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Abstract

The sharing of injecting equipment by injecting drug users (IDUs) is one of
the primary causes of the spread of HIV in Scotland. Mathematical models of
disease spread can explore the transmission dynamics and can assist in evaluating

control strategies such as needle exchanges.

A simple deterministic model is examined and local and global stability results
are presented. A deterministic model in which infected IDUs are considered
separately from uninfected IDUs is created. The infectivity of a needle is then
examined. It is first assumed that the infectivity of a needle depends on the
amount of infectious material within it, then models in which this infectivity varies
over time from injection are explored. Models in which the initial infectiousness of
a needle depend on the length of time the person who infected it had been infected
with HIV are also presented. A stochastic model is developed and explored in
a threefold manner; analytically, numerically and using Monte-Carlo simulation

methods. In particular, the probability that the disease dies out is examined.

Although these simple models use only a small number of parameters, little
is known about the values that these parameters may take. Seroprevalence and
behavioural data from Glasgow are used to inform these models, and also to pro-
vide an estimate for the probability than an IDU becomes infected after injecting
with an infected needle. The effect that the variability in the parameter values
may have on the spread of the disease is examined by performing both an uncer-

tainty analysis and a sensitivity analysis. These show that the two behavioural

parameters that can be altered by control strategies have a greater influence on

the spread of the disease than some other parameters.

vil



—Ye cookin? An need a shot Mark. Ah really need a shot.
C’moan Marky, cook us up a shot...

At last ah could be ay some practical help. There were syringes
and needles lying aw ower the place. Ah tried tae remember which
works wir mine. Sick Boy says that he’d never, ever share... Whin yir
feeling like ah am, the truth is thit ye dinnae care too much. Ah take
the nearest, which at least isnae Spud’s, as he’s been sittin ower the

other side ay the room. If Spud isnae HIV postitive by now, then the

Government should send a deputation ay statisticians doon tae Leith,

because the laws ay probability urnae operatin properly here.

Adapted from Trainspotting, by Irvine Welsh.
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Chapter 1

Introduction and Literature
Review

1.1 Motivation

The catalogue of destruction caused by epidemics throughout history seems like
fiction in today’s world of sanitation, hygiene and modern medicine. In the four-
teenth century there were some twenty five million deaths from the Black Death
and in 1919 the world pandemic of influenza claimed twenty million. But today
millions of people live in areas where diseases such as malaria and schistosomiasis
are endemic. In areas where people depend on their livestock, diseases such as
East Coast Fever and Bovine ‘Irypanosomiasis cause high mortality in domes-
ticated cattle. More recently the disease AIDS has appeared; the full effect of
which can only be guessed at. Predicting the effect of old and new diseases and
trying to understand and control them has been the motivation of epidemiologists

and researchers creating mathematical models of disease spread for decades.

The disease AIDS (Acquired Immune Deficiency Syndrome) and the associated
virus HIV (Human Immunodeficiency Virus) appeared in the early 1980s and
mirroring the explosion in the number of people infected with the virus has been
the explosion of research into the disease. With the scientific literature growing

so rapidly it is now impossible to read more than a fraction of it. However this
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literature 1s very varied and when a particular area is singled out for research
the available literature may be found to be limited. This appears to be the case
when considering the spread of the disease via shared injecting equipment, which
accounts for 48% of the recorded cases in Scotland (ANSWER, 1995). While
many researchers are concentrating on producing mathematical models of the
sexual spread of the disease entirely excluding spread amongst those that share
needles, there also appear to be many researchers looking into the epidemiology of
the disease spread through injecting equipment without producing mathematical

models.

This Thesis attempts to fill this gap, that is to create mathematical models
which encompass the findings of the medical sociologists, psychologists and epi-
demiologists studying people that inject drugs. The object of these models is to
help us understand the basic dynamical epidemiological processes underlying the
spread of HIV and AIDS amongst injecting drug users (IDUs). They can then

help us evaluate control strategies such as needle exchange schemes, better health

education and the distribution of bleach with which to clean needles. Indeed sim-
ilar deterministic models have been used for this purpose in the USA (Kaplan,
1989; Kaplan and O’Keefe, 1993). Such models cannot however at present be
used to predict accurately exactly how many new cases of AIDS there will be in
the future as any modelling done relies on parameters which at present cannot

be estimated with any precision.

There are two basic types of mathematical model, the deterministic model
and the stochastic model. Stochastic models can more accurately describe the
randomness inherent in real life. On the other hand deterministic models are
much easier to analyse, enabling them to include more factors important to the
spread of the disease and also to rapidly explore varying aspects of the model.

The approach in this Thesis is hopefully to recognise the benefits of both types of



models and to use both deterministic and stochastic theory to model the spread

of HIV via shared injecting equipment.

In this Thesis we explore mathematical models for the spread of HIV amongst
IDUs. We begin in this chapter by discussing the virus and the disease AIDS
which follows on almost inevitably after infection with the virus and we explpre
drug abuse and needle sharing, with particular respect to Glasgow. We then look
at some of the general theory behind the use of mathematics in describing spread
of disease and explore developments in this theory relevant to host / vector and
sexually transmitted disease models. We briefly review the vast literature on the
sexual spread of HIV and close this chapter by looking at models for the spread

of the virus through needle sharing.

In Chapter 2 we present a deterministic model for the spread of HIV amongst
IDUs who visit shooting galleries. We show that there exists a non-zero equi-
librium value for the proportions of the IDU population ;and needles that are
infected. This equilibrium value is shown to be both locally and globally stable.
In Chapter 3 we develop a comparable stochastic simulation model and look at
analytical stochastic models. In the absence of a tractable solution to the an-
alytical model, we examine a numerical approximation to the stochastic model.
In Chapter 4 we attempt to improve on the deterministic and stochastic models
previously presented by including more realistic assumptions. In particular we
examine the effect of a non-constant probability of infection in both an IDU and
a needle. In Chapter 5 we examine the values which the parameters included
in the models may take, leaving the discussion of the infectivity parameter until
Chapter 6. We also derive a value for this parameter using data collected from
Glasgow. In Chapter 7 we unite the preceding chapters by performing uncertainty

and sensitivity analyses. We make suggestions for future work by introducing het-

erogeneity in Chapter 8. We do this by relaxing the assumption that IDUs select




needles at random from shooting galleries and we conclude in Chapter 9 with a

discussion of the work presented.

1.2 HIV and AIDS

1.2.1 Introduction

AIDS was first discovered in 1981 when young men in the USA sought medical
attention with similar symptoms includihg pneumocystis carinii, a form of pneu-
monia and the skin tumour, Kaposi’s sarcoma (CDC, 1981a). Initial research
into the syndrome concentrated on the fact that these men were all homosexuals
(CDC, 1981b). When it emerged in 1982 that blood transfusion could transmit
AIDS, speculation about the homosexual connection was dismissed and with the
discovery of the syndrome in haemophiliacs who had received plasma-derived clot-
ting factors and that the disease can also be transmitted from an infected mother

to her new-born child, it was suspected that only a virus could be responsible.

Researchers exploring retroviruses, such as the Feline Leukaemia Virus, iso-
lated a human retrovirus from a rare T-cell leukaemia (Barre-Sinoussi et al.,

1983). Soon after, Gallo identified a virus which is now called HIV-1 (Gallo
et al., 1984). Later a second virus was discovered which was slightly different to

HIV-1, this was termed HIV-2. As both viruses cause AIDS, and in the context of
AIDS and needle sharing there appears to be no difference in their transmission,

the viruses will both be referred to in this Thesis as HIV.

HIV can be isolated in most body fluids, including saliva, but only in blood,
semen and cervical secretions is the virus thought to be infectious. Once infected
with the virus, it may be at least six weeks, occasionally longer, before antibodies
can be detected, resulting in a window period where a person may be infected

and infectious but this infectivity cannot be detected. The popular notion of an



AIDS test is therefore a misnomer as it is usually an HIV antibody test that
is performed. This test can only detect the presence of antibodies to HIV, not
the presence or absence of HIV itself, although tests which detect the virus may
soon be commercially available. Once infected with the virus, a person will
remain infected for life, although the symptoms related to the infection will vary
over the course of the infection. After an initial acute viral illness, individuals
may be completely asymptomatic, and remain in this state for several, possibly
many, years. Many varying conditions which may occur after this stage cause
the individual to be classified as having AIDS Related Complex (ARC). These
symptoms, such as swollen lymphatic glands, confirm that AIDS is a syndrome
which affects the immune system. The disease will then progress to full blown
AIDS. The average incubation time, that is the time from initial HIV infection
to the onset of AIDS is very variable but usually between 8 and 12 years (Sietz
and Miiller, 1994). The infectivity of a person varies throughout this period.
There is a short initial period when individuals are very infectious followed by a

relatively long period of low infectiousness. Just before an individual starts to

develop clinical symptoms of AIDS the infectiousness starts to rise again.

The World Health Organization has produced a classification schema for de-
scribing the spread of HIV in different countries. Countries are classified as Type
I and Type II countries. Type I countries include North America and Western
Europe where the majority of cases are in homosexual men and IDUs. In Type

II countries, such as those in sub-Saharan Africa, the spread is mostly through

heterosexual 1ntercourse.

1.2.2 The Homosexual Epidemic

AIDS was first discovered iﬁ North America in homosexuals, leading to a ‘gay

plague’ image. At that time new sexual freedom had occurred within the ho-




mosexual community, leading to high levels of promiscuity. While the term ho-

mosexual intercourse covers a wide variety of activities, the highest risk is from

men who practise unprotected anal penetration. This can lead to rectal trauma,
which can result in the virus passing from infected semen into the blood stream.
Oral intercourse may also result in the virus being transmitted, although this is
not thought to be a high risk activity. The homosexual community was quick
to react to this new disease, setting up AIDS charities and help groups. Epi-
demiological studies were started, including the San Fransisco Gay Mens’ Health
Study, from which many parameters in subsequent prediction models were taken
(McKusick et al., 1985q; 1985b). Health campaigns both within and outwith the
homosexual community are increasingly becoming seen as successful in reducing

the spread of the disease, particularly through safe sex campaigns promoting the

use of condoms. The epidemiology of AIDS amongst homosexuals varies widely

from country to country and city to city. In Scotland over the last ten years 29%
of infections were in homosexual or bisexual men (ANSWER, 1995). Despite pre-

vention initiatives, some people in this category are still engaging in unprotected

sexual intercourse.

1.2.3 The Heterosexual Epidemic

While the majority of cases of AIDS in Europe and North America are due to
homosexual transmission, the spread of the disease in many parts of the world
including sub-Saharan Africa and the Caribbean is almost completely through
heterosexual intercourse. There are many parts of Africa where the disease is
at a level of prevalence which is resulting in substantial demographic changes in
populations, leading to major public health problems in countries where medi-
cal resources are limited. Families are being destroyed where both parents have

AIDS. Inaccuracies in data collection 1in these countries are also common. Sero-

prevalence levels in various countries have been reported, for example 14% in a



sample of 1,011 pregnant women in Kampala, Uganda, and 61% in a sample of
286 female prostitutes in Nairobi, Kenya (Piot and Carael, 1988). Certain con-
ditions may increase the probability of transmission, including the presence of
genital ulcers caused by other sexually transmitted diseases. As the probability
of transmission from male to female is thought to be greater than the probability
of transmission from female to male (Padian et al., 1987), the majority of infected
individuals are female. The high seroprevalence rates of pregnant women in Type
IT countries, between 5 and 25%, has led to estimates of between 1 and 15% of
new born children being HIV positive in these areas. In Type I countries there is
. not a similar paediatric AIDS problem, although in some areas such as New York
where the predominant mode of transmission is through sharing injecting equip-
ment, both female needle sharers and the heterosexual partners of male needle

sharers are becoming infected resulting in significant amounts of paediatric cases

(Blower et al., 1991).

1.2.4 'The Needle Sharing Epidemic

The first signs of the needle sharing epidemic were in New York in the early
1980s, where the world wide AIDS epidemic began. HIV attributable to IDUs
has been reported in many countries, including most of Europe, North America,
South America, Australia and Asia. In some parts of the world, such as New
Jersey and Connecticut in the USA, Edinburgh in the UK, Italy and Thailand,
drug injecting accounts for the majority of AIDS cases (Des Jarlais et al., 1992).
Drug injecting was present in Edinburgh before the introduction of HIV (Ditton
and Speirits, 1982), indeed there was a rapid increase in the number of IDUs in
the early 1980s. With few treatment facilities and the apparent ease of transi-
tion into injecting heroin, due in part to the influx of inexpensive, high quality
heroin, Edinburgh, in common with Glasgow and other cities in the U.K., began

to react to the drug problem. Prior to 1982, it was comparatively easy to obtain
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clean injecting equipment, but as the drug problem escalated, the police cracked
down on the availability of injecting equipment leading to individuals sharing
bloodstained needles and syringes. The most immediate result of this policy
was the rapid spread of hepatitis B, a recognised disease transmitted via shared
injecting equipment. This epidemic masked the more alarming HIV epidemic.
However when HIV became recognisable, blood samples stored for hepatitis test-
ing revealed the true extent of the epidemic in Edinburgh, with reports of a 40%
prevalence among IDUs (Robertson et al., 1986; Peutherer et al., 1985). It should
be noted that this figure came from what could possibly be an extremely biased
survey as those in the sample were IDUs infected with a disease which is also
transmitted via injecting equipment. At that time in Glasgow, just 70km west
of Edinburgh, Follet (1986) reported a 4.5% seroprevalence in a sample of 606
IDUs, and noted that 74% of those infected had identifiable links with Edinburgh.
The Edinburgh figure was similar to those found in large groups of IDUs in large
cities world-wide such as 50% in New York (Des Jarlais and Friedman, 1987)

and Bangkok where prevalence rates rose from 15.6% in 1988 to 42.7% in 1989
(Vanichseni et al., 1992).

More recently the monitoring of HIV infection and AIDS became more sys-
tematic, with several monitoring systems in Scotland coming within the remit of
the Scottish Centre for Infection and Environmental Health. This unit, based in
Glasgow, has responsibility for monitoring infectious diseases in Scotland. Rou-
tine testing of blood donations for HIV commenced in 1985, as did the blood
tests of those worried about infection. In 1988 a surveillance scheme was intro-
duced which collated epidemiological data on everybody in Scotland who had a

named HIV test. This concentrated on the homosexual and IDU sections of the
community, although there were concerns that HIV may have started to spread
in the heterosexual population. In response to these concerns voluntary testing

of pregnant women began. In 1990 a system of anonymous testing of blood or




urine samples began, as these were anonymous and blood taken specifically for

HIV testing was excluded, this soon became an important epidemiological tool in
examining HIV infection in the general population. Figure 1.1, which is extracted
from the register of HIV infected persons (ANSWER, 1995), can be thought of
as giving a short description of the first ten years since HIV was introduced into

IDU population in Scotland. This figure charts the number of infected people

200

180

160

140 —e¢— L Othian

190 -_ : : g;;:it:; Glasgow
100

Number Infected

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
Year of First Specimen

Figure 1.1: The number of newly infected IDUs in Lothian, Greater Glasgow and
Tayside.

claiming drug injecting as a risk factor by the first year a positive specimen was
found. The data is presented by Health Board area, however the majority of cases
in Lothian, Tayside and Greater Glasgow would occur in the cities of Edinburgh,
Dundee and Glasgow respectively. It is clear from this that HIV was present
in Edinburgh in 1983, but there were no cases uncovered elsewhere in Scotland

that year. The Edinburgh data reached a peak in 1984, whereas the Glasgow
and Dundee data both peaked two years later, confirming the ‘Edinburgh Con-
nection’ proposed by Follet (1986). Over the last decade, there were 1,057 HIV
cases attributable to drug injecting in Scotland. When the progression to AIDS
is considered, by the end of 1994 there were 64 AIDS and a further 155 deaths
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attributable to drug injecting.

1.2.5 A Hidden Epidemic

It is widely recognised that needle sharing is a very high risk activity, there-
fore public health authorities in both Western Europe and North America have
targeted IDUs with information about risk reduction techniques such as needle
exchanges and bleaching needles to sterilise them. However there are many parts
of the world where basic hygiene within the health services with respect to ster-
ilising needles is not possible due to the lack of resources, in particular Romania
(Hersh et al., 1993), as well as other parts of Eastern Europe or Africa (Hoelscher
et al., 1994). Due to the lack of clean needles, it was not uncommon for several

people to be injected with the same needle, which may transmit HIV and other

viruses.

1.3 The Social Context

1.3.1 - Drug Misuse

Up until 1868, opium was available over the counter without any form of re-
striction. The only conceived problems were poisoning, including ‘infant doping’,
where child minders would drug their charges. The Dangerous Drugs Act of 1920
was the first legislative act in the style of present day law, which led to opiates only

being available by prescription. In the period leading up to the 1960s, Britain’s

drug problem was small, but between 1964 and 1968 the number of opiate addicts
known to the Home Office rose from 342 to 2,782 (Ghodse, 1989). For the first

time in Britain, injectable heroin instead of morphine was the opiate of choice
and an active black market of pure heroin and cocaine appeared. In Glasgow, in

the early 1980s there was an epidemic of heroin use, as there was in other British
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cities (Parker et al., 1989). In more recent times, the number of addicts in the

United Kingdom notified to the Home Office has risen to just under 34,000 in
1994, whereas data from the Regional Drug Misuse Databases, which record the
number of new contacts at a range of drug agencies, show that there were over
21,000 individuals starting agency contact between 1 October 1993 and 31 March
1994 and that 8,746 individuals were injecting their main drug. The data from
the Regional Drug Misuse Databases refer to Great Britain as Northern Ireland

does not, as yet, have a database.

It has been shown that the above ‘official’ statistics vastly underestimate the
true extent of drug misuse and drug injecting in the UK (Sutton and Maynard,
1993). While it is difficult to estimate the size of this covert population, Frischer

et al. (1993a) have used log-linear analysis to model the relationship between four
data sources in order to estimate the number of IDUs in Glasgow, obtaining a
figure of 8,400, which represents 13 per 1,000 of the population aged 15-55. This
1s an increase from the 5,000 estimated in 1983 (Haw, 1985). Elsewhere Squires
et al. (1995) estimate the number of opiate or cocaine misusers to be 2,344 in
Liverpool and Hay and McKeganey (1996) estimate that there are 2,557 opiate
or benzodiazepine users in Dundee. In broader terms, it is estimated that there
are 20,000 current IDUs in Scotland (ANSWER, 1995), and a further 100,000, in
England and Wales (Giesecke et al., 1994).

While there are many prejudices and misconceptions about IDUs, there are

some characteristics of drug users which can be described. Many drug users liv-
ing in Glasgow reside in the large housing schemes on the peripheral areas, where

other socio-economic problems include high unemployment, low income and so-
cial deprivation. There is an identifiable sense of loyalty within these communi-
ties where outsiders are treated with suspicion and this often hampers research.

McKeganey and Barnard have studied drug users, in particular IDUs, within the
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community from a sociological perspective, providing an insight into why IDUs

share needles and the perceived risks in doing so (McKeganey and Barnard, 1992).
They also explore the links between drug injecting and prostitution (McKeganey
and Barnard, 1996).

With the epidemic of heroin use at the start of the last decade, different areas
developed differing strategies to deal with this problem. For example, in Edin-
burgh one attempt to reduce the amount of drug injecting was to stop the supply
of needles from pharmacies. This supply was illegal in other countries, but quite
legal in the U.K. (Robertson, 1990). This had the effect of increasing the amount
of sharing of needles. At that time the only apparent risks were hepatitis and

other injecting related problems such as septicaemia, abscesses and endocarditis.

The prevalence and patterns of drug use within the penal system is seen to be
of concern (Shewan et al., 1995). It is the policy of the United Kingdom’s prison
service to refuse to issue condoms and injecting equipment to inmates, something

which the World Health Organization (1987) advocates should be considered.

1.3.2 Drug Injecting

In order to inject a drug such as heroin it must first be dissolved in water. This
can be done in small vessels such as bottle caps known as ‘cookers’, which are
heated (Koester et al., 1989). Some users will place cotton in this vessel with
which to filter the dissolved drug. This filter may be used several times, and in
the absence of drugs with which to inject, this residue may be injected. If any
of the needles which have used this filter have been infected there is a possibility
that the filter may be a source of HIV transmission. When IDUs are wanting
to share drugs that have been jointly purchased, instead of dividing up the raw
drug it may be easier to divide up the dissolved liquid. One method known as

front-loading is to draw all of the solution into one syringe, from which half would
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then be injected into another (Grund et al., 1991). This has also been described
in Glasgow (Green et al., 1993). This liquid could then be injected into the blood
stream. If the first needle or syringe was infected, this could pass on the virus into
the second syringe. Most injections are intraveneous, that is the drug is injected
directly into a vein. Intramuscular injection refers to the practise of injecting the
liquid directly into the muscles, something which may occur when an IDU has
difficulty finding a vein to inject into. Once the drug has been injected into the
blood stream some users will draw back some of their own blood into the syringe
and re-inject this in order to get the full benefit of the drug. This could leave
more contaminated blood in the syringe than normal injection procedures due to

the amount of blood in contact with the syringe (Samuels et al., 1992).

1.3.3 Needle Sharing

It is not clear why people share needles although several theories have been ex-
plored. In several parts of the world such as many states in the USA, it is illegal to
be 1n possession of injecting equipment, or in other places the police will confiscate
injecting equipment and not allow pharmacies to sell it. This was the situation
in Edinburgh in the early 1980s. In other parts of the world however needles
can be purchased quite freely, as in Italy, and there are pharmacies in Glasgow
which legally sell injecting equipment. One result of restrictions on obtaining
injecting equipment is that many individuals can use the same set of equipment.
This sharing can occur in different forms, one example is the friendship networks
which are common in Glasgow, where people will share with their close friends
or partners. They do not perceive any risk of infection and they do not classify
this as sharing (McKeganey and Barnard, 1992). There are also sharing struc-
tures such as shooting galleries. Samuels et al. (1992) describe differing forms
of shooting gallery, such as the residential shooting gallery, where long and short

term residents and non residents share injection equipment, and non-residential
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shooting galleries where IDUs usually pay money or drugs to use the facilities,
where they can also purchase drugs. This results in relatively large groups of
IDUs sharing equipment. The non-residential shooting gallery was thought to
be common in Edinburgh in the early 1980s, as visiting such shooting galleries
eliminated the risk of being caught by the police in possession of either drugs or

the related paraphernalia.

1.3.4 Seroprevalence and Behavioural Studies of IDUs

In 1990 a World Health Organisation study involving twelve centres began to
study risk behaviours of IDUs. Glasgow was one such centre, the others were
Athens, Bangkok, Berlin, London, Madrid, New York, Rio de Janeiro, Rome,
Santos, Sydney and Toronto. A description of the methodology and the main
results from these studies can be found in Stimson et al. (1997). Approximately
500 IDUs were recruited each year in Glasgow from 1990 to 1994, and this re-
sulted in the collection of demographic and behavioural data, along with saliva
specimens in order to test for HIV. Similar studies using the same protoc'ol were

also carried out in Edinburgh during 1992 - 1994, Dundee in 1994, and have more

recently been carried out in other health board areas.

The saliva testing confirmed the continuing low prevalence of HIV due to
drug injecting in Glasgow. From these samples the estimated prevalence of HIV
infection fell from 1.8% in 1990 to 1.0% in 1994 (Taylor et al., 1994). This
contrasts with the corresponding data from Edinburgh and Dundee where the
estimated prevalence figures for 1994 were 19.7% and 27% respectively (Davies et
al., 1995; Haw et al., 1996). The vast majority of IDUs in the Glasgow samples
injected daily, however the proportion injecting with used needles dropped over
the five year period. Valuable data on sharing frequency and the needle cleaning

practices has also been collected from this study.
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Although there has been no attempt as yet to utilise this epidemiological data

in mathematical models, other quantitative research resulting from this original
research has been reported in the literature. In combination with the log-linear
analysis which gave rise to an estimate of the number of IDUs Frischer et al.
(1993a) estimated that there were ninety three HIV infected current IDUs in
Glasgow in 1990. Following on from a statistical description of the HIV preva-
lence and incidence in Glasgow by Frischer et al. (1992a), Bloor et al. (1994)
proposed reasons why the prevalence of HIV was so low, especially considering
the high HIV prevalence in Edinburgh. Frischer et al. (1992b) described the
reduction in needle sharing through the sucessive samples of IDUs, but noted
that a third of the sample in 1990 still injected with used equipiment. Linear

structural modelling techniques were used to identify HIV risk practices in the

Glasgow sample (Frischer et al., 1993b). Travel, sexual activity, prostitution and
the sharing injecting equipment were positively associated with increased risk
of HIV infection. This quantitative approach was combined with a qualitative
study by Barnard and Frischer (1995) in which the relationships identified in the

structural models were explained using ethnographic data.

As the behavioural and seroprevalence study questionnaire also asked about
sexual practices, including those of prostitutes, the link between drug use, pros-
titution and HIV spread could be examined. Taylor et al. (1993) studied a
sample of fifty one female streetworking prostitutes who had been included in
the larger IDU study. Although condoms were almost always used during com-
mercial sexual contacts, they were rarely used by partners of prostitutes within
private relationships. Cpupled with the higher than average HIV prevalence in
this group, this research highlighted concerns about the heterosexual spread of
HIV from drug injecting prostitutes, given that 71% of Glasgow’s estimated 1,100
streetworking prostitutes are thought to be IDUs (McKeganey et al., 1992). In

contrast with the concerns about drug injecting prostitutes spreading HIV to the
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heterosexual population, there are also concerns about the additional risk of fe-

male IDUs becoming infected, through having to resort to prostitution to finance
a drug habit, from often having to share their drug injecting partner’s injecting
equipment and due to the added risk of becoming infected through sexual contact

with an infected partner. These risks are detailed in Barnard (1992).

The mobility of IDUs was studied by Goldberg et al. (1994). As Glasgow IDUs
are highly mobile, there are still concerns that HIV infection may be imported

from outwith the city. The prison experience of IDUs was also explored using

the combined data from the behavioural and seroprevalence studies. Covell ef
al. (1993) noted that 52% of IDUs had been in prison. Drug injecting often
continues when an IDU is detained in prison. This was highlighted from a well
documented outbreak in Glenochil Prison (Taylor et al., 1995; Gore et al., 1995).
There is additional concern relating to injecting in prison as IDUs from different
areas of Scotland are often in the same prison thus HIV may be spread ifrom
one area to another. Other studies have examined drug injecting and HIV risk
in prison (Shewan et al., 1995), again confirming that IDUs continue to share
within prison. Power et al. (1992) described a study of 559 inmates throughout

the Scottish prison system. From this sample 154 (27.5%) had injected drugs

before imprisonment, 43 (7.7%) had used drugs within prison and 32 (5.7%)

reported sharing within prison.

The data from Glasgow has also been compared and contrasted with other
areas. Des Jarlais et al. (1995) included Glasgow in a study of cities where HIV
prevalence has continued at a low level. This research examined possible reasons

why there is a low prevalence, and although there were no firm conclusions, the
presence of needle exchanges and other harm reduction strategies can perhaps be

seen as preventative of a high prevalence of HIV.

