier selecƟon and would have differences in the selecƟon 

criteria based of the unique aspects of construcƟon projects when compared to 

manufacturing. 

A couple of studies were found that applied a similar approach to the supplier selecƟon, 

for example, (Ulubeyli and Kazaz, 2015) created a framework soŌware plaƞorm for the 

selecƟon of construcƟon project sub-contractors using fuzzy logic algorithms. This is 
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done through providing linguisƟc ranking and marking quesƟonnaires to experts at 

mulƟple stages in the selecƟon process; then, fuzzy set theory is used to group, quanƟfy, 

and rank sub-contractors. This is focused on internaƟonal construcƟon projects and is 

limited in that it does not factor in the built working relaƟonships between contractors 

and sub-contractors. AddiƟonally, all the data are provided based off expert opinion, so 

there is a level of subjecƟvity in the process of selecƟon. Some factors that have not been 

studied in the recorded papers is the evaluaƟon of contractors throughout the execuƟon 

stage of the project lifecycle and the use of more complex AI models for tasks in addiƟon 

to quanƟfying linguisƟc data. 

Design OpƟmisaƟon 

This category focuses on the use of DSSs for improving design in construcƟon. All papers 

related to this category were published from 2018 onwards, and sustainable design is the 

main driver for all of them. All papers related to design opƟmisaƟon considered the 

economic and environmental goals of sustainability, while only half of them considered 

social sustainability. 

(Minhas et al., 2018) highlighted ongoing research into the use of DSSs for sustainable 

building material selecƟon in the design stages, with a key focus on incorporaƟng criteria 

for the environmental goals of sustainability. (Santos et al., 2019) developed a DSS for 

helping design engineers to choose sustainable materials during the planning stage of 

construcƟon for pavement design. This method not only considers economic, 

environmental, and social goals during the project lifecycle but also for the maintenance 
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of the materials during the lifecycle of the product. An example of AI being used for DSSs 

for design opƟmisaƟon would be (BuHamdan et al., 2020), who developed a DSS for 

concept-design decision making in the construcƟon industry. They adopted a Markov 

decision process (MDP) and RL for this DSS. The aim of this model was to implement 

value engineering from the manufacturing secƟon into the construcƟon design phase. 

The focus was to achieve opƟmisaƟon against environmental, economic, and social 

criteria. Using the MDP approach was especially useful, as the structure of this approach 

has similariƟes to the decision-making system that engineers manually carry out in the 

concept-design stage of construcƟon projects. The method was tested using the concept 

design of a house, and the design was opƟmised, which showed a posiƟve result; 

however, there is area for improvement by adding feedback complexity and represenƟng 

the interdependencies between different decisions at different stages of design. 

Early-Stage Project PredicƟons 

The most popular applicaƟon for a DSS from the last ten years is for making predicƟons 

of project performance at the iniƟaƟon and planning stages of the project lifecycle. This 

can be for project cost predicƟon, project delays, and for risk in project selecƟon. These 

areas of study all follow the same approach of uƟlising historical project performance 

data and key parameters to train an algorithm for predicƟng the resultant performance 

given the same input parameters for a new test project. This is an especially useful tool, 

as it provides the project manager with a quanƟfiable method for selecƟng which 

projects to choose during the iniƟaƟon stage of the lifecycle or how best to plan for a 
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project prior to execuƟon. The most popular algorithms to be used are ANNs and more 

recent models, which include hybrids with FL for quanƟfying qualitaƟve data and geneƟc 

algorithms (GA) for opƟmising the weights of the parameters (Tang et al., 2010, Bilal and 

Oyedele, 2020, Elmousalami, 2019, Cheng et al., 2010). Case-based reasoning (CBR) has 

also been studied, uƟlising previous similar cases of projects to make predicƟons 

(Marzouk and Ahmed, 2011, Zima, 2015, Kim, 2013, Koo et al., 2011, Car-Pusic et al., 

2020). It can be observed in Table 2-2 that most of the research into project predicƟons 

examine the economic pillar of sustainability with 76% of all EPP research solely focusing 

on the economic sustainability goals. Research considering environmental and social 

goals is the minority, equaƟng to approximately 25% of studies. 

The ability to predict the cost of a project accurately has a significant impact on the 

economic sustainability of a construcƟon project. This could help to ensure project 

success for choosing which project, equipment, or contractors to use or for determining 

the number of resources to provide. In construcƟon engineering management, cost 

esƟmaƟon at the start of a project is key to prevenƟng cost overruns and ensuring project 

success (Marơnez-Rojas et al., 2016, Doloi, 2013). 

For improving the accuracy of predicƟons, (Alex et al., 2010) employed the use of an ANN 

to improve the predicƟon accuracy of water and sewer service project, as there were 

discrepancies of 60% error in predicƟons from standard pracƟce in project cost 

esƟmaƟon. Using this ANN, they managed to reduce the error down to 20%. This is a 

clear improvement although this level of inaccuracy is sƟll high when compared to other 
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studies in the construcƟon industry, an example being (Bala et al., 2014), who created a 

model for predicƟng the cost of building construcƟon projects in Nigeria, also using an 

ANN model for cost predicƟon. Based off refined input parameters from 243 

quesƟonnaires given to experts in the field and an ANN with two hidden layers and 

sigmoid transfer funcƟons, a high predicƟon accuracy was achieved having the mean 

absolute percentage error of only 5%. However, such high accuracy might be a result of 

high similarity over different building projects. In other words, the robustness of this 

model had not been evaluated on other building types, and hence, the generalisaƟon of 

the cost model is deemed low. 

Most of the recent research into EPP has used hybrid AI models (58% of all EPP studies). 

(Yu and Skibniewski, 2010) combined an ANN with FL to create an adapƟve neuro-fuzzy 

inference system (ANFIS) for making cost predicƟons alongside principal items raƟon 

esƟmaƟon method (PIREM) for keeping accuracy with fluctuaƟng market prices. This 

method managed to achieve a mean predicƟon accuracy of within 10% of the actual cost 

when evaluated on residenƟal building construcƟons in China. Another hybrid ANN 

model is defined as the evoluƟonary fuzzy hybrid neural network (EFHNN), which is a 

high-order neural network hybrid that used fuzzy inference for dealing with project 

uncertainƟes and a GA for opƟmising the predicƟon accuracy. This model was assessed 

on 28 building projects and compared to a singular linear ANN with increased accuracy 

in predicƟng the overall cost of projects and cost per internal categories of expenditure. 
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Another method for cost predicƟon is the use of case-based reasoning (CBR). This is an 

experience-based soluƟon relaƟng previously successful soluƟons to similar problems 

that occur in the future. (Zima, 2015) presented a case-based method for predicƟng 

construcƟon costs using sports field installaƟons as a case study. This did prove to have a 

mean absolute percentage error of 5%, and the method is not computaƟonally intensive; 

however, it is limited by the number and type of previous cases as well as the similarity 

of the new projects. The model is validated with the construcƟon of sports fields, which 

has highly similar tasks. Applying this model independently on more complex 

construcƟon projects would beƩer measure its robustness. Another CBR-based 

predicƟon model found in (Marzouk and Ahmed, 2011) compared the CBR method with 

hybrid models of CBR+ANN and CBR+FL, with the CBR+FL model proving most accurate 

with an average predicƟon error of 9% for predicƟng the cost of pump staƟon projects. 

Leading further evidence towards the benefits of using hybrid AI soluƟons. 

As well as determining the project cost at iniƟal stages, there is benefit from predicƟng 

performance against other metrics. Project delays can have a substanƟal impact on 

success; (Yaseen et al., 2020) created a method of categorising project delays in the 

construcƟon sector by use of a random forest classifier with a geneƟc algorithm for result 

opƟmisaƟon. This method split projects into three categories of delay: less than 50% 

overrun, 50–100% overrun, and greater than 100% overrun. This model proved to have 

a classificaƟon accuracy of 91.67% and was deemed beƩer the random forest model on 

its own, again highlighƟng the advantage of hybrid models for predicƟon. AddiƟonally, 
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the range of classificaƟon is substanƟal, and an improvement on the classificaƟon metric 

may be of larger benefit, as not all sectors of construcƟon will find it acceptable to have 

ranges of 50% of the total specified Ɵme for classificaƟon. Although the construcƟon 

industry is known for delays in projects, there is surprisingly liƩle research into the use 

of AI technologies for predicƟng project delay likelihood at least not to the same level of 

depth as project cost predicƟon. 

From all the previously stated studies into early predicƟon, environmental and social 

parameters and goals were not considered in the esƟmaƟons. When it comes to 

predicƟng project risk for project selecƟon, sustainability criteria have been a topic of 

research. The research presented by (Fallahpour et al., 2020) introduced a method for 

selecƟng sustainability criteria for project selecƟon and then used fuzzy preference 

programming for aƩribute weight selecƟon and FL for aiding in the selecƟon of projects. 

FiŌeen different aƩributes, with five for each pillar, were selected from studying the 

literature and evaluaƟon by three experts in construcƟon engineering. Each of these 

aƩributes were given local (per aƩribute) and global (per category) weighƟngs of 

importance and developed into 25 fuzzy rules within the system for defining the best 

alternaƟve project to select. The system was evaluated using six projects from a 

construcƟon company in Iran and compared with five other defuzzificaƟon methods and 

checked with a consistency index. Another study by (Akbari et al., 2018) pulls a larger 

area of experƟse with input from fiŌy-three experts in the form of a quesƟonnaire. The 

weights and rules are built through AHP and the novel rough set theory, respecƟvely. This 
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was assessed on classifying 26 projects against sustainability criteria with a predicƟon 

accuracy ranging from 84–95%. These studies show real promise for the use of 

sustainability criteria in project selecƟon although the weighƟng criteria is based off the 

subjecƟve opinions of the experts, and the tesƟng is based off a small quanƟty of 

projects. Considering quanƟtaƟve data alongside the qualitaƟve data may be something 

that could improve the robustness of the predicƟons, it would also be advantageous to 

apply the selecƟon criteria to a larger program of projects for evaluaƟon. 

For all the reviewed studies, accuracy is as much dependent on the area of applicaƟon 

and available data as it is for the algorithms used. The benefits of hybrid AI models are 

clear for improving predicƟon accuracies and for improving the robustness of models. 

Although the primary goal for project predicƟon is on cost esƟmaƟon, other areas such 

as project risk are being invesƟgated, which consider the social and environmental goals 

of sustainability as well as the economic. 

Dynamic Performance PredicƟon 

The main limitaƟons in the EPP papers are that once a project begins the execuƟon stage, 

there is usually a great deal of uncertainty, which can affect the predicƟve capability 

regardless of how powerful the AI algorithm is or the completeness of the pre-execuƟon 

data. This is due to the fluctuaƟng nature of the Ɵme dependent variables in construcƟon 

project management, such as internal factors related to human resources during project 

execuƟon or external factors, such as the impact of the weather on progress. Over the 

last 6 years only a minority of studies have dynamically predicted performance 
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throughout the execuƟon and all other stages of the life cycle. This allows for project 

managers to make educated decisions at the planning stages and then proacƟvely 

improve project performance at the execuƟon stage through to the controls and closure. 

The authors of (Cheng et al., 2010), who proposed the evoluƟonary fuzzy hybrid neural 

network (EFHNN) for project cost predicƟon at early stages, clearly understood the 

benefits of creaƟng a dynamic performance-predicƟon tool. This hybrid is a combinaƟon 

of FL for dealing with uncertain data, a high-order ANN for making predicƟons, and GA 

for opƟmising the results. The same authors published a paper on their dynamic 

predicƟon performance method (Cheng et al., 2012), which used the same hybrid AI 

algorithms to classify the performance of projects throughout the lifecycle. This classified 

project performance into four levels ranging from successful to disastrous, with inputs 

related to 10-Ɵme dependent variables, including change order data, weather impact, 

owner commitments, contractor commitments, recorded incidents, and overƟme work. 

This model is classified with a high accuracy; however, the method was only validated 

against the highly similar evoluƟonary fuzzy neural inference model (EFNIM) and with 

only twelve projects for training and 3 projects for tesƟng. This work could be taken 

further by comparing the model with a larger pool of AI models and with a much larger 

dataset. 

A DSS framework presented in (You and Wu, 2019) combines the use of a manufacturing 

enterprise resource planning (ERP) system with building informaƟon modelling (BIM) for 

the purpose of guidance on project management, materials management, financial 
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management, and human resource management, which will opƟmise project processes 

with the use of machine learning algorithms in the execuƟon and control stages of a 

project. This is just a framework now, but this has the potenƟal for real value in the future. 

Further study that includes the applicaƟon of this system and the evaluaƟon of AI models 

for project opƟmisaƟon is needed to gauge the overall effecƟveness. When considering 

DPPs that consider sustainability criteria, (Dong et al., 2019) presented a framework for 

a sustainable construcƟon project management index for evaluaƟng construcƟon 

projects. Six dimensions are defined: financial, scheduling, quality, safety, as well as 

informaƟsaƟon and “greenizaƟon”. It is posiƟve to see that research into dynamic 

construcƟon performance measurement is being considered through the lens of 

sustainability. It is also key to note that from all studies into the DPP category, there are 

studies that have uƟlised AI and hybrids for improving the economic sustainability of 

projects (Choi et al., 2021), and there have been DPP studies that have considered all 

three goals of sustainability, but the use of AI models has not yet been seen to improve 

all three goals of sustainability in a single study of DPP. 

Safety Risk Assessment 

In the applicaƟon of improving safety through the project lifecycle, there have been 

studies into the use of natural language processing (NLP) for analysing injury reports. 

(Tixier et al., 2016a) used NLP to structure data from accident reports into aƩributes of 

incidents and the safety outcomes and then used random forest and stochasƟc gradient 

tree boosƟng for predicƟon. The models were able to have beƩer predicƟve capability 
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for defining the injury type, energy type involved, and the injured body part with a higher 

likelihood than at random, which gives evidence to the use of quanƟtaƟve and empirical 

methods for evaluaƟng safety compared to that of expert opinion and subjecƟve 

judgment. One of the authors then took the study further, such as (Baker et al., 2020), 

which introduced a method for automaƟcally determining valid accident precursors for 

accidents in the oil and gas sector. Three different ML techniques were used and 

compared. These are convoluƟonal neural network (CNN), hierarchical aƩenƟon network 

(HAN), and term frequency-inverse document frequency representaƟon with support 

vector machine TF-IDF-SVM, which were used for NLP. All predicƟons of precursors 

performed beƩer than random selecƟon, and the TF-IDF + SVM method proved to be the 

most accurate. The data collected for these reports were quanƟtaƟve in nature, and 

circumstanƟal and environmental informaƟon that contribute to hazards in the 

workplace were not considered. 

Site LogisƟcs 

Site logisƟcs can be defined as the control of the movement of people, equipment, and 

materials related to a work site. In this paper, the category for site logisƟcs covers all the 

DSSs, which focus on improving site logisƟcs with the use of AI and sustainability criteria. 

(Greif et al., 2020) developed a digital twin and DSS, which applied heurisƟc opƟmisaƟon 

and clustering for the purposes of silo replenishment on various construcƟon sites during 

project execuƟon. The purpose of this soŌware tool is to predict the best routes for 

resupply vehicles to opƟmise vehicle usage and minimise work site stoppage Ɵmes. Over 
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a 3-year period, this reduced logisƟc costs by up to 25% and with every kilometre of 

transport saved having a posiƟve impact on the development of CO2 emissions. The 

complexity of the digital twin and refill truck cost had a large effect on the cost reducƟon, 

which has leŌ area for improvement. 

Another study into improving logisƟcs is (Guerlain et al., 2019), which covered the 

material transport routes, the emission levels and size of vehicles as well as the use of a 

construcƟon consolidaƟon centre for minimising the economic, social, and 

environmental impact of projects in Luxembourg. The mulƟple DSS were tested on one 

large project, producing 47 alternaƟve combinaƟons of the above variables, with 5 

reducing emissions and cost. This would be especially useful for projects in densely 

populated areas. Although this system considers sustainability in construcƟon, it is 

limited in that it relies on experience of experts and mathemaƟcs. Using AI instead for 

opƟmisaƟon would provide a much larger pool of alternaƟves to consider for 

opƟmisaƟon. Most site logisƟcs studies have considered all three pillars of sustainability, 

but there is room for further study into the benefits of AI for opƟmisaƟon considering 

hybrids to improve model performance. 

2.5.2 ObservaƟons and Trends Related to AI 

Table 2-2 shows a wide range of AI algorithms used in the literature and these various 

algorithms which are listed in Table 2-3 will be examined in more details. 
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Table 2-3 ArƟficial intelligence algorithms idenƟfied from the literature review. 

Abbreviation Algorithm Title 
ANN Artificial Neural Network 
CNN Convolutional Neural Network 

BI Bayesian Inference 
FL Fuzzy Logic 

CBR Case Based Reasoning 
DT Decision Tree 
RF Random Forest 
GA Genetic Algorithm 
GD Gradient Descent 

MLR Multivariate Linear Regression 
RL Reinforced Learning 

SVM Support Vector Machine 
 

The overall trend in AI shows that complex predicƟon in the form of ANNs and quanƟfying 

expert opinion using FL have had the most focus, which covered 37% and 31% of papers, 

respecƟvely. GA is also popular for the opƟmisaƟon of performance metrics, with 12% of 

studies considering this. CBR, which focuses on the use of previous cases to advise project 

managers on how to progress in future projects, and two other algorithms, namely MLR 

and SVM, have been involved in approximately 10% of all studies. In total, 46% of the 

studies used hybrids of mulƟple AI algorithms; this was not an increasing trend, though. 

As the quanƟty of papers increased over the decade, the raƟo of hybrid models 

decreased. This reducƟon in the raƟo of hybrid models does coincide with the increase 

in studies for other applicaƟons of DSSs than EPP. In all, 50% of all studies are focused on 

EPP, which can lead to a bias of the overall results towards the EPP research. 
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Contractor and supplier evaluaƟon papers have used only FL for quanƟfying expert 

opinion (Fallahpour et al., 2017, Ulubeyli and Kazaz, 2015) while overlooking the 

potenƟal of using ML techniques to examine empirical data alongside the opinion of 

experts. Design opƟmisaƟon and site logisƟcs have only a few studies that use AI, and 

there is no obvious trend, but these two categories were published within the last six 

years, suggesƟng an increase in interest; hence, the potenƟal of AI has not been fully 

explored in these areas.  

EPP is the most popular field of study and has been invesƟgated with a wide variety of AI 

models. The most popular are the ANN and FL, with CBR, MLR, and GA also used in a 

considerable number of studies. DPP has also been involved a wide variety of AI models, 

the most common being ANN, followed by DT, FL, and SVM. The similarity between AI 

used for the EPP and the DPP makes sense, as the tasks required for both are highly 

similar. They need project data, which can be empirical or linguisƟc from previous 

experience, and a value or values need to be predicted from the data. The main 

difference between those two categories is the stage of the construcƟon lifecycle in 

which they operate. EPP operates only in the iniƟaƟon and planning stages of the project 

lifecycle, while the DPP studies operate in the execuƟon and all areas of the project 

lifecycle.  

The SRA papers focus on the use of NLP for analysing accident reports, with one paper 

(Baker et al., 2020) comparing mulƟple AI algorithms for interpreƟng the data from risk 

assessments. These studies base the analysis purely off the wording in the incident 
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reports but fail to address the circumstanƟal data that accompanies them. All the SRA 

papers were published from 2016, which suggests an increase in interest.  

These findings show that there is a wide variety of AI models used for construcƟon DSS 

research. The type of AI used in research depends on the applicaƟon of the DSS; however, 

some areas have been explored thoroughly, such as EPP, while site logisƟcs, design 

opƟmisaƟon, and contractor and supplier evaluaƟon have very few studies that explore 

the benefits of AI. 

The ANN has shown to be popular due to a prominent level of success, but this approach 

is highly dependent on the architecture and set parameters for training. These values, or 

hyperparameters, can significantly impact the accuracy of the predicƟons being made 

(Tayefeh Hashemi et al., 2020). This merits the need for the opƟmisaƟon of the 

hyperparameter as a key stage to include in the use of machine learning in the 

construcƟon sector for decision making. (Bilal and Oyedele, 2020) explains in their guide 

for machine learning in construcƟon that the lack of consideraƟon towards this can lead 

to less-than-opƟmal results, while including HPO as a key stage in their process of 

implemenƟng ML algorithms in construcƟon. (Tapeh and Naser, 2023) also highlights the 

need for HPO when models are performing poorly and to achieve saƟsfactory results 

while menƟoning that future studies should invesƟgate HPO. This point is agreed upon 

by (Akinosho et al., 2020) who concludes that HPO is criƟcal for opƟmal model 

performance, staƟng that the omission of  such a step could result in models which do 

not meet expectaƟons.  
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The lack of consideraƟon for HPO for ANNs in DSSs from the reviewed studies is evident. 

The approach taken by (Alex et al., 2010, Wang et al., 2012, Ferreiro-Cabello et al., 2018, 

Yousefi et al., 2016, Ebrat and Ghodsi, 2014, Patel et al., 2023) was of trial an error, 

manually selecƟng the best model. With experience this can be effecƟve in achieving a 

proficient level of performance, but this can be Ɵme consuming and there is no guarantee 

that the opƟmum performance has been achieved. (Mohammad Kabir Yaqubi, 2019) 

used a simple equaƟon to determine the architecture of the ANN while (Wen, 2010) 

employed a similar approach. This method may be quick but cannot encompass the 

complexity of the combinaƟon of hyperparameters which contribute to the opƟmum 

performance in the ANN algorithm. Another approach taken was simply the selecƟon of 

the hyperparameters without the inclusion  of HPO by (Baker et al., 2020, 2020, Car-Pusic 

et al., 2020), with a number of studies failing to address the approach  taken for HPO at 

all (Chaovalitwongse et al., 2012, Williams and Gong, 2014).  

In the review of the literature, only a single study included an automated HPO method 

for the ANN. (Cheng et al., 2012), employed the GA for the opƟmisaƟon of the 

architecture of their neural network alongside other components of their evoluƟonary 

fuzzy hybrid neural network (EFHNN). The GA algorithm is an effecƟve tool for HPO 

although it requires its own hyperparameters to be set and can have a slow convergence 

rate on finding the opƟmum parameters (Bischl et al., 2021, Del Buono et al., 2020).  
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2.5.3 ObservaƟons and Trends Related to Sustainability 

Table 2-2 reports that 87% of studies considered the economic goal of sustainability while 

only 30% and 38% of studies included criteria from the environmental and social goals, 

respecƟvely. As the societal switch to the consideraƟon of environmental and social goals 

is recent, this is a reasonable result. A key factor to consider is the Ɵmeline for papers 

published over the last decade. From Figure 2-4, there is not only an increase in the 

number of papers published, but there is also a significant increase in the raƟo of social 

and environmental goals being considered.  

It must be noted that this coincides with the increase in papers focused on design, site 

logisƟcs, safety, and both supplier and contractor evaluaƟon as shown in Figure 2-3. 

These studies have been noted to have a high percentage of consideraƟon for the 

environmental and social goals of sustainability.  

EPP primarily focuses on the economic goal of sustainability when viewing bidding, 

claims, and cost predicƟon; however, there has been an area of EPP focused on project 

risk, of which most studies consider the three sustainability goals (Taylan et al., 2014, 

Hatefi and TamošaiƟenė, 2019). This field of study has increased in regularity in the 

second half of the decade. DPP has the smallest raƟo of consideraƟon for goals other 

than the economic goal of sustainability; however, there were a couple of studies in 2019 

and 2020 that adopted an approach towards all goals of sustainability (Dong et al., 2019, 

Lee and Yu-Lan, 2020).  
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These findings show that there is a shiŌ towards research into project sustainability, with 

an increase in studies specifically aimed at improving sustainability in the laƩer half of 

the decade. 

 

Figure 2-4 The three goals of sustainability by year of publicaƟon. 

When evaluaƟng sustainability criteria across studies, a prevalent trend emerges in the 

selecƟon and prioriƟsaƟon of key sustainability factors. Commonly, researchers gather 

relevant criteria from exisƟng literature and determine their significance through expert 

opinions (Fallahpour et al., 2017, Alavi et al., 2021). Some studies, such as (Kannan et al., 

2020) and (Luthra et al., 2017), employ FL and AHP to further refine subjecƟve expert 

judgments. While this method is used across various studies assessing project 

sustainability, it can introduce biases and yield imperfect results.  

Despite the incorporaƟon of mathemaƟcal tools to refine expert opinions, inherent 

subjecƟvity remains a limitaƟon compared to an objecƟve approach which draws 
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knowledge from quanƟfied data and feature analysis. Only one study, as idenƟfied among 

the reviewed literature (Santos et al., 2019), integrates both objecƟve and subjecƟve data 

in the assessment of sustainability criteria. This combined approach uses a mixture of 

subjecƟve and objecƟve weighƟng methods, providing a comprehensive evaluaƟon of 

various sustainability indicators in the context of road pavement decision-making. 

However, a potenƟal drawback of this approach lies in its limited capacity to capture 

intricate interdependencies between different indicators, oversimplifying the complex 

relaƟonships within sustainable pavement construcƟon. AddiƟonally, the reliance on 

predetermined weights may not account for dynamic changes in indicator importance 

over Ɵme, potenƟally leading to inaccuracies in prioriƟsing sustainability factors. 

2.5.4 ObservaƟons and Trends Related to Project Lifecycle 

Each of the papers were evaluated for the stage of project in which the operaƟons of the 

decision tools were focused. The stages, as stated in Table 2-2, are iniƟaƟon (init.), 

planning (plan.), execuƟon (exec.), controls (cont.), and close. There are also studies that 

focus on the whole project lifecycle rather than any single stage. No study was recorded 

as solely operaƟng in the controls or closing stages.  

About half (43%) of all papers under study were focused on decision support in the 

planning secƟon, and a further 18% were focused on the iniƟaƟon stage of construcƟon. 

Figure 2-5 highlights that there has been a consistent producƟon of publicaƟons 

dedicated to the planning and iniƟaƟon stages of the project lifecycle. Research focused 
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on the execuƟon stage of the lifecycle has gained aƩenƟon from 2016 onwards. The same 

trend is seen with studies that cover all five stages of the lifecycle although there was a 

spike of four papers in 2012 that covered all stages. 

 

Figure 2-5 The count of projects focused on the stages of the project lifecycle against the year. 

Analysing by category, EPP focuses on making predicƟons at the iniƟal stages of the 

construcƟon project lifecycle prior to the execuƟon of the project plan. This is separate 

from DPP, which has similar characterisƟcs but operates through the whole project 

lifecycle. Contractor evaluaƟon is also only researched at the beginning of the project 

lifecycle in all selected papers (Awad and Fayek, 2012, Ulubeyli and Kazaz, 2015) despite 

contractors operaƟng through the project execuƟon. The design-opƟmisaƟon papers also 

only focus on the planning stage, but this is understandable; excluding reworks, all design 

is completed in the planning stage of the construcƟon project lifecycle. The SRA studies 

understandably focus on the execuƟon stage of the project lifecycle, as this is where the 
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largest risks to health lie. Although the studies that focus on supplier evaluaƟon are 

relevant to this research, as they include the use of AI for decision making and consider 

sustainability criteria, the supplier evaluaƟon papers were focused on manufacturing 

projects, so these studies do not fit into the construcƟon project lifecycle and were not 

considered for this stage of the analysis. 

2.6 Knowledge Gaps 

Regarding RQ1, the observaƟons made in this study suggest that there will be an increase 

in studies into DSS technology in the future, with AI/ML being used for applicaƟons that 

cover all stages of the project lifecycle and for applicaƟons in management, logisƟcs, and 

design. Regarding RQ2, although the economic goal of sustainability has been the focus 

of most studies, there is a clear rise in research that invesƟgate the social and 

environmental goals through all applicaƟons of DSS technology. This suggests that there 

will be further studies considering all three pillars of sustainability in the future over the 

whole project lifecycle. Looking at more specific examples of potenƟal study, the 

following secƟons will highlight gaps in the literature and future avenues of research. 

2.6.1 Contractor EvaluaƟon 

Contractor evaluaƟon was only ever considered at the point of selecƟon during the 

planning stage of the project lifecycle and using only subjecƟve data from experts via 

quesƟonnaires. Contractors can have a long-lasƟng effect on a single project. An 

invesƟgaƟon of contractor performance throughout the project lifecycle against 
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sustainability success criteria is a good avenue for future research. For data collecƟon, a 

sustainability performance quesƟonnaire could be created and distributed at regular 

intervals and stages of the project lifecycle combined with available empirical 

measurements of contractor performance. For inference, a hybrid of FL for handling 

uncertain data and a machine learning model, such as the ANN, for making predicƟons 

and determining the trends in performance throughout the project lifecycle. This could 

lead to improved project and contract work efficiency and a potenƟal metric for ongoing 

sustainable contractor evaluaƟon throughout the whole project lifecycle. 

2.6.2 Design OpƟmisaƟon 

AI-based DSSs for design opƟmisaƟon in construcƟon appears to be a new area of study 

with all research being published from 2018. There has been some work invesƟgaƟng 

sustainability goals; however, the benefits of different and hybrid AI models have not 

been fully explored yet. The primary stream for DSSs in design opƟmisaƟon is the 

opƟmisaƟon of material selecƟon choices for sustainability. This has had minimal AI use 

for inference engine design unƟl now, as there is only a single study recorded to have 

used AI for sustainable material selecƟon. For future research, studying the benefits of 

mulƟple models of AI or combinaƟons for material selecƟon would be a fruiƞul avenue 

to pursue. In addiƟon, consider other steps of the decision-making process during design. 

(BuHamdan et al., 2020) uses RL for decision making in concept design; this is only 

effecƟve in this study due to the highly similar nature of the designs being produced. 

With a dataset covering mulƟple design projects, a supervised learning approach, such 
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as the use of an ANN (Ferreiro-Cabello et al., 2018), could be used for opƟmising concept 

design for sustainability. 

2.6.3 Dynamic Performance PredicƟon 

There is an increasing trend towards conƟnuous performance predicƟon throughout the 

project lifecycle. At present, there have been studies that consider AI models and others 

with sustainability criteria, but a study focused on the conƟnuous measurement of 

performance against sustainability criteria using an AI inference engine is an avenue to 

be pursued. This can be invesƟgated with the intenƟon of determining the readiness for 

this transiƟon in the construcƟon sector or the development of a framework to achieve 

this. An example of an approach that could be taken for this would be (Bilal and Oyedele, 

2020), who developed a six-stage guideline for applied machine learning in construcƟon. 

It starts with problem definiƟon and data selecƟon and then data preparaƟon and pre-

processing, training the baseline esƟmator, creaƟng interpretable machine learning, 

training the final esƟmator, and deployment and scoring. This is a comprehensive guide 

that could be applied for predicƟng a variety of performance metrics. A challenge related 

to this avenue of research would be for the collecƟon and verificaƟon of newly defined 

data at regular intervals related to sustainability criteria over mulƟple construcƟon 

projects. Furthermore, the complexity of the inference engine would need to 

accommodate data for predicƟon, which can change throughout all stages of the project 

lifecycle and work with incomplete and both linguisƟc and empirical data. 
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2.6.4 Safety Risk Assessment 

Another future direcƟon would expand on the SRA field of study. The use of near miss 

reporƟng as a dataset, considering circumstanƟal informaƟon alongside the quanƟtaƟve 

methodology stated in (Tixier et al., 2016a, Baker et al., 2020, Tixier et al., 2016b), may 

be an avenue to pursue. This may allow for other forms of AI to be used. Using near-miss 

reporƟng, according to the Heinrich accident triangle (Marshall et al., 2018), there are 

approximately 300 near misses for every 30 minor accidents and 1 major accidents. This 

would be a much larger pool of data for determining trends in accidents at work. This 

also allows a company to pre-empƟvely reduce accidents through analysis of near miss 

reporƟng. Challenges to this may be in the difficulty in determining an accurate metric 

for showing the improvement made by the system. 

2.6.5 Site LogisƟcs 

Improving the efficiency of site logisƟcs has shown to improve the sustainability of 

projects, as discussed in SecƟon 4.1.6, but there is opportunity for further study in 

uƟlising AI models for the decision-making process. (Guerlain et al., 2019) developed a 

system that looked at the material transport routes, the emission levels from vehicles, 

and the size of the transport vehicles but relied heavily on the experience of experts. This 

produced only 47 alternaƟves to choose from for increasing sustainability. Using this 

same approach but incorporaƟng the predicƟve capability of machine learning 

algorithms such as ANN would opƟmise the resultant transport routes. The nature of 
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training a neural network would lead to the consideraƟon of a significantly larger pool of 

alternaƟves to compare from and objecƟvely idenƟfy the opƟmal course of acƟon to 

take. Studying the benefits of AI-based DSSs for material supply for improving logisƟc 

sustainability can be seen as a good focus for future research. 

2.6.6 Hyperparameter OpƟmisaƟon 

The review of the literature in this study has highlighted a notable gap concerning the 

opƟmisaƟon of hyperparameters. While the use of ANNs has gained tracƟon due to their 

successful outcomes, the failure to adequately address the opƟmisaƟon of these 

hyperparameters remains a persistent issue (Tayefeh Hashemi et al., 2020, Bilal and 

Oyedele, 2020, Tapeh and Naser, 2023, Akinosho et al., 2020). The significance of this gap 

becomes evident as numerous studies, including (Alex et al., 2010, Wang et al., 2012, 

Ferreiro-Cabello et al., 2018, Yousefi et al., 2016, Ebrat and Ghodsi, 2014, Patel et al., 

2023), rely on manual selecƟon or simplisƟc equaƟons to determine the architecture and 

hyperparameters of the ANN.  

Although these methods might yield acceptable results, they oŌen fall short of achieving 

the opƟmum performance and fail to account for the intricate interacƟons among various 

hyperparameters. AddiƟonally, a substanƟal number of studies, such as (Baker et al., 

2020, 2020, Car-Pusic et al., 2020, Chaovalitwongse et al., 2012, Williams and Gong, 

2014), either select hyperparameters arbitrarily or neglect to highlight the opƟmisaƟon 

process enƟrely, thereby leading to subopƟmal model performance. Despite the 
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existence of advanced techniques like GeneƟc Algorithms (GAs) for HPO, as 

demonstrated by (Cheng et al., 2012), the slow convergence rate and the need for seƫng 

addiƟonal hyperparameters can pose challenges to the effecƟve implementaƟon of these 

methods.  

This gap underscores the urgent need for a standardised and automated HPO approach 

within the context of uƟlising ANNs for DSS in the construcƟon sector, ensuring the 

aƩainment of opƟmal model performance and accurate decision-making processes. 

2.6.7 Sustainability Criteria Importance EvaluaƟon 

The literature review findings suggest that the assessment of sustainability criteria 

frequently involves the insights of industry experts to determine the significance of key 

sustainability factors. Notably, certain studies, referenced in (Kannan et al., 2020) and 

(Luthra et al., 2017), uƟlise advanced methodologies such as FL and AHP to refine the 

subjecƟve judgments of experts. However, while these approaches integrate 

mathemaƟcal tools to improve the credibility of expert opinions, their inherent 

subjecƟvity remains a prominent constraint.  

Unlike these studies, which heavily rely on expert perspecƟves, a solitary work idenƟfied 

in the literature review (Santos et al., 2019) adopts a dual approach, integraƟng both 

objecƟve and subjecƟve data in the assessment of sustainability criteria. Despite the 

merits of this approach, it is crucial to acknowledge its potenƟal limitaƟons in capturing 

complex interdependencies among different indicators.  
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It is evident that the exisƟng methodologies lack a framework for the effecƟve 

quanƟtaƟve assessment of sustainability criteria in construcƟon. The persistent reliance 

on subjecƟve assessments and expert opinions oŌen leads to biased and inconsistent 

evaluaƟons, negaƟvely impacƟng the reliability of the established sustainability 

standards. Further to this, the limitaƟons in current methodologies to comprehensively 

capture the intricate interdependencies between various sustainability indicators result 

in an oversimplified understanding of the complex decision-making landscape, restricƟng 

the ability to effecƟvely prioriƟse sustainability iniƟaƟves and address interconnected 

challenges.  

This creates a need for the development of a robust and objecƟve methodology that 

minimises subjecƟve biases, empowering decision-makers to make well-informed and 

reliable sustainability evaluaƟons, leading to more effecƟve and informed decision-

making. 

2.7 The SelecƟon of the Knowledge Gaps 

Based on the literature review findings, two criƟcal gaps have been idenƟfied with two 

reasons: (i) these gaps are believed to have a significant impact on construcƟon project 

sustainability; and (ii) it is feasible to address these gaps even if sustainability data is 

limited, as discussed in the introducƟon secƟon. 

The first gap is about the opƟmisaƟon of ANNs hyperparameters, parƟcularly in the 

context of DSSs in the construcƟon sector. It must be noted that the literature indicates 
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a persistent reliance on manual selecƟon or simplisƟc equaƟons for determining ANN 

hyperparameters (Mohammad Kabir Yaqubi, 2019, Ferreiro-Cabello et al., 2018, Yousefi 

et al., 2016, Wen, 2010), resulƟng in subopƟmal model performance. While the GA has 

been explored to opƟmise ANN hyperparameters, challenges such as slow convergence 

rates and addiƟonal hyperparameter seƫngs can impact the effecƟveness of this 

approach (Bischl et al., 2021, Del Buono et al., 2020). This calls for the development of a 

standardised and automated HPO approach tailored specifically for ANNs, ensuring 

opƟmal model performance and accurate decision-making.  

