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iv.
ABSTRACT

It is hoped that the research here outlined will give an
additional understanding of the performance of "valves" under
dynamic conditions and supplement existing steady state or
continuous flow analysis as outlined by Wambsganss [1}*, MacLaren[2]
etc.

The study describes tests carried out on disc valves in
vhich the valve seat was withdrawn from the valve while a pressure
difference existed across the valve. Simultaneous measurements
were made of the force on the valve, the pressure in the plenum
chamber and the displacement of the seat from the valve. Dynamic
force measurements are compared with values of force measured during
steady continmous flow conditions (static flow) at selected values
of pressure difference and displacement of the valve from its seat.
The comparison may, therefore, be comsidered as relating the force
on the valve during dynamic withdrawal of the seat from the valve to
the steady state force on the valve at corresponding pressures and
displacements during steady continuous flow through the valve. It
is shown that during the early part of the withdrawal, there are
significant differences between the force on the valve and the
steady state force. These differences are accentuated by the
pressure difference across the valve and the rate at which the valve
is opened.

This study also deals at some length with the instrumentation

used/
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used and problems encountered.

From the work by Chan [3]on the behaviour of inviscid
incompressible fluids, a computer program has been developed for the
steady continuous flow condition of the disc valves under study.

This program is based on two-dimensional or axisymmetric potential

fluid flow and uses the Finite Element method. The method employs

the velocity potential § as the primary unknown and 8-node quadrilateral
elements of arbitrary shape to represent the region of flow under study.
This method is equally applicable to both confined and free surface
flow problems. The method first computes a solution for the velocity
potential throughout the entire flow domain and then calculates
secondary unknowns, e.g. velocity, pressure and force distributions.

For free surface flow problems, it also predicts the free surface
location, and the contraction or discharge coefficient.

Quantitative comparisons between this approach and
experimental work previously outlined are also made and the quality

of comparison is found to be good.
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INTRODUCTION

Currently there exists relatively little information on
the experimental and theoretical behaviour of incompressible fluids
as they issue from commonly encountered "nozzle shapes" in use today.
These nozzles can be found in countless engineering projects such as
those involved in the fields of fuel injection, jet propulsion,
compressor technology, or in machinery used to monitor flow and/or
direct the efflux in a carefully controlled manner.

As technological advances continue, the design of
increasingly sophisticated devices will at times require a better
knowledge of the detailed flow behaviour in the neighbourhood of the
nozzle. Until quite recently no-one had presented results
applicable to any but the simplest two-dimensional or axisymmetric
nozzle configurations. The reason that the analysis of these flows
from nozzles using confined or free surface boundary conditions and/
or curvilinear interior profiles has been largely ignored, is
undoubtedly due to the difficulties that must be overcome in
accurately applying any of the previously existing numerical methods
to such geometries.

A review of past research in the field of theoretical
analysis of two-dimensional or axisymmetric, inviscid, irrotational
jet efflux from nozzles and orifices only underlines the current
incomplete state of understanding of these flows, in spite of
contributions by Von Mises [7] and Larock [9] in the field of two-
dimensional flow and by Trefftz [11], Southwell and Vaisey [5], Rouse
and Abul-Fetouh [6], Garabedian [10], Hunt [8] and Jeppson [4] in the
field of axisymmetric flow.

The/



viii.
The numerical methods employed by these investigators have

previously only been used to analyse problems having simple geometric
boundaries; also most of these methods suffer from accuracy problems
as Hunt has pointed out. Furthermore, these methods merely use
simple trial-and-error procedures to locate the free surface.

Based on the increasing demand for such questions to be
answered and the existing techniques which are available, a more
versatile and powerful method for the analysis of jet efflux problems
is needed. It is believed that the Finite Element Method is well
suited to solve such problems, since the basic concepts of this
method have already been found to possess general applicability to a
wide range of field problems.

Various experimentors have carried out work mainly in the
fields of structural and continuum mechanics [ﬁO,Sil, but use of the
Finite Element approach has now been extended to cover such diverse
fields as ground water and seepage flow [33,34], torsion or
temperature distribution in an axisymmetric pressure vessel [}2],
heat conduction [i2], confined two-dimensional potential flow [}3],
viscous, incompressible unsteady fluid flow [40:land slow viscous
compressible and incompressible flow [41].

One of the most important experimental contributions, a
study of flow around a disc valve, was given by Schrenk [45]. He
showed (among other things) that flow leaving a valve seat could
generally be of two types. That is when the lift is low the flow
adheres to the seating surface because of the low pressure region
there (condition A) and when the valve is raised flow condition A
occurs until a critical lift is reached. After this the flow

suddenly changes to flow condition B where the flow no longer adheres

to/



to the seating surface but separates forming a radial jet at an
angle to the valve seat.

An analogous system for flow potentials in electrical
engineering is used in the study of an electrostatic field about a
high tension lead through a transformer tank [&6].

The goal of the present study is two-fold. Firstly, to
relate the experimental force on a disc type valve during dymamic
withdrawal of the seat from the valve, to the quasi-steady state
force on the valve at corresponding pressures and displacements
during steady continuous flow through the valve [36]. These tests
were carried out with conditions relevant to those obtained in a
compressor.

Secondly, to derive a theoretical technique, (a review of
"gimple" mathematical models of valves in reciprocating compressors
is listed in BEFERENCES [42]) which will predict the quasi-steady
state forces on a disc valve for an irrotational flow condition
based on ideal fluid theory. (This theoretical technique can be
modified to consider more realistic flow conditions but is limited
to cases where a functional exists).

This will allow a direct comparison to be drawn between
experimental and theoretical steady-state results.

The Finite Element Method should have the following
properties if it is to be truly useful:

1. The method should be able to analyse axisymmetric and two-

dimensional flows, with either confined or free surfaces.
2. The method ought to be versatile enough so that problems

involving complicated boundary shapes can be analysed without

any particular difficulties.
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3. The method should use, for fluid flow problems involving a free-
surface, a rational, analytical algorithm for adjusting the
free-surface co-ordinates.

Solution techniques possessing these features were developed
by combining the use of a straightforward variational principle with
the finite element concept and the Ritz technique. In the problem
formulation, a functional which is characteristic of the problem is
formed first. In this study the velocity potential function was
chosen as the primary unknown and quadri-lateral elements of arbitrary
shape were used to represent the flow region under consideration.
This formulation yields a system of linear simultaneous algebraic
equations with values of velocity potential at the nodal points of
each quadri-lateral as unknowns. The entire system of equations is
solved by Gaussian elimination and the secondary unlknowns, such as
velocities and pressures are subsequently evaluated. The free-
surface location if required is then found by an iterative scheme.

A flow diagram showing the overall method of approach is
shown in FIG. 1.

Proceeding through the flow diagram, CHAPTER I is devoted
to the description of the experimental test rig and equipment,
followed by CHAPTER III which includes development of the measuring
techniques; the calibration, static and dynmamic procedures and the
method used in analysing the experimental results which are
subsequently recorded in CHAPTER IV.

The theoretical model, CHAPTER II, consists of definitioms,
basic equations, variational principle, finite element analysis, Ritz
technique and includes an algorithm for the prediction of a free-
surface profile. CHAPTER V includes the problem formulation for

two~/
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two-dimensional and axisymmetric flow cases, which when using the
axisymmetric formulation in combination with the theoretical
procedure, CHAPTER VI, enables direct comparison to be drawn between
the experimental and theoretical steady-~state forces.

APPENDIX A includes the derivation of element matrices and
APPENDIX B compares free-surface profiles with previous
experimentors' results.

The computer program and operating procedure is shown in

APPENDIX C.
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xiii.
NOMENCLATURE

Orifice area.

Algebraic difference of two points in the x-
direction.

Area or pipe area.

Areas of sub-triangles in a triangle.

Area of a triangle.

Algebraic difference of two points in the y-
direction (or in the r direction for axisymmetric
problems).

The entire boundary curve.

The portion of the line boundary on which normal
velocity components are specified.

Contraction coefficient.

Discharge coefficient.

Pressure coefficient.

width.

A subscript used to indicate calculation for a
quadrilateral element e.

Kinetic energy for the entire flow region.
Integrand of an integral.

Constant of gravitational acceleration.

Height above a selected datum.

Total head
Subscripts used to designate points "i" and "j".

Functional. It is an expression related to the

energy of the fluid motion.
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1°(¢)

L = Length.

The functional for a quadrilateral element e.

m = A subscript used to indicate calculation for a
triangular element m.

Natural co-ordinates, i.e. the outward normal

n, s =
direction and the tangential direction respectively.

N = Total number of finite elements.

P = Pressure.

Patm = Atmospheric pressure.

q = Speed or magnitude of velocity.

4 = Downstream asymptotic speed.

Velocity component in the n-direction.

g
0

(qn)a = Specified normal velocity component.

q = Velocity component in the s~direction.

(qs)a =  Specified tangential velocity component.

a9, = Upstream pressure.

Q = Discharge.

r = Radial co-ordinate.

R =  Radius.

Sy = Slope of any point on a streamline.

Sij = Element matrix for element e in two-dimensions.

SAEJ = Element matrix for element e in axisymmetric flow.

SL; = Load matrix for element e in two-dimensions.

SLA: = Load matrix for element e in axisymmetric flow
problems.

t = Time

Arrays expressing the geometric properties of a

%
>

triangular element m.



u = Velocity component in the x-directionm.

v = Velocity component in the y-direction.

Ve = Velocity component in the radial direction.

v = Velocity vector.

W = Velocity component in the Z-direction.

Xy ¥y 2 = Rectangular cartesian co-ordinates.

X, Y, Z = Body force components in the x, y and z directions
respectively.

Yo = Width of slot opening.

Y = Upstream width of a slot.

y! = Derivative of y with respect to r.

S = Acute angle between the rigid wall and the
vertical axis.

Iﬁ = The portion of surface boundary on which normal
velocity components are specified.

v = Vector operator.

‘72 = Laplace operator.

¥, = Co-ordinate functions.

= An infinitesimal amount.

Velocity potential function.

‘&‘&m
1}

= Velocity potential at nodal point i.

7~
h%
-
~
o
[}

Specified normal velocity components

= Fluid density.

X N
1}

Stream function.
iR = Body force potential for a unit mass.
£19£29&3

7¥.i = Array of co-ordinate functions.

Area co-ordinates of a point in a triangle.

In addition to the above notation, partial derivatives of a

function are defined as:

¢’ ' ¢9 ’ ¢axx ’ ¢9 y etc,

X Y yy
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EXPERIMENTAL MODEL

Basic Description
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(a)
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(d)
(e)
(£)
(g)
()
(i)

Piezoelectric Measuring Instruments
Quartz Force Transducer

Quartz Pressure Transducer

Charge Amplifiers

Cables

Displacement Sensor

Storage Oscilloscope

Power Supply

Solenoid Valve

Rig Components

(a)
(v)
(e)
(d)

Plenum Chamber
Valve/Seat Assembly
Lift-0ff Mechanism

Back-0ff Circuit



This chapter starts with the basic description of the
experimental test rig used in this study. It then goes on to
explain in particular, the various electrical test equipment used.
Finally, the various components comprising the rig are detailed and
the reasons appertaining to their choice, also any problems
encountered and where possible, the means used to alleviate these
difficulties.

A diagram showing how the electrical test equipment was

connected, is shown in FIG. 2.

1. Basic Description
As shown in FIG. 3 and PHOTOGRAPH 1, a plenum chamber was

formed behind the valve seat, the other:-end of the plenum being
closed to the atmosphere. A pressure transducer was introduced
into the plenum chamber and monitored‘by a pressure gauge. The
Pressure transducer was inserted flush with the bore of the plenum
chamber to avoid velocity effects on pressure measurement. The
plenum was held vertically in a metal framework by an electro-
mechanical actuator and could be centralised by means of three
roller bearings. An air inlet is also formed at the opposite end
to the valve seat. To obtain adequate frequency response in the force
measurements, a quartz crystal transducer was chosen. It is well
known, however, that a force transducer performs the function of an
accelerometer very adequately, since both are basically the same
instrument. For this reason, it was decided to hold the valve
stationary by means of the relatively stiff force transducer and
withdraw the seat from the valve. The equipment was mounted on a

cast iron block to minimise interference effects due to acceleration

of/
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of the transducer mounting. Nevertheless, some vibration was
experienced following impact of the plenum cylinder omn its stop
after the seat was withdrawn from the valve, with a consequent
deterioration in the signal/noise ratio of the force measurement.
To minimise this effect, a force transducer with identical
characteristics was mounted on the underside of the cast iron
transducer mounting block. The signals from the two transducers
were taken to acommon input of a charge amplifier. The signal

due to acceleration from the two force transducers thus led to
cancellation, except at very high frequencies beyond the apparent
range of interest. The lack of cancellation at high frequencies
was due to a phase shift between'the transducer outputs, probably
due to the slight differences in their characteristics. The
dynamic pressure measurement in the plenum chamber was also subject
to acceleration interférence, therefore, an acceleration compensated
pressure transducer was utilised at this location. It was also
found necessary to shield the force transducers against variations
in ambient temperature due, for example, to the air stream from the
valve. This became apparent as tests proceeded and it was found
that temperature sensitivity of transducers is extremely important
when small signals are being measured.

The plenum chamﬁer was withdrawn from the valve by means
of an electro-mechanical actuator assisted by two springs. The
initial force between the valvé and the seat(pre-load)and the rate
of withdrawal, could be adjusted by means of rheostats in the "lift-
off" circuit (CHAPTER I, Section 3c). This pre-load was necessary
to ensure triggering of the oscilloscope by the signal from the
force transducer, but could not be too large or flooding of an

oscilloscope/
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oscilloscope amplifier would result. A Wayne Kerr capacitive type
displacement meter and sensor were used to determine the displacement
of the plenum chamber. A further circuit was incorporated into the
rig to enable a datum value of force to be determined (see "Back-Off"
CHAPTER I, Section 3d).

Readings of pressure in the plenum chamber, force on the
valve and displacement of plenum chamber, were recorded on a
Tektronix 7000 series storage oscilloscope for photographic records
to be taken.

In order that the static and dynamic test results might be
totally comparable, the continuous flow or "static" tests were

carried cut in the sam» apparatus.

2. Test Equipment (FIG. 2)

(a) Piezoelectric Measuring Instruments

When rapidly changing mechanical variabies such as
pressures, forces, accelerations etc., have to be measured and
recorded as accurately as possible, particular use is made of
piezoelectric measuring systems. The piezoelectric transducer
essentially consists of discs or rods of quartz cut out and
gssembled into a column, which is usually pre-loaded with a spring
sleeve. The column now emits a charge signal when it is strained
and this signal is directly proportional to the force causing the
strain. |

The application of these transducers is confined to
measuring dynamic and quasi-static processes. This is due to the
fact that the transducer will discharge and seek its own initial

zero/



zero once a steady state condition has been reached. The
discharging time constant (T = R.C, C being the entire capacitance
of the transducer cable and amplifier input), precludes the
transducers use in long term control operations. However, using a
modern type of charge amplifier, the transducers can be used to
measure events covering a few minutes, provided that great care is
taken to ensure that transducers and leads remain dry and clean.
These parts should be stored in a dessicator when not in use.

The quartz used in transducers is silicon dioxide and
although its output is low, it is extremely stable. Other valuable
properties are:

a) High pressure resistance.

b) High temperature resistance.

c) High insulation resistance.

d) High linearity with no hysteresis.

In order to avoid impurities in the crystals, the quartz
used today is artificially grown.

Specific piezoelectric transducers used in this study will

now be discussed.

(b) Quartz Force Transducer

The actual force measuring element in a force transducer
consists of a quartz loaded washer which is inserted between two
special nuts and is pre-loaded by means of an extension bolt. The
quartz crystal axis is arranged longitudinally and under the
application of a force, an'electrostatic charge is generated on the
force application faces. The magnitude of this charge is solely

dependant on the applied force. The voltage generated is governed

by/
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by the geometrical dimensions of the quartz washers and is equal to:

V=%

where Q is the charge and C is the transducer capacitance. Hence,
the capacitances of the connecting cable and amplifier input must be
taken into account. Because of their design, these force
transducers are very rigid and have a correspondingly high resonant
frequency (in the region of 50 kHz). Two of these transducers were
used in this current work, these being Type 9311 Kistler transducers
with the following important specifications:

i) Maximum measuring range +500 kp.

ii)  Resonant frequency 75 kHz.

iii) Working temperature range -40, +120°C.

(c) Quartz Pressure Transducer

The quartz crystal axis in a pressure transducer is
arranged transversely and under the action of a pressure force the
crystal sets up an electrostatic charge on the surface at right
angles to the force. The magnitude of this charge is dependent on
the geometrical dimensions of the quartz and thus, by adopting a
suitable shape of the quartz elements, it is possible to achieve a
higher yield than that produced by the longitudinal effect.

Certain types of pressure transducers are acceleration
compensated as in this study and this is achieved using a quartz
crystal accelerometer built into the pressure transducer. The
charge signal produced by‘acceleration, due to the mass of the
diaphragm part of the pressure transducer, is compensated by a signal
of inverse polarity resulting from the quartz accelerometer.

1t/
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It can be seen from PHOTOGRAPHS 2 and 3 that all the

acceleration effect is not removed even when using acceleration
compensated transducers, but the signal quality is greatly improved.
The transducer used was a Type 7031 Kistler acceleration compensated
transducer and had the following specifications:
i) Pressure measuring range 0 — 250 atmospheres (1 at = 1kp/cm2)
ii) Resonant frequency 80 kHz.
iii) Working temperature range -150, +240°C.

These transducers are in turn connected to charge

amplifiers.

(d) Charge Amplifiers

The charge amplifiers used were mains operated DC
amplifiers of very high input impedance, with capacitive negative
feedback intended to convert the electric charge from a piezo-
electric transducer into a proportional voltage on the low impedance
amplifier output. They were Type 5001 Kistler charge amplifiers
and had the facility of long, medium and short time constants.
They could also be operated remotely as in this study. The
operating range, i.e. mechanical units per volt of output voltage,
could be varied and the controls were so designed that, when the
amplifier was set to a particular transducer sensitivity, a direct
and simple proportionality was achieved between output voltage and

mechanical input to the transducer (i.e. pressure or force).

(e) cCables

The cables used to connect the transducer to the charge
amplifier must have an extremely high, insulation resistance and

must/
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must not disturb the charge signals when moved. Their capacitance

must also be as small as possible.

(f) Displacement Sensor

A Wayne Kerr meter and sensor were used where the probe
provides read outs of small displacements by measuring the electrical
capacitance between the sensor and test surface. When connected to
an oscilloscope it illustrates a change in displacement by a change

of position of a trace on the screen.

(g) Storage Oscilloscope

A 4 channel Type 7623 Tektronix storage oscilloscope was
used which consisted of 4 amplifiers with variable gains enabling
signals obtained from the transducers to have adequate resolution.
The oscilloscope also had variable time-bases. Many other facets
were available on this unit and the controls used to facilitate
satisfactory completion of these tests are discussed in CHAPTER III,

Experimental Procedure.

(h) Power Supply

The power supply required for the electro-mechanical
actuator is a device which changes mains AC input to DC output,
thereby enabling the actuator to operate in the mode of either

opening or closing the valve.

(i) Solenoid Valve
A solenoid valve was positioned on the air inlet line to
interrupt the flow for "no~flow" datum readings. It was a mains AC

operated unit and was necessary because of the very limited time

available/
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available to complete a test due to the charge amplifier time

constant.

3. Rig Components

(a) Plenum Chamber (FIG. 4 and PHOTOGRAPH 4%)

Since this study was primarily concerned with conditions
relevant to those obtained in a compressor, it was desirable to
have the valve opening as quickly as possible. Preliminary
investigations also showed that the difference between static and
dynamic 1ift forces are accentuated at faster opening times.
However, in the initial stages of these experiments a brass cylinder
was used, since this was readily available, but it was found that
the fastest opening time that could be achieved was of the order of
15 ms and this was therefore replaced by a lightweight cylinder.

A plastic cylinder was chosen and additional attachments
were made as light as practically possible. This design achieved a
range of opening times of the order 7 - 70 ms.

The plastic cylinder had one end sealed to the atmosphere.
Attached to this end was a layer of rubber to dampen the impact when
the cylinder reached its "maximum" displacement. At the opposite
end of the cylinder, a female perspex insert was firmly secured to
the cylinder, so designed as to enable brass male inserts of varying
bores to be inserted. Brass was used since these gave a good seal
between valve and valve seat. In this study the 6.35 mm bore (}")
insert is only reported. Also at this end, a perspex attachment
was fixed by means of jubilee clips to the side of the cylinder.
This attachment had a metal insert to enable the Wayne Kerr

displacement/
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displacement sensor to monitor the displacement of the plenum
chamber with respect to the valve when the chamber was withdrawn
from the valve. It should be noted that a metal insert is required
to enable the capacitive type displacement sensor to function
adequately. Three plastic bosses were also attached to the chamber,
these enabling a compensated quartz crystal pressure transducer, a
pressure gauge and an air supply to be attached.

The plenum chamber was attached at the upper end to the
lift-off mechanism by a screwed rod and at the lower end, three
roller bearings were present to allow centralisation of the valve
seat on the valve.

N.B. All recorded results in this report were carried out on

the plastic plenum chamber assembly.

(b) Valve/Seat Assembly

The final valve/seat assembly used in these experiments is
shown in FIG.5 and PHOTOGRAPH 5, and the dimensions of the valves
and valve seat used in FIG. &.

Brief Background

Three different valve arrangements (FIG. 6(a), (b) & (c))
and two types of cylinder, were used at different stages of this
research, each one being modified for a particular reason.

In the first series of tests, the brass plenum chamber was
used in conjunction with a type "A" brass valve. At this stage of
the study it became apparent that the valve and hence, the force
transducers were very susceptible to temperature variations caused

by air flowing onto and around the valve and transducer. This was

indicated/
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indicated by "drift" on the oscilloscope. To overcome this problem

a tufnol valve of type "B" was introduced and this apparently helped
in overcoming temperature drift problems, but caused an increase in
leakage flow when the valve was closed due to poor surface finish of
the valve. Finally, a brass faced tufnol valve of type "C" was
tried. This was the most successful in overcoming the temperature
drift problem and was further improved by covering the force
transducer in contact with the air by a plastic shield filled with
insulating material. In conjunction with this valve, the original
brass cylinder was replaced by the plastic cylinder as previously
described.

The valve seat used during all these experiments was brass
of type "D".

Assemblx

The valve/seat assembly was as shown in FIG. § The
centre screw enabled the valve to be raised or lowered and securely
locked into position. On the underside of the "centre screw”
another transducer and disc valve of similar ch#racteristics and
dimensions was attached. (As previously mentioned to eliminate
acceleration effects).

In the following sections the main points that have arisen
in this chapter regarding problems in implementation will be
discussed. These can be effectively broken into two broad areas,
these being:

Problems due to: I) Temperature Variations and

II) Acceleration Effects.

I) Temperature Variations/
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I) Temperature Variations

Since small signals were being measured, temperature drift
was very apparent. That is, any changes in temperature of the
transducer affected the output signal from the transducer via the
charge amplifier and therefore gave incorrect readings. This would
be depicted on the oscilloscope by a sloped line. These changes in
temperature occurred from various sources, these being (a) bhandling
of the transducer and (b) conduction and/or convection from other
materials in contact with it.

In the case of the pressure transducer, only handling
presented a problem and this was eliminated by allowing the
transducer to reach thermal equilibrium with its surroundings (i.e.
a sufficient time lapse after handling).

The main problems arose with the force tran;ducers and in
particular the top one, this being in contact with the air supply.
When the cylinder was in the "up" position with air flowing, this
blew directly on the face of the disc valve, thereby cooling the
valve. This, in turn, cooled the force transducer. To overcome
this the valve was made of tufnol instead of brass. As previously
meptioned, a brass facing was however retained to give adequate
sgaling properties when the valve was closed. Also, since air was
flowing around the disc valve to the transducer, it was decided that
insulation was necessary also in this region. The transducer was
wrapped in plastic foam sheet and the whole then covered by a plastic
shield which deflected the stream of air away from the transducer
(see FIG.T). The cast iron block was also completely insulated by
covering it with foam sheet and finally, the surrounding area blocked

off to eliminate any casual draughts.

II) Acceleration Effects/
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II) Acceleration Effects

When transducers are accelerated, inertia forces are
generated due to their mass. These forces can be large and may
blanket the actual signal that is required. To overcome this
problem:

1. The pressure transducer was acceleration compensated. And
2. Two force transducers were used in conjunction.

When using two force transducers during the tests, as
shown in FIG. 4, the primary acceleration was eliminated by securing
the transducers firmly to the heavy cast iron block. The force
transducers were physically connected together by means of the
centre screw so that they suffered the s;me acceleration force but
with one receiving this acceleration in the mode of compression,
while the other experienced tension. These signals were then added
together via a charge amplifief and the resulting signal displayed
on the oscilloscope.

To show, in fact, that this did eliminate acceleration
effects, an experimental rig was assembled as shown in FIG. 8. It
consisted of a small rigid frame enabling either one or two force
transducers (back to back) to be attached to it. The frame was
connected to an electro-mechanical actuator and this was then wired
to a power oscillator. The outputs from the force transducer(s)
were connected to a charge amplifier and so to an oscilloscope.

Setting a constant power level and firstly using one force
transducer, a frequency level was set causing the tramsducer to
oscillate at this frequency. A note of the corresponding amplitude

displayed on the oscilloscope was then recorded and the test

repeated/
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repeated using two force transducers back to back and connected in
parallel to the charge amplifier. The results obtained are shown
in TABLE 1. As can be seen from these results, there is
considerable attenuation of acceleration at all frequencies covered,
but more so at lower frequencies. The difference at high
frequencies could be attributed to the fact that no two transducers
have identical characteristics and this may be the cause of a phase
shift observed between the transducer outputs at high frequencies.

On the basis of these results, two transducers were
assembled into the main test rig as shown in FIG.3 . With the
valve closed, the "lift-off" mechanism was operated without air
being pressurised in the cylinder ("no air" test). There was no
visible acceleration displayed on the oscilloscope before the
cylinder struck the stop and even the shock of hitting the stop was
reduced to manageable proportions in terms of the force transducer
output (see PHOTOGRAPH 6). For more information on "no air" tests,
see CHAPTER III, Section 3c.

On the basis of these results, two transducers were used in

carrying out the main experimental work.

(¢) Lift-0ff Mechanism

The lift-off mechanism, which had the function of removing
the valve seat from the valve and which also determined the value of
the pre-load for adequate triggering, was an electro-mechanical
assembly. The mechanical mechanism being shown in FIG.9 and
PHOTOGRAPH 7 and the electrical circuitry in FIG.10

A screwed rod was attached to an electro-mechanical
actuator, coil with DC supply, with a cross spar to which were

attached/
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Amplitude/Attenuation Results

23.

ATTENUATION
OF
FREQUENCY AMPLITUDE (mV) | AMPLITUDE (mV) | ACCELERATION
(cycles/sec) 1~-TRANSDUCER 2-TRANSDUCERS SIGNAL
1 ke/s 800 14 60:1
10 kc/s 600 50 12:1
10 kc/s balanced . 600 30 2031
30 ke/s 64 6.5 10:1
NOTE: Balanced refeyrs Po the sensitivities of the two

transducers being adjusted till attenuation value was at its lowest.

In other cases sensitivites were set as makers instructions.
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attached two springs. The compression in these springs could be

adjusted manually as required by means of the adjusting nuts. The

screwed rod in turn was attached to the top end of the plenum

chamber to enable the disc valve to be opened or closed. A

stiffening plate was attached to the underside of the top plate to

help to remove transients caused by the plenum chamber striking

this surface on opening of the valve. The springs being in

compression tended to 1lift the valve seat from the valve.

The necessary conditions for satisfactory operation of the
valve seat mechanism were as follows:

a) A range of pull-off times whose minimum value was as small as
possible, to simulate as nearly as possible the rise times of
compressor valves (opening or pull-off time).

b) A ﬁre-load force between the valve and valve seat sufficient
to give an adequate seal and to ensure triggering of the
oscilloscope on removal of the seat from the valve. Sealing
being necessary to give a correct impulsive start to the gas
flow. This force, however, should not be so large as to flood
the oscilloscope amplifier when set to a gain suitable forv
recording the variation in gas force on the valve.

To meet these conditions, the coil circuitry was arranged
as shown in FIG. 10 Operation of switch A reversed the polarity of
the DC supply. In position 2, the coil force held the valve closed
against the spring force. When switch A was thrown to position 1,
the coil force assisted the springs thus applying maximum force to
the opening operation. Both opening and holding down forces could
be regulated by adjustment of resistors A and B. For minimum

opening times, switch B was closed to short out resistor A. For

very/
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very long opening times, the circuitry could be varied to allow

opening under spring action alone, or even with a residual hold on

force, less than the spring force.

(d) Back=0ff Circuit

When the oscilloscope was set to a gain suitable for
measuring gas force variation during valve opening, it was found
that zero force was off screen. The "back-off" circuit is a means
of enabling a datum value of force to be determined and recorded.
This is achieved by the circuit shown in FIG. 11, The circuit
consists of a potentiometer, a 4 volt battery and a combination of
switches. When switch A is open and switches B and C.are in
position 1, the force signal via the charge amplifier is displayed
directly on the oscilloscope. When switch C is in position 2 and
switch A is closed, one side of the battery is earthed and a measure
of the potentiometer voltage can be determined by operating switch B
from position 1 to 2. This then gives a measure of the pre-
determined voltage set on the potentiometer. When switch C is in
position 1, switch A closed and switch B in position 2, this set
voltage is added to the signal being transmitted from the charge
amplifier. If, then, the valve is open, but no gas is flowing, the
charge amplifier signal is that corresponding to zero force on the
force transducer. This is off screen using "normal" switch settings,
but with switches set as described, a datum signal may be brought on
screen, separated from zero force by a known voltage, i.e. by a
known force. Values of gas force with respect to this datum may
then be determined. The sequence of events in recording the force

is explained fully in CHAPTER III Experimental Procedure.
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Some Definitions and Basic Equations

Variational Principle

Finite Element Analysis and the Ritz Technique

Fluid Flow With A Free Surface
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In this chapter the fundamental theory on which the

mathematical model is based will be presented. This includes the
relevant definitions and equations based on cartesian and polar
co~-ordinate systems, the variational principle, some basic concepts
of finite element analysis and the Ritz technique. Two dimensional
equations are also included for completeness, since axi-symmetric

flow is an extension of two-dimensional flow.

1. Some Definitions and Basic Equations

The following definitions and equations, which can be
found in most standard text books, e.g. Vallentine [14], Prandtq:lsj
and Binder [i6], are relevant to the present study and are

sumnarised here for convenience of reference.

Steady Flow

3 » * *
A flow whose physical properties such as velocity V (or
components u, v and w for three-dimensional flow), fluid density e',
and pressure p, at every point in the flow domain do not change with

time.

Ideal Flow

A fluid which is both incompressible and inviscid is called
an ideal fluid. "Incompressible'" means that the fluid occupies a
definite volume and is unaffected by changes in pressure. "Inviscid"
implies the fluid has zero coefficient of viscosity and hence

offers no resistance to shearing deformationms.

Streamline
A continuous line drawn through the flow so that it has the

direction/
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direction of the velocity vector V at every point on the line.

Consequently, no fluid may pass across a streamline. A streamline

is mathematically defined by:

u.dy - v.dx = 0 for two-dimensional flow (2.1a)
or as vedr -v .dx = 0 for axi-symmetric flow (2.1b)

in which u and v are the velocity components in the x and y
directions and Ve and v, are the velocity components in the axial

and radial directions, respectively.

Free Streamline

A streamline on which the pressure is a constant. For
instance, the streamline on the interface of fluid and air of flow

issuing from a slot or orifice is a free streamline.

Equipotential Line

A line on which the fluid particles have the same velocity
potential. Flow passes an equipotential line at right angles to

all points on the line.

Flow Net
A mesh which is composed of two orthogonal sets of linmes,

streamlines and equipotential lines.

Stream Function ¥

A mathematical device used to describe the form of any
particular flow, which when:
i. set equal to constants, results in different streamline in
two-dimensional flow, or annular stream surfaces in axi-

symmetric flow.

ii./
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ii. partially differentiated, yields velocity components, i.e.

d ¥ - Dt

u = 3y ° v o= -3 for two-dimensional flow (2.2a)
L 1 dK . .
and V. = TT37 v Vo T T T T3x for axi-symmetric flow

(2.2b)

iii. taking the difference between two stream functions yields the
flow rate between two lines in two-dimensional flow and in

axi-symmetric flow, the flow rate is dQ= 27TT.d ¥ in which d¥

is the difference between two adjacent stream surfaces.

Velocity Potential Function #

Another mathematical device, a useful complementary

function for ) , used to describe a flow pattern, which when:

i. set equal to constants, results in velocity potential lines in
two-dimensional flow, or velocity potential surfaces in axi-
symmetric flow.

ii. differentiated with respect to distance in any particular

direction yields the velocity in that direction, i.e.

u = %—g y V = —g-g- for two-dimensional flow (2.3a)
v, = %g » V. = —g-g for axi-symmetric flow (2.3b)

It is worth remembering that the stream function ) exists
for both two-dimensional and axi-symmetric flow, regardless of whether
or not the flow is rotational, while the velocity potential function

exists only for irrotational flow.

Velocity Expressions in Natural Co-ordinate System

In terms of the natural co—-ordinates s and n, which are

the/
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the direction of flow along a streamline and the outward normal

direction to the streamline, the velocity at a point is given by:

i (2.4a)

1 = s
or q = _gn_y- (2.4b)

Irrotational Flow

A flow is irrotational if none of the particles in the
flow region suffers rotation, that is, the average of the angular
velocities of two mutually perpendicular linear elements of a
particle is zero in any plane containing these elements.

Mathematically, the irrotationality condition can be expressed as:

d
‘3: - b; = 0 for two-dimensional flow (2.5a)
o0V, v,
or >r - 3z = 0 for axi-symmetric flow (2.5b)

upon substituting equations (2.2a) and (2.2b) into equations (2.5a)

and (2.5b) respectively, one obtains:

V24 = 0 for two-dimensional flow (2.6a)
2 2
where v2)‘— = 2 ;L + aa 2)‘ = 0 (2.6b)
dx y
d%x 1. dF 24
and - = + = 0 for axi-symmetric flow
dx° roor dr?

(2.6¢)

Equations of Continuity

The continuity equation simply expresses the law of
conservation of mass. When derived in terms of the conventional
X, y and z rectangular Cartesian co-ordinate system, the continuity

relation/
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relation may be expressed as [17] PP 55-56 )

€ (€. 7 .
L i el LI

for any kind of fluid real or ideal.
For an ideal fluid the time rate of change of density

, L) . . o
following a fluid particle, _bti’ is zero and equation (2.7) simplifies

to:
du dv dw | )
>% + >y + 37 ° 0 (2.8)
This equation can be specialised to give:
24 . 2Y¥Y _  for two-dimensional f1 2.9a)
>x 3y ° o-dimensiona ow (2.9a
and °'% -
5T * T3¢ (V- T) = 0 for axisymmetric flow (2.9b)

Upon substituting equations (2.3a) and (2.3b) into

equations (2.9a) and (2.9b) respectively, one derives the Laplace

equations:
V298 = 0 for two-dimensional flow (2.10a)
2 2
where V2 g = 2 2¢ + 9 2¢ = 0 (2.10b)
2 2y

2 2
and _b__ﬁ + 108 + 28 0 for axi-symmetric flow (2.10c)
bxz r dr ar2

Equations of Motion for a Non-~-Viscous Fluid
Applying Newton's second law to a small fluid element d¥,

while considering both body forces and surface forces and taking a
limit d¥ es 0, yields Euler's equation of motion for a non-viscous

fluid in the scalar form:

X -/
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1 2dp _ 2u du du 2u

X - Q—Eax = 35t 3x Y ey ot 3% (2.11a)
1 3p _ v v d v Vv

Y - ey " iRl L el S e TR (2.11b)
13p _ 3w _ 2w 2w 2w

7 - o 32 = 3t * 3xt f 3y Y f 3¢ (2.11¢)

The right hand side represents the total acceleration

du dv dw

components, 3%’ dt and 3t respectively, p is the pressure at the

point under consideration, X, Y and Z are body force components

given by:
X - b ? Y el a '] Z -— - 2

and SL = gh is the body force potential, with respect to some
selected datum level, of a unit mass located at a height h above the
datum. Upon integrating equations (2.11) along a streamline and
gimplifying, one obtains the Bernoulli equation:
2 -
g'- + % + gh = H (2.12a)
where H is constant along a streamline and q2 is the square of the

speed, i.e.:

In addition, if the flow is irrotational, equation (2.12a) becomes:

2
= + -E + gh = H (2.12b)

where H is a constant for any point in the flow.

Kinetic Energy E for Irrotational Flow of an Incompressible Fluid
The kinetic energy for incompressible fluid is [18]:

E = g[[[q2.d¥ (2.13a)
¥

or/
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€
or E = 3 (VE)(Vg) . = (2.13b)
¥
for an irrotational flow and by using GREEN'S THEOREM:

f[ (V) (V) a¥ = -[/ g.V° g.av +j[¢%gdA
¥ ¥ C

and the fact that V2 ﬂ = 0, the kinetic energy for an irrotational

flow can be written as:
B = g]/[q?dv - [f;a%gu (2.1%a)
¥ r

as shown in [14] Pp 47-48 and [29] P 293, or for two-dimensional

flow, as:

E = gffq2-dA = -g-ﬁ ﬁ—gg-ds (2.14b)
A

c

Equations (2.1%) imply that the kinetic energy in the entire flow
region is equal to the work done by the impulsive pressure in starting

the motion from rest [iSJ p 93. .

Pressure Coefficient Cp

The pressure coefficient Cp may be defined mathematically
as:
Cp = 235;222% (2.15a)
3¢9
where q is the asymptotic speed and Patm is the atmospheric
pressure. Upon applying the Bernoulli equation (2.12b) to equation
(2.15a) and simplifying for the case g = 0, one achieves the result:
2

Cp = 1 - (L) (2.15b)
9

where/
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where q represents the speed at the point under consideration.

2. Variational Principle

For many boundary value problems, two equivalent
alternative formulations exist. In the first, a partial
differential equation is written and its direct solution is
attempted. In the second, the aim is to find a function (or
functions) minimising a functional which is characteristic of the
problem under consideration. In the past two decades since the
advent of high speed digital computers, the latter approach has
been quite extensively used in the fields of structural and
continuum mechanics. Important variational principles such as
least work, minimum strain energy, minimum potential energy, minimum
complementary energy and Reissner's variation theorem of elasticity,
have been well developed in the past and are documgnted in standard
text books (see, for instance, the books by Wang [19], Langhaar [20],
Sokolnikoff [21]). However, similar variational principles
applicable to fluid-mechanics problems have not yet been so well
developed, in fact, calculus of variations has only been infrequently
used in this field. In the past, most use has been made in the
't*classical sense" for parameter optimisation. For example, shapes
producing minimum drag, bodies inducing maximum lift and designs for
optimum thrust are all problems involving the optimisation of various
parameters appearing in functionals. Nevertheless, owing to the
availability of large digital computers, the use of variational
principles to solve the basic equations of motion for fluid flow is
increasing gradually, even though these equations are essentially
non-linear (this holds regardless of whether or not viscosity and

compressibility/
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compressibility effects are included) and the formulation of these
problems is not easy in general.

Although not so well documented in standard texts, most
variational principles applicable to fluid-mechanics problems can be
found in recently published papers, due to the successful research
in the area by Garabedian and Spencer [22] and others (see Whalen's
Survey on these principles [53]). Some of the better kmown
principles appearing in Whalen's report include: (1) The principle
for incompressible laminar flows presented by Delleur and Sooky [?4],
(2) Eckart's principle [?5], based on a Lagrangian co-ordinate system,
for the Lagrangian equations of the motion of an incompressible
frictionless fluid, and (3) The principle introduced by Bateman [26],
based on the local pressure function, for subsonic flow fields. A
more general principle for the flow of a viscous incompressible
fluid, which includes the convective terms and covers both time
dependent and time independent phenomena, has been recently presented
by Lemieux, Unny and Dubey [27].

Among the forementioned variational principles for fluid
flows, none is especially suitable for the present stud& due to
either the complexity of application or the lack of relevance to the
flows under consideration, that is, irrotational flows of an ideal
fluid.

Following a brief review and introduction to some basic
ideas of the calculus of variations, variational principles for such
flows, either two-dimensional or axi-symmetric, will be developed
with derivations leading to their equivalent partial differential

equations and associated boundary conditions.

Brief Review on Calculus of Variations/
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Brief Review on Calculus of Variations

A fundamental problem in differential calculus is
extremising (maximising or minimising) a function f(x) for a range
of the independent variable x. The problem in variational calculus
is also extremisation; however, it is concerned chiefly with the
extremisation of a functional, hence the determination of functions
rather than points. The two branches are related in that both are
concerned with an extremum; one deals with number spaces and the
other deals with function spaces (Courant and Hilbert [28]).

In variational problems a functional which is
characteristic of the problem is first formed in terms of a function
(or functions). Then variations of this functional are
investigated with a view to extremising the functional. 1In some
cases this approach results in a closed form, exact solution. But
usually the problem must be solved by an approximate method. One
such method is the Rayleigh-Ritz method. This approach, however,
is still preferable to the direct application of finite difference
techniques to solve the differential equation with its associated
boundary conditions, because the functional can often be used to
ensure convergence of the approximate solution.

A simple example of variational calculus is the problem of
finding the plame curve joining two points (xl, y1) and (x2, y2)
which has the shortest length. The solution sought here is the
function y(x) describing the curve of shortest length; the

corresponding functional is the length of the curve given by:

)
2
1(y) f /u(&‘;’) dx
X

Using/
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Using method of variation of calculus implies that of all

the curves:
Y(x) = y(x) + En(x)

which pass through the given end points, the shortest one y(x) must
be selected. The problem thus reduces to finding the function
y(x) that makes the integral I(y) a minimum.

Generally, in order to minimise the integral

X

I(y) = //F F(x, y, y') dx (2.16a)

X

where y' = %ﬁ, the function y(x) mast satisfy the boundary

conditions and the Fuler differential equation ([28] pp 184-187):

-%%; - '%;”('%fgr) = 0 (2.16b)

The previous result can be extended to several dependent
and independent variables. For example, in order to minimise the
integral:

1) = [ [ F(x, vo B Box, B,y) dx.dy (2.17a)
! |

in which #,x and @,y are the partial derivatives of @ with respect
to x and y respectively, the function @ must satisfy the Euler

differential equation:

d | 2 3F 2 dF
- 3 R - vy Gpy) = O
(2.17b)

in addition to the boundary conditions ([28], pp 191-193)

ot/
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0f all irrotational motions of an ideal fluid described by
velocity potential functions ¢n and which satisfy specified values
on the boundaries, the actual state satisfying continuity and
specified normal velocity boundary conditions (ﬂ,n)a is such that

the integral:

1) = 5 f [ [[<¢,x)2 + B2+ (B0 - e /¢.<¢,n>"«m
. ¥

r

(2.18)
is a minimum, where ¥ is the entire flow region and [ is the
portion of the surface on which the normal velocity components
(#,n)® are specified.

