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Abstract

In response to the slow adoption of artificial intelligence (Al) trends in the construction
sector, this study is one of the pioneers to tackle the challenges of subjective decision-
making practice in construction project management using machine learning (ML)
techniques. A neural network-based Decision Support System (DSS) is developed to
model significant correlations among various decision factors as well as identifying
critical success factors (CSFs) such that decision outcomes can be enhanced with greater

accuracy and reduced subjectivity.

Existing methods for HPO using learning curve prediction are limited in their ability to
predict unseen learning curves on the same dataset. The current gap in predicting full
learning curves without running all configurations limits the efficiency of these
approaches and constrains their application. A key contribution of this study is the
development of a novel hyperparameter optimisation (HPO) algorithm, namely
SEquential Learning Curve Training (SELECT), grounded in learning curve prediction
which can help to improve both modelling efficiency and effectiveness. Leveraging a
Convolutional Gated Recurrent Neural Network (CGRNN), the SELECT method predicts
learning curves for unseen hyperparameter configurations without the need to train
them. Comparative validation of SELECT against existing HPO methods such as Tree

Parzen’s Estimator, Bayesian Optimisation with Gaussian Process, Hyperband and
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Random Search were conducted, with prediction accuracies ranging between 7%-68%
better than the benchmarks in the experiments. Further to this, the computational
expense for the SELECT method is less than that of the benchmarks, with the closest
benchmark requiring 25% more time to find optimum hyperparameters, averaging over
all datasets. The consistency of allocated computational resources is also another benefit
with the standard deviation between experiments being 81s for the SELECT method,
while the closest benchmark had a standard deviation of 427s averaged over 5 datasets
and 5-fold splits of each. This underscores its superiority in prediction accuracy and
computational efficiency. The SELECT algorithm exhibits the capability to find high
performing hyperparameter configurations across different well-known datasets,
including synthetic and real-world scenarios, and demonstrates a high capability for

identifying CSFs through feature importance analysis.

The validation of the DSS, involving feedback from senior industry experts, reflects
positive performance evaluations, with an average score of 3.93 out of 5 on a Likert scale
over all questions with a standard deviation of 0.84. These experts, intrigued by the
system's potential, express strong interest in collaborative efforts for future
development. This research, adeptly navigating industry challenges, provides not only
objective decision support in construction project management but also introduces a
novel HPO approach that transcends the confines of the construction sector, with

applicability in the greater field of Al.
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1 Introduction

1.1 Construction Sustainability and Intelligent
Decision Support Systems

Throughout history, construction has been one of the key industries which has
contributed to both the function and evolution of society, broadly covering the
development of housing and infrastructure as well as commercial and industrial sectors
(Carty Gerard, 1995). It is a field of engineering which is crucially important throughout
all areas of the planet but one which comes with its own unique challenges. Each
construction project covers new ground, with new work locations, variations in labour
costs and expertise, material and equipment requirements, logistics, safety, and
regulatory requirements. This leads to a significant amount of uncertainty which can
result in project overspending, delays for project timelines, disputes with customers,
contractors, and employees if decision-makers make the incorrect choices (Ortiz-

Gonzalez et al., 2022).

The difficulties in decision making do not just relate to the project nature in the
construction industry, the task of making the correct decision can be further impacted by
the traditional methods of construction project management. The traditional approach
relies primarily on the knowledge of experts to make decisions with tacit knowledge and
limited data availability(You and Wu, 2019). The methods of collecting and utilising data
have been through manual means, with decentralised storage which comes with its own

disadvantages. This can result in data acquisition and use being slow, with flaws and
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missing information, resulting in the potential for the wrong conclusions being made with

substantial consequences (Andujar-Montoya et al., 2015).

In recent years, even the critical success factors (CSF) of projects have been evolving to
consider not only the economic success of construction projects but also the
environment and social impact as well (Kiani Mavi and Standing, 2018). The change in
CSF has become evident through the evolution of societal needs towards sustainable
practices at the beginning of this century. The focus is no longer prioritising just project
scheduling, cost, and quality, but also other tangible and intangible factors as well (Salma
Ahmed, 2021). Environmental success in construction requires further considerations
regarding the material usage, energy efficiency, waste management and recycling,
adhering to environmental standards, while the social factors relate to how a company
structure and each project impacts both the employee’s safety and satisfaction and the
same for the surrounding community. All these factors combine to create enormous
challenges in relation to decision making in the construction industry with so many
components to consider and there being significant financial, environmental, and social

impacts of making the wrong choices.

Further to this, it can be difficult for decision makers to fully understand and control the
projects when there are so many decision variables. Even with years of experience and
collaboration, decision makers may struggle to uncover useful observations from the data

having the 5V’s - velocity, volume, value, variety, and veracity. Intelligent tools that can
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identify and visualise CSFs would help to overcome the inherent limitation of human

decision makers (Nikmehr et al., 2021).

In the realm of construction project management, the need for effective decision making
is more critical than ever, given the intrinsic complexities involved and the impact on
construction sustainability. To address the limitations of traditional methods, the
evolution of integrated decision support systems (DSSs) has emerged as a practical
solution, aiming to streamline decision-making processes within the industry (Galjani¢ et
al., 2022). By leveraging technology and data driven insights, these systems facilitate
informed decision-making for projects of varying scales and complexities. They are also
tailored to manage the intricacies of construction projects and provide real-time analyses
and predictive models, enabling project managers and key stakeholders to make well
informed decisions, allocate resources efficiently, and manage risks effectively. With user-
friendly interfaces and customisable features, these systems promote adaptability and

efficiency in construction project management, enhancing overall project sustainability.

Complementing the advancements of DSSs, the evolution and utilisation of Al and ML
has emerged as a key driver in improving decision making within the construction
industry. By harnessing the power of Al driven analytics and ML algorithms, project
managers gain access to predictive insights and trend analyses, empowering them to
make strategic decisions that mitigate risks and optimise project performance (Pan and
Zhang, 2021). Through the integration of Al and ML into DSSs, project managers can

navigate the complexities of the field with better precision, enabling them to adapt to

21| Page



evolving project CSF, detect and prepare for potential challenges, and ensure optimal
resource allocation. As Al continues to advance, its role in improving decision making
processes at all stages of the construction industry is set to redefine how the sector
operates, enabling more efficient and adaptable approaches to project management

with increased sustainability in the future.

1.2 The Research Problem

The inspiration for this research began with the industrial sponsor’s motivation to
digitalise their methods of project management and to move away from the traditional
approaches to project management in the construction sector. Because of this, the opted
for a collaboration with the University of Strathclyde to carry out research into intelligent
DSSs for construction project sustainability. This study is believed to be the first step in a
direction of employing new digital technologies for improving their project management
methods. Given the advancements of intelligent DSSs in construction and the evolution
of the CSF in construction projects with a focus on sustainability, this research journey

began with an initial investigation to address two questions:

(i) What are the current trends of DSS technologies in relation to the use of Al
throughout the construction project lifecycle?
(i) What are the current trends of DSSs in relation to construction project

sustainability?

Hence, a systematic literature review was conducted to resolve these two questions

which provided insight over knowledge gaps.
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1.3 Research Focus

In the pursuit of enhancing construction project sustainability through an intelligent DSS,
various approaches were explored. The most significant was focused on optimising the
DSS performance. This not only contributes to the efficacy of the DSS for construction
but also contributes to the field of hyperparameter optimisation (HPO) in Al as a whole.
The literature review uncovered that the most used ML algorithm for prediction was the
neural network. Nevertheless, it became apparent that the methods employed to
establish the hyperparameters of the neural network models generally lacked a reliable
approach to optimise the network architecture hyperparameters, resulting in suboptimal
outcomes(Mohammad Kabir Yaqubi, 2019, Bala et al., 2014). It was also established that
HPO is a crucial component of implementing ML in the construction industry (Bilal and
Oyedele, 2020). With this, a newfound emphasis on HPO was determined, resulting in
the potential impact of the findings and developments of this research extending beyond
the original goal. HPO can be applied across a broader spectrum of applications, serving

as a fundamental addition to the comprehensive body of knowledge surrounding Al.

It was established through the literature review that there is a significant gap in the field
of learning curve prediction for HPO. Previous studies have primarily focused on using
meta-learning to predict learning curves on new datasets by studying previous ones
(Wistuba and Pedapati, 2020, Klein et al., 2017). Moreover, existing approaches to

learning curve prediction have concentrated on halting poorly performing learning

23| Page



curves (Domhan et al., 2015). This leaves a gap for an approach that can incorporate both
the training and prediction of learning curves on the same dataset, allowing for the
prediction of the performance of fully unseen learning curves based on training a subset

of the hyperparameter search space.

1.4 Research Aim and Objectives

This study aims to advance the field of hyperparameter optimisation (HPO) and learning
curve prediction by developing an innovative approach that overcomes existing

limitations in current methodologies. The specific objectives of this aim include:

1. Overcoming Limitations in Learning Curve Prediction: Address the constraints of
existing learning curve prediction methods with a more integrated framework
that utilises both training and prediction within the same dataset.

2. Creating a New HPO Approach: Introduce a novel hyperparameter optimisation
technique that leverages the newly developed learning curve prediction model,
enhancing predictive accuracy and efficiency.

3. Validating Against Existing Benchmarks: Conduct comprehensive validation of
the new HPO method against established benchmarks to demonstrate its
effectiveness and reliability in practical applications.

4. Integrating the HPO Method into a Feature Importance Analysis Tool: Develop a

tool that combines the HPO method with feature importance analysis techniques,
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enabling users to gain insights into the critical factors affecting model
performance.

5. Demonstrating Industrial Significance in a Decision Support System (DSS):
Showcase the applicability and relevance of the developed methodologies within
a practical DSS, highlighting their potential to contribute to informed decision-

making in real-world scenarios.

By addressing these objectives, this study aims to offer a valuable academic contribution
in the form of a novel HPO approach which harnesses learning curve prediction and deep
learning. A mechanism, titled SEquential LEarning Curve Training (SELECT), which can
generate top performing neural network hyperparameters efficiently when compared to
existing HPO methods based on the same computational effort. Additionally, the
integration of the SELECT method into a decision-making tool can guide project managers
in identifying the CSF related to project success with a capability to adapt to sustainability
criteria in the future. The implementation of the proposed HPO method is anticipated to
not only enhance current practices but also pave the way for more effective and

sustainable construction project management strategies.

1.5 Research Novelty

A key novelty of the SELECT HPO mechanism is a method of transforming observed
learning curve data into a sequenced and windowed training set, tailored for training a
Convolutional Gated Recurrent Neural Network (CGRNN). This method, for the first time,

addresses the challenges related to the significant variations in learning curves for new
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datasets and hyperparameter configurations. This novel approach is combined into a
machine learning pipeline which culminates in a new HPO method. This novel HPO
method can achieve high predictive accuracy, computational efficiency, as well as
computational consistency. Further to this, this method is able to select high performing
models which find the important relationships with data, verified through thorough
analysis. This novel method contributes significantly to the field of HPO by enabling a
more effective and efficient application of learning curve prediction. The impact of this

novel method is explicitly demonstrated through all experiments in this study.

1.6 Thesis Structure

The structure of the thesis is described below.

e Chapter 2 Literature Review: The thesis will begin with a thorough review of
relevant literature, providing context for the study and leading to the chosen gaps
related to the optimisation of decision support systems and objective feature
importance analysis for sustainable CSFs.

e Chapter 3 Hyperparameter Optimisation: The next chapter will delve into the
development of the SELECT HPO method, outlining the method, the validation
against multiple benchmarks, and the findings of high accuracy, computational
efficiency and consistency.

e Chapter 4 Feature Importance Analysis: The combination of the SELECT HPO

method and feature importance tools will be explored in detail, starting with a
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comparison between existing HPO methods for feature importance, then analysis
of the SELECT method combined with multiple feature importance tools. This will
be conducted on both synthetic and real-world datasets, shedding light on its role
and implications for detecting the relationships for CSFs.

e Chapter 5 Decision Support System Development: Insights into the construction
of the DSS is provided, emphasising the seamless integration of the SELECT HPO
and feature importance aspects, while presenting the additional functionalities
of project trend prediction and the analysis of past project performance.

e Chapter 6 Validating the Decision Support System: The validation of the DSS will
be presented and discussed. This will be in the form of a survey distributed to
industry experts for a qualitative analysis of the DSS in its current level of
development.

e Chapter 7 Conclusion: The conclusion chapter will summarise the key findings
and implications derived from the study, providing a comprehensive wrap-up of

the thesis.

1.7 Summary

The introduction of the thesis highlights the research aims and objectives. It starts by
addressing the significant challenges in decision-making within the construction industry,
particularly related to the nature of construction projects and the traditional approaches

taken for decision making. With the evolving inclusion of sustainability criteria in the CSF
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for construction projects, there is a growing need for more intelligent decision-making
techniques that can manage additional complexities and uncertainties. Intelligent DSSs
have emerged as a viable solution, using advanced Al to manage complex data for
practical interpretation. The introduction also discusses the research problem, leading to
the primary goal of developing an innovative approach of HPO. This method aims to
advance the field of hyperparameter optimisation with learning curve prediction. It will
then be used to enhance the performance of a DSS in construction project management

with the aid of feature importance analysis.
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2 Literature Review

2.1 Introduction

The key focus of this chapter is to investigate the current literature on DSS technologies
in construction project management with the use of Al for improving sustainability. More

specifically, the two initial research questions to investigate were:

RQ1: What are the trends in research for using Al in DSS during the construction project

lifecycle?
RQ2: What are the trends in relation to DSS and construction project sustainability?

This systematic literature review involved a comprehensive search within specific
databases, using relevant keywords and strict inclusion and exclusion criteria to ensure
the selection of relevant literature. Categorisation of the literature was done based on its
application in the field of construction, the advancements for DSSs in relation to Al, and
the trends in relation to sustainability, emphasising the gaps and limitations in the
existing methods used. The literature findings highlighted the need of incorporating
feature importance analysis within the context of sustainability goals. This also suggests

the critical need for advanced HPO techniques to improve predictive accuracy of DSSs.

Building upon the established rationale, the review then delved into a thorough analysis

of various HPO methods, emphasising the shortcomings and inefficiencies in existing
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practices, as well as a focus on the significance of learning curve prediction within the
context of HPO, particularly on the limitations. These points will be addressed in Chapter

3 of this thesis.

2.2 Chapter Structure

This chapter is structured by first explaining background information related to DSSs,
sustainability, Al, and the construction project lifecycle. The method of the literature
review will then be explained, followed by the findings of the review. Specifically, the
chosen gap related to the optimisation of Al for improving sustainability in decision-
making will be justified. This helps to create the basis for further investigation into the
current tools for HPO, especially the crucial gap in relation to learning curve prediction

for HPO.

2.3 Background

To address RQ1 and RQ2, it is important to first discuss key concepts and terminology.
The background information will cover what DSSs are, sustainability, key aspects in

relation to Al and this study, and the construction project lifecycle.

2.3.1 Decision Support Systems

DSSs are a computer-based tool designed to aid project managers in complex decision-
making tasks (Rao et al., 1994, Keen, 1980). Initially, DSSs were more passive, operating

strictly based on user input and with limited decision-making capabilities (Rao et al.,
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1994). However, recent advancements in Al have significantly enhanced the capabilities
of DSSs in the construction domain. Figure 2-1 illustrates the three fundamental
components of a typical DSS. The system includes a user interface facilitating human-
computer interaction, allowing users to input data for analysis and receive
recommendations in a comprehensible format. At the core of the system lies the
inference engine, employing mathematics, logic, and Al algorithms to perform complex
reasoning and computations. Utilising data from the knowledge base and user inputs,
the inference engine generates decisions or solutions to the presented problems. The
knowledge base serves as a repository for decision-making logics and historical data,
continuously updated with new knowledge from user interactions and real-world
problem-solving scenarios. This constant updating process contributes to the

advancement of the knowledge base and the overall intelligence of the DSS.

Inference

Knowledge
Interface Base

Figure 2-1 The three key components of a DSS
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2.3.2 Sustainability

Project sustainability is dependent on the principle that the project should fulfil current
requirements while safeguarding the concerns of the future. A commonly embraced
perspective on sustainability revolves around the concept of the three pillars of
sustainability: economic, environmental, and social objectives (Ranjbari et al., 2021).
These are more informally referred to as the "three Ps": profit, planet, and people (Bocker
and Meelen, 2017). The specific objectives of each are explained in the following sub-

sections.

Economic Sustainability

The focus of economic sustainability is to ensure that there is a positive financial outcome
in relation to the resources invested. This involves generating value and profits while also
saving through careful cost reduction (Azapagic and Perdan, 2000). Common practices in
relation to economic sustainability encompass efficient project management, adherence
to established standards and regulations, as well as adept risk management and

mitigation strategies.

Environmental Sustainability

Looking further than business considerations, the objective of environmental
sustainability is to minimise the adverse effects of operations on the natural surroundings
and to preserve and enhance the environment. This involves curbing energy

consumption, restricting material usage, and adopting eco-friendly materials (Hong et al.,
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2021). The pursuits of environmental sustainability are frequently intertwined with
economic sustainability, as the reduction of waste and the reducing the impact of

inefficient practices can lead to financial savings and enhanced profits.

Social Sustainability

The aim of social sustainability is to uphold and enhance the standard of human life,
encompassing customers, employees, contractors, and all other stakeholders affected by
project activities. This is achieved through the enhancement of health and well-being,
robust training and development initiatives, the promotion of workplace diversity, and
active contributions to societal betterment (Fatourehchi and Zarghami, 2020). The
advantages of prioritising social sustainability include boosted morale and well-being
among company personnel, improved relationships with suppliers, customers, and

involved parties, and the enhancement of local and global reputations.

2.3.3 Artificial Intelligence

Al refers to an area of science where systems are able to perform tasks normally requiring
human intelligence, such as visual perception, reasoning, learning and decision-
making(Nath et al., 2024). This research will primarily concentrate on the utilisation of Al
for decision-making purposes. The subsequent section will outline different types of Al

and HPO as well as feature engineering and feature importance.
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Machine Learning

Machine learning (ML) is the process of developing computer programs that learn from
past data to make predictions without being explicitly programmed to do so, with data
driving the operation, rather than the programmers (Ethem, 2021). The learning methods
include supervised learning; for labelled datasets where both the inputs and desired
results are known in the training set, unsupervised learning; for unlabelled data where
the desired result is unknown, and the dataset is analysed to recognise patterns and
relationships between groups of data. There is also reinforcement learning (RL) for
mapping from situations to actions to maximise rewards (Abioye et al., 2021). Examples
of machine learning algorithms encompass multivariate-linear regression (MLR), logistic
regression (LR), support vector machine (SVM), decision tree (DT), random forest (RF), K-

means, Bayesian inference (Bl), and artificial neural network (ANN).

Fuzzy Logic

In the real world, particularly in project management, there arise instances where human
judgment is necessary for decision-making, often in the presence of uncertainties
regarding the optimal choice. Fuzzy logic (FL) serves as a tool to address these situations,
initially proposed in 1965 by Lotfi Zadeh (Bélohlavek and Klir, 2011). It is a technique to
gauge the degree of accuracy of uncertain data, finding widespread applications in real-
world systems to tackle intricate and ambiguous problems characterised by incomplete
or imprecise information (Chen and Pan, 2021). Rather than measure something to be

true or false, fuzzy logic enables the quantification the level of truth. Within the scope of
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the articles examined in this study, FL is predominantly employed to quantify expert
knowledge derived from ranked questionnaires (Awad and Fayek, 2012), effectively

capturing human reasoning for diverse decision-making applications.

Natural Language Processing

Human communication primarily relies on natural language such as English or Mandarin,
in contrast to computer programming languages. To enable computers to interpret
natural language, the application of natural language processing (NLP) becomes crucial
(Hapke et al., 2019). NLP focuses on developing computational models that emulate
human linguistic capabilities, encompassing reading, writing, listening, and speaking
functions (Bilal et al., 2016). It serves to convert natural language into a machine-
readable format, finding diverse applications in social media, customer service, e-
commerce, education, entertainment, finance, and healthcare sectors (Hagiwara, 2021).
Within the domain of construction project management, NLP facilitates the analysis of
typed documentation and reports, enabling knowledge extraction for various purposes.
For instance, NLP can aid in evaluating accident reports in the construction sector to

identify precursors for potential accidents (Baker et al., 2020).

Evolutionary Algorithms

Evolutionary algorithms represent an interdisciplinary tool bridging biology, Al, numerical
optimisation, and decision support, finding widespread applications across various

engineering domains. These algorithms utilise organic evolution models to achieve

35| Page



intelligent optimisation (Back, 1996). Intelligent optimisation tasks typically involve the
exploration for the most optimal outcome, either to minimise or maximise an objective
function within specified constraints (Pan and Zhang, 2021). An illustrative example of
such an algorithm is the genetic algorithm (GA). The GA initialises with a population of
potential solutions to a problem, with each solution then evaluated against its fitness to
solving the problem and the best of these solutions then selected for a new population.
Selected individual solutions are paired together, combining their characteristics for the
next generation of solutions and the addition of random changes, or mutations. This
process is repeated until termination, with the GA converging through the evolution of
generations of paired solutions (Kuptametee et al., 2024). This can be harnessed to
optimise system outcomes, thereby enhancing model performance for decision-making

in construction project management contexts (Cheng et al., 2010).

Hyperparameter Optimisation

During the training of ML models, parameters represent the changing variables that
adapt to the training data, optimising their values to achieve the best performance. On
the other hand, hyperparameters, established outside of training, serve as control values
that govern the functioning of the ML model. The configuration of these
hyperparameters significantly impacts model performance, emphasising the importance
of attaining the optimal hyperparameter settings during training to yield the best results.
Consequently, HPO has emerged as a critical area of research in recent years (Yang and

Shami, 2020). With the increasing complexity of models, the number and nature of
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hyperparameters can significantly influence performance. HPO is the process of
determining the best possible hyperparameter configuration to optimise model
performance. This usually involves exploring a variety of hyperparameter configurations
and determining how they impact the performance of the model (Shaziya and Zaheer,

2021), the better performing hyperparameters are then selected for use in prediction.

Feature Engineering and Feature Importance

Feature engineering is a process in ML that selects the most relevant features from the
raw data to improve the performance of predictive models (Wei et al., 2019). Feature
importance, a key aspect of feature engineering, refers to the technique used to
determine the significance of each feature in predicting the target variable. It helps
identify the most influential features that contribute the most to the model's predictive
power (Musolf et al., 2022), allowing only the most important features to be used for
predictive models, which can lead to increased accuracy and efficiency. By understanding
feature importance, better informed decisions can be made about which features to
prioritise and how to optimise the overall performance and interpretability of the ML

models.

2.3.4 Construction Project Lifecycle

The construction industry encompasses a wide range of activities, including the
construction, extension, installation, repair, and maintenance of various structures and

infrastructures, such as buildings, transport routes, and water services (Ofori, 1990). This

37| Page



encompasses both commercial and residential applications, as well as the development
of essential infrastructure components like water service stations and pipelines. Projects
in the construction industry typically progress through five key stages: initiation,
planning, execution, controlling, and closing (Vargas, 2001). A brief explanation of each

stage is bulleted below.

e Initiation: The initial project approval marks the stage where the project's
primary scope is established, and key stakeholders are identified.

e Planning: During this phase, the project plan is formulated, outlining the
deliverables and requirements, the selection of human, machine, and material
resources, and the documentation of a project delivery schedule.

e Execution: This phase signifies the practical implementation of the documented
plan established in the previous stage, representing a crucial period during which
a sizeable portion of the project's allocated time and resources are dedicated to
the execution of planned activities and tasks.

e Controlling: This phase involves the thorough assessment of project execution
outcomes in comparison to the initially documented plan, aiming to identify any
disparities and subsequently address and rectify these discrepancies.

e Closing: The concluding stage of the project lifecycle typically involves the
preparation of a comprehensive report detailing the project's outcomes,

alongside the handover of deliverables to the client. Simultaneously, all services
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and contracts are finalised, ensuring the relevant stakeholders are duly informed

of the project's closure.

The studies discussed in this chapter of the thesis will be viewed through the five stated
construction project lifecycle categories, with the research application of DSS in one or

more of these stages.

2.4 Literature Review Methodology

The aim of a systematic approach to reviewing literature is to identify all the empirical
evidence within a pre-specified inclusion criteria to answer a particular research
hypothesis (Snyder, 2019). The nature of this method reduces subjectivity in the
research, leading to a reduction in bias. This method also allows for a quantitative
analysis of papers to determine overall trends and relationships within a study. This
literature review was conducted using a systematic approach with three key stages,

identification, screening, and assessment as shown in Figure 2-2.

2.4.1 Paper Identification

This review is to investigate the current state of Al-based DSS techniques in the
construction sector to improve project sustainability. The key words, thus, were decision
support system, construction, project sustainability, Al, and ML for literature searching
within the three well-known databases: Scopus, Science Direct, and ProQuest. The search

was conducted on the article titles, keywords, and abstracts. Only papers written in
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English between 2010 to present and peer-reviewed articles were included. The relevant
disciplines were Engineering; Computer Science; Mathematics; Business, Management,
and Accounting; and Decision Sciences. This resulted in a total of 624, 1494, and 570
papers from Scopus, Science Direct, and ProQuest, respectively, for a grand total of 2688

papers to screen.
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Figure 2-2 The systematic approach of literature review.
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2.4.2 Screening

For screening, the abstracts were read for each of the identified papers. As there is a
variety of frameworks that can be defined as a DSS (Kersten, 2000), papers were deemed
as relevant only if DSSs or decision making were examined. Among all relevant papers,
two levels were defined to differentiate relevance among them. The top level of
relevance focused on papers that included research adopting Al with sustainability goals
of construction projects. The second level of relevance included papers investigating any
two of the three of adopting Al, sustainability goals, and construction projects for
decision making and DSSs. These two levels of significance were used for the screening
the papers. If papers achieved either of the two stated levels of relevance in the abstract,
they would be included for full-article assessment. If these levels of relevance were not
achieved, then the papers would be eliminated from the study. This resulted in ninety-

one papers selected for the next stage of the review, which is the full-article assessment.

2.4.3 Assessment

The full content of each of the 91 remaining papers was assessed with respect to the
criteria shown in Table 2-1, using a similar approach to (Zhang et al., 2019). A further
fourteen papers were eliminated from the review at this stage; hence, only 77 papers
remained, which included 9 literature reviews and 68 research papers for in-depth

analysis.
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Table 2-1 The assessment criteria of the literature review.

Data to Collect Description
Task Intended task of the DSS
Title Title of the paper
Author (s) List of authors
Contribution Contribution to literature
Limitations Potential improvements
Year Year of publication
Al Type of Al algorithm used
Sustainability Economic, environmental, or social goal considerations
Stage of Construction Lifecycle stage of operation
Institution Location of the institution which carried out the study
Case study Where is the case study located

2.5 Review Findings

This section describes the findings of this research. This will start with the categorisation
of the papers by the task of the DSSs in all assessed papers and followed by the findings

related to Al, sustainability, and the project lifecycle.

2.5.1 Categorising the Task of the DSSs

The areas in which a DSS may be applied in the construction project lifecycle varies in the
forms of data being used, the tasks of the inference system, and when in the cycle these
tools may be applied. The sixty-eight papers listed in this study have been organised into
six distinct categories based on the task of the DSS. There is early-stage project prediction
(EPP), which takes up 50% of all studies, with sub-categories focusing on various metrics
for performance measurement; there is dynamic performance prediction (DPP), which

takes up 17% of all studies; and then, there are papers focused on contractor and supplier
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evaluation, site logistics, design optimisation, and safety risk assessments (SRA). Looking
at Figure 2-3, there has been an increase in studies over the second half of the last
decade, which would suggest an increase in interest in this field. It can also be noticed
that the EPP has a near-consistent level of interest throughout the decade with other
areas such as SRA, site logistics, DPP, design optimisation, and supplier evaluation having
more studies from 2016 onward. This shows a growth in the quantity of studies over this

period but also a growth through increased variety of application.

Each of the chosen categories of DSS application were analysed against the type of Al
used, the considerations for sustainability, and what stage in the construction lifecycle
the system operates. The findings can be seen in Table 2-2. The following sub-sections
will discuss the categories in more detail, followed by discussion on the use of Al,

sustainability, and the project lifecycle.

COUNT OF DSS PAPERS BY YEAR
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Figure 2-3 DSS Applications count by year of publication.
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Table 2-2 DSS Application by Al type, sustainability criteria, and the stage of the construction project lifecycle
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Contractor and Supplier Evaluation

An area of research where DSSs have been applied with sustainability criteria using Al is

for evaluating contractors and material suppliers. (Fallahpour et al.,, 2017) refined

sustainability criteria for the selection of suppliers with the assistance of academics and
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industry experts for defining the importance of applicability of criteria taken from the
literature. Fuzzy preference programming was then used to allocate weights to each of
the sustainability criteria, resulting in graded levels of importance reducing from
economic to environmental to social criteria. Fuzzy Technique for Order of Preference by
Similarity to Ideal Solution (FTOPSIS) was then used for supplier selection. Others have
also used a similar approach, with (Kannan et al., 2020) also using fuzzy logic for weight
definition but using VIKOR for the selection of the projects. Another example is (Luthra
et al., 2017), who used VIKOR for project selection but with analytical hierarchy
processing (AHP) for the weight definition. The sustainable selection criteria in all these
studies are great examples of a drive towards sustainability, and these are just some
examples of the few studies into supplier selection in manufacturing (Kannan et al.,
2020). It can be seen in these studies that all the evaluation criteria are defined through
subjective opinions of experts related to the work, and there is a lack of quantitative data.
Combining these two data types may prove beneficial for supplier selections. These are
all focused on the manufacturing industry, which does have a different format from the
construction industry for supplier selection and would have differences in the selection
criteria based of the unique aspects of construction projects when compared to

manufacturing.

A couple of studies were found that applied a similar approach to the supplier selection,
for example, (Ulubeyli and Kazaz, 2015) created a framework software platform for the

selection of construction project sub-contractors using fuzzy logic algorithms. This is
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done through providing linguistic ranking and marking questionnaires to experts at
multiple stages in the selection process; then, fuzzy set theory is used to group, quantify,
and rank sub-contractors. This is focused on international construction projects and is
limited in that it does not factor in the built working relationships between contractors
and sub-contractors. Additionally, all the data are provided based off expert opinion, so
there is a level of subjectivity in the process of selection. Some factors that have not been
studied in the recorded papers is the evaluation of contractors throughout the execution
stage of the project lifecycle and the use of more complex Al models for tasks in addition

to quantifying linguistic data.

Design Optimisation

This category focuses on the use of DSSs for improving design in construction. All papers
related to this category were published from 2018 onwards, and sustainable design is the
main driver for all of them. All papers related to design optimisation considered the
economic and environmental goals of sustainability, while only half of them considered

social sustainability.

(Minhas et al., 2018) highlighted ongoing research into the use of DSSs for sustainable
building material selection in the design stages, with a key focus on incorporating criteria
for the environmental goals of sustainability. (Santos et al., 2019) developed a DSS for
helping design engineers to choose sustainable materials during the planning stage of
construction for pavement design. This method not only considers economic,

environmental, and social goals during the project lifecycle but also for the maintenance
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of the materials during the lifecycle of the product. An example of Al being used for DSSs
for design optimisation would be (BuHamdan et al., 2020), who developed a DSS for
concept-design decision making in the construction industry. They adopted a Markov
decision process (MDP) and RL for this DSS. The aim of this model was to implement
value engineering from the manufacturing section into the construction design phase.
The focus was to achieve optimisation against environmental, economic, and social
criteria. Using the MDP approach was especially useful, as the structure of this approach
has similarities to the decision-making system that engineers manually carry out in the
concept-design stage of construction projects. The method was tested using the concept
design of a house, and the design was optimised, which showed a positive result;
however, there is area for improvement by adding feedback complexity and representing

the interdependencies between different decisions at different stages of design.

Early-Stage Project Predictions

The most popular application for a DSS from the last ten years is for making predictions
of project performance at the initiation and planning stages of the project lifecycle. This
can be for project cost prediction, project delays, and for risk in project selection. These
areas of study all follow the same approach of utilising historical project performance
data and key parameters to train an algorithm for predicting the resultant performance
given the same input parameters for a new test project. This is an especially useful tool,
as it provides the project manager with a quantifiable method for selecting which

projects to choose during the initiation stage of the lifecycle or how best to plan for a
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project prior to execution. The most popular algorithms to be used are ANNs and more
recent models, which include hybrids with FL for quantifying qualitative data and genetic
algorithms (GA) for optimising the weights of the parameters (Tang et al., 2010, Bilal and
Oyedele, 2020, Elmousalami, 2019, Cheng et al., 2010). Case-based reasoning (CBR) has
also been studied, utilising previous similar cases of projects to make predictions
(Marzouk and Ahmed, 2011, Zima, 2015, Kim, 2013, Koo et al., 2011, Car-Pusic et al.,
2020). It can be observed in Table 2-2 that most of the research into project predictions
examine the economic pillar of sustainability with 76% of all EPP research solely focusing
on the economic sustainability goals. Research considering environmental and social

goals is the minority, equating to approximately 25% of studies.

The ability to predict the cost of a project accurately has a significant impact on the
economic sustainability of a construction project. This could help to ensure project
success for choosing which project, equipment, or contractors to use or for determining
the number of resources to provide. In construction engineering management, cost
estimation at the start of a project is key to preventing cost overruns and ensuring project

success (Martinez-Rojas et al., 2016, Doloi, 2013).

For improving the accuracy of predictions, (Alex et al., 2010) employed the use of an ANN
to improve the prediction accuracy of water and sewer service project, as there were
discrepancies of 60% error in predictions from standard practice in project cost
estimation. Using this ANN, they managed to reduce the error down to 20%. This is a

clear improvement although this level of inaccuracy is still high when compared to other
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studies in the construction industry, an example being (Bala et al., 2014), who created a
model for predicting the cost of building construction projects in Nigeria, also using an
ANN model for cost prediction. Based off refined input parameters from 243
guestionnaires given to experts in the field and an ANN with two hidden layers and
sigmoid transfer functions, a high prediction accuracy was achieved having the mean
absolute percentage error of only 5%. However, such high accuracy might be a result of
high similarity over different building projects. In other words, the robustness of this
model had not been evaluated on other building types, and hence, the generalisation of

the cost model is deemed low.

Most of the recent research into EPP has used hybrid Al models (58% of all EPP studies).
(Yu and Skibniewski, 2010) combined an ANN with FL to create an adaptive neuro-fuzzy
inference system (ANFIS) for making cost predictions alongside principal items ration
estimation method (PIREM) for keeping accuracy with fluctuating market prices. This
method managed to achieve a mean prediction accuracy of within 10% of the actual cost
when evaluated on residential building constructions in China. Another hybrid ANN
model is defined as the evolutionary fuzzy hybrid neural network (EFHNN), which is a
high-order neural network hybrid that used fuzzy inference for dealing with project
uncertainties and a GA for optimising the prediction accuracy. This model was assessed
on 28 building projects and compared to a singular linear ANN with increased accuracy

in predicting the overall cost of projects and cost per internal categories of expenditure.
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Another method for cost prediction is the use of case-based reasoning (CBR). This is an
experience-based solution relating previously successful solutions to similar problems
that occur in the future. (Zima, 2015) presented a case-based method for predicting
construction costs using sports field installations as a case study. This did prove to have a
mean absolute percentage error of 5%, and the method is not computationally intensive;
however, it is limited by the number and type of previous cases as well as the similarity
of the new projects. The model is validated with the construction of sports fields, which
has highly similar tasks. Applying this model independently on more complex
construction projects would better measure its robustness. Another CBR-based
prediction model found in (Marzouk and Ahmed, 2011) compared the CBR method with
hybrid models of CBR+ANN and CBR+FL, with the CBR+FL model proving most accurate
with an average prediction error of 9% for predicting the cost of pump station projects.

Leading further evidence towards the benefits of using hybrid Al solutions.

As well as determining the project cost at initial stages, there is benefit from predicting
performance against other metrics. Project delays can have a substantial impact on
success; (Yaseen et al., 2020) created a method of categorising project delays in the
construction sector by use of a random forest classifier with a genetic algorithm for result
optimisation. This method split projects into three categories of delay: less than 50%
overrun, 50-100% overrun, and greater than 100% overrun. This model proved to have
a classification accuracy of 91.67% and was deemed better the random forest model on

its own, again highlighting the advantage of hybrid models for prediction. Additionally,
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the range of classification is substantial, and an improvement on the classification metric
may be of larger benefit, as not all sectors of construction will find it acceptable to have
ranges of 50% of the total specified time for classification. Although the construction
industry is known for delays in projects, there is surprisingly little research into the use
of Al technologies for predicting project delay likelihood at least not to the same level of

depth as project cost prediction.

From all the previously stated studies into early prediction, environmental and social
parameters and goals were not considered in the estimations. When it comes to
predicting project risk for project selection, sustainability criteria have been a topic of
research. The research presented by (Fallahpour et al., 2020) introduced a method for
selecting sustainability criteria for project selection and then used fuzzy preference
programming for attribute weight selection and FL for aiding in the selection of projects.
Fifteen different attributes, with five for each pillar, were selected from studying the
literature and evaluation by three experts in construction engineering. Each of these
attributes were given local (per attribute) and global (per category) weightings of
importance and developed into 25 fuzzy rules within the system for defining the best
alternative project to select. The system was evaluated using six projects from a
construction company in Iran and compared with five other defuzzification methods and
checked with a consistency index. Another study by (Akbari et al., 2018) pulls a larger
area of expertise with input from fifty-three experts in the form of a questionnaire. The

weights and rules are built through AHP and the novel rough set theory, respectively. This
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was assessed on classifying 26 projects against sustainability criteria with a prediction
accuracy ranging from 84-95%. These studies show real promise for the use of
sustainability criteria in project selection although the weighting criteria is based off the
subjective opinions of the experts, and the testing is based off a small quantity of
projects. Considering quantitative data alongside the qualitative data may be something
that could improve the robustness of the predictions, it would also be advantageous to

apply the selection criteria to a larger program of projects for evaluation.

For all the reviewed studies, accuracy is as much dependent on the area of application
and available data as it is for the algorithms used. The benefits of hybrid Al models are
clear for improving prediction accuracies and for improving the robustness of models.
Although the primary goal for project prediction is on cost estimation, other areas such
as project risk are being investigated, which consider the social and environmental goals

of sustainability as well as the economic.

