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Abstract 

The sharing of injecting equipment by injecting drug users (IDUs) is one of 

the primary causes of the spread of HIV in Scotland. Mathematical models of 
disease spread can explore the transmission dynamics and can assist in evaluating 

control strategies such as needle exchanges. 

A simple deterministic model is examined and local and global stability results 

are presented. A deterministic model in which infected IDUs are considered 

separately from uninfected IDUs is created. The infectivity of a needle is then 

examined. It is first assumed that the infectivity of a needle depends on the 

amount of infectious material within it, then models in which this infectivity varies 

over time from injection are explored. Models in which the initial infectiousness of 

a needle depend on the length of time the person who infected it had been infected 

with HIV are also presented. A stochastic model is developed and explored in 

a threefold manner; analytically, numerically and using Monte-Carlo simulation 

methods. In particular, the probability that the disease dies out is examined. 

Although these simple models use only a small number of parameterý, little 

is known about the values that these parameters may take. Seroprevalence and 

behavioural data from Glasgow are used to inform these models, and also to pro- 

vide an estimate for the probability than an IDU becomes infected after injecting 

with an infected needle. The effect that the variability in the parameter values 

may have on the spread of the disease is examined by performing both an uncer- 

tainty analysis and a sensitivity analysis. These show that the two behavioural 

parameters that can be altered by control strategies have a greater influence on 

the spread of the disease than some other parameters. 
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-Ye cookin? An need a shot Mark. Ah really need a shot. 

C'moan Marky, cook us up a shot... 

At last ah could be ay some practical help. There were syringes 

and needles lying aw ower the place. Ah tried tae remember which 

works wir mine. Sick Boy says that he'd never, ever share... Whin yir 

feeling like ah am, the truth is thit ye dinnae care too much. Ah take 

the nearest, which at least isnae Spud's, as he's been sittin ower the 

other side ay the room. If Spud isnae HIV postitive by now, then the 

Government should send a deputation ay statisticians doon tae Leith, 

because the laws ay probability urnae operatin properly here. 

Adapted from Trainspotting, by Irvine Welsh. 
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Chapter I 

Introduction and Literature 
Review 

1.1 Motivation 

The catalogue of destruction caused by epidemics throughout history seems like 

fiction in today's world of sanitation, hygiene and modern medicine. In the four- 

teenth century there were some twenty five million deaths from the Black Death 

and in 1919 the world pandemic of influenza claimed twenty million. But today 

millions of people live in areas where diseases such as malaria and schistosomiasis 

are endemic. In areas where people depend on their livestock, diseases such as 

East Coast Fever and Bovine Trypanosomiasis cause high mortality in domes- 

ticated cattle. More recently the disease AIDS has appeared; the full effect of 

which can only be guessed at. Predicting the effect of old and new diseases and 

trying to understand and control them has been the motivation of epidemiologists 

and researchers creating mathematical models of disease spread for decades. 

The disease AIDS (Acquired Immune Deficiency Syndrome) and the associated 

virus HIV (Human Immunodeficiency Virus) appeared in the early 1980s and 

mirroring the explosion in the number of people infected with the virus has been 

the explosion of research into the disease. With the scientific literature growing 

so rapidly it is now impossible to read more than a fraction of it. However this 
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literature is very varied and when a particular area is singled out for research 

the available literature may be found to be limited. This appears to be the case 

when considering the spread of the disease via shared injecting equipment, which 

accounts for 48% of the recorded cases in Scotland (ANSWER, 1995). While 

many researchers are concentrating on producing mathematical models of the 

sexual spread of the disease entirely excluding spread amongst those that share 

needles, there also appear to be many researchers looking into the epidemiology of 

the disease spread through injecting equipment without producing mathematical 

models. 

This Thesis attempts to fill this gap, that is to create mathematical models 

which encompass the findings of the medical sociologists, psychologists and epi- 

demiologists studying people that inject drugs. The object of these models is to 

help us understand the basic dynamical epidemiological processes underlying the 

spread of HIV and AIDS amongst injecting drug users (IDUs). They can then 

help us evaluate control strategies such as needle exchange schemes, better health 

education and the distribution of bleach with which to clean needles. Indeed sim- 

ilar deterministic models have been used for this purpose in the USA (Kaplan, 

1989; Kaplan and O'Keefe, 1993). Such models cannot however at present be 

used to predict accurately exactly how many new cases of AIDS there will be in 

the future as any modelling done relies on parameters which at present cannot 

be estimated with any precision. 

There are two basic types of mathematical model, the deterministic model 

and the stochastic model. Stochastic models can more accurately describe the 

randomness inherent in real life. On the other hand deterministic models are 

much easier to analyse, enabling them to include more factors important to the 

spread of the disease and also to rapidly explore varying aspects of the model. 

The approach in this Thesis is hopefully to recognise the benefits of both types of 
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models and to use both deterministic and stochastic theory to model the spread 

of HIV via shared injecting equipment. 

In this Thesis we explore mathematical models for the spread of HIV amongst 

IDUs. We begin in this chapter by discussing the virus and the disease AIDS 

which follows on almost inevitably after infection with the virus and we explore 

drug abuse and needle sharing, with particular respect to Glasgow. We then look 

at some of the general theory behind the use of mathematics in describing spread 

of disease and explore developments in this theory relevant to host / vector and 

sexually transmitted disease models. We briefly review the vast literature on the 

sexual spread of HIV and close this chapter by looking at models for the spread 

of the virus through needle sharing. 

In Chapter 2 we present a deterministic model for the spread of HIV amongst 

IDUs who visit shooting galleries. We show that there exists a non-zero equi- 

libriurn value for the proportions of the IDU population and needles that are 

infected. This equilibrium value is shown to be both locally and globally stable. 

In Chapter 3 we develop a comparable stochastic simulation model and look at 

analytical stochastic models. In the absence of a tractable solution to the an- 

alytical model, we examine a numerical approximation to the stochastic model. 

In Chapter 4 we attempt to improve on the deterministic and stochastic models 

previously presented by including more realistic assumptions. In particular we 

examine the effect of a non-constant probability of infection in both an IDU and 

a needle. In Chapter 5 we examine the values which the parameters included 

in the models may take, leaving the discussion of the infectivity parameter until 

Chapter 6. We also derive a value for this parameter using data collected from 

Glasgow. In Chapter 7 we unite the preceding chapters by performing uncertainty 

and sensitivity analyses. We make suggestions for future work by introducing het- 

erogeneity in Chapter 8. We do this by relaxing the assumption that IDUs select 
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needles at random from shooting galleries and we conclude in Chapter 9 with a 

discussion of the work presented. 

1.2 HIV and AIDS 

1.2.1 Introduction 

AIDS was first discovered in 1981 when young men in the USA sought medical 

attention with similar symptoms including pneumocystis carinii, a form of pneu- 

monia and the skin tumour, Kaposi's sarcoma (CDC, 1981a). Initial research 

into the syndrome concentrated on the fact that these men were all homosexuals 

(CDC, 1981b). When it emerged in 1982 that blood transfusion could transmit 

AIDS, speculation about the homosexual connection was dismissed and with the 

discovery of the syndrome in haemophiliacs who had received plasma-derived clot- 

ting factors and that the disease can also be transmitted from an infected mother 

to her new-born child, it was suspected that only a virus could be responsible. 

Researchers exploring retroviruses, such as the Feline Leukaemia Virus, iso- 

lated a human retrovirus from a rare T-cell leukaemia (Barre-Sinoussi et al., 

1983). Soon after, Gallo identified a virus which is now called HIV-1 (Gallo 

et al., 1984). Later a second virus was discovered which was slightly different to 

HIV-1, this was termed HIV-2. As both viruses cause AIDS, and in the context of 

AIDS and needle sharing there appears to be no difference in their transmission, 

the viruses will both be referred to in this Thesis as HIV. 

HIV can be isolated in most body fluids, including saliva, but only in blood, 

semen and cervical secretions is the virus thought to be infectious. Once infected 

with the virus, it may be at least six weeks, occasionally longer, before antibodies 

can be detected, resulting in a window period where a person may be infected 

and infectious but this infectivity cannot be detected. The popular notion of an 
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AIDS test is therefore a misnomer as it is usually an HIV antibody test that 

is performed. This test can only detect the presence of antibodies to HIV, not 

the presence or absence of HIV itself, although tests which detect the virus may 

soon be commercially available. Once infected with the virus, a person will 

remain infected for life, although the symptoms related to the infection will vary 

over the course of the infection. After an initial acute viral illness, individuals 

may be completely asymptomatic, and remain in this state for several, possibly 

many, years. Many varying conditions which may occur after this stage cause 

the individual to be classified as having AIDS Related Complex (ARC). These 

symptoms, such as swollen lymphatic glands, confirm that AIDS is a syndrome 

which affects the immune system. The disease will then progress to full blown 

AIDS. The average incubation time, that is the time from initial HIV infection 

to the onset of AIDS is very variable but usually between 8 and 12 years (Sietz 

and Willer, 1994). The infectivity of a person varies throughout this period. 

There is a short initial period when individuals are very infectious followed by a 

relatively long period of low infectiousness. Just before an individual starts to 

develop clinical symptoms of AIDS the infectiousness starts to rise again. 

The World Health Organization has produced a classification schema for de- 

scribing the spread of HIV in different countries. Countries are classified as Type 

I and Type II countries. Type I countries include North America and Western 

Europe where the majority of cases are in homosexual men and IDUs. In Type 

II countries, such as those in sub-Saharan Africa, the spread is mostly through 

heterosexual intercourse. 

1.2.2 The Homosexual Epidemic 

AIDS was first discovered in North America in homosexuals, leading to a 'gay 

plague' image. At that time new sexual freedom had occurred within the ho- 
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mosexual community, leading to high levels of promiscuity. While the term ho- 

mosexual intercourse covers a wide variety of activities, the highest risk is from 

men who practise unprotected anal penetration. This can lead to rectal trauma, 

which can result in the virus passing from infected semen into the blood stream. 

Oral intercourse may also result in the virus being transmitted, although this is 

not thought to be a high risk activity. The homosexual community was quick 

to react to this new disease, setting up AIDS charities and help groups. Epi- 

demiological studies were started, including the San Fransisco Gay Mens' Health 

Study, from which many parameters in subsequent prediction models were taken 

(McKusick et al., 1985a; 1985b). Health campaigns both within and outwith the 

homosexual community are increasingly becoming seen as successful in reducing 

the spread of the disease, particularly through safe sex campaigns promoting the 

use of condoms. The epidemiology of AIDS amongst homosexuals varies widely 

from country to country and city to city. In Scotland over the last ten years 29% 

of infections were in homosexual or bisexual men (ANSWER, 1995). Despite pre- 

vention initiatives, some people in this category are still engaging in unprotected 

sexual intercourse. 

1.2.3 The Heterosexual Epidemic 

While the majority of cases of AIDS in Europe and North America are due to 

homosexual transmission, the spread of the disease in many parts of the world 

including sub-Saharan Africa and the Caribbean is almost completely through 

heterosexual intercourse. There are many parts of Africa where the disease is 

at a level of prevalence which is resulting in substantial demographic changes in 

populations, leading to major public health problems in countries where medi- 

cal resources are limited. Families are being destroyed where both parents have 

AIDS. Inaccuracies in data collection in these countries are also common. Sero- 

prevalence levels in various countries have been reported, for example 14% in a 
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sample of 1,011 pregnant women in Kampala, Uganda, and 61% in a sample of 

286 female prostitutes in Nairobi, Kenya (Piot and Carael, 1988). Certain con- 

ditions may increase the probability of transmission, including the presence of 

genital ulcers caused by other sexually transmitted diseases. As the probability 

of transmission from male to female is thought to be greater than the probability 

of transmission from female to male (Padian et al., 1987), the majority of infected 

individuals are female. The high seroprevalence rates of pregnant women in Type 

II countries, between 5 and 25%, has led to estimates of between 1 and 15% of 

new born children being HIV positive in these areas. In Type I countries there is 

not a similar paediatric AIDS problem, although in some areas such as New York 

where the predominant mode of transmission is through sharing injecting equip- 

ment, both female needle sharers and the heterosexual partners of male needle 

sharers are becoming infected resulting in significant amounts of paediatric cases 

(Blower et al., 1991). 

1.2.4 The Needle Sharing Epidemic 

The first signs of the needle sharing epidemic were in New York in the early 

1980s, where the world wide AIDS epidemic began. HIV attributable to IDUs 

has been reported in many countries, including most of Europe, North America, 

South America7 Australia and Asia. In some parts of the world, such as New 

Jersey and Connecticut in the USA, Edinburgh in the UK, Italy and Thailand, 

drug injecting accounts for the majority of AIDS cases (Des Jarlais et al., 1992). 

Drug injecting was present in Edinburgh before the introduction of HIV (Ditton 

and Speirits, 1982), indeed there was a rapid increase in the number of IDUs in 

the early 1980s. With few treatment facilities and the apparent ease of transi- 

tion into injecting heroin, due in part to the influx of inexpensive, high quality 

heroin, Edinburgh, in common with Glasgow and other cities in the U. K., began 

to react to the drug problem. Prior to 1982, it was comparatively easy to obtain 
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clean injecting equipment, but as the drug problem escalated, the police cracked 

down on the availability of injecting equipment leading to individuals sharing 

bloodstained needles and syringes. The most immediate result of this policy 

was the rapid spread of hepatitis B, a recognised disease transmitted via shared 

injecting equipment. This epidemic masked the more alarming HIV epidemic. 

However when HIV became recognisable, blood samples stored for hepatitis test- 

ing revealed the true extent of the epidemic in Edinburgh, with reports of a 40% 

prevalence among IDUs (Robertson et al., 1986; Peutherer et al., 1985). It should 

be noted that this figure came from what could possibly be an extremely biased 

survey as those in the sample were IDUs infected with a disease which is also 

transmitted via injecting equipment. At that time in Glasgow, just 70km west 

of Edinburgh, Follet (1986) reported a 4.5% seroprevalence in a sample of 606 

IDUs, and noted that 74% of those infected had identifiable links with Edinburgh. 

The Edinburgh figure was similar to those found in large groups of IDUs in large 

cities world-wide such as 50% in New York (Des Jarlais and Friedman, 1987) 

and Bangkok where prevalence rates rose from 15.6% in 1988 to 42.7% in 1989 

(Vanichseni et al., 1992). 

More recently the monitoring of HIV infection and AIDS became more sys- 

tematic, with several monitoring systems in Scotland coming within the remit of 

the Scottish Centre for Infection and Environmental Health. This unit, based in 

Glasgow, has responsibility for monitoring infectious diseases in Scotland. Rou- 

tine testing of blood donations for HIV commenced in 1985, as did the blood 

tests of those worried about infection. In 1988 a surveillance scheme was intro- 

duced which collated epidemiological data on everybody in Scotland who had a 

named HIV test. This concentrated on the homosexual and IDU sections of the 

community, although there were concerns that HIV may have started to spread 

in the heterosexual population. In response to these concerns voluntary testing 

of pregnant women began. In 1990 a system of anonymous testing of blood or 
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urine samples began, as these were anonymous and blood taken specifically for 

HIV testing was excluded, this soon became an important epidemiological tool in 

examining HIV infection in the general population. Figure 1.1, which is extracted 

from the register of HIV infected persons (ANSWER, 1995), can be thought of 

as giving a short description of the first ten years since HIV was introduced into 

IDU population in Scotland. This figure charts the number of infected people 
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Figure 1.1: The number of newly infected IDUs in Lothian, Greater Glasgow and 
Tayside. 

claiming drug injecting as a risk factor by the first year a positive specimen was 

found. The data is presented by Health Board area, however the majority of cases 

in Lothian, Tayside and Greater Glasgow would occur in the cities of Edinburgh, 

Dundee and Glasgow respectively. It is clear from this that HIV was present 

in Edinburgh in 1983, but there were no cases uncovered elsewhere in Scotland 

that year. The Edinburgh data reached a peak in 1984, whereas the Glasgow 

and Dundee data both peaked two years later, confirming the 'Edinburgh Con- 

nection' proposed by Follet (1986). Over the last decade, there were 1,057 HIV 

cases attributable to drug injecting in Scotland. When the progression to AIDS 

is considered, by the end of 1994 there were 64 AIDS and a further 155 deaths 
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attributable to drug injecting. 

1.2.5 A Hidden Epidemic 

It is widely recognised that needle sharing is a very high risk activity, there- 

fore public health authorities in both Western Europe and North America have 

targeted IDUs with information about risk reduction techniques such as needle 

exchanges and bleaching needles to sterilise them. However there are many parts 

of the world where basic hygiene within the health services with respect to ster- 

ilising needles is not possible due to the lack of resources, in particular Romania 

(Hersh et al., 1993), as well as other parts of Eastern Europe or Africa (Hoelscher 

et al., 1994). Due to the lack of clean needles, it was not uncommon for several 

people to be injected with the same needle, which may transmit HIV and other 

viruses. 

1.3 The Social Context 

1.3.1 -Drug Misuse 

Up until 1868, opium was available over the counter without any form of re- 

striction. The only conceived problems were poisoning, including 'infant doping', 

where child minders would drug their charges. The Dangerous Drugs Act of 1920 

was the first legislative act in the style of present day law, which led to opiates only 

being available by prescription. In the period leading up to the 1960s, Britain's 

drug problem was small, but between 1964 and 1968 the number of opiate addicts 

known to the Home Office rose from 342 to 2,782 (Ghodse, 1989). For the first 

time in Britain, injectable heroin instead of morphine was the opiate of choice 

and an active black market of pure heroin and cocaine appeared. In Glasgow, in 

the early 1980s there was an epidemic of heroin use, as there was in other British 
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cities (Parker et aL, 1989). In more recent times, the number of addicts in the 

United Kingdom notified to the Home Office has risen to just under 34,000 in 

1994, whereas data from the Regional Drug Misuse Databases, which record the 

number of new contacts at a range of drug agencies, show that there were over 

21,000 individuals starting agency contact between 1 October 1993 and 31 March 

1994 and that 8,746 individuals were injecting their main drug. The data from 

the Regional Drug Misuse Databases refer to Great Britain as Northern Ireland 

does not, as yet, have a database. 

It has been shown that the above 'official' statistics vastly underestimate the 

true extent of drug misuse and drug injecting in the UK (Sutton and Maynard, 

1993). While it is difficult to estimate the size of this covert population, Frischer 

et al. (1993a) have used log-linear analysis to model the relationship between four 

data sources in order to estimate the number of IDUs in Glasgow, obtaining a 

figure of 8,400, which represents 13 per 1,000 of the population aged 15-55. This 

is an increase from the 5,000 estimated in 1983 (Haw, 1985). Elsewhere Squires 

et al. (1995) estimate the number of opiate or cocaine misusers to be 2,344 in 

Liverpool and Hay and McKeganey (1996) estimate that there are 2,557 opiate 

or benzodiazepine users in Dundee. In broader terms, it is estimated that there 

are 20,000 current IDUs in Scotland (ANSWER, 1995), and a further 100,000, in 

England and Wales (Giesecke et al., 1994). 

While there are many prejudices and misconceptions about IDUs, there are 

some characteristics of drug users which can be described. Many drug users liv- 

ing in Glasgow reside in the large housing schemes on the peripheral areas, where 

other socio-economic problems include high unemployment, low income and so- 

cial deprivation. There is an identifiable sense of loyalty within these communi- 

ties where outsiders are treated with suspicion and this often hampers research. 

McKeganey and Barnard have studied drug users, in particular IDUs, within the 
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community from a sociological perspective, providing an insight into why IDUs 

share needles and the perceived risks in doing so (McKeganey and Barnard, 1992). 

They also explore the links between drug injecting and prostitution (McKeganey 

and Barnard, 1996). 

With the epidemic of heroin use at the start of the last decade, different areas 

developed differing strategies to deal with this problem. For example, in Edin- 

burgh one attempt to reduce the amount of drug injecting was to stop the supply 

of needles from pharmacies. This supply was illegal in other countries, but quite 

legal in the U. K. (Robertson, 1990). This had the effect of increasing the amount 

of sharing of needles. At that time the only apparent risks were hepatitis and 

other injecting related problems such as septicaernia, abscesses and endocarditis. 

The prevalence and patterns of drug use within the penal system is seen to be 

of concern (Shewan et al., 1995). It is the policy of the United Kingdom's prison 

service to refuse to issue condoms and injecting equipment to inmates, something 

which the World Health Organization (1987) advocates should be considered. 

1.3.2 Drug Injecting 

In order to inject a drug such as heroin it must first be dissolved in water. This 

can be done in small vessels such as bottle caps known as 'cookers', which are 

heated (Koester et al., 1989). Some users will place cotton in this vessel with 

which to filter the dissolved drug. This filter may be used several times, and in 

the absence of drugs with which to inject, this residue may be injected. If any 

of the needles which have used this filter have been infected there is a possibility 

that the filter may be a source of HIV transmission. When IDUs are wanting 

to share drugs that have been jointly purchased, instead of dividing up the raw 

drug it may be easier to divide up the dissolved liquid. One method known as 

front-loading is to draw all of the solution into one syringe, from which half would 
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then be injected into another (Crund et at., 1991). This has also been described 

in Glasgow (Green et al., 1993). This liquid could then be injected into the blood 

stream. If the first needle or syringe was infected, this could pass on the virus into 

the second syringe. Most injections are intraveneous, that is the drug is injected 

directly into a vein. Intramuscular injection refers to the practise of injecting the 

liquid directly into the muscles, something which may occur when an IDU has 

difficulty finding a vein to inject into. Once the drug has been injected into the 

blood stream some users will draw back some of their own blood into the syringe 

and re-inject this in order to get the full benefit of the drug. This could leave 

more contaminated blood in the syringe than normal injection procedures due to 

the amount of blood in contact with the syringe (Samuels et al., 1992). 

1.3.3 Needle Sharing 

It is not clear why people share needles although several theories have been ex- 

plored. In several parts of the world such as many states in the USA, it is illegal to 

be in possession of injecting equipment, or in other places the police will confiscate 

injecting equipment and not allow pharmacies to sell it. This was the situation 

in Edinburgh in the early 1980s. In other parts of the world however needles 

can be purchased quite freely, as in Italy, and there are pharmacies in Glasgow 

which legally sell injecting equipment. One result of restrictions on obtaining 

injecting equipment is that many individuals can use the same set of equipment. 

This sharing can occur in different forms, one example is the friendship networks 

which are common in Glasgow, where people will share with their close friends 

or partners. They do not perceive any risk of infection and they do not classify 

this as sharing (McKeganey and Barnard, 1992). There are also sharing struc- 

tures such as shooting galleries. Samuels et al. (1992) describe differing forms 

of shooting gallery, such as the residential shooting gallery, where long and short 

term residents and non residents share injection equipment, and non-residential 
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shooting galleries where IDUs usually pay money or drugs to use the facilities, 

where they can also purchase drugs. This results in relatively large groups of 

IDUs sharing equipment. The non-residential shooting gallery was thought to 

be common in Edinburgh in the early 1980s, as visiting such shooting galleries 

eliminated the risk of being caught by the police in possession of either drugs or 

the related paraphernalia. 

1.3.4 Seroprevalence and Behavioural Studies of IDUs 

In 1990 a World Health Organisation study involving twelve centres began to 

study risk behaviours of IDUs. Glasgow was one such centre, the others were 

Athens, Bangkok, Berlin, London, Madrid, New York, Rio de Janeiro, Rome, 

Santos, Sydney and Toronto. A description of the methodology and the main 

results from these studies can be found in Stimson et al. (1997). Approximately 

500 IDUs were recruited each year in Glasgow from 1990 to 1994, and this re- 

sulted in the collection of demographic and behavioural data, along with saliva 

specimens in order to test for HIV. Similar studies using the same protocol were 

also carried out in Edinburgh during 1992 - 1994, Dundee in 1994, and have more 

recently been carried out in other health board areas. 

The saliva testing confirmed the continuing low prevalence of HIV due to 

drug injecting in Glasgow. From these samples the estimated prevalence of HIV 

infection fell from 1.8% in 1990 to 1.0% in 1994 (Taylor et al., 1994). This 

contrasts with the corresponding data from Edinburgh and Dundee where the 

estimated prevalence figures for 1994 were 19.7% and 27% respectively (Davies et 

al., 1995; Haw et al., 1996). The vast majority of IDUs in the Glasgow samples 

injected daily, however the proportion injecting with used needles dropped over 

the five year period. Valuable data on sharing frequency and the needle cleaning 

practices has also been collected from this study. 
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Although there has been no attempt as yet to utilise this epidemiological data 

in mathematical models, other quantitative research resulting from this original 

research has been reported in the literature. In combination with the log-linear 

analysis which gave rise to an estimate of the number of IDUs Frischer et al. 

(1993a) estimated that there were ninety three HIV infected current IDUs in 

Glasgow in 1990. Following on from a statistical description of the HIV preva- 

lence and incidence in Glasgow by Frischer et al. (1992a), Bloor et al. (1994) 

proposed reasons why the prevalence of HIV was so low, especially considering 

the high HIV prevalence in Edinburgh. Frischer et al. (1992b) described the 

reduction in needle sharing through the sucessive samples of IDUs, but noted 

that a third of the sample in 1990 still injected with used equipiment. Linear 

structural modelling techniques were used to identify HIV risk practices in the 

Glasgow sample (Frischer et al., 1993b). Travel, sexual activity, prostitution and 

the sharing injecting equipment were positively associated with increased risk 

of HIV infection. This quantitative approach was combined with a qualitative 

study by Barnard and Frischer (1995) in which the relationships identified in the 

structural models were explained using ethnographic data. 

As the behavioural and seroprevalence study questionnaire also asked about 

sexual practices, including those of prostitutes, the link between drug use, pros- 

titution and HIV spread could be examined. Taylor et al. (1993) studied a 

sample of fifty one female streetworking prostitutes who had been included in 

the larger IDU study. Although condoms were almost always used during com- 

mercial sexual contacts, they were rarely used by partners of prostitutes within 

private relationships. Coupled with the higher than average HIV prevalence in 

this group, this research highlighted concerns about the heterosexual spread of 

HIV froril drug injecting prostitutes, given that 71% of Glasgow's estimated 1,100 

streetworking prostitutes are thought to be IDUs (McKeganey et al., 1992). In 

contrast with the concerns about drug injecting prostitutes spreading HIV to the 
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heterosexual population, there are also concerns about the additional risk of fe- 

male IDUs becoming infected, through having to resort to prostitution to finance 

a drug habit, from often having to share their drug injecting partner's injecting 

equipment and due to the added risk of becoming infected through sexual contact 

with an infected partner. These risks are detailed in Barnard (1992). 

The mobility of IDUs was studied by Goldberg et al. (1994). As Glasgow IDUs 

are highly mobile, there are still concerns that HIV infection may be imported 

from outwith the city. The prison experience of IDUs was also explored using 

the combined data from the behavioural and seroprevalence studies. Covell et 

al. (1993) noted that 52% of IDUs had been in prison. Drug injecting often 

continues when an IDU is detained in prison. This was highlighted from a well 

documented outbreak in Glenochil Prison (Taylor et al., 1995; Gore et al., 1995). 

There is additional concern relating to injecting in prison as IDUs from different 

areas of Scotland are often in the same prison thus HIV may be spread from 

one area to another. Other studies have examined drug injecting and HIV risk 

in prison (Shewan et al., 1995), again confirming that IDUs continue to share 

within prison. Power et al. (1992) described a study of 559 inmates throughout 

the Scottish prison system. From this sample 154 (27.5%) had injected drugs 

before imprisonment, 43 (7.7%) had used drugs within prison and 32 (5.7%) 

reported sharing within prison. 

The data from Glasgow has also been compared and contrasted with other 

areas. Des Jarlais et al. (1995) included Glasgow in a study of cities where HIV 

prevalence has continued at a low level. This research examined possible reasons 

why there is a low prevalence, and although there were no firm conclusions, the 

presence of needle exchanges and other harm reduction strategies can perhaps be 

seen as preventative of a high prevalence of HIV. 

Although Glasgow was part of the multi-centre behavioural and seropreva- 
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lence study, research into HIV and drug injecting has also been carried out in 

Edinburgh, a city which bore the brunt of the HIV epidemic in the last decade. 

Robertson first noted the presence of HIV within a sample of IDUs attending a 

surgery in North West Edinburgh in 1985 (Robertson, 1986). This cohort has 

been extensively followed, for example by Robertson et al. (1994) who describe 

this cohort over ten years and by Ronald et al. (1992) who noted the reduction of 

risk related behaviours. Ronald et al. (1994) considered drug injecting as a cofac- 

tor in the progression from HIV to AIDS showing that heroin injecting increased 

the risk of progression. Many of these IDUs are also included in a larger group 

which included those infected through sexual contact, known as the Edinburgh 

City Hospital Cohort. This group has again been extensively studied (Brettle et 

al., 1996a). 

The epidemiology of diseases spread through injecting equipment in Edinburgh 

was studied by Burns et aL (1996). The epidemic of injecting drugs was associ- 

ated with four overlapping epidemics of bloodborne viruses; HIV, hepatitis B, C 

and D. Initially only hepatitis B was recognised. The paper speculates that the 

explosive drug-related Edinburgh HIV epidemic may have been self-terminating 

and that the epidemic in female IDUs came three months after that in male IDUs. 

The spread of HIV has also been studied at a national level in Scotland. Raab 

et al. (1994a) used HIV test data in forecasting the AIDS epidemic in Scotland. It 

is noted in this study that more concise information about the incubation period 

is perhaps needed. This is explored in Raab et al. (1994b), where forecasts were 

produced using Bayesian techniques which used the available knowledge about 

the incubation period. In both these studies the estimates were show to closely fit 

the initial stages of the epidemic. Mok (1994) explored the vertical transmission 

of HIV from mother to child and other studies have also examined drug use 

and pregnancy (Johnstone et al., 1994). Brettle et al. (1996b) also explored the 
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progression of HIV in pregnant women through CD4 count modelling; this is one 

of several studies which used data on CD4 counts when modelling HIV in IDUs 

(McNeil et al., 1996; Allardice et al., 1992. ) 

1.4 Mathematical Modelling of the Spread of 
Infectious Diseases 

Origins 

Despite Fracasterius in 1546 postulating a living principle of contagion, it was 

not until the rise of the science of bacteriology in the latter part of the nineteenth 

century, due mainly to the work of Pasteur and Koch, that an understanding of 

the infectiousness of certain diseases came about. The first recorded combination 

of mathematics and medicine appears to be the work of Bernoulli (1760) in which 

he investigated the benefits of variolation against smallpox. The idea of a living 

organism invading the human body must originally have been received with much 

scepticism, but with the ability of early microscopes to show these organisms in 

the blood the foundations of the study of infectious diseases had been laid. 

1.4.2 Development of Mathematical Models 

In describing the early history of the mathematical modelling of infectious disease, 

two diseases will be described in detail; measles and malaria. Models for measles 

serve as a prototype for many other diseases which are spread in a similar manner 

such as chickenpox, mumps and whooping cough. Measles is more commonly used 

as an example of a disease which can be modelled because the data are better. 

The modelling of malaria differs from these basic models in that even the simplest 

models need to include two populations; man and mosquito. These models are a 

good introduction to two-sex models which are needed in modelling the spread 
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of sexually transmitted diseases and, as will be shown later are relevant to the 

spread of HIV within a population of IDUs. 

There have been many studies into the spread of measles and the disease is 

one of the best documented. Although it is not fatal in developed countries, it is 

still a major killer of children in many parts of the world including India. The 

virus is highly contagious because it is airborne and easily transmitted, unlike a 

virus such as that which causes glandular fever which requires physical contact. 

For measles, after an individual becomes infected there is an incubation period 

of between nine and eleven days before the illness becomes apparent. During this 

incubation period the individual is not infectious. There follows a short infectious 

period of seven to fourteen days (Benenson, 1990). Once an individual has recov- 

ered from the illness he or she will become permanently immune to the disease, 

so from the infected state an individual will pass to a recovered or removed state 

from which they cannot return to the susceptible or infected state. This well 
documented progression of events can be easily modelled using a compartmental 

model. A compartmental model is a mathematical model which divides the pop- 

ulation amongst whom a disease is spreading into disjoint compartments such as 

susceptible, incubating, infectious and immune individuals. 

Hamer (1906) considered that the course of an epidemic must depend on the 

number of susceptibles and the contact rate between susceptibles and an infective 

individual. This idea, Hamer's 'mass-action principle', which is fundamental to 

most deterministic theory, can be seen in the Hamer-Soper model; a type of 

compartmental model. We shall now describe the Hamer-Soper model. 

The population of interest is split into three groups, susceptibles S(t), infectives 

I(t) and a removed group R(t), the number of people in each of the groups being 

a function of t, time. The removed group consists not only of the deaths from 

the disease but also removal due to isolation or recovery. The transitions between 
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these three states can be described as follows: 

1) A susceptible becomes infected by contact with an infective. 

2) An infective is removed. 

3) A susceptible enters the population, either through migration or birth. 

4) An infective enters the population by migration. 

5) A susceptible or infective leaves the population either by death or migration. 

In this deterministic theory each of these transitions has an associated rate giving 

rise to a set of differential equations. As an example the simpler situation where 

the population is fixed, so that transitions 3,4 and 5 do not occur, is presented. 

Suppose that at time t we have x(t) susceptibles, y(t) infectives and z(t) re- 

moved individuals. We can abbreviate these time-dependent values as x, y and 

z. With an infection rate of P between a single susceptible and a single infected 

individual, so that the number of new infections occurring in a small time in- 

terval of length dt is Pxydt, and a removal rate of y per infected individual the 

differential equations can be shown to be 

dx 
-d -t = -, 3xy, 

and 

dy 
dt = On - -yy, 

dz 
yy (1.1) 

We can define p= y/p to be the relative removal rate'and at time t=0 we have 

x(O) = xO, y(O) = yo and z(O) = zo. From Equation 1.1 we have 

dy 
Tt = pyo (xo - P) 

so an epidemic can only develop if xo > p. 

We can re-express part of Equation 1.1 as 
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dy 
= flyop 270 

Tt- 
(p 

from which an epidemic will occur if 

xo/p > 1. 

Thus RO, the basic reproductive number, is x0lp. RO is defined as the number of 

secondary infections produced when one infected individual is introduced into a 

host population at equilibrium where everyone is susceptible (MacDonald, 1952; 

Anderson and May, 1991). We expect an epidemic to occur if and only if RO 

exceeds one. 

This general type of model was extended by Kermack and McKendrick (1927). 

Their more elaborate models resulted in the famous threshold theorem which 

stated that the introduction of a small number of infectious cases into a popu- 

lation of susceptibles would not give rise to an epidemic outbreak if the density 

of susceptibles was below a certain limit. If the initial density of susceptibles 

exceeded this limit or threshold, then the resulting epidemic would reduce the 

density to as far below the threshold as it was originally above. This threshold 

value is intrinsically linked to RO; for estimates of threshold values and RO in 

various communities and for various infections see Anderson and May (1991). 

Further work on this model related to measles was undertaken by Soper (1929), 

who examined recurrent epidemics. This can be achieved by introducing suscepti- 

bles into the population at rate a. This corresponds to immigration of susceptibles 

into the population. If we simplify this model by only looking only at susceptibles 

and infectives and ignoring births and deaths into and out of the population we 

have: 

dx 
= -Pxy +a Tt 

and 
dy 

= oxy -, Yy, dt 
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the solution of which resulted in damped oscillations in the number of infectives 

Soper (1929), which published data on measles does not display. 