EQuation (2.18) is an expression related to the energy of
the fluid motion since the first term is the kinetic energy and the
second term represents twice tﬁe amount of the work done by the
impulsive pressure in starting motion from rest (see equation (2.14)).

This equation can be simplified to give:

: f [[(ﬂ,x>2 + @) ] axay - . f.;a.m,n)“ ds
A (o]

(2.19a)

1(8)

for two-dimensional flow, and

1(8) = e.nfﬁﬁ,x‘? +¢,r2] r.dr.dx - 267\'% @ .(#,n)® r.ds
A c

(2.19b)
for axi-symmetric flow.
Again A represents the entire flow region under study (for
axi-symmetric flow, A is a meridian plane) and ¢ is the portion of
the boundary on which normal velocity components are specified.

Next/
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Next it will be shown that equations (2.19) are equivalent
to their corresponding partial differential equations and associated
natural boundary conditions. Equation (2.19a) will be treated first

and will then be followed by operations on equation (2.19b).

Two-Dimensional Functional
By adding an infinitesimal increment 8]6 to the function

#, equation (2.19a) can be written as:

I(g + éﬂ) =§ [[{[ﬂ,x + (6¢)v132 +[¢,Y + (6¢),y]2}dx‘dy

A

e$ B+ 5NB0* e
<& [[[60? + Br)Toxay - ¢ f . (B)° as

A

+€fj[¢,x (8¢),x + B,y (Sm,y]dx.dy -e f 8¢'(¢’n)a ds
4 c

+

$[[Lesm e (59 I
A

I(g) + SI(f) + higher order terms

To minimise I(¢), a necessary condition is the vanishing
of the first variation of I(@), which is § I(f). The requirement

is therefore:
ff[¢!x-(g¢)9x + ¢9Y.(8¢),y]dx.dy - f&ﬂ(ﬂ,n)a ds = 0
A c

\

This equation, upon integrating by parts and rearranging, becomes:

f[(ﬂyxx-#ﬂ,yy)éﬂ.dx.dy- fﬂ,x-ﬁﬂ-dy+ f¢,y-5¢-dx

A

+ f(ﬂ,n)a. Sﬁ.ds =0

The/
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The second and third terms in the previous equation are
equivalent to an integration along a curve as shown by using the

co-ordinate transformation depicted in FIG. 12 where:

n x.co080 + y.sin &

s = =-x.5in€@ + y.cos©
dx = -sin©. ds
dy = cos ©.ds

By doing so, the previous equation becomes:

/f(ﬂ!xx + ¢9YY) 5¢.dx.dy - f[iaan - (¢,n)a]8¢.ds = 0
A c

Since 8¢ is arbitrary and non-zero, it follows that:

goxx + fP,yy = O in the flow region A (2.20)

with gon = (#,n)* or q, = (qn)a on ¢

vhich is equivalent to a minimisation of the functional I(f).

Axi-smetrical Functional

To derive the partial differential equation with its

associated boundary condition for axi-symmetric flow from
equation (2.19b) the same procedure will be followed, except that
cylindrical co-ordinates x and r must be used in place of the

co-ordinates x and y. Given an infinitesimal increment Sﬂ to @,

equation (2.19b) becomes:

(¢ + §9) = f-nff{[ﬂ,x + (6¢),x]2 +[¢,r + (6¢),r]2}r.dr.dx
A

- 2.eﬂ-jg (# + 58)(#,0) ¢ as

Imposing the requirement that the first variation of 5I(¢)
must/
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must vanish, yields:

fﬂ:ﬂ,x (8§ 8),x + f,r (5¢),r]r.dr,dx_ fgﬂ, ($2)® r.ds = O
A c

Integrating by parts and performing a co-ordinate
transformation then yields a line integral and the previous equation

becomes:

[[[rﬂyxx + for + r.¢,rr:| 5¢.dr.dx - f&mn - (f,n - (¢,n)a]r.d¢.ds -0
A c

Again, since (Sﬂ is arbitrary and not equal to zero, the
necessary conditions for the above equation to be valid are that the

terms in brackets must simultaneously be equal to zero, or:

#,xx + % #,r + fyrr = O in the flow region A (2.21)

with f@,n = (¢,n)a or q, = (qn)a on ¢

Equation (2.20) and equation (2.21) could also have been
obtained directly by applying the Euler differential equation (2.17b)
to equations (2.19)

When the stream function )‘ is alternatively used as the

primary unknown, the corresponding functionals would be:

I(¥) = -S-fﬂ:()“,X)2 + (7',3')2_-_' dx .dy - f-f ¥ (¥,n)%s (2.22a)
A [+

for two-dimensional flow, and

I(¥) = e.T\'fﬂt()‘,x)2 + ()‘,r)2]% dr.dx - 2.e.ﬂf>"(%7-,n)a ds
A [+

(2.22b)

for axi-symmetric flow.

Equation (2.22a) is equivalent to:

yiyxx/
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¥oxx+ Fyyy = 0 ina (2.23)
. )L a a
with ,n = (¥,n) or q = (q) on C
while for axi-symmetric flow, equation (2.22b) is equivalent to:
Y',xx - %‘ -y',r + >L,rr = 0 in A (2.24)

with ;1‘- y’,n = (%-%,n)a or q = (qs)a on C

Equation (2.22a) is just as useful as equation (2.19a) in two-
dimensional analysis. However, for axi-symmetric analysis, equation
(2.22b) is not so useful as equation (2.19b) because the radial
co-ordinate r appears in the denominator of the first integral of
equation (2.22b). To evaluate this integral, it is necessary to

resort to numerical integration.

3. Finite Element Analysis and the Ritz Technique

The development of finite element analysis techmniques
originated from the classical approaches to structural analysis
(Turner, Clough, et al.EBOJ). Following the rapid development of
large digital computers in the past two decades, this method was
extensively investigated in the area of structural and continuum
mechanics, (Zienkiewicz and Cheung [31]) and then was applied to
other branches of fluid problems (e.g. Zienkiewicz and Cheung [32_-],
Zienkiewicz, Mayer and Cheung [33, Finn[34]). The finite element
method has several outstanding advantages. These are the following:
i. Non-homogeneous and anisotropic configurations can be treated

with relative simplicity.
ii. The elements can be graded in shape and size to follow
boundaries of arbitrary shape.

iii./
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iii. Once a computer program has been developed, problems of the

same kind can be solved simply by supplying the computer with
appropriate data.
The finite element method, when applied to fluid flow
problems, generally consists of the following steps:

i. The entire flow region under study is divided into a series of
subregions or elements assumed to be interconnected at a

* finite number of nodal points, thus a problem originally
possessing an infinite number of degrees of freedom is made
finite. In the finite element approach, both free surface
and curved solid boundaries can be accounted for. Although
this discretisation would make a curved boundary appear to have
some singular points, the velocities at these points are kept
finite because of the approximate nature of the solution.

ii. A certain simple function pattern, depending on the nodal
values of the unknown function, is specified. In this study,
the function pattern chosen is the velocity potential. This
function pattern is then used to formulate a functional which
is characteristic of the problems under study.

iii. All the elements are assembled with boundary conditions taken
into account and the Ritz technique is applied to obtain a
system of simultaneous equations. This system of equations
is then solved to obtain the nodal unknowns.

iv. Finally, all the related physical properties, such as velocity,
pressure and force on boundaries, are evaluated from the known

nodal values.

Ritz Technique 37 /
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Ritz Technique EiZ]

One general method for obtaining solutions to problems
expressed in variational form is known as the Ritz method.
Actually, the finite element method is a special case of the Ritz
method where the interpolation functions obey certain continuity
requirements.

The Ritz method consists of assuming the form of the
unknown solution in terms of known functions (trial functions) with
unknown adjustable parameters. (The trial functions are sometimes
called co-ordinate functionms). From the family of trial functions
we selecﬁ the function which renders the functional stationary.

The procedure is then to substitute the trial functions into the
functional and thereby express the functional in terms of the
adjustable parameters. The functional is then differentiated with
respect to each parameter and the resulting equation is set to zero.
If there are n unknown parameters, there will be n simultaneous
equations to be solved for these parameters. By this means, the
approximate solution is chosen from the family of assumed solutions.

The procedure does nothing more than give us the "best"
solution from the family of assumed solutions. Clearly, then, the
accuracy of the approximate solution depends on the choice of trial
functions.

Often a family of trial functions is constructed from
polynomials of successively increasing degree. In this study,
polynomials of degree two have been chosen.

Generally in this technique, we require that the trial
functions be defined over the whole solution domain and that they
satisfy at least some and usually all of the boundary conditions,

whereas/
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whereas in the finite element method, the trial functions chosen are

not defined over the whole solution domain and they do not have to
satisfy boundary conditions, but only certain continuity conditions.
Because the Ritz method uses functions defined over the whole
domain, it can be used only for domains of relatively simple
geometric shape. In the finite element method the same geometric
limitations exist, but only for the elements. Since elements with
simple shapes can be assembled to represent exceedingly complex
geometries, the finite edlement method is a far more versatile tool
than the Ritz method.

For example, considering only a two-dimensional domain,

the technique leads to a relative minimisation procedure of the

functional

1(g) = [ f P(x, v, B, Byx, By) dx.dy
A

by selecting an appropriate trial family of solutions

where @i and 8 i are the undetermined parameters and the
co-ordinate functions respectively. As before, the relative
minimisation is accomplished by setting the first partial
derivatives of the functional I(#), with respect to the undetermined
parameters equal to zero. Application of this procedure results in
a system of symmetric linear equations which enables one to obtain
the "best" approximation to the true solution out of all the

possibilities offered by the trial family.

4, Fluid Flow With a Free Surface/
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4, Fluid Flow With a Free Surface

Fluid flow problems involving a free surface are more
difficult to analyse because the free surface location is initially
unknown and two boundary conditions are to be satisfied
concurrently. Analysis is much simpler with an initially known
boundary since only one boundary condition, concerning either the
normal velocity component or the velocity potential function
itself, has to be imposed. The two boundary conditions to be
specified on a free surface are:

i. The normal velocity component is zero.
ii. The pressure should be constant, as it is exposed to the
atmosphere.

This requirement will lead to the specification of
velocity potential values at all nodal points on the free surface
according to the following reasoning.

By the Bermoulli equation, equation (2.12b), for.any two

points on the free surface there exists:

1.2 ko, _1 .2,
2 -9y e Ly = 32-9% *+ e LA

where "i" represents any point on the free surface and "d"
designates the reference point, which, for convenience, is chosen as
the far downstream point on the free surface. Gravity is acting
downwards and y is measured upwards from a chosen datum. Since, in
this work the fluid density e is assumed to be constant, the
requirement of constant pressure leads to a cancellation of the

pressure terms and the above equation becomes:

1 2 _ 1
7 4 * &; T3 Y@ * Ty

hence:/
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2
hence: q = \// g - 28 (v; - vy (2.25a)

Equation (2.25a) states that the flow speed at any point i
on the free surface can be calculated from a knowledge of the
reference speed and the difference in y-co-ordinates between these
two points. Assuming that the speed between two adjacent nodal

points i and j varies linearly, as shown in FIG. 13, one obtains:

(Note: This assumption is consistent with the approximate velocity
potential, which is a second order polynomial).

Since equation (2.4a) states that q = %%g, g on the free

surface must be:

9. = q.
q.ds=qj.s + Lﬂ.s2 + c

2As

hN
1}

By substituting ¢s=0 = ¢j and ¢s=As = ¢i inte the .
above equation, the relationship between the values ﬂi and ¢j of two

adjacent nodal points is found to be:

go= g, - ST oa, (2.26a)

J 1

where 9 and qj are given by equation (2.25a).
If gravitational effects are neglected (i.e. g = 0),

equations (2.25a) and (2.26a) become, respectively:

9; = 94 i.e. constant velocity along (2.25b)
the free streamline
and ¢J. = #, - (qq.45) (2.26b)

Equations (2.26) show how nodal values of @ must be specified
on the free surface to satisfy the constant pressure requirement.

This/
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LINEAR VARIATION OF SPEED BETWEEN TWGO ADTACENT
PoinTs ON THE FREE- SURFACE
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FIGURE 13,
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This is a Neumann type problem incorporating Neumann boundary

conditions in terms of %g. On the boundaries, %%g-: 0, or

—gg;é 0, and non-unique boundary conditions arise. For this reason,
when the solution domain is discretised and the element equations
formulated and assembled, the system matrix is non-singular. A
suitable solution procedure is therefore required to remove this non-
singularity [37]-

To overcome this difficulty, a value of f is specified for
one arbitrarily selected node. (In the present work, a value of
100 was assigned to the nodal point furthest from the orifice).

This is essentially the imposition of a Dirichlet boundary condition
at this node, with the effect, when incorporated in the computer
program, of removing the singularity.

With the singularity removed, the nodal values to be
specified on the free surface are computed according to equations
(2.26a) or (2.26b), proceeding upstream to the node at the lip.

The solution then proceeds as usual

To satisfy the zero normal velocity requirement, the free
surface location must be a streamline. This goal is achieved
approximately by fitting a series of curves, each of which is chosen
to be a second order polynomial, passing through three consecutive
nodal points. [Each curve has slopesat these three nodal points
equal to the values defined by the computed velocity components, as
shown in FIG. 14,

In this way, the difference in y-ordinates between two

corner nodes of a quadrilateral element is given by:

Ay, = (s;+ s34

+ si+2).lixi/6 (2.27a)

where/
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SKETCH SHOWING HOW THE FREE~- SURFACE LocATion

SHouLD BE ADTULSTED.

So\i&>\%
wall

DAGRAM  SHowN, USES A NOZZLE AS AN
EXAMPLE.
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Vk

where sk=U—k-(k=i,i+1,i+2)
and Vk = 1local velocity in y direction
Uk = local velocity in x direction.

With ZSy& known for each quadrilateral element, the
locations of all the corner nodes can be determined sequentially,
starting from the node at the lip. In the case where the local
slope of the lip is vertical or close to vertical, equation (2.27a)
can no longer be applied to estimate Ayi. This occurs because
s, = Vi/Ui may be excessively large when Ui is very small, Hence,
a modified equation for this particular curve segment must be used,
that is:

y, = 6.Axi/(s1 + s, + 33) (2.271b)
where s, is equal to -tan«, o being the acute angle between the
wall and the y axis and s, = Ué/V2, 85 = US/V3, respectively. This
equation is obtained by expressing x as a second order polynomial in

32 and 33 at three

y and then fitting a curve having slopes Sy9

nodal points.

The two requirements are incorporated in the computer
program and satisfied alternatively by an iterative scheme. For a
particular problem, the solution sequence begins with an assumed
initial free surface location, with its values specified in
accordance with equation (2.26) to satisfy the constant pressure
requirement and leaving the requirement of zero normal velocity
component initially unsatisfied.

The assumed free surface location is simply a convenient

broken line and no special care is required in its selection.

However,/
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However, experience shows that it is a little better to assume a
lower initial free surface to accelerate the convergence. The
entire system of equations is solved first, then the velocity
components for each node on the free surface are calculated by
considering only the contributions from those triangles having one
side in common with the free surface, as endorsed by broken lines in
FIG. 135. This scheme was chosen because it saves computation time
and also achieves higher accuracy.

This is so since the velocities so evaluated are based on
the velocity potential values on and close to the free surface.
The curve fitting scheme described by equation (2.27), is then
applied to find é new free surface satisfying the zero normal
velocity condition to conclude the computation cycle. With this
"improved" free surface location (in the overall sense) the above
procedures are repeated until a prescribed error criterion is

satisfied.

Examples incorporating free surface procedure are shown in

APPENDIX B.
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1. Introduction

Tests carried out in this report are a continuation of the
work carried out by Brown and Lough [35] on the response of disc
valves to rapid pressure changes as applied in a shock tube. The
present investigation is concerned with conditions more relevant to
those obtained in a compressor [36]. It consists of dynamic and
force measurements on disc valves. The "static" method of analysis
(adopted in this work) has been widely accepted by many researchers,
among them Wambsganss [1] and MacLaren[:2]. The "dynamic" method
reported here is believed to be new and it is hoped that this
investigation will add to existing information on the many types of
automatic valves.

The Chapter begins with the background of development
techniques used prior to those finally reported in this study and
the reasons appertaining to their discontinuation. It then goes on
to explain in detail the experimental procedures used in carrying out
the static and dynamic tests and the corresponding calibration tests.
Finally, the method used in analysing the experimental results
obtained (photographs) is discussed briefly.

During these tests, two different sizes of disc valves
were used, these being:

a. 6.35 mm bore valve seat (4")/9.525 mm 0/D disc valve (3").

b. 6.35 mm bore valve seat (4")/8.41 mm 0/D disc valve (0.331").
The first of these valve sizes (9.525 mm 0/D) was
arbitrarily chosen, the latter being sized in line with Danfoss*

practice.

The/

* Company name.
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The tests carried out on these two sizes of disc valves
were identical as were the procedures used in obtaining the

results.

Also during the early experimental phase, values of throat
pressure were determined for various upstream pressures and
displacements. These were required to enable the upstream
velocity to be calculated for subseiuent determination of static
forces on the valve. The first set of these tests were carried
out at Strathclyde University, using the 6.35 mm (}") bore/9.525 mm
(8") 0/D valve and secondly, (since leaving University), tests on

the 6.35 mm (%") bore/8.410 mm (0.331") 0/D valve were carried

out courtesy of Sperry Gyroscope, England.

2. Development of Measurement Techniques

As can be seen from the flow chart in FIG. 15, the
object is to compare force measurements in dynamic conditions
with forces on the valve at corresponding pressures and
displacements during steady continuous flow through the valve
(F1G. 16).

The static tests were relatively simple to carry out,
providing adequate pressures and displacements were set and are
described in full at a later stage.

In the case of the dynamic tests, many problems were
encountered. The main problem being in obtaining an adequate

record/



record of pressure, displacement and force values
simultaneously on the oscilloscope. This required

that an initial or final condition of these parameters
should be known. In the case of pressure, the initial
condition with the valve closed and the cylinder
pressurised, was determined by a pressure gauge and

this was taken to represent the initial output of a
Kistler pressure transducer. When fhe valve was opened,
a subsequent drop in pressure was recorded on the
oscilloscope from the Kistler pressure transducer.

The final and intermediate values could thus be determined

by using the transducer calibration.

In the case of the displacement, the initial
value was zero and the final value 1.52% mm (60 thou),

therefore, all intermediate values could be determined.

For dynamic force, however, the initial and
final values are not so easily determinable. The
range of force was between final zero force and gas

shut off and initial force including a pre-load/

62.
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pre-load sufficient to seal the valve. To give reasonable

resolution of the force trace during valve opening, the oscilloscope
gain had to be high. This meant in practice that the initial force
including pre-load was off-screen upwards, while final force with no
gas was off-screen downwards. A technique was therefore required

to enable a datum value of force to be displayed on the oscilloscope.

The first attempt was to do the dynamic tests in three
separate parts as shown in FIG. 15 (TEST A). The three parts
resulted in three separate photographs (FIG.17 ) these showing:

A. Opening of valve.

B. Steadying off of dynamic force with gas flowing.

C. Drop to zero force from steadying off value of dyﬁamic fdrce
(i.e. gas shut off).

Graphical combination of the three photographs gave the
overall drop in dynamic force to zero and this, with the transducer
calibration, allowed calculation of intermediate forces.

However, this method was open to error, since the time to
complete this series of photographs was of the order of one minute
and the signals recorded were therefore susceptible to temperature
drift in the charge amplifier and transducer. The method was
therefore discontinued and the back-off technique introduced (TEST
B). This was also found insufficient due to the poor calibration
technique employed and was superseded by TEST C.

The transducers calibrations were converted from volts/
division to Newtons (Force) or kN/m2 (Pressure) and computerised for

subsequent calculations.

3(a) Calibration Procedure

As mentioned in FIG, 17 TEST B was modified to TEST C (FIG. 15) by

calibrating/
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calibrating the pressure transducer against the pressure gauge
before and after each individual test. This was found necessary
since the pressure displayed on the oscilloscope was not always
consistent at the beginning and end of a sequence of tests.
Calibration of the pressure transducer against the pressure gauge
was by mercury manometer. With the cylinder down (valve closed), a
pressure was set on the manometer and checked with the pressure
displayed on the gauge. Transducer pressure was displayed on the
oscilloscope and compared. Results are as shown in TABLE 2

The force transducers were also calibrated. This was
done by putting a known weight on the end face of the transducers
and noting the resultant displacement on the oscilloscope. The
force tests gave consistent results and were therefore only
repeated after a full sequence of tests. It cannot be emphasised
enough that although Kistler piezo-electric pressure and force
transducers are perhaps the best obtainable, the measurements made
in these tests were close to the limit of their sensitivities.

It was only by exercising the greatest possible care in
ensuring that the transducers were clean, dry and free from

temperature changes that it was possible to obtain consistent

results.

(b) Static Procedure

The time constants of the charge amplifiers used during
the dynamic tests were sufficiently long that steady-state
measurements could be made using the same equipment. The time taken
to complete one steady-state test was of the order 7 - 10 secs.
This ensured the compatibility of the static test results with the

dynamic results.

The/



TABLE 2

Calibration Results for Acceleration Compensated

Pressure Transducer

GAUGE PRESSURE MANOMETER PRESSURE | TRANSDUCER PRESSURE
kN/m2 kN/m2 kN'/m2
13.79 ( 2 psig) 15.24 15.44
20.69 ( 3 psig) 23.79 23.51
27.58 ( 4 psig) 29.79 29, 4k
34,48 ( 5 psig) 37.30 37.71
41.37 ( 6 psig) 44,61 44,13
48.27 ( 7 psig) 52.40 52.00
55.16 ( 8 psig) 61.43 60.81
62.06 ( 9 psig) 67.43 67.64
68.95 (10 psig) 74,12 74,54
68.95 (10 psig) 74.26 75.50
68.95 (10 psig) 74.81 75.50
82.74 (12 psig) 88,74 89.22
82.74 (12 psig) 90.12 90.19
89.64 (13 psig) 95.84 96.12

NOTE

As can be seen from above, agreement appears to exist

68.

between the pressure transducer and the manometer pressures over the

range considered and hence, any further reference throughout this

work to transducer pressure implies coincidence between these two

sets

of data.
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The sequence of events to carry out these experiments
began with the valve and valve seat being centralised using a
circular disc as a template. This disc had, on one side, a recess
which fitted over the valve face and on the other side, a
protuberance which fitted the seat. The cylinder and seat could
be adjusted by means of the three bottom bearings so as to enable
the valve and the valve seat centres to be made co-axial. The
valve and valve seat were then checked for parallelism by shining a
light between the valve and the valve seat and adjusting accordingly.
This adjustment was achieved by either raising or lowering the
bottom plate by means of the bottom nuts.

Accurate displacement of the cylinder from the valve was
achieved by incorporating two stops into the top plate (FIG. 18).
For large displacements, 0.127 mm - 1.524 mm (5 - 60 thoﬁ) it was a
reasonably simple matter to set the required gap. To do this, the
stops were used in conjunction with the Wayne Kerr displacement
meter. The valve was first closed by screwing down the stops.
This displacement on the meter was then noted. The seat was then
withdrawn to the required displacement by screwing back the stops,
the opening process being spring assisted. This value was further
checked by using feeler gauges between the valve and valve seat.
It was then a simple matter to set intermediate values of
displacement as required using this meter. Once the further check
had been made, the stops were locked into position and rechecked.

For smaller displacements, 0.025 mm - 0.127 mm (1 - 5 thou)
feeler gauges were difficult to use but since a displacement signal
from the Wayne Kerr displacement meter could be displayed on the

oscilloscope screen, it was possible to increase the oscilloscope

gain/
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gain to enable a measure of small displacements to be seen.

The sensitivities of the transducers were then set on
their respective charge amplifiers and sufficient time was allowed
for them to become drift free (see CHAPTER I, Section 3b). Having
ensured the required displacement was set, the test sequence was
now ready to commence. The range of displacements being 0.025 mm
(1 thou), 0.051 (2 thou), 0.076 (3 thou), 0.102 (4 thou), 0.127
(5 thou), 0.178 (7 thou), 0.25% (10 thou), 0.0381 (15 thou), 0.508
(20 thou), 0.762 (30 thou), 1.016 (40 thou), 1.27 (50 thou), 1.524
(60 thou).

In general, a displacement was set and maintained for a
range of pressures in the cylinder. To set pressures, the solenoid
valve was opened enabling air to flow through the valve. The
cylinder was brought to the required pressure using the reducing
valve in the air supply. The range of pressures used during these
static tests were 6.895 - 82.7k kN'/m2 (1 - 12 psi) generally in steps
of 13.79 kN/m2 (2 psi).

The signal from the accelerétion compensated pressure
transducer was displayed on the oscilloscope screen with the force
trace below it. A low speed was set on the oscilloscope time-base
and the scope controls set to single shot and store. When the
signals had approximately reached the centre of the screen and a steady
response being achieved, the air flow was interrupted by closing the
solenoid valve causing these signals to fall to zero (PHOTOGRAPH 8).
The drop in pressure and force was then tabulated as in CHAPTER IV,
Section la, using the appropriate combination of charge amplifier
and oscilloscope gains and conversion terms as previously computed.
During this test the oscilloscope gains for pressure and

force/
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force were found by trial and error to enable a suitable deflection
to be shown on the screen. It should be noted that, effectively,
we were calibrating the pressure gauge against the pressure

transducer.

Since two different valve sizes were used, two different

sets of results were obtained and are as shown graphically in

CHAPTER IV, Section 1a.

(¢) Dynamic Procedure

The dynamic test procedure was fairly complicated and
sections of it had to be carried out extremely quickly to eliminate
amplifier and transducer drift. To overcome this problem, the
procedure was recorded on cassette tape and played back during the
test as a check list. Accuracy of measurement was ensured by
superimposing a datum force line on the stored record before and
after each dynamic test as described in "Back-0ff Circuit", CHAPTER I,
Section 3d. The coincidence of these datum force lines demonstrated
that no time-constant or other movement in the datum force signal had
occurred.

As in the case of the static tests, the procedure begins
with the setting of the displacement. This is dome by removing
the stops used during the static tests and setting the gap between
the top plate and the top of the plenum chamber to 1.524 mm (60 thou)
in conjunction with the Wayne Kerr displacement meter. This, as
before, being checked using feeler gauges between the valve and the
valve seat. The valve was then checked for parallelism and
concentricity.

Prior to the actual dynamic test, a calibration test of

transducer pressure was done to enable the initial value of pressure

to/
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to be determined. With the valve closed, air was then supplied to
the plenum chamber by operating the solenoid valve. Cylinder
pressure was adjusted by means of the pressure gauge and reducing
valve in the air supply. Four different traces were simultaneously
positioned on the oscilloscope screen these being:

a. Plenum chamber pressure.

b. Displacement of cylinder.

c. Dynamic force.

d. Pre-load (low-gain force).

As before, trial and error was required to obtain satisfactory gains
to enable an adequate record for (a), (b) and (c) to be displayed on
the screen. In the case of the low gain force (d) (pre-load) the
main conditions to be met were that a sufficient seal was available
between the valve and the valve seat to ensure impulsive start
conditions and that adequate triggering of the oscilloscope on
removal of the seat from the valve could be achieved. This was
done by varying the rheostats A and B of the lift-off circuit till
the pre~load signal was zero (i.e. leakage occurred), then
increasing the pre-load sufficiently to enable adequate triggering
of the oscilloscope without flooding of the oscilloscope amplifier.
This was interpreted as the force line on the oscilloscope rising
"X" grids from the level at which leakage was first encountered.
This was found to satisfy the previously mentioned points.

The switches in the back-off circuit A, B and C were
switched to "off", "normal" and "normal" positions respectively.
With the valve closed, air was then pressurised within the cylinder
and the charge amplifiers reset using the remote switchés. The
battery in the back-off voltage was inserted (switch B). This

resulted/
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resulted in a datum value of force being displayed and stored on

the oscilloscope screen (PHOTOGRAPH 9). The next portion of the
test had to be done quickly to overcome drift problems. This was
the actual recording of the dynamic test. Firstly, the back-off
was removed and the valve closed and with pressurised air in the
cylinder, the electro-mechanical actuator was operated, thus
triggering the oscilloscope. To ensure accuracy of these results
a second datum-force line was applied by reinserting the back-off.
The coincidence of the £w0 datum lines indicated that no time
constant effects etc were present. This completed this stage of
the dynamic test. The composite oscillograph thus obtained was
recorded for analysis by use of a Tektronix oscilloscope
camera.

To obtain a measure of the back-off, the "measure back-
off" switch was applied and the battery switch operated in an on/
off mode. This resulted in a step like configuration as shown in

PHOTOGRAPH 10.

To complete the dynamic test a "zero air" test as mentioned
in CHAPTER I, Section 3b, was carried out to show that no';isible“
acceleration was displayed on the oscilloscope before the cylinder
struck the top plate (PHOTOGRAPH 6).

Finally, the calibration test for the pressure transducer
was repeated to ensure initial pressure value had not varied.
Further dynamic tests were then carried out to complete a range of
pressures and opening times as listed in CHAPTER IV, Section 2.

Using these photographic results in conjunction was the
method used in analysing these results, as outlined in Section 4 of

this Chapter, graphs were drawn and are as shown in CHAPTER IV,

Section/
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Section k.

L, Method of Analysing Experimental Results

In order to obtain graphs of dynamic force, pressure and
displacement in their respective units, a computer program was set
up to analyse the photographic results obtained in the previous
tests.

From these results, graphs were drawn and are as shown in
CHAPTER IV, "Experimental Results". These graphs also include

static force results for direct comparison.
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CHAPTER IV

EXPERIMENTAL RESULTS

Static Results
(a) Tabulated Results

(b) Graphs

Dynamic Results

(a) Tabulated Results

Method of Comparison Between Static and Dynamic Results

Comparison Curves (Dynamic and Static)

Comments

7T,
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This chapter contains the results obtained during the
static and dynamic force tests. Firstly, the stat?c results are
tabulated, followed by static curves drawn for the two different
sizes of valves. Next, the dynamic results are tabulated followed
by an explanation of the method used in comparing static and dymamic
results. Finally, using this method, overall static and dymamic
curves are presented.

Along with early experimental work, tests were carried out
to obtain throat pressures during dynamic operation of the 9.525 mm
0/D valve. These results are not included in this chapter since it
is more appropriate that they be included in CHAPTER VI.

After leaving University, similar tests were carried out
on the 8.410 mm 0/D valve and these too are included in CHAPTER VI.

It should be noted that this work was initiated before
the change at Strathclyde from Imperial to SI units and the valve
dimensions, pressures etc., are therefore in preferred Imperial
sizes, but are quoted in SI units with Imperial sizes in brackets

where appropriate.
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1. Static Results¥*

(a) Tabulated Results

VALVE SEAT VALVE 0/D
TABLE NO. BORE mm mm
1.1 6.35 (4") | 9.525 (3")
1.2 6.35 (4") | 8.x10 (0.331")
(v) Graphs
VALVE SEAT VALVE 0/D
GRAPH NO. BORE mm mm
1 6.35 (") | 9.525 (&)
2 6.35 (3") | 8.410 (0.331")
TABLE 1.1

* These results are obtained in conjunction with Transducer Calibrations



TABLE 1.1
TRANSDUCER PRESSURE | DISPLACEMENT | TRANSDUCER FORCE (MEAN)
KN/m> | PSI ma | thous NEWT'ONS
72.54 | 10.52 1.524| 60 1.86
64.68 9.38 " " 1.76
64.68 | 9.38 " " 1.72
56.88 | 8.25 " " 1.52
59.02 | 7.11 " " 1.31
43.16 | 6.26 " " 1.18
35.30 | 5.12 " n 0.96
28.41 | L.12 " " 0.78
20.69 | 3.00 " n 0.57
14.69 | 2.13 " " 0.38
6.5% | 0.92 " n 0.17
72.54 | 10.52 1.27 | 50 1.96
56.88 | 8.25 " " 1.57
43.16 | 6.26 " " 1.13
29.44 | 4.27 " " 0.78
13.79 | 2.00 n " 0.39
6.3 | 0.92 n n 0.15
7%.47 | 10.80 1.016 | 40 1.77
65.68 | 9.38 n " 1.62
56.88 | 8.25 " " 1.42
50.95 7.39 " " 1.23
45.09 | 6.54 " " 1.13
35.30 | 5.12 " " 0.90
27.54 | 3.98 n n 0.69
23.51 | 3.4t " n 0.59
12.76 | 1.85 " " 0.31
7.38 | 1.07 " " 0.19
72.40 | 10.50 0.762| 730 1.57
56.81 | 8.24 n " 1.27
43.16 | 6.26 " " 0.98
27.44 | 3.98 " " 0.64
13.79 | 2.00 " " 0.31
72.40 | 10.50 0.508 | 20 1.42
62.7% | 9.10 " " 1.18
55.85 | 8.10 " " 0.93
50.95 | 7.39 " n 0.83
43.16 6.26 n " 0.67
35.30 | 5.12 " " 0.57
29,44 | 4.27 " " 0.43
21.58 3.13 " " 0.33
14,69 | 2.13 " n 0.25
10.41 | 1.51 " n 0.10
75,47 | 10.80 " " 1.47
58.81 | 8.53 " " 0.98

80.



TABLE 1.1 cont

TRANSDUCER PRESSURE | DISPLACEMENT | TRANSDUCER FORCE (MEAN)
kN/m2 PSI mm | thous NEWTONS
88.26 12.80 0.508| 20 1.96
78.60 11.40 " " 1.67
66.68 9.67 " " 1.23
88.26 12.80 0.381| 15 2.06
72.40 10.50 " " 1.57
50.47 7.32 " " 0.90
28,41 4.12 " " 0.45
72.54 10.52 0.254| 10 2.01
66.68 9.67 " " 1.77
56.88 8.25 " " 1.52
52.95 7.68 " " 1.42
45,09 6.54 " " 1.18
35.30 5.12 .o " 0.93
21,58 3.13 " " 0.59

6.90 1.00 " " 0.20
88.26 12.80 0.178| 7 2.60
75.50 10.95 " " 2.16
52.95 | .7.68 " " 1.47
29.44 4,27 " " 0.72
74.47 10.80 0.127 5 2.20
58.81 8.53 " " 1.81
45.09 6.54 " " 1.32
28.41 4,12 " " 0.84
15.65 2.27 " " 0.47

6.07 0.88 " " 0.19
89.22 12.94 0.102( 4 3.14
75.50 10.95 " " 2.55
51.92 7.53 " " 1.72
29. 44 4,27 " " 0.98
88.26 12.80 0.076 3.0 343
73.57 10.67 " " 2.80
60.81 8.82 " " 2.26
45,30 6.57 " " 1.68
31.37 4.55 " " 1.12
74.47 10.80 0.051 2 2.80
62.74 9.10 " " 2.26
46.06 6.68 " " 1.72
32.38 4,69 " " 1.18
15.65 2.27 " " 0.57

4.90 0.71 " " 0.20




TABLE 1.1 cont
TRANSDUCER PRESSURE | DISPLACEMENT TRANSDUCER FORCE (MEAN)
kN/m2 PSI mm thous NEWTONS
88.26 | 12.80 0.038 1.5 3.73
74.47 10.80 " " 3.24
60.68 8.80 " " 2.45
46.06 6.68 " " 1.91
31.37 4,55 " " 1.28
76.53 11.10 0.025 1.0 3.82
60.81 8.82 " " 2.94
47.09 6.83 " " 2.25
29,44 4,27 " " 1,42
14,69 2.13 " " 0.74

82.
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TABLE 1.2
TRANSDUCER PRESSURE | DISPLACEMENT | TRANSDUCER FORCE (MEAN)
kN/m2 PSI mm thous NEWTONS
93.15 13.51 1.524 | 60 2,60
79.43 11.52 " " 2.16
60.81 8.82 " " 1.69
46.06 6.68 " " 1.27
29.79 4,32 " " 0.84
95.08 13.79 " " 2.70
" 76.47 11.09 " " 2.21
61.71 8.95 " " 1.77
47.02 6.82 " " 1.32
30.34 4,40 " " 0.85
91.15 13.22 1.27 | 50 2.50
76.47 11.09 " " 2.06
61.30 8.89 " " 1.67
46.54 6.75 " " 1.25
31.03 4.50 " " 0.85
92.19 13.37 1.016 | 40 2.45
76.47 11.09 " " 2.06
61.30 8.89 " " 1.62
46.54 6.75 " " 1.23
30.41 b.41 " " 0.81
92.19 13.37 0.762| 30 2.4
76.47 11.09 " " 2.06
60.81 8.82 " " 1.67
46.13 6.69 " " 1.23
30.41 4,41 " " 0.80
90.19 | 13.08 0.508 | 20 2.4
76.47 11.09 " " 2.06
60.81 8.82 " " 1.67
45.09 6.54 " " 1.23
30.41 4,41 " " 0.80
90.19 13.08 0.381| 15 2.55
76.47 11.09 " " 2.06
60.81 8.82 " " 1.67
45.09 6.54 " " 1.23
30.89 4,48 " " 0.82
90.19 13.08 0.254 | 10 2.55
78.47 11.38 " n 2.06
59.78 8.67 " " 1.52
49.02 7.11 " " 1.23
29.79 4.32 " " 0.69




TABLE 1.2 cont

TRANSDUCER PRESSURE | DISPLACEMENT | TRANSDUCER FORCE (MEAN)
KN/m®> | PSI m | thous NEWTONS
92.19 13.37 0.178 7 2.60
76.47 11.09 " " 2.16
60.81 | 8.82 " " 1.59
45.00 |  6.54 n " 1.13
29.79 | .32 " " 0.77
90.19 | 13.08 0.127| 5 2.84
76.57 | 11.09 " n 2.30
60.81 | 8.82 " " 1.84
45.00 | 6.54 " n 1.30
31.37 |  4.55 " n 0.85
92.19 | 13.37 0.102 | & 2.89
77.43 | 11.23 " n 2.45
62.75 | 9.10 " " 1.96
46.55 | 6.75 " " 1,42
31.10 | 4.51 " " 0,94
91.15 | 13.22 0.076 | 3 2.94
76.47 | 11.09 " " 2.0
60.33 | 8.75 " n 1.86
%6.55 |  6.75 n n 1.42
31.10 | 4.51 " " 0.94
91.15 | 13.22 0.051| 2 3.09
75.43 | 10.94 n " 2.60
60.33 8.75 " " 1.99
45.58 | 6.61 " " 1.52
31.10 | 4.51 " " 1.03
84.33 | 12.23 0.025 | 1 3.34
65.71 9.53 " " 2,45
54.88 | 7.96 " " 2.01
¥2.13 | 6.11 " n 1.57
30.89 | 4.48 " " 1,20
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2. Dynamic Results

(a) Tabulated Results

87.

STARTING PRESSURE
TABLE GRAPII 5 VALVE OPENING
NO. VALVE 0/D 1m NO. kN/m PSI TIME msecs
2.1 9.525 (3") 3 31.03 4.50 15
2.2 " 4 50.00 7.25 "
2.3 n 5 76.83 | 11.15 "
2.4 " 6 29,064 4,30 35
2.5 " 7 53. 7.75 "
2.6 " 8 77.92 | 11.30 "
2.7 " 9 -25.58 3.71 45+
2.8 " 10 54.00 7.83 45+
2.9 " 11 76.40f 11.08 45+
2.10 [ 8.410 (0.331") 12 29.64 4.30 8
2.11 " 13 55.16 8.0 "
2.12 " 14 69.29 | 10.05 "
TABLE 2.1
TRANSDUCER PRESSURE VALVE TRANSDUCER DYNAMIC
TIME IN CYLINDER DISPLACIMENT FORCE  (NEWTONS)
usecs 1N/ mm MAXDMUM | MINIMUM
0 31.03 0.00 1.53 1.53
2 30.72 0.05 1.11 1.11
A 30.50 0.16 0.80 0.80
6 30.28 0.33 0.49 0.47
8 29,70 0.57 0.47 0.32
10 29,04 0.87 0.71 0.47
12 28.61 1.21 0.76 0.47
14 27.91 1.58 0.91 0.41
16 27.42 1.66 0.8%4 0.46
18 26.49 1.50 0.78 0.45
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TABLE 2.2
TRANSDUCER PRESSURE VALVE TRANSDUCER DYNAMIC
TIME IN CYLINDER DISPLACEMENT FORCE (NEWTONS)
msecs kN'/m2 mn MAXTMUM MINIMUM
0 50.00 0.00 2.56 2.56
2 49.97 0.06 1.84 1.84
A 49.46 0.18 1.33 1.33
6 49.11 0.34 0.91 0.78
8 48 .45 0.58 0.82 0.58
10 47.78 0.91 1.17 0.89
12 46.68 1.26 1.29 0.95
14 46.02 1.63 1.34 0.95
16 45.14 1.64 1.29 0.95
18 44,70 1.49 1.26 0.95
TABLE 2.3
TRANSDUCER PRESSURE VALVE TRANSDUCER DYNAMIC
TIME IN CYLINDER DISPLACEMENT FORCE (NEWTONS)
msecs kN/m2 mm MAXIMUM | MINIMUM
0 76.88 0.00 3.82 3.82
1 76.88 0.03 3.38 3.38
3 76. 44 0.10 2,44 2,44
5 76.00 0.26 1.85 1.81
7 75.34 0.48 1.58 1.27
9 74.25 0.76 1.72 0.99
11 73.37 1.10 1.88 1.41
13 72.49 1.46 2.04 1.52
15 71.62 1.69 2.04 1.56
17 70.31 1.55 1.93 1.56
19 69.43 1.46 1.84 1.58
TABLE 2.4
TIME TRANSDUCER PRESSURE VALVE TRANSDUCER DYNAMIC
IN CYLINDER DISPLACEMENT FORCE (NEWTONS)
msecs 1N/m> mn MAXTMUM | MINTMUM
0 29.64 0.00 1.5k 1.54
2 29.64 0.02 1.37 1.37
v 29.21 0.12 0.93 0.93
12 28.77 0.26 0.62 0.57
17 27.66 0.55 0.53 0.35
22 26.34 0.84 0.75 0.46
27 25.24 1.15 0.77 0.51
32 23.69 1.50 0.82 0.46
37 22.15 1.52 0.75 0.51
) 20.61 1.45 0.64 0.48
47 19.52 1.42 0.57 0.4k
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TRANSDUCER I'TIESSURE VALVE TRANSLUCER. DYNAMIC
TIME IN CYLINDER DISPLACEMENT FORCE  (NEWIONS)
msecs kN/mz mm MAXIMUM MINIMUM
0 53. 4k 0.00 2.67 2.67
2 53.4b 0.02 2.29 2.29
vi 5%.00 0.15 1.58 1.58
12 52.12 0.33 1.12 0.97
17 50.58 0.60 0.97 0.57
) 49.04 0.91 1.32 0.88
27 %7.29 1.23 1.45 0.96
39 45,08 1.57 1.44 0.98
37 42.89 1.53 1.38 0.98
) 40.70 1.46 1.24 0.95
u7 38.93 1.43 1.12 0.91
TABLE 2.6
TRANSDUCER PRESSURE VALVE TRANSDUCER DYNAMIC
TIME IN CYLINDER DISPLACEMENT FORCE (NEWTONS)
msecs kN/m2 mm MAXIMUM MINIMUM
0 77.92 0.00 3.82 3.82
2.5 77.89 0.02 3.23 3.23
7.5 77.25 0.15 2.24 2.24
12.5 76.16 0.36 1.69 1.56
17.5 74,40 0.62 1.57 1.09
22.5 72.64 0.93 1.86 1.34
27.5 70,44 1.28 2.05 1.50
32.5 68.02 1.62 2.03 1.52
37.5 65.17 1.51 1.95 1.51
42.5 62.97 1.44 1.80 1.51
47.5 60.33 1,43 1.64% 1.49
TABLE 2,7
TRANSDUCER PRESSURE VALVE TRANSDUCER DYNAMIC
TIME IN CYLINDER DISPLACEMENT FORCE  (NEWTONS)
msecs kN/m2 m MAXIMUM MINTIMUM
0 25.58 0.00 1.46 1.46
1.5 25,58 0.01 1.38 1.38
6.5 25,32 0.07 1.0k 1.04
11.5 25,05 0.17 0.82 0.82
16.5 24,26 0.29 0.65 0.61
21.5 23,33 0.43 0.46 0.38
26.5 22,41 0.59 0,50 0.35
31.5 21.18 0.75 0.59 0.43
36.5 20.11 0.91 0.59 0.46
41.5 18.84 1,07 0.59 0.47
n6.5 17.42 1.34 0.56 0.46




TABLE 2.8
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TRANSDUCER PRESSURE VALVE TRANSDUCER DBYNAMIC
TIME IN CYLINDER DISPLACEMENT FPORCE  (NEWI'ONS)
)
MECCs 1N/m” mm MAXIMUM MINIMUM
0 54.00 0.00 2.67 2.67
0 54.00 0.01 2.15 2.45
7 53.50 0.08 1.85 1.85
12 52.84 0.18 1.45 1.45
17 51.87 0.32 1.13 1.05
29 50.85 0.48 0.95 0.69
27 49.35 0.64 0.97 0.74
32 47.98 0.82 1.15 0.89
37 46,09 0.98 1.20 0.93
59 4k 54 1.15 1,20 1.02
ny 42,78 1.730 1.16 1.01
TABLE 2.9
TRANSDUCER PRESSURE VALVE TRANSDUCER DYNAMIC
TIME IN CYLINDER DISPLACEMENT FORCE (NEWTONS)
msecs kN/m2 mm MAXTMUM MINIMUM
0 76.40 0.00 3.83 3.83
2 76 .40 0.01 3,41 3. 41
7 76.00 0.07 2.59 2.59
12 75.07 0.19 2.07 2,01
17 74.23 0.33 1.72 1.51
29 72.92 0.50 1.59 1.14
27 71.28 0.68 1.74 0.99
32 69.47 0.87 1.81 1.26
37 67.35 1.06 1.91 1.30
42 65.15 1.23 1.89 1.32
47 63.16 1.39 1.85 1.33 B
TABLE 2.10
TRANSDUCER PRESSURE VALVE TRANSDUCER DYNAMIC
TIME IN CYLINDER DISPLACEMENT FORCE (NEWTONS)
msecs KN/m> yon MAXIMUM | MINTMOM
0 29,64 0.00 1.32 1.32
0.8 29,64 0.02 1.08 1.08
1.8 29,64 0.10 0.8% 0.8%4
2.8 29,43 0.2 0.77 0.66
3.8 29,00 0.41 0.82 0.72
h.8 27,88 0.66 0.79 L 0.67
5.8 27.00 1.01 0.77 0.65
6.8 25,47 1,46 0.79 0.63
7.8 24,77 1.76 1.09 0.3%
8.8 24,58 1.57 1.00 043
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TABLE 2.11

TRANSDUCER PRESSURE VALVE TRANSDUCER DYNAMIC
TIME IN CYLINDER DISPLACEMENT FORCE (NEWTONS)

msecs kN/m2 mm MAXIMUM | MINIMOM
0 55.16 0.00 2.18 2,18
0.7 54.94 0.02 1.93 1.93
1.7 54.50 0.08 1.62 1.62
2.7 54.27 0.20 1.48 1.38
3.7 53.62 0.38 1.49 1.42
4,7 52.73 - 0.60 1.45 1.34
5.7 51.19 0.88 1.45 1.28
6.7 49.88 1.27 1.43 1.25
7.7 47.45 1.69 1.64 1.07
8.7 46.34 1.69 1.66 0.99

TABLE 2.12

TRANSDUCER PRESSURE VALVE TRANSDUCER DYNAMIC
TIME IN CYLINDER DISPLACEMENT FORCE (NEWTONS)

nsecs KN/m> o MAXTMUM | MINTMUM
0 69.29 0.00 2.65 2.65
0.65 68.85 0.02 2.34 2,54
1.65 68.42 0.08 1.84 1.84
2.65 67.97 0.20 1.82 1.64
3.65 67.09 0.37 1.77 1.61
4,65 66.00 0.61 1.69 1.53
5.65 64.45 0.91 1.69 1.43
6.65 62.69 1.35 1,70 1.38
7.65 61.45 1.62 2.03 1.17
8.65 59.16 1.52 1.87 1.22
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3. Method of Comparison Between Static and Dynamic Results

The method of comparison between dynamic and static
results begins by drawing the dynamic curves.

As can be seen from FIG. 19, a maximum and minimum value
of dynamic force has been shown. These maximum and minimum values
are averages, since high frequency vibrations were present during
the dynamic opening of the valve. This effect being probably due to
forcing of turbulence or self-excited eddies. A typical dynamic
test showing these transients can be seen in PHOTOGRAPH 9.

The comparable static force value (e.g. 2Z) is then
determined, in conjunction with GRAPHS 1 or 2, at a particular
corresponding displacement (X) and pressure (Y) and plotted on
these dynamic curves. This procedure is repeated at a range of
displacements and corresponding pressures, thereby enabling a static
force curve to be drawn.

The resultant graphs are shown in Section 4 of this

chapter.

4. Comparison Curves (Dynamic and Static)

Attached are comparison curves 3 to 18 as noted in Section

2a of this chapter.
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COMMENTS

This section contains the salient points arising from dynamic
and static experimental tests carried out on a 9.525mm O/D
valve (Graphs 3-11), and a 8.410mm O/D valve (Graphs 12-14),

both having a bore of 6,35mm diameter.

9,525mm 0/D VALVE (GRAPHS 3-11)

Let us focus our attention firstly on the 9.525mm 0/D valve,

where Graphs 3, 4 and 5 show the fastest valve opening

rate which achieved the fully overshot position in approximately
15ms. Graphs 6, 7 and 8 show an intermediate rate of opening
taking approximately 35ms, and finally Graphs 9, 10 and 11

show a very slow rate of valve opening in which the fully open
position is not achieved after 45ms. The valve stops in each
case were set to 1.524mm (0.060"), the overshoot arising from

elastic deflection of the stops.

Within these sets, three pressure conditions are recorded,
representing approximate initial closed cylinder pressures of
30, 50 and 75 kN/mz. In each case, the pressure falls off
during the opening phase, and in particular, in the condition

of higher pressure and slow valve movement.

Dynamic force curves are directly transcribed from oscilloscope
records of tests. Except in the early stages of opening, there
was considerable fluctuation in dynamic force. Upper and lower
limits of this fluctuation are shown. The static curve is

built up from experiments at fixed valve openings, and represents
at every point, the static force at the valve displacement and
cylinder pressure pertaining at that instant in the dynamic

experiment,

Upon observing all the curves, they clearly show a force
minimum in all cases, and since this appears also in the static

curves, it is clearly not a function of valve opening time.
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The minimum does, however, appear at about the same valve
displacement for the corresponding initial pressure condition

in each set of graphs, as follows,

Initial pressure (kN/mz) Valve displ. (mm) Min, force (N)

30 0.5 0.35
50 0.5 0.60
75 . 0.7 1,00

This indicates that the minimum is a function of valve
displacement and cylinder pressure. Schrenk (45) found a
change of flow regime at a critical valve opening, at.which
the flow detached from the valve seat and became a free jet.
It seems likely that the minimum described is the force

manifestation of this change in regime.

In all dynamic curves, separation of upper and lower limits
builds up from a start some milliseconds after inception

of valve opening. This separation represents the limits of
growing high frequency undulation, as may be seen in Photograph
9. Now the cylinder charge is subjected to an impulsive start
from rest, and therefore, begins to flow in laminar conditions.
The build up of signal oscillations thus follows a pattern which
might be anticipated from eddy growth within the flow, finally

achieving full turbulence. Eddy growth of this kind is mentioned

in later work. [49].

On this basis, it seems unlikely that viscous effects have much
influence on the minimum force previously described, since
turbulence appears to be well established before the minimum

force point is achieved.

On each of these graphs, a force point is indicated by a ©®
at zero time. This is the experimentally found gas force on the

valve before activation of the opening mechanism.
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Immediately on inception of opening, however, the force increased
to the initial value shown for the curve. This is merely the
spread of pressure across the whole valve surface, indicating

that the seal was initially satisfactory.

Finally, differences between static and dynamic forces are not
large. However, before the point identified above as the onset
of turbulence, the static force is consistently higher than the
dynamic force. It was unfortunately impossible to set the
extremely small valve lifts required to extend the static force
curve towards zero lift, but in the region recorded, static force
exceeded dynamic force by something of the order of 10Z, with
the curves coming together generally in the region of developing
turbulence. This would be consistent with laminar flow in the
early stages of dynamic lift, while static flow is, of course,
always fully turbulent. These differences are not large, but
valve characteristics in real compressors are so critical that

an allowance for this effect might be a useful modification in

computer models.

At later times and larger valve lifts, some measure of this
difference between static and mean dynamic forces persists but

on a very long time base the curves, as they must, eventually

come together,

Graph 9, showing very slow opening at low initial pressure is
an exception to the above discussion. Here, static force
appears slightly lower than dynamic in the early stages. With
the low pressure and very slow opening involved, however,
static and dynamic conditions are not radically different, The
difference here may therefore be an indication of general curve
accuracy, since there is no obvious explanation of the low
static curve. In this case, differences between static and
dynamic reported for other curves may be subject to this degree
of inaccuracy. However, this consistent finding of a higher

static force indicates that a difference does exist.
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8.410mm O/D VALVE (GRAPHS 12-14)

In these experiments, the 9.525 valve was replaced by a valve of
8.410mm dia, the new valve having a gasket ratio to the valve bore
in line with compressor automatic reed valves as fitted by a
particular compressor manufacturer. This was part of a general
redesign of the rig, which also included replacement of a brass
cylinder by a lightweight plastic cylinder, with the aim of bringing
valve rise times nearer to those experienced in a compressor. By
this means, the rise time was reduced to about seven milliseconds.
This is still considerably higher than that to be anticipated in a
compressor (less than 3 ms) but was as fast as could be obtained
under the necessary condition of pulling the cylinder off the valve
seat., Graphs 12, 13 and 14 show the behaviour of valve gas force
at this shorter rise time, with initial cylinder pressures as

before of approximately 30, 50 and 75kN/m2 respectively.

In Graphs 12-14, the limits of dynamic force beyond impact at around
8ans increase suddenly. This is due to acceleration effects
transmitted through the rig following impact on the stops, has nothing
to do with valve gas forces and should therefore be discounted.

(Photographs 2 and 3).

It should be noted that no comparable acceleration effects were
encountered for the 9.525mm O/D Valve case, the indications being

that this effect was attributable to the speed of valve opening.

At this gasket ratio, the clear minimum in force found using the larger
valve does not appear. This suggests that, at low gasket ratios,
detachment of the flow from the valve seat occurs so early as to

be lost in the early force gradients. Since this valve has a gasket
ratio similar to those used in compressor practise, the indications

are that the flow may generally in compressor practise be regarded

as being in the free jet detached mode, and not in the mode of

attached flow along the valve seat,
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The difference between static and dynamic gas force during the early
stages of valve opening, as found for the 9.525mm O/D valve is again
apparent in graphs 12-14, particularly at the highest imitial

cylinder pressure (Graph 14).

Theoretical Curves

Theoretical curves of gas force on the valve obtained from a finite
element model of continuous flow through the valve at various
valve openings and pressures are also shown on these graphs, These
will be discussed following development of the finite element

model in Chapter VI. The discussion of these curves appears on

pages (4 etc..
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CHAPTER V

THEORETICAL ANALYSIS FOR TWO-DIMENSTONAL

AND AXI-SYMMETRIC FLOWS
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CHAPTER V

THEORETICAL ANALYSIS FOR TWO-DIMENSIONAL AND AXI-SYMMETRIC FLOWS

1. Introduction

2. Problem Formulation
(a) Two-Dimensional

(b) Axi-Symmetric
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1. Introduction

The analysis of two-dimensional and axi-symmetric flows
has attracted the attention of engineers over a very long time.
Flow characteristics of interest include velocity distribution and
pressure distribution over the entire flow field and also the forces
produced and thé free-surface location for free-surface problems.
Although two-dimensional flow analysis has been well developed and
extended to axi-symmetric flows, most of the existing methods can
solve only problems with simple geometric boundaries and the popular
finite difference method sometimes is susceptible to accuracy
problems (irregular stars). There could also be good value in
tackling this problem using the finite difference technique, but a
large degree of sophistication and advanced knowledge would be
required. Therefore, the finite element technique was chosen to
enabie results to be obtained in a reasonably defined period of time.

In this chapter, the formulation of the general two-
dimensional irrotational flow of an ideal fluid by finite element
analysis will be presented. This will be followed by an extension
of this method to cover axi-symmetric flow. When the free-surface
problem is encountered as in the axi-symmetric flow case, it has
only to be treated in almost exactly the same manner as in treating

a two-dimensional problem.

2. Problem Formulation

(a) Problem Formulation for Two-Dimensional Flow

Both a velocity potential @ and a stream function X
exist to aid the present study of a steady, two-dimensional,

irrotational/
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irrotational flow of an ideal fluid. As the method of formulation
for ﬂ and ¥ are very similar in practice, only the formulation for
¢ will be developed and presented in this section since this is

applicable in this study.

In variational form the velocity potential problem to be

solved is that of minimising the functional (equation 2.19a):

1 - & [ ([0 + 0w $8.8,)" 4 (5.1
A c

over the flow domain A enclosed by a boundary curve B. The first
term is to be integrated over the entire flow region, giving the
kinetic energy of the flow and the second term is to be evaluated
over the boundary portion c, where non-zero normal velocity
q, = (¢,n)a is specified, representing twice the work done by the
impulsive pressure in starting motion from rest.

A general flow domain is shown in FIG. 20

As pointed out earlier, minimisation of I(f) is equivalent

to solving the Laplace equation:

¢vxx + ¢’YY = 0 in A

with g, = (¢,n)a on é.

In the finite element formulation, the region to be
analysed is divided into N' sub-regions or finite elements and

equation (5.1) can be replaced by:

Nl
%) = > 1% (%) (5.2a)

=1

where

1° (6%)

(]
~
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c00) - (0T[5 ]) sa - ¢ § 5 ()" as
A c

(5.2b)

is a measure of the energy of a representative element e, which may,
in turn, consist of several sub-elements. In the present study, it
was decided to chose quadrilateral elements to approximate the flow
region under consideration.

Each element is composed of four triangular elements, as
showvn in FIG. 21. Within each triangle ¢(m) is approximated by a
second order polynomial, so that the velocity components u = ¢’x(m)
and Vv = ¢’y(m) in the x and y directions respectively, can vary
linearly throughout each triangular region. Since the prediction
of boundary velocities or pressures is often an important result of
the analysis, this velocity representation is needed if solutions
are to be accurate.

Each triangular element has three corner nodes and three
gside nodes, one at the mid-point of each side. FIG. 21 gives the

triangular or area co-ordinates:
A,
L, = =

i Aim;

A(m) area of entire triangle and

where

Ai = area of one sub-triangle.

Thus, the side connecting nodes 1 and 2 is described by:

=0 -
L3 and also L1 + L2 + L3 1

For these conditions the representation of f in triangle
(m), in terms of the six nodal values ¢i(m) where i = 1 to 6 when

written/
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QUADRILATERAL ELEMENT AND TS SUBRELEMENT.

(a) QUADRILATERAL ELEMENT.

3 (uiyLe,La)

(b)) TRIANGOLAR SUBELEMENT (Tio DMENSIONAL )

FIGURE 2\
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written in a simplified form by using the summation convention, is:

g = g @ (1=1,6) (5.3)

i
where repeated subscript implies summation from one to the number

indicated, where:
N, =<t (2L, - 1), Ly (2L, - 1), Ly (2L, - 1), & L, L,

4 Ly Lg, & Ly L,> (5.3b)
According to equation (2.3a), the velocity components are then:

u(m) = ¢,x(m) = ﬂi(m). Ti(m) (i =1t06) (5.4a)
and v(m) = ¢,y(m) = ¢i(m).‘?i(m) (i =1 to6) (5.4b)

where Ti(m) = (4 L, - 1) bi/2A(m) (no summation on i) (5.5a)

v, @ oy (b, Ly + b, L.) op(m) (no summation on i) (5.5b)

- - (m)
a = xj - X5 bk =Y, =Y 2A

; = ak‘bj - aj'bk (5.5¢)

(1, 2, 3), §=1(2, 3, 1), k= (3, 1, 2) (5.5d)

A (m)

The array Ti

g
il

is found by replacing the b's with a's
in the expressions for Ti(m).

Upon substituting equations (5.3), (5.4) and (5.5) into
equation (5.2b) (where subscript (m) is used instead of e to denote
triangular sub-element), followed by computing the partial
derivation of I(m) (¢) with respect to ﬂi(m) and interchanging

sub-scripts i and j, one similarly obtains equations as (A.13),

(A.14) and (A.15) as shown in APPENDIX A:

i.e./
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(m) {( (m) o () 2 (@) D (m)y
] I _ . m m m m m m
i.e. ﬁb_)ﬂi_é'%l- e (Ti .TJ. + T, .TJ. )¢j )dA

- Qz(m). N, (¢,n)a ds (5.6a)
)

> 2_13%)7%1 N AL A : (5-6%)
.-.[s](m){ﬂ}(m) +{SL (m) (5.6¢)

It will be noticed that in equation (5.6c) the last term is
+ve. This is dependent on the convention used for the defining of
the direction of the boundary velocity.

In the terminology of structural mechanics, Sij(m) is the
element stiffness matrix and SLi(m) is the corresponding load matrix
for a triangular sub-element, which are derived and listed in
(APPENDIX A, Derivation of Element Matrices). The contribution from
each triangle in a quadrilateral element to the terms in
equation (5.6) is first evaluated, followed by appropriately adding
up all the contributions to the 13 nodal points. The equations for
the five interior points of the quadrilateral are then eliminated at
the element level to obtain the element stiffness matrix Sije and
its load matrix SLie for a quadrilateral element. The
expressions for each quadrilateral are then added together
appropriately to form the system matrices, which is identical to the
direct stiffness method of structural mechanics [39].

The resulting system of equations is linear, symmetric and

in band form. The total number of equations is equal to the total

number,/
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number of nodal points and the/band width is equal to one plus the

difference between the largest and the smallest nodal numbers in a
quadrilateral element. This system of equations is then solved for
the ¢i's by Gaussian elimination. Once the ¢i's are known, the
velocity components at any point are calculated by equations (5.4).
After that the pressure and force distributions can be evaluated by

applying equations (2.15).

(b) Problem Formulation for Axi-Symmetric Flow

Like the anal&sis of two-dimensional flows, both a velocity
potential @ and a stream function ¥ exist to aid the present study
of a.steady, axi-symmetric, irrotational flow of an ideal fluid.
However, formulation in terms of the velocity potential function
appears to be much simpler, because it bears a close resemblance to
the formulation for two-dimensional flows. In this study, the
velocity potential function was chosen to be the primary unknown.

In variational form the velocity potential problem to be

solved is that of minimising the functional (equation 2.19b):

I(g) = e.ﬂjj[(ﬂsx)2 + (¢,r)2] r.dr.dx - 2.€.T\'§ g.(8, )% r.as
A c

(5.7)

The first term on the right hand side is the kinetic
energy in the entire flow region and the second term, with the
integration carried out on the portioh of surface boundary where the
normal velocity component is specified, represents twice the work
done by the impulsive force in starting the flow to move from rest.
This equation resembles the one for two-dimensional flow except that

in place of y, the radius r has been used. As a direct result of

axial/
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axial symmetry r appears inside both integrals. Once again, the

minimisation of I(f) is equivalent to solving the Laplace equation:
g, +14, +4, =0 in A
'xx r "'r ‘rr T
with g, = ()° on C

Since the procedures to be followed in the finite element
formulation are exactly the same for two-dimensional and axisymmetric
élows, only a brief description of the development and the resulting
equations will be presented.

Upon dividing the flow region into N' quadrilateral
elements (NOTE: Each quadrilateral element is now a cross—section
of an annular region through which flow occurs), equation (5.7) is
approximated by:

N?

1(g) = Z_ 1° (8) (5.8a)

e=1

where
=T J[8,.9% 0 2 ]r e ax-20" T8 g (4, )% x s
A° | c®

(5.8b)
represents the energy of a typical element e, which may, in turn,
consist of several sub-elements. The quadrilateral element,
composed of four triangular elements, will again be used as in the
two-dimensional analysis. In each triangular element, ¢(m)’ is

approximated by a second order polynomial in the form:

where/
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where

N, .-.-<L1 (21, - 1), L, (2 L, - 1), L (2 L, - 1), & Ly Lo,
& L,. L, & L3.L1> (5.9p)
The velocity components are, according to equation (2.3b):

Vx(m) = ¢’x(m) - ¢i(m)'Ti(m) (i =1 to6) (5.10a)

s (m) _ ¢,r(m) = ¢i(“‘) ,T\i(m) (i =1to6) (5.10b)

r
with
T(m)—(4L—1)b/2A(m) ( i i
; = : i no summation on i) (5.11a)
v @ oy (b1, +b.1)/24® (o i i
iv3 = 3L Ly sumation on i) (5.11b)
=X, = X., b =, -1,y 2 A(m) = b. - a. b (
& J i’ 'k i j % ;5 i Pk - (5.11¢)
i=(,23),j=(2 3 1) ad k=(3 1, 2) (5.114)

A
m) .
Ti( ) is found by replacing the b's with a's

(m)

in the expressions for Ti .