Although Glasgow was part of the multi-centre behavioural and seropreva-
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lence study, research into HIV and drug injecting has also been carried out in
Edinburgh, a city which bore the brunt of the HIV epidemic in the last decade.
Robertson first noted the presence of HIV within a sample of IDUs attending a
surgery in North West Edinburgh in 1985 (Robertson, 1986). This cohort has
been extensively followed, for example by Robertson et al. (1994) who describe
this cohort over ten years and by Ronald et al. (1992) who noted the reduction of
risk related behaviours. Ronald et al. (1994) considered drug injecting as a cofac-
tor in the progression from HIV to AIDS showing that heroin injecting increased
the risk of progression. Many of these IDUs are also included in a larger group
which included those infected through sexual contact, known as the Edinburgh

City Hospital Cohort. This group has again been extensively studied (Brettle et
al., 1996a).

The epidemiology of diseases spread through injecting equipment in Edinburgh
was studied by Burns et al. (1996). The epidemic of injecting drugs was associ-
ated with four overlapping epidemics of bloodborne viruses; HIV, hepatitis B, C
and D. Initially only hepatitis B was recognised. The paper speculates that the
explosive drug-related Edinburgh HIV epidemic may have been self-terminating

and that the epidemic in female IDUs came three months after that in male IDUs.

The spread of HIV has also been studied at a national level in Scotland. Raab
et al. (1994a) used HIV test data in forecasting the AIDS epidemic in Scotland. It
is noted in this study that more concise information about the incubation period
is perhaps needed. This is explored in Raab et al. (1994b), where forecasts were

produced using Bayesian techniques which used the available knowledge about

the incubation period. In both these studies the estimates were show to closely fit

the initial stages of the epidemic. Mok (1994) explored the vertical transmission

of HIV from mother to child and other studies have also examined drug use

and pregnancy (Johnstone et al., 1994). Brettle et al. (1996b) also explored the
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progression of HIV in pregnant women through CD4 count modelling; this is one
of several studies which used data on CD4 counts when modelling HIV in IDUs
(McNeil et al., 1996; Allardice et al., 1992.)

1.4 Mathematical Modelling of the Spread of
Infectious Diseases

1.4.1 Origins

Despite Fracasterius in 1546 postulating a living principle of contagion, 1t was
not until the rise of the science of bacteriology in the latter part of the nineteenth
century, due mainly to the work of Pasteur and Koch, that an understanding of
the infectiousness of certain diseases came about. The first recorded combination
of mathematics and medicine appears to be the work of Bernoulli (1760) in which
he investigated the benefits of variolation against smallpox. The idea of a living
organism invading the human body must originally have been received with much
scepticism, but with the ability of early microscopes to show these organisms in

the blood the foundations of the study of infectious diseases had been laid.

1.4.2 Development of Mathematical Models

In describing the early history of the mathematical modelling of infectious disease,
two diseases will be described in detail; measles and malaria. Models for measles
serve as a prototype for many other diseases which are spread in a similar manner
such as chickenpox, mumps and whooping cough. Measles is more commonly used
as an example of a disease which can be modelled because the data are better.
The modelling of malaria differs from these basic models in that even the simplest

models need to include two populations; man and mosquito. These models are a

good introduction to two-sex models which are needed in modelling the spread
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of sexually transmitted diseases and, as will be shown later are relevant to the

spread of HIV within a population of IDUs.

There have been many studies into the spread of measles and the disease is
one of the best documented. Although it is not fatal in developed countries, it is
still a major Kkiller of children in many parts of the world including India. The
virus is highly contagious because it is airborne and easily transmitted, unlike a
virus such as that which causes glandular fever which requires physical contact.

For measles, after an individual becomes infected there is an incubation period
of between nine and eleven days before the illness becomes apparent. During this
incubation period the individual is not infectious. There follows a short infectious
period of seven to fourteen days (Benenson, 1990). Once an individual has recov-
ered from the illness he or she will become permanently immune to the disease,
so from the infected state an individual will pass to a recovered or removed state
from which they cannot return to the susceptible or infected state. This well
documented progression of events can be easily modelled using a compartmental
model. A compartmental model is a mathematical model which divides the pop-

ulation amongst whom a disease is spreading into disjoint compartments such as

susceptible, incubating, infectious and immune individuals.

Hamer (1906) considered that the course of an epidemic must depend on the
number of susceptibles and the contact rate between susceptibles and an infective
individual. This idea, Hamer’s ‘mass-action principle’, which is fundamental to
most deterministic theory, can be seen in the Hamer-Soper model; a type of

compartmental model. We shall now describe the Hamer-Soper model.

The population of interest is split into three groups, susceptibles S(t), infectives
I(t) and a removed group R(t), the number of people in each of the groups being
a function of ¢, time. The removed group consists not only of the deaths from

the disease but also removal due to isolation or recovery. The transitions between
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these three states can be described as follows:

1) A susceptible becomes infected by contact with an infective.

2) An infective is removed.

3) A susceptible enters the population, either through migration or birth.

4) An infective enters the population by migration.

5) A susceptible or infective leaves the population either by death or migration.

In this deterministic theory each of these transitions has an associated rate giving

rise to a set of differential equations. As an example the simpler situation where

the population is fixed, so that transitions 3, 4 and 5 do not occur, is presented.

Suppose that at time ¢ we have z(t) susceptibles, y(t) infectives and z(t) re-

moved individuals. We can abbreviate these time-dependent values as z, y and

z. With an infection rate of 3 between a single susceptible and a single infected

individual, so that the number of new infections occurring in a small time in-

terval of length dt is frydt, and a removal rate of 4 per infected individual the

differential equations can be shown to be

and

dz

'a'{ - _ﬁxya

'(("112 — ﬂxy - 7Y,

dz

= =Y. (1.1)

We can define p = 7/ to be the relative removal rate and at time ¢ = 0 we have

z(0) = zg, y(0) = yo and 2(0) = 2o. From Equation 1.1 we have

v _ Byo(zo — p)

dt
so an epidemic can only develop if o > p.

We can re-express part of Equation 1.1 as
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from which an epidemic will occur if

To/p > 1.

Thus Ry, the basic reproductive number, is zo/p. Ry is defined as the number of

secondary infections produced when one infected individual is introduced into a
host population at equilibrium where everyone is susceptible (MacDonald, 1952;

Anderson and May, 1991). We expect an epidemic to occur if and only if R

exceeds one.

This general type of model was extended by Kermack and McKendrick (1927).
Their more elaborate models resulted in the famous threshold theorem which
stated that the introduction of a small number of infectious cases into a popu-
lation of susceptibles would not give rise to an epidemic outbreak if the density
of susceptibles was below a certain limit. If the initial density of susceptibles
exceeded this limit or threshold, then the resulting epidemic would reduce the
density to as far below the threshold as it was originally above. This threshold
value is intrinsically linked to Ry; for estimates of threshold values and Ry in

various communities and for various infections see Anderson and May (1991).

Further work on this model related to measles was undertaken by Soper (1929),
who examined recurrent epidemics. This can be achieved by introducing suscepti-
bles into the population at rate a. 'This corresponds to immigration of susceptibles
into the population. If we simplify this model by only looking only at susceptibles

and infectives and ignoring births and deaths into and out of the population we

have:
% = —fzy +
dy

and — = Bry — vy,
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the solution of which resulted in damped oscillations in the number of infectives

Soper (1929), which published data on measles does not display.

Deterministic models can predict the undamped oscillation observed in the
data, but to take account of this we need to include seasonal variation in the
contact rate (Bolker, 1993). Another method of modelling undamped oscillations
is to use stochastic models such as McKendrick (1926) or Bartlett (1960). As
an example, let X (¢) and Y(¢) denote the number of susceptibles and intectives

at time ¢. Then in the small time interval [t,¢ + dt] we have the transition

probabilities
Pr{(X,Y)—=> (X -1,Y+1)} =pXYd!
and Pr{(X,Y) = (X,Y - 1)} =Y. (1.2)

The latter part of Equation 1.2 refers to the removal of infectives. This type of
model, which is difficult to solve, is the stochastic ‘continuous-infection’ model

which did not attract much attention initially.

An alternative form of stochastic model, the Chain Binomial Model, was devel-

oped independently by Greenwood (1931) and Reed and Frost in 1928; see Abbey
(1952). These are discrete time models as the spread of the disease is modelled in
discrete generations. This model assumes a relatively short infectious period and
constant latent and incubation periods, allowing the number of new cases occur-
ring from adequate contact with a single infective to be modelled by a binomial
distribution. Each new infective would then go on at the next ‘generation’ of the
disease to infect other susceptibles with the same binomial distribution, leading
to a chain of binomials, hence the name. This model could be used to describe
the spread of a disease such as chickenpox, where the spread of the disease can

be well documented between families and between family members. Greenwood’s

model assumes that the probability that a susceptible becomes infected depends
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only on the presence of an infective. This can be thought of as a simplification of
the Reed-Frost model in which the probability of infection depends on the number

of infectives present, and each infective infects susceptibles independently

The mathematical modelling of epidemics after the second world war contin-
ued with more work done on both deterministic and the Chain Binomial Models.
Work was being done on the mathematical theory of stochastic processes, such
as Bartlett (1949), who developed a partial differential equation for the proba-
bility generating function of two variables. This gave rise to renewed interest 1n
the continuous infection model. This model was also explored by Bailey (1953)
giving rise to Whittle’s famous (1955) paper, directly following Bailey, in which
he derives a stochastic threshold theorem corresponding to Kermack and McK-
endrick’s deterministic result. In a more basic sense, at the start of the epidemic
when the number of susceptibles can be reasonably approximated as n, the pop-
ulation size, Equation 1.2 can be compared to a simple birth-death process with
constant birth rate nf and constant death rate . Again denoting p = /80,
a threshold theorem can be obtained which states that if n < p then a major
outbreak cannot occur, but if n > p then a minor or major epidemic occurs with

probability p/n and 1 — p/n respectively. Whittle (1955) presents the proof, ex-
tending it by determining the probability that an epidemic of not more than a

given intensity takes place.

1.4.3 Modelling the Spread of Malaria

While Hamer, and later Soper, were developing the theory for measles, Ross

(1911), was developing similar theory for the spread of malaria. Malaria in man
is due to infection by one of four parasites of the family Plasmodium. Parasites
are different from viruses in that they can reproduce sexually and can therefore

be categorised as being at certain stages of their lives. Some parasites such as
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those that cause malaria need to spend part of their life in humans and another
part in an intermediate host. For more detailed explanation of the differences
between viruses, parasites and bacteria see Anderson and May (1991). An in-
dividual becomes infected by sporozoite forms of the parasite after they have
been bitten by a female mosquito taking a blood meal which is necessary for the
development of her eggs. The parasites reproduce asexually within the human
host changing from sporozoites to trophozoites and eventually into gametocytes,
which are sexual forms of the parasite. Although there may be parasites at dif-
ferent stages of their life cycle within the human host, it may be convenient to
only examine the gametocyte rate, which is not strictly a rate as it is the num-
ber of gametocytes in the blood (MacDonald, 1957), as it is gametocytes which

then infect the female mosquito. The sexual forms of the parasite then multiply
within the female, completing the circle by liberating sporozoites into the salivary

glands. We therefore have two indicators of infectiousness, the gametocyte rate

in humans and the sporozoite rate in the mosquito.

A basic deterministic formulation of the essentials of the population dynamics

of malaria was given by Ross (1911). We define the following parameters for the

human population:
n: total population size;
y: total number of infected individuals;
f: proportion of infected individuals who are also infectious;
4. recovery rate;
1: birth rate;
v: death rate.

Again we have abbreviated the notation for the time-dependent values, such as
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the total number of infected indivuals. A set of definitions, employing the same

symbols but with primes can be applied to the mosquito population. We adopt
the concept of homogeneous mixing, based on the assumption that the mosquitoes
have a man biting rate 4'. So in a time interval (¢,t + dt) we see that y' infected
mosquitoes make b’ f'y'dt infectious bites, of which a proportion (n —y)/n are on

susceptible humans. Thus, the number of new human infections in (¢,% + dt) is

b f'y'(n — y)dt/n.

Taking into account the recovery and death rates, it follows immediately that
the differential equation describing the rate of growth of the human infected
population is

92 B b’f’y’(n - y)

An analogous argument leads to
dy! b’f,y n! . y!
Et_"_' (n )_(,Yr_l_yr)yr

for the infected mosquito population. These two equations are not exactly sym-
metrical with the regard to y and y’. The transmission of disease from a mosquito

to man, or vice versa, is in each case controlled by the man biting rate of the
mosquitoes. Thus only b’ exists; there is no corresponding quantity b, since man

does not bite mosquitoes.

Setting m = y/n and u = y'/n leads to

%—7-?— =bflu(l—m)—-(y+v)m
and %—? =bfm(a—u) - (v + '),

where a = n'/n. From these equations information about equilibrium values and
the basic reproductive number, Ry, defined as the number of new cases resulting
from the introduction of a single infective into a population of susceptibles at

equilibrium, can be explored. From this differing control strategies can be stud-
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led. For example we can study the effect of reducing the size of the mosquito

population by looking at its effect on R,.

1.4.4 Modelling the Spread of Sexually Transmitted Dis-
eases

It was noted by Ross that his models for malaria transmission could also be ap-
plied to sexually transmitted diseases, with similarities between the prevalence of
disease in the human and vector host and prevalence in males and females. Be-
fore the discovery of the HIV virus, most mathematical models of the spread of
sexually transmitted disease concentrated on the spread of gonorrhoea (Hethcote
and Yorke, 1984). While the disease is not fatal, in the USA roughly one million
cases per year are reported. This suggests that between two or three million cases
may actually arise annually. It has been estimated that 10-17 percent of women
with gonorrhoea develop pelvic inflammatory diseases, which can lead to sterility.
The disease is also virtually asymptomatic in many people, especially women. In
contrast to diseases such as measles, recovery from the disease does not confer
life long immunity, therefore Whittle’s and Kermack and McKendrick’s threshold
theorems cannot be applied directly. If a removed compartment was valid, a ba-
sic deterministic model can presented which is relevant to both host/vector and
venereal diseases. For a human population, consider a model with the numbers
of susceptibles, infectives and removed individuals denoted by z, ¥ and z respec-
tively, with z + vy + 2z = n. Corresponding numbers in the intermediate vector are
denoted as (z',9,2'). We assume that the numbers of new infections in a small
time interval time [t, ¢ +dt| are Bzy'dt + o(dt) for humans and g'z'ydt + o(dt) for
vectors. The corresponding quantities for removals are simply yydt + o(d¢) and

v'y'dt + o(dt), resulting in the two sets of equations:
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and . — _ﬁfx’ya

:
%’-zt- =Y,

from which a threshold theorem similar to that obtained by Kermack and McK-

endrick can be obtained. We should stress that in the case of many such diseases

there is no immunity after infection, hence such a model may not be valid. We can

also model the sexual spread of disease using stochastic theory, by representing

the respective number of susceptible and infective males by X;(¢) and Y;(¢) and
similarly X,(t) and Y5(¢) for the susceptible and infective females. By considering
the transition probabilities, we can develop a partial differential equation satis-
fied by the probability generating function. Exact analysis may not be possible,
but as in the single population case, an approximate threshold theorem can be
obtained by considering the model as a continuous time branching process and

using relevant results (Bailey, 1975).

Other works on the mathematical modelling of sexually transmitted diseases
develop the theory, combining it with epidemiological data, particularly Hethcote
and Yorke (1984). Bailey (1979) provides a good introduction and reference list

relevant to sexually transmitted diseases. More recent work on the sexual spread

of HIV is also relevant to other sexually transmitted diseases.

1.4.5 Modelling the Sexual Spread of HIV and AIDS

Early attempts at modelling the spread of HIV concentrated on the transmission

among homosexuals, which was the population initially thought to be at most risk
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from the disease. An initial model is not unlike that for the spread of measles, but

with no removals in the model as people do not develop immunity from the disease
and the parameter 8 which corresponded in the measles model to the rate at which
infection occurs between a single infected and a single susceptible individual will
be replaced by Gk, where k is the rate at which a susceptible acquires new sexual
partners and 3 is now interpreted as the probability infection occurs during such
a partnership (Isham, 1988). The theory behind this model will therefore be
similar to the theory already discussed. Such a model does not include any
significant biological factors about HIV and AIDS therefore it can only serve as
an introduction to more realistic models. Anderson and May (1991) presented a
model which did incorporate more realistic features, such as the uncertainty about
whether everybody infected with the virus will go on to develop the disease and
people effectively becoming removed when full blown AIDS develops. They split
the population into five compartments: susceptibles, X (t); infectious individuals
of types 1 and 2; Yi(t) and Y3(t) respectively; those with clinical AIDS; A(t) and
non-infectious individuals of type 2; Z(t), where type 1 infectives are assumed
to progress into the AIDS compartment but type 2 infectives will progress into

a non-infectious state. They assumed that a proportion f of the population are
type 1, hence 1 — f will be type 2. Setting f = 1 would give a model in which
all individuals with HIV will go on to develop AIDS and this is now the course

of events in accepted by today’s scientific community:.

We have
dX
dY
—(# = fAX — (p+ vV,
dY. |
ﬁ = (1 = )AX — (g +w)Y2,
dA
- =uli- (n+a)A,
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dZ
and = v Ys — uZ, (1.3)

where B is the rate at which susceptibles join the sexually active population, u is

the per capita death rate of the community, (neglecting the disease) v, is the rate
at which type 1 infected individuals develop AIDS, and v, is the rate at which
type 2 individuals become non-infectious. « is the additional death rate due to
AIDS, A is the per capita rate at which susceptibles become infected, or the force

of infection, which is given as
A =c(6i1 + B2Y2)/N.

Here c is the average number of sexual partners per unit time, for k =1, 2, B is
the probability that infection will be acquired from an infected sexual partner of
type k£ and Y /N is the probability that a partner chosen at random will be an

infective of type k. N is the total size of the sexually active population.

As an approximation to the start of the epidemic, we can make some simplify-
ing assumptions, such as ignoring death from AIDS and treating the population
size as being fixed, which will lead to the number of infectives increasing expo-

nentially, such that
Y(t) ~ Y(0) exp(At)

where A = fc— v and Y(¢t) = Yi(t) = Y2(¢t). From this approximation the
initial doubling time can be evaluated and we can also obtain an expression
for the number of individuals with AIDS in the early si;ages of the epidemic.
Equation 1.3 can be solved numerically to show an exponential increase towards

the start of the epidemic, levelling off when AIDS related deaths begin to remove

seropositives. This levelling off is also to be found in the data from America, such

as the San Fransisco Gay Men’s Health Study (McKusick et al., 1985a, 1985)),

but this may also be attributable to changes in sexual practices.

The previous model assumed, for mathematical simplicity, that the rate of
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acquiring sexual partners is the same for all individuals and also that the choice

of sexual partner is random. As in the models for the spread of gonorrhoea,
this may not be realistic and, as May and Anderson (1988) argue, heterogeneity
in the rate of acquisition of sexual partners cannot be ignored. This can be
introduced by dividing the population at risk into groups, characterised by the
average number of sexual partners per unit time. Using the notation X; to denote
the number of susceptibles who have on average ¢ sexual partners per unit time,

with similar notation for the other compartments, we have

_di_ — : = (H + Ai’)X‘H
dYi;
_dzl_ = f\X; (p, -+ ’Ul)y'ln
dY3;
-th- — (]_ —_ f)/\,X; - (I—L + vi’)},?”
dA;
T =1 Y1 — (u+ ) A;
dZ;

and FTS = VoY2; — uZ;.

dV;
Here _a-i— = Bi — ]}.Ng - aAi’

where N;(t) is the number of individuals in the 7th group at time t. They assume
that the force of infection for an individual in the ith group is A\; = i\, where A
is the force of infection per partner, which will depend on the probability that
partner is infectious and transmission parameters (. For £k = 1,2, 3 is the
probability that a single contact between a susceptible and an infected individual
in class k will result in the susceptible becoming infected. =, the probability that

a randomly chosen partner is infectious, can be obtained by weighting potential

partners by their sexual activity rate hence

-1
A=) j(BiYr; + ﬂzyzj)(Eij) -
J J

This model can also be evaluated numerically, although a probability distribution

describing the proportions in each sexual activity group is required. The model
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can be explored for differing amounts of variation in the sexual activity rates,

measured by the coeflicient of variation, CV= o/m, where m is the mean of the

distribution describing sexual activity rates and ¢? is its variance.

The above models assumed that infected individuals move out of the incu-
bating class at a constant per capita rate (Medley et al., 1988). One method of
incorporating this is to assume that the probability of getting AIDS at time 7
since becoming infected with HIV is vy where vy and v are parameters which
can be estimated from data. This would result in the incubation time having a

Weibull distribution, the average incubation period D being

1/(v+1)
D=F(V+2)(V+1) |

v+ 1 Vo

The above models also assumed a constant level of infectiousness throughout this
infectious period. There 1s evidence however that this may not be the case, as
shown by Anderson and May (1988). A time dependent transmission probability
can be created which would correspond to people being more infectious when

initially infected with the virus and just before developing AIDS;

B(7) = Boexp(—7/To) + Brexp[—(t — 7)/T7].

These two approaches add to the complexity of the subsequent models as an extra
variable 7, corresponding to time since infection has been introduced and we need
partial differential equations to describe the progress of the disease. Another
possible approach to include the time dependent transmission probability would
to add extra compartments to the model (Anderson and May, 1991). Parts of

Equation 1.3 could be replaced by

dY;
— =M —uh,
dY:
"a't—z = UpY] — $Y,
dY:
Tif- = 8Yy — v1Y3,
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dA

"(-1? = ‘Ullfg, — aA.

and

In this model it is assumed that everyone who is infected with HIV will go on
to develop AIDS, as is currently thought to be the case. The classes Y;, Y5
and Y3 have different meanings to previously. Each infected individual moves
through three phases corresponding to the three infected classes. Susceptibles
move into the first period of infectiousness corresponding to Y; at per capita rate
A, where ) is the force of infection per susceptible individual per unit time, in
which the probability of infecting a susceptible partner during the course of the
partnership will be some constant value Gy, they then move into a second infected
compartment, within which they are not infectious, at rate vy = 1/T;, and then
move into a third infected and infectious compartment at rate s = 1/D, where
the associated probability of infecting a susceptible partner will be #;. From this
third compartment they will then move into the AIDS class at rate v; = 1/Tj.
The individuals who have AIDS die at per capita rate o and do not mix with the
other individuals. Hence the total period with HIV is Ty + D + T} where 1y, D
and 77 are the times spent in the three classes. The force of infection per unit
time is A = ¢(GoYh + 41Y3)/(X + Y1 + Y2 + Y3) where c is the rate of acquiring

new sexual partners.

The above models considered a population of homosexuals, however in many
parts of the world, such as sub-Saharan Africa, the spread of HIV and AIDS has
been mostly due to heterosexual transmission. The theory behind the two sex
models of the spread of gonorrhoea can be extended to model the heterosexual
spread of HIV, where there will be separate transmission probabilities for male to
female and female to male per sexual act. It has been suggested that 8 < G, <
where 3,, is the probability of transmission per sexual act from infected male to
susceptible female; (¢ is the transmission probability per sexual act from infected

female to infected male and 3 is the corresponding probability for two homosexual
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males. Compartmental models can also be extended to include groups such as

female prostitutes and male bisexuals, and split the male and female populations

into promiscuous and non-promiscuous individuals (Knox et al., 1986).

Models relating to the sexual spread in Africa must also re-examine the as-
sumptions used in previous models such as the population size remaining con-
stant. The demographic consequences of such spread are discussed by Anderson
et al. (1988). Such demographic models also include the high prevalence of

paediatric AIDS and the effect on future population sizes.

The mixing patterns used in the above models all assume that the duration of
sexual partnership is negligible and if transmission occurs within a partnership
it must occur instantaneously, this however is a simplification about which Dietz
and Hadeler (1988) note ‘the formation of a pair of susceptibles renders them 1n
a sense temporarily immune to infection as long as the partners do not separate
and have no other contacts with other partners’. This pair formation should be

included in both homosexual and heterosexual models. Such models have been

studied by Dietz (1987).

Using a heterosexual population as an illustration we can divide the population
in to three compartments; males, females and pairs, denoting the number of
individuals in the first two compartments at time ¢ as m(t) and f(¢) respectively
and the number of pairs at time ¢ as p(t). Suppose that the rate at which these
pairs form is ¢(m, f) which depends on the number of males and females, and

the pairs separate at rate 0. There is a natural mortality rate p in the population

and new individuals arrive in the population at influx rate A. A model for the

pair formation will be

= A+ (0 +p)p(t) — pm(t) — ¢(m, f),

%gt)- = A+ (o + p)p(t) — pf(t) — ¢(m, f),
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and

g;gi) = —(o + 2u)p(t) + ¢(m, f).

This model has to be extended to include the presence or absence of infection,

denoting for example in the males my as the number of susceptible males and m;

as the number of infective males, fy, fi respectively for susceptible and infective

females and pg; as the number of pairs with a susceptible male but infective

female, and ¢g; () is the rate at which pairs with a susceptible male and infective

female form. We define pgg, P10, P11, P00, $10 and ¢@y; in the analogous fashion.

We then have

and

A0E) — X+ (00 + m)poo(t) + (o1 + B)pon(t) = o) = doolt) = ().
s ) _ (010 + wp1o(t) + (011 + Wpua(6) — pma(t) — bro(t) — S (®),
o) = X+ (o0 + H)poo®) + (020 + Wpr0(8) = #o(8) — dool®) = dra(t)
.qdef-)- = (do1 + #)poi(t) + (o1 + p)p1(t) — pf1(t) = dor(t) — é11(2),
dpfi‘;(t) = — (000 + 24)Poo(t) + Poo(?),

ill) (o0 + 20)p0 (1) + (),

dp;"t(t) = —(0o10 + 21)p10(t) + P10(2),

dP(lilt (&) _ (011 + 21)p1a (8) + i (). (1.4)

We also have to alter Equation 1.4 to include within partnership infections. To

do this we assume that a partnership begins with a sexual act, then subsequent

acts occur as a Poisson process of rate p until terminated by separation. We also

assume that sexual contact only occurs within a pair. Assuming that the male

to female transmission probability is ,, and the female to male transmission is

ey we then have

dpglot(t) = — (000 + 21)Poo(t) + Boo(t),

34




1 = —(o01 + 21 + ef)por(t) + (1 — er)dar(t),
dp(liot(t) — —(0'10 + 21 + sm)pm(t) -+ (1 — 5m)¢10(t):
and dp(lilt(t) = — (011 + 2u)p11(t) + é11(t) + €001(t) + emdro(t) + € sPpo1(?)

+5mPP10 (t)

Dietz and Hadeler (1988) discuss the properties of this model and Dietz goes
on to extend the model, to include homosexual males and bisexuals, having in
Dietz (1987) twenty nine variables in his models, with forty two parameters. This
model demonstrates the problem that with so many parameters, it may be difficult
to obtain reliable estimates, although Dietz uses data relevant to Germany for

estimation.

Other research has explored and evaluated differing mixing frameworks, such as
assortative mizing where all sexual activity occurs within the groups, proportional
mizing where the fraction of sexual contacts of people in activity class 7 that are
made with people in class 7 is equal to the fraction of total contacts made by the
population that are due to people in class j or preferred mizing which is a linear
combination of assortative and proportional mixing. Blythe et al. (1991) present

a unified theory of sexual mixing which also includes pair formation.

Sattenspiel (1989) examined the structure and social context of social interac-
tions relevant to the spread of HIV, in which she first described previous models

which stratified the population of interest into subgroups, which she noted can

either correspond to sexual activity or to geographic location. This is achieved
by looking at n subgroups, with a n X n matrix with n? terms in it describing
the interactions between groups. Consider two infection rates in the population,
o;, the within group infection rate from an infected individual to a susceptible
individual in subgroup % and f§;;, the rate of infection from an infected person

In group ¢ to a susceptible in group j. This only includes varying probabili-
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ties of infection between groups, not varying probabilities of mixing. Sattenspiel

(1987) developed models for the spread of hepatitis A which included migration
matrices to describe the probability of two individuals from different subgroups
coming into contact with each other and explores the effect of heterogeneity in
these models by varying the migration matrix. This approach is similar to that
of Abramson and Rothschild (1988), which also includes both physiological and

behavioural co-factors in the matrix models.

Another form of matrix model which has been used not only to examine the
spread of HIV, but other diseases such as measles and rabies, is the spatial model
of disease spread (Mollison, 1977; CIliff et al., 1981 and Gani, 1990). In this
the mass action assumption of Hamer, in which contact between susceptibles
and infectives occurrs by homogeneous mixing throughout the population, is re-
examined. A simple model of this type would model the disease spread on a
two dimensional lattice where, at the point (¢,j) at time ¢, there could be a
susceptible S, an infective I, or an immune R individual. Assuming that time
is discrete, at time ¢ + 1 the infectivity status of the individual at that point
would be dependent on the infectivity status of the eight neighbouring points on
the lattice at time t, those at (i £ 1,5 & 1). This model can be developed using
the theory behind Markov fields, or alternatively by computer simulation. Other
research uses matrix models such as random graphs and random cellular automata
(Yakowitz et al., 1990). Other models which use a similar lattice structure can
be used to evaluate differing vaccination programs, although this is more relevant
to diseases such as measles (Greenhalgh, 1986). Spatial models have also been
developed to describe the spread of rabies within foxes, where the mass-action
assumption of homogeneous mixing is also unrealistic. Such models have been
used to explore the geographical spread of the disease throughout Europe and to

consider the possible options for the control of the disease if it ever entered the

United Kingdom (Murray, 1993).
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1.4.6 Modelling the Spread of HIV via Needle Sharing

The first paper which concentrated on the spread of HIV via needle sharing was
presented by Kaplan (1989). We shall only briefly mention this paper in this lit-
erature review as the next chapter is concerned with extending and adapting this
model. This paper modelled the prevalence of HIV in a population of IDUs who
share needles within shooting galleries. Two proportions are examined, the pro-
portion of IDUs who are infected and the proportion of needles that are infected.

The model is deterministic in nature and employs quite restrictive assumptions.

Allard (1990) presents a mathematical model which describes the risk of infec-
tion from sharing injection equipment. He examines the probability that a syringe
becomes infected when used once by an infected person, and then extends this to
obtain the probability that the needle becomes infected after being used C* times.
He similarly describes the probability that a person becomes infected after using
an infected needle C times. Using these probabilities, different sharing scenarios
are described such as random sharing and sharing between partners. Although it
is recognised that the the probability of a person becoming infected after using
an infected needle is unknown, Allard demonstrates that random sharing, such
as that which happens in shooting galleries, is more risky for a wide range of
parameter values. This paper, however, was only concerned with the probability
of becoming infected and as such did not include any of the population dynamics
of the IDU population. Aylward et al. (1995) describe in a similar fashion the
related problem of contaminated medical equipment being reused in vaccination

campaigns in developing countries.

Peterson et al. (1990) present a Monte Carlo simulation of HIV infection
in a population of IDUs. The stochastic nature of this paper contrasts with
Kaplan’s deterministic approach and this is commented on by the authors. As this

paper uses computer intensive techniques, many compartments can be employed,
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describing both HIV infection progression and the drug-using dynamics including
monthly, weekly and daily injecting. A disease progression model is created which
includes acute infection, asymptomatic and pre-AIDS symptoms compartments,
as well as an AIDS compartment. In parallel to this disease progression model,
a model which also describes the progression between monthly use, weekly use
and daily use is also described. Two other states are possible within this drug
use dynamic system; using ‘jail not using’ and ‘community not using’. Both of
these states allow IDUs to remain in the system without returning into the general
population or dying from reasons other than AIDS. They do not, however, account
for the possibility of needle sharing within prison. A third model describes the
social networks in which sharing occurs. They categorise the various sharing
mechanisms into pooled sharing within shooting galleries, sharing within small

groups, and sharing with a stranger.

The three interacting models are then combined. Having noted that an impor-
tant benefit of stochastic modelling is its capacity to join disparate sociological,
behavioural and clinical information into one model, they describe various sce-
narios, and show that random sharing results in -higher numbers of infected IDUs
than structured sharing. They demonstrate the effect of various intervention pro-
grams and suggest that the model’s ability to mimic complex social networks and
to incorporate a sufficiently realistic structure of HIV progression makes it readily

adaptable for use in other localities. They suggest that this justifies the expense

of acquiring local drug and behavioural data.

Blower et al. (1991) present a deterministic model which they used to assess
the epidemiological consequences of heterosexual, IDU and perinatal transmission
in New York City. They demonstrate the significance of the dynamic interaction

of heterosexual and IDU transmission. The model consists of thirty four ordinary

differential equations and employs twenty biological-behavioural transmission pa-
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rameters. When it is used to predict the future number of adult or paediatric

AIDS cases, there was considerable uncertainty as demonstrated by extremely
wide confidence intervals of the prediction estimates. An in-depth sensitivity
analysis is undertaken. It was found that only a few key parameters are impor-
tant in predicting the spread of the disease, however the biological parameters
describing the probability of transmission both through sexual contact and by
needle sharing are important. They conclude that their results suggest that long

term precise estimates of the future number of AIDS cases will only be possible

once values of these key variables have been evaluated accurately.

Within their model, IDUs are classified as either stranger-users or buddy-
users; the former being comparable to the shooting galleries that Kaplan models
and the latter described as the sharing with close friends or relatives in social
environments. As they do not specifically include injecting equipment as a vector
for HIV transmission in the same way that Kaplan (1989) does, they note that
the risk of infection in stranger-users depends only on the rate of sharing needles,
the HIV transmission efficiency per injection and the seroprevalence in that sub-
group of users. In addition, the risk of infection in buddy users also depends on
the stability of the buddy affiliations over time. Different sexual mixing matrices

are also described.

Atkinson (1996) used simulation techniques in examining HIV transmission
among IDUs. In a similar fashion to Peterson, he opted for using a mathemat-

ical simulation language in describing the transmission dynamics, in this case
the General Purpose Simulation System, citing Leslie and Brunham (1990) as
a good example of the techniques in modelling the homosexual spread of HIV.
The shooting gallery is again focused on, and as the simulation package modelled

individual IDUs within a hypothetical cohort, heterogeneity of sharing needles

could be included. Atkinson notes that in contrast to the spread of a disease such
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as measles, the spread of HIV results from an exchange of body fluids after a
conscious partnership selection, the spread of HIV among IDUs involving needles

as an intermediate vector.

Simulation languages are also useful in that the stochastic variability can be
directly included and common distributions such as the Weibull distribution can
be assumed for parts of the disease spread dynamics. The modelling concentrated
on a single shooting gallery which consisted of one hundred IDUs. These IDUs
could either share with one other person, or share with up to four others, sharing
either daily or weekly. An IDU would either always clean the needle before
injection, or never clean the needle before injection. Initially all needles are clean
and the disease spread is sparked by the introduction of one infected individual.
A seniority between IDUs in sharing is modelled, as is a rotation of needles
resulting in each needle being discarded after it has been used fifty times. The

disease progression is modelled including an incubation period, and all infected

IDUs die a fixed length of time after becoming infected.

In order to simulate the disease spread, a heterogeneous structure was assigned
to this cohort. The parameters used in the simulation were gathered from the
available literature, in particular, the probability of infection per injection with
an infectious needle was assumed to be 0.005. This probability was then used
indirectly in sampling from a geometric distribution the number of injections
with an infected needle that were required to infect an IDU. It was assumed
that seroconversion occurred after fifty days after initial infection. Incubation
times and survival rates are again drawn from the available literature. Different
scenarios are modelled in which the sharing rates and the probability of an IDU
cleaning the needle are varied, and the results are presented over a period of five

years following the introduction of the infected IDU.

Within the discussion, it is noted that the highest risk combination of sharing
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and cleaning resulted in the highest infection rates, resulting in over half of the

cohort of IDUs becoming infected after five years. A comparison to herd immunity
is discussed such that the effect of some IDUs cleaning needles may offer some
protection to those that do not clean needles. Goforth and Berleant (1994) also
describe the use of simulation models when examining HIV spread, however their

paper describes the qualities of the simulation program ‘The Interactive Model

for AIDS prediction’ (IMAP2) rather than the theoretical aspects of the models.

Capasso et al. (1995) combine some of the more basic ideas from Kaplan’s
(1989) model with a mathematical model for the basic single population SIR
model with vital dynamics for AIDS as analysed by Jacquez et al. (1988). They
mimic the assumptions of Kaplan in that they include the flushing of infected
blood from a needle by the blood of an uninfected IDU in their models and they
assume that an addict becomes infected after exposure to HIV with probability
a. They also provide an explicit expression of the force of infection based on the
kinetics of HIV transmission due to sharing of drug injection equipment within
a friendship group of IDUs. Within this mainly mathematical paper, in which
they examine the stability of the equilibria, they go on to extend the one-group

model into a multiple-group model.

lannelli et al. (1997) study several hypotheses about the dynamics of HIV
epidemics among IDUs. The paper is described as ‘A study of contact struc-
ture throﬁgh a mathematical model’ and examines the spread of the disease as

described by a system of deterministic equations, following on from Blythe and
Anderson (1988) and Thieme and Castillo-Chavez (1989). Data from the Latium
region of Italy is compared to the numerical results from the model, and a best-fit
estimate of the parameters is obtained. They show that heterogeneous models

provide a better fit to the observed data, as does assuming that there exists a

peak in infectivity soon after infection. They note some of the difficulties in aim-
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usually only being available on AIDS incidence rather than HIV prevalence. The
authors chose to ignore the role of needles as disease vectors, opting instead to
model HIV transmission through needle sharing by using the ‘mass-action law’
as described previously'in this chapter in the context of modelling the spread of

measles. They also combine sexual and needle sharing transmission.

They seek to answer some key questions about modelling HIV transmission,
including how relevant is the hypothesis of variable infectiousness during the
incubation period and whether it is possible to assume that IDUs form a homo-
geneous group with respect to the disease transmission. The system of differential
equations used includes ordinary and partial derivatives, and although we do not
reproduce them here, a discussion of the parameters, and their distributional
form is warranted. In particular the infectiousness is modelled as an initial peak
followed by a low, almost zero, level of infectiousness, which is then followed by an
increasing level of infectiousness as the IDU progresses to AIDS. This presented
problems in estimating the infectiousness distribution from epidemiological data
as this was intrinsically linked to the distribution describing the length of time
the IDU had been infected, therefore they normalise the infectiousness curve by
assuming the value 1 at the first peak and exploring the infectiousness of an in-
dividual over time relative to the infectiousness of an individual at the first peak

of infectivity.

Arca, Perucci and Spadea (1992) also employ data from an Italian region when
they model the interaction between the heterosexual and IDU populations. They
split the population into eight groups by gender, sexual activity and whether or
not they inject. To model the varying infectivity of HIV, they spilt the infected
compartment into three, and these assumptions result in a system of forty difler-

ential equations. In contrast to Kaplan’s model, the infection process is described

42



by the force of infection per needle sharing partnership rather than by a probabil-

ity related to infection following one random sharing act. This enables different
mixing patterns to be examined. They then obtained data from behavioral and
epidemiological research to construct the parameters for this model, concluding

that the model solutions appear to fit with the observed surveillance data.

A stochastic model of the HIV epidemic involving both sexual contact and
intraveneous drug use was created by Tan and Tang (1993). Three interacting
populations are examined; IDUs, homosexual men and homosexual men who are
also IDUs. They assume a latent stage in the disease progression, and partition
the infective stage into ﬁve substages. In their list of basic assumptions, they
create the framework for describing the transmission dynamics, including vari-
able levels of sexual activity or needle sharing, variable infectivity throughout the
disease progression, immigration, emigration and mixing patterns. Using a vari-
ety of probabilistic techniques and after some eloquent mathematics, they model
the process as a chain multinomial distribution. They also derive the expected
numbers of this distribution and extend the model into a continuous time model.
This is again highly theoretical, however they illustrate the application of the
model using some Monte Carlo studies. In this they assume three levels of sexual
activity and three levels of sharing. The parameters used in these simulations
and the initial values are derived from the literature. They assume that since
the probabilities of HIV transmission from sexual or needle sharing contacts are
proportional to the amount of free HIV in blood or body fluid (Redfield and

Burke, 1988) they chose probabilities of HIV transmission in both the sexual and
drug use spread to comply with these amounts of HIV. For example, during the
infection period, the probability of HIV transmission is chosen as a monotonically
increasing function of the infection duration. They examine four scenarios to con-
trast a deterministic model with stochastic models in which mixing patterns have

a recognised distribution or randomness. They show that although the random-
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ness in the number of different partners per unit time seemed to have little effect

on the spread of the disease, the deterministic model was a poor approximation

to the corresponding expected numbers of the stochastic model.

Gani and Yakowitz (1993) use a Markov Chain approach to modelling the

spread of HIV among IDUs. In contrast to Kaplan’s model, they assume a stable
eroup of buddy-users, some of which are infected. Thej extend the model to
include immigration and emigré,tion. Recursive techniques were used to derive
the various probabilities associated with the model from the probability of needle
sharing and the probability of transmitting HIV through an infected needle. The
latter probability is taken to be either 0.175 or 0.35. They compare the form of
the matrix that they had derived to a chain binomial infection model previously
outlined by Gani and Jerwood (1971). In conclusion, they note that although
data on IDUs are difficult to obtain, the model can be used to examine the effect
of changes of the above probabilities. However this model examines the disease
transmission almost at a micro level which they regard as a necessary foundation
for the macroscopic effects on a large population of IDUs. Gani and Yakowitz

(1993) also model the spread of HIV among IDUs using a random allocation
method in conjunction with the Markov chain aproach, further adapting the

methodology to include the replacement of infectives.

Kretzschmar and Wiessing (1998) explore the risk of a future rise in the preva-
lence of HIV in an IDU population with low HIV prevalence but continuing risk

behaviour. They create a stochastic simulation model to describe a network of
buddy relationships (sharing in small groups of friends in a setting like the home
of one of the participants) in an IDU population, modelling both the transmission
of the disease between buddies and between strangers. They combine results from

two surveys of IDUs in the Netherlands to obtain estimates for the behavioural

parameters, while assuming that the infectivity of a needle, as expressed as the
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probability of transmission in one sharing event, depends on how long the IDU

has been infected with the virus. After demonstrating the typical spread of the
disease using the parameters derived from surveys they go on to investigate dif-
ferent prevention strategies. They note that there exists a threshold sharing
frequency, below which the epidemic never takes off. Above this threshold there
are a range of sharing frequencies for which a large stochastic variation between
single epidemics can be observed, hence they suggest that making predictions
about the future course of the epidemic is virtually impossible. Although they
find that introducing risk reduction behaviours into the population will not com-
pletely eliminate the disease (in some cases the prevalence decreases very slowly),
they conclude that prevention measures specifically focussed on new IDUs can

have a large impact on the incidence of HIV.

The basic reproductive number Ry for HIV within an IDU population is esti-
mated by Massad et al. (1994). They adapt the malaria models of Ross (1911)
and Macdonald (1957), noting that in an outbreak of malaria among IDUs in
Brazil which was attributed to needle sharing, the insect vector may have been
replaced by needles. They therefore adapt the notation and parameters in Mac-
donald’s model to make them relevant to HIV spread. After deriving an equation
for Ry using this analogy, they then create a mathematical model similar to Ka-
plan’s and, by analysing the stability of their system of equations around the
trivial solution (that is when the disease dies out), they obtain a similar expres-
sion for Ry. They again seek to draw an analogy with Macdonald by introducing
heterogeneity, both in the probability that a needle becomes infected after an
infected IDU has used it, and in the rate at which the IDU injects. They use

data from a behavioural study to obtain parameters used in calculating Ry and

show that their results are consistent with Kaplan’s. They also show that their
results suggest that the prevalence of HIV in the drug injecting community in

Santos, Brazil is, at 61.5%, close to their estimated equilibrium value of 67%.

45



1.5 Conclusion

In conclusion it is worth discussing a paper by Blower and Medley (1992) which
proposes the utility of mathematical models in understanding the dynamics of
HIV transmission among IDUs. After defining epidemiological mathematical
models for a non-specialist audience, they discuss at length the data requirements
for such models. They split the required data into three groups, demographic,
behavioural and biological. Behavioural studies as described in Section 1.2.4, can
be used to estimate some parameters, but questionnaires which code responses
into categories.are not always the best tool to detect behavioural changes. For
example a IDU changing their average number of sharing partners per week from
five to two would still be coded into a category like 0-5. They note the difficulty
in estimating the biological parameters, in particular the probability of becoming

infected after using an infected needle. They conclude that when examining the

interaction between the IDU population and the heterosexual population there

is a greater need for demographic data, particularly the size and the sex ratio of

IDU population and the bridge population by which the disease can pass between
the two populations. In conclusion they note the uses of mathematical models
in this field, however they stress the importance of obtaining more direct data
that can be used in models. They hoped that their paper would generate a closer

collaboration between modellers and drug use researchers, something that this

Thesis also hopes to achieve.
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Chapter 2

Deterministic Models

2.1 Kaplan’s Deterministic Models

Kaplan (1989) presents a deterministic model for the spread of HIV among inject-
ing drug users (IDUs) who visit shooting galleries. This was the first paper which
explored the modelling of disease spread via shared injecting equipment. The
model is deterministic and initially assumes a homogeneously mixing population
of IDUs. To provide a tractable model there are many assumptions which render
it practically invalid for determining the future nature and extent of the epidemic
but, as Kaplan notes, it is useful in evaluating control strategies. In particular
it assumes that all sharing occurs in shooting galleries, that needles are selected
at random and needles that have been infected remain infected until cleaned or
flushed. This last assumption excludes the very real possibility that needles will

lose their infectivity over time. Kaplan however does explore this possibility later

in the paper. The assumptions used by Kaplan are as follows:
1) The population that is of interest is large.
2) All sharing occurs in shooting galleries.

3) Each IDU visits shooting galleries according to a Poisson process independently

of other IDUs.
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4) Injection equipment becomes infectious if it is used by an infected IDU.

9) When infectious equipment is used by an uninfected IDU, the act of injecting
will flush the needle with a fixed probability. Flushing is defined as the needle

unintentionally getting cleaned by the uninfected blood of the IDU.

6) Any uninfected IDU who uses infectious injection equipment is considered to

have been exposed to HIV.
7) Given exposure to HIV an IDU becomes infected with a fixed probability.

8) The needle sharing IDU population remains constant. Infected and susceptible

IDUs who leave the population are immediately replaced by susceptibles.

The spread of HIV through sexual contact and through sharing injecting equip-

ment outwith shooting galleries is ignored.

The model which Kaplan presents comprises two differential equations, one
which describes the rate of change over time of the proportion of the population
that is infected, the other describing the probability of an IDU encountering

infectious equipment. These differential equations are

AOL) — dym(t) = aBOIL ~ (1 = m(2))(1 - 0)] (2.1
and dzgt) = (1-n(t))A\B(t)a — w(t)p. (2.2)

Here w(t) is the proportion of the IDU population that is infected at time ¢,
B(t) is the proportion of needles infected at time ¢, A is the rate per individual

of visiting shooting galleries, 7y is defined as the gallery ratio such that if there
are N IDUs and n needles within the various shooting galleries then v = N/n.
0 is defined to be the probability that an uninfected IDU flushes an infected
needle with a single injection, o is the probability that, given exposure to HIV
an IDU will become infected and u is the total rate at which infected IDUs leave

the sharing injecting population. This includes IDUs who cease sharing because
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they develop AIDS, IDUs who die from AIDS and IDUs who cease sharing for

other reasons. Kaplan does not solve these equations explicitly, instead he looks
at the steady state situation and analyses R, the basic reproductive ratio of
infection. R, can be interpreted as the number of new infections amongst IDUs
that occur on introducing a single infected IDU into a population of susceptibles
at equilibrium directly caused by the original infected IDU. In a deterministic
model, the epidemic will only develop if R, is greater than 1. Looking at § and
7, the steady state values of 3(¢) and 7 (t) are obtained by setting the derivatives

both to zero. This gives 8 = 0,7 = 0 or 8 = #*, # = 7*, where the non zero

equilibrium values * and 7* are given by

Ao — b
= — .3
pr =22 23)
. Aa—ub
and = M+ pu(l—60) (2:4)

Equations 2.3 and 2.4 are not valid when Aa < pf, in which case the only

equilibrium is # = 0 and B = 0. This suggests that

___)\a

Ry = —.
0 0

(2.5)

Kaplan proves Equation 2.5 for Ry directly. Clearly we expect an epidemic to

result only if the initially infected IDU can generate more than one secondary

infection, that is if g > 1.

We can explore this model by numerically integrating Equations 2.1 and 2.2

using the program SOLVER. Kaplan suggests values for the parameters used in

the model, however in 1989 when this paper was published, little was known about
the transmission dynamics and the associated parameter values. In particular,
the value of the parameter o could not, at that time, be estimated with any
precision. Indeed later papers by Kaplan, such as Kaplan and O’Keefe (1993)
suggest that the value used in this original paper may be a gross overestimate

of the true probability of infection. We shall discuss parameter value estimation
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in Chapters 5 and 6, however in developing the modelling techniques initially

presented in this chapter, we shall employ the suggested values from the original
paper. In particular we shall define a set of standard parameters and initial values
which will enable us to explore individual parameters with reference to a standard

set of remaining parameters.

A is set at 5.952 x 10~3 visits per hour, which corresponds to IDUs visiting
shooting galleries once a week, u = 1.43x107° deaths per hour, which corresponds
to the life expectancy of an infected IDU of eight years, o = 0.075, 8 = 0.25 and
a gallery ratio 7y = 10. Although in this deterministic model the size of the IDU
population and the number of shooting galleries are only expressed relative to
each other in the parameter v, we wish to model the spread of HIV within a
population consisting of 10,000 IDUs. This is approximately the number of drug
injectors in Glasgow (Frischer et al., 1993a). As we require v = 10, we assume
that there are 1,000 needles within shooting galleries. We assume that HIV is
introduced into a susceptible population when one IDU becomes infected from an
external source at time ¢ = 0 thus initially one IDU and no needles are infected.
Hence the initial proportions of infected IDUs and needles are 7(0) = 0.0001 and
G(0) = 0 respectively. The differential equations are strictly valid only when the
number of infected needles and IDUs are large. For smaller numbers a stochastic

model is strictly needed. We shall return to this point later in the thesis.

We shall next look at the result of some numerical simulations to examine
the effect of individually altering A, the rate at which an IDU visits shooting

galleries, a, the probability of infection from an infected needle, @, the flushing
probability and <, the gallery ratio. The remaining parameter values are kept
fixed. = Looking at m(t), the proportion of the population that is infected at
time ¢, we can see in Figure 2.1 that n(t) follows a logistic type curve. This type

of logistic curve is found in many types of modelling, particularly population
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Figure 2.1: The eflect of varying A, in the model described in Equations 2.1 and
2.2. The value of A in the three curves corresponds to once per day, once per
week and once per month. Remaining parameters as indicated in text.
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Figure 2.2: The effect of varying a, in the model described in Equations 2.1 and
2.2. Remaining parameters as indicated in text.
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Figure 2.3: The effect of varying 0, in the model described in Equations 2.1 and
2.2. Remaining parameters as indicated in text.
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Figure 2.4: The effect of varying «, in the model described in Equations 2.1 and
2.2. Remaining parameters as indicated in text.

02



growth modelling when there is a carrying capacity as described by Nisbet and
Gurney (1982). This confirms that the proportion infected increases slowly to
begin with, this rate of increase will increase, then the rate of increase slows
down as the proportion of the population that is infected increases slowly towards
its maximum value. From Figure 2.1 we can see the effect of varying the rate
at which IDUs visit shooting galleries. When A corresponds to IDUs visiting
once a day, the disease spreads rapidly. The disease spreads less rapidly when
it is assumed that IDUs visit shooting galleries less often and 7 (t) reaches lower
equilibrium values. Figure 2.2 shows the effect of varying a, the probability of
becoming infected on exposure to HIV. We can see that as « increases, the speed
at which the ep;idemic develops increases and w(t) reaches a higher equilibrium

value.

We can see from Figure 2.3 the effect of varying 68, the probability that an
infected needle is flushed by an uninfected IDU. The epidemic takes off quicker
for lower values of 0, although over the parameter values illustrated by the simu-
lations in Figure 2.3 the equilibrium values appear less varied than those obtained
by varying @ and A. Indeed on keeping the other parameters constant, 7* ranges
from 0.968 when 6 = 0.15 to 0.969 when 6 = 0.45. Decreasing either o or A or
both has the effect of lowering Ry, which suggests that control strategies which
decrease the rate at which IDUs share may be useful in reducing the proportion
of the population that becomes infected. We can also see from Figure 2.4 that
varying v does not have any effect on the equilibrium value of m, which reflects
the absence of v from Equation 2.4. Lowering «, or increasing the amount of
injecting equipment available whilst keeping the number of IDUs fixed will have

the effect of slowing down the spread of the disease.

It is worth noting that the terms which represent the death of IDUs or other

removals may be very artificial. It is assumed that when an infected IDU dies,
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they are immediately replaced by a susceptible IDU, keeping the population size

constant. T'his implies that the rate at which people enter the IDU population
1s dependent on the rate at which infected IDUs cease sharing injection equip-
ment, which is questionable. This birth/death process results in most of the
population becoming infected, other more realistic forms of representing death
or removal will result in different types of curve. Kaplan concludes by showing
that his model demonstrates that policies such as the distribution of cleansing
solutions and/or injecting equipment amongst IDUs could slow down or stop the

intravenous transmission of HIV in shooting galleries.

2.2 Analytical Results for Kaplan’s Determinis-
tic Model

We will now explore some of the quanitites of the deterministic model, in paticular

the stability of the equilibrium values 8* and 7*.

2.2.1 Existence of Equilibria

We shall first prove the existance of the equilibrium values. Consider the differ-

ential Equations 2.1 and 2.2 which describe the spread of the disease. These can

be re-expressed as

L = Ml - BE)=() - 06()(1 - m(t)) (2.6
and dzgt) = (1 —w(¢t))A6B(t)a — 7 (t)p. (2.7)

Lemma 2.1

(a) Suppose that Ry < 1. Then the equilibrium where the disease has died out

B* = w* = 0 is the only equilibrium.
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(b) If Ry > 1 then the equilibrium values are given by

Aa — 1l
¥e=1 — — s —_—
p a BT ST A=)

Whatever the initial proportions of infected needles and infected IDUs, provided
£(0) > 0 or w(0) > 0 such that the disease is initially present §(¢) — £* and

m(t) = 7* ast — oo. If (0) = 7(0) = 0, that is the disease is not initially present

then G(t) = w(t) = 0 for all times ¢ > 0.
Proof

Let 7* and 8* denote the respective equilibrium proportions of infected IDUs and

needles. From Equations 2.1 and 2.2

7 0.5* Ao f*
l—7 1-p0* 7 (28)

v,
From the last equality we deduce that 8* = 0 or 8* =1 — -%;. Soif Rg <1

(Aa < uf) the only feasible solution is f* = 7* = 0. If Ry > 1 (Aa > u0) then

this solution is possible but there is a unique other solution where

ik
b = A\
. _ A0 p6 '
hich implies that 7* = ——iﬁi Hence we ha the stat t
which impli = ot (L= 0)" ve proven the statements

concerning the existence and uniqueness of the equilibria in Theorem 2.1.

We can also graphically demonstrate the existance of the endemic equilibrium
as follows. Equating these derivatives in Equations 2.6 and 2.7 to zero, we can

obtain the isoclines

b= a=on (2:9)
and ﬂ = Xa.(l;_w—ﬂ (2.10)

These can be shown graphically in Figures 2.5 and 2.6. Two figures are shown,

00



O,i———‘——l qr——————\
X S
O | @]
- -
Q. Q.
< v
) o
] o
- =
= Q.
) e ——— e
00 02 04 06 08 10 00 02 04 06 08 10
K X
Figure 2.5: Isoclines using values Figure 2.6: Isoclines as before
from Kaplan (1989). with a = 0.01.

one with the parameter values as described in Kaplan (1989), the other with a
far lower value for a from which the point at which the isoclines cross may be

more easily seen. These figures again illustrate that n* decreases as a decreases.

Information about the equilibrium points can be gathered graphically from
these plots. The intersection of these isoclines denotes the equilibrium point,

(7*, B*). The position of this equilibrium point is dependent on the two isoclines,

and in particular the gradient of them. These will be

dj g
dr ~ [0+ (1 - 0)n]? (211)
g »
and d_7T' — m, (2.12)
which will give the initial gradients to be 1 -)%-. For the isoclines to intersect we
1
must have 7> -5\%, or equivalently Ry > 1 (using Equation 2.5).

2.2.2 Local Stability of Equilibria

We can also explore the local stability of the equilibrium value by considering
whether if the proportions 8, 7 are slightly displaced from this point (7*, 5*),

will they return to it or move away. We can write
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B(t) = B + b(t) (2.13)
and 7(t) = 7 + p(t), (2.14)

where p(t) and b(t) are assumed to be small. Then we can re-express Equations

2.1 and 2.2 as
LU ~ ya(1 - (8 + e n” + p(0)
— 6(8" + b{t))(1 — (n* +p()) (2.15
and SO _ (g ooy )8 +(0)e - (¢ + (O (216)

which working to the first order in small quantities and using the equilibrium

equations will reduce to

) _ 1xap" = ulp(t) + D= am (0 (2.17)
and -El%-(ti)- = M[1 = B* + 08*|p(t) + My[0r* — 0 — w*]b(t). (2.18)

We can simplify this by rewriting the equations as

_c_l%g_t)_ = knp(t) + k12b(t) (2.19)
and -('i%(tt)' = kzlp(t) -+ kng(t), (220)

where kn = —/\aﬂ* - H, k12 = A\ — )\C}fﬂ'*, k21 — )\’)’[1 — ﬂ* -+ 9,3*] and kgg =
Ay[On* — 0 — 7*]. Noting that from Equations 2.19 and 2.20

d2 ¢ dp(t
dzlg ) - (k11 + k22) Izi(t | + (kiikaz = kizkai)p =0,

the solution p(t) can be expressed as
A; exp(Ait) + Az exp(Aat) (2.21)

for some constants A;, A, which can be found from the initial conditions, where

A1, A2 are the roots of the auxiliary equation

A2 — (k11 + kao)A + (k11kog — k12k21) = 0. (2-22)
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The behavioural characteristics of this local deterministic system will be deter-

mined from the values of A\, Ao. The roots will be

1
AL = '2'[(’511 + ko) + V{(k11 — k22)* + 4k12ka1 }] (2.23)
1
Ay = -2-[(]611 -+ k22) - \/{(ku — k22)2 + 4k12k21}] (2.24)
and defining
A = (ki — kao)? + 4k12ka (2.25)

we can see that if A < 0 then A; and )\, will be complex numbers, which will
give rise to exponentially damped sinusoidal solutions if (k11 + k22) < 0 and
exponentially increasing sinusoidal solutions if (k11 + k22) > 0. If A > 0 then
both \; and )\, will be real numbers. In that case returning to Equation 2.21 we

can see that p(t) will increase exponentially as ¢ increases if either A; or A > 0

and decrease if both are negative.

Returning to our example and substituting our parameters for ki1, k12, k21 and

koo , we can see that
A = ([-daf* — p] = My[0r* — 6 — 7*])? + 4 \y[Aa = dar*][1 — B* + 63*](2.26)

will always be non-negative as A, v, a and ¢ are defined to be non-negative and

each of the quantities 7* and (3* lie between zero and one.
To examine p(t), reformulating the equation for the roots gives
A = %[([—/\aﬂ"‘ ~ ]+ dlon" = 0 = 7)) + y/A| (2.27)
and Ag = %[([—/\aﬁ* — p]+ My[0n* — 0 — 7*]) - \/A] . (2.28)
A1, A2 can be shown to be both negative as follows.

A2 will be negative as ky; + koo < 0 as both kq; and kq; are negative. Ay will

be negative if \/((kn + k22)2 + 4(k12k21 - k11k22)) < kn + kgg. However this is

true as
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k12k21 - kukgg = [/\a - Aaw*]/\'y[l - ﬁ* -+ 9/8*] (229)
+ [Aaf* + pl\y[0r* — 0 — =%,
= Ay|[Aa = Aax*][1 — B* + 06%] + [Aaf” + p|[6r* — 6 — 7r*]].

From the equilibrium versions of Equations 2.1 and 2.2,

Aa(l —7%) = IZT and On* —0-—7" = —g—:
so  [Aa—Aar*|[l = B*+ 06+ [Maf* + p][07* — 0 — 7] (2.30)

,n.*

g

) ;Zr 1= B"+0F"] = [Aaf” + p]

= ur*(0 — 1) — dan* < 0.

Hence A; is also negative. Hence p(t) will decrease exponentially, which tells
us that the endemic equilibrium point is locally stable to small perturbations

whenever it exists. We could similarly perform a local stability analysis of the
equilibrium where the proportion of infected needle and the proportion of infected

IDUs are zero §* = 7* = 0. This equilibrium is locally stable if Ry < 1 and locally
unstable if By > 1. However in the next section we shall show that these results

are global stability results.

2.2.3 Global Stability of Equilibria

Having proved the existance and uniqueness of the endemic equilibria and proved

that thes equilibria is locally stable, we shall now prove the global stability results.

Theorem 2.1

(a) From Lemma 2.1 we have shown that if Ry < 1 the equilibrium where the
disease dies out is the only equilibrium. This equilibrium is globally stable. What-

ever the initial proportions of infected IDUs and infected needles the disease will
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die out and both £(t) and = (¢) will tend to zero.

(b) If Ry > 1 then there are two possible equilibria, one where the disease has
died out and a unique endemic equilibrium. The equilibrium where the disease

has died out is locally unstable. The endemic equilibrium where the disease is

present is globally stable. Whatever the initial proportions of infected needles

and infected IDUs, provided 3(0) > 0 or w(0) > 0 so disease is present 5(t) — §*
and w(t) = 7 as t = oo. If §(0) = #(0) = 0, such that no disease is present

initially then 3(t) = #w(¢) = 0 for all times ¢t > 0.
Proof
Suppose first that Ry < 1. We shall show that r — 0, 8 — 0 as ¢ = oo.

Let u =+ km for £k > 0. Then

d
a-’f- = Mr = 08 = Br(1 - 6)] < Myr — M08 (2.31)
dr

and 5 = Aaf — um — dafn < daf — ur. (2.32)
d

Hence -(.:1% < (Ay — ku)m + B(Aak — Ay6) < 0, (2.33)

A
if -Eg >k > —5- As Ry < 1 we can choose such a k. Then %% < —eu for

some € > 0 as both terms in Equation 2.33 are negative. Hence 0 < u < uge™*.

Therefore u — 0 as t — 0o. We deduce that 7 = 0 and 8 — 0 as t = oo.

This proof breaks down if By = 1 and this case will be discussed later. We
shall now prove the assertions about stability in Theorem 2.1 in the situation

where [y > 1 namely:

a) m(0) =0, 8(0) =0 implies that =(t) =0, B(¢t) =0, forall ¢,

b) 7(0) > 0 or §(0) > 0 implies that =(t) = =*, B(t) = B* as t— oo.
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dilingt

The proof of a) is trivial but b) is more difficult. Write 8 =8 — 3*, 7 = 7 — 7*.

Then
dg = 7 - s
= —\Y08 — AyBr(l — 0) + Myw — M6 7 (1 - 6) (2.35)
dm ~ - ~ 8
and a—- = daf} — um — da(B7* + B7). (2.36)
If z= (__), we can express these equations as
T
dz
a = V:L-.’L',
_(~M0+(1=0)n] M1-(1- 9)5"‘])
where V, = ( Ma(l — %) [+ Aaf . (2.37)
[ M0 M1-(1- ﬂ)ﬂ*])
Define Vo= ( A1 — 7°) iy . (2.38)

We assert that there exists a matrix

(193] 0

W=(0 Wo

) with wy,we > 0

such that WV, + VI'W is negative semidefinite. In other words for all y =

(y1,%2), yYT(WVo + VIW)y < 0. We can write Vo = (_CA —-BD) _
Then AD — BC = Mfp — May(l1 —7*)[1 - (1 - 6)] (2.39)

= \0u — )\’Yﬂ%;‘[l - (1-0)57]

W

using Aa(l — 7*) = %—; from the equilibrium equations
v .
= \y pﬁ-—uF+p(1—-9)7r
A
= % — 7"+ 0B + f*n* (1 - 6)]
= (), again using the equilibrium equations.
—-Aw; Buw —-Aw; Cuw
TXAT — 1 1 1 2
Now WV, + VW = ( Cw, ~— Dle) + ( Bw, - Dwz) ,  (2.40)

or yF(WVo+ VIW)y = —24w 1y} + 2(Bw; + Cwz)y1y, — 2Dwoyz.  (2.41)

For this quadratic form in y; and y, to be negative semi-definite we need
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4ADwyw; > (Bw; + Cw,)® or equivalently 0 > (Bw; — Cws)?. Hence we choose

w; = C,w, = B, both positive. Then 1..
yT(WVy+ Vo W)y = -2(VACy; — VBDy,)* L 0.

WYV, is symmetric (hence has real eigenvalues). Define

h =z Wz = wiz? + wez.

e, e dz; . . dz, . dz
Write Tl = —a'{', Iy — E and z = dt
dh : .
then -a-i' = 2’(1)1.’131231 + 2‘11)21?2.’132,
o (V351 . -'i71 S un . I1
= (@1,22) ( ' 'wz) (:132) + (1 52) ( ' 'wz) (332)
=T Wi + "W,

But £ = Vz. Hence
dh

Frie TWVz + 2T VIWz,
=T (WV + VIW)z.
If V = ('Uu ’012)
Vg1 Va2 /'’

WV — (’Uuwl ’Ulz'wl)

U1W2 VU2W2

o nd WV + VIW = ( 2v11w V12w + Uzl'wz) |
V12W) + V1 W2 2U92Wo

0

V), v
Writing Vo = ( S ) ,
U1 V22

we note that vy < v];, ve2 < vy, V12 = v], and vy; = vY;. Hence
T(WV +VIW)z =2 | 2 2
h ( + )SL‘ = 4Vnnun I, Vi2W1 -+ ’U21’w2)$1$2 + 2UWoT5,

S 21)(1]1‘20133% -+ 2(’0?2101 -+ ’02111)2)331.'172 -+ 22)3211)256%
== fBT(WVQ -+ VEW)SE
Note that
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dh

— =7 (WV +VIW)g, (2.51)
<zl (WVy + VIW)z,
<0. using Equation 2.42

Therefore h = zT Wz is monotone decreasing over time.

If k is a constant the curves h = k = wyz? + wyz? are ellipses centre (8*, 7*)

and axes proportional to wy,w,. We assert that there exists ¢ > 0 such that

motion never enters |3? + 7?| < €2. Write fy = #(0) and m = 7(0).

a) If we start with 0 < By < 8*,0 < mp < 7* then the trajectory stays in the ellipse
passing through (8, 7o), centre (8*,7*) for h < w1 (Bo = B°)2 + wa(my — )2 <

wq5*? + wom*?, with strict inequality as either §y > 0 or o > 0.

By continuity of h in a small circle centre the origin
h > wy(6* = Bo)* + wa (7" — m)° (2.52)

and the result follows.

b) If we start with By > (* or mp > 7*. Draw a circle centre the origin radius
min((8*/2), (7*/2)). If the trajectory never enters this circle the result follows.
If the trajectory enters this circle it must cross the boundary of the circle for the
ﬁrsf time at (f;,m;) say where 0 < 6; £ " and 0 < m; < #n*. Either £; > 0
or m; > 0. Hence the trajectory will stay in the ellipse passing through (8;, m1),

centre (8*,7*). This result follows by arguing as previously.

Hence there is an € > 0 such that |3% + 7%| > € for all t. By choosing ¢; = <

V2

we deduce that there exists €¢; > 0 such that 8 > €; or 7 > ¢; for all .

dh 1 S
Now i -2-(:BT (WV + VIW)z) (2.53)

= =\y(0 + (1 - O)m)ziw,
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+ [AM(1 = (1 = 0)8%)w; + Aa(l — 7*)walz172 — (1 + AafB)z5w,
= (zT(WVy + V3 W)z) — My(1 — 0)7ziw;, — AafBziw,
< =M1 = 0)nziw, — Aafriw;. using Equation 2.42
Now for all (7, 8) either m > €1 or [ > €.
a) If m > ¢; then either () 8> ¢ or (i) z;=8< —(8* —¢).
Without loss of generality €; < 38*.

(i) If # > €; and B > €; then

%—}E < —¢h, where ¢ =¢ min{\y(1-0), aB} > 0. (2.54)
(ii) If 7 > € and 1 < —(B* — €1) < —3* then (2.55)
*2
%—? < —w1/\7(1 — 9)61 IB4 = —¢1, where ¢;>0. | (256)
- ; . dh dh -
b) Similarly if 8 > €, either = < —¢h or m < —¢,, where ¢, > 0.
. : dh
As h is monotone decreasing 0 < h < h(0) for all ¢ therefore = < —¢h or
dh h
— < —mi —
dt = mln(¢11¢2)h(0) | (257)
dh . 01 2
— < - = 12
So 7 S ©¥h where 9 = min {qb, R(0)’ h(O)} > 0. (2.58)

Integrating we deduce that 0 < h < h(0)e~¥* which impliesthat h = 0 as t —

0o. Therefore # = #n*, (G — [* as t— oo.

We can modify this proof to show that the disease free equilibrium is globally

stable when Ry = 1. As before
h = w 3% + wyr?

as #* and 7* are both zero, and A is still monotone decreasing in £. We now have

that (3, n) is a two-dimensional flow in the compact set
D={(8,7):>0,7>0,h<wf;+wym:}.
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We also have the following Lemma.
Lemma 2.2
The system has no closed orbits inside the region D.

Proof

As h is monotone decreasing it must be constant on a closed orbit. But in D
the curves where h are constant are incomplete arcs of ellipses and therefore D

cannot contain any closed orbits. Thus we have proved Lemma 2.2.

Therefore by using the Poincaré-Bendixson Theorem (Jordan and Smith, 1977)

all solutions starting in D tend to the unique disease free equilibrium.

"This completes the proof of Theorem 2.1. We have therefore shown that the
two possible equilibrium values exist and we have established that the first equi-
librium is globally stable when Ry < 1 and that when Ry > 1 and By > 0 or
mo > 0 then B(t) = B* and w(t) — n* as t — oo where (8*,7*) is the unique

endemic equilibrium.

2.2.4 Stochastic Variation around the Deterministic Tra-
jectory

The above analysis has been purely deterministic. We are also interested in
whether or not a stochastic trajectory will hit the axes. In our example this will
not automati.cally result in an equilibrium as in a predator-prey system (Renshaw,
1991), but it will still be of interest. If the equilibrium point is far enough from
the axes relative to the likely variation in stochastic values then the trajectory

should avoid them. To explore this we can evaluate the variances associated with

the trajectories.

We first have to convert Equations 2.1 and 2.2 into differential equations for
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the absolute numbers of infected IDUs and needles. These will be

%Q = M (t) (1 - i,?') — inez(t)(N — I(t)) (2.59)
and -d—';—(;—)- = %?—i(t) (N = I(t)) — pI(2). (2.60)

where i(t) is the absolute number of infected needles at time ¢ and I(t) is the
absolute number of infected IDUs at time {. The IDU population will be of
constant size N and the number of needles will be n, also a constant. We denote
the endemic equilibrium values for IDUs and needles as I* and :* respectively.

For Ry > 1 these are given by

. Ao — b
f = 2.01
i =n— (2.61)
Aa — b
= Ne—mm————. 2.62
and S v ) (2.62)

Let 6t denote a small time increment, Equations 2.59 and 2.60 can be rewritten

i(t+t) — i) = [M@) (1 - -’%)-) - (BN - 1(e))] (2.63)
and  I(t+6t) — I(t) = -)-\;?-i(t)(N - 1)) - uI (1) 5. (2.64)

We can convert these into stochastic equations in a similar manner to that of

Renshaw (1991, p 182) by adding on noise components § Z; and §Z; to produce

i(t + 6t) — i(t) = [AI(t) (1 - 3%)-) _ f}f-i(t)(zv - I(t))] 5t + 62, (£)(2.65)
and  I(t+6t) — I(t) = %?—z‘(t)(N ~ () ~ pI(2)] 6t + 525(2). (2.66)

Here 6Z;(t) and §Z,(t) are independent of §Z;(s) and §Z,(s) for all times s # t.
We can express i(t), I(t) as

i() = *[1 + wy (8)] (2.67)

and I(t) = I*[1 + uy(t)]. (2.68)

00



This gives us

fua(t+ 88) = wa(8)] = [A[1 g (1 - 2D (2.69)

n

= 2L+ n @IV - L+ w6t + 62100

and I*[Uz(t + 5t) - U2 ] — [—'L [1 + Ul(t)](N — I*[l + Ug(t)]) (270)

— ul*[1 + uz(t)]] ot + 6Z5(t).

* Y,

on using M* (1 — %) - —z ‘(N-TI") = (2.71)
Aa x *

and —-z *(N-I")— ul" =0, (2.72)

and neglecting terms such as uf, u3 and u;u, gives

uy(t + 0t) = uy(t) + [A: (u2§f)n t) + uy(t)) ) (2.73)
_ A8 521

( (BN = (ug(t) + ua(2) )I*)]5t+

n

n I*

0Z5(t)
I*

and  uo(t + d0t) = ua(t) + [Aaz ( mON _ (u1(t) + Ug(t))) — uu2(t)] ot (2.74)

+

By considering possible events in the small time interval (t,¢ + dt) and for i(t),

I(t) near ¢*, I* we have

Pr{6Z, = +1} ~ AI*ét, (2.75)

Pr{62 = ~1} = 2oi*(N = I')t,

Pr{6Z, = +1} = -’\—“-z (N — I*)8t,
and Pr{é6Z; = —1} ~ ulI*ét.

For example the event {§Z; = +1} corresponds to one additional IDU becoming
infected. There are N —I* susceptible IDUs, each of whom visits shooting galleries

with probability approximately Adt in the small time interval [¢, +4t] and chooses
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an infected needle and is infected with probability 9:;2‘ Hence

E(6Z;) = (+1)Pr{6Z; = +1} + (-1)Pr{dZ; = -1} (2.76)

~ %q-i*(N-I*) — ul*|dt

= (.
Similarly E(Z;) = 0. Also

Var(6Z;) =~ (+1)?Pr{6 2, = +1} + (-1)*Pr{6Z; = -1}, (2.77)

~ I (1 - "—) + 20 (v = )t
(! 7

a {2-)-\-?-12*(N — I*)}Jt,

n

and VaI'((SZg) = (+1)2P1‘{5Z2 = -l-].} + (“1)2P1‘{522 == —1}, (278)
~ {-’;—az‘*(zv ~ I+ uI*}ét
~ (2ul*)dt,

while arguing similarly Cov(62;,62,) ~ E(0Z,0Z,) is of order 6t* and can be

ignored.

We can square and cross multiply Equations 2.73 and 2.74 to find o2, the
variance of u,(t), o, the variance of u;(t) and o5, the covariance of u,(t) and
us(t). We assume that of is constant in time, as is 02 and the covariance o;, as

the system in essentially in an equilibrium situation. Working only to the first

order in 4t
2 _ 2 + AT n 2
0] = 0y +Var(521(t)/z ) + 2[ - (0’12?:—* — (0'12 -+ 0'1)) (2 79)
)\9 2 2\ rx
- 202N — (o + D)5+ o),
2 2 R Aaz”® N 2 ,
0y = 03+ Var(6Z(t)/1 )+2[ - (012'1-; — (03 +012)) —u02}5t+0(5t),
(2.80)
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A* n
and O19 = 012 -+ [ " (O%F — (0‘% + 0'12)) (2.81)

Y: ,,
— —7-1-0'12N - (Gg + 0'12)1

., N
+ 220 (322 = (012 + 0)) — o 8t + o(61),
200 \I*
o1 =0’%+‘-‘;—(N""I*)5t+2[ (012% = (012+0f)) (2 .82)
n f [/
A0 2 2\ 1>
o o9 . 21 Aat? N 0 o
0} = o} + bt +2| (a1 — (03 +0m) ) — uod| 6t +o(5t), (2:83)
A* A
and J12 = 012 + [T (Ug;’: — (O'% -+ 0'12)) — ';'(UlzN — (0’% + 012)1*) (284)
ratt [ N
+ 22 (o222 = (o1 + 03)) — o] 6t + of61).

Subtracting off the constant terms, dividing by ¢ and letting &t tend to zero we
deduce that

Y * A[* n
0 = z*n(N -1 ) -+ [ - (0'12'2:: - (0'12 -+ G%)) (285)
A6
— -7-1—( fN — (0‘12 +0’%)I*)],
7 Aar’ N
0 = F + [ " (0'12-]—; - (0’% + 0'12)) - udg] (2.86)
A* Y, |
and 0 = [ - (0’%% — (0’% + 0'12)) — —7;-(012N — (0‘% + 0'12)1*) (2.87)
Aai* [ o N
-+ - (Uf'l—,; — (o012 + Uf)) = N012]-

These equations can be solved by standard methods to give expressions for the

variances o, o2 and the covariance 0;2. From this, using Equations 2.67 and 2.68

we have Var(i) = (i*)%0%, Var(I) = (I*)%02% and Cov(i,I) = i*I*0ys.

Using the mathematical manipulation language Maple, Equations 2.85, 2.86

and 2.87 can be solved although the resulting terms for the variances are alge-
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a | v | I* |Var(y)]| Var(l) | Cov(i[)

60.1

0075 m

0. 080 992 0 9 706 3 287 2
0.090 | 993.3 | 9,738.3 6.8 2060.6
0.100 | 994.0 | 9,764.0 } 6.1 231.8

Table 2.1: The effect that varying «, and hence ¢* and I* has on the variances
Var(i), Var(I) and Cov(i, I).

braically challenging. It is therefore easier to give values to the parameters A,
a, i, 0, N and n and explore the effect that these values have on the variances.
The variances are tabulated for different values of o and hence #* and I* in Ta-
ble 2.1. The other parameters used are as previously described, in particular [V,
the number of drug injectors in the population is taken to be 10,000 and n, the

number of needles is taken to be 1,000.

This table can only partly describe the complex relationships between the
parameter values a, 0, A and p, the population sizes NV and n, the equilibrium
values I* and i* and the related variances and covariance. We can however see

that I'* increases as o increases. We also have a measure of the random fluctuation

around the equilibrium values, given by Var(/) and Var(z). We also can see that,

for this choice of parameter values as I* increases, Var(/) decreases. Thus for
lower equilibrium values, there is a greater associated variance and thus there will
be a greater chance that the disease will die out. It does seem unlikely that the
disease will die out in the drug using population, given the large value of +* and
the small value of the associated variance which show that for these parameter

values, virtually all of the needles are infected under equilibrium. This can be
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further demonstrated by calculating the coeflicient of variation, namely

CV(I) = \/{Var(I)}/I*.

When a = 0.075, as originally suggested by Kaplan, CV(I) = 0.18. As this is
substantially smaller than 1 then it is unlikely that random movement away from

the endemic equilibrium will result in the disease dying out.

2.3 Summary

In this chapter we have introduced a model due to Kaplan (1989) which describes
the spread of HIV between IDUs who visit shooting galleries. We have derived
an expression for the basic reproductive ratio Ry. Ry can be thought of as the
expected number of secondary infections that will occur when a single infected
IDU is introduced into a large population consisting entirely of susceptibles, with
syringes uninfected. Similarly Ry has an interpretation as the expected number
of secondary infected syringes caused by introducing a single infected syringe into

a similar population. In order to control the disease strategies which lower R,

can be explored.

We have also shown that there are two possible equilibrium values, one where
there are no infected IDUs and no infected needles and a second endemic equilib-
rium where there are infected IDUs and infected needles. The first equilibrium
is always possible, the second is possible if and only if Ry > 1 when it is unique.
For Ry <1 the first equilibrium is globally stable. Whatever the initial numbers
of infected addicts and infected needles the number of infected addicts and in-
fected needles both tend to zero at large times. For Ry > 1 when the disease is
introduced into the population, so G; > 0 or mg > 0 then the numbers of infected

syringes and infected addicts tend to their unique endemic equilibrium values.

We have also looked at the introduction of random effects into the analysis of
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this model. These effects can be thought of as random fluctuations about the
deterministic trajectories. We have derived equations satisfied by the variance
and co-variance of these fluctuations about the equilibrium values and numerically
evaluated these variances and co-variances. It is important to explore stochastic
effects as deterministic models may not be adequate to accurately describe the
spread of the disease. In the next chapter we shall go on to develop stochastic

simulations of these models for the spread of HIV and AIDS amongst injecting

drug users.

72



Chapter 3

Stochastic Models

3.1 Introduction

Whilst Kaplan’s model is deterministic in nature, there are many situations where
stochastic models are more appropriate. Deterministic theory does not take into
account random fluctuations which may be inherent in the process which is to be
studied. Deterministic theory may be sufficient when the population that is to
be studied is large and the eftect of individual variability will not be so impor-
tant, but for models 