Deterministic models can predict the undamped oscillation observed in the 

data, but to take account of this we need to include seasonal variation in the 

contact rate (Bolker, 1993). Another method of modelling undamped oscillations 

is to use stochastic models such as McKendrick (1926) or Bartlett (1960). As 

an example, let X(t) and Y(t) denote the number of susceptibles and infectives 

at time t. Then in the small time interval [t, t+ dt] we have the transition 

probabilities 

Pr{(X, Y) --> (X - 1, Y+ 1)} = ßXYdt 

and Prj(X, Y) --+ (X, Y- 1)} = -yYdt. 

The latter part of Equation 1.2 refers to the removal of infectives. This type of 

model, which is difficult to solve, is the stochastic 'continuous-infection' model 

which did not attract much attention initially. 

An alternative form of stochastic model, the Chain Binomial Model, was devel- 

oped independently by Greenwood (1931) and Reed and Frost in 1928; see Abbey 

(1952). These are discrete time models as the spread of the disease is modelled in 

discrete generations. This model assumes a relatively short infectious period and 

constant latent and incubation periods, allowing the number of new cases occur- 

ring from adequate contact with a single infective to be modelled by a binomial 

distribution. Each new infective would then go on at the next 'generation' of the 

disease to infect other susceptibles with the same binomial distribution, leading 

to a chain of binomials, hence the name. This model could be used to describe 

the spread of a disease such as chickenpox, where the spread of the disease can 

be well documented between families and between family members. Greenwood's 

model assumes that the probability that a susceptible becomes infected depends 
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only on the presence of an infective. This can be thought of as a simplification of 

the Reed-Frost model in which the probability of infection depends on the number 

of infectives present, and each infective infects susceptibles independently 

The mathematical modelling of epidemics after the second world war contin- 

ued with more work done on both deterministic and the Chain Binomial Models. 

Work was being done on the mathematical theory of stochastic processes, such 

as Bartlett (1949), who developed a partial differential equation for the proba- 

bility generating function of two variables. This gave rise to renewed interest in 

the continuous infection model. This model was also explored by Bailey (1953) 

giving rise to Whittle's famous (1955) paper, directly following Bailey, in which 

he derives a stochastic threshold theorem corresponding to Kermack and McK- 

endrick's deterministic result. In a more basic sense, at the start of the epidemic 

when the number of susceptibles can be reasonably approximated as n, the pop- 

ulation size, Equation 1.2 can be compared to a simple birth-death process with 

constant birth rate nP and constant death rate y. Again denoting p= -Y/fl, 

a threshold theorem can be obtained which states that if n<p then a major 

outbreak cannot occur, but if n>p then a minor or major epidemic occurs with 

probability p/n and 1- p/n respectively. Whittle (1955) presents the proof, ex- 

tending it by determining the probability that an epidemic of not more than a 

given intensity takes place. 

1.4.3 Modelling the Spread of Malaria 

While Hamer, and later Soper, were developing the theory for measles, Ross 

(1911), was developing similar theory for the spread of malaria. Malaria in man 

is due to infection by one of four parasites of the family Plasmodium. Parasites 

are different from viruses in that they can reproduce sexually and can therefore 

be categorised as being at certain stages of their lives. Some parasites such as 
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those that cause malaria need to spend part of their life in humans and another 

part in an intermediate host. For more detailed explanation of the differences 

between viruses, parasites and bacteria see Anderson and May (1991). An in- 

dividual becomes infected by sporozoite forms of the parasite after they have 

been bitten by a female mosquito taking a blood meal which is necessary for the 

development of her eggs. The parasites reproduce asexually within the human 

host changing from sporozoites to trophozoites and eventually into gametocytes, 

which are sexual forms of the parasite. Although there may be parasites at dif- 

ferent stages of their life cycle within the human host, it may be convenient to 

only examine the gametocyte rate, which is not strictly a rate as it is the num- 

ber of gametocytes in the blood (MacDonald, 1957), as it is gametocytes which 

then infect the female mosquito. The sexual forms of the parasite then multiply 

within the female, completing the circle by liberating sporozoites into the salivary 

glands. We therefore have two indicators of infectiousness, the gametocyte rate 

in humans and the sporozoite rate in the mosquito. 

A basic deterministic formulation of the essentials of the population dynamics 

of malaria was given by Ross (1911). We define the following parameters for the 

human population: 

n: total population size; 

y: total number of infected individuals; 

f: proportion of infected individuals who are also infectious; 

-Y: recovery rate; 

A: birth rate; 

V: death rate. 

Again we have abbreviated the notation for the time-dependent values, such as 
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the total number of infected indivuals. A set of definitions, employing the same 

symbols but with primes can be applied to the mosquito population. We adopt 

the concept of homogeneous mixing, based on the assumption that the mosquitoes 

have a man biting rate K So in a time interval (t, t+ dt) we see that y' infected 

mosquitoes make b'f'y'dt infectious bites, of which a proportion (n - y)/n are on 

susceptible humans. Thus, the number of new human infections in (t, t+ dt) is 

Wf 'y'(n - y) dt/n. 

Taking into account the recovery and death rates, it follows immediately that 

the differential equation describing the rate of growth of the human infected 

population is 

dy 
--,: 

Yf Iy I(n - y) 
- (-Y + V)Y. dt n 

An analogous argument leads to 

dyl 
- 

Yf y(n' -y 1) 
- (-t' + V, )Y, 

dt n 

for the infected mosquito population. These two equations are not exactly sym- 

metrical with the regard to y and y'. The transmission of disease from a mosquito 

to man, or vice versa, is in each case controlled by the man biting rate of the 

mosquitoes. Thus only V exists; there is no corresponding quantity b, since man 

does not bite mosquitoes. 

Setting m= y/n and u= y/n leads to 

dm 
b'f'u (1 - m) - (-y + v) m it- ý 

and 
du 

= bf m(a - u) - (, y'+ v')u, dt 

where a= n'/n. From these equations information about equilibrium values and 

the basic reproductive number, RO, defined as the number of new cases resulting 

from the introduction of a single infective into a population of susceptibles at 

equilibrium, can be explored. From this differing control strategies can be stud- 
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ied. For example we can study the effect of reducing the size of the mosquito 

population by looking at its effect on RO. 

1.4.4 Modelling the Spread of Sexually Transmitted Dis- 
eases 

It was noted by Ross that his models for malaria transmission could also be ap- 

plied to sexually transmitted diseases, with similarities between the prevalence of 

disease in the human and vector host and prevalence in males and females. Be- 

fore the discovery of the HIV virus, most mathematical models of the spread of 

sexually transmitted disease concentrated on the spread of gonorrhoea (Hethcote 

and Yorke, 1984). While the disease is not fatal, in the USA roughly one million 

cases per year are reported. This suggests that between two or three million cases 

may actually arise annually. It has been estimated that 10-17 percent of women 

with gonorrhoea develop pelvic inflammatory diseases, which can lead to sterility. 

The disease is also virtually asymptornatic in many people, especially women. In 

contrast to diseases such as measles, recovery from the disease does not confer 

life long immunity, therefore Whittle's and Kermack and McKendrick's threshold 

theorems cannot be applied directly. If a removed compartment was valid, a ba- 

sic deterministic model can presented which is relevant to both host/vector and 

venereal diseases. For a human population, consider a model with the numbers 

of susceptibles, infectives and removed individuals denoted by x, y and z respec- 

tively, with x+y+z=n. Corresponding numbers in the intermediate vector are 

denoted as (x, y', z'). We assume that the numbers of new infections in a small 

time interval time [t, t+ dt] are Pxy'dt + o(dt) for humans and O'x'ydt + o(dt) for 

vectors. The corresponding quantities for removals are simply -Yydt + o(dt) and 

7 Vdt + o(dt), resulting in the two sets of equations: 

dx 
= -oxy" dt 
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dy 
= oxy, -, Yy, dt 

dz 
dt = lyyl 

and 
dx' 

x Y, dt 
dyl 

= #, Xy -, Y, Y" dt 

dz' 
Tt 

from which a threshold theorem similar to that obtained by Kermack and McK- 

endrick can be obtained. We should stress that in the case of many such diseases 

there is no immunity after infection, hence such a model may not be valid. We can 

also model the sexual spread of disease usi ng stochastic theory, by representing 

the respective number of susceptible and infective males by Xi(t) and Yj(t) and 

similarly X2(t) and Y2(t) for the susceptible and infective females. By considering 

the transition probabilities, we can develop a partial differential equation satis- 

fied by the probability generating function. Exact analysis may not be possible, 

but as in the single population case, an approximate threshold theorem can be 

obtained by considering the model as a continuous time branching process and 

using relevant results (Bailey, 1975). 

Other works on the mathematical modelling of sexually transmitted diseases 

develop the theory, combining it with epidemiological data, particularly Hethcote 

and Yorke (1984). Bailey (1979) provides a good introduction and reference list 

relevant to sexually transmitted diseases. More recent work on the sexual spread 

of HIV is also relevant to other sexually transmitted diseases. 

1.4.5 Modelling the Sexual Spread of HIV and AIDS 

Early attempts at modelling the spread of HIV concentrated on the transmission 

among homosexuals, which was the population initially thought to be at most risk 
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from the disease. An initial model is not unlike that for the spread of measles, but 

with no removals in the model as people do not develop immunity from the disease 

and the parameter # which corresponded in the measles model to the rate at which 

infection occurs between a single infected and a single susceptible individual will 

be replaced by Or., where n is the rate at which a susceptible acquires new sexual 

partners and P is now interpreted as the probability infection occurs during such 

a partnership (Isham, 1988). The theory behind this model will therefore be 

similar to the theory already discussed. Such a model does not include any 

significant biological factors about HIV and AIDS therefore it can only serve as 

an introduction to more realistic models. Anderson and May (1991) presented a 

model which did incorporate more realistic features, such as the uncertainty about 

whether everybody infected with the virus will go on to develop the disease and 

people effectively becoming removed when full blown AIDS develops. They split 

the population into five compartments: susceptibles, X(t); infectious individuals 

of types 1 and 2; Yj(t) and Y2(t) respectively; those with clinical AIDS; A(t) and 

non-infectious individuals of type 2; Z(t), where type 1 infectives are assumed 

to progress into the AIDS compartment but type 2 infectives will progress into 

a non-infectious state. They assumed that a proportion f of the population are 

type 1, hence 1-f will be type 2. Setting f=1 would give a model in which 

all individuals with HIV will go on to develop AIDS and this is now the course 

of events in accepted by today's scientific community. 

We have 

dX 
=B- (ii +A)X, dt 

dY, 
dt 

f AX - (ti + vl)Y� 

dY2 f)AX - 
(IL + V2)y25 

dt 
dA 
T viYi - (ti + a)A, t 
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dZ 
and T : --: V2Y2 - tLZi (1.3) t 

where B is the rate at which susceptibles join the sexually active population, /, Z is 

the per capita death rate of the community, (neglecting the disease) v, is the rate 

at which type 1 infected individuals develop AIDS, and V2 is the rate at which 

type 2 individuals become non-infectious. a is the additional death rate due to 

AIDS, A is the per capita rate at which susceptibles become infected, or the force 

of infection, which is given as 

c(#, Yl +, 62Y2)IN. 

Here c is the average number of sexual partners per unit time, for k=1,2, 
j8k 

is 

the probability that infection will be acquired from an infected sexual partner of 

type k and YkIN is the probability that a partner chosen at random will be an 

infective of type k. N is the total size of the sexually active population. 

As an approximation to the start of the epidemic, we can make some simplify- 

ing assumptions, such as ignoring death from AIDS and treating the population 

size as being fixed, which will lead to the number of infectives increasing expo- 

nentially, such that 

Y(t) = Y(O) exp(At) 

where A= Pc -v and Y(t) = Yj(t) = Y2(t). From this approximation the 

initial doubling time can be evaluated and we can also obtain an expression 

for the number of individuals with AIDS in the early stages of the epidemic. 

Equation 1.3 can be solved numerically to show an exponential increase towards 

the start of the epidemic, levelling off when AIDS related deaths begin to remove 

seropositives. This levelling off is also to be found in the data from America, such 

as the San Fransisco Gay Men's Health Study (McKusick et al., 1985a, 1985b), 

but this may also be attributable to changes in sexual practices. 

The previous model assumed, for mathematical simplicity, that the rate of 
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acquiring sexual partners is the same for all individuals and also that the choice 

of sexual partner is random. As in the models for the - spread of gonorrhoea, 

this may not be realistic and, as May and Anderson (1988) argue, heterogeneity 

in the rate of acquisition of sexual partners cannot be ignored. This can be 

introduced by dividing the population at risk into groups, characterised by the 

average number of sexual partners per unit time. Using the notation Xi to denote 

the number of susceptibles who have on average i sexual partners per unit time, 

with similar notation for the other compartments, we have 

dXi 
Bi - (p + Ai)Xi, 

dt 
dY, i 
dt 

f Aixi - UL + vi)Yii, 

dY2i (1 - f)AiXi -(A + V2)y2i) 
dt 

dAi 
- vYli - (M + a)Ai dt 

and 
dZi 

2y2i - 114- 
dt 

Here 
dNj 

- Bi - IiNj - aAj, dt 

where Ni(t) is the number of individuals in the ith group at time t. They assume 

that the force of infection for an individual in the ith group is Ai = iA, where A 

is the force of infection per partner, which will depend on the probability that 

partner is infectious and transmission parameters 8k. Fork= 1,2, flk is the 

probability that a single contact between a susceptible and an infected individual 

in class k will result in the susceptible becoming infected. 7r, the probability that 

a randomly chosen partner is infectious, can be obtained by weighting potential 

partners by their sexual activity rate hence 

., 
jNj) A (01 ylj + fl2y2j) (F 

This model can also be evaluated numerically, although a probability distribution 

describing the proportions in each sexual activity group is required. The model 
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can be explored for differing amounts of variation in the sexual activity rates, 

measured by the coefficient of variation, CV= a/m, where m is the mean of the 

distribution describing sexual activity rates and a' is its variance. 

The above models assumed that infected individuals move out of the incu- 

bating class at a constant per capita rate (Medley et al., 1988). One method of 

incorporating this is to assume that the probability of getting AIDS at time 7' 

since becoming infected with HIV is v07-' where vo and v are parameters which 

can be estimated from data. This would result in the incubation time having a 

Weibull distribution, the average incubation period D being 

D- r(v+2 v+l 11(v+l) 
v+l)( VO 

) 

The above models also assumed a constant level of infectiousness throughout this 

infectious period. There is evidence however that this may not be the case, as 

shown by Anderson and May (1988). A time dependent transmission probability 

can be created which would correspond to people being more infectious when 

initially infected with the virus and just before developing AIDS; 

P(r) = go exp(-, r/To) +, 81 exp[- (t - -r)IT, ]. 

These two approaches add to the complexity of the subsequent models as an extra 

variable 7-, corresponding to time since infection has been introduced and we need 

partial differential equations to describe the progress of the disease. Another 

possible approach to include the time dependent transmission probability would 

to add extra compartments to the model (Anderson and May, 1991). Parts of 

Equation 1.3 could be replaced by 

dY, 
= AX - voyl, dt 

d Y2 
VOY1 - SY2) 

dt 
dY3 y2 - VIY3i 
dt 
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and 
dA 

= vlY3- aA. Tt 

In this model it is assumed that everyone who is infected with HIV will go on 

to develop AIDS, as is currently thought to be the case. The classes Y1, Y2 

and Y3 have different meanings to previously. Each infected individual moves 

through three phases corresponding to the three infected classes. Susceptibles 

move into the first period of infectiousness corresponding to Yj at per capita rate 

A, where A is the force of infection per susceptible individual per unit time, in 

which the probability of infecting a susceptible partner during the course of the 

partnership -will be some constant value flo, they then move into a second infected 

compartment, within which they are not infectious, at rate vo = 11TO, and then 

move into a third infected and infectious compartment at rate s= 11D, where 

the associated probability of infecting a susceptible partner will be P1. From this 

third compartment they will then move into the AIDS class at rate vi = 1IT1. 

The individuals who have AIDS die at per capita rate a and do not mix with the 

other individuals. Hence the total period with HIV is To +D+T, where To, D 

and T, are the times spent in the three classes. The force of infection per unit 

time is A= c(3oYj +, 3iY3)1(X + Yj + Y2+ Y3) where c is the rate of acquiring 

new sexual partners. 

The above models considered a population of homosexuals, however in many 

parts of the world, such as sub-Saharan Africa, the spread of HIV and AIDS has 

been mostly due to heterosexual transmission. The theory behind the two sex 

models of the spread of gonorrhoea can be extended to model the heterosexual 

spread of HIV, where there will be separate transmission probabilities for male to 

female and female to male per sexual act. It has been suggested that of < Om <0 

where 3,,, is the probability of transmission per sexual act from infected male to 

susceptible female; Pf is the transmission probability per sexual act from infected 

female to infected male and 0 is the corresponding probability for two homosexual 
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males. Compartmental models can also be extended to include groups such as 

female prostitutes and male bisexuals, and split the male and female populations 

into promiscuous and non-promiscuous individuals (Knox et al., 1986). 

Models relating to the sexual spread in Africa must also re-examine the as- 

sumptions used in previous models such as the population size remaining con- 

stant. The demographic consequences of such spread are discussed by Anderson 

et al. (1988). Such demographic models also include the high prevalence of 

paediatric AIDS and the effect on future population sizes. 

The mixing patterns used in the above models all assume that the duration of 

sexual partnership is negligible and if transmission occurs within a partnership 

it must occur instantaneously, this however is a simplification about which Dietz 

and Hadeler (1988) note 'the formation of a pair of susceptibles renders them in 

a sense temporarily immune to infection as long as the partners do not separate 

and have no other contacts with other partners'. This pair formation should be 

included in both homosexual and heterosexual models. Such models have been 

studied by Dietz (1987). 

Using a heterosexual population as an illustration we can divide the population 

in to three compartments; males, females and pairs, denoting the number of 

individuals in the first two compartments at time t as m(t) and f (t) respectively 

and the number of pairs at time t as p(t). Suppose that the rate at which these 

pairs form is 0(m, f) which depends on the number of males and females, and 

the pairs separate at rate a. There is a natural mortality rate P in the population 

and new individuals arrive in the population at influx rate A. A model for the 

pair formation will be 

dm(t) 
=A+ (u + P)P(t) - mm(t) - O(m, f 

dt 
df (t) A+ (0, + P)P(t) - tif (t) - O(m, f), U-t : -- 
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dp(t) 
and dt 

(or + 2p)p(t) + 

This model has to be extended to include the presence or absence of infection, 

denoting for example in the males mo as the number of susceptible males and M, 

as the number of infective males, fo, f, respectively for susceptible and infective 

females and pol as the number of pairs with a susceptible male but infective 

female, and 00, (t) is the rate at which pairs with a susceptible male and infective 

female form. We define poo, plo, pil, Ooo, Ojo and 01, in the analogous fashion. 

We then have 

dmo (t) A+ (0,00 + , )Poo (t) + (U01 + tl)pol (t) _ t1mo (t) _ 000 (t) _ 00, (t), 
dt 

dmi (t) 
= (orlo + lt)plo(t) + (all + fi)p1l(t) - jimi(t) - Olo(t) - 011(t), 

dt 

dfo (t) 
+ (aoo + A)POO (t) + (Orlo + A)Plo lifo (t) - 000 (t) - Olo 

dt 
df, (t) (0-01 + A)Pol(t) + (oril + A)Pll(t) - lifi(t) - 001(t) - 011(t), 

dt 
dpoo (t) (o-oo + 2M)poo (t) + Ooo (t), 

dt 
dpoi (t) 

= -(ao, + 2p)pol(t) + Ool(t), 
dt 

dplo(t) (alo + 2p)plo(t) + Olo(t), 
dt 

and dt =- (or, 1+ 2[i)pl 1 (t) + 011 (t) - (1.4) 

We also have to alter Equation 1.4 to include within partnership infections. To 

do this we assume that a partnership begins with a sexual act, then subsequent 

acts occur as a Poisson process of rate p until terminated by separation. We also 

assume that sexual contact only occurs within a pair. Assuming that the male 

to female transmission probability is c,, and the female to male transmission is 

ef we then have 

dpoo (t) 
(aoo + 21L)poo(t) + Ooo(t), 

dt 
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dp 
dt -- (croi + 2p + ef )pol (t) + (1 - -f ) 001 (t), 

dp 
dt =- (orio + 2p + -,,, )plo (t) + (1 - c,,, ) Olo (t), 

dpil(t) 
and dt 

(cril +2ti)pll(t) + 011(t) +CfOol(t) +c. Olo(t) +cfppol(t) 

+E. Pplo W- 

Dietz and Hadeler (1988) discuss the properties of this model and Dietz goes 

on to extend the model, to include homosexual males and bisexuals, having in 

Dietz (1987) twenty nine variables in his models, with forty two parameters. This 

model demonstrates the problem that with so many parameters, it may be difficult 

to obtain reliable estimates, although Dietz uses data relevant to Germany for 

estimation. 

Other research has explored and evaluated differing mixing frameworks-, such as 

assortative mixing where all sexual activity occurs within the groups, proportional 

mixing where the fraction of sexual contacts of people in activity class i that are 

made with people in class j is equal to the fraction of total contacts made by the 

population that are due, to people in class j or preferred mixing which is a linear 

combination of assortative and proportional mixing. Blythe et al. (1991) present 

a unified theory of sexual mixing which also includes pair formation. 

Sattenspiel (1989) examined the structure and social context of social interac- 

tions relevant to the spread of HIV, in which she first described previous models 

which stratified the population of interest into subgroups, which she noted can 

either correspond to sexual activity or to geographic location. This is achieved 

by looking at n subgroups, with anxn matrix with n' terms in it describing 

the interactions between groups. Consider two infection rates in the population, 

aj, the within group infection rate from an infected individual to a susceptible 

individual in subgroup i and flij, the rate of infection from an infected person 
in group i to a susceptible in group j. This only includes varying probabili- 
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ties of infection between groups, not varying probabilities of mixing. Sattenspiel 

(1987) developed models for the spread of hepatitis A which included migration 

matrices to describe the probability of two individuals from different subgroups 

coming into contact with each other and explores the effect of heterogeneity in 

these models by varying the migration matrix. This approach is similar to that 

of Abramson and Rothschild (1988), which also includes both physiological and 

behavioural co-factors in the matrix models. 

Another form of matrix model which has been used not only to examine the 

spread of HIV, but other diseases such as measles and rabies, is the spatial model 

of disease spread (Mollison, 1977; Cliff et al., 1981 and Gani, 1990). In this 

the mass action assumption of Hamer, in which contact between susceptibles 

and infectives occurrs by homogeneous mixing throughout the population, is re- 

examined. A simple model of this type would model the disease spread on a 

two dimensional lattice where, at the point (i, j) at time t, there could be a 

susceptible S, an infective I, or an immune R individual. Assuming that time 

is discrete, at time t+1 the infectivity status of the individual at that point 

would be dependent on the infectivity status of the eight neighbouring points on 

the lattice at time t, those at (i ± 1, j± 1). This model can be developed using 

the theory behind Markov fields, or alternatively by computer simulation. Other 

research uses matrix models such as random graphs and random cellular automata 
(Yakowitz et al., 1990). Other models which use a similar lattice structure can 

be used to evaluate differing vaccination programs, although this is more relevant 

to diseases such as measles (Greenhalgh, 1986). Spatial models have also been 

developed to describe the spread of rabies within foxes, where the mass-action 

assumption of homogeneous mixing is also unrealistic. Such models have been 

used to explore the geographical spread of the disease throughout Europe and to 

consider the possible options for the control of the disease if it ever entered the 

United Kingdom (Murray, 1993). 
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1.4.6 Modelling the Spread of HIV via Needle Sharing 

The first paper which concentrated on the spread of HIV via needle sharing was 

presented by Kaplan (1989). We shall only briefly mention this paper in this lit- 

erature review as the next chapter is concerned with extending and adapting this 

model. This paper modelled the prevalence of HIV in a population of IDUs who 

share needles within shooting galleries. Two proportions are examined, the pro- 

portion of IDUs who are infected and the proportion of needles that are infected. 

The model is deterministic in nature and employs quite restrictive assumptions. 

Allard (1990) presents a mathematical model which describes the risk of infec- 

tion from sharing injection equipment. He examines the probability that a syringe 

becomes infected when used once by an infected person, and then extends this to 

obtain the probability that the needle becomes infected after being used C* times. 

He similarly describes the probability that a person becomes infected after using 

an infected needle C times. Using these probabilities, different sharing scenarios 

are described such as random sharing and sharing between partners. Although it 

is recog4ised that the the probability of a person becoming infected after using 

an infected needle is unknown, Allard demonstrates that random sharing, such 

as that which happens in shooting galleries, is more risky for a wide range of 

parameter values. This paper, however, was only concerned with the probability 

of becoming infected and as such did not include any of the population dynamics 

of the IDU population. Aylward et al. (1995) describe in a similar fashion the 

related problem of contaminated medical equipment being reused in vaccination 

campaigns in developing countries. 

Peterson et al. (1990) present a Monte Carlo simulation of HIV infection 

in a population of IDUs. The stochastic nature of this paper contrasts with 

Kaplan's deterministic approach and this is commented on by the authors. As this 

paper uses computer intensive techniques, many compartments can be employed, 
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describing both HIV infection progression and the drug-using dynamics including 

monthly, weekly and daily injecting. A disease progression model is created which 

includes acute infection, asymptornatic and pre-AIDS symptoms compartments, 

as well as an AIDS compartment. In parallel to this disease progression model, 

a model which also describes the progression between monthly use, weekly use 

and daily use is also described. Two other states are possible within this drug 

use dynamic system; using 'jail not using' and 'community not using'. Both of 

these states allow IDUs to remain in the system without returning into the general 

population or dying from reasons other than AIDS. They do not, however, account 

for the possibility of needle sharing within prison. A third model describes the 

social networks in which sharing occurs. They categorise the various sharing 

mechanisms into pooled sharing within shooting galleries, sharing within small 

groups, and sharing with a stranger. 

The three interacting models are then combined. Having noted that an impor- 

tant benefit of stochastic modelling is its capacity to join disparate sociological, 

behavioural and clinical information into one model, they describe various sce- 

narios, and show that random sharing results in-higher numbers of infected IDUs 

than structured sharing. They demonstrate the effect of various intervention pro- 

grams and suggest that the model's ability to mimic complex social networks and 

to incorporate a sufficiently realistic structure of HIV progression makes it readily 

adaptable for use in other localities. They suggest that this justifies the expense 

of acquiring local drug and behavioural data. 

Blower et al. (1991) present a deterministic model which they used to assess 

the epidemiological consequences of heterosexual, IDU and perinatal transmission 

in New York City. They demonstrate the significance of the dynamic interaction 

of heterosexual and IDU transmission. The model consists of thirty four ordinary 

differential equations and employs twenty biological-behavioural transmission pa- 
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rameters. When it is used to predict the future number of adult or paediatric 

AIDS cases, there was considerable uncertainty as demonstrated by extremely 

wide confidence intervals of the prediction estimates. An in-depth sensitivity 

analysis is undertaken. It was found that only a few key parameters are impor- 

tant in predicting the spread of the disease, however the biological parameters 

describing the probability of transmission both through sexual contact and by 

needle sharing are important. They conclude that their results suggest that long 

term precise estimates of the future number of AIDS cases will only be possible 

once values of these key variables have been evaluated accurately. 

Within their model, IDUs are classified as either stranger-users or buddy- 

users; the former being comparable to the shooting galleries that Kaplan models 

and the latter described as the sharing with close friends or relatives in social 

environments. As they do not specifically include injecting equipment as a vector 

for HIV transmission in the same way that Kaplan (1989) does, they note that 

the risk of infection in stranger-users depends only on the rate of sharing needles, 

the HIV transmission efficiency per injection and the seroprevalence in that sub- 

group of users. In addition, the risk of infection in buddy users also depends on 

the stability of the buddy affiliations over time. Different sexual mixing matrices 

are also described. 

Atkinson (1996) used simulation techniques in examining HIV transmission 

among IDUs. In a similar fashion to Peterson, he opted for using a mathemat- 

ical simulation language in describing the transmission dynamics, in this case 

the General Purpose Simulation System, citing Leslie and Brunham (1990) as 

a good example of the techniques in modelling the homosexual spread of HIV. 

The shooting gallery is again focused on, and as the simulation package modelled 

individual IDUs within a hypothetical cohort, heterogeneity of sharing needles 

could be included. Atkinson notes that in contrast to the spread of a disease such 
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as measles, the spread of HIV results from an exchange of body fluids after a 

conscious partnership selection, the spread of HIV among IDUs involving needles 

as an intermediate vector. 

Simulation languages are also useful in that the stochastic variability can be 

directly included and common distributions such as the Weibull distribution can 

be assumed for parts of the disease spread dynamics. The modelling concentrated 

on a single shooting gallery which consisted of one hundred IDUs. These IDUs 

could either share with one other person, or share with up to four others, sharing 

either daily or weekly. An IDU would either always clean the needle before 

injection, or never clean the needle before injection. Initially all needles are clean 

and the disease spread is sparked by the introduction of one infected individual. 

A seniority between IDUs in sharing is modelled, as is a rotation of needles 

resulting in each needle being discarded after it has been used fifty times. The 

disease progression is modelled including an incubation period, and all infected 

IDUs die a fixed length of time after becoming infected. 

In order to simulate the disease spread, a heterogeneous structure was assigned 

to this cohort. The parameters used in the simulation were gathered from the 

available literature, in particular, the probability of infection per injection with 

an infectious needle was assumed to be 0.005. This probability was then used 

indirectly in sampling from a geometric distribution the number of injections 

with an infected needle that were required to infect an IDU. It was assumed 

that seroconversion occurred after fifty days after initial infection. Incubation 

times and survival rates are again drawn from the available literature. Different 

scenarios are modelled in which the sharing rates and the probability of an IDU 

cleaning the needle are varied, and the results are presented over a period of five 

years following the introduction of the infected IDU. 

Within the discussion, it is noted that the highest risk combination of sharing 
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and cleaning resulted in the highest infection rates, resulting in over half of the 

cohort of IDUs becoming infected after five years. A comparison to herd immunity 

is discussed such that the effect of some IDUs cleaning needles may offer some 

protection to those that do not clean needles. Goforth and Berleant (1994) also 

describe the use of simulation models when examining HIV spread, however their 

paper describes the qualities of the simulation program 'The Interactive Model 

for AIDS prediction' (IMAP2) rather than the theoretical aspects of the models. 

Capasso et al. (1995) combine some of the more basic ideas from Kaplan's 

(1989) model with a mathematical model for the basic single population SIR 

model with vital dynamics for AIDS as analysed by Jacquez et al. (1988). They 

mimic the assumptions of Kaplan in that they include the flushing of infected 

blood from a needle by the blood of an uninfected IDU in their models and they 

assume that an addict becomes infected after exposure to HIV with probability 

a. They also provide an explicit expression of the force of infection based on the 

kinetics of HIV transmission due to sharing of drug injection equipment within 

a friendship group of IDUs. Within this mainly mathematical paper, in which 

they examine the stability of the equilibria, they go on to extend the one-group 

model into a multiple-group model. 

Iannelli et al. (1997) study several hypotheses about the dynamics of HIV 

epidemics among IDUs. The paper is described as 'A study of contact struc- 

ture through a mathematical model' and examines the spread of the disease as 

described by a system of deterministic equations, following on from Blythe and 

Anderson (1988) and Thierne and Castillo-Chavez (1989). Data from the Latium 

region of Italy is compared to the numerical results from the model, and a best-fit 

estimate of the parameters is obtained. They show that heterogeneous models 

provide a better fit to the observed data, as does assuming that there exists a 

peak in infectivity soon after infection. They note some of the difficulties in aim- 
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usually only being available on AIDS incidence rather than HIV prevalence. The 

authors chose to ignore the role of needles as disease vectors, opting instead to 

model HIV transmission through needle sharing by using the 'mass-action law' 

as described previously in this chapter in the context of modelling the spread of 

measles. They also combine sexual and needle sharing transmission. 

They seek to answer some key questions about modelling HIV transmission, 

including how relevant is the hypothesis of variable infectiousness during the 

incubation period and whether it is possible to assume that IDUs form a homo- 

geneous group with respect to the disease transmission. The system of differential 

equations used includes ordinary and partial derivatives, and although we do not 

reproduce them here, a discussion of the parameters, and their distributional 

form is warranted. In particular the infectiousness is modelled as an initial peak 

followed by a low, almost zero, level of infectiousness, which is then followed by an 

increasing level of infectiousness as the IDU progresses to AIDS. This presented 

problems in estimating the infectiousness distribution from epidemiological data 

as this was intrinsically linked to the distribution describing the length of time 

the IDU had been infected, therefore they normalise the infectiousness curve by 

assuming the value 1 at the first peak and exploring the infectiousness of an in- 

dividual over time relative to the infectiousness of an individual at the first peak 

of infectivity. 

Arch, Perucci and Spadea (1992) also employ data from an Italian region when 

they model the interaction between the heterosexual and IDU populations. They 

split the population into eight groups by gender, sexual activity and whether or 

not they inject. To model the varying infectivity of HIV, they spilt the infected 

compartment into three, and these assumptions result in a system of forty differ- 

ential equations. In contrast to Kaplan's model, the infection process is described 
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by the force of infection per needle sharing partnership rather than by a probabil- 

ity related to infection following one random sharing act. This enables different 

mixing patterns to be examined. They then obtained data from behavioral and 

epidemiological research to construct the parameters for this model, concluding 

that the model solutions appear to fit with the observed surveillance data. 

A stochastic model of the HIV epidemic involving both sexual contact and 

intraveneous drug use was created by Tan and Tang (1993). Three interacting 

populations are examined; IDUs, homosexual men and homosexual men who are 

also IDUs. They assume a latent stage in the disease progression, and partition 

the infective stage into five substages. In their list of basic assumptions, they 

create the framework for describing the transmission dynamics, including vari- 

able levels of sexual activity or needle sharing, variable infectivity throughout the 

disease progression, immigration, emigration and mixing patterns. Using a vari- 

ety of probabilistic techniques and after some eloquent mathematics, they model 

the process as a chain multinomial distribution. They also derive the expected 

numbers of this distribution and extend the model into a continuous time model. 

This is again highly theoretical, however they-illustrate the application of the 

model using some Monte Carlo studies. In this they assume three levels of sexual 

activity and three levels of sharing. The parameters used in these simulations 

and the initial values are derived from the literature. They assume that since 

the probabilities of HIV transmission from sexual or needle sharing contacts are 

proportional to the amount of free HIV in blood or body fluid (Redfield and 

Burke, 1988) they chose probabilities of HIV transmission in both the sexual and 

drug use spread to comply with these amounts of HIV. For example, during the 

infection period, the probability of HIV transmission is chosen as a monotonically 

increasing function of the. infection duration. They examine four scenarios to con- 

trast a deterministic model with stochastic models in which mixing patterns have 

a recognised distribution or randomness. They show that although the random- 
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ness in the number of different partners per unit time seemed to have little effect 

on the spread of the disease, the deterministic model was a poor approximation 

to the corresponding expected numbers of the stochastic model. 