As before the array

In addition to the above equations, the variable r is

introduced as:

r=r.L + ro-Ly + r3.L3 (5.12)

where riy Ty and r3 are radial co-ordinates of the corner nodes 1,
2 and 3 respectively, and Li’ L2 and L3 are again the area
co—ordinates of a point in the triangular element.

Upon substituting equations (5.9), (5.10) and (5.11) into
equation (5.8b) (NOTE: Subscript (m) must be used in place of e to

designate/



123,

designate calculations for a triangular element) followed by
computing the partial derivatives of I(m) g with respect to ﬂj(m)
and interchanging subscripts i and j, one similarly obtains equations

as (A.37) and (A.38) as shown in APPENDIX A:

21 () . () (@) o (@) . 2 (02 (@), 4 (m)
_5’67%1_23 TT'I{ (1, 0 )r.pjj dA

()

~ 0 e(m),‘TT' § Ni_(;é,n)‘al r.ds (5.13)
(m)

or 5_16(_%%)— = SAiJ.(m) g (m) _ sta, (™ (5.14a)
~[sa]® {¢](m) + {SLA}(m) (5.14b)

Here SAij(m) and SLAi(m) are the element stiffness
matrix and the corresponding load matrix for a triangular element,
which are derived and listed in APPENDIX A, Derivation of Element
Matrices.

The element stiffness matrix SAiJ.e and its associated
load matrix SLAie for a quadrilateral element can then be formed
by adding up the contributions from the four triangular sub-elements
and then eliminating the equations for the five interior points.
Next, the system matrices are formed in a process identical to the
direct stiffness method[:39]. These matrices constitute a system
of equations which is linear, symmetric and in band form as in the
case for two-dimensional flow.

Solution is then done, to obtain the ¢i(m) values and then
secondary unknowns are obtained in the same manner as for two-

dimensional/
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dimensional flow.

For a more complete explanation of the derivation of the
element matrices and the subsequent overall program produced, see

APPENDICES A and C respectively.
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1. Introduction

The theoretical procedure adopted in this thesis, for
determining the quasi-static forces on a disc valve for various
displacements, is based on the finite element technique. This
determines the velocity profile throughout the discretised flow
domain from whence pressure distribution and subsequently quasi-
static force distribution can be determined over the valve face.

CHAPTER V detailed the procedure used in obtaining the
velocity distribution throughout the flow domain and in particular,
over the valve face, from which point this chapter will describe
the further modifications required to enable quasi-static force
values over fhe valve face to be obtained.

Velocity potentials throughout the flow domain for a
particular valve 0/D and displacement case (nominai upstream velocity

equal to 1 m/s) is shown in FIG. 25.

2. Theoretical Assumptions

The predominant aspect of this analysis is that Laplace's
equation has been used in determining the quasi-static force on the
valve. This implies that the approach momentum force is negligible
in comparison to the pressure force on the valve. This assumption

can be justified in this case since:

eAv? = 0.03N

F'momentum
vhere @ = density of fluid, kg/m3

A area of throat, m2

and V = velocity at throat, m/s
whereas the minimum resulting pressure force from GRAPHS 3 - 14

= 0. No

Further/
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Further to this prior assumption, no forces were

considered on the back of the valve since a fully stalled condition
was considered to be applicable. Experimental work showed the flow
to be almost in the form of a disc with a boundary very little above
valve level and only downward entrained flow appeared above the
valve (REFERENCE 49).

In conclusion, the overall assumption made in obtaining
the theoretical quasi-static force was that Laplace's equations were
used up to the valve perimeter, then jet theory was considered with
downward air entrainment from behind the valve.

The flow domain used for the theoretical determination of
quasi-static valve forces is shown in FIG. 22.

This figure shows half of the physical plane of flow where
the x-axis is chosen to coincide with the axis of symmetry and the
y-axis chosen to pass through points J and A, the upstream portion
~ of the domain.

The flow region under consideration is then divided into
123 quadrilateral elements as shown in FIG. 23, with elements of
smaller size near the valve to accommodate more accurately the
larger velocity gradients in this region (see APPENDIX C). FIG. 24
shows in detail the nodes and dimensions across the-valve face.

In arriving at the amount of elements chosen, the following
two major points should be borne in mind. Firstly the limitation
of core space available for any particular computer and secondly,
that monotonic convergence should prevail.

Having finally decided the number of elements suitable
without reasonable loss of accuracy the work can continue.

To ensure the program was correctly developed, it was

applied/
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applied to calculate steady and free surface flow from a nozzle.
The results obtained when compared with other experimenters showed
agreement and the program was therefore modified to encompass the
valve problem.

For flow chart, listing and description of program see
APPENDIX C.

The boundary conditions imposed by this problem are as
follows; normal velocity components along ABCDEFGH and IJ are zero,
i.e. (ﬁﬁ,n)a = ¢, but the upstream face has a normal velocity of
(¢,n)a = -q,, which is determined using equation 6.1:

21,” (Py - Py)

- 6.
%y (A12 ~ A22) (6.1)

R4

where subscripts 1 and 2 refer to the upstream and throat conditions
respectively.

The downstream velocity is obtained from the mass
continuity equation:

Ajq, = Ay qy = const (6.2)
and in turn is equivalent to (¢,n)a = q .

It should be noted that the velocities obtained from the
computer program are firstly calculated on the basis of q, =1 m/s and
then using equation 6.1, as the appropriate scaling factor, the
correct velocities with respect to the chosen pressure and displacement

are obtained.
These calculations are based on the non-viscous assumption

and that therefore, similar streamlines are applicable at all speeds.

3. Mathematical Static-Force Procedure/
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3. Mathematical Static-Force Procedure

Having obtained the velocity distribution throughout the
diacretised $low domain based on an upstream velocity q, = 1 m/s
and in particular over the valve face for the various displacements,
the following equations are required to enable the quasi-static
force over the valve face to be determined.

As previously obtained from Bermoulli's equation:

2
24, (P1 - P2)

(8% - 2,%)

q, = scaling factor = (6.1)

where subscripts 1 and 2 refer to upstream and throat conditions

respectively and for a particular displacement and node the actual

velocity on the valve face equals:

9alve face - Y (qvalve) (6.3)

where q_, . = velocity on valve face based on q =1 m/s. Hence,

having obtained 9 alve face and once more using Bernoulli's equation:

( 2 _ 2 ) P
p _ %y Yyalve face 1 (6.4)
valve face ~ 2 * e

2
2 (1 - qvalve) Pi
) )

e

If now all nodes on valve face are considered, a pressure

(6.5)

or Pvalve face q'u.

curve over this surface would result and upon integration using

equation 6.6, a quasi-static force would result.

2w R
F = <; g' P.,.dr.r . d€

0 0
A program has been written to enable these calculations to
be carried out. This incorporates a best curve fit routine which,
when using the pressure distribution data, generally yields a 7th

order polynomial fit.



L. Tabulated Results

VELOCITY PROFILES FOR VARYING DISPLACEMENTS

TABLE VALVE 0/D
NO. mn (inches)
ko 9.525 (0.375)
4.2 8.410 (0.331)

VALVE BORE 6.35 mm (0.25") IN BOTH CASES

THEORETICAL QUASI-STATIC FORCE RESULTS

UPSTREAM PRESSURE P
TABLE | VALVE 0/D | GRAPH 1
NO. mn NO. KN/m? PSI
43 9.525 3 31.03 4.50
bk " 4 50.00 7.25
5.5 " 5 76.88 11.15
4.6 " 6 29.64 4.30
4.7 " 7 53. 7.75
4.8 " 8 77.92 11.30
4.9 " 9 25.58 3,71
4,10 " 10 54.00 7.83
%.11 " 11 76. 40 11.08
412 8.410 12 29.64 4,30
4.1% " 13 55.16 8.0
k.14 " 14 69.29 10.05

Comparison curves between experimental and theoretical results can

be found in GRAPHS 3 - 14, CHAPTER IV,

134.



TABLE 4.1 VALVE 0/D = 9.525 mm

NODE N(-)-:..d

jum DISPL | 289 290 291 292 293 294 295 296 297 298 299
0.25 0.4243 | 5.0164 1 9.4173 | 19.0530 | 21.8569 | 66.2927 | 153.7119 161.2951 165.3841 | 155.9951 | 82.4331
0.50 0.2755 | 4.8597 | 9.5386 | 17.7239 | 24.5641 | 49.6307 | 82.0258 | 87.9474 | 81.8047 | 82.6918 | 54.3045
0.75 0.2284 | 4.6429 | 9.2511 | 16.3523 | 23.7016 | 38.5902 | 54.6272 | 56.9366 | 53.6913| 58.0193 | 41.8212
1.00 0.1705 | 4.3800 | 8.7961 | 14.9133 | 21.5437 | 30.9688 | 40.1963 | 41.6337 | 39.7660 | 45.2279 | 34.2618
1.25 0.1142 | 4.0801 | 8.2281 | 13.4476 19.6898 25.4435 | 31.3362 | 32.5128 | 31.4513] 37.1591 | 29.0498
1.50 0.0685 | 3.7616 | 7.5955 | 12.0360 | 16.7518 | 21.2983 | 25.3832 | 26.4572 | 25.9202 | 731.5206 | 25.1962

ALL RESULTS BASED ON NOMINAL UPSTREAM VELOCITY = 1 m/s

“utl



TABLE 4.2 VALVE 0/D = 8.410 mm

NODE NO-?i

jum DISPL | 289 290 291 292 293 294 295 296 | 297 298 299
0.25 0.4396 | 5.0337 | 9.4029 | 19.1749 | 21.4798 | 67.3128 | 151.3107 | 185.3133 | 178.3628 | 175.6562 | 93.7601
0.50 0.2716 | 4.8680 | 9.5560 | 17.7725 | 24.5707 | 50.0604 | 80.7433 | 88.8096 | 87.0373 | 95.3116 | 62.3760
0.75 0.2291 | 4.6534 | 9.2735 | 16,4041 | 23.7890 | 38.8494 | 54.2492 | 57.7581 | 57.1295| 67.5740 | 48.0990
1.00 0.1725 | 4.3911 | 8.8177 { 14.9689 | 21.6269 | 31.2118 | 40.3258 | 42.6126 | 42.6240 | 52.8098 | 39.2221
1.25 0.1165 | 4.0941 | 8.2548 | 13.5155 | 19.1827 | 25.7332 | 31.7708 | 33.5913 | 34.0413 | 43.3993 | 33.0317
1.50 0.0707 | 3.7795 | 7.6300 | 12.1187 | 16.8660 | 21.6374 | 25.9908 | 27.5728 | 38.3235| 36.7953 | 28.4334

ALL RESULTS BASED ON NOMINAL UPSTREAM VELOCITY = 1 m/s

"9t
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TABLE 4.3
UPSTREAM THROAT VALVE THEORETICAL
PRESSURE P, PRESSURE P, DISPLACEMENT STATIC FORCE
kN/m2 PSI kN/m2 PSI mm thous N 1bf
30.57 4,46 29,31 4.28 0.125 5 1.17 0.26
50.38 | 4.44 | 28.41 | 4.15 | 0.25 10 1.09 | 0.25
29.87 | 4.36 | 26.56 | 3.88 | 0.50 20 1.03 | 0.23
29.30 | 4.28 | 23.62 | 3.45 | 0.75 30 0.96 | 0.22
28.88 | 4.22 | 21.06 | 3.08 | 1.00 40 0.91 | o0.21
08.54 | 4.17 | 18.78 | 2.7% | 1.25 50 0.86 | 0.19
26.49 | 3.87 | 16.2% | 2.37 | 1.50 60 0.76 | 0.17
TABLE 4.4

UPSTREAM THROAT VALVE THEORETICAL
PRESSURE P, PRESSURE P, DISPLACEMENT STATIC FORCE
w/m2 | ps1 | xN/m® | PsI m thous | N 1b?
49.69 | 7.25 | 47.64 | 6.96 | 0.125 5 1.89 | 0.43
49.31 | 7.20 | 46.10 | 6.73 | 0.25 10 1.77 | 0.40
48.67 | 7.11 | 43.29 | 6.32 | 0.50 20 1.67 | 0.38
48.10 | 7.02 | 38.78 | 5.66 | 0.75 30 1.58 | 0.36
47.50 6.93 34.65 5.06 1.00 40 1.50 0.34
46.71 | 6.82 | 30.74 | 4.49 | 1.25 50 1.40 | 0.32
ws.73 | 6.53 | 27.43 | 4.00 | 1.50 60 1.29 | 0.29
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TABLE 4.5
UPSTREAM THROAT VALVE THEORETICAL
PRESSURE P, PRESSURE P, DISPLACEMENT STATIC FORCE
kN/m2 PSI kN/m2 PSI mm thous N 1bf
76.37 | 11.15 73.22 | 10.69 0.125 5 2.91 0.66
26.03 | 11.10 | 71.09 | 10.38 | 0.25 10 2.73 | 0.62
75.26 | 10.99 | 66.93 | 9.77 | 0.50 20 2.59 | 0.58
24,29 | 10.85 | 59.90 | 8.74 | 0.75 30 2.42 | 0.5%
73.63 | 10.75 53.70 7.84 1.00 40 2.32 0.52
73.00 | 10.66 48,04 7.01° | 1.25 50 2.19 0.49
72.33 | 10.56 Ll .34 6.47 1.50 66 2.08 0.47
TABLE 4.6

UPSTREAM THROAT VALVE THEORETICAL
PRESSURE P, PRESSURE P, DISPLACEMENT STATIC FORCE
w/m? | PSI | kN/m® | PSI m thous | N 1bf
29,19 | 4.26 | 27.99 | 4.09 | 0.125 5 1.11 | 0.25
28.80 | 4.20 | 26.93 | 3.93 | 0.25 10 1.04 | 0.23
27.85 | 4.07 | 24.77 | 3.62 | 0.50 20 0.96 | 0.22
26.75 | 3.91 | 21.57 | 3.15 | 0.75 30 0.88 | 0.20
25.77 3.76 18.80 2.74 1.00 40 0.81 0.18
24,80 | 3.62 | 16.32 | 2.38 | 1.25 50 0.74 | 0.17
21.71 | 3.17 | 13.31 | 1.94 | 1.50 60 0.62 | 0.1%
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TABLE 4.7
UPSTREAM THROAT VALVE THEORETICAL
PRESSURE P, PRESSURE P, DISPLACEMENT | STATIC FORCE
/w2 | psT | k¥/m® | PsI mn thous | N 1bf
53.00 | 7.75 | 50.8 | 7.42 | 0.125 5 2.02 | 0.46
50.50 | 7.67 | 49.09 | 7.17 | o0.25 10 1.89 | 0.43
51.15 | 7.47 | 45.49 | 6.64 | 0.50 20 1.76 | 0.40
49.85 | 7.28 | 40.18 | 5.87 | 0.75 30 1.64 | 0.37
x8.55 | 7.09 | 35.41 | 5.17 | 1.00 %0 1.5 | 0.35
x7.16 | 6.89 | 3t.04 | 4.55 | 1.25 50 1.42 | 0.32
¥1.95 | 6.12 | 25.72 | 3.75 | 1.50 60 1.21 | 0.27
TABLE 4.8

UPSTREAM THROAT VALVE THEORETICAL
PRESSURE P, PRESSURE P, DISPLACEMENT | STATIC FORCE
N/m? | PSI | kN/m® | PsI en thous | N | 1bz
27.37 | 11.30 | 74.18 | 10.83 | o0.125 5 2.95 | 0.66
26.73 | 11.21 | 71.74 | 10,47 | o0.25 10 | 2.76 | 0.62
25.21 | 10.98 | 66.89 | 9.77 | 0.50 20 2.59 | 0.58
73.66 | 10.75 | 59.39 | 8.67 | 0.75 30 2.42 | 0.54
72.20 | 10.56 | 52.66 | 7.69 | 1.00 40 2.28 | 0.51
20.63 | 10.31 | 46.48 | 6.79 | 1.25 50 2.12 | 0.48
64.86 | 9.47 | 39.77 | 5.81 1.50 60 1.87 | 0.42




TABLE 4.9
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UPSTRIAM TITROAT VALVE THEORET [CAL
PRESSURE P, PRESSURE P, D1SPLACEMENT STATIC FORCE
kN/hQ PSI kN/m2 PSI n thous N 1bf
25.17 3.68 | 24.13 3.52 0.125 5 0.96 0.22
24,52 3.58 22.93 3.35 0.25 i0 0.88 0.20
22.93 3.35 20.39 | 2.98 | 0.50 20 0.79 0.18
21.18 3.09 17.08 | 2.49 0.75 30 0.70 0.16
19.40 2.83% 14.15 2.07 1.00 L0 0.61 0.14
17.90 2.61 11.78 1.72 1.95 50 0.54 0.12
- - - - 1.50 60 - -
TABLE 4.10
UPSTREAM THROAT VALVE TIIEORET ICAL
PRESSURE P, PRESSURE P, D I SPLACEMENT STATIC FORCE
KW/m® | PSI | KN/m® | PsI - thous | N 1bf
53.65' 7.83 | 51.44 | 7.51 0.125 5 2.05 | 0.46
52.36 7.64 48.96 7.15 0.25 10 1.88 0.42
50,66 | 7.40 45.06 6.58 0.50 20 1.74 0.39
48.51 7.08 39.11 5.71 0.75 30 1.59 0.36
45,91 6.70 33.49 4.89 1.00 40 1.45 0.33
- - - - 1.25 50 - -
- - - - 1.50 60 - -
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TABLE 4,11
UPSTRIEAM TIROAT VALVE THEORET TCAL
PRESSURE P, PRESSURE P, DISPLACEMENT STATIC FORCE.
w/m? | psT | mNw® | psI um thous | N 1bf
26.00 | 11.09 | 72.87 | 10.64 | 0.125 5 2,90 | 0.65
75,71 | 10.91 | 69.85 | 10.20 | 0.25 10 2.68 | 0.60
72.92 | 10.65 | 64.85 | 9.47 | 0.50 20 2.51 | 0.56
20.61 | 10.31 | 56.93 | 8.31 | 0.75 30 2.32 | 0.52
68.02 9.93 49,61 7.25 1.00 40 2.15 0.48
64.90 9.48 42,71 6.24 1.25 50 1.95 0.4h
- - - - 1.50 60 - -
TABLE 4.12
UPSTREAM THROAT VALVE THEORET ICAL
PRESSURE P, PRESSURE P, DISPLACEMENT STATIC FORCE
W/m? | PST | WN/w® | PSI mm thous | N 1b1
29.60 | 4.32 | 28.38 | 4.1k | 0.125 5 0.93 | 0.21
29,38 | 4.28 | 27.47 | 4.01 0.55 10 0.87 | 0.20
28.60 | 4.18 | 25.44 | 3.71 | 0.50 20 0.80 | 0.18
27.65 | 4.0 | 22.29 | 3.25 | 0.75 30 0.76 | 0.17
27.0% | 3.95 { 19.72 | 2.88 | 1.00 10 0.71 | 0.16
26.18 | 3.82 | 17.23 | 2.52 | 1.25 50 0.66 | 0.15
25,91 3.78 15.89 2.32 1.50 60 0.62 0.14
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TABLE 4.13

UPSTREAM THROAT VALVE THEORETICAL
PRESSURE P, PRESSURE P, DISPLACEMENT STATIC FORCE

N/m> | PSI | KN/m® | PSI - thous | N 1bf
54.41 | 7.94 | 52.17 | 7.62 | 0.125 5 1.71 | 0.39
54.09 | 7.90 | 50.57 | 7.38 | 0.25 10 1.60 | 0.36
53.13 | 7.76 47.25 6.90 0.50 20 1.49 0.34
51.91 7.58 41.85 6.11 0.75 30 1.43 0.32
50.79 7.41 37.04 5.41 1.00 40 1.33 0.30
49,95 | 7.29 | 32.87 | 4.80 | 1.25 50 1.27 | 0.29
48.55 | 7.09 | 29.77 | 4.35 | 1.50 60 1.17 | 0.26

TABLE 4.14

UPSTREAM THROAT VALVE THEORETICAL
PRESSURE P, PRESSURE P, DISPLACEMENT STATIC FORCE
W/m2 | PSI | KN/m® | PSI mm thous | N 1bf
68.25 | 9.96 | 65.43 | 9.55 | 0.125 5 2.15 | 0.48
67.71 | 9.88 | 63.30 | 9.24 | 0.25 10 2.01 | 0.45
66.50 | 9.71 | 59.1% | 8.63 | 0.50 20 1.87 | 0.42
65.28 | 9.53 | 52.63 | 7.68 | 0.75 30 1.80 | 0.40
64.09 9.36 46.75 6.82 1.00 40 1.68 0.38
63.09 | 9.21 | 41.52 | 6.06 | 1.25 50 1.60 | 0.36
62.00 | 9.05 | 38.01 | 5.55 | 1.50 60 1.49 | 0.33
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TABLE 4.13
UPSTREAM VERSUS THROAT PRESSURES

THROAT PRESSURE
P, (N¥/n?)
DISPLACEMENT | UPSTREAM PRESSURE
2 9.525 mm 8.410 mm
(m) P, (¥/m) 0/D VALVE | 0/D VALVE
0.125 80 77.30 76.10
n 50 48,70 49.30
n 20 19.40 19.60
0.25 80 74.60 75.00
" 50 45.90 46.20
" 20 18.60 18.90
0.50 80 71.00 71.30
" 50 42,50 45.00
" 20 16.90 18.00
0.75 80 65.20 63.80
" 50 39.90 41.40
" 20 17.10 17.00
1.00 80 58.90 57.80
" 50 36.60 39.20
" 20 14.90 15.10
1.25 80 53.60 51.70
" 50 33.50 32.60
" 20 13.70 15.10
1.50 80 49.20 48.90
" 50 30.70 31.20
" 20 12.30 11.80
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COMMENTS

This section includes the main points arising from the theoretical

analysis used to determine the quasi-static forces on a disc type

valve,

Adopting the technique outlined in Section 3 of this chapter, velocity
profiles over the valve face for various valve displacements, with a
nominal upstream velocity of 1 m/s are tabulated in Tables 4.1 -

4,2, and represented graphically in Graphs 15 and 16. From these
graphs very little velocity difference exists between the two
different valve sizes from the axis of symmetry (node point 289)

to the throat outside diameter, (Node point 295). Over the area

of overhang, for the larger valve case, the velocity profile drops

of f more quickly due to radial flow, hence a corresponding increase

in valve face pressure and quasi-static force would result,

Graph 17 shows the variation in upstream pressure Py with the throat
pressure P, (both obtained experimentally) for various displacements.
The lst set of results were carried out on the 9,525 mm O/D valve at
Strathclvde University early in the research phase, and the 2nd set
carried out on the 8.410 mm 0/D valve since leaving Strathclyde.
Since no discernable differences existed between P, and P,, the

results were combined and are hence applicable to both 0/D valve cases,

These pressures were subsequently required in the determination of
the upstream velocity qu, which led to the theoretical quasi-static
force values being obtained as described in Section 3, Tables of
these results are shown in Tables 4.3 - 4,14 and graphically in

Graphs 18 and 19.

Finally, Table 4.15 includes values of experimental upstream versus

throat pressures,
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COMMENTS  (Cont)

Theoretical quasi-static forces, on the assumption of a steady
non-viscous flow, fully attached to (a) the valve seat, (b) the
valve face, and (c) the valve circumferential surface, are shown

with experimental results in graphs 3-14 of Chapter IV (pp Q4.

As mentioned previously in this Chapter, the main theoretical
assumptions made in obtaining these theoretical quasi-static forces
wereﬁfirstly,that'Laplace's equation was used up to the valve
perimeter, and secondly, that jet theory was considered with
downward air entrainment from behind the valve, therefore, the
flow domain section of most relevant interest was the 'area'

enclosed by the throat inlet to circumferential surface of valve

(Figure 25).

Further to this, upon closer examination of the theoretical flow
domain, as presently configured (Figure 22), and the flow profile
thereby produced, it may be postulated that since flow is
constrained in the x direction due to solid boundaries, that the
theoretical model is more symptomatic of an upwards flow across
the valve surface, and is therefore representative of the latter

stages of valve opening.

From the present experimental work carried out it was concluded

that two regimes of flow existed, these being:-

a) During the initial stages of valve opening a fully attached

flow condition

b) During the latter stages of valve opening a fully detached

condition

The model referred to above is therefore deemed to be more in

keeping with the detached flow condition.
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It should be noted however, that the theoretical 'detached' mode
implied above does not mean that full turbulence was modelled,

only that the flow was more representative of this type,

The reader will no doubt be aware, that to model the fully attached

or detached flow conditions in particular, the model would be more
appropriate if an algorithm for predicting a free surface profile

were present, but at the instigation of this study, the more basic flow
domain was considered more practical in the time span available,

although a pilot study using this algorithm was carried out concurrently.

(Appendix B)

The model as presently configured appears to have credence since
when comparison was drawn between theoretical and experimental
results, closer agreement existed during the 'detached' mode regime.
This can be seen in particular for the case of the 8,410mm 0O/D
valve and to a lesser extent during the latter stages of opening

of the 9.525mm O/D valve,

In conclusion, regarding the modelling technique used, it appears
that as the flow domain is presently configured, an upwards flow
profile across the valve is present, and hence, on this basis it
is thought to be a suitable method for predicting detached flow

quasi-static forces.
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COMMENTS (Cont)

Graphs 2 and 21 show for an arbitrarily chosen upstream pressure of
70kN/m2, (a) a cross curve of experimentally determined curves of
steady flow, or 'static' force, and (b) the corresponding curve
determined from the theoretical model. Graph 20 is for the 9.525mm

valve case and graph 21 for the 8.410mm.

When referring to Graph 20 the maximum error between the theoretical
and experimental results during the valve opening range of 0,125-
0.75um was of the order of 75%, but during the latter stages of valve

opening, this error was reduced to 1l1Z%.

Similarly, Graph 21 shows the relationship between theoretical and
experimental results for the 8.410mm O/D valve case. Here, the

average error is of the order of 10%.

Since both the experimental and theoretical results are considered
to be that for the detached mode, this agreement is encouraging
and these 10% differences may be accounted by viscosity and compress-

ibility effects, and/or domain differences.

Generally speaking, the model as presently configured appears to
give fair comparison between experimental and theoretical results
for small gasket ratios and in particular where the detached mode

of flow is predominant.
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CONCLUSIONS

The main conclusions drawn from this study are noted below. For detailed

discussion of experimental findings see pp {06, and for theoretical see

pp & .

1. The minimum experimental static and dynamic forces occurred for

the higher gasket ratio investigated (e.g. 1.5).

2. No minimum forces were observed for the lower gasket ratio

investigated (e.g. 1.32).

3. From the previous conclusions, it seems likely that for the higher
gasket ratio, the attached mode of flow along the valve seat was
applicable up to the minimum force value, where upon, the flow

condition changed to that of free-jet detached flow,

For the lower gasket ratio free jet detached mode of flow was
found applicable throughout the valve opening, since detachment
of flow from the valve seat appears to have occurred so early

as to be lost in early force gradients.

It is therefore felt that this observed minimum is the manifestation
of this change of regime, and is predominantly a function of

gasket ratio,

4, There is evidence of a difference between static and dynamic experi-
mental force results during the early stages of vAlve opening

(the former being greater) before full development of turbulence,

Below is an estimate of the degree of difference for pressure versus

rise time for each valve diameter,
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Valve 0/D Upstream Pressure Rise Time % Diff
2 Static-Dynamic
(mm) (kN/m") (ms ) [Dynamic ]

8.410 50 7.9
8.410 75 18.2
9,525 30 15 17.4
9.525 50 15 15.4
9.525 75 15 -

9.525 30 35 5.0
9.525 50 35 9.0
9.525 75 35 8.3
9.525 30 45+ 11.9
9.525 50 45+ 10.8
9.525 75 45+ 12,1

The applicability of the theoretical model as presently configured

in determining the valve forces appears to give fair comparison

between experimental and theoretical results for small gasket

ratios and in particular, where the detached mode of flow is pre-

dominant, This appears to be borne out in the case of the 8.410mm

0/D valve case (10% error) and to a lesser degree in the latter

stages of the 9.525mm 0/D valve case (10-30% error).
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Further Work

A few brief points outlining the possible modifications which could be

carried out on the model are noted below,

It is felt that the theoretical model as presently configured, although
appearing to be satisfactory when modelling detached laminar flow for low
gasket ratio cases, requires further development., A useful addition, it
is believed, would be that of incorporating a free surface algorithm which
would be useful to enable the flow domain chosen to be more representative

of radial free-jet detached flow, and should lead to even better correlation.

A certain amount of this free-surface modelling, all be it for a simple
nozzle, has been carried out by the author (App B.), to obtain a feel for

the algorithm involved.

The confined boundary analysis developed for this thesis is currently being

used with success by the author in solving similar problems in Industry e.g.

(a) Electrical Actuation Valve Forces

(b) Jet Efflux flow of an Underwater Projectile

In addition to this major modification to the program, viscosity and
compressibility effects where felt appropriate could be implemented, using

suitable functionals as available.
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APPENDIX A

DERIVATION OF ELEMENT MATRICES
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1. Introduction 161,

Derivation of the element matrices for both two-dimensional
and axi-symmetric flow will be discussed in this appendix. These
matrices are derived for a general triangular sub-element as shown in
FIG. Al1.1. Further reference throughout this appendix made to
triangular element implies triangular sub-element.

The matrices for the quadrilateral element used in this
study are then formed by adding up the c&ntributions from the four
triangular elements and eliminating the equations for the five
interior points. The computer program is written so that these
additions and eliminations are performed by the computer.

To derive these matrices, a suitable element had to be
chosen. In this study, a six node triangular element was chosen to
enable a quadratic variation of the interpolation function to be
obtained.

For this six node triangular element, the quadratic

variation of @ can be written in the following polynomial form:
= 2 2
#(x,y) = X, +X,yex +°<3.y + 0, Xy + o(s.x +X .y .(A.1)

or fully in matrix form as:

(s} - [1{4 (2

where

o) -8
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ar Sub-Element
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This notation is used in this appendix unless otherwise stated.

lm
-
]

and

(=)

therefore/

FIG. Al.1
Y1 *11
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Yy 4y
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163.

therefore, we can express the generalised co-ordinates (o() as the

solution of equation (A.2), that is:

{«} = [c1{2) (2.3

where [G] -1 is an inverse matrix.
Expressing the terms of the interpolation polynomial

equation (A.1) as a product of a row vector and a column vector, we

obtain:
g = [P]{“} (A.4)
where [ P ] = [1 Xy xy x? Y2
Thus, by substituting equation (A.3) into equation (A.4) we
obtain:

g = [p][ec]™ {p!} = [N]{jd} (A.5)
where [v] = [2][c]™ (.6)

where [ N ] is known as the interpolation function (NOTE: this
avoids using inverse matrix methods).
Suppose the solution domain A is divided into M elements of
r nodes each, then from above, for each element:
r
o™ - Z N, 4 = [N]{ﬂ}(m) (4.7)
i=1
where ¢i is the nodal value of # at node i.
To demonstrate the method of solution for two dimensional
cases, the functional to be solved is obtained from the overall

Quasi-Harmonic Equation (steady state) and is:

I(#) = A S[(%—%)2+ (-%5)2] A + A" S (g #).ds, (4.8)

A
Sy

where/
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where A' and A'' are constants their values being
€
A= 5
and A'* = - @ vhere e = density
and g = boundary velocity = (f,n)?

portion of boundary where non-zero boundary

and also S2

conditions arise

This equation (A.8) is now identical to equation (2.19a)

1) =5 ([0 %+ ) Faxay - § 4B a5 (2.090)
A c

Since the functional I(f) contains only first order
derivatives, we have a c® problem and the interpolation functions
(Ni) must be chosen to preserve continuity of @ at element interfaces
(compatibility requirement).

It will later be ensured that interpolation functions
chosen guarantee c® continuity as this must be so to ensure monotonic
convergence.

Assuming c® continuity has been met, we can focus our
attention on one element only, because the integral I(ff) can be

represented as the sum of integrals over all the elements, that is:

M

g = > ™) (4.9)

m=1
The discretised form of the functional for one element is
obtained by substituting equation (A.7) into equation (A.8). Then
the minimum condition SI(B) = 0 for one element becomes:

AI'%& =0, i=1,2 3.....r (A.10)

1

For/



For a node i on boundary S,, from equation (A.8) we have:

a4 |

1

) j[w(m) > (M(m)) )
- () dx bﬂi' 2x Y Ty ¢

5 Qéém— . ds2(m)
2

i y

165.

(A.11)

If node i does not lie on 525 the second integral does not appear.

Now referring to equation (A.?), we may evaluate each of the

derivatives in (A.11). These become:

(m) < N,
%=Z %’ﬂi =

i=1

58, Cox ) " 5>

(m)
%._ =N

1

Thus we obtain

ﬂ%%ff_’x:(,

1

(g B 5210 5

)

g N dS (m) on surface S
5O

2

Combining/

S 1)

) dA(m)

(A.12)
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Combining all such equations as (A.12) for all the nodes

of the element gives the following set of element equations:

(g™
_J'Z%l'l
d1(¢™)

y = [s](m) {ﬂ}(m) +{SL}(m) (A.13)

By

bISJQ(m)Z

. r >

where [S] is an r x r matrix
{ﬂ} is an r x 1 matrix
and {?L}- is an r x 1 matrix

and are defined as:

'(m) ZsNi ON. bNi DN, ()
i (§> (53 It TEy Iy AT
Am

= S (Ti(m) Tj(m) +;\i(m) ?j(m)) aa (@) (A.14)
2@
and
st., (@) - f g, a5, - §> N, (8,)" ds (A.15)
g (m) c(m)
2

It is again emphasised that the equation (A.15) only
appears if element (m) contributes to the definition of the boundary
portion S2.

Assembly of these element equations to obtain the system
equations then follows the standard procedure.

1t/
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It can be readily seen that these equations (A.13), (A.14)
and (A.15) are similar to those obtained in CHAPTER V (equations 5.65.

The derivation of the interpolation functions, N, will now
be discussed.

In order to ensure c® continuity for the interpolation
functions, we require that the number of nodes along a side of an
element, and hence the number of nodal values of # along that side,
shall be sufficient to determine uniquely the variation of § along
that side. For example, in this study where ¢ is assumed to have a
quadratic variation within an element and to retain its quadratic
behaviour along the element sides, three values of # or three
external nodes must lie along each side.

For C° problems, elements that require polynomials of
order greater than three are rarely used because little additional
accuracy is gained. Also, if we model a complicated boundary, it
is advantageous to use a large number of simple elements rather than
a few complex omes.

To derive the quadratic interpolation functions, we begin
by obtaiﬁing interpolation functions for a linear triangle (three
nodes) and subsequently derive the interpolatioﬁ functions for this
higher order triangle by means of the natural co-ordinates and
recurrence formulae. In the formulation of the linear interpolation
functions we obtain Ni = Li where Li are the natural co-ordinates of
a linear triangle.

The development of natural co-ordinates for triangular
elements now follows.

L, and L_ to

The goal is to choose co-ordinates L1, 0 3

describe/
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describe the location of any point xp, yp within the element or on
its boundary (FIG. A1.1). The original co-ordinates of a point in
the element should be linearly related to the new co-ordinates by the

following equations:

X L1.x1 + L2.x2 + L3.x3

L + L_..

1-71 o'¥p + L

y (A.16)

373
In addition to these equations, we impose a third condition requiring
that the weighting functions sum to unity, that is:

L1 + L2 + L, =1 (a4.17)

3

From equation (A.17) it is clear that only two of the
natural co-ordinates can be independent, just as in the original
co-ordinate system, where there are only two independent co-ordinates
(xp’ Yp) .

Inversion of equations (A.16) and (A.17) gives the natural

co-ordinates in terms of the Cartesian co-ordinates. Thus:

1
L, (xy y) = TN (ai +blx + ci.y)
L, (x, y) = L (at + b x + el y)
2 '\ 24 Y2 2 2
= =1 (a! ' '
L3 (x, y) = YN (a3 + b3.x + 03'Y) (A.18)
where 2A = 2 (area of triangle 1-2-3) (A.19)
and 8i = x2- YS x3 y2
bi = Y2 - y3
ci = x3 - x2 (A-20)

The other coefficients are obtained by cyclically

permutating the subscripts.

As/
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As shown in FIG. 20, when the point (xp, yp) is located on
the boundary of the element, one of the area segments vanish and
appropriate natural co-ordinate (area co-ordinate) along the boundary

is zero. For example, if (xp, yp) is on line 1-3 then:

2 .
L2 = =3 = 0 since A2 = 0
If we interpret the field variable f as a function of L,

L2 and L3 instead of x, y, differentiation becomes:

dﬂ- 24 bLl + o4 aLQ + 2 BLB (A.21)

dx = 2L, * dx oL, ° ox dL, ' dx :

3

and

dg _2¢ 201 28 2y 234 205

dy ~ 2L, ' vy oL, * vy aLj' Ay
where

DL,  b! DL, c!

i i i _ i .
ax =2A ’ by "2& ’ 1-1’ 2’ 3 (Ao22)

There is also a convenient formula for integrating area

co-ordinates over the area of a triangle this being:

f 1% 1A L8 @ <! .31 .% (4.23)
3 (m)

1 2 3 (X +.,3 + ¥ +2)!

TABLE A.1 gives the values of equation (A.23) and use of
it is made later in obtaining the [S] matrix terms.

Now the method used in obtaining interpolation functions
for h\igher order triangles is based on a procedure advanced by
Silvester [38:1.

Silvester introduced a triple index numbering scheme.

The/
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The nodes of the elements in FIG. (A1.2) can be given the three-
digit label x3% , vhere «( ,,2 and ¥ are integers satisfying
o +,3 + ¥ =n, vhere n is the order of the interpolation
polynomial for the triangle. These integers designate constant
co-ordinate lines in the area co~ordinate system. We may use the
same digit notation for the interpolation functions for the element.
Employing a triple subscript, we may write Ny g% (L1, Ly» L3) to
denote the interpolation function for node (4% as a function of
the area co ordinates Ll’ L2 and L3.
Silvester has shown that the interpolation functions for

an nth order triangular element may be expressed by the following

simple and convenient formula:

N o8 (Ll,_L2, L3) = N (L1). N,g (L2).Nx (L3)

where

nL -i1i+1

u

Nt (L1) ), X 21 (A.24)

i

= 1 o = 0 (A.25)
For N (L2) and Ny (L3) the formula has the same form.
The symbol IT signifies the product of all the terms. For example:

4
=0 (12+1) =12+ 1)@%+1)(3% + 1)(42% + 1) = 1700

Equations (A.24) and (A.25) now provide the means for
constructing the interpolation functions for a quadratic triangle
(n = 2) thereby requiring Ny,os Nyogr Nogo 80d Ny y Nooooand Ny, o
to be determined.

These can be shown to be:
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LINEAR AND HIGHER-ORDER TRIANGULAR ELEMENTS

WITH @D SPECIFIED AT THE NODES

31 3

- oC
(a) LneaR R-NODES

5 Iy &
. [
2.
4
|
-
(b)) QUADRATIC. (G-NODES.
Ban
3 1

}//7\4 N

¥=n { ,3‘07‘A\ —> ol = re

{c) THREE NODE IDENTIFICATION OF A NODE
WITHIN A TRIANGLE.

FlaureE A.l.2.
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Nogo = Ly (2L - 1)

Noggg = Ly (2.1,2 - 1)

Noga = L3 (2.L3 -1)

N101 = 4-L3.L1

Nygo = *lgply

Nogg = ¥1gls (A.26)
These are similar to equation (5.3b) as shown in CHAPTER V.,

Now, to obtain the partial differential %%%- to
substitute into equation (A.14) use is made of the following
equation:

bNi aNi oLy etc, : (A.27)

5T 3L, =
Having now the means to obtain all the terms in solution of

equation (A.13), the specific matrix components must be derived.

2. Matrices for Two-Dimensional Flow

From CHAPTER V:

5,,® = p® f 2, r @, 7 (@) 7 (=) y(m)
A(m)
(ir i =1, 6) (A'28)
SLi(m) = e(m) N, .(#, )% ds (A.29)
m)

c
with <Ny «eoo Ng > =<L1 (2 L, - 1), Ly (2 L, - 1), L3 (2 Ly - 1),
&Ly Ly, 4L, Lo, 4.L3.L1> (A.30)
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< Ti(m), 'l‘ﬁ(m)? =<1 -1) /2 A L, = 1) b,/2 A,

bQ)/‘/;(m) ’

(% Ly~ 1) b, /2 A(“‘), 2 (Ly b, +

2

(Lg by + L b3)/A(m), 2 (Ly by + Ly bl)/A(m)
(A.31)

< ays 8y 03 D = <(x3 - x2), (x1 - x3), (x2 - xl):> (A.32)

by byy be > =<y —yg)y (5 -yy)s vy - vp) > (A:33)

(m) -
and A - (ak.bj - aJ._bk)/Q wvhere j = 2, 3, 1
and = 3,1, 2 (A.34)
The array T ( ) is found by replacing the b's with a's in

(),

the expression for Ti
An explicit expression for any element matrix is now

obtained by a straightforward substitution of the appropriate

quantltles into equation (A 28) and making usc¢ of TABLE (A 1) Tor

( )

example, to evaluate S y both i and j are set equal to 1 and

the following expression is obtained:

5, = o 5 2,2 &) 3 )5 60,

11 1

The constant is included although it does not contribute to the

overall solution.

m e (m)
S11( ) - W . (j) '[(" Ly - 1)® b12
. A n

) " (m)
Py - 1% a2 ] et . ——-(—y—(“m € (

4@

(16.L12 -8 1L +1) an ()

Now/
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Now upon using TABLE (A.l) and simplifying, one obtains:

811(m)

(a,

2

+ b1

2
) ()

4

The remaining elements can be

: _ (m)
Letting Sij = (ai a; + b, bj)‘e /12

the chosen triangle is as listed below:

51

38

S21

831

Su1

S51

11

(m) _ _

(m) _ -

(m)

(m) _

- €

found in the same manner.

A(m), the element matrix for

12
13

12

13

23

12

23

=4S

23

(A.35)

_cont./
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836(m) _ S63(m) us,,

sgé(m) = 8 (855 - S;)

345(m) = 5, -8 513

546(m) = 364(m) 8 So3

S55(m) = 8 (8y; - Sp3)

Ssé(m) = 565(m) =8 519

566(’“) = 8 (S, - 85) (A.35)

Now boundary conditions are considered in order to obtain

the load matrix. For a triangular element, one has:

§ 5.0 a= §8B) ase § g5, as
(m) 1 1,

' é B (8:)° as

a

2 a3
and (¢’n) represent the

a
1
The symbO].s (¢,n) ’ (¢’n)
specified normal velocity components on sides 11, 12 and 13,
respectively and these components are assumed to be constants (or to
be approximated as constants).
The integrals on the right hand side can be evaluated by

sti‘aightforward substitutions. For instance, the first integral

may be written as:

‘

a
(¢’n) 1 § ¢i N, ds (i =1 to 6 as required)
1 11

RN
—~
;$~
=]
N’
)
b
(=7
w
|
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Since L1 = 0 on side 1, L2 + L3 = 1 or L2 =1 - L3.

Using these relationships, the following equations are obtained:

(¢’n)a1 §> [L, (21, - 1). 8, + Ly (2 Ly - 1) ¢

!

§ o.08,) as
14

1
+ 4L, L3.¢5]ds =)ty J—[ (1 -1)(1 - 2Ly)- 8,
0

+Ls(2Lg = 1)+ k(1 - Ly). L ¢5] d Ly

Taking the partial derivatives of the above integral with

respect to ¢2, ¢3 and ¢5, respectively and using TABLE A.2:

1
-5%;[ jg B.By) tas| = (B) 01 5 (1-L)-21L)dL,
1 .
(8. t1,
= -——-—g——-
Similarly:
2 . B L1,
g.(#, ) “.ds | =
jga; [ lé; n ] - 6
and

a AP al.
[ frote ] Rt

Similar results can be obtained by considering the other

two integrals. In this way, the corresponding load matrix may be

derived as:

SL (m) =/

1
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@ < [0, « 7] &

SL2(m) = [(¢,n)a3,13 * (¢,n)a1. 11] %n-l

- [0y 6"2,] &

SLa(m) = 2 (¢’n)a-5° 13'%:

SLS(m) = 2 (¢,n)a1_ 11.-@3—m

SL6(m) = 2 (¢,n)a2. 12.%1 (4.36)

3. Matrices for Axi—symmetric Flow

From CHAPTER V:

S‘Aij(m) = 2,e(m). T (gg (Ti(m). Tj(m) + ;i(m) /T\J.(m)) rdA (i, j =1 to 6)
Alm

(A.37)

and SLAi(m) = 2.e(m).Tr § Ni.(ﬂ,n)ﬁl rds (A.38)
(@)

<7, (®) ....,TG(“‘)> = (4.1, - 1).b,/2 a®, L, - 1) b,/2 A®)
(4.1,3 - 1),b3/2 A(m), 2 (Ly.b, + Ll,b2)/A(m),

. b,)/a®)

(A.39)

(m)
2 (L3 by + L3.b3)/A y 2 (L1.b3 + L
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<N, e Ng > =<L1 (2 L, - 1), Ly (2 L, - 1), L3 (2 L3 - 1),

4L Ly, &L, L, 4 Ly L, > (A.40)
< al’ a2’ a3> = <(X3 = x2)’ (x1 - xs)’ (x2 - xl) > (A.QO&)
<byy by, b > =< vy = ¥3)s (v - 3y)y vy - 7p) > (A.40b)

and A(m) = ak'bj - aj'bk where j = 2,3,1

and k = 3,1,2 (A.40c)

To obtain the element matrices, equation (5.12) is used in
conjunction with the procedure used for the two-dimensional case.

Sij is used to represent:::(ai.aj + bi'bj) e m/60.A(m)
because a constant factor, 27T appears in every term of the matrices.

This cancels out for the problem studied and is therefore omitted.

(m) _
SAjy = 38y (5ry +ry e Ts)
(m) _ (m) _
SA;, = SAy, = -5, (2 r o+ 271, + r3)
(m) _ (m) _ _
sA13 = SA31 = 513 (2 r, + T, + 2 r3)
SA (m) = SA (m) =s,, 3r, -2r,-r,) +S (12 r )
14 41 11 (37 =27 = r5) + 8y (Hhry +3r,+ 37y
(m) _ (m) _ -
SA15 = SA51 =8, (3 r, - T, 2 r3) + 813 (3 r,-2r, - r3)
SA(m)=SA(m)=S (3r, -r,-2r,) +5S,. (14 3r,)
16 61 11 37~ T 3/ *5q5 b ry #5715+ 01y
SA(m)=3S'(r +37Tr,+r,)
29 22 Ty 2 * T3
(m) _ (m) _
Sy = SAg, 0 = - Sy (r1 +271, +2 r3)
sa, (® -/

24
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SAZ!Q(m) =8, 3r; -1, +3 rs) + Sy (<21, + 31, - ry)
SAsz(m) Sog (- r, +3r, -2 r3) + 823 (3.r1 + lhr, 3.r3)
SA62(m) Sip (g + 31y = 215) 4 Sp5 (-2 1) + 31y - ry)
3 Sgs (r +r,+3r )
SA43(m) 13 (-r, - 2 ro+3r ) + S, (-2 ro-r,+3 r3)
SA53(“‘) = Sys (37, + 31, + 14 o) + Sso (v - 271, +3 rs)
SA63(m) =S4 (3 ry+3r,+ 1k S 3 (-2 r =T, +3 r3)
8{:811 (r1 +371, + r3) +8,, (2 r o +2r, + r3)

890 (3 T, 4T, + r3)]
SAsé(m) =88, (ry +3 1, + r3) -~k (S, + S99 Ty * Sps r3)
SA64(m) =8 S,, (3r, +1y+ r3) +4 (s, r, + Si0 Ty * Sy5 r3)
8 [ So0 (r +1,+3 r3) + 823 (r1 +27r, +2 r3)

S5+ (r1 +31, + rj)]
SA65(m) =88, (r +Ty+ 3T ) (S13 r, o+ 823 ry + 833 r3)
8[s11 (r1+r2+3r3)+813 (2 r1'+r2+2r_5) \

Ss5 (37) + 7y + r3)] (A.41)

In/
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In the load matrix terms, 1i = length of side i of a

triangular element. Thus:

SAI‘1(m) =N [(¢’n)a2‘ o+ (¢’n)33‘13 J ﬁ(;

SALz(m) = Ty [(¢’n)a1‘ 1+ (¢'n)a3'13 T '%2

SALS-(m) e [ty (B 2, £

s, ® = (v e () 21y &

sar, @ = (r + )y b1y S

SAL6(m) = (rg+ rl)(’a’n)a? 1y §3_m (A.42)



TABLE A.1

]. Q‘] o

Coefficients (<X) for Area Integrals in Area Co—ordinate System

Order:
DEP; tPy PR | Py P | X

0 0 0 1

1 1 0o | 1/3
2 0 1/6

2
1 0 1/12
3 0 1/10

3 2 0 1/30
1 1 1/60

L@
—oca®  ang iy j
permutation of 1, 2

P. P. P
Remarks: )’J— Li 1. L2 J, L k. dA

and k represent any
and 3

3
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TABLE A.2

Coefficients (o) for Length Integrals in Length Co-ordinate System

Order:
nEP; PPy P Py |
0 0 0 1
1 1 0 1/2
2 0 1/3
2
1 1 1/6
3 0 1/4
3
2 1 1/12

L2J = o, and i and j

represent any permutation of

1, 2 and 3
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APPENDIX B

FREE-SURFACE PROBLEM



1 (Q[J -
The finite element techniques developed in this study can

not only handle problems involving solid boundaries of arbitrary
shapes, but are also quite efficient in locating "simple" free
surface profiles, when such a problem is encountered, regardless of
whether or not gravity effects are considered. To demonstrate
these features, flow from a finite-width slot with a 450 inclination
will be investigated, both with and without considering
gravitational effects and results are also given for flow from an
axisymmetric profile (i.e. nozzle with 45° shaped outlet).

Results consisting of velocity and/or pressure
distributions, free surface profile and contraction coefficient were
obtained by Larock [9, 43], Von Mises|:7] and Chan [3], by other
methods. It is found that good agreement exists among the results
predicted by these different methods.

FIG. B.1.1 shows half of the physical plane of the flow
from a 450 slot together with an initially assumed free surface.

The X-axis is chosen to coincide with the axis of symmetry and the
Y-axis chosen to pass through point A, the lip of the slot. Far
upstream the channel is of unvarying half-width Ya and conveys a
flow at uniform speed q,° Flow passes along the slot, then
separates smoothly at the lip A and eventually contracts to a jet
half-width y, with uniform speed a4 far downstream. Here the x-
axis may present either a solid wall or an axis of symmetry. For
practical computation, uniform flows can be assumed to exist at
finite distances from the lip. Based on Chan's [3], criteria,
uniform flow is assumed to occur at 2.4 times the slot half-width at
the downstream end and 2.0 times the slot half-width at the upstream
end respectively. Based on these assumptions, a flow region was

well/
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well defined and analysis could proceed.

The flow region under consideration is divided into 72
quadri-lateral elements as shown in FIG. B.1.2, with elements of
smaller size near the lip to accommodate more accurately the large
velocity gradients in this region. Also narrow bands of elements
have been used near the "guessed" free surface to obtain a more
accurate prediction of the velocity components for the nodal points
on this boundary, this step is important because these values are
to be used in locating a better free surface profile for the next
iteration.

The boundary conditions imposed on the problem are as
followg: normal velocity component is zero, i.e. (¢,n)a = @, along
ABC and DE, the upstream face has a normal velocity of (¢,n)a = -q,
while at the far downstream boundary (¢,n)a = +q;, vhich is in turn,
equal to the total flow rate divided by the assumed downstream
cross-sectional area.

On the assumed free surface AF, the constant-pressure
condition is imposed first, which leads to the specification of
values of the velocity potential function at all the nodes on this
surface. The requirement of zero normal velocity is not to be
imposed until after the whole system of equations has been solved
and a "better" free surface profile has been located as described in
CHAPTER 11, Section k.

The results from the 450 2-D slot are shown in FIGS. B.1.3 -
B.1.8. Depicted in FIG. B.1.3 are two free surface profiles, one
computed with and one without gravitational effects. Comparing the
cases with Larock's complex variable solution, it is noted that no
significant difference exists between the answers obtained by the

two,/
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two completely different techmniques. For the case g = 0 the present
method predicted a contraction coefficient (cc = 0.7589) compared
with 0.7562 by Von Mises [ 7], 0.7559 by Larock[ 9] and 0.7643 by
Chan [3].

When gravitational effects are considered for the case
under study (e.g. total head = 0.840 m (2.755 ft)), g = 9.81 m/s
(32.2 ft/s) acting transversely, the present approach predicts a
coefficient of contraction 0.7083, which compares well with 0.7009
by Larock [43 ] for flov under the same total head but for a slightly
altered slot shape (/= 45.325°, y /y_ = 0.571) and 0.7113 by Chan
[3], who uses (/3 = 45, yo/yu = 0.570) as used in this study.

From these results it appears that the finite element
method, in general, appears to predict a slightly higher free
surface location.

Since the present method produces a speed variation on the
free surface which is substantially less than 1.5%, which is
considered to be tolerable {8], no further attempt has been made to
achieve higher accuracy. However, results could be improved by
using a finer grid of elements to represent the flow region if a
more accurate solution is required.

With the free surface location determined, the velocity
distribution and pressure distribution can be subsequently
calculated. FIGS. B.1.4 and B.1.5 show such distributions along
the solid boundaries of the flow domain. For brevity, only those
plots for the case where g = 0 are presented.

It is seen in FIG. B.1.4 that along the rigid wall the
velocity decreases towards the stagnation point, reaches a minimum

there and then increases towards the lip as the flow is accelerating

in/



in that zone. Along the centre line the velocity increases 148

monotonically in the downstream direction, finally reaching an
asymptotic speed a4 of about 2.3 times the inflow speed q,°

FIG. B.1.5 represents the corresponding pressure
distribution which, in contrast to the velocity distribution,
increases towards the stagnation point, reaching a maximum then
decreasing towards the lip. Along the centre line the pressure
decreases monotonically.towards the downstream end and finally
reaches a value of "almost" zero.

As seen in these figures, the values predicted are poorest
at the singular stagnation point, while results are better at the
lip. However, these results could be improved by increasing the
pumber of elements near these regions.

FIGS. B.1.6 and B.1.7 show the velocity and pressure
distributions for the axisymmetric 45° nozzle flow case respectively

and FIG. B.1.8 shows the convergence procedure in operation.
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APPENDIX C

COMPUTER PROGRAM
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This program carries out the calculations for the analysis
of two-dimensional and axisymmetric flow problems. The flow may be
either confined or involving a free surface. Gravity acting in the
longitudinal direction can be taken into account for both two-
dimensional and axisymmetric flows. For two-dimensional flows, a
transverse gravity field can also be considered.

The program, as presently coded is in FORTRAN IV language

and can analyse a problem with a maximum number of 150 elements
together with 500 nodal points, nevertheless, this program can be
modified quite easily by using temporary files to handle a problem
beyond this limit. The computer used in this study was initially an
ICL 1300 series (Strathclyde) and latterly a UNIVAC 1100 series
(Sperry, Bracknell). In the present program a temporary file is

set up only to store the unchanged part of the system matrix for use
jin later iterations.

The following is a detailed description of the inputs
required and the Qutputs obtained during the running of this program,
for a) confined boundary case and b) free surface boundary
problem.

INPUT

a) CONFINED DATA

Confined boundary problems conform generally to the type
chown in FIG. 20.or in particular to FIG. C.1.1 a) and b) (as used
in this report), and hence two methods of application are available.

The flow region which is being studied is firstly defined,
followed by setting up of the co-ordinate axes. The location of the
origin of these axes, in general, is arbitrary except that for a

problem involving axial symmetry the x-axis must coincide with the

axis/
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axis of symmetry. The flow region is then divided into a mesh of
quadrilateral elements and the nodal points are numbered in a numerical
sequence starting with the number 1. For convenience the starting
point is chosen to be the lower-left corder node. Also in order to
obtain a smaller 'band' width to save computational time in solving
the system of equations, the nodal points should be numbered in the
shorter direction [44].

To save effort in preparing data, the case used in this
report has been developed to include two options, one for generating
node point co-ordinates and one for generating noide point numbers

of an array. In this way only a limited amount of data is required.

A CONTROL CARD (213, 2F10.4)

COLUMNS 1-3 NTYPE Use 1 for automatic
generation procedures. Use
2 for flow domain which
does not conform to FIG.
C.1.1
4-6 NDIMEN Use 2 to designate two-
dimensional problems. Use
g for axisymmetric problem.
7-16 DENS Density of Fluid.
17-26 D Valve Lift.
If NTYPE = 2 further data required is fed in from b) section A etc.
(free surface) with appropriate zero's.

If NTYPE = 1 continue.

B DOMAIN DATA CARD (12F5.0)

COLUMNS 1-5 AA
6-10 BB
11-15 cC See FIG. C.1l.1
16-20 DD
21-25 EE

26/
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COLUMNS 26-30 FF
31-35 GG
36-40 HH
41-45 PP See FIG. C.1.1
46~50 QQ
51-55 TT
56-60 Z

BOUNDARY CARD (I3)

COLUMNS 1-3 NPBOC The number of boundary
value cards which specify
the non-zero values of
normal velocity components
along the boundaries.

ELEMENT CARD (8I5, I10)

COLUMNS 1-5 NOD(1,1) Number of nodal point 1
for element 1.

6-10 NoD(1,2) Number of nodal point 2
for element 1.

11-15 NoD(1,3) Number of nodal point 3
‘ for element 1.

16-20 NOD(1,%4) Number of nodal point 4
for element 1.

21-25 NoD(1,5) Number of nedal point 5
for element 1.

26-30 NOD(1,6) Number of nodal point 6
for element 1.

31-35 NOD(1,7) Number of nodal point 7
for element 1.

3640 NoD(1,8) Number of nodal point 8
for element 1.

41-50 NMIS Number of the succeeding
elements whose nodal
numbers are not provided
and generation option has
to be used to obtain such
information,

As/
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As the program is now coded, to use the generation options

the node point numbers of an element must be arranged such that the

starting point is the lower-left hand corner node and followed by

other nodes in a counter-clockwise direction.

b) FREE SURFACE DATA
As the program is coded at present, only "simple" free
surface problems can be analysed (FIG. c.1.2), "Simple" implies no

"hodies" are present under the free surface boundary as shown dotted

in FIG. C.1.2.

If bodies were present (e.g. valve etc.) new algorithms
would be required to tackle this type of problem and since these
would require quite extensive modifications to the program and
would hence be time consuming, this has not been implemented.

As before the flow region is defined, followed by the

gsetting up of co-ordinate axes as described for case a).

A CONTROL CARD (5I10, F10.0, I5)

COLUMNS 1-10 NNPC The number of corner nodes
at which co-ordinate
values will be supplied so
that co-ordinates of the
remaining nodes can be
generated.

11-20 NELEMC The number of elements for
which nodal numbers will
be provided so as to
generate the nodal numbers
for the rest o the elements.

21-30 NPBOC The number of boundary
cards which specify the
non-zero values of normal
velocity component along
the boundaries.,

31-40 NPFS The number of corner nodes
on the free surface
including the one at the
lip.

41-50/
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COLUMNS 41-50 ITGIV Estimated number of
iterations necessary to
complete the solution for
a free surface problem,
which is usually set
between 10 and 20,

51-60 GR The constant of
gravitational acceleration
if gravity is to be
considered.

61-65 INDGR Number indicating the
direction of gravity. Use
2 if gravity acts
transversely; otherwise
leave it blank.

B CORNER NODE CARDS (I10, 2F10.0, I10)

Without using the generation option, one card will be
required for each corner node. If the option is used, only those
cards for the controlling corner nodes will be needed. In that
case, the program generates the omitted information automatically,
including the co-ordinates of omitted corner node points by linear

interpolation and also the associated cornmer node numbers.

COLUMNS 1-10 N The corner node number.
11-20 X(N) X~co-ordinate.
21-30 Y(N) Y~-co-ordinate or radial
co-ordinate.
31-40 NPMIS Use 1 if there is at

least one corner node
omitted between the
present and the succeeding
corner node cards and
hence generation option is
to be used.

¢ ELEMENT CARDS (815, I10)

One card for each element unless the generation option is

used.

COLUMNS  1-5 NOD(N,1) Number of nodal point 1.
6-10/
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COLUMNS 6-10 NOD(N, 2) Number of nodal point 2.
11-15 NOD(N,S) Number of nodal point 3.
16-20 NOD(N, 4) Number of nodal point 4.
21-25 NOD(N,S) Number of nodal point 5.
26-30 NOD(N, 6) Number of nodal point 6.
31-35 NOD(N,7) Number of nodal point 7.
36-40 NOD(N, 8) Number of nodal point 8.
41-50 NMIS Number of the succeeding

elements whose nodal
numbers are not provided
and generation option has
to be used to obtain such
information.
As the program is now coded, to use the genmeration option
the node point numbers of an element must be arranged such that the
starting point is the lower-left hand corner node and followed by

other nodes in a counter-clockwise direction. It must be so for all

the controlling element cards.

D BOUNDARY VALUE CARDS (I10, F10.0, 2I10)

One card is requiréd for each portion of the boundary on
which a constant non-zero value of the normal velocity component
exists. The far downstream face is not considered to be such a
boundary. On that face a constant velocity potential will instead
be specified for all nodes to impose the condition of uniform flow.

COLUMNS 1-10 NSTART Node point number at which

the specified boundary
value is to begin.

11-20 BVAL The specified value of
non-zero normal velocity
component.

21-30 NBSAME Number of the sides of

elements over which the
same boundary value is to
be specified.

31-40/
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COLUMNS 731-40 NINC The algebraic difference
between two adjacent
corner node numbers on
this portion of the
boundary.

E CARDS FOR FREE SURFACE

The following set of cards is needed only for a problem
involving a free surface which requires the iteration scheme to
locate its profile.

NPFSA i) Array of corner node numbers on the free surface and
NPBOT the array of corner node number on the x-axis (16I5).

These two arrays of corner node numbers are arranged in
pairs, starting with that pair of numbers which describe the far two
nodes downstream and continuing up to and including that pair at the
lip.

NPSFM ii) Array of mid-point node numbers on the free surface
(1615).

This array also starts far downstream and ends with the
mid-point next to the lip.

iii) Information needed for the adjustment of free surface

location (2F10.0, 3110, F10.0).

COLUMNS 1-10 SPDDW Assumed downstream speed.
11-20 SMAS Total flow rate.
21-30 NELB The number of the element

on the free surface which
has the lip as one of its
nodes. The element numbers
are in a numerical sequence
starting with number one,
counting from bottom to top
and from left to right.

31-40 NELT The element number of the
last element on the free
surface.

41-50/
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COLUMNS 41-50 NELMIS Difference of the element
numbers of two adjacent
elements on the free
surface.

51~60 ALPHA The acute angle between

the rigid wall and the
vertical axis.

QUTPUT

The following information is developed and printed by the
program in the order listed below and is similar for either confined
or free surface problems.

A

All input data, co—ordinates of corner nodes, element
pumbers with their node point numbers, the specified normal velocity

components, node point numbers on the free surface etc., are

printed.

B

For free surface flow problems, the adjusted free surface
location with its associated contraction or discharge coefficient
and the velocity components for the corner nodes on the free surface
are printed after each iteration. For gravity-affected flows, the

total head for each of these nodes is also calculated and printed

out.

C
Finally, the computed results for the entire flow field

under consideration are printed. These results include the
velocity potential, the distributions of velocity, pressure and
valve forces, and for free surface flow problems, the predicted free

surface profile and its corresponding contraction or discharge

coefficient.
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FIGURE_5 VALVE ASSEMBLY

FIGURE 6 '"NO-AIR" TEST RESPONSES
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FIGURE 7 LIFT-OFF MECHANISM

FIGURE 8 TYPICAL STATIC TEST RESPONSES
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FIGURE 9 TYPICAL DYNAMIC TEST RESPONSES
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