The second gap concerns the evaluaƟon of sustainability criteria, which oŌen relies 

heavily on subjecƟve assessments and expert opinions. While certain methodologies 

integrate mathemaƟcal tools to refine expert judgments, their inherent subjecƟvity 

remains a notable limitaƟon (Fallahpour et al., 2017, Alavi et al., 2021, Kannan et al., 

2020). Furthermore, the exisƟng methodologies lack a comprehensive framework for 

effecƟvely quanƟfying sustainability criteria in the construcƟon domain, leading to biased 

and inconsistent evaluaƟons that can undermine the reliability of established 

sustainability standards. The limitaƟons in current methodologies to capture the intricate 

interdependencies among various sustainability indicators further restrict the ability to 

prioriƟse sustainability factors. Therefore, there is a pressing need to develop an 

objecƟve methodology that minimises subjecƟve biases, facilitaƟng well informed and 

reliable sustainability evaluaƟons to enable more effecƟve decision-making in the 

construcƟon industry. 



73 | P a g e  
 

By concentraƟng on HPO for ANNs in DSS and the development of an objecƟve 

methodology for evaluaƟng sustainability criteria, this research endeavours to contribute 

to the enhancement of decision-making in the construcƟon industry.  

The primary objecƟve is to establish a standardised and automated HPO approach 

tailored specifically for ANNs in the construcƟon sector, ensuring opƟmal model 

performance and accurate decision making. AddiƟonally, this study aims to establish an 

objecƟve framework that can be used to accurately assess the significance of quanƟfied 

sustainability criteria, hence reducing subjecƟve biases, and leading to more reliable 

sustainability evaluaƟons. By addressing these two gaps, this research aims to lay the 

groundwork for enhanced pracƟces and sustainable decision-making strategies in 

construcƟon project management. 

2.8 Summary 

In this chapter a systemaƟc literature review was conducted to invesƟgate the trends in 

research for the use of AI in DSSs in the construcƟon project lifecycle, RQ1, and to 

invesƟgate the trends in relaƟon to DSS and construcƟon project sustainability, RQ2. This 

resulted in the full paper invesƟgaƟon of seventy-seven studies aŌer screening which 

were categorised by the applicaƟon of the DSS, the AI used, the sustainability criteria 

considered and the stage of the project lifecycle in which they operated.  

The most popular applicaƟon for DSSs was EPP which has been a topic of research 

consistently throughout the invesƟgaƟon period, while other applicaƟons such as DPP, 
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design opƟmisaƟon, site logisƟcs and SRA were the focus of an increasing number of 

studies in the laƩer half of the last decade.  

AI has been used throughout a significant amount of the studies with the ANN and FL 

being the most popular forms of AI to be employed, there has also been an increasing 

trend in the number of hybrid approaches taken to overcome the weaknesses in the 

individual AI models.  

Economic sustainability has been the primary pillar of sustainability to be considered in 

the reviewed literature although the other two pillars, the social and environmental 

goals, have been gaining more aƩenƟon as Ɵme has passed.  

Several gaps in the literature were idenƟfied, related to each of the categorised 

applicaƟons of DSS, however the most significant gaps to be discovered were in relaƟon 

specifically to AI and sustainability. These two gaps are in relaƟon to the lack of 

opƟmisaƟon for the popular and effecƟve ANN for DSSs, and the lack of objecƟve 

evaluaƟon of sustainability criteria, considering the complex interdependencies between 

contribuƟng factors. Addressing both gaps is the selected focus of the research in this 

thesis. The aim of this research is now to develop an intelligent HPO method for 

opƟmising the performance of ANNs for decision making and create an effecƟve method 

of objecƟvely evaluaƟng sustainability criteria in the construcƟon sector. 

This leads onto the following chapters which cover the development of the novel HPO 

method, the experimentaƟon and validaƟon of the approach for feature importance 
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analysis, the integraƟon of this novel approach into a DSS in collaboraƟon with the 

industrial sponsor, and the validaƟon of the DSS from expert evaluaƟon. 

  



76 | P a g e  
 

3 Hyperparameter OpƟmisaƟon 

3.1 IntroducƟon 

Since the rise of industry 4.0 and the age of big data, the ANN has become one of the 

effecƟve tools for developing predicƟve models of reality. Due to its versaƟlity, ANNs have 

been applied through all areas of industry from metallurgy and material science, 

chemical engineering through to compuƟng and manufacturing (Suzuki, 2011, Mumali, 

2022, Nagy et al., 2022). The ANN performance relies on its network architecture which 

is a funcƟon of mulƟple factors. The effect of these factors, also known to be 

hyperparameters, vary for different datasets. The process of finding the best seƫng of 

hyperparameters can be very Ɵme-consuming and yet there is no guarantee that such 

seƫngs are truly opƟmal. Therefore, automaƟc HPO has aƩracted a lot of aƩenƟon, and 

its main objecƟve is to maximise the ANN performance within the shortest Ɵme. 

Established HPO methods from the literature will be discussed, leading on to an 

introducƟon of a new HPO method, Ɵtled the SEquenƟal LEarning Curve Training (SELECT) 

method, represenƟng both the novelty and contribuƟon of this research. Some of the 

well-established HPO Methods are discussed below. 

Grid Search and Random Search 

Grid search (GS) represents a brute force method of HPO that evaluates the model for all 

hyperparameter configuraƟons within the defined search space, selecƟng the best 
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performing model. GS can suffer from the curse of dimensionality, as the number of 

combinaƟons grows exponenƟally with the addiƟon of hyperparameters. This can lead 

to significant computaƟonal inefficiency and increased Ɵme for convergence. Despite its 

exhausƟve nature, GS may miss opƟmal configuraƟons that lie between the grid points, 

which limits its effecƟveness in high-dimensional spaces. Also, GS does not incorporate 

any mechanism for adaptaƟon; it evaluates each combinaƟon independently, making it 

less effecƟve at opƟmising resource allocaƟon. This method can prove Ɵme-consuming 

and computaƟonally expensive, especially with a larger range of hyperparameters to 

evaluate (Antal-Vaida, 2021).  

On the other hand, Random Search (RS) randomly selects configuraƟons from the pre-

defined search space, demonstraƟng beƩer performance with improved efficiency 

compared to GS (Bergstra and Bengio, 2012a). While RS is more efficient than GS, it sƟll 

lacks a directed search mechanism. Its random selecƟon may not effecƟvely sample the 

hyperparameter space, potenƟally leading to configuraƟons that do not explore the full 

potenƟal of the model. The simplicity of RS does allow for easy implementaƟon and 

parallelisaƟon, making it a popular choice for many pracƟƟoners. 

SequenƟal Model Based Algorithms 

SequenƟal Model-Based algorithms, such as Bayesian OpƟmisaƟon (BO), leverage 

previously selected configuraƟons to idenƟfy the best hyperparameter choices within the 

search space (Snoek et al., 2012).  
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These algorithms are efficient because of their ability to model uncertainty and balance 

exploraƟon and exploitaƟon in the hyperparameter space. However, the performance of 

these algorithms heavily depends on the choice of surrogate models and acquisiƟon 

funcƟons, which can introduce bias if not selected appropriately. As a result, user of these 

approaches must carefully consider these factors to maximise the effecƟveness of 

Bayesian OpƟmisaƟon. 

Although BO has proven to be effecƟve in opƟmisaƟon within short Ɵmes as compared 

to GS and RS, it sƟll needs to spend Ɵme trialling mulƟple combinaƟons of the 

hyperparameters to begin to converge on the best results. BO is effecƟve for lower-

dimensional search spaces, it may struggle with high-dimensional problems where the 

search space is vast. This challenge oŌen necessitates the use of advanced techniques 

like dimensionality reducƟon or hybrid approaches that combine various opƟmisaƟon 

methods to ensure thorough exploraƟon of the hyperparameter space. 

Furthermore, BO-based approaches have gained great popularity in recent years 

(Shahriari et al., 2016), with mulƟple variaƟons such as Tree-Structured Parzen’s 

EsƟmator (TPE) (Bergstra et al., 2011) and SMAC3(Lindauer et al., 2022) using different 

surrogate methodologies for beƩer performance with higher dimensionality. However, 

these methods share a common restricƟon when being used to fine-tune neural network 

architectures. They will conƟnue to run an iteraƟon unƟl the set number of epochs is 

reached even if the model performance is clearly not opƟmal.  



79 | P a g e  
 

Bandit Based Strategies 

Bandit-based strategies such as successive halving can be adopted to improve 

computaƟonal efficiency (Jamieson and Talwalkar).  This strategy trains mulƟple network 

configuraƟons in parallel, allocaƟng further computaƟonal cost to promising training 

iteraƟons. This approach facilitated the creaƟon of the popular Hyperband (HB) approach 

to HPO (Li et al., 2017) by combining the RS approach to parameter selecƟon with parallel 

successive halving. Another hybrid approach advocates the integraƟon of the two 

powerful algorithms, BO and HB, to create BOHB (Falkner et al., 2018). This approach 

uses BO to direct the selecƟon of new trial iteraƟons while limiƟng the wasted 

computaƟonal cost with HB.  

These methods offer the advantage of efficiently allocaƟng resources by evaluaƟng 

mulƟple configuraƟons simultaneously. This parallel approach allows for quicker 

idenƟficaƟon of promising models, reducing overall computaƟonal costs. Also, these 

strategies can adapƟvely adjust their resource distribuƟon based on performance, 

ensuring that more computaƟonal power is directed toward configuraƟons that show 

potenƟal, leading to faster convergence in hyperparameter opƟmisaƟon. 

Although the BOHB and HB approaches carry out directed searches and reduce the 

wasted Ɵme in training, these approaches have the potenƟal to eliminate trial iteraƟons 

that may converge to the best performance for datasets with large variaƟons in 

convergence rates with various ranges of hyperparameters, a challenge stated in the 

original paper for HB (Li et al., 2017).  
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EvoluƟonary Algorithms 

Another approach for HPO is the use of evoluƟonary algorithms, which emulate 

biological evoluƟon by employing techniques such as mutaƟon, crossover, and selecƟon 

to solve complex problems, an example being the GA. EvoluƟonary algorithms operate 

by maintaining a populaƟon of potenƟal soluƟons and conƟnually refining them over 

iteraƟons, being guided by a predefined fitness funcƟon.  

EvoluƟonary algorithms are parƟcularly advantageous in scenarios where the search 

space is non-convex or poorly understood, as they do not rely on gradient informaƟon, 

making them suitable for a broader range of opƟmisaƟon problems. The flexibility of 

these algorithms allows for the incorporaƟon of domain knowledge through custom-

designed fitness funcƟons, which can guide the search process toward more relevant 

regions of the soluƟon space. The ability to handle mulƟ-objecƟve opƟmisaƟon problems 

is another strong point, as these algorithms can simultaneously consider mulƟple 

performance metrics, providing a more comprehensive evaluaƟon of hyperparameter 

configuraƟons (Morales-Hernández et al., 2023).  

Despite their strengths, the challenge of tuning the various parameters inherent to 

evoluƟonary algorithms, such as populaƟon size and mutaƟon rates, remains a criƟcal 

factor that can significantly influence their performance and convergence behaviour. 

These approaches can have large computaƟonal costs for convergence, can potenƟally 

converge in local minima and can be difficult to generalise(Wei et al., 2022, G et al., 2022, 

Liu et al., 2023). A significant limitaƟon of evoluƟonary algorithms lies in their complex 
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and less straighƞorward adaptability to handle varying numbers of features, rows, and 

regression variables. While methods such as GA and parƟcle swarm opƟmisaƟon (PSO) 

may require careful and specific adjustments to accommodate mixed input spaces, 

alternaƟve approaches like BO processes and TPE demonstrate a more robust and flexible 

performance in handling diverse data types, including discrete, categorical, and 

numerical variables (Morales-Hernández et al., 2023).  

Learning Curve PredicƟon Methods  

To improve the efficiency of HPO, recent studies have begun to invesƟgate the benefit of 

learning curve predicƟon for terminaƟng poorly performing hyperparameter 

configuraƟons. (Domhan et al., 2015) used a model agnosƟc probabilisƟc model for early 

terminaƟon of poorly performing models, or (Baker et al., 2017) who combined a support 

vector regression mode to predict the final accuracy based on extracted features of the 

learning curves, the network architecture and the gradient of the learning curves. A later 

approach is (Wistuba and PedapaƟ, 2020)  which uƟlises pairwise ranking loss and 

leveraging learning curves from other datasets to improve the effecƟveness of early 

terminaƟon so that fewer and shorter learning curves can be used for the early 

terminaƟon. A similar objecƟve was aƩempted by (Sui and Yu, 2020) who used Bayesian 

contextual bandits for HPO, terminaƟng trials of poorly performing configuraƟons with 

intelligent resource allocaƟon from learned trends in performance.  
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A common drawback in all the above studies is that the poorly performing configuraƟons 

are terminated only by comparaƟve eliminaƟon during the trial for each configuraƟon, 

meaning that training is sƟll required to evaluate the performance of each configuraƟon.  

Previous studies have primarily focused on using meta-learning to predict learning curves 

on new datasets by studying previous ones (Wistuba and PedapaƟ, 2020, Klein et al., 

2017). Moreover, exisƟng approaches to learning curve predicƟon have concentrated on 

halƟng poorly performing learning curves (Domhan et al., 2015).  

There has yet to be an approach which can learn the relaƟonship between 

hyperparameters and learning curve performance, incorporaƟng both the training and 

predicƟon of learning curves on the same dataset, allowing for the predicƟon of the 

performance of fully UNSEEN learning curves based on training a subset of the 

hyperparameter search space. 

3.1.1 FoundaƟon for Proposed HPO Methodology 
Table 3-1 outlines the strengths and limitaƟons of established HPO methodologies. 

SequenƟal HPO methods like BO and TPE follow a sequenƟal convergence process, 

training mulƟple configuraƟons to observe the relaƟonship between hyperparameters 

and guide opƟmisaƟon toward opƟmal configuraƟons. However, their sequenƟal nature 

limits parallelisaƟon; the capability to run different trials in parallel to reduce the Ɵme 

taken for HPO. This is due to the need for the results from previous iteraƟon to guide the 

convergence to the opƟmum result. There is also inefficiency in compleƟng the training 

of poorly performing configuraƟons. 
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Table 3-1 Pros and cons for exisƟng HPO methods 

Method Pros Cons 

Grid Search 
• Exhaustively searches the hyperparameter 
space. 
• Simple and easy to understand. 

• Computationally expensive. 
• Does not adapt based on observed 
performance. 

Random 
Search 

• Simplicity and ease of implementation. 
• Requires minimal tuning. 
• Can perform well with a low 
computational cost. 
• Suitable for parallelisation 

• Inefficient in finding optimal 
hyperparameters. 
• Does not adapt based on observed 
performance. 
• May waste resources on less 
promising configurations. 

Bayesian 
Optimisation 

• Efficient in handling noisy or expensive 
objective functions. 
• Adaptive exploration of the 
hyperparameter space. 
• Converges to optimal solutions with few 
evaluations. 

• May waste resources on less 
promising configurations. 
• Poor capability for parallelisation. 

Tree 
Parzen's 
Estimator 

• Efficient with all kinds of 
hyperparameters. 
• Balances exploration and exploitation 
effectively. 

• Performance may depend on the 
quality of the surrogate model. 
• Poor capability for parallelisation. 

Hyperband 

• Efficiently allocates resources to promising 
configurations. 
• Successive halving for effective resource 
utilisation. 
• Good capability for parallelisation 

• Can eliminate slow converging, high 
performance configurations. 

BOHB 

• Efficiently allocates resources to promising 
configurations. 
• Adaptive exploration of the 
hyperparameter space.  
• Good capability for parallelisation 

• Computational complexity may be 
higher. 
• Can eliminate slow converging, high 
performance configurations. 

Genetic 
Algorithm 

• Efficient with all kinds of 
hyperparameters. 
• Can find diverse sets of hyperparameter 
configurations. 

• Computationally expensive with 
large populations. 
• Parameter sensitivity and the need 
for careful tuning. 

Particle 
Swarm 
Optimisation 

• Efficient with all kinds of 
hyperparameters. 
• Suitable for parallelisation 

• Tendency to converge to local 
optima. 
• Parameter sensitivity and the need 
for careful tuning. 

Learning 
curve 
prediction 

• Early stopping for poorly performing 
configurations. 

• Does not generalise well over 
different datasets. 
• Unseen configurations cannot be 
predicted. 
• Computationally inefficient 
• Prediction accuracy can be difficult 
to achieve 
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On the other hand, bandit-based approaches such as HB and BOHB exhibit a robust 

parallelisaƟon capability by training many configuraƟons simultaneously in the iniƟal 

stages. They proceed with the best-performing configuraƟons, reducing computaƟonal 

Ɵme spent on poor performing configuraƟons. However, this may eliminate 

configuraƟons with slower convergence rates that may eventually achieve superior 

performance. 

EvoluƟonary-based approaches have seen significant advancements, but their reliance 

on hyperparameters make them less adapƟve to new dataset sizes and types. Their 

inherent limitaƟons with evolving data availability must be resolved if they are to be 

implemented in a real industrial environment.  

3.1.2 InspiraƟon and AmbiƟons: Learning Curve PredicƟon for 

Efficient HPO 

It is commonly understood that there is a correlaƟon between the hyperparameters of 

ANNs and the learning curves developed during training, with the hyperparameter choice 

impacƟng the performance of the ANN configuraƟon throughout the training run. All 

approaches of HPO monitor some aspect of mulƟple trained configuraƟons of 

hyperparameters to determine which configuraƟon is performing beƩer.  

When it comes to learning curve predicƟon, challenges persist in accurately predicƟng 

learning curves for unseen configuraƟons. TradiƟonal approaches leveraging meta-

learning, focus on predicƟng learning curves based on historical data from previous 
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datasets can be beneficial but they oŌen suffer from severe inaccuracies when applied 

to new scenarios due to their dependence on the specific characterisƟcs of prior 

datasets. Furthermore, these models can be computaƟonally intensive, requiring 

extensive training Ɵme and opƟmisaƟon of their own hyperparameters(Choi et al., 2018). 

In light of these challenges, it was hypothesised in this study that a more effecƟve 

approach could be developed by treaƟng the problem of learning curve predicƟon as a 

machine learning task. This method focuses on training a model using a subset of learning 

curves derived from hyperparameter configuraƟons within the same dataset. By doing 

so, the proposed approach aims to predict the performance of learning curves without 

the need for extensive prior training on mulƟple datasets. 

The anƟcipated improvements of this new method over exisƟng algorithms include: 

1. Reduced ComputaƟonal Cost: By leveraging a smaller subset of configuraƟons for 

training, the model can achieve faster convergence, minimising the resources 

required for learning curve predicƟon. This efficiency allows for more rapid 

iteraƟons in the HPO process. 

2. Increased Accuracy: The proposed method seeks to establish a more accurate 

predicƟon model for configuraƟons by directly modelling the relaƟonships 

between hyperparameters and their corresponding learning curves for the same 

dataset. This contrasts with tradiƟonal methods that may misrepresent these 

relaƟonships due to their reliance on past data. 
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3. Enhanced Adaptability: The new method is designed to adapt to varying 

characterisƟcs of the dataset, thereby improving its generalisaƟon capabiliƟes. 

This adaptability allows for more robust performance across different datasets 

without necessitaƟng extensive retraining. 

This serves as the inspiraƟon for the approach craŌed during this research. The learning 

curve of an ANN configuraƟon offers a wealth of data, surpassing the approach of 

recording final performance sequenƟally for HPO, as seen in sequenƟal-based 

approaches, or the performance at various intervals, as observed in bandit-based 

methodologies. At each epoch of the training cycle of an ANN, a new variaƟon in 

performance against the hyperparameter configuraƟon emerges. To effecƟvely harness 

this wealth of data for efficient HPO, an approach for learning curve predicƟon is 

essenƟal. The primary objecƟve of this study is to develop an HPO approach with the 

following key characterisƟcs: 

 Create a sample set of configuraƟon learning curves: To train another ML model 

on the relaƟonship between ANN hyperparameters and the learning curve of all 

other configuraƟons in the search space.  

 Capability for parallelisaƟon: The sample set of learning curves will be prepared 

as a single training set for the ML model to learn from, allowing for a capability 

for parallelisaƟon. The ML learned correlaƟon between the hyperparameters and 

learning curves will guide HPO, rather than observed performance of individual 

ANN configuraƟons.  
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 Adaptable for varying datasets: The approach must be adaptable to varying 

datasets with minimal adjustment of hyperparameters. 

 Compete in Efficiency and Performance: The approach must be able to compete 

with exisƟng HPO methods for computaƟonal efficiency and opƟmisaƟon 

performance. 

3.1.3 Novelty and ContribuƟon of this Research 

The most significant contribuƟon from this study comes in the form of a mechanism for 

the HPO of MulƟ-Layer Perceptron (MLP) neural networks, the SEquenƟal LEarning Curve 

Training (SELECT) method. The SELECT HPO method incorporates learning curve 

predicƟon to determine the trends in performance of all network architectures in a 

chosen search space. This is achieved with only 6% of the ANN architectures in the 

chosen experiments and a one-dimensional CGRNN for predicƟon. This helps to 

consistently find beƩer performing neural network architectures with shorter 

computaƟonal Ɵme than RS, Bayesian OpƟmisaƟon with Gaussian Process (GPBO), TPE, 

and HB in the experiments.  

A key novelty of the SELECT mechanism is a method to convert neural network learning 

curve data from mulƟple network architectures into a sequenced and windowed dataset. 

This is used for training the CGRNN to predict the learning curves of all network 

architectures in the search space together with the use of a single predicƟon window, 

meaning the learning curves for all UNSEEN network architectures are predicted without 
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any training. The predicted final performance of the learning curves is then ranked and 

only the top predicted performers are trialled for a result.  This approach creates an 

efficient manner for HPO with learning curve predicƟon, overcoming challenges such as 

the  drasƟc variaƟon in learning curve shapes for different hyperparameter 

configuraƟons, or the addiƟonal tuning parameters for the learning curve predicƟon 

model, highlighted in previous research (Choi et al., 2018).  

3.1.4 Structure of the HPO Development 

Before discussing the proposed SELECT HPO mechanism, its background theory will be 

explained and followed by an overview, explaining the individual stages of the developed 

algorithm. Finally, the experimental setup and validaƟon results of the proposed method 

will be presented. 

3.2 Background Theory 

To establish a foundaƟon understanding of the contribuƟng factors related to the 

proposed method, an explanaƟon of ANNs, HPO in MLPs, learning curves for ANNs and 

the CGRNN will be given. Then the theory related to the creaƟon of a “windowed” 

dataset (Moroney, 2020) for sequenƟal predicƟon will be explained, followed by the 

challenges of using a windowed dataset for learning curve predicƟon in HPO. 

3.2.1 ArƟficial Neural Network 

The ANN is a type of supervised machine learning algorithm which uƟlises 
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interconnected nodes, or neurons, in a layered structure which simulates the learning 

process of the human brain (Wang, 2003).  

The most popular architecture for ANN is the MLP, shown in Figure 3-1. This architecture 

has an input layer for introducing the dataset to the model, requiring a neuron for each 

input variable. This is followed by several hidden layers, each with several neurons, 

before reaching the output layer. The neurons have acƟvaƟon funcƟons for converƟng 

the accumulated, weighted inputs into output values. The output layer is the predicƟon 

made by the model; in this study, the neural network architecture is used for regression 

so, the output layer is a single neuron which would contain the predicted value. This 

architecture funcƟons with the use of back-propagaƟon (Chiang et al., 1996) which 

begins with a forward pass through the network with randomly iniƟalised weights in each 

neuron where the total loss in the final predicƟon is measured. This loss is the difference 

between the predicƟon and the actual value; the actual value being taken from a training 

set of the data. From this loss, an opƟmisaƟon algorithm such as gradient descent is used 

to evaluate the gradient of the weights of each neuron through a backwards pass through 

the model. The weights will then be adjusted with a learning rate to reduce the difference 

between the predicƟon and the actual value. This full cycle is known as an epoch. 

RepeaƟng this process mulƟple Ɵmes, or for many epochs, can improve the predicƟon 

accuracy over Ɵme.  
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Figure 3-1 The mulƟlayer perceptron neural network architecture. 

3.2.2 HPO in a MulƟlayer Perceptron 

HPO is the process of choosing the best selecƟon of hyperparameters to opƟmise model 

performance (HuƩer et al., 2019). In the case of the MLP ANN, the key hyperparameters 

are the number of hidden layers, the number of neurons per hidden layer, the learning 

rate, the acƟvaƟon funcƟon, the opƟmiser, the loss funcƟon, and the number of epochs 

(Zaccone and Karim, 2018). When opƟmising these hyperparameters, the key is to search 

over all possible variaƟons to find the best configuraƟon that can help to achieve the best 

model performance. Given a substanƟal range of configuraƟons, this process would take 

a significant amount of computaƟon Ɵme that is not always desirable. Hence, several 

efficient HPO methods have been developed over the years. 

3.2.3 Learning Curve for Neural Networks 

A learning curve for training a single ANN configuraƟon is the measurement of a 

performance metric at each epoch of training the model, ploƩed for all epochs while 

training. As the ANN trains, the metric will converge towards an opƟmum. In this study, 



91 | P a g e  
 

the performance metric is defined as the loss value showing the difference between the 

predicted results for the instances in a training set and their actual results. The lower the 

loss, the beƩer the performance. The training set is the dataset used to opƟmise the 

performance of a neural network. A validaƟon set is used to determine if the opƟmised 

model is overfiƫng the training set or not. The validaƟon loss is the same metric as the 

loss value but on the validaƟon set. Figure 3-2 presents an example of a neural network 

learning curve. It shows that, aŌer 12 epochs, the validaƟon loss begins to increase, and 

the neural network in this case is beginning to overfit the training set aŌer 12 epochs.  

 
Figure 3-2 A neural network learning curve with loss and validaƟon loss against the number of epochs. 

3.2.4 ConvoluƟonal Gated Recurrent Neural Network (CGRNN) 

The CGRNN is a combinaƟon of two disƟnct types of ANN: a 1-dimensional convoluƟonal 

neural network(1DCNN) and a type of recurrent neural network known as a gated 

recurrent unit (GRU).  
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One DirecƟonal ConvoluƟonal Neural Network 
A convoluƟonal neural network (CNN) is an ANN which is inspired by nature and made 

up of a similar basic structure of the mammalian visual cortex. It uses convoluƟons to 

detect the relaƟonship between features in data. This has shown to be parƟcularly useful 

for applicaƟons such as image classificaƟon, object tracking, and text detecƟon and 

recogniƟon(Zhao et al., 2017, Xie et al., 2020, Kazmi et al., 2021, Gu et al., 2018, Kim et 

al., 2019).  A 1DCNN is a type of CNN which has low computaƟonal expense and 

successful applicaƟons in waveform recogniƟon, such as Ɵme-series predicƟon and signal 

idenƟficaƟon(Hussain et al., 2020, Li et al., 2022, Li et al., 2019).  

Gated Recurrent Unit 
A GRU is a type of recurrent neural network (RNN) which can predict variable length 

sequences, with hidden state acƟvaƟon for each stage in a sequence relying on the 

previous stage. RNNs are useful for predicƟng the steps forward in sequenƟal data, such 

as Ɵme-series data. One limitaƟon of RNNs, however, is that its performance decreases 

significantly with long-sequence predicƟon(Bengio et al., 1994). Other RNN architectures 

were later introduced which helped to overcome this performance issue, such as the long 

short-term memory (LSTM) unit (Hochreiter and Schmidhuber, 1997), and more recently 

the GRU was proposed(Chung et al., 2014), which has a simpler architecture with less 

computaƟon cost. The applicaƟons for both of the LSTM and GRU RNNs have focused on 

sequenƟal data from Ɵme-series predicƟon to natural language processing(Irie et al., 

2016, Kwak and Lim, 2021).  
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Hybrid Methods 
There are recent examples of beƩer performing hybrid sequenƟal predicƟon models, 

such as (Wang et al., 2021) who proposed a 1DCNN-LSTM approach to predict traffic flow, 

resulƟng in faster convergence and higher accuracy than the individual sequenƟal 

models. A 1DCNN-GRU approach was also used by (Lin and Nuha, 2022) for the same 

applicaƟon with similar improvements in performance over the individual architectures. 

(Kanwal et al., 2022) also produced a hybrid model combining the 1DCNN and the LSTM 

architectures for stock price predicƟon, also showing improved accuracy and converge. 

There is unmistakable evidence of improvement in sequenƟal predicƟon performance 

with the hybrid model of 1DCNN and the LSTM and GRU architectures.  

3.2.5 SequenƟal PredicƟon and the Windowed Dataset 

Figure 3-3 shows four key steps of the sequenƟal training process for a  using the 

Fibonacci sequence as an example. To clarify, the Fibonacci sequence (FS) is formed by 

adding the previous two numbers together to form the next number in the sequence at 

every step, starƟng with 1 and 1, leading to the next number, 2. To explain the creaƟon 

of the windowed dataset, the FS moving along from 1 through to 21 is used as shown at 

the top of Figure 8. StarƟng from step 1, if the supplied dataset contains the first 6 

numbers (1 to 8) of the FS, the last two numbers will be 13(5+8) and 21(8+13). In step 2, 

the dataset is converted into a windowed dataset to enable sequenƟal predicƟon, i.e., 

predicƟng the last two numbers of the FS.  



94 | P a g e  
 

The windowed dataset contains a set length of window (as inputs) and a set length of 

predicƟon (as output). Using FS as an example, if the window length and predicƟon 

length are set to three and one respecƟvely, an instance will be created by covering three 

numbers in the window and one number in the predicƟon. For each instance (or row) in 

the windowed dataset, the window and predicƟon will move along the sequence in a 

single step. Hence, the windowed dataset moves three Ɵmes for the training set in the 

given example along the FS, forming three instances.  

In step 3, the model is trained with the three instances of the windowed dataset. Step 4 

uses the trained and a window of 3,5,8 to predict the next step in the sequence which is 

13. Similarly, a window of 5,8,13 would predict 21 in the sequence. It is important to note 

that each value and the order of the values in the windowed dataset contribute to the 

sequenƟal predicƟon. 

 
Figure 3-3 Four steps of creaƟng windowed dataset using the Fibonacci sequence. 



95 | P a g e  
 

3.2.6 Challenges for Learning Curve PredicƟon 

 
Figure 3-4 A neural network training cycle with the training window and predicƟon area. 

Challenges related to learning curve predicƟon for HPO come from the variability of the 

learning curves for different datasets and hyperparameter configuraƟons. When 

considering windowed datasets for long sequence predicƟons, the nature of learning 

curve predicƟon is especially challenging. Figure 3-4 shows an example of the learning 

curve of a neural network training cycle. It represents the window covering the iniƟal 20 

epochs of the training cycle and the predicƟon for a further 60 epochs. Given the 

variaƟons in dataset and hyperparameter configuraƟon a different learning curve would 

be observed inside the window. It means that a different window would be required to 

predict the future learning curve of each hyperparameter configuraƟon, meaning that 

aŌer training on the dataset, each configuraƟon would need to run for the length of the 

window before a predicƟon can be made. Also, the accuracy of the predicƟon reduces 

with the increasing length of predicƟon aŌer the window (PreeƟ et al., 2022).  
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In Figure 3-4, if there were 500 hyperparameter configuraƟons in the search space, with 

these variaƟons in learning curve over the training window, each configuraƟon would 

need to train for 20 epochs for all 500 configuraƟons resulƟng in 10,000 epochs for 

predicƟons alone.  This does not include all the processes involved for training the 

sequence predicƟon model. Further to this, 20 epochs is used for the window to predict 

60 epochs ahead in this example. Increasing the window size would increase the training 

before making a predicƟon and reduce the useful predicƟon Ɵme. 

3.3 Developing the SELECT HPO Method 

This secƟon outlines the progression of ideas that led to the SELECT method for 

hyperparameter opƟmisaƟon. The subsequent secƟons detail the final SELECT algorithm. 

The journey began with the goal of using learning curve predicƟon to opƟmise neural 

network hyperparameters. IniƟally, the aim was to apply early stopping to eliminate 

poorly performing learning curves, similar to previous studies. However, during tesƟng, 

a more significant opportunity emerged: the possibility of predicƟng enƟre unseen 

learning curves within the search space. 

This process began by iteraƟvely training learning curves across various hyperparameter 

configuraƟons to observe the effects. It became clear that performance was sensiƟve to 

hyperparameter choices. For example, learning curves varied significantly with changes 

to the number of hidden layers, while adjustments to neuron count had a lesser effect. It 
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was also found that learning rates outside a specific range led to universally poor 

performance across configuraƟons, with this range varying for each dataset. 

Through these observaƟons, the idea of tuning learning rates emerged. By slightly seƫng 

the learning rate below the convergence range and then incrementally increasing it based 

on a percentage drop in the curve, the model could adapt the learning rate across 

configuraƟons. This approach allowed it to respond to different datasets, enhancing 

adaptability in tuning. 

AƩenƟon then turned to the challenges of sequence predicƟon discussed in SecƟon 

3.2.6. To miƟgate noise and cumulaƟve error, the concept of blocks was introduced. Each 

block aggregated 10 epochs, smoothing noise and creaƟng stable data intervals that 

enhanced learning curve predicƟon accuracy. By training on blocks rather than individual 

epochs, the model could efficiently capture long-term trends. 

Another challenge was the need for training each configuraƟon to cover the window 

length before making a predicƟon. To address this, a syntheƟc starƟng step was added, 

achieved by replicaƟng the first instance of each learning curve. This consistency in the 

starƟng block allowed the sequenƟal model to begin all configuraƟons from a standard 
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baseline. This also meant that predicƟons could be made at the start of each training 

cycle, rather than requiring the cycle to run for the length of the window first. 

With these refinements in place, each learning curve featured an adapƟve learning rate, 

block intervals, and a starƟng step. Figure 3-5 shows a typical learning curve prepared for 

sequenƟal predicƟon. 

 
Figure 3-5 An amended neural network learning curve for the sequenƟal predicƟon model. 

Summarising the key points of Figure 3-5: 

 A ‘starƟng step’ created from syntheƟcally aƩached instances allows for a sizeable 

training window which will not impact the available predicƟon length within the 

learning curve. 

 The use of an increasing learning rate, dependent on the learning curve of each 

hyperparameter configuraƟon, for training all hyperparameter configuraƟons so 
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that all configuraƟons have negligible difference within the iniƟal window length 

and converge in an epoch limit. 

 The conversion of the learning curve data into ‘blocks’ of informaƟon taken over 

set epoch intervals reducing sequence length and noise, capturing learning curve 

trends effecƟvely.  

By formaƫng the learning curves of all trained hyperparameter configuraƟons, as shown 

in Figure 3-5, and aƩaching them in sequence, the sequenƟal predicƟon model could 

effecƟvely cycle through this structured training set. This setup was intended to enable 

the sequenƟal predicƟon model to idenƟfy and halt poorly performing learning curves 

early in the training process of each cycle. 

With the code in place, the idea arose to aƩempt predicƟon of complete learning curves 

of unseen configuraƟons using only the iniƟal window of the training cycle, shown in 

Figure 3-5. This proved successful, allowing the model to extrapolate learning curves 

across the search space by idenƟfying hyperparameter relaƟonships within a subset of 

learning curves. This innovaƟon became the foundaƟon for the SEquenƟal LEarning 

Curve Training (SELECT) method for hyperparameter opƟmisaƟon. 
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The SELECT method follows the stages listed below for HPO. Refer to Figure 3-6 for 

clarificaƟon. 

 Stage 1: The learning rate is tuned to the dataset learning rate range and 

parameters for the adapƟve learning rate for each hyperparameter configuraƟon 

are defined. 

 Stage 2: A subset of the hyperparameter configuraƟons in the search space are 

trained, each learning curve is converted into the format shown in Figure 3-5. 

 Stage 3: These are then joined in sequence and converted into a windowed 

dataset for the sequent ML model. 

 Stage 4: The sequence ML model (CGRNN) is then trained to learn the relaƟonship 

between the hyperparameters and the learning curve sequences. 

 Stage 5: Using the relaƟonship informaƟon, the learning curves for all 

configuraƟons in the search space would then be predicted with a single instance 

of the windowed dataset.  

 Stage 6: The best predicted performances could then be trialled to select the best 

performing configuraƟon for opƟmum performance. 
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Figure 3-6 Stages of the SELECT algorithm 
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3.4 SELECT HPO Methodology AbbreviaƟons 
 

Abbreviation Description 
lrbase base learning rate for negligible difference, set for each configuration 
Iincrease Increase rate of the learning rate 
Lstart Initial loss at the start of training 
Lthreshold Loss threshold for setting the learning rate of each configuration 
Lcurrent The current recorded loss at each stage of training 
lrset The learning rate achieved at the loss threshold 
nrun Set epoch limit after the learning rate has been set 
Lscale Loss threshold when setting the base learning rate 
Dscale Percentage drop from starting loss to loss threshold when setting the base 

learning rate 
lrscale Initial learning rate while setting the base learning rate 
Sc Scaling factor for increasing the learning rate exponentially while setting the 

base learning rate 
Lset Loss threshold when setting the increase rate for the learning rate 
Dset Percentage drop from starting loss to loss threshold when setting the 

increase rate for the learning rate 
nincrease The number of epochs to the loss threshold when setting the increase rate 

for the learning rate  
f Adjustment factor for setting the threshold loss while tuning the learning 

rate 
tunequantity The number of iterations while setting the loss threshold 
gradlimit The range of acceptable gradient of convergence while setting the loss 

threshold 
grad The final gradient of the learning curve in a training cycle 
CGRNN Convolutional gated recurrent neural network 
trainseq The sequential training set for training the CGRNN 
block A collection of information related to learning curve data over a set interval 
blocksize The number of epochs in each block of learning curve information 
X Input range for sequential prediction 
Y Output range for sequential prediction 
W The length of the window in blocks 
P  The prediction length in blocks 
S Starting step length in blocks 
C Training cycle length in blocks 
trialquantity Quantity of trialled configurations from the ranked learning curve predictions 
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3.5 Structure of the Proposed Approach 

IncorporaƟng the soluƟon from secƟon 3.3.2, the six key stages of the SELECT method 

are revised into the pipeline shown in Figure 3-7 with data transfer highlighted between 

different stages. Each dataset is processed for categorical variables and feature scaling, 

and split into training, validaƟon, and test sets at stage 1, leading onto the tuning of the 

learning rate. The purpose of stage 2 is to allow the sequenƟal predicƟon model to adapt 

to all datasets and hyperparameter configuraƟons by seƫng a small learning rate at the 

start of training which adjusts to each configuraƟon, dependant on the performance of 

the learning curve. This also makes every trained configuraƟon begin with negligible 

difference, contribuƟng to the ability of the SELECT method to use a single predicƟve 

window at stage 6. The learning curves are converted to ‘blocks’ of data, the starƟng step 

is added, and all learning curves are joined in series, creaƟng the novel training set for 

the CGRRN at stage 3. The learning curve data is feature scaled and converted into a 

windowed dataset before training the sequenƟal predicƟon model at stage 4. PredicƟons 

are made with the trained sequenƟal predicƟon model, and the best results are trialled 

to select the top performing model at stages 5 and 6. The following sub-secƟons will 

cover the key points in relaƟon to all stages and their development. 
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Figure 3-7 The six stages of the proposed HPO approach. 
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3.5.1 Stage 1: Data PreparaƟon 
It is assumed that uploaded datasets have been checked prior to uploading to the 

algorithm for missing variables or incorrect informaƟon so this aspect of preparaƟon is 

not programmed into the algorithm. The dataset selected for experimentaƟon have all 

been prepared in advance in this way. The categorical variables are encoded numerically, 

and the predicƟon variable and input variables are separated as the labels and features 

of the data respecƟvely. The applicaƟon of this algorithm is for regression soluƟons so 

there is a single, conƟnuous label for each instance in all datasets in the study. The 

dataset is then split into the training set and the test set with a split raƟo of 20% for the 

test set. From the training set a 20% subset is created for the validaƟon dataset. The 

features for all of the split datasets will be scaled using the Scikit-learn MinMaxScaler 

module (Bisong and Bisong, 2019). 