Gani and Yakowitz (1993) use a Markov Chain approach to modellin Ig the 

spread of HIV among IDUs. In contrast to Kaplan's model, they assume a stable 

group of buddy-users, some of which are infected. They extend the model to 

include immigration and emigration. Recursive techniques were used to derive 

the various probabilities associated with the model from the probability of needle 

sharing and the probability of transmitting HIV through an infected needle. The 

latter probability is taken to be either 0.175 or 0.35. They compare the form of 

the matrix that they had derived to a chain binomial infection model previously 

outlined by Gani and Jerwood (1971). In conclusion, they note that although 

data on IDUs are difficult to obtain, the model can be used to examine the effect 

of changes of the above probabilities. However this model examines the disease 

transmission almost at a micro level which they regard as a necessary foundation 

for the macroscopic effects on a large population of IDUs. Gani and Yakowitz 

(1993) also model the spread of HIV among IDUs using a random allocation 

method in conjunction with the Markov chain aproach, further adapting the 

methodology to include the replacement of infectives. 

Kretzschmar and Wiessing (1998) explore the risk of a future rise in the preva- 

lence of HIV in an IDU population with low HIV prevalence but continuing risk 

behaviour. They create a stochastic simulation model to describe a network of 

buddy relationships (sharing in small groups of friends in a setting like the home 

of one of the participants) in an IDU population, modelling both the transmission 

of the disease between buddies and between strangers. They combine results from 

two surveys of IDUs in the Netherlands to obtain estimates for the behavioural 

parameters, while assuming that the infectivity of a needle, as expressed as the 
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probability of transmission in one sharing event, depends on how long the IDU 

has been infected with the virus. After demonstrating the typical spread of the 

disease using the parameters derived from surveys they go on to investigate dif- 

ferent prevention strategies. They note that there exists a threshold sharing 

frequency, below which the epidemic never takes off. Above this threshold there 

are a range of sharing frequencies for which a large stochastic variation between 

single epidemics can be observed, hence they suggest that making predictions 

about the future course of the epidemic is virtually impossible. Although they 

find that introducing risk reduction behaviours into the population will not com- 

pletely eliminate the disease (in some cases the prevalence decreases very slowly), 

they conclude that prevention measures specifically focussed on new IDUs can 

have a large impact on the incidence of HIV. 

The basic reproductive number RO for HIV within an IDU population is esti- 

mated by Massad et al. (1994). They adapt the malaria models of Ross (1911) 

and Macdonald (1957), noting that in an outbreak of malaria among IDUs in 

Brazil which was attributed to needle sharing, the insect vector may have been 

replaced by needles. They therefore adapt the notation and parameters in Mac- 

donald's model to make them relevant to HIV spread. After deriving an equation 

for RO using this analogy, they then create a mathematical model similar to Ka- 

plan's and, by analysing the stability of their system of equations around the 

trivial solution (that is when the disease dies out), they obtain a similar expres- 

sion for Ro. They again seek to draw an analogy with Macdonald by introducing 

heterogeneity, both in the probability that a needle becomes infected after an 

infected IDU has used it, and in the rate at which the IDU injects. They use 

data from a behavioural study to obtain parameters used in calculating RO and 

show that their results are consistent with Kaplan's. They also show that their 

results suggest that the prevalence of HIV in the drug injecting community in 

Santos, Brazil is, at 61.5%, close to their estimated equilibrium value of 67%. 
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1.5 Conclusion 

In conclusion it is worth discussing a paper by Blower and Medley (1992) which 

proposes the utility of mathematical models in understanding the dynamics of 

HIV transmission among IDUs. After defining epidemiological mathematical 

models for a non-specialist audience, they discuss at length the data requirements 

for such models. They split the required data into three groups, demographic, 

behavioural and biological. Behavioural studies as described in Section 1.2.4, can 

be used to estimate some parameters, but questionnaires which code responses 

into categories. are not always the best tool to detect behavioural changes. For 

example a IDU changing their average number of sharing partners per week from 

five to two would still be coded into a category like 0-5. They note the difficulty 

in estimating the biological parameters, in particular the probability of becoming 

infected after using an infected needle. They conclude that when examining the 

interaction between the IDU population and the heterosexual population there 

is a greater need for demographic data, particularly the size and the sex ratio of 

IDU population and the bridge population by which the disease can pass between 

the two populations. In conclusion they note the uses of mathematical models 

in this field, however they stress the importance of obtaining more direct data 

that can be used in models. They hoped that their paper would generate a closer 

collaboration between modellers and drug use researchers, something that this 

Thesis also hopes to achieve. 
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Chapter 2 

Deterministic Models 

2.1 Kaplan's Deterministic Models 

Kaplan (1989) presents a deterministic model for the spread of HIV among inject- 

ing drug users (IDUs) who visit shooting galleries. This was the first paper which 

explored the modelling of disease spread via shared injecting equipment. The 

model is deterministic and initially assumes a homogeneously mixing population 

of IDUs. To provide a tractable model there are many assumptions which render 

it practically invalid for determining the future nature and extent of the epidemic 

but, as Kaplan notes, it is useful in evaluating control strategies. In particular 

it assumes that all sharing occurs in shooting galleries, that needles are selected 

at random and needles that have been infected remain infected until cleaned or 

flushed. This last assumption excludes the very real possibility that needles will 

lose their infectivity over time. Kaplan however does explore this possibility later 

in the paper. The assumptions used by Kaplan are as follows: 

1) The population that is of interest is large. 

2) All sharing occurs in shooting galleries. 

3) Each IDU visits shooting galleries according to a Poisson process independently 

of other IDUs. 

47 



4) Injection equipment becomes infectious if it is used by an infected IDU. 

5) When infectious equipment is used by an uninfected IDU, the act of injecting 

will flush the needle with a fixed probability. Flushing is defined as the needle 

unintentionally getting cleaned by the uninfected blood of the IDU. 

6) Any uninfected IDU who uses infectious injection equipment is considered to 

have been exposed to HIV. 

7) Given exposure to HIV an IDU becomes infected with a fixed probability. 

8) The needle sharing IDU population remains constant. Infected and susceptible 

IDUs who leave the population are immediately replaced by susceptibles. 

The spread of HIV through sexual contact and through sharing injecting equip- 

ment outwith shooting galleries is ignored. 

The model which Kaplan presents comprises two differential equations, one 

which describes the rate of change over time of the proportion of the population 

that is infected, the other describing the probability of an IDU encountering 

infectious equipment. These differential equations are 

dß(t) 
= AY7r(t) - 1\'lß(t)[l - 

(1 
- 7r(t»(1 - 0)] (2.1) 

dt 

and 
d7r (t) 

= (1 - 7r(t))AP(t)a - 7r(t)/-i. (2.2) 
dt 

Here 7r(t) is the proportion of the IDU population that is infected at time t, 

, 
3(t) is the proportion of needles infected at time t, A is the rate per individual 

of visiting shooting galleries, 7 is defined as the gallery ratio such that if there 

are N IDUs and n needles within the various shooting galleries then Y= N1n. 

0 is defined to be the probability that an uninfected IDU flushes an infected 

needle with a single injection, a is the probability that, given exposure to HIV 

an IDU will become infected and p is the total rate at which infected IDUs leave 

the sharing injecting population. This includes IDUs who cease sharing because 
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they develop AIDS, IDUs who die from AIDS and IDUs who cease sharing for 

other reasons. Kaplan does not solve these equations explicitly, instead he looks 

at the steady state situation and analyses RO, the basic reproductive ratio of 

infection. RO can be interpreted as the number of new infections amongst IDUs 

that occur on introducing a single infected IDU into a population of susceptibles 

at equilibrium directly caused by the original infected IDU. In a deterministic 

model, the epidemic will only develop if Ro is greater than 1. Looking at 3 and 

7r, the steady state values of 3(t) and 7r (t) are obtained by setting the derivatives 

both to zero. This gives 0=0,7r =0 or ir = 7r*, where the non zero 

equilibrium values #* and 7r* are given by 

Aa - pO 
Aa 

(2.3) 

and 7r *= Aa - /A (2.4) 
Aa+p(l - 0)* 

Equations 2.3 and 2.4 are not valid when Aa < pO, in which case the only 

equilibrium is 7r =0 and 0=0. This suggests that 

Ro -- 
Aa 
ILO 

(2.5) 

Kaplan proves Equation 2.5 for RO directly. Clearly we expect an epidemic to 

result only if the initially infected IDU can generate more than one secondary 

infection, that is if Ro > 1. 
I 

We can explore this model by numerically integrating Equations 2.1 and 2.2 

using the program SOLVER. Kaplan suggests values for the parameters used in 

the model, however in 1989 when this paper was published, little was known about 

the transmission dynamics and the associated parameter values. In particular, 

the value of the parameter a could not, at that time, be estimated with any 

precision. Indeed later papers by Kaplan, such as Kaplan and O'Keefe (1993) 

suggest that the value used in this original paper may be a gross overestimate 

of the true probability of infection. We shall discuss parameter value estimation 
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in Chapters 5 and 6, however in developing the modelling techniques initially 

presented in this chapter, we shall employ the suggested values from the original 

paper. In particular we shall define a set of standard parameters and initial values 

which will enable us to explore individual parameters with reference to a standard 

set of remaining parameters. 

A is set at 5.952 x 10-3 visits per hour, which corresponds to IDUs visiting 

shooting galleries once a week, p=1.43 x 10-1 deaths per hour, which corresponds 

to the life expectancy of an infected IDU of eight years, a=0.075,0 = 0.25 and 

a gallery ratio 7= 10. Although in this deterministic model the size of the IDU 

population and the number of shooting galleries are only expressed relative to 

each other in the parameter y, we wish to model the spread of HIV within a 

population consisting of 10,000 IDUs. This is approximately the number of drug 

injectors in Glasgow (Frischer et al., 1993a). As we require 7= 10, we assume 

that there are 1,000 needles within shooting galleries. We assume that HIV is 

introduced into a susceptible population when one IDU becomes infected from an 

external source at time t=0 thus initially one IDU and no needles are infected. 

Hence the initial proportions of infected IDUs and needles are7r(O) = 0.0001 and 

, 
8(0) =0 respectively. The differential equations are strictly valid only when the 

number of infected needles and IDUs are large. For smaller numbers a stochastic 

model is strictly needed. We shall return to this point later in the thesis. 

We shall next look at the result of some numerical simulations to examine 
the effect of individually altering A, the rate at which an IDU visits shooting 

galleries, a, the probability of infection from an infected needle, 0, the flushing 

probability and -y, the gallery ratio. The remaining parameter values are kept 

fixed. Looking at 7r(t), the proportion of the population that is infected at 

time t, we can see in Figure 2.1 that ir(t) follows a logistic type curve. This type 

of logistic curve is found in many types of modelling, particularly population 
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Figure 2.1: The effect of varying A, in the model described in Equations 2.1 and 
2.2. The value of A in the three curves corresponds to once per day, once per 
week and once per month. Remaining parameters as indicated in text. 
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Figure 2.2: The effect of varying a, in the model described in Equations 2.1 and 
2.2. Remaining parameters as indicated in text. 
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Figure 2.3: The effect of varying 0, in the model described in Equations 2.1 and 
2.2. Remaining parameters as indicated in text. 
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Figure 2.4: The effect of varying y, in the model described in Equations 2.1 and 
2.2. Remaining parameters as indicated in text. 
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growth modelling when there is a carrying capacity as described by Nisbet and 

Gurney (1982). This confirms that the proportion infected increases slowly to 

begin with, this rate of increase will increase, then the rate of increase slows 

down as the proportion of the population that is infected increases slowly towards 

its maximum value. From Figure 2.1 we can see the effect of varying the rate 

at which IDUs visit shooting galleries. When A corresponds to IDUs visiting 

once a day, the disease spreads rapidly. The disease spreads less rapidly when 

it is assumed that IDUs visit shooting galleries less often and 7r(t) reaches lower 

equilibrium values. Figure 2.2 shows the effect of varying a, the probability of 

becoming infected on exposure to HIV. We can see that as a increases, the speed 

at which the epidemic 'develops increases and r(t) reaches a higher equilibrium 

value. 

We can see from Figure 2.3 the effect of varying 0, the probability that an 

infected needle is flushed by an uninfected IDU. The epidemic takes off quicker 

for lower values of 0, although over the parameter values illustrated by the simu- 

lations in Figure 2.3 the equilibrium values appear less varied than those obtained 

by varying a and A. Indeed on keeping the other parameters constant, 7r* ranges 

from 0.968 when 0=0.15 to 0.969 when 0=0.45. Decreasing either a or A or 

both has the effect of lowering R0, which suggests that control strategies which 

decrease the rate at which IDUs share may be useful in reducing the proportion 

of the population that becomes infected. We can also see from Figure 2.4 that 

varying y does not have any effect on the equilibrium value Of 7r, which reflects 

the absence of y from Equation 2.4. Lowering -y, or increasing the amount of 

injecting equipment available whilst keeping the number of IDUs fixed will have 

the effect of slowing down the spread of the disease. 

It is worth noting that the terms which represent the death of IDUs or other 

removals may be very artificial. It is assumed that when an infected IDU dies, 

53 



they are immediately replaced by a susceptible IDU, keeping the population size 

constant. This implies that the rate at which people enter the IDU population 

is dependent on the rate at which infected IDUs cease sharing injection equip- 

ment, which is questionable. This birth/death process results in most of the 

population becoming infected, -other more realistic forms of representing death 

or removal will result in different types of curve. Kaplan concludes by showing 

that his model demonstrates that policies such as the distribution of cleansing 

solutions and/or injecting equipment amongst IDUs could slow down or stop the 

intravenous transmission of HIV in shooting galleries. 

2.2 Analytical Results for Kaplan's Determinis- 
tic Model 

We will now explore some of the quanitites of the deterministic model, in paticular 

the stability of the equilibrium values #* and7r*. 

2.2.1 Existence of Equilibria 

We shall first prove the existance of the equilibrium values. Consider the differ- 

ential Equations 2.1 and 2.2 which describe the spread of the disease. These can 

be re-expressed as 

dP(t) 
Ay[(l -, 8(t))7r(t) - 00(t)(1 - 7r(t))] (2.6) 

dt 

and 
d7r (t) 

7r (t)) AP (t) a -7r(t)p. (2.7) 
dt 

Lemma 2.1 

(a) Suppose that RO < 1. Then the equilibrium where the disease has died out 
0*= Ir* =0 is the onlY equilibrium. 
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(b) If Ro >1 then the equilibrium values are given by 

go 
and 7r* = 

Aa - go 
Aa Aa + p(l -T) I 

Whatever the initial proportions of infected needles and infected IDUs, provided 

P(O) >0 or 7r(O) >0 such that the disease is initially present 6(t) -+ 3* and 

7r (t) -+ 7r* as t -+ oo. If P(O) = 7r(O) = 0, that is the disease is not initially present 

then P(t) = 7r(t) =0 for all times t>0. 

Proof 

Let 7r* and P* denote the respective equilibrium proportions of infected IDUs and 

needles. From Equations 2.1 and 2.2 

7r * 0,6* Aa, 3* 
Ti--7 =1-, 6* -P 

(2.8) 

po From the last equality we deduce that 0 or P* =1-T. So if RO <1 
a 

(Aa < pO) the only feasible solution is 8* =7r* = 0. If Ro >1 (Aa > pO) then 

this solution is possible but there is a unique other solution where 
PO 

Ta 

and 7r 
Aa LI) (1 _, 7r*) 

P Aa 

which implies that 7r* = 
Aa - pO 

. Hence we have proven the statements Aa + p(l - 0) 

concerning the existence and uniqueness of the equilibria in Theorem 2.1. 

We can also graphically demonstrate the existance of the endemic equilibrium 

as follows. Equating these derivatives in Equations 2.6 and 2.7 to zero, we can 

obtain the isoclines 

7r 
0+ (1 - 0)7r (2.9) 

and 
117r 

(2.10) Aa(l - 7r) 

These can be shown graphically in Figures 2.5 and 2.6. Two figures are shown, 
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Figure 2.5: Isoclines using values Figure 2.6: Isoclines as before 
from Kaplan (1989). with a=0.01. 

one with the parameter values as described in Kaplan (1989), the other with a 

far lower value for a from which the point at which the isoclines cross may be 

more easily seen. These figures again illustrate that 7r* decreases as a decreases. 

Information about the equilibrium points can be gathered graphically from 

these plots. The intersection of these isoclines denotes the equilibrium point, 

(7r*, P*). The position of this equilibrium point is dependent on the two isoclines, 

and in particular the gradient of them. These will be 

d# 
-0 (2.11) d7r [0 + (1 

- 0)7r]2 

and 
dfl 

-A (2.12) 
d7r Aa(l - 7r)2 

which will give the initial gradients to be 
17A. 

For the isoclines to intersect we 0 Aa 

must have > ýa, or equivalently RO >1 (using Equation 2.5). 

2.2.2 Local Stability of Equilibria 

We can also explore the local stability of the equilibrium value by considering 

whether if the proportions P, 7r are slightly displaced from this point (7r 

will they return to it or move away. We can write 
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, 
6(t) = #* + b(t) (2.13) 

and 7r (t) = 7r* + p(t), (2.14) 

where p(t) and b(t) are assumed to be small. Then we can re-express Equations 

2.1 and 2.2 as 

d(ß* + b(t» 
= A-y[(1 - (ß* + b(t») (7r* + p(t» dt 

- O(P* + b(t)) (1 - (7r* + p(t)))] (2.15) 

and 
d(7r* + p(t)) 

= (1 - (7r* + p(t)))A(P* + b(t))a - (7r* + p(t))Ii. (2.16) 
dt 

which working to the first order in small quantities and using the equilibrium 

equations will reduce to 

dp(t) [-Aa, 3* - p]p(t) + [Aa - Aa7r*]b(t) (2.17) 
dt 

and 
db(t) 

Ay[l - #* + 00*]p(t) + Ay[07r* -0- 7r*]b(t). (2.18) 
dt 

We can simplify this by rewriting the equations as 

dp(t) 
= kilp(t) + kl2b(t) (2.19) 

dt 

and 
db(t) 

= k21P(t) + k22b(t), (2.20) 
dt 

where k1l -Aap* - p, k12 = Aa - Aa7r*, k2l Ay[l -, 8* + 00*] and k22 

A-y[Oir* -0 7r*]. Noting that from Equations 2.19 and 2.20 

d2 p(t) 
- (kil + k22)dp(t) + (kilk22 - 

kl2k2l)P = 01 
dt2 dt 

the solution p(t) can be expressed as 

A, exp(Alt) + A2 exp(A2t) (2.21) 

for some constants & A2 which can be found from the initial conditions, where 

All A2 are the roots of the auxiliary equation 

A2 - (kil + k22)Ä + (kl, k22 - 
k12k21) z-- 0- (2.22) 
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The behavioural. characteristics of this local deterministic system will be deter- 

mined from the values of A,, A2. The roots will be 

A, =1 [(kil + k22)+ VI(kil - 
k22 )2 + 4kl2k2l}l (2.23) 

2 

A2 =1 [(kil + k22)- VI(kil - 
k22 )2 + 4kl2k2l (2.24) 

2 

and defining 

A= (kil - 
k22 )2 + 4kl2k2l (2.25) 

we can see that if A<0 then A, and A2 will be complex numbers, which will 

give rise to exponentially damped sinusoidal solutions if (kjj + k22) <0 and 

exponentially increasing sinusoidal solutions if (kil + k22) > 0- If A>0 then 

both A, and A2 will be real numbers. In that case returning to Equation 2.21 we 

can see that p(t) will increase exponentially as t increases if either A, or 1\2 >0 

and decrease if both are negative. 

Returning to our example and substituting our parameters for kil, k12, k21 and 

k22 
, we can see that 

A= ([-, \aß* - pl - \, y[07r* -0- ir*])' + 4, \-y[, \a - \a7r*] [l - ß* + Oß*] (2.26) 

will always be non-negative as A, -y, a and 0 are defined to be non-negative and 

each of the quantities ir* and P* lie between zero and one. 

To examine p(t), reformulating the equation for the roots gives 

A, = -1 
[([-Aafi* 

- /I] + A'Y[07r* -0- 7r*]) + VA (2.27) 
21 

and A2 = ý' 
[([-. \aP* - /. I] + A'Y[07r* -0- 7r*]) - -V/A (2.28) 

21- 

Ali A2 can be shown to be both negative as follows. 

A2will be negative as ki, + k22< 0 as both k1l and k22 are negative. Al will 

be negative if V((kil + k22 )2 + 4(kl2k2l - 
kilk22)) < kil + k22. However this is 

true as 
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kl2k2l 
- 

kilk22 [Aa - Ao7r*]Ay[l -, 8* + 0,3*] (2.29) 

+ [Act#* + /, t]Ay[07r* -0- 7r*], 

Ay [[Aa 
- Aa7r*] [1 - P* + 00*] + [Aa, 3* + p] [07r* -0- 7r*]] - 

From the equilibrium versions of Equations 2.1 and 2.2, 

7r* 
Aa(l - 7r*) and Or* -0- 7r* 

so [Aa - Aa7r*][1 -, 8* + Op*] + [Aafl* + p][07r* -0- 7r*] (2.30) 

J, 17r 7r 
+ 0, T) - [Aap* + p] 

117r /l7r 
-- - p7r* + u7r*O - Aar - 0* -F 

= p7r*(0 - 1) - Xa7r* < 0. 

Hence A, is also negative. Hence p(t) will decrease exponentially, which tells 

us that the endemic equilibrium point is locally stable to small perturbations 

whenever it exists. We could similarly perform a local stability analysis of the 

equilibrium where the proportion of infected needle and the proportion of infected 

IDUs are zero P* = 7r* = 0. This equilibrium is locally stable if RO <1 and locally 

unstable if RO > 1. However in the next section we shall show that these results 

are global stability results. 

2.2.3 Global Stability of Equilibria 

Having proved the existance and uniqueness of the endemic equilibria and proved 

that thes equilibria is locally stable, we shall now prove the global stability results. 

Theorem 2.1 

(a) Rom Lemma 2.1 we have shown that if Ro :51 the equilibrium where the 

disease dies out is the only equilibrium. This equilibrium is globally stable. What- 

ever the initial proportions of infected IDUs and infected needles the disease will 
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die out and both fl(t) and7r(t) will tend to zero. 

(b) If RO >1 then there are two possible equilibria, one where the disease has 

died out and a unique endemic equilibrium. The equilibrium where the disease 

has died out is locally unstable. The endemic equilibrium where the disease is 

present is globally stable. Whatever the initial proportions of infected needles 

and infected IDUs, provided, 8(0) >0 or 7r(O) >0 so disease is present 0(t) -+ #* 

and ir (t) -+ 7r* as t -+ oo. If 0(0) =7r(O) = 0, such that no disease is present 

initially then 8(t) =7r(t) =0 for all times t>0. 

Proof 

Suppose first that RO < 1. We shall show that 7r -+ 0,0 as t -+ oo. 

Let u=fl+krf6rk>O- Then 

dfl 
A^f[7r - Op - #7r(l - 0)] :5 Ay7r - AyO# (2-31) 

dt 

and 
d7r 

Aa, 8 - p7r - Aa, 87r < Aa, 8 - p7r. (2.32) aT 

Hence 
du 

< (Ay - kp)7r + P(Aak - A-yO) < 0, (2.33) Tt- 

0 Aoy du U if IL >k> As Ro <1 we can choose such a k. Then < -cu for 
a -i-t 

some c>0 as both terms in Equation 2.33 are negative. Hence 0<u< uoe-It. 
Therefore u -+ 0 as t -+ oo. We deduce that 7r -+ 0 and P -+ 0 as t -+ oo. 

This proof breaks down if RO =1 and this case will be discussed later. We 

shall now prove the assertions about stability in Theorem 2.1 in the situation 

where Ro >1 namely: 

a) 7r(O) = 0, P(O) =0 implies that 7r(t) = 0, P(t) = 0, for all t, 

and 

b) 7r(O) >0 or P(O) >0 implies that 7r(t) -+ 7r*, P(t) -+ P* as t -+ oo. 
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The proof of a) is trivial but b) is more difficult. Write ý=P-P*, Tr = 7r - 7r*. 

Then 

dO 
Tt = -A^tO# - Ayo7r(1 - 0) + Ayfr - A^lp*! Tr(1 - 0) (2.35) 

dFr 
and Tt = AO - pFr - Aa(ý7r* +flfl. (2.36) 

If X= Fr , 
we can express these equations as 

dx 
= V-, X, dt 

where vX -A-y[O + (1 - 0)7r] A-y[l - (1 - 0)#*] (2.37) 
Aa(l - 7r*) -[p + Aafl] j 

Define vo -A-yO A-y[l - (1 - 0)0*1 (2.38) 
Aa(l - -7r*) -A 

We assert that there exists a matrix 

W= W, 0 
with WlW2 >0 

(0 

W2) 

such that WVO + VOW is negative semidefinite. In other words for all y 

(YI) Y2) i yT(WVO + VTW)y < 0. We can write Vo -A B). 
0C -D 

Then AD - BC = A7011 _ A2a-y(l - 7r*)[1 - (1 - 0)0*] (2.39) 

7r * 

= A-Yom - AYllý; Il - (I - 0)0*1 

7r * 

using Aa(l - 7r*) from the equilibrium equations 

A-y 7r * Itlo 
- tiý; + m(1 - 0)7r* 

ß*[- 7r* + Oß* + ß*lr* (1 
- 0)] 

= 0, again using the equilibrium equations. 

WVO + VTW -Awl Bwl )+ (-Awl CW2 ), 
Now 0 CW2 -DW2 Bwl -DW2 

(2.40) 

T(WVO + VTW)y = Y2 y2. (2.41) or y0 -2Awl ,+ 2(Bwl + CW2)YlY2 - 2DW2 2 

For this quadratic form in yj and Y2 to be negative semi-definite we need 
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4ADwjW2 ý: (Bwj+ CW2 )2 
or equivalently 0> (Bwl- CW2 )2 

. Hence we choose 
W1 = C7W2= B, both positive. Then 

T(IAWO + VTW)y =- )2 < 0. y0 -2(%/A-Cyl - IVIBDY2 (2.42) 

WVO is symmetric (hence has real eigenvalues). Define 

h=x TWX 
= WIX2 + W2X2 (2.43) 1 2' 

dxl dX2 dx 
Write i X2 - and i= -ýft- dt Tt 

dh 
t t 

(2.44) then T= 2wixiii + 2W2X2i2i 

Wl 
+ ý2) Wl (XbX2) 

W2 

) 

X2 W2 

ýX2 
1) 

= XTW, ý + iTWX. 

But ýb = Vx. Hence 

dh 
= XTWVX + XTVTWX, (2.45) ý -t 

= XT(WV + VTW)X. 

if v= 
(Vll V12), (2.46) 

V21 V22 

WV= VllW1 V12WI (2.47) 
(V21W2 

V22W2 

and WV + VTW 2v, lwl V12WI + V21W2 (2.48) 
(V12WI 

+ V21W2 2V22W2 

00 
Writing Vo V11 V12 

Vol Vo 
(2.49) 

2 22 

we note that vll :5v0y V22 Vo 7 V12 =V0 and V21 =V0 11 22 12 21. Hence 

x 
T(WV + VTW)X = 2vllWlX2 + 2(Vl2Wl + V2lW2)XlX2 + 2V22W2X2, (2.50) 12 

2002 2vo, WlXl + 2(v 22 2 1 12W1 + V2lW2)XlX2 + 2v W2X 

XT(WVO + VTW)X. 
0 

Note that 
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dh 
= XT(WV + VTW)X, (2.51) Tt 

T(WVO + VTW)X, x0 

0. using Equation 2.42 

Therefore h= x'Wx is monotone decreasing over time. 

If k is a constant the curves h=k= wlx 
2+ W2X2 are ellipses centre 7r*) 12 

and axes proportional to 7.01, W2- We assert that there exists c>0 such that 

motion never enters 
102 + 7r2l < IE2. Write Po =, 3(0) and 7ro = 7r(O). 

a) If we start with 0< flo :5 P*, 0< 7ro :5 ir* then the trajectory stays in the ellipse 

passing through (00,7ro), centre (#*, 7r*) for h< Wl(po - #*)2 + W2 (70 
_ 7r*)2 

*2 W10*2 + Wr , with strict inequality as either flo >0 or 7ro > 0. 

By continuity of h in a small circle centre the origin 

> Wl p* 
_ ßo)2 + W2 (7r* 

_ 7ro)2 (2.52) 

and the result follows. 

b) If we start with 80 > P* or 7ro > 7r*. Draw a circle centre the origin radius 

min((O*/2), (7r*/2)). If the trajectory never enters this circle the result follows. 

If the trajectory enters this circle it must cross the boundary of the circle for the 

first time at (01,7r, ) say where 0< 61 and 0< 7r, :5 7r*. Either 61 >0 

or 7ri > 0. Hence the trajectory will stay in the ellipse passing through (01,71), 

centre (#* 7r*). This result follows by arguing as previously. 

Hence there is an e>0 such that 10' + 701 >E for all t. By choosing 61 =E 
A/2 

we deduce that there exists el >0 such that E, or 7r > E, for all t. 

Now 
dh 

=1 
(XT (WV + VTW)X) (2.53) 

dt 2 

2 
-A-y(O + (1 - O)r)xlwl 
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X2 + [Ay(l - 
(1 

- 
0)0*)tVI +AO(l - 7r*)W2]1112 + /\a#) 2W2 

= (X T(WVO + VTW)X) _ A, y(1 _ 0)7rX2W, _, \aoX2 W2 012 

0)7rx 2 w, - AaOx 2 using Equation 2.42 1 2W2- 

Now for all (7r, 0) either 7r > c, or P> cl. 

. ý: El or (ii) Xj = a) If ir > cl then either (i) p-3< 

Without loss of generality c, < lp*. 
2 

(i) If 7r > cl and 0> cl then 

dh 
< -Oh, where 0=c, minIA-y(l - 0), Aapj > 0. (2.54) it- - 

(ii) If 7r > c, and xi < -(P* - cl) < -10* then (2.55) 2 

dh P*2 

Tt < -w, A-y(l - O)c, 
4= -01, where 01 > 0. (2.56) 

dh dh 
b) Similarly if > c, either it- < -Oh or dt 

< -02, where02 > 0- 

dh h(O) for all t therefore < -Oh or As h is monotone decreasing 0 
-< 

h< 

dh 
<- min(01,02) 

h 
(2.57) 

4Tt - h(O) 

So 
dh 

< -V)h where V) = min 0,01 , 
02 

> 0. (2.58) jT-I h(O) h(O) 
I 

Integrating we deduce that 0 <- h 
-< 

h(O)e-'Pt which implies that h0 as t 

oo. Therefore 7r -4 7r*, P -* #* as t -+ oo. 

We can modify this proof to show that the disease free equilibrium is globally 

stable when RO = 1. As before 

-,,: Wlp2 7r2 + W2 

as #* and 7r* are both zero, and h is still monotone decreasing in t. We now have 

that (fl, 7r) is a two-dimensional flow in the compact set 

7r): ß ýý 0,7r > 0, h < wi 7r2 1. ß(2) + W2 0 
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We also have the following Lemma. 

Lemma 2.2 

The system has no closed orbits inside the region D. 

Proof 

As h is monotone decreasing it must be constant on a closed orbit. But in D 

the curves where h are constant are incomplete arcs of ellipses and therefore D 

cannot contain any closed orbits. Thus we have proved Lemma 2.2. 

Therefore by using the Poincar6-Bendixson Theorem (Jordan and Smith, 1977) 

all solutions starting in D tend to the unique disease free equilibrium. 

I This completes the proof of Theorem 2.1. We have therefore shown that the 

two possible equilibrium values exist and we have established that the first equi- 

librium is globally stable when RO :51 and that when RO >1 and flo >0 or 

7ro >0 then P(t) -+ P* and 7r(t) -4 7r* as t -+ oo where (0*, 7r*) is the unique 

endemic equilibrium. 

2.2.4 Stochastic Variation around the Deterministic Tra- 
jectory 

The above analysis has been purely deterministic. We are also interested in 

whether or not a stochastic trajectory will hit the axes. In our example this will 

not automatically result in an equilibrium as in a predator-prey system (Renshaw, 

1991), but it will still be of interest. If the equilibrium point is far enough from 

the axes relative to the likely variation in stochastic values then the trajectory 

should avoid them. To explore this we can evaluate the variances associated with 

the trajectories. 

We first have to convert Equations 2.1 and 2.2 into differential equations for 
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the absolute numbers of infected IDUs and needles. These will be 

di Lt) 
AI (t) 1- 

L(K AO 
i (t) (N -I (t)) (2.59) 

dt n)n 

and 
dI(t) Aa, (t) (N - I(t)) - MI(t). (2.60) 

dt n 

where i(t) is the absolute number of infected needles at time t and I(t) is the 

absolute number of infected IDUs at time t. The IDU population will be of 

constant size N and the number of needles will be n, also a constant. We denote 

the endemic equilibrium values for IDUs and needles as I* and i* respectively. 

For Ro >1 these are given by 

n 
Aa - I. Lo (2.61) 

Aa 

and PN 
Aa - pO (2.62) 

Aa + p(I -T) 
Let R denote a small time increment, Equations 2.59 and 2.60 can be rewritten 

as 

i(t + it) - i(t) = 
[AI(t) (1- L(-t) AO 

i (t) (N -I (t))] it (2.63) 
nn 

and I(t + it) - I(t) =Aai (t) (N - I(t)) - pI(t)] it. (2.64) 1n 

We can convert these into stochastic equations in a similar manner to that of 

Renshaw (1991, p 182) by adding on noise components JZ, and JZ2 to produce 

i(t + öt) - i(t) CL- \I(t) ,- 
i(t) A0 

i(t)(N - Iffl) Öt + SZ, (t)(2.65) 1 

A ý-c 
and I(t + bt) - I(t) = 

ý. :n 'i (t) (N -I (t)) - jJ (t)] 6t + W2 (t) (2.66) 

Here 6Z1(t) and 6Z2(t) are independent of 6ZI(s) and 6Z2(s) for all times s :At. 

We can express i(t), I(t) as 

i-[l + ul(t)] (2.67) 

and 
1*[l + U2(t)]- (2.68) 
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This gives us 

i*[ul(t + it) - ATO [1+ U2(t)] 1- i*[l + ul(t)] (2.69) UIWI =In 

AO 
i* [1 + ul (t)] (N - 1* [1 + U2 (t)]) Jt + 6Z1 (t) 

n 

and 
P [U2 (t + Jt) - U2 (t) I Aa 

i* [1 + ul (t)] (N -P 
[1+ U2(t)]) (2-70) 

n 

AI* [I + U2 (t)]] Jt + JZ2 (t) 
- 

i* AO 
on using AI* (i - n) -n i*(N - 1*) 0 (2.71) 

and 
Aa 

i*(N - I*) - pI* 0, (2.72) 
n 

and neglecting terms such as u', u2 and UlU2 gives 12 

ul(t + ul(t) + 
AI* U2(t)n 

_ (U 1 (t) + U2 (t)) (2.73) [n( 
i* 

- 
Ao (ul(t)N 

- (Ul(t) + U2(t))I*)]Jt+ 
JZL! t) 

ni 

and U2 (t + 60 
---: U2 (t) + 

Nai* (Ul(t) + U2(t))) - AU2(t)]6t (2.74) 1n 

6z2(t) 
+ 

I* 

By considering possible events in the small time interval (t, t+ 6t) and for i (t) 

I(t) near i*, I* we have 

PrIJZ1 = +1} = AI*Jt, (2.75) 

Pr{SZ, = -1} = 
AO 

i*(N - I*)Jt, 
n 

PrIJZ2 = +1} = 
Aa 

i* (N - P) R, 
n 

and Pr{JZ2 = -1} ! -- MPR. 

For, example the event JJZ2 = +1} corresponds to one additional IDU becoming 

infected. There are N-I* susceptible IDUs, each of whom visits shooting galleries 

with probability approximately Aft in the small time interval [t, t+Jtl and chooses 
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an infected needle and is infected with probability 
az 

. Hence 
n 

E(JZ2)=(+l)PrIJZ2=+I}+(-l)PrfJZ2=-I} (2.76) 

Aci* 
(N - I*) - pI. 

] it 
n 

= 

Similarly E(Zj) = 0. Also 

Var(JZ, ) = (+1)2 PrlbZl = +, } + (_1)2 PrIJZ1 = -11, (2.77) 

i* 
+ 

Aoi* 
n) n 

(N - I*) R, 

NO 
=1 

12 1n i* (N - I*) 
IR, 

and Var(JZ2) ý-- (+l)'PrIJZ2 = +1} + (_1)2 PrJJZ2 = -1}, (2.78) 

Ac'i* (N - P) + Id" 
IR 

n 

=-- (2pI*)Jtl 

while arguing similarly Cov(6Z,, 6Z2) ý-- E(JZ16Z2) is of order &2 and can be 

ignored. 

We can square and cross multiply Equations 2.73 and 2.74 to find a2, the 1 

variance of ul(t), o, 22, the variance Of U2(t) and 0'12, the covariance of ul(t) and 

U2(t). We assume that 0,2 is constant in time, as is a22 and the covariance U12 as 1 

the system in essentially in an equilibrium situation. Working only to the first 

order in Jt 

22 AI* n_+ C2) a, =a, + Var(JZI (t)/i*) +2- 0'12 (0'12 (2.79) 
.n(l) 

- 
\o (u21N 

- 
(Cr12 + 0'21)1* 

.2-2+ Var(6Z2 (t) IP) +2 
Aai* N 2] jt + op 02- or2 0'12T* _ (01 + 0'12) por2 

[n( 
I* 

(2.80) 
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AI* 2n 2 
and U12 --` 0'12 +[n 

(Or2 

i* 
(0,2i + 612) 

AO 
U12N - (or 2+ 0'12 2 

n 
Aa'* 

2N 2) (0'12 +a /-lOrl2 Jt + 0(6t), 
n 

(0' 
P1)-I 

(2.81) 

22 2AO AI* n 2) 
al or, + -(N - I*)Jt +2 a12 (0'12 + 0' (2 

. 82) 
i*n 

[-n (1) 

_ 

AO (0,2 
+ 0,2)j* N-(0'12 

)] 
it + 0(it), 

2p Aai* N2 
o, 22 = o, 22+ Tit+2 -Orl2 

(6j 
)- 

tlo'i2] it + o(Jt), (2.83) [n(2+ 
0'12) 

AI* 2n 
-2 

Ao 
2+ 

0'12) 1* (2.84) and C12 Orl2 +[n 
(Or2 

-i* 
(Or2 + 0'12)) -n 

(Grl2N 

- 
(U2 

Aai* 2N 2)) (0'12 + Cl AU12] 6t + O(Jt)- 
n 

(O"T' 

Subtracting off the constant terms, dividing by Jt and letting Jt tend to zero we 

deduce that 

AO AI* n 2) 0= 

i*n 
(N - I*) +[n 

(U12 
;; 

(612 + 0' 1 (2.85) 

_ 
AO(or2 

+ 0,2)j* 

n 
N-(Crl2 

=p+ 
[Aai* N_ 

(Or2 
_ 

2] 

n 

(612 

P2+ 
0'12)) A072 (2.86) 

AI* 2n 2 
\0 (Ul2N- 

2+ U12)I and 0= [n (0' 
2 -i 2+ 0'12)) -n 

(0,2 (2.87) 

Aai* 2N 
_ +0,2) (Orl2 11612 

n 
(cr'T' I. 

These equations can be solved by standard methods to give expressions for the 

Cr2' 0,2 variances 12 and the covariance 0'12. From this, using Equations 2.67 and 2.68 

we have Var(i) = 
(i*)2or2, Var(I) = 

(1*)20,2 
and Cov(i, I) 12= 

Using the mathematical manipulation language Maple, Equations 2.85,2.86 

and 2.87 can be solved although the resulting terms for the variances are alge- 
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a i* I* Var(i) Var(I) Cov(i, I) 
0.010 939.9 7,964.3 58.5 1,725.0 60.1 
0.020 970.0 8,898.0 30.0 1,010.9 30.0 
0.030 980.0 9,244.5 20.2 712.7 20.0 
0.040 985.0 9,425.3 15.2 550.0 15.0 
0.050 988.0 9,536.3 12.2 447.6 12.0 
0.060 990.0 9,611.2 10.2 377.4 10.0 
0.070 991.4 9,665.4 8.7 326.2 8.5 
0.075 992.0 9,687.2 8.2 305.5 8.0 
0.080 992.5 9,706.3 7.6 287.2 7.5 
0.090 993.3 9,738.3 6.8 256.6 6.6 
0.100 994.0 

. 
9,764.0 6.1 231.8 6.0 

Table 2.1: The effect that varying a, and hence i* and I* has on the variances 
Var(i), Var(I) and Cov(i, I). 

braically challenging. It is therefore easier to give values to the parameters A, 

a, it, 0, N and n and explore the effect that these values have on the variances. 

The variances are tabulated for different values of a and hence i* and I* in Ta- 

ble 2.1. The other parameters used are as previously described, in particular N, 

the number of drug injectors in the population is taken to be 10,000 and n, the 

number of needles is taken to be 1,000. 

This table can only partly describe the complex relationships between the 

parameter values a, 0, A and p, the population sizes N and n, the equilibrium 

values I* and i* and the related variances and covariance. We can however see 

that I* increases as a increases. We also have a measure of the random fluctuation 

around the equilibrium values, given by Var(I) and Var(i). We also can see that, 

for this choice of parameter values as I* increases, Var(I) decreases. Thus for 

lower equilibrium values, there is a greater associated variance and thus there will 

be a greater chance that the disease will die out. It does seem unlikely that the 

disease will die out in the drug using population, given the large value of i* and 

the small value of the associated variance which show that for these parameter 

values, virtually all of the needles are infected under equilibrium. This can be 
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further demonstrated by calculating the coefficient of variation, namely 

CV(I) 

When a=0.075, as originally suggested by Kaplan, CV(I) = 0.18. As this is 

substantially smaller than 1 then it is unlikely that random movement away from 

the endemic equilibrium will result in the disease dying out. 

2.3 Summary 

In this chapter we have introduced a model due to Kaplan (1989) which describes 

the spread of HIV between IDUs who visit shooting galleries. We have derived 

an expression for the basic reproductive ratio RO. RO can be thought of as the 

expected number of secondary infections that will occur when a single infected 

IDU is introduced into a large population consisting entirely of susceptibles, with 

syringes uninfected. Similarly RO has an interpretation as the expected number 

of secondary infected syringes caused by introducing a single infected syringe into 

a similar population. In order to control the disease strategies which lower Ro 

can be explored. 

We have also shown that there are two possible equilibrium values, one where 

there are no infected IDUs and no infected needles and a second endemic equilib- 

rium where there are infected IDUs and infected needles. The first equilibrium 

is always possible, the second is possible if and only if Ro >1 when it is unique. 

For RO <1 the first equilibrium is globally stable. Whatever the initial numbers 

of infected addicts and infected needles the number of infected addicts and in- 

fected needles both tend to zero at large times. For RO >1 when the disease is 

introduced into the population, so flo >0 or 7ro >0 then the numbers of infected 

syringes and infected addicts tend to their unique endemic equilibrium values. 

We have also looked at the introduction of random effects into the analysis of 
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this model. These effects can be thought of as random fluctuations about the 

deterministic trajectories. We have derived equations satisfied by the variance 

and co-variance of these fluctuations about the equilibrium values and numerically 

evaluated these variances and co-variances. It is important to explore stochastic 

effects as deterministic models may not be adequate to accurately describe the 

spread of the disease. In the next chapter we shall go on to develop stochastic 

simulations of these models for the spread of HIV and AIDS amongst injecting 

drug users. 

72 



Chapter 3 

Stochastic Models 

3.1 Introduction 

Whilst Kaplan's model is deterministic in nature, there are many situations where 

stochastic models are more appropriate. Deterministic theory does not take into 

account random fluctuations which may be inherent in the process which is to be 

studied. Deterministic theory may be sufficient when the population that is to 

be studied is large and the effect of individual variability will not be so impor- 

tant, but for models studying smaller populations, or models which divide the 

population into smaller sub-populations stochastic theory may have to be devel- 

oped. Also the use of a stochastic model may be appropriate even in a situation 

where the population size is large if the initial number of infectives is small. A 

stochastic simulation model describing the spread of HIV in a population of IDUs 

is presented in this chapter. It employs the same assumptions as the previously 

presented deterministic model to enable direct comparisons between the deter- 

ministic and the stochastic models. As there are methodological differences in 

the development of stochastic and deterministic models, many of the assumptions 

used in the deterministic model can be relaxed. 
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3.2 Simulation Models 

Monte-Carlo simulation is commonly used by scientists in many fields of research, 

therefore only a limited introduction will be given. The theory of simulation re- 

lies on the generation of pseudo-random numbers, in which a replicable stream 

of numbers is produced which appear to be randomly distributed over a uniform 

distribution. A standard method of producing such numbers is the congruen- 

tial random number generator, where the nth number produced depends on the 

(n - 1)th where xn =_ (axn-1 + b) mod m. The constants a, b and m are chosen 

to provided a stream of numbers with desirable properties and xO is an arbi- 

trarily chosen seed. The properties looked for in a good psuedo-random number 

generator include closeness to uniformity over the range of desired values, lack of 

structure in the data stream and a long period before cycling. Number theory can 

be used to derive properties of the psuedo-random generator and this is discussed 

in Morgan (1984). In particular the properties of the NAG random number gen- 

erator G05CAF is discussed. Ripley (1983) suggests that this generator, which 

uses the values a= 13 13) b=0 and m= 211 is acceptable for most purposes 

and shows that the generator has a period of 2" if the seed is odd. A typical 

run of the simulations described below use approximately 2" random numbers 

hence this period is satisfactory. Also the structure of the programs using the 

random numbers can be thought of as a complex simulation system, in that the 

number of calls to the random number generator within one loop through the 

simulation depends on the events that are simulated, which in turn depends on 

the random numbers generated. Thus the effect of any structure or any cyclic 

nature in the stream of numbers will be reduced. Therefore, throughout this 

Thesis, the family of algorithms which use the NAG random number generator 

G05CAF are employed. 

The model takes the form of a Pascal program which is run on a Sun worksta- 
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tion. In its most basic form the model stores the proportion of the population that 

is infected and also the proportion of the needles that are infected. The program 

simulates an IDU visiting a shooting gallery and selecting a needle. Depending 

on the infectivity status of both the IDU and needle, several events may happen, 

either an IDU infects a needle, an IDU flushes a needle or a needle infects an IDU. 

The model also includes infected IDUs dying, leading to an infective immediately 

being replaced by a susceptible as in Kaplan's model. This unrealistic assumption 

remains initially to enable comparison between Kaplan's deterministic model and 

the following stochastic models. This program is a continuous time simulation in 

that it simulates the time to next event then simulates that event, updating the 

infected proportions after each event. This program was comprehensively verified 

using detailed output from a number of runs. 

3.2.1 Output from Stochastic Simulations 

The output from this program can take several forms, the one of most interest 

will be the proportion of the IDU population that is infected. Other output 

can include the proportion of needles infected or the ratio of infected IDUs to 

infected needles. The ouput can be examined using a standard graphical package 

such as Splus. Looking at the output from the program it is clearly similar 

to the deterministic model in that it also appears to be a logistic-type curve 

starting from close to zero and resulting in almost all of the population becoming 

infected. Figure 3.1 is one realisation of the stochastic process corresponding 

to the deterministic model previously described. It uses the standard set of 

parameters (A = 5.952 x 10-1 visits per hour, it = 1.43 x 10-1 deaths per hour, 

a=0.075,0 = 0.25 and 7= 10). The parameter -y is constructed from N 

the IDU population size divided by n, the number of needles available. 7r will 

then be constructed as IIN with the initial value for 7r, 7ro equal to I01N. The 

simulations can only begin with values of iro such as 11N, 21N,... . We have 
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Figure 3.1: One stochastic realisation compared to the corresponding determinic 

model. 

taken 7ro = 1/10,000 in the realisations portrayed in Figures 3.1 and 3.2, which 

corresponds to the initial value 7ro = 0.0001 in the deterministic model. In both 

the deterministic model and the stochastic models described it is assumed that 

all needles are initially uninfected. 

It is important to note that the deterministic Equations 2.1 and 2.2 imply 

that the total number of IDUs N and the total number of needles n enter the 

calculation only through the gallery ratio -y. There is no reason why this should 

be true for the corresponding stochastic model. Thus for a given value of -Y 

the simulation results are independent of the actual values of N and n for the 

deterministic model but not for the stochastic model. 

As this is a stochastic model and the output from one run of the program will 

only be one realisation of the process, it is better to examine the output from 

several realisations. We have simulated the epidemic 50 times using the param- 

eter values and the initial numbers of infected needles and IDUs as in Chapter 

2 and in Figure 3.2 we have shown three different realisations of the same epi- 
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dernic process selected to give an idea of the variation between realisations. The 
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04 

C 

Figure 3.2: Three realisations from the same stochastic process. 

stochastic variation will clearly have most influence at the start of an epidemic 

when the number of infected IDUs and the number of infected needles are small. 

In Figure 3.3, which explores the initial stages of three realisations using the 

above parameter set and starting values, we can see that in one realisation the 

disease spreads quite quickly, that in another the disease spreads at a slower 

rate and in the third realisation the disease dies out. We need to use summary 

statistics from several realisations when describing the stochastic process. This 

output will be summarised as either the mean or median value of a number of 

simulations along with a measure of the variation about such a mean or median. 

If we define 9*(t)k as the mean number of infected IDUs at time t calculated from 

k non-extinct realisations, 9*(t)k can be thought of as an estimate of AY*(t) which 

will be a conditional mean number of infected IDUs at time t, conditional on the 

number of infected IDUs being larger than zero. 

jl*(t) " IiM 9*(t)k- 
y k-+oo 

This stochastic mean is therefore not directly comparable to any of the individual 
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Figure 3.3: Initial stages of three realisations from the same stochastic process. 

realisations, as it may well be constructed from several realisations. We can 

also work with the unconditional mean, which will be affected by the number 

of zero realisations. The median values can also be examined; these would not 

attach so much weight to zero realisations. As the distribution of the number of 

infected individuals and the number of infected needle may well be skew there 

are attractions to using the median as a measure of location. The median, mean 

and conditional mean number of IDUs infected over time from 50 simulations are 

shown in Figure 3.4. To clarify this figure, as the disease begins to spread at the 

earlier time points both the mean and the conditional mean are greater than the 

median. This is because the distribution is skew with a tail to the right and zero 

values from any simulations in which the disease died out would not have such 

a great effect on the mean values. At the later stages of the disease spread, the 

median and the conditional mean are almost exactly similar, but the mean value 

calculated by summing over all realisations includes a zero value corresponding 

to the realisation in which the disease died out. 

In order to construct a measure of the variation it is necessary to understand 
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Figure 3.4: Median value from 50 simulations of the same stochastic process 
compared to the mean and the conditional mean as defined in Equation /msg3.1. 

what the distribution of the number of equivalent proportions of infected indi- 

viduals over different realisations at a fixed time point will be. While more exact 

representations of the distribution will be explored later, it will be clear that 

such a distribution will be very skew at earlier values of time and perhaps also 

bimodal, with one peak corresponding to the zero realisations. 

Figure 3.5 describes as a histogram the number of IDUs that are infected af- 

ter 20 weeks, summarised over 200 realisations with the parameters and starting 

values as described above. As it is clear that this distribution is skew any con- 

fidence intervals involving parametric measures such as the standard deviation 

will, at best be unsuitable, and at worse give infective proportions less than zero 

or greater than one. One alternative would be to treat the number of infectives as 

a binomial distribution with infection comparable to success, although there does 

not appear to be any theoretical justification for this. The favoured alternative 

is to look at either the minimum and maximum values across the realisations, or 

to examine a pair of percentiles constructed from our set of simulated outcomes 

to give an approximate confidence interval for a single realisation of the process. 
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FiglIFV 3.; -): Dist ribution of realisation towards the start, of the stochastic process. 

Figure 3-6 shows the median, niiiiiinuin and maxiinum of* 50 realisations, and 

as can be seen ft-0111 the inininium values, this collection of realisations did not 

Include a reallsation in which the disease (lies out. 

3.3 Comparable Analytical Models 

tj 1) 0 III I Ills, section we shall der IvC differential equations sjjtIsti(ý(I I)\, pl., -I 

; IbIlItY that thel-c are r illf -ted IM's at tilll(, j. tllf-()I, t ll(ý('(Ih's Mid Y mf'c( 

I I; It CIY t Ilese (I If FVrent I al eq ii at Io I's PI-OXV to b(' ýIII al. vt ical IvI ntractable. However 

theY c; III be Integrated Illillivi-ically to give lis some insight Into the behaviour of' 

the stochastic Illodel over tIIII(1'. 

As noted by Nifley, (1975, IL 33) Wexndnistic theory is relatively straight- 

Forw; lrd .... oil the other hand, the simple stochastic epidenlic, opparently first 

Inelitiolled explicitly by Mirtlett, (1949), ralidly leads U) (imiplicaled inatheniat- 

i(.; Il almlysis., There are however some analytical modelling techniques that nlaýy 

be of interest, With regard to the model described by Kaplan (1989). Follow- 
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Figure 3.6: Median, minimum and maximum values from 50 realisations of the 
stochastic process. 

ing on from the assumptions in the stochastic simulation model a flow diagram 

describing the rates of change in the numbers of infected IDUs and needles is 

presented in Figure 3.7, where the number of infected IDUs and needles are de- 

noted by I and i respectively, and N and n are the total numbers of IDUs and 

needles respectively. Figure 3.7 illustrates the events that can occur in a small 

time interval of length R. It is assumed that only one event can occur in this 

small time interval, this will be either one needle becoming infected, one needle 

being flushed, one IDU becoming infected or one infected IDU ceasing to share 

and therefore is being removed from the population of interest and immediately 

replace by a susceptible. 

We can assign probabilities, as shown in the figure, to each event. While each 

of the probabilities will depend on the number of infected needles i and infected 

IDUs 1, we simplify the notation at point by abbreviating the probabilities to 

BjJt, DiR, B2R and D2R respectively. From this flow diagram it is possible to 

.,, y(t) where P--, y(t) is the probability that there are x formulate an equation in P 

infected needles and y infected IDUs at time t. From this a differential equation 
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Figure 3.7: Events that can occur in a small time interval of length R. 

can be formulated as describing the rate of change of P 

dP�:, y(t) Bl(x- 1, y)Pýý-1, y(t) +B2(XYY - 1)P., y-I(t) +D, (x+ 1, y)P , +�y(t) dt 

D2 (Xi Y+ 1) Px, ll+1 
(t) - R(x, y) P 

where R(x, y) = Bi (x, y) + D, (x, y) + B2 (x, y) + D2 (X) y). This equation is equiv- 

alently 

dP .y 
(t) 

=- 
[py 

+ (N - y)Xc'l: + 'X, Yy (n - x) + A-y (1 
- -M-) Ox] Py (t) 

dt nN 

'X-yy (n - (x - 1» P, 
-1, y(t) (N - (y - 1» 

Aax . [N11 

- -L) O(X + 1)1 P (3.2) + 
Ivy (i 

N , +l, Y(t) + fl(y + ')PX, Y+l(t). 

This formulation assumes that the time interval [t, t+ Jt] is small enough that 

the probability that more than one event occurs in this time interval will be 

negligible. However in the model described in the previous chapter it is possible 

for events 1 and 4 to occur simultaneously within a visit to a shooting gallery by 

a single IDU. So a fifth event corresponding to an IDU becoming infected and 
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the needle simultaneously becoming flushed will also be considered. Denote the 

rate at which this multiple event happens by M(x, y). The differential equation 

in Px, y(t) will now be 

dP--, y(t) ý BI(x- l, y)P., -I, y(t) +B2(x, y- 1)Px, y-, 
(t) +Dl(x+ l, y)Px+,, y(t) dt 

+D2(X)Y+1)Px, y+l(t)+M(X+liY-1)Px+l, y-l(t) -R(x, y)Px, y(t)(3.3) 

where now R(x, y) = BI(x, y) +Dl(x, y) +B2(X7Y) +D2(X7Y) +M(X, Y)- We 

assume that when a susceptible addict injects with an infected syringe the events 

that the addict is infected and that the syringe is flushed are independent. Thus 

on a single such injection the probability that both the addict is infected and the 

syringe is flushed is aO. The differential equation in Px, y(t) is now equivalently 

dP, y(t) A 
dt 

Ay(a +0- aO)x - (p + A)y +n (a +0- aO + 1)xyl PX, Y(t) 

+ (n - (x - 1»y] P 
-1, y(t) n 

" 
[-Aa(1 

- 0)x(N - (y - 1» 
n1 

px, Y-, 

" 
[, \, y(1 - a)O(x + 1) (1 

- -! N)Ipx+"Y(t) 

" A(y + ')P"Y+l(t) 

" AyaO(x + 1) (1 
-N) Px+l, y-l(t). (3.4) 

This model can be explored by converting this differential equation into one which 

describes the rate of change of the probability generating function, as described 

by Bailey (1964). The equation can then be reduced to 

197r(s'z; t) = Ay(((l-a)(1-0)-l)s+(1-0)asz+(l-a)O+aOz 
a 

7r (S' Z; t) 

at 
)5-S 

)a Z) + Az(s - 1) 5z 7r (s, z; t) 

+ 
A((a+O-aO+l)sz- 

S2Z _ (1 - 
O)aSZ2 

n 
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a)Oz - aOz 2) 7r (s, z; t) (3.5) 
19819Z 

where 7r (s, z; t) is the probability generating function of P--, y 
(t) defined as 

nN 
7r(S, Z; t) P�, 

Y(t)S'ZY. 
x=O y=O 

Solution of this differential equation by conventional techniques does not seem 

possible although there are some methods that can be used to provide approxi- 

mate solutions. We can convert the equation in the probability generating func- 

tion to an equation involving moment generating functions, or for ease of calcu- 

lation, cumulant generating functions, by using the transformation 

K(s, z; t) = log 7r (e-", e-'; t). 

Here K(s, z; t) is the joint cumulant generating function. We can now use an ap- 

proximation of the exponential terms by Taylor series and then equate coefficients. 

This approximation will result in an infinite system of differential equations in- 

volving r-ij (t), the mixed cumulants of order (i, i). However this system will not 

yield a useful solution as its order is infinite. To obtain a practical solution we 

would have to truncate the system. To do this for some (i, j) it would have be 

assumed that all cumulants of a higher order will be negligible. As there is no jus- 

tification for this, we shall explore a different method for solving these analytical 

equations. 

The equations that we are interested in have been reduced to Equation 3.5. 

Taking the partial derivative with respect to s of both sides of (4) gives 
a2 7r (S' Z; t) a a) (1 - 0) -1+ (1 - O)az) F7r(s, z; t) 

S asat S 
A-y 

«(1 
- a) (1 - 0) - 1) 8+ (1 - 0) asz 

+ (1 - a)0 + aOz 
02 

ir (S, Z; t) 
OS2 

19 Azä 
Z 

7r (s, z; t) 
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Z) + xz(s - 1)) 
a2 

7r (8, Z; t) 

19si9z 

+A 
((a+ O-aO+l)z-2sz- (1 -O)aZ2 

a2 
7r (8, Z; t) 

n) asaz 
+A 

((a+ 
O-aO+ 1)SZ _ S2Z _ (1 - 

O)aSZ2 

n 

a)Oz - aOz2) 
a3 

7r (s, z; (3.6) 
aS2aZ 

Let X and Y denote respectively the number of infected needles and the number 

of infected IDUs at time t. When Equation 3.6 is evaluated at s=1 and z=1 

it gives 

dE(X) 
= -AyOE(X) + AE(Y) -A (1 - O)E(XY). 

dt n 
dE(Y) 

and can also be found using similar methods, but as in the 
dt dt 

dE(X) 
expression for 

dt , they will include second order terms, which when evaluated 

will include third order terms and so on. There seems to be no justification in 

aproximating any of the higher order terms with zero, therefore the analytical 

modelling of this and comparable processes will not be pursued. Indeed for any 

more realistic models, it would appear that use of analytical methods will be 

intractable. 

3.4 Numerical Solution of Analytical Models 

We shall now look at at direct numerical integration of our analytical model using 

a technique outlined in Renshaw (1991). Consider the differential equations in 

P,,, y(t). These can be solved using numerical methods by approximating them by 

px, Y(t + At) =1- ityAt - (N - y) 
A(l - 0)ax 

At - 
\, yy (n - x) At 1 

- a) 1- -1 OxAt - A^ja 1-L OxAt 
N) N) 

I PX, v (t) 

, yy (n 
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[(N- (y Aa(l O)x 

[, \, y(l -a) 
(1 

- 
! L)O(x+1)]P., 

+,,, (t)At 
N 

+ /. I(y + 1)P"Y+l(t)At 

+ 
[Aya(1 

-N 
)O(X 

+ 1)lpx+,, Y-J(t)At 

+ O(At). (3.7) 

X, y(t), 0<x<n, 0<y<N is essentially a matrix of probabilities of size As P 

(n + 1) (m + 1) recorded at time t, the value of every cell in this matrix at time 

t+ Zýt can be calculated from the above equation. While not explicitly described 

by Equation 3.7, the approximation to the differential equations differ slightly 

when x=0, x=n, y=0 or y=N to include boundary conditions. On the 

boundary, for example when all IDUs are infected, the rate B2 will be zero. This 

is recognised in the following program by assigning values to cells of the matrix 

such as Px, N+l (t), however as the corresponding rates will all be zero, the assigned 

value will not be employed when calculating any of the Px, N(t + Zýt). The value 

of the matrix at time t+ 2At can then be calculated from the matrix at time 

t+ , *Nt, and so on. To provide a good approximation Zýt must be small. However 

the accuracy obtained by decreasing the size of At is offset by the running time 

of the program. Program testing and validation has shown that a time increment 

of Z-ýt = 0.01 hours in a program that simulates the spread of the disease over 10 
nN 

year is sufficient, the criteria for judging this is whether EEP., (t) converges 
X=O Y=O 

nN 
to one at each time step. Approximations can be used where F 

,E 
Px, 

y 
(t) is 

X=O Y=O 
scaled to one after each time step, although for the simulations that follow this 

mechanism was not needed. One of the major attractions of this method is that 

after each time interval, we have P.,,,, (t) for 0<x<n, 0<y:! ý N, which 

we can view graphically or use to derive a mean. One major disadvantage of 

this method is the memory that is needed to store a (N + 1) x (n + 1) matrix. 
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The population sizes that have been used in these examples are N= 100 and 

n= 10, with initially one infected IDU and no infected needles. This corresponds 

to 7r(O) = 0.01 or Po,, (O) = 1. This is simulated using a program developed 

in Pascal, which again was comprehensively tested and verified, using detailed 

output from a large number of runs. 

In Figures 3.8 to 3.11 we can see the state of the process at times t=1 month, 

t=4 months t=6 months and t=1 year. As in Chapter 2, the disease spread 

is triggered by introducing one infected IDU into a population of susceptible 

IDUs, thus P.,, y(O) =1 at x=0, y=1 and Px, y(O) =0 otherwise. Although 

we are examining a discrete stochastic process such that there can only be x 

infected needles and y infected IDUs where x and y are integers, the graphical 

representation of the process is easier to examine using a graphical device which 

assumes continuity between the x, y points and connects the points Px, y(t) with 

,,, y+, 
(t) and P.,, y-, 

(t). Px+,, 
y(t), 

Px-j, 
y(t), 

P 

In Figure 3.8, we see that the spike corresponding to one infected IDU and 

zero infected needles arose from the starting values which triggered the spread 

of the disease. Later, in Figure 3.9 we see that even though the initial spike is 

still present, more IDUs have become infected, however the proportion of needles 

that are infected appears to increase at a higher rate. This again is demonstrated 

in Figure 3.10 where almost all the needles are likely to be infected but the 

proportion of the IDU population that has become infected does not appear to 

have reached an equilibrium. This figure also shows quite clearly that there is 

a non zero probability that there are no infected IDUs and no infected needles, 

such that P0,0(t) approximately 0.01. In Figure 3.11 P0,0(t) is still approximately 

equal to 0.01, but this is difficult to visualise due to the difference in scale between 

Figures 3.9 and 3.10. However the bulk of the probability is centered on the 

values, x= 10 infected needles and y= 97 infected IDUs. These values compare 
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Figure 3.8: P,,,,, (t) after time t=I month. 
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Figure 3.9: P,,,, (t) after time t=4 months. 
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Figure 3.10: P,,, y(t) after time t=6 niontlis. 
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Figure 3.11: P,,,,, (t) after time t=1 year. 
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to the deterministic equilibrium values 8* = 0.99, ? r* = 0.969 for this choice of 

parameters calculated from Equations 2.3 and 2.4. and also to the equilibrium 

values obtained from the Monte-Carlo simulations described in Section 3.2. 

It should be remembered that as P 
.,, y(t), 0<x<n, 0<y<N is a ma- 

trix of probabilities the sum of all the elements will be one at all times. This 

means that we can explore the joint probability density function of what is es- 

sentially a bivariate distribution. As we now have the exact distribution we can 

re-examine the mariginal density function related to the number of infected IDUs. 

As previously noted, this distribution will not be symmetric, and any measure 

of confidence about where the mean of stochastic realisations is cannot rely on 

parameters such as the standard deviation. 

Figure 3.12: Exact Distribution 
of the number of infected IDUs at 
time t=1 month. 

�a 

C 

�C 

Figure 3.13: Exact Distribution 
of the number of infected IDUs at 
time t=4 months. 

Examining the distribution of the proportion of the population that is infected 

at set time intervals, we can see in Figure 3.12 that towards the start of the 

epidemic the probability density function for the number of infected IDUs is 

skew, moving on to have, as in Figure 3.13, one peak centered on 25 infected 

IDUs and a smaller peak at 1 infected IDU which occurs as there is still an effect 

of the intial values. An additional discrete element is also present which describes 

the probability that there are zero infected IDUs and zero infected needles. Later 
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1: 

Figure 3.14: Exact Distribution 
of the number of infected IDUs at 
time t=6 months. 

Figure 3.15: Exact Distribution 
of the number of infected IDUs at 
time t=1 year. 

in the spread of the disease the shape of the distribution is more symmetric apart 

from the discrete element at zero, as shown in Figures 3.14 and 3.15. 

3.5 Extinction of Stochastic Process 

3.5.1 Naive Probability of Extinction 

As can be seen from Figure 3.11, after a long period of time the bulk of the 

probability is centered on the cell of the matrix which corresponds to 10 infected 

needles and 97 infected IDUs. It is also apparent that P0,0(t) is greater than 

zero. From Figure 3.16 which is a plot of Po, o(t) against time t we can see that 

for this choice of parameters that Po, o(t) appears to rapidly approach a limit at 

approximately 0.01. It may possibly be appropriate to describe the probability 

that the disease dies out, or the probability of extinction, as tending to a limit 

at 0.01, however a more rigorous analysis reveals that this is not so. 

As the epidemic can be thought of as a Markov process, we need to examine 

the criteria for such an equilibrium value to exist. Consider the embedded Markov 

Chain associated with this Markov process. (0,0) is clearly an absorbing state 
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Figure 3.16: Po, o(t) against time t. 

and it is clear that (0,0) is reachable from any other state in the (finite) embedded 

Markov Chain. Hence by standard results on Markov Chains it is straightforward 

to show that ultimately absorption in this state is certain, that is eventually the 

number of infected IDUs and the number of infected needles will both be zero. 

However from calculating Po, O(t) by numerical iteration of Equation 3.7 as to 

simulate the spread of the disease over a time period of 100 years, the probability 

of extinction after this time period is still approximately 0.01. We can therefore 

claim that over a relevant time interval to our problem it may be sensible to 

define a quas i- extinction probability for this choice of parameters. This is the 

probability that the process has become extinct within a biologically realistic 

period of time, typically shorter than the expected time to extinction. 

3.6 Expected Time to Extinction 

We can adapt Equation 3.7 in order to find the expected number of events until 

extinction occurs and the expected time to extinction. We denote by tij the 

expected number of events to extinction given that the initial number of infected 
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needles is i and the initial number of infected IDUs is j. If we consider the first 

move away from the starting point, for example moving from (i, j) to (i+ 1, j) then 

the expected number of events until extinction occurs starting from (i+l, j) would 

be ti+,, j. If, as before, we denote B, (i, j) as the rate of transition from state (i, j) 

to state (i + 1, j) we can define B, (i, j) = B, (i, j) IR (i, j) as the probability that 

the next event is a needle becoming infected. We define the quantities B' (i, j), 2 

D', (i, j), D2' (i, j) and M'(i, j) similarly. Considering all possible moves we have 

tij = B'l (i, j) (ti+ ij + 1) + D, (i, j) (ti- ij + 1) + B2(i, j)(tij+l + 1) 

+D2 ' ('2 A (ti, 
j-l + 1) + MI A (ti-ltj+l + 

or tij = B'(i, j)ti+,, j + D', (i, j)ti-,, j + B'(i, j)tij+l + D(i, j)tij-l 122 

+ MI(i7i)ti-lli+l +1 (3.8) 

as B', + D, + B2' + D2' + M' = 1. Clearly too = 0. 

We can solve this by attaching starting values to tij for all 0<i<n and 

0<i<N and solving the iterative form 

&+') = B'(i, j)&), j + D'(i, j)&j) 23 1 1+1 11j 

B'(i, j) tým) I+ D'(i, tým) 2 Sj+ 2 IJ-1 

(M) MI(i)i)ti-lli+l + 

for m=0,1,2... - 

(3.9) 

We can also convert this equation into one that gives us the expected time to 

extinction Tij. As the expected time between two events will be 1IR 

B' (i, j) Tj(+', ý 
j+ D' (i, j) Tjý', ý 

ij -11 
(M) B'(i, j)Tij+l + D'(i, j)Tjýj"21 22 

M(i, j) Tjý, ), j+1+1/R. (3.10) 
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\, Ve cmi similarly solve this equation iteratively using a niodified version of the 

program which evaluated which was discussed In Section 3.4. Again the 

problem of the boundarY conditions is solved due to the values of the rates B, (i, j), 

D'(z', j) and becoming zero on the relevant boundary. 22 

In this prograin we need to decide a criterion for the deciding when the iterative 

procedure has converged. In this example it was decided that convergence lias 

occurred if the iiia, xiiiiiiiii Ti("'+') -T. 
( .. ) over all i is less than some sinall number. J 1] 

This sinall number was arbritrarily taken to be 0.001 in the following example. 