Dynamic Performance Prediction

The main limitations in the EPP papers are that once a project begins the execution stage,
there is usually a great deal of uncertainty, which can affect the predictive capability
regardless of how powerful the Al algorithm is or the completeness of the pre-execution
data. Thisis due to the fluctuating nature of the time dependent variables in construction
project management, such as internal factors related to human resources during project
execution or external factors, such as the impact of the weather on progress. Over the

last 6 years only a minority of studies have dynamically predicted performance
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throughout the execution and all other stages of the life cycle. This allows for project
managers to make educated decisions at the planning stages and then proactively

improve project performance at the execution stage through to the controls and closure.

The authors of (Cheng et al., 2010), who proposed the evolutionary fuzzy hybrid neural
network (EFHNN) for project cost prediction at early stages, clearly understood the
benefits of creating a dynamic performance-prediction tool. This hybrid is a combination
of FL for dealing with uncertain data, a high-order ANN for making predictions, and GA
for optimising the results. The same authors published a paper on their dynamic
prediction performance method (Cheng et al., 2012), which used the same hybrid Al
algorithms to classify the performance of projects throughout the lifecycle. This classified
project performance into four levels ranging from successful to disastrous, with inputs
related to 10-time dependent variables, including change order data, weather impact,
owner commitments, contractor commitments, recorded incidents, and overtime work.
This model is classified with a high accuracy; however, the method was only validated
against the highly similar evolutionary fuzzy neural inference model (EFNIM) and with
only twelve projects for training and 3 projects for testing. This work could be taken
further by comparing the model with a larger pool of Al models and with a much larger

dataset.

A DSS framework presented in (You and Wu, 2019) combines the use of a manufacturing
enterprise resource planning (ERP) system with building information modelling (BIM) for

the purpose of guidance on project management, materials management, financial
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management, and human resource management, which will optimise project processes
with the use of machine learning algorithms in the execution and control stages of a
project. Thisis just a framework now, but this has the potential for real value in the future.
Further study that includes the application of this system and the evaluation of Al models
for project optimisation is needed to gauge the overall effectiveness. When considering
DPPs that consider sustainability criteria, (Dong et al., 2019) presented a framework for
a sustainable construction project management index for evaluating construction
projects. Six dimensions are defined: financial, scheduling, quality, safety, as well as
informatisation and “greenization”. It is positive to see that research into dynamic
construction performance measurement is being considered through the lens of
sustainability. It is also key to note that from all studies into the DPP category, there are
studies that have utilised Al and hybrids for improving the economic sustainability of
projects (Choi et al., 2021), and there have been DPP studies that have considered all
three goals of sustainability, but the use of Al models has not yet been seen to improve

all three goals of sustainability in a single study of DPP.

Safety Risk Assessment

In the application of improving safety through the project lifecycle, there have been
studies into the use of natural language processing (NLP) for analysing injury reports.
(Tixier et al., 2016a) used NLP to structure data from accident reports into attributes of
incidents and the safety outcomes and then used random forest and stochastic gradient

tree boosting for prediction. The models were able to have better predictive capability
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for defining the injury type, energy type involved, and the injured body part with a higher
likelihood than at random, which gives evidence to the use of quantitative and empirical
methods for evaluating safety compared to that of expert opinion and subjective
judgment. One of the authors then took the study further, such as (Baker et al., 2020),
which introduced a method for automatically determining valid accident precursors for
accidents in the oil and gas sector. Three different ML techniques were used and
compared. These are convolutional neural network (CNN), hierarchical attention network
(HAN), and term frequency-inverse document frequency representation with support
vector machine TF-IDF-SVM, which were used for NLP. All predictions of precursors
performed better than random selection, and the TF-IDF + SVM method proved to be the
most accurate. The data collected for these reports were quantitative in nature, and
circumstantial and environmental information that contribute to hazards in the

workplace were not considered.

Site Logistics

Site logistics can be defined as the control of the movement of people, equipment, and
materials related to a work site. In this paper, the category for site logistics covers all the
DSSs, which focus on improving site logistics with the use of Al and sustainability criteria.
(Greif et al., 2020) developed a digital twin and DSS, which applied heuristic optimisation
and clustering for the purposes of silo replenishment on various construction sites during
project execution. The purpose of this software tool is to predict the best routes for

resupply vehicles to optimise vehicle usage and minimise work site stoppage times. Over
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a 3-year period, this reduced logistic costs by up to 25% and with every kilometre of
transport saved having a positive impact on the development of CO2 emissions. The
complexity of the digital twin and refill truck cost had a large effect on the cost reduction,

which has left area for improvement.

Another study into improving logistics is (Guerlain et al., 2019), which covered the
material transport routes, the emission levels and size of vehicles as well as the use of a
construction consolidation centre for minimising the economic, social, and
environmental impact of projects in Luxembourg. The multiple DSS were tested on one
large project, producing 47 alternative combinations of the above variables, with 5
reducing emissions and cost. This would be especially useful for projects in densely
populated areas. Although this system considers sustainability in construction, it is
limited in that it relies on experience of experts and mathematics. Using Al instead for
optimisation would provide a much larger pool of alternatives to consider for
optimisation. Most site logistics studies have considered all three pillars of sustainability,
but there is room for further study into the benefits of Al for optimisation considering

hybrids to improve model performance.

2.5.2 Observations and Trends Related to Al

Table 2-2 shows a wide range of Al algorithms used in the literature and these various

algorithms which are listed in Table 2-3 will be examined in more details.
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Table 2-3 Artificial intelligence algorithms identified from the literature review.

Abbreviation = Algorithm Title

ANN Artificial Neural Network
CNN Convolutional Neural Network
BI Bayesian Inference
FL Fuzzy Logic
CBR Case Based Reasoning
DT Decision Tree
RF Random Forest
GA Genetic Algorithm
GD Gradient Descent
MLR Multivariate Linear Regression
RL Reinforced Learning
SVM Support Vector Machine

The overall trend in Al shows that complex prediction in the form of ANNs and quantifying
expert opinion using FL have had the most focus, which covered 37% and 31% of papers,
respectively. GA is also popular for the optimisation of performance metrics, with 12% of
studies considering this. CBR, which focuses on the use of previous cases to advise project
managers on how to progress in future projects, and two other algorithms, namely MLR
and SVM, have been involved in approximately 10% of all studies. In total, 46% of the
studies used hybrids of multiple Al algorithms; this was not an increasing trend, though.
As the quantity of papers increased over the decade, the ratio of hybrid models
decreased. This reduction in the ratio of hybrid models does coincide with the increase
in studies for other applications of DSSs than EPP. In all, 50% of all studies are focused on

EPP, which can lead to a bias of the overall results towards the EPP research.
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Contractor and supplier evaluation papers have used only FL for quantifying expert
opinion (Fallahpour et al.,, 2017, Ulubeyli and Kazaz, 2015) while overlooking the
potential of using ML techniques to examine empirical data alongside the opinion of
experts. Design optimisation and site logistics have only a few studies that use Al, and
there is no obvious trend, but these two categories were published within the last six
years, suggesting an increase in interest; hence, the potential of Al has not been fully

explored in these areas.

EPP is the most popular field of study and has been investigated with a wide variety of Al
models. The most popular are the ANN and FL, with CBR, MLR, and GA also used in a
considerable number of studies. DPP has also been involved a wide variety of Al models,
the most common being ANN, followed by DT, FL, and SVM. The similarity between Al
used for the EPP and the DPP makes sense, as the tasks required for both are highly
similar. They need project data, which can be empirical or linguistic from previous
experience, and a value or values need to be predicted from the data. The main
difference between those two categories is the stage of the construction lifecycle in
which they operate. EPP operates only in the initiation and planning stages of the project
lifecycle, while the DPP studies operate in the execution and all areas of the project

lifecycle.

The SRA papers focus on the use of NLP for analysing accident reports, with one paper
(Baker et al., 2020) comparing multiple Al algorithms for interpreting the data from risk

assessments. These studies base the analysis purely off the wording in the incident
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reports but fail to address the circumstantial data that accompanies them. All the SRA

papers were published from 2016, which suggests an increase in interest.

These findings show that there is a wide variety of Al models used for construction DSS
research. The type of Al used in research depends on the application of the DSS; however,
some areas have been explored thoroughly, such as EPP, while site logistics, design
optimisation, and contractor and supplier evaluation have very few studies that explore

the benefits of Al.

The ANN has shown to be popular due to a prominent level of success, but this approach
is highly dependent on the architecture and set parameters for training. These values, or
hyperparameters, can significantly impact the accuracy of the predictions being made
(Tayefeh Hashemi et al., 2020). This merits the need for the optimisation of the
hyperparameter as a key stage to include in the use of machine learning in the
construction sector for decision making. (Bilal and Oyedele, 2020) explains in their guide
for machine learning in construction that the lack of consideration towards this can lead
to less-than-optimal results, while including HPO as a key stage in their process of
implementing ML algorithms in construction. (Tapeh and Naser, 2023) also highlights the
need for HPO when models are performing poorly and to achieve satisfactory results
while mentioning that future studies should investigate HPO. This point is agreed upon
by (Akinosho et al., 2020) who concludes that HPO is critical for optimal model
performance, stating that the omission of such a step could result in models which do

not meet expectations.
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The lack of consideration for HPO for ANNs in DSSs from the reviewed studies is evident.
The approach taken by (Alex et al., 2010, Wang et al., 2012, Ferreiro-Cabello et al., 2018,
Yousefi et al., 2016, Ebrat and Ghodsi, 2014, Patel et al., 2023) was of trial an error,
manually selecting the best model. With experience this can be effective in achieving a
proficient level of performance, but this can be time consuming and there is no guarantee
that the optimum performance has been achieved. (Mohammad Kabir Yaqubi, 2019)
used a simple equation to determine the architecture of the ANN while (Wen, 2010)
employed a similar approach. This method may be quick but cannot encompass the
complexity of the combination of hyperparameters which contribute to the optimum
performance in the ANN algorithm. Another approach taken was simply the selection of
the hyperparameters without the inclusion of HPO by (Baker et al., 2020, 2020, Car-Pusic
et al., 2020), with a number of studies failing to address the approach taken for HPO at

all (Chaovalitwongse et al., 2012, Williams and Gong, 2014).

In the review of the literature, only a single study included an automated HPO method
for the ANN. (Cheng et al.,, 2012), employed the GA for the optimisation of the
architecture of their neural network alongside other components of their evolutionary
fuzzy hybrid neural network (EFHNN). The GA algorithm is an effective tool for HPO
although it requires its own hyperparameters to be set and can have a slow convergence

rate on finding the optimum parameters (Bischl et al., 2021, Del Buono et al., 2020).
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2.5.3 Observations and Trends Related to Sustainability

Table 2-2 reports that 87% of studies considered the economic goal of sustainability while
only 30% and 38% of studies included criteria from the environmental and social goals,
respectively. As the societal switch to the consideration of environmental and social goals
is recent, this is a reasonable result. A key factor to consider is the timeline for papers
published over the last decade. From Figure 2-4, there is not only an increase in the
number of papers published, but there is also a significant increase in the ratio of social

and environmental goals being considered.

It must be noted that this coincides with the increase in papers focused on design, site
logistics, safety, and both supplier and contractor evaluation as shown in Figure 2-3.
These studies have been noted to have a high percentage of consideration for the

environmental and social goals of sustainability.

EPP primarily focuses on the economic goal of sustainability when viewing bidding,
claims, and cost prediction; however, there has been an area of EPP focused on project
risk, of which most studies consider the three sustainability goals (Taylan et al., 2014,
Hatefi and Tamosaitiené, 2019). This field of study has increased in regularity in the
second half of the decade. DPP has the smallest ratio of consideration for goals other
than the economic goal of sustainability; however, there were a couple of studies in 2019
and 2020 that adopted an approach towards all goals of sustainability (Dong et al., 2019,

Lee and Yu-Lan, 2020).
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These findings show that there is a shift towards research into project sustainability, with

an increase in studies specifically aimed at improving sustainability in the latter half of

the decade.
COUNT OF SUSTAINABILITY GOALS BY YEAR

20

18

16

14

12 Soc
10 ] )

HEnv

]
I I - e mEco
HE .. NS l l

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

O N B O

Figure 2-4 The three goals of sustainability by year of publication.

When evaluating sustainability criteria across studies, a prevalent trend emerges in the
selection and prioritisation of key sustainability factors. Commonly, researchers gather
relevant criteria from existing literature and determine their significance through expert
opinions (Fallahpour et al., 2017, Alavi et al., 2021). Some studies, such as (Kannan et al.,
2020) and (Luthra et al., 2017), employ FL and AHP to further refine subjective expert
judgments. While this method is used across various studies assessing project

sustainability, it can introduce biases and yield imperfect results.

Despite the incorporation of mathematical tools to refine expert opinions, inherent

subjectivity remains a limitation compared to an objective approach which draws
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knowledge from quantified data and feature analysis. Only one study, as identified among
the reviewed literature (Santos et al., 2019), integrates both objective and subjective data
in the assessment of sustainability criteria. This combined approach uses a mixture of
subjective and objective weighting methods, providing a comprehensive evaluation of
various sustainability indicators in the context of road pavement decision-making.
However, a potential drawback of this approach lies in its limited capacity to capture
intricate interdependencies between different indicators, oversimplifying the complex
relationships within sustainable pavement construction. Additionally, the reliance on
predetermined weights may not account for dynamic changes in indicator importance

over time, potentially leading to inaccuracies in prioritising sustainability factors.

2.5.4 Observations and Trends Related to Project Lifecycle

Each of the papers were evaluated for the stage of project in which the operations of the
decision tools were focused. The stages, as stated in Table 2-2, are initiation (init.),
planning (plan.), execution (exec.), controls (cont.), and close. There are also studies that
focus on the whole project lifecycle rather than any single stage. No study was recorded

as solely operating in the controls or closing stages.

About half (43%) of all papers under study were focused on decision support in the
planning section, and a further 18% were focused on the initiation stage of construction.
Figure 2-5 highlights that there has been a consistent production of publications

dedicated to the planning and initiation stages of the project lifecycle. Research focused
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on the execution stage of the lifecycle has gained attention from 2016 onwards. The same
trend is seen with studies that cover all five stages of the lifecycle although there was a

spike of four papers in 2012 that covered all stages.

CONTRUCTION STAGE BY YEAR
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Figure 2-5 The count of projects focused on the stages of the project lifecycle against the year.

Analysing by category, EPP focuses on making predictions at the initial stages of the
construction project lifecycle prior to the execution of the project plan. This is separate
from DPP, which has similar characteristics but operates through the whole project
lifecycle. Contractor evaluation is also only researched at the beginning of the project
lifecycle in all selected papers (Awad and Fayek, 2012, Ulubeyli and Kazaz, 2015) despite
contractors operating through the project execution. The design-optimisation papers also
only focus on the planning stage, but this is understandable; excluding reworks, all design
is completed in the planning stage of the construction project lifecycle. The SRA studies

understandably focus on the execution stage of the project lifecycle, as this is where the
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largest risks to health lie. Although the studies that focus on supplier evaluation are
relevant to this research, as they include the use of Al for decision making and consider
sustainability criteria, the supplier evaluation papers were focused on manufacturing
projects, so these studies do not fit into the construction project lifecycle and were not

considered for this stage of the analysis.

2.6 Knowledge Gaps

Regarding RQ1, the observations made in this study suggest that there will be an increase
in studies into DSS technology in the future, with Al/ML being used for applications that
cover all stages of the project lifecycle and for applications in management, logistics, and
design. Regarding RQ2, although the economic goal of sustainability has been the focus
of most studies, there is a clear rise in research that investigate the social and
environmental goals through all applications of DSS technology. This suggests that there
will be further studies considering all three pillars of sustainability in the future over the
whole project lifecycle. Looking at more specific examples of potential study, the

following sections will highlight gaps in the literature and future avenues of research.

2.6.1 Contractor Evaluation

Contractor evaluation was only ever considered at the point of selection during the
planning stage of the project lifecycle and using only subjective data from experts via
guestionnaires. Contractors can have a long-lasting effect on a single project. An

investigation of contractor performance throughout the project lifecycle against
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sustainability success criteria is a good avenue for future research. For data collection, a
sustainability performance questionnaire could be created and distributed at regular
intervals and stages of the project lifecycle combined with available empirical
measurements of contractor performance. For inference, a hybrid of FL for handling
uncertain data and a machine learning model, such as the ANN, for making predictions
and determining the trends in performance throughout the project lifecycle. This could
lead to improved project and contract work efficiency and a potential metric for ongoing

sustainable contractor evaluation throughout the whole project lifecycle.

2.6.2 Design Optimisation

Al-based DSSs for design optimisation in construction appears to be a new area of study
with all research being published from 2018. There has been some work investigating
sustainability goals; however, the benefits of different and hybrid Al models have not
been fully explored yet. The primary stream for DSSs in design optimisation is the
optimisation of material selection choices for sustainability. This has had minimal Al use
for inference engine design until now, as there is only a single study recorded to have
used Al for sustainable material selection. For future research, studying the benefits of
multiple models of Al or combinations for material selection would be a fruitful avenue
to pursue. In addition, consider other steps of the decision-making process during design.
(BuHamdan et al., 2020) uses RL for decision making in concept design; this is only
effective in this study due to the highly similar nature of the designs being produced.

With a dataset covering multiple design projects, a supervised learning approach, such
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as the use of an ANN (Ferreiro-Cabello et al., 2018), could be used for optimising concept

design for sustainability.

2.6.3 Dynamic Performance Prediction

There is an increasing trend towards continuous performance prediction throughout the
project lifecycle. At present, there have been studies that consider Al models and others
with sustainability criteria, but a study focused on the continuous measurement of
performance against sustainability criteria using an Al inference engine is an avenue to
be pursued. This can be investigated with the intention of determining the readiness for
this transition in the construction sector or the development of a framework to achieve
this. An example of an approach that could be taken for this would be (Bilal and Oyedele,
2020), who developed a six-stage guideline for applied machine learning in construction.
It starts with problem definition and data selection and then data preparation and pre-
processing, training the baseline estimator, creating interpretable machine learning,
training the final estimator, and deployment and scoring. This is a comprehensive guide
that could be applied for predicting a variety of performance metrics. A challenge related
to this avenue of research would be for the collection and verification of newly defined
data at regular intervals related to sustainability criteria over multiple construction
projects. Furthermore, the complexity of the inference engine would need to
accommodate data for prediction, which can change throughout all stages of the project

lifecycle and work with incomplete and both linguistic and empirical data.
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2.6.4 Safety Risk Assessment

Another future direction would expand on the SRA field of study. The use of near miss
reporting as a dataset, considering circumstantial information alongside the quantitative
methodology stated in (Tixier et al., 2016a, Baker et al., 2020, Tixier et al., 2016b), may
be an avenue to pursue. This may allow for other forms of Al to be used. Using near-miss
reporting, according to the Heinrich accident triangle (Marshall et al., 2018), there are
approximately 300 near misses for every 30 minor accidents and 1 major accidents. This
would be a much larger pool of data for determining trends in accidents at work. This
also allows a company to pre-emptively reduce accidents through analysis of near miss
reporting. Challenges to this may be in the difficulty in determining an accurate metric

for showing the improvement made by the system.

2.6.5 Site Logistics

Improving the efficiency of site logistics has shown to improve the sustainability of
projects, as discussed in Section 4.1.6, but there is opportunity for further study in
utilising Al models for the decision-making process. (Guerlain et al., 2019) developed a
system that looked at the material transport routes, the emission levels from vehicles,
and the size of the transport vehicles but relied heavily on the experience of experts. This
produced only 47 alternatives to choose from for increasing sustainability. Using this
same approach but incorporating the predictive capability of machine learning

algorithms such as ANN would optimise the resultant transport routes. The nature of
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training a neural network would lead to the consideration of a significantly larger pool of
alternatives to compare from and objectively identify the optimal course of action to
take. Studying the benefits of Al-based DSSs for material supply for improving logistic

sustainability can be seen as a good focus for future research.

2.6.6 Hyperparameter Optimisation

The review of the literature in this study has highlighted a notable gap concerning the
optimisation of hyperparameters. While the use of ANNs has gained traction due to their
successful outcomes, the failure to adequately address the optimisation of these
hyperparameters remains a persistent issue (Tayefeh Hashemi et al., 2020, Bilal and
Oyedele, 2020, Tapeh and Naser, 2023, Akinosho et al., 2020). The significance of this gap
becomes evident as numerous studies, including (Alex et al., 2010, Wang et al., 2012,
Ferreiro-Cabello et al., 2018, Yousefi et al., 2016, Ebrat and Ghodsi, 2014, Patel et al.,
2023), rely on manual selection or simplistic equations to determine the architecture and

hyperparameters of the ANN.

Although these methods might yield acceptable results, they often fall short of achieving
the optimum performance and fail to account for the intricate interactions among various
hyperparameters. Additionally, a substantial number of studies, such as (Baker et al.,
2020, 2020, Car-Pusic et al., 2020, Chaovalitwongse et al., 2012, Williams and Gong,
2014), either select hyperparameters arbitrarily or neglect to highlight the optimisation

process entirely, thereby leading to suboptimal model performance. Despite the
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existence of advanced techniques like Genetic Algorithms (GAs) for HPO, as
demonstrated by (Cheng et al., 2012), the slow convergence rate and the need for setting
additional hyperparameters can pose challenges to the effective implementation of these

methods.

This gap underscores the urgent need for a standardised and automated HPO approach
within the context of utilising ANNs for DSS in the construction sector, ensuring the

attainment of optimal model performance and accurate decision-making processes.

2.6.7 Sustainability Criteria Importance Evaluation

The literature review findings suggest that the assessment of sustainability criteria
frequently involves the insights of industry experts to determine the significance of key
sustainability factors. Notably, certain studies, referenced in (Kannan et al., 2020) and
(Luthra et al., 2017), utilise advanced methodologies such as FL and AHP to refine the
subjective judgments of experts. However, while these approaches integrate
mathematical tools to improve the credibility of expert opinions, their inherent

subjectivity remains a prominent constraint.

Unlike these studies, which heavily rely on expert perspectives, a solitary work identified
in the literature review (Santos et al., 2019) adopts a dual approach, integrating both
objective and subjective data in the assessment of sustainability criteria. Despite the
merits of this approach, it is crucial to acknowledge its potential limitations in capturing

complex interdependencies among different indicators.
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It is evident that the existing methodologies lack a framework for the effective
guantitative assessment of sustainability criteria in construction. The persistent reliance
on subjective assessments and expert opinions often leads to biased and inconsistent
evaluations, negatively impacting the reliability of the established sustainability
standards. Further to this, the limitations in current methodologies to comprehensively
capture the intricate interdependencies between various sustainability indicators result
in an oversimplified understanding of the complex decision-making landscape, restricting
the ability to effectively prioritise sustainability initiatives and address interconnected

challenges.

This creates a need for the development of a robust and objective methodology that
minimises subjective biases, empowering decision-makers to make well-informed and
reliable sustainability evaluations, leading to more effective and informed decision-

making.

2.7 The Selection of the Knowledge Gaps

Based on the literature review findings, two critical gaps have been identified with two
reasons: (i) these gaps are believed to have a significant impact on construction project
sustainability; and (ii) it is feasible to address these gaps even if sustainability data is

limited, as discussed in the introduction section.

The first gap is about the optimisation of ANNs hyperparameters, particularly in the

context of DSSs in the construction sector. It must be noted that the literature indicates
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a persistent reliance on manual selection or simplistic equations for determining ANN
hyperparameters (Mohammad Kabir Yaqubi, 2019, Ferreiro-Cabello et al., 2018, Yousefi
et al., 2016, Wen, 2010), resulting in suboptimal model performance. While the GA has
been explored to optimise ANN hyperparameters, challenges such as slow convergence
rates and additional hyperparameter settings can impact the effectiveness of this
approach (Bischl et al., 2021, Del Buono et al., 2020). This calls for the development of a
standardised and automated HPO approach tailored specifically for ANNs, ensuring

optimal model performance and accurate decision-making.

The second gap concerns the evaluation of sustainability criteria, which often relies
heavily on subjective assessments and expert opinions. While certain methodologies
integrate mathematical tools to refine expert judgments, their inherent subjectivity
remains a notable limitation (Fallahpour et al., 2017, Alavi et al., 2021, Kannan et al.,
2020). Furthermore, the existing methodologies lack a comprehensive framework for
effectively quantifying sustainability criteria in the construction domain, leading to biased
and inconsistent evaluations that can undermine the reliability of established
sustainability standards. The limitations in current methodologies to capture the intricate
interdependencies among various sustainability indicators further restrict the ability to
prioritise sustainability factors. Therefore, there is a pressing need to develop an
objective methodology that minimises subjective biases, facilitating well informed and
reliable sustainability evaluations to enable more effective decision-making in the

construction industry.
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By concentrating on HPO for ANNs in DSS and the development of an objective
methodology for evaluating sustainability criteria, this research endeavours to contribute

to the enhancement of decision-making in the construction industry.

The primary objective is to establish a standardised and automated HPO approach
tailored specifically for ANNs in the construction sector, ensuring optimal model
performance and accurate decision making. Additionally, this study aims to establish an
objective framework that can be used to accurately assess the significance of quantified
sustainability criteria, hence reducing subjective biases, and leading to more reliable
sustainability evaluations. By addressing these two gaps, this research aims to lay the
groundwork for enhanced practices and sustainable decision-making strategies in

construction project management.

2.8 Summary

In this chapter a systematic literature review was conducted to investigate the trends in
research for the use of Al in DSSs in the construction project lifecycle, RQ1, and to
investigate the trends in relation to DSS and construction project sustainability, RQ2. This
resulted in the full paper investigation of seventy-seven studies after screening which
were categorised by the application of the DSS, the Al used, the sustainability criteria

considered and the stage of the project lifecycle in which they operated.

The most popular application for DSSs was EPP which has been a topic of research

consistently throughout the investigation period, while other applications such as DPP,
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design optimisation, site logistics and SRA were the focus of an increasing number of

studies in the latter half of the last decade.

Al has been used throughout a significant amount of the studies with the ANN and FL
being the most popular forms of Al to be employed, there has also been an increasing
trend in the number of hybrid approaches taken to overcome the weaknesses in the

individual Al models.

Economic sustainability has been the primary pillar of sustainability to be considered in
the reviewed literature although the other two pillars, the social and environmental

goals, have been gaining more attention as time has passed.

Several gaps in the literature were identified, related to each of the categorised
applications of DSS, however the most significant gaps to be discovered were in relation
specifically to Al and sustainability. These two gaps are in relation to the lack of
optimisation for the popular and effective ANN for DSSs, and the lack of objective
evaluation of sustainability criteria, considering the complexinterdependencies between
contributing factors. Addressing both gaps is the selected focus of the research in this
thesis. The aim of this research is now to develop an intelligent HPO method for
optimising the performance of ANNs for decision making and create an effective method

of objectively evaluating sustainability criteria in the construction sector.

This leads onto the following chapters which cover the development of the novel HPO

method, the experimentation and validation of the approach for feature importance
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analysis, the integration of this novel approach into a DSS in collaboration with the

industrial sponsor, and the validation of the DSS from expert evaluation.
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3 Hyperparameter Optimisation

3.1 Introduction

Since the rise of industry 4.0 and the age of big data, the ANN has become one of the
effective tools for developing predictive models of reality. Due to its versatility, ANNs have
been applied through all areas of industry from metallurgy and material science,
chemical engineering through to computing and manufacturing (Suzuki, 2011, Mumali,
2022, Nagy et al., 2022). The ANN performance relies on its network architecture which
is a function of multiple factors. The effect of these factors, also known to be
hyperparameters, vary for different datasets. The process of finding the best setting of
hyperparameters can be very time-consuming and yet there is no guarantee that such
settings are truly optimal. Therefore, automatic HPO has attracted a lot of attention, and
its main objective is to maximise the ANN performance within the shortest time.
Established HPO methods from the literature will be discussed, leading on to an
introduction of a new HPO method, titled the SEquential LEarning Curve Training (SELECT)
method, representing both the novelty and contribution of this research. Some of the

well-established HPO Methods are discussed below.

Grid Search and Random Search

Grid search (GS) represents a brute force method of HPO that evaluates the model for all

hyperparameter configurations within the defined search space, selecting the best
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performing model. GS can suffer from the curse of dimensionality, as the number of
combinations grows exponentially with the addition of hyperparameters. This can lead
to significant computational inefficiency and increased time for convergence. Despite its
exhaustive nature, GS may miss optimal configurations that lie between the grid points,
which limits its effectiveness in high-dimensional spaces. Also, GS does not incorporate
any mechanism for adaptation; it evaluates each combination independently, making it
less effective at optimising resource allocation. This method can prove time-consuming
and computationally expensive, especially with a larger range of hyperparameters to

evaluate (Antal-Vaida, 2021).

On the other hand, Random Search (RS) randomly selects configurations from the pre-
defined search space, demonstrating better performance with improved efficiency
compared to GS (Bergstra and Bengio, 2012a). While RS is more efficient than GS, it still
lacks a directed search mechanism. Its random selection may not effectively sample the
hyperparameter space, potentially leading to configurations that do not explore the full
potential of the model. The simplicity of RS does allow for easy implementation and

parallelisation, making it a popular choice for many practitioners.

Sequential Model Based Algorithms

Sequential Model-Based algorithms, such as Bayesian Optimisation (BO), leverage
previously selected configurations to identify the best hyperparameter choices within the

search space (Snoek et al., 2012).
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These algorithms are efficient because of their ability to model uncertainty and balance
exploration and exploitation in the hyperparameter space. However, the performance of
these algorithms heavily depends on the choice of surrogate models and acquisition
functions, which can introduce bias if not selected appropriately. As a result, user of these
approaches must carefully consider these factors to maximise the effectiveness of

Bayesian Optimisation.

Although BO has proven to be effective in optimisation within short times as compared
to GS and RS, it still needs to spend time trialling multiple combinations of the
hyperparameters to begin to converge on the best results. BO is effective for lower-
dimensional search spaces, it may struggle with high-dimensional problems where the
search space is vast. This challenge often necessitates the use of advanced techniques
like dimensionality reduction or hybrid approaches that combine various optimisation

methods to ensure thorough exploration of the hyperparameter space.

Furthermore, BO-based approaches have gained great popularity in recent years
(Shahriari et al., 2016), with multiple variations such as Tree-Structured Parzen’s
Estimator (TPE) (Bergstra et al., 2011) and SMAC3(Lindauer et al., 2022) using different
surrogate methodologies for better performance with higher dimensionality. However,
these methods share a common restriction when being used to fine-tune neural network
architectures. They will continue to run an iteration until the set number of epochs is

reached even if the model performance is clearly not optimal.
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Bandit Based Strategies

Bandit-based strategies such as successive halving can be adopted to improve
computational efficiency (Jamieson and Talwalkar). This strategy trains multiple network
configurations in parallel, allocating further computational cost to promising training
iterations. This approach facilitated the creation of the popular Hyperband (HB) approach
to HPO (Li et al., 2017) by combining the RS approach to parameter selection with parallel
successive halving. Another hybrid approach advocates the integration of the two
powerful algorithms, BO and HB, to create BOHB (Falkner et al., 2018). This approach
uses BO to direct the selection of new trial iterations while limiting the wasted

computational cost with HB.

These methods offer the advantage of efficiently allocating resources by evaluating
multiple configurations simultaneously. This parallel approach allows for quicker
identification of promising models, reducing overall computational costs. Also, these
strategies can adaptively adjust their resource distribution based on performance,
ensuring that more computational power is directed toward configurations that show

potential, leading to faster convergence in hyperparameter optimisation.

Although the BOHB and HB approaches carry out directed searches and reduce the
wasted time in training, these approaches have the potential to eliminate trial iterations
that may converge to the best performance for datasets with large variations in
convergence rates with various ranges of hyperparameters, a challenge stated in the

original paper for HB (Li et al., 2017).
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Evolutionary Algorithms

Another approach for HPO is the use of evolutionary algorithms, which emulate
biological evolution by employing techniques such as mutation, crossover, and selection
to solve complex problems, an example being the GA. Evolutionary algorithms operate
by maintaining a population of potential solutions and continually refining them over

iterations, being guided by a predefined fitness function.

Evolutionary algorithms are particularly advantageous in scenarios where the search
space is non-convex or poorly understood, as they do not rely on gradient information,
making them suitable for a broader range of optimisation problems. The flexibility of
these algorithms allows for the incorporation of domain knowledge through custom-
designed fitness functions, which can guide the search process toward more relevant
regions of the solution space. The ability to handle multi-objective optimisation problems
is another strong point, as these algorithms can simultaneously consider multiple
performance metrics, providing a more comprehensive evaluation of hyperparameter

configurations (Morales-Hernandez et al., 2023).

Despite their strengths, the challenge of tuning the various parameters inherent to
evolutionary algorithms, such as population size and mutation rates, remains a critical
factor that can significantly influence their performance and convergence behaviour.
These approaches can have large computational costs for convergence, can potentially
converge in local minima and can be difficult to generalise(Wei et al., 2022, G et al., 2022,

Liu et al., 2023). A significant limitation of evolutionary algorithms lies in their complex
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and less straightforward adaptability to handle varying numbers of features, rows, and
regression variables. While methods such as GA and particle swarm optimisation (PSO)
may require careful and specific adjustments to accommodate mixed input spaces,
alternative approaches like BO processes and TPE demonstrate a more robust and flexible
performance in handling diverse data types, including discrete, categorical, and

numerical variables (Morales-Hernandez et al., 2023).

Learning Curve Prediction Methods

To improve the efficiency of HPO, recent studies have begun to investigate the benefit of
learning curve prediction for terminating poorly performing hyperparameter
configurations. (Domhan et al., 2015) used a model agnostic probabilistic model for early
termination of poorly performing models, or (Baker et al., 2017) who combined a support
vector regression mode to predict the final accuracy based on extracted features of the
learning curves, the network architecture and the gradient of the learning curves. A later
approach is (Wistuba and Pedapati, 2020) which utilises pairwise ranking loss and
leveraging learning curves from other datasets to improve the effectiveness of early
termination so that fewer and shorter learning curves can be used for the early
termination. A similar objective was attempted by (Sui and Yu, 2020) who used Bayesian
contextual bandits for HPO, terminating trials of poorly performing configurations with

intelligent resource allocation from learned trends in performance.
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A common drawback in all the above studies is that the poorly performing configurations
are terminated only by comparative elimination during the trial for each configuration,

meaning that training is still required to evaluate the performance of each configuration.

Previous studies have primarily focused on using meta-learning to predict learning curves
on new datasets by studying previous ones (Wistuba and Pedapati, 2020, Klein et al.,
2017). Moreover, existing approaches to learning curve prediction have concentrated on

halting poorly performing learning curves (Domhan et al., 2015).

There has yet to be an approach which can learn the relationship between
hyperparameters and learning curve performance, incorporating both the training and
prediction of learning curves on the same dataset, allowing for the prediction of the
performance of fully UNSEEN learning curves based on training a subset of the
hyperparameter search space.

3.1.1 Foundation for Proposed HPO Methodology

Table 3-1 outlines the strengths and limitations of established HPO methodologies.
Sequential HPO methods like BO and TPE follow a sequential convergence process,
training multiple configurations to observe the relationship between hyperparameters
and guide optimisation toward optimal configurations. However, their sequential nature
limits parallelisation; the capability to run different trials in parallel to reduce the time
taken for HPO. This is due to the need for the results from previous iteration to guide the
convergence to the optimum result. There is also inefficiency in completing the training

of poorly performing configurations.
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Method

Grid Search

Random
Search

Bayesian
Optimisation

Tree
Parzen's
Estimator

Hyperband

BOHB

Genetic
Algorithm

Particle
Swarm
Optimisation

Learning
curve
prediction

Table 3-1 Pros and cons for existing HPO methods

Pros

¢ Exhaustively searches the hyperparameter
space.
¢ Simple and easy to understand.

¢ Simplicity and ease of implementation.
® Requires minimal tuning.

e Can perform well with a low
computational cost.

¢ Suitable for parallelisation

e Efficient in handling noisy or expensive
objective functions.

¢ Adaptive exploration of the
hyperparameter space.

e Converges to optimal solutions with few
evaluations.

e Efficient with all kinds of
hyperparameters.

¢ Balances exploration and exploitation
effectively.

o Efficiently allocates resources to promising
configurations.

¢ Successive halving for effective resource
utilisation.

* Good capability for parallelisation

o Efficiently allocates resources to promising
configurations.

¢ Adaptive exploration of the
hyperparameter space.

* Good capability for parallelisation

e Efficient with all kinds of
hyperparameters.

e Can find diverse sets of hyperparameter
configurations.

o Efficient with all kinds of
hyperparameters.
e Suitable for parallelisation

e Early stopping for poorly performing
configurations.

Cons

e Computationally expensive.

¢ Does not adapt based on observed
performance.

¢ Inefficient in finding optimal
hyperparameters.

¢ Does not adapt based on observed
performance.

¢ May waste resources on less
promising configurations.

¢ May waste resources on less
promising configurations.
® Poor capability for parallelisation.

¢ Performance may depend on the
quality of the surrogate model.
® Poor capability for parallelisation.

¢ Can eliminate slow converging, high
performance configurations.

e Computational complexity may be
higher.

¢ Can eliminate slow converging, high
performance configurations.

e Computationally expensive with
large populations.

e Parameter sensitivity and the need
for careful tuning.

¢ Tendency to converge to local
optima.

e Parameter sensitivity and the need
for careful tuning.

¢ Does not generalise well over
different datasets.

¢ Unseen configurations cannot be
predicted.

¢ Computationally inefficient

* Prediction accuracy can be difficult
to achieve
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On the other hand, bandit-based approaches such as HB and BOHB exhibit a robust
parallelisation capability by training many configurations simultaneously in the initial
stages. They proceed with the best-performing configurations, reducing computational
time spent on poor performing configurations. However, this may eliminate
configurations with slower convergence rates that may eventually achieve superior

performance.

Evolutionary-based approaches have seen significant advancements, but their reliance
on hyperparameters make them less adaptive to new dataset sizes and types. Their
inherent limitations with evolving data availability must be resolved if they are to be

implemented in a real industrial environment.

3.1.2 Inspiration and Ambitions: Learning Curve Prediction for

Efficient HPO

It is commonly understood that there is a correlation between the hyperparameters of
ANNSs and the learning curves developed during training, with the hyperparameter choice
impacting the performance of the ANN configuration throughout the training run. All
approaches of HPO monitor some aspect of multiple trained configurations of

hyperparameters to determine which configuration is performing better.

When it comes to learning curve prediction, challenges persist in accurately predicting
learning curves for unseen configurations. Traditional approaches leveraging meta-

learning, focus on predicting learning curves based on historical data from previous
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datasets can be beneficial but they often suffer from severe inaccuracies when applied
to new scenarios due to their dependence on the specific characteristics of prior
datasets. Furthermore, these models can be computationally intensive, requiring

extensive training time and optimisation of their own hyperparameters(Choi et al., 2018).

In light of these challenges, it was hypothesised in this study that a more effective
approach could be developed by treating the problem of learning curve prediction as a
machine learning task. This method focuses on training a model using a subset of learning
curves derived from hyperparameter configurations within the same dataset. By doing
so, the proposed approach aims to predict the performance of learning curves without

the need for extensive prior training on multiple datasets.

The anticipated improvements of this new method over existing algorithms include:

1. Reduced Computational Cost: By leveraging a smaller subset of configurations for
training, the model can achieve faster convergence, minimising the resources
required for learning curve prediction. This efficiency allows for more rapid

iterations in the HPO process.

2. Increased Accuracy: The proposed method seeks to establish a more accurate
prediction model for configurations by directly modelling the relationships
between hyperparameters and their corresponding learning curves for the same
dataset. This contrasts with traditional methods that may misrepresent these

relationships due to their reliance on past data.
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3. Enhanced Adaptability: The new method is designed to adapt to varying
characteristics of the dataset, thereby improving its generalisation capabilities.
This adaptability allows for more robust performance across different datasets

without necessitating extensive retraining.

This serves as the inspiration for the approach crafted during this research. The learning
curve of an ANN configuration offers a wealth of data, surpassing the approach of
recording final performance sequentially for HPO, as seen in sequential-based
approaches, or the performance at various intervals, as observed in bandit-based
methodologies. At each epoch of the training cycle of an ANN, a new variation in
performance against the hyperparameter configuration emerges. To effectively harness
this wealth of data for efficient HPO, an approach for learning curve prediction is
essential. The primary objective of this study is to develop an HPO approach with the

following key characteristics:

e Create a sample set of configuration learning curves: To train another ML model
on the relationship between ANN hyperparameters and the learning curve of all
other configurations in the search space.

e Capability for parallelisation: The sample set of learning curves will be prepared
as a single training set for the ML model to learn from, allowing for a capability
for parallelisation. The ML learned correlation between the hyperparameters and
learning curves will guide HPO, rather than observed performance of individual

ANN configurations.
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e Adaptable for varying datasets: The approach must be adaptable to varying
datasets with minimal adjustment of hyperparameters.

e Compete in Efficiency and Performance: The approach must be able to compete
with existing HPO methods for computational efficiency and optimisation

performance.

3.1.3 Novelty and Contribution of this Research

The most significant contribution from this study comes in the form of a mechanism for
the HPO of Multi-Layer Perceptron (MLP) neural networks, the SEquential LEarning Curve
Training (SELECT) method. The SELECT HPO method incorporates learning curve
prediction to determine the trends in performance of all network architectures in a
chosen search space. This is achieved with only 6% of the ANN architectures in the
chosen experiments and a one-dimensional CGRNN for prediction. This helps to
consistently find better performing neural network architectures with shorter
computational time than RS, Bayesian Optimisation with Gaussian Process (GPBO), TPE,

and HB in the experiments.

A key novelty of the SELECT mechanism is a method to convert neural network learning
curve data from multiple network architectures into a sequenced and windowed dataset.
This is used for training the CGRNN to predict the learning curves of all network
architectures in the search space together with the use of a single prediction window,

meaning the learning curves for all UNSEEN network architectures are predicted without
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any training. The predicted final performance of the learning curves is then ranked and
only the top predicted performers are trialled for a result. This approach creates an
efficient manner for HPO with learning curve prediction, overcoming challenges such as
the  drastic variation in learning curve shapes for different hyperparameter
configurations, or the additional tuning parameters for the learning curve prediction

model, highlighted in previous research (Choi et al., 2018).

3.1.4 Structure of the HPO Development

Before discussing the proposed SELECT HPO mechanism, its background theory will be
explained and followed by an overview, explaining the individual stages of the developed
algorithm. Finally, the experimental setup and validation results of the proposed method

will be presented.

3.2 Background Theory

To establish a foundation understanding of the contributing factors related to the
proposed method, an explanation of ANNs, HPO in MLPs, learning curves for ANNs and
the CGRNN will be given. Then the theory related to the creation of a “windowed”
dataset (Moroney, 2020) for sequential prediction will be explained, followed by the

challenges of using a windowed dataset for learning curve prediction in HPO.

3.2.1 Artificial Neural Network

The ANN is a type of supervised machine learning algorithm which utilises
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interconnected nodes, or neurons, in a layered structure which simulates the learning

process of the human brain (Wang, 2003).

The most popular architecture for ANN is the MLP, shown in Figure 3-1. This architecture
has an input layer for introducing the dataset to the model, requiring a neuron for each
input variable. This is followed by several hidden layers, each with several neurons,
before reaching the output layer. The neurons have activation functions for converting
the accumulated, weighted inputs into output values. The output layer is the prediction
made by the model; in this study, the neural network architecture is used for regression
so, the output layer is a single neuron which would contain the predicted value. This
architecture functions with the use of back-propagation (Chiang et al., 1996) which
begins with a forward pass through the network with randomly initialised weights in each
neuron where the total loss in the final prediction is measured. This loss is the difference
between the prediction and the actual value; the actual value being taken from a training
set of the data. From this loss, an optimisation algorithm such as gradient descent is used
to evaluate the gradient of the weights of each neuron through a backwards pass through
the model. The weights will then be adjusted with a learning rate to reduce the difference
between the prediction and the actual value. This full cycle is known as an epoch.
Repeating this process multiple times, or for many epochs, can improve the prediction

accuracy over time.
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INPUT LAYER HIDDEN LAYERS OUTPUT LAYER

Figure 3-1 The multilayer perceptron neural network architecture.

3.2.2 HPO in a Multilayer Perceptron

HPO is the process of choosing the best selection of hyperparameters to optimise model
performance (Hutter et al., 2019). In the case of the MLP ANN, the key hyperparameters
are the number of hidden layers, the number of neurons per hidden layer, the learning
rate, the activation function, the optimiser, the loss function, and the number of epochs
(Zaccone and Karim, 2018). When optimising these hyperparameters, the key is to search
over all possible variations to find the best configuration that can help to achieve the best
model performance. Given a substantial range of configurations, this process would take
a significant amount of computation time that is not always desirable. Hence, several

efficient HPO methods have been developed over the years.

3.2.3 Learning Curve for Neural Networks

A learning curve for training a single ANN configuration is the measurement of a
performance metric at each epoch of training the model, plotted for all epochs while

training. As the ANN trains, the metric will converge towards an optimum. In this study,
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the performance metric is defined as the loss value showing the difference between the
predicted results for the instances in a training set and their actual results. The lower the
loss, the better the performance. The training set is the dataset used to optimise the
performance of a neural network. A validation set is used to determine if the optimised
model is overfitting the training set or not. The validation loss is the same metric as the
loss value but on the validation set. Figure 3-2 presents an example of a neural network
learning curve. It shows that, after 12 epochs, the validation loss begins to increase, and

the neural network in this case is beginning to overfit the training set after 12 epochs.

Neural Network Learning Curve
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Figure 3-2 A neural network learning curve with loss and validation loss against the number of epochs.

3.2.4 Convolutional Gated Recurrent Neural Network (CGRNN)

The CGRNN is a combination of two distinct types of ANN: a 1-dimensional convolutional
neural network(1IDCNN) and a type of recurrent neural network known as a gated

recurrent unit (GRU).
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One Directional Convolutional Neural Network
A convolutional neural network (CNN) is an ANN which is inspired by nature and made

up of a similar basic structure of the mammalian visual cortex. It uses convolutions to
detect the relationship between features in data. This has shown to be particularly useful
for applications such as image classification, object tracking, and text detection and
recognition(Zhao et al., 2017, Xie et al., 2020, Kazmi et al., 2021, Gu et al., 2018, Kim et
al.,, 2019). A 1DCNN is a type of CNN which has low computational expense and
successful applications in waveform recognition, such as time-series prediction and signal

identification(Hussain et al., 2020, Li et al., 2022, Li et al., 2019).

Gated Recurrent Unit
A GRU is a type of recurrent neural network (RNN) which can predict variable length

sequences, with hidden state activation for each stage in a sequence relying on the
previous stage. RNNs are useful for predicting the steps forward in sequential data, such
as time-series data. One limitation of RNNs, however, is that its performance decreases
significantly with long-sequence prediction(Bengio et al., 1994). Other RNN architectures
were later introduced which helped to overcome this performance issue, such as the long
short-term memory (LSTM) unit (Hochreiter and Schmidhuber, 1997), and more recently
the GRU was proposed(Chung et al., 2014), which has a simpler architecture with less
computation cost. The applications for both of the LSTM and GRU RNNs have focused on
sequential data from time-series prediction to natural language processing(irie et al.,

2016, Kwak and Lim, 2021).
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Hybrid Methods

There are recent examples of better performing hybrid sequential prediction models,
such as (Wang et al., 2021) who proposed a 1IDCNN-LSTM approach to predict traffic flow,
resulting in faster convergence and higher accuracy than the individual sequential
models. A 1IDCNN-GRU approach was also used by (Lin and Nuha, 2022) for the same
application with similar improvements in performance over the individual architectures.
(Kanwal et al., 2022) also produced a hybrid model combining the 1DCNN and the LSTM
architectures for stock price prediction, also showing improved accuracy and converge.
There is unmistakable evidence of improvement in sequential prediction performance

with the hybrid model of 1DCNN and the LSTM and GRU architectures.

3.2.5 Sequential Prediction and the Windowed Dataset

Figure 3-3 shows four key steps of the sequential training process for a using the
Fibonacci sequence as an example. To clarify, the Fibonacci sequence (FS) is formed by
adding the previous two numbers together to form the next number in the sequence at
every step, starting with 1 and 1, leading to the next number, 2. To explain the creation
of the windowed dataset, the FS moving along from 1 through to 21 is used as shown at
the top of Figure 8. Starting from step 1, if the supplied dataset contains the first 6
numbers (1 to 8) of the FS, the last two numbers will be 13(5+8) and 21(8+13). In step 2,
the dataset is converted into a windowed dataset to enable sequential prediction, i.e.,

predicting the last two numbers of the FS.
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The windowed dataset contains a set length of window (as inputs) and a set length of
prediction (as output). Using FS as an example, if the window length and prediction
length are set to three and one respectively, an instance will be created by covering three
numbers in the window and one number in the prediction. For each instance (or row) in
the windowed dataset, the window and prediction will move along the sequence in a
single step. Hence, the windowed dataset moves three times for the training set in the

given example along the FS, forming three instances.

In step 3, the model is trained with the three instances of the windowed dataset. Step 4
uses the trained and a window of 3,5,8 to predict the next step in the sequence which is
13. Similarly, a window of 5,8,13 would predict 21 in the sequence. It is important to note
that each value and the order of the values in the windowed dataset contribute to the

sequential prediction.

Fibonacci Sequence

1,1,2,3,5,8,13,21

{1 ) Supplied dataset, what are the next two steps?

Dataset Stepl | Step 2
1,1,2,3,58| ? | ?
(2 ) Convert dataset into windowed dataset 3 \Train the CRNN -
Training Set 3 £ q | Predict the next step
Window Prediction Convolutional Window Prediction
(Input Features) (Labels) Recu rl‘ent (Input Features) (Labels)
1,1,2 | 3 Neural 3,58 | 13
Al Network i
1.2,5 5 (CRNN) 5;8,13| 21
2,35 | 8

Figure 3-3 Four steps of creating windowed dataset using the Fibonacci sequence.
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3.2.6 Challenges for Learning Curve Prediction

Training a Neural Network
h
20 Loss vs Epoc
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Window 50
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Figure 3-4 A neural network training cycle with the training window and prediction area.

Challenges related to learning curve prediction for HPO come from the variability of the
learning curves for different datasets and hyperparameter configurations. When
considering windowed datasets for long sequence predictions, the nature of learning
curve prediction is especially challenging. Figure 3-4 shows an example of the learning
curve of a neural network training cycle. It represents the window covering the initial 20
epochs of the training cycle and the prediction for a further 60 epochs. Given the
variations in dataset and hyperparameter configuration a different learning curve would
be observed inside the window. It means that a different window would be required to
predict the future learning curve of each hyperparameter configuration, meaning that
after training on the dataset, each configuration would need to run for the length of the
window before a prediction can be made. Also, the accuracy of the prediction reduces

with the increasing length of prediction after the window (Preeti et al., 2022).
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In Figure 3-4, if there were 500 hyperparameter configurations in the search space, with
these variations in learning curve over the training window, each configuration would
need to train for 20 epochs for all 500 configurations resulting in 10,000 epochs for
predictions alone. This does not include all the processes involved for training the
sequence prediction model. Further to this, 20 epochs is used for the window to predict
60 epochs ahead in this example. Increasing the window size would increase the training

before making a prediction and reduce the useful prediction time.

3.3 Developing the SELECT HPO Method

This section outlines the progression of ideas that led to the SELECT method for

hyperparameter optimisation. The subsequent sections detail the final SELECT algorithm.

The journey began with the goal of using learning curve prediction to optimise neural
network hyperparameters. Initially, the aim was to apply early stopping to eliminate
poorly performing learning curves, similar to previous studies. However, during testing,
a more significant opportunity emerged: the possibility of predicting entire unseen

learning curves within the search space.

This process began by iteratively training learning curves across various hyperparameter
configurations to observe the effects. It became clear that performance was sensitive to
hyperparameter choices. For example, learning curves varied significantly with changes

to the number of hidden layers, while adjustments to neuron count had a lesser effect. It
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was also found that learning rates outside a specific range led to universally poor

performance across configurations, with this range varying for each dataset.

Through these observations, the idea of tuning learning rates emerged. By slightly setting
the learning rate below the convergence range and then incrementally increasing it based
on a percentage drop in the curve, the model could adapt the learning rate across
configurations. This approach allowed it to respond to different datasets, enhancing

adaptability in tuning.

Attention then turned to the challenges of sequence prediction discussed in Section
3.2.6. To mitigate noise and cumulative error, the concept of blocks was introduced. Each
block aggregated 10 epochs, smoothing noise and creating stable data intervals that
enhanced learning curve prediction accuracy. By training on blocks rather than individual

epochs, the model could efficiently capture long-term trends.

Another challenge was the need for training each configuration to cover the window
length before making a prediction. To address this, a synthetic starting step was added,
achieved by replicating the first instance of each learning curve. This consistency in the

starting block allowed the sequential model to begin all configurations from a standard
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baseline. This also meant that predictions could be made at the start of each training

cycle, rather than requiring the cycle to run for the length of the window first.

With these refinements in place, each learning curve featured an adaptive learning rate,
block intervals, and a starting step. Figure 3-5 shows a typical learning curve prepared for

sequential prediction.

Configuration Learning Curve

Learning Curve

”

Incréésing
Learning
Rate

— 'Starﬁng step

LOSS

Window Prediction

12345678 5%101112131415161718192021 2232324 2526 2728 29300313233 34 3536 37

BLOCKS (3 )

Figure 3-5 An amended neural network learning curve for the sequential prediction model.

Summarising the key points of Figure 3-5:
e A'starting step’ created from synthetically attached instances allows for a sizeable
training window which will not impact the available prediction length within the
learning curve.

e The use of an increasing learning rate, dependent on the learning curve of each

hyperparameter configuration, for training all hyperparameter configurations so
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that all configurations have negligible difference within the initial window length
and converge in an epoch limit.

e The conversion of the learning curve data into ‘blocks’ of information taken over
set epoch intervals reducing sequence length and noise, capturing learning curve

trends effectively.

By formatting the learning curves of all trained hyperparameter configurations, as shown
in Figure 3-5, and attaching them in sequence, the sequential prediction model could
effectively cycle through this structured training set. This setup was intended to enable
the sequential prediction model to identify and halt poorly performing learning curves

early in the training process of each cycle.

With the code in place, the idea arose to attempt prediction of complete learning curves
of unseen configurations using only the initial window of the training cycle, shown in
Figure 3-5. This proved successful, allowing the model to extrapolate learning curves
across the search space by identifying hyperparameter relationships within a subset of
learning curves. This innovation became the foundation for the SEquential LEarning

Curve Training (SELECT) method for hyperparameter optimisation.
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The SELECT method follows the stages listed below for HPO. Refer to Figure 3-6 for

clarification.

Stage 1: The learning rate is tuned to the dataset learning rate range and
parameters for the adaptive learning rate for each hyperparameter configuration
are defined.

Stage 2: A subset of the hyperparameter configurations in the search space are
trained, each learning curve is converted into the format shown in Figure 3-5.
Stage 3: These are then joined in sequence and converted into a windowed
dataset for the sequent ML model.

Stage 4: The sequence ML model (CGRNN) is then trained to learn the relationship
between the hyperparameters and the learning curve sequences.

Stage 5: Using the relationship information, the learning curves for all
configurations in the search space would then be predicted with a single instance
of the windowed dataset.

Stage 6: The best predicted performances could then be trialled to select the best

performing configuration for optimum performance.

100 | Page



Tune the Learning

Train Hyperparameter

Rate Subset
1 Meural Network Learming Curve '“'"[:'\,-
rtm:
o TRRE Ml
-H'-. “lhl l
A
\
R A JTICIHW
L .
e -
=T
“H.l
Epachs
q e
"‘q Training Cycle
. | Architecture
Join Learning Curves in
Sequence
3 Block Learning Curves Joined in Sequence
S-'lernE Step S'hrli:!Sh!E S’tlr!in! EEE
|
]
|
i
g
R N IE R e T et e
Training Cycle Tralning Cycle Training Cycle
Architecture 1 Architecture 2 Architecture 3

Blocks

Predict All Learning Curves

with a Single Window Instance

Train the Sequential
Prediction Model

SEQUENTIAL
PREDICTION

Window

=

5
h

Starting Step I

MODEL |

SELECT the best
' | predictions for trials

Figure 3-6 Stages of the SELECT algorithm
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3.4 SELECT HPO Methodology Abbreviations

Abbreviation Description

Irpase base learning rate for negligible difference, set for each configuration

lincrease Increase rate of the learning rate

Lstart Initial loss at the start of training

Lthreshold Loss threshold for setting the learning rate of each configuration

Leurrent The current recorded loss at each stage of training

Irset The learning rate achieved at the loss threshold

Neun Set epoch limit after the learning rate has been set

Lscale Loss threshold when setting the base learning rate

Dscale Percentage drop from starting loss to loss threshold when setting the base
learning rate

Irscale Initial learning rate while setting the base learning rate

Sc Scaling factor for increasing the learning rate exponentially while setting the
base learning rate

Lset Loss threshold when setting the increase rate for the learning rate

Dset Percentage drop from starting loss to loss threshold when setting the
increase rate for the learning rate

Nincrease The number of epochs to the loss threshold when setting the increase rate
for the learning rate

f Adjustment factor for setting the threshold loss while tuning the learning
rate

tuneguantity The number of iterations while setting the loss threshold

gradiimit The range of acceptable gradient of convergence while setting the loss
threshold

grad The final gradient of the learning curve in a training cycle

CGRNN Convolutional gated recurrent neural network

traingq The sequential training set for training the CGRNN

block A collection of information related to learning curve data over a set interval

blocksi.e The number of epochs in each block of learning curve information

X Input range for sequential prediction

Y Output range for sequential prediction

w The length of the window in blocks

P The prediction length in blocks

S Starting step length in blocks

C Training cycle length in blocks

trialguantity Quantity of trialled configurations from the ranked learning curve predictions
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3.5 Structure of the Proposed Approach

Incorporating the solution from section 3.3.2, the six key stages of the SELECT method
are revised into the pipeline shown in Figure 3-7 with data transfer highlighted between
different stages. Each dataset is processed for categorical variables and feature scaling,
and split into training, validation, and test sets at stage 1, leading onto the tuning of the
learning rate. The purpose of stage 2 is to allow the sequential prediction model to adapt
to all datasets and hyperparameter configurations by setting a small learning rate at the
start of training which adjusts to each configuration, dependant on the performance of
the learning curve. This also makes every trained configuration begin with negligible
difference, contributing to the ability of the SELECT method to use a single predictive
window at stage 6. The learning curves are converted to ‘blocks’ of data, the starting step
is added, and all learning curves are joined in series, creating the novel training set for
the CGRRN at stage 3. The learning curve data is feature scaled and converted into a
windowed dataset before training the sequential prediction model at stage 4. Predictions
are made with the trained sequential prediction model, and the best results are trialled
to select the top performing model at stages 5 and 6. The following sub-sections will

cover the key points in relation to all stages and their development.
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Figure 3-7 The six stages of the proposed HPO approach.
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3.5.1 Stage 1: Data Preparation

It is assumed that uploaded datasets have been checked prior to uploading to the
algorithm for missing variables or incorrect information so this aspect of preparation is
not programmed into the algorithm. The dataset selected for experimentation have all
been prepared in advance in this way. The categorical variables are encoded numerically,
and the prediction variable and input variables are separated as the labels and features
of the data respectively. The application of this algorithm is for regression solutions so
there is a single, continuous label for each instance in all datasets in the study. The
dataset is then split into the training set and the test set with a split ratio of 20% for the
test set. From the training set a 20% subset is created for the validation dataset. The
features for all of the split datasets will be scaled using the Scikit-learn MinMaxScaler
module (Bisong and Bisong, 2019).

3.5.2 Stage 2: Tuning of the Learning Rate

Rather than treating the learning rate as a set hyperparameter to tune, (Smith, 2017)
created an approach for a learning rate optimiser which adjusted the learning rate within
set limits based on the performance of the learning curve to assist in the training process
by allowing flexibility in learning rate. This method was the loose inspiration for the idea
to make the learning rate dependent on the performance of the learning curve. Although
the proposed approach applied the same logic in a unique way. Instead of assisting the
learning rate converge within set limits, this approach sets a bottom limit for the learning
rate, which can the adjust individually for each hyperparameter configuration. For each

dataset, it was determined through experimentation that the ideal learning rates of
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different architectures fitted within a certain range of each other, meaning that if the
learning rate could be set to a value slightly below the bottom of the range, dependant
on a percentage drop, then it could be increased from this point each time a training
cycle began with a new configuration and stop increasing at a relevant change in the
learning curve for convergence around the epoch limit. This creates a method of tuning
the learning rate to the dataset, and then each configuration depending on each learning

curve.

The purpose of tuning the learning rate is to fit the learning curve for every neural
network architecture into a set epoch limit to train and predict with the sequential
prediction model. For a single window to be used for prediction, each configuration
needs to begin at a base learning rate (Ir,45¢) With negligible variation in loss and increase
at a defined increase rate (I, crease) Until the loss curve hits a threshold 10ss (Lipreshord)-
After Lenresnoiq 1S reached, the learning curve will continue for a set epoch limit (n,,,,)
with the final learning rate (lrs,;). Referring to the example of the learning curve in Figure
3-8, the loss has negligible variation in the first thirty epochs with the base learning rate,
Irbase, before the learning rate increases after each epoch with lincresse, leading to an
increasing reduction rate of loss. As the loss reaches Linreshold, the defined threshold loss
limit at 90 epochs, the learning rate stops increasing. The set learning rate at this point,
Irset, is used as the basis for the rest of the learning curve until the loss approaches a
minimum after a further 110 epochs, nun. This approach allows the learning rate to adapt

to each model configuration and the start of each training cycle to be identical for all
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configurations. The method for determining each of the parameters in this approach is
automatically carried out at the start of the optimisation process of this HPO method.

These automatic processes are defined in the following sub-sections.

Neural Network Learning Curve
jrb"fe ;J'ncren'se
e e R e e = Linrection
7
3 'frfét
l.!ll.ll'l
I 10 20 an 40 50 B0 o BI 50 100 1140 12 120 124 154 160 rd 184 190 "_
Epochs

Figure 3-8 The highlighted parameters for tuning the learning rate.
lrbase

The purpose of lr,s. is to have an initial learning rate for each neural network
architecture which produces negligible loss differences between all variations but can
then be increased to quickly begin to have an impact on the loss. The difficulty with
setting 1,45 1S that the ideal learning rate range varies, depending on the dataset being
used and the neural network architecture that is being trained. As the variation in the
network loss is the guide for 1,4, this would require the setting of Ilry,s. to be

dependent on the loss for this to function on multiple datasets. Regarding this, the
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following approach is taken to setting l1,45e, Shown in Figure 3-9. This algorithm is
implemented with the use of a custom callback during the training process. This tool
allows for data to be recorded and logical algorithms to be applied during various stages
during the training cycle of each configuration, in this case, at the start of training and
after each epoch of training of an initial configuration for setting Irpsse. A description of

the steps involved in this algorithm are provided here.

Setting Ir ;...

On train begin

Record L .,

Lscate = Lstart X(1-Dscare)
On epoch end

Record Ir ..,

- Se
Erscaie - Erscale X e

Record I ...
ifl current = L scale -
Stop training

h‘base = '!Tscaie

Figure 3-9 The pseudocode of the algorithm to set the base learning rate(Irpgse)

1. A neural network with a single hidden layer is selected for tuning the learning rate as
it has been shown that increasing the number of hidden layers will make the neural
network converge more slowly (Uzair and Jamil, 2020).

2. The loss is measured at the start of training the neural network (Lgtqr¢) and an initial
threshold scale loss is calculated (Lgcq;.) as a fraction of the initial loss with a

percentage drop(Dscqie)- In the process of initial development, a loss percentage drop
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of 0.02% or a Dscle value of 0.0002 was determined to be suitable for a negligible
variation between configurations.

3. Starting with an initial learning rate (Ir¢q;¢) Which is significantly low enough to have
negligible impact on the loss for any dataset (1-e9), the chosen neural network is
trained while the learning rate is increased exponentially after each epoch, using a
scaling factor (Sc).

4. The loss is measured after each epoch(L yrrent) and compared to Lgcqie- If Leyrrent
is less than Lg.4;e, the training stops and the final lrg.q,, is defined as Iy, 4ge-

The initial learning rate, Irscq1e, Of 1€-9 was determined through analysis of the equation

for stochastic gradient descent. As shown below:

Onew = Oo1a — V] (6o1a) X Ir

As the weights (8) will be updated in each epoch with the subtraction of the learning rate

(Ir) multiplied by the gradient of the loss function (V/(8,;4)) from the old parameters

(B51q), defining an Ir value less than 1e-6 can be considered to produce an extremely

small variation in each step, but as it is important for the process to start with a negligible

loss for all datasets, an additional factor of 1e-3 was added to this scale, resulting in le-

9 as the starting learning rate. The S value was set to 0.1, allowing the learning rate to

increase from 1e-9 to 0.5 over the space of 200 epochs. A length of 200 epochs allows

for each dataset to reach Lsqe without overshooting the learning range for the
configurations that were tested. This was set through the process of trial and error at the

initial stages of development and has been suitable for all experiments moving forward.
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The choice to use 200 epoch limit stemmed from observing the number of epochs for
the learning rate to increase to a level so that significant loss is detected. The was a
balance set through observation between ensuring that the step increased slowly
enough to not overshoot the lower acceptable learning rate limit while also limiting the
required computational time required for training.

The approach taken in Figure 3-9 sets the starting learning rate, lry ., for the training of
all neural network architectures moving forward. This is set at the beginning of each
optimisation process in the proposed approach for a new dataset to set the bottom limit
of the range of learning rates to suit all architectures. As the optimum learning rate will
vary depending on each configuration, the learning rate is gradually increased until there
is significant loss, accordingly, using the rate of increase, lincrease. The creation of this

variable is discussed next.

Iincrease

The purpose of I;ycreqse 1S tO raise the learning rate while training a neural network
architecture from Ir, 45, to a point where the loss reaches a predefined loss threshold,
Lser, within a set length of epochs (ng,.;). This increase must also occur after the number
of epochs for 2 blocks to pass so that there is minimal difference between all
configurations within the length of the window for the sequential prediction model. This
means that for the number of epochs of 2 block intervals, the learning rate will be set at
Irpase allowing for negligible variation for all configurations during this portion of the

training cycle. After this stage the learning rate will be made to increase until Lg is
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achieved. i, crease Will be different for each dataset so it will need to be determined
through analysis of an initial trained neural network and then amended to suit the length

of ng.¢. The approach for this is described below, expressed in Figure 3-10.

SEtting " Increase

On train begin
Record L ;.
Lset = Lstart X(1-Dyey)
Irser = pase
On epoch end
Record Ir ..
if epoch>(2*Block):
Irser = Wsor X Lstare
Record L .yrron:
L current <L ser:
Stop training
epoch = Nincrease

On train end —

; = n
lincrease = Istare st

Figure 3-10 The pseudocode of the algorithm to set the increase rate of the learning rate (lincrease)

1. The same neural network used for setting 1,4, is trained.

2. When training begins, the loss is measured at the start of training the neural
network (Lgtqre) and a threshold loss for setting is calculated (Lipreshoia) as @
fraction of the initial loss with a percentage drop(Ds,t). 13, 45e Must be kept the same
for all future learning curves so a new variable, lrg., is used for the increasing
learning rate.

3. Onthe end of each epoch, after the number of epochs required for 2 blocks of data

has passed, lrg,; is increased by a predefined percentage increase I grt-
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4. The loss is measured after each epoch(L yyrent) and compared to Lget. If Leyrrent is
less than L, the training stops, and the final epoch quantity is defined as 1n,,¢reqse-
5. After training stops, lipcrease IS Calculated using Istart, Nincrease aNd Nger. The proof

for the equation is provided in Equation 1.

— Nincrease
lrset final — lrbase X Istart

Nset _ Nincrease
lrbaS@ X Iincrease - lrbase X Istart

Inset — Inincrease

increase start

Nset _ Nincrease
In (Iincrease) - 1n( Istart

Nget X In (Iincrease) = Nincrease X In (Istart)

In (lincrease) = M X In (Isare)
set
Nincrease
In (lincrease) = In (Usgare  ™set )
Nincrease
Iincrease = Istare ™set

(1)

Istare Was set through trial and error to be 1.02, this allows for a slow increase and a
larger number of epochs to achieve Ls: compared to ns:. The value of nse: for all
experiments was set to 80 epochs. This means that the desired number of epochs for
setting Irse:is 80 epochs. With a slow increase rate in the first run, lincrease Can be set by
reducing the number of epochs from nincrease to Nser for each dataset using the above
equation. Implementing a gradual increase in the learning rate offers advantages in terms
of training stability. Swift and abrupt increments in the learning rate could result in
instability or overshooting during the optimisation process. By adopting a more

measured approach, making gradual adjustments to the learning rate, the model is better
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poised to converge reliably. Additionally, allowing a larger number of epochs to reach Lt
compared to ns: creates an extended training period during which the learning rate is
adapted. This approach is conducive to a thorough fine-tuning of the model's
parameters, enhancing its overall performance. Even if the learning rate is set at a point
where it reaches Ls: after a predefined number of epochs, ns:, this still does not
guarantee that the model will converge to a minimum after a predefined set number of
epochs after this point, n.un. To achieve this, Lsr needs to be adjusted to a threshold,
Ltnreshold, Which allows for the convergence to fit around nnun. The approach to achieve this

is discussed next.

Lthreshold

Linresnola 15 @ percentage of the initial loss in the learning curve which will stop the
increasing learning rate. The purpose of Lipresnhota iS t0 stop lincrease at a value of
lrse: which will allow the learning curve to converge within the set epoch limit n,.,,. This
is achieved by iteratively training a single layer neural network and incrementally
reducing Linresnota With an adjustment factor (f) based on the final gradient (grad)

recorded in 1., .

The purpose of tuning the learning rate in this approach is to fit the learning curve for
every configuration into a set epoch frame (Mincrease + Nrun) for the windowed
sequential prediction model to train from. Using this trained sequential prediction model,
the predictions can be ranked for better performing learning curves, rather than finding

the best result at this stage. This means that with slow convergence datasets it is only
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needed to get as close to convergence as possible. In order to achieve this, the process
will repeatedly adjust Ly esnoia fOr @ set quantity of iterations (tunequantity), if there is
no improvement, the acceptable range of gradient (grad;;,i:) Wwill be increased. As
Ltnresnora Will be changed, Iincrease Will be altered so nyycrease is kept at ngee. This is

shown in Figure 3-11 followed by a description of the steps taken.

Setting L threshold

Train neural network for n.,, + n,,,
Record Iincrease
Record grad

while grad < grad;; :
tune gquantity =tune gquantity 23
":f tune quantr’ty)tune quantity fimit

increase gradni;

Lth?‘eshold = Lthresho!d X f
Train neural network for ng,,; + n,,,

Record grad

Record Mincrease

Nincrease

B — mn
IITIC?'BG,SE IITIC?‘BG,SE set

Figure 3-11 The pseudocode of the algorithm to set the threshold loss for setting the learning rate of each
conﬁgurat'ion (Lthreshold)-

1. Train the single layer neural network and record I;,creqase @and grad.
2. While grad is outside of grad;imit, alter the Lipresnoia With f.

3. Train the single layer neural network and record grad and N crease-
4. Amend lipcrease t0 achieve lrg,, for nger number of epochs.

5. If grad,im;; is not achieved, repeat until tunegyantity 1imic is reached, then increase

gradim;e
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6. Repeat steps 2-5 until grad achieves grad;imit

The initial Lset is defined as 80% of Ls:arr and the adjustment factor has been set to 0.95,
meaning that as there is continued iterations with a learning curve not converging, the
new Lereshoid Will decrease by 5% each iteration, allowing for a faster convergence each
time. These variables were set during development through trial and error.

While tuning the learning rate, multiple parameters were explored through trial and
error. It's important to note that the datasets used for development differed from those
employed in the validation experiments. The setting of these variables was conducted
independently of all validation experiments. The Irpase, lincrease and Linreshold Values are
automatically determined for each new dataset using the described method, the next

step is to generate the sequential training set out of the learning curves.
3.5.3 Stage 3: Creation of the Sequential Training Set

The purpose of the sequential training set (traing,) is to provide the sequential
prediction model with sufficient information so that the correlation between the learning
curve of a neural network, and the network architecture and learning rate can be
established, while simultaneously making it possible for a single training window to be
used for prediction. The creation of the training set has four stages: (i) running several
neural network architectures spanning the hyperparameter search space, (ii) converting
the data into blocks of information for long sequence prediction, (iii) attaching the
starting step and (iv) finally joining the learning curves from all the trained neural

network architectures in series. Each of these stages will be discussed in this section.
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Hyperparameter Search Space and Selected Architectures

In this study, the HPO focuses on the learning rate, the number of hidden layers and the
number of neurons per hidden layer which are most suited for optimum performance of
a neural network for regression applications. With the learning rate dependent on the
loss of each neural network architecture configuration, it is no longer an independent
hyperparameter and will set automatically and individually to each configuration.
Additionally, as the learning rate has been tuned to achieved convergence around the
nrun limit, the epoch limit is also predefined. This results in the number of neurons per
hidden layer and the number of hidden layers being the focus of this HPO approach. For
this study, the chosen hidden layer range is between 1-5 hidden layers, while the range
of neurons per hidden layer is 1-100. To ensure the effectiveness of the approach, the
selected neuron quantities and layers must span the range of each hyperparameter.
Hence, the selected architectures are examined through 6 sets of neuron quantities over
5 hidden layers. This means that 6 sets of neuron quantities (1, 20, 40, 60, 80, and 100)
per hidden layer are trained for 5 different hidden layers (1,2,3,4 and 5). This results in
30 of the total 500 network architectures being trained, meaning 6% of the potential
network architectures are trained for the sequential prediction model to function
effectively, incorporating the automatic setting of the learning rate in both trainseq and

the predictions from the sequential prediction model.
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Information Blocks for Long Sequence Prediction

Figure 3-12 illustrates a learning curve of a neural network architecture with 1 hidden
layer and 20 neurons incorporating the tuned learning rate method discussed earlier, this
is using the ‘Behavior of Urban Traffic’ dataset(Sassi et al., 2011). The learning curve can
be seen to fluctuate rapidly which would limit the ability for the sequential prediction
model to interpret the continuous flow of the learning curve, reducing the clarity of the
trend in performance. To add to this, a good sequential prediction model would need to
foresee up to 180 steps ahead, through this fluctuation, to evaluate the result of the

learning curve.

Neural Network Learning Curve
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Figure 3-12 The prediction length and loss fluctuation of the neural network learning curve.

To overcome this uncertainty in interpreting the trend and predicting the learning curves,
the information in the learning curves is recorded over set intervals, termed as blocks. A

block contains the average and range value for each of the loss, the validation loss, and
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the learning rate over a set interval (blocks;,. ). The equations for the average and range
are shown below in Equation 2 and Equation 3 respectively. At the start of each block (i),
the average and range are calculated before all blocks are appended into a shortened
dataset. Table 3-2 shows the learning curve data in Figure 3-12, after being converted

into blocks.

Average = Zvalue 2
9Ei:i+Blo size Blockgize (2)
Range;.iypiock,;,, = maximum value — minimum value (3)

Using blockg;,. = 10 epochs, a different learning curve can be produced with the average
loss and average validation loss as shown in Figure 3-13. This helps to filter out the
fluctuations in loss values and reduces the required length of prediction by a factor of 10,
hence it significantly increases the accuracy of predicting the trend of the same learning
curve in blocks. Reducing the number of data points from epochs to blocks with the
average readings allows for a reduction in the steps forward to be predicted but this also
reduces the information that is being used for prediction. This is why the range of values
is also recorded. With both the average and range of values taken for each block in
parallel, as shown in Table 3-2, the sequential prediction model has an increased number
of input features to learn from to make predictions. The average features show the
overall trend of the blocks through the learning curve while the range values provide an

insight into how the epoch values vary between intervals.

118 | Page



Table 3-2 Learning curve data converted into blocks of information.

Average Range
i+ Valid : Learnin v Valid. | Learnin
ok | 0% | loss | mae | | os | Rate |
1 | 1005 i 918 | 36305 [ 000 | 000 i 000E+00 |
2 | 1004 ; 918 i 368E05 | 000 i 000 i 478E-06 |
3 | 1004 | 917 | 822605 | 000 | 001 | 100E:04 |
4 | 1003 : 916 i 28304 | 002 : 002 | 346E:04 |
5 | 1000 ; 913 i 9.76E04 | 006 i 006 i LI9E03 |
6 | 988 | 900 | 33603 | 020 ' 022 | 411E-03 |
7 | 946 i 853 | 116E02 | 076 084 | 141E02 |
8 | 721 | 615 | 39102 | 521 | 438 407E02 |
9 | 276 : 325 i 606E02 [ 162 | 134 i 0O00E+00 |
10 | 205 254 | 606E02 [ 031 | 090 i 000E+00 |
11 | 190 i 257 i 606602 | 017 | 084 i 0.00E+00 |
12 | 18 i 252 i 6.06E02 | 0.21 i 095 _: 0.00E+00 |
13 | 178 i 249 [ 606E02 | 019 064 i 000E+00 |
14 | 174 i 246} 606E02 | 020 ! 096  : 000E+00 |
15 | 181 ;244 | 606E02 | 047 | 114 i 0.00E+00 |
16 | 171 1 233 1 606E02 | 035 | 069 | 000E+00 |
17 | 175 i 233 | 606E02 | 041 | 108 : 0.00E+00 |
18 171 | 235 |  6.06E-02 018 ! 089 ! 0.00E+00
Block Learning Curve
12
10
. —Iloss
daverage
¥y
g s
= -validation
4 loss
; average
. 1 2 3 4 5 G 7 B 9 18 11 13- 13 14 15 16 17 18
Blocks

Figure 3-13 The neural network learning curve after being converted into blocks of the average loss.
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Starting Step

A windowed dataset must be used to train the sequential prediction model and make
predictions. Each window in the dataset requires a set number of blocks in sequence
which can be used as a reference (as inputs) for predicting the next blocks in the
sequence (as outputs). Before making a prediction, a learning curve must be first created
in blocks to cover the window length. With every block being used for the window, the
useful prediction length reduces, see Figure 3-14. With a short window length, W1, there
is a large prediction length, P1, requiring a narrow window to predict a larger sequence
ahead, leading to a model with low accuracy. Increasing the length of the window to W2
would provide further context for the sequential model to learn from, however this
would reduce the prediction length to P2, increasing the prediction accuracy, but more
blocks are needed for prediction, providing less benefit, and reducing the efficiency of

prediction.

To achieve the benefits of having a large window size for prediction context while not
impacting the prediction length, a synthetic starting step is added to the block data for
each trained configuration. This is done through replicating the first block for every
training cycle, see Figure 3-15. The length of the starting step can be increased and
decreased as required, depending on the user’s selection of window length. It is
important for the starting step to be smaller than the window length because replicating

the first block means that the data in the starting step is identical. If the window has
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identical data for all instances, then the sequential prediction model is not able to

determine when the starting step begins and ends while training.

Window : Prediction
12 _— . -
| P1
10 = &
" —Iloss
7 |J P2 ‘ average
8" '
| ——validation
4 Wi I loss
® > average
i 2 w2 |
U L] _I
1 2 3 4 3 [ 7 8 9 10 11 12 13 14 15 16 17 18
Blocks

Figure 3-14 The trade-off between the window length and the prediction length in predicting the learning curve.

Learning Curve with Starting Step
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Prediction length
10 - =
. —loss
8 Starting Step average
m + >
[ 5]
~ —validation
4 i Window 1 loss
& q average
0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Blocks

Figure 3-15 A learning curve with the starting step attached to make the prediction length independent of the
window size.

121 | Page



Joining the Learning Curves in Series

With the training cycle converted into blocks and the starting step attached, the number
of neurons and the number of hidden layers is joined to the learning curve data, see
Figure 3-16. This is to allow the sequential prediction model to determine the
relationship between the neural network architectures and the corresponding learning
curve information. To train the sequential prediction model, a total of 9 features are used
in parallel and these are the block number, and the average and range for loss, validation
loss, and learning rate in each blocks;,, as well as the neurons per hidden layer and
number of hidden layers. All the block learning curves for all selected neurons and layer
architectures are then joined in series, as represented in a line graph in Figure 3-17, to

create a traing,.

All the variables are then feature scaled, which normalises the sequential training set for
all datasets. This allows the sequential prediction model to work effectively without
resetting the internal hyperparameters to adapt to different datasets as the number of
features, the number of instances, the range of data and the types of data are always the
same, regardless of the initial input dataset. The only parameters which vary for each

dataset is the trend in learning curves in relation to the chosen architectures.
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Figure 3-16 An example of the dataset for training the sequential model.

Block Learning Curves Joined in Sequence
Starting Step Starting Step Starting Step

w
]
o
—
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— Architecture 1 — - Architecture 2 —i— Architecture 3 —
Blocks

Figure 3-17 Multiple block learning curves attached in series
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3.5.4 Stage 4: Training of the Prediction Model

To train the sequential prediction model, train,,, must be converted into the format of
a windowed dataset as described in Figure 3-3. Each number in the sequence is now
replaced by a block which contains 9 input features in parallel, illustrated in Figure 3-18.
Figure 3-18 represents the actual format required for sequential training. The window
contains inputs for prediction (X) and the prediction (Y) shows outputs from prediction.
Each row accounts for a single step forward in the dataset. Two important factors, the
length of the window (W) and the length of the prediction (P) columns, must be properly
defined. The following subsections will describe the justification for the chosen lengths

of each factor, followed by the creation of the windowed dataset and finally training the

sequential prediction model.

Average Range Architecture
Biogk} inss Valid. | Learning {nss Valid. | Learning Neurons|Layers
Loss Rate Loss Rate
e R W R
” L2918 1005 36305 000; 000; O0O0Es00| 20 i 1
/ / Window (X) Prediction (Y)
Block1 | Block2 Block 3 Block4 | Block5 | Block6 | Block7 i Block8 | Block9
Block2 | Block3 Block 4 Block5 | Block& | Block7 | Block8 | Block9 | Block 10
Block3 | Block4 Block 5 Block6 | Block7 | Block8 | Block9 | Block 10 | Block 11
Block4 | Block5 Block 6 Block7 | Block8 | Block9 | Block 10 i Block 11 | Block 12
Block5 | Block 6 Block 7 Block8 : Block9 | Block 10 | Block 11 | Block 12 : Block 13
Block6 | Block7 Block 8 Block9  Block 10 | Block 11 | Block 12 | Block 13 ' Block 14
Block 7 | Block8 Block 9 Block 10 | Block 11 | Block 12 | Block 13 | Block 14 | Block 15
Figure 3-18 An example of the windowed data for the sequential prediction model.
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The Window Length

As shown in Fig 3-19, the length of the learning curve for each network architecture used

for traing, includes both the length of the starting step (S) and the training cycle (C).

A constraint with attaching the starting step to each training cycle is that the length of
the window (W) increases with S. If W is less than or equal to S, the sequential prediction
model will not be able to determine when the starting step begins or ends, as the window
will contain the same block information for all blocks while passing each starting step.
Additionally, for predicting the performance of each neural network architecture, W
should be as short as possible to maximise the prediction length (P). The smallest
achievable value of W which fully covers S can be defined by Equation 4, the chosen W is
two blocks larger than S. This can encompass the starting step with a single block on
either side so that, during training, the window will have both the start and end of the

starting step inside the window length.
Wideal - S + 2 (4)

The two blocks will still need to be trained for the prediction window to work, that is why
the initial learning rate is set to Ir},,5. and does not increase for two blocks, as expressed
in Figure 3-6. With an initial negligible difference between the learning curve for all
network architectures, the starting window for all architectures in traing,, and the

prediction window will be the same.
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Increasing W raises the quantity of synthetic blocks in S. Increasing W beyond the length
of C+2 will merit no additional benefit as the start and end of C will be encompassed in
the window size during training and this will only reduce the ratio of C, the useful
information, to S as W increases further. Previous studies have shown that the size of the
training window provides context to the sequence being analysed by the sequential
model (Graves, 2012, Jaén-Vargas et al., 2022), for this reason W is set to the maximum
useful size while accommodating the constraints of increasing S. This results in Equation

5, the chosen equation for defining W, meaning that S will be equal to C.

W=C+2 (5)
Window Size: W = S+2 = C+2
1 W =
10 L
]
: 1,
I
8 i
1
|
i 1
1
[, [ ]
[7,] ]
O s :
- i
4 1
2|
) S o : C =:
3 (] ]
= | : 2 P |
1 . L |
360 123 456 7 E ¢ 101112131415 1617 18 10 20 21 22 23 24 25 26 27 28 29 30 31 3233 3235 36 0 1
Blocks
Figure 3-19 The block learning curve with the window size (W), the starting step length (S) and the training cycle
length (C)
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The Prediction Length

It can be taken from Figure 3-19 that P could be calculated with Equation 6. This would
mean that the prediction is made after W and predicting the remaining learning curve
until the end of the training cycle after the initial two blocks have occurred.
P=C-2 (6)
As traing,, has multiple learning curves attached in series, represented in Figure 3-17,
an issue occurs with using (5) is that the model begins to predict the beginning of the
next architecture in the series, resulting in the predicted learning curve having a sharp
rise at the end. This is fixed by reducing P by a further 2 blocks so that the rise is never
recorded in the prediction at that stage in the sequence, resulting in Equation 7.
P=C—-4 (7)
An example of this problem and solution are shown in Figure 3-20, a line graph of the
actual learning curve and predicted learning curve with each equation for P With
Equation 6, the prediction has a sharp rise in the learning curve in the final blocks (Figure
3-20b). Reducing the prediction length allows for the learning curve to be predicted

while eliminating this issue (Figure 3-20a).
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Prediction vs Actual
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Figure 3-20 Actual vs Predicted learning curves with (a) a prediction which is 2 blocks less than the training cycle
length and (b) a prediction which reaches the end of the training cycle.

Creating the Windowed Dataset

With values for both W and P defined, and traing., produced, the windowed training

set (train,inqow) €an be created. This is achieved using Figure 3-21. The result of this

stage is an input dataset, X, which consists of the 9 input features in parallel being sorted

into the window format, shown in Figure 3-18 and a corresponding output set of labels,

Y, which only has a single feature. This feature is the average validation loss for the length

P, the number of steps ahead for prediction. This is the required feature to produce the

learning curves for each architecture. Using the predicted average validation loss for the

length P, the trend in overall performance can be predicted for all architectures.
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Creating traiNygindow

inputs
trainggg
p
w
for value in length(traing,, — W — P):
row = value:(value + W)
X = X.append(row)
for value inlength(traing,, — W — P):
for step in(0: P, increment = 1):
label = traing.q[value + W + step][Average Val Loss]

label = labels. append(label)
¥ = Y.append(labels)

Figure 3-21 The pseudocode of the algorithm to create trainwindow-

CGRNN Architecture

For this study, the individual 1DCNN, GRU, Long Short-Term Memory RNN
(LSTM)(Hochreiter and Schmidhuber, 1997), as well as the RNN were considered for
prediction. These architectures and hybrids of each were compared as an initial
assessment through trial and error to determine which would be most suitable for this
application. The 1DCNN+GRU and 1DCNN+LSTM architectures produced the best
learning curve predictions. However, the 1IDCNN+LSTM had a larger computational cost,
resulting in the 1DCNN+GRU, termed the CGRNN architecture, being selected for this

study.

The chosen CGRNN architecture consists of a 1DCNN layer, multiple GRU layers and a
final dense layer. This base architecture has been optimised with Keras Tuner (O'Malley,
2019), using GPBO to get the best sequential prediction model to be used as the CGRNN.

Table 3-3 shows the range of hyperparameters which were optimised, as well as the
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resultant best combination of hyperparameters for the CGRNN. These settings are used
for all experiments in this study. The final optimised CGRNN architecture is shown in
Figure 3-22. It must be clarified that the CGRNN hyperparameters have not been
changed for any variation in dataset after the initial optimisation and the same

parameters have been used for all experiments.

Table 3-3 CGRNN Hyperparameters: Range and best result

Stage Hyperparameter Range Best Result

Global Learning rate le-9-1le-1 0.00213

1DCNN Layer Filter 10-300 274
Kernel 2-9 8
Strides 1-3 1

GRU Layers 1-3 3
Units/layer 10-80 32

Dense Layer Units 5-100 100

1D-CNN

fil
v GRU | | GRU | | GRU
kernel_size Units Units Units Flatten
3 32 32 32

strides
1

Figure 3-22 The structure of the optimised CGRNN architecture for learning curve prediction.

Training the CGRNN Model

The X and Y datasets are split into training and validation datasets, and the CGRNN model
is optimised with the mean absolute error as a metric (MAE) and an Adam optimiser
(Kingma and Ba, 2014). The Adam optimiser is a popular algorithm in machine learning
that adaptively adjusts the learning rate for each parameter by combining two

techniques: momentum (to smooth gradients) and RMSProp (to scale updates based on
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recent gradients). This allows Adam to converge faster and more effectively on optimal

solutions without extensive tuning, making it ideal for training deep neural networks.

The equation for the MAE is shown in Equation 8, with y,.4 being the prediction for
each instance, yY,ctua1 being the true label of each instance, and n being the number of

instances.

MAE = Z?:1|3’pred_3’actual|

(8)

n

The model is trained for 200 epochs, a number selected to be suitable through trial and
error, and the MAE for both the training and validation datasets is recorded. Through
iterative experimentation, it was deemed that a suitable level of prediction performance
was achieved when the MAE of the training set was less than 0.02. The validation MAE is
monitored throughout the 200-epoch training cycle and the model parameters for the
best validation MAE with the training MAE under 0.02 are selected for prediction. As
trainseq, the source for X and Y, always has the same features, the same number of rows,
the same type of features and the same scale, these required training parameters and
CGRNN hyperparameters do not need to change when the input dataset for HPO
changes, as the only variation is the relationship between the changing learning curve
shape and the architecture details. This allows for flexibility with different datasets while

not changing the training method and hyperparameters for the CGRNN.
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3.5.5 Stage 5: Prediction of Learning Curves
With the trained CGRNN, the next step of the SELECT method is to predict the learning

curve of all architectures in the search space from a single prediction window. This is

achieved with the following:

1. Train a single neural network architecture for the length of two blocks, stop training
and record the learning curve data.

2. Convert the learning curve data into the parallel blocks with the loss, validation loss
and learning rate information as before.

3. Attach the starting step to the blocks of data, creating the single prediction window
learning curve needed for the CGRNN, a line graph representation is given in Figure 3-

23.
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Figure 3-23 The prediction window of the learning curve.
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4. For each architecture (neurons per layer and quantity of layers) in the search space,
attach the same prediction learning curve data from the single window and predict
the learning curve with the CGRNN model for all architectures without running them.

The learning curve of all architectures will be produced from this single prediction

window. Fig 3-24 is an example of the predicted learning curve from the CGRNN with 2

hidden layers and 95 neurons against the actual learning curve using the QSAR Fish

Toxicity dataset (Cassotti et al., 2015). It shows a learning curve covering 140 epochs, or

14 blocks of 10. The final loss values of this network architecture from the learning curve

are highlighted in the green box. Recording the final loss from every predicted

architecture provides a predicted performance of these architectures without training

them.

Prediction vs Actual
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Figure 3-24 Example of the predicted and actual performance from the CGRNN.
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If the predicted final loss value within the green box in Figure 3-24 is sorted by hidden
layer and then by neurons per layer for all architectures in the search space, the trend in
performance can then be visualised as shown in Figure 3-25. The actual results (blue) are
the measured final loss values from running all architectures in the search space, while
the predicted results (red) are from the SELECT method, using the CGRNN predictions.
This is taken from a traing,, created from the QSAR Fish Toxicity dataset. The trend in
loss shows that the best performance (minimum loss) will be achieved with neural
networks which contain 2 hidden layers and 80-100 neurons per hidden layer. The
predicted trend in performance is like the actual, also presenting the same location for
the best performing neuron and hidden layer combinations. These results show that
there is a strong correlation between the number of hidden layers and the number of
neurons per hidden layer, and the learning curve for training a neural network. The
predicted learning curves can be used to rank the network architectures by performance
so that the best performing models can be selected and trained to quickly achieve the

best results in HPO.
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Figure 3-25 The performance trend of the predicted and actual learning curves sorted by hidden layer and neurons
per layer.

3.5.6 Stage 6: Trialling the Best Results
Although the predicted trend line is very close to the actual line (Figure 3-25), the

variation in loss performance of the actual line cannot be accurately anticipated. This is
why the prediction line is used as a guide to look for the best performing models. Ranking
the predicted learning curve results by the best final loss, creates an ordered list of
architecture combinations which show the top performing models. The best prediction
has 2 hidden layers and 95 neurons with minimum loss for the example in Figure 3-25.
When comparing this to the actual performance results, the same architecture is the
third best performing, i.e., the top 0.6% of the 500 tested combinations. From the top 50
best trained architectures, the prediction model includes 72% of these results in the
same range. This implies that this approach can predict good models without running

them, hence reducing a significant amount of computational effort.
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Taking this advantage, the top 2% (top 10 architectures) of predictions have been
selected in this study to train to obtain the actual performance on the test set. This range
was chosen because 60% of these predictions fit in the top 6% of all actual performances.
This would suggest a high likelihood of finding a good performing model while limiting
the number of combinations to train. Increasing the percentage of trained architectures
from the ranked predictions would further increase the chance of finding a good model

but also raise the required computational effort.

When tuning the learning rate, the aim is to get a close approximation to the best
performance within a set cycle time, C, to rank architecture performance. The approach
taken for predicting performance uses the ranked MAE level of the learning curves to
select top models but does not consider the gradient of the learning curves. To overcome
this limitation, once the best architectures are selected, the training epoch limit is
extended, and the best performing architectures will only stop once the performance
stops improving. This is achieved with the use of an early stopping callback. An early
stopping callback is a tool used to monitor the validation loss and stop the training cycle
when the validation loss does not reduce over a set number of epochs, defined as
patience. In this study, the early stopping mechanism starts at the end of the length of C
and monitors the validation loss with a patience of 50 epochs. The best recorded weights
for the minimum loss are then chosen as the best parameters for the trained

configuration. This extended training cycle is given to all the predicted top models from
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the CGRNN. The best performing of these is selected as the model with the best

hyperparameters.

3.6 Validation of the SELECT HPO Method

This section will discuss the experiments that were designed to evaluate the performance
of the SELECT method and compare it against the benchmarking algorithms. This will
cover the chosen datasets, the benchmark algorithms, the experimental set up and the
results with discussion.

3.6.1 Dataset for Analysis

With the lack of available data for the purposes of this study, a method of validation was
taken to evaluate the SELECT method over multiple varied datasets which are openly
available and used in other research studies to determine the performance of the
algorithm with variations in feature types and quantities, the instances in each dataset
and for multiple contexts. To achieve this, multiple datasets were selected from the UCI
Machine Learning Repository , a repository of machine learning datasets which has
become highly popular in all areas of data based research. The datasets used for this
study are shown in Table 3-4, with description, assigned code, the prediction output, the
number of input features, the number of instances, and sources of references. These
datasets cover multiple fields, with variations in the feature quantity and types, and the
number of instances in each dataset. The datasets shown in Table 3-4 have been solely

selected for the purpose of validation and have not been included in the development
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process of the SELECT method. The chosen datasets have been verified to have no

incorrect or missing data and have been used in previous research.

These datasets were carefully selected with several criteria considered. As the application
of this HPO method for industrial impact related to continuous performance metrics, all
datasets have been selected to be regression datasets, each with a continuous prediction
variable. There was also a desire to find diverse datasets from different fields and those
which have been used in previous research. There was also a consideration for variations
in the quantity of inputs and instances, but a limit to the number of instances due to
limitations in computational capacity. All the datasets were selected to be tabular
datasets as well.

Table 3-4 The details of the validation datasets

Input

Description Code Output aty Instances Sources

o . Scaled sound (Brooks et al., 1989, Gonzalez
Air foil Self-N D1 5 1503 ’ y !

Irfotl sefi-Noise press. level 2008, Lau et al., 2009)

. .. titati .
QSAR Fish Toxicity D2 = Quantitative 7 908 (Cassotti et al., 2015)
Response

Concrete Concrete
Compressive D3 Compressive 8 1030 (Yeh, 1998, Yeh, 2006)
Strength Strength
Behaviour of . ) .
Urban Traffic D4 Slowness in traffic 17 135 (Sassi et al., 2011)
Auto MPG D5 Mpg 7 398 (Quinlan, 1993)
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3.6.2 Benchmark Algorithms
Four well-established benchmark algorithms; RS, GPBO, TPE, HB have been carefully

chosen for comparison against the SELECT method, listed in Table 3-5. The selection of
these algorithms is grounded in recent studies that have demonstrated their suitability
for comparison (Motz et al., 2022, Bischl et al., 2023). RS serves as a computationally
efficient baseline, offering simplicity and ease of implementation, making it a relevant
point of reference. GPBO leverages Gaussian Processes to model intricate relationships
within the hyperparameter space, showcasing a sophisticated approach that has proven
effective in capturing complex objective functions. TPE introduces a probabilistic model
that adeptly balances exploration and exploitation, providing a middle ground between
randomness and guided search. Meanwhile, HB stands out for its adaptive resource
allocation strategy, emphasising the importance of efficient resource utilisation in the
optimisation process. By incorporating these widely recognised algorithms, the
benchmarking process ensures a comprehensive evaluation, drawing upon the strengths
and diversity of these algorithms to assess the performance of the SELECT method. The
libraries used for these algorithms are Hyperopt (Bergstra et al., 2013) and Keras Tuner

(O'Malley, 2019). The pros and cons for each HPO approach are provided in Table 3-5.
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Table 3-5 Benchmark HPO Algorithms

Method Pros Cons
¢ Inefficient in finding optimal
¢ Simplicity and ease of implementation. hyperparameters.
Random ¢ Can perform well with a low computational cost. ¢ Does not adapt based on observed
Search ® Requires minimal tuning. performance.
e Suitable for parallelisation ¢ May waste resources on less
promising configurations.
o Efficient in handling noisy or expensive objective
. functions. ¢ May waste resources on less
Bayesian ¢ Adaptive exploration of the hyperparameter space. | promising configurations.
Optimisation

e Converges to optimal solutions with few
evaluations.

¢ Poor capability for parallelisation.

¢ Performance may depend on the

Tree Parzen's .
quality of the surrogate model.

o Efficient with all kinds of hyperparameters.

Estimator ¢ Balances exploration and exploitation effectively. I L
e Poor capability for parallelisation.
o Efficiently allocates resources to promising
configurations. * Can eliminate slow converging, high
Hyperband & ging, hig

e Successive halving for effective resource utilisation.
® Good capability for parallelisation

Random Search
The Random Search (RS) algorithm (Bergstra and Bengio, 2012b) is employed in this

performance configurations.

study, training randomly sampled configurations from the search space to identify the
best performance. Unlike more advanced optimisation algorithms, RS does not rely on
specific assumptions, making it a computationally efficient and effective baseline for
comparison. Within a set number of epochs, RS selects and samples random
configurations from the search space, tests them sequentially, and selects the
configuration with the best performance based on a predefined metric. Despite its
simplicity, RS has proven to be a preferred optimisation algorithm due to its
computational efficiency, requiring fewer resources compared to methods like Grid
Search, while still identifying high-performing hyperparameters (Andonie, 2019, Zoller

and Huber, 2021). Here is a description of how RS operates:
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e Define the Parameter Space: RS begins by establishing a defined range or set of
discrete values for each hyperparameter. Each parameter range represents an
independent dimension in a multi-dimensional search space, within which the
optimal configuration is likely to exist.

e Random Sampling from the Search Space: RS then samples configurations at
random from this multi-dimensional space. Each randomly selected point
corresponds to a unigue combination of hyperparameter values. For each
iteration, RS assigns random values to each hyperparameter independently,
resulting in configurations that may vary widely across the search space.

e Train and Evaluate Each Sampled Configuration: For each randomly chosen
configuration, the model is trained for a specified number of epochs. The
performance of each configuration is then evaluated on a validation set using a
chosen metric.

e Repeat Sampling: RS repeats the process of sampling, training, and evaluating
multiple configurations until a specified stopping criterion is met.

e Select the Best Configuration: After all sampled configurations have been
evaluated, RS selects the configuration with the highest performance metric as

the best hyperparameter set.

Bayesian Optimisation with Gaussian Process
GPBO leverages Gaussian Processes to model the objective function during optimisation,

providing a nuanced representation of the performance landscape across different
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hyperparameter configurations. The objective function, in this context, serves as the
metric to be either maximised or minimised, reflecting the performance of the machine
learning model. GPBO selects configurations through an acquisition function that adeptly
balances exploration and exploitation, guided by the insights derived from the Gaussian
Process model. This approach aligns with the growing popularity of sequential model-
based algorithms in hyperparameter tuning, exemplified by BO (Snoek et al., 2012). BO
employs a directed search strategy, leveraging Bayes' Theorem to construct a probability
model for selecting the most promising hyperparameters for trial. Diverging from the
random sampling approach of RS, BO maintains a record of previous trial performances,
using this information to map hyperparameters to a probability score for the objective
function. The resulting probability model, referred to as a surrogate, guides the selection
of models likely to perform well. This guided approach, rooted in leveraging past
performance to inform future trials, has demonstrated its effectiveness in rapidly
achieving high accuracy, presenting a highly competitive strategy, particularly in tasks
such as neural architecture searching(Liu et al., 2022). Here is a description of the steps

in the BO process:

e Define the Parameter Space: BO begins by defining a range for each
hyperparameter.
e Initialise with a Small Number of Random Samples: A few random configurations

are selected, and their performance is evaluated.
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Model the Objective Function with a Gaussian Process (GP): These initial data
points are used to construct a model of the objective function. GP models are a
central component of BO, as they provide a probabilistic estimate of the objective
function across the search space. For each point in the search space, the GP
provides a mean prediction and a variance, creating a distribution over the
objective function.

Choose an Acquisition Function to Guide Sampling: The acquisition function uses
the GP's mean and variance estimates to decide the next point to evaluate,
balancing exploration and exploitation.

Evaluate the Selected Configuration: The hyperparameter configuration chosen
by the acquisition function is evaluated on the objective function (the model’s
performance on a validation set). The result from this evaluation is added to the
dataset used to train the GP, improving the model’s accuracy and reducing
uncertainty in this region of the search space.

Iterate Until the Stopping Criterion is Met: BO iteratively updates the GP model
with new observations, refines the acquisition function, and selects new
configurations until a stopping criterion is reached.

Select the Best Configuration: Once the search ends, the configuration that
achieved the highest performance is selected as the optimal set of

hyperparameters.
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Tree Parzen’s Estimator
Transitioning from GPBO to TPE, TPE is another BO variant that further refines the

optimisation process by explicitly separating it into exploration and exploitation phases.
In contrast to GPBO's unified probabilistic model, TPE constructs distinct probability
density models for configurations that exhibit good and poor performance (Rong et al.,
2021). By creating these separate models, TPE more explicitly focuses on distinguishing
between promising and less promising regions within the hyperparameter search space.
This dual model approach allows TPE to strategically sample hyperparameters, allocating
resources more efficiently by dedicating exploration efforts to areas with the potential
for improved performance and exploitation efforts to exploit known successful
configurations. The success of TPE in achieving high levels of performance has been
demonstrated in prior research (Abbas and Myungho, 2023, Motz et al., 2022). This
strategy of partitioning the optimisation process into exploration and exploitation,
coupled with the construction of separate probability density models, has proven
effective in yielding competitive results compared to other HPO methods. This emphasis
on targeted exploration exploitation aligns with the broader framework of Bayesian
Optimisation, showcasing the adaptability of the approach in various formulations like
GPBO and TPE for efficiently navigating and optimising complex hyperparameter spaces.

The approach for TPE for HPO is as follows:
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Define the Parameter Space: TPE begins by specifying a range of values for each
hyperparameter, establishing a multi-dimensional search space where each point
corresponds to a specific hyperparameter configuration.

Initialise with a Small Number of Random Samples: A small set of random
hyperparameter configurations is generated. Each configuration is evaluated on
the objective function, and their corresponding results are recorded.

Construct Density Models for Good and Bad Configurations: TPE utilises two
kernel density estimators (KDE) to model the distribution of the objective function
values:

o Good Configurations: This model represents hyperparameter
configurations that yield low objective function values, meaning better
performance.

o Bad Configurations: This model represents configurations that vyield
higher objective function values, meaning poorer performance.

Define the Acquisition Function: The acquisition function in TPE is set up to
balance exploration and exploitation by computing the expected improvement of
selecting a new hyperparameter configuration. It identifies the next point in the
search space that maximises the likelihood of improving performance based on
the density models constructed.

Evaluate the Selected Configuration: The hyperparameter configuration

suggested by the acquisition function is evaluated against the objective function.
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The outcome of this evaluation is then added to the dataset, informing the
density models and refining their accuracy.

e Iterate Until the Stopping Criterion is Met: TPE iteratively updates the density
models with new observations, recalculates the acquisition function, and selects
new hyperparameter configurations until the stopping criterion is achieved.

e Select the Best Configuration: Upon completion of the search, the
hyperparameter configuration that produced the lowest objective function value

is selected as the optimal set of hyperparameters.

Hyperband
HB has emerged as a compelling benchmark for HPO due to its innovative integration of

Random Search RS with successive halving, creating a two-phase approach that
efficiently navigates and optimises hyperparameter configurations (Li et al., 2017). In the
initial phase, a diverse set of random configurations undergoes evaluation, with resource
allocation favouring the top performing configurations. This distinctive process quickly
identifies promising hyperparameter configurations, directing additional resources
toward their further evaluation. The approach has performed well comparatively and is
highly suitable for parallelisation (Motz et al., 2022, Vishnu et al., 2022). The effectiveness
of Hyperband lies in its strategic resource allocation and its adaptability to the evolving
landscape of promising configurations. The second phase involves a resource-intensive
selection process, driven by successive halving, where only the best-performing

configurations continue to receive increased resources. This iterative method ensures
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that the most promising configurations are allocated more resources, leading to the
eventual identification of a final, best-performing model. The integration of random
selection, capability for parallel training, and successive halving makes HB a robust
choice, providing a comprehensive and efficient exploration of the hyperparameter

search space. The procedure taken by HB is as follows:

e Define the Parameter Space: HB begins by specifying a range of values for each
hyperparameter, establishing a multi-dimensional search space where each point
corresponds to a specific hyperparameter configuration.

e Initialise with a Small Number of Random Samples: A small set of random
hyperparameter configurations is generated. Each configuration is evaluated
using a specified budget of epochs and performance, and their corresponding
results are recorded.

e Set the Resources and Bandwidth: The total available resource computational
time is divided among different configurations. The algorithm determines a set of
“bandwidths”, or allocated number of epochs, to allocate resources dynamically
as configurations are evaluated.

e Evaluate Configurations with Early Stopping: HB uses a multi-armed bandit
approach, where configurations are evaluated progressively. After each
evaluation phase, the worst-performing configurations are eliminated based on
their performance. This process continues, allocating more resources to the

remaining configurations.
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e [terate with Increased Resource Allocation: The algorithm iteratively adjusts the
resource allocation among the surviving configurations, providing more resources
to the better performing ones while reducing resources for those that perform
poorly.

e Converge on Optimal Configurations: As the iterations progress, HB focuses on
configurations that show promise based on previous evaluations. The algorithm
continues to refine its search until a predetermined stopping criterion is reached.

e Select the Best Configuration: Upon completion of the search, the
hyperparameter configuration that achieved the best is selected as the optimal
set of hyperparameters.

3.6.3 Experimental Setup
To ensure robustness and fairness in this analysis, all algorithms have been fine-tuned to
achieve their best performance prior to the comparison. Details are given in the following

sub-section on the experimental setup and the fine tuning for all HPO approaches.

Experimental Setup for All HPO Methods

The goal for all HPO methods in this study is to optimise the learning rate, the number of
neurons per hidden layer and the number of hidden layers for an MLP neural network
architecture to get the best prediction accuracy with the smallest computational cost.
The search space is a learning rate range from 1le-9 to le-1, 1-5 hidden layers and 1-100
neurons per hidden layer. The prediction accuracy is measured by the MAE, as defined in

Equation 8. The computational cost is measured by the number of epochs and clock time
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it takes to get the best performing neural network architecture. The maximum epoch
quantity for each network iteration is defined as 200 epochs. The benchmark approaches
were evaluated with 100, 200, and 400 epochs. There was a significant improvement in
performance from 100 to 200 epochs, but equivalent results with 400. The 200-epoch
limit was selected as a result. Each of the HPO approaches were assessed on the five
datasets shown in Table 3-4, with a 5-fold split for each optimisation. The average MAE
was calculated on the test set for each, and total epoch quantities and time (in seconds)

were recorded.

The SELECT method uses an extended epoch limit beyond the length of C for trialling the
predicted top performing learning curves to ensure the top performing models reach a
minimum. This is due to the nature of the CGRNN predictions only considering the level
of MAE for ranking performance, but the gradient is not used for the ranking, so the
extended epoch limit allows the results to reach a minimum based on observed
performance. The benchmarks operate on a set epoch limit throughout which is a
variation in method. To provide a fair comparison, the chosen best configuration for each
of the benchmarks is compared with both the result of the 200-epoch limit and the
extended epoch limit using an early stopping callback. This will ensure robustness of the

comparison, despite the difference in approach.

As the SELECT method sets the lrg,; for each model individually, an adaptive learning rate

was selected for the benchmark HPO methods to ensure fairness. The benchmarks are
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given the ‘Adam’(Kingma and Ba, 2014) optimiser for the full 200 epoch limit and the

proposed approach uses the same optimiser during n,,;,,-

Setup of the SELECT Method

The SELECT method requires several parameters to be set as shown in Table 3-6. The
traing,, dataset is created by training all possible architecture combinations of values in
layeryyqin and neurong,qi,. The length of ng, is 80 epochs, meaning lr,; will be
determined between 80-100 epochs into each cycle. Then n,,, is set to 100 epochs,
creating a total C of 180-200 epochs. Blocks;,, is set to 10 epochs. The maximum number
of epochs to create the training set for the CGRNN model in the SELECT method with this
set up is 6,000 epochs. Additional epochs will be required for tuning the learning rate and

testing the trialgyantiry Of best results.

Table 3-6 The control parameters for the proposed approach

Symbol Description Value
layer,, .in The layers used to create trainge, 1,2,3,4,5
neuronsrqiy | The neurons used to create traing,, 1,20,40,60,80,100
Nget Learning rate setting epoch quantity 100
Nyun Train epoch quantity with 75, 80
blockg;,e Interval length for recording training data 10
trial guanticy | Quantity of trials for best result 10

Random Search, Bayesian Optimisation (GP&TPE)

RS, GPBO and TPE operate sequentially so the setup is the same for all these algorithms.

Each algorithm was assessed for 100 iterations at 200 epochs to select the best
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performing model, i.e., a total of 20,000 epochs. The number of epochs to converge on

the best result was recorded as the total epoch quantity.

Hyperband

The HB model utilises parallel training to optimise the parameters of the neural network.
To determine a test size, the equation for the number of epochs in a single iteration, as
expressed in Equation 9, from(Li et al., 2017). With the HB algorithm, 200 epochs with a
successive halving factor of 2, results in 11685 epochs. Covering 2 iterations of the same
settings would lead to 23,370 epochs used for the trial. The number of epochs to

converge on the best result was recorded as the total epoch quantity.

Iteration = max epochs * (math.log (max epochs, factor) *x 2) (9)

3.6.4 Results and Discussion
In this section, the experiment results involving the use of the SELECT method, and the

four benchmark comparisons are presented in Table 3-6, Table 3-7, Table 3-8, Table 3-9
and Table 3-10 respectively. These are discussed, focusing first on the prediction accuracy

then the computational expense.

Prediction Accuracy

The MAE results of all algorithms are shown in Table 3-7 and Table 3-8. The SELECT results
are taken from the extended epoch limit (Ext.), while the benchmarks have results from
both the set 200 epoch and Ext. limit to allow for both metrics to be compared for the

benchmarks. These results are the average and standard deviation of the best performing
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configurations taken over the 5-fold split of the datasets. The best performances for each

row are highlighted in bold.

Table 3-7 MAE at 200 epoch limit and 5-fold split

SELECT RS GPBO HB TPE

Dataset M @ SD M SD M SD M SD M SD
D1 2.14 | 0.52 | 3.37(+58%) | 1.15 | 3.6(+68%) @ 0.56 | 3.07(+43%) | 0.49 | 3.34(+56%) | 1.02

D2 0.75 007 0.83(+11%) 0.11 0.79(+6%)  0.09  0.84(+13%) 0.10 @ 0.79(+6%)  0.10
D3 4.08 | 0.53 | 4.87(+19%) | 0.80 | 4.86(+19%) | 0.53 | 4.78(+17%)  0.84 | 4.83(+18%) | 0.83
D4 2.26 | 025 2.7(+19%) @ 0.66 2.75(+22%) 0.79 @ 2.7(+19%) @ 0.37 | 3.11(+38%) @ 1.07
D5 2.09 | 0.28 | 2.53(+21%) | 0.74 | 2.42(+16%) | 0.42 | 2.29(+9%) | 0.27 | 2.24(+7%) | 0.31
*M = Mean, SD = Standard Deviation, Note: ‘( )’ refers to the percentage difference between the benchmark

metric and the SELECT result.

Table 3-8 MAE at extended limit and 5-fold split

SELECT RS GPBO HB TPE
Dataset M SD M SD M SD M SD M SD
D1 2.14 | 052 | 3.07(+43%) = 1.10 2.4(+12%) | 0.73 | 3.47(+62%) 1.07  3.15(+47%) 0.81
D2 0.75 0.07 087(+17%) 0.14 0.84(+13%) 0.3 0.82(+9%) 0.10 0.86(+14%) 0.09
D3 4.08 053 | 529(+29%) 1.35 5.12(+25%) 0.55 | 5.00(+22%) 0.61  5.00(+22%) 1.45
D4 2.26 025 | 2.77(+23%) 052 2.74(+21%) 0.52 2.85(+26%) 0.61 3.18(+41%) 0.85
D5 2.09 028 | 2.61(+25%) 0.82  2.56(+23%) 0.20 @ 2.68(+28%) 0.54  2.83(+35%) 0.53

*M = Mean, SD = Standard Deviation, note: ‘( )’ refers to the percentage difference between the benchmark
metric and the CGRNN result.

The SELECT method has performed better with the smallest MAE and highest consistency
in results as compared to all benchmarks for all datasets. This is also for both the 200-
epoch limit and the extended epoch limit given to the benchmarks. The extended epoch
limit for the benchmarks resulted in worse performance overall, with a reduction in mean
MAE for 75% of readings. This makes sense as the algorithms select the learning rate
based on observed performance. Extending beyond this limit for the final test would lead

to potential overfitting.
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By predicting the performance of all hyperparameter configurations at once, the SELECT
method establishes a more holistic view of the search space. One of the key advantages
of the SELECT method is its ability to avoid local minima. The observation and reaction
approach of the benchmark algorithms can lead to suboptimal regions of the search
space due to their reliance on direct observations from previous trials. In contrast,
SELECT's predictive model facilitates a broader exploration, allowing it to identify high-
performing configurations that may otherwise be overlooked. By understanding the
overall performance trends rather than focusing solely on past observations, SELECT
mitigates the risk of overfitting to noise and enhances the likelihood of discovering
optimal configurations. Another advantage to this approach over the benchmarks is the
adaptive optimisation of the learning rate for each configuration, rather than using a one-
size-fits-all approach as seen in the other methods. The learning rate that performs well
with one model, may not necessarily perform well with other hyperparameter
configurations. Having an adaptive learning rate can allow flexibility for improved

performance.

Ultimately, the SELECT method's unique capability to synthesise information about
hyperparameter interactions and performance trends proactively rather than reactively

leads to superior results compared to benchmarks like GPBO, TPE, HB, and RS.

The looking at performance on individual datasets, the best performance comparison is
in relation to ‘D1’, the Air foil Self-Noise dataset, with nearly all benchmark comparisons

having above 40% error, excluding GPBO with the extended epoch limit. The SELECT
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method still produced a better performing model by 12% MAE error. The dataset with
the closest performance between the benchmarks and the SELECT method is ‘D2’
relating to Fish Toxicity, with the SELECT selected configuration achieving a 6-17% better

predictive accuracy than the benchmarks.

The better performance of the SELECT method over multiple datasets with variations in
feature, instances, feature types and regressive correlation with a 5-fold split shows the

robustness of this approach in this application.

Further information can be gained from observing the individual predictions made during
the SELECT method. Figure 3-26 shows the comparison between the actual performance
trends for the D1, or the Air foil Self-Noise, dataset using a single split of the data, against

actual predicted performance using the SELECT method.

The prediction line in Figure 3-26 shows that the best performing model will be found
with 4 and 5 hidden layers. These are ranked during optimisation numerically and trialled,

with the top results shown in Table 3-9.
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Figure 3-26 The actual and predicted performance trend of neural network configurations.

Table 3-9 Trialled top ranked neural network configurations from a single optimisation with the Air foil Self-Noise

dataset
Hidden layer Neurons lrg., MAE
5 16 0.00482 1.62
5 15 0.00522 3.35
5 17 0.00661 1.66
5 18 0.00482 2.23
5 19 0.00661 1.67
5 14 0.00564 2.34
4 15 0.00611 2.09
4 16 0.00564 1.58
5 20 0.00661 2.08

The best model configuration has 4 hidden layers, 16 neurons and a Irse: of 0.00564. Out
of these top models, 7 of them achieved better performance than the closest of the
benchmarks, suggesting that the SELECT method is performing effectively in selecting the

location of the best network architectures.
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A further benefit of this approach is that it can direct the observer to a potentially better
search space for better performance. This can be demonstrated from the example in
Figure 3-26. The red line has a seasonality to it which suggests that as the hidden layers
increase, the performance improves. A further experiment was carried out where the
same dataset was trained over 2-6 layers, rather than 1-5, the belief being that the best
performance would have 6 hidden layers. The results of this experiment are shown in

Table 3-10.

Table 3-10 Trialled top ranked neural network configurations from a single optimisation with the Air foil Self-Noise
dataset (D1) over 2-6 hidden layer search space.

Hidden layer Neurons Learning Rate MAE
6 68 0.00433 1.66
6 67 0.00433 1.59
6 69 0.00433 3.28
6 66 0.00403 1.43
6 70 0.00375 1.72
6 65 0.00403 191
6 71 0.00375 1.82
6 64 0.00403 2.07
6 72 0.00403 1.52

The new best performing model has a MAE of 1.43, the best recorded in all readings for
D1. Table 3-10 shows that all the top ranked performances contain 6 hidden layers,
adding further proof to the effectiveness of the SELECT method. It not only predicts the
best performing configurations, but it can also generate useful insights to uncover

specific search spaces for better performance.
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Computational Expense
The average required time and epochs to achieve the best results for the SELECT method

and benchmarks are shown in Table 3-11.

The SELECT method took an average of between 6525-7073 epochs to find the best
performing configurations over all datasets. When compared to all the benchmarks, the

SELECT method achieved the best result with less epochs on average every time.

Table 3-11 Average and standard deviation of the required computational expense in seconds to achieve the best

result.
SELECT RS GPBO HB TPE

Dataset M SD M SD M SD M SD M SD

D1 989 198 1460 321 1042 692 3267 1188 1193 709
(7073) | (1287) | (11187) | (2463) | (8792) | (5840) | (15783) | (5738) | (12200) | (6571)

D2 658 85 1390 708 1200 546 1937 808 663 494
(7007) = (443) | (12793) @ (6514) | (13234) | (6018) | (11221) @ (4679) | (8720) @ (6455)

D3 730 39 1203 717 1362 427 2632 813 1143 432
(6525) | (375) | (11509) | (6864) | (12837) | (4028) | (13403) | (4140) | (13080) @ (5396)

D4 518 52 559 382 577 352 2557 885 683 340
(7033) (630) | (8502) | (5813) | (9678) | (5905) | (15317) @ (5303) | (12720) (5853)

D5 665 32 733 427 673 241 1827 1314 777 159
(6965) @ (462) (9669) (5627) | (9271) | (3318) | (10043) (7222) | (12200) | (2445)

Average 712 81 1069 511 971 452 2444 1002 891 427
(6921) (640) (10732)  (5456) @ (10762) | (5022) @ (13153) (5416) | (11784) | (5556)

*M = Mean, SD = Standard Deviation, ‘( )’ refers to the number of epochs required to achieve the best
result.

The consistency in results was also better with a standard deviation of 640 epochs over
all datasets for the SELECT method, compared to all the benchmarks having an average

standard deviation above 5,000 epochs.

This is because the SELECT requires a set time for the training set to be completed for the
CGRNN then the predictions are evaluated, which limits the variation in time taken to

complete the optimisation procedure. The other approaches find the better performing
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models through observation of performance, leading to a larger uncertainty of the

epochs required for each optimisation.

The SELET method also took less time than the benchmarks in achieving the best results
on average for each dataset. Averaging over all datasets, the best result was achieved in
712s. When comparing the convergence of all benchmarks, GPBO and RS performed
similarly in both the measurement of time and epochs, and TPE may have taken more
epochs to converge over these two approaches, but it had a smaller epoch time, resulting
in a better convergence time, averaged over all datasets. The HB algorithm had a
significant disadvantage for the epoch quantity due to the nature of this algorithm.
Because the trial followed two iterations through the HB algorithm, sometimes the best
result occurred in the 2" iteration, meaning that the total epochs before the best
performance was significantly higher than the other algorithms. The HB model took
significantly longer than the other benchmarks as the average time per epoch was larger,
taking 2,444s as an average over all datasets. The HB approach would achieve a faster
time if parallel training were to be included, but as this is not included in the study, HB

performed worse than all other algorithms in relation to computational time.

As shown in Table 3-11, for D4: Behaviour of Urban Trafficand D5: Auto MPG respectively,
the time taken by proposed HPO method is significantly closer to that of RS, TPE and
GPBO. This is due to the variation in time per epoch for training the CGRNN model once
the training set is created. Taking D4 as an example, the time taken for the different stages

in the proposed approach are shown in Table 3-12.
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Table 3-12 The required time in seconds for each stage of the SELECT method for dataset D4

Time for Each Trial (s)

SELECT Stages 1 2 3 4 5 Mean | Range
Tune the Learning Rate 21 12 12 11 13 14 10
Create the Training Set 279 267 229 246 265 257 50
Train the CGRNN 132 124 121 123 131 126 11
Predict Learning Curves 54 53 46 54 53 52 8
Best Result Achieved 99 102 58 41 45 69 61

Total Time/Best Result 585 558 466 475 507 518 78
The highlighted SELECT stages in Table 3-12, the training and prediction with the CGRNN,

will always take approximately the same amount of time for every dataset. This is
because the CGRNN trains with traing,., which is created from each dataset and is the
same size regardless of what the initial input data is, with 0.63s per epoch for 200 epochs

to train the CGRNN with the created with traing,,.

With a smaller input dataset, such as ‘D4’, Behaviour of Urban Traffic, which has only 135
instance the CGRNN training time has a larger impact on the total optimisation time of
the SELECT method. The TPE, GPBO and RS models have average epoch times of 0.054,
0.06 and 0.066 respectively, for all epochs during optimisation of ‘D4’. A shorter time is
only achieved with the SELECT method because less training iterations are required to

find the best model.

It can also be seen from Table 3-12 that there is a high level of consistency in the time
taken for each stage of the SELECT method, with the maximum accumulated range of
computational time being 78s over 5 splits of D4. This aspect of the SELECT method can
contribute to the overall effectiveness in guiding users to know and plan for allocated

resource in HPO. The benchmark methods rely on a termination limit or function to end
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the HPO process without a guarantee of finding an optimum result without repeat
comparisons. The SELECT method has a predefined allocation of resource to get to the

solution.

The Scalability of the SELECT HPO Method
As the SELECT method does not require the results of each iteration to guide a surrogate

function like BO based approaches, creating the learning curves for the CGRNN training
set over the search space can be done completely in parallel. This capability for parallel
training is highly significant as all learning curves independently contribute to the of the
SELECT algorithm, there are not multiple steps which interact through searching the
hyperparameter space. BO relies heavily on studying past configurations to guide the
sequential process, and HB may be suitable for parallel training, but it still requires
further steps to choose which of the configurations to continue allocating resources to.
The mechanism in this study can have all the training and prediction learning curves
produced simultaneously, with the only limitation being in computational capability
rather than the algorithmic approach. This characteristic lends to high scalability with

more hyperparameter dimensions.

3.7 Summary
In this chapter, a research gap related to HPO is highlighted. This gap helps to drive the

development of a new HPO mechanism, the SEquential LEarning Curve Training (SELECT)
method, which has a capacity for parallelisation, easy adaptability for new datasets,

which could avoid the elimination of slow converging learning curves and still have a

160 | Page



competitive level of performance compared to existing HPO methods. To the best of
researcher’s knowledge, there has never been an approach which can predict the full
learning curves of unseen neural network hyperparameter configurations in learning

curve prediction.

Being inspired by learning curve prediction, a new method of predicting unseen learning
curves has been developed to predict complete learning curves without the need to train
all the configurations. This SELECT method enables a CGRNN model to predict the best
performance of all configurations of MLP neural networks with a single training window,
treating the learning rate as a dependent function of the loss during the optimisation of
each network architecture. The experimental results have shown that the SELECT method
can outperform RS, HB, GPBO and TPE for prediction accuracy in MAE and computational
cost in both seconds and epochs on well-known datasets, with a higher consistency in
computational expense. The SELECT method has also shown to be able to generate useful
insights into the search of better-performing architectures outside of the initial search
space. It also lends itself to high scalability potential and the function of predefined

resource allocation for finding optimum results.

Taking advantage of the SELECT HPO method, it will be applied to support feature
importance analysis with an aim to identify Critical Success Factors (CSFs). Such analysis

will be discussed in the following chapter.
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4 Feature Importance Analysis
4.1 Introduction

With the help of the SELECT method, a better-tuned or optimised model can be used to
identify the contribution of important features, also known as Critical Success Factors
(CSFs) within the data and their intricate relationship with the performance metric. This
study examines the integration of the optimised model by the SELECT method and three
well-known feature importance algorithms to provide a holistic interpretation of feature

importance.

This chapter first explains the three feature importance tools employed in this research;
Shapley additive explanations (SHAP) (Lundberg and Lee, 2017), local interpretable
model-agnostic explanations (LIME) (Ribeiro et al., 2016a) and Permutation Feature
Importance (PFI) (Altmann et al., 2010), highlighting their capabilities and nuances. The
impact of the SELECT method on the performance of feature importance analysis is then
validated. The subsequent goal is to embed the SELECT method, and the three feature
importance tools, as an integrated function, into the DSS, which will be discussed in the

next chapter.

To affirm the efficacy and reliability of the SELECT method for feature importance, a

rigorous evaluation has been undertaken. This involved two stages of analysis:

1. A comparison of the SELECT method against the same established benchmark

HPO algorithms from Chapter 3 for feature importance analysis.
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2. A comparison of the three selected feature importance algorithms using models

optimised by the SELECT method.

The validation process extends to both synthetic and real-world datasets, encompassing
scenarios with complex and non-linear relationships between features and performance
metrics. Through this comprehensive validation, the robustness and generalisability of
the SELECT method is put to the test, paving the way for its integration into the real-world

decision-making system.
This chapter will be structured as follows:

e An overview of the three feature importance algorithms will be given.
e Stage 1 and stage 2 of feature importance experiments will be explained.

e The results of the experiments will be presented and discussed.

4.2 Selected Feature Importance Analysis Tools

To obtain an accurate understanding of the interrelationship between important features
and key performance metrics, feature importance tools are useful to extract such
information from an optimised or fine-tuned neural network model, which is often

regarded as a black box.

SHAP, LIME and PFI have been used in previous research in combination for feature
importance analysis (Kuzlu et al., 2020). These tools have been deemed useful for
interpreting relationships and actioning insights from deep learning applications and

areas of construction (De Bock et al., 2023, Love et al., 2023). SHAP and LIME have been
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frequently utilised owing to their adaptability and the consideration of both local and
global feature importance analysis (Chen et al., 2023, Machlev et al., 2022) while PFI has
shown to have similar level of capability to SHAP for feature selection (Effrosynidis and
Arampatzis, 2021). Each of these approaches to feature importance analysis will be
explained next, followed by an explanation of their advantages and disadvantages.
4.2.1 Shapley Additive Explanations (SHAP)

SHAP is a method of providing insights into the contribution of individual features to the
predictions of a ML model. It is rooted in cooperative game theory and utilises Shapley
values, a concept that originated from fair distribution in cooperative games (Lundberg

and Lee, 2017).

In the context of ML, SHAP can generate Shapley values accurately depicting the impact
of each feature on a model's predictions among all the features(Marcilio and Eler, 2020).
Its primary mechanism is to consider all possible combinations of features and calculate
the average contribution of each feature, ensuring that each feature is given a fair share
of the credit for the model's output. The calculation of the Shapley values is based on
determining what the importance of each feature’s contribution is to the overall
prediction through averaging all subset combinations of features within a group.

4.2.2 Local Interpretable Model-agnostic Explanations (LIME)

LIME is a method designed to offer insights into the contribution of individual features to
the predictions of ML models, particularly at the local level. Unlike SHAP, LIME focuses

on creating local and interpretable explanations for specific instances rather than
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considering the entire dataset. It can be applied to any ML models without requiring
knowledge of its internal structure. LIME values the idea of creating simplified and
interpretable "local models" that approximate the behaviour of the complex, black-box
model for a specific instance. Its primary mechanism involves generating perturbations
or slightly modified versions of the input data and observing how the model's predictions
change (Ribeiro et al., 2016b). By fitting a simple, interpretable model to these perturbed
instances, LIME can provide an understanding of feature contributions for a particular
prediction. The key focus of LIME is to locally approximate the complex model's decision
boundary, offering a simplified view that is easier to interpret. This local interpretability
is valuable for understanding why a model made a specific prediction for a given instance,
even when the overall model may be intricate and challenging to interpret.

4.2.3 Permutation Feature Importance (PFl)

PFl is a method designed to uncover the impact of individual features in influencing the
predictions of ML models. Like LIME, it can be applied to any ML algorithms regardless of
its internal structure. PFl is particularly valuable for assessing the impact of features on a
global scale, offering insights into their overall importance for the model. The method
involves systematically permuting or shuffling the values of a single feature and keeping
the other features unchanged while making predictions. By doing so, the importance of
the shuffled feature is assessed by observing the change in the model's performance
metrics. The greater the impact on the model's performance when a feature is randomly

shuffled, the more important that feature is (Altmann et al., 2010). PFI provides a
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straightforward and intuitive measure of feature importance. Features that, when
permuted, lead to a significant drop in model performance are deemed highly important,
while those with minimal impact are considered to have lesser importance. This method
is particularly useful for gaining a global understanding of feature importance, helping to
identify key drivers in the overall predictive capacity of the model. The advantage of PFI
lies in its simplicity and effectiveness in evaluating feature importance without relying on
intricate model-specific details. It offers a practical and widely applicable means of

assessing the contribution of individual features to the predictive power of ML models.

4.2.4 Strengths and Weaknesses for the Feature Importance
Methods

Each of these feature importance algorithms have their own strengths and weaknesses,
as shown in Table 4-1. The combination of the three feature importance methods; SHAP,
LIME, and PFI, reflects an effective yet diversified approach of understanding the
intricacies within prediction models. Recent research has also shown to use multiple
feature importance methods for a holistic understanding of the important factors in
decision support (Khanna et al., 2023, Settouti and Saidi, 2024). The use of multiple
methods can provide a greater scope of the important factor related to model

performance.

SHAP offers both global and local interpretability, underpinned by a solid mathematical
foundation, making it effective for exploring feature interactions and unbiased feature

evaluation. However, its computational complexity and sensitivity to data shape pose
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challenges, especially in high-dimensional spaces. LIME excels in local interpretability,
simplifying the analysis of complex models and showcasing versatility across varying data
types and sizes. Despite its proficiency in capturing non-linear feature relationships, LIME
may struggle to evaluate global trends and can be sensitive to data perturbations. On the
other hand, PFI, with its simplicity and fast computation, provides robust insights into
global trends while exhibiting resilience through duplicate assessments. Although PFl has

limitations in uncovering feature interactions and determining correlation direction, its

speed and simplicity make it a valuable addition.

Table 4-1 Strengths and weaknesses of the selected feature importance methods; SHAP, LIME and PFI

Method
Shapley
Additive
Explanations

Local
Interpretable
Model-
agnostic
Explanations

Permutation
Feature
Importance

Abbreviation
SHAP

LIME

PFI

Strengths

¢ Global and local interpretability
¢ Solid mathematical grounding

* Thorough examination of feature
interaction

¢ Unbiased evaluation of each
feature

* Visualise correlation direction and
magnitude

e Effective for non-linear feature
relationships

e Local Interpretability focus

* Simplifies complex models in
analysis

* Visualise correlation direction and
magnitude

¢ Versatile over varying data types
and sizes

e Effective for non-linear feature
relationships

¢ Simple computation and fast

¢ Global trend analysis

* Robustness through duplicate
assessments

Weaknesses

e Computationally
complex

e Sensitivity to data
shape

e Difficult
interpretability for
high dimensionality

¢ May not evaluate
global trends

* Sensitive to data
perturbations

e Limited feature
interaction insight

e Cannot determine
correlation direction.
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Integrating a neural network optimised with the SELECT method with all three of SHAP,
LIME, and PFI, into the DSS leverages the strengths of each method while mitigating their
respective weaknesses. This holistic approach ensures a more nuanced and reliable
assessment of feature importance, catering to diverse aspects of model interpretability

and accommodating various data characteristics.

4.3 Validation Method of Feature Importance Tool

The validation of the SELECT method for feature importance covers two stages of

experiments. The two stages can be recalled as follows:

e The first stage is the comparison between the feature importance performance
of the neural network model optimised by the four benchmarking HPO methods
(TPE, HB, RS and GPBO) against that of the model optimised by the SELECT
method; and

e The second stage is to examine the performance of the SELECT method combined

with each of the three selected feature importance tools, SHAP, LIME and PFI.

The validation will be discussed by first explaining the chosen datasets for feature
importance and the rationale for their selections. This will be followed by an explanation

of the experimental setup for each stage, and then the results and discussion.

4.3.1 Datasets Selection

The challenge in utilising real-world datasets for feature importance analysis lies in the

absence of a ground truth level of understanding for feature interactions; a ground truth
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being the true feature importance, rather than the interpretation of importance which

can be skewed by uncertainty and analysis characteristics.

A definitive advantage of using synthetic datasets for feature importance is the ability to
control the experiment characteristics such as the quantity of irrelevant features, the
instances of data or the noise levels. Additionally, working with the known optimal

features allows for a high level in confidence in the results (Bolon-Canedo et al., 2013).

Comparing feature importance solely against the performance and interpretations of
previous studies limits the ability to establish a definitive benchmark. As highlighted in
Table 4-1, each feature importance algorithm has its own set of strengths and

weaknesses, a pattern observed across various areas of model interpretability methods.

Recognising the nuances inherent in different feature importance tools, this study seeks
a robust evaluation strategy. To ensure a comprehensive understanding of the SELECT
method's performance, the feature importance experiments will encompass both
synthetic and real-world datasets, like approaches from previous studies on feature
importance (Rudnicki et al., 2015, Zeng et al., 2015). The inclusion of synthetic datasets
allows for a controlled exploration of the methodologies, while real-world datasets
introduce complexities of those encountered in practical applications. This dual approach
aims to provide a nuanced and holistic assessment of the feature importance methods,

considering their adaptability across varying data types and scenarios.
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The utilisation of synthetically created datasets offers distinct advantages in the context
of feature importance analysis. Notably, the relationships between features within
synthetic datasets are predefined, providing a clear and known ground truth for feature
interactions. This inherent understanding of feature relationships serves as a valuable
reference point, enabling a more precise evaluation of how well feature importance

methods capture and interpret these known interactions. (Bolon-Canedo et al., 2013).

Synthetic datasets provide a controlled environment for experimentation. The flexibility
to manipulate the number of features, instances, and the level of noise allows for
systematic exploration of how feature analysis methodologies adapt to variations in
dataset characteristics. By intentionally introducing variations in synthetic datasets, a
deeper understanding can be gained of the methodologies' performance across a

spectrum of dataset complexities.

Real world datasets capture the true complexities of actual data. This includes uneven or
non-standard distribution, outliers in the data and natural noise levels. Evaluating the
feature importance tools against real world datasets provides an authentic evaluation of
performance. Regarding the evaluation, this would be compared to the findings of other

research in the results section of this chapter.

The chosen datasets for both Stage 1 and Stage 2 of the experiments are shown in Table

4-2, with the number of features used in each dataset, the instances (rows) and the range
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of noise levels (uncertainty) generated for testing. The datasets shown in Table 4-2 will

be further explained in the sub-sections ahead.

Table 4-2 Datasets for feature importance validation

Stage Dataset Reference Nature Features Instances @ Noise levels
500 0%,5%,10%,20%
1st: HPO 10
Method make_friedmanl (Pedregosa et Synthetic 1,000 0%,5%,10%,20%
K al., 2011) 20 500 0%,5%,10%,20%
Comparison . .
make_friedman2 Synthetic 4 500 0%,5%,10%,20%
10 500 0%,5%,10%,20%
make_friedmanl (Pedregosa et Synthetic 1000 0%,5%,10%,20%
al., 2011) 20 500 0%,5%,10%,20%
make_friedman2 Synthetic 4 500 0%,5%,10%,20%
Concrete (Geifman and Real 8 1030 N/A
Compressive El-Yaniv, 2019,
2nd: Feature | Strength Muliauwan et
Importance al., 2020,
Validation Asteris et al.,
2021)
Boston Housing (Oh, 2019, Real 13 506 N/A
Adetunji et
al., 2022,
Calvo-Pardo
et al., 2023)

4.3.2 Datasets for Stage 1- HPO Method Comparison

The purpose of the stage 1 is to investigate the performance of different HPO approaches
in determining the relationships between input features and the target prediction
variable in data. Synthetic datasets, namely make_friedman1 and make_friedman2 from
the scikit-learn python library, were deliberately chosen to create controlled
environments with predefined relationships between the features and the target
prediction variable. Each dataset is originally created in (Friedman, 1991) and is
representative of complex relationships between the prediction and the input features,
each specifically used for benchmarking ML model performance, and for feature analysis.

Each of the selected datasets will be discussed next.
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Make Friedmanl
The make_friedmanl dataset was originally developed for the purpose of avoiding

finding relationship structures when they are not there, and to ensure they are found
when they are (Friedman, 1991). Implemented as a Python package in the scikit-learn
library, it serves as a valuable tool for assessing the capabilities of algorithms in handling
non-linear feature relationships (Pedregosa et al., 2011). This dataset is particularly
useful for evaluating the robustness of algorithms in handling diverse feature
relationships, including non-linear components, and the impact of noise on predictive
accuracy. It has been used in many studies as a benchmark for feature importance and

selection (Breiman, 1996, Bugata and Drotar, 2023).

The dataset generation involves the calculation of labels (y) for each instance using
Equation 10. This equation incorporates five variables ranging between 0 and 1, including
co-dependent and cyclical features (x;, x2), a non-linear feature (xs), and two linear
features with variations in weighted magnitude (xs, xs). Equation 10 also incorporates a
standard deviation of the gaussian noise to introduce variability in the data (€), ranging
between 0 and 1. Users have the flexibility to specify the number of instances, features,

and the level of noise in the dataset. Notably,

e Increasing the number of features adds unconnected variables, thereby

challenging algorithms to discern the true relationships defined by Equation 10.
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e The noise level introduced uncertainty in a normally distributed range, controlled
by user-defined parameters, provides a dynamic range of complexity for

algorithm analysis.
y = 10 sin(mx;,x3) + 20(x5 — %)2 + 10x, + 5x5 + € (10)

Make_Friedman?2
The make_friedman2 dataset is taken from the same source material as make_friedman1l
(Friedman, 1991) and utilises a different complex relationship between the label (y) and

input variables. Equation 11 is created from the calculation of impedance (Z) for a simple

alternating current series circuit as illustrated in Figure 4-1.

S

Figure 4-1 Simple alternating current series circuit and equation for impedance (2)

1
Z(R,w,L,C) = |(R? L——)?
(Rw,L,C) = |(R?+ (0L ——)

(1)

Equation 11 has a highly interconnected relationship between the individual

contributions of each of the variables, such that the selected range of each variable can
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alter the ranked importance significantly. The developed make_friedman2 equation is
created from Equation 11, incorporating the variable ranges shown below to produce

Equation 12.

0 < x; <100

40 < x, < 5601

OSx3S1

(2)

Equation 12 captures the complexity of the impedance calculation while introducing
variability as the standard deviation of gaussian noise (g). It does not contain any
unconnected variables for analysis, but the complexity and interconnected relationship
is higher than that of make_friedman1 and will challenge the optimised model to detect
this sophisticated relationship to achieve high predictive accuracy and evaluate the true
feature importance. This is the second of the Friedman benchmark datasets, used in
previous feature selection and importance analyses(Tipping, 2001, Kamalov, 2021,

Granitto et al., 2005).
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Exploration Overview and Dataset Variation
As shown in Table 4-2, both the choice of experiments and dataset variations are

determined to offer a thorough assessment of the HPO methods in the context of feature

importance analysis.

Beginning with make_friedman1, the variations in dataset are explained below.

The inclusion of both relevant and unconnected features aims to evaluate the
models' capacity to differentiate between meaningful and unrelated elements.
This is evaluated by testing with both 5 and 15 additional unconnected variables
from Equation 10. The 5 additional features are the default number while the 15
is to provide added difficulty.

Further exploration at varying dataset sizes 500 and 1,000 instances provides
insights into the potential influence of data scale on model performance.

Each of these analyses covers a variation of noise levels ranging from no noise
(e=0) through lower levels of noise (€=0. 5 and €= 1) up to high levels of noise
(e=2), as has been defined in previous research (Granitto et al., 2005). This
equates to a range of error of approximately 0%, 5%, 10% and 20% of the final y
values with no noise when checked on both the 500 and 1,000 instance datasets.
The addition of the increasing noise levels examines how well models handle
uncertainty, aligning with real-world scenarios where data can be inherently

noisy.
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Extending the analysis to include make_friedman2,

e Characterised by complex interactions among features, adds further depth to the
evaluation, tested with 500 instances.
e The same percentage of noise range for uncertainty as friedmanl1 is tested, 0%,
5%, 10% and 20% of the range of error of the final y values with no noise.
4.3.3 Datasets for Stage 2- Feature Importance Method Validation
The second stage of the experiment is to validate the SELECT method in conjunction with
the chosen feature importance algorithms. The key objective is to scrutinise performance
variations and interpretations across three chosen feature importance tools, namely

SHAP, PFI, and LIME, when coupled with models optimised by the SELECT method.

This assessment seeks to provide comprehensive insights into the combined efficacy and
interpretability of these feature importance methodologies. To facilitate these
evaluations, both synthetic datasets, make_friedmanl and make_friedman2, will be
examined under the same variations in noise levels, covering 0% noise for a ground truth
interpretation, increasing the noise to 5%, 10% and 20% for low to high uncertainty. In
addition to the synthetic datasets, the validation process also incorporates real-world
datasets to authentically represent the potential impact of combining the three feature
importance tools. To achieve this purpose, two specific real-world datasets Boston

housing and concrete compressive strength, are chosen and they will be described next.
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Boston Housing Dataset
The Boston Housing dataset is a widely utilised dataset in ML and statistics (Oh, 2019,

Adetuniji et al., 2022, Calvo-Pardo et al., 2023), consisting of 506 instances. Each instance
represents various properties of houses in Boston suburbs, encompassing 13 features.
These features include the per capita crime rate, average number of rooms per dwelling,
nitric oxides concentration, and others. The target prediction variable is the median value
of owner-occupied homes (MEDV). The dataset is popular for regression tasks, serving as

a benchmark for assessing the predictive capabilities of various algorithms in the field.

Concrete Compressive Strength Dataset

The Concrete Compressive Strength dataset is designed to evaluate the compressive
strength of concrete and comprises 1,030 instances. Each instance represents a concrete
mix with various ingredients, including cement, blast furnace slag, fly ash, water,
superplasticiser, coarse aggregate, and fine aggregate. The target prediction variable is
the compressive strength of the concrete. It is frequently employed to assess the
performance of predictive models in estimating the strength of concrete based on its

composition (Geifman and El-Yaniv, 2019, Muliauwan et al., 2020, Asteris et al., 2021).

Integrating these real-world datasets into the second stage of the experiment helps to
validate the SELECT method under conditions that mimic real-world situations and

enable fair comparisons against other studies using the same datasets.
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4.3.4 Experimental Setup for Stage 1- HPO Method Comparison

The experimental setup for the comparison of the SELECT method against the benchmark
algorithms for feature analysis is expressed in Figure 4-2. This process will repeat for all
variations in dataset stated in Table 4-2 for the HPO method comparison, and for a 5-fold

split of each variation of the synthetic datasets.

make_friedmanl:
instances = 500, 1000

disconnected features =5 |15

Luad Datasat J‘ — == == noise = 0%, 5%, 10%, 20%
make_friedman2

instances = 500

noise = 0%, 5%, 10%, 20%

Optimise Hyperparameters = == = SELECT, TPE, BO, HB, RS

|

Test Neural Network Accuracy = = = = MAE on test set

v

Measure Feature Importance «— — —| Permutation Importance

[ Model MAE || Feature Importance Weights |

Figure 4-2 Experimental setup of Stage 1

HPO Method Configuration
The evaluation process begins with the selection of the best-performing neural network

configuration for each HPO method, following the procedures detailed in section 3.6.3.
Optimal configurations are chosen and predictions are made on the test set to assess the

model prediction accuracy, utilising the Mean Absolute Error (MAE) as the performance
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metric. This ensures a common ground for evaluating prediction accuracy across all HPO
approaches through all experiments and variations in dataset. As it was determined that
the best performance of the benchmark algorithms was achieved with an epoch limit of
200, rather than the extended limit, this epoch limit is used for benchmark algorithms in

all experiments in Stage 1.

Choice of Feature Importance Tool
With the selected best performing model, feature importance analysis using PFl is carried

out. PFl is chosen as the preferred method for evaluating different HPO approaches
primarily due to its robust global evaluation and simplicity, for repeatable experiments
with neural networks, with highly similar performance to SHAP(Chen et al., 2024,

Mandler and Weigand, 2023).

Feature Importance Assessment Method
Using PFI, features will be systematically analysed and ranked based on their impact on

model performance measured by MAE. This is achieved through determining the
accuracy of the model in MAE, then shuffling a feature and measuring the difference in
accuracy; the larger impact on MAE suggests higher importance. The shuffling is random
so the PFI method will repeatedly record the importance weight of the features 10 times
and the average weight will be calculated for all features with every optimised model to
reduce bias from the randomness in the perturbations in PFl while achieving

computational efficiency without parallelisation (Altmann et al., 2010).
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To enhance the robustness of the stage 1 evaluation, the entire process, highlighted in
Figure 4-2, from HPO for the optimum prediction model to feature importance analysis,
is repeated using a 5-fold cross-validation approach (Parr et al., 2024). The MAE values
for the optimised model accuracy, and the feature importance ranked results will be
recorded for each split of the dataset. The model accuracy and feature rankings will then
be averaged over all 5 splits to present the result in both predictive accuracy and the

feature rankings.

4.3.5 Experimental Setup for Stage 2- Feature Importance
Validation

As highlighted earlier in this chapter, each feature importance tool has its own strengths
and weaknesses. The development of the DSS will include all three well-known feature
importance tools, SHAP, PFl, and LIME, to offer multiple ways of evaluating the feature
importance within the same data. As a further assessment to the validity of SELECT
method, the integration of the SELECT optimised ANN model and each of the feature
importance tools will be tested and compared to ensure efficacy as well as consistency
in performance. Figure 4-3 shows experimental setup of Stage 2 to produce the feature

importance weights using each of the three methods.
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make_friedmanl:
instances = 500
disconnected features =5
noise = 10%

Load Dataset |1- ={ make_friedman2

instances = 500
noise = 10%

Boston Housing
Concrete Compressive

Optimise Hyperparameters ) = - - - -

Permutation Importance
Measure Feature Importance [« — = SHAP Importance

l LIME Importance

)

Feature Importance Weights

Figure 4-3 Experimental setup of Stage 2.

SELECT Method Configuration
The SELECT method will be set up in the same way as presented in Stage 1 to ensure

consistency. The selected configuration will be trained once, and the same optimised

model will be used for all feature importance tools to allow fair comparisons.

Feature Importance Configuration and Repetition
As each of the three feature importance methods employs a different mechanism of

measuring the importance of features, it is essential to define a common ground. For
both SHAP and LIME, the local importance determined for each instance is accumulated
to determine a global importance for each feature. The PFl utilises the MAE metric to
obtain an absolute global measurement of each feature’s impact on model performance.

Having the global importance from each method, the relative importance of each feature
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can then be calculated using Equation 13. The relative importance, as a common ground,
can be used as the metric to compare three different feature importance tools. All three
feature importance tools have undergone testing using a 5-fold split and the average
importance for each feature is calculated across each tool.

Le1ative = Relative importance of the i-th feature.

I; = Importance value of the i-th feature.

2=11j = Sum of all feature values

Lrelative = n
j=17
(13)

4.4 Results and Discussion

To recall, Stage 1 aims to compare the predictive performance and feature importance
performance between the SELECT method and four benchmarking HPO algorithms using
ONLY synthetic datasets. Such comparison encompasses the MAE to define predictive
performance across all experiments, and the use of PFl to define the feature importance
performance. Using the same SELECT method, Stage 2 aims to compare feature
importance measurement across three well-known methods: SHAP, LIME, and PFI using
BOTH synthetic and real-world datasets.

4.4.1 Stage 1- HPO Method Comparison

This section is broken down into the evaluation of each model’s predictive accuracy, using
MAE as a metric, followed by the comparison of the feature importance using PFl. The
evaluation involves the use of two synthetic datasets, make_friedmanl and

make_friedman2.
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Stage 1 MAE Performance
The average MAE results over the 5-fold cross-validations for all variations of the

synthetic datasets for the SELECT method and benchmark algorithms are shown in Table

4-3.
Table 4-3 Average of the MAE for all HPO methods averaged over a 5-fold split
Dataset Instances Features HPO Method 0% 5% 10% 20%
SELECT 0.36 0.76 1.26 2.21
TPE 0.69 13 1.5 2.46
(+94%) (+69%) (+19%) (+11%)
GPBO 1.37 1.55 1.84 2.47
10 (+284%) | (+102%) | (+46%) (+12%)
HB 1.01 1.18 1.71 2.53
(+184%) (+55%) (+35%) (+15%)
RS 0.96 1.2 1.65 2.57
500 (+169%) (+57%) (+31%) (+17%)
SELECT 0.87 131 1.73 2.62
TPE 1.58 1.74 1.97 2.93
(+81%) (+33%) (+14%) (+12%)
. 1.82 1.94 2.27 3.14
make—f;'e"ma" 20 GPBO (+109%) | (+48%) | (+31%) | (+20%)
HB 1.9 1.98 2.12 3.02
+118% +51% +23% +15%
(+118%) (+51%) (+23%) (+15%)
RS 1.85 2.06 2.1 3.17
+113% +57% +22% +21%
( %) (+57%) (+22%) (+21%)
SELECT 0.25 0.56 1.04 1.96
TPE 0.3 0.77 1.32 2.2
(+21%) (+37%) (+28%) (+12%)
GPBO 0.8 0.8 1.21 2.28
1000 10 (+221%) (+44%) (+17%) (+16%)
HB 0.46 0.8 1.19 2.19
(+86%) (+43%) (+15%) (+12%)
RS 0.48 0.79 1.23 2.26
(+94%) (+42%) (+19%) (+15%)
SELECT 8.03 24.59 48.69 92.42
TPE 13.76 37.1 64.33 100.73
(+71%) (+51%) (+32%) (+9%)
. 14.37 75.47 49.92 104.87
make—f;'e"ma" 500 4 GPBO (+79%) | (+207%) | (+3%) (+13%)
HB 11.65 29.97 51.64 96.5
(+45%) (+22%) (+6%) (+4%)
RS 12.8 31.08 51.44 92.64
(+59%) (+26%) (+6%) (+0.2%)

Note: ‘() refers to the percentage difference between the benchmark metric and the CGRNN result.
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MAE Performance: Make_friedman1(instances=500, features=10)
Looking at the make_friedman1(500,10) with 0% noise level(5 features are

disconnected), the model optimised by the SELECT, as the datum model, has a MAE of
0.36 with the nearest accuracy being TPE optimised model of 0.69 (94% more than the
SELECT at 0.36). The GPBO optimised model is the worst performing among all
benchmarks, achieving an average MAE of 1.3 (284% higher than SELECT or +284%). The
performance gaps among all models becomes smaller when the noise level increases.
With no noise, the benchmark HPO optimised models achieved an MAE which was 94%
and 284% higher than the SELECT method. At 20% noise level the SELECT method

outperformed the benchmark HPO methods by only 11% to 17%.

As the noise level increases, the achievable accuracy reduces for all optimisation
algorithms, even if one is performing better than the others. The SELECT method still
achieves a higher accuracy but the achievable result for all methods gets impacted by the
increasing noise. As the SELECT method has the highest accuracy at lower noise levels, it
will receive a higher relative impact with more uncertainty than the other algorithms.
This can also be seen by the fact that MAE increases with noise level for all experiments,

as shown in Figure 4-4.
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Figure 4-4 Average MAE vs Noise level, for all variations of synthetic dataset

MAE Performance: Make_friedman1(500,20)
When increasing the number of features to 20 (15 are disconnected features), MAE

increases for all noise levels and all HPO algorithms. This suggests that the increasing
number of disconnected features negatively impacts a model’s capability to detect
relationships and hence, decrease predictive accuracy. This matches a similar trend seen
in previous research with ANN predictive accuracy reducing with increasing disconnected

feature quantities (Vecoven et al., 2020, Rengasamy et al., 2021).

MAE Performance: make_friedman1(1000,10)
On the other hand, Table 4-3 shows that increasing the number of instances of the

dataset to 1,000 while keeping the same features (10) helps to improve predictive
accuracy over all variations in noise as well as all HPO algorithms. One reason is that

larger instances enable the models to learn from more data, generating a better
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understanding of the relationships within the dataset. This matches a trend shown in
(Kramer, 2016) where the performance of the prediction mode improves with the
increasing number of instances. The same reference also agrees with the earlier

observation that performance decreases with increasing feature quantities.

MAE Performance: Make_Friedman?2
Once again, with the make_friedman2 dataset, the SELECT method consistently found

better performing models by returning lower MAE results than other benchmark HPO
algorithms. At 0% noise level, the models optimised by benchmark HPO methods
achieved a MAE that was 45% to 79% higher than the models optimised by the SELECT
method. This range of difference between the SELECT method and the benchmarks
decreased as the noise level increased to 20%, an observation that can be noted with the

make_friedman1l dataset as shown in Figure 4-4.

As with make_friedman1, the MAE increases with all HPO models in a steady trend with
the increase of noise from 0% to 20%. There is a noticeably high MAE for GPBO at 5%
noise. This is due to a single result from the 5-fold split of GPBO achieving a MAE of 250.3,
well above all other results for all other HPO algorithms at 5% noise with the
make_friedman2 dataset. Excluding this single result, the GPBO average MAE at 5%

would be 31.8; more in line with the trend seen with all other HPO algorithms.

Absolute Feature Importance: Comparison of HPO Algorithms
After proving the predictive accuracy and robustness of the SELECT method with MAE

performance, the next step of Stage 1 is to evaluate how well the model optimised by
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SELECT can interpret the importance of key features when compared against the model

optimised by the benchmark HPO algorithms.

The absolute feature importance results were obtained using the PFI method over a 5-
fold split for both the SELECT method and the benchmark algorithms. The comparisons
encompass both the make_friedmanl and make_friedman2 datasets, with variations in
instances and features. Throughout these experiments, the noise level ranges from 0%
to 20%, introducing varying degrees of uncertainty. All experimental results of this

section will be presented and discussed with the help of PowerBI software.

Absolute Feature Importance: Make_friedman1(500,10)
Figure 4-5 shows the feature importance from the SELECT model and the benchmark HPO

algorithms. All algorithms can distinguish clearly the 5 connected variables, X1-X5, from
the disconnected variables. Also, there is a clear and consistent ranking of feature
importance descending from X4, X2, X1, X5 and X3, generated by all approaches. This
ranking agrees with previous literature on the true ranking of the relevant features,
termed as the “Friedman 1 Benchmark” (Greenwell, 2022). This has also been covered
thoroughly by (Greenwell et al., 2020), who used the Friedman 1 benchmark with
multiple machine learning models, and feature importance methods, including the
combination of ANNs and PFI. Nearly all results pointed to the same ranking, with some
variation in determining the equivalent ranking of X5 and X3. This shows that all HPO
methods, combined with PFI, successfully assign importance in alignment with previous

research.
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Figure 4-5 HPO Feature Importance, make_friedman1, 500 instances, 10 features, 0% -20% noise.
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Figure 4-5 clearly shows that the SELECT method has assigned a higher importance to the
relevant features over the benchmark HPO methods at 0%,5% and 20% noise levels
respectively. Compared to the SELECT method, TPE has assigned a slightly higher
importance at 10% noise to features X4 and X2, while achieving the same at X5 and less
at X3 and X1. Despite the similar importance ranking to TPE, the SELECT method managed
to achieve a better accuracy of MAE = 1.26 (MAE of TPE is 1.5), as shown in Table 4-3.
This suggests that the feature importance assigned by the SELECT method is a more

accurate interpretation of CSFs within the dataset.

Absolute Feature Importance: Make friedman1 (1000,10)
Figure 4-6 shows the feature importance ranking of make_friedman1 with 1000 instances

and 10 features. Again, the SELECT method has assigned a higher importance to the
features for all noise levels. At 0% noise level, TPE achieves a similar level of performance
but then progressively performs worse as compared to the SELECT method when noise
levels increase. HB, on the other hand, improves comparatively as noise levels are
increased. GPBO is the overall worst of all HPO methods, most notably failing to identify

the significance of X3 at 20% noise level.
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Absolute Feature Importance: Make_friedman1(500,20)
Increasing the feature quantity from 10 features to 20 features in make_friedman1 will

increase the quantity of disconnected features from 5 to 15, as the same X1-X5 features
produces the ‘y’ prediction value but with an additional 10 randomly generated numbers
for each instance. In other words, the important features only represent 5/20 = 25% of

the features in the dataset, making the differentiation more challenging.

The results from this feature importance test are shown in Figure 4-7. Once again, all
HPO methods were able to differentiate X1-X5 from other disconnected features

although the GPBO model did not identify X3 as relevant at the noise level of 20%.

All HPO methods except TPE determined the correct ranking of X4, X2, X1, X5 then X3
throughout all noise levels. Both TPE and the SELECT method assigned the highest level
of importance to the relevant features throughout, with the novel approach assigning
the highest amount of importance at both 0% and 5% noise levels, while TPE assigned
more importance at 10% and 20% noise levels. It is noted that even TPE can assign a
higher importance to the same feature than the SELECT method, it does not necessarily
mean that TPE is a better method. The emphasis is that the assignment of a “correct”
importance to a feature must accurately describe its influence over the target variable
leading to a better prediction. This is evident from the fact that the SELECT method was
able to obtain a higher MAE than TPE at 10% and 20% noise levels in this dataset, shown

in Table 4-3.
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Absolute Feature Importance: Make friedman2(500,4)
The results of the absolute feature importance with the make_friedman2 dataset with

500 instances and 4 features can be seen in Figure 4-8. All HPO methods produced
models assigned a feature ranking of X3, X2, X1 then X4, which was the same as a
previous work, (Kamalov, 2021). The absolute feature importance of X3 ranges between
237-306 and that of X2 between 192-247, in which both are significantly higher than the
absolute feature importance of X1 between 1.8-4.1 and that of X4 between 0.2- (-2.2).

These results can be explained by Equation 12, as shown below.
0 < x; <100

40 < x, <5607

(3)

1
, ranges
X2X4

Using the equation for y, the range of x,x; goes between 0-1759, and,

between 5x107 - 8x10-3 meaning that the significance of X4 is negligible inside the same
brackets; regardless of which value between 1-11 (equation 12) is generated, X4 will have
little impact on the model performance. The significant value of x,x; would then be

squared, resulting in a potential range between 0-3.1x108, dwarfing the potential impact
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of the x;2 component which would range between 0-1x10*. This would suggest that X2
and X3 have the largest impact, followed by X1 and then X4. The absolute feature
importance results obtained by all HPO methods are well-aligned with this logic. This also
agrees with a previous study, (Liu and Liu, 2020), which utilised several ML models to
analyse the top attributes in make_friedman2, highlighting the X2 and X3 variables as
both significantly important but failed to detect the importance of X4 and X1. This may
be due to a sub-optimal underlying model in (Liu and Liu, 2020), which further

emphasises the benefit of HPO for ANN based feature importance.

The SELECT method has assigned the highest importance overall to the most significant
features. Being the only method, the SELECT method was able to identify the positive
importance of X4 at both 0% and 5% noise levels. Combining this with the better
prediction accuracy for all noise levels, the SELECT method continues to show evidence

of superior capability in recognising the feature relationships within this dataset.
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4.4.2 Stage 2: Feature Importance Validation
From Stage 1, the model optimised by the SELECT method not only demonstrates higher

predictive accuracy, but also greater ability to differentiate influential features from non-
influential ones. Stage 2 will compare the performance of different feature importance
methods on the SAME model optimised by the SELECT method. The three well-known
feature importance tools including SHAP, PFl and LIME will be examined with their

relative importance following the same process as discussed in Section 4.2.5.

With the help of PowerBl software, the feature importance analysis will be discussed over
the make_friedmanl dataset and its variations, followed by the make_friedman2
dataset and its variations. The two real-world datasets, Boston Housing and Concrete
Compressive Strength datasets will be examined, followed by the discussion of the

experimental results.

Relative Feature Importance: Make friedman1(500,10)
Beginning with the make_friedmanl dataset with 500 instances and 10 features, the

graphs of the feature importance at all noise levels can be seen in Figure 4-9. All methods
of feature importance have distinguished between the 5 connected variables and the
latter 5 disconnected variables, while the order is interpreted differently. These results
are consistent throughout all noise levels, highlighting a robustness in each feature

importance method.
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Figure 4-9 Validation Feature Importance, make_friedman1, 500 instances, 10 features.

Both SHAP and PFl can generate the sa

me ranking of features which is X4, X2, X1, X5 and

then X3 in descending levels of importance. Specifically, PFI allocates higher importance

values to X4, X2 and X1, than SHAP, and SHAP assigns lower importance values to X5 and
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X3 than PFI. Despite the above differences, these two approaches are deemed similar in

terms of feature importance analysis.

LIME method, on the other hand, has returned a different feature ranking by assigning a
much higher importance values to X2 and X3, than X4, resulting in a ranking of X2, X3,
X4, X1 and X5, as opposed to the ranking, X4, X2, X1, X5, and X3, obtained by SHAP and
PFI methods. This ranking suggests that LIME method allocates higher importance values
to X3 and places X2 over X4. These differences indicate that LIME might be capturing local
nuances in the model's behaviour that differ from the global perspective given by PFl and
SHAP. This also implies that, in certain instances, X3 exhibits a higher level of importance
compared to others. This can be analysed in reference to the make_friedman1 equation,

shown again below.

y = 10 sin(mx;x;) + 20(x5 — %)2 + 10x, + 5x5 + €
(4)
X3 is part of a squared component and inside a bracket where the 0.5 is subtracted from
a normally distributed value between 0 and 1, this would suggest that more commonly
the values would tend towards 0, while the tales of the normal distribution would more
occasionally produce higher numbers. The occasional elevated importance of X3 could
be attributed to this aspect of the equation and its interaction with other variables in a

way that can significantly influence the model's predictions. The squared component
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amplifies the impact of X3 in specific contexts, contributing to its sporadic but notable

importance.

Relative Feature Importance: Make friedman1(1000,10)
Increasing the number of instances to 1000 in the make_friedman1 dataset, Figure 4-10

shows that all feature importance methods now produce the same ranking of the top
three features, X4, X2, and X1. For the ranking of the last two features, all methods tend
to suggest X5, and X3 at 0% noise level. When noise levels increase, all methods tend to
swap the ranking between X5 and X3 due to variations in noise. This has also been

witnessed in a previous work (Greenwell et al., 2020).

It is noted that, with larger instances, LIME has assigned similar importance to the
features as SHAP and PFl. It is because the larger dataset provides LIME with a richer set
of examples to build local approximations and reduce the impact of randomness in the

sampling process.
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Relative Feature Importance: Make_friedman1(500,20)
Increasing the number of features in make_friedmanl to 20, with 15 disconnected

features, adds further difficulty for the feature importance methods to distinguish

important features.
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Figure 4-11 indicates that all feature importance methods rank all relevant features as
the top features. Both SHAP and PFl have continued to produce similar importance
ranking by once again assigning X4, X2 and X1 with the most importance and X5 and X3

to a lesser extent.
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Figure 4-11 Validation Feature Importance, make_friedman1, 500 instances, 20 features.
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LIME appears to have assigned a high level of importance to X4 but a reduced amount of
importance to all other connected features, as compared to the case of
make_friedman1(500,10) as shown in Figure 4-9. This suggests that the increased
uncertainty from a greater number of disconnected features impacts the local
evaluations of importance for LIME. It's notable that the challenges faced by LIME in
interpreting the importance of features with a higher quantity of disconnected features
may be attributed to its local nature of evaluation and the relatively limited dataset of
500 instances, highlighting the method's sensitivity to dataset characteristics. The
difficulty is emphasised further when the noise level is increased to 20%. The assigned
relative importance of X2 and X3 by LIME method have reduced to a point where they
could be deemed as unimportant. Even with the increase in noise levels, PFl and SHAP
methods show resilience to the uncertainty and continue to highlight the connected

features.

Relative Feature Importance: Make friedman2(500,4)
With the make_friedman2 dataset having 500 instances and 4 connected features, the

relative importance results by LIME, SHAP and PFI can be visualised in Figure 4-12. The
importance values of X3 and X2 are rated much higher than that of X1 and X4, agreeing
with previous findings, (Liu and Liu, 2020). SHAP is the most consistent method among
all the approaches. PFl once again, doesn’t assign importance to X4, particularly when

the noise level increases. LIME method is the least stable method among all three
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approaches, with X3 and X2 being assigned similar levels of importance at 20% noise

label, while the ranking of X1 and X4 varies throughout the noise levels.
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Relative Importance of Boston Housing Dataset
Next, a real-world dataset, Boston Housing, is examined and it consists of 14 features in

total. Each of these features is described in Table 4-4. A total of 13 input features have
been used to predict the target feature, MEDV, the median value of owner-occupied

homes in $1000s (Bataineh and Kaur, 2018).

Table 4-4 Feature descriptions for the Boston Housing dataset

Feature Description

CRIM Per capita crime rate by town

ZN Proportion of residential land zoned for lots over 25,000 sq. ft.
INDUS Proportion of non-retail business acres per town

CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)
NOX Nitric oxides concentration (parts per 10 million)

RM Average number of rooms per dwelling

AGE Proportion of owner-occupied units built prior to 1940

DIS Weighted distances to five Boston employment centres

RAD Index of accessibility to radial highways

TAX Full-value property tax rate per $10,000

PTRATIO Pupil-teacher ratio by town

B 1000(Bk - 0.63)?> where Bk is the proportion of Black residents by town
LSTAT Percentage of lower status of the population

MEDV Median value of owner-occupied homes in $1000s (target feature)

Figure 4-13 shows the feature importance results by SHAP, PFl and LIME methods , and
Table 4-5 reports the feature ranking, 1 being the most important and 13 being the least.
The two features, LSTAT and RM, are ranked high by all methods, particularly SHAP and
PFl. The same ranking can be seen in previous studies, e.g.(Parr et al., 2024, Oh, 2019,
Chen, 2021). Further to this, SHAP and PFI have produced the same level of ranking for
the top 5 features, namely LSTAT, RM, CRIM, RAD and DIS in descending order. LIME is
also able to include LSTAT, RM and CRIM in the top 5 rankings as well, showing the benefit

of using multiple approaches for feature analysis.
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Compared to other research, e.g. (Oh, 2019), they found that LSTAT was the most
important feature for predicting MDEV, and RM, CRIM, RAD and DIS were deemed as
highly important while AGE, CHAS and INDUS were rated as least influential. The above
results are well-aligned with the findings of both SHAP and PFI in this experiment but
LIME has assigned a high importance to CHAS, which is not found in the literature. LIME
suggests that in local circumstances, the feature, CHAS, can occasionally have a
significant impact on performance, though not frequently. This aligns with the binary
nature of the feature itself that only 7% of instances have a value of 1 compared to 93%
with a value of 0. Globally, CHAS may not substantially contribute to predictive accuracy,
but it demonstrates a high impact on the rare occurrences when it does influence
predictions. This is a good example of how the comparison between these importance

methods can lead to a more robust understanding of the dataset in the real-world.

Method @LIME @PF @SHAP

aria

Figure 4-13 Feature importance graph for Boston Housing dataset
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Table 4-5 Ranked feature importance for SHAP, LIME and PFl importance for the Boston Housing dataset

Feature SHAP PFI LIME
LSTAT 1 1 3
RM 2 2 1
CRIM 3 3 5
RAD 4 4 12
DIS 5 5 6
TAX 6 7 7
PTRATIO 7 9 9
NOX 8 6 8
AGE 9 8 10
INDUS 10 12 11
B 11 10 13
ZN 12 11 4
CHAS 13 13 2

Relative Importance of Concrete Compressive Strength Dataset
Another real-world dataset, Concrete Compressive Strength, is examined. In the domain

of civil engineering, the strength of concrete is a highly non-linear function of age and

the material composition. This dataset consists of 1,030 instances of the compressive

strength of concrete and the associated features, as listed in Table 4-6(Shi and Shen,

2022).

Table 4-6 Feature descriptions for the Concrete Compressive Strength dataset

Feature

Cement

Blast Furnace Slag
Fly Ash

Water
Superplasticiser
Coarse Aggregate
Fine Aggregate
Age

Concrete Compressive
Strength (MPa)

Description

Amount of cement in a cubic meter mixture (kg/m?3).

Amount of blast furnace slag in a cubic meter mixture (kg/ m3).
Amount of fly ash in a cubic meter mixture (kg/ m3).

Amount of water in a cubic meter mixture (kg/ m3).

Amount of superplasticiser in a cubic meter mixture (kg/ m3).
Amount of coarse aggregate in a cubic meter mixture (kg/ m3).
Amount of fine aggregate in a cubic meter mixture (kg/ m3).
Age of the concrete in days.

The target variable, representing the compressive strength of the
concrete.
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The results of the feature importance analysis using SHAP, PFI, and LIME are graphically
depicted in Figure 4-16 while the numeric ranking of features is presented in Table 4-7.
Notably, SHAP and PFI have similar feature importance rankings, with only slight
variations observed for Blast Furnace Slag and Age, both are ranked in Top 3. The Top 5
features are Cement, Age, Blast Furnace Slag and Water. A similar study, by (Jiang et al.,
2022) using SHAP has also highlighted Cement, Age and Water as the top features, with
Blast Furnace Slag not included as a factor. This approach also showed the Fine
Aggregate, Fly Ash, Coarse Aggregate, and Superplasticiser as the least important
features, agreeing with the results from both PFl and SHAP. These importance results also
agree with other studies, such as (Nguyen-Sy et al., 2020), who found the Cement, Age
and Water to be of high importance using XGBoost, although they also included
Superplasticiser as having a high level of importance as well. Age, Cement and Water
seem to be consistently deemed as high performers for feature importance, as reported
in (Wan et al., 2021) who also utilised XGBoost for feature importance. While the current
study assigned a much higher importance for Coarse Aggregate, Fine Aggregate and
Blast Furnace Slag, it assigned superplasticiser as having the second least important
feature. This suggests that even with the same dataset, there is a variability in the results

if a different feature importance approach is adopted.

This experiment has shown that the three well-known feature importance tools can
produce similar importance measures, particularly a high degree of similarity can be

found between PFl and SHAP. LIME method can identify the Top 5 features, the same as
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PFl and SHAP, however, the ranking of those features is different from that of the other
two methods. This suggests that, in specific instances, each of these features can have a
substantial impact on concrete compressive strength. Globally, cement content, Age,
Water, and Blast Furnace Slag consistently emerge as the most crucial factors while

Coarse and Fine Aggregate as well as Superplasticiser are deemed as least importance.

Method @ LIME @PFl @5HAP

dmELL__

Cement Age (day} nace Slag ~ Water (component  Fly Ash {component  Superplasticizer Coarse Agg! d
(component 1)(kg in (:crmo (kg in 4)(kg ina m*3 “(kg nam*3 {component 5){kg in {(component G)(kg in ‘c.,‘n i (kg in
am”3 mixture) am”3 mixture} mixture) mixture) am*3 mixture) a8 m”"3 mixture} a m”3 mixture)

Variable

Value

Figure 4-14 Feature importance graph for Concrete Compressive Strength dataset

Table 4-7 Feature importance for SHAP, LIME and PFl importance for the Concrete Compressive Strength dataset

Feature SHAP PFI LIME
Cement 5
Blast Furnace Slag 2 3 4
Age 3 2 3
Water 4 4 -
Fly Ash 5 5 2
Superplasticiser 6 6 7
Coarse Aggregate 7 7

Fine Aggregate

4.5 Summary

In this chapter, a comprehensive exploration of the effectiveness of the SELECT HPO
method and its comparison against other benchmark HPO algorithms was conducted in

Stage 1. The experiments on the make_friedmanl and make_friedman2 datasets
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scrutinised the algorithmic performance across varying dataset sizes and noise levels,

providing a nuanced understanding of the capabilities of the SELECT method.

The exploration into the predictive accuracy, measured by MAE, positioned the SELECT
method as the best performer. Across various synthetic datasets, the models optimised
by the SELECT method consistently outperformed models optimised by other benchmark
algorithms, namely TPE, GPBO, HB, and RS. The superior predictive accuracy of the
SELECT models remained even under increasing noise levels, increasing number of
instances as well as disconnected features in the datasets, highlighting both the resilience

and robustness.

The relevant feature ranking for all HPO methods was conducted in combination with PFI,
resulting in consistent feature rankings in line with previous studies for both the
make_friedmanl (X4, X2, X1, X5 then X3) and make_friedman2 (X3, X2, X1 then X4)
datasets. The SELECT optimised model regularly applied higher ranking to the relevant
features compared to the benchmarks through variations in noise, the size of the dataset
and the synthetic relationship between the input features and the predicted variable.
This shows the SELECT method is effective and robust in determining feature
relationships, which will prove beneficial for determining CSFs for construction project

success.

Stage 2 detailed a comprehensive feature importance analysis of the SELECT method

combined with three well-known feature importance tools—SHAP, PFl, and LIME. This
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stage evaluated the performance of these tools across various datasets, including two
synthetic datasets, make_friedmanl and make_friedman2, and two real-world datasets,

Boston Housing, and Concrete Compressive Strength.

The combination of the SELECT method and the three feature importance tools provided
a comprehensive analysis of the feature relationships in all datasets. Utilising all three
feature importance methods, it presents a holistic perspective with globally consistent
identification of significant features, coupled with the nuanced insights from local
approximations, underlining the advantages of this combined approach. This provides a

broad scope of understanding and explainability for determining the CSFs in construction.

This chapter justified the capability of the SELECT method for determining feature
relationships and presented the benefits of combining this approach with multiple
feature importance tools. The next step is to integrate this combined algorithm into a DSS
to determine the CSFs in construction. The next chapter will discuss and explain the

integration of this effective tool into the DSS developed throughout this research period.

210 | Page



5 Decision Support System
Development

5.1 Introduction
The purpose of this chapter is to develop a Decision Support System (DSS) by

incorporating the SELECT method, and integrating it with the SHAP, LIME and PFI
algorithms, to provide an effective tool for improving project sustainability in the

construction sector.

This research was carried out in collaboration with an industrial sponsor, Galliford Try Ltd.
Hence, useful inputs were collected from staff to understand the industrial guidance and

requirements, and project data was gathered to support the DSS development.

As discussed before, sustainability data was not available due to factors outside of the
control of the researcher. In response to this challenge, the DSS has been developed with
the use of a sample set of data supplied from Galliford Try Ltd. This has led to the
incorporation of a key characteristic of the DSS, which is the ability to easily adapt to new
data and metrics as they become available in the future. This stage of the development
creates the functionality of evaluating project performance, optimised through the
SELECT method. The future development of the DSS, once sustainability data becomes
available, will incorporate the sustainability dimension into the optimisation of

construction project performance.
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This chapter will be structured by first discussing the sample dataset and the limitations
leading to a focus on the functionality of the system. Then the chosen interface will be
discussed, followed by an explanation of the flexible feature importance tool with the
integrated SELECT method. This explanation will specify the functions of this flexible tool
as well as the integration of the SELECT method into the DSS as well as the ability of
adapting to future data. Other supporting tools (or functions) of the DSS will also be

discussed.

5.2 DSS Data Collection and Preparation
5.2.1 Supplied Raw Data

In the initial stages of this research journey, Galliford Try provided a package of prepared
documents to use for the initial prototype of the DSS. All these documents related to
water infrastructure projects which were carried out in the UK and the documents were
recorded during the period of 01/2017-12/2020. The raw data consisted of monthly
reports, summarised purchase order details, the recorded planned and actual cost of

projects, as well as records of the labour spend on each project.

Through collaboration with the relevant staff from the company, the raw data was
prepared into a format for analysis covering a total of 126 projects, including the defined
input features related to the characteristics of each project, as well as the preferred
performance metrics related to finance and delays in projects, these are shown in

Appendix 5-1. These designations of data will be discussed next.
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5.2.2 Performance Metrics
Three performance metrics were requested by the industrial sponsor in which two were

about delay performance and another for financial performance. To be specific, the
financial performance metric is the Commercial Performance (CP) and the delay
performance metrics are the Forecast Duration Accuracy at PO(FDA), and the On-Site

Forecast Duration Accuracy (OSFDA).

Commercial Performance
The CP is the measurement of the final cost of a project against the cost estimated at the

planning stages (final target price), as shown in Equation 14. For example, if the final cost
is over the estimation by 6%, the CP would be 1.06, otherwise it is less than 1 indicating

under-spending.

Final Cost

CP =
Final Target Price

(14)

Forecast Duration Accuracy at PO and On-Site Forecast Duration Accuracy
Two metrics are related to project duration performance. The first is the FDA, which

shows how well the project duration is estimated at the creation of the purchase order

against the actual duration of the project, calculated through Equation 16.

FDA Actual Onsite Duration — Onsite Duration Forecast at PO

Onsite Duration Forecast at PO

(16)

The second metric is the OSFDA, which looks at how well the project duration is
estimated when work fully mobilises on-site, compared to how long the actual duration

is at completion. This is shown in Equation 17.
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OSFDA = Actual Onsite Duration — Onsite Duration Forecast at Fully Mobilised

Onsite Duration Forecast at Fully Mobilised

(17)

Like the FDA, the OSFDA also measures the difference between the plan and reality, but
specifically at the beginning of on-site work. So, while FDA checks the accuracy of the
project duration estimate at the purchase order stage, the OSFDA assesses how well the
duration is estimated when work starts on-site. These are both taken as a fraction of the
estimation. To clarify, if the actual duration of a project extends by 50% over the
estimated duration, then this will be 0.5 or 50% as a percentage. If FDA or OSFDA is 0, it
means that the duration estimate is the same as the actual duration upon project
completion. If FDA or OSFDA is less than 0, the actual duration is shorter than what was
estimated, otherwise there is a delay in the project from the plan.

5.2.3 Input Features

Project characteristic data was supplied for the development of the DSS. These cover 5
project areas: the timeline of the project, the allocation of personnel, the project
location, financial details, and the nature of the project work. A list of the input features

with their descriptions is shown in Table 5-1.
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Table 5-1 The input features used for developing the decision support system

Group Feature Name Description Primary Source
On-site Start Month T.he month when the project began work on
site.
Design Duration% Percentage of the project spent on. design Monthly project progress
. stage and then on-site. Before April of 2018, .
Time . K . reports ranging between 2017-
. . there was a different format which did not
On-site Duration% . . . . 2020.
include the on-site/design split so capex 2
was used as the split.
Project Duration (Weeks) The full length of the project in weeks
Probosal Team The percentage of the total recorded staff
P hours booked for estimators on a project.
The percentage of the total recorded staff
. hours booked for CAD design engineer,
Design Team . . .
design engineers, design leads and process
engineers summed together on a project.
The percentage of the total recorded staff
Project Management hours booked for pIa.nners, project
managers and quantity surveyors summed
together on a project.
Personnel The percentage of the total recorded staff Project Staff Bookings recorded
i ; for all projects
Site Management Staff hou.rs booke'd for site managers, S|te'
engineers, site foremen and mechanical
supervisors summed together on a project.
The percentage of the total recorded staff
Overheads hours booked for project overheads.
The percentage of the total recorded staff
Health and Safety Staff hours booked for health and safety.
The percentage of the total recorded staff
Commissioning Team hours booked for commissioning engineers
on a project.
Selected the locations, project
Location Count The location of the site in which the project ID's and project descriptions
¥ takes place, grouped together by county. from the monthly project
progress reports
Average of Cost Intensit The total expenditure of a project divided by | Purchase Order Details
g ¥ the number of weeks spent on-site summarised by Galliford Try
Financial First Net Construction Band Classified construction cost range: <€1M, Purchase Order Details
£1M-£2.5M, £2.5M-£5M, £5M-£10M,>£10M | summarised by Galliford Try
. - . Purchase Order Detail
Sum of Total Construction Score This is the cost of the project ure ast? raer oe .al >
summarised by Galliford Try
Chem Dosing
Civil Installation
Elec Installation
ICA
MCCs/MCP
Mechanical Install
New Building Th fth | broi
New Water Retain Structure € pedrf(entage to' tt € tlrt? pr?e?
Project Power Supply e.xpen .I ure, put In o.a classt |c.a lons Purchase Order Details
listed, is based off of interpretation from the . )
Nature Pumps/Booster Set summarised by Galliford Try

RGF Refurbishment/New

Scraper Bridges

Screen and Compactor/
Grit Removal

Security

Tank

Temporary Works

1Ty

Purchase Orders for each project. Essentially
the nature of the work.
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5.2.4 Data and the Focus on DSS Functionality

It is crucial to note that those performance metrics (Section 5.2.2) and input features

(Table 5-1) mostly contribute to the economic performance of a project, which can be

measured in project cost as well as delay (time). Although project delays can impact both

environmental and social sustainability through increased waste and consumption of

resources and material, the supplied data is not sufficient for a comprehensive evaluation

of all three dimensions of sustainability.

If there was a larger availability of data which relates to all three of the environmental,

social, and economic sustainability metrics, key data would include:

Material Data: Information on the environmental impact of materials, including
carbon footprint, recyclability, toxicity, and energy consumption during
production. This data helps assess which materials contribute to lower carbon
emissions and support a circular economy.

Energy and Water Usage: Data on energy and water consumption across project
stages—from raw material extraction to construction and operation. Monitoring
these metrics would support energy efficient project practices, enable water
conservation, and reduce greenhouse gas emissions associated with construction
activities.

Waste Generation and Management: Data on waste types, quantities, and
disposal methods throughout the project lifecycle. Tracking waste data can inform

strategies to minimise construction waste, identify opportunities for reuse or
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recycling, and reduce landfill contributions, ultimately promoting a circular
economy approach.

e Labour and Social Metrics: Information on workforce conditions, safety
standards, and labour practices helps assess the social impact of construction

projects.

Overcoming the challenge related to data availability resulted in the development focus
of the DSS shifting from improving project sustainability to creating the bespoke
functionality that can adapt to sustainability data in the future. To develop the DSS, the
supplied data is only used to demonstrate the functionality of DSS in modelling the
relationships among project features and identifying CSFs. It is expected that the DSS will
be able to improve project sustainability when sustainability data become available in

the future.

5.3 Design Architecture of the DSS

The DSS can be broken up into three interactive components: the user interface, the
inference engine, and the knowledge base, shown in Figure 5-1. Each of these
components contributes to the successful functionality of the system. In this section, the
summary of the functionality of each of these components will be given before an

overview of the overall functionality of the DSS is provided in the subsequent sections.
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Inference
Engine

User <::> Knowledge
Interface Base

Figure 5-1 The three key components of a DSS

User Interface: This allows the user to interact with the DSS through input selections and
visual representations of knowledge and analyses. The selected interface for this system

is PowerBl, which will be discussed in more detail in the following section.

Inference Engine: This is the analytical component of the DSS which is responsible for
processing data and generating insights. This component is composed of python code
and libraries collected and developed for the processing of data, training neural
networks, hyperparameter optimisation, the feature importance functionalities, and the
integration of these packages into the PowerBl interface. This component is used to
connect the external datasets, create internal refined datasets, and compute all aspects
of the functionality for the DSS pages to operate effectively. This is an evolution of the
base functionality of PowerBl data processing and analysis with the newly developed

SELECT HPO method and the integration python code and packages.
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Knowledge Base: This is the foundation source data which is supplied to the system for
processing and analysis, to generate insights. The sample dataset shown in Appendix 5-
1 is the primary source of data at present. Utilising the same format, this dataset can be

amended in the future to a greater knowledge for analysis in the system.

5.4 DSS Overview of Functionality

PowerBl was primarily selected at the request of the industrial sponsor to support
smooth integration of the DSS into their current systems. This software is beneficial for

the DSS development for multiple reasons, (Aspin, 2016) as listed below:

User-friendly Interface: The tool is user friendly for development purposes, allowing for
ease of creating dashboards of information, collecting, and connecting data and is also

interpretable for persons of varying levels of technical expertise.

Data Visualisation Capabilities: PowerBl has a high level of capability for creating various
visual representations related to data (Gongalves et al., 2023). There are standard visuals
which can be seamlessly created, while other visuals can be downloaded, or produced

with the help of Python or R programming visuals.

Data Source Flexibility and Connectivity: Data can be utilised from a wide variety of
sources in varying formats. These can be connected through details in the data with a
high level of flexibility. The use of Power Query allows for data sources to be manipulated

for use in varying formats and prepared for analysis (Krishnan, 2017).
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Interactive: There is a capability for creating filters, buttons, and other interactive tools
to allow users to explore the relationships between their data allowing for enhanced

decision making with the aid of a graphical user interface (Becker and Gould, 2019).

Sharing and Collaboration: Upon the completion of developed dashboards related to
data, the user can publish reports to the PowerBI service, allowing for the sharing of
insights and capabilities with a broad group of stakeholders (Seturidze and Topuria,

2021).

PowerBl serves as the interface for all functions developed in the current DSS. It manages
connections to the inference engine files and storage locations for both internal and
external datasets. Figure 5-2 shows the contents page of the DSS linked to all the other
pages in the system. It is designed with a colour scheme matching the Galliford Try logo

for visual appeal.

On the bottom right corner of the content page, a red button “Measurements for Project
Performance” recalls the definition of the current performance metrics to ensure clarity
for users. Additionally, there are other buttons to access to different functions of the DSS.
The primary function, the “Flexible Feature Importance” tool, is positioned at the top of
the page, followed by other functions. The “Flexible Feature Importance” function allows
users to perform the feature importance analysis which will be detailed in the following

section.
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Figure 5-2 All Pages in the DSS

5.5 Flexible Feature Importance Function

This section will first explain the key components of the flexible feature importance

function before discussing the integration of this tool with the SELECT method using
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PowerBIl and Python. Figure 5-3 shows the flexible feature importance analysis function.
For ease of explanation, each component of this page is labelled by a letter and will be

discussed from “A” to “G” as follows.

5.5.1 Flexible Feature Importance Function Page Layout

- Feature Importance Analysis

TR e ot Shods SHAP Feature Importance. { Prediction Accuracy
Performance Metric A F ) Feature Importance Methods © R e e D E
@ Commercial Performance LIME for feature importance. Capture® 0.15 0.10
) B o - ) feature interactions and handles =D .
arecast Duration ccuracy at ‘ermutation data complexity. Positive and
negative bars indicate correlation RMSE MAE
OSFDA @ sHAP direction.

Select all

Project Features @

Average of Cost Intensity

GallifordTr YP IC

Overheads
Power Supply
Project Duration{Weeks)

Pumps/Booster Set
RGF Reburbishment/New
SCADA

Scraper Bridges

Screen and CompactorfGrit Removal

Figure 5-3 Flexible feature importance analysis page before executing analysis

A - The Performance Metric: This component empowers users to choose the
performance metric against which the neural network is trained for feature importance
analysis. It's important to emphasise that the optimal hyperparameter settings for
training the neural network are pre-defined for each performance metric. This design

ensures that users can achieve the best performance tailored to each metric, individually.

B — Project Features: Project features are the core inputs to the feature importance
analysis when making prediction over the performance metrics (outputs). This

component acts as a filter, empowering users to selectively include specific features
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(inputs) in the analysis. This flexibility ensures users can tailor the analysis to their specific

needs and preferences.

C - Feature Importance Methods: Users can choose from three well-known feature
importance methods, offering them flexibility in feature importance analysis. This
selection also enables users to compare the performance of multiple feature importance
methods under the same feature selection and performance metrics, fostering a
comprehensive and resilient approach to feature importance. The available methods are
SHAP, LIME, and PFI which are extensively discussed in Chapter 4. Key points related to

these methods in the DSS are as follows:

e A positive PFI results, shows the feature is contributing to the prediction model
performance, while a negative value shows that the feature is not contributing to
the prediction performance.

e With SHAP, and LIME, these approaches highlight the direction of the relationship
between the features and the performance metric in terms of a positive or
negative value where a positive (negative) importance indicate a positive

(negative) correlation.

D - Information Visual: A visual has been added to provide situational information
related to the function of the Flexible Feature Importance tool, depending on the

selections made on the page at the time.
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E — Base Model Performance: As the user has the option to alter the input features and
the performance metric, this will induce changes in the predictive accuracy of the model.
To allow for a reference point in model performance, this component presents the
current performance of the optimised neural network with all input features included.
This is presented as both the root mean squared error (RMSE) and the mean absolute

error (MAE).

F — Execute Button: This component allows users to initiate the training with the current

selection. It also enables users to de-activate the training and update the selection.

G - Feature Importance Result Visual: This visual is created using Python and uses the
selected values shown in Figure 5-3, for the Performance Metric ‘A’, Project Features ‘B’,

Feature Importance Method ‘C’ and Execute ‘F’ as inputs.

If the ‘F’ input is set to execute, then the feature importance Python pipeline will begin.
The ‘Project Features’ and ‘Performance Metric’ values will form the ‘visual dataset’ for
the ANN. The ANN will previously have been optimised with the SELECT method for each
chosen ‘Performance Metric’ value. The ANN will train on the ‘visual dataset’ and then
carry out feature importance according to the selected ‘Feature importance Method".
The results will then be presented graphically in the form of a bar chart, an example is

given in Figure 5-4.
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Figure 5-4 An example of feature importance visual results

II 4

Figure 5-4 shows, visually, the feature importance weights (shown in “c”) of all selected
input features in the x-axis (shown in “b”) related to the chosen performance metric using
the model optimised by the SELECT method together with the selected feature
importance tool. The prediction accuracy of the trained and optimised ANN for the
selected project features is measured by RMSE and MAE which is presented at ‘a’ to
provide a confidence level of the findings. This can be compared to the prediction
accuracy of the optimised ANN with all Project Features included, shown at ‘d’, to
determine if the new feature selection has improved or reduced the prediction accuracy.
5.5.2 Flexible Feature Importance Development Challenges

Multiple challenges were encountered during the process of developing the flexible

feature importance tool. This section will discuss these challenges, highlighting how they

were resolved. The key objectives for the flexible feature importance page to function
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effectively and for the goal of incorporating future data for the analysis of the CSFs are

listed below:

Train, Predict and Present: The tool must be able to train neural networks and

produce visual representations of the results for interpretation.

e Dynamic User Interaction: The user must be able to interact with the buttons on

the page to direct the use of the tool dynamically.

e Optimise Performance: The tool must be able to optimise the neural network

hyperparameters for each performance metric using the SELECT method.

e Adaptability for New Data: The tool must be able to adapt to new data and

performance metrics as they become available in the future.

The challenges encountered in achieving these objectives, and the solutions to these

challenges are shown in Table 5-2 and will be discussed further in the following sub-

sections.
Table 5-2 Flexible Feature Importance Development: Challenges and Solutions
Function Challenge Solution
U= h isual f ion.
Train, Predict  |Power Blis not equipped with ANN orfeature Pt Tt

and Present

importance software packages.

Develop a Python code pipeline which can read the data, determine feature
impaortance and present the findings.

Dynamic User

Power Bl Python visuals cannot detect filtering or

Create columns in the Python Visual input dataset to represent user
selections.

Interaction dynamic changes in data. Develop Python code to interpret user inputs and guide the operation of
the Python Visual.
Utilise Power Query Editor.
Optimise Power Bl Python Visuals have a 9 minute time limit Shicry ’
i : f ; ; Develop Python code to apply the novel HPO method to defined
Performance  |forscript operation, making HPO impossible.

performance metrics.

Adaptabilityfor
MNew Data

Future data is not able to be explicitly inputted into
the OS5 as this is still unknown.

Utilise Power Query Editor.
Develop Python code to allow for future amendments to the current

dataszet, with HPO application.
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Train, Predict and Present
Although Power BI has a significant amount of flexibility in manipulating datasets and

presenting information in built-in standard visuals, there is not a standard visual at
present which can utilise ANN software for analysis. To overcome this challenge, the
‘Python Visual’ in PowerBIl was used in combination with a Python code pipeline, the
overview of the steps in this pipeline is shown in Figure 5-5.

This Python visual can accept a dataset in a tabular format, which is then prepared for
the ANN, the ANN is trained, predictions are made on a test set, feature importance is
carried out and the findings are then presented. This is achieved with a Python library
titled ‘CGRNN’ which has been developed during this research. The developed CGRNN

library has been equipped with all the Python functions required in the DSS.

Train, Predict and Present
Import relevant libraries

(import CGRMN_code as CGRMMN)
Copy the dataset for amendment

Split and prepare the data for use in this code
CGRMM.prepare()

Train neural network
CGRMMN.build_MN_model()

Carry out feature importance
CGRMNM.feature_importance()

Make predictions with model

Calculate model performance
MAE and RMSE
Combine model performance and feature importance into a graph

Figure 5-5 Pseudocode for the train, predict and present function in the feature importance tool
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Dynamic User Interaction

The Python visual can accept data in a tabular format but the ability to filter or

dynamically alter the input dataset in a Python visual is not currently supported in Power

Bl. This means that there is no standard way of selecting the ‘Performance Metric’, the

‘Project Features’, the ‘Feature Importance Method’ or when to ‘Execute’ the feature

importance process. These are capabilities present in the developed Flexible Feature

Importance page in Figure 5-2. In addition to this, the optimised parameters for a specific

Performance Metric defined by the SELECT algorithm could not be selected.

The solution to dynamic user interaction through button selection in the Python visual,

was achieved by inserting additional columns into the Python visual which represented

each of the user selections, shown in Figure 5-6.

Commercial Performance
Forecast Duration Accuracy at PO
@ OSFDA

opt_neurons opt layers lexecute_optior

3 [stop
3 ||stop

Feature Importance Analysis

Permutation
SHAP

@ LIME

tures chosen_prediction fi_method JlAverage of Cost Intensity

N Local Inte_rprelablg Model- ~
Poaiveinagative bars 0.69
indicate correlation direction; RMSE
taller bars are more important.

Chem Dosing  Civil Instal
T LIME

LIME 2040

LIME 0.00

LIME 0.00

LIME 0.00

LIME 0.00

LIME 0.00

LIME 0.00

LIME 0.00

LIME 49.00

LIME 0.00

LIME

0.55
MAE

llation Commercial Perfos

870
68.00
.00
13.00
18.00
0.00
.00
43.00
30.70
28.00
19.00

Figure 5-6 Image showing the visual for feature importance with variables in the columns

From Figure 5-6, the user selection criteria are shown in the green box and the

corresponding optimised neural network architectures for the chosen Performance

Metric are shown in the yellow. With this information inserted into the visual, Python can
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be used to make logical decisions on how to interpret the data then action the code

according to the inputs. A description of this process is provided in Figure 5-7.

Train, Predict and Present with Dynamic User Interaction
Import relevant libraries

(import CGRNN_code as CGRNN)
Copy the dataset for amendment

Define the importanct variables from the columns
Execute
Performance Metric
Project Features
Feature Importance Method
Optimised Parameters
Eliminate the unselected input features and other prediction variables
Using 'Project Features' and 'Performance Metric'
If 'Execute' ="Stop:
Present the Galliford Try Logo
Using 'Execute’
Else:
Split and prepare the data for use in this code
CGRNM.prepare()
Train neural network
CGRNM.build_MNN_model{Performance Metric, Optimised Parameters)
Carry out feature importance
CGRNM.feature_importance(Feature Importance Method)
Make predictions with model

Calculate model perfermance
MAE and RMSE
Combine model performance and feature importance into a graph

Figure 5-7 Dynamic user interaction functions for the feature importance tool

Optimise Performance and Adaptability for Future Data
A crucial limitation in Power Bl is a 5-minute time limit for running Python visuals. This

limit can easily cover the training of a single ANN for operation, but the repeat training
required for HPO requires a larger time to achieve the desired result. This would make it
impossible to optimise the ANN for each performance metric using the Python visual.
This is where the use of Power Query Editor (PQE) for an extended application of Python

script was used. PQE is a data preparation tool in Power Bl that allows users to transform,
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clean, and shape data from various sources before loading it into Power Bl for analysis

and visualisation

The PQE has a Python function which allows a user to manipulate a dataset without the
same time constraint of a visual but can only present the results in the format of a table.
Using this capability, a source dataset was amended with a Python script which allowed
for the incorporation of the SELECT HPO method and adaptability for future changes to

the dataset. An overview of this code is shown in Figure 5-8.

Optimise Hyperparameters
Import relevant packages
(import CGRNN_code as CGRNN)
Selections for operation
Prediction variables
HPQ (Yes/No)
filepath for save files
Save the relevant datasets variables

Performance Metric
Project Features
if HPO = Yes:
for Prediction variables:
Copy the dataset for amendment
dataset_copy
Remove the other performance metrics from dataset_copy

Split and prepare the data for use in this code
CGRNN.prepare()

Optimise neural network hyperparameters
CGRNN.build_MNN_model{Performance Metric, HPO=Yes)

Record best hyperparameters
optimised_architectures

Make predictions with model
Load predictions into dataset for all instances

Calculate model performance on test set (MAE and RMSE)
performance_table

else:
for Prediction variables:

Copy the dataset for amendment
dataset_copy

Remove the other performance metrics from dataset_copy

Split and prepare the data for use in this code
CGRNN.prepare()
Train neural network with optimised hyperparameters
CGRMN.build_MNMN_model(Performance Metric, optimised_architectures, HPO=No)
IMake predictions with model
Load predictions into dataset for all instances
Calculate model performance on test set (MAE and RMSE)
performance_table

Figure 5-8 Pseudocode for updating datasets and hyperparameter optimisation in the decision support system
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Figure 5-9 shows an image of the PQE in the DSS. The ‘source_input_dataset’, highlighted
in the red box in Figure 5-9, is the externally supplied dataset for the Flexible Feature
Importance page. The code in Figure 5-8 allows a user to select which columns in a
‘source_input_dataset’, represent the ‘Performance Metrics’ and whether to activate the
novel HPO method or not. From these selections, the code will carry out the optimisation
for each selected performance metric and then save the Project Features, the
Performance Metrics, and the corresponding optimised ANN hyperparameters as new

datasets in the PQE, highlighted in green in Figure 5-9.

m input_data unpivot
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Execute

optimized_architectures

L i s I s O

Model Performance

chosen_prediction_variables
dataset
dataset_input_features
dataser._singie_metric

&  model_performance
optimized_architectures
parformance_table

O starting_dataset

Home Transform Add Column View Tools Help
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=% fx = Python.Execute{“#import packages#(1f)import w

4 input_data_datacet [4] N B3, ﬁsc Name = [ ] Value " 4 PROPERTIES
I il source imput doto I arch_details Name

All Properties

« APPLIED STEPS
Source
Promoted Headers
Changed Type
# Run Python soript

Figure 5-9 Power Query Editor in Power Bl with a Python script accessed

The code in Figure 5-8 also facilitates an adaptability for future amendments to the
dataset. If a user alters the ‘source_input_dataset’ or changes the chosen performance

metrics, and runs the same Python script in the PQE, then the HPO will repeat and the
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Flexible Feature Importance page will update with the amended ‘Project Features’,

‘Performance Metrics’, and the corresponding optimised ANN hyperparameters.

5.6 Additional Functions of the DSS

In addition to the SELECT method and flexible feature importance function, the DSS also
encompasses several other functions that are tailored to meet specific needs and
requirements of the company. While these functions may not bear significant academic
value, they provide a valuable contribution to enhance the overall usefulness of the
system. This section will delve into these additional functions, shedding light on their
purpose and how they complement the DSS.

5.6.1 Active Project Performance

The active project performance page was initially conceived as a focal point of the
research to address the initial chosen knowledge gap in the literature. It aimed to predict
project sustainability performance throughout the construction life cycle using Al.
However, due to the lack of sustainability data, this is now a secondary function for the
benefit of the industrial sponsor, which can be the source of further development with

new data as it becomes available.

For dynamically changing project performance throughout the project lifecycle, the only
performance metric which had sufficient sample data in this development, was in
relation to the OSFDA, the delay performance from starting work on-site through to
project completion. Utilising monthly reports spanning from January 2017 to December

2020.
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The main function of the active project performance page follows these steps:

1. Convertrecorded trends in OSFDA over time and project features from previously
completed projects into a sequential training set.

2. Train an optimised CGRNN on the characteristics from past projects to learn the
trends in OSFDA over time.

3. Using the CGRNN, predict the future trends in OSFDA for projects which are
currently in operation on-site.

4. Using a developed method of temporal PFl to permute features along their
sequence in a sequenced dataset, dynamically evaluate what are the most

important features impact project performance over set periods of time.

The purpose of this tool is to provide project managers with the capability to predict
potential changes in OSFDA monthly and to determine what may be the most important

CSFs which impact project during user-defined periods of time.

The Active Project Performance page is depicted in Figure 5-10 and each of the visuals

on the page will be discussed in the following sub-sections.
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On-Site Forecast Duration Accuracy (OSFDA) Performance Trend
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Figure 5-10 Active Project Performance Page

A - Active Project Table: This is a table of the current projects which have begun work on
site but are not yet completed, hence known as active projects. Key details of each active
project such as the initial planned duration and the current duration, the planned
completion date, the OSFDA performance this month and last month as well as the
change in OSFDA performance are shown. It allows users to see the current and recent
OSFDA performance of all active projects and provides the interactive capability to

perform, visually, project-to-project comparison by user selection.

B - Current OSFDA: This visual summarises the mean OSFDA, the worst OSFDA and the
best OSFDA recorded for all active projects this month. Shown in Figure 5-10, the worst
performing project has an OSFDA of ‘4.06’, this suggests that the project is delayed by
more than 4 times the initial planned duration. An OSFDA of ‘0’ means the project is

planned to finish on schedule with no delay.

234 | Page



C - Change in OSFDA: This visual summarises the change in OSFDA between the current
month and the previous month for all active projects. The mean change in OSFDA, the
best change in OSFDA and the worst change in OSFDA are shown here. From Figure 5-10,
the worst change in OSFDA is 0.47, which says that the planned completion date for a

project has increased by almost 50% of the initial planned duration in the past month.

D - Overall OSFDA: The overall OSFDA presents the mean OSFDA for all projects shown
on the page at a given time, through user selection and the period selected. The user can
select specific projects, a time range, or project month range and the mean OSFDA of the

selection is presented here.

E - Active Projects Quantity: This visual presents the current quantity of active projects

or the number of projects in a selection by the user.

F — Current Date: The current date is the date in which the analysis is being conducted.
The dataset sample that was used for this development ranged until 01/12/2020, which

is why this is the date on the page.

G, H, |, J and K — Interactive OSFDA Line Graph: This line graph presents the historical
OSFDA performance and the predicted future performance up to 12 months ahead for
all active projects. The timeline metric, ‘H’, can be changed between the months into a
project and the change in date, the range of project month, ‘I, and the range in date,

for the line graph can also be defined by the user and the line graph will present the
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trends in OSFDA according to the user selections. Key milestones can also be highlighted,

‘K’, such as the initial and current planned completion dates of the project.

M, L and N: After the user has defined a timeline metric and range, this tool can use
temporal PFl to determine what are the most important CSFs impacting OSFDA during
the user selected range of time. ‘M’ presents the feature weighting in relation to the user
selected period, ‘L’ allows the user to activate and deactivate the function, while ‘N’
provides the user with additional information related to the operation of the feature

importance tool.

The combined functions on this page are intended to present the user with the current
OSFDA performance from the current month and allow the user to study the overall
OSFDA and individual OSFDA of active projects. The user can also delve into the trends in
performance over selected time ranges and analyse what the CSFs. The functionality of
this page has been developed and it is set up to be adaptable for new data as it becomes

available.

Data Availability and Adaptability
This function has been developed with the intent for incorporating future data to

improve performance. There is insufficient data to gain meaningful insights into the
variations in performance at present, but the format of the data is created to allow for

future improvements, as described below.

The external source dataset for the active project performance function is shown in

Figure 5-11. The blue column is the project ID for referencing each project for all months
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that it is in operation. The green columns are the temporal data, highlighting the passing

of time in multiple formats for the Al to study. The yellow box is related to each project’s

characteristics which may vary over time or remain constant. The red box should always

be filled with ‘1’, the purpose of this is related to teach the ai when a project is active.

The performance metric is in purple.

Altering the purple column for another metric will change the trend prediction metric.

Keeping this format, while altering the values, or increasing and decreasing the columns

in the yellow box will allow the user to amend the project characteristics for future data

availability. This includes both constant data, as seen in Figure 5-11, and dynamically

changing data throughout the project lifecycle.

Froject ID  BMonthly Report Month Number Season Year

4031250000 01/03/2017 1 Spring 3 2017
4031250000 01/04/2017 2 Spring 4 2017]
4031250000 01/05/2017 3 Spring 5 2017
4031250000 01/06/2017 4 Summer 6 2017
14031250000 01/07/2017 5 Summer 7 2017
14031250000 01/08/2017 & Summer 8 2017,
4031250000 01/03/2017 7 Autumn E] 2017|
14031250000 01/10/2017 & Autumn 10 2017
4031250000 01/11/2017 9 Autumn 11 2017
4031250000 01/12/2017 10 Winter 12 2017|
4031250000 01/01/2018 11 Winter 1 2018
14031250000 01/02/2018 12 Winter 2 2018
4031250000 01/03/2018 12 Spring 3 2018
4037530000 01/03/2017 1 Spring 3 2017,
4037530000 01/04/2017 2 Spring 4 2017|

5.6.2 Past Project Performance
This function is used to explore past project statistics and is further divided into three
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Figure 5-11 Temporal dataset format for active project trend prediction
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distinct sub-functions: Project Nature, Delivery Strategy, and Project Information. Each

of these sub-functions will be discussed below.
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Project Nature

This sub-function, as illustrated in Figure 5-12, is an interactive tool that empowers users

to visualise the historical performance of projects with varying characteristics and

compare these projects across multiple metrics.

Commercial Performance (CP)

i Project Nature

T uction C
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st Range(E)
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Non None o Non
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0 2 fi 020 202 2023
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Figure 5-12 Project Nature Page

The left-hand side of the page, highlighted in the green box features filters associated

with previous project work undertaken. The filtering criteria is listed in Table 5-3, covering

the duration in weeks, the location by county, the project cost, and the nature of the

project work. Users can select criteria to visualise statistical trends in the data,

represented on the right-hand side of the page.
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Table 5-3 Project nature page filtering criteria

Group

Feature Mame

Description

Format

Time

Project Duration [Weeks)

The full length of the project in weeks

Adjustable Scale between the
minimum and maximum project
durations in weeks.

Location

County

The location of the site inwhich the
project takes place, grouped together by
county.

Selection by county, multiple
selections are possible
simultansously.

Cost

First Net Construction Band

Classified construction cost range:
<€1M, £1M-E2.5M, £2.5M-ESM, £5M-
E£10M, =£10M

Broken down into four
classifications, multiple can be
selected.

Project
Mature

Chem Dasing

Civil Installation

Elec Installation

ICA

MCCs/MCF

Mechanical Install

MNew Building

New Water Retain Structure

Power Supply

Pumps/Booster Set

RGF Refurbishment/New

Scraper Bridges

Screen and Compactor/

Grit Remaoval

Security

Tank

Temporary Works

U

The percentage of the total project
expenditure, put into all claszsifications
listed, is based off of interpretation from
the Purchase Orders for each project.
Essentially the nature of the work.

Each of the project nature criteria
is classified as Mone, 5, M,L.

MNone: There is none of the type of
work inthe project.

5: Thisisin the lowest 33%
magnitude of this work type
recorded in past projects.

M:Thi= iz greater the lowest 33%
magnitude of thiz work type
recorded in past projects but less
than the highest 33%.

L: This is in the highest 33%
magnitude of this work type
recorded in past projects.

The right-hand side of the page splits between delay performance (FDA), and financial
performance (CP). These then compare the user selected criteria against the following

metrics, referring to Figure 5-12:

A - Cost Range: The user selected project nature criteria is compared over increasing cost
ranges in boxplots to determine if the financial impact of projects correlate with the

user’s selection.

B - Year of Full Mobilisation: This range covers the year of starting work on-site, allowing

for comparison of project performance over each year in boxplots.
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C — Season of Full Mobilisation: This visual also uses a boxplot for representation but
compares projects which begin on site at different times of year, specifically which

season.

D - Performance: Against both the delay and financial performance, this final graph is a
histogram of the distribution of all recorded project performance from each of the user

determined project types.

Delivery Strategy
This sub-function, as depicted in Figure 5-13, empowers users to adjust project delivery

strategy controllable factors, listed in Table 5-4, including the allocation of labour hours,

the ratio of design time to onsite duration, and the onsite start month.

Table 5-4 Delivery strategy page filtering criteria

Group |Feature Name Description Format

: The month when the project began work | Selection from months of the
On-zite Start Month y
on site. yEar.
FETLENLDESE UI'LITE PTUTECL SPFETILGTT

Slider between the maximum and

Time Design Duration® dezign stage and then on-zite. Before i
- - minimum.
April of 2018, there was a different - n
e . ’ Elider between the maximum and
On-zite Duration® format which did not include the on- e
gt i b minimum.

The percentage of the total recorded . .
: Slider between the maximum and
Proposal Team staff hours booked for estimatorsona o
i minimum.
project.

The percentage of the total recorded
staff hours booked for CAD design

: 1 g : 2 Elider between the maximum and
Design Team engineer, design engineers, design

E minimum.
leads= and process engineers summed

together on 3 project.

The percentage of the total recorded
. staff hours booked for planners, project |Elider between the maximum and
Personnel| Project Management B e
managers and quantity surveyors minimum.

summed together on a project.

The percentage of the total recorded

staff hours booked for site managers, 8 >
’ ’ . i Elider between the maximum and
Site Management 5taff site engineers, site foremen and P
2 g minimum.
mechanical supervisors summed

together on 3 project.

The percentage of the total recorded . i
R W e A AR Slider between the maximum and
Commissioning Team staff hours booked for commissioning THL
minimurm.

Engineers on a project.
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Based on a set of chosen project delivery factors, the range of past performance is

presented in multiple ways listed below, referring to Figure 5-13:

A - Statistical Performance: The statistical performances from historical projects that
match with the chosen factors are displayed under “Recorded Performance from
Previous Projects”. This not only presents the best, most common, and the worst
performances in CP and FDA, but also the distribution of performance for both metrics

in the form of a histogram for each.

B — CGRNN Determined Performance: When the novel HPO method optimises ANN
hyperparameters against the performance metrics: CP and FDA, it also makes predictions
for all past projects and stores the results for each performance metric. These results are

presented in the “Predicted Performance from Historical Data” section of the page.

Utilising the predictions alongside the statistical analysis provides a more comprehensive
evaluation of the dataset. An ANN can determine trends in data which may not be noticed
from standard statistical means. Using both methods allows a comparison between each
for a more robust evaluation of the user’s selected criteria. It also allows the user to
visualise how well the ANN optimised by the novel HPO method is performing against

actual past instances.

C — Best Model Performance: The combination of the user selected criteria which

achieves the best predicted performance against CP and FDA is presented here.
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Project Information
This sub-function, as depicted in Figure 5-14, provides users with access to project details

Figure 5-13 Delivery Strategy Page

associated with the other two sub-functions, Project Nature, and Delivery Strategy.

A - Project Nature: This is the project nature data for all criteria and all instances related

to Table 5-3, the project nature page data.

B - Delivery Strategy: This is the delivery strategy selection criteria from the delivery

strategy page, listed in Table 5-4.

C — Project Performance: This is the recorded performance from all projects, and the

predicted performance from the ANNs optimised by the SELECT method.
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The tables presented on this page can be selected, allowing users to highlight specific
projects of interest and compare various characteristics across the pages related to Past

Project Performance.

Project Information Tables

New Bullding | New Water Retain Structure | Power Supply hwmssw bishm{
2.0 770

200

Project Nature -'a":-!.r? A
uu-mmg' Civil installation | Mechanical install | Elec —stallation | MCCSIMCP? | ICA
47,584.92 45 o0 1830 930 5,60 7.30 oo
77 83 .90 00 %

2481 e.00 %31 2.90

reosoesceasseaa

[PROJECT NAMES
REDACTED]

[PROJECTNAMES |
REDACTED] o35

Figure 5-14 Project Information Page

Findings from Sample Dataset
This tool can assist managers in determining the project characteristics or strategies

which improve or reduce performance over multiple metrics. From the sample data, valid

findings from this tool include the following:

e Projects which begin in spring perform better for both financial and delay
performance than other parts of the year, suggesting the best times to start on
site for optimum performance.

e The CP performance for most projects ranges between 0.99 and 1.07, providing

a scope for over expense.
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e The FDA performance is mostly between 0 and 0.89 with a skewed distribution
extending beyond this. This shows that most projects have delays of up to 89%
of the initial planned duration, the most common delay is 79% over the planned
duration.

e Projects which cost under £1,000,000 tend to perform worse than those which
have a larger cost, there is also a larger range of performance.

e Projects with large civil installations lead to increases in delays and over

expenditure.

5.7 Potential for the Future of the DSS

The DSS has the potential to improve decision-making processes in construction by
providing data-driven insights into key performance metrics, such as project costs,
timelines, and sustainability goals. By integrating advanced analytics and a flexible
feature importance tool, the DSS allows managers to objectively evaluate the CSFs that
most impact project outcomes. This can lead to more effective allocation of resources,
better risk management, and a reduction in costly delays. For example, if the DSS
identifies that certain materials consistently contribute to budget overruns, managers
can proactively seek alternative suppliers or adjust project plans. Ultimately, this data-
centred approach helps companies maintain tighter control over projects, improving

profitability and operational efficiency.

As sustainability metrics are incorporated, the DSS can continuously analyse and highlight

the most impactful factors influencing environmental performance, from material
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choices to energy efficiency practices. This adaptability supports the development of a
digital product passport, enabling full traceability of sustainable components across the
project lifecycle. By offering transparent and detailed reports on sustainability factors,
the DSS not only helps companies comply with regulatory standards but also enhances
their reputation in the market, appealing to clients who prioritise environmental

responsibility.

5.8 Summary

This chapter documents the development process of the DSS, emphasising the design of
its key functions and the relevant challenges. The development process began with an
exploration of the raw data supplied by the sponsor company. This involved defining
performance metrics related to project cost and delays, identifying input features, and
recognising data limitations. As a result, the DSS has been incorporated a functionality to

adapt to sustainability data in the future.

The chosen software for the DSS development is Power Bl Desktop, due to its user-
friendly attributes, robust data visualisation capabilities, flexible data source connectivity,

and interactive functionalities.

The flexible feature importance tool is discussed alongside the integration of the SELECT
HPO method which optimises the performance of this tool for each user defined
performance metric. The flexible feature importance tool is also set up to adapt to new
datasets and performance metrics, automatically optimising with the SELECT method for

the best results.
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This tool also offers an ability to dynamically identify the CSFs impacting the selected
project performance metrics from multiple perspectives and provide an objective
visualisation of the main findings which help to inform decision-making. A further
advantage presents itself in the capability to smoothly adapt to new performance metrics
and sustainability datasets as they become available, and this will allow the DSS to

improve project sustainability performance as the original aim of this research.

The integration of these functionalities into the DSS creates a system which can allow
decision makers to objectively analyse CSFs impacting any of the project performance
measurements now and in the future with minimal technical understanding of Al

technologies.

Moreover, the DSS is equipped with other supporting functions to inform decision
making from historical project data. One of them is the active project performance sub-
function which can dynamically analyse the important features contributing to OSFDA
throughout the project lifecycle. It can also predict the future trends in performance and
analyse the important features impacting pre-selected periods throughout project
timelines. Another sub-function is to offer an interactive way of investigating past project

performance, covering the nature of project work, and delivery strategies.

To conclude, the DSS is expected to provide a valuable tool to support decision-making
in the construction sector. To justify the usefulness of the DSS, the validation of the DSS

within an industrial setting will be discussed in the next chapter.
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6 Validation of the Decision
Support System

Chapter 5 discusses the development process of the Decision Support System (DSS) and
its key functionalities. In this chapter, the focus shifts to the critical phase of system
development, where the efficacy and impact of the DSS is systematically validated in an

industrial context.

Senior industry experts, representing potential end-users within the sponsor company,
play a central role in this validation. A demonstration video showcasing the DSS was
presented to these experts, coupled with a semi-structured questionnaire designed to
capture their perspectives on the DSS’s capabilities. Both closed questions using Likert
scale and open-ended questions are used to capture nuanced insights in the

questionnaire.

The aim is to extract industrial feedback and explore the applicability of the DSS in the
view of experts. The subsequent sections delve into the details of the validation
methodology, participant demographics, and the analytical approach applied to extract

meaningful results from the questionnaire.

6.1 Methodology

This section covers the methodology taken for collecting and analysing the expert

feedback. This begins with an explanation of the demonstration video created for
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validation, the justification for chosen method of analysis, followed by an explanation of

the semi-structured questionnaire design and how it was distributed.

6.1.1 The Video Demonstration

The demonstration of the DSS functionality came in the form of an 18-minute video
which introduces the users to the project aim and objectives (as part of this research)
and the definition of a DSS before demonstrating all main functionalities of the developed
DSS and highlighting the potential development in the future. Specifically, this video

covered the following topics, in order:

e What is a DSS: An explanation of what a DSS is and what are its key components;
the user interface, the inference engine, and the knowledge base, as shown in
Figure 6-1. These components will be programmed as main functionalities of the

developed DSS.

h Decision Support System z i

Components of a DSS

mKnowledge Base

m Inference Engine H\[//Xx - R
User
Interface

Knowledge
Base

m User Interface

Figure 6-1 Components of a DSS
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e Project Overview: An explanation of the collaborative project aim and objectives
and highlighting the focus of enhancing performance in decision making with Al

at this stage of development, as shown in Figure 6-2.

I Project Overview -
m Project Aim

Develop an intelligent decision support system for Galliford Try

m Objectives
Improve construction project sustainability

Enhance Operational Performance through Al Integration

Figure 6-2 Collaborative Project Aim and Objectives

e Contents Page and Performance Metrics: The contents page, and the
performance metrics page are first discussed, presenting the user interface, and
providing an understanding of the metrics which all pages in the DSS evaluate the

performance against.
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Decision Support System

Project Feature Analysis

Flexible Feature Importance

Active Project Performance
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Figure 6-3 Contents page and Performance Metrics

e Flexible feature importance Function: All sections of the flexible feature
importance page are discussed, and the uses demonstrated with an example of
SHAP feature importance, as shown in Figure 6-4. An explanation of the optimised
Al model and a demonstration and explanation of the results of PFI, LIME and

SHAP importance is also provided.

Feature Importance Analysis

Performance Metric Feature Importance Methods This may take Prediction: Accuracy
LIME 1-5 minutes. 0.16 0.10
Permutation Thank you RMSE MAE

@ sHap for your patience... 7 B -

@ Commercial Performance
Forecast Duration Accuracy at PO
OSFDA

Project Features Model RMSE =0.12 MAE = 0.08
B Design Durators.

e Pyifiqetapegqogpifajeigs T
o Hitit! §§§§ P Hid §5§§§§§§§§
oo IR LU B L LA
e L i |
e § {

Figure 6-4 Flexible Feature Importance Page from Video Demonstration
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e Functionality of all other pages: The functionality of the active project
performance and the past project performance pages, as shown in Figure 6-5, are

demonstrated.

Current Date

££$a¢
6

12
él;;‘ O—OO—O
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[
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Figure 6-5 Active and Past Project Performance Pages of the DSS

e Potential for the future: The next stage of the DSS development is mentioned,
as shown in Figure 6-6.

I Potential for the Future e I
GallifordTry
m The functionality is in place
m The system is adaptable and intelligent
mSo, what next?
Data for improving sustainability

Dynamic performance data

Expert experience

Evolve the DSS for improved decision making

Figure 6-6 The next stage of the DSS development
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6.1.2 Use of Questionnaire
The decision to employ a questionnaire for evaluating the industrial impact and efficacy

of the DSS is driven by the advantages of collecting qualitative responses and
acknowledges the limited available data at this stage of DSS development. This was also
selected above the choice of interviewing persons from industry due to a lack of
availability and time from the experts involved in the survey. The semi-structured
guestionnaire adopts a closed format, leveraging Likert scale questions, a methodology
applied in previous studies related to decision-making in construction and sustainability
(Shi et al., 2016, Yaseen et al., 2020, Murat Gunduz, 2021). This structured format
facilitates quantifiable measurement of participants' perceptions, enabling
straightforward comparison and statistical analysis of responses. The inclusion of open-
ended questions enriches the analysis, providing participants with the freedom to share

nuanced and qualitative insights from their unique perspectives.

The questionnaire method ensures a systematic and comprehensive approach to
gathering feedback from senior industry experts, allowing for the extraction of insights
grounded in significant industrial experience and practical considerations. Additionally,
the questionnaire's versatility allows for the exploration of various dimensions, from the
current capabilities of the DSS to its potential future applications, contributing to a

holistic understanding of its usefulness in an industrial context.

A key limitation of the questionnaire is the subjective nature of the assessment which is

mainly based on the opinions of experts rather than tangible results observed from a
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real-life implementation of DSS in an industrial setting. This limitation arises due to the
current unavailability of sustainability data, with this research setting the foundation for
the next stage of development. The subjectivity of this validation is mitigated by involving
multiple senior experts with extensive experience in the construction industry. All
participants bring diverse expertise in the construction sector, offering a well-rounded
perspective on the applicability of the DSS.

6.1.3 Designing the Questionnaire

To systematically gather comprehensive feedback from industry experts on various
aspects of the DSS, the questionnaire structure, as shown in Appendix 6-1, is designed to
assess the overall usefulness of the DSS, as well as its specific features, usability, and

potential impact. The questionnaire is divided into seven sections, as listed below.

1. Brief - The questionnaire begins with an overview, offering clarity to participants
about the purpose of the validation.

2. Demographics - Participants are asked to provide key demographic information
demonstrating their capacity to evaluate and understanding how their roles may
benefit from the DSS.

3. Understanding and Clarity - This section assesses participants' engagement with
the video and evaluates their comprehension of the demonstrated content.

4. DSS User Interface - This section assesses the visual appeal of the DSS interface

and its effectiveness in facilitating users to interact with all DSS functions.
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5. Flexible Feature Importance Tool - A key emphasis is placed on the feature
importance tool, incorporating SELECT optimisation. Participants are queried on
their understanding of the tool's functionality, the value attributed to various
aspects (including prediction accuracy, metric optimisation, adaptability for
future criteria), and their perceptions of its impact and usefulness.

6. All functions in the DSS - This section expands the focus to encompass the
contribution of all functions within the DSS. It explores their collective impact on
improving, potentially, construction project sustainability, relevance to industry
needs, and integration with current systems. This section utilises both Likert scale
guantification and qualitative open-ended questions to gather nuanced
information from participants.

7. Concluding Questions - The concluding questions inquire about the likelihood of
recommending the DSS, identify promising features, and solicit feedback on areas
for improvement. The questionnaire closes by inviting any additional comments
or suggestions from participants, underscoring the value of their input for

research and future system development.

A pilot study involving one academic and one practitioner for this research was carried
out. It aimed to gather feedback from both an academic and industrial perspectives by
assessing the understandability, accessibility of files, and overall quality of the survey
instrument. They scrutinised the questionnaire to ensure clarity and comprehension for

the intended audience. Additionally, they evaluated its quality, considering factors such
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as relevance, coherence, and alignment with research objectives. The feedback served
as a valuable quality assurance tool, identifying potential areas for improvement, and
ensuring the questionnaire's robustness in alignment with the research goals. Key

amendments from this process include the following, referring to Appendix 6-1:

Demographics: Responsibilities/duties question added to provide additional insight into
the relevance of the participant’s experience from their work responsibilities as well as

the duration.

Wording Clarity: The wording for Q2 was redefined for clarity from what is the
‘impression’ of the DSS to what is the ‘overall usefulness’. This new wording is better

represented with the Likert scale.

Add reasons for answers: The addition of requesting reasons for the chosen answers for
Q17, Q18 and Q19 to gain a larger insight into the overall impression of the DSS

functionality.

Additional Question: The addition of Q20 to determine which of the participants are

familiar with DSS technologies, providing a comparison to the developed DSS.

Distribution Method: The approach for distribution is agreed to be through a link to
Google Forms for accessibility and ease of use for both the participants and the

researcher.

These refinements contributed to a more polished and user-friendly survey, enhancing

its effectiveness in collecting meaningful insights from participants.
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6.1.4 Distribution of the Questionnaire

The distribution of the questionnaire was facilitated through Google Forms due to its

user-friendly interface, accessibility, and efficient data collection and data management

capabilities. This online approach streamlined the survey process, making it convenient

for both researcher and participants, and eliminating the need for physical paperwork.

Respondents could engage with the questionnaire at their own pace and convenience.

For distribution, an email containing the link to the demonstration video and the

questionnaire, shown in Appendix 6-2, was sent to a designated employee within

Galliford Try Ltd, who forwarded the same email to other relevant individuals. This

targeted approach ensured a direct and tailored outreach.

6.1.5 Participants

Table 6-1 Participants of the validation questionnaire

Experience
Job Title Duties/Responsibilities xperi
(Yrs)
Technical elements of Design, support of
Technical Manager the Engineering Team and Digital 33
applications
Produced a Management System which is
Health, Safety and Environmental Systems Manager | legally compliant, and assists those 29
managing Health and Safety
Data Analysis, Operational Team Liaison,
Project Management Office Manager Concept Report Building, Operation 22
Reporting, Framework Performance Review
Senior planner Provide construction insights to project 20
teams and management
Innovation and Research Lead Responsil:?le for innovation activity across 20
the organisation.
Data & Systems Manager Gather programme, commerc.lal & safety 12
data for the Environment business
Data Analyst Project Management Office Overview 3
Average 19.86
Standard Deviation 10.06
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Table 6-1 shows an average working experience of 19.86 years with a standard deviation
of 10.06 years over a total of 7 participants. To increase diversity, feedback was collected
from professionals with a diverse range of experience, including mostly those with at
least 20 years of expertise in the construction industry, one having more than 10 years of

experience and one having only 3 years of experience.

6.2 Results and Discussion

The closed questions using Likert scale will be first examined followed by the analysis of

the open-ended questions.

The Likert scale used for each closed question, as shown in Appendix 6-3, contains 5 levels
of rating, 1 being the worst and 5 being the best. Appendix 6-3 shows the distribution of
responses across 5 different scales as well as the average result and standard deviation.
Overall, the feedback is good, with all questions having a mean feedback value ranging
between 3 and 5, with the standard deviation between 0.64 and 1.05. The results specific

to each section of the questionnaire will be discussed below.

6.2.1 Video Demonstration Feedback

Table 6-2 Video Demonstration Feedback

Numbered Likert Scale Summary
Description 1 2 3 4 5 | Average | Standard Deviation
:I/\i/dh:;?is the overall usefulness of the DSS based on the 1 4 2 414 0.64

The participants generally found the DSS have a high level of usefulness (average = 4.14,
SD = 0.64) from the video demonstration, with the Innovation & Research Lead and the

Project Management Office (PMO) Manager scoring the top rank of 5 to this question. As
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they are both key persons with significant experience related to project management and
research this is a positive outcome. The most common result was 4, with only the Health,
Safety and Environmental (HS&E) Manager scoring 3, believing the DSS to be moderately
useful. It is reasonable to tell why the HS&E Manager may find the DSS less useful at
present as it has not taken environmental or safety metrics into consideration due to the
lack of sustainability data. Having said that, the DSS is equipped with the capability to

improve project sustainability performance in the future.

6.2.2 Understanding and Clarity

Table 6-3 Understanding and Clarity

Numbered Likert Scale Summary
Description 1 2 3 4 5 | Average | Standard Deviation
After watching the video, how well do you feel you
understand the key features and functionalities of the DSS? 2 3 2 4.00 0.76
How clear a.nd ez?sy to ft?llow were the explanations and 2 2 3 414 0.83
demonstrations in the video?

There was a generally good understanding of the key features and functionalities of the
DSS, as represented in Table 6-3. All responses ranged between a score of 3 to 5 with the
average score of 4 and 4.14 for the understanding of the DSS functionalities and the
clarity of the explanations in the video demonstration. This adds significance to the
findings as the participants understand what they are evaluating based on the

demonstration video.
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6.2.3 User Interface

Table 6-4 User Interface

Numbered Likert Scale

Summary

Description

How would you rate the ease of use of the DSS's user
interface based on the video demonstration?

Did you find the DSS's user interface visually appealing and
well-organised based on the video demonstration?

1.2 3 4 5
15 1

4 1 2

Average

4.00

3.71

Standard Deviation

0.73

0.88

The user interface was received well, with all responses in the range between 3-5, as

shown in Table 6-4. The interface scored highly for the ease of use with an average score

of 4 and a standard deviation of 0.73, of all participants, 86% scored 4 or above,

suggesting that the DSS interface is perceived as easy to operate. The visual appeal and

page organisation also scored highly, but 57% of the participants scored 3 for this,

suggesting an area for improvement in the presentation of the DSS.

6.2.4 Flexible Feature Importance Function

Table 6-5 Flexible Feature Importance Function

Numbered Likert Scale

Summary

Description

Did the video demonstration provide a clear understanding
of how the Feature Importance Tool works within the DSS?
How well do you understand the role and significance of the
Feature Importance Tool based on the video?

How valuable do you consider the Tool's functionality for
optimising project performance in construction projects?
How valuable do you consider the Tool's functionality for
optimising for each performance metric?

How valuable do you consider the adaptability of the Feature
Importance Tool for future datasets and metrics?

How confident are you in the accuracy of the Feature
Importance Tool's assessments based on the video
demonstration?

To what extent do you believe the tool can help project
managers make informed decisions for project performance?

112 3 4 5

312 2
2 | 3|2
1 4 | 2
14 2
112 4
4 2 1

Average

3.86
4.00
4.00
4.14

4.43

3.57

3.71

Standard Deviation

0.83
0.76
0.93
0.64

0.73

0.73

0.88

The Flexible Feature Importance function incorporates the SELECT method for optimising

against each performance metric, so this section of the survey contains more questions
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which were purposefully designed to assess the usefulness of this function from the

perception of the participants.

The results are positive overall, with the scores for all questions having an average
ranging between 3.57 and 4.43, shown in Table 6-5. The most promising responses are in
relation to the optimising capability and adaptability for future data, with average scores
of 4.14 and 4.43 respectively. These aspects of the Flexible Feature Importance function,
key contributions from this research, are perceived to be valuable by the participants;

experts in decision making in the field of construction project management.

The first question in Table 6-5 is related to understanding the Flexible Feature Importance
functionality based on the video. The average response is 3.86 and 57% of participants
scored this as 4 or above, showing most participants at least finding the functionality to
be clear from the video demonstration. The role and significance of the function is also
well understood as 71% of applicants scored this at 4 or above. These findings can give
confidence to the subsequent questions related to this function through a general

understanding of the tool’s functionality and significance.

86% of participants believe that this function is valuable for improving construction
performance with the PMO Manager and Innovation & Research Lead both scoring this
the highest value of 5. This is a very positive result as it shows a general appreciation of
the feature importance function for the technical personnel with experience, particularly

those who are responsible for construction project management and those whose job is
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to bring innovation into the construction environment. The HS&E Manager continues to
assign a lesser score than the other participants, assigning 2 in optimising construction
projects. Again, this may be due to the lack of sustainability measurement which is

caused by the data unavailability.

In relation to the optimisation for different performance metrics, as discussed previously,
the results are very positive. The vast majority, 86%, of responses consider the
optimisation for new metrics to be 4 or above, with PMO Manager and Innovation &
Research Lead once again giving a score of 5. This same result is mimicked for the
adaptability for new datasets in the future. The technical participants have consistently
given scores of 4 and 5, while the HS&E Manager has reacted less positively, rating this

functionality between 2 and 3, for optimisation and future data adaptability respectively.

The respondents have scored from 3 to 5 in confidence to the accuracy of the feature
importance function, with the PMO Manager scoring the highest ranking of 5, and the
Senior Planner and Innovation & Research Lead scoring this at 4. All other participants
have scored 3 for confidence in the predictive accuracy. In terms of helping project
managers make informed decisions for project performance, the responses are mostly
positive with an average score of 3.71 and 71% of participants scoring 4 or above. The
PMO Manager scored 5, the Data and Systems Manager responding with a 3 and the

HS&E Manager responded with a 2.
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Overall, there is generally a positive perception of the impact of this function, with key
experts such as the PMO Manager and the Innovation & Research Lead having the

highest confidence in the capability and future potential of the system.

6.2.5 Usefulness of the DSS

Table 6-6 All Tools in the DSS Q14-Q17

Numbered Likert Scale Summary
Description 1 2 3 4 5 | Average | Standard Deviation
con s In Improving cansiuton projecs sstainabliy? 2 13 1] 343 105
How relevant do you find the DSS's functionalities to the 1 4 2 414 0.64

construction industry's needs and challenges?

Based on the demonstration, how well do you think the DSS
integrates various tools to support decision-making for 1 1 4 1 3.71 0.88
construction projects?

How likely would you be to recommend the DSS, based on
the video demonstration, to colleagues or peers in the 1 1 3 2 3.86 0.99
construction industry?

Regarding how well the DSS integrates with other tools for supporting decision-making
in construction projects, 71% of participants scored 4 and above with the PMO Manager
scoring 5 as feedback. The Data and Systems Manager scored 3 while the HS&E Manager
scored 2. The distribution of responses shows that the capability of the DSS to integrate
with other tools/systems within the company is well-recognised except that the HS&E

Manager expected more from the DSS.

The DSS functionalities were also believed to be relevant for the needs and challenges of
the construction industry. Scores ranged from 3 to 5, averaging at 4.14 with 86% of

participants scoring 4 or above.
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There was more of a mixed reception for the evaluation of sustainability criteria. The
mean result for the perceived capability for improving construction project sustainability
was 3.43 and a standard deviation of 1.05. This suggests a perceived moderate
contribution to sustainability with diverse opinions. This is due to scoring of 2 from the
Data analyst and Data and Systems Manager, while the HS&E Manager scored 3 for the
capability for improving construction project sustainability. This spread may be in relation
to the fact that no environmental or social goal criteria or performance metrics were
included in the DSS at present, providing area for improvement in the future. Despite this
feedback, the PMO Manager scored a 5 for this question. Overall, 57% of participants
scored this question with 4 or above so most participants believe the DSS can improve

construction project sustainability, while others are less convinced.

When asked the likelihood of recommending the demonstration to colleagues and peers
in the construction industry, 71% of participants responded with 4 or above as a score.
Both the PMO Manager and the Innovation and Research Lead scored this with a 5 while

the HS&E Manager once again responded with a lesser response of a 2.

6.2.6 Open Ended Responses

Q17 Reasons for response to DSS recommendation
The reasons given for the scores on Q17 question are provided in Appendix 6-4. The key

observations made from these reasons are shown in Table 6-7:
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Table 6-7 Reasons for decision to recommend the DSS

Rank DSS Recommendation: Reasons for selected

User Ranking

Data & Systems Manager 3 There would be benefit of further data for
Technical Manager 4 improving system performance.

Data & Systems Manager 3 Suggest future collaboration to improve and
Innovation and Research Lead 5 harness the tool.

PMO Manager 5 The DSS takes away perception, which is still

guiding the construction industry.

Tools like this may not accommodate the
diverse forms and nuances of project variables
HS&E Systems Manager 2 to be effective, and fears people will stop
thinking and rely on such software, resulting in
dangerous situations

These differing reasons show the nuance and diverse perspective presented by the

participants of the study. There is a clear desire to develop this DSS further with more
data as multiple participants can see the potential and benefit from incorporating such a
tool into their field. The benefits of removing the subjective nature of decision making

guiding the construction industry are a possible driving factor for this.

Not all persons are convinced of the capability of the system. The comments of the HS&E
Manager show a concern for missed information in decision-making. This does however
miss the point that a DSS is a support system, rather than one that replaces the expert
knowledge. This is a point which could have been emphasised further to reduce the
resistance to this technology. This comment does bring to light an understanding of why
the HS&E Manager responded with the harshest scoring of all participants, averaging

2.86 over all closed questions, compared to average of 3.93 between all participants.
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Q18 Which function is most promising and valuable, and why?

The responses to Q18 are shown in Appendix 6-5. The key observations made from the

responses are shown in Table 6-8:

Table 6-8 Observations of the most promising and valuable DSS functions

User Key Observations
Senior Planner The active project performance tool for trend prediction is
PMO Manager of most benefit.

The active project trend prediction tool to be of benefit but
HS&E Manager has reservations about the consistency of data and the
method of implementation.

There is benefit of the project nature tool in studying
projects by their defining characteristics, providing
insights which may lead to improved efficiency, quality,
and performance.

Data & Systems Manager

Both the flexible feature importance function and active

Data Analyst project performance tool to be the most promising.
Technical Manager The DSS itself is the most value, with the future potential
Innovation and Research Lead of the whole system.

A trend that can be noticed throughout the feedback is that each of the participants
tends to value the tools which benefit their role the most. The Planner and PMO manager
prefer the active project performance, the data analyst values both the feature
importance and active project performance functions, and the Data and Systems
Manager prefers the tool which studies the nature of past project data. The Innovation
and Research Lead can see the benefit of all tools, and the Technical Manager can see

the potential for future development.

The combined input of all applicants highlights the importance of considering the specific

roles of all stakeholders and responsibilities when evaluating the perceived value and
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benefit of different tools within the DSS. It also highlights the need for tailored solutions
that address the unique requirements and priorities of various stakeholders within the
organisation. There is also clearly an enthusiasm within this expert pool to pursue future

collaborative development.

Q19 Which functions is may need further improvements, and why?

The responses to Q19 are in Appendix 6-6. The key observations made from these

responses are listed in Table 6-9:

Table 6-9 Feedback for functional improvements

User Functional Improvements

Including data related to external factors which would
impact project performance.

Adding contemporary data for understanding of the
current situation and trends.

A difficulty in defining the optimal parameters in the
Data Analyst project nature page, requiring complex analysis of the
data to achieve this.

Senior Planner

Data and Systems Manager

Technical Manager Including risk data overlayed with time and money.

Including the types of work, forms of contract and

Innovation and Research Lead
procurement methodology.

The most prominent trend in the feedback from all participants is the desire for increased
data. Whether it is related to risk, external factors or contemporary projects, the focus of
improvement is on the introduction of new data. This, combined with the previously
established enthusiasm for future collaborations, shows a positive direction for further

development of this DSS, and a trust in the capability.
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There was no concern mentioned in relation to functions of each page except for the
defined parameters on the project nature page, stated by the Data Analyst. A point to
mention in relation to this, is the desired optimal parameters for the project nature page
would be an exact application of the Flexible Feature Importance function. This is
intended for finding the optimum CSFs against construction project performance and
would handle the complexity stated by the Data Analyst. This would provide avenue of

improvement would be a suitable area for future research.

Q20 Awareness of similar DSS software and comparison?

The response to similar tooling is shown in Appendix 6-7 and the key observations are

shown in Table 6-10:

Table 6-10 User awareness of similar DSS software

User Awareness of Similar DSS Software
Data and Systems Manager
PMO Manager Have not heard of a similar tool.
Innovation and Research Lead
Technical Manager Are aware of support technologies focused on
Senior Planner improvements at the design stage.
Refers to Primavera but mentions the proposed DSS has
Data Analyst an advantage of gaining detailed insights from project

characteristics.

Senior Planner Knows of Oracle Analytics Cloud

Itis clear from the feedback related to Q20 that most of the participants are not familiar
with similar tools to the proposed DSS, and there are not sufficient comments related to

comparing existing technologies with the DSS.
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There is the mention of the design-based support technologies which support a different
application. The Primavera tool is mentioned for project management but not for the
capability of gaining detailed insights from project characteristic. Oracle Analytics Cloud
is highlighted, but this tool does not utilise optimised deep learning to detect complex

patterns in data.

Q21 Is there any additional feedback or comments?

The responses to Q21 are shown in Appendix 6-8 and the key observations are shown in

Table 6-11:
Table 6-11 Additional user feedback

User Additional Feedback

Data Analyst Mentioned there was no data related to sustainability in
the system at present.

PMO Manager Complimented the demonstration on the clarity and
provided information.

Technical Manager Expressed an interest in assisting with the future

Innovation and Research Lead development of the DSS.

The demonstration did mention that one of the goals was to improve construction
project sustainability, but it was also highlighted that the focus would be on developing
the DSS functionality due to a lack of sustainability data. The positive feedback from the
PMO Manager, and the Technical Manager and Innovation and Research Lead wanting to

assist in the future is evidence of the positive impact and potential of the DSS now and

for the future.
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6.3 Summary
This chapter covered the industrial validation of the DSS through the distribution of a

well-justified survey combined with a video demonstration. The video presented the
overall functionality of the DSS, specifically mentioning the integrated SELECT
optimisation algorithm and data adaptability related to the feature importance function.
The validation involved 7 experts in the field of construction project management, with
an average of 20 years of experience between them. All these participants came from a
wide range of expertise and responsibilities providing a diverse perspective to assess the

DSS efficacy and impact. The key findings are listed in Table 6-12:

Table 6-12 Key findings from the validation survey

Key Finding

Overall, the feedback is good, with all questions having a mean Likert value ranging between
3.00 and 5.00, with the standard deviation between 0.64 and 1.05.

The flexible feature importance tool which incorporates the SELECT algorithm was believed to
be of value with an average score of 3.95 over all related questions.

The functions for optimisation and data adaptability were of significant value with the average
scores of 4.14 and 4.43 respectively.

71% of the participants scored 4 or 5 for recommending the DSS to colleagues and peers.

The PMO Manager and Innovation and Research Lead had the most positive reaction with all
rankings between 4 and 5.

The HS&E Manager was the most resistant of the participants to the benefit of the DSS, showing
concerns that mistakes may be made by relying too heavily on the DSS. This negative opinion
may have arisen from the lack of sustainability data included in the study.

These findings provide clear evidence to support the efficacy and impact of the DSS
especially the potential benefits of implementing the flexible feature importance
function in an industrial setting. The DSS has been well-received in the validation as the
majority of the participants have shown strong desire for collaboration and further

development.
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7 Conclusion

This chapter serves as the culmination of the thesis, covering the aims of the study and
the key discoveries and contributions, highlighting the implications and significance of

the completed work, and the opportunities for future research.

7.1 Research Gap in the Literature and Aim

Previous studies have focused on using meta-learning to predict learning curves on new
datasets by studying previous datasets (Wistuba and Pedapati, 2020, Klein et al., 2017).
Moreover, existing approaches to learning curve prediction have concentrated on halting
poorly performing learning curves (Domhan et al.,, 2015). Previous research has
presented findings that learning curve prediction of this kind would be difficult to harness
effectively for improving HPO for deep learning. (Choi et al., 2018) carried out a study on
learning curve prediction for the early termination of learning curves. They concluded
that the shape of learning curves changes drastically depending on both the
hyperparameter configurations and the variations in dataset. They also highlighted that
additional tuning parameters make it challenging to effectively use learning curve

prediction for variations in HPO task.

This has left a gap for an approach that can incorporate both the training and prediction
of learning curves on the same dataset, allowing for the prediction of the performance
of fully unseen learning curves based on training a subset of the hyperparameter search

space.
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The aim of this study was to advance the field of hyperparameter optimisation (HPO) and
learning curve prediction by developing an innovative approach that overcomes existing

limitations in current methodologies.

7.2 Objectives

To achieve this overarching aim, the specific objectives of this research included:

1. Overcoming Limitations in Learning Curve Prediction: Address the constraints of
existing learning curve prediction methods with a more integrated framework
that utilises both training and prediction within the same dataset.

2. Creating a New HPO Approach: Introduce a novel hyperparameter optimisation
technique that leverages the newly developed learning curve prediction model,
enhancing predictive accuracy and efficiency.

3. Validating Against Existing Benchmarks: Conduct comprehensive validation of
the new HPO method against established benchmarks to demonstrate its
effectiveness and reliability in practical applications.

4. Integrating the HPO Method into a Feature Importance Analysis Tool: Develop a
tool that combines the HPO method with feature importance analysis techniques,
enabling users to gain insights into the critical factors affecting model
performance.

5. Demonstrating Industrial Significance in a Decision Support System (DSS):

Showcase the applicability and relevance of the developed methodologies within
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a practical DSS, highlighting their potential to contribute to informed decision-
making in real-world scenarios.
7.2.1 The SELECT HPO Method
The SEquential LEarning Curve Training (SELECT) HPO algorithm has been developed in
the form of the data pipeline as shown in Figure 7-1. The stages of the SELECT method

are as follows:

1. Each dataset inserted into the pipeline is split into a training, validation, and test
set, and split between labels and input features.

2. The learning rate is tuned using the training and validation sets to allow negligible
difference between all hyperparameter configurations at the start of each training
run, leading to a minimum by the end of a predefined epoch limit.

3. Arepresentative sample group of hyperparameter configurations are trained, and
the learning curves are recorder, converted into blocks and joined in sequence to
create a training set for a sequence prediction model, in this case the CGRNN.

4. The CGRNN is trained with the sequential training set to learn the relationship
between the hyperparameters and the learning curve shape.

5. The CGRNN predicts the learning curves with a single training window, without
training them, and the predictions are ranked by the best results from the final
steps in each learning curve, referenced in the green box in Figure 7-1.

6. The top predicted configurations are trialled to select the best model on the test

set.

272 | Page



[ sequential Training set

‘ and Labels

| Trainthe cGRNNModel | a

"{_ ATl M ] = 5 Prediction vs Actual

| Ranked Hyperparameter Combinations |

BestModel \
Performance |
Details =101

loss

Figure 7-1 Novel HPO Process Flowchart

This thesis presents a learning curve prediction-based algorithm which achieves HPO
with a high level of accuracy and better computation efficiency than GPBO, TPE,
Hyperband and RS. This is on both synthetic and real datasets, evaluated through MAE
and feature importance analysis. The SELECT method not only improves an HPO
algorithm with learning curve prediction such as (Klein et al., 2017, Wistuba and
Pedapati, 2020), but also re-defines learning curve prediction as a completely new
approach to HPO which can predict the learning curves of hyperparameter configurations

without running them, i.e. completely unseen hyperparameter configuration learning

curves, for the first time, can be predicted.
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The SELECT method contains tools which have been used in the past, such as the CGRNN.
The CGRNN was selected through a trial-and-error comparison with the RNN, LSTM, GRU
and 1DCNN, as well as hybrids of these. The combination of the GRU and 1DCNN proved

the most effective in predictive accuracy and computational expense for training.

The SELECT method is also composed of a novel approach to creating a sequential
training set for the CGRNN which makes it possible to predict fully unseen learning
curves. This is the combination of three main components, shown in Figure 7-2. Each of
these components achieves a key function to overcome the well-known difficulties in

learning curve prediction for HPO(Choi et al., 2018).

e Aloss dependent learning rate, which begins with a negligible impact on training
an ANN and adapts to each configuration individually.

e The conversion of each learning curve into blocks of the average and range of loss,
validation loss and the learning rate in parallel, rather than every epoch in series.

e The addition of a ‘Starting Step’ made of synthetic duplicates of the first instance

of the learning curves.
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By converting learning curve data into the format shown in Figure 7-2 and joining the

learning curves as a sequence, shown as a line graph in Figure 7-3, a single optimised

CGRNN can be trained to adapt to different datasets and predict unseen learning curves.

Figure 7-2 Three components for efficient learning curve prediction for HPO

Block Learning Curves Joined in Sequence
Starting Step Starting Step Starting Step
w
w
S
e R
Training Cycle Training Cycle Training Cycle
Architecture 1 Architecture 2 Architecture 3
Blocks

Figure 7-3 Example of the sequential training set as a line graph

With this developed sequential training set, the number of rows, the number of variables,

the type of variables, and the range of feature scaled parameters are the same for
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whatever dataset enters the pipeline shown in Figure 7-1. The only variation is the
relationship between the chosen prediction variable and the hyperparameters. This

means the CGRNN does not need to be tuned for new datasets.

Additionally, all learning curves in this format begin with the exact same shape; this is the
synthetic starting step and negligible difference in the learning curve data. So, this shape
can be replicated with each hyperparameter configuration and inserted into the trained

CGRNN to predict the learning curve of that configuration without any necessary training.

The combined steps in Figure 7-1 present a new method of HPO adopting learning curve
prediction which is comparable to any standard machine learning pipeline, rather than
the convergence seen in BO, HB or TPE. Most existing HPO methods iteratively observe
configuration performance and converge on the best option through consecutive
evaluations. The SELECT method prepares a sequential training set from a sample of the
search space, trains a CGRNN and predicts the best results. This presents multiple
additional benefits beyond finding high performing configurations. These additional

benefits are listed below, from the Results and Discussion in Chapter 3 (section 3.5.4):

e The trained iterations in the sequential training set do not interact: The learning
curves for the sequential training set can all be trained in parallel.

e The pipeline has a set amount of computation for completion: The optimum
outcome is achieved after a predefined amount of computation for every dataset,

rather than a termination criterion. This creates a level of consistency which is
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beneficial for resource allocation and predicting the time needed for the
optimisation process.

e The relationship between hyperparameters and performance can be visualised:
The predictions from the CGRNN can be used to analyse the relationship between
hyperparameters and performance, directing the search to include or exclude
areas of the hyperparameter search space for better performance.

7.2.2 Feature Importance Analysis

This study shows the superior capability of the SELECT HPO method in predictive accuracy
and determining the importance of features in data using both synthetic and real-world
datasets. The SELECT method has outperformed existing HPO methods in identifying top-
performing ANN models and uncovering complex dependencies within data, even under
varying degree of complexity and uncertainty. Further to this, the novel HPO method has
been effectively integrated into a DSS, combined with SHAP, PFl and LIME to create a
holistic and objective way of finding the CSFs for sustainability in construction.

7.2.3 DSS Validation

The DSS was validated using a video demonstration and survey focusing on the
functionality of the developed feature importance tool integrated into a DSS together
with the novel HPO method. This validation involved 7 experts from the construction field

with an average of 20 years of experience and a diverse background of expertise.

The feedback from industry experts, with an average score of 4.14 out of 5 and SD=0.64

for the overall usefulness of the DSS, indicates a high level of satisfaction with the
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system's capabilities. Specifically, the feature importance function received positive
feedback, particularly regarding its optimising capability (mean=4.14, SD=0.64) and

adaptability for incorporating new data (mean=4.43, SD=0.73).

Most participants expressed confidence in recommending the DSS to colleagues and
peers (71% scored 4 or 5), but certain concerns were raised about the potential for over-
reliance on the system and the need for further development through the addition of
new data. There was also enthusiasm from multiple participants in the survey to pursue

future collaboration in developing the DSS, incorporating new data.

Overall, the validation confirmed the promising potential of the DSS integrated with the

novel HPO method for supporting decision-making in the construction industry.

7.3 Research Contributions

Multiple contributions have been made in this research. These contributions are as
follows:

A Novel Method of Learning Curve Prediction for HPO:

A novel method has been developed to create a sequential training set for predicting
learning curves of fully unseen data. This method, for the first time, addresses the
challenges related to the significant variations in learning curves for new datasets and
hyperparameter configurations. This contribution is combined into a machine learning
pipeline which culminates in a new HPO method. This novel HPO method can achieve

high predictive accuracy, computational efficiency, as well as computational consistency.

278 | Page



Further to this, this method is able to select high performing models which find the

important relationships with data, verified through thorough analysis.

This novel method contributes significantly to the field of HPO by enabling a more
effective and efficient application of learning curve prediction. The impact of this novel

method is explicitly demonstrated through all experiments in this study.

Objective Approach to CSF Analysis for DSSs in Construction:

An objective approach to feature importance analysis has been developed specifically for
DSSs in the construction sector. This approach provides an unbiased method for
evaluating the importance of features in decision-making processes within the
construction industry. This function is optimised with the SELECT HPO method and has
been created for adaptability the analysis of new data. By enhancing the reliability and
effectiveness of feature importance analysis, this contribution empowers decision-

makers to make informed and data-driven decisions in construction projects.

7.4 Limitations

There are several limitations to this research which are broken down in different areas as
follows:

7.4.1 Novel HPO Method (SELECT)

The hyperparameter search space was intentionally restricted to a subset of
hyperparameters commonly found in ANNs, which were the learning rate, the number
of neurons per hidden layer and the number of hidden layers. Other hyperparameters

such as the optimiser, activation function, and number of epochs could be analysed,
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however, for the sake of simplicity, only the primary factors driving model performance

were considered in this research.

Only Adam optimiser was selected during this study as it created a fair comparison
between the benchmarks as this approach includes an adaptive learning rate at the
beginning. The number of epochs for all experiments was defined through trial-and-error
to balance time and effectiveness. The activation function was set to RelLu, which is
standard for regression problems, but other variations of RelLu are available, such as

Parametric Relu, Flexible ReLu and Leaky ReLu (Apicella et al., 2021).

Tabular datasets with matrices of rows and columns were the only type used for the
validation of the SELECT method, this includes both the real world and synthetic datasets
used in all experiments in Chapter 3 and Chapter 4. The analysis of datasets used for
image classification in a different format has yet to be investigated with this approach.
7.4.2 Feature Importance Analysis

The feature importance analysis conducted in this thesis was constrained by the limited
range of techniques employed. While the use of three well-known methods, SHAP, PFl,
and LIME, provided valuable insights into feature contributions, the reliance on these
specific methods may have restricted the breadth of the analysis results. However, the
choice of these three techniques was primarily driven by their widespread application
and well-documented justification in the literature, which facilitated easier

implementation and interpretation.
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The limited number of datasets used in the feature importance analysis represent
another notable limitation. With two real-world datasets and two synthetic datasets, the
generalisability of the findings may be limited. Incorporating more datasets, and different
types of datasets such as image classification could generate more evidence to justify the
effectiveness of the SELECT method for feature analysis.

7.4.3 Data Availability

The current research had to deviate from the initial aim of improving construction project
sustainability as the sustainability data failed to materialise through the research journey.
This has resulted in the DSS not achieving the capability to enhance project sustainability,
but it can adapt to new data in the future when available.

7.4.4 DSS Validation and Sample Size

The validation of the DSS conducted in this study is of subjective nature, and so a more
objective validation, such as real-world implementation, may help to provide more
tangible evidence of the impact of the system. The limited number of participants, 7 in
total, may also impact the reliability of the DSS validation. Although the sample was
small, the validation involved professionals with an average experience of 20 years, it also
encompassed diverse perspectives from individuals holding various roles, including
Technical Manager, PMO manager, HS&E Manager, Data Analyst, Senior Planner, Data
and Systems manager, and Research and Innovation Lead. This diversity of perspectives

contributed to a comprehensive evaluation of the DSS.
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7.5 Opportunities for Future Research

Multiple avenues for future studies have arisen during this research. These can be split
between the future development and testing of the novel HPO method, and the

development of the DSS.

The current research tested the novel HPO method on tabular datasets and regression-
based problems. The method could be further tested on time-series datasets, or image
datasets and for classification problems to further validate this approach in a wider scope

of application.

Another future area of study would be to expand the search space to include the
optimiser, activation function, and number of epochs. This, combined with the use of
parallel computing would provide a great opportunity to test the novel HPO method on
a larger scale, while potentially reducing the time required through an upgrade in

computation.

The next stage of development for the DSS would be through the collaboration with the
same sponsor company to collect contemporary dynamic performance data, and
sustainability data. The specifics of the data will need to be determined through
consultations with experts in the field of construction project management. The
participants from the survey have highlighted an interest in pursuing the next stage of
development and the initial communications for this have already begun. The aim of this
collaboration would be to gain the knowledge from the experts around the CSFs for

construction sustainability, utilising the flexible feature importance function. This will
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help to facilitate the incorporation of the DSS into the existing decision-making process
of the company, hence create a demonstrable real-life impact in the construction

industry.
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Appendix 6-1 DSS Questionnaire

- . . .
| Decision Support System Demonstration Questionnaire
Brief
The purpose of this questionnaire is to gather comprehensive feedback from indu stry experts like yourseif regarding the functionality, usability, and potential imspast)
lof our Decision Support System (D55 tallored for construction project sustainability. We value your insights to help us understand how well the DSS meets industry]

needs, especially in optimizing project performance, enhancing sustainability, and improving decision-making processes, Your feedback will contribute to the
refineme nt and validation of sur OGS for future develop ment,

Demographics
bt Title |
Duties/Responsibilites |
ears of expenence [
Video Demonstration Feedback
@l Did you watch the wideo demaonstration of the Dedision Support System (DSS? [Yes Na) E
a2 What is the owerall usafulness of the DS5 hased on the video?
Mot Useful Slighthy Useful I Moderately Useful | Use ful ey Usetul |
Understanding and Clarity
a3 After watching the video, how well do you feel you understand the key features and functionalitties of th e Bi55?
Not at all | Shight by i Moderate | Well | Very well |
a4 How dear and easy o follow were th e explanations and demorstrations in the video?
[ Nert at all Slightly T Maderate T Clear wery Clear |
DSS User Interface (UI)
Qs How would you rate the ease of use of the DSS's user inte riace based an the video o ation?
Very Difficult : [BiFcult i Maoderate ! Eazy : Very Easy l

a6 Did you find the D85 user inte dace wisually appealing and well-organized based on the video demonstration?
Mot at all | Shight by i Moderate H Appealing | Very Appealing I

Flexible Feature Importance Tool

a7 Did the video dema nstration provide a clear understanding of how the Feature iImpartance Too | works within the DS5?
ot at all i Slight b Moderte Clear Wery Clear
a8 How we Il do ywou understand the role and sgnificance ofthe Feature Impartamce Toolbased on the video?
[ Mot at all Slight ly i Moderate | Well i Wery Well |
a9 How valuable do you consider the Tool's functionality for optimizing pro ject perf; in construction projects?
Mot at all Shight by P Moderatewalue | ‘aluable Very Valuable ]

aw How valuable do you consider the Tool's functiomality for optimizing for each performance metric?{Commercial Perfomance, Forecast Durmation
Accuracy atPO and On-Site Forecast Duration Accuracy)

[ Mot at all Slight ly | Moderatevalue | Valuable i very valuatle |
Qi How vatuable do you consider the adaptability of the Feature Impartance Tool for future datasets and metrics 7

[ Not at all Shghtly T ModemteValug | Valuable Very Valuatle |
an How eontident are you in the aceuracy of the Feature imp ortance Tools hased on the videa demanstration!

[ Nort at all ! Shightly 1 Maderately I Confident | vewCorfident |
ais To what extent do wou belleve the tool can help project managers make informed decsions for project perf ormance?

[ Nat at all | Slight ly i Maderately Very Muzh i Extremely ]

All Tools in the DSS
a4 Based on the demonst mtion, how well do you think the DSS can assist in improvi ng construction project sustainability?

[ Not at all I Slightly ] Moderately ! Very Much Extremely ]
015 How relevant do you find the DSS's fune tisnalities to the constmict ion industiy's needs and challenges?
Mot at all Slight ly I loderatel I Relevant [ Extremely Relewant ||
Qe
Based onthe demonst mtion , how well do you think the DSS integrates varkous took to support decisi on-making for construction projects?
Mot atall | Slight by i Moderate well Very well
a7

How lkely would you be to recommend the D55, based on the wideo dempnstration, (o colle agues or peers in the construgtion i ndustry?
| Mot Likely i Slightily Likely i Moderately Likely | Likely i Wery Likely
Please share your reasons or comments ballow

0 Whic h specific tool or feature within the D55, as demonstrated in the video, do you find most promising or valuable ? Please specify and provide reasons

for your answ er,

as ‘Whene th ere any specific aspects or functionalities of the OS5 that you believe require further improve ment or darification based on the wideo
demanstration? I so, can you provide reasons for your answ er.

Q20 Areyou aware of any similar decision support tools or systems currently used in your sector or within your company? If so, how do they compare to the
D55 from the demonst mtion?

a2

Is there any additional feedback or comments you would like to provide regarding the D55 andits features, based on the wideo demonstration?

Thank you for taking the time to participate in this questionmaire. Your input is invaluable to our research and the

development of the DSS. Your insights will contribute to the improvement and refinement of our system for the
future
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Appendix 6-2 DSS Validation Distributed Email

cs | Craig Smith @ B f 2
To: Angus Liu (Galliford Try) <angus.liu@gallifordtry.co.uk> Tue 03/10/2023 16:20

Cc: Andy Wong

Hi, Angus.

As requested, | have created a link which should be accessible for the video,
and | have created an online active survey with the second link. These should be
fine for distribution as | have tested them.

Video Demonstration

hitps:/istrath-
my.sharepoint.com/:v:/g/personallcraig_smith_strath_ac_uk/EZU30AcwQX1
Bowkx8ss13KOBCXFNGDskxAUIXVUSJjyusg?e=kVi35B

Link to Questionnaire
https://docs.google.com/forms/d/e/1FAIpQLSeditGwNCcie71 16SwNezwz-
6911 CJhIE2fpV0x0jRE-m-Xwiviewform?usp=pp_url

Kind regards
Craig
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Appendix 6-3 Validation Closed Question Responses

Numbered Likert Scale Summary

Description 1 2 3 4 | 5 | Average | Standard Deviation
What is th Il useful f the DSS based on th

Vhat is the overall usefulness of the ased on the 1 4 2 414 0.64
video?
After watching the video, how well do you feel you
understand the key features and functionalities of the DSS? 2 3 2 sod f76
How clear a.nd ez.asy to ft?llow were the explanations and 2 2 3 414 0.83
demonstrations in the video?
How would you rate the ease of use of the DSS's user
interface based on the video demonstration? 1 : 4 wog L
Did you find the DSS's user interface visually appealing and
well-organised based on the video demonstration? 4 1 2 3.71 0.88
Did the video demonstration provide a clear understanding
of how the Feature Importance Tool works within the DSS? 3 2 2 3.86 0.83
How well do you understand the role and significance of the
Feature Importance Tool based on the video? 2 3 2 4.00 0.76
Hovy v.a!uable zj.lo you considerthe Tool's fun.ctionali.ty for 1 4 2 4.00 0.93
optimising project performance in construction projects?
H luable d ider the Tool's functionality fi

ov.v v'a.ua e do you consider the oo. s functionality for 1 4 2 414 0.64
optimising for each performance metric?
How valuable do you consider the adaptability of the Feature 1 2 4 4.43 0.73

Importance Tool for future datasets and metrics?
How confident are you in the accuracy of the Feature
Importance Tool's assessments based on the video 4 2 1 3.57 0.73
demonstration?

To what extent do you believe the tool can help project

managers make informed decisions for project performance? L 1 = L A 0.88
Based 9n t.he. demor\stratlon, hOYV well d.o you thI.nk tf.u.e DSS 2 1 3 1 3.43 1.05
can assist in improving construction project sustainability?
H | td find the DSS's functionalities to th

ow relevant do you find the s functionalities to the 1 4 2 414 0.64

construction industry's needs and challenges?

Based on the demonstration, how well do you think the DSS
integrates various tools to support decision-making for 1 1 4 1 3.71 0.88
construction projects?

How likely would you be to recommend the DSS, based on
the video demonstration, to colleagues or peers in the 1 1 3 2 3.86 0.99
construction industry?
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Appendix 6-4 Validation Questionnaire Q17

Participant

Score

Reason for Response

Senior planner

It was a good starting point towards our Source to Sea goal

Data & Systems Manager

A possible way to enhance the effectiveness of the DSS is to
involve the delivery team in the data analysis process from
the beginning of the project. By doing so, the delivery team
can gain a better understanding of the data sources, quality,
and limitations, as well as the objectives and expectations of
the DSS. This can help them to align their work with the data-
driven decision-making framework and to identify and
address any potential issues or gaps in the data.
Furthermore, this can foster a collaborative and transparent
culture among the delivery team and the stakeholders,
which can improve the trust and acceptance of the DSS
outcomes.

Data Analyst

Individual feature analysis allows for consideration metrics
for long term goals

PMO Manager

This tool takes away perception which the construction
industry is still largely guided by.

Technical Manager

| feel the tools show here are very important to progressive
improvement. But feel that | would need to understand the
data sets as used and | could not see any risk data being used
to influence or validate the costs and time-based changes.

HS&E Systems Manager

The concept based on black and white answers and when
undertaking a project there are so many variables, the
hazards, the skillset of those undertaking the works, the
workplace itself, from HS&E perspective the impact of the
hazards can change, so how can these be factored in - it is
making decisions on generic information and generic can be
dangerous; it concerns me that people will not 'think' to add
in the other considerations. | am concerned people will stop
thinking and reliance totally on the DSS

Innovation and Research Lead

This tool has the clear capability to support better decision
making in the industry. In my role, | look forward to working
with Craig and others to harness the tool.
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Appendix 6-5 Validation Questionnaire Q18

Job Title

Which specific tool or feature within the DSS, as demonstrated in the
video, do you find most promising or valuable? Please specify and
provide reasons for your answer.

senior planner

Prediction of projects outcome

Data & Systems Manager

One possible application of the project nature tool within the DSS is to
enable the users to import their existing projects and use the selectors
to fine-tune them. This way, the users can leverage the DSS's
capabilities to improve their project performance, quality and
efficiency. The project nature tool can also provide feedback and
suggestions on how to optimize the projects based on the selected
criteria.

Data Analyst

The feature importance and performance trends will allow for a
degree of anticipation and decision making for project timelines

PMO Manager

Future forecasting, as this will help inform cost forecasts and spend
profiles which are key to running frameworks

Technical Manager

Mass collection of the data and the analytics allows greater
understanding. The best value here is the great start that can be built
upon

HS&E Systems Manager

Trends that can be considered when planning the works; however,
would people not start a project in December because of trends? An
interesting concept similar to that used for 'Intuity' - where
predictions made from previous data added; but consistency of data
entry is also something than could alter the value.

Innovation and Research Lead

All looks useful but the project nature element has clear use cases.
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Appendix 6-6 Validation Questionnaire Q19

Were there any specific aspects or functionalities of the
DSS that you believe require further improvement or
clarification based on the video demonstration? If so, can
you provide reasons for your answer.

Job Title

More external factors that may affect company
senior planner performance, such as clients, 3rd parties, over economic in
the industry, etc.

At this time, | do not think there are any additional features
Data & Systems Manager that could enhance the DSS. However, | suggest that we
update our dataset with the latest data to gain a better
understanding of the current situation and trends.

While the project nature page allows for deep comparisons,
there are too many definable parameters for an overview
over projects of such scale for easy and definable
comparison within the current layout. The requirement to
find these optimal areas within definable parameters adds
another degree of complexity

Data Analyst

PMO Manager None

Technical Manager Risk overlayed with both time and money

HS&E Systems Manager

It would be useful to incorporate additional inputs such as
Innovation and Research Lead | type of work, form of contract and procurement
methodology.
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Appendix 6-7 Validation Questionnaire Q20

Are you aware of any similar decision support tools or
systems currently used in your sector or within your
company? If so, how do they compare to the DSS from the
demonstration?

Job Title

Yes, there are many and very powerful such as the Oracle

Senior Planner analytic cloud, 4D-BIM system etc

Data & Systems Manager | No

Utilising expert knowledge and experience with PMO tools
such as Primavera. We are able to confidently manage
projects. The DSS does allow however for previous insight in
detail, especially in the characteristics of a project.

Data Analyst

PMO Manager Not aware

Engineering is in development of a process of time, resource

Technical Manager .
and cost management for Design stage.

HS&E Systems Manager

Innovation and Research

None that | am aware of.
Lead
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Appendix 6-7 Validation Questionnaire Q20

Job Title

Is there any additional feedback or comments you would like to
provide regarding the DSS and its features, based on the video
demonstration?

senior planner

Data & Systems Manager

Data Analyst

You said consideration was placed on sustainability, but no
metrics were given on how sustainability can be achieved.

PMO Manager

Excellent presentation, very clear and informative

Technical Manager

| think | would like to assist if possible

HS&E Systems Manager

Innovation and Research Lead

Excellent work so far. | am happy to support any additional work
in this area.
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