3.5.2 Stage 2: Tuning of the Learning Rate 
Rather than treaƟng the learning rate as a set hyperparameter to tune, (Smith, 2017) 

created an approach for a learning rate opƟmiser which adjusted the learning rate within 

set limits based on the performance of the learning curve to assist in the training process 

by allowing flexibility in learning rate. This method was the loose inspiraƟon for the idea 

to make the learning rate dependent on the performance of the learning curve. Although 

the proposed approach applied the same logic in a unique way. Instead of assisƟng the 

learning rate converge within set limits, this approach sets a boƩom limit for the learning 

rate, which can the adjust individually for each hyperparameter configuraƟon. For each 

dataset, it was determined through experimentaƟon that the ideal learning rates of 
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different architectures fiƩed within a certain range of each other, meaning that if the 

learning rate could be set to a value slightly below the boƩom of the range, dependant 

on a percentage drop, then it could be increased from this point each Ɵme a training 

cycle began with a new configuraƟon and stop increasing  at a relevant change in the 

learning curve for convergence around the epoch limit. This creates a method of tuning 

the learning rate to the dataset, and then each configuraƟon depending on each learning 

curve. 

The purpose of tuning the learning rate is to fit the learning curve for every neural 

network architecture into a set epoch limit to train and predict with the sequenƟal 

predicƟon model. For a single window to be used for predicƟon, each configuraƟon 

needs to begin at a base learning rate (𝑙𝑟௕௔௦௘) with negligible variaƟon in loss and increase 

at a defined increase rate (𝐼௜௡௖௥௘௔௦௘) unƟl the loss curve hits a threshold loss (𝐿௧௛௥௘௦௛௢௟ௗ). 

AŌer 𝐿௧௛௥௘௦௛௢௟ௗ is reached, the learning curve will conƟnue for a set epoch limit (𝑛௥௨௡) 

with the final learning rate (𝑙𝑟௦௘௧). Referring to the example of the learning curve in Figure 

3-8, the loss has negligible variaƟon in the first thirty epochs with the base learning rate, 

lrbase, before the learning rate increases aŌer each epoch with Iincrease, leading to an 

increasing reducƟon rate of loss. As the loss reaches Lthreshold, the defined threshold loss 

limit at 90 epochs, the learning rate stops increasing. The set learning rate at this point, 

lrset, is used as the basis for the rest of the learning curve unƟl the loss approaches a 

minimum aŌer a further 110 epochs, nrun. This approach allows the learning rate to adapt 

to each model configuraƟon and the start of each training cycle to be idenƟcal for all 
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configuraƟons. The method for determining each of the parameters in this approach is 

automaƟcally carried out at the start of the opƟmisaƟon process of this HPO method. 

These automaƟc processes are defined in the following sub-secƟons.  

 
Figure 3-8 The highlighted parameters for tuning the learning rate. 

𝑙𝑟௕௔௦௘ 

The purpose of 𝑙𝑟௕௔௦௘ is to have an iniƟal learning rate for each neural network 

architecture which produces negligible loss differences between all variaƟons but can 

then be increased to quickly begin to have an impact on the loss. The difficulty with 

seƫng 𝑙𝑟௕௔௦௘ is that the ideal learning rate range varies, depending on the dataset being 

used and the neural network architecture that is being trained. As the variaƟon in the 

network loss is the guide for 𝑙𝑟௕௔௦௘, this would require the seƫng of 𝑙𝑟௕௔௦௘  to be 

dependent on the loss for this to funcƟon on mulƟple datasets. Regarding this, the 
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following approach is taken to seƫng 𝑙𝑟௕௔௦௘, shown in Figure 3-9. This algorithm is 

implemented with the use of a custom callback during the training process. This tool 

allows for data to be recorded and logical algorithms to be applied during various stages 

during the training cycle of each configuraƟon, in this case, at the start of training and 

aŌer each epoch of training of an iniƟal configuraƟon for seƫng lrbase. A descripƟon of 

the steps involved in this algorithm are provided here. 

 
Figure 3-9 The pseudocode of the algorithm to set the base learning rate(lrbase) 

1. A neural network with a single hidden layer is selected for tuning the learning rate as 

it has been shown that increasing the number of hidden layers will make the neural 

network converge more slowly (Uzair and Jamil, 2020). 

2. The loss is measured at the start of training the neural network (𝐿௦௧௔௥௧)  and an iniƟal 

threshold scale loss is calculated (𝐿௦௖௔௟௘)  as a fracƟon of the iniƟal loss with a 

percentage drop(𝐷௦௖௔௟௘). In the process of iniƟal development, a loss percentage drop 
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of 0.02% or a Dscale value of 0.0002 was determined to be suitable for a negligible 

variaƟon between configuraƟons. 

3. StarƟng with an iniƟal learning rate (𝑙𝑟௦௖௔௟௘) which is significantly low enough to have 

negligible impact on the loss for any dataset (1-e9), the chosen neural network is 

trained while the learning rate is increased exponenƟally aŌer each epoch, using a 

scaling factor (Sc).  

4. The loss is measured aŌer each epoch(𝐿௖௨௥௥௘௡௧) and compared to 𝐿௦௖௔௟௘. If 𝐿௖௨௥௥௘௡௧ 

is less than 𝐿௦௖௔௟௘, the training stops and the final 𝑙𝑟௦௖௔௟௘ is defined as 𝑙𝑟௕௔௦௘. 

The iniƟal learning rate, 𝑙𝑟௦௖௔௟௘, of 1e-9 was determined through analysis of the equaƟon 

for stochasƟc gradient descent. As shown below: 

𝜃௡௘௪ = 𝜃௢௟ௗ − ∇𝐽(𝜃௢௟ௗ)  ×  𝑙𝑟 

As the weights (θ) will be updated in each epoch with the subtracƟon of the learning rate 

(lr) mulƟplied by the gradient of the loss funcƟon (∇𝐽(𝜃௢௟ௗ)) from the old parameters 

(𝜃௢௟ௗ), defining an lr value less than 1e-6 can be considered to produce an extremely 

small variaƟon in each step, but as it is important for the process to start with a negligible 

loss for all datasets, an addiƟonal factor of 1e-3 was added to this scale, resulƟng in 1e-

9 as the starƟng learning rate. The S value was set to 0.1, allowing the learning rate to 

increase from 1e-9 to 0.5 over the space of 200 epochs. A length of 200 epochs allows 

for each dataset to reach Lscale without overshooƟng the learning range for the 

configuraƟons that were tested. This was set through the process of trial and error at the 

iniƟal stages of development and has been suitable for all experiments moving forward. 
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The choice to use 200 epoch limit stemmed from observing the number of epochs for 

the learning rate to increase to a level so that significant loss is detected. The was a 

balance set through observaƟon between ensuring that the step increased slowly 

enough to not overshoot the lower acceptable learning rate limit while also limiƟng the 

required computaƟonal Ɵme required for training.   

The approach taken in Figure 3-9 sets the starƟng learning rate, 𝑙𝑟௕௔௦௘, for the training of 

all neural network architectures moving forward. This is set at the beginning of each 

opƟmisaƟon process in the proposed approach for a new dataset to set the boƩom limit 

of the range of learning rates to suit all architectures. As the opƟmum learning rate will 

vary depending on each configuraƟon, the learning rate is gradually increased unƟl there 

is significant loss, accordingly, using the rate of increase, Iincrease. The creaƟon of this 

variable is discussed next. 

𝐼௜௡௖௥௘௔௦௘  

The purpose of 𝐼௜௡௖௥௘௔௦௘ is to raise the learning rate while training a neural network 

architecture from 𝑙𝑟௕௔௦௘ to a point where the loss reaches a predefined loss threshold, 

Lset, within a set length of epochs (𝑛௦௘௧). This increase must also occur aŌer the number 

of epochs for 2 blocks to pass so that there is minimal difference between all 

configuraƟons within the length of the window for the sequenƟal predicƟon model. This 

means that for the number of epochs of 2 block intervals, the learning rate will be set at 

lrbase allowing for negligible variaƟon for all configuraƟons during this porƟon of the 

training cycle. AŌer this stage the learning rate will be made to increase unƟl Lset is 
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achieved. 𝐼௜௡௖௥௘௔௦௘ will be different for each dataset so it will need to be determined 

through analysis of an iniƟal trained neural network and then amended to suit the length 

of 𝑛௦௘௧. The approach for this is described below, expressed in Figure 3-10.  

 
Figure 3-10 The pseudocode of the algorithm to set the increase rate of the learning rate (Iincrease) 

1. The same neural network used for seƫng 𝑙𝑟௕௔௦௘ is trained. 

2. When training begins, the loss is measured at the start of training the neural 

network (𝐿௦௧௔௥௧)  and a threshold loss for seƫng is calculated (𝐿௧௛௥௘௦௛௢௟ௗ)  as a 

fracƟon of the iniƟal loss with a percentage drop(𝐷௦௘௧). 𝑙𝑟௕௔௦௘ must be kept the same 

for all future learning curves so a new variable, 𝑙𝑟௦௘௧, is used for the increasing 

learning rate. 

3. On the end of each epoch, aŌer the number of epochs required for 2 blocks of data 

has passed, 𝑙𝑟௦௘௧ is increased by a predefined percentage increase 𝐼௦௧௔௥௧. 
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4. The loss is measured aŌer each epoch(𝐿௖௨௥௥௘௡௧) and compared to 𝐿௦௘௧. If 𝐿௖௨௥௥௘௡௧ is 

less than 𝐿௦௘௧, the training stops, and the final epoch quanƟty is defined as 𝑛௜௡௖௥௘௔௦௘. 

5. AŌer training stops, 𝐼௜௡௖௥௘௔௦௘ is calculated using 𝐼௦௧௔௥௧ , 𝑛௜௡௖௥௘௔௦௘ and 𝑛௦௘௧. The proof 

for the equaƟon is provided in EquaƟon 1. 

𝑙𝑟௦௘௧ ௙௜௡௔௟ = 𝑙𝑟௕௔௦௘ × 𝐼௦௧௔௥௧
௡೔೙೎ೝ೐ೌೞ೐ 

𝑙𝑟௕௔௦௘ × 𝐼௜௡௖௥௘௔௦௘
௡ೞ೐೟ =  𝑙𝑟௕௔௦௘ × 𝐼௦௧௔௥௧

௡೔೙೎ೝ೐ೌೞ೐  

𝐼௜௡௖௥௘௔௦௘
௡ೞ೐೟ = 𝐼௦௧௔௥௧

௡೔೙೎ೝ೐ೌೞ೐  

ln (𝐼௜௡௖௥௘௔௦௘
௡ೞ೐೟ ) = ln( 𝐼௦௧௔௥௧

௡೔೙೎ೝ೐ೌೞ೐) 

𝑛௦௘௧ × ln (𝐼௜௡௖௥௘௔௦௘) = 𝑛௜௡௖௥௘௔௦௘ × ln (𝐼௦௧௔௥௧) 

ln (𝐼௜௡௖௥௘௔௦௘) =
𝑛௜௡௖௥௘௔௦௘

𝑛௦௘௧
× ln (𝐼௦௧௔௥௧) 

ln (𝐼௜௡௖௥௘௔௦௘) = ln (𝐼௦௧௔௥௧

௡೔೙೎ೝ೐ೌೞ೐
௡ೞ೐೟ ) 

𝑰𝒊𝒏𝒄𝒓𝒆𝒂𝒔𝒆 = 𝑰𝒔𝒕𝒂𝒓𝒕

𝒏𝒊𝒏𝒄𝒓𝒆𝒂𝒔𝒆
𝒏𝒔𝒆𝒕  

(1) 

𝐼௦௧௔௥௧ was set through trial and error to be 1.02, this allows for a slow increase and a 

larger number of epochs to achieve Lset compared to nset. The value of nset for all 

experiments was set to 80 epochs. This means that the desired number of epochs for 

seƫng lrset is 80 epochs. With a slow increase rate in the first run, Iincrease can be set by 

reducing the number of epochs from nincrease to nset for each dataset using the above 

equaƟon. ImplemenƟng a gradual increase in the learning rate offers advantages in terms 

of training stability. SwiŌ and abrupt increments in the learning rate could result in 

instability or overshooƟng during the opƟmisaƟon process. By adopƟng a more 

measured approach, making gradual adjustments to the learning rate, the model is beƩer 



113 | P a g e  
 

poised to converge reliably. AddiƟonally, allowing a larger number of epochs to reach Lset 

compared to nset creates an extended training period during which the learning rate is 

adapted. This approach is conducive to a thorough fine-tuning of the model's 

parameters, enhancing its overall performance. Even if the learning rate is set at a point 

where it reaches Lset aŌer a predefined number of epochs, nset, this sƟll does not 

guarantee that the model will converge to a minimum aŌer a predefined set number of 

epochs aŌer this point, nrun. To achieve this, Lset needs to be adjusted to a threshold, 

Lthreshold, which allows for the convergence to fit around nrun. The approach to achieve this 

is discussed next. 

 𝐿௧௛௥௘௦௛௢௟ௗ  

𝐿௧௛௥௘௦௛௢௟ௗ is a percentage of the iniƟal loss in the learning curve which will stop the 

increasing learning rate. The purpose of 𝐿௧௛௥௘௦௛௢௟ௗ is to stop 𝐼௜௡௖௥௘௔௦௘ at a value of 

𝑙𝑟௦௘௧ which will allow the learning curve to converge within the set epoch limit 𝑛௥௨௡. This 

is achieved by iteraƟvely training a single layer neural network and incrementally 

reducing 𝐿௧௛௥௘௦௛௢௟ௗ with an adjustment factor (f) based on the final gradient (grad) 

recorded in 𝑛௥௨௡ .  

The purpose of tuning the learning rate in this approach is to fit the learning curve for 

every configuraƟon into a set epoch frame (𝑛௜௡௖௥௘௔௦௘ +  𝑛௥௨௡) for the windowed 

sequenƟal predicƟon model to train from. Using this trained sequenƟal predicƟon model, 

the predicƟons can be ranked for beƩer performing learning curves, rather than finding 

the best result at this stage. This means that with slow convergence datasets it is only 
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needed to get as close to convergence as possible. In order to achieve this, the process 

will repeatedly adjust 𝐿௧௛௥௘௦௛௢௟ௗ for a set quanƟty of iteraƟons ൫𝑡𝑢𝑛𝑒௤௨௔௡௧௜௧௬൯, if there is 

no improvement, the acceptable range of gradient (𝑔𝑟𝑎𝑑௟௜௠௜௧)  will be increased. As 

𝐿௧௛௥௘௦௛௢௟ௗ will be changed, 𝐼௜௡௖௥௘௔௦௘ will be altered so 𝑛௜௡௖௥௘௔௦௘ is kept at 𝑛௦௘௧. This is 

shown in Figure 3-11 followed by a descripƟon of the steps taken. 

 
Figure 3-11 The pseudocode of the algorithm to set the threshold loss for seƫng the learning rate of each 

configuraƟon (Lthreshold). 

1. Train the single layer neural network and record 𝐼௜௡௖௥௘௔௦௘ and grad. 

2. While grad is outside of 𝑔𝑟𝑎𝑑௟௜௠௜௧, alter the 𝐿௧௛௥௘௦௛௢௟ௗ with f. 

3. Train the single layer neural network and record grad and 𝑛௜௡௖௥௘௔௦௘.  

4. Amend 𝐼௜௡௖௥௘௔௦௘ to achieve 𝑙𝑟௦௘௧ for 𝑛௦௘௧ number of epochs. 

5. If 𝑔𝑟𝑎𝑑௟௜௠௜௧ is not achieved, repeat unƟl 𝑡𝑢𝑛𝑒௤௨௔௡௧௜௧௬ ௟௜௠௜௧ is reached, then increase 

𝑔𝑟𝑎𝑑௟௜௠௜௧ 
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6. Repeat steps 2-5 unƟl grad achieves 𝑔𝑟𝑎𝑑௟௜௠௜௧ 

The iniƟal Lset is defined as 80% of Lstart and the adjustment factor has been set to 0.95, 

meaning that as there is conƟnued iteraƟons with a learning curve not converging, the 

new Lthreshold will decrease by 5% each iteraƟon, allowing for a faster convergence each 

Ɵme. These variables were set during development through trial and error. 

While tuning the learning rate, mulƟple parameters were explored through trial and 

error. It's important to note that the datasets used for development differed from those 

employed in the validaƟon experiments. The seƫng of these variables was conducted 

independently of all validaƟon experiments. The lrbase, Iincrease and Lthreshold values are 

automaƟcally determined for each new dataset using the described method, the next 

step is to generate the sequenƟal training set out of the learning curves. 

3.5.3 Stage 3: CreaƟon of the SequenƟal Training Set 

The purpose of the sequenƟal training set (𝑡𝑟𝑎𝑖𝑛௦௘௤) is to provide the sequenƟal 

predicƟon model with sufficient informaƟon so that the correlaƟon between the learning 

curve of a neural network, and the network architecture and learning rate can be 

established, while simultaneously making it possible for a single training window to be 

used for predicƟon. The creaƟon of the training set has four stages: (i) running several 

neural network architectures spanning the hyperparameter search space, (ii) converƟng 

the data into blocks of informaƟon for long sequence predicƟon, (iii) aƩaching the 

starƟng step and (iv) finally joining the learning curves from all the trained neural 

network architectures in series. Each of these stages will be discussed in this secƟon. 
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Hyperparameter Search Space and Selected Architectures 

In this study, the HPO focuses on the learning rate, the number of hidden layers and the 

number of neurons per hidden layer which are most suited for opƟmum performance of 

a neural network for regression applicaƟons. With the learning rate dependent on the 

loss of each neural network architecture configuraƟon, it is no longer an independent 

hyperparameter and will set automaƟcally and individually to each configuraƟon. 

AddiƟonally, as the learning rate has been tuned to achieved convergence around the 

nrun limit, the epoch limit is also predefined. This results in the number of neurons per 

hidden layer and the number of hidden layers being the focus of this HPO approach. For 

this study, the chosen hidden layer range is between 1-5 hidden layers, while the range 

of neurons per hidden layer is 1-100. To ensure the effecƟveness of the approach, the 

selected neuron quanƟƟes and layers must span the range of each hyperparameter. 

Hence, the selected architectures are examined through 6 sets of neuron quanƟƟes over 

5 hidden layers. This means that 6 sets of neuron quanƟƟes (1, 20, 40, 60, 80, and 100) 

per hidden layer are trained for 5 different hidden layers (1,2,3,4 and 5). This results in 

30 of the total 500 network architectures being trained, meaning 6% of the potenƟal 

network architectures are trained for the sequenƟal predicƟon model to funcƟon 

effecƟvely, incorporaƟng the automaƟc seƫng of the learning rate in both trainseq and 

the predicƟons from the sequenƟal predicƟon model. 
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InformaƟon Blocks for Long Sequence PredicƟon 

Figure 3-12 illustrates a learning curve of a neural network architecture with 1 hidden 

layer and 20 neurons incorporaƟng the tuned learning rate method discussed earlier, this 

is using the ‘Behavior of Urban Traffic’ dataset(Sassi et al., 2011). The learning curve can 

be seen to fluctuate rapidly which would limit the ability for the sequenƟal predicƟon 

model to interpret the conƟnuous flow of the learning curve, reducing the clarity of the 

trend in performance. To add to this, a good sequenƟal predicƟon model would need to 

foresee up to 180 steps ahead, through this fluctuaƟon, to evaluate the result of the 

learning curve. 

 
Figure 3-12 The predicƟon length and loss fluctuaƟon of the neural network learning curve. 

To overcome this uncertainty in interpreƟng the trend and predicƟng the learning curves, 

the informaƟon in the learning curves is recorded over set intervals, termed as blocks. A 

block contains the average and range value for each of the loss, the validaƟon loss, and 
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the learning rate over a set interval (𝑏𝑙𝑜𝑐𝑘௦௜௭௘). The equaƟons for the average and range 

are shown below in EquaƟon 2 and EquaƟon 3 respecƟvely. At the start of each block (i), 

the average and range are calculated before all blocks are appended into a shortened 

dataset. Table 3-2 shows the learning curve data in Figure 3-12, aŌer being converted 

into blocks. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒௜:௜ା஻௟௢ ೞ೔೥೐
=

∑ ௩௔௟௨௘

஻௟௢௖௞ೞ೔೥೐
    (2) 

𝑅𝑎𝑛𝑔𝑒௜:௜ା஻௟௢௖௞ೞ೔೥೐
= 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒        (3) 

Using 𝑏𝑙𝑜𝑐𝑘௦௜௭௘ = 10 epochs, a different learning curve can be produced with the average 

loss and average validaƟon loss as shown in Figure 3-13. This helps to filter out the 

fluctuaƟons in loss values and reduces the required length of predicƟon by a factor of 10, 

hence it significantly increases the accuracy of predicƟng the trend of the same learning 

curve in blocks. Reducing the number of data points from epochs to blocks with the 

average readings allows for a reducƟon in the steps forward to be predicted but this also 

reduces the informaƟon that is being used for predicƟon. This is why the range of values 

is also recorded. With both the average and range of values taken for each block in 

parallel, as shown in Table 3-2, the sequenƟal predicƟon model has an increased number 

of input features to learn from to make predicƟons. The average features show the 

overall trend of the blocks through the learning curve while the range values provide an 

insight into how the epoch values vary between intervals. 
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Table 3-2 Learning curve data converted into blocks of informaƟon. 

 Average Range 

Block Loss Valid. 
Loss 

Learning 
Rate 

Loss Valid. 
Loss 

Learning 
Rate 

1 10.05 9.18 3.63E-05 0.00 0.00 0.00E+00 
2 10.04 9.18 3.68E-05 0.00 0.00 4.78E-06 
3 10.04 9.17 8.22E-05 0.00 0.01 1.00E-04 
4 10.03 9.16 2.83E-04 0.02 0.02 3.46E-04 
5 10.00 9.13 9.76E-04 0.06 0.06 1.19E-03 
6 9.88 9.00 3.36E-03 0.20 0.22 4.11E-03 
7 9.46 8.53 1.16E-02 0.76 0.84 1.41E-02 
8 7.21 6.15 3.91E-02 5.21 4.38 4.07E-02 
9 2.76 3.25 6.06E-02 1.62 1.34 0.00E+00 

10 2.05 2.54 6.06E-02 0.31 0.90 0.00E+00 
11 1.90 2.57 6.06E-02 0.17 0.84 0.00E+00 
12 1.86 2.52 6.06E-02 0.21 0.95 0.00E+00 
13 1.78 2.49 6.06E-02 0.19 0.64 0.00E+00 
14 1.74 2.46 6.06E-02 0.20 0.96 0.00E+00 
15 1.81 2.44 6.06E-02 0.47 1.14 0.00E+00 
16 1.71 2.39 6.06E-02 0.35 0.69 0.00E+00 
17 1.75 2.33 6.06E-02 0.41 1.08 0.00E+00 
18 1.71 2.35 6.06E-02 0.18 0.89 0.00E+00 

  

 
Figure 3-13 The neural network learning curve aŌer being converted into blocks of the average loss. 
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StarƟng Step  

A windowed dataset must be used to train the sequenƟal predicƟon model and make 

predicƟons. Each window in the dataset requires a set number of blocks in sequence 

which can be used as a reference (as inputs) for predicƟng the next blocks in the 

sequence (as outputs). Before making a predicƟon, a learning curve must be first created 

in blocks to cover the window length. With every block being used for the window, the 

useful predicƟon length reduces, see Figure 3-14. With a short window length, W1, there 

is a large predicƟon length, P1, requiring a narrow window to predict a larger sequence 

ahead, leading to a model with low accuracy. Increasing the length of the window to W2 

would provide further context for the sequenƟal model to learn from, however this 

would reduce the predicƟon length to P2, increasing the predicƟon accuracy, but more 

blocks are needed for predicƟon, providing less benefit, and reducing the efficiency of 

predicƟon.  

To achieve the benefits of having a large window size for predicƟon context while not 

impacƟng the predicƟon length, a syntheƟc starƟng step is added to the block data for 

each trained configuraƟon. This is done through replicaƟng the first block for every 

training cycle, see Figure 3-15. The length of the starƟng step can be increased and 

decreased as required, depending on the user’s selecƟon of window length. It is 

important for the starƟng step to be smaller than the window length because replicaƟng 

the first block means that the data in the starƟng step is idenƟcal. If the window has 
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idenƟcal data for all instances, then the sequenƟal predicƟon model is not able to 

determine when the starƟng step begins and ends while training. 

 
Figure 3-14 The trade-off between the window length and the predicƟon length in predicƟng the learning curve. 

 
Figure 3-15 A learning curve with the starƟng step aƩached to make the predicƟon length independent of the 

window size. 
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Joining the Learning Curves in Series 

With the training cycle converted into blocks and the starƟng step aƩached, the number 

of neurons and the number of hidden layers is joined to the learning curve data, see 

Figure 3-16. This is to allow the sequenƟal predicƟon model to determine the 

relaƟonship between the neural network architectures and the corresponding learning 

curve informaƟon. To train the sequenƟal predicƟon model, a total of 9 features are used 

in parallel and these are the block number, and the average and range for loss, validaƟon 

loss, and learning rate in each 𝑏𝑙𝑜𝑐𝑘௦௜௭௘ as well as the neurons per hidden layer and 

number of hidden layers. All the block learning curves for all selected neurons and layer 

architectures are then joined in series, as represented in a line graph in Figure 3-17, to 

create a 𝑡𝑟𝑎𝑖𝑛௦௘௤.  

All the variables are then feature scaled, which normalises the sequenƟal training set for 

all datasets. This allows the sequenƟal predicƟon model to work effecƟvely without 

reseƫng the internal hyperparameters to adapt to different datasets as the number of 

features, the number of instances, the range of data and the types of data are always the 

same, regardless of the iniƟal input dataset. The only parameters which vary for each 

dataset is the trend in learning curves in relaƟon to the chosen architectures. 
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Figure 3-16 An example of the dataset for training the sequenƟal model. 

 

 
Figure 3-17 MulƟple block learning curves aƩached in series 
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3.5.4 Stage 4: Training of the PredicƟon Model 
To train the sequenƟal predicƟon model, 𝑡𝑟𝑎𝑖𝑛௦௘௤ must be converted into the format of 

a windowed dataset as described in Figure 3-3. Each number in the sequence is now 

replaced by a block which contains 9 input features in parallel, illustrated in Figure 3-18. 

Figure 3-18 represents the actual format required for sequenƟal training. The window 

contains inputs for predicƟon (X) and the predicƟon (Y) shows outputs from predicƟon. 

Each row accounts for a single step forward in the dataset. Two important factors, the 

length of the window (W) and the length of the predicƟon (P) columns, must be properly 

defined. The following subsecƟons will describe the jusƟficaƟon for the chosen lengths 

of each factor, followed by the creaƟon of the windowed dataset and finally training the 

sequenƟal predicƟon model. 

 
Figure 3-18 An example of the windowed data for the sequenƟal predicƟon model. 
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The Window Length 

As shown in Fig 3-19, the length of the learning curve for each network architecture used 

for 𝑡𝑟𝑎𝑖𝑛௦௘௤ includes both the length of the starƟng step (S) and the training cycle (C). 

A constraint with aƩaching the starƟng step to each training cycle is that the length of 

the window (W) increases with S. If W is less than or equal to S, the sequenƟal predicƟon 

model will not be able to determine when the starƟng step begins or ends, as the window 

will contain the same block informaƟon for all blocks while passing each starƟng step. 

AddiƟonally, for predicƟng the performance of each neural network architecture, W 

should be as short as possible to maximise the predicƟon length (P). The smallest 

achievable value of W which fully covers S can be defined by EquaƟon 4, the chosen W is 

two blocks larger than S. This can encompass the starƟng step with a single block on 

either side so that, during training, the window will have both the start and end of the 

starƟng step inside the window length. 

𝑊௜ௗ௘௔௟ = 𝑆 + 2     (4) 

The two blocks will sƟll need to be trained for the predicƟon window to work, that is why 

the iniƟal learning rate is set to 𝑙𝑟௕௔௦௘  and does not increase for two blocks, as expressed 

in Figure 3-6. With an iniƟal negligible difference between the learning curve for all 

network architectures, the starƟng window for all architectures in 𝑡𝑟𝑎𝑖𝑛௦௘௤  and the 

predicƟon window will be the same.  
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Increasing W raises the quanƟty of syntheƟc blocks in S. Increasing W beyond the length 

of C+2 will merit no addiƟonal benefit as the start and end of C will be encompassed in 

the window size during training and this will only reduce the raƟo of C, the useful 

informaƟon, to S as W increases further. Previous studies have shown that the size of the 

training window provides context to the sequence being analysed by the sequenƟal 

model (Graves, 2012, Jaén-Vargas et al., 2022), for this reason W is set to the maximum 

useful size while accommodaƟng the constraints of increasing S. This results in EquaƟon 

5, the chosen equaƟon for defining W, meaning that S will be equal to C.  

𝑊 = 𝐶 + 2      (5) 

 
Figure 3-19 The block learning curve with the window size (W), the starƟng step length (S) and the training cycle 

length (C) 
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The PredicƟon Length 

It can be taken from Figure 3-19 that P could be calculated with EquaƟon 6. This would 

mean that the predicƟon is made aŌer W and predicƟng the remaining learning curve 

unƟl the end of the training cycle aŌer the iniƟal two blocks have occurred. 

𝑃 = 𝐶 − 2      (6) 

As 𝑡𝑟𝑎𝑖𝑛௦௘௤ has mulƟple learning curves aƩached in series, represented in Figure 3-17, 

an issue occurs with using (5) is that the model begins to predict the beginning of the 

next architecture in the series, resulƟng in the predicted learning curve having a sharp 

rise at the end.  This is fixed by reducing P by a further 2 blocks so that the rise is never 

recorded in the predicƟon at that stage in the sequence, resulƟng in EquaƟon 7.  

𝑃 = 𝐶 − 4     (7) 

An example of this problem and soluƟon are shown in Figure 3-20, a line graph of the 

actual learning curve and predicted learning curve with each equaƟon for P. With 

EquaƟon 6, the predicƟon has a sharp rise in the learning curve in the final blocks (Figure 

3-20b).  Reducing the predicƟon length allows for the learning curve to be predicted 

while eliminaƟng this issue (Figure 3-20a). 
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Figure 3-20 Actual vs Predicted learning curves with (a) a predicƟon which is 2 blocks less than the training cycle 

length and (b) a predicƟon which reaches the end of the training cycle. 

CreaƟng the Windowed Dataset 

With values for both W and P defined, and 𝑡𝑟𝑎𝑖𝑛௦௘௤ produced, the windowed training 

set (𝑡𝑟𝑎𝑖𝑛௪௜௡ௗ௢௪) can be created. This is achieved using Figure 3-21. The result of this 

stage is an input dataset, X, which consists of the 9 input features in parallel being sorted 

into the window format, shown in Figure 3-18 and a corresponding output set of labels, 

Y, which only has a single feature. This feature is the average validaƟon loss for the length 

P, the number of steps ahead for predicƟon. This is the required feature to produce the 

learning curves for each architecture. Using the predicted average validaƟon loss for the 

length P, the trend in overall performance can be predicted for all architectures.  
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Figure 3-21 The pseudocode of the algorithm to create trainwindow. 

CGRNN Architecture 

For this study, the individual 1DCNN, GRU, Long Short-Term Memory RNN 

(LSTM)(Hochreiter and Schmidhuber, 1997), as well as the RNN were considered for 

predicƟon. These architectures and hybrids of each were compared as an iniƟal 

assessment through trial and error to determine which would be most suitable for this 

applicaƟon. The 1DCNN+GRU and 1DCNN+LSTM architectures produced the best 

learning curve predicƟons. However, the 1DCNN+LSTM had a larger computaƟonal cost, 

resulƟng in the 1DCNN+GRU, termed the CGRNN architecture, being selected for this 

study. 

The chosen CGRNN architecture consists of a 1DCNN layer, mulƟple GRU layers and a 

final dense layer. This base architecture has been opƟmised with Keras Tuner (O'Malley, 

2019), using GPBO to get the best sequenƟal predicƟon model to be used as the CGRNN. 

Table 3-3 shows the range of hyperparameters which were opƟmised, as well as the 
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resultant best combinaƟon of hyperparameters for the CGRNN. These seƫngs are used 

for all experiments in this study. The final opƟmised CGRNN architecture is shown in 

Figure 3-22. It must be clarified that the CGRNN hyperparameters have not been 

changed for any variaƟon in dataset aŌer the iniƟal opƟmisaƟon and the same 

parameters have been used for all experiments. 

Table 3-3 CGRNN Hyperparameters: Range and best result 

Stage Hyperparameter Range Best Result 
Global Learning rate 1e-9 - 1e-1 0.00213 
1DCNN Layer Filter 10-300 274 

Kernel 2-9 8 
Strides 1-3 1 

GRU Layers 1-3 3 
Units/layer 10-80 32 

Dense Layer Units 5-100 100 
 

 
Figure 3-22 The structure of the opƟmised CGRNN architecture for learning curve predicƟon. 

Training the CGRNN Model 

The X and Y datasets are split into training and validaƟon datasets, and the CGRNN model 

is opƟmised with the mean absolute error as a metric (MAE) and an Adam opƟmiser 

(Kingma and Ba, 2014). The Adam opƟmiser is a popular algorithm in machine learning 

that adapƟvely adjusts the learning rate for each parameter by combining two 

techniques: momentum (to smooth gradients) and RMSProp (to scale updates based on 
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recent gradients). This allows Adam to converge faster and more effecƟvely on opƟmal 

soluƟons without extensive tuning, making it ideal for training deep neural networks. 

The equaƟon for the MAE is shown in EquaƟon 8, with 𝑦௣௥௘ௗ being the predicƟon for 

each instance, 𝑦௔௖௧௨௔௟ being the true label of each instance, and n being the number of 

instances. 

𝑀𝐴𝐸 =
∑ ห௬೛ೝ೐೏ି௬ೌ೎೟ೠೌ೗ห೙

೔సభ

௡
     (8) 

The model is trained for 200 epochs, a number selected to be suitable through trial and 

error, and the MAE for both the training and validaƟon datasets is recorded. Through 

iteraƟve experimentaƟon, it was deemed that a suitable level of predicƟon performance 

was achieved when the MAE of the training set was less than 0.02. The validaƟon MAE is 

monitored throughout the 200-epoch training cycle and the model parameters for the 

best validaƟon MAE with the training MAE under 0.02 are selected for predicƟon. As 

trainseq, the source for X and Y, always has the same features, the same number of rows, 

the same type of features and the same scale, these required training parameters and 

CGRNN hyperparameters do not need to change when the input dataset for HPO 

changes, as the only variaƟon is the relaƟonship between the changing learning curve 

shape and the architecture details. This allows for flexibility with different datasets while 

not changing the training method and hyperparameters for the CGRNN. 
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3.5.5 Stage 5: PredicƟon of Learning Curves 
With the trained CGRNN, the next step of the SELECT method is to predict the learning 

curve of all architectures in the search space from a single predicƟon window. This is 

achieved with the following: 

1. Train a single neural network architecture for the length of two blocks, stop training 

and record the learning curve data. 

2. Convert the learning curve data into the parallel blocks with the loss, validaƟon loss 

and learning rate informaƟon as before. 

3. AƩach the starƟng step to the blocks of data, creaƟng the single predicƟon window 

learning curve needed for the CGRNN, a line graph representaƟon is given in Figure 3-

23. 

 
Figure 3-23 The predicƟon window of the learning curve. 
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4. For each architecture (neurons per layer and quanƟty of layers) in the search space, 

aƩach the same predicƟon learning curve data from the single window and predict 

the learning curve with the CGRNN model for all architectures without running them. 

The learning curve of all architectures will be produced from this single predicƟon 

window. Fig 3-24 is an example of the predicted learning curve from the CGRNN with 2 

hidden layers and 95 neurons against the actual learning curve using the QSAR Fish 

Toxicity dataset (Cassoƫ et al., 2015). It shows a learning curve covering 140 epochs, or 

14 blocks of 10. The final loss values of this network architecture from the learning curve 

are highlighted in the green box. Recording the final loss from every predicted 

architecture provides a predicted performance of these architectures without training 

them. 

 
Figure 3-24 Example of the predicted and actual performance from the CGRNN. 
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If the predicted final loss value within the green box in Figure 3-24 is sorted by hidden 

layer and then by neurons per layer for all architectures in the search space, the trend in 

performance can then be visualised as shown in Figure 3-25. The actual results (blue) are 

the measured final loss values from running all architectures in the search space, while 

the predicted results (red) are from the SELECT method, using the CGRNN predicƟons. 

This is taken from a 𝑡𝑟𝑎𝑖𝑛௦௘௤ created from the QSAR Fish Toxicity dataset. The trend in 

loss shows that the best performance (minimum loss) will be achieved with neural 

networks which contain 2 hidden layers and 80-100 neurons per hidden layer. The 

predicted trend in performance is like the actual, also presenƟng the same locaƟon for 

the best performing neuron and hidden layer combinaƟons. These results show that 

there is a strong correlaƟon between the number of hidden layers and the number of 

neurons per hidden layer, and the learning curve for training a neural network. The 

predicted learning curves can be used to rank the network architectures by performance 

so that the best performing models can be selected and trained to quickly achieve the 

best results in HPO. 
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Figure 3-25 The performance trend of the predicted and actual learning curves sorted by hidden layer and neurons 

per layer. 

3.5.6 Stage 6: Trialling the Best Results 
Although the predicted trend line is very close to the actual line (Figure 3-25), the 

variaƟon in loss performance of the actual line cannot be accurately anƟcipated. This is 

why the predicƟon line is used as a guide to look for the best performing models. Ranking 

the predicted learning curve results by the best final loss, creates an ordered list of 

architecture combinaƟons which show the top performing models. The best predicƟon 

has 2 hidden layers and 95 neurons with minimum loss for the example in Figure 3-25. 

When comparing this to the actual performance results, the same architecture is the 

third best performing, i.e., the top 0.6% of the 500 tested combinaƟons. From the top 50 

best trained architectures, the predicƟon model includes 72% of these results in the 

same range. This implies that this approach can predict good models without running 

them, hence reducing a significant amount of computaƟonal effort. 
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Taking this advantage, the top 2% (top 10 architectures) of predicƟons have been 

selected in this study to train to obtain the actual performance on the test set. This range 

was chosen because 60% of these predicƟons fit in the top 6% of all actual performances. 

This would suggest a high likelihood of finding a good performing model while limiƟng 

the number of combinaƟons to train. Increasing the percentage of trained architectures 

from the ranked predicƟons would further increase the chance of finding a good model 

but also raise the required computaƟonal effort. 

When tuning the learning rate, the aim is to get a close approximaƟon to the best 

performance within a set cycle Ɵme, C, to rank architecture performance.  The approach 

taken for predicƟng performance uses the ranked MAE level of the learning curves to 

select top models but does not consider the gradient of the learning curves. To overcome 

this limitaƟon, once the best architectures are selected, the training epoch limit is 

extended, and the best performing architectures will only stop once the performance 

stops improving. This is achieved with the use of an early stopping callback. An early 

stopping callback is a tool used to monitor the validaƟon loss and stop the training cycle 

when the validaƟon loss does not reduce over a set number of epochs, defined as 

paƟence. In this study, the early stopping mechanism starts at the end of the length of C 

and monitors the validaƟon loss with a paƟence of 50 epochs. The best recorded weights 

for the minimum loss are then chosen as the best parameters for the trained 

configuraƟon.  This extended training cycle is given to all the predicted top models from 
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the CGRNN. The best performing of these is selected as the model with the best 

hyperparameters.  

3.6 ValidaƟon of the SELECT HPO Method 
This secƟon will discuss the experiments that were designed to evaluate the performance 

of the SELECT method and compare it against the benchmarking algorithms. This will 

cover the chosen datasets, the benchmark algorithms, the experimental set up and the 

results with discussion. 

3.6.1 Dataset for Analysis 
With the lack of available data for the purposes of this study, a method of validaƟon was 

taken to evaluate the SELECT method over mulƟple varied datasets which are openly 

available and used in other research studies to determine the performance of the 

algorithm with variaƟons in feature types and quanƟƟes, the instances in each dataset 

and for mulƟple contexts. To achieve this, mulƟple datasets were selected from the UCI 

Machine Learning Repository , a repository of machine learning datasets which has 

become highly popular in all areas of data based research. The datasets used for this 

study are shown in Table 3-4, with descripƟon, assigned code, the predicƟon output, the 

number of input features, the number of instances, and sources of references. These 

datasets cover mulƟple fields, with variaƟons in the feature quanƟty and types, and the 

number of instances in each dataset. The datasets shown in Table 3-4 have been solely 

selected for the purpose of validaƟon and have not been included in the development 
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process of the SELECT method. The chosen datasets have been verified to have no 

incorrect or missing data and have been used in previous research. 

These datasets were carefully selected with several criteria considered. As the applicaƟon 

of this HPO method for industrial impact related to conƟnuous performance metrics, all 

datasets have been selected to be regression datasets, each with a conƟnuous predicƟon 

variable. There was also a desire to find diverse datasets from different fields and those 

which have been used in previous research. There was also a consideraƟon for variaƟons 

in the quanƟty of inputs and instances, but a limit to the number of instances due to 

limitaƟons in computaƟonal capacity. All the datasets were selected to be tabular 

datasets as well. 

Table 3-4 The details of the validaƟon datasets  

DescripƟon Code Output 
Input 
Qty Instances Sources 

Air foil Self-Noise D1 Scaled sound 
press. level 

5 1503  (Brooks et al., 1989, González, 
2008, Lau et al., 2009) 

QSAR Fish Toxicity D2 QuanƟtaƟve 
Response 

7 908  (Cassoƫ et al., 2015) 

Concrete 
Compressive 
Strength 

D3 
Concrete 
Compressive 
Strength 

8 1030  (Yeh, 1998, Yeh, 2006) 

Behaviour of 
Urban Traffic D4 Slowness in traffic 17 135  (Sassi et al., 2011) 

Auto MPG D5 Mpg 7 398  (Quinlan, 1993) 
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3.6.2 Benchmark Algorithms 
Four well-established benchmark algorithms; RS, GPBO, TPE, HB have been carefully 

chosen for comparison against the SELECT method, listed in Table 3-5. The selecƟon of 

these algorithms is grounded in recent studies that have demonstrated their suitability 

for comparison (Motz et al., 2022, Bischl et al., 2023). RS serves as a computaƟonally 

efficient baseline, offering simplicity and ease of implementaƟon, making it a relevant 

point of reference. GPBO leverages Gaussian Processes to model intricate relaƟonships 

within the hyperparameter space, showcasing a sophisƟcated approach that has proven 

effecƟve in capturing complex objecƟve funcƟons. TPE introduces a probabilisƟc model 

that adeptly balances exploraƟon and exploitaƟon, providing a middle ground between 

randomness and guided search. Meanwhile, HB stands out for its adapƟve resource 

allocaƟon strategy, emphasising the importance of efficient resource uƟlisaƟon in the 

opƟmisaƟon process. By incorporaƟng these widely recognised algorithms, the 

benchmarking process ensures a comprehensive evaluaƟon, drawing upon the strengths 

and diversity of these algorithms to assess the performance of the SELECT method. The 

libraries used for these algorithms are Hyperopt (Bergstra et al., 2013) and Keras Tuner 

(O'Malley, 2019).  The pros and cons for each HPO approach are provided in Table 3-5. 
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Table 3-5 Benchmark HPO Algorithms 

Method Pros Cons 

Random 
Search 

• Simplicity and ease of implementation. 
• Can perform well with a low computational cost. 
• Requires minimal tuning. 
• Suitable for parallelisation 

• Inefficient in finding optimal 
hyperparameters. 
• Does not adapt based on observed 
performance. 
• May waste resources on less 
promising configurations. 

Bayesian 
Optimisation 

• Efficient in handling noisy or expensive objective 
functions. 
• Adaptive exploration of the hyperparameter space. 
• Converges to optimal solutions with few 
evaluations. 

• May waste resources on less 
promising configurations. 
• Poor capability for parallelisation. 

Tree Parzen's 
Estimator 

• Efficient with all kinds of hyperparameters. 
• Balances exploration and exploitation effectively. 

• Performance may depend on the 
quality of the surrogate model. 
• Poor capability for parallelisation. 

Hyperband 

• Efficiently allocates resources to promising 
configurations. 
• Successive halving for effective resource utilisation. 
• Good capability for parallelisation 

• Can eliminate slow converging, high 
performance configurations. 

Random Search 
The Random Search (RS) algorithm (Bergstra and Bengio, 2012b) is employed in this 

study, training randomly sampled configuraƟons from the search space to idenƟfy the 

best performance. Unlike more advanced opƟmisaƟon algorithms, RS does not rely on 

specific assumpƟons, making it a computaƟonally efficient and effecƟve baseline for 

comparison. Within a set number of epochs, RS selects and samples random 

configuraƟons from the search space, tests them sequenƟally, and selects the 

configuraƟon with the best performance based on a predefined metric. Despite its 

simplicity, RS has proven to be a preferred opƟmisaƟon algorithm due to its 

computaƟonal efficiency, requiring fewer resources compared to methods like Grid 

Search, while sƟll idenƟfying high-performing hyperparameters (Andonie, 2019, Zöller 

and Huber, 2021). Here is a descripƟon of how RS operates: 
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 Define the Parameter Space: RS begins by establishing a defined range or set of 

discrete values for each hyperparameter. Each parameter range represents an 

independent dimension in a mulƟ-dimensional search space, within which the 

opƟmal configuraƟon is likely to exist. 

 Random Sampling from the Search Space: RS then samples configuraƟons at 

random from this mulƟ-dimensional space. Each randomly selected point 

corresponds to a unique combinaƟon of hyperparameter values. For each 

iteraƟon, RS assigns random values to each hyperparameter independently, 

resulƟng in configuraƟons that may vary widely across the search space. 

 Train and Evaluate Each Sampled ConfiguraƟon: For each randomly chosen 

configuraƟon, the model is trained for a specified number of epochs. The 

performance of each configuraƟon is then evaluated on a validaƟon set using a 

chosen metric. 

 Repeat Sampling: RS repeats the process of sampling, training, and evaluaƟng 

mulƟple configuraƟons unƟl a specified stopping criterion is met.  

 Select the Best ConfiguraƟon: AŌer all sampled configuraƟons have been 

evaluated, RS selects the configuraƟon with the highest performance metric as 

the best hyperparameter set. 

Bayesian OpƟmisaƟon with Gaussian Process 
GPBO leverages Gaussian Processes to model the objecƟve funcƟon during opƟmisaƟon, 

providing a nuanced representaƟon of the performance landscape across different 
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hyperparameter configuraƟons. The objecƟve funcƟon, in this context, serves as the 

metric to be either maximised or minimised, reflecƟng the performance of the machine 

learning model. GPBO selects configuraƟons through an acquisiƟon funcƟon that adeptly 

balances exploraƟon and exploitaƟon, guided by the insights derived from the Gaussian 

Process model. This approach aligns with the growing popularity of sequenƟal model-

based algorithms in hyperparameter tuning, exemplified by BO (Snoek et al., 2012). BO 

employs a directed search strategy, leveraging Bayes' Theorem to construct a probability 

model for selecƟng the most promising hyperparameters for trial. Diverging from the 

random sampling approach of RS, BO maintains a record of previous trial performances, 

using this informaƟon to map hyperparameters to a probability score for the objecƟve 

funcƟon. The resulƟng probability model, referred to as a surrogate, guides the selecƟon 

of models likely to perform well. This guided approach, rooted in leveraging past 

performance to inform future trials, has demonstrated its effecƟveness in rapidly 

achieving high accuracy, presenƟng a highly compeƟƟve strategy, parƟcularly in tasks 

such as neural architecture searching(Liu et al., 2022). Here is a descripƟon of the steps 

in the BO process: 

 Define the Parameter Space: BO begins by defining a range for each 

hyperparameter.  

 IniƟalise with a Small Number of Random Samples: A few random configuraƟons 

are selected, and their performance is evaluated.  
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 Model the ObjecƟve FuncƟon with a Gaussian Process (GP):  These iniƟal data 

points are used to construct a model of the objecƟve funcƟon. GP models are a 

central component of BO, as they provide a probabilisƟc esƟmate of the objecƟve 

funcƟon across the search space. For each point in the search space, the GP 

provides a mean predicƟon and a variance, creaƟng a distribuƟon over the 

objecƟve funcƟon. 

 Choose an AcquisiƟon FuncƟon to Guide Sampling: The acquisiƟon funcƟon uses 

the GP's mean and variance esƟmates to decide the next point to evaluate, 

balancing exploraƟon and exploitaƟon. 

 Evaluate the Selected ConfiguraƟon: The hyperparameter configuraƟon chosen 

by the acquisiƟon funcƟon is evaluated on the objecƟve funcƟon (the model’s 

performance on a validaƟon set). The result from this evaluaƟon is added to the 

dataset used to train the GP, improving the model’s accuracy and reducing 

uncertainty in this region of the search space. 

 Iterate UnƟl the Stopping Criterion is Met: BO iteraƟvely updates the GP model 

with new observaƟons, refines the acquisiƟon funcƟon, and selects new 

configuraƟons unƟl a stopping criterion is reached.  

 Select the Best ConfiguraƟon: Once the search ends, the configuraƟon that 

achieved the highest performance is selected as the opƟmal set of 

hyperparameters. 
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Tree Parzen’s EsƟmator 
TransiƟoning from GPBO to TPE, TPE is another BO variant that further refines the 

opƟmisaƟon process by explicitly separaƟng it into exploraƟon and exploitaƟon phases. 

In contrast to GPBO's unified probabilisƟc model, TPE constructs disƟnct probability 

density models for configuraƟons that exhibit good and poor performance (Rong et al., 

2021). By creaƟng these separate models, TPE more explicitly focuses on disƟnguishing 

between promising and less promising regions within the hyperparameter search space. 

This dual model approach allows TPE to strategically sample hyperparameters, allocaƟng 

resources more efficiently by dedicaƟng exploraƟon efforts to areas with the potenƟal 

for improved performance and exploitaƟon efforts to exploit known successful 

configuraƟons. The success of TPE in achieving high levels of performance has been 

demonstrated in prior research (Abbas and Myungho, 2023, Motz et al., 2022). This 

strategy of parƟƟoning the opƟmisaƟon process into exploraƟon and exploitaƟon, 

coupled with the construcƟon of separate probability density models, has proven 

effecƟve in yielding compeƟƟve results compared to other HPO methods. This emphasis 

on targeted exploraƟon exploitaƟon aligns with the broader framework of Bayesian 

OpƟmisaƟon, showcasing the adaptability of the approach in various formulaƟons like 

GPBO and TPE for efficiently navigaƟng and opƟmising complex hyperparameter spaces. 

The approach for TPE for HPO is as follows: 
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 Define the Parameter Space: TPE begins by specifying a range of values for each 

hyperparameter, establishing a mulƟ-dimensional search space where each point 

corresponds to a specific hyperparameter configuraƟon. 

 IniƟalise with a Small Number of Random Samples: A small set of random 

hyperparameter configuraƟons is generated. Each configuraƟon is evaluated on 

the objecƟve funcƟon, and their corresponding results are recorded. 

 Construct Density Models for Good and Bad ConfiguraƟons: TPE uƟlises two 

kernel density esƟmators (KDE) to model the distribuƟon of the objecƟve funcƟon 

values: 

o Good ConfiguraƟons: This model represents hyperparameter 

configuraƟons that yield low objecƟve funcƟon values, meaning beƩer 

performance. 

o Bad ConfiguraƟons: This model represents configuraƟons that yield 

higher objecƟve funcƟon values, meaning poorer performance. 

 Define the AcquisiƟon FuncƟon: The acquisiƟon funcƟon in TPE is set up to 

balance exploraƟon and exploitaƟon by compuƟng the expected improvement of 

selecƟng a new hyperparameter configuraƟon. It idenƟfies the next point in the 

search space that maximises the likelihood of improving performance based on 

the density models constructed. 

 Evaluate the Selected ConfiguraƟon: The hyperparameter configuraƟon 

suggested by the acquisiƟon funcƟon is evaluated against the objecƟve funcƟon. 
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The outcome of this evaluaƟon is then added to the dataset, informing the 

density models and refining their accuracy. 

 Iterate UnƟl the Stopping Criterion is Met: TPE iteraƟvely updates the density 

models with new observaƟons, recalculates the acquisiƟon funcƟon, and selects 

new hyperparameter configuraƟons unƟl the stopping criterion is achieved. 

 Select the Best ConfiguraƟon: Upon compleƟon of the search, the 

hyperparameter configuraƟon that produced the lowest objecƟve funcƟon value 

is selected as the opƟmal set of hyperparameters. 

Hyperband 
HB has emerged as a compelling benchmark for HPO due to its innovaƟve integraƟon of 

Random Search RS with successive halving, creaƟng a two-phase approach that 

efficiently navigates and opƟmises hyperparameter configuraƟons (Li et al., 2017). In the 

iniƟal phase, a diverse set of random configuraƟons undergoes evaluaƟon, with resource 

allocaƟon favouring the top performing configuraƟons. This disƟncƟve process quickly 

idenƟfies promising hyperparameter configuraƟons, direcƟng addiƟonal resources 

toward their further evaluaƟon. The approach has performed well comparaƟvely and is 

highly suitable for parallelisaƟon (Motz et al., 2022, Vishnu et al., 2022). The effecƟveness 

of Hyperband lies in its strategic resource allocaƟon and its adaptability to the evolving 

landscape of promising configuraƟons. The second phase involves a resource-intensive 

selecƟon process, driven by successive halving, where only the best-performing 

configuraƟons conƟnue to receive increased resources. This iteraƟve method ensures 
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that the most promising configuraƟons are allocated more resources, leading to the 

eventual idenƟficaƟon of a final, best-performing model. The integraƟon of random 

selecƟon, capability for parallel training, and successive halving makes HB a robust 

choice, providing a comprehensive and efficient exploraƟon of the hyperparameter 

search space. The procedure taken by HB is as follows: 

 Define the Parameter Space: HB begins by specifying a range of values for each 

hyperparameter, establishing a mulƟ-dimensional search space where each point 

corresponds to a specific hyperparameter configuraƟon. 

 IniƟalise with a Small Number of Random Samples: A small set of random 

hyperparameter configuraƟons is generated. Each configuraƟon is evaluated 

using a specified budget of epochs and performance, and their corresponding 

results are recorded. 

 Set the Resources and Bandwidth: The total available resource computaƟonal 

Ɵme is divided among different configuraƟons. The algorithm determines a set of 

“bandwidths”, or allocated number of epochs, to allocate resources dynamically 

as configuraƟons are evaluated. 

 Evaluate ConfiguraƟons with Early Stopping: HB uses a mulƟ-armed bandit 

approach, where configuraƟons are evaluated progressively. AŌer each 

evaluaƟon phase, the worst-performing configuraƟons are eliminated based on 

their performance. This process conƟnues, allocaƟng more resources to the 

remaining configuraƟons. 
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 Iterate with Increased Resource AllocaƟon: The algorithm iteraƟvely adjusts the 

resource allocaƟon among the surviving configuraƟons, providing more resources 

to the beƩer performing ones while reducing resources for those that perform 

poorly. 

 Converge on OpƟmal ConfiguraƟons: As the iteraƟons progress, HB focuses on 

configuraƟons that show promise based on previous evaluaƟons. The algorithm 

conƟnues to refine its search unƟl a predetermined stopping criterion is reached. 

 Select the Best ConfiguraƟon: Upon compleƟon of the search, the 

hyperparameter configuraƟon that achieved the best is selected as the opƟmal 

set of hyperparameters. 

3.6.3 Experimental Setup 
To ensure robustness and fairness in this analysis, all algorithms have been fine-tuned to 

achieve their best performance prior to the comparison. Details are given in the following 

sub-secƟon on the experimental setup and the fine tuning for all HPO approaches. 

Experimental Setup for All HPO Methods 

The goal for all HPO methods in this study is to opƟmise the learning rate, the number of 

neurons per hidden layer and the number of hidden layers for an MLP neural network 

architecture to get the best predicƟon accuracy with the smallest computaƟonal cost. 

The search space is a learning rate range from 1e-9 to 1e-1, 1-5 hidden layers and 1-100 

neurons per hidden layer. The predicƟon accuracy is measured by the MAE, as defined in 

EquaƟon 8. The computaƟonal cost is measured by the number of epochs and clock Ɵme 
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it takes to get the best performing neural network architecture. The maximum epoch 

quanƟty for each network iteraƟon is defined as 200 epochs. The benchmark approaches 

were evaluated with 100, 200, and 400 epochs. There was a significant improvement in 

performance from 100 to 200 epochs, but equivalent results with 400. The 200-epoch 

limit was selected as a result. Each of the HPO approaches were assessed on the five 

datasets shown in Table 3-4, with a 5-fold split for each opƟmisaƟon. The average MAE 

was calculated on the test set for each, and total epoch quanƟƟes and Ɵme (in seconds) 

were recorded.  

The SELECT method uses an extended epoch limit beyond the length of C for trialling the 

predicted top performing learning curves to ensure the top performing models reach a 

minimum. This is due to the nature of the CGRNN predicƟons only considering the level 

of MAE for ranking performance, but the gradient is not used for the ranking, so the 

extended epoch limit allows the results to reach a minimum based on observed 

performance. The benchmarks operate on a set epoch limit throughout which is a 

variaƟon in method. To provide a fair comparison, the chosen best configuraƟon for each 

of the benchmarks is compared with both the result of the 200-epoch limit and the 

extended epoch limit using an early stopping callback. This will ensure robustness of the 

comparison, despite the difference in approach. 

As the SELECT method sets the 𝑙𝑟௦௘௧ for each model individually, an adapƟve learning rate 

was selected for the benchmark HPO methods to ensure fairness. The benchmarks are 
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given the ‘Adam’(Kingma and Ba, 2014) opƟmiser for the full 200 epoch limit and the 

proposed approach uses the same opƟmiser during 𝑛௥௨௡. 

Setup of the SELECT Method 

The SELECT method requires several parameters to be set as shown in Table 3-6. The 

𝑡𝑟𝑎𝑖𝑛௦௘௤ dataset is created by training all possible architecture combinaƟons of values in 

𝑙𝑎𝑦𝑒𝑟௧௥௔௜௡ and 𝑛𝑒𝑢𝑟𝑜𝑛௧௥௔௜௡. The length of 𝑛௦௘௧ is 80 epochs, meaning 𝑙𝑟௦௘௧ will be 

determined between 80-100 epochs into each cycle. Then 𝑛௥௨௡ is set to 100 epochs, 

creaƟng a total C of 180-200 epochs. 𝐵𝑙𝑜𝑐𝑘௦௜௭௘ is set to 10 epochs. The maximum number 

of epochs to create the training set for the CGRNN model in the SELECT method with this 

set up is 6,000 epochs. AddiƟonal epochs will be required for tuning the learning rate and 

tesƟng the 𝑡𝑟𝑖𝑎𝑙௤௨௔௡௧௜௧௬ of best results. 

Table 3-6 The control parameters for the proposed approach 

Symbol DescripƟon Value 
  The layers used to create  1,2,3,4,5 
  The neurons used to create  1,20,40,60,80,100 
  Learning rate seƫng epoch quanƟty 100 
  Train epoch quanƟty with  80 
  Interval length for recording training data 10 
 QuanƟty of trials for best result 10 

 
Random Search, Bayesian OpƟmisaƟon (GP&TPE) 

RS, GPBO and TPE operate sequenƟally so the setup is the same for all these algorithms. 

Each algorithm was assessed for 100 iteraƟons at 200 epochs to select the best 

𝑙𝑟௦௘௧  

𝑡𝑟𝑎𝑖𝑛௦௘௤

𝑡𝑟𝑖𝑎𝑙𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦

𝑛௦௘௧

𝑛௥௨௡ 
𝑏𝑙𝑜𝑐𝑘௦௜௭௘ 

𝑛𝑒𝑢𝑟𝑜𝑛௧௥௔௜௡

𝑙𝑎𝑦𝑒𝑟௧௥௔௜௡ 

𝑡𝑟𝑎𝑖𝑛௦௘௤
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performing model, i.e., a total of 20,000 epochs. The number of epochs to converge on 

the best result was recorded as the total epoch quanƟty.  

Hyperband 

The HB model uƟlises parallel training to opƟmise the parameters of the neural network. 

To determine a test size, the equaƟon for the number of epochs in a single iteraƟon, as 

expressed in EquaƟon 9, from(Li et al., 2017). With the HB algorithm, 200 epochs with a 

successive halving factor of 2, results in 11685 epochs. Covering 2 iteraƟons of the same 

seƫngs would lead to 23,370 epochs used for the trial. The number of epochs to 

converge on the best result was recorded as the total epoch quanƟty.  

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑎𝑥 𝑒𝑝𝑜𝑐ℎ𝑠 ∗ (𝑚𝑎𝑡ℎ. 𝑙𝑜𝑔 (𝑚𝑎𝑥 𝑒𝑝𝑜𝑐ℎ𝑠, 𝑓𝑎𝑐𝑡𝑜𝑟) ∗∗ 2)  (9) 

3.6.4 Results and Discussion 
In this secƟon, the experiment results involving the use of the SELECT method, and the 

four benchmark comparisons are presented in Table 3-6, Table 3-7, Table 3-8, Table 3-9 

and Table 3-10 respecƟvely. These are discussed, focusing first on the predicƟon accuracy 

then the computaƟonal expense.  

PredicƟon Accuracy 

The MAE results of all algorithms are shown in Table 3-7 and Table 3-8. The SELECT results 

are taken from the extended epoch limit (Ext.), while the benchmarks have results from 

both the set 200 epoch and Ext. limit to allow for both metrics to be compared for the 

benchmarks. These results are the average and standard deviaƟon of the best performing 
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configuraƟons taken over the 5-fold split of the datasets. The best performances for each 

row are highlighted in bold.  

Table 3-7  MAE at 200 epoch limit and 5-fold split 

SELECT RS GPBO HB TPE 
Dataset M SD M SD M SD M SD M SD 

D1 2.14 0.52 3.37(+58%) 1.15 3.6(+68%) 0.56 3.07(+43%) 0.49 3.34(+56%) 1.02 

D2 0.75 0.07 0.83(+11%) 0.11 0.79(+6%) 0.09 0.84(+13%) 0.10 0.79(+6%) 0.10 

D3 4.08 0.53 4.87(+19%) 0.80 4.86(+19%) 0.53 4.78(+17%) 0.84 4.83(+18%) 0.83 

D4 2.26 0.25 2.7(+19%) 0.66 2.75(+22%) 0.79 2.7(+19%) 0.37 3.11(+38%) 1.07 

D5 2.09 0.28 2.53(+21%) 0.74 2.42(+16%) 0.42 2.29(+9%) 0.27 2.24(+7%) 0.31 

*M = Mean, SD = Standard DeviaƟon, Note: ‘( )’ refers to the percentage difference between the benchmark 
metric and the SELECT result. 

Table 3-8  MAE at extended limit and 5-fold split 

  SELECT RS GPBO HB TPE 
Dataset M SD M SD M SD M SD M SD 

D1 2.14 0.52 3.07(+43%) 1.10 2.4(+12%) 0.73 3.47(+62%) 1.07 3.15(+47%) 0.81 

D2 0.75 0.07 0.87(+17%) 0.14 0.84(+13%) 0.13 0.82(+9%) 0.10 0.86(+14%) 0.09 

D3 4.08 0.53 5.29(+29%) 1.35 5.12(+25%) 0.55 5.00(+22%) 0.61 5.00(+22%) 1.45 

D4 2.26 0.25 2.77(+23%) 0.52 2.74(+21%) 0.52 2.85(+26%) 0.61 3.18(+41%) 0.85 

D5 2.09 0.28 2.61(+25%) 0.82 2.56(+23%) 0.20 2.68(+28%) 0.54 2.83(+35%) 0.53 

*M = Mean, SD = Standard DeviaƟon, note: ‘( )’ refers to the percentage difference between the benchmark 
metric and the CGRNN result. 

The SELECT method has performed beƩer with the smallest MAE and highest consistency 

in results as compared to all benchmarks for all datasets. This is also for both the 200-

epoch limit and the extended epoch limit given to the benchmarks. The extended epoch 

limit for the benchmarks resulted in worse performance overall, with a reducƟon in mean 

MAE for 75% of readings.  This makes sense as the algorithms select the learning rate 

based on observed performance. Extending beyond this limit for the final test would lead 

to potenƟal overfiƫng. 
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By predicƟng the performance of all hyperparameter configuraƟons at once, the SELECT 

method establishes a more holisƟc view of the search space. One of the key advantages 

of the SELECT method is its ability to avoid local minima. The observaƟon and reacƟon 

approach of the benchmark algorithms can lead to subopƟmal regions of the search 

space due to their reliance on direct observaƟons from previous trials. In contrast, 

SELECT's predicƟve model facilitates a broader exploraƟon, allowing it to idenƟfy high-

performing configuraƟons that may otherwise be overlooked. By understanding the 

overall performance trends rather than focusing solely on past observaƟons, SELECT 

miƟgates the risk of overfiƫng to noise and enhances the likelihood of discovering 

opƟmal configuraƟons. Another advantage to this approach over the benchmarks is the 

adapƟve opƟmisaƟon of the learning rate for each configuraƟon, rather than using a one-

size-fits-all approach as seen in the other methods. The learning rate that performs well 

with one model, may not necessarily perform well with other hyperparameter 

configuraƟons. Having an adapƟve learning rate can allow flexibility for improved 

performance. 

UlƟmately, the SELECT method's unique capability to synthesise informaƟon about 

hyperparameter interacƟons and performance trends proacƟvely rather than reacƟvely 

leads to superior results compared to benchmarks like GPBO, TPE, HB, and RS.  

 The looking at performance on individual datasets, the best performance comparison is 

in relaƟon to ‘D1’, the Air foil Self-Noise dataset, with nearly all benchmark comparisons 

having above 40% error, excluding GPBO with the extended epoch limit. The SELECT 
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method sƟll produced a beƩer performing model by 12% MAE error. The dataset with 

the closest performance between the benchmarks and the SELECT method is ‘D2’, 

relaƟng to Fish Toxicity, with the SELECT selected configuraƟon achieving a 6-17% beƩer 

predicƟve accuracy than the benchmarks. 

The beƩer performance of the SELECT method over mulƟple datasets with variaƟons in 

feature, instances, feature types and regressive correlaƟon with a 5-fold split shows the 

robustness of this approach in this applicaƟon. 

Further informaƟon can be gained from observing the individual predicƟons made during 

the SELECT method. Figure 3-26 shows the comparison between the actual performance 

trends for the D1, or the Air foil Self-Noise, dataset using a single split of the data, against 

actual predicted performance using the SELECT method. 

The predicƟon line in Figure 3-26 shows that the best performing model will be found 

with 4 and 5 hidden layers. These are ranked during opƟmisaƟon numerically and trialled, 

with the top results shown in Table 3-9. 
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Figure 3-26 The actual and predicted performance trend of neural network configuraƟons. 

Table 3-9 Trialled top ranked neural network configuraƟons from a single opƟmisaƟon with the Air foil Self-Noise 
dataset 

Hidden layer Neurons 𝒍𝒓𝒔𝒆𝒕 MAE 
5 16 0.00482 1.62 
5 15 0.00522 3.35 
5 17 0.00661 1.66 
5 18 0.00482 2.23 
5 19 0.00661 1.67 
5 14 0.00564 2.34 
4 15 0.00611 2.09 
4 16 0.00564 1.58 
5 20 0.00661 2.08 

 

The best model configuraƟon has 4 hidden layers, 16 neurons and a lrset of 0.00564. Out 

of these top models, 7 of them achieved beƩer performance than the closest of the 

benchmarks, suggesƟng that the SELECT method is performing effecƟvely in selecƟng the 

locaƟon of the best network architectures.  
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A further benefit of this approach is that it can direct the observer to a potenƟally beƩer 

search space for beƩer performance. This can be demonstrated from the example in 

Figure 3-26. The red line has a seasonality to it which suggests that as the hidden layers 

increase, the performance improves. A further experiment was carried out where the 

same dataset was trained over 2-6 layers, rather than 1-5, the belief being that the best 

performance would have 6 hidden layers. The results of this experiment are shown in 

Table 3-10. 

Table 3-10 Trialled top ranked neural network configuraƟons from a single opƟmisaƟon with the Air foil Self-Noise 
dataset (D1) over 2-6 hidden layer search space. 

Hidden layer Neurons Learning Rate MAE 
6 68 0.00433 1.66 
6 67 0.00433 1.59 
6 69 0.00433 3.28 
6 66 0.00403 1.43 
6 70 0.00375 1.72 
6 65 0.00403 1.91 
6 71 0.00375 1.82 
6 64 0.00403 2.07 
6 72 0.00403 1.52 

The new best performing model has a MAE of 1.43, the best recorded in all readings for 

D1. Table 3-10 shows that all the top ranked performances contain 6 hidden layers, 

adding further proof to the effecƟveness of the SELECT method. It not only predicts the 

best performing configuraƟons, but it can also generate useful insights to uncover 

specific search spaces for beƩer performance. 
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ComputaƟonal Expense 

The average required Ɵme and epochs to achieve the best results for the SELECT method 

and benchmarks are shown in Table 3-11.  

The SELECT method took an average of between 6525-7073 epochs to find the best 

performing configuraƟons over all datasets. When compared to all the benchmarks, the 

SELECT method achieved the best result with less epochs on average every Ɵme. 

Table 3-11 Average and standard deviaƟon of the required computaƟonal expense in seconds to achieve the best 
result. 

SELECT RS GPBO HB TPE 
Dataset M SD M SD M SD M SD M SD 

D1 989 
(7073) 

198 
(1287) 

1460 
(11187) 

321 
(2463) 

1042 
(8792) 

692 
(5840) 

3267 
(15783) 

1188 
(5738) 

1193 
(12200) 

709 
(6571) 

D2 658 
(7007) 

85 
(443) 

1390 
(12793) 

708 
(6514) 

1200 
(13234) 

546 
(6018) 

1937 
(11221) 

808 
(4679) 

663 
(8720) 

494 
(6455) 

D3 730 
(6525) 

39 
(375) 

1203 
(11509) 

717 
(6864) 

1362 
(12837) 

427 
(4028) 

2632 
(13403) 

813 
(4140) 

1143 
(13080) 

432 
(5396) 

D4 518 
(7033) 

52 
(630) 

559 
(8502) 

382 
(5813) 

577 
(9678) 

352 
(5905) 

2557 
(15317) 

885 
(5303) 

683 
(12720) 

340 
(5853) 

D5 665 
(6965) 

32 
(462) 

733 
(9669) 

427 
(5627) 

673 
(9271) 

241 
(3318) 

1827 
(10043) 

1314 
(7222) 

777 
(12200) 

159 
(2445) 

Average 712 
(6921) 

81 
(640) 

1069 
(10732) 

511 
(5456) 

971 
(10762) 

452 
(5022) 

2444 
(13153) 

1002 
(5416) 

891 
(11784) 

427 
(5556) 

*M = Mean, SD = Standard DeviaƟon, ‘( )’ refers to the number of epochs required to achieve the best 
result. 

The consistency in results was also beƩer with a standard deviaƟon of 640 epochs over 

all datasets for the SELECT method, compared to all the benchmarks having an average 

standard deviaƟon above 5,000 epochs. 

This is because the SELECT requires a set Ɵme for the training set to be completed for the 

CGRNN then the predicƟons are evaluated, which limits the variaƟon in Ɵme taken to 

complete the opƟmisaƟon procedure. The other approaches find the beƩer performing 



158 | P a g e  
 

models through observaƟon of performance, leading to a larger uncertainty of the 

epochs required for each opƟmisaƟon.  

The SELET method also took less Ɵme than the benchmarks in achieving the best results 

on average for each dataset. Averaging over all datasets, the best result was achieved in 

712s. When comparing the convergence of all benchmarks, GPBO and RS performed 

similarly in both the measurement of Ɵme and epochs, and TPE may have taken more 

epochs to converge over these two approaches, but it had a smaller epoch Ɵme, resulƟng 

in a beƩer convergence Ɵme, averaged over all datasets. The HB algorithm had a 

significant disadvantage for the epoch quanƟty due to the nature of this algorithm. 

Because the trial followed two iteraƟons through the HB algorithm, someƟmes the best 

result occurred in the 2nd iteraƟon, meaning that the total epochs before the best 

performance was significantly higher than the other algorithms. The HB model took 

significantly longer than the other benchmarks as the average Ɵme per epoch was larger, 

taking 2,444s as an average over all datasets. The HB approach would achieve a faster 

Ɵme if parallel training were to be included, but as this is not included in the study, HB 

performed worse than all other algorithms in relaƟon to computaƟonal Ɵme.  

As shown in Table 3-11, for D4: Behaviour of Urban Traffic and D5: Auto MPG respecƟvely, 

the Ɵme taken by proposed HPO method is significantly closer to that of RS, TPE and 

GPBO. This is due to the variaƟon in Ɵme per epoch for training the CGRNN model once 

the training set is created. Taking D4 as an example, the Ɵme taken for the different stages 

in the proposed approach are shown in Table 3-12. 
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Table 3-12 The required Ɵme in seconds for each stage of the SELECT method for dataset D4 

 Time for Each Trial (s)   
SELECT Stages 1 2 3 4 5 Mean Range 

Tune the Learning Rate 21 12 12 11 13 14 10 
Create the Training Set 279 267 229 246 265 257 50 
Train the CGRNN  132 124 121 123 131 126 11 
Predict Learning Curves 54 53 46 54 53 52 8 
Best Result Achieved 99 102 58 41 45 69 61 
Total Time/Best Result 585 558 466 475 507 518 78 

The highlighted SELECT stages in Table 3-12, the training and predicƟon with the CGRNN, 

will always take approximately the same amount of Ɵme for every dataset. This is 

because the CGRNN trains with 𝑡𝑟𝑎𝑖𝑛௦௘௤ which is created from each dataset and is the 

same size regardless of what the iniƟal input data is, with 0.63s per epoch for 200 epochs 

to train the CGRNN with the created with 𝑡𝑟𝑎𝑖𝑛௦௘௤.    

With a smaller input dataset, such as ‘D4’, Behaviour of Urban Traffic, which has only 135 

instance the CGRNN training Ɵme has a larger impact on the total opƟmisaƟon Ɵme of 

the SELECT method.  The TPE, GPBO and RS models have average epoch Ɵmes of 0.054, 

0.06 and 0.066 respecƟvely, for all epochs during opƟmisaƟon of ‘D4’. A shorter Ɵme is 

only achieved with the SELECT method because less training iteraƟons are required to 

find the best model.  

It can also be seen from Table 3-12 that there is a high level of consistency in the Ɵme 

taken for each stage of the SELECT method, with the maximum accumulated range of 

computaƟonal Ɵme being 78s over 5 splits of D4. This aspect of the SELECT method can 

contribute to the overall effecƟveness in guiding users to know and plan for allocated 

resource in HPO. The benchmark methods rely on a terminaƟon limit or funcƟon to end 
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the HPO process without a guarantee of finding an opƟmum result without repeat 

comparisons. The SELECT method has a predefined allocaƟon of resource to get to the 

soluƟon. 

The Scalability of the SELECT HPO Method 
As the SELECT method does not require the results of each iteraƟon to guide a surrogate 

funcƟon like BO based approaches, creaƟng the learning curves for the CGRNN training 

set over the search space can be done completely in parallel. This capability for parallel 

training is highly significant as all learning curves independently contribute to the of the 

SELECT algorithm, there are not mulƟple steps which interact through searching the 

hyperparameter space. BO relies heavily on studying past configuraƟons to guide the 

sequenƟal process, and HB may be suitable for parallel training, but it sƟll requires 

further steps to choose which of the configuraƟons to conƟnue allocaƟng resources to. 

The mechanism in this study can have all the training and predicƟon learning curves 

produced simultaneously, with the only limitaƟon being in computaƟonal capability 

rather than the algorithmic approach. This characterisƟc lends to high scalability with 

more hyperparameter dimensions. 

3.7 Summary 
In this chapter, a research gap related to HPO is highlighted. This gap helps to drive the 

development of a new HPO mechanism, the SEquenƟal LEarning Curve Training (SELECT) 

method, which has a capacity for parallelisaƟon, easy adaptability for new datasets, 

which could avoid the eliminaƟon of slow converging learning curves and sƟll have a 
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compeƟƟve level of performance compared to exisƟng HPO methods. To the best of 

researcher’s knowledge, there has never been an approach which can predict the full 

learning curves of unseen neural network hyperparameter configuraƟons in learning 

curve predicƟon.  

Being inspired by learning curve predicƟon, a new method of predicƟng unseen learning 

curves has been developed to predict complete learning curves without the need to train 

all the configuraƟons. This SELECT method enables a CGRNN model to predict the best 

performance of all configuraƟons of MLP neural networks with a single training window, 

treaƟng the learning rate as a dependent funcƟon of the loss during the opƟmisaƟon of 

each network architecture. The experimental results have shown that the SELECT method 

can outperform RS, HB, GPBO and TPE for predicƟon accuracy in MAE and computaƟonal 

cost in both seconds and epochs on well-known datasets, with a higher consistency in 

computaƟonal expense. The SELECT method has also shown to be able to generate useful 

insights into the search of beƩer-performing architectures outside of the iniƟal search 

space. It also lends itself to high scalability potenƟal and the funcƟon of predefined 

resource allocaƟon for finding opƟmum results. 

Taking advantage of the SELECT HPO method, it will be applied to support feature 

importance analysis with an aim to idenƟfy CriƟcal Success Factors (CSFs). Such analysis 

will be discussed in the following chapter. 
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4 Feature Importance Analysis 
4.1 IntroducƟon 
With the help of the SELECT method, a beƩer-tuned or opƟmised model can be used to 

idenƟfy the contribuƟon of important features, also known as CriƟcal Success Factors 

(CSFs) within the data and their intricate relaƟonship with the performance metric. This 

study examines the integraƟon of the opƟmised model by the SELECT method and three 

well-known feature importance algorithms to provide a holisƟc interpretaƟon of feature 

importance.  

This chapter first explains the three feature importance tools employed in this research; 

Shapley addiƟve explanaƟons (SHAP) (Lundberg and Lee, 2017), local interpretable 

model-agnosƟc explanaƟons (LIME) (Ribeiro et al., 2016a) and PermutaƟon Feature 

Importance (PFI) (Altmann et al., 2010), highlighƟng their capabiliƟes and nuances. The 

impact of the SELECT method on the performance of feature importance analysis is then 

validated. The subsequent goal is to embed the SELECT method, and the three feature 

importance tools, as an integrated funcƟon, into the DSS, which will be discussed in the 

next chapter. 

To affirm the efficacy and reliability of the SELECT method for feature importance, a 

rigorous evaluaƟon has been undertaken. This involved two stages of analysis: 

1. A comparison of the SELECT method against the same established benchmark 

HPO algorithms from Chapter 3 for feature importance analysis. 
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2. A comparison of the three selected feature importance algorithms using models 

opƟmised by the SELECT method.  

The validaƟon process extends to both syntheƟc and real-world datasets, encompassing 

scenarios with complex and non-linear relaƟonships between features and performance 

metrics. Through this comprehensive validaƟon, the robustness and generalisability of 

the SELECT method is put to the test, paving the way for its integraƟon into the real-world 

decision-making system. 

This chapter will be structured as follows: 

 An overview of the three feature importance algorithms will be given. 

 Stage 1 and stage 2 of feature importance experiments will be explained. 

 The results of the experiments will be presented and discussed. 

4.2 Selected Feature Importance Analysis Tools 
To obtain an accurate understanding of the interrelaƟonship between important features 

and key performance metrics, feature importance tools are useful to extract such 

informaƟon from an opƟmised or fine-tuned neural network model, which is oŌen 

regarded as a black box. 

SHAP, LIME and PFI have been used in previous research in combinaƟon for feature 

importance analysis (Kuzlu et al., 2020). These tools have been deemed useful for 

interpreƟng relaƟonships and acƟoning insights from deep learning applicaƟons and 

areas of construcƟon (De Bock et al., 2023, Love et al., 2023). SHAP and LIME have been 
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frequently uƟlised owing to their adaptability and the consideraƟon of both local and 

global feature importance analysis (Chen et al., 2023, Machlev et al., 2022) while PFI has 

shown to have  similar level of capability to SHAP for feature selecƟon (Effrosynidis and 

Arampatzis, 2021). Each of these approaches to feature importance analysis will be 

explained next, followed by an explanaƟon of their advantages and disadvantages. 

4.2.1 Shapley AddiƟve ExplanaƟons (SHAP) 
SHAP is a method of providing insights into the contribuƟon of individual features to the 

predicƟons of a ML model. It is rooted in cooperaƟve game theory and uƟlises Shapley 

values, a concept that originated from fair distribuƟon in cooperaƟve games (Lundberg 

and Lee, 2017). 

In the context of ML, SHAP can generate Shapley values accurately depicƟng the impact 

of each feature on a model's predicƟons among all the features(Marcílio and Eler, 2020). 

Its primary mechanism is to consider all possible combinaƟons of features and calculate 

the average contribuƟon of each feature, ensuring that each feature is given a fair share 

of the credit for the model's output. The calculaƟon of the Shapley values is based on 

determining what the importance of each feature’s contribuƟon is to the overall 

predicƟon through averaging all subset combinaƟons of features within a group. 

4.2.2 Local Interpretable Model-agnosƟc ExplanaƟons (LIME) 
LIME is a method designed to offer insights into the contribuƟon of individual features to 

the predicƟons of ML models, parƟcularly at the local level. Unlike SHAP, LIME focuses 

on creaƟng local and interpretable explanaƟons for specific instances rather than 
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considering the enƟre dataset. It can be applied to any ML models without requiring 

knowledge of its internal structure. LIME values the idea of creaƟng simplified and 

interpretable "local models" that approximate the behaviour of the complex, black-box 

model for a specific instance. Its primary mechanism involves generaƟng perturbaƟons 

or slightly modified versions of the input data and observing how the model's predicƟons 

change (Ribeiro et al., 2016b). By fiƫng a simple, interpretable model to these perturbed 

instances, LIME can provide an understanding of feature contribuƟons for a parƟcular 

predicƟon. The key focus of LIME is to locally approximate the complex model's decision 

boundary, offering a simplified view that is easier to interpret. This local interpretability 

is valuable for understanding why a model made a specific predicƟon for a given instance, 

even when the overall model may be intricate and challenging to interpret.  

4.2.3 PermutaƟon Feature Importance (PFI) 
PFI is a method designed to uncover the impact of individual features in influencing the 

predicƟons of ML models. Like LIME, it can be applied to any ML algorithms regardless of 

its internal structure. PFI is parƟcularly valuable for assessing the impact of features on a 

global scale, offering insights into their overall importance for the model. The method 

involves systemaƟcally permuƟng or shuffling the values of a single feature and keeping 

the other features unchanged while making predicƟons. By doing so, the importance of 

the shuffled feature is assessed by observing the change in the model's performance 

metrics. The greater the impact on the model's performance when a feature is randomly 

shuffled, the more important that feature is (Altmann et al., 2010). PFI provides a 
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straighƞorward and intuiƟve measure of feature importance. Features that, when 

permuted, lead to a significant drop in model performance are deemed highly important, 

while those with minimal impact are considered to have lesser importance. This method 

is parƟcularly useful for gaining a global understanding of feature importance, helping to 

idenƟfy key drivers in the overall predicƟve capacity of the model. The advantage of PFI 

lies in its simplicity and effecƟveness in evaluaƟng feature importance without relying on 

intricate model-specific details. It offers a pracƟcal and widely applicable means of 

assessing the contribuƟon of individual features to the predicƟve power of ML models. 

4.2.4 Strengths and Weaknesses for the Feature Importance 
Methods 

Each of these feature importance algorithms have their own strengths and weaknesses, 

as shown in Table 4-1. The combinaƟon of the three feature importance methods; SHAP, 

LIME, and PFI, reflects an effecƟve yet diversified approach of understanding the 

intricacies within predicƟon models. Recent research has also shown to use mulƟple 

feature importance methods for a holisƟc understanding of the important factors in 

decision support (Khanna et al., 2023, SeƩouƟ and Saidi, 2024). The use of mulƟple 

methods can provide a greater scope of the important factor related to model 

performance. 

SHAP offers both global and local interpretability, underpinned by a solid mathemaƟcal 

foundaƟon, making it effecƟve for exploring feature interacƟons and unbiased feature 

evaluaƟon. However, its computaƟonal complexity and sensiƟvity to data shape pose 
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challenges, especially in high-dimensional spaces. LIME excels in local interpretability, 

simplifying the analysis of complex models and showcasing versaƟlity across varying data 

types and sizes. Despite its proficiency in capturing non-linear feature relaƟonships, LIME 

may struggle to evaluate global trends and can be sensiƟve to data perturbaƟons. On the 

other hand, PFI, with its simplicity and fast computaƟon, provides robust insights into 

global trends while exhibiƟng resilience through duplicate assessments. Although PFI has 

limitaƟons in uncovering feature interacƟons and determining correlaƟon direcƟon, its 

speed and simplicity make it a valuable addiƟon.  

Table 4-1 Strengths and weaknesses of the selected feature importance methods; SHAP, LIME and PFI 

Method Abbreviation Strengths  Weaknesses 
Shapley 
Additive 
Explanations 

SHAP • Global and local interpretability 
• Solid mathematical grounding 
• Thorough examination of feature 
interaction 
• Unbiased evaluation of each 
feature 
• Visualise correlation direction and 
magnitude 
• Effective for non-linear feature 
relationships 

• Computationally 
complex 
• Sensitivity to data 
shape 
• Difficult 
interpretability for 
high dimensionality 

Local 
Interpretable 
Model-
agnostic 
Explanations 

LIME • Local Interpretability focus 
• Simplifies complex models in 
analysis 
• Visualise correlation direction and 
magnitude 
• Versatile over varying data types 
and sizes 
• Effective for non-linear feature 
relationships 

• May not evaluate 
global trends 
• Sensitive to data 
perturbations 

Permutation 
Feature 
Importance 

PFI • Simple computation and fast 
• Global trend analysis 
• Robustness through duplicate 
assessments 

• Limited feature 
interaction insight 
• Cannot determine 
correlation direction. 
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IntegraƟng a neural network opƟmised with the SELECT method with all three of SHAP, 

LIME, and PFI, into the DSS leverages the strengths of each method while miƟgaƟng their 

respecƟve weaknesses. This holisƟc approach ensures a more nuanced and reliable 

assessment of feature importance, catering to diverse aspects of model interpretability 

and accommodaƟng various data characterisƟcs. 

4.3 ValidaƟon Method of Feature Importance Tool 
The validaƟon of the SELECT method for feature importance covers two stages of 

experiments. The two stages can be recalled as follows: 

 The first stage is the comparison between the feature importance performance 

of the neural network model opƟmised by the four benchmarking HPO methods 

(TPE, HB, RS and GPBO) against that of the model opƟmised by the SELECT 

method; and 

 The second stage is to examine the performance of the SELECT method combined 

with each of the three selected feature importance tools, SHAP, LIME and PFI. 

The validaƟon will be discussed by first explaining the chosen datasets for feature 

importance and the raƟonale for their selecƟons. This will be followed by an explanaƟon 

of the experimental setup for each stage, and then the results and discussion. 

4.3.1 Datasets SelecƟon  
The challenge in uƟlising real-world datasets for feature importance analysis lies in the 

absence of a ground truth level of understanding for feature interacƟons; a ground truth 
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being the true feature importance, rather than the interpretaƟon of importance which 

can be skewed by uncertainty and analysis characterisƟcs.  

A definiƟve advantage of using syntheƟc datasets for feature importance is the ability to 

control the experiment characterisƟcs such as the quanƟty of irrelevant features, the 

instances of data or the noise levels. AddiƟonally, working with the known opƟmal 

features allows for a high level in confidence in the results (Bolón-Canedo et al., 2013). 

Comparing feature importance solely against the performance and interpretaƟons of 

previous studies limits the ability to establish a definiƟve benchmark. As highlighted in 

Table 4-1, each feature importance algorithm has its own set of strengths and 

weaknesses, a paƩern observed across various areas of model interpretability methods. 

Recognising the nuances inherent in different feature importance tools, this study seeks 

a robust evaluaƟon strategy. To ensure a comprehensive understanding of the SELECT 

method's performance, the feature importance experiments will encompass both 

syntheƟc and real-world datasets, like approaches from previous studies on feature 

importance (Rudnicki et al., 2015, Zeng et al., 2015). The inclusion of syntheƟc datasets 

allows for a controlled exploraƟon of the methodologies, while real-world datasets 

introduce complexiƟes of those encountered in pracƟcal applicaƟons. This dual approach 

aims to provide a nuanced and holisƟc assessment of the feature importance methods, 

considering their adaptability across varying data types and scenarios. 
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The uƟlisaƟon of syntheƟcally created datasets offers disƟnct advantages in the context 

of feature importance analysis. Notably, the relaƟonships between features within 

syntheƟc datasets are predefined, providing a clear and known ground truth for feature 

interacƟons. This inherent understanding of feature relaƟonships serves as a valuable 

reference point, enabling a more precise evaluaƟon of how well feature importance 

methods capture and interpret these known interacƟons. (Bolón-Canedo et al., 2013).  

SyntheƟc datasets provide a controlled environment for experimentaƟon. The flexibility 

to manipulate the number of features, instances, and the level of noise allows for 

systemaƟc exploraƟon of how feature analysis methodologies adapt to variaƟons in 

dataset characterisƟcs. By intenƟonally introducing variaƟons in syntheƟc datasets, a 

deeper understanding can be gained of the methodologies' performance across a 

spectrum of dataset complexiƟes. 

Real world datasets capture the true complexiƟes of actual data. This includes uneven or 

non-standard distribuƟon, outliers in the data and natural noise levels. EvaluaƟng the 

feature importance tools against real world datasets provides an authenƟc evaluaƟon of 

performance. Regarding the evaluaƟon, this would be compared to the findings of other 

research in the results secƟon of this chapter. 

The chosen datasets for both Stage 1 and Stage 2 of the experiments are shown in Table 

4-2, with the number of features used in each dataset, the instances (rows) and the range 
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of noise levels (uncertainty) generated for tesƟng. The datasets shown in Table 4-2 will 

be further explained in the sub-secƟons ahead. 

Table 4-2 Datasets for feature importance validaƟon 

Stage Dataset Reference Nature Features Instances Noise levels 

1st: HPO 
Method 

Comparison 

make_friedman1 (Pedregosa et 
al., 2011) 

Synthetic 
10 

500 0%,5%,10%,20% 
1,000 0%,5%,10%,20% 

20 500 0%,5%,10%,20% 
make_friedman2 Synthetic 4 500 0%,5%,10%,20% 

2nd: Feature 
Importance 
Validation 

make_friedman1 (Pedregosa et 
al., 2011) 

Synthetic 
10 

500 0%,5%,10%,20% 
1000 0%,5%,10%,20% 

20 500 0%,5%,10%,20% 
make_friedman2 Synthetic 4 500 0%,5%,10%,20% 
Concrete 
Compressive 
Strength 

(Geifman and 
El-Yaniv, 2019, 
Muliauwan et 
al., 2020, 
Asteris et al., 
2021) 

Real 8 1030 N/A 

Boston Housing (Oh, 2019, 
Adetunji et 
al., 2022, 
Calvo-Pardo 
et al., 2023) 

Real 13 506 N/A 

4.3.2 Datasets for Stage 1 - HPO Method Comparison 
The purpose of the stage 1 is to invesƟgate the performance of different HPO approaches 

in determining the relaƟonships between input features and the target predicƟon 

variable in data. SyntheƟc datasets, namely make_friedman1 and make_friedman2 from 

the scikit-learn python library, were deliberately chosen to create controlled 

environments with predefined relaƟonships between the features and the target 

predicƟon variable. Each dataset is originally created in (Friedman, 1991) and is 

representaƟve of complex relaƟonships between the predicƟon and the input features, 

each specifically used for benchmarking ML model performance, and for feature analysis. 

Each of the selected datasets will be discussed next. 
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Make_Friedman1 
The make_friedman1 dataset was originally developed for the purpose of avoiding 

finding relaƟonship structures when they are not there, and to ensure they are found 

when they are (Friedman, 1991).  Implemented as a Python package in the scikit-learn 

library, it serves as a valuable tool for assessing the capabiliƟes of algorithms in handling 

non-linear feature relaƟonships (Pedregosa et al., 2011). This dataset is parƟcularly 

useful for evaluaƟng the robustness of algorithms in handling diverse feature 

relaƟonships, including non-linear components, and the impact of noise on predicƟve 

accuracy. It has been used in many studies as a benchmark for feature importance and 

selecƟon (Breiman, 1996, Bugata and Drotár, 2023). 

The dataset generaƟon involves the calculaƟon of labels (y) for each instance using 

EquaƟon 10. This equaƟon incorporates five variables ranging between 0 and 1, including 

co-dependent and cyclical features (x₁, x₂), a non-linear feature (x₃), and two linear 

features with variaƟons in weighted magnitude (x₄, x₅). EquaƟon 10 also incorporates a 

standard deviaƟon of the gaussian noise to introduce variability in the data (ε), ranging 

between 0 and 1. Users have the flexibility to specify the number of instances, features, 

and the level of noise in the dataset. Notably,  

 Increasing the number of features adds unconnected variables, thereby 

challenging algorithms to discern the true relaƟonships defined by EquaƟon 10. 
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  The noise level introduced uncertainty in a normally distributed range, controlled 

by user-defined parameters, provides a dynamic range of complexity for 

algorithm analysis.  

𝑦 = 10 sin(𝜋𝑥ଵ𝑥ଶ) + 20(𝑥ଷ −
ଵ

ଶ
)ଶ + 10𝑥ସ + 5𝑥ହ + 𝜖    (10) 

Make_Friedman2 
The make_friedman2 dataset is taken from the same source material as make_friedman1 

(Friedman, 1991) and uƟlises a different complex relaƟonship between the label (y) and 

input variables. EquaƟon 11 is created from the calculaƟon of impedance (Z) for a simple 

alternaƟng current series circuit as illustrated in Figure 4-1.  

 

Figure 4-1 Simple alternaƟng current series circuit and equaƟon for impedance (Z) 

𝑍(𝑅, 𝜔, 𝐿, 𝐶) = ඨ(𝑅ଶ + (𝜔𝐿 −
1

𝜔𝐶
)ଶ 

(1) 

EquaƟon 11 has a highly interconnected relaƟonship between the individual 

contribuƟons of each of the variables, such that the selected range of each variable can 
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alter the ranked importance significantly. The developed make_friedman2 equaƟon is 

created from EquaƟon 11, incorporaƟng the variable ranges shown below to produce 

EquaƟon 12. 

0 ≤  𝑥ଵ ≤ 100 

40𝜋 ≤  𝑥ଶ ≤ 560𝜋 

0 ≤  𝑥ଷ ≤ 1 

1 ≤  𝑥ସ ≤ 11 

𝑦 = ඨ(𝑥ଵ
ଶ + (𝑥ଶ𝑥ଷ −

1

𝑥ଶ𝑥ସ
)ଶ + 𝜖 

(2) 

EquaƟon 12 captures the complexity of the impedance calculaƟon while introducing 

variability as the standard deviaƟon of gaussian noise (ε). It does not contain any 

unconnected variables for analysis, but the complexity and interconnected relaƟonship 

is higher than that of make_friedman1 and will challenge the opƟmised model to detect 

this sophisƟcated relaƟonship to achieve high predicƟve accuracy and evaluate the true 

feature importance. This is the second of the Friedman benchmark datasets, used in 

previous feature selecƟon and importance analyses(Tipping, 2001, Kamalov, 2021, 

GraniƩo et al., 2005). 
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ExploraƟon Overview and Dataset VariaƟon 
As shown in Table 4-2, both the choice of experiments and dataset variaƟons are 

determined to offer a thorough assessment of the HPO methods in the context of feature 

importance analysis.  

Beginning with make_friedman1, the variaƟons in dataset are explained below. 

 The inclusion of both relevant and unconnected features aims to evaluate the 

models' capacity to differenƟate between meaningful and unrelated elements. 

This is evaluated by tesƟng with both 5 and 15 addiƟonal unconnected variables 

from EquaƟon 10.  The 5 addiƟonal features are the default number while the 15 

is to provide added difficulty.  

 Further exploraƟon at varying dataset sizes 500 and 1,000 instances provides 

insights into the potenƟal influence of data scale on model performance.  

 Each of these analyses covers a variaƟon of noise levels ranging from no noise 

(ε=0) through lower levels of noise (ε=0. 5 and ε= 1) up to high levels of noise 

(ε=2), as has been defined in previous research (GraniƩo et al., 2005). This 

equates to a range of error of approximately 0%, 5%, 10% and 20% of the final y 

values with no noise when checked on both the 500 and 1,000 instance datasets. 

The addiƟon of the increasing noise levels examines how well models handle 

uncertainty, aligning with real-world scenarios where data can be inherently 

noisy.   
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Extending the analysis to include make_friedman2,  

 Characterised by complex interacƟons among features, adds further depth to the 

evaluaƟon, tested with 500 instances. 

 The same percentage of noise range for uncertainty as friedman1 is tested, 0%, 

5%, 10% and 20% of the range of error of the final y values with no noise. 

4.3.3 Datasets for Stage 2 - Feature Importance Method ValidaƟon 
The second stage of the experiment is to validate the SELECT method in conjuncƟon with 

the chosen feature importance algorithms. The key objecƟve is to scruƟnise performance 

variaƟons and interpretaƟons across three chosen feature importance tools, namely 

SHAP, PFI, and LIME, when coupled with models opƟmised by the SELECT method.  

This assessment seeks to provide comprehensive insights into the combined efficacy and 

interpretability of these feature importance methodologies. To facilitate these 

evaluaƟons, both syntheƟc datasets, make_friedman1 and make_friedman2, will be 

examined under the same variaƟons in noise levels, covering 0% noise for a ground truth 

interpretaƟon, increasing the noise to 5%, 10% and 20% for low to high uncertainty. In 

addiƟon to the syntheƟc datasets, the validaƟon process also incorporates real-world 

datasets to authenƟcally represent the potenƟal impact of combining the three feature 

importance tools. To achieve this purpose, two specific real-world datasets Boston 

housing and concrete compressive strength, are chosen and they will be described next. 
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Boston Housing Dataset 
The Boston Housing dataset is a widely uƟlised dataset in ML and staƟsƟcs (Oh, 2019, 

Adetunji et al., 2022, Calvo-Pardo et al., 2023), consisƟng of 506 instances. Each instance 

represents various properƟes of houses in Boston suburbs, encompassing 13 features. 

These features include the per capita crime rate, average number of rooms per dwelling, 

nitric oxides concentraƟon, and others. The target predicƟon variable is the median value 

of owner-occupied homes (MEDV). The dataset is popular for regression tasks, serving as 

a benchmark for assessing the predicƟve capabiliƟes of various algorithms in the field. 

Concrete Compressive Strength Dataset 

The Concrete Compressive Strength dataset is designed to evaluate the compressive 

strength of concrete and comprises 1,030 instances. Each instance represents a concrete 

mix with various ingredients, including cement, blast furnace slag, fly ash, water, 

superplasƟciser, coarse aggregate, and fine aggregate. The target predicƟon variable is 

the compressive strength of the concrete. It is frequently employed to assess the 

performance of predicƟve models in esƟmaƟng the strength of concrete based on its 

composiƟon (Geifman and El-Yaniv, 2019, Muliauwan et al., 2020, Asteris et al., 2021). 

IntegraƟng these real-world datasets into the second stage of the experiment helps to 

validate the SELECT method under condiƟons that mimic real-world situaƟons and 

enable fair comparisons against other studies using the same datasets.  
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4.3.4 Experimental Setup for Stage 1 - HPO Method Comparison 
The experimental setup for the comparison of the SELECT method against the benchmark 

algorithms for feature analysis is expressed in Figure 4-2. This process will repeat for all 

variaƟons in dataset stated in Table 4-2 for the HPO method comparison, and for a 5-fold 

split of each variaƟon of the syntheƟc datasets. 

  
Figure 4-2 Experimental setup of Stage 1 

HPO Method ConfiguraƟon 
The evaluaƟon process begins with the selecƟon of the best-performing neural network 

configuraƟon for each HPO method, following the procedures detailed in secƟon 3.6.3. 

OpƟmal configuraƟons are chosen and predicƟons are made on the test set to assess the 

model predicƟon accuracy, uƟlising the Mean Absolute Error (MAE) as the performance 



179 | P a g e  
 

metric. This ensures a common ground for evaluaƟng predicƟon accuracy across all HPO 

approaches through all experiments and variaƟons in dataset. As it was determined that 

the best performance of the benchmark algorithms was achieved with an epoch limit of 

200, rather than the extended limit, this epoch limit is used for benchmark algorithms in 

all experiments in Stage 1. 

Choice of Feature Importance Tool 
With the selected best performing model, feature importance analysis using PFI is carried 

out. PFI is chosen as the preferred method for evaluaƟng different HPO approaches 

primarily due to its robust global evaluaƟon and simplicity, for repeatable experiments 

with neural networks, with highly similar performance to SHAP(Chen et al., 2024, 

Mandler and Weigand, 2023).  

Feature Importance Assessment Method 
Using PFI, features will be systemaƟcally analysed and ranked based on their impact on 

model performance measured by MAE. This is achieved through determining the 

accuracy of the model in MAE, then shuffling a feature and measuring the difference in 

accuracy; the larger impact on MAE suggests higher importance. The shuffling is random 

so the PFI method will repeatedly record the importance weight of the features 10 Ɵmes 

and the average weight will be calculated for all features with every opƟmised model to 

reduce bias from the randomness in the perturbaƟons in PFI while achieving 

computaƟonal efficiency without parallelisaƟon (Altmann et al., 2010). 
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To enhance the robustness of the stage 1 evaluaƟon, the enƟre process, highlighted in 

Figure 4-2, from HPO for the opƟmum predicƟon model to feature importance analysis, 

is repeated using a 5-fold cross-validaƟon approach (Parr et al., 2024). The MAE values 

for the opƟmised model accuracy, and the feature importance ranked results will be 

recorded for each split of the dataset. The model accuracy and feature rankings will then 

be averaged over all 5 splits to present the result in both predicƟve accuracy and the 

feature rankings.   

4.3.5 Experimental Setup for Stage 2 - Feature Importance 
ValidaƟon 

As highlighted earlier in this chapter, each feature importance tool has its own strengths 

and weaknesses. The development of the DSS will include all three well-known feature 

importance tools, SHAP, PFI, and LIME, to offer mulƟple ways of evaluaƟng the feature 

importance within the same data. As a further assessment to the validity of SELECT 

method, the integraƟon of the SELECT opƟmised ANN model and each of the feature 

importance tools will be tested and compared to ensure efficacy as well as consistency 

in performance. Figure 4-3 shows experimental setup of Stage 2 to produce the feature 

importance weights using each of the three methods.  
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Figure 4-3 Experimental setup of Stage 2. 

SELECT Method ConfiguraƟon 
The SELECT method will be set up in the same way as presented in Stage 1 to ensure 

consistency. The selected configuraƟon will be trained once, and the same opƟmised 

model will be used for all feature importance tools to allow fair comparisons. 

Feature Importance ConfiguraƟon and RepeƟƟon 
As each of the three feature importance methods employs a different mechanism of 

measuring the importance of features, it is essenƟal to define a common ground. For 

both SHAP and LIME, the local importance determined for each instance is accumulated 

to determine a global importance for each feature. The PFI uƟlises the MAE metric to 

obtain an absolute global measurement of each feature’s impact on model performance. 

Having the global importance from each method, the relaƟve importance of each feature 
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can then be calculated using EquaƟon 13. The relaƟve importance, as a common ground, 

can be used as the metric to compare three different feature importance tools. All three 

feature importance tools have undergone tesƟng using a 5-fold split and the average 

importance for each feature is calculated across each tool. 

𝐼௥௘௟௔௧௜௩௘ = RelaƟve importance of the i-th feature. 

𝐼௜ = Importance value of the i-th feature. 

∑ 𝐼௝
௡
௝ୀଵ = Sum of all feature values 

𝐼௥௘௟௔௧௜௩௘ =  
𝐼௜

∑ 𝐼௝
௡
௝ୀଵ

 

(13) 

4.4 Results and Discussion 
To recall, Stage 1 aims to compare the predicƟve performance and feature importance 

performance between the SELECT method and four benchmarking HPO algorithms using 

ONLY syntheƟc datasets. Such comparison encompasses the MAE to define predicƟve 

performance across all experiments, and the use of PFI to define the feature importance 

performance. Using the same SELECT method, Stage 2 aims to compare feature 

importance measurement across three well-known methods: SHAP, LIME, and PFI using 

BOTH syntheƟc and real-world datasets. 

4.4.1 Stage 1 - HPO Method Comparison 
This secƟon is broken down into the evaluaƟon of each model’s predicƟve accuracy, using 

MAE as a metric, followed by the comparison of the feature importance using PFI. The 

evaluaƟon involves the use of two syntheƟc datasets, make_friedman1 and 

make_friedman2. 
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Stage 1 MAE Performance 
The average MAE results over the 5-fold cross-validaƟons for all variaƟons of the 

syntheƟc datasets for the SELECT method and benchmark algorithms are shown in Table 

4-3. 

Table 4-3 Average of the MAE for all HPO methods averaged over a 5-fold split 

Dataset Instances Features HPO Method 0% 5% 10% 20% 

make_friedman
1 

500 

10 

SELECT 0.36 0.76 1.26 2.21 

TPE 0.69 
(+94%) 

1.3 
(+69%) 

1.5 
(+19%) 

2.46 
(+11%) 

GPBO 
1.37 

(+284%) 
1.55 

(+102%) 
1.84 

(+46%) 
2.47 

(+12%) 

HB 
1.01 

(+184%) 
1.18 

(+55%) 
1.71 

(+35%) 
2.53 

(+15%) 

RS 
0.96 

(+169%) 
1.2 

(+57%) 
1.65 

(+31%) 
2.57 

(+17%) 

20 

SELECT 0.87 1.31 1.73 2.62 

TPE 
1.58 

(+81%) 
1.74 

(+33%) 
1.97 

(+14%) 
2.93 

(+12%) 

GPBO 
1.82 

(+109%) 
1.94 

(+48%) 
2.27 

(+31%) 
3.14 

(+20%) 

HB 
1.9 

(+118%) 
1.98 

(+51%) 
2.12 

(+23%) 
3.02 

(+15%) 

RS 1.85 
(+113%) 

2.06 
(+57%) 

2.1 
(+22%) 

3.17 
(+21%) 

1000 10 

SELECT 0.25 0.56 1.04 1.96 

TPE 
0.3 

(+21%) 
0.77 

(+37%) 
1.32 

(+28%) 
2.2 

(+12%) 

GPBO 0.8 
(+221%) 

0.8 
(+44%) 

1.21 
(+17%) 

2.28 
(+16%) 

HB 
0.46 

(+86%) 
0.8 

(+43%) 
1.19 

(+15%) 
2.19 

(+12%) 

RS 
0.48 

(+94%) 
0.79 

(+42%) 
1.23 

(+19%) 
2.26 

(+15%) 

make_friedman
2 

500 4 

SELECT 8.03 24.59 48.69 92.42 

TPE 
13.76 

(+71%) 
37.1 

(+51%) 
64.33 

(+32%) 
100.73 
(+9%) 

GPBO 
14.37 

(+79%) 
75.47 

(+207%) 
49.92 
(+3%) 

104.87 
(+13%) 

HB 11.65 
(+45%) 

29.97 
(+22%) 

51.64 
(+6%) 

96.5 
(+4%) 

RS 
12.8 

(+59%) 
31.08 

(+26%) 
51.44 
(+6%) 

92.64 
(+0.2%) 

Note: ‘()’ refers to the percentage difference between the benchmark metric and the CGRNN result. 
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MAE Performance: Make_friedman1(instances=500, features=10) 
Looking at the make_friedman1(500,10) with 0% noise level(5 features are 

disconnected), the model opƟmised by the SELECT, as the datum model, has a MAE of 

0.36 with the nearest accuracy being TPE opƟmised model of 0.69 (94% more than the 

SELECT at 0.36). The GPBO opƟmised model is the worst performing among all 

benchmarks, achieving an average MAE of 1.3 (284% higher than SELECT or +284%). The 

performance gaps among all models becomes smaller when the noise level increases. 

With no noise, the benchmark HPO opƟmised models achieved an MAE which was 94% 

and 284% higher than the SELECT method. At 20% noise level the SELECT method 

outperformed the benchmark HPO methods by only 11% to 17%.  

As the noise level increases, the achievable accuracy reduces for all opƟmisaƟon 

algorithms, even if one is performing beƩer than the others. The SELECT method sƟll 

achieves a higher accuracy but the achievable result for all methods gets impacted by the 

increasing noise. As the SELECT method has the highest accuracy at lower noise levels, it 

will receive a higher relaƟve impact with more uncertainty than the other algorithms. 

This can also be seen by the fact that MAE increases with noise level for all experiments, 

as shown in Figure 4-4.  
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Figure 4-4 Average MAE vs Noise level, for all variaƟons of syntheƟc dataset 

MAE Performance: Make_friedman1(500,20) 
When increasing the number of features to 20 (15 are disconnected features), MAE 

increases for all noise levels and all HPO algorithms. This suggests that the increasing 

number of disconnected features negaƟvely impacts a model’s capability to detect 

relaƟonships and hence, decrease predicƟve accuracy. This matches a similar trend seen 

in previous research with ANN predicƟve accuracy reducing with increasing disconnected 

feature quanƟƟes (Vecoven et al., 2020, Rengasamy et al., 2021).  

MAE Performance: make_friedman1(1000,10) 
On the other hand, Table 4-3 shows that increasing the number of instances of the 

dataset to 1,000 while keeping the same features (10) helps to improve predicƟve 

accuracy over all variaƟons in noise as well as all HPO algorithms. One reason is that 

larger instances enable the models to learn from more data, generaƟng a beƩer 
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understanding of the relaƟonships within the dataset. This matches a trend shown in 

(Kramer, 2016) where the performance of the predicƟon mode improves with the 

increasing number of instances. The same reference also agrees with the earlier 

observaƟon that performance decreases with increasing feature quanƟƟes.  

MAE Performance: Make_Friedman2 
Once again, with the make_friedman2 dataset, the SELECT method consistently found 

beƩer performing models by returning lower MAE results than other benchmark HPO 

algorithms. At 0% noise level, the models opƟmised by benchmark HPO methods 

achieved a MAE that was 45% to 79% higher than the models opƟmised by the SELECT 

method. This range of difference between the SELECT method and the benchmarks 

decreased as the noise level increased to 20%, an observaƟon that can be noted with the 

make_friedman1 dataset as shown in Figure 4-4. 

As with make_friedman1, the MAE increases with all HPO models in a steady trend with 

the increase of noise from 0% to 20%. There is a noƟceably high MAE for GPBO at 5% 

noise. This is due to a single result from the 5-fold split of GPBO achieving a MAE of 250.3, 

well above all other results for all other HPO algorithms at 5% noise with the 

make_friedman2 dataset. Excluding this single result, the GPBO average MAE at 5% 

would be 31.8; more in line with the trend seen with all other HPO algorithms. 

Absolute Feature Importance: Comparison of HPO Algorithms 
AŌer proving the predicƟve accuracy and robustness of the SELECT method with MAE 

performance, the next step of Stage 1 is to evaluate how well the model opƟmised by 
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SELECT can interpret the importance of key features when compared against the model 

opƟmised by the benchmark HPO algorithms. 

The absolute feature importance results were obtained using the PFI method over a 5-

fold split for both the SELECT method and the benchmark algorithms. The comparisons 

encompass both the make_friedman1 and make_friedman2 datasets, with variaƟons in 

instances and features. Throughout these experiments, the noise level ranges from 0% 

to 20%, introducing varying degrees of uncertainty. All experimental results of this 

secƟon will be presented and discussed with the help of PowerBI soŌware. 

Absolute Feature Importance: Make_friedman1(500,10) 
Figure 4-5 shows the feature importance from the SELECT model and the benchmark HPO 

algorithms. All algorithms can disƟnguish clearly the 5 connected variables, X1-X5, from 

the disconnected variables. Also, there is a clear and consistent ranking of feature 

importance descending from X4, X2, X1, X5 and X3, generated by all approaches. This 

ranking agrees with previous literature on the true ranking of the relevant features, 

termed as the “Friedman 1 Benchmark” (Greenwell, 2022).  This has also been covered 

thoroughly by (Greenwell et al., 2020), who used the Friedman 1 benchmark with 

mulƟple machine learning models, and feature importance methods, including the 

combinaƟon of ANNs and PFI. Nearly all results pointed to the same ranking, with some 

variaƟon in determining the equivalent ranking of X5 and X3. This shows that all HPO 

methods, combined with PFI, successfully assign importance in alignment with previous 

research. 
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Figure 4-5 HPO Feature Importance, make_friedman1, 500 instances, 10 features, 0% -20% noise. 
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Figure 4-5 clearly shows that the SELECT method has assigned a higher importance to the 

relevant features over the benchmark HPO methods at 0%,5% and 20% noise levels 

respecƟvely. Compared to the SELECT method, TPE has assigned a slightly higher 

importance at 10% noise to features X4 and X2, while achieving the same at X5 and less 

at X3 and X1. Despite the similar importance ranking to TPE, the SELECT method managed 

to achieve a beƩer accuracy of MAE = 1.26 (MAE of TPE is 1.5), as shown in Table 4-3. 

This suggests that the feature importance assigned by the SELECT method is a more 

accurate interpretaƟon of CSFs within the dataset. 

Absolute Feature Importance: Make_friedman1 (1000,10) 
Figure 4-6 shows the feature importance ranking of make_friedman1 with 1000 instances 

and 10 features. Again, the SELECT method has assigned a higher importance to the 

features for all noise levels. At 0% noise level, TPE achieves a similar level of performance 

but then progressively performs worse as compared to the SELECT method when noise 

levels increase. HB, on the other hand, improves comparaƟvely as noise levels are 

increased. GPBO is the overall worst of all HPO methods, most notably failing to idenƟfy 

the significance of X3 at 20% noise level. 
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Figure 4-6 HPO Feature Importance, make_friedman1, 1000 instances, 10 features 
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Absolute Feature Importance: Make_friedman1(500,20) 
Increasing the feature quanƟty from 10 features to 20 features in make_friedman1 will 

increase the quanƟty of disconnected features from 5 to 15, as the same X1-X5 features 

produces the ‘y’ predicƟon value but with an addiƟonal 10 randomly generated numbers 

for each instance. In other words, the important features only represent 5/20 = 25% of 

the features in the dataset, making the differenƟaƟon more challenging. 

The results from this feature importance test are shown in Figure 4-7.  Once again, all 

HPO methods were able to differenƟate X1-X5 from other disconnected features 

although the GPBO model did not idenƟfy X3 as relevant at the noise level of 20%.  

All HPO methods except TPE determined the correct ranking of X4, X2, X1, X5 then X3 

throughout all noise levels. Both TPE and the SELECT method assigned the highest level 

of importance to the relevant features throughout, with the novel approach assigning 

the highest amount of importance at both 0% and 5% noise levels, while TPE assigned 

more importance at 10% and 20% noise levels. It is noted that even TPE can assign a 

higher importance to the same feature than the SELECT method, it does not necessarily 

mean that TPE is a beƩer method. The emphasis is that the assignment of a “correct” 

importance to a feature must accurately describe its influence over the target variable 

leading to a beƩer predicƟon. This is evident from the fact that the SELECT method was 

able to obtain a higher MAE than TPE at 10% and 20% noise levels in this dataset, shown 

in Table 4-3. 
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Figure 4-7 HPO Feature Importance, make_friedman1, 500 instances, 20 features 
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Absolute Feature Importance: Make_friedman2(500,4) 
The results of the absolute feature importance with the make_friedman2 dataset with 

500 instances and 4 features can be seen in Figure 4-8. All HPO methods produced 

models assigned a feature ranking of X3, X2, X1 then X4, which was the same as a 

previous work, (Kamalov, 2021). The absolute feature importance of X3 ranges between 

237-306 and that of X2 between 192-247, in which both are significantly higher than the 

absolute feature importance of X1 between 1.8-4.1 and that of X4 between 0.2- (-2.2). 

These results can be explained by EquaƟon 12, as shown below. 

0 ≤  𝑥ଵ ≤ 100 

40𝜋 ≤  𝑥ଶ ≤ 560𝜋 

0 ≤  𝑥ଷ ≤ 1 

1 ≤  𝑥ସ ≤ 11 

𝑦 = ඨ(𝑥ଵ
ଶ + (𝑥ଶ𝑥ଷ −

1

𝑥ଶ𝑥ସ
)ଶ + 𝜖 

(3) 

Using the equaƟon for y, the range of 𝑥ଶ𝑥ଷ goes between 0-1759, and, 
ଵ

௫మ௫ర
, ranges 

between 5x10-5 - 8x10-3 meaning that the significance of X4 is negligible inside the same 

brackets; regardless of which value between 1-11 (equaƟon 12) is generated, X4 will have 

liƩle impact on the model performance. The significant value of 𝑥ଶ𝑥ଷ would then be 

squared, resulƟng in a potenƟal range between 0-3.1x106, dwarfing the potenƟal impact 
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of the 𝑥ଵ
ଶ component which would range between 0-1x104. This would suggest that X2 

and X3 have the largest impact, followed by X1 and then X4. The absolute feature 

importance results obtained by all HPO methods are well-aligned with this logic. This also 

agrees with a previous study, (Liu and Liu, 2020), which uƟlised several ML models to 

analyse the top aƩributes in make_friedman2, highlighƟng the X2 and X3 variables as 

both significantly important but failed to detect the importance of X4 and X1. This may 

be due to a sub-opƟmal underlying model in (Liu and Liu, 2020), which further 

emphasises the benefit of HPO for ANN based feature importance. 

The SELECT method has assigned the highest importance overall to the most significant 

features. Being the only method, the SELECT method was able to idenƟfy the posiƟve 

importance of X4 at both 0% and 5% noise levels. Combining this with the beƩer 

predicƟon accuracy for all noise levels, the SELECT method conƟnues to show evidence 

of superior capability in recognising the feature relaƟonships within this dataset. 
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Figure 4-8 Feature Importance, make_friedman2, 500 instances, 4 features. 
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4.4.2 Stage 2: Feature Importance ValidaƟon 
From Stage 1, the model opƟmised by the SELECT method not only demonstrates higher 

predicƟve accuracy, but also greater ability to differenƟate influenƟal features from non-

influenƟal ones. Stage 2 will compare the performance of different feature importance 

methods on the SAME model opƟmised by the SELECT method.  The three well-known 

feature importance tools including SHAP, PFI and LIME will be examined with their 

relaƟve importance following the same process as discussed in SecƟon 4.2.5.  

With the help of PowerBI soŌware, the feature importance analysis will be discussed over 

the make_friedman1 dataset and its variaƟons, followed by the make_friedman2 

dataset and its variaƟons. The two real-world datasets, Boston Housing and Concrete 

Compressive Strength datasets will be examined, followed by the discussion of the 

experimental results. 

RelaƟve Feature Importance: Make_friedman1(500,10) 
Beginning with the make_friedman1 dataset with 500 instances and 10 features, the 

graphs of the feature importance at all noise levels can be seen in Figure 4-9. All methods 

of feature importance have disƟnguished between the 5 connected variables and the 

laƩer 5 disconnected variables, while the order is interpreted differently. These results 

are consistent throughout all noise levels, highlighƟng a robustness in each feature 

importance method.  
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Figure 4-9 ValidaƟon Feature Importance, make_friedman1, 500 instances, 10 features. 

Both SHAP and PFI can generate the same ranking of features which is X4, X2, X1, X5 and 

then X3 in descending levels of importance. Specifically, PFI allocates higher importance 

values to X4, X2 and X1, than SHAP, and SHAP assigns lower importance values to X5 and 
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X3 than PFI. Despite the above differences, these two approaches are deemed similar in 

terms of feature importance analysis.  

LIME method, on the other hand, has returned a different feature ranking by assigning a 

much higher importance values to X2 and X3, than X4, resulƟng in a ranking of X2, X3, 

X4, X1 and X5, as opposed to the ranking, X4, X2, X1, X5, and X3, obtained by SHAP and 

PFI methods. This ranking suggests that LIME method allocates higher importance values 

to X3 and places X2 over X4. These differences indicate that LIME might be capturing local 

nuances in the model's behaviour that differ from the global perspecƟve given by PFI and 

SHAP. This also implies that, in certain instances, X3 exhibits a higher level of importance 

compared to others. This can be analysed in reference to the make_friedman1 equaƟon, 

shown again below. 

𝑦 = 10 sin(𝜋𝑥ଵ𝑥ଶ) + 20(𝑥ଷ −
1

2
)ଶ + 10𝑥ସ + 5𝑥ହ + 𝜖 

(4) 

X3 is part of a squared component and inside a bracket where the 0.5 is subtracted from 

a normally distributed value between 0 and 1, this would suggest that more commonly 

the values would tend towards 0, while the tales of the normal distribuƟon would more 

occasionally produce higher numbers. The occasional elevated importance of X3 could 

be aƩributed to this aspect of the equaƟon and its interacƟon with other variables in a 

way that can significantly influence the model's predicƟons. The squared component 
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amplifies the impact of X3 in specific contexts, contribuƟng to its sporadic but notable 

importance.  

RelaƟve Feature Importance: Make_friedman1(1000,10) 
Increasing the number of instances to 1000 in the make_friedman1 dataset, Figure 4-10 

shows that all feature importance methods now produce the same ranking of the top 

three features, X4, X2, and X1. For the ranking of the last two features, all methods tend 

to suggest X5, and X3 at 0% noise level. When noise levels increase, all methods tend to 

swap the ranking between X5 and X3 due to variaƟons in noise. This has also been 

witnessed in a previous work (Greenwell et al., 2020). 

It is noted that, with larger instances, LIME has assigned similar importance to the 

features as SHAP and PFI. It is because the larger dataset provides LIME with a richer set 

of examples to build local approximaƟons and reduce the impact of randomness in the 

sampling process.  
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Figure 4-10 ValidaƟon Feature Importance, make_friedman1(1000,10) 

RelaƟve Feature Importance: Make_friedman1(500,20) 
Increasing the number of features in make_friedman1 to 20, with 15 disconnected 

features, adds further difficulty for the feature importance methods to disƟnguish 

important features.  
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Figure 4-11 indicates that all feature importance methods rank all relevant features as 

the top features. Both SHAP and PFI have conƟnued to produce similar importance 

ranking by once again assigning X4, X2 and X1 with the most importance and X5 and X3 

to a lesser extent. 

 
Figure 4-11 ValidaƟon Feature Importance, make_friedman1, 500 instances, 20 features. 



202 | P a g e  
 

 

LIME appears to have assigned a high level of importance to X4 but a reduced amount of 

importance to all other connected features, as compared to the case of 

make_friedman1(500,10) as shown in Figure 4-9. This suggests that the increased 

uncertainty from a greater number of disconnected features impacts the local 

evaluaƟons of importance for LIME. It's notable that the challenges faced by LIME in 

interpreƟng the importance of features with a higher quanƟty of disconnected features 

may be aƩributed to its local nature of evaluaƟon and the relaƟvely limited dataset of 

500 instances, highlighƟng the method's sensiƟvity to dataset characterisƟcs. The 

difficulty is emphasised further when the noise level is increased to 20%. The assigned 

relaƟve importance of X2 and X3 by LIME method have reduced to a point where they 

could be deemed as unimportant. Even with the increase in noise levels, PFI and SHAP 

methods show resilience to the uncertainty and conƟnue to highlight the connected 

features. 

RelaƟve Feature Importance: Make_friedman2(500,4) 
With the make_friedman2 dataset having 500 instances and 4 connected features, the 

relaƟve importance results by LIME, SHAP and PFI can be visualised in Figure 4-12. The 

importance values of X3 and X2 are rated much higher than that of X1 and X4, agreeing 

with previous findings, (Liu and Liu, 2020). SHAP is the most consistent method among 

all the approaches. PFI once again, doesn’t assign importance to X4, parƟcularly when 

the noise level increases. LIME method is the least stable method among all three 
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approaches, with X3 and X2 being assigned similar levels of importance at 20% noise 

label, while the ranking of X1 and X4 varies throughout the noise levels. 

 
Figure 4-12 ValidaƟon Feature Importance, make_friedman2, 500 instances, 4 features, 0% noise. 
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RelaƟve Importance of Boston Housing Dataset 
Next, a real-world dataset, Boston Housing, is examined and it consists of 14 features in 

total. Each of these features is described  in Table 4-4. A total of 13 input features have 

been used to predict the target feature, MEDV, the median value of owner-occupied 

homes in $1000s (Bataineh and Kaur, 2018). 

Table 4-4 Feature descripƟons for the Boston Housing dataset 

Feature  Description 
CRIM  Per capita crime rate by town 
ZN  Proportion of residential land zoned for lots over 25,000 sq. ft. 
INDUS  Proportion of non-retail business acres per town 
CHAS  Charles River dummy variable (1 if tract bounds river; 0 otherwise) 
NOX  Nitric oxides concentration (parts per 10 million) 
RM  Average number of rooms per dwelling 
AGE  Proportion of owner-occupied units built prior to 1940 
DIS  Weighted distances to five Boston employment centres 
RAD  Index of accessibility to radial highways 
TAX  Full-value property tax rate per $10,000 
PTRATIO  Pupil-teacher ratio by town 
B  1000(Bk - 0.63)2 where Bk is the proportion of Black residents by town 
LSTAT  Percentage of lower status of the population 
MEDV  Median value of owner-occupied homes in $1000s (target feature) 

 

Figure 4-13 shows the feature importance results by  SHAP, PFI and LIME methods , and 

Table 4-5 reports the feature ranking, 1 being the most important and 13 being the least. 

The two features, LSTAT and RM, are ranked high by all methods, parƟcularly SHAP and 

PFI. The same ranking can be seen in previous studies, e.g.(Parr et al., 2024, Oh, 2019, 

Chen, 2021). Further to this, SHAP and PFI have produced the same level of ranking for 

the top 5 features, namely LSTAT, RM, CRIM, RAD and DIS in descending order. LIME is 

also able to include LSTAT, RM and CRIM in the top 5 rankings as well, showing the benefit 

of using mulƟple approaches for feature analysis.  
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Compared to other research, e.g. (Oh, 2019), they found that LSTAT was the most 

important feature for predicƟng MDEV, and RM, CRIM, RAD and DIS were deemed as 

highly important while AGE, CHAS and INDUS were rated as least influenƟal. The above 

results are well-aligned with the findings of both SHAP and PFI in this experiment but 

LIME has assigned a high importance to CHAS, which is not found in the literature. LIME 

suggests that in local circumstances, the feature, CHAS, can occasionally have a 

significant impact on performance, though not frequently. This aligns with the binary 

nature of the feature itself that only 7% of instances have a value of 1 compared to 93% 

with a value of 0. Globally, CHAS may not substanƟally contribute to predicƟve accuracy, 

but it demonstrates a high impact on the rare occurrences when it does influence 

predicƟons. This is a good example of how the comparison between these importance 

methods can lead to a more robust understanding of the dataset in the real-world. 

 
Figure 4-13 Feature importance graph for Boston Housing dataset 
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Table 4-5 Ranked feature importance for SHAP, LIME and PFI importance for the Boston Housing dataset 

Feature  SHAP PFI LIME 
LSTAT 1 1 3 
RM 2 2 1 
CRIM 3 3 5 
RAD 4 4 12 
DIS 5 5 6 
TAX 6 7 7 
PTRATIO 7 9 9 
NOX 8 6 8 
AGE 9 8 10 
INDUS 10 12 11 
B 11 10 13 
ZN 12 11 4 
CHAS 13 13 2 

 

RelaƟve Importance of Concrete Compressive Strength Dataset 
Another real-world dataset, Concrete Compressive Strength, is examined. In the domain 

of civil engineering, the strength of concrete is a highly non-linear funcƟon of age and 

the material composiƟon. This dataset consists of 1,030 instances of the compressive 

strength of concrete and the associated features, as listed in Table 4-6(Shi and Shen, 

2022). 

Table 4-6 Feature descripƟons for the Concrete Compressive Strength dataset 

Feature Description 
Cement Amount of cement in a cubic meter mixture (kg/m3). 
Blast Furnace Slag Amount of blast furnace slag in a cubic meter mixture (kg/ m3). 
Fly Ash Amount of fly ash in a cubic meter mixture (kg/ m3). 
Water Amount of water in a cubic meter mixture (kg/ m3). 
Superplasticiser Amount of superplasticiser in a cubic meter mixture (kg/ m3). 
Coarse Aggregate Amount of coarse aggregate in a cubic meter mixture (kg/ m3). 
Fine Aggregate Amount of fine aggregate in a cubic meter mixture (kg/ m3). 
Age Age of the concrete in days. 
Concrete Compressive 
Strength (MPa) 

The target variable, representing the compressive strength of the 
concrete. 
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The results of the feature importance analysis using SHAP, PFI, and LIME are graphically 

depicted in Figure 4-16 while the numeric ranking of features is presented in Table 4-7. 

Notably, SHAP and PFI have similar feature importance rankings, with only slight 

variaƟons observed for Blast Furnace Slag and Age, both are ranked in Top 3. The Top 5 

features are Cement, Age, Blast Furnace Slag and Water. A similar study, by (Jiang et al., 

2022) using SHAP has also highlighted Cement, Age and Water as the top features, with 

Blast Furnace Slag not included as a factor. This approach also showed the Fine 

Aggregate, Fly Ash, Coarse Aggregate, and SuperplasƟciser as the least important 

features, agreeing with the results from both PFI and SHAP. These importance results also 

agree with other studies, such as (Nguyen-Sy et al., 2020), who found the Cement, Age 

and Water to be of high importance using XGBoost, although they also included 

SuperplasƟciser as having a high level of importance as well. Age, Cement and Water 

seem to be consistently deemed as high performers for feature importance, as reported 

in (Wan et al., 2021) who also uƟlised XGBoost for feature importance. While the current 

study assigned a much higher importance for Coarse Aggregate, Fine Aggregate and 

Blast Furnace Slag, it assigned superplasƟciser as having the second least important 

feature. This suggests that even with the same dataset, there is a variability in the results 

if a different feature importance approach is adopted.  

This experiment has shown that the three well-known feature importance tools can 

produce similar importance measures, parƟcularly a high degree of similarity can be 

found between PFI and SHAP. LIME method can idenƟfy the Top 5 features, the same as 
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PFI and SHAP, however, the ranking of those features is different from that of the other 

two methods. This suggests that, in specific instances, each of these features can have a 

substanƟal impact on concrete compressive strength. Globally, cement content, Age, 

Water, and Blast Furnace Slag consistently emerge as the most crucial factors while 

Coarse and Fine Aggregate as well as SuperplasƟciser are deemed as least importance. 

 
Figure 4-14 Feature importance graph for Concrete Compressive Strength dataset 

Table 4-7 Feature importance for SHAP, LIME and PFI importance for the Concrete Compressive Strength dataset 

Feature  SHAP PFI LIME 
Cement 1 1 5 
Blast Furnace Slag 2 3 4 
Age 3 2 3 
Water 4 4 1 
Fly Ash 5 5 2 
Superplasticiser 6 6 7 
Coarse Aggregate 7 7 8 
Fine Aggregate 8 8 6 

 

4.5 Summary  
In this chapter, a comprehensive exploraƟon of the effecƟveness of the SELECT HPO 

method and its comparison against other benchmark HPO algorithms was conducted in 

Stage 1. The experiments on the make_friedman1 and make_friedman2 datasets 
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scruƟnised the algorithmic performance across varying dataset sizes and noise levels, 

providing a nuanced understanding of the capabiliƟes of the SELECT method. 

The exploraƟon into the predicƟve accuracy, measured by MAE, posiƟoned the SELECT 

method as the best performer. Across various syntheƟc datasets, the models opƟmised 

by the SELECT method consistently outperformed models opƟmised by other benchmark 

algorithms, namely TPE, GPBO, HB, and RS. The superior predicƟve accuracy of the 

SELECT models remained even under increasing noise levels, increasing number of 

instances as well as disconnected features in the datasets, highlighƟng both the resilience 

and robustness.  

The relevant feature ranking for all HPO methods was conducted in combinaƟon with PFI, 

resulƟng in consistent feature rankings in line with previous studies for both the 

make_friedman1 (X4, X2, X1, X5 then X3) and make_friedman2 (X3, X2, X1 then X4) 

datasets. The SELECT opƟmised model regularly applied higher ranking to the relevant 

features compared to the benchmarks through variaƟons in noise, the size of the dataset 

and the syntheƟc relaƟonship between the input features and the predicted variable. 

This shows the SELECT method is effecƟve and robust in determining feature 

relaƟonships, which will prove beneficial for determining CSFs for construcƟon project 

success. 

Stage 2 detailed a comprehensive feature importance analysis of the SELECT method 

combined with three well-known feature importance tools—SHAP, PFI, and LIME. This 
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stage evaluated the performance of these tools across various datasets, including two 

syntheƟc datasets, make_friedman1 and make_friedman2, and two real-world datasets, 

Boston Housing, and Concrete Compressive Strength. 

The combinaƟon of the SELECT method and the three feature importance tools provided 

a comprehensive analysis of the feature relaƟonships in all datasets. UƟlising all three 

feature importance methods, it presents a holisƟc perspecƟve with globally consistent 

idenƟficaƟon of significant features, coupled with the nuanced insights from local 

approximaƟons, underlining the advantages of this combined approach. This provides a 

broad scope of understanding and explainability for determining the CSFs in construcƟon.  

This chapter jusƟfied the capability of the SELECT method for determining feature 

relaƟonships and presented the benefits of combining this approach with mulƟple 

feature importance tools. The next step is to integrate this combined algorithm into a DSS 

to determine the CSFs in construcƟon. The next chapter will discuss and explain the 

integraƟon of this effecƟve tool into the DSS developed throughout this research period. 
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5 Decision Support System 
Development  

5.1 IntroducƟon 
The purpose of this chapter is to develop a Decision Support System (DSS) by 

incorporaƟng the SELECT method, and integraƟng it with the SHAP, LIME and PFI 

algorithms, to provide an effecƟve tool for improving project sustainability in the 

construcƟon sector.  

This research was carried out in collaboraƟon with an industrial sponsor, Galliford Try Ltd. 

Hence, useful inputs were collected from staff to understand the industrial guidance and 

requirements, and project data was gathered to support the DSS development.  

As discussed before, sustainability data was not available due to factors outside of the 

control of the researcher. In response to this challenge, the DSS has been developed with 

the use of a sample set of data supplied from Galliford Try Ltd. This has led to the 

incorporaƟon of a key characterisƟc of the DSS, which is the ability to easily adapt to new 

data and metrics as they become available in the future. This stage of the development 

creates the funcƟonality of evaluaƟng project performance, opƟmised through the 

SELECT method. The future development of the DSS, once sustainability data becomes 

available, will incorporate the sustainability dimension into the opƟmisaƟon of 

construcƟon project performance.  
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This chapter will be structured by first discussing the sample dataset and the limitaƟons 

leading to a focus on the funcƟonality of the system. Then the chosen interface will be 

discussed, followed by an explanaƟon of the flexible feature importance tool with the 

integrated SELECT method. This explanaƟon will specify the funcƟons of this flexible tool 

as well as the integraƟon of the SELECT method into the DSS as well as the ability of 

adapƟng to future data. Other supporƟng tools (or funcƟons) of the DSS will also be 

discussed.   

5.2 DSS Data CollecƟon and PreparaƟon 
5.2.1 Supplied Raw Data 
In the iniƟal stages of this research journey, Galliford Try provided a package of prepared 

documents to use for the iniƟal prototype of the DSS. All these documents related to 

water infrastructure projects which were carried out in the UK and the documents were 

recorded during the period of 01/2017-12/2020. The raw data consisted of monthly 

reports, summarised purchase order details, the recorded planned and actual cost of 

projects, as well as records of the labour spend on each project.  

Through collaboraƟon with the relevant staff from the company, the raw data was 

prepared into a format for analysis covering a total of 126 projects, including the defined 

input features related to the characterisƟcs of each project, as well as the preferred 

performance metrics related to finance and delays in projects, these are shown in 

Appendix 5-1. These designaƟons of data will be discussed next. 
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5.2.2 Performance Metrics 
Three performance metrics were requested by the industrial sponsor in which two were 

about delay performance and another for financial performance. To be specific, the 

financial performance metric is the Commercial Performance (CP) and the delay 

performance metrics are the Forecast DuraƟon Accuracy at PO(FDA), and the On-Site 

Forecast DuraƟon Accuracy (OSFDA). 

Commercial Performance 
The CP is the measurement of the final cost of a project against the cost esƟmated at the 

planning stages (final target price), as shown in EquaƟon 14. For example, if the final cost 

is over the esƟmaƟon by 6%, the CP would be 1.06, otherwise it is less than 1 indicaƟng 

under-spending. 

𝐂𝐏 =  
𝐹𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡

𝐹𝑖𝑛𝑎𝑙 𝑇𝑎𝑟𝑔𝑒𝑡 𝑃𝑟𝑖𝑐𝑒
 

(14) 

Forecast DuraƟon Accuracy at PO and On-Site Forecast DuraƟon Accuracy 
Two metrics are related to project duraƟon performance. The first is the FDA, which 

shows how well the project duraƟon is esƟmated at the creaƟon of the purchase order 

against the actual duraƟon of the project, calculated through EquaƟon 16.  

𝐅𝐃𝐀 =  
𝐴𝑐𝑡𝑢𝑎𝑙 𝑂𝑛𝑠𝑖𝑡𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑂𝑛𝑠𝑖𝑡𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑎𝑡 𝑃𝑂

𝑂𝑛𝑠𝑖𝑡𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑎𝑡 𝑃𝑂
 

(16) 

The second metric is the OSFDA, which looks at how well the project duraƟon is 

esƟmated when work fully mobilises on-site, compared to how long the actual duraƟon 

is at compleƟon. This is shown in EquaƟon 17. 
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𝐎𝐒𝐅𝐃𝐀 =  
𝐴𝑐𝑡𝑢𝑎𝑙 𝑂𝑛𝑠𝑖𝑡𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑂𝑛𝑠𝑖𝑡𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑎𝑡 𝐹𝑢𝑙𝑙𝑦 𝑀𝑜𝑏𝑖𝑙𝑖𝑠𝑒𝑑

𝑂𝑛𝑠𝑖𝑡𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑎𝑡 𝐹𝑢𝑙𝑙𝑦 𝑀𝑜𝑏𝑖𝑙𝑖𝑠𝑒𝑑
 

(17) 

Like the FDA, the OSFDA also measures the difference between the plan and reality, but 

specifically at the beginning of on-site work. So, while FDA checks the accuracy of the 

project duraƟon esƟmate at the purchase order stage, the OSFDA assesses how well the 

duraƟon is esƟmated when work starts on-site. These are both taken as a fracƟon of the 

esƟmaƟon. To clarify, if the actual duraƟon of a project extends by 50% over the 

esƟmated duraƟon, then this will be 0.5 or 50% as a percentage. If FDA or OSFDA is 0, it 

means that the duraƟon esƟmate is the same as the actual duraƟon upon project 

compleƟon. If FDA or OSFDA is less than 0, the actual duraƟon is shorter than what was 

esƟmated, otherwise there is a delay in the project from the plan. 

5.2.3 Input Features 
Project characterisƟc data was supplied for the development of the DSS. These cover 5 

project areas: the Ɵmeline of the project, the allocaƟon of personnel, the project 

locaƟon, financial details, and the nature of the project work. A list of the input features 

with their descripƟons is shown in Table 5-1.  
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Table 5-1 The input features used for developing the decision support system 

Group Feature Name Description Primary Source 

Time 

On-site Start Month 
The month when the project began work on 
site. 

Monthly project progress 
reports ranging between 2017-
2020. 

Design Duration% Percentage of the project spent on design 
stage and then on-site. Before April of 2018, 
there was a different format which did not 
include the on-site/design split so capex 2 
was used as the split. 

On-site Duration% 

Project Duration (Weeks) The full length of the project in weeks 

Personnel 

Proposal Team 
The percentage of the total recorded staff 
hours booked for estimators on a project. 

Project Staff Bookings recorded 
for all projects 

Design Team 

The percentage of the total recorded staff 
hours booked for CAD design engineer, 
design engineers, design leads and process 
engineers summed together on a project. 

Project Management 

The percentage of the total recorded staff 
hours booked for planners, project 
managers and quantity surveyors summed 
together on a project. 

Site Management Staff 

The percentage of the total recorded staff 
hours booked for site managers, site 
engineers, site foremen and mechanical 
supervisors summed together on a project. 

Overheads 
The percentage of the total recorded staff 
hours booked for project overheads. 

Health and Safety Staff The percentage of the total recorded staff 
hours booked for health and safety. 

Commissioning Team 
The percentage of the total recorded staff 
hours booked for commissioning engineers 
on a project. 

Location County 
The location of the site in which the project 
takes place, grouped together by county. 

Selected the locations, project 
ID's and project descriptions 
from the monthly project 
progress reports 

Financial 

Average of Cost Intensity 
The total expenditure of a project divided by 
the number of weeks spent on-site 

Purchase Order Details 
summarised by Galliford Try 

First Net Construction Band 
Classified construction cost range: <£1M, 
£1M-£2.5M, £2.5M-£5M, £5M-£10M,>£10M 

Purchase Order Details 
summarised by Galliford Try 

Sum of Total Construction Score This is the cost of the project 
Purchase Order Details 
summarised by Galliford Try 

Project 
Nature 

Chem Dosing 

The percentage of the total project 
expenditure, put into all classifications 
listed, is based off of interpretation from the 
Purchase Orders for each project. Essentially 
the nature of the work. 

Purchase Order Details 
summarised by Galliford Try 

Civil Installation 
Elec Installation 
ICA 
MCCs/MCP 
Mechanical Install 
New Building 
New Water Retain Structure 
Power Supply 
Pumps/Booster Set 
RGF Refurbishment/New 
Scraper Bridges 
Screen and Compactor/ 
Grit Removal 
Security 
Tank 
Temporary Works 
TTU 
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5.2.4 Data and the Focus on DSS FuncƟonality 
It is crucial to note that those performance metrics (SecƟon 5.2.2) and input features 

(Table 5-1) mostly contribute to the economic performance of a project, which can be 

measured in project cost as well as delay (Ɵme). Although project delays can impact both 

environmental and social sustainability through increased waste and consumpƟon of 

resources and material, the supplied data is not sufficient for a comprehensive evaluaƟon 

of all three dimensions of sustainability.  

If there was a larger availability of data which relates to all three of the environmental, 

social, and economic sustainability metrics, key data would include: 

 Material Data: InformaƟon on the environmental impact of materials, including 

carbon footprint, recyclability, toxicity, and energy consumpƟon during 

producƟon. This data helps assess which materials contribute to lower carbon 

emissions and support a circular economy. 

 Energy and Water Usage: Data on energy and water consumpƟon across project 

stages—from raw material extracƟon to construcƟon and operaƟon. Monitoring 

these metrics would support energy efficient project pracƟces, enable water 

conservaƟon, and reduce greenhouse gas emissions associated with construcƟon 

acƟviƟes. 

 Waste GeneraƟon and Management: Data on waste types, quanƟƟes, and 

disposal methods throughout the project lifecycle. Tracking waste data can inform 

strategies to minimise construcƟon waste, idenƟfy opportuniƟes for reuse or 
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recycling, and reduce landfill contribuƟons, ulƟmately promoƟng a circular 

economy approach. 

 Labour and Social Metrics: InformaƟon on workforce condiƟons, safety 

standards, and labour pracƟces helps assess the social impact of construcƟon 

projects.  

Overcoming the challenge related to data availability resulted in the development focus 

of the DSS shiŌing from improving project sustainability to creaƟng the bespoke 

funcƟonality that can adapt to sustainability data in the future. To develop the DSS, the 

supplied data is only used to demonstrate the funcƟonality of DSS in modelling the 

relaƟonships among project features and idenƟfying CSFs. It is expected that the DSS will 

be able to improve project sustainability when sustainability data become available in 

the future. 

5.3 Design Architecture of the DSS 
The DSS can be broken up into three interacƟve components: the user interface, the 

inference engine, and the knowledge base, shown in Figure 5-1. Each of these 

components contributes to the successful funcƟonality of the system. In this secƟon, the 

summary of the funcƟonality of each of these components will be given before an 

overview of the overall funcƟonality of the DSS is provided in the subsequent secƟons. 
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Figure 5-1 The three key components of a DSS 

User Interface: This allows the user to interact with the DSS through input selecƟons and 

visual representaƟons of knowledge and analyses. The selected interface for this system 

is PowerBI, which will be discussed in more detail in the following secƟon. 

Inference Engine: This is the analyƟcal component of the DSS which is responsible for 

processing data and generaƟng insights. This component is composed of python code 

and libraries collected and developed for the processing of data, training neural 

networks, hyperparameter opƟmisaƟon, the feature importance funcƟonaliƟes, and the 

integraƟon of these packages into the PowerBI interface. This component is used to 

connect the external datasets, create internal refined datasets, and compute all aspects 

of the funcƟonality for the DSS pages to operate effecƟvely. This is an evoluƟon of the 

base funcƟonality of PowerBI data processing and analysis with the newly developed 

SELECT HPO method and the integraƟon python code and packages. 
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Knowledge Base: This is the foundaƟon source data which is supplied to the system for 

processing and analysis, to generate insights. The sample dataset shown in Appendix 5-

1 is the primary source of data at present. UƟlising the same format, this dataset can be 

amended in the future to a greater knowledge for analysis in the system.   

5.4 DSS Overview of FuncƟonality 
PowerBI was primarily selected at the request of the industrial sponsor to support 

smooth integraƟon of the DSS into their current systems. This soŌware is beneficial for 

the DSS development for mulƟple reasons, (Aspin, 2016) as listed below: 

User-friendly Interface: The tool is user friendly for development purposes, allowing for 

ease of creaƟng dashboards of informaƟon, collecƟng, and connecƟng data and is also 

interpretable for persons of varying levels of technical experƟse.  

Data VisualisaƟon CapabiliƟes: PowerBI has a high level of capability for creaƟng various 

visual representaƟons related to data (Gonçalves et al., 2023). There are standard visuals 

which can be seamlessly created, while other visuals can be downloaded, or produced 

with the help of Python or R programming visuals.  

Data Source Flexibility and ConnecƟvity: Data can be uƟlised from a wide variety of 

sources in varying formats. These can be connected through details in the data with a 

high level of flexibility. The use of Power Query allows for data sources to be manipulated 

for use in varying formats and prepared for analysis (Krishnan, 2017).  
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InteracƟve: There is a capability for creaƟng filters, buƩons, and other interacƟve tools 

to allow users to explore the relaƟonships between their data allowing for enhanced 

decision making with the aid of a graphical user interface (Becker and Gould, 2019). 

Sharing and CollaboraƟon: Upon the compleƟon of developed dashboards related to 

data, the user can publish reports to the PowerBI service, allowing for the sharing of 

insights and capabiliƟes with a broad group of stakeholders (Seturidze and Topuria, 

2021). 

PowerBI serves as the interface for all funcƟons developed in the current DSS. It manages 

connecƟons to the inference engine files and storage locaƟons for both internal and 

external datasets. Figure 5-2 shows the contents page of the DSS linked to all the other 

pages in the system. It is designed with a colour scheme matching the Galliford Try logo 

for visual appeal.  

On the boƩom right corner of the content page, a red buƩon “Measurements for Project 

Performance” recalls the definiƟon of the current performance metrics to ensure clarity 

for users. AddiƟonally, there are other buƩons to access to different funcƟons of the DSS. 

The primary funcƟon, the “Flexible Feature Importance” tool, is posiƟoned at the top of 

the page, followed by other funcƟons.  The “Flexible Feature Importance” funcƟon allows 

users to perform the feature importance analysis which will be detailed in the following 

secƟon. 
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Figure 5-2 All Pages in the DSS 

5.5 Flexible Feature Importance FuncƟon 
This secƟon will first explain the key components of the flexible feature importance 

funcƟon before discussing the integraƟon of this tool with the SELECT method using 
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PowerBI and Python. Figure 5-3 shows the flexible feature importance analysis funcƟon. 

For ease of explanaƟon, each component of this page is labelled by a leƩer and will be 

discussed from “A” to “G” as follows. 

5.5.1 Flexible Feature Importance FuncƟon Page Layout 

 
Figure 5-3 Flexible feature importance analysis page before execuƟng analysis 

A – The Performance Metric: This component empowers users to choose the 

performance metric against which the neural network is trained for feature importance 

analysis. It's important to emphasise that the opƟmal hyperparameter seƫngs for 

training the neural network are pre-defined for each performance metric. This design 

ensures that users can achieve the best performance tailored to each metric, individually. 

B – Project Features: Project features are the core inputs to the feature importance 

analysis when making predicƟon over the performance metrics (outputs). This 

component acts as a filter, empowering users to selecƟvely include specific features 
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(inputs) in the analysis. This flexibility ensures users can tailor the analysis to their specific 

needs and preferences. 

C – Feature Importance Methods: Users can choose from three well-known feature 

importance methods, offering them flexibility in feature importance analysis. This 

selecƟon also enables users to compare the performance of mulƟple feature importance 

methods under the same feature selecƟon and performance metrics, fostering a 

comprehensive and resilient approach to feature importance. The available methods are 

SHAP, LIME, and PFI which are extensively discussed in Chapter 4. Key points related to 

these methods in the DSS are as follows:  

 A posiƟve PFI results, shows the feature is contribuƟng to the predicƟon model 

performance, while a negaƟve value shows that the feature is not contribuƟng to 

the predicƟon performance.  

 With SHAP, and LIME, these approaches highlight the direcƟon of the relaƟonship 

between the features and the performance metric in terms of a posiƟve or 

negaƟve value where a posiƟve (negaƟve) importance indicate a posiƟve 

(negaƟve) correlaƟon.  

D – InformaƟon Visual: A visual has been added to provide situaƟonal informaƟon 

related to the funcƟon of the Flexible Feature Importance tool, depending on the 

selecƟons made on the page at the Ɵme. 
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E – Base Model Performance: As the user has the opƟon to alter the input features and 

the performance metric, this will induce changes in the predicƟve accuracy of the model. 

To allow for a reference point in model performance, this component presents the 

current performance of the opƟmised neural network with all input features included. 

This is presented as both the root mean squared error (RMSE) and the mean absolute 

error (MAE).  

F – Execute BuƩon: This component allows users to iniƟate the training with the current 

selecƟon. It also enables users to de-acƟvate the training and update the selecƟon.  

G – Feature Importance Result Visual: This visual is created using Python and uses the 

selected values shown in Figure 5-3, for the Performance Metric ’A’, Project Features ‘B’, 

Feature Importance Method ‘C’ and Execute ‘F’ as inputs. 

If the ‘F’ input is set to execute, then the feature importance Python pipeline will begin. 

The ‘Project Features’ and ‘Performance Metric’ values will form the ‘visual dataset’ for 

the ANN. The ANN will previously have been opƟmised with the SELECT method for each 

chosen ‘Performance Metric’ value. The ANN will train on the ‘visual dataset’ and then 

carry out feature importance according to the selected ‘Feature importance Method’. 

The results will then be presented graphically in the form of a bar chart, an example is 

given in Figure 5-4. 
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Figure 5-4 An example of feature importance visual results 

Figure 5-4 shows, visually, the feature importance weights (shown in “c”) of all selected 

input features in the x-axis (shown in “b”) related to the chosen performance metric using 

the model opƟmised by the SELECT method together with the selected feature 

importance tool. The predicƟon accuracy of the trained and opƟmised ANN for the 

selected project features is measured by RMSE and MAE which is presented at ‘a’ to 

provide a confidence level of the findings. This can be compared to the predicƟon 

accuracy of the opƟmised ANN with all Project Features included, shown at ‘d’, to 

determine if the new feature selecƟon has improved or reduced the predicƟon accuracy. 

5.5.2 Flexible Feature Importance Development Challenges 
MulƟple challenges were encountered during the process of developing the flexible 

feature importance tool. This secƟon will discuss these challenges, highlighƟng how they 

were resolved. The key objecƟves for the flexible feature importance page to funcƟon 
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effecƟvely and for the goal of incorporaƟng future data for the analysis of the CSFs are 

listed below: 

 Train, Predict and Present: The tool must be able to train neural networks and 

produce visual representaƟons of the results for interpretaƟon. 

 Dynamic User InteracƟon: The user must be able to interact with the buƩons on 

the page to direct the use of the tool dynamically. 

 OpƟmise Performance: The tool must be able to opƟmise the neural network 

hyperparameters for each performance metric using the SELECT method. 

 Adaptability for New Data: The tool must be able to adapt to new data and 

performance metrics as they become available in the future. 

The challenges encountered in achieving these objecƟves, and the soluƟons to these 

challenges are shown in Table 5-2 and will be discussed further in the following sub-

secƟons. 

Table 5-2 Flexible Feature Importance Development:  Challenges and SoluƟons 
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Train, Predict and Present 
Although Power BI has a significant amount of flexibility in manipulating datasets and 

presenting information in built-in standard visuals, there is not a standard visual at 

present which can utilise ANN software for analysis. To overcome this challenge, the 

‘Python Visual’ in PowerBI was used in combination with a Python code pipeline, the 

overview of the steps in this pipeline is shown in Figure 5-5.  

This Python visual can accept a dataset in a tabular format, which is then prepared for 

the ANN, the ANN is trained, predictions are made on a test set, feature importance is 

carried out and the findings are then presented. This is achieved with a Python library 

titled ‘CGRNN’ which has been developed during this research. The developed CGRNN 

library has been equipped with all the Python functions required in the DSS. 

 
Figure 5-5 Pseudocode for the train, predict and present funcƟon in the feature importance tool 
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Dynamic User InteracƟon 
The Python visual can accept data in a tabular format but the ability to filter or 

dynamically alter the input dataset in a Python visual is not currently supported in Power 

BI. This means that there is no standard way of selecƟng the ‘Performance Metric’, the 

‘Project Features’, the ‘Feature Importance Method’ or when to ‘Execute’ the feature 

importance process. These are capabiliƟes present in the developed Flexible Feature 

Importance page in Figure 5-2. In addiƟon to this, the opƟmised parameters for a specific 

Performance Metric defined by the SELECT algorithm could not be selected. 

The soluƟon to dynamic user interacƟon through buƩon selecƟon in the Python visual, 

was achieved by inserƟng addiƟonal columns into the Python visual which represented 

each of the user selecƟons, shown in Figure 5-6. 

 
Figure 5-6 Image showing the visual for feature importance with variables in the columns 

From Figure 5-6, the user selecƟon criteria are shown in the green box and the 

corresponding opƟmised neural network architectures for the chosen Performance 

Metric are shown in the yellow. With this informaƟon inserted into the visual, Python can 
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be used to make logical decisions on how to interpret the data then acƟon the code 

according to the inputs. A descripƟon of this process is provided in Figure 5-7. 

 
Figure 5-7 Dynamic user interacƟon funcƟons for the feature importance tool 

OpƟmise Performance and Adaptability for Future Data 
A crucial limitaƟon in Power BI is a 5-minute Ɵme limit for running Python visuals. This 

limit can easily cover the training of a single ANN for operaƟon, but the repeat training 

required for HPO requires a larger Ɵme to achieve the desired result. This would make it 

impossible to opƟmise the ANN for each performance metric using the Python visual. 

This is where the use of Power Query Editor (PQE) for an extended applicaƟon of Python 

script was used. PQE is a data preparaƟon tool in Power BI that allows users to transform, 
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clean, and shape data from various sources before loading it into Power BI for analysis 

and visualisaƟon 

The PQE has a Python funcƟon which allows a user to manipulate a dataset without the 

same Ɵme constraint of a visual but can only present the results in the format of a table.  

Using this capability, a source dataset was amended with a Python script which allowed 

for the incorporaƟon of the SELECT HPO method and adaptability for future changes to 

the dataset. An overview of this code is shown in Figure 5-8. 

 
Figure 5-8 Pseudocode for updaƟng datasets and hyperparameter opƟmisaƟon in the decision support system 
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Figure 5-9 shows an image of the PQE in the DSS. The ‘source_input_dataset’, highlighted 

in the red box in Figure 5-9, is the externally supplied dataset for the Flexible Feature 

Importance page.  The code in Figure 5-8 allows a user to select which columns in a 

‘source_input_dataset’, represent the ‘Performance Metrics’ and whether to acƟvate the 

novel HPO method or not. From these selecƟons, the code will carry out the opƟmisaƟon 

for each selected performance metric and then save the Project Features, the 

Performance Metrics, and the corresponding opƟmised ANN hyperparameters as new 

datasets in the PQE, highlighted in green in Figure 5-9.  

 
Figure 5-9 Power Query Editor in Power BI with a Python script accessed 

The code in Figure 5-8 also facilitates an adaptability for future amendments to the 

dataset. If a user alters the ‘source_input_dataset’ or changes the chosen performance 

metrics, and runs the same Python script in the PQE, then the HPO will repeat and the 
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Flexible Feature Importance page will update with the amended ‘Project Features’, 

‘Performance Metrics’, and the corresponding opƟmised ANN hyperparameters.  

5.6 AddiƟonal FuncƟons of the DSS 
In addiƟon to the SELECT method and flexible feature importance funcƟon, the DSS also 

encompasses several other funcƟons that are tailored to meet specific needs and 

requirements of the company. While these funcƟons may not bear significant academic 

value, they provide a valuable contribuƟon to enhance the overall usefulness of the 

system. This secƟon will delve into these addiƟonal funcƟons, shedding light on their 

purpose and how they complement the DSS. 

5.6.1 AcƟve Project Performance 
The acƟve project performance page was iniƟally conceived as a focal point of the 

research to address the iniƟal chosen knowledge gap in the literature. It aimed to predict 

project sustainability performance throughout the construcƟon life cycle using AI. 

However, due to the lack of sustainability data, this is now a secondary funcƟon for the 

benefit of the industrial sponsor, which can be the source of further development with 

new data as it becomes available. 

For dynamically changing project performance throughout the project lifecycle, the only 

performance metric which had sufficient sample data in this development, was in 

relaƟon to the OSFDA, the delay performance from starƟng work on-site through to 

project compleƟon. UƟlising monthly reports spanning from January 2017 to December 

2020.  
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The main funcƟon of the acƟve project performance page follows these steps: 

1. Convert recorded trends in OSFDA over Ɵme and project features from previously 

completed projects into a sequenƟal training set. 

2. Train an opƟmised CGRNN on the characterisƟcs from past projects to learn the 

trends in OSFDA over Ɵme. 

3. Using the CGRNN, predict the future trends in OSFDA for projects which are 

currently in operaƟon on-site. 

4. Using a developed method of temporal PFI to permute features along their 

sequence in a sequenced dataset, dynamically evaluate what are the most 

important features impact project performance over set periods of Ɵme. 

The purpose of this tool is to provide project managers with the capability to predict 

potenƟal changes in OSFDA monthly and to determine what may be the most important 

CSFs which impact project during user-defined periods of Ɵme. 

The AcƟve Project Performance page is depicted in Figure 5-10 and each of the visuals 

on the page will be discussed in the following sub-secƟons. 
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Figure 5-10 AcƟve Project Performance Page 

A - AcƟve Project Table: This is a table of the current projects which have begun work on 

site but are not yet completed, hence known as acƟve projects. Key details of each acƟve 

project such as the iniƟal planned duraƟon and the current duraƟon, the planned 

compleƟon date, the OSFDA performance this month and last month as well as the 

change in OSFDA performance are shown. It allows users to see the current and recent 

OSFDA performance of all acƟve projects and provides the interacƟve capability to 

perform, visually, project-to-project comparison by user selecƟon. 

B - Current OSFDA: This visual summarises the mean OSFDA, the worst OSFDA and the 

best OSFDA recorded for all acƟve projects this month. Shown in Figure 5-10, the worst 

performing project has an OSFDA of ‘4.06’, this suggests that the project is delayed by 

more than 4 Ɵmes the iniƟal planned duraƟon. An OSFDA of ‘0’ means the project is 

planned to finish on schedule with no delay. 
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C - Change in OSFDA:  This visual summarises the change in OSFDA between the current 

month and the previous month for all acƟve projects. The mean change in OSFDA, the 

best change in OSFDA and the worst change in OSFDA are shown here. From Figure 5-10, 

the worst change in OSFDA is 0.47, which says that the planned compleƟon date for a 

project has increased by almost 50% of the iniƟal planned duraƟon in the past month. 

D - Overall OSFDA: The overall OSFDA presents the mean OSFDA for all projects shown 

on the page at a given Ɵme, through user selecƟon and the period selected. The user can 

select specific projects, a Ɵme range, or project month range and the mean OSFDA of the 

selecƟon is presented here.  

E - AcƟve Projects QuanƟty: This visual presents the current quanƟty of acƟve projects 

or the number of projects in a selecƟon by the user. 

F – Current Date:  The current date is the date in which the analysis is being conducted. 

The dataset sample that was used for this development ranged unƟl 01/12/2020, which 

is why this is the date on the page. 

G, H, I, J and K – InteracƟve OSFDA Line Graph: This line graph presents the historical 

OSFDA performance and the predicted future performance up to 12 months ahead for 

all acƟve projects. The Ɵmeline metric, ‘H’, can be changed between the months into a 

project and the change in date, the range of project month, ‘I’, and the range in date, ‘J’, 

for the line graph can also be defined by the user and the line graph will present the 
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trends in OSFDA according to the user selecƟons. Key milestones can also be highlighted, 

‘K’, such as the iniƟal and current planned compleƟon dates of the project. 

M, L and N: AŌer the user has defined a Ɵmeline metric and range, this tool can use 

temporal PFI to determine what are the most important CSFs impacƟng OSFDA during 

the user selected range of Ɵme. ‘M’ presents the feature weighƟng in relaƟon to the user 

selected period, ‘L’ allows the user to acƟvate and deacƟvate the funcƟon, while ‘N’ 

provides the user with addiƟonal informaƟon related to the operaƟon of the feature 

importance tool. 

The combined funcƟons on this page are intended to present the user with the current 

OSFDA performance from the current month and allow the user to study the overall 

OSFDA and individual OSFDA of acƟve projects. The user can also delve into the trends in 

performance over selected Ɵme ranges and analyse what the CSFs. The funcƟonality of 

this page has been developed and it is set up to be adaptable for new data as it becomes 

available.  

Data Availability and Adaptability 
This funcƟon has been developed with the intent for incorporaƟng future data to 

improve performance. There is insufficient data to gain meaningful insights into the 

variaƟons in performance at present, but the format of the data is created to allow for 

future improvements, as described below. 

The external source dataset for the acƟve project performance funcƟon is shown in 

Figure 5-11. The blue column is the project ID for referencing each project for all months 
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that it is in operaƟon. The green columns are the temporal data, highlighƟng the passing 

of Ɵme in mulƟple formats for the AI to study. The yellow box is related to each project’s 

characterisƟcs which may vary over Ɵme or remain constant. The red box should always 

be filled with ‘1’, the purpose of this is related to teach the ai when a project is acƟve. 

The performance metric is in purple. 

Altering the purple column for another metric will change the trend predicƟon metric. 

Keeping this format, while altering the values, or increasing and decreasing the columns 

in the yellow box will allow the user to amend the project characterisƟcs for future data 

availability. This includes both constant data, as seen in Figure 5-11, and dynamically 

changing data throughout the project lifecycle. 

 
Figure 5-11 Temporal dataset format for acƟve project trend predicƟon 

5.6.2 Past Project Performance 
This funcƟon is used to explore past project staƟsƟcs and is further divided into three 

disƟnct sub-funcƟons: Project Nature, Delivery Strategy, and Project InformaƟon. Each 

of these sub-funcƟons will be discussed below. 
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Project Nature 
This sub-funcƟon, as illustrated in Figure 5-12, is an interacƟve tool that empowers users 

to visualise the historical performance of projects with varying characterisƟcs and 

compare these projects across mulƟple metrics. 

 
Figure 5-12 Project Nature Page 

The leŌ-hand side of the page, highlighted in the green box features filters associated 

with previous project work undertaken. The filtering criteria is listed in Table 5-3, covering 

the duraƟon in weeks, the locaƟon by county, the project cost, and the nature of the 

project work. Users can select criteria to visualise staƟsƟcal trends in the data, 

represented on the right-hand side of the page. 
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Table 5-3 Project nature page filtering criteria 

 

The right-hand side of the page splits between delay performance (FDA), and financial 

performance (CP). These then compare the user selected criteria against the following 

metrics, referring to Figure 5-12: 

A - Cost Range: The user selected project nature criteria is compared over increasing cost 

ranges in boxplots to determine if the financial impact of projects correlate with the 

user’s selecƟon. 

B - Year of Full MobilisaƟon: This range covers the year of starƟng work on-site, allowing 

for comparison of project performance over each year in boxplots. 
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C – Season of Full MobilisaƟon: This visual also uses a boxplot for representaƟon but 

compares projects which begin on site at different Ɵmes of year, specifically which 

season. 

D – Performance: Against both the delay and financial performance, this final graph is a 

histogram of the distribuƟon of all recorded project performance from each of the user 

determined project types. 

Delivery Strategy  
This sub-funcƟon, as depicted in Figure 5-13, empowers users to adjust project delivery 

strategy controllable factors, listed in Table 5-4, including the allocaƟon of labour hours, 

the raƟo of design Ɵme to onsite duraƟon, and the onsite start month. 

Table 5-4 Delivery strategy page filtering criteria 
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Based on a set of chosen project delivery factors, the range of past performance is 

presented in mulƟple ways listed below, referring to Figure 5-13: 

A - StaƟsƟcal Performance: The staƟsƟcal performances from historical projects that 

match with the chosen factors are displayed under “Recorded Performance from 

Previous Projects”. This not only presents the best, most common, and the worst 

performances in CP and FDA, but also the distribuƟon of performance for both metrics 

in the form of a histogram for each. 

B – CGRNN Determined Performance: When the novel HPO method opƟmises ANN 

hyperparameters against the performance metrics: CP and FDA, it also makes predicƟons 

for all past projects and stores the results for each performance metric. These results are 

presented in the “Predicted Performance from Historical Data” secƟon of the page.  

UƟlising the predicƟons alongside the staƟsƟcal analysis provides a more comprehensive 

evaluaƟon of the dataset. An ANN can determine trends in data which may not be noƟced 

from standard staƟsƟcal means. Using both methods allows a comparison between each 

for a more robust evaluaƟon of the user’s selected criteria. It also allows the user to 

visualise how well the ANN opƟmised by the novel HPO method is performing against 

actual past instances. 

C – Best Model Performance: The combinaƟon of the user selected criteria which 

achieves the best predicted performance against CP and FDA is presented here. 
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Figure 5-13 Delivery Strategy Page 

Project InformaƟon 
This sub-funcƟon, as depicted in Figure 5-14, provides users with access to project details 

associated with the other two sub-funcƟons, Project Nature, and Delivery Strategy.  

A - Project Nature: This is the project nature data for all criteria and all instances related 

to Table 5-3, the project nature page data. 

B - Delivery Strategy: This is the delivery strategy selecƟon criteria from the delivery 

strategy page, listed in Table 5-4. 

C – Project Performance: This is the recorded performance from all projects, and the 

predicted performance from the ANNs opƟmised by the SELECT method. 
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The tables presented on this page can be selected, allowing users to highlight specific 

projects of interest and compare various characterisƟcs across the pages related to Past 

Project Performance.  

 
Figure 5-14 Project InformaƟon Page 

Findings from Sample Dataset 
This tool can assist managers in determining the project characterisƟcs or strategies 

which improve or reduce performance over mulƟple metrics. From the sample data, valid 

findings from this tool include the following: 

 Projects which begin in spring perform beƩer for both financial and delay 

performance than other parts of the year, suggesƟng the best Ɵmes to start on 

site for opƟmum performance.  

 The CP performance for most projects ranges between 0.99 and 1.07, providing 

a scope for over expense. 
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 The FDA performance is mostly between 0 and 0.89 with a skewed distribuƟon 

extending beyond this. This shows that most projects have delays of up to 89% 

of the iniƟal planned duraƟon, the most common delay is 79% over the planned 

duraƟon. 

 Projects which cost under £1,000,000 tend to perform worse than those which 

have a larger cost, there is also a larger range of performance. 

 Projects with large civil installaƟons lead to increases in delays and over 

expenditure. 

5.7 PotenƟal for the Future of the DSS 
The DSS has the potenƟal to improve decision-making processes in construcƟon by 

providing data-driven insights into key performance metrics, such as project costs, 

Ɵmelines, and sustainability goals. By integraƟng advanced analyƟcs and a flexible 

feature importance tool, the DSS allows managers to objecƟvely evaluate the CSFs that 

most impact project outcomes. This can lead to more effecƟve allocaƟon of resources, 

beƩer risk management, and a reducƟon in costly delays. For example, if the DSS 

idenƟfies that certain materials consistently contribute to budget overruns, managers 

can proacƟvely seek alternaƟve suppliers or adjust project plans. UlƟmately, this data-

centred approach helps companies maintain Ɵghter control over projects, improving 

profitability and operaƟonal efficiency. 

As sustainability metrics are incorporated, the DSS can conƟnuously analyse and highlight 

the most impacƞul factors influencing environmental performance, from material 
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choices to energy efficiency pracƟces. This adaptability supports the development of a 

digital product passport, enabling full traceability of sustainable components across the 

project lifecycle. By offering transparent and detailed reports on sustainability factors, 

the DSS not only helps companies comply with regulatory standards but also enhances 

their reputaƟon in the market, appealing to clients who prioriƟse environmental 

responsibility.  

5.8 Summary 
This chapter documents the development process of the DSS, emphasising the design of 

its key funcƟons and the relevant challenges. The development process began with an 

exploraƟon of the raw data supplied by the sponsor company. This involved defining 

performance metrics related to project cost and delays, idenƟfying input features, and 

recognising data limitaƟons. As a result, the DSS has been incorporated a funcƟonality to 

adapt to sustainability data in the future.  

The chosen soŌware for the DSS development is Power BI Desktop, due to its user-

friendly aƩributes, robust data visualisaƟon capabiliƟes, flexible data source connecƟvity, 

and interacƟve funcƟonaliƟes.  

The flexible feature importance tool is discussed alongside the integraƟon of the SELECT 

HPO method which opƟmises the performance of this tool for each user defined 

performance metric. The flexible feature importance tool is also set up to adapt to new 

datasets and performance metrics, automaƟcally opƟmising with the SELECT method for 

the best results. 
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This tool also offers an ability to dynamically idenƟfy the CSFs impacƟng the selected 

project performance metrics from mulƟple perspecƟves and provide an objecƟve 

visualisaƟon of the main findings which help to inform decision-making. A further 

advantage presents itself in the capability to smoothly adapt to new performance metrics 

and sustainability datasets as they become available, and this will allow the DSS to 

improve project sustainability performance as the original aim of this research. 

The integraƟon of these funcƟonaliƟes into the DSS creates a system which can allow 

decision makers to objecƟvely analyse CSFs impacƟng any of the project performance 

measurements now and in the future with minimal technical understanding of AI 

technologies. 

Moreover, the DSS is equipped with other supporƟng funcƟons to inform decision 

making from historical project data. One of them is the acƟve project performance sub-

funcƟon which can dynamically analyse the important features contribuƟng to OSFDA 

throughout the project lifecycle. It can also predict the future trends in performance and 

analyse the important features impacƟng pre-selected periods throughout project 

Ɵmelines. Another sub-funcƟon is to offer an interacƟve way of invesƟgaƟng past project 

performance, covering the nature of project work, and delivery strategies.  

To conclude, the DSS is expected to provide a valuable tool to support decision-making 

in the construcƟon sector. To jusƟfy the usefulness of the DSS, the validaƟon of the DSS 

within an industrial seƫng will be discussed in the next chapter. 
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6 ValidaƟon of the Decision 
Support System 

Chapter 5 discusses the development process of the Decision Support System (DSS) and 

its key funcƟonaliƟes. In this chapter, the focus shiŌs to the criƟcal phase of system 

development, where the efficacy and impact of the DSS is systemaƟcally validated in an 

industrial context. 

Senior industry experts, represenƟng potenƟal end-users within the sponsor company, 

play a central role in this validaƟon. A demonstraƟon video showcasing the DSS was 

presented to these experts, coupled with a semi-structured quesƟonnaire designed to 

capture their perspecƟves on the DSS’s capabiliƟes. Both closed quesƟons using Likert 

scale and open-ended quesƟons are used to capture nuanced insights in the 

quesƟonnaire. 

The aim is to extract industrial feedback and explore the applicability of the DSS in the 

view of experts. The subsequent secƟons delve into the details of the validaƟon 

methodology, parƟcipant demographics, and the analyƟcal approach applied to extract 

meaningful results from the quesƟonnaire. 

6.1 Methodology 
This secƟon covers the methodology taken for collecƟng and analysing the expert 

feedback. This begins with an explanaƟon of the demonstraƟon video created for 
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validaƟon, the jusƟficaƟon for chosen method of analysis, followed by an explanaƟon of 

the semi-structured quesƟonnaire design and how it was distributed. 

6.1.1 The Video DemonstraƟon 

The demonstraƟon of the DSS funcƟonality came in the form of an 18-minute video 

which introduces the users to the project aim and objecƟves (as part of this research) 

and the definiƟon of a DSS before demonstraƟng all main funcƟonaliƟes of the developed 

DSS and highlighƟng the potenƟal development in the future. Specifically, this video 

covered the following topics, in order: 

 What is a DSS: An explanaƟon of what a DSS is and what are its key components; 

the user interface, the inference engine, and the knowledge base, as shown in 

Figure 6-1. These components will be programmed as main funcƟonaliƟes of the 

developed DSS. 

 
Figure 6-1 Components of a DSS 
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 Project Overview: An explanaƟon of the collaboraƟve project aim and objecƟves 

and highlighƟng the focus of enhancing performance in decision making with AI 

at this stage of development, as shown in Figure 6-2. 

 
Figure 6-2 CollaboraƟve Project Aim and ObjecƟves 

 Contents Page and Performance Metrics: The contents page, and the 

performance metrics page are first discussed, presenƟng the user interface, and 

providing an understanding of the metrics which all pages in the DSS evaluate the 

performance against. 
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Figure 6-3 Contents page and Performance Metrics 

 Flexible feature importance FuncƟon: All secƟons of the flexible feature 

importance page are discussed, and the uses demonstrated with an example of 

SHAP feature importance, as shown in Figure 6-4. An explanaƟon of the opƟmised 

AI model and a demonstraƟon and explanaƟon of the results of PFI, LIME and 

SHAP importance is also provided. 

 
Figure 6-4 Flexible Feature Importance Page from Video DemonstraƟon 
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 FuncƟonality of all other pages: The funcƟonality of the acƟve project 

performance and the past project performance pages, as shown in Figure 6-5, are 

demonstrated. 

 

Figure 6-5 AcƟve and Past Project Performance Pages of the DSS 

 PotenƟal for the future: The next stage of the DSS development is menƟoned, 
as shown in Figure 6-6. 

 
Figure 6-6 The next stage of the DSS development 
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6.1.2 Use of QuesƟonnaire 
The decision to employ a quesƟonnaire for evaluaƟng the industrial impact and efficacy 

of the DSS is driven by the advantages of collecƟng qualitaƟve responses and 

acknowledges the limited available data at this stage of DSS development. This was also 

selected above the choice of interviewing persons from industry due to a lack of 

availability and Ɵme from the experts involved in the survey. The semi-structured 

quesƟonnaire adopts a closed format, leveraging Likert scale quesƟons, a methodology 

applied in previous studies related to decision-making in construcƟon and sustainability 

(Shi et al., 2016, Yaseen et al., 2020, Murat Gunduz, 2021). This structured format 

facilitates quanƟfiable measurement of parƟcipants' percepƟons, enabling 

straighƞorward comparison and staƟsƟcal analysis of responses. The inclusion of open-

ended quesƟons enriches the analysis, providing parƟcipants with the freedom to share 

nuanced and qualitaƟve insights from their unique perspecƟves. 

The quesƟonnaire method ensures a systemaƟc and comprehensive approach to 

gathering feedback from senior industry experts, allowing for the extracƟon of insights 

grounded in significant industrial experience and pracƟcal consideraƟons. AddiƟonally, 

the quesƟonnaire's versaƟlity allows for the exploraƟon of various dimensions, from the 

current capabiliƟes of the DSS to its potenƟal future applicaƟons, contribuƟng to a 

holisƟc understanding of its usefulness in an industrial context. 

A key limitaƟon of the quesƟonnaire is the subjecƟve nature of the assessment which is 

mainly based on the opinions of experts rather than tangible results observed from a 
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real-life implementaƟon of DSS in an industrial seƫng. This limitaƟon arises due to the 

current unavailability of sustainability data, with this research seƫng the foundaƟon for 

the next stage of development. The subjecƟvity of this validaƟon is miƟgated by involving 

mulƟple senior experts with extensive experience in the construcƟon industry. All 

parƟcipants bring diverse experƟse in the construcƟon sector, offering a well-rounded 

perspecƟve on the applicability of the DSS. 

6.1.3 Designing the QuesƟonnaire 
To systemaƟcally gather comprehensive feedback from industry experts on various 

aspects of the DSS, the quesƟonnaire structure, as shown in Appendix 6-1, is designed to 

assess the overall usefulness of the DSS, as well as its specific features, usability, and 

potenƟal impact. The quesƟonnaire is divided into seven secƟons, as listed below. 

1. Brief - The quesƟonnaire begins with an overview, offering clarity to parƟcipants 

about the purpose of the validaƟon. 

2. Demographics - ParƟcipants are asked to provide key demographic informaƟon 

demonstraƟng their capacity to evaluate and understanding how their roles may 

benefit from the DSS. 

3. Understanding and Clarity - This secƟon assesses parƟcipants' engagement with 

the video and evaluates their comprehension of the demonstrated content. 

4. DSS User Interface - This secƟon assesses the visual appeal of the DSS interface 

and its effecƟveness in facilitaƟng users to interact with all DSS funcƟons. 
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5. Flexible Feature Importance Tool - A key emphasis is placed on the feature 

importance tool, incorporaƟng SELECT opƟmisaƟon. ParƟcipants are queried on 

their understanding of the tool's funcƟonality, the value aƩributed to various 

aspects (including predicƟon accuracy, metric opƟmisaƟon, adaptability for 

future criteria), and their percepƟons of its impact and usefulness. 

6. All funcƟons in the DSS - This secƟon expands the focus to encompass the 

contribuƟon of all funcƟons within the DSS. It explores their collecƟve impact on 

improving, potenƟally, construcƟon project sustainability, relevance to industry 

needs, and integraƟon with current systems. This secƟon uƟlises both Likert scale 

quanƟficaƟon and qualitaƟve open-ended quesƟons to gather nuanced 

informaƟon from parƟcipants. 

7. Concluding QuesƟons - The concluding quesƟons inquire about the likelihood of 

recommending the DSS, idenƟfy promising features, and solicit feedback on areas 

for improvement. The quesƟonnaire closes by inviƟng any addiƟonal comments 

or suggesƟons from parƟcipants, underscoring the value of their input for 

research and future system development. 

A pilot study involving one academic and one pracƟƟoner for this research was carried 

out. It aimed to gather feedback from both an academic and industrial perspecƟves by 

assessing the understandability, accessibility of files, and overall quality of the survey 

instrument. They scruƟnised the quesƟonnaire to ensure clarity and comprehension for 

the intended audience. AddiƟonally, they evaluated its quality, considering factors such 
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as relevance, coherence, and alignment with research objecƟves. The feedback served 

as a valuable quality assurance tool, idenƟfying potenƟal areas for improvement, and 

ensuring the quesƟonnaire's robustness in alignment with the research goals. Key 

amendments from this process include the following, referring to Appendix 6-1: 

Demographics: ResponsibiliƟes/duƟes quesƟon added to provide addiƟonal insight into 

the relevance of the parƟcipant’s experience from their work responsibiliƟes as well as 

the duraƟon. 

Wording Clarity: The wording for Q2 was redefined for clarity from what is the 

‘impression’ of the DSS to what is the ‘overall usefulness’. This new wording is beƩer 

represented with the Likert scale. 

Add reasons for answers: The addiƟon of requesƟng reasons for the chosen answers for 

Q17, Q18 and Q19 to gain a larger insight into the overall impression of the DSS 

funcƟonality. 

AddiƟonal QuesƟon: The addiƟon of Q20 to determine which of the parƟcipants are 

familiar with DSS technologies, providing a comparison to the developed DSS. 

DistribuƟon Method: The approach for distribuƟon is agreed to be through a link to 

Google Forms for accessibility and ease of use for both the parƟcipants and the 

researcher. 

These refinements contributed to a more polished and user-friendly survey, enhancing 

its effecƟveness in collecƟng meaningful insights from parƟcipants. 
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6.1.4 DistribuƟon of the QuesƟonnaire 
The distribuƟon of the quesƟonnaire was facilitated through Google Forms due to its 

user-friendly interface, accessibility, and efficient data collecƟon and data management 

capabiliƟes. This online approach streamlined the survey process, making it convenient 

for both researcher and parƟcipants, and eliminaƟng the need for physical paperwork. 

Respondents could engage with the quesƟonnaire at their own pace and convenience. 

For distribuƟon, an email containing the link to the demonstraƟon video and the 

quesƟonnaire, shown in Appendix 6-2, was sent to a designated employee within 

Galliford Try Ltd, who forwarded the same email to other relevant individuals. This 

targeted approach ensured a direct and tailored outreach. 

6.1.5 ParƟcipants 
Table 6-1 ParƟcipants of the validaƟon quesƟonnaire 

Job Title Duties/Responsibilities 
Experience 

(Yrs) 

Technical Manager 
Technical elements of Design, support of 
the Engineering Team and Digital 
applications 

33 

Health, Safety and Environmental Systems Manager 
Produced a Management System which is 
legally compliant, and assists those 
managing Health and Safety 

29 

Project Management Office Manager 
Data Analysis, Operational Team Liaison, 
Concept Report Building, Operation 
Reporting, Framework Performance Review 

22 

Senior planner 
Provide construction insights to project 
teams and management 20 

Innovation and Research Lead 
Responsible for innovation activity across 
the organisation. 20 

Data & Systems Manager Gather programme, commercial & safety 
data for the Environment business 12 

Data Analyst Project Management Office Overview 3 
  Average 19.86 

  Standard Deviation 10.06 
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Table 6-1 shows an average working experience of 19.86 years with a standard deviaƟon 

of 10.06 years over a total of 7 parƟcipants. To increase diversity, feedback was collected 

from professionals with a diverse range of experience, including mostly those with at 

least 20 years of experƟse in the construcƟon industry, one having more than 10 years of 

experience and one having only 3 years of experience. 

6.2 Results and Discussion 
The closed quesƟons using Likert scale will be first examined followed by the analysis of 

the open-ended quesƟons.  

The Likert scale used for each closed quesƟon, as shown in Appendix 6-3, contains 5 levels 

of raƟng, 1 being the worst and 5 being the best. Appendix 6-3 shows the distribuƟon of 

responses across 5 different scales as well as the average result and standard deviaƟon. 

Overall, the feedback is good, with all quesƟons having a mean feedback value ranging 

between 3 and 5, with the standard deviaƟon between 0.64 and 1.05. The results specific 

to each secƟon of the quesƟonnaire will be discussed below. 

6.2.1 Video DemonstraƟon Feedback 
Table 6-2 Video DemonstraƟon Feedback 

  Numbered Likert Scale Summary 

Description 1 2 3 4 5 Average Standard DeviaƟon 
What is the overall usefulness of the DSS based on the 
video? 

  1 4 2 4.14 0.64 

 

The parƟcipants generally found the DSS have a high level of usefulness (average = 4.14, 

SD = 0.64) from the video demonstraƟon, with the InnovaƟon & Research Lead and the 

Project Management Office (PMO) Manager scoring the top rank of 5 to this quesƟon. As 
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they are both key persons with significant experience related to project management and 

research this is a posiƟve outcome. The most common result was 4, with only the Health, 

Safety and Environmental (HS&E) Manager scoring 3, believing the DSS to be moderately 

useful. It is reasonable to tell why the HS&E Manager may find the DSS less useful at 

present as it has not taken environmental or safety metrics into consideraƟon due to the 

lack of sustainability data. Having said that, the DSS is equipped with the capability to 

improve project sustainability performance in the future. 

6.2.2 Understanding and Clarity 
Table 6-3 Understanding and Clarity 

  Numbered Likert Scale Summary 

Description 1 2 3 4 5 Average Standard DeviaƟon 
After watching the video, how well do you feel you 
understand the key features and functionalities of the DSS? 

  2 3 2 4.00 0.76 

How clear and easy to follow were the explanations and 
demonstrations in the video? 

  2 2 3 4.14 0.83 

 

There was a generally good understanding of the key features and funcƟonaliƟes of the 

DSS, as represented in Table 6-3. All responses ranged between a score of 3 to 5 with the 

average score of 4 and 4.14 for the understanding of the DSS funcƟonaliƟes and the 

clarity of the explanaƟons in the video demonstraƟon. This adds significance to the 

findings as the parƟcipants understand what they are evaluaƟng based on the 

demonstraƟon video. 
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6.2.3 User Interface 
Table 6-4 User Interface 

  Numbered Likert Scale Summary 

Description 1 2 3 4 5 Average Standard DeviaƟon 
How would you rate the ease of use of the DSS's user 
interface based on the video demonstration?  

  1 5 1 4.00 0.73 

Did you find the DSS's user interface visually appealing and 
well-organised based on the video demonstration? 

  4 1 2 3.71 0.88 

 

The user interface was received well, with all responses in the range between 3-5, as 

shown in Table 6-4. The interface scored highly for the ease of use with an average score 

of 4 and a standard deviaƟon of 0.73, of all parƟcipants, 86% scored 4 or above, 

suggesƟng that the DSS interface is perceived as easy to operate. The visual appeal and 

page organisaƟon also scored highly, but 57% of the parƟcipants scored 3 for this, 

suggesƟng an area for improvement in the presentaƟon of the DSS.  

6.2.4 Flexible Feature Importance FuncƟon 
Table 6-5 Flexible Feature Importance FuncƟon 

  Numbered Likert Scale Summary 

Description 1 2 3 4 5 Average Standard DeviaƟon 
Did the video demonstration provide a clear understanding 
of how the Feature Importance Tool works within the DSS? 

  3 2 2 3.86 0.83 

How well do you understand the role and significance of the 
Feature Importance Tool based on the video? 

  2 3 2 4.00 0.76 

How valuable do you consider the Tool's functionality for 
optimising project performance in construction projects? 

 1  4 2 4.00 0.93 

How valuable do you consider the Tool's functionality for 
optimising for each performance metric? 

  1 4 2 4.14 0.64 

How valuable do you consider the adaptability of the Feature 
Importance Tool for future datasets and metrics? 

  1 2 4 4.43 0.73 

How confident are you in the accuracy of the Feature 
Importance Tool's assessments based on the video 
demonstration? 

  4 2 1 3.57 0.73 

To what extent do you believe the tool can help project 
managers make informed decisions for project performance? 

 1 1 4 1 3.71 0.88 

 

The Flexible Feature Importance funcƟon incorporates the SELECT method for opƟmising 

against each performance metric, so this secƟon of the survey contains more quesƟons 
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which were purposefully designed to assess the usefulness of this funcƟon from the 

percepƟon of the parƟcipants.  

The results are posiƟve overall, with the scores for all quesƟons having an average 

ranging between 3.57 and 4.43, shown in Table 6-5. The most promising responses are in 

relaƟon to the opƟmising capability and adaptability for future data, with average scores 

of 4.14 and 4.43 respecƟvely. These aspects of the Flexible Feature Importance funcƟon, 

key contribuƟons from this research, are perceived to be valuable by the parƟcipants; 

experts in decision making in the field of construcƟon project management. 

The first quesƟon in Table 6-5 is related to understanding the Flexible Feature Importance 

funcƟonality based on the video. The average response is 3.86 and 57% of parƟcipants 

scored this as 4 or above, showing most parƟcipants at least finding the funcƟonality to 

be clear from the video demonstraƟon. The role and significance of the funcƟon is also 

well understood as 71% of applicants scored this at 4 or above. These findings can give 

confidence to the subsequent quesƟons related to this funcƟon through a general 

understanding of the tool’s funcƟonality and significance.   

86% of parƟcipants believe that this funcƟon is valuable for improving construcƟon 

performance with the PMO Manager and InnovaƟon & Research Lead both scoring this 

the highest value of 5. This is a very posiƟve result as it shows a general appreciaƟon of 

the feature importance funcƟon for the technical personnel with experience, parƟcularly 

those who are responsible for construcƟon project management and those whose job is 
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to bring innovaƟon into the construcƟon environment. The HS&E Manager conƟnues to 

assign a lesser score than the other parƟcipants, assigning 2 in opƟmising construcƟon 

projects. Again, this may be due to the lack of sustainability measurement which is 

caused by the data unavailability. 

In relaƟon to the opƟmisaƟon for different performance metrics, as discussed previously, 

the results are very posiƟve. The vast majority, 86%, of responses consider the 

opƟmisaƟon for new metrics to be 4 or above, with PMO Manager and InnovaƟon & 

Research Lead once again giving a score of 5.  This same result is mimicked for the 

adaptability for new datasets in the future. The technical parƟcipants have consistently 

given scores of 4 and 5, while the HS&E Manager has reacted less posiƟvely, raƟng this 

funcƟonality between 2 and 3, for opƟmisaƟon and future data adaptability respecƟvely. 

The respondents have scored from 3 to 5 in confidence to the accuracy of the feature 

importance funcƟon, with the PMO Manager scoring the highest ranking of 5, and the 

Senior Planner and InnovaƟon & Research Lead scoring this at 4. All other parƟcipants 

have scored 3 for confidence in the predicƟve accuracy. In terms of helping project 

managers make informed decisions for project performance, the responses are mostly 

posiƟve with an average score of 3.71 and 71% of parƟcipants scoring 4 or above. The 

PMO Manager scored 5, the Data and Systems Manager responding with a 3 and the 

HS&E Manager responded with a 2. 
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Overall, there is generally a posiƟve percepƟon of the impact of this funcƟon, with key 

experts such as the PMO Manager and the InnovaƟon & Research Lead having the 

highest confidence in the capability and future potenƟal of the system. 

6.2.5 Usefulness of the DSS 
Table 6-6 All Tools in the DSS Q14-Q17 

  Numbered Likert Scale Summary 

Description 1 2 3 4 5 Average Standard DeviaƟon 
Based on the demonstration, how well do you think the DSS 
can assist in improving construction project sustainability? 

 2 1 3 1 3.43 1.05 

How relevant do you find the DSS's functionalities to the 
construction industry's needs and challenges? 

  1 4 2 4.14 0.64 

Based on the demonstration, how well do you think the DSS 
integrates various tools to support decision-making for 
construction projects? 

 1 1 4 1 3.71 0.88 

How likely would you be to recommend the DSS, based on 
the video demonstration, to colleagues or peers in the 
construction industry? 

 1 1 3 2 3.86 0.99 

 

Regarding how well the DSS integrates with other tools for supporƟng decision-making 

in construcƟon projects, 71% of parƟcipants scored 4 and above with the PMO Manager 

scoring 5 as feedback. The Data and Systems Manager scored 3 while the HS&E Manager 

scored 2. The distribuƟon of responses shows that the capability of the DSS to integrate 

with other tools/systems within the company is well-recognised except that the HS&E 

Manager expected more from the DSS. 

The DSS funcƟonaliƟes were also believed to be relevant for the needs and challenges of 

the construcƟon industry. Scores ranged from 3 to 5, averaging at 4.14 with 86% of 

parƟcipants scoring 4 or above.  
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There was more of a mixed recepƟon for the evaluaƟon of sustainability criteria. The 

mean result for the perceived capability for improving construcƟon project sustainability 

was 3.43 and a standard deviaƟon of 1.05. This suggests a perceived moderate 

contribuƟon to sustainability with diverse opinions. This is due to scoring of 2 from the 

Data analyst and Data and Systems Manager, while the HS&E Manager scored 3 for the 

capability for improving construcƟon project sustainability. This spread may be in relaƟon 

to the fact that no environmental or social goal criteria or performance metrics were 

included in the DSS at present, providing area for improvement in the future. Despite this 

feedback, the PMO Manager scored a 5 for this quesƟon.  Overall, 57% of parƟcipants 

scored this quesƟon with 4 or above so most parƟcipants believe the DSS can improve 

construcƟon project sustainability, while others are less convinced. 

When asked the likelihood of recommending the demonstraƟon to colleagues and peers 

in the construcƟon industry, 71% of parƟcipants responded with 4 or above as a score. 

Both the PMO Manager and the InnovaƟon and Research Lead scored this with a 5 while 

the HS&E Manager once again responded with a lesser response of a 2.  

6.2.6 Open Ended Responses 
Q17 Reasons for response to DSS recommendaƟon 
The reasons given for the scores on Q17 quesƟon are provided in Appendix 6-4. The key 

observaƟons made from these reasons are shown in Table 6-7: 
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Table 6-7 Reasons for decision to recommend the DSS 

User 
Rank DSS Recommendation: Reasons for selected 

Ranking 
Data & Systems Manager  
Technical Manager 

3 
4 

There would be benefit of further data for 
improving system performance. 

Data & Systems Manager  
Innovation and Research Lead  

3 
5 

Suggest future collaboration to improve and 
harness the tool. 

PMO Manager  5 The DSS takes away perception, which is still 
guiding the construction industry. 

HS&E Systems Manager 2 

Tools like this may not accommodate the 
diverse forms and nuances of project variables 
to be effective, and fears people will stop 
thinking and rely on such software, resulting in 
dangerous situations 

These differing reasons show the nuance and diverse perspecƟve presented by the 

parƟcipants of the study. There is a clear desire to develop this DSS further with more 

data as mulƟple parƟcipants can see the potenƟal and benefit from incorporaƟng such a 

tool into their field. The benefits of removing the subjecƟve nature of decision making 

guiding the construcƟon industry are a possible driving factor for this.  

Not all persons are convinced of the capability of the system. The comments of the HS&E 

Manager show a concern for missed informaƟon in decision-making. This does however 

miss the point that a DSS is a support system, rather than one that replaces the expert 

knowledge. This is a point which could have been emphasised further to reduce the 

resistance to this technology. This comment does bring to light an understanding of why 

the HS&E Manager responded with the harshest scoring of all parƟcipants, averaging 

2.86 over all closed quesƟons, compared to average of 3.93 between all parƟcipants.  
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Q18 Which funcƟon is most promising and valuable, and why? 

The responses to Q18 are shown in Appendix 6-5. The key observaƟons made from the 

responses are shown in Table 6-8: 

Table 6-8 ObservaƟons of the most promising and valuable DSS funcƟons 

User Key Observations 

Senior Planner  
PMO Manager  

The active project performance tool for trend prediction is 
of most benefit.  

HS&E Manager  
The active project trend prediction tool to be of benefit but 
has reservations about the consistency of data and the 
method of implementation. 

Data & Systems Manager  

There is benefit of the project nature tool in studying 
projects by their defining characteristics, providing 
insights which may lead to improved efficiency, quality, 
and performance. 

Data Analyst Both the flexible feature importance function and active 
project performance tool to be the most promising. 

Technical Manager  
Innovation and Research Lead 

The DSS itself is the most value, with the future potential 
of the whole system. 

A trend that can be noƟced throughout the feedback is that each of the parƟcipants 

tends to value the tools which benefit their role the most. The Planner and PMO manager 

prefer the acƟve project performance, the data analyst values both the feature 

importance and acƟve project performance funcƟons, and the Data and Systems 

Manager prefers the tool which studies the nature of past project data. The InnovaƟon 

and Research Lead can see the benefit of all tools, and the Technical Manager can see 

the potenƟal for future development.  

The combined input of all applicants highlights the importance of considering the specific 

roles of all stakeholders and responsibiliƟes when evaluaƟng the perceived value and 
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benefit of different tools within the DSS. It also highlights the need for tailored soluƟons 

that address the unique requirements and prioriƟes of various stakeholders within the 

organisaƟon.  There is also clearly an enthusiasm within this expert pool to pursue future 

collaboraƟve development. 

Q19 Which funcƟons is may need further improvements, and why? 

The responses to Q19 are in Appendix 6-6. The key observaƟons made from these 

responses are listed in Table 6-9:  

Table 6-9 Feedback for funcƟonal improvements 

User Functional Improvements 

Senior Planner  Including data related to external factors which would 
impact project performance. 

Data and Systems Manager  
Adding contemporary data for understanding of the 
current situation and trends. 

Data Analyst  
A difficulty in defining the optimal parameters in the 
project nature page, requiring complex analysis of the 
data to achieve this. 

Technical Manager  Including risk data overlayed with time and money. 

Innovation and Research Lead  Including the types of work, forms of contract and 
procurement methodology.  

The most prominent trend in the feedback from all parƟcipants is the desire for increased 

data. Whether it is related to risk, external factors or contemporary projects, the focus of 

improvement is on the introducƟon of new data. This, combined with the previously 

established enthusiasm for future collaboraƟons, shows a posiƟve direcƟon for further 

development of this DSS, and a trust in the capability.  
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There was no concern menƟoned in relaƟon to funcƟons of each page except for the 

defined parameters on the project nature page, stated by the Data Analyst. A point to 

menƟon in relaƟon to this, is the desired opƟmal parameters for the project nature page 

would be an exact applicaƟon of the Flexible Feature Importance funcƟon. This is 

intended for finding the opƟmum CSFs against construcƟon project performance and 

would handle the complexity stated by the Data Analyst. This would provide avenue of 

improvement would be a suitable area for future research. 

Q20 Awareness of similar DSS soŌware and comparison? 

The response to similar tooling is shown in Appendix 6-7 and the key observaƟons are 

shown in Table 6-10: 

Table 6-10 User awareness of similar DSS soŌware 

User Awareness of Similar DSS Software 

Data and Systems Manager 
PMO Manager  
Innovation and Research Lead 

Have not heard of a similar tool. 

Technical Manager  
Senior Planner 

Are aware of support technologies focused on 
improvements at the design stage. 

Data Analyst  
Refers to Primavera but mentions the proposed DSS has 
an advantage of gaining detailed insights from project 
characteristics. 

Senior Planner  Knows of Oracle Analytics Cloud 

 It is clear from the feedback related to Q20 that most of the parƟcipants are not familiar 

with similar tools to the proposed DSS, and there are not sufficient comments related to 

comparing exisƟng technologies with the DSS. 
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There is the menƟon of the design-based support technologies which support a different 

applicaƟon. The Primavera tool is menƟoned for project management but not for the 

capability of gaining detailed insights from project characterisƟc. Oracle AnalyƟcs Cloud 

is highlighted, but this tool does not uƟlise opƟmised deep learning to detect complex 

paƩerns in data. 

Q21 Is there any addiƟonal feedback or comments? 

The responses to Q21 are shown in Appendix 6-8 and the key observaƟons are shown in 

Table 6-11: 

Table 6-11 AddiƟonal user feedback 

User Additional Feedback 

Data Analyst  Mentioned there was no data related to sustainability in 
the system at present. 

PMO Manager  Complimented the demonstration on the clarity and 
provided information. 

Technical Manager 
Innovation and Research Lead 

Expressed an interest in assisting with the future 
development of the DSS.  

The demonstraƟon did menƟon that one of the goals was to improve construcƟon 

project sustainability, but it was also highlighted that the focus would be on developing 

the DSS funcƟonality due to a lack of sustainability data. The posiƟve feedback from the 

PMO Manager, and the Technical Manager and InnovaƟon and Research Lead wanƟng to 

assist in the future is evidence of the posiƟve impact and potenƟal of the DSS now and 

for the future. 
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6.3 Summary 
This chapter covered the industrial validaƟon of the DSS through the distribuƟon of a 

well-jusƟfied survey combined with a video demonstraƟon. The video presented the 

overall funcƟonality of the DSS, specifically menƟoning the integrated SELECT 

opƟmisaƟon algorithm and data adaptability related to the feature importance funcƟon. 

The validaƟon involved 7 experts in the field of construcƟon project management, with 

an average of 20 years of experience between them. All these parƟcipants came from a 

wide range of experƟse and responsibiliƟes providing a diverse perspecƟve to assess the 

DSS efficacy and impact. The key findings are listed in Table 6-12:  

Table 6-12 Key findings from the validaƟon survey 

Key Finding 

Overall, the feedback is good, with all questions having a mean Likert value ranging between 
3.00 and 5.00, with the standard deviation between 0.64 and 1.05. 
The flexible feature importance tool which incorporates the SELECT algorithm was believed to 
be of value with an average score of 3.95 over all related questions. 
The functions for optimisation and data adaptability were of significant value with the average 
scores of 4.14 and 4.43 respectively. 
71% of the participants scored 4 or 5 for recommending the DSS to colleagues and peers.  
The PMO Manager and Innovation and Research Lead had the most positive reaction with all 
rankings between 4 and 5. 
The HS&E Manager was the most resistant of the participants to the benefit of the DSS, showing 
concerns that mistakes may be made by relying too heavily on the DSS. This negative opinion 
may have arisen from the lack of sustainability data included in the study. 

These findings provide clear evidence to support the efficacy and impact of the DSS 

especially the potenƟal benefits of implemenƟng the flexible feature importance 

funcƟon in an industrial seƫng. The DSS has been well-received in the validaƟon as the 

majority of the parƟcipants have shown strong desire for collaboraƟon and further 

development.  
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7 Conclusion 
This chapter serves as the culminaƟon of the thesis, covering the aims of the study and 

the key discoveries and contribuƟons, highlighƟng the implicaƟons and significance of 

the completed work, and the opportuniƟes for future research. 

7.1 Research Gap in the Literature and Aim  
Previous studies have focused on using meta-learning to predict learning curves on new 

datasets by studying previous datasets (Wistuba and PedapaƟ, 2020, Klein et al., 2017). 

Moreover, exisƟng approaches to learning curve predicƟon have concentrated on halƟng 

poorly performing learning curves (Domhan et al., 2015). Previous research has 

presented findings that learning curve predicƟon of this kind would be difficult to harness 

effecƟvely for improving HPO for deep learning. (Choi et al., 2018) carried out a study on 

learning curve predicƟon for the early terminaƟon of learning curves. They concluded 

that the shape of learning curves changes drasƟcally depending on both the 

hyperparameter configuraƟons and the variaƟons in dataset. They also highlighted that 

addiƟonal tuning parameters make it challenging to effecƟvely use learning curve 

predicƟon for variaƟons in HPO task. 

This has leŌ a gap for an approach that can incorporate both the training and predicƟon 

of learning curves on the same dataset, allowing for the predicƟon of the performance 

of fully unseen learning curves based on training a subset of the hyperparameter search 

space. 
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The aim of this study was to advance the field of hyperparameter opƟmisaƟon (HPO) and 

learning curve predicƟon by developing an innovaƟve approach that overcomes exisƟng 

limitaƟons in current methodologies.  

7.2 ObjecƟves 
To achieve this overarching aim, the specific objecƟves of this research included:  

1. Overcoming LimitaƟons in Learning Curve PredicƟon: Address the constraints of 

exisƟng learning curve predicƟon methods with a more integrated framework 

that uƟlises both training and predicƟon within the same dataset. 

2. CreaƟng a New HPO Approach: Introduce a novel hyperparameter opƟmisaƟon 

technique that leverages the newly developed learning curve predicƟon model, 

enhancing predicƟve accuracy and efficiency. 

3. ValidaƟng Against ExisƟng Benchmarks: Conduct comprehensive validaƟon of 

the new HPO method against established benchmarks to demonstrate its 

effecƟveness and reliability in pracƟcal applicaƟons. 

4. IntegraƟng the HPO Method into a Feature Importance Analysis Tool: Develop a 

tool that combines the HPO method with feature importance analysis techniques, 

enabling users to gain insights into the criƟcal factors affecƟng model 

performance. 

5. DemonstraƟng Industrial Significance in a Decision Support System (DSS): 

Showcase the applicability and relevance of the developed methodologies within 
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a pracƟcal DSS, highlighƟng their potenƟal to contribute to informed decision-

making in real-world scenarios. 

7.2.1 The SELECT HPO Method 
The SEquenƟal LEarning Curve Training (SELECT) HPO algorithm has been developed in 

the form of the data pipeline as shown in Figure 7-1. The stages of the SELECT method 

are as follows: 

1. Each dataset inserted into the pipeline is split into a training, validaƟon, and test 

set, and split between labels and input features. 

2. The learning rate is tuned using the training and validaƟon sets to allow negligible 

difference between all hyperparameter configuraƟons at the start of each training 

run, leading to a minimum by the end of a predefined epoch limit. 

3. A representaƟve sample group of hyperparameter configuraƟons are trained, and 

the learning curves are recorder, converted into blocks and joined in sequence to 

create a training set for a sequence predicƟon model, in this case the CGRNN.  

4. The CGRNN is trained with the sequenƟal training set to learn the relaƟonship 

between the hyperparameters and the learning curve shape. 

5. The CGRNN predicts the learning curves with a single training window, without 

training them, and the predicƟons are ranked by the best results from the final 

steps in each learning curve, referenced in the green box in Figure 7-1. 

6. The top predicted configuraƟons are trialled to select the best model on the test 

set. 
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Figure 7-1 Novel HPO Process Flowchart 

This thesis presents a learning curve predicƟon-based algorithm which achieves HPO 

with a high level of accuracy and beƩer computaƟon efficiency than GPBO, TPE, 

Hyperband and RS. This is on both syntheƟc and real datasets, evaluated through MAE 

and feature importance analysis. The SELECT method not only improves an HPO 

algorithm with learning curve predicƟon such as (Klein et al., 2017, Wistuba and 

PedapaƟ, 2020), but also re-defines learning curve predicƟon as a completely new 

approach to HPO which can predict the learning curves of hyperparameter configuraƟons 

without running them, i.e. completely unseen hyperparameter configuraƟon learning 

curves, for the first Ɵme, can be predicted. 
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The SELECT method contains tools which have been used in the past, such as the CGRNN. 

The CGRNN was selected through a trial-and-error comparison with the RNN, LSTM, GRU 

and 1DCNN, as well as hybrids of these. The combinaƟon of the GRU and 1DCNN proved 

the most effecƟve in predicƟve accuracy and computaƟonal expense for training.  

The SELECT method is also composed of a novel approach to creaƟng a sequenƟal 

training set for the CGRNN which makes it possible to predict fully unseen learning 

curves.  This is the combinaƟon of three main components, shown in Figure 7-2.  Each of 

these components achieves a key funcƟon to overcome the well-known difficulƟes in 

learning curve predicƟon for HPO(Choi et al., 2018). 

 A loss dependent learning rate, which begins with a negligible impact on training 

an ANN and adapts to each configuraƟon individually.  

 The conversion of each learning curve into blocks of the average and range of loss, 

validaƟon loss and the learning rate in parallel, rather than every epoch in series. 

 The addiƟon of a ‘StarƟng Step’ made of syntheƟc duplicates of the first instance 

of the learning curves. 
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Figure 7-2 Three components for efficient learning curve predicƟon for HPO 

By converƟng learning curve data into the format shown in Figure 7-2 and joining the 

learning curves as a sequence, shown as a line graph in Figure 7-3, a single opƟmised 

CGRNN can be trained to adapt to different datasets and predict unseen learning curves.  

 

Figure 7-3 Example of the sequenƟal training set as a line graph 

With this developed sequenƟal training set, the number of rows, the number of variables, 

the type of variables, and the range of feature scaled parameters are the same for 
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whatever dataset enters the pipeline shown in Figure 7-1. The only variaƟon is the 

relaƟonship between the chosen predicƟon variable and the hyperparameters. This 

means the CGRNN does not need to be tuned for new datasets. 

AddiƟonally, all learning curves in this format begin with the exact same shape; this is the 

syntheƟc starƟng step and negligible difference in the learning curve data. So, this shape 

can be replicated with each hyperparameter configuraƟon and inserted into the trained 

CGRNN to predict the learning curve of that configuraƟon without any necessary training. 

The combined steps in Figure 7-1 present a new method of HPO adopƟng learning curve 

predicƟon which is comparable to any standard machine learning pipeline, rather than 

the convergence seen in BO, HB or TPE. Most exisƟng HPO methods iteraƟvely observe 

configuraƟon performance and converge on the best opƟon through consecuƟve 

evaluaƟons. The SELECT method prepares a sequenƟal training set from a sample of the 

search space, trains a CGRNN and predicts the best results. This presents mulƟple 

addiƟonal benefits beyond finding high performing configuraƟons. These addiƟonal 

benefits are listed below, from the Results and Discussion in Chapter 3 (secƟon 3.5.4): 

 The trained iteraƟons in the sequenƟal training set do not interact: The learning 

curves for the sequenƟal training set can all be trained in parallel.  

 The pipeline has a set amount of computaƟon for compleƟon: The opƟmum 

outcome is achieved aŌer a predefined amount of computaƟon for every dataset, 

rather than a terminaƟon criterion. This creates a level of consistency which is 
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beneficial for resource allocaƟon and predicƟng the Ɵme needed for the 

opƟmisaƟon process.  

 The relaƟonship between hyperparameters and performance can be visualised: 

The predicƟons from the CGRNN can be used to analyse the relaƟonship between 

hyperparameters and performance, direcƟng the search to include or exclude 

areas of the hyperparameter search space for beƩer performance. 

7.2.2 Feature Importance Analysis 
This study shows the superior capability of the SELECT HPO method in predicƟve accuracy 

and determining the importance of features in data using both syntheƟc and real-world 

datasets. The SELECT method has outperformed exisƟng HPO methods in idenƟfying top-

performing ANN models and uncovering complex dependencies within data, even under 

varying degree of complexity and uncertainty. Further to this, the novel HPO method has 

been effecƟvely integrated into a DSS, combined with SHAP, PFI and LIME to create a 

holisƟc and objecƟve way of finding the CSFs for sustainability in construcƟon.  

7.2.3 DSS ValidaƟon 
The DSS was validated using a video demonstraƟon and survey focusing on the 

funcƟonality of the developed feature importance tool integrated into a DSS together 

with the novel HPO method. This validaƟon involved 7 experts from the construcƟon field 

with an average of 20 years of experience and a diverse background of experƟse. 

The feedback from industry experts, with an average score of 4.14 out of 5 and SD=0.64 

for the overall usefulness of the DSS, indicates a high level of saƟsfacƟon with the 
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system's capabiliƟes. Specifically, the feature importance funcƟon received posiƟve 

feedback, parƟcularly regarding its opƟmising capability (mean=4.14, SD=0.64) and 

adaptability for incorporaƟng new data (mean=4.43, SD=0.73). 

Most parƟcipants expressed confidence in recommending the DSS to colleagues and 

peers (71% scored 4 or 5), but certain concerns were raised about the potenƟal for over-

reliance on the system and the need for further development through the addiƟon of 

new data. There was also enthusiasm from mulƟple parƟcipants in the survey to pursue 

future collaboraƟon in developing the DSS, incorporaƟng new data.  

Overall, the validaƟon confirmed the promising potenƟal of the DSS integrated with the 

novel HPO method for supporƟng decision-making in the construcƟon industry.  

7.3 Research ContribuƟons 
MulƟple contribuƟons have been made in this research. These contribuƟons are as 
follows: 

A Novel Method of Learning Curve PredicƟon for HPO: 

A novel method has been developed to create a sequenƟal training set for predicƟng 

learning curves of fully unseen data. This method, for the first Ɵme, addresses the 

challenges related to the significant variaƟons in learning curves for new datasets and 

hyperparameter configuraƟons. This contribuƟon is combined into a machine learning 

pipeline which culminates in a new HPO method. This novel HPO method can achieve 

high predicƟve accuracy, computaƟonal efficiency, as well as computaƟonal consistency. 
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Further to this, this method is able to select high performing models which find the 

important relaƟonships with data, verified through thorough analysis. 

This novel method contributes significantly to the field of HPO by enabling a more 

effecƟve and efficient applicaƟon of learning curve predicƟon. The impact of this novel 

method is explicitly demonstrated through all experiments in this study. 

ObjecƟve Approach to CSF Analysis for DSSs in ConstrucƟon: 

An objecƟve approach to feature importance analysis has been developed specifically for 

DSSs in the construcƟon sector. This approach provides an unbiased method for 

evaluaƟng the importance of features in decision-making processes within the 

construcƟon industry. This funcƟon is opƟmised with the SELECT HPO method and has 

been created for adaptability the analysis of new data. By enhancing the reliability and 

effecƟveness of feature importance analysis, this contribuƟon empowers decision-

makers to make informed and data-driven decisions in construcƟon projects. 

7.4 LimitaƟons 
There are several limitaƟons to this research which are broken down in different areas as 

follows: 

7.4.1 Novel HPO Method (SELECT) 
The hyperparameter search space was intenƟonally restricted to a subset of 

hyperparameters commonly found in ANNs, which were the learning rate, the number 

of neurons per hidden layer and the number of hidden layers. Other hyperparameters 

such as the opƟmiser, acƟvaƟon funcƟon, and number of epochs could be analysed, 
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however, for the sake of simplicity, only the primary factors driving model performance 

were considered in this research. 

Only Adam opƟmiser was selected during this study as it created a fair comparison 

between the benchmarks as this approach includes an adapƟve learning rate at the 

beginning. The number of epochs for all experiments was defined through trial-and-error 

to balance Ɵme and effecƟveness. The acƟvaƟon funcƟon was set to ReLu, which is 

standard for regression problems, but other variaƟons of ReLu are available, such as 

Parametric ReLu, Flexible ReLu and Leaky ReLu (Apicella et al., 2021). 

Tabular datasets with matrices of rows and columns were the only type used for the 

validaƟon of the SELECT method, this includes both the real world and syntheƟc datasets 

used in all experiments in Chapter 3 and Chapter 4. The analysis of datasets used for 

image classificaƟon in a different format has yet to be invesƟgated with this approach.  

7.4.2 Feature Importance Analysis 
The feature importance analysis conducted in this thesis was constrained by the limited 

range of techniques employed. While the use of three well-known methods, SHAP, PFI, 

and LIME, provided valuable insights into feature contribuƟons, the reliance on these 

specific methods may have restricted the breadth of the analysis results. However, the 

choice of these three techniques was primarily driven by their widespread applicaƟon 

and well-documented jusƟficaƟon in the literature, which facilitated easier 

implementaƟon and interpretaƟon.  
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The limited number of datasets used in the feature importance analysis represent 

another notable limitaƟon. With two real-world datasets and two syntheƟc datasets, the 

generalisability of the findings may be limited. IncorporaƟng more datasets, and different 

types of datasets such as image classificaƟon could generate more evidence to jusƟfy the 

effecƟveness of the SELECT method for feature analysis.  

7.4.3 Data Availability 
The current research had to deviate from the iniƟal aim of improving construcƟon project 

sustainability as the sustainability data failed to materialise through the research journey. 

This has resulted in the DSS not achieving the capability to enhance project sustainability, 

but it can adapt to new data in the future when available. 

7.4.4 DSS ValidaƟon and Sample Size 
The validaƟon of the DSS conducted in this study is of subjecƟve nature, and so a more 

objecƟve validaƟon, such as real-world implementaƟon, may help to provide more 

tangible evidence of the impact of the system. The limited number of parƟcipants, 7 in 

total, may also impact the reliability of the DSS validaƟon. Although the sample was 

small, the validaƟon involved professionals with an average experience of 20 years, it also 

encompassed diverse perspecƟves from individuals holding various roles, including 

Technical Manager, PMO manager, HS&E Manager, Data Analyst, Senior Planner, Data 

and Systems manager, and Research and InnovaƟon Lead. This diversity of perspecƟves 

contributed to a comprehensive evaluaƟon of the DSS.  
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7.5 OpportuniƟes for Future Research 
MulƟple avenues for future studies have arisen during this research. These can be split 

between the future development and tesƟng of the novel HPO method, and the 

development of the DSS. 

The current research tested the novel HPO method on tabular datasets and regression-

based problems. The method could be further tested on Ɵme-series datasets, or image 

datasets and for classificaƟon problems to further validate this approach in a wider scope 

of applicaƟon. 

Another future area of study would be to expand the search space to include the 

opƟmiser, acƟvaƟon funcƟon, and number of epochs. This, combined with the use of 

parallel compuƟng would provide a great opportunity to test the novel HPO method on 

a larger scale, while potenƟally reducing the Ɵme required through an upgrade in 

computaƟon. 

The next stage of development for the DSS would be through the collaboraƟon with the 

same sponsor company to collect contemporary dynamic performance data, and 

sustainability data. The specifics of the data will need to be determined through 

consultaƟons with experts in the field of construcƟon project management. The 

parƟcipants from the survey have highlighted an interest in pursuing the next stage of 

development and the iniƟal communicaƟons for this have already begun.  The aim of this 

collaboraƟon would be to gain the knowledge from the experts around the CSFs for 

construcƟon sustainability, uƟlising the flexible feature importance funcƟon. This will 
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help to facilitate the incorporaƟon of the DSS into the exisƟng decision-making process 

of the company, hence create a demonstrable real-life impact in the construcƟon 

industry. 
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Appendix 6-2 DSS ValidaƟon Distributed Email 
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Appendix 6-3 ValidaƟon Closed QuesƟon Responses 
  Numbered Likert Scale Summary 

Description 1 2 3 4 5 Average Standard DeviaƟon 
What is the overall usefulness of the DSS based on the 
video? 

  1 4 2 4.14 0.64 

After watching the video, how well do you feel you 
understand the key features and functionalities of the DSS? 

  2 3 2 4.00 0.76 

How clear and easy to follow were the explanations and 
demonstrations in the video? 

  2 2 3 4.14 0.83 

How would you rate the ease of use of the DSS's user 
interface based on the video demonstration?  

  1 5 1 4.00 0.73 

Did you find the DSS's user interface visually appealing and 
well-organised based on the video demonstration? 

  4 1 2 3.71 0.88 

Did the video demonstration provide a clear understanding 
of how the Feature Importance Tool works within the DSS? 

  3 2 2 3.86 0.83 

How well do you understand the role and significance of the 
Feature Importance Tool based on the video? 

  2 3 2 4.00 0.76 

How valuable do you consider the Tool's functionality for 
optimising project performance in construction projects? 

 1  4 2 4.00 0.93 

How valuable do you consider the Tool's functionality for 
optimising for each performance metric? 

  1 4 2 4.14 0.64 

How valuable do you consider the adaptability of the Feature 
Importance Tool for future datasets and metrics? 

  1 2 4 4.43 0.73 

How confident are you in the accuracy of the Feature 
Importance Tool's assessments based on the video 
demonstration? 

  4 2 1 3.57 0.73 

To what extent do you believe the tool can help project 
managers make informed decisions for project performance? 

 1 1 4 1 3.71 0.88 

Based on the demonstration, how well do you think the DSS 
can assist in improving construction project sustainability? 

 2 1 3 1 3.43 1.05 

How relevant do you find the DSS's functionalities to the 
construction industry's needs and challenges? 

  1 4 2 4.14 0.64 

Based on the demonstration, how well do you think the DSS 
integrates various tools to support decision-making for 
construction projects? 

 1 1 4 1 3.71 0.88 

How likely would you be to recommend the DSS, based on 
the video demonstration, to colleagues or peers in the 
construction industry? 

 1 1 3 2 3.86 0.99 
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Appendix 6-4 ValidaƟon QuesƟonnaire Q17  

Participant Score Reason for Response 
Senior planner 4 It was a good starting point towards our Source to Sea goal 

Data & Systems Manager 3 

A possible way to enhance the effectiveness of the DSS is to 
involve the delivery team in the data analysis process from 
the beginning of the project. By doing so, the delivery team 
can gain a better understanding of the data sources, quality, 
and limitations, as well as the objectives and expectations of 
the DSS. This can help them to align their work with the data-
driven decision-making framework and to identify and 
address any potential issues or gaps in the data. 
Furthermore, this can foster a collaborative and transparent 
culture among the delivery team and the stakeholders, 
which can improve the trust and acceptance of the DSS 
outcomes. 

Data Analyst 4 Individual feature analysis allows for consideration metrics 
for long term goals 

PMO Manager 5 This tool takes away perception which the construction 
industry is still largely guided by. 

Technical Manager 4 

I feel the tools show here are very important to progressive 
improvement.  But feel that I would need to understand the 
data sets as used and I could not see any risk data being used 
to influence or validate the costs and time-based changes. 

HS&E Systems Manager 2 

The concept based on black and white answers and when 
undertaking a project there are so many variables, the 
hazards, the skillset of those undertaking the works, the 
workplace itself, from HS&E perspective the impact of the 
hazards can change,  so how can these be factored in - it is 
making decisions on generic information and generic can be 
dangerous; it concerns me that people will not 'think' to add 
in the other considerations. I am concerned people will stop 
thinking and reliance totally on the DSS 

Innovation and Research Lead 5 
This tool has the clear capability to support better decision 
making in the industry. In my role, I look forward to working 
with Craig and others to harness the tool.  
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Appendix 6-5 ValidaƟon QuesƟonnaire Q18 
 
 

Job Title 
Which specific tool or feature within the DSS, as demonstrated in the 
video, do you find most promising or valuable? Please specify and 
provide reasons for your answer. 

senior planner Prediction of projects outcome 

Data & Systems Manager 

One possible application of the project nature tool within the DSS is to 
enable the users to import their existing projects and use the selectors 
to fine-tune them. This way, the users can leverage the DSS's 
capabilities to improve their project performance, quality and 
efficiency. The project nature tool can also provide feedback and 
suggestions on how to optimize the projects based on the selected 
criteria. 

Data Analyst The feature importance and performance trends will allow for a 
degree of anticipation and decision making for project timelines 

PMO Manager 
Future forecasting, as this will help inform cost forecasts and spend 
profiles which are key to running frameworks 

Technical Manager 
Mass collection of the data and the analytics allows greater 
understanding.  The best value here is the great start that can be built 
upon  

HS&E Systems Manager 

Trends that can be considered when planning the works; however, 
would people not start a project in December because of trends?  An 
interesting concept similar to that used for 'Intuity' - where 
predictions made from previous data added; but consistency of data 
entry is also something than could alter the value. 

Innovation and Research Lead All looks useful but the project nature element has clear use cases. 
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Appendix 6-6 ValidaƟon QuesƟonnaire Q19 
 

Job Title 

Were there any specific aspects or functionalities of the 
DSS that you believe require further improvement or 
clarification based on the video demonstration? If so, can 
you provide reasons for your answer. 

senior planner 
More external factors that may affect company 
performance, such as clients, 3rd parties, over economic in 
the industry, etc. 

Data & Systems Manager 

At this time, I do not think there are any additional features 
that could enhance the DSS. However, I suggest that we 
update our dataset with the latest data to gain a better 
understanding of the current situation and trends.  

Data Analyst 

While the project nature page allows for deep comparisons, 
there are too many definable parameters for an overview 
over projects of such scale for easy and definable 
comparison within the current layout. The requirement to 
find these optimal areas within definable parameters adds 
another degree of complexity 

PMO Manager None 
Technical Manager Risk overlayed with both time and money  
HS&E Systems Manager   

Innovation and Research Lead 
It would be useful to incorporate additional inputs such as 
type of work, form of contract and procurement 
methodology.  
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Appendix 6-7 ValidaƟon QuesƟonnaire Q20 
 

Job Title 

Are you aware of any similar decision support tools or 
systems currently used in your sector or within your 
company? If so, how do they compare to the DSS from the 
demonstration? 

Senior Planner 
Yes, there are many and very powerful such as the Oracle 
analytic cloud, 4D-BIM system etc 

Data & Systems Manager No 

Data Analyst 

Utilising expert knowledge and experience with PMO tools 
such as Primavera. We are able to confidently manage 
projects. The DSS does allow however for previous insight in 
detail, especially in the characteristics of a project. 

PMO Manager Not aware 

Technical Manager Engineering is in development of a process of time, resource 
and cost management for Design stage.   

HS&E Systems Manager   
Innovation and Research 
Lead 

None that I am aware of. 
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Appendix 6-7 ValidaƟon QuesƟonnaire Q20 
 

Job Title 
Is there any additional feedback or comments you would like to 
provide regarding the DSS and its features, based on the video 
demonstration? 

senior planner   
Data & Systems Manager   

Data Analyst You said consideration was placed on sustainability, but no 
metrics were given on how sustainability can be achieved. 

PMO Manager Excellent presentation, very clear and informative 
Technical Manager I think I would like to assist if possible  
HS&E Systems Manager   

Innovation and Research Lead Excellent work so far. I am happy to support any additional work 
in this area. 



0 | P a g e  
 

 