To explore. Tjj for various parameter values, let us look first at a choice of 

paranleters Where RO is close to 1, therefore Tij would be expected to be small. 

We alter the parameters suggested by Kaplan. inaking A 5.952 x 10-: ' visits 

per limir. p=5x 10-4 deaths per hour, a=0.05 and 0 0.5, which results 

m 1? () = 1.18. Figure 3.17 plots the values of Tij for the above parameter values 

after the iterative process was judged to have converged. Again we describe a 

population of 100 IDUs choosing froin 10 needles. AXe can see from this that the 

expected tinic to extinctions are quite large. Looking at the extinctiou times for 
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Figure 3.1 71: Converged values of T,, j when A=5.952 x 10' visits per hour, 
li = . -) x 10 ' deat Its per hour, (ý = 0.05 and 0=0.5. 
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j=1 infected IDUs we see that Tij ranges from 9,500 to 15,165 hours, 395 to 631 

days, for 1<i<n. On substituting more realistic parameter values, which will in 

turn increase R0, the iterative process does not appear to converge in a reasonable 

time scale. This can be demonstrated by looking at the values of Toj, the expected 

time to extinction when there is one infected IDU and no infected needles. The 

iterative process has not converged when To,, reaches 1,000 years, which suggests 

that To,, is very large. Although P0,1(t) = 0.01 for 0<t< 100 years, or in other 

words, the probability of extinction in a reasonable time interval is 0.01, it is the 

expected time to extinction that we are evaluating. In the majority of realisations, 

the number of infected IDUs approaches the deterministic equilibrium, and from 

then the time to extinction would be extremely large. This should be reflected 

in the magnitude of Toj. From this we can assume that, for realistic parameter 

values, the expected time to extinction is of large enough magnitude that we 

are justified in defining a quasi-equilibrium probability and a quasi-probability of 

extinction. 

3.6.1 Quasi-Extinction Probability 

If we define qij to be the quasi-extinction probability, that is that the process 

becomes extinct within a 'biologically realistic' time interval, this can be found 

in a similar manner to before by applying the iterative equation 

ýýn+l) 
qtj B' (i, j) qi(+', ), 

j + D' (i, j) qi(') 11 -1, j 

B'(i, j)qýrý) + D'(i j)qýT) 2 tj+l 21 IJ-1 

M(i, 

The only true solution to this iterative process is qij =1 for 0<i<n, 0<i :ýN, 

as qi(j'+') > qý(j) for all i, j. However on using qjj =1 for i=0 and j= 

and qij =0 otherwise as initial values for the iteration, the iterative process 
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apparently approaches a Iiinit. For the parameter values suggested bY Kaplan 

discussed in Chapter 2 we have Figure 3.18, which shows q* = qý`"+') NvIlen the Ij 7.1 
(711+0 (7n)l 

< 10-12. 

niaxinium difference lqij - qij We. can see from this that the 

/10 

00 

\60S 40. oecW- 
ýý 0ý 

Figure 3.18: qi* 
,, 

for parameter values as discussed in Chapter 2. 
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Figure : 3.19: Figure 3.20: qi*,, j=2. JI 

(plasi-probabilitY of* extinction only appears to be noil-negligible when there is 

Illit'lallY o111Y olle infected IDU. On plotting q*,,. for 0i :ý 'n for I and for 

2 as in Figures : 3.19 and 3.20 Nve see that wheil I the quasi-extinction 

NN'llell t Ilere is one infected IDU and no infected needles isjust greater 
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than 0.01 with the quasi-extinction probabilities for 1 or more infected needles 

in decreasing magnitude almost reaching zero for an initial value of ten infected 

needles, and the quasi-extinction probability when there are two infected IDUs 

and no infected needles slightly greater than 0.0001. For this case the quasi- 

extinction probabilities are decreasing in magnitude as the number of infected 

needles increases, almost reaching zero for an initial value of ten infected needles. 

3.6.2 Quasi-Equilibrium Probabilities 

Given that we have shown that for sensible parameter values, the expected time 

to extinction is very large we can define 7r(Q) as the quasi-equilibrium probability. Xly 
A precise definition for this will be 

7r, (,? 
Y) = lim 1(11M) x number of realizations containing 2ýtb M-400 

exactly x>0 needles and y>0 IDUs}. 

Here the limit is taken over a large number M of realisations of the epidemic at a 

fixed ecologically relevant time T. Therefore 7r(Q) is effectively a true equilibrium MOY 
distribution over ecologically relevant periods of time (Renshaw, 1991). 

We can calculate 7r, (,? 
Y) 

iteratively as in the preceding sections. The iterative Tly 

equations will be 

7rýq)(n+l) (j, j) (Q)(n) (j, j)7&)(n) 
13 = B, 7ri+,, j + D, S-1j 

(j, j)7rýq)(n) (j, j) (Q)(n) + D' 7rij 
-i tj+l 2 

Mt(j, j)7rýQ)(n) 
2-1, j+l 

and we can see that solving these equations for the parameter values suggested 

by Kaplan, that the three dimensional plot of 7ri(jQ), as shown in Figure 3.21 is 

similar to that of Figure 3.11, Pij(t) for t= 10,000 hours. 
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Figure 3.21: 7j(] ). Rtrameter values as discussed In Chapter 

3.7 Summary 

To summarlse, we have shown that even in this most, basic of systems, a tractable 

allaIN'tical Stochastic niodel Illa. v not exist. However We have it Stochastic sillill- 

lation Illodel and a imillerical solution to the analYtical stochastic model which 

call both be compared to Naplaiiýs deterministic model. In using the sto(-Iia,,,,, ti(- 

model we have to Nvork with many r(-qiIisatioiis before definitive conchisions can 

be drawn and allY stochastic inean of the process should be accompained by a 

III(IIISUIT of, the variation. 

Wo have also sholvil that this stochastic inodel has the properties of a Markov 

model, Nvith the particular PI-01)(Th" thilt (Weilt"illY the discase will die out. The 

expect cd I Into 1111111 t he disease dies out has been evaluated for different parame- 

tor vAltes. and as, this expected time is very large, Nve are . justified into defilling 

(Illasi-equilibl-111111 probabilities. Wo Show that the quasi-equilibrium probabilili- 

hes ilre "'111111al. to those found ill bot'll the stochastic simulation model and the 

(Ictel-1111111'stic Illodel. \Ve now have it building block from which we. can develop 
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more sophisticated models which will more realistically mirror the spread of HIV 

amongst IDUs. 
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Chapter 4 

Biologically Relevant Models 

4.1 Introduction 

In this chapter we shall continue to study the spread of HIV among a homo- 

geneously mixing population of IDUs who visit shooting galleries. Some of the 

assumptions previously used such as needles remaining infectious until they are 

flushed by an uninfected IDU are explored and adapted, creating more biologi- 

cally relevant, but still homogeneous, models. 

4.2 Compartmental Models 

The previous models only describe the proportion of the IDU population that is 

infected with HIV. If we introduce the population size dynamics we then need at 

least two categories with which to describe IDUs, infected or susceptible. Infec- 

tion with HIV and the progression to AIDS can be more realistically modelled by 

introducing more categories. Peterson et al. (1990) stratify the IDU population 

by various stages of the disease into six compartments, as shown in Figure 4.1 

and use this as a framework for their simulation models. Kaplan's initial de- 

terministic model in which the population size is held constant can be thought 

of as a simplification of Peterson's in that the Acute Infection, Asymptornatic, 
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Susceptible 

Exposure I 
not followed by Exposure 

infection followed by 

Acute Infection 

Asymptomatic 

Pre-AIDS Symptoms 

AIDS 

HIV Death 

Figure 4.1: Compartments used by Peterson et al. to describe the stages of 
HIV/AIDS. Adapted from Peterson et al. (1990). 

Pre-AIDS, AIDS and Death compartments are collapsed into a single infected 

compartment and death is not included. With these six compartments it is now 

possible to attach different parameters for IDUs in different stages of the infec- 

tion. For example the visiting rate A may be different for IDUs in the different 

compartments. Returning to the model with only two compartments, suscepti- 

ble and infective, we can adapt our model to include different visiting rates for 

susceptibles and infectives. 

If we assume that susceptible IDUs visit shooting galleries at rate A, and 

infected IDUs visit at rate A2 then we can reformulate the deterministic model 

to be 
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dO(t) 
dt = A2Y7r[l - 0(t)] - Al'Y(l - 7r(t))00(t) 

and 
d7r (t) 

_ (1 - ir (t)) A2,3 (t) a- 7r (t) (4.1) 
dt 

which can be re-expressed in terms of i and 1; 

di (t) 
=A2 1-ý-(t))I(t)-AjOi(t)(N-I(t)) 

dt nn 

and 
d1(t) 

= (N - I(t)) - I. Li(t). (4.2) 
dt n 

This assumes that there are only two classes of IDU; susceptible and infected. 

It would be much more realistic to assume that there will be three classes; sus- 

ceptible, as before but two classes for the infected IDUs, those who know that 

they are infected, and therefore may alter their sharing rate, and those who are 

infected but do not know, and therefore their sharing rate would be similar to 

that of a susceptible IDU (Rhodes et al., 1993). If we assume that pI infected 

IDUs know that they are infected and therefore (1 - p)l IDUs do not know that 

they are infected then Equations 2.1 and 2.2 will now be adapted to 

! ýý(t) 
": (A 1 (1 - P) + A2P) - 

L(-)) 
I (t) -A 10 

L(t) 
(N -I (t)) 

dt(1nn 

and 
dl(t) 

= (N _ I(t)) 
Ali(t)a 

dt n 
(4.3) 

We can also adapt the assumption that only susceptible IDUs can flush an infected 

needle. If we now assume that a susceptible IDU flushes an infected needle with 

probability 01 and an infected IDU flushes an infected needle with probability 02 

then Equations 2.1 and 2.2 will now be further adapted to 

lý(t) 
ý-- (Al (1 - P) + X2P) 1- 

ý(t) ) I(t) - A101 
L(-t) 

(N - Iffl) dt 

A A2P)02 
i(t) 

I(t) 
n 

and 
dI(t) 

= (N - I(t)) (4.4) 
dt n 

From Figures 4.2 and 4.3 we can see the effect that p and A2 have on the spread 
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Figure . 1.2: The number of* IDUs infected over time, using Equations, 4.4 to dv- 

s(Tibe the Spread of' the discase with different values of 1) when A2 :: -- 0- S('(' t, ('Xt 

f, 01.1-cillailling parallieter Values. 

()f* t he disease. Tlles'e figures assume Oiat all IDU visits shooting galleries and 

shares Injecting e(Jill pillent, oil average once a week, and that an infected IDU 

contimics, to share injecting equipment for ill average 8 years after infection. We 

therel'Orc have A, = 5.952 x 10-: i visits per hour and It = 1.43 x 10' deaths per 

hom-. As befOre, a-0.075,01 = 0.2,5,02 = 0. Hie size of' the IMT pOpjlIjltl()ll 

\\, ill be N=M. 000,1 DUs choosing at randmii fi-oin 'i? =L 000 needles. As 

lilt 1-millut Mil ()f* mic 1111, C(live into Hie susceptible populafion triggers the spread 

()f* t, ll(, dis'ease, we have t'llat 7(()) == omom. 

In Figin-c . 1.2 Nve assume that ý2 ý: -- (), that is that, when IDUs know that theY 

; 11. (, 1111,00ed 111cY cea. se injecting. When 1) = 0, this model is identical to that 

desci-lbed b. v E(piations 2.1 and 2.2 where none of the infected IDUs know that 

theY are Infected. On increasing 1) Nve see that the disease, spreads more slowl. v 

throughmit the population. when 1) = 0.9 we see that it takes at least seven years 
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Figure 4.3-. The number of IDUs infected over tinic., using Equation 4.4 to descrihe 
1()-2 X, " the spread of' the disease with different values of p whell ý2 --, 7: 1.49 x 1"Its 

per hour. Sce text for remaining parameter values. 

bef'Ore haff of' the population become infected. We can also sce this, effect ill 

I'lgill-c 4.3, Where IDUS Who now know that they are infected only share injecting 

equipmelit, on avel'age once a month. Although the endemic c(plilibrijill, vallic 

(10(", llot oil /ý2 oI'P, when none of* the IDUs know that they are 

so thm 1) = 0. the initial spread of'the disease is faster. 

flowevel. when a stochastic simulation Illodel is created which Illil-l-ors the de- 

Icylillnistic model, we swe it difference between the stochastic and deterinniustic, 

Illodels. Whell the disease Spreads slowly in the (leterininistic model, the proba- 

blIltY that the di"'cii. se dies out in the corresponding stochastic model increases. 

This call be demonstrated by exploring 200 stochastic sinuilations, using the pa- 

1-ý11licters as Ili Figure . 1.2 with 1) = 0.9, that is that 90(4 of' lidected IDUs knoxv 

that tIleY are illf, N-ted and that IDUs who know that tli(,. v an, HiftIcted cease. in- 

jecting. To Suillillarise the results from these simulations, Nve can present a3 

104 

v1v 

time (years) 



dimensional plot. as shown in Figure 4.4, where the x-axls C01'resimilds to I he 

number of' years since the epidemic began, the y-axis is an index denoting the 

simulation number and the z-axis is the, number of IMTS infe(. t(qj. at tillIp t 

years within a single realisation. This plot is therefore a combimition of* 200 tinie 

So 

.0ý 

E' 

Figure -IA: The results froin 200 realisations of a stochastic simulation model, 
wit 11 t rall', "Illissioll dYllaillics Similar to the detern I ill Istic model descrihed bY Equa- 
I lolls IA. 

sel-les plots. and for claritY, the simulation results are sorted by the number of 

Infected IM's after .5 Years. XVe note from this that some sinuilations result ill 

t lic disewse dYllig olit. and out of the 200 simulations there Nvere 19 in which there 

kv(TV 110 1111'Cuted IDUS after 10 years, that is the disease will die out, within 10 

N, (,; Il. s with approximate probabilitY 0.1. 
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4.3 Flushing and Infection 

Returning to the deterministic model first proposed by Kaplan, we can now ex- 

amine the flushing process further. Within the act of a single IDU injecting with 

one needle, the needle may be flushed and the IDU may become infected. This 

is incorporated in Equations 2.1 and 2.2. 

If we examine the act of injecting within one visit to a shooting gallery, the 

probability of a susceptible IDU becoming infected will depend on the infectivity 

of the virus within the needle, which will be discussed in a later section but will 

also depend on how much contaminated blood previously contained in the needle 

is injected into the blood stream. It would also be sensible to assume that the 

probability of an IDU flushing an infected needle will depend on how much of 

this contaminated material has been injected. It is clear that three related events 

may happen within the single act of an uninfected IDU injecting with an infected 

needle, either a needle becomes flushed without an IDU becoming infected, an 

IDU becomes infected without the needle becoming flushed or the needle becomes 

flushed and the IDU becomes infected. These events correspond to Equation 3.1 

in the analytical stochastic model. 

For clarity, suppose that a single susceptible IDU injects once with an infected 

needle. Let P, be the probability that the needle becomes flushed and the IDU 

becomes infected, let P2 be the probability that the needle becomes flushed but 

the IDU remains uninfected and let P3 be the probability that the IDU becomes 

infected without the needle being flushed. In a similar fashion to the numerical 

solution to the stochastic model we wish to attach a probability that the 'null' 

event happens, that is with probability P4 we have that the uninfected IDU 

remains uninfected, and the needle remains infected. We can now describe the 

spread of the disease with the equations 
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di(t) i(t))I(t) 
-A(Pi +P2)i(t)(N-I(t)) dt nn 

and 
dI(t) 

= (N - I(t))Ai(t) (Pi + P3) - I(t)ji. (4.5) 
dt n 

We can now consider the case where a and 0 are in some way related. If we 

suppose that both a and 0 are related to the amount of infective material in the 

blood, which we will assume at the moment depends only on the amount of blood 

in the needle, then we can contrast two possible scenarios. 

If the needle contains a large amount of blood then it is assumed that a, the 

probability of infection, will be large as there will be a large amount of infectious 

material injected into the IDU. We also assume that under this scenario, 0, the 

probability that the needle is rendered uninfectious, is small, as when there is a 

lot of infectious material in the needle the act of injecting will be less likely to 

remove all such material. 

Under the alternative scenario, such that the needle contains a small amount 

of blood, then a will be small as there may not be enough infectious material 

present in the needle to result in a new infection and 0 will be large as it will be 

more likely that using the needle will render it uninfectious. 

We can summarise these two scenarios by creating an equation describing a 

possible relationship between a and 0. If we produce a graph with a as the x-axis 

and 0 as the y-axis, then we can plot the point (a = 0.075,0 = 0.25). We can also 

create a hypothetical point, (a = 0,0 = 1), which describes an extreme version 

of scenario 2 above, where there is so little blood left in the needle that infection 

very unlikely, and that when the needle is re-used, it will almost certainly be 

rendered uninfectious. Thus we have two points, and, in the absence of any data, 

we can assume that there is a linear relationship between a and 0. A straight line 

which goes through these two points will have the equation 0=1- 10a, which 

is valid for 0<a<0.1. This line is plotted in Figure 4.5 below. Thus we can 
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Figure 4.5: Plot of a against 0. 

explore the effect that the amount of blood in the needle has on the probabilities 

P1, P2, P3 and P4, described in Table 4.1, and thus the spread of the virus. In 

Figure 4.6, we present the results using the deterministic model presented above 

when using different values for a. Using the relationship 0=1- 10a, and varying 

a from 0 to 0.1, we can plot the proportion of the population that will be infected 

after intervals of one year. From Figure 4.6 we can see that when a=0, that 

is when the amount of blood in the needle is so small that infection becomes 

practically impossible, then the disease dies out. We also see that if the amount 

of blood left in the needle increases, that is a increases and 0 decreases, then the 

disease spreads quicker. We also note that this differs from the case when a varies 

independently from 0, this is due to the combined effect of 0 decreasing and a 

increasing, both of which factors result in the disease spreading more rapidly. 

We can also look at RO, the basic reproductive number which is now given by 

Ro =A 
(P1 + P3) The steady state values will be P=0 and i* =0 or 

P(P1 + P2)' 
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a 0 P, P2 P3 P4 
0.00 1.0 0.000 1.000 0.000 0.000 

0.01 0.9 0.009 0.891 0.001 0.099 
0.02 0.8 0.016 0.784 0.004 0.196 
0.03 0.7 0.021 0.679 0.009 0.291 
0.04 0.6 0.024 0.567 0.016 0.384 
0.05 0.5 0.025 0.475 0.025 0.475 
0.06 0.4 0.024 0.376 0.036 0.564 
0.07 0.3 0.021 0.279 0.049 0.651 
0.08 0.2 0.016 0.184 0.064 0.736 
0.09 0.1 0.009 0.091 0.081 0.819 
0.10 1 0.0 1 0.000 1 0.000 1 0.100 0.900 

Table 4.1: The effect that varying a, and hence 0, has on the probabilities P1, 
P2, P3 and P4. 

=n 
A (PI + P3) -A (pl + P2) 

A (Pl + P3) 

and P=N 
AQ + ") - NO + P2) 

(4.6) 
A(& + PO - A(PI + P2) + A' 

The first equilibrium is always possible, the second is possible only when RO 

The preceding discussion has, in part, introduced sensitivity analysis, in that 

it describes the spread of the disease when a combination of parameters vary. We 

will perform more in depth sensitivity analyses in a later chapter. 

4.4 The Cleaning of Needles 

In exploring the circumstances in which a needle can lose its infectivity, Kaplan 

(1989) considers the case where there is both flushing by uninfected IDUs and 

cleaning by both uninfected and infected IDUs. Let C be the probability that 

a needle is effectively cleaned by an IDU, Equations 2.1 and 2.2 can now be 

reformulated as 

di(t) 
X(l e)I(t) \i(t) [N (N I(t»(1 0)(1 e)] 

dt 
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Figure I. G: The number of' IDUs infected over time, using Equations 4.5 to de- 

scri be lie spread of' t lic disease. P, = (0, P2 (Y) 0, P, =o (I -i 
0=I 10(i" fin. (liff, 01-clit, vallies of' (V,. 

alld 
(t) 

: -- (N -I (t)) A (V - I(t)ll,. (4.7) 

This assullics that, the needle is cleaned after the IDU has used it. It Nvolli(I 

be Illore realistic to as"lline that the needle Is cleaned bel ( f')i-(, an IDU uses it. 

0-cenhalgh and flay (1997) incorporte this assumption and adapt Equations 4.7 

io oblain Fquations 4.8. 

(lz(f) I(0 = AI(t) - A-[N - (N - l(t))(I - 0)(1 - (It it 

(II(t) i(t) ; 111(1 
(It 

= (N - I(t))A(l - ý) (V - l(t)ll,. (4.8) 

11, is wort'll ll()I, illg t hat, the offect, of cleaning the needle injecting results III 

it challge III t he different i; )l equation which describes the number of infected IDUs 

IN 



at time t. However the values of I(t) over time are the same whether Equations 

4.7 or Equations 4.8 are employed. This will he due to the ijeedle remaining 

infectious at a constant level between the two acts of IDUs injecting Nvith it. Tins 

maY, not he the case if the needle loses its infectivity over tinie. Figure 4.7 shows 
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1"Iglire 1.7: The 1111111ber ()NDVs infected over time, using Equation 4.7 to describe 
t he "pread ()f* the disease. 

t lic effect, t Imt, varying ý, the probability that, the needle is effectively cleaned 

after lise. \Vv call see that as ý increases, the rate at Midi the Smuse spnods 

deci-eases. Kaplan reformuhites Bo as Rn(k) and shows that the relationsIlzip (an 

he described ; is 

flo 
A(I - ý)a, 

0.9) (I - 0) (1 - 0) /1, 

Thus /? ()(ý) can he reduced below I if 

A(v -I ý >I -- +1 -0 (4.10) III, I 

that, is f0l. the pal-allicters used in Figure 4.8, if ý>0.97. NVe should note that, 

III 



when ý=0.8 although the disease still spreads throughout the population the 

time that it takes for half the population to become infected is over 15 years. In 

a corresponding stochastic model with C=0.8 the number of realisations where 

the disease dies out will be significant. This demonstrates that control strate- 

gies which encourage effective cleaning of injecting equipment may be successful 

in controlling the spread of the disease, even when such cleaning is not 100% 

effective. 

4.5 Varying Infectivity of Injecting Equipment 

It was assumed in Kaplan's initial model that needles remain infected with HIV 

until they are flushed by an uninfected IDU. Later models in his paper included 

the needles also losing their infectivity at a constant rate. In this section we will 

explore different assumptions for needles losing their infectiousness. 

The most tractable assumption used in creating a deterministic model would 

be to assume that HIV loses its infectivity inside injection equipment at a constant 

rate. If the virus loses its infectivity with probability V& + o(ft) over a small 

time interval of length R the original equations can be reformulated as 

di(t) 
= AI(t) - AL(-t) [N 

+ 29- 
- (N - I(t»(1 - 0)] dt 

H(t) 
and = (N - I(t))Ai(t) a- I(t)IL. (4.11) 

dt n 

This implies that a needle remains infectious on average for a time period equal 

to 1&. This also implies that in the absence of needle being flushed and new 

needles becoming infected the number of infected needles decreases exponentially. 

The model also assumes that a, the probability that an IDU becomes infected 

given exposure to an infected needle, remains constant. This deterministic model 

can be numerically solved as in Figure 4.8, and RO is given by 
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We can see froin Figure 4.8 that whell the t(li'lli (, ()I, I, (, Sl)oll(llllg to livedle losing 
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j, 'lgilre 4.8: The number of' ID-Us infected over time, using Equation 4.19 to 
describe the spread of* the disease, with different values for (p, ranging froin ý0- I= 
6 limirs to (p-'= 3 da. vs. 

its is lilt I-oduced the disease spreads at a slower rate. If' we assume 

th'it ; III 1111,00c(I livedle relimins infectious on average for six hours, without anY 

extel-11,11 ilifluellces, thell the disense will take as long as 12 years to iiif'(, (-t 50% of 

1,11c poplikitioll. %Vlmt is Illore Interesting is tlllt even whell the licedles I-villaiii 

for avenige periods as long ; is three days, there is still a noticeilble effect 

oil Hie rate at, Which the disease spreads. We shall now explore the infectivity of' 

; III 1111'Cutiolls, licedle fill-ther. 

It Is Imssible to assuille a 1111le delay in the terin corresponding to tile 

1()Slllg its 111FO-tivit. y. If' we assume that a needle remains infectioils f'ol. (, xa(ýtlY T 

ll()Ill. s wo call Illodel this (plite simplY with a stochastic simulation model. Figure 
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4.9 bolow demonstrates the results when it is assumed that a needle is infectious 

for a constant tinic period T. This figure plots the median values, as described in 
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Figure 1.9: The inedian number of' IDUs infected over time from 50 realisations 
()f' ;t stochastic simulation model in which an infected needle is infectious f'ol, a 
fixed I Illic period T, for diff'Crent values ofT. Parameter values as discussed in 
Chapter 2. 

Cimpter 3, over 50 simulations. It is worth noting that by plotting the median 

values, we do not see that there are simulations where the disease dies out. Table 

A. 2 pi-esents the number of realisations In which the disease (lies out after 10 Years, 

f'()I' V, 11-IMIS' V0111CS OfT. 

From Table . 1.2, -we sce that when the needle is infectious for onlY one hour, 

; I111lost, Imll, of* the simulations resulted in the disease dying out. To examine this 

f'lll. t her, we call present the results from the 50 simulations, In one 3-dimensional 

pjotý ; is In Figure 4.10. In this plot, the x-axis is time, and the z-axis is the 

1111111her InfOcted at tilliv t, = x. For clarity, this plot is created after sorting the 

50 reallsatiolls" 111dexed in the y-axis, by the number that were infected after 10 

114 



T (110111"i) Nuniber of' realisations where disease dies out 'Yo 

1 23 46 
2 13 26 
3 8 16 
4 3 6 
5 6 12 
6 3 6 
1 5 10 
8 4 8 
9 1 2 
10 2 4 

Table 4.2: Number of realisations of stochastic simulation inodel where disease, 
dies olit. 

E 
C 

1: 1glip, . 1.10: The restilts from 50 realisations of a stochastic simulation model, 
ýý-Iyqj tll(, needle, is infectious for one hour. 
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years. We then see that not only are there many realisations where the disease 

dies out, but there are also realisations where the number of infected people 

increased from one, and then still died out. 

To explore the infectivity of the needles further, we must reconsider the in- 

fection process, described by the probability a. In the previous model, where 

a is a constant, we have the infectivity of needle as a Boolean variable, with 0 

describing the proportion of such needles that are infected. If we now assume 

that the infectivity of needles is more than just a category such as present or 

absent, but an actual continuous variable, i. e. the infectivity of a needle can be 

measured (perhaps biologically by the strength of the virus or the amount of the 

virus in the needle) then it can be assumed that this infectiousness will decrease 

over time. This can be modelled by attaching the a variable to the infected needle 

and letting this take a distributional form. Different distributional forms for a 

can be created, and they can easily be incorporated into our stochastic simulation 

model. 

Figures 4.11 to 4.14 show some examples of possible infectivity distributions 

which we could assume. Figure 4.11 corresponds to the original model in that a 

is a constant from zero to infinity hours after the needle becomes infected. Figure 

4.12 will be similar to the stochastic model where needles remain infectious for 

7- hours after infection. Figure 4.13 will be similar to the model described by 

Equations 4.11, where the number of infected needles, free from new infections or 

flushing, decreases exponentially. We can also use other distributions to describe 

how an individual needle loses its infectivity over time, such as the distribution 

shown in Figure 4.14. Figure 4.15 compares the spread of the disease under two 

assumptions, firstly that a needle remains infectious for on average 3 days in 

the absence of flushing, with the infectivity decreasing as in Figure 4.13, and 

secondly that the needle remains infectious until it is flushed. We can see from 
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Figure 4.12: Constant infectivity 
for, r days then decreases to zero. 

'... 1-Y. 1 ... 1- -11 

Figure 4.13: Exponential infectiv- Figure 4.14: Simulated distribu- 
ity. tional form for the infectivity. 

this figure that when the infectivity of the needle follows the distribution shown 

in Figure 4.14, the disease spreads at a slower rate and apparently reaches a lower 

equilibrium value. 

We have already presented a scenario where both the probability of a suscep- 

tible IDU flushing an infectious needle and the probability of a susceptible IDU 

becoming infected when injecting with an infectious needle are related to the 

amount of virus left in the needle. In that model we assumed that the amount 

of virus present was related to the amount of blood in the needle. We now wish 

to alter this assumption so that the amount of virus in the needle will also be 
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Figure 4.15: The inedian values froin 50 realisations of* a itochastic simulation 
model where the 111fectivity of* an IDU is described hy Figure 4.14 (loss), compared 
to the original 1110del (110 loss). 

1. (, I, lt ed to t he infCctivity of the person that, the ileedle. 

Ret, 111-111lig to Petersoll's 1110del III which infected people are classified into more 

I hall mle 'Illf(wt ed, stak" we can incorporate sonle of the effect's ()f stratifying the 

InfCO ed IM7 Impulatiml into our model. III particular Nve can make the infectivitY 

()f all IM, depelident dependent on the lengt, h ()f time than ; III IDU has been 

Infected with AIDS. Fit(, simplest form of stratification would be to assume that 

; I[[ IM, Is infCcilmis al, a V(, I.. N, high level Immediately Oil IlifCcted, thell 

a Imig period, corresp(niding to an Infected IDU being as. vinptoinatic, such an 

11W ", III t'llell be InfCctious at a lower level, eventually returning to a high level 

()f III[N-1 M11"lles's when Pre-AIDS symptoms or AIDS appears. It should be noted 

11mvever t hat t'llis simplified model of infectivity may not adequat ely describe the 

('0111plex vII-()I()gIcII pi-m-esses that are yet to be fully understood. III creating a 

111mv s()pIllsticated F01-111 for (v., we must, reconsider our interpretation of p; the 
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rate at which infected IDUs cease sharing. 

From Seitz and Miiller (1994), in the context of the sexual spread of the disease, 

the infectious status can be be described by three parameters, describing the 

infectivity over three discrete time periods, that is from 1 to 6 weeks, from 7 to 

511 weeks and greater than 511 weeks. We wish to link the infectivity of a person 

using a needle to a, the probability that the next person to use the needle will 

become infected. In the absence of data specifically referring to IDUs, we may 

assume that the probability that a needle infects the next IDU depends, in part, 

on the length of time the preceding IDU who used the needle had been infected 

when he or she used the needle, with this time falling into the three periods 

as described above for the sexual spread. However we do not have values for 

the probabilities that we are interested in, but it seems sensible to assume that 

the ratio of infectiousness over the three periods is the same for needle sharing 

transmission as it is for sexual transmission. 

The ratio of infectiousness over the three periods is 169: 1: 25, for periods of 

7: 504: 1, where 1 is the length of time in weeks an IDU lives after developing clin- 

ical AIDS (Seitz and Willer, 1994). If we now assume that a typical newly HIV 

infected IDU continues sharing for 12 years, that is 624 weeks, then 1= 113. We 

can therefore combine the infectivity ratios derived from heterosexual transmis- 

sion from male to female with the corresponding time periods to create infectivity 

values for IDUs, keeping a=0.075 as a weighted mean value. Thus we have the 

infectivity values to be 0.5509,0.00326 and 0.08198 for the three consecutive 

stages of HIV infection. We can explore the effect that such values have on 

the spread of the disease using stochastic simulation techniques previously de- 

scribed. 
. 
Figure 4.16 compares the summarised results from 100 realisations of 

the stochastic simulation model using the 3-stage infectivity distribution previ- 

ously described with the original model presented in Chapter 2. The parameters 
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Figure 4.16: The inedian values from 50 realisations of* a stocimstic sinuiLition 
Illodel NN'llere the illf'Colvity of'an IDU is descrihed by 3 stages, compm-ed to the 
origilull model. 

used are those used in Figure 2.1, that is cy, = 0.075,0 = 0.25, -Y = 10 and 

A= . 5.9,52 x 10-: 1, which is equivalent to an IDU visiting a shooting gallery once 

it week. The value of/j. in our present model corresponds to infected IDUs (-()ii- 

tinuing to shm-c for 12 years nfter becoming infected. This compares Nvith 8 years 

ill the original 1110del, although this difference will have a negligible effect on the 

spread of' I he discase. We ""ec fliat the disease spreads inore rapidlY to begin xvith 

; Is liewlY Int'N-ted IDUS have high viraciliM, however when the number of infected 

IDUS decreases d1le to the stochastic equivalent, of' the 111ortalitY 'rate' It, the liew 

slusceptibles '11-v Introduced into a population where most of the infected IDUs 

are not is 111fCcholls" and hence the probability that a needle chosen at, randoin 

will be MfCctious will he less. After about 10 years the originally infected cobort 

develops AIDS '111d there is littlc difference between the equilibrium prevalence 

ill the two models' although the thive stage infectious period appears to have a 
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slightly lower equilibrium value. 

We can alternatively describe the infectivity of a needle by referring once more 

to research into the sexual spread of the disease. From Anderson and May (1991) 

a good model of the infectiousness of an infected person would be 

P(-r) = flo exp(-7-/To) + #I exp[-(T -, r)lTl] (4.13) 

where P(r) is the time-dependent transmission probability, To is the length of 

time that the person's infectiousness is relatively high after infection and Tj is 

the length of time before full blown AIDS that the infectiousness is again relatively 

high. T will be the average time that an individual takes to incubate AIDS. Thus 

ao may be described as 

ao(7-) = a, exp(-, r/To) + 02 exp[-(T - 7-)IT, ] for 7- <T (4.14) 

and ao(r) = a2 for r>T. (4.15) 

This can be incorporated into the stochastic simulation model, although values 

for the parameters a, and a2 will need to be estimated. There will be a range of 

possible values for these parameters, although we wish to make two restrictions 

to make comparisons with the model immediately previously presented. Thus we 

wish the infectivity to average 0.5509 over the first 7 weeks, then also to average 

0.08198 for the period between 511 weeks and death at 624 weeks. Hence we then 

have T= 624 weeks, To =7 weeks and T, = 113 weeks. 

To obtain parameter estimates for a, and a2 we note that from the structure 

of Equation 4.14, the effect of any values Of a2 will be minimal over the first few 

weeks of the infectivity distribution. Thus 

To do 

alexp(- 
z)dz=L'[-Toexp(- -" -)]T TO 

fo 
To To TO 

0 

= al(I - e-1), 

hence a, (l - e-1) = 0.5509, or a, = 0.8715. 
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Similarly we have a2(1 - e-1) = 0.08198 therefore a2 = 0.1297. We note that 

the average infectivity over the 12 years that an IDU is assumed to be infectious 

will be 0.03. This distribution is presented in Figure 4.17. Figure 4.18 compares 
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Figure 4.17: Simulated infectivity distribution. 

the results of the model which involves an infectiousness distribution with that 

of the original model. This pattern is qualitatively similar to the results for the 

model which uses the discrete 3-stage infectiousness as demonstrated in Figure 

4.16, although this time it is not clear that the equilibrium level is similar to the 

model with the three stage infectious period. 

From our work it does not appear that needles losing their infectivity by other 

means apart from flushing has a large influence on the equilibrium number of 

infected IDUs over time. On the other hand the 3-stage infectious period does 

appear to have a big initial effect, reflecting the high level of infectiousness when 
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;mIDIý becomes infected. However Oil considering Some of Ole ot h er assumptions 
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4.6 Summary 
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III's ()I. Iglll; ll Illodel. \, VC presented different scenarios which we belleve maY be 
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the effCct that, vli.. Vlllg the original assumptions inay have oil the spread of the 
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equipment has not greatly increased our knowledge of the transmission dynamics. 

This is particular true about our knowledge of the virological processes occurring 

within a needle between injections, such as the inactivation of HIV over time or 

the probability that cleaning the needle will render it uninfectious. Many of the 

extensions presented in this chapter are speculative, as such this chapter should 

be used to demonstrate that the biological assumptions used in modelling the 

spread of HIV among IDUs may not be valid. We have, in part, used some of the 

knowledge gained from studying the sexual spread of the disease, for example we 

propose that the probability that an infected needle infects another IDU depends 

on what stage of HIV infection the IDU who was last to use the needle was at. 

We also propose that the probability that a needle infects someone depends on 

the time period between one IDU and the next IDU injecting. We have not 

presented results from stochastic models which combine these two probabilities, 

both of which can be described by allowing the parameter a to depend on the 

time since the last injection. 

To combine these two virological processes would be to lend credence to some 

of the parameter estimates and assumptions used in this chapter. Even in the 

simpler models, such as Kaplan's original model, we are using parameters, such 

as a which we cannot estimate with any certainty, and we are approximating 

biological processes, such as the needle not remaining infectious ad infinitum, 

with a simplified mechanism such as flushing. In the more advanced models there 

will be less information available on the mechanisms described and parameters 

used. 

We conclude this chapter however by noting that the assumptions made in the 

simpler models may be flawed. They may perhaps be relevant in assessing public 

health campaigns such as needle exchanges or the distribution of bleach to clean 

injecting equipment. Indeed Kaplan has used his mathematical models to decribe 
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how the needle exchange in New Haven, USA has reduced the number of infected 

needles in circulation and the incidence of new HIV cases. We do however suggest 

that such models should be strengthened by the extensions described above, if 

the additional parameters can be estimated. 
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Chapter 5 

Parameter Values used in 
Describing the Spread of HIV via 
Needle Sharing 

5.1 Introduction 

In the models previously described, social and biological processes were simplified 

and described by small sets of parameters. An extension to these models will be 

made in a later chapter. These will serve to improve on the simple interpreta- 

tion of the sociological processes, changing the assumption that all IDUs select 

injecting equipment at random from all shooting galleries. We have essentially 

introduced all parameters that are of importance in modelling the biological pro- 

cesses involved in the spread of HIV via shared injecting equipment, therefore a 
discussion of these parameters and the effect that they have on the spread of the 

disease seems pertinent. 

Little is known about the biological parameters that have previously been 

described as the literature on modelling drug injecting and HIV is sparse. In 

this chapter and the next we discuss the estimation of parameters used in the 

preceding models, drawing on both the established literature and data taken from 

an unpublished study of IDUs in Glasgow. We begin in this chapter by looking 
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at the sociological parameters and then we examine the parameters describing 

the biological processes acting on an infected needle. We leave discussion of the 

parameter a until Chapter 6. 

5.2 Estimating the Prevalence of Injecting Drug 
Use 

It is clearly important to have accurate estimates of the number of IDUs to be 

able to predict the spread of HIV, however many estimates in the past have been 

based on untestable assumptions. Hartnoll et al. (1985) describe methods for 

estimating the number of drug users in a London borough. At that time, the 

major source of official data on drug users came from the Home Office Addict 

Notification system, where GPs were required to notify the Home Office about 

anybody they suspected to be addicted to a range of opiates or cocaine. Hartnoll 

demonstrated that only about 20% of drug users were actually notified, hence he 

suggested that applying a multiplier factor of five to the 'official' data to obtain 

a more accurate estimate. This method of estimating the proportion of the total 

population observed from one data source by examining a second, apparently 

random, sample was similar to capture-recapture methods used in estimating the 

size of animal populations where it is impractical to count the whole population. 

Seber (1992) describes how such a population size can be estimated by catching 

a sample of animals, marking then releasing them, and then recapturing another 

sample, from which the number of animals found in both samples, or overlaps, 

can be used to give an estimate of the proportion of total population that were 

caught in the first sample. When estimating the size of a drug using population, 

data from various agencies such as a drug treatment agency and the police data 

on misuse of drugs convictions are used and the overlap between the data sets is 

examined. Using such methods assumes that the two data sets are independent, 
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an assumption that cannot be tested and may not be justified. To improve on 

the two sample procedure, Parker et al. (1984) used data from three samples to 

estimate the prevalence of heroin use on the Wirral peninsular in 1984. 

Frischer (1993a) extends this theory to use data from four data sources, within 

which dependencies can be specified. Data on IDUs were supplied by the police, 

treatment agencies, needle exchanges and the HIV test register. This data was 

arranged into a24 cross-classification table corresponding to presence or absence 

in the four samples with a missing cell corresponding to absence in all four sam- 

ples. Log-linear analysis was used to test for any dependencies and a model which 

specified such dependencies was used to give an estimate of the missing cell from 

which an estimate of the total population size was derived. Using such techniques, 

Frischer yields an estimate of 8,494 (95% confidence interval 7,491 - 9,721) IDUs 

in Glasgow in 1990. It should be noted however that there are many caveats 

to be considered when using capture-recapture methods to estimate the size of 

drug using populations (Hay, 1997), particularly in relation to the difference in 

definition between drug use and drug injecting. 

As Haw (1985) estimated the number of IDUs in Glasgow to be 5,000 in 1985, 

it can be assumed the the number of IDUs rapidly increased towards the end of 

that decade. Whether or not the number is still increasing is yet to be explored, 

but it is thought that AIDS may have a threefold effect of decreasing the IDU 

population, by IDUs dying of the disease, IDUs ceasing to share or inject and 

persons liable to begin injecting drugs not doing so. 

Indeed Caulkins and Kaplan (1991) improve on Kaplan's original 'Needles that 

Kill' (NTK) model by assuming more general influx and removal rates. This open 

model can be used to show the effect that HIV may have on the population size, 

with particular reference to creating a model describing the baseline population 

from which public health campaigns can be evaluated. 
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Caulkins and Kaplan describe the population size by the following equation 

dN(t) 
ý CBN(t)l' - ABN(t) dt 

(5.1) 

where CB is the recruitment rate proportionality constant, v is nonnegative and 

strictly less than one, PB is the rate at which current users exit the population, 

and N(t) is the size of the IDU population at time t. This equation can, of course, 

be solved analytically giving 

N(t) = 
LB 

+ (N(0)1-v 
- 

CB )e -IAB(1-V)tl (5.2) 
IIIB 

AB 

which approaches a steady state size of 

N(oo) =( 
CB) 

JIB 
(5.3) 

This can be explored numerically using parameters suggested, which describe 

the size of the IDU population of the USA which has an estimated steady state 

population size of 750,000, with 

PB = 
loo, 000 

' 0.133 (5.4) 
750,000 

and for any given value of v 

CB ý 
100,000 

(5.5) 
750,000" 

The model assumes that these two parameters will change instantaneously at 

some time point due to the introduction of AIDS from AB and CB to PA and cA 

respectively. The subscripts B and A on the parameters denote respectively those 

parameter values before and after the introduction of AIDS. This assumption does 

simplify the model, and as we are interested only in the steady state population 

size there seems no justification to complicate the model further. 

Assuming that the parameters change at time t=0, the population size as a 

function of time would be 

N(t) = 
fA 

+ -ýB- - 
fA-) 

e (5.6) 
IIIA (AB 

PA 
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The new steady state population size will be 

NA(oo) 
CA 

CA AB ) 1/1-'v ( CB ) lll-, v 

CB IIA AB 

= 
(LA AB ) lll-'vNB(oo)- 

(5.7) 
CB AA 

This can also be explore numerically, with varying estimates for the parameters. 

Even in the case of AIDS not affecting the recruitment rate, CA : --: CB, and AA -"4 

IB II 

NA (co) 5-ý" 
(1) 1/1-v ( CB ) 1/1-v 

PB 
(5.8) 

which can be interpreted as the population size decreasing by at least 50 per- 

cent. This is shown in Figure 5.1, with a starting population of 750,000 and a 

recruitment rate proportionality constant, v=0.5. 
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Figure 5.1- Size of IDU population before and after the introduction of 
HIV/AIDS, using Equation 5.1 which has been adapted from Caulkins and Ka- 
plan (1991). Parameter values as in text. 
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Caulkins and Kaplan go on to include these population size dynamics into the 

NTK framework of equations. In order to do this they switch from modelling 

the HIV prevalence in a population of unspecified size to modelling the absolute 

numbers of infected or susceptible sharing IDUs. Again they show the dramatic 

effect that HIV has on the size of an IDU population. 

In 1995, over ten years since HIV was first detected in Glasgow, the size of 

the city's IDU population appears not to have been seriously affected by deaths 

from AIDS (Bloor et at, 1993). This may, in part, be due to the continued 

low prevalence of HIV in Glasgow (Taylor, et al. 1994). The situation may be 

different in Dundee where the HIV prevalence within the IDU population has 

been estimated at 27% (Haw et al. 1996). Many of these IDUs were at greatest 

risk from infection between 1982 and 1987. Thus the number of deaths due to 

AIDS is of a greater magnitude than that of Glasgow and hence a model which 

includes the population decreasing beacuse of AIDS, such as that of Caulkins and 

Kaplan, may be more appropriate. 

It will be of interest to discuss how the size of the IDU population may change 

in a city where the prevalence of HIV is low. As data concerning the rate at which 

drug users become drug injectors, and also the rate at which they cease injecting 

is sparse, we only briefly introduce population size modelling by describing a very 

basic model. 

In common with any population size model, there will be several forces acting 

on the size of the needle sharing population. There will be a rate at which drug 

users commence an injecting career and begin sharing and there will be a rate at 

which IDUs cease sharing or injecting. People may begin drug injecting and nee- 

dle sharing for sociological reasons such as peer pressure, and other reasons such 

as the purity of available drugs. Indeed there are great geographical differences 

in the preferred route of drug taking between Scotland and the rest of the UK 
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(Department of Health, 1997), thus the size of IDU populations may differ both 

spatially and over time. There will be other reasons why people cease injecting, 

such as through death, either from AIDS or from other causes, or just because 

they wish to stop sharing, either due to HIV directly as they are infected, or 

indirectly as they do not wish to become infected. Indeed many IDUs enrol in 

methadone maintenance programs to reduce the risk of becoming infected and 

many injectors obtain clean needles from needle exchanges in order to avoid shar- 

ing. There may also be movement in and out of a geographical area by IDUs. 

Indeed the epidemics previously described begin when one or more infected IDUs 

are introduced into a population of susceptibles. 

In the absence of data concerning the number of people beginning to inject 

we may wish to simplify the influx rate to be a constant r.. This assumes that a 

certain percentage of each age cohort has an innate predisposition for injecting 

drug use. We can also assume that the per IDU rate of ceasing sharing is a 

constant p per unit time. It should be stressed that in this chapter 11 refers 

not just to IDUs dying from AIDS, but also IDUs dying from other causes as 

well as simply ceasing to share. There has been recent interest in Glasgow in 

the mortality rate of drug users due to accidental death from overdose. Thus in 

modelling the population size the mortality rate of IDUs in the absence of HIV 

can be assumed to be larger than that of the general population that does not 

inject (Frischer et al, 1997). 

5.3 Parameter Estimates from the Existing Lit- 
erature 

There have been few papers which explore the spread of HIV through needle 

sharing. In this section we review some of these papers to compare the different 

interpretion of the sociological and biological processes and the values attached 

132 



to the parameters that are employed in the respective models. We initially exam- 

inine the different parameters individually before, in a later chapter, undertaking 

a sensitivity analysis in a similar fashion to Blower et al. (1991). This determin- 

istic model aims to more completely describe the transmission dynamics of HIV 

within New York City, by including heterosexual, injecting drug use and perinatal 

transmission of HIV. This complex model involved 34 differential equations em- 

ploying twenty biological/behavioural transmission parameters, although some 

of these were not of interest in describing the transmission dynamics via sharing 

injecting equipment. In this analysis, single parameter values are replaced by 

ranges of values simulated from a postulated distributions. Thus the combined 

effect of parameters can be explored and the importance of the values of different 

parameters in relation to the number of infected IDUs can be examined. 

5.3.1 Parameters Describing the IDU Population Size and 
the Number of Shooting Galleries 

Kaplan, in conjunction with Caulkins, Heimer and O'Keefe presented a range of 

scenarios which could be modelled using his framework of differential equations, 

know as'Needles that Kill'; Kaplan (1989), Caulkins and Kaplan (1991), Kaplan 

and Heimer (1992a), Kaplan and O'Keefe (1993). In the initial paper, it was 

assumed that the number of IDUs was large, thus N= 200,000, reflecting the 

size of the injecting population of New York. While the number of needles was 

not explicitly described, it was assume that this parameter was related to N, 

such that m, the number of needles was assumed to be between 1ON and N110 

and 7= Nlm, the gallery ratio between 0.1 and 10. Apart from the open 

NTK model, where a much larger population size was modelled, Kaplan's models 

only refer to the proportion of the population that is infected and the number 

of needles relative to the number of IDUs, thus it can be assumed that for all 

Kaplan's models the population size is large, therefore justifying the deterministic 
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approach. Other deterministic models assume that that the population is of a 

similar magnitude to that described by Kaplan. 

5.3.2 Parameters Describing the Rate at which an IDU 
Ceases Sharing 

Studies of people with HIV and AIDS were used to estimate p, the rate at which 

infected IDUs ceased sharing injection equipment. Estimates of the mean incuba- 

tion period varied from 8 years to 10 years, thus M was assumed to be either 1/8 

or 1/10. However this did not include IDUs ceasing injecting for reasons other 

than death, therefore these estimates may inflate the true length of time an IDU 

remains injecting after infection with HIV. In fact as discussed earlier Caulkins 

and Kaplan estimate the rate at which IDUs cease injecting in the absence of HIV 

and AIDS as roughly 0.1333 in the USA. We may wish to combine this estimate 

with the above estimates of the rates at which HIV infected IDUs cease sharing 

due to developing clinical AIDS to give a total rate at which infected injectors 

cease sharing of 0.2333 to 0.2583. These rates include ceasing sharing due to non- 

AIDS related reasons and ceasing sharing due to developing clinical AIDS. In fact 

even these rates are underestimates as some individuals will discover that they 

are HIV positive from the results of HIV antibody tests before the end of their 

incubation period and some will cease sharing due to fear of catching HIV and 

AIDS rather than actually catching it. Both of these factors will act to increase 

still further the rate at which HIV infected individuals cease sharing injection 

equipment. 

In Blower's sensitivity analysis an incubation period and a survival period were 

modelled. Thus the incubation period was described by a Weibull distribution 

and the survival distribution by a left skewed distribution, the former ranging 

from 1.36 to 20 years, median value 8 years, and the latter ranging from 1 to 5 

years, median value 1 year. 

134 



Peterson et aL (1990) use a compartmental model to describe the HIV pro- 

gression. If the compartments 'Acute Infection', 'Asymptomatic' and 'pre-AIDS 

symptoms' are collapsed into a single HIV compartment, then on average an 

infected IDU is in this compartment for just under 10 years and in the AIDS 

compartment for 2 years. 

5.3.3 Parameters Describing the Rate at which an IDU 
Shares Needles 

Peterson et aL elaborate on Kaplan's sharing rate A by simultaneously modelling 

the progression from monthly, through weekly, to daily injecting and the different 

forms of sharing, of which shooting galleries is only one. As male and female 

IDUs were treated separately in Blower's model and sharing was in the context 

of random sharing with a stranger, or more structured sharing with a 'buddy' 

an exact representation of A could not be extracted from this paper, however for 

male random sharing, a left skewed distribution was postulated, with a minimum 

of 13 and a maximum of 5,265 times per year, approximately once a month to 14 

times a day. 

5.3.4 Parameters Describing the Infectiousness of a Nee- 
dle 

In Kaplan's 1989 paper, the probability of an infected needle being flushed by 

a susceptible IDU was initially set to 0.25. This assumption has been heavily 

criticised and experiments have shed doubts on whether flushing actually occurs 

(Kaplan, private communication). In later papers Kaplan assumes no flushing 

(Kaplan and O'Keefe, 1993). Instead he uses the parameter 0 to denote the 

probability that an addict effectively cleans a needle before use. From needle 

exchange data this was estimated to be 0.84 for New Haven, Connecticut, USA. 

An informal sensitivity analysis of this parameter for values of 0 in the range 
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0.21-0.84 suggested that, in the context of needle exchanges reducing the number 

of new infections, the model was not particularly sensitive to this value. 

The rate at which HIV loses its infectivity within a needle in Kaplan's original 

paper was estimated from Resnick et al. (1986). It was noted that HIV can retain 

its infectivity for more than three days when dried and held at room temperature 

and it can remain active for more than a week in an aqueous environment. There 

is considerable uncertainty about this parameter, indeed the effect that the length 

of time the person who rendered the needle infectious has themself been infectious 

may considerably affect the length of time the virus can retain its infectivity 

within a needle. Stephens et al. (1995) note that HIV can be cultured from 

syringes twenty eight days after they were loaded with HIV infected blood. 

In Allard's (1990) more theoretical paper, it is noted from previous studies that 

although the frequency of injecting is variable, the vast majority of users are daily 

users and that a high proportion share needles. Allard dismisses the inclusion of 

0 to describe flushing of an infectious needle by a susceptible IDU as premature, 

suggesting that experimentation could be used to establish the existence of this 

mechanism. 

5.4 Data Extracted from Research in Glasgow 

Behavioural data has been collected on IDUs in Glasgow, from which certain pa- 

rameters which are of use when modelling the spread of HIV can be estimated. 

This data was collected using a questionnaire which asked questions not only 

about injecting and needle sharing, but also sexual activity. The infection proba- 

bility, about which there may possibly be the most uncertainty, warrants separate 

discussion, and a estimate of this probability will be presented in the next chapter. 

In 1990 over 500 IDUs were questioned about their injecting and sharing prac- 
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Frequency of 
injecting 

per month 

Number 
of IDUs 
(N=503) 

Number of 
injecting events 

per month 

Number of 
injecting events 

per year 
for 503 IDUs 

0 4 0 0 
0.5 7 3.5 38.5 
2 4 8 88 
4 2 8 88 
10 17 170 1,870 
20 20 400 4)400 
30 63 1,890 20,790 
75 215 16,125 177,375 
150 171 25,650 282,150 

Total 44,254.5 486,799.5 

Table 5.1: The frequency of injecting. Adapted from Goldberg et al. (1995). 

tices. This sample came from various parts of the city, and attempts were made to 

avoid any bias by sampling both from drug treatment agencies and also IDUs who 

were approached in the street. Tables 5.1 and 5.2 show the reported frequency of 

injecting and needle sharing within a typical month during the six months prior 

to interview. This data is taken from Goldberg et al. (1995). 

Other studies have cast doubts on self-reported sharing rates from IDUs, par- 

ticularly Kaplan (1991) and McKeganey et al. (1996). Kaplan argues in his paper 

that his data corresponding to attendees at needle exchanges may be biased to be 

too low by social desirability considerations. See also Stimson et al. (1988) who 

argue that there may be bias in self reported sharing rates either too low due to 

social desirability considerations or too high as addicts may exaggerate the extent 

of their sharing to gain access to needle exchanges. McKeganey et al. note that 

low reported rates of sharing in a preceding time period may hide the fact that 

many IDUs would still be prepared to share as IDUs who respond negatively to 

questions about there sharing practices say that they would share when prompted 

with vignettes describing realistic circumstances such as not having a clean nee- 
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Frequency of 
injecting 

per month 

Number 
of IDUs 
(N=503) 

Number of 
injecting events 

per month 

Number of 
injecting events 

per year 
for 503 IDUs 

0 290 0 0 
0.5 87 43.5 487.5 
2 44 88 968 
4 23 92 1,012 
10 19 190 2,090 
20 9 180 1,980 
30 9 270 2,970 
75 15 117255 12,375 
150 7 1,050 115,500 

Total 3,038.5 33,423.5 

Table 5.2: The frequency of needle sharing. Adapted from Goldberg et al. (1995). 

dle when the IDU has drugs and is desperate to inject. However we assume that 

the ratio of sharing to non-sharing injectors in this sample is the same as that 

in the more general injecting population Approximately 40% of injectors report 

sharing. The most recent estimate of the number of injectors in Glasgow comes 

from Frischer et al. (1993a), who suggest that there are roughly 8,494 IDUs in 

Glasgow, hence we estimate the number of IDUs who share injecting equipment 

at approximately 3,597. 

The data presented above in Tables 5.1 and 5.2 may be misleading, due to 

the unequal classification size of responses, for example IDUs reporting sharing 

about once a week may have shared from four times in the last month to about 

seven times in the last month, while those that report sharing about once a 

day, may actually share anything from twenty five to forty five times a month. 

This classification is subjective, but we can approximately map the eight possible 

responses from the questionnaire onto a scale which denotes the number of days 

a month that an IDU shares. We again have to subjectively decide the lower and 

upper limits for this scale, thus we assume that an IDU can share from 0.5 times 
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Questionnaire response Number of sharing 
days per month 

Discrete 
approximation 

Less than once per month 0.5 0.5 
Once to three times a month 1-3 2 

About once a week 4-7 4 
Two to three times a week 8-14 10 
Four to six times a week 15-24 20 

About every day 25-45 30 
Two to three times a week 46-105 75 
Four or more times a day 106-200 150 

Table 5.3: Continuous sharing frequencies. Adapted from Goldberg et aL (1995). 

a month to 200 times a month. We can demonstrate the mapping that was used 

in Table 5.3. 

From- the scale that the questionnaire responses were mapped onto we can con- 

struct an approximate probability density function f (x) to describe the probabil- 

ity that an IDU selected at random shares x times a month. This can be achieved 

using the DISCRETE subcommand in the statistical package MINITAB's proba- 

bility distribution commands. To obtain approximately the frequency of sharing 

for the 3,597 IDUs who share we can sample randomly from this distribution to 

give the Figure 5.2. While Figure 5.2 cannot be taken as completely accurate, it 

does demonstrate that few IDUs share very frequently. Indeed compared to the 

value of A that has been assumed in the previous chapters, only 388 IDUs can be 

thought of as sharing weekly. Almost 1,000 IDUs share more often than this and 

over 2,000 IDUs share less frequently, but as the distribution is quite skew there 

are a small number of IDUs who share very often. Thus the mean value that on 

average injectors share roughly once a week is quite accurate. 

We will again use the reported sharing rates in the next chapter, but we note 

that although the majority of IDUs share less than once a week, from Table 5.3 

the mean number of times an IDU who does report sharing injecting equipment 
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Figure . 5.2: Approximate sharing frequency (per nionth) of 3,597 IDUs. 
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TllV Cleaning practices ()f IDUs whom shared in. jecting equipment can he ex- 

p1m-ed. IlWs elliph). v variolls Illethods ill Order to cleall previmuslY lised livedles, 

SM110 ()f' which 111,1Y lmt 1-clider the ncedle free froin HIV. Studies have shown that, 

t he limst efficicill 1110 limls ()f clealling ileedles Were to lise vitliel. boiling water, 

()I- bleach. 11mvever (1()iil)t still remains as to whether these methods al- 

%V; lY1) Cleall I he licedle ()I- iflDt-s are carrying out these procedures in the correct 

WhIN, val-lolls Illethods of cleaning injection equipment were described in a 

()f 200 IM's in Uasgow, from Table 5.4 44.2Yo used an efficient cleaning 

slich as bolling Nvater, Wench or alcollol. If we elliploY the terminology 

later papers, such that ý describes the probability of effective 

we t herefore have all estilliate of this probabilit. y. 

1. 'i ct (il. ( 1997) explored the mortalitY of' IDUs within Glasgow and 

ple. "(. 111 Ille allillial of IDt's as 1.771%. This estimate is lower than 
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Monthly Weekly Daily Total 
Clean always 
boiling water/bleach/alcohol 63 20 9 92 
Clean always 
hot water 57 29 22 108 
Clean always 
cold water/other method 13 2 7 22 
Clean mostly 
all methods 6 5 2 13 
Clean about 50% of the time or less 
all methods 3 

13 F0 6 

Table 5.4: Cleaning Practices of Monthly, Weekly and Daily Sharers. Adapted 
from Goldberg et aL (1995). 

previous estimates such as Bucknall et al. (1986) and Skidmore et al. (1990), 

and suggest that this is due to the increased knowledge of the size of the IDU 

population. Data on the length of time between an IDU becoming infected with 

HIV and the time that they die may be used to estimate the increased mortality 

due to HIV, Frischer estimates this mortality rate at 3.8%, but it should be 

noted that the interpretation of this mortality rate differs from that of both 

Kaplan and Peterson, as Frischer's increased mortality rate does not account for 

the incubation period of HIV/AIDS. 

5.5 Summary 

In this chapter we have examined the parameters that we have previously em- 

ployed in the deterministic and stochastic models presented in the preceding 

chapters. We have shown that from the existing literature, the existance of flush- 

ing may be questionable, and that 0 may be better described as the probability 

that a needle is effectively cleaned. We have described the forces acting on the 

size of the IDU population and shown that the outflow rate y at which IDUs 

cease sharing injection equipment consists of more than one process as in the 
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absence of HIV, IDUs have a higher rate of mortality that the general public 

and HIV/AIDS itself contributes to this outflow rate as infected individuals may 

cease sharing because they develop AIDS or due to fear of AIDS. Caulkins and 

Kaplan formulated models in which HIV and AIDS may have a dramatic effect 

in lowering the number of IDUs in a particular area, however in Glasgow over the 

last 10 years there does not appear to have been a serious decline in the numbers 

of IDUs. Any lowering of the number of needle sharing IDUs may be better at- 

tributable to the success of public health campaigns, including the introduction 

of methadone prescribing. In the next chapter we will examine the remaining 

parameter a, the probability of a susceptible IDU becoming infected after using 

an infected needle once. 
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Chapter 6 

Estimating the Probability of 
Infection 

6.1 Introduction 

In the preceding chapters we have developed models which described the spread 

of HIV in a population of IDUs. We have shown that the number of infected 

IDUs depends on the parameter values, in particular a, the probability that an 

IDU becomes infected with HIV after injecting with an infected needle. In this 

chapter we review the existing literature and then use data from various sources 

in Glasgow, collected in 1990, to create an estimate for a. 

Little is known about the value that this parameter should take, and in the 

preceding chapters a=0.075, the value suggested by Kaplan in 1989, was used 

without question. Kaplan justifies this value as it is within the range of estimates 

of the probability of becoming infected following unprotected receptive anal in- 

tercourse. In a later paper, Kaplan and Heimer (1992b) use the formulation, of 

the steady state values of 7r and P and data collected from a study of IDUs 

who attend a needle exchange to produce an estimate for a. The result of such 

analysis is to lower the estimate of a to 0.0066. This was seen as an improve- 

ment on previous estimates of a which were derived from studies of health care 

workers who had needlestick injuries while treating known AIDS or HIV posi- 
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tive patients, giving estimates of between 1/300 and 1/200 (Friedland and Klein, 

1987; Leentvaar-Kuijpers et al., 1990; Marcus, 1988). These estimates based on 

needlestick injuries can really be thought only to be a lower bound for a as the 

amount of blood involved when an addict injects with a syringe exceeds that 

involved in needlestick injuries. 

More recently, other authors have suggested that Kaplans value of 0.075 was 

an overestimate, suggesting that a=0.01. In Allard's (1990) paper, which 

focusses on the infection process, a conservative value of a is given as 0.005, 

derived again from needlestick injuries, although scenarios where a=0.05 are 

discussed. Peterson et al. (1990) also use 0.005 as an estimate of a, again from 

needlestick injury data, although they perform a sensitivity analysis on this value 

by describing the effect that changing a from 0.001 to 0.05 has on HIV prevalence 

in a stochastic simulation. 

In the sensitivity analysis of Blower et al. (1991) a triangular probability dis- 

tribution was assumed for the probability of becoming infected on using infected 

injecting equipment. This distribution had a peak at zero and ranged from zero to 

one with a median value of 0.28. These values ensured that although the majority 

of simulations would have low infection probabilities, there would be some with 

high probabilities. Kretzschmar and Wiessing (1998) assume that the infectivity 

of HIV varies over the course of infection. They note that Jacquez et al. (1994) 

argue that infectiousness is very high in', the first 6-8 weeks of infection (in the 

order of 0.1 to 0.3 per contact) then it stays low (0.0001 to 0.001 per contact). 

Hence they assume a two stage process of infectivity; in the first 60 days after 

infection infectivity is set to 0.5 per contact, after that it is 0.001 per contact. 

As they assume that an IDU will continue to infect for approximately 10 years 

after becoming infected then their representation of the infectivity is similar to 

the average infectivity of 0.01 per contact as estimated by Kaplan and Heimer. 

144 



6.2 The Probability of HIVE-ansmission among 
IDUs in Glasgow 

Two quantities that are frequently used to give an estimate of the effect that HIV 

has in an area are prevalence and incidence. The prevalence of HIV in the IDU 

population at a given point in time is defined as the total number of HIV positive 

IDUs divided by the number of IDUs. This can be estimated from sampling 

known IDUs and using the proportion of those sampled who are HIV positive as 

an estimate of the prevalence of HIV in the whole IDU population. This may 

give an incorrect estimate if the IDUs sampled are not representative of the more 

general IDU population. 

The incidence of HIV in a given year is defined as the number of new infections 

that occurred in that year, again divided by the number of IDUs. This again can 

be estimated by taking a sample of IDUs and exploring how many of them became 

HIV positive that year, and then scaling up this estimate to correspond to the 

estimated total number of IDUs. However, due to the long latent period, many 

people infected with the virus do not find out until several years later, hence 

incidence is more accurately estimated retrospectively. Goldberg et al. (1995) 

suggest that the prevalence and incidence of HIV in Glasgow are both low. They 

combine data from various studies of the Glasgow IDU population including the 

behavioural and seroprevalence study to give an estimate of the probability that 

a single sharing event will result in a new HIV infection. 

Taylor et al. (1994) estimated the incidence of HIV infection among IDUs in 

Glasgow in 1990 to be low. Without formally describing a confidence interval 

they estimate the value to be between 0% and 0.2%. If the upper limit of this 

interval is used and the incidence of HIV in Glasgow in 1990 is assumed to be 

0.2% then the number of new infections in 1990 can be estimated as nP, where n 

is the number of IDUs who were not infected with HIV at the start of 1990 and 
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PI = 0.002. Using the upper limit of the interval can be justified as the findings 

from this research can be thought of as the 'worst case scenario'. The prevalence 

of HIV in in Glasgow 1990 was estimated at 1.8%, therefore the number of infected 

IDUs that year can be estimated as NP2 where N is an estimate of the population 

size of IDUs and P2 = 0.018. The estimated number of uninfected IDUs will be 

9(1 
- P2). From Frischer (1993a) there are an estimated 8,494 IDUs in Glasgow 

hence we can combine these estimates to give an estimate of the number of new 

infections in 1990 as P19(1 - P2) or 0.002 x 8,494 x (1 - 0.018) = 16.68. 

As part of a World Health Organisation study of IDUs and HIV risk, 503 Glas- 

gow IDUs were interviewed about their sharing patterns. The reported sharing 

frequencies as discussed in Section 5.4 have been presented in Table 5.2. From 

the reported sharing frequencies of the 503 IDUs that were interviewed, we can 

obtain an estimate for the total number of sharing events that occurred in Glas- 

gow in 1990. As there were an estimated 8,494 IDUs, there would have been an 

estimated 
8494 

x 33,423.5 = 564,412 sharing events assuming that the sample 503 
is drawn at random from the whole IDU population. Hence although the num- 

ber of sharing events has been estimated at more than half a million, they only 

resulted in around 17 new infections, which implies that the probability that a 

single sharing event would have resulted in a new infection in 1990 was 
16.68 

564,412 
or 2.96 x 10-5. 

It may be unrealistic to assume that the sharing patterns of the IDUs that have 

been included in the sample will be representative of the whole IDU population. 

Although Haw et al. (1992) stress the importance of multi-site sampling, there 

are often difficulties in obtaining a representative sample. As two thirds of this 

sample were recruited from needle exchanges or treatment agencies the sample 

may be biased towards those who are more willing to share injecting equipment, 

therefore extrapolating the sharing frequency of those sampled may result in an 
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overestimate for the total number of sharing events, and hence an underestimate 

for the derived probability of infection occurring. 

While the point estimate derived above may be of interest in explaining the 

continued low prevalence of HIV in Glasgow, it will useful to attach a confidence 

interval to this estimate. We can assume that the parameters previously described 

are estimates of unknown values, and that these values can be thought of as fol- 

lowing a given probability distribution. Using distribution theory we can explore 

the variance of such estimates. We can assume that both the number of infected 

IDUs and the number of new infections in 1990 will follow a binomial distribution. 

Hence we have that the number of new infections will be B(n, pj), which results 

in a variance of np, (1 - pl) which is estimated by fili, (1 - 1; 1) = 0.001996ft where 

as before n is the number of uninfected IDUs. Similarly the number of infected 

IDUs will be B(N, P2) as before with estimated variance 0.01779. If we assume 

that N, the total number of IDUs is normally distributed then we can use Monte- 

Carlo methods to estimate the variance of i, the number of new infections in 1990. 

To obtain a value of the distribution which i follows, we first generate a random 

variate from a distribution which describes the population size. Frischer et al. 

(1993a) quote a non symmetric confidence interval derived using the likelihood 

interval method (Cormack, 1992). We approximate this by a normal distribution 

with mean 8,494 and standard deviation 568. The RANDOM function in the 

statistical package MINITAB, was used to obtain 1,000 random variates from a 

normal distribution with the specified parameters. Figure 6.1 is adapted from a 

histogram describing the distribution of the sampled variates. 

We can then use 9(1), the first estimate of the population size to create the 

binomial distribution B(10), h) from which an estimate of the number of infected 

IDUs can be sampled. We can divide this estimate by 9(1) to get a value, Al) 
2 

from the distribution for the HIV prevalence. As fi(I) = (1 - P(l))9(1) will be a 2 
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Figure 6.1: Slillulated Numbers of IDUs from the N(8,494,568) distribution. 
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We can use the data froin Table 5.2 to construct a discrete distriblition ns- 

ing the RANDOM command in MINITAB with the DISCRETE subcoinniand. 

The (list ribution will he very skew reflecting the fact, that inany- IDUs do not, T 

report needle shariiig. The (list ribution will also be discrete, as the question- 

Ilairc 1-c""ImIlses Nvere categorical data. To obtain an estimate of the total aniount 

(d sharing 1,01. a population size N Nve can simply repeat the random sampling 

from Ille (list riblition constructed fi'om Table 5.2 N times and suni the N values. 
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Figure 6.5: 1,000 simulated numbers of sharing events. 

Figure 6. G mid find the inean value, the 501 percentile and the 95th percentile as 

Thus (1ý the probability that sharing a needle in Glasgow in 1990 would 

I-es'llit III I now infCctioll is estin-lated as 2.95 x 10-5,95(/o confidence Interval 

[L. 56 x 10 ", 1.39 x 10-5]. The. distribution is reasonablY s. vinnietric and is shown 

III Figure G-6. 

Alt hough Ihe preceding analysis is based on several assumptions that cannot 

be fested, illid the confidence intervals that were obtaine(I are approximate and 

110 SkIt'i"'t'icallY robust,, it was carried out to demonstrate how low the probability 

()f' becmimig infCcied dirough a single sharing act was. 

E'vell ;0 the Iligher colifidence limit, 4.39 x 10--r), the value appears to be 

extrelliclY 1()N\,. If' the Sharing pattern of IDUs were completelY random which 

Nvolild correspond 10 the homogeneous mixing model in Chapter 3 and infected 

IM's eq II al I. v (I istriblited throughout the population, then only 1.8% of the 

, -(ýpoytvd 561,968 sharing events, or 10,115, would involve any risk of infection. 
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Monthly WeeklY Daily Total 
E, fficient Cleaning Practice. 

Inefficient Cleaning Practice 
63 
57 

20 
29 

9 
22 

92 
108 

Table 6.1: Clealling Practices of IDUs adapted froin Goldberg ct al. (1995). 

(t Ilat, t he Shared ileedle had previously been used bY an IDU, then 

there would be several factors that would influence the infectivity of the needle. 

As In ( liýiptvr -1, these can be suniniarised by three parameters, (y, whicli depends 

on dic allimilit, of, Hood 1(, f*t In the needle. and the viral load of* HOOd, T, the 

tillic 111tel-val betweell injections and ý, the probability that the needle is cleaned 

(ý 
F( 

(-ti ve I .ý, 
be kv( (ýII Ill. ) ectiol IS. 

'I'lle reported deaning practices of a sample of' 200 IDUs is sumnlarlsed in 

(11.1, ed from Goldberg ct, al. (1995). From this table the probabilitY 

Ill'it III 11A, clealled the Injecting equipment effectively is 0.46, although dally 

, ýJjjjjvrs were less likelY to use effective cleaning inethods. Therefore 5,462 out of 
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R-equency of Number Number of Number of 
injecting of IDUs injecting events injecting events 

per month (N=503) per month per year 
for 503 IDUs 

0 (Never) 290 0 0 
0.5 -2 (Monthly) 131 131.5 11446.5 
4- 10 (Weekly) 42 282 3,102 
20 - 150 (Daily) 40 2625 28,875 

Total 31038.5 33,423.5 

Table 6.2: The frequency of needle sharing adapted from Goldberg et al. (1995). 

the 10,115 sharing events can be thought of as risky in that the IDU may not 

have effectively cleaned the needle and may be exposed to the virus. This assumes 

that a needle will remain infectious for a long time period after an infected IDU 

injects with it. We can then estimate a, the probability of infection given that 

the IDU is exposed to HIV as 
16-68 

= 0.00305. This may be an underestimate 5,462 
as those IDUs who share equipment more frequently appear to be less likely to 

effectively clean their needles. It may also tend to underestimate the probability 

of infection as even inefficient cleaning may do some good. 

6.3 Derivation of the Infection Probability in a 
Stratified PoPulation 

The assumption that all IDUs mix homogeneously is likely to be unrealistic as 

IDUs who share more frequently will be more likely to share with other IDUs 

who share more frequently and vice-versa. If we stratify the population into three 

groups, those who share monthly, those who share weekly and those who share 
daily, we can explore heterogeneous mixing. If we amalgamate the categories in 

Table 5.2 we obtain Table 6.2. If we now assume that the population of IDUs 

is split into these four categories, we can define 6D as the estimated probability 

that an uninfected IDU who shares injecting equipment daily will become infected 
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after using an infected needle, estimated from the data for those that share daily, 

with a similar definition for &m and &w. As we are only interested in IDUs that 

share, we wish to ignore the category that does not share. 

As before, i, the expected number of new infections, can be calculated as 

i=p, N(l - P2) - If s is the number of sharing events then q, the probability that 
i 

a single injecting act will result in a new infection will be -. Out of the s sharing 
S 

events, assuming that each needle had only been used previously by one IDU, 

then P2s events would have occurred with a needle from an infected person. If ý 

is the probability of effective cleaning of the needle, then (1 - ý)P23 will be the 

expected number of sharing events that can be thought of as risky, in that the 

needle was previously used by an infected person and was not effectively cleaned. 

We therefore have 

aip, 
N(l - P2) 

U 
-T)P2S - (1 - C)P2S 

(6.1) 

For the group that shares monthly, there were an estimated 1446.5 sharing events 

in that year for the 131 IDUs in the sample of 503 who reported monthly sharing, 

which, if the sharing patterns were extrapolated onto the whole population, there 

would be 
131 

x 8,494 = 2,212 IDUs in the population who share monthly. The 
503 

total number of sharing events for monthly sharers in 1990 would be 
2,212 

X 131 
1,446.5 = 24,425. It would seem sensible to assume that IDUs who share more 

often would be at greater risk of being infected with the virus, which would imply 

that the HIV prevalence and incidence in the group who reported daily sharing 

would be higher than that in the group who share monthly. If we calculate these 

values within the monthly sharing group by weighting the population prevalence 

and incidence by 9m, the average monthly number of sharing events per IDU 

reported in Table 6.2 then the number of existing infected people in the monthly 

group will be 
131.5 

x 152.89 = 6.62, therefore P2) the prevalence will be 6.62 
3,038.5 2,212 

2.99 X 10-3, assuming that each injection is equally likely to cause infection. In 
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Never Monthly Weekly Daily 
N 4,897 2)212 709 675 
s 0 247426 52,382 487,603 
9 0 11.042 73.882 722.374 

new infecteds (i) 0 0.722 1.548 14.412 
Pi 0 3.2 74 x 10-4 2.228xlo-3 0.02655 

infecteds (1) 0 6.616 14.190 132.086 
P2 0 2.991 X 10-3 0.020 0.196 

0 0.525 0.4081 0.29 
a 2.081 x 10-2 2.495xlo-3 2.127xlo-4 

Table 6.3: Estimated parameter values. 

addition the number of new infections can be calculated as 5 
131.5 

, 038.5 x 16.68 = 0.72. 

Therefore the incidence in the monthly group will be 
0.72 

- (1 - 2.99 x 10-3) x 2,212 
3.27 x 10-4 . From Table 6.1 we have that c, the probability of effective cleaning, 

will be estimated by 63 
= 0.525. Our estimate of &M can then be calculated 120 

from the data on monthly sharers by Equation 6.1. We can summarise this 

calculation, and the calculation of aw and aD as follows in Table 6.3. 

As can be seen from Table 6.3, the assumption that the prevalence and inci- 

dence of HIV within the three groups is weighted by 9 then we have that a, when 

calculated using the data for those IDUs that share monthly, is larger than a 

calculated with data on weekly sharers which in turn is larger than a calculated 

using data on daily sharers. 

The value of a calculated above can be directly compared with the value a 

quoted in Kaplan's deterministic model, Equations 2.1 and 2.2, and also the pa- 

rameter used in the stochastic simulation models described in Chapter 3. This 

parameter is a biological parameter which depends only on factors such as the 

infectivity of the virus therefore calculating a using different data sets corre- 

sponding to independent factors such as the rate at which IDUs share injecting 

equipment should result in similar values. If the methodology behind our esti- 
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mate of a is correct, then we should be able to explore incidence and prevalence 

values for monthly, weekly and daily sharers which will give a common value for 

c. 

Equation 6.1 can be reformulated in terms of the actual number of infected 

IDUs at the beginning of 1990,1, and the number of IDUs that become infected 

during that year i. We have 

iN (6.2) (1 - C)IS 

which when splitting the population into 3 groups will be 

imNm 
am = (1 - ein) Im sm 

aw= 
iwNw (6.3) (1 - Zw)Iwsw 

and OD 
iDND 

- 
- CD)IDSD' 

We have data from which we can estimate the parameters Nm, Nw, ND, ýM, ýW, 

ýD) sm, sw andSD, and we also know that 

iM + iW + iD : -- iT 

and IM + IW + ID ý IT) 

(6.4) 

where iT and IT are the total number of new infected IDUs in 1990 and the 

number of infected IDUs at the beginning of 1990 respectively, both parameters 

can be estimated from the data. Hence setting am = aw = aD estimated from 

the combined data we have a system of five equations in six unknowns. A solution 

to the five equations can be found in terms of one of the other unknowns im, iw, 

iD9 Im, Iw and ID. The system of equations described above were solved using 

the mathematical computation system MAPLE, using im as the variable that 

the unknown variables were solved in terms of. The justification behind the 

choice of im is that it is thought that this value would be the smallest. The 
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parameter values described above were used. We have a value for a determined 

to be 3.04 x 10-3 by using the data collected from the sample of 503 IDUs before 

they were split into groups by their sharing activities. We recognise that this is 

an estimated value, for which we have provided an approximate measure of the 

uncertainty of the estimate as previously described. We also have estimates of 

the total number of new infections in 1990 from Taylor et al. (1994) and the 

total number of infected people at the start of 1990, within which publications 

the relevant authors discuss the uncertainty in these estimates. Having discussed 

this, we still use this estimated value in our system of equations and the estimated 

number of original and new infections. 

The system of equations were repeatedly solved for different values of im, but 

it was found that only two discrete values of im, im =1 and im =2 resulted 

in solutions that were feasible and that the range of feasible solutions for non- 

discrete values for im was when im < 2.2. Table 6.4 is a range of feasible solutions 

for 1< im < 2.2. It should be noted here that we approximating a set of discrete 

values by a set of continuous values; that is the number of infected IDUs and 

the number of new infections can only be integers. This is similar to approxi- 

mating stochastic models which describe the number of infected individuals with 

deterministic models. 

There may be constraints that we want to put on the variables to achieve 

biological relevance. One constraint that may be desirable is that the number of 

new infections in each group is less than the number of existing infections in that 

group, as described by Constraint 6.5. 

im < Im 

iw < Iw (6.5) 

iD < ID 
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IM ZW iD IM IW ID 

1.0 11.65 4.03 62.70 87.60 2.59 
1.1 10.75 4.84 68.97 80.81 3.10 
1.2 9.84 5.64 75.25 74.03 3.61 
1.3 8.94 6.44 81.52 67.25 4.13 
1.4 8.04 7.24 87.79 60.46 4.64 
1.5 7.14 8.04 94.06 53.67 5.16 
1.6 6.23 8.85 100.33 46.89 5.67 
1.7 5.33 9.65 106.60 40.11 6.18 
1.8 4.43 10.45 112.87 33.32 6.70 
1.9 3.53 11.25 119.14 26.54 7.22 
2.0 2.62 12.06 125.41 19.75 7.73 
2.1 1.72 12.86 131.68 12.97 8.24 
2.2 1 0.82 13.66 1 137.95 1 6.18 1 8.75 

Table 6.4: Range of feasible soultions for 1< im < 2.2. 

On closer inspection of the definition of incidence and prevalence in this chapter, 

we will see that it is possible that the number of new infections in a group for a 

given year can be greater than the number of infected people at the start of the 

year. Indeed, looking at many conventional models of disease spread, including 

Kaplan's deterministic model the number of new infections can be greater than 

the original number of infections. Therefore Constraint 6.5 may not be relevant. 

Under conventional mixing models stratified by sexual mixing rates in the case 

of the sexual spread of a disease, it can be shown that the proportion of infected 

people in the group with the highest sexual activity rate will have the highest 

number of new infections. Although it is known that IDUs do not select a person 

with whom to share injecting equipment with at random and that the number of 

different people they share with may not be strictly correlated with the frequency 

with which they share, it is assumed that the fraction of new infections in the 

group that shares daily will be greater than that in the group that shares weekly 

which in turn will be greater than in the group that shares monthly as described 

by Constraint 6.6. 
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N, ý,, Nq, ND 

Without exploring the relationship between IDIUs sharing patterns before and 

after infection with HIV, Nve cannot assume that the sharing pattcrils of* ilifecte(I 

IDUs will be the same as the sharing patterns of uninfected IDUs. Indeed it, can 

he argued that knowledge of HIV infection may affect die. sharl ng rates of' IDUs, 

as explored in Chapter 4. Therefore an assumption that the fraction infect, ed 

with HIV at the start of the year in the group that shares daily will be great, cr 

than timt of' the weekly sharers which is in turn greater than that of* the Illoiltiliv 

sharers. as described hy Constraint 6.7, may be quest ion able 

IAI Iw ID 

-<-* (6.7) A'A, Nji, ND 

We can Show the ralige of* feasible solutions In ternis of' the prevalell(v an(I 

Incidence values in Table 6.6 graphically in Figures 6.7 and 6.8 where the y axis 

descrihes, Incidence and prevalence of HIV aniongst IDUs millibers of* 

infected IM's for a solution set determined by a Nralue of ?, A, 01, the x axis. Froin 

CD 
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a? 

LO 
C> 
Cý 
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C) 

Figure 6.7: Range of' incidence values, for I< '/', At < 2.4. 

Illese ligill-cs. we can sce from Figure 6.7 that there exists a railge of solutions 
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Figuiv 6.8: Range of prevalence values, for I< im < 2.4. 

which satisf. v Constraint 6.6. but from Figure 6.8, there is ilo range of solutions 

that statislies Constraint 6.7. Or in other words, there is a range of' values in 

which ille Incidence is highel- III the groups that share inore often, however the 

prevalclice al t lic st art of the year was never greater ill these groups. This ina 
I 
N' 

I)c (Itic to IN's changing their sharing practices when are aware of their 

111V "tal II. S. 

6.4 Summary 

\%'c have shown in this (Talow that KajAan's original estimate of o, the parametor 

which descrihed the probability of infection afer using all infected Ilvedle Illay 

ýý, (. Jj 1',, 11 ; 111 ()x, (qvstjjjýjte. Other literature suggests a much lower value 

"Illd obt; 1ills I lower vduc for (ý In a later paper which assumed that the 

1111111hel. oI . 1111 . Ccled IM's had renched equilibrium. We have derived an estlimite 

of (i 1J. "llig (1; 11; 1 collected oil IDUs in Glasgow in 1990, along with an estimate 

of* the 1111111her of* IM's. We have also stratified the population bY sharing rates, 

; 111(1 S'llowil 111; 11 ()111 (l. "Illmite of (ý is broadly consistent when dail. v, NvecklY and 
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monthly sharers are analysed separately. Indeed when examining the range of 

possible values for the incidence and prevalence of HIV in each category, we find 

that high incidence may be related to sharing often, although a high existing 

prevalence may not be. 
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Chapter 7 

Uncertainty and Sensitivity 
Analyses 

7.1 Introduction 

In the preceding two chapters we examined the values that the various parame- 

ters employed when modelling the spread of HIV via shared injecting equipment 

may take. We wish now to demonstrate the effect that varying these parameters 

may have on the spread of the disease. Unlike Chapters 2 and 4, where we var- 

ied parameters in isolation, in this chapter we will examine the combined effect 

of varying several parameters simultaneously. In order to do this we postulate 

distributions for these different parameters. Then using sets of values sampled 

from each of these distributions we can examine the proportion of infected IDUs 

over time as found by numerically solving the differential equations. We perform 

uncertainty and sensitivity analyses on some of the previously presented mod- 

els by examining the output values obtained when using different combinations 

of the parameters. We conclude this chapter by discussing some of the policy 

implications of the results. 

A mathematical model of disease transmission can be seen as a system in which 

a set of input values combine to give a single value or series of output values. 

The key epidemiological parameter Ro can also be viewed as such a system. The 
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estimation of the parameter values employed in the system is often subject to 

uncertainty therefore it may be more appropriate to treat each input parameter 

as a random variable with a corresponding probability density function. An 

uncertainty analysis, similar to that presented in Chapter 6 which was used to 

examine the infection parameter a, measures the effect that this uncertainty in 

the input parameters has on the output parameter. A sensitivity analysis extends 

the uncertainty analysis by exploring the sensitivity of the output parameter to 

the uncertainty of the input values. 

There are several distinct stages involved in both an uncertainty and a sen- 

sitivity analysis. After postulating the distributions of the input parameters, a 

sampling design must be decided upon. The number of simulations that will be 

used in the analyses must also be decided before repeated solving of the model 

using the parameter values sampled from the postulated distributions. It is at 

this point that the uncertainty and the sensitivity analyses differ. Within the 

uncertainty analysis the resultant output values are examined, often using non- 

parametric measures of dispersion such as percentiles. In the sensitivity analysis 

the correlation between the input values and the output values is examined, again 

often using a non-parametric measure of correlation such as the partial rank cor- 

relation coefficient (Kendall and Stuart, 1979). 

There are several sampling designs that can be used in a sensitivity analysis, 

ranging from simple random sampling to a full factorial sampling design. The 

latter is time consuming, especially in models that employ many parameters, 

whereas the former can be shown to be inefficient (Stein, 1987). Latin Hypercube 

Sampling (LHS) has been used by Blower and Dowlatabadi (1994) in examining 

their complex HIV transmission model which employed twenty behavioural and 

biological transmission parameters in a system of thirty four differential equations 

to describe the spread of HIV within interacting heterosexual and drug injecting 
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populations (Blower et al., 1991). We wish to undertake similar analyses on 'the 

model proposed by Kaplan (1989). We do not, however, use the LHS design, not 

because of the added complexity, but because efficiency will not be as pertinent 

when analysing a simpler deterministic model such as those previously examined 

within this Thesis. We also wish to employ a simple random sampling design as 

we have previously constructed numerical distributions for some of the relevant 

parameters. We can therefore sample directly from the distribution which we 

presented in Figure 5.2 to describe the number of sharing episodes per month. 

The effect of using a simple random sampling design on the uncertainty analysis 

may be to reduce the variation in the output values, as it is possible that the full 

range of the input values might not be sampled. A sensitivity analysis which 

uses non-parametric measures of correlation should not be affected because the 

correlation of the ranks between a monotonically increasing or decreasing range of 

input values and a monotonically increasing or decreasing output value should be 

present regardless of the sampled input values, at least in the context of Kaplan's 

model and the possible range of input parameter values. 

7.2 The HIV Transmission Model 

The simple model presented by Kaplan (1989) was described in Chapter 2. This 

model was explored using a set of parameter values as suggested by Kaplan. A 

notable feature of the model was that, using most combinations of the parameters 

suggested in Kaplan's original paper, almost every drug injector in the population 

became infected. This may be because the model is too simplistic, however the 

high values of a employed in the initial examination of the model must now be 

thought of as questionable in the light of more recent work such as Kaplan and 

O'Keefe (1993). In addition, the process of flushing may not be the best way 

of approximating the complex biological, physical and virological processes that 
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occur when a drug injector, infected or otherwise, injects with a previously used 

needle. Also the model ignores the natural turnover of needles. The effect of 

including this would be to decrease the fraction of needles which are infected and 

hence indirectly the fraction of addicts who are infected. We can now re-examine 

this model using what are now thought to be more realistic parameter values, 

and this exercise will be useful in explaining which parameters within the model 

have the most influence on the results. 

Both analyses view a mathematical model as a system into which we feed a set 

of input parameters and out of which we obtain an output parameter. In the case 

of the model that Kaplan intially presented, there are five input parameters, A, -Y, 

0, a and p. As stated in Chapter 2, the output from these models can either be 

the proportion of needles or the proportion of IDUs that are infected, and both 

these output values change over time. To obtain a single series of output values, 

we ignore the proportion of infected needles and concentrate on the proportion 

of infected needles. If we examine this proportion at time t=1,2, --. 20 years we 

have 20 separate output values. We can then include each output value in the 

sensitivity analysis separately. 

7.3 Probability Distribution Functions for Pa- 
rameters 

To construct probability density functions for the distributions of the various 

input parameters we combine information taken from the literature as described 

in Chapter 5 and with the previously derived values for the 'rate of sharing' 

parameter also described in Chapter 5. We use at this stage the distribution for 

the values of a as proposed by Blower and Dowlatabadi. Table 7.1 describes the 

minimum value, the maximum value, the median value and the standard deviation 

of the distributions that we now assume these parameters take. Figures 7.1 to 
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Parameter Units Min Max Median Standard deviation 
a 0.004 0.884 0.334 0.244 
7 0.013 9.447 1.278 2.795 
A Visits per Month 0.331 189.0 1.971 25.40 
0 0.021 0.997 0.550 0.301 

A-1 Years 0.511 1 13.45 1 2.844 2.853 

Table 7.1: Parameter Distribution Summary Statistics. 

7.5 are histograms of 100 values sampled at random from these distributions. 

The distribution of A, the rate at which an IDU shares needles, is adapted from 

Goldberg et al. (1995). There has been a slight alteration to the distribution as 

shown in Chapter 5 which was derived from a discrete distribution adapted from 

the eight questionnaire responses as described in Table 5.3. This distribution 

was still discrete in that it could only take the value 0.5 or integer values be- 

tween 1 and 200 for the number of sharing events per month. Many drug users 

reported sharing needles less than once per month and this was reflected in the 

high probability that a random variate sampled from this distribution was 0.5. 

As the sensitivity analysis looks at the correlation between these values and the 

output values of the model, we wish now to slightly change the 'sharing' distri- 

bution by adding an independent normal distribution, N(0,0.25) to this discrete 

distribution to obtain a continuous distribution. Thus when examining correla- 

tions, in particular the rank correlations, there will not be so many tied values. 

It is, of course, possible to obtain negative values for A when we combine these 

distributions, however we discarded any negative values and continued sampling 

until we obtained the required number of variates. As the number of discarded 

values was small, this procedure introduced only a small amount of bias into the 

distribution. 

As suggested in Chapter 6, the value of a can be estimated from known values 

such as the HIV incidence, the HIV prevalence and the rate of sharing in a 
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population of' drug injectors of known size. As distributions can be attached to 

each of' diese values we can obtain a distribution for the estimat, ed parameter. If 

we use t'llis distribution fOr (ý, with a inean value of 0.00316, we find that most 

of Hie detvi-1111111"'tic realisations will have R. () <I so the disease will (lie out. 

This is clenrlY unsatisfactory as we know that AIDS persists in that population, 

it is dle reason why we are studying it. We therefore, at this stage, employ the 

trianglibu. (list 1.1blition For the MfOct. ion parameter (ý as emplo. yed bY Blower et al.; 

100 sampled Values fl-onj this distribution are shown in Figure 7.5. This sampled 

dist'riblition has dle 11111ch higher inean value of 0.37 (niedian value 0.33). 
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Figure 7.5: Simulated values for a froin Blower ct al. (1991). 

As, there are questions relating to the validity of employing the parameter 0 an(l 

as we do not have any firm idea about the value ofthis parameter, we assigi, to 0 

a cont inuous uniform distribution Nvith values between 0 and 1. As for the ratio of' 

-Iddict's to needles" I%aplan suggests values which lie between -y = 0.1 an(l 

therefore we use these values as upper and lower bounds of the distriblitioll. \N7e 

wi. sh h) Include N"Illies of -ý which correspond to an excess of needles over IDUs and 

also vallies of -ý in which there are less needles than IDUs. We cm, therefol-v split, 

Hic distribution Into two sections, one which is a continuous uniform distribution 

from I to 10 and t he other which is -y = IIG where G also is a continuous uniform 

distriblit M11 from I to 10. \'Ve obtain lialf the required 1111111ber of' vallies sampled 

; it I., 111dom From vach of' these distributions independentlY and then randomly 

01, der these to avoid 'i pattern in the simulate(I values. 

The remaining parmneter p is harder to attach a distribution to as we have 

Owidmd, in Chapter 5, that the rate at MAI drug injectors (vase sharing inject- 

ing equipment, can depend on severid related pm-anieters, including the incubation 

period of' IIIV ; 111(1 survival rate of those with AIDS, and also the rate at which 
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drug users cease using drugs or change their method of using them, for example 

by smoking heroin instead of injecting. 

If we examine the length of time which drug injectors live after becoming 

infected with HIV, ignoring for the moment deaths from causes other than HIV, 

this will be 11p using the parameters as described in Kaplan's model (1989). We 

can take the mean of this distribution to be eight years, which corresponds to 

both the median of the NVeibull distribution describing the survival distribution 

in Blower and Dowlatabadi and the value of it suggested by Kaplan. The Weibull 

distribution of Blower and Dowlatabadi has a standard deviation of 3.71 years, 

so we employ this shape parameter. We therefore independently sample a value 

for 11p from the normal distribution with mean 8 and standard deviation 3.71 

years for each simulation. 

NVe also need to recognise that IDUs may cease sharing for reasons other than 

death due to HIV/AIDS. Caulkins and Kaplan (1991) include this rate in their 

models, but sociological research such as McKeganey and Barnard (1992) shows 

that there are many reasons why people cease sharing. Although we wish to 

include this in our sensitivity and uncertainty analyses, we have no clear idea 

how this should be done. We assume that an IDU will continue to inject for only 

a proportion of this time, and within that time the IDU could have died from other 

causes. As we have no strong belief about the values that this proportion would 

take, we assume the distribution of the proportion has a uniform distribution 

between 0 and 1. We therefore combine the Normal distribution described above 

with this uniform distribution and, to avoid obtaining a negative or zero simulated 

value for the rate at which drug injectors cease sharing, we censor this combined 

distribution at 0.5, in other words, if the value of ti simulated is less than 0.5 we 

discard it and continue to sample at random until we have the required number 

of values. Thus the mean of the combined distribution of the length of time an 
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IDU continues to share after becoming infected will be approximately four years. 

This is consistent with combining the results of the models of Kaplan (1989) and 

Caulkins and Kaplan (1991) where the times until an infected IDU stops sharing 

due to AIDS-related and other causes are independent exponential distributions 

with rates 1/8 years-'. Thus the combined time until an infected IDU stops 

sharing from any cause has mean four years, which agrees with the mean of our 

distribution. 

7.4 Uncertainty Analyses 

Now that we have created distributions for the five parameters we can go on to 

undertake both the uncertainty analysis and the sensitivity analysis. We have 

sampled 100 times from each of the distributions and used them in the system of 

differential equations to give 100 series of output values describing the prevalence 

of HIV in the IDU population or in needles. Although Blower and Dowlatabadi 

sample 100 times, our decision to employ this number was made to ease cal- 

culation of non-parametric measures of dispersion such as percentiles. Because 

of the added efficiency, the Latin Hypercube Sampling/partial rank correlation 

coefficient sensitivity analysis can be used with a lower number of simulations 

than simple random sampling. As the number of simulations used within the 

analysis depends on the number of input variables, in a less sophisticated model 

such as Kaplan's, this number of simulations may be excessive. We do however 

need to balance the number of simulations with the lack of efficiency in the sam- 

pling design which we are use. In employing 100 simulations we note that our 

analysis is not as sophisticated as that of Blower and Dowlatabadi such that we 

are not specifically searching for input parameters whose effect on output values 

as measured by the correlaton coefficient is statistically significant, rather we are 

looking for relatively high absolute value correlation cofficients. 
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Figure 7. fi: Proportion of IDIUs infected from 100 simulations. 

From 100 simulations of Kaplan's model. ive. can rank the 100 series of preva- 

lelice vallics bY the vallic after 20 Years. Thus Nve can easilY obtain percentile 

vallic. s. Including thc Illediall vallic-s over time. It should be noted that Where 

SIIIIIIIIII rY st; It ],, I]( - ;IIc cAculat vd, II I(, inedian va I iie is calcu I ated as tIw average 

of the 50111 and the 51st ranks, whereas for simplicity. the slightly smaller values 

of' I'lle 50t II I alik-ed I-vallsat ion are used as an approxiiiiatiou to the inedian in the 

figill-cs. III Figure 7.01 Nve Im-wnt the proportion of' the IDU population that is 

ilifi, cted after 20 yvais. We (-, III see that this distribution is skew to the right, 

all Imligh t herv arc S(mle simulations in which the disease (toes not appear to have 

"'Im.; ld tlll. ()Ilgll()Ilt the slisceptlHe population. Table 7.2 presents Ole sillijillary 

stat Ist lus ()f, I flat (list I-Iblit Hm. III a sillillar NvaY froll, the 100 sets of sampled pa- 

Vallic's Flom Kaplan's model Nve call calculate Ro for each parallieter set. 

'I'llell wv (-; III also rank the IN series of'prevalence values by RO. III Figure 7.7 we 

pl-c"clit III(, Imilmill(m I)FIllfCcled IM's over tillic for the set, of parameters vallies 

which Ic"illl III tIlv approximate Illediall vallic ofthe distribution of output values 

at tilliv 1 20 yvar,, ýmd lh-- which le"lill III IIIc approximate Illediall vallic for 

/? (,. AlIllwigh ille ()I* /1'i) ; Ilc (1111le similar for both set,,, of' input values, 
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Minimum 0.0000 
Maximum 1.0000 

Mean 0.8316 
Median 0.9500 
St. Dev 0.2719 

5th Percentile 0.0219 
10th Percentile 0.4187 
90th Percentile 0.9975 
95th Percentile 1 0.9988 

Table 7.2: Summary statistics of the distribution of the proportion of infected 
IDUs after 20 years. 

41.58 compared with 49.62, as are the equilibrium IDU HIV prevalence values) 

we can see that the rate at which the disease spreads differs between the two de- 

terministic realisations. This is possibly due to the absence of the parameter -Y in 

both the expressions for RO and 7r'. We also present, along with the approximate 

median value, the approximate 90th and 95th percentiles of the distribution in 

Figure 7.8 and the approximate 5th and 10th percentile values in Figure 7.9. 

From these figures we see that although looking at the median values suggests 

that the majority of IDUs will become infected with HIV, there is considerable 

uncertainty in the prevalence values over time, and, as we will show in a later 

section, it is possible that the disease may die out. 

7.5 Sensitivity Analyses 

The output values, as summarised in the last section, can now be used within 

the sensitivity analysis. In order to explore which input parameter has the most 

effect on the proportion of infected IDUs over time, we need to use a measure 

of correlation which is both non-parametric, as we can clearly see from Figure 

7.6 that the simulated prevalence values are not normally distributed, and which 

can examine the five input parameters simultaneously. We therefore use the 
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Figure 7.7: Deterministic realisation which results in the approximate median 
prevalence after 20 years (solid line) and the approximate median value of RO 
(broken line). 

partial rank correlation coefficient. Blower and Dowlatabadi (1994), describe 

in an appendix how the coefficients can be calculated, however the statistical 

package SPSS can be used. In essence, partial correlation coefficients can be used 

to isolate the correlation between two variables within a larger set of variables. 

Therefore although all five parameters may be correlated with the output values, 

those which are not directly being compared can be thought of as being held at 

their median value and therefore not affecting the correlation coefficient. Table 7.3 

presents the partial rank correlation coefficients between the five input parameters 

and the proportion of IDUs that are infected after 1,2,3,4,5,10,15 and 20 

years. 

We can see from this table that the rate at which IDUs share needles is the 

parameter which is the most highly correlated with the proportion of infected 

IDUs from 1 to 20 years. The biological parameter a is also highly correlated 

with the infected proportion. We note that the rate at which IDUs cease injecting 

becomes more correlated with the proportion infected after the disease has been 
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Figure 7.8- Approximate median, 90th and 95th percentile realisations ranked by 
HIV prevalence after 20 years. 

spreading for a few years. The low values of the correlation between -y and 

the output values towards the later stages of the epidemic will again be due to 

the absence of this parameter from the equilibrium value 7r*. We note, perhaps 

surprisingly, that the parameter 0 does not appear to be correlated with the 

proportion of people that become infected. This is mirrored by the scenario 

analysis of Kaplan and 0' Keefe (1993). 

We can extend the sensitivity analysis by including the cleaning of needles. 

Ycars cr 7 A A 0 
1 0.6539 0.4845 0.9173 -0.3613 -0.3217 
2 0.6500 0.3799 0.9067 -0.4169 -0.3260 
3 0.6464 0.3253 0.8915 -0.4865 -0.3069 
4 0.6774 0.3033 0.8961 -0.5486 -0.2755 
5 0.6954 0.2947 0.8987 -0-5856 -0.2453 
10 0.7280 0.2261 0.9035 -0.6733 -0.1188 
15 0.7269 0.1483 0.9024 -0.6950 -0.0688 
20 0.7230 1 0.1260 1 0.8998 1-0.6968 -0.0065 

Table 7.3: Partial rank correlations between the various parameter values used 
within simulations and the proportion of infected IDUs at time t=1 to 20 years. 
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Figure 7.9: Approximate median, 5th and 10th percentile realisations ranked by 
HIV prevalence after 20 years. 

The deterministic model has previously been presented as Equations 4.7. We 

used the same distributions as before for the parameters a, -Y, A, A and 0, and 

use a uniform distribution from zero to one for ý, the probability that an IDU 

effectively cleans a needle after use. Again, 100 simulations were used, and the 

output from the sensitivity analyses could be examined at different values of time 

t. Table 7.4 presents the Partial Rank Correlation Coefficients between the six 

input parameters and the proportion of IDUs that are infected after 1,2,3,4,5, 

10,15 and 20 years. 

We can see from this table that when the cleaning of needles is included within 

the deterministic model, the relative partial rank correlation between the preva- 

Icnce values and the input variables decreases. Although again, A, the rate at 

which IDUs share needles is the most correlated with the prevalence, the parame- 

ter which describes the probability that an IDU cleans a needle is more correlated 

than the infection probability. Thus the two parameters which can be altered by 

control strategies such as providing bleach to clean needles, and needle exchanges, 

which lower the rate at which IDUs share needles, are the two that are the most 
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Years a 7 A 1-1 0 
1 0.4579 0.4047 0.8273 -0.2465 -0.1540 -0.5629 
2 0.4877 0.3575 0.8254 -0.2772 -0.1363 -0.5691 
3 0.4869 0.3268 0.8235 -0.2796 -0.1382 -0.5772 
4 0.4964 0.3108 0.8236 -0.2926 -0.1326 -0.5875 
5 0.5070 0.2809 0.8239 -0.3314 -0.1240 -0.5943 
10 0.5227 0.1754 0.8107 -0.4184 -0.0452 -0.5699 
15 0.5279 0.1604 0.8137 -0.4396 -0.0145 -0-5660 
20 0.5416 1 0.1198 1 0.8173 1 -0.4673 1 -0-0032 -0.5634 

Table 7.4: Partial Rank Correlations between the various parameter values used 
within simulations and the proportion of infected IDUs at time t=1 to 20 years. 

correlated with the population prevalence and therefore have the most effect on 

the future spread of the disease. 

7.6 Uncertainty Analyses of 7r* and 0* 

In the previous section we examined the proportion of IDUs that become infected 

at different time periods after the disease has been introduced into the popula- 

tion. To do this we had to numerically solve the differential equations at the 

different time points as analytical solutions were not available. In this section we 

can examine two values which are related to this mathematical model of disease 

spread; the equilibrium proportions of infected IDUs and infected needles. Both 

of thesc have an analytical reprcsentation as shown in Equations 2.3 to 2.5, which 

are the basic models that do not include the cleaning of needles. Greenhalgh and 

Ilay (1997) present the related equilibrium values when cleaning is present. 

We can therefore undertake uncertainty and sensitivity analyses on the basic 

reproductive number and both sets of equilibrium values. Although in the previ- 

ous section, it was possible for the disease to die out within the time period we 

were interested in, in this section there will be combinations of parameters for 

which & will be less than one, giving only the zero equilibrium values. Thus when 
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7r * M 

Minimum 0.0029 0.0079 
Maximum 1.00 1.00 

Mean 0.86 0.91 
Median 0.95 0.98 
St. Dev 0.21 0.16 

5th Percentile 0.37 0.55 
10th Percentile 0.56 0.74 
90th Percentile 1.00 1.00 
95th Percentile 1 1.00 1 1.00 

Table 7.5: Summary statistics of the distributions of r* and 6*. 

examining the equilibrium values, we will only perfom the sensitivity analysis on 

those realisations corresponding to sets of parameter values where RO ý! 1. 

As the output values in these analyses are now functions as opposed to sim- 

ulations and are easier to calculate, we can now work with a larger number of 

values. For the remainder of this chapter we have used 10,000 values for each of 

the input parameters and the output parameters. When using the distributions 

previously described in this chapter, in particular the distribution for the infec- 

tivity parameter a as proposed by Blower et al. (1991), there were 549 cases in 

which the equilibrium values were zero, rising to 1,901 when cleaning is included. 

Figure 7.10 presents the equilibrium values for the proportion of infected IDUs 

when cleaning is not present, whereas Figure 7.11 presents the corresponding 

equilibrium values for the proportion of infected needles. The summary statistics 

of these two distributions are presented as Table 7.5. 

It should be noted that only the endemic equilibrium distributions are pre- 

sented in the graph. It should also be noted that in both these cases the appli- 

cability of a sensitivity analysis lessens as these output values are a function of 

the input parameters. This situation may also be true for 7r(t) when t< oo as 

although we are not able to solve Equations 2.1 and 2.2, we can perhaps assume 
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0.0001 0.0000 
1.00 1.00 

Meall 0.81 0.48 
0.92 OA7 

St. Dev 0.24 0.28 
-)tll I'vi-celitile 0.25 0.05 
10th Per (11 tilv , 0.44 

vl: tll ( 90th 1, vI-: 1.00 0.87 
95tll I'vi-centile 1.00 0.92 

Table 7 6: Summa I, %* sta I Ist H'S of -,, * and Y NN-livil cle'll III Ig of licedles Is included. 

p )I IP )I IIII ff. ( d4 we I illic ., t llIt I lic i )I t ('111 ()111\, bea f*liil(, t, l perhaps extrellie'l-V 

complex. ( d' tI it IpI It va III vs . 

\V(, also pl-vSvIll till' d1,, tllllllti(ýll Of tllV ('(1111111)'] ]I'll VýIlllcs whon cleaning is 

present m Fipiirvs 7.12 and 7.13. and Table 7.6 presents the sumniar. y statistics. 
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Figuic 7.11: Distribution of 1*: cleaning not present. 
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Table 7.7: Partial Rank Correlations between the various parameter values used 
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wit IIIIIII it -I I wdcl are pl-f. "viov, I as Table 7.8.1' -"('It h(T -1 1 ior 0 appears tobe 

(( )I IfI hited wIth the c(pillihi-imn IN' Infected proportion, however the incills, ()II 

of cit"llillig III IIIv lll()flf. l (1()(, s alivi- the parlial rank correlations between both 

e(IIIIIII)l I'l and IIIc ollcl ('1('(1111119 IS "Ot PIýVsVllt, the corrola- 

tioll" I)OWeell (1, A and /I and tllc two ('(111111bria are quite similar, showing that 

t is a ,t iong link humvvil t 11v processvs I hat give I. i,; (, to levels of' Infection ill 

1111.11 )1 , 111-f-dic Wholl clealling is present . Ihe parallicter wilich 
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Figure 7.13: Distribution of . 3* when cleaning is present. 

the that a iwedle is effectively cleaned is the most highly 

corrviated paraincter. iii ternis of the equilibrium proportioii of infe( ted needles. 

Also. t lic ( ,, 1-clat 1,01', both the sharing and the infection parameters with 
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7.8 Discussion 

Clea I Iv III vI II ()d cls ('X p Io led NN' IIIIII It II ese 'Sel I -sit IN, I tN- it n (I uncertaintY analyses can 

OnlY elicapsillate Smile ()f the (-()iiil)l(-x (IN-immics of the spread of HIN' aniongst 

Injectors. pist ; Ls Kaplan's inilid modvis had a direct relevance 

to p(dirv maks-is so that the If-gislation reg; irding needle exchange provision was 

1*()11()%%. Illg his it-Seal-ch. OW '(1(1Vd "IsIght, of HIP sensitivity analyes can 

ý&-o I)p fi(mi a health promotion poll(-N' perspective. 

We havc I)III\. toliclied ulmn the fact that when using what are now 

11"Jigill I(I Im. I "alp't Ic Pal alliel ("' %'; Illl('s. P; "'t 'ClIk"IN' "I "clat 'oil to driig injectors 
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in Western Europe and North America, there appears to be very little spread of 

the disease, as reflected by the high number of deterministic realisations where 

the disease free equilibrium is attained. Indeed, even when employing what may 

now be thought of as an unrealistic distribution for the infectivity parameter (due 

to the high median value), there are realisations in which the disease dies out, for 

example in Section 7.6, approximately 0.5% of realisations resulted in the zero 

equilbrium values when cleaning was not present, and approximately 2% when 

cleaning was present. Although there are situations in which HIV can spread 

rapidly through a population of drug injectors, for example Edinburgh in the 

early 1980s, there are other areas in which low levels of infection are continuingly 

being recorded such as Glasgow. This is consistent with the models presented 

within this chapter as there are some combinations of parameters with which 

rapid disease spread occurs, mirroring the situation in some areas, whilst other 

combinations of parameters correspond to much lower rates of disease spread 

corresponding to other areas. 

Within these sensitivity and uncertainty analyses we have explored different 

types of uncertainty about the various parameters. Apart from studies such as 

Peterson et al. (1990) and Seitz and Milller (1994), the variability in the infec- 

tion parameter a is seldom discussed, for example the range of values it may 

take, its variability over time from infection, and how it may vary over time in 

the blood that remains within a needle after injection. We have also explored 

parameters that vary under different circumstances, such as the rate at which 

injectors share needles and the probability that they clean them effectively. On 

one hand, these analyses show that the variations in these parameters do con- 

tribute to very different patterns of disease spread, but what is more heartening 

is that these two parameters which can be changed by control strategies are, in 

comparison to the other parameters in these basic models, highly correlated with 

the equilibrium proportion of infected IDUs. It is clear that effective cleaning of 
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needles not only lowers the number of infected needles that can be shared, but 

also lowers the prevalence of HIV in IDUs. It is also clear that a reduction in the 

rate of sharing of needles is the parameter which is most highly correlated with 

the equilibrium proportion of infected IDUs, and this can be achieved through 

the provision of needle exchanges. Although needle exchanges usually operate 

the principle of one-to-one exchange, these analyses demonstrate that the dis- 

tribution (as opposed to the exchange) of new, clean needles, which would alter 

only the parameter -y, should not significantly affect the long-term spread of the 

disease. 

7.9 Summary 

In this chapter we returned to the more basic models presented by Kaplan and 

presented uncertainty and sensitivity analyses on the output from these models. 

In addition to the considerable uncertainty surrounding the infection parameter 

a, uncertainty and variability in the other parameters give rise to uncertainty in 

the proportion of infected IDUs and needles over time, and also in the correspond- 

ing equilibrium values. When a lower value for a is used than that which was 

initially employed by Kaplan, many deterministic realisations describe the dis- 

ease rapidly dying out. When using a distribution for this parameter as proposed 

by Blower et al. (1991) we can explore the correlation between the parameters 

and the proportion of infected IDUs or needles. Although in this small system of 

equations (and in particular when using the simple expressions for the equilibrium 

values) both infected proportions will be correlated to most of the parameters, 

two parameters that can be influenced by changes in injecting practice are more 

highly correlated that others. Thus policies, such as the distribution of bleach 

with which needles can be cleaned (and therefore increasing the value of the pa- 

rameter ý) and the provision of clean needles through needle exchanges or the 
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increased availability of injecting equipment (and therefore lowering the value of 

A) will both decrease the spread of the disease. 
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Chapter 8 

Future Work 

8.1 Introduction 

In this Thesis we have concentrated on homogeneous models. While the devel- 

opment of these simple models can be used to evaluate control strategies, they 

perhaps do not have enough realism to comprehensively describe the transmission 

dynamics of the spread of a disease like HIV in a population of IDUs. The varia- 

tion in HIV prevalence rates in different areas of the world, and indeed within a 

country as small as Scotland, confirms that the simple models of Kaplan which 

rely only a small number of behavioural parameters, may need to be extended to 

more realistic heterogeneous models. 

In Chapter 2 we described Kaplan's determinstic model of the spread of HIV 

within a population of IDUs. This model was converted into a stochastic model in 

Chapter 3 and extensions to this basic model, both deterministic and stochastic 

were presented in Chapter 4. The models described in these three chapters were 

homogeneous in that all IDUs make a similar random choice from all available 

needles with which they can inject and they all use injecting equipment at the 

same rate. Previous models have been described in which the sharing rate is 

dependent on knowledge of HIV status, although again all IDUs with knowledge 

of their status use injecting equipment at the same rate. 

185 



In Chapter 5 we introduced the concept of heterogeneity, that is IDUs either 

have a structured sharing pattern, or they have a specific attribute that can be 

reflected by varying a particular parameter in a mathematical model, such as the 

sharing rate. We have seen from data collected during a quantitative study that 

IDUs do not all share at the same rate, and that the probability of cleaning a 

needle effectively varies over the IDU population. From qualitative studies, such 

as McKeganey and Barnard (1991) we have also seen that the assumption that all 

sharing is with needles selected at random from the total number of needles, or in 

Kaplan's model that IDUs select a shooting gallery at random, is questionable. 

Indeed, not all IDUs share needles as many use their own set of needles. Other 

IDUs share only with close friends. 

In this chapter we show how the framework of the homogeneous models pre- 

sented by Kaplan could be extended into more realistic models by allowing IDUs 

to inject with a needle which was not randomly selected from the complete needle 

population. These models can therefore, in one sense, be considered heteroge- 

nous. We present the models as ideas for future work and therefore we do not 

delve beneath the abstract representation of the suggested transmission dynamics 

as mathematical models, partly because we feel that the variability in the param- 

eter values employed in such models would make any realisations unreliable, as 

demonstrated in the preceding chapters. Thus in this chapter we suggest the di- 

rection that future work could take, first by extending the homogeneous models 

to create a link between an IDU and a needle, and then going on to include the 

varying of sharing rates and a structured sharing pattern. 
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8.2 Sharing and 
dles to IDUs 

Injecting: The Linking of Nee- 

There are differences between injecting with a needle previously used by another 

IDU and injecting with a needle obtained elsewhere, such as from a needle ex- 

change. When using a needle that has not been used by another IDU there is 

no risk of infection, and indeed continued use of such a needle, or continued use 

of any uninfected needle will not lead to infection. This scenario is similar the 

models of Dietz and Hadeler (1988) in which they describe the sexual spread of a 

disease within a population that is subject to pair formation. The authors note 'if 

two susceptible individuals form a pair then they can be considered temporarily 

immune as long as they do not separate and have no contacts with other part- 

ners'. Similarly we have that if an IDU injects with only their own equipment, or 

does not obtain injecting equipment from other IDUs but from somewhere such 

as a pharmacy or a needle exchange, they can also be thought of as immune. 

The models presented by Dietz and Hadeler that describe the sexual spread of a 

disease can be adapted to describe the spread of HIV among IDUs. 

The concepts of pair formation and pair separation will need adapting when 

we are examining the spread of disease among IDUs that share needles. We are 

interested in needles only when they belong to an IDU as we assume that when 

an IDU no longer wants to keep a needle then it will either be given to another 

IDU or destroyed. That is an IDU/needle pair will terminate when the needle is 

destroyed or given to another IDU, which itself will be the beginning of a new 

partnership. Hence pair formation and pair separation can be combined into a 

single act which will be the transferral of a needle from one IDU to another. 
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8.3 The Needle Transference Rate 

The rate at which this transferral happens can be defined as in Dietz and Hadeler's 

models as V, such that V(Yi, -Tik) is the rate at which an IDU of type i, takes a 

needle from an IDU of type k who has a needle of type j. Thus i, j and k will be 

zero or one, referring to uninfected or infected respectively. There are immediate 

simplifications that can be made, such as that an IDU will not be able to tell the 

infectivity status of another IDU or of a needle. It can also perhaps be assumed 

that whether or not an IDU is infected makes no difference to whether he or 

she is likely to share needles, although the success of public health campaigns 

such as increased testing of IDUs for HIV and the prescribing of methadone for 

those who are known to be HIV positive may make this assumption unrealistic. 

If IDUs do not change their sharing patterns on becoming infected then we have 

that (p(yi, xjk) is independent of ij and k and hence can be expressed as W(y, x). 

We also have to describe how this rate depends on the population size. If we 

define: 

yo(t) as the number of uninfected IDUs that do not have their own injecting 

equipment at time t; 

yl(t) as the number of infected IDUs that do not have their own injecting equip- 

ment at time t; 

xoo(t) as the number of uninfected IDUs that have uninfected injecting equipment 

at time t; 

xol(t) as the number of infected IDUs that have uninfected injecting equipment 

at time t; 

x, O(t) as the number of uninfected IDUs that have infected injecting equipment 

at time t and 
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xii(t) as the number of infected IDUs that have infected injecting equipment at 

time, t 

then the rate of transferral of injection equipment can depend on both E yi(t) 

and EXjk(t)- Several functions of these values can be considered. We require 

that W(y, 0) =0 for all y -: ý- 0 and V(O, x) =0 for all x>0. That is the rate 

at which needles are transferred is zero when there are no IDUs with needles, 

hence no needles, or there are no IDUs without needles. We could require that 

V is increasing in y, or Oýp(y, x)lay ý: 0, that is the rate at which needles are 

transferred will increase with the number of IDUs that are lacking needles. We 

could also require that the rate at which needles are transferred will increase as 

the number of IDUs with needles increases, or aW(y, x)lax > 0. 

We need also to make an assumption about how the transference rate increases 

as both x and y increase. It may be sensible to assume that it increases propor- 

tionally to y, that is for a fixed total number of IDUs with needles if y doubles 

then V(y, x) doubles, or V(ay, x) = aV(y, x). This will be true if the number of 

IDUs with needles is much greater than the number of IDUs without. Under this 

scenario there is no competition between IDUs that do not have a needle to get 

one from someone that has. If the converse is true, that is the number of IDUs 

without needles is much greater than that of those with then it may be sensible 

to assume V(y, ax) = aV(y, x). As in many models describing processes such as 

pair formation or disease spread, the rate V(y, x) may not be easily described. 

In particular a function such as V(y, x) = const. xy may not be suitable as this 

would mean that the rate of pair formations increase quadratically with popula- 

tion density. A transference rate similar to a minimum law of pair formation in 

a sexual spread model can be employed, for example 

PYiXik 
v (Y, x) Xoo + Xoi + Xio + Xii 

We now can express the numbers of infected and uninfected IDUs with or without 
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Parameter Description 

KY recruitment rate of IDUs 

Px the rate at which needles are disposed of by an IDU 

ILYO rate at which uninfected IDUs cease injecting drugs 

AY1 rate at which infected IDUs cease injecting drugs 
Pi the rate at which an IDU obtains a needle from a pharmacy 
P2 the rate at which an IDU gives or takes 

a needle to or from another IDU 
0 flushing probability 
a infection probability 
A rate of injecting within pair 

Table 8.1: Description of parameters employed in the model as described in 
Equation 8.1. 

their own injecting equipment by the following set of six differential equations: 

ýo = Ky - ily0yo + /-Ix(Xoo + x1o) + 
P2 (YO + YI) (XOO + X10) 

_ P2YO - PIYOi 
Xoo + Xol + Xio + Xii 

-Aylyl + A4,1701 + -Xii) + P2 NO + YO (XO1 + X11) 
_ P2Y1 - PlYb 

Xoo + Xol + Xio + Xii 

i0o = -/"Yoxoo - PxXoo + P2(YOX01 - YlXOO) 
ý Aoxio + plyo, 

Xoo + Xol + Xio + Xii 

Lýlo = -/, Iyoxlo - A. Txlo + 
P2(YOX11 - YlXlO) 

- AOxio - Aaxlo, 
Xoo + Xol + Xio + Xii 

iol -=-- -/-Iylxol - /-Ixxol + P2(YlXOO - YOX01) 
- Axol + ply, 

Xoo + Xol + Xio + Xii 

and 

-Itylxll - AxXil + P2(YI110 - Y0111) ý Axo, + Aaxio. 
Xoo + Xol + Xio + Xii 

The definition of parameters is given in Table 8.1. We assume that immediately 

on acquiring injecting equipment an IDU will inject with it, so that p, and p2 can 

also be thought of as injecting rates. There are several processes described within 

this model, for example one describes the rate at which needles are brought into 

the community from a pharmacy and another describes the rate at which needles 

are disposed of. These processes are described using the parameters p, and p_- 
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respectively. A third process describes needles being transferred between IDUs. 

This is caused by an IDU who does not currently have a needle obtaining one 
from an IDU who does. Over a small time interval of length dt the numbez- of 

uninfected IDUs without injecting equipment will increase when uninfected IDUs 

with either infected or uninfected equipment give their equipment to another IDU. 

Thus the number of uninfected IDUs without injecting equipment will increase 

by 

P12 NO + YI) (XOO + X10) dt. 
Xoo + Xol + Xio + Xii 

This increase will be offset by the number of uninfected IDUs without injecting 

equipment who have received a needle from another IDU in the small time period 

[t, t+ dt], which will be p2yodt. The number of uninfected IDUs without inject- 

ing equipment will similarly decrease when an IDU without injecting equipment 

obtains a needle from a pharmacy. The second equation which describes the rate 

of change of infected IDUs without injection equipment has a similar explana- 

tion. Although Equations 8.1 have been simplified by combining similar terms, 

the number of uninfected IDUs with uninfected injection equipment will similarly 

increase when uninfected IDUs without equipment acquire uninfected equipment 

either from a pharmacy or from another IDU, and will similarly decrease when 

any IDU without equipment takes a needle from an uninfected IDU with unin- 
fected equipment. Similar increases and decreases will occur for the other three 

infected/uninfected IDU/needle combinations. The other processes are those de- 

scribed in Kaplan's model, that is the events that happen on injection such as 
flushing, infection of needle or infection of IDU (which in this model can happen 

only when a needle belongs to an IDU), and the death of IDUs. 

Although this model appears to be far more complex than that described by 

Kaplan, we have only included a few more parameters. However, as shown in the 

previous chapter, there is considerable variability in the parameters employed in 
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the simpler models, and as yet data from qualitative and quantitative studies 

of IDUs' sharing behaviour have not been in a form that is immediately useful 

in these pair formation models. We have demonstrated however that models 

to describe the sexual spread of a disease, particularly those which include pair 

formation, can be easily adapted to extend Kaplan's simple deterministic model. 

8.4 Linkage Models which include Borrowing In- 
jecting Equipment and Shooting Galleries 

In the previous section we created a link between an IDU and a needle, and 

now we will extend the previous model to include IDUs using needles that they 

are not linked to. Thus we can alter the equations presented above to include 

borrowing, which will be defined as the temporary use of a needle that belongs to 

another person and we can also incorporate the use of shooting galleries, which 

will be similar to Kaplan's model in that it is assumed that there is a fixed 

number of needles m within these shooting galleries and the proportion of the 

needles available from the shooting galleries that are infected at time t will be 

P(t). We alter our definition of A, the rate of sharing within a pair to be A, and 

define A2 to be the rate at which an IDU borrows a needle from another IDU and 

gives it back to them and A3 to be the rate at which an IDU visits a shooting 

gallery. Note that only IDUs who do not own injecting equipment are assumed 

to borrow needles from another or visit shooting galleries. Thus we can augment 

the previous system of equations by including the visiting of shooting galleries 

and the borrowing of needles to obtain 

A= ß)yl _ oßyo), 3 

m 

ýo = ny - ity0yo + tlx(Xoo + Xio) + P2(YO + Yl)(XOO + XIO) - \2ayo(xio + x1j) 

Xoo + Xol + Xio + Xii 

- (Pl + P2)YO - A3a#yo, 
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ül = -pylyl + ßx(Xoi + xii) + P2(YO + Yl)(X01 + Xll) + \2ayo(xio + x�) 
Xoo + Xoi + Xio + Xii 

(PI + P2)YI + A3aßyo, 

ioo = -pyoxoo - pxxoo + P2(YOXO1 - Y1X00) - IX2Y1X00 + A20YOX10 

Xoo + Xoi + Xio + Xii 

+ Aloxio + plyo, 

±lo = -pyoxlo - pxxlo + P2(YOXll - Y1X10) - A20YOX10 + A2Y1X00 

Xoo + Xoi + Xio + Xii 

- \, Oxlo - Alaxio) 

, ýoi = -, uylxol - 11--Xoi + P2(Y1X00 - YOXOJ - A2Y1X01 + X20YOXll 

Xoo + Xoi + Xio + Xii 

- \lxol + plyll 

and 

-Ilylxll - AxXii + P2(YlllO - YOX11) - A20YOX11 + A2YIX01 

Xoo + Xol + Xio + Xii 

+, \Ixol + Alaxio. (8.2) 

Whilst a package such as SOLVER could easily be used to solve these differential 

equations and to examine the number of infected IDUs with or without injecting 

equipment, values for the various parameters described above must be estimated. 

Additionally in this more complex heterogeneous model, estimates must be ob- 

tained for the number of IDUs initially with or without needles, along with the 

behavioural parameter values we assign to each group. In Glasgow injecting is 

far more common than actual sharing, as is shown by Tables 5.1 and 5.2. Thus 

it can be assumed the act of an injector (without injecting equipment) obtaining 

injecting equipment used previously by another IDU happens less often than in- 

jecting with a needle obtained from a pharmacy or a needle which was already in 

the IDU's possession. 

In this section we combined the model presented earlier in this chapter, in 

which disease spread only occurred within the framework of pair formation be- 
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tween an IDU and a needle, with the transmission dynamics proposed by Kaplan. 

Within this combined model, we not only have to estimate values for the param- 

eters described in the previous chapters, but we would now also need to quantify 

the rate that an IDU borrows a needle from another user as opposed to visiting 

a shooting gallery. We would also have to quantify the rate at which an IDU 

obtains clean needles from either a pharmacy or a needle exchange. 

8.5 Summary 

Within this chapter we have proposed some extensions to Kaplan's basic model 

which include heterogeneity in the rate at which IDUs inject and heterogeneity in 

where they obtain a needle, either from a shooting gallery, from a friend/partner, 

a pharmacy, or one that they had previously been the only person to use. We have 

presented a deterministic framework for examining these heterogeneous disease 

transmission dynamics. We do not attempt to present the results from realisa- 

tions, rather we suggest that these models may form the basis for future work. 

Although the models presented in this chapter are more realistic than those pre- 

sented in earlier chapters, there are still some improvements that can be made to 

allow them to become even more realistic, perhaps by additionally including some 

of the features of the models presented in Chapter 4, such as the cleaning of nee- 

dles or the loss of infectivity within a needle over time. Future work may also try 

to create models in which a reduction of the availability of clean injecting equip- 

ment from pharmacies would increase the rate at which IDUs share or models that 

effectively describe needle exchanges where both the disposing of used injecting 

equipment and the obtaining of clean needles will happen simultaneously. 
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Chapter 9 

Discussion and Conclusions 

9.1 Introduction 

In this Thesis, the use of mathematical models in understanding the transmis- 

sion dynamics of HIV spread via the sharing of injecting equipment has been 

explored. A simple model presented by Kaplan (1989) was used as a framework 

from which we examined various extensions, both by attempting to make some 

of the assumptions more realistic, but also by converting the deterministic model 

into a stochastic model. We discuss, at length, the parameters that such models 

employ and seek to use data from a sample of IDUs from Glasgow to estimate 

the probability that a single injection with an infected needle will result in a new 

infection. We performed uncertainty and sensitivity analyses on these models, 

and demonstrated that the uncertainty in the parameter values prevents accu- 

rate predictions of the future prevalence of HIV / AIDS. Finally we discussed 

how the simple models of Kaplan could be extended into heterogeneous models 

by considering the pair formation models of Dietz and Hadeler (1988). 
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9.2 Deterministic Models 

Kaplan's deterministic model, presented in 1989, was the first model to describe 

the spread of HIV among IDUs. Although this simple model failed to describe 

some of the more complex transmission dynamics of HIV spread, it was useful in 

evaluating control strategies, particularly needle exchanges. This was reflected in 

the change in legislation in the State of Connecticut to legalise needle exchanges 

following his work. In Chapter 2 we described this model, and showed that the 

disease can only spread if the basic reproductive ratio of infection RO is greater 

than 1. We noted that, using the parameters initially suggested by Kaplan, the 

vast majority of IDUs become infected in quite a short time period. 

We provided some analytical results for this deterministic model, first by show- 

ing that there exist equilibrium values for the proportion of IDUs that are infected, 

and also equilibrium values for the proportion of infected needles. We demon- 

strated that if Ro :51 then the equilibrium values are both zero. If Ro >1 

then there exists a non-zero equilibrium. We then showed that the disease-free 

equilibrium is locally stable for RO <1 and unstable for RO >1 and that the en- 
demic equilibrium was locally stable whenever it exists. Next we went on to show 

global stability results. We showed that the disease-free equilibrium was globally 

stable for Ro : ý, 1. For Ro >1 provided the disease was present initially the 

fractions of infected needles and addicts always tended to their unique endemic 

equilibrium values. By introducing stochastic variation around the deterministic 

trajectory, we showed that for the parameter values suggested by Kaplan, it is 

unlikely that such a stochastic trajectory will hit either of the axes corresponding 

to zero infected IDUs or zero infected needles. 

By comparing Kaplan's model with a framework proposed by Peterson et al. 
(1990) to describe the different stages of infection with HIV and the disease 

AIDS, we created a deterministic model in which infected IDUs are considered 
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separately from uninfected- IDUs. Thus we could make Kaplan's model more 

realistic by including a behavioural change by an IDU on learning that they have 

become infected. We presented deterministic realisations in which infected IDUs 

share less often than uninfected IDUs, something which behavioural studies of 

IDUs suggest. 

The infectivity of a needle was examined further using deterministic modelling 

techniques. Initial models assume that the act of injecting with an infected 

needle may actually flush the needle of infectious material. We therefore extended 

Kaplan's model to assume that only blood from an uninfected IDU could do 

this. We further examined flushing by postulating that both the probability that 

a needle infects an IDU and that an IDU flushes that needle are linked to the 

amount of infectious equipment, so that as the infection probability increases, the 

flushing probability would decrease. We continued to assume that the infectivity 

of a needle depends on the amount of infectious material within it by presenting 

models in which this infectivity varies over time from injection. We also presented 

a model in which the initial infectiousness of a needle would depend on the length 

of time the person who infected it had been infected with HIV. This mirrored 

the more recent scientific opinion that an infected person is much more infectious 

just after infection with the virus. This was done both by using a three-stage 

infectivity distribution, then a model suggested by Anderson and May (1991). 

Some of these more complex models employed stochastic modelling techniques. 

Additionally within Chapter 4 we demonstrated the effect that cleaning a needle, 

either before or after injecting, has on the spread of the disease. 

9.3 Stochastic Models 

While the deterministic models were easier to create and analyse, we noted that 

stochastic models may be needed to more accurately describe the spread of the 
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disease. In Chapter 3 we presented a stochastic representation of Kaplan's model 

and aimed to explore it in a threefold manner; analytically, numerically and using 

Monte-Carlo simulation methods. We soon found the analytical models that we 

had created to reflect Kaplan's model were intractable, therefore we abandoned 

this approach in favour of the more computer intensive methods. In the Monte- 

Carlo simulation models, a suite of Pascal programs were created to model the 

scenario as described by Kaplan and, as mentioned in the preceding section, to 

model some of the extensions such as the varying infectivity of the needle over 

time. These models were extensively verified. It became clear when using the 

Monte-Carlo simulation models that, in a similar manner to the deterministic 

models, most runs resulted in the majority of IDUs quickly becoming infected. 

What also became clear was that it was possible that the disease may die out. 

Thus when comparing the output from a series of stochastic realisations to that 

from the deterministic realisation, due consideration must be made of the possi- 

bility that such a series of realisations includes situations where the disease did 

not spread. 

We examined this further by numerically solving the analytical model. To do 

this we considered the various events that could happen in a small time interval; 

an uninfected IDU becomes infected, an infected IDU leaves the population and 
is immediately replaced by an uninfected one, an uninfected needle becomes in- 

fected and a needle gets cleaned. We also noted that it is possible for a needle 
to get cleaned at the same time as an IDU becomes infected. After developing 

a matrix framework for the number of infected IDUs and needles, we noted that 

the epidemic spread can be thought of as a Markov process in which the state 

corresponding to zero infected IDUs and zero infected needles is an absorbing 

state. Thus eventually the disease must die out. This seemed to contradict our 

numerical solution of the stochastic model in which the disease prevalence ap- 

peared to reach an equilibrium similar to Kaplan's deterministic equilibrium. In 
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our numerical solutions, we did however note that there was a small probability 

that the disease would die out. We examined these apparent equilibrium val- 

ues further by attempting to numerically calculate the time to extinction of the 

stochastic process. We demonstrated that, particularly when there was one or 

more infected IDUs, the time to extinction was extremely large. Thus we felt jus- 

tified in defining quasi-extinction probabilities and quasi-equilibrium values which 

considered the process over a biologically realistic time period. Using these, we 

showed that there was indeed a non-negligible probability that the disease dies 

out within a realistic time period, and that there exist equilibrium values in which 

the majority of IDUs and needles become infected, confirming what we found in 

the deterministic and the Monte-Carlo simulation models. 

9.4 Parameter Estimation 

Even though the most basic model by Kaplan only employed five parameters, 

there was considerable uncertainty about the values that these parameters took. 

Indeed later versions of Kaplan's models dismiss the presence of flushing. In 

Chapters 5 and 6 we discussed the parameter values that can be found from 

the existing literature, complementing them with data from a behavioural and 

seroprevalence study of Glasgow IDUs. In the first of these chapters we explored 

the parameters describing the size of the IDU population and the dynamics acting 

on it, such as death from HIV and death from other causes, as well as drug users 

starting or ceasing to inject drugs. While HIV may have a large impact on the 

size of the IDU population in other areas, we have found no evidence of this in 

Glasgow; indeed the size of the IDU population has increased since HIV was first 

detected. We also show that although there is a large population of IDUs that 

regularly injects, not all of them share needles. Additionally many IDUs practice 

safer injection techniques such as cleaning needles with bleach or boiling water. 
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We used this information in deriving an estimate for the probability than an 

IDU becomes infected after injecting with an infected needle. We did this by 

first estimating how many injections occurred in the year 1990, using the data 

described above. We note that although there will have been over half a million 

injections, very few new infections occurred. After accounting for the fact that 

not all injections will have involved shared injecting equipment, that a proportion 

of injections will have occurred after effective cleaning, and finally that due to the 

low HIV prevalence amongst Glasgow IDUs in 1990 only a small percentage of 

needles will have been used by an infected IDU, we estimate that the probability 

of infection is lower than that suggested by the literature. 

We examined the variability in the parameter values by performing both an 

uncertainty analysis and a sensitivity analysis in Chapter 7. We showed that there 

is considerably uncertainty in the future prevalence of HIV in an IDU population 

and that the disease often dies out before an epidemic can occur. We showed in 

the sensitivity analyses that the two behavioural parameters that can be altered 

by control strategies have a greater influence on the spread of the disease than 

some other parameters. The provision of clean needles through needle exchanges 

or pharmacies removes the need to share needles and should decrease the value 

of the corresponding parameter and thus the spread of the disease, similarly 

an increase in the cleaning of needles will also slow down, and possible avert, 

epidemic spread. 

9.5 Future Work 

In Chapter 8 we proposed future work by extending homogenous models to create 

a link between an individual IDU and a needle. This was done by comparing the 

needle sharing spread of the disease to the sexual spread of the disease where pair 

formation is present. Deterministic models were presented in which interacting 
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populations of IDUs with or without injecting equipment are subject to the same 

transmission dynamics as presented in Kaplan's model. Although this more com- 

plex model can be analysed numerically, there still exists the problem about the 

uncertainty of the parameters that such a model employs. We therefore do not 

explore this heterogeneous model at length, preferring only to suggest one or two 

improvements, such as including the borrowing of injecting equipment where it is 

immediately returned. We do however note that even these models are far from 

realistic. 

Future work should therefore focus on extending models to include further 

realistic representations of heterogeneity, either using deterministic models or 

stochastic models. Models such as those proposed by Kretzschmar and Wiessing 

(1998) go some way to improve the models presented in this Thesis by assum- 

ing a social structure amongst IDUs, in which an IDU shares with close friends 

or buddies. They propose this structure after examining detailed information 

gathered on IDUs' contact patterns in the Netherlands, thus being a case where 

the models are led by the data, and not vice versa. This is an example of the 

collaborative approach involving both mathematical modellers and drug-use re- 

searchers proposed by Blower and Medley (1992). This collaboration has to be 

two-sided; it will not be sufficient for more and more realistic models to be created 

by mathematical modellers without a better understanding of the values that the 

parameters used in such models would take, both from biological and virological 

research, but also from behavioural research into IDUs. 

9.6 Conclusions 

We started this Thesis by noting that although research into HIV is multi-faceted, 

including complex models describing the sexual spread of the disease and be- 

havioural and seroprevalence studies of IDUs, there have been few attempts to 
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marry the developing expertise and available information into realistic models of 

the spread of HIV amongst IDUs. While attempting to definitively fill this gap 

may been over ambitious, especially when some of the more complex transmission 

dynamics have yet to be accurately quantified, we have demonstrated the useful- 

ness of some of the simpler models in evaluating control strategies such as needle 

exchanges. We have presented an in-depth examination of a simple deterministic 

model, and attempted to analytically examine an equivalent stochastic model. 

Resorting instead to exploring this stochastic model using Monte-Carlo methods 

we could demonstrate how the model could be improved. We noted the difficulties 

in using seroprevalence and behavioural data within these mathematical models, 

however we were successful in obtaining an estimate for the probability that an 

IDU becomes infected after injecting with an infected needle. 

It is difficult to imagine that the complex transmission dynamics of the spread 

of HIV, especially amongst a population about which so little is know as the 

population of injecting drug users, will ever be described by a single model. Indeed 

the search for an all encompassing model may not be relevant. Just as this Thesis 

has concentrated on a few key aspects of the disease spread and improved our 

understanding in these areas, future research should focus on specific questions, 

thus providing more pieces of the jigsaw puzzle that the scientific knowledge 

about HIV appears to be, some fifteen years on from the discovery of the virus. 

Hopefully some of the missing pieces, the cure or an effective vaccine, will soon 

be discovered. 
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