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Abstract 

Common Cause Failures (CCFs) are a class of dependent failures that occur to 

complex technological systems, such as nuclear power plants, where redundant compo­

nents serve as multiple layers of defence. For the purposes of quantitative assessment 

of CCFs, parametric models are used. A common feature of all parametric models is 

the difficulty in parameter estimat~on due to limited available observational data. 

The Unified Partial Method (UPM) for CCF modelling is a systematic methodology 

that takes into consideration physical and operational system defences. This research 

explores the application of the Influence Diagram (ID) formalism in order to extend 

UPM, through an example of Emergency Diesel Generators from nuclear power plants. 

The proposed model incorporates intermediate stages in the modelling process, 

namely root causes and coupling factors, to allow for a representation of the CCF 

mechanisms. Moreover, it captures interactions existing amongst the system's de­

fences, in their contribution to risk. With an underlying Bayesian approach to risk, 

the model quantifies operational experience, accounts for the epistemic uncertainty, 

and allows for a coherent combination of expert opinion with observations. This the­

sis proposes a model structure, which integrates with the ICDE generic database for 

CCFs. Finally, the ID formalism allows for the propagation of uncertainty within the 

model structure, and provides a tool for decision-making. 

The construction of the ID model has been entirely based on expert judgment: the 

model network has been constructed with the help of experts, whilst a suggested model 

quantification methodology has been explored. This thesis documents the building pro­

cess, and explores the behaviour of the resulting model. Findings within this research 

suggest the feasibility of the proposed methodology for development of a CCF model 

with a structural and exploratory character. 
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Chapter 1 

Introduction 

1.1 Introduction 

A significant proportion of current electricity production is generated in coqtmercial 

nuclear power stations. Nuclear fission is a powerful process used in the production of 

energy. However, it involves a number of potential risks. For instance, the accidental 

release of radioactive material would have considerable health and environmental ef­

fects. Within this context, assessing and controlling the risk related to the operation of 

nuclear power stations constitutes a central concern in the nuclear power sector. The 

same way as in any hazardous industrial operation, in this case it is also crucial to 

ensure that the risks involved do not outweigh the benefits, and high reliability along 

with cost effectiveness are achieved in practice. The technical area concerned with the 

analytical techniques and methods developed for the assessment of risk is Probabilistic 

Risk Analysis (PRA). In principle, results of PRA studies are used in order to sup­

port meaningful decisions regarding the design and operation of systems, both from an 

operator and a regulator perspective. 

To this end, safe design is crucial in such complex, technological systems. In order 

to attain acceptable safety levels, these systems can be designed in accordance with the 

'Defence-In-Depth' philosophy [Fleming et aI., 1983], where redundant and diverse 

components are employed to serve as multiple layers of defence: in the event of a 
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component failure, other components are in place to compensate the intended function 

of the failed component. Assuming that components fail independently, the 'Defence­

In-Depth' philosophy would offer a high level of protection, as loss of system function 

could only result from coincidental independent component failures. However, compo­

nents may also fail dependently, defeating the redundancy or diversity that is employed 

by the system design [Mosleh et aI., 1987]; therefore, performing a risk analysis under 

the independence assumption would result in a considerable underestimation of the 

risk posed to the system. Indeed, operating experience and PRA results have shown 

that dependent component failures are a significant contributor to system unavailability 

[Fleming et aI., 1983; Parry, 1991]. 

Mathematically, a dependent failure occurs to a system of n components when the 

failure of two or more components is not probabilistically independent. Let Ai be the 

event of component i failing, for i = I, ... , n. The components fail ~ependently when 

Recognition of the contribution of dependent failures' to the overall reliability of 

a system led to the development of dependent failure analysis as part of an overall 

PRA. For incorporation into the analysis, dependent failures are classified into cate­

gories. Procedural guides [Johanson et aI., 2003; Mosleh et aI., 1987, 1998c] suggest 

taxonomies for dependent failures that classify them in terms of the nature of the de­

pendency existing amongst the components. In particular, the scheme distinguishes 

between 

I. Intrinsic (or intersystem) dependencies that stem from design system character­

istics; these describe situations where the status of one component influences the 

status of another component in the system. A subcategory of intrinsic failures 

is cascading failures, where the failure of one component increases the failure 

tendency of another component belonging to the same system [H\2>land and Rau­

sand, 1994]. 
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2. Extrinsic (or intrasystem) dependencies that stem from factors physically exter­

nal to the system. Such factors are environmental or human. 

In quantitative analysis, particular classes of dependent failures are addressed ex­

plicitly. Such failures include known intrinsic failures, and a large class of extrinsic 

failures, like certain operator errors and external events [Paula, 1995]. Explicit treat­

ment of dependent failures involves the identification and direct incorporation of the 

initiating event into event tree and fault tree logic models [Fleming et al., 1983]. There­

fore, explicit models are only appropriate for specific failure classes. 

1.2 Common Cause Failures 

Nevertheless, the sources of dependencies are numerous, and often cannot be addressed 

explicitly in a practical manner. Common Cause Failures (CCFs), are a subset of the 

more general category of dependent failures. The main distinction between CCFs and 

other dependent failures is the fact that the former are not explicitly modelled; they 

constitute the residual part of the wider class of gependent failures. The impact of CCF 

events to the system is implicitly quantified through parameters, without distinguishing 

between particular causes or dependencies. Particularly in the nuclear area, it has been 

shown that CCF events may contribute between 20% and 80% to the unavailability of 

safety systems of nuclear power reactors [Hauptmanns, 1996]. Subsequently, the issue 

of modelling CCFs in particular has received much attention in the field of system 

safety. 

Given the different types of dependencies related to CCF events, and the different 

methodologies and techniques developed in order to address them, a clear definition of 

CCFs is of key importance. In the literature, a broad spectrum of CCF definitions can 

be found Waula, 1995]. For the purpose of PRA applications sensu lata, "CCF events 

are dependent failures resulting from causes that are not explicitly modelled" [Paul a, 

1995]. Moreover, CCF events describe mUltiple component failures that are the result 

of a shared cause [Mosleh et al., 1987]. Examples of CCFs include miscalibration 
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of sensors, incorrect maintenance, environmental impact on the system [Berg et al., 

2006]. 

It is worth noting that in the literature the term Common Mode Failures (CMF) 

is commonly used. In [Edwards and Watson, 1979], a CMF is defined as an event 

which causes, due to existing dependencies, a coincidence of failure states of redundant 

components. In the earlier literature these two terms have been used interchangeably 

[Fleming et aI., 1983], despite the fact that it is possible for a CCF not to fail compo­

nents in the same mode, or for a CMF not to be the result of a shared cause. In practical 

applications, the difference between CCFs and CMFs is considered insignificant, and 

the two sets of failures are not separated in the modelling [Smith, 2000]. 

Within the scope of this thesis, CCF events are defined as within the Interna­

tional Common Cause Failure Data Exchange (lCDE) coding guidelines [Werner et aI., 

2004]. According to the guidelines, 

A CCF event is an impairment of two or more components of a redundant 

system over a relevant time interval, as the direct result of a shared cause. 

The impairment of components is defined with r~spect to their performing action. The 

timing of component failures constitutes an important characteristic of CCF events. 

For systems operating on demand, an impairment of components due to a CCF event 

may be not si~ultaneous, but if it occurs during the period the system is idle, it may 

result to a system failure. On this basis, the relevant time interval may be two pertinent 

inspection periods. For systems that are operating on demand, the detection strategy 

influences the contribution of CCF events to the overall unavailability of the system, as 

it determines the time that the failures remain undetected. 

1.3 Treatment of Common Cause Failures 

Procedural guides for CCF treatment [Mosleh et aI., 1987; Fleming et aI., 1988; Mosleh 

et aI., 1998c] have been developed in an effort to provide a structured framework for 

the understanding and assessment of the impact of CCF events on the functioning of 
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systems. The CCF modelling stages that comprise the framework are summarised 

in Figure 1.1. A comprehensive CCF treatment requires the stages to be completed 

sequentially, as the results obtained from one stage are used in the next one. Next, a 

brief overview of the main stages is given. 

System Logic Model Development 
1. System familiarisation 
2. Problem definition 
3. Logic model development 

+ 
Identification of CCF groups 

4. Qualitative analysis 
5. Quantitative screening 

CCF modelling and data analysis 

6. Definition of CCF basic events 
7. Selection of probability model for 

CCF basic events 
8. Data classification and screening 
9. Parameter estimation 

• System quantification and 
interpretation of results 

10. Quantification 
r 

11. Result evaluation and 
sensitivity analysis 

12. Reporting 

Figure 1.1: CCF modeJling procedural framework taken from [Mosleh et al., 1987] 

1. System Logic Model Development. This stage includes the process of familiari­

sation with the system of interest, its design and intended function. The design 

characteristics of the system are studied, along with its physical and operational 

environment. Next, the problem is defined: the physical and functional bound­

aries of the system and components are agreed, and the types of dependent fail­

ures to be explicitly modelled are decided. The focus of the next stage of the 

analysis is the residual part of dependent failures (CCFs), which is modelled 

parametric ally. From a CCF perspective, it is important to qualitatively analyse 

the potential vulnerabilities of the system of interest (target system) towards CCF 
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events. Understanding the failure mechanisms is imperative, not only because a 

thorough insight in the system is gained, but also because, during the later stage 

of data analysis, it will allow to appropriately identify the generic data to be used 

for the specific system [Mosleh et aI., 1994]. 

Finally, the logic model of the system is developed. Techniques for logic model <-

development include event and fault trees, reliability block diagrams, Go di-

agrams. The most widely used type of analysis is fault trees [Roberts et aI., 

1981]. The output of the analysis is a Boolean representation that relates a top 

event, e.g. system unavailability, to a combination of basic events (component 

states), which lead to the top event. During the logic model development, the 

combination of component states that lead to system unavailability are identi-

fied. 

2. Identification of Common Cause Component Groups. 

The objective of this step is to identify the groups of components that will be 

eventually included in the analysis, by using qualitative and quantitative screen­

mg. 

Initially, understanding is developed regarding the particular vulnerabilities of 

the system towards CCFs. Based on engineering and operating experience par­

ticular .common attributes amongst components and coupling mechanisms that 

may be in place are identified and their effectiveness is evaluated. The result­

ing groups of components are further studied in terms of the root causes that 

are susceptible to, and the related system defences that are in place. The out­

come of qualitative screening is a candidate list comprising of Common Cause 

Component Groups (CCCGs) that have been recognised as susceptible to CCFs. 

For large systems, it is important to restrict the size of the problem to a manage­

able size .. Therefore, the candidate list is further reduced by quantitative screen­

ing. At this stage, the logic model developed previously is modified to include a 

single common cause failure event for each component in a CCCG, that fails all 

members of the group. By using a simple global parametric model, numerical 
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values for the CCF basic events are approximately estimated. Based on this con­

servative assessment, the CCCGs that have an insignificant contribution to the 

top event are identified and omitted from the analysis. 

3. Common Cause Modelling and Data Analysis. Next a detailed quantitative anal­

ysis for the CCCGs that survived the screening process takes place. At this stage, 

the system logic model is expanded in more detail, to include CCF basic events 

of specific sets of components. The difference between this and the previous step 

is that now, basic events are included that describe CCFs of different multiplici-. 
ties. The Boolean representation of the top event is transformed to a parametric 

representation, and an appropriate probabilistic model is selected. Available data 

is analysed, in order to produce numerical values for the parameters involved. 

4. System quantification and interpretation of the results. T~e estimators of the 
. 

parameters are entered in the probability model in order to quantify the overall 

system unavailability. Uncertainty and 'what-if' analyses are also an important 

part of this stage. The final step of the framework is the reporting and documen­

tation of the analysis. 

1.4 Objectives of the research 

In the nuclear industry worldwide, the models used for the quantitative modelling of 

CCFs are typically parametric. Main CCF parametric models include the Multiple 

Greek Letter model [Apostolakis and Moieni, 1987], the Alpha Factor model [Siu and 

Mosleh, 1989], and the Beta Factor model [Fleming, 1975]. The UK nuclear industry, 

instead, has adopted its own approach, the Unified Partial Method (UPM)[Brand and 

Gabbot, 1993]. 

In parametric models, the impact of CCFs on the system under assessment is be­

ing expressed by parameters, which need to be quantified through statistical analysis. 

However, the statistical analysis of CCF data is a process that bears a number of partic­

ularities. Firstly, CCF events are relatively complex events. As a result, event reports 
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often contain vague descriptions, requiring a number of assumptions from the behalf 

of the analyst concerning the component statuses or other physical and operational 

characteristics of the system. This fact leads to the incorporation of considerable un­

certainty in the analysis [Siu and Mosleh, 1989]. Secondly, CCF events are rare events, 

resulting in a limited amount of system-specific data that is frequently insufficient for ( 

robust statistical analysis [Vaurio, 1994b; Parry, 1996; Siu and Kelly, 1998; Spitzer, 

2006]. To this end, the quantification of the parameters of the parametric models re-

veal certain problematic points. 
, ' 

In this view, UPM has a practical advantage over other CCF models. Having been 

initially quantified by experts, it can be applied by less knowledgeable analysts for 

the purposes of standard PRAs, by simply scoring the system across a set of factors. 

Moreover, in contrast to other parametric models, UPM incorporates 'softer' aspects 

of the system when assessing its defence level, such as informatiQn concerning oper-. 
ator interaction and other system-specific characteristics. Overall, UPM constitutes a 

systematic procedural framework for CCF modelling of standard systems. This results 

in a modelling process that is reproducible and auditable. 

Despite the attractive particular features of UPM, certain deficiencies in its be­

haviour have been identified. UPM has been characterised as simplistic and, to some 

extent, crude [Zitrou, 2002]. Thereby, a need for further development has been created. 

This thesis aims to contribute towards this direction. To be more precise, it aims to ex­

plore the application of advanced mathematical techniques in order to further extend 

the Unified Partial Method (UPM) for CCF modelling. The mathematical technique 

used in order to attain the objectives of this thesis is the Influence Diagram formalism. 

The objectives of the research may be described across two facets. On the one 

hand, the proposed model intends to use certain strong features of the UPM frame­

work. These are the incorporation of design, operational and environmental aspects 

in assessing the risk contribution to the system, and, the use of expert judgment in a 

quantitative way. On the other hand, the new model intends to extend certain features 

of the UPM methodology. These are discussed within the following sections. 
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1.4.1 A structural approach 

In principle, parametric models address CCFs in an implicit manner. Underlying as­

sumptions mainly concern the CCF manifestation on the system, and causal mecha­

nisms are not taken into account explicitly. To this end, parametric models are mostly 

characterised by their input, output, and model properties (Figure 1.2). The model 

input relates to the statistical information required for the estimation of the model's pa­

rameters. The model output relates to the different kinds (multiplicity) of CCF events 

whose impact on the system is quantified. Finally, the model properties relate to fea-. 
tures such as subgroup invariance l , or whether the model, once quantified, can be used 

to make predictions regarding non-observed events. 

'"~ H Mok' I~ ~."' 
Figure 1.2: Parametric Models 

. 
In order to model CCF events in a meaningful and comprehensive manner, it is 

important to understand the mechanisms behind the occurrence of CCF events (quali­

tative analysis). Within the literature, three concepts are identified as the key issues to 

be discussed when addressing CCFs, namely root causes, coupling factors and system 

defences [Fleming et aI., 1988; Mosleh et aI., 1998c; Parry, 1991; Edwards and Wat­

son, 1979; Mosleh et aI., 1987]. Root causes are defined as the most readily identifiable 

direct cause of the CCF event. A particular cause of failure results in a dependent fail­

ure through the existence of coupling mechanisms, that create dependency conditions 

and propagate the failure to mUltiple components. Finally, the defences describe the 

existence or lack of design, operational or managerial characteristics of the system that 

are acknowledged as offering levels of protection against CCF events. 

In principle, the consideration of system defences, root causes and coupling fac­

tors and the use of parametric models consist independent parts of the overall CCF 

IWhen a model is "subgroup invariant", it may be applied to subgroups within the system under 
investigation without requiring re-estimation of the model parameters. 
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assessment process (See Figure 1.1). In particular, parametric models are used after 

the qualitative stage of the analysis, for quantitatively assessing the impact of CCF 

events on the system of interest. UPM constitutes an attempt to merge those two stages 

by incorporating defence aspects of the system in the actual quantitative assessment. 

These defence aspects are described by eight subfactors (Figure 1.3). 

I UPM J Defences 

J 1 I 1 I I I I 
Environmental Environmental Analysis Safety Separation Redundancy Understanding Operator 

Control Tests Culture & Interaction 
Diversity 

D1 02 03 04 05 06 07 08 

Figure 1.3: UPM subfactors 

The modelling approach proposed within this thesis attempts to further extend this 

feature of UPM, by incorporating root cause and coupling factor issues, along with the 

system defences in the actual theoretical structure of the model. The proposed model 

builds in its theoretical framework a cause - effect - prevention structure: a CCF event 

is described in ~erms of a trigger mechanism (root cause event) and a filter (coupling 

factors), both affected by the defence characteristics of the system (Figure 1.4). In 

essence, this thesis seeks to move from a black-box, to a more structural approach 

[Mitchell, 1993] to CCF modelling through explicitly taking into account cause and 

effect. 

The proposed model attempts to describe the actual causal mechanisms of CCF 

events, and, the way these can be modified by changing the system's defence aspects. 

Speculative interventions may be performed in the model, allowing to explore the effect 

of different realities, and support meaningful decisions in terms of the defence char­

acteristics of the system. On this basis, the proposed model has a strong exploratory 

character. Compared to UPM, the distinctive feature of the new model is that it allows 
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for a more detailed modelling of the CCF events, as it incorporates intermediate stages 

in the modelling process, namely root causes and coupling factors, and it captures the 

types of CCFs that each defence is able to modulate. These aspects provide a more 

detailed understanding of the CCF mechanisms. 

Model 

I Defences I 
/ ............ 

....-----, r----, 

EJ- Root Coupling 
Cause ~ Factor 

Figure 1.4: Proposed modelling approach 

1.4.2 A further generalisation 

One of the most basic parametric models is the Beta Factor model. The Beta Factor 

model is the simplest and most popular approach to CCF modelling [Hirschberg and 

Pulkkinen, 1985; Hanks, 1998; Hokstad and Corneliussen, 2004]. Its simplicity stems 

from a fundamental assumption, according to which a given component in a system 

may fail either' independently, or due to a CCF event that leads to the failure of all 

components in the system. As a result, CCF events of different multiplicities are not 

allowed, and the model fails to distinguish between different system success logics. 

Due to its simplicity, the Beta Factor model provides the basis for more sophis­

ticated model structures. One the one hand, models like the Multiple Greek Letter 

(MGL) model [Apostolakis and Moieni, 1987] and the Multiple Beta Factor (MBF) 

model [Hokstad and Corneliussen, 2004] generalise the Beta Factor model in order to 

allow for different failure multiplicities, and discern the performance of different sys­

tem architectures. One the other hand, models like the Partial Beta Factor model and 

UPM generalise it towards a different direction: they attempt to model the impact of 

11 



MGLmodell 

I MBFmodel I 

Beta Factor 
Model 

Partial Beta 
Factor Model 

IUPM 

Qualitative aspects 

Figure 1.5: Model-development dimensions 

. 
managerial, design and environmental aspects of the system on the system vuhlerabil-

ity towards CCF events. Figure 1.5 illustrates the directions towards which different 

models generalise the Beta Factor model. Figure 1.6 illustrates the position of the 

model proposed in this thesis within this context. To be thore precise, the proposed 

model provides a generalisation of UPM (and, thus, the Beta Factor model) through 

addressing issues that UPM fails to do, such as the interactions existing amongst the 

system defences. However, it does not address the issue of different failure multiplic­

ities of CCF events, which is why it is positioned at the same height as UPM and the 

Beta Factor model. By contrast, models like the MBF model can be in principle gen­

eralised by using a similar methodological approach, in order to result in models that 

achieve both (Figure 1.7). Effectively, this research may provide a protocol for such a 

development. 

1.4.3 A model for uncertainty 

In essence, the main objective of PRAs is to quantify the risk posed on systems. Risk 

is integrally related to uncertainty, and quantification of risk requires measuring un­

certainty on particular events. Even though probability is unequivocally the numerical 
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I MGLmodell 

I MBFmodel I 

I New Model I 
Qualitative aspects 

Figure 1.6: Position of particular research in model-development dimensions 

I MGLmoded 

I MBFmodel I 

I New Model I 
Qualitative aspects 

Figure 1.7: Position of potential research in model-development dimensions 

measure of uncertainty, the interpretation of probability within the context of risk re­

sults in different methodological approaches. The frequentist approach constitutes the 

traditional choice within reliability analyses; however, over the last thirty years, the 

subjectivist approach has emerged [Apostolakis, 1988]. Within the subjectivist ap­

proach, the Bayesian methodology has gained popularity within the context of PRAs 

[Parry, 1996; Siu and Kelly, 1998; Aven and Kva10Y, 2002]. 

From a CCF viewpoint in particular, Bayesian techniques are often considered par­

ticularly suitable. Due to the rare and complex nature of CCF events, a significant 

amount of uncertainty is entered into the analysis. The Bayesian canon constitutes 

a consistent framework for representing inherent uncertainty on model parameters. 
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Moreover, it is a methodology that allows for the coherent combination of statistical 

data with expert judgment. 

Even though UPM is a methodology that extensively uses expert judgment in a 

quantitative manner, it yields a point value for the model output, without accounting 

for any uncertainty in its determination. By adopting a Bayesian view to risk, the 

model proposed within this thesis attempts to represent uncertainty in both the model 

inputs and output, and allow for the coherent propagation of this uncertainty within 

the model structure. 

The type of uncertainty captured by a Bayesian methodology arises from lack of 

knowledge of the system, and is referred to as epistemic uncertainty. Epistemic un­

certainty is integrally related to observations, as the level of knowledge alters when 

additional information is obtained. Bayesian methodology, and as an extension the 

proposed model, offers a consistent mechanism for updating epistemic uncertainty in . 
the light of statistical data. The International Common Cause Failure Data Exchange 

(ICDE) database constitutes an important development in the availability of CCF data. 

It is an extensive database that accumulates CCF events from different systems in­

ternationally, and represents many operating years .. On this basis, it is of interest to 

create a bridge between the proposed model and ICDE, by merging the structure of the 

database with the model structure. 

1.4.4 A specific setting 

The research goal and objectives of the research presented in this thesis are summarised 

in Table 1.1. This research has been funded by the Health and Safety Executive (HSE). 

HSE is the regulating body responsible for health and safety issues at nuclear sites. 

As a regulatory body, the mission of HSE is to ensure that risk is properly controlled 

and that the operation of nuclear power stations is performed under a satisfactory level 

of safety. It is the body that sets the safety standards, and ensures that these are met 

by nuclear operators within the UK. Within this context, PRA has a key role, and the 

conduct of related research constitutes a primary objective of HSE. 
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The aim of this thesis is to explore the feasibility of the proposed modelling ap­

proach within the particular context. Providing a definitive tool to be used in standard 

PRAs in industry has not been an objective. Thereby, a particular example has been 

chosen to attain the purposes of this research. 

The example 

The application example of the particular research lies in the nuclear field. More pre­

cisely, the research focuses on the CCF modelling of Emergency Diesel Generators 

(EDGs) in commercial nuclear power plants. The EDG system constitutes a particu­

larly suitable subject for CCF modelling. Firstly, the EDG system plays a critical role 

to the safety of a nuclear power plant. Secondly, nuclear power plants usually em­

ploy at least two EDGs [Martz et aI., 1996]. Finally, EDGs are frequently tested, and 

the availability of relevant data is comparatively increased [Hirschberg and Pulkkinen, . 
1985]. 

EDGs are systems that operate on demand; this type of systems are idle for a period 

of time and are only put into operation periodically. To this end, the failure of the 

system to operate on demand is classified into two categories: failure revealed by the 

demand and failure caused by the demand. This research focuses on the modelling of 

CCF events of the first category, that is of CCFs that occurred during the period the 

system was idle and only detected when the system was challenged into operation. 

The modelling of this type offailure is based on the assumption that CCF events oc­

cur at random times during the idle period of the system, and at constant rates [Vaurio, 

1994b]. The constant failure rate assumption is considered appropriate because CCF 

events are rare events, and the CCF rate is not driven by factors such as the aging of 

the component. To this end, the parameter of interest is the rate of CCF events occur­

ring to the system, denoted by AcCF. This thesis presents an ID model that represents 

uncertainty on the model output AcCF. 
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Table 1.1: Research Goal and Objectives 

OVERALL GOAL 

Explore the feasability of the application of advanced modelling techniques within 

the Unified Partial Method (UPM) for CCF modelling framework, so as to result 

in a model with a structural and exploratory character, that allows the representation of 

epistemic uncertainty, and support~ the decision - making process. 

OBJECTIVES 

I. Develop a model that takes into account physical, operational and managerial 

aspects in order to assess the risk contribution to the system, and supports the 

decision-making process. 

2. Develop a model that uses expert judgment in a quantitative manner, and results 

in a tool that is approachable by analysts without the same level of insight in CCF 

mechanisms. 

3. Develop a model that extends UPM by capturing the types of CCFs that each 

defence of the system is able to modulate, through incorporating root causes and 

co~pling factors in the modelling process. 

4. Develop a model that extends UPM by representing functional interactions amongst 

system defences, in the way that they impact on the overall vulnerability of the sys­

tem to CCF events. 

5. Develop a model that represents uncertainty on both the model inputs and outputs, and 

allows for coherent propagation of uncertainty within the model structure. 

6. Develop a model that merges the structure of the ICDE database within the model 

-
structure. 
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The ID model 

In an attempt to address the goals and objectives of this research, the use of the In­

fluence Diagram formalism is proposed; Influence Diagrams (IDs) [Roward, 1990; 

Matheson, 1990; Lauritzen, 1996; Jensen, 1999] are extensions of Bayesian Belief 

Networks (BBNs) [Pearl, 1988]. A BBN is a network of nodes; the nodes represent 

the features of the problem, and the network portrays the logical relationships between 

these features. Associated with each node is a set of probabilistic expressions describ­

ing the impact of the influencing nodes to the values of this node [van der Gaag, 1996]. 

An ID extends this approach by incorporating features of the problem that represent 

decisions, uncertain quantities and goals/objectives of the decision maker. 

As described in Section 1.4.1, the ID model builds a cause-effect-prevention struc­

ture: a CCF event is the result of a root cause failure, which is propagated amongst 

components via existing coupling mechanisms. The frequency of root cause. failures 

and the intensity of the coupling mechanisms both depend on the defence characteris­

tics that are employed by the system. 

Assume that a categorisation of p root caus~s and K coupling factors is used. Like 

the main parametric models, within the ID framework it is assumed that failures occur 

independently and at constant rates. Specifically, it is assumed that failures attributed 

to a particular root cause occur according to a Poisson process with constant rate n, 
i = 1, ... , p. At the occurrence of a root cause event, the failure is propagated amongst 

components via coupling mechanism j, j = 1, ... , K, resulting into a CCF event, with 

probability 

Pij = P{ CCF through coupling factor j I failure due to root cause i} 

Therefore, CCF events due to root cause i occur according to an independent Poisson 

process with rate ?vi, where 
le 

Ai = L Pijri 
j=l 

Under the assumption that a CCF event may occur as the propagation of only one root 
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cause event, through only one coupling mechanism, the overall process of CCF events 

is a superposition of the independent Poisson processes. The rate of the superimposed 

process is AceF, where 
p 

AceF = Ef...i 
i=1 

Within this set-up, the rate of CCF events is expressed in terms of rates of root cause 

events, filtered through the intensity of coupling mechanisms. The intention is to use 

an ID to represent the influences of the system defences, represented by the eight UPM 

subfactors, on the uncertainty on the ~oot causes ri and coupling factors Pij, and hence 

to obtain an uncertainty distribution on the overall CCF rate AceF. 

The features of the problem are represented in the ID model by nodes. The system 

defences, being in the complete control of the assessor, are deterministic variables and 

are represented by decision variables Dk (k = 1, ... ,n) (squares). Following a Bayesian . 
approach, the interest lies in expressing uncertainty in both the model inputs and out-

put; ~ence, parameters rj and Pij (i = 1, ... , P and j = 1, ... ,1<:) are considered random 

variables, represented by chance nodes (ovals). The relationships existing amongst 

these features are portrayed in the ID network given in Figure 1.8 . 

Defences 

................. .............. " ... "' ................................. . 

I 
; 
! 

.......... ~ 

I 
L . 

. Figure 1.8: Relationships expressed in the ID model 

This section proceeds with the system description and definition of component 

boundaries. 
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Description of the system 

One of the most important objectives of the safe design of nuclear power plants is, 

in case of postulated accidents, to ensure that the radioactive fission products stay 

contained within the fuel, and radioactivity is not released in the environment. The 

distinctive feature of nuclear reactors is the fact that, even when the nuclear reaction 

is tripped, heat is produced by the decay of radioactive fission products (decay heat). 

Consequently, in emergency cases nuclear safety should provide not only for automatic 

shutdown of the reactor, but also for cooling of the fuel after the reactor shutdown. De-. 
cay heat removal is achieved by Emergency Core Cooling Systems (ECCSs). ECCSs 

are required to operate for a long time after the reactor shutdown, and, demand the 

availability of a stable source of electrical power. 

At the occurrence of a loss of offsite power event, nuclear power plants are equipped 

to maintain electrical stability. In case of plant blackouts, where alternating current 

power supply fails, Emergency Diesel Generators (EDGs) provide the electrical supply 

to the ECCS and other equipment necessary for the safe shutdown of the reactor plant. 

These generators provide power only when needed, to special safety electrical distri­

bution panels; their configuration ensures that they supply adequate electrical power in 

case of loss of offsite power events, with or without a concurrent large break 10ss-of­

coolant accident (LOCA). According to the 'Defence-In-Depth' philosophy, nuclear 

power plants are equipped with at least two EDGs. The EDG system is automatically 

actuated by signals that sense either loss of coolant accident, or a loss of, or degraded, 

electrical power to its safety bus. Manual initiation of the EDG system is also possible 

from the operator control room. 

In general, EDGs are on standby, whether the plant is operating or in a shutdown 

state. 

Component boundaries 

Following, is a description of the EDG component, as defined in [Wierman et aI., 

2000]. 
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Figure 1.9: Emergency Diesel Generator and subsystems 

The EDG is defined as the combination of the diesel engine with all components 

in the exhaust path, electrical generator, generator exciter, output breaker, combustion 

air, lube oil systems, cooling system, fuel oil system, and the starting compressed air 

system. All pumps, valves, and valve operators with their power supply breakers and 

associated piping for the above systems are included. The only portions of the EDG 

cooling systems included are the specific devices that control cooling medium flow 

to the individual EDG auxiliary heat exchangers, including the control instruments. 

The service water system (cooling medium) outside the control valves is excluded. 

The EDG room ventilation is included if the licensee reports ventilation failures that 

affected EDG functional operability. 

Included within the EDG system are the circuit breakers that are located at the moo 

tor control centres (MCCs) and the associated power boards that supply power specifi­

cally to any of the EDG equipment. The MCCs and the power boards are not included 
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except for the load shedding and load sequencing circuitry/devices that are, in some 

cases, physically located within the MCCs. Load shedding of the safety bus and subse­

quent load sequencing onto the bus of vital electrical loads is considered integral to the 

EDG function and is therefore considered within the component boundaries. All in­

strumentation, control logic, and the attendant process detectors for system initiations, 

trips, and operational control are included. 

1.5 Structure of the thesis 

The structure of the thesis is presented in Figure 1.10. 

Chapter 1 
Introduction 

Objective of the research 

I 

+ . 
Chapter 2 Chapter 3 

Description of main Description of UPM 
parametric models 

I I 

Chapter 4 . 
Foundational issueSand 
Bayesian methodology 

~ 
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Chapter 10 
Discussion 

Figure 1.10: Structure of the thesis 
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Chapter 2 

Main models for CCF modelling 

2.1 Introduction 

The previous chapter provided an introduction to CCF events, and an overv!ew of 

their treatment in risk analyses. Within this context, the aims and objectives of the 

research have been described. This chapter aims to give a more detailed insight into 

the quantitative modelling of CCF events which, occurs dl!ring the Common Cause 

Modelling and Data Analysis stage of the overall CCF procedural framework (given 

in Figure 1.1). In particular, the main parametric models are presented and compared. 

For the presentation of the models a practical example is used, namely a redundant 

system of identical components with success logic 2003. 

This chapter is structured as follows: Section 2.2 illustrates the description of the 

system under study in terms of basic failure events, by considering the contribution 

of CCF events. Section 2.3 describes the main parametric models used for the quan­

tification of the basic events, and gives a brief overview of other models suggested in 

the literature for this purpose. Section 2.4 addresses the model quantification issue, 

and describes the existing difficulties associated with the quantification of parametric 

models. Section 2.5 comments on the presented CCF models, and finally, Section 2.6 

concludes the chapter. 
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2.2 CCF modelling 

Essentially, the treatment of CCF events may be separated into a qualitative and a 

quantitative phase. The qualitative phase covers stages 1 and 2 of the overall procedural 

framework (Figure 1.1 in Chapter 1), whereas the quantitative phase relates to the next 

two stages. 

2.2.1 Logic model development 

During the qualitative phase of the CCF treatment, the system under study is described 

in terms of basic events that result in loss of its function. This is accomplished during 

the System Logic Model Development stage, with techniques such as Fault Tree Analy­

sis (FTA). FTA is a popular modelling tool for logically representing systems [Roberts 

et aI., 1981]. By using a top-down approach and logical AND and QR connectors, the . 
top event (system failure) is described in terms of the intermediate events that lead to 

it. The construction proceeds gradually to finer levels of detail, until the top event is 

described in terms of failures of specific components. 

2003 

Figure 2.1: Reliability block diagram 

For illustrative purposes, a practical example is used. Consider a system of three 

components that operates with a 2003 success logic. The reliability block diagram 

representation of the system is given in Figure 2.1. By using a fault tree technique, the 

failure of the system is graphically represented in terms of events (Figure 2.2). With 

the help of this representation, the sets of basic events that, if they occur, lead to the 
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top event (minimal cut sets) can be delivered. In the particular 2003 example, these are 

where Ai denotes the failure of component i, for i = 1,2,3. 

Figure 2.2: Fault tree model Figure 2.3: Sub-fault tree for failure of single 
component 

. 
For the incorporation of CCF events in the analysis, the fault tree is further ex-

panded to include CCF basic events, which describe the dependent failure of particular 

subsets of components. This is achieved by further expanding the individual compo­

nent failure basic events included in the initial fault tree, to Include the effect of CCFs 

(Figure 2.3). The expanded fault tree yields the following cut sets 

{Zi,Zj} i =#= j and i,j = 1,2,3 

{Cij} i =#= j and i,j = 1,2,3 

{CI23} 

where Zi represents the independent failure of component Ai, Cij represents the depen­

dent failure of components Ai andAj due to a common cause event, and Cl23 represents 

the dependent failure of all three components due to a common cause event. 

2.2.2 CCF quantification 

Based on the FTA of the system, the impact of CCFs is being modelled by producing 

a performance indicator of the system subject to CCF events. The operating mode of 
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the system of interest strongly influences the choice of this performance indicator, and 

thus, the parameterisation used for the determination of this indicator. 

The system's operating mode is typically distinguished between two types: oper­

ating on demand and operating continuously. This section considers separately these 

two different operating modes. Next, it will be shown that in both cases assessing the 

performance of the system requires the determination of the CCF basic parameters -

these are either basic probabilities on demand or basic failure rates, depending on the 

operation mode of the system. 

System operating on demand 

Systems that are operating on demand are idle for a period of time (on stand-by), and 

are only challenged to deliver their intended function periodically. A performance 

indicator that is widely used for this operating mode is the unavailability of the sy,stem. 

A definition of unavailability is the following [Ebeling, 1997]: 

A piece of equipment (system) is considered unavailable at time t, 

t E [0, +00), if it is not performing its required function at this time; and the 

probability that the component (system) is unavailable at time t is denoted 

with U(t). 

In order to determine the system unavailability at time t, t E [0,+00), the event that 

needs to be quan'tified is 'system failing at time t', which is denoted by S. Based on 

the PTA of the system, a deterministic expression of the event of interest (top event) is 

produced in terms of the basic events, which is used for quantification purposes. 

Essentially, a fault tree is a Boolean representation. In the particular example, based 

on the trees in Figures 2.2 and 2.3, the derived Boolean representation of the system 

failure on demand S is 

(2.1) 

Note that S, Zj and qj are now boolean variables, taking value 1 for true and ° for 

false. 
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The failure of the system to operate on demand is classified by two different cate­

gories: failure revealed by the demand, and failure caused by the demand. Each cat­

egorisation postulates different failure mechanisms, and, thus, needs to be considered 

separately. 

Failures revealed by the demand Failures revealed by the demand involve fail­

ure events that bring the system into a failed state during the period the system is idle; 

these failures are unobserved and only detected when the system is challenged. Such 

failure mechanisms include corrosion, degradation, or shocks that occur to the system 

during the idle period. The modelling of this type of failures is based on the assump­

tion that failures occur in continuous time over the period the system is idle [Vaurio, 

1994b], infringing on the system a lifetime distribution F. 

The general approach to CCF modelling [Marshall and Olkin, 1967; Vesely, 1977] 

assumes that CCF events of different multiplicities occur at random times and indepen­

dently of each other, failing specific groups of redundant components at constant rates 

(Poisson processes). Single component failures are referred to as independent failures, 

whereas failures of groups of components due to a CCF event are referred to as de­

pendent failures. It is typical to make the internal symmetry assumption, according 

to which all components in the group have the same failure rate, and the rate of CCF 

events failing a component subgroup is the same for all subgroups of the same size. In 

the particular 2~o3 system example, it is 

T) /3 = time to failure (independently) of component i (i = 1,2,3) 

T2/ 3 = time to failure (dependently) of components i and j (i *- j and i, j = 1,2,3) 

T3/ 3 = time to failure (dependently) of components 1,2,3 

Let Fk/ 3 be the cumulative probability distribution of r.v. Tk/ 3, k = 1,2,3. It is assumed 

that once a component is found failed, it is getting repaired immediately, and the repair 

time is insignificantly short compared to the test interval. If Tk/ 3 is the time to failure 

of a specific subgroup of k components in the group of three components, then it is an 
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exponentially distributed r.v. with parameter Ak/3' viz. 

The inspection strategy employed on a stand-by system influences the detection 

time of failures and affects the prevention of potential failures. Thus, the unavailability 

of a stand-by system is a function of the testing scheme and its characteristics. Vaurio 

[Vaurio, 1994b, 1995] considers different repair strategies and maintenance policies in 

order to determine the effect of CCF events on system unavailability. Next, two simple 

examples of testing scheme are considered for illustrative purposes. 

At a sequential testing scheme all components are tested almost 'simultaneously', 

meaning that they are tested successively and the overall test duration is insignificantly 

small compared to the test interval. The unavailability of a system which is subject to 

CCFs is determined with the help of the Boolean expression (2.1), obtained during the 

logic model development of the system, where the top event S is 'system failing at time 

t', t E [0, +00). In reliability analyses it is typical to make the rare events approximation 

[Mosleh et al., 1998c]1, which leads to 

P(S) = P(Zl)P(Z2) +P(Zl)P(Z3) +P(Z2)P(Z3) 

+P(C12) +P(C13) +P(C23) +P(C123) 

For the 2003 system under study to fail to start on demand, failure events must 

have occurred during the idle period of the system, which is equal to the test interval 

(denoted by .1). For t E [0,.1], it holds that 

P(Zi) = P(T1/3 ::; t),P(Cij) = P(T2/3 ::; t),P(C123) = P(T3/3 ::; t) 

lThe rare events approximation suggests that for small values of P(A) and P(B) (<< 0.1), omitting 
P(A nB) from the expression 

P(A UB) = P(A) + P(B) - P(A nB) 

incorporates a negligible amount of error 
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and the time-dependent unavailability at time t E [O,~] is 

U(t) = 3P(T1/ 3 ::; t)2+3P(T2/3 ::; t) +P(T3/3 ::; t) 

= 3F1/3 (t)2 + 3F2/3(t) + F3/3(t) (2.2) 

which is expressed in terms of failure rates Ak/m (k = 1,2,3). Under the assumption 

that a demand can occur at any time during the test interval ~, the time-average un­

availability over the period between tests [O,~] is 

A staggering testing scheme describes the situation where m components are tested 

at staggered intervals, with distance between the tests of time ~ (Figure 2.4). The 
m 

probability of the system being unable to operate at time t E (0, ~]. between the se-

quential tests is determined by considering the earliest possible occurrence time of 

each failure combination, taking into account the tests before time ° [Vaurio, 1994b]. 

For the 2003 system it is 

~ ~ 
U (t) = P{T3/3 ::; t + "3 ) + P{T2/3 ::; t + "3 ) + 2P(T2/3 ::; t) 

2~ ~ 
+ P{T1/ 3 ::; t)P(T1/ 3 ::; t + 3") + P{T1/ 3 ::; t)P{T1/ 3 ::; t +"3) 

, ~ 2~ 

+ P(T1/ 3 ::; t +"3 )P{T1/ 3 ::; t + 3") 

~ ~ U 
= F3/3(t +"3) +F2/3{t +"3) + 2F2/3(t) + F1/ 3(t)F1/3(t + 3") 

~ ~ 2~ 
+ F1/ 3(t)Fl/3(t +"3) + F1/ 3{t +"3 )F1/ 3(t + 3") (2.3) 

which is expressed in terms of failure rates Ak/3 ( k = 1,2,3). The average unavailabil­

ity over the period between staggered tests is determined as 

Therefore, the quantification of unavailability of a system of m redundant compo-
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Figure 2.4: Staggering testing scheme 

.. 
t 

nents, which is operating on demand; due to failures revealed by the demand requires 

the estimation of the following basic rates per unit time: 

Ak/m := rate at which specific k components fail in a group of rn components 

for k = 1, ... ,rn. 

Failures caused by the demand Failures caused by the demand describe failure 

events that are a consequence of the load infringed on the system by the activation 

itself. In this case, the failure of the system to operate is not revealed by the demand, 

but caused by it. For this type of failure, the interest lies in estimating the probability 

that the system fails to operate when it is activated (probability of failure on demand), 

and the system unavailability is defined as 

U (i) = P( system fails on demand i), i = 1,2 ... 

The Boolean representation (2.1) needs to be transformed to an algebraic represen­

tation, expressing the probability of the system failing on demand (top event). Based 

on the rare events approximation, we have 

P(S) = P(ZI )P(~) + P(ZI )P(Z3) + P(Z2)P(Z3) 

+P(C12) +P(C13) +P(C23) +P(CI23) 
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A typical assumption made in the case of identical components in order to re­

duce the number of parameters that need to be quantified, is the internal symmetry 

assumption [Mosleh et aI., 1998c]. According to the internal symmetry assumption, 

the probability of a basic event within a given group of components is assumed to de­

pend only on the number of components involved in that basic event, and not on the 

specific components. Therefore, the failure probabilities are the same for sub-groups 

of components of the same size. Consequently, the following probabilities are defined: 

Ql/3=P(Zi) (i. = 1,2,3) 

Q2/3 = P(Cij) (i *- j and i,j = 1,2,3) 

Q3/3 = P(C123) 

Now, Relationship (2.4) gives the following expression for the systen; unavailability 

on demand U(·) 

(2.5) 

Therefore, the quantification of unavailability for a system of m components operating 

on demand, attributed to failures caused by the demand, requires the estimation of the 

basic probabilities 

Qk/m = P(specific k out of m components fail on demand, while the other 

m - k components do not fail) 

for k = 1, ... , m. 

The average unavailability over a total of N demands is 

which is the discrete case of the time-average unavailability described previously. In 

this case, the system unavailability is not a function of time, and is not modulated by 
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the testing scheme adopted. 

Systems in continuous operation 

For a system that is in continuous operation, the time when it stops delivering its in­

tended function is usually immediately identified. This means that failures are directly 

observed as soon as they occur, and appropriate action is taken. For continuously op­

erating system, it is assumed that CCF events occur at any time t E [0, +00), failing 

simultaneously subgroups of redundant components. Therefore, a useful performance 

indicator of a normally operating system is the system reliability. The system reliability 

is defined as the probability that system is operating at time t, t E [0, +00), i.e. 

P(T ~ t) = Rs(t) = 1- Fs(t) 

where r.v. T denotes the failure time of the system. Based on the general modei for 

CCF modelling [Marshall and Olkin, 1967; Vesely, 1977], it is assumed that CCFs of 

different multiplicities occur at independent Poisson processes. In the particular 2003 

example, it is 

T1/ 3 = time to failure (independently) of component i (i = 1,2,3) 

T2/ 3 = time to failure (dependently) of components i and j (i =/:. j and i, j = 1,2,3) 

T3/ 3 = time to failure (dependently) of components 1,2,3 

Let Fk/ 3 be the cumulative probability distribution of r.v. Tk/ 3, k = 1,2,3. We have 

Tk/3 "" 'E (Ak/3) for k = 1,2,3 

Generally, the impact of CCF events on the reliability of a system of m components 

may be represented by a system where strictly independent failures occur, which is con­

nected in series with m-I systems with reliability Rk(t) = I-Fk/m(t) (k = 2, ... ,m). 

In the particular 2003 example, this situation is represented in see Figure 2.5. 
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2003 

Figure 2.5: Expanded reliability block diagram including CCF events 

Assuming identical components, the reliability of a noom system with only inde-. 
pendent failures is given by the following formula [Ebeling, 1997] 

For the particular 2003 example the formula gives 

In general, the reliability of an m-redundant series system subject to independent fail­

ures only, is given by the formula 

m 

Rin(t) = n (1 - Fx(t)) 
x=l 

where Fx is the lifetime distribution of component x. The 2003 system reliability, 

including CCFs, is given by 

(2.6) 

Further analysis on the determination of the reliability characteristics of operating 

systems subject to CCF events may be found in [Vaurio, 1995]. Frequently, for re­

pairable systems, the long-run equilibrium unavailability of the system is used. When 
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it exists, it is determined as the limiting unavailability as ~ increases to infinity 

U = Hm Ut. 
t.-.oo 

where 
1 rt. 

Ut. = ~ 10 P(T:::; t)dt 

and 

P(T:::; t) = l-R(t), t E (0,+00] 

Therefore, assessing the performance of a continuously operating system of m com­

ponents requires the estimation of the following basic rates per unit time: 

Ak/m := rate at which specific k out of m components fail 

for k = 1, ... , m. 

2.3 Parametric models 

In essence, probabilities on demand and failure rates underlie different frameworks of 

assumptions, and are applicable within certain contexts. In general, quantifying the 

CCF basic events in terms of rates makes the assumption of the components failing 

almost 'simultaneously'. Quantification in terms of probabilities on demand makes 

far less assumptions regarding the failure mechanism, allowing to address cases where 

components failed dependently, but not as close in time. However, as shown in the 

previous section, for stand-by systems time-dependent unavailability cannot be de­

fined when using probabilities on demand, implying that the average unavailability re­

mains unaffected by the testing scheme. Time-dependent unavailability is determined 

in terms of failure rates, which are parameters of the model [Vaurio, 1994b]. In this 

case, the average unavailability captures the effect of different testing strategies and 

characteristics. 

The quantification of Relationships (2.2), (2.3), (2.5) and (2.6) is typically per-
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formed by using parametric models. CCF models re-parameterise components qk/m 

and Ak/m' for k = 1,2, ... , rn, in terms of other, more easily quantifiable quantities. 

Within the literature, a number of parametric models have been suggested based on 

either probabilities on demand, or failure rates. Essentially, depending on the overall 

framework of supporting assumptions, most parametric models can be used for both 

operating modes, provided that necessary changes are made in the definition of some 

of the model parameters, and, therefore, in the estimation procedures. 

In the following sections the main parametric models are presented. The formu­

lation of each model is described firstly in terms of probabilities on demand, and sec­

ondly in terms of failure rates, provided that the model assumptions allow for both 

parameterisations. Afterwards, estimation procedures for the model parameters are 

described. 

2.3.1 Notation 

qk/m . probability that specific k components fail on demand in a 

group of rn components, while the other rn - k comp~>nents 

do not fail 

Qk/m probability that exactly k components fail on demand in a 

group of rn components 

Ak/m rate at which specific k components fail in a group of rn 

components 

Ak/m rate at which exactly k components fail in a group of rn com­

ponents 

Pin probability that a given component fails on demand inde­

pendently in a group of rn components 

Pd probability that a given component fails on demand depen­

dently in a group of rn components 

P probability that a given component fails on demand (inde­

pendently or dependently) in a group of rn components 
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1tk/m probability that a given component fails on demand with 

other exactly k - 1 components in a group of m components 

lk/m rate at which a given component fails with other exactly k-

1 components in a group of m components 

QT probability that a failure event of any possible mUltiplicity 

occurs (dependent or independent) 

AT rate of failures (dependent or independent) 

Pk/ m probability that exactly k components fail dependently out 

of m, given that a failure occurs 

nk number of failure events of multiplicity k 

Nk number of component failures of multiplicity k 

nT total number of failures 

NT total number of component failures 

nin number of independent component failures 

T system observation time 

N number of system demands 

2.3.2 The Basic Parameter Model 

From a formulation point of view, the Basic Parameter (BP) model [Fleming et al., 

1983] constitutes one of the simplest approaches towards the quantification of the CCF 

basic events. The simplicity of its framework stems from the fact that no intermediate 

parameters are defined for the estimation of the basic events. 

Probabilities on demand 

For a system of m components the BP parameters are 

qk/m = P(specific k components fail on demand in a group of m components, 

while the other m - k components do not fail) 

fork= 1, ... ,m. 
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Parameter Estimation The data required for the estimation of parameters qk is 

of the form 

where nk is the number of events where k components are found unavailable on de­

mand (failure events of multiplicity k), out of in total N system demands. Note that 

no =N-Lblnk. 

Classical Estimation According to the internal symmetry property the failure 

probability is the same for all subgroups of the same size, and the probability that 

exactly k components are unavailable on demand in a group of m components Qk/m is 

expressed as 

Qk/m = (7)qk/m <*qk/m = (;) Qk/m (2.7) 

The likelihood function of the data set !1:. is a multinomial distribution with parameters 

The Maximum Likelihood Estimators (MLEs) for Qk/m are obtained by maximising 

the logarithm of the likelihood function f(!1:.\Q), under the constraint LbO Qk/m = 1, 

and they are 
" nk 
Qk/m= N' k=O, ... ,m 

Relationship (2.7) is invertible, thus 

Bayesian Estimation By adopting a Bayesian approach, alternatively, parameter 

vector Q = (QO/m, Ql/m, ... , Qm/m) is considered as a vector of random variables. The 

natural choice for the joint prior distribution f(Q) is the Dirichlet distribution, as the 
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later is conjugate with the multinomiallikelihood. The joint posterior f(Q!ll), in the 

light of data ll, is obtained by Bayes' law: 

and it is again a multinomial distribution, with parameter vector 

(do +no,dl +nl, ... ,dm+nm), where do,dl, ... ,dm are the parameters ofthe prior f(Q). 

The marginal posterior distribution on Qk/m is obtained as 

and the posterior on qk/m is obtained through the random variable transformation 

Failure rates 

For a system of m components the BP parameters are 

Ak/m := rate at which specific k components fail in a group of m components 

for k = 1, ... , m. 

Parameter Estimation The data required for the estimation of the Basic Param­

eters is of the form 

where nk is the number of events where k components are found unavailable on demand 

(failure events of multiplicity k) observed during system exposure time T. 

Classical Estimation Failures of specific k components in a group of m compo­

nents during a specified (fixed) interval T occur according to a Poisson process with 
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rate Ak/m. Thus. CCF events failing exactly k components occur according to a Poisson 

distribution with rate Ak/ m• where 

Ak/m = (7)Ak/m 

and the likelihood function of the data nk is a Poisson distribution with rate Ak/m• where 

(A . T)nk 
f( I A) k/m -Ak! ·T nk k/m = ,e m 

nk· 

. 
Maximising the logarithm of the likelihood function yields the MLE for the rate Ak: 

,.. nk 
Ak/m = T for k = 1, .. m 

The function f(x) = (~) is invertible, so the MLE for the group-specific rate Ak is 

for k = 1, .. m 

Bayesian Estimation In a Bayesian context and for fixed observation period T. a 

gamma distribution is used for the prior on Ak/m. Let f(Ak/m) := q (C,D). Once data 

is attained. the prior distribution f(Ak/m) is updated in the light of the new information: 

Due to the conjugate properties of the Gamma and Poisson distributions. the posterior 

f(Ak/m I (nk,T)) is again a gamma distribution with parameters C+nk and D+T. 

The posterior distribution on the group-specific rate Ak/m is now obtained through vari­

able transformation. which yields a gamma distribution with parameters c + nk and 

(7)(d+T). 
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Discussion 

The Basic Parameter model is the simplest approach for quantifying CCFs. The model 

parameters are defined in terms of the basic events and are directly estimated from the 

data. In other words, no intermediate parameterisation is used. The number of parame­

ters defined within the model depends on the number of components that comprise the 

group. 

2.3.3 The Beta Factor Model 

The Beta Factor (BF) model [Fleming, 1975] constitutes the most widely used model 

for the quantification of CCF basic events. Its popularity stems mainly from its simple 

framework. The BF model assumes that a constant fraction of the total failure proba­

bility on demand or failure rate is associated with CCFs. The BF parameters describe . 
the failure behaviour of a specific component, therefore it is a component-oriented ap-

proach. The theoretical structure behind the model acknowledges only two kind of 

failures: independent component failures, and CCF events that affect all components 

in the group. 

The BF model introduces parameter ~, which is defined as the conditional proba­

bility that a specific component fails due to a CCF, given that it fails, viz. 

~ = P( component fails dependently I component fails) 

Probabilities on demand 

Consider a redundant system of m components. Let Pin denote the probability that a 

component fails on demand independently in a group of components, and Pd denote 

the probability that it fails on demand dependently, along with all m components. It 

holds that 

Pin = (1 - ~)p and Pd = ~P 
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where P is the total probability that the component fails on demand. Therefore, P is the 

fraction of the total component failure probability attributed to dependent failures 

P = Pd Pd 
Pin+Pd P 

and 1 - P is the fraction of the total component failure probability on demand which is 

due to independent failures. 

Parameter Estimation The BF model is a component oriented approach; there­

fore, the data required for the quantification of each parameter needs to be in the form 

of component failures. The form of the component-specific data is: 

where nin is the number of times the component failed independently and nd is the 

number of times the component failed dependently, out of N component demands. 

Classical Estimation The likelihood function of the data set (nin, nd) may be 

represented by a binomial distribution with probability of success p, viz. 

where n = nin + nd. In a similar fashion, a Binomial distribution is used to model the 

likelihood of observing n in total failures out of the N component demands 

The MLE for P is determined by maximising the logarithm of the likelihood func­

tion f(nin,ndIP) 

p = nd = nd 
n nin +nd 

The MLE for P is determined by maximising the logarithm of the likelihood func-
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tion f(n,Nlp), giving 

Bayesian Estimation In Bayesian theory, the ~-factor is considered a random 

variable and a prior distribution is assumed for it. The beta family of distributions 

is used for the prior f(~), which is conjugate with the binomial family. The prior 

distribution is updated in the light of data (nin, nd) to yield the posterior distribution 

f(~lnin, nd): 

The posterior distribution for ~ is again a beta distribution with parameters A + nd and 

B + nin, where A and B are the parameters of the prior distribution on ~. 

Similarly, p is considered a random variable and a beta prior f(p) is assumed for 

it. In the light of data (n,N), the prior is updated to yield the posterior: 

f(p I n,N) cc f(n,N I p)f(p) 

which is again a beta distribution with parameters r + it and ~ + N - n, where r and ~ 

are the parameters of the prior distribution on p. 

Failure rates 

Consider a redundant system of m components. The BF model assumes that failures 

occur to the system at constant rates. A specific component may fail either indepen­

dently at rate Ain, or as part of a CCF event affecting all components at rate Ad. The 

independent and dependent failures are assumed to occur according to independent 

homogeneous Poisson processes with rates Ain and Ad respectively. Consequently, the 

overall component failure process is a superposition of the two independent Poisson 

processes with rate A, and we have 
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The fraction of the total failure rate which is due to CCFs is constant, and denoted with 

~, viz. 

Consequently, the fraction of the total failure rate which is due to independent failures 

is 1 - ~, and we have Ad = ~A and Ain = (1 - ~)A, for 0 :::; ~ :::; 1. Thus, it holds 

where T} is the time to failure (independently) of component i, i = 1, ... , rn, and Tm is 

the time to failure of all rn components due to a common cause. 

Parameter Estimation In a similar fashion as before, the data required for the 

quantification of each parameter needs to be in the form of component failures. The . 
form of the component-specific data is: 

where nin is the number of independent component failures and nd is the number of 

dependent component failures during component exposure time T. 

Classical Estimation The estimation of the ~-factor is similar to the previous 

case. The failing state of the component is being modelled as a Bemoulli experiment. 

The MLE for ~ is 

Consistently with the underlying framework of assumptions, a specific component 

fails (both dependently and independently) according to a Poisson process with pa­

rameter A. During a specified time interval [0, Tj, the number of failures has a Poisson 

distribution with parameter AT. Consequently, the MLE for A is obtained by maximis-
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ing the logarithm of the likelihood function of the data 

(A T)n 
f(n I A) = . e-')..·T 

n! 

and it is 

8ayesian Estimation The Bayesian estimation of the p-factor is performed in a 

similar way as in the model parameterisation in terms of probabilities on demand: a 

beta prior is defined on p, which is conjugate with the binomial data (nin, nd). 

For the Bayesian estimation of the total failure rate A, the likelihood function of the 

data f(n I A, T), where n = nin +nd, is modelled with a Poisson distribution. A gamma 

prior distribution is assumed for A. Updating the gamma prior with Poisson data yields 

a gamma posterior again, viz. 

f(A I n) cc f(n I A)f(A) := q (r +n,A+ T) 

where r and A are the gamma parameters of the prior distribution on A. 

Discussion 

In terms of assumptions, the Beta Factor model constitutes the simplest of the paramet­

ric models developed for the quantification of CCF basic probabilities; not surprisingly, 

it is also one of the most popular models for practical application. It has two distinc­

tive features: firstly, regardless of the number of components comprising the system, 

it requires the estimation of only two parameters; secondly, it does not acknowledge 

CCFs of various multiplicities (subgroups of different sizes), as CCFs always affect all 

components in the group. 

The first implication of the simplicity of the BF model is the fact that it is unable 

to distinguish between different system architectures. Because CCFs impact on all 

components, the contribution of CCF events to the overall unavailability of the systems 
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is the same, regardless of the system success logic. 

Secondly, the BF model is a conservative approach towards the quantification of 

CCF events. Since it is assumed that all CCF events are lethal (failing all components 

in the system), the CCF contribution to risk is always increased. Due to its pessimistic 

nature, the BF model is often used as a crude cut-off. 

2.3.4 The Multiple Greek Letter Model 

The MUltiple Greek Letter (MGL) model is one of the most well known models for the 

quantification of CCF basic events (see for example [Apostolakis and Moieni, 1987] 

and references therein). The MGL model is an extension of the Beta Factor model, 

developed in an attempt to take into account CCF events of different multiplicities, 

which occur to systems comprised by more than two components. Similarly to the Beta 

Factor model, the MGL model is a component-oriented approach; the MGL paramet~rs 

are defined in terms of conditional probabilities and describe the failure behaviour of a 

specific component in relation to the rest of the components in the group. 

For an rn redundant system of identical components, the k:th Greek letter of the 

model, is defined as 

Pk = P( a specific component fails dependently with other k - 1 or more 

components I it fails dependently with other k - 2 or more components) 

for k = 2, ... ,rn. 

Probabilities on demand 

In a group of rn components, qk/m is defined as the probability that specific k compo­

nents fail. Then, qk/m is the probability that a specific component fails dependently 

with other specific k - 1 components, which happens in (7 ~ ;) different ways. On 

this basis, the probability that the given component fails dependently with other exactly 
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k - 1 components is 

(m-I) 
1tk/m = k-l qk/m fork= 1, ... ,m (2.8) 

and the probability that the given component fails dependently with other exactly k - 1 

or more components is 

m m (m-I) E 1tx/ m = E x-I qx/m 
x=k x=k 

for k = 1, ... ,m (2.9) 

Therefore, the total failure probability of a given component, denoted with p, may be 

expressed as 

and we have 

m (m-I) 
p = E -1 qx/m 

x=1 X 

Pk = P( a specific component fails dependently with other k - 1 or more 

components I it fails dependently with other k - 2 or more components) 

(2.10) 

P( a specific component fails dependently with k - 1 or more components) 

P( a specific component fails dependently with k - 2 or more components) 

which yields 

fork=2, ... ,m (2.11 ) 

By solving the system comprised of equations (2.11) and (2.10), it can be shown 

that the basic probabilities qk/m are given by 

(2.12) 

where PI = 1, P2 = p, P3 = "t, ... , Pm+1 = O. Based on Relationships (2.8) and (2.12), 
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probabilities 1tk/m are expressed in terms of the Greek letters as: 

(2.13) 

Parameter Estimation Relevant data usually consists of counts of CCF events 

of different multiplicities, observed from the system when subjected to N demands. 

The form of the data is: 

where nk is the number of failure events of multiplicity k (k = 1, ... ,m). 

Classical Estimation Note that the MGL model is a component-oriented ap­

proach, therefore the event-count data must be considered from a component perspec­

tive. Therefore, the data set !1 is translated to NI = nl independent cOr.1ponent fa!l­

ures, N2 = 2n2 component failures as part of a CCF affecting two components, and so 
m 

on. The total number of component failures is Nr = L knk out of the m . N compo­
k=I 

nent demands. The joint likelihood function of the component-?riented data Nk with 

k = 1, ... , m is a multinomial distribution 

m 

f ((NI ,N2, .. · ,Nm) I (1tI/m, ... , 1tm/m)) oc IT 1t~im 
k=I 

(2.14) 

Note that the multinomiallikelihood implies that the component failures Occur inde­

pendently, even though they occur as part of CCF events. 

The MLEs for the Greek Letters Pk can be determined by substituting (2.13) into 

(2.14), taking the logarithm of the resulting expression, setting the partial derivative in 

terms of Pk equal to zero, and solving for Pk. We have 

m 

Lj·nj 
j=k Pk=-m---
L j.nj 

j=k-I 
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The probability that a component is found unavailable on demand for whatever 

reason is considered a success in a sequence of BernoulIi trials (component demands). 
m 

Consequently, the likelihood of the component being unavailable NT = E k· nk times 
k=I 

out of the m . N component demands is 

and the MLE for p is 

Bayesian Estimation In a Bayesian view, 11 = (1tI/m, ... , 1tm/m) is considered as a 

vector of random variables and, naturally, the prior on the vector of multinomial param­

eters is assumed to be a Dirichlet distribution, which is conjugate with the multinomial 

distribution, viz. 

where d I, ... , dm are the parameters of the distribution. The prior is updated through 

Bayes' law to yield the posterior f( (1tI/m, ... , 1tm/m) I (NI ,N2, ... ,ivm)), which is again a 

Dirichlet distribution with parameters (dI + NI, ... ,dm + Nm). The marginal posteriors 

on 1tk/m are determined as 

where N = (NI ,N2, ... ,Nm). Finally, the posterior on Pk is obtained through variable 

transformation based on Relationships (2.13). 

It is suggested ([Apostolakis and Moieni, 1987] and references therein) that omit­

ting to account for correlations amongst the MGL parameters in the estimation process 

does not necessarily lead to significant errors, at least when the redundancy is small. 

Alternatively, it is suggested to estimate the epistemic uncertainty on the Greek let­

ters separately, by using a beta prior for Ph which is updated with the binomial data 

( ti==k Nj, tj=k-I Nj) . 
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For the estimation of p, a beta distribution is assumed for the prior f(p). The prior 

is updated with the binomial data 

f(p I NT,mN) oc f(NT,m ·N) I p)f(p) 

to yield the posterior on p. The posterior is again a beta distribution with parameters 

r + NT and t:t. + m· N - NT, where rand t:t. are the parameters of f(p). 

Failure rates 

Suppose that a given component fails due to a CCF event affecting k components in 

total. The rate at which specific k components fail out of m is Ak/m; thus, Ak/m is the 

rate at which the given component fails with other specific k - 1 components, which 

happens in (m -1) different ways. Since the sum of independent Poisson processes 
k-l . 

is a Poisson process, the rate lk/m at which the given component fails due to a CCF 

which affects other exactly k - 1 components out of the m is: 

(m-I) 
lk/m = k-l Ak/m ~ 

and, the rate of CCF events that fail a given component along with other exactly k - 1 

or more components out of the m is: 

m m (m-I) 
Lk/m = x~ lx/m = x~ x-I Ax/m 

Given the failure of the given component dependently with other k - 2 components 

or more, Pk is the probability that the component fails dependently with other k - I 

components or more. Based on the properties of the Poisson process, it holds that 
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or 

L
k
/ m f. (:~ ;)Ax/m 

Pk= -

L
k
-

1
/
m X=tl (:~ :)Ax/ m 

fork=2, ... ,m (2.15) 

Finally, the failure process of a given component due to both CCFs and independent 

events is a superposition of the independent Poisson processes with rate 

m (m-I) ,A=]; x-I Ax/ m (2.16) 

Solving equations (2.15) and (2.16) in terms of the group-specific rates yields: 

(2.17) 

where PI = 1, P2 =~, P3 = "t, .. ',Pm+l = O. 

Parameter Estimation As previously, the event-count data needs to be consid­

ered from a component perspective. Consequently, thee data set 

where nk is the number of CCF events of mUltiplicity k observed during time 

T (k = 1, ... , m) is transformed to 

where Nk = k . nk is the number that a component fails as part of a CCF event of 

multiplicity k (k = 1, ... ,m), recorded during time m· T. 

Classical Estimation The classical estimation of the Greek letters is similar to 

the probability on demand case. For the estimation of the total component failure rate 

A, the likelihood of observing NT = 1:7::1 jn j component failures during the specified 
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interval [0, mT], is described by a Poisson distribution: 

The MLE for the overall component failure rate 'A, is 

Bayesian Estimation Bayesian estimation of the Greek letters is performed as in 

the probability on demand case. For the est!mation of the total component failure rate, 

'A, is considered as a random variable, whose prior f('A,) is a gamma distribution. If r 
and ~ are the parameters of the gamma prior, then the posterior distribution in the light 

of NT failures during fixed time mT is by Bayes theorem 

f('A, I NT) oc f(NT I 'A,)f('A,) 

and f('A, I NT) is again a gamma distribution with parameters r + NT and ~ + mT. 

Discussion 

It is important to note the the MOL model is a component-oriented approach. That 

implies that the Greek-letter parameters describe the failing behaviour of a given com­

ponent, in relation to the other components comprising the system. To be more precise, 

the k-th letter of the model Pk is the conditional probability that the given component 

fails in a certain way. If one wishes to express the conditional probability of k compo­

nents failing, given that k - 1 components fail, then the parameters need to be redefined 

as: 

fork = 1, .. ,m 
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instead of 

Pk= m (m-I) L j-I qj 
j=k-l 

for k = 1, .. ,m 

The MGL model is often referred to as a 'ratio model' [Vaurio, I994b]. The reason 

for this is the fact that the model parameters are defined in terms of conditional proba­

bilities; therefore, at the failure rate parameterisation of the model, these are expressed 

in terms of ratios of failure rates. As a result, the estimation of the Greek letters does 

not require the number of total demands or total system observation time. 

Note that the number of Greek-letter parameters that are defined within the MGL 

framework depends on the size of the system of interest, and the parameter values 

depend on the overall system redundancy. Finally, the estimation procedures for the 

MGL parameters are straightforward, provided that there is no uncertain!y inherent in 

the data and that information is available concerning all failure mUltiplicities. 

2.3.5 The Alpha Factor Model 

The Alpha Factor (AF) model is one of the most well-known models for the quan­

tification of CCF basic events (see for example [Siu and Mosleh, 1989]). The model 

describes the dependency conditions existing in the system under study by quantifying 

the occurrence of failure events that impact on component subgroups of different sizes .. 

The alpha factors of the model are defined in terms of conditional probabilities; in 

particular, for an m redundant system of identical components, the k-th alpha factor is 

the probability that a CCF event fails exactly k components, given that a failure event 

Occurs, viz. 

CXk = P( exactly k components fail I failure event occurs) for k = 1, ... , m 
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Probabilities on demand 

Consider a system of m components that is subject to demands. Parameters qk/m and 

Qk/m are related through relationship 

(2.18) 

and the probability that a failure event of any possible multiplicity occurs is expressed 

as 

Qr = t Qk/': = t (;) qk/m 
k=l k=l 

A given component may be found unavailable on demand due to either an inde­

pendent failure (with probability ql/m), or due to a CCF event that fails in total k 

components (k = 1, ... , m). In the latter case, the given component fails dependently 

with other k - 1 components in the group, which happens in (m -1) ;ays, and each 
k-l 

time with the same probability qk/m. Therefore, the total failure probability on demand 

of a given component, p, is: 

m (m-I) 
p= E k-l qk/m 

k=l 

Based on the definition of the alpha factors, it is 

P( exactly k components unavailable on demand) Qk/m 
ak = P( failure event occurs) = Qr (2.19) 

m m 

Note that E ak = 1. Moreover, E k· ak expresses the expected number of compo-
k=l k=l 

nents failing, given that a failure event occurs. It holds that 

m m Qk/m m m (m -1) p 
Ek.ak= Ek.-Q =-Q E k-l qk/m=m-

Q k= 1 .. k= 1 r r k= 1 r 

which leads to 

(2.20) 
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Equations (2.18),(2.19) and (2.20) yield the following expressions for the basic proba­

bilities on demand qk/m 

(2.21) 

Parameter Estimation Relevant data consists of counts of CCF events of each 

failure multiplicity recorded out of N system demands. The form of the data is: 

where nk is the number CCF events of multiplicity k (k = 1, ... , m). 

Classical Estimation The probability of observing the data is given by the multi­

nomial distribution, viz. 

, m 

( I ) - n. n nk f !1. g - " , uk . nl·n2··· .nm· k=l 
(2.22) 

m 

where n = E nk. The MLEs of Uk are determined by maximising the logarithm of the 
k=l . 

m 

likelihood function, under the constraint E uk = 1, and are 
k=l 

A • nk 
Uk = -, k= 1, ... ,m 

n 

For the estimation of the component failure probability p, the data needs to be 

counted from a component perspective. Therefore!1. is translated to nl times of single 

component failures, 2· n2 component failures as part of double CCFs, and so on. In 
m 

total, a single component failed on demand Nr = E k· nk times out of m . N component 
k=l 

demands. The probability that the component is unavailable on demand for whatever 

reason is described by a Bemoulli trial with probability of success p. Consequently, 
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the data (Nr,m·N) is binomial and 

J(Nr,mN I p) = ( Nr )pNT(1- p)m-N-NT 
m·N 

The MLE for p is obtained by maximising the logarithm of the likelihood function, 

and it is 

Bayesian Estimation Within a Bayesian context, 0.= (0.1, ... , am) is a vector of 
, 

random variables, having a joint prior. A natural choice for the joint prior distribution 

J(g) is the Dirichlet distribution, which is the multinomial counterpart of the beta 

distribution and conjugate with the multinomial distribution; therefore, updating J(g) 

in the light of the binomial data !1 through Bayes' theorem: 

yields again a Dirichlet posterior J(gl!1), with parameters (d) +n), ... , dm +nm ), where 

(d), . .. ,dm ) are the parameters of the prior Dirichlet. For the determination of the total 

component failure probability p, it is typical to assume a beta prior J(p). Recall that 

the data relevant to p is counted from a component perspective. The posterior on p is 

obtained through Bayes' theorem: 

J(p I Nr,m·N) oc J(Nr,m·N I p)J(p) 

The data is described by a Binomial distribution with success probability p and, due to 

the conjugate properties of the distributions, the posterior J(p I Nr, m· N) is Beta again 

With parameters r + Nr and ~ + m· N - Nr, where r and ~ are the parameters of the 

prior J(p). 
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Failure rates 

Consider a system of m components. Consistently with the internal symmetry assump­

tion, the process that fails exactly k components is the superposition of the group­

specific independent Poisson processes, with rate 

(2.23) 

where Ak/m is the rate at which specific k components fail. 

Similarly, all types of failure events occur according to Poisson process with rate 

AT = f (7) Ak/m 
k=1 

A given component may fail either independently at a rate AI, or dependently with 

other k - I components of the group, each time at a rate Ak. Then, the total component . 

failure rate considers all possible failure multiplicities, and it is equal to the sum of the 

superimposed Poisson processes with rate 

m (m-I) 
A= E k-I Ak/m 

k=1 

Given that a failure occurs, ak is the probability that k components fail due to a 

CCF. Based on the properties of the Poisson process, it holds that 

or 

(2.24) 

-
m 

We note that Lk= I ak = I; moreover, E k· ak expresses the expected number of com­
k=1 
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ponents failing, given that a failure event occurs. It holds that 

m m Ak/m m m (m - 1) A 1: k ' Uk= 1: k.-= - 1: Ak/m =m-
k=1 k=1 AT AT k=1 k-1 AT 

which leads to 

AT= mA 
L7:=1 k'Uk 

(2.25) 

Now, the basic rates Ak may be expressed in terms of the alpha factors as: 

(2.26) 

Parameter Estimation In a similar fashion as before, the relevant data is of the 

form 

where nk is the number of failures affecting k components (k = 1, ... , m), recording 

during system observation time T. 

Classical Estimation The alpha factors uk (k = 1, ... , m) are estimated in a similar 

way as in the probability on demand case. For the estimation of the total component 

failure rate A, the likelihood of observing NT = L~I jn j component failures during the 

specified interval [O,mT], is described by a Poisson distribution: 

The MLE for the overall rate A is 

~ = NT = L7:= 1 k· nk 
mT m·T 

Bayesian Estimation Bayesian estimation of the alpha factors Uk (k = 1, ... ,m) 

is performed as within the probability on demand parameterisation. 
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For the estimation of the total component failure rate )", )" is considered as a random 
/ 

variable, whose prior f{),,) is modelled with a gamma distribution. If r and ~ are the 

parameters of the gamma prior, then the posterior distribution in the light of the Poisson 

data (Nr,mT) is by Bayes theorem 

f()" I Nr) cc f{Nr I ),,)f{),,) 

and f{)" I Nr) is again a gamma distribution with parameters r + Nr and ~ + mT. 

Discussion 

Like the MOL model, the Alpha Factor model is also referred to as a 'ratio' model 

[Vaurio, 1994b], because the alpha parameters are defined in terms of conditional prob­

abilities or ratios of failure rates. 

The alpha factors are expressed in terms of the Basic Parameters as follows: 

a (m) qk/m 
k = k l-qo/m 

The difference between the two models is the fact that the estimation of alpha factors, 

unlike the basic parameters, does not require the number of total system demands or 

system observation time; counts of CCF events are sufficient. 

Finally, the number of alpha parameters depends on the size of the system of inter­

est, and the parameter values depend on the overall system redundancy. 

2.3.6 The Binomial Failure Rate Model 

The Binomial Failure Rate (BFR) model is one of best known parametric models. 

First developed by Vesely [Vesely, 1977] and further modified by Atwood [Atwood, 

1996], it is based on the Marshall-Olkin model [Marshall and Olkin, 1967]. The model 

postulates a 'shock' causal mechanism for the failures. In particular, it is assumed 

that common cause events occur to the system as a result of shocks, that lead to the 

dependent failure of more than one components simultaneously. The shocks infringe 
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on the system according to Poisson processes, and can potentially lead to failures of 
/ 

all multiplicities. The rate at which CCF shocks hit a component subgroup does not 

depend on the presence of other components, thus it is considered independent of the 

total number of the components comprising the system. 

Consider a system comprising of m components. Each component in the group fails 

independently at a rate Ain. Apart from the independent component failures, shocks oc­

cur to the system causing CCF events, at a rate p. It is assumed that at the occurrence 

of a shock, each component in the group fails independently of the other with proba­

bility p. Consequently, the probability that specific k components fail, whereas m - k 

survive, is pk (1 - P )m-k; and, the probability that exactly k components fail, whereas 

m - k survive, is given by the binomial distribution: 

( ; ) l (1 - p )m-k, for k = 1, ... , m 

Therefore, the rate of CCF events failing specific k (k = 1, ... , m) components, Ak/m' is 

determined as the product of the probability that specific k components fail, given the 

Occurrence of a shock, with the rate at which shocks occur, viz. 

Ak/m = l(1- p)m-kp for k = 2, ... ,m (2.27) 

and the rate of failures affecting exac;tly k components in the system is 

Consistently with the properties of the Poisson process, failure events of any multiplic­

ity occur according to a Poisson process with rate 

(2.28) 

Within the BFR framework, a given component fails individually in two different 

ways: independently, with rate Ain, or due to single CCF failures, with rate 
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p( 1 - p )m-I J.1. Consequently, the total rate of single failures for a given component 

is 

AI/m = Ain + p(I - p )m-I J.1 (2.29) . 

and the rate of single failures in the system is 

In case that a given component fails as part of a CCF event of multiplicity k, it fails de­

pendently with other k - 1 components with probability pk (1 - p )m-k and in (; ~ ;) 

ways. The total probability of the given component failing due to a CCF is 

m (m-I) E _ l(1_p)m-k=p 
k=I k 1 

Consequently, the total rate of failures of whatever type for a given component is 

Once the BFR parameters Ain, J.1 and p are determined, the basic rates Ak can be 

determined for any k = 1, ... , m. 

As it has been already mentioned, Atwood is responsible for further adaptations 

of the original BFR model. In particular, Atwood [Atwood, 1996] suggested a second 

kind of shocks, those that lead automatically to the failure of all the components com­

prising the system. These shocks are named lethal, in contrast to the non-lethal shocks, 

and occur with rate 0>. Similar assumptions apply to the lethal shock mechanism: lethal 

shocks occur independently to non-lethal shocks and independent failures, and infringe 

on the system according to a Poisson process. Consequently, the individual failure rate 

of a given component becomes 
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and the rate at which a specific group of k components will fail due to a CCF becomes 

Parameter Estimation 

The relevant for parameter estimation data is in the form of event-count data, i.e. 

where nk is the number CCF events failing k components (k = 1, ... , rn), recorded 

during system observation time T. 

Relationships (2.27) and (2.29) show that the individual failure rate of a given com­

ponent Al and the group-specific rates Ak/m, for k = 2, ... , rn, may be determined based 

on parameters Ain, P and p. Hence, the interest lies on the estimation of the three 

aforementioned parameters. 

Classical Estimation For the determination of p, let Nk be a random variable 

expressing the number of CCF events failing k components during system observation 

time T, for k = 1, ... ,rn. Then N = (NI ,N2, ... ,Nm ) is a vector of random variables with 

a multinomial joint distribution 

(2.30) 

where (PI / m,P2/ m, ... ,Pm/m) are the parameters of the joint distribution. According to 

the definition of the multinomial distribution, Pk/ m is interpreted as the probability that 

a CCF event of mUltiplicity k is observed, given that a failure event is observed. Con­

sistently with the fundamental assumptions of the BFR model, failures occur according 

to a Poisson distribution with rate AT. Based on the properties of the Poisson process, 

the rate of CCFs failing exactly k components is 
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thus, 
_ Ak/m _ (m) pk(l- p)m-k 

Pk/m - AT - k 1- (1- p)m 
(2.31) 

The MLE for p can be determined by substituting (2.31) into (2.30), taking the 

logarithm of the resulting expression, setting the derivative with respect to p equal to 

zero, and solving for p. 

Unfortunately, the rate of CCF shocks J.1 cannot be readily estimated from the data; 

in theory, J.1 describes shocks that can potentially lead to a failure event, whereas ob­

servations carry information regarding actual failures, only. As a result, J.1 is estimated 

based on the estimator for the visible shock rate AT. 

Let Mk be a random variable expressing the number of CCF events failing k com­

ponents during system observation time T, for k = 1, ... , m. According to the BFR 

framework of assumptions, CCF events of multiplicity k occur according to a Pois­

son process with rate Ak/m, thus Ml ,M2, ... ,Mm are independent Poisson distributed 

random variables. If NT is the number of failures of any kind, then MT = Ek=l Mk is 

generated by a process that is the superposition of independent Poisson processes, with 

rate the sum of the corresponding rates AT = Ek=l Ak/m. Following the MLE standard 

procedures, we have: 

A
A nl + ... +nm 
T=-----

T 

Using Relationship (2.28), J.1 is estimated as: 

In a similar fashion, if nin is the number of independent component failures during 

[0, T], then the MLE for the independent failure rate of a given component is 

Bayesian Estimation Consistently with the Bayesian approach, the free parame­

ters of the model Ain, P and AT are random variables, and probability distributions are 
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assumed for them. These distributions are updated in the light of the data. 

The number of failures during the pre-specified interval [0, T] is generated accord­

ing to a Poisson distribution. Specifically, the number of independent failures during 

fixed component observation time mT is generated by a Poisson process, and the like­

lihood function of nin is 

By assuming a gamma prior for Ain, and due to the ~onjugate properties of the gamma 

and Poisson distributions, the obtained posterior is again it gamma distribution with 

parameters a + nin and b + mT. where a and b are the parameters of the gamma prior. 

In a similar fashion, the total number of failures nT = Lk=l nk during fixed obser­

vation time T are generated from a Poisson process with rate AT, and their likelihood 

function is: 

f(nT I AT) = (AT' T)nT e-AT·T 
. nT! 

It is typical to use a gamma prior for AT. which again yields a gamma posterior with 

parameters a + nT and b + T, where a and b are the parameters of the gamma pri6r. 

Counting the data set from a component perspective. the event count data cor­

responds to mnT visible component shocks, where nT = Lb:l nk. which resulted in 

NT = Lk=l k· nk component failures. Considering that the data carries information on 

observable events only. the likelihood function of observing the aforementioned data 

IS: 

f(NT I p) = P(NT component failures out of mnT component shockslvisible shock) 

P(NT component failures out of mnT visible component shocks) 

P(visible shock) 

(m~T)pV(l_p)mnT-NT 
1- (1 - p)m 

Unfortunately, the determination of the posterior distribution on p in the light of data 
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(NT' mnT) requires numerical integration techniques. 

Once the distributions on Ain, AT and p, are determined, the distribution of /1, and 

thus, of the quantities of interest 

and 

are determined by using numerical approximation techniques. Atwood [Atwood, 1996] 

suggested an estimation methodology that accounts for the representation of uncer­

tainty, which is referred to as system-to-system and shock-to-shock variability. 

Discussion 

The BFR model, commonly characterised as the shock model, postulates a clear mech­

anism for the occurrence of CCF events. In particular, it is assumed that the cause 

of CCF events is shocks, which infringe on the system according to constant rates, 

and compel the components to fail either dependently (CCF events) or independently. 

Within this framework of assumptions, the model allows the possibility of shocks oc­

curring to the system, but without leading to any failures. Consequently, a distinction 

is made between visible shocks occurring at rate AT and invisible shocks occurring at 

rate /1( 1 - p)m. In a similar fashion, a component could fail independently at a rate 

Ain, or individually, but as the result of a shock, at a rate /1p( 1 - p )m-l. In practice it 

is often difficult to sufficiently identify and estimate the aforementioned differences, 

especially in cases where the amount of data available for quantification purposes is 

limited. 

The main difference between the BFR model and the rest of CCF models is that 

the former defines a functional relationship between the basic parameters of the model 

and the failure rates of different multiplicities. When using the BFR model, indepen­

dently of the size of the system under assessment, the model parameters that need to 

63 



be estimated are three: Ain, P and f.1. Once the analyst has determined estimators for the 

aforementioned quantities, it is possible to coherently extrapolate and calculate rates 

of events of any mUltiplicity, even those that have not been observed. 

Whereas classical estimation of the parameters of interest is relatively straight­

forward, Bayesian analysis requires certain cumbersome calculations. The reason is 

that, once the posterior distributions on Ain, P and f.1 are determined, one needs to use 

variable transformation techniques to determine the distributions on the quantities of 

interest Ak/m' for k = 1, ... ,rn. 

Finally, describing the failure probability for all compo~ents with the same param­

eter p entails some stringent assumptions. According to the model, the response of all 

components to shocks is identical, making it difficult to address cases where diversity 

or separation are present. 

2.3.7 Overview of other parametric models 

Several of the main parametric models presented earlier have been used as a plat­

form for the development of more sophisticated modelling structures. The aim of this 

section is to give a brief overview of other models suggested in the literature for the 

quantification of CCFs. 

The Multiple Beta Factor model, The Multiple Beta Factor (MBF) model [Hok­

stad and Comeliussen, 2004; Hokstad et al., 2005] is based on the simple Beta Factor 

model. The development of the model is based on an attempt to produce a method 

that, like the BF model, has a sufficiently simple framework for use in practice, whilst, 

unlike the BF model, manages to distinguish between the performance of different 

Success logics. 

Maintaining the 'conditional probability' approach of the ordinary BF model, the 

MBF model defines multiple betas for a redundant system of components AI, ... , Am in 

the following way: 

~k = P(ComponentAk+l fails I Components Ak n ... nAl fail), k = 1, ... ,rn 
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The ~-factor of the ordinary BF model can be directly derived from the MBF model, 

by assuming that ~k = 1 for all k = 2 ... m. Under this assumption, CCF events impact 

on all components of the system with probability qm/m = ~IP' where p is the total 

component failure probability, and ~l coincides with the ordinary ~. Without making 

this assumption, ~l coincides with the ordinary ~ only for systems of two components. 

For higher redundancy, ~ is the probability that all components fail, given the failure 

of a component, whereas ~l describes the probability that a specific other component 

is affected, given the failure of a component. 

As an extension of the ordinary BF model, which assum~s that CCF failures impact 

on all components of the redundant group, the MBF model manages to distinguish 

between different failure multiplicities. Indeed, the basic failure rates and probabilities 

are defined as follows: 

or 
m-k ( k) k-l+i 

qk/m = p. ~ (_1)i m ~ J] ~ j 
On this basis, the contribution of CCF failures to the failure rate or probability of a 

MooN system is of the form kCF = CMooN~IA or PCCF = CMooN~IP, where the coef­

ficient CMooN depends on the particul~r success logic. In other words, the MBF defines 

a beta factor ~NooM = CMooN~1 that represents the CCF contribution to the unavailabil­

ity of a system with a particular success logic NooM, by adjusting ~l accordingly. 

The MBF model has similarities with the MGL model, which is also an extension 

of the ordinary BF model. Likewise, it is a component-oriented approach, as the beta 

factors describe the failure behaviour of a specific component in the redundant group. 

However, the MBF model assumes that the failure behaviour of subgroups of com­

ponents does not depend on the presenc_e of other components; therefore, a group of 

m-I components behaves exactly as a system with m components, and the multiple 

beta factors apply to subgroups of components of the same size. This is a property that 
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the Multiple Greek Letters do not have. 

The main objective of the MBF model is to result in a methodology that is easy to 

implement and may be applied in cases where little data is available. To this end, 

generic values for the multiple betas are suggested in [Hokstad and Corneliussen, 

2004], based on operational experience. Alternatively, if sufficient observations are 

available, the mUltiple betas can be estimated statistically. 

The Common Load model The Common Load model [Mankamo and Kosonen, 

1992; Mankamo, 1994] is based on a load-resistance analogy for describing the failure 

mechanism. In particular, the structure of the model postulates a cause-effect interpre­

tation for the occurrence of failures: in an operating environment, load is imposed on 

a component; the component reacts to the load by manifesting a resistance, and a fail­

ure occurs when the resistance is not sufficient to withstand the load. When it comes 

to redundant systems of components, the load posed to the system is shared by all the 

components of the system equally, and a failure of certain multiplicity is determined by 

the number of components whose resistance is exceeded by the load. Both the load and 

the component resistance are described in terms of random variables, and probabjlity 

distributions are assumed for them. 

Within the Common Load model framework, the dependence that the redundant 

components manifest in their failing behaviour stems mainly from two factors: the 

common load infringed on the redundant components, and the identical resistance dis­

tributions of the components. The Extended Common Load model involves compara­

tively complicated computations and numerical analysis, making the use of a computer 

tool necessary. 

Underlying the Common Load model is the assumption of internal symmetry. Sym­

metry within the group of components implies that the components are identical, and 

they have resistances that are independent and identically distributed. The probability 

entities qk that are obtained from the use of the Extended Common Load model apply 

to all subgroups of size k, for k = 1, .. ,rn. Indeed, the failure probability of specific k 

components - without taking into account the state of the rest of the components in the 
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group - does not depend on the size of the subgroup: 

The model has a fixed number of basic parameters, independent of the size of the 

system. Once these parameters are determined, the model can be used to extrapolate 

or interpolate to all failure multiplicities. 

Cases of non-symmetry can be also modelled by removing the assumption"'ofiden-
>. 

tical distributed components. Moreover, dependencies amongst components may be 

accounted for, by removing the independence assumption of component resistan~es. 
~ , 

The Random Probability Shock model A fundamental assumption of the BFR 

model is that, given the occurrence of a CCF shock, the components of the system 

fail independently of each other with probability p, which is common for all compo­

nents. The Random Probability Shock (RPS) model [Hokstad, 1988] is based on the 

BFR model but attempts to 'address statistical variation on parameter p, which stems 

from external factors such as different degrees of vibration caused by different types 

of shocks (shock-to-shock variability) or from the heterogeneity of data coming from 

various sources (system-to-system variation). 

In a similar fashion as the BFR model, the RPS model assumes that the number 

of failed components k in a system of m components, given the occurrence of a CCF 

Shock, is a binomially distributed random variable with parameter p. As the name of 

the PRS model implies, parameter p is a random variable (random probability) that 

follows a beta distribution, i.e. 

P'" t]3 (r,s) 

As a result, the number of failed components has now a beta-binomial distribution with 

parameters r, s. A re-parameterisation is suggested as 

r 1 
Q= -- andD= ,O<D,Q< 1 

. r+s r+s+ 1 
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which results in a pair of more convenient parameters. Parameters Q, D describe the 

system defence against CCF shocks. Parameter Q may be interpreted as the mean 

probability that a component fails due to a shock, averaged over all possible shocks. 

Parameter D may be interpreted as a measure of dependence of the outcomes of shocks 

of various components. Therefore, the RPS model constitutes an intermediate stage of 

the BF and the BFR model: whereas the BF modeJ assumes complete dependency be­

tween components (if one component fails given a CCF shock, then all do) and the BFR 

model assumes independency (given a CCF shock, each component fails independently 

and with a probability p), the RPS model allows for various ,degrees of dependency. 

Kvam [Kvam, 1998] suggested a very similar model to the RPS model. Likewise, 
I_ 

a beta distribution is defined on the component failure parameter p. Similarly to the 

BFR model, given p, the number of CCFs of a particular multiplicity is a Poisson 

distributed random variable; by considering the uncertainty on p, the resulting dis­

tribution is a mixture of Poisson distributions, and the model is called 'a parametric 

mixture model'. The two models are aufond equivalent, since both models define p as 

a random variable following a beta distribution. 

The Trinomial Failure Rate (TFR) model The Trinomial Failure Rate (TFR) 

model [Han et al.: 1989] is also a generalisation of the BFR model, but towards a 

different direction. The majority of parametric models are characterised by a duality 

in the description of the component states: a component is classified as either failed or 

operating. The TRF model uses three component states: a component may be failed, 

operating or in a 'grey' condition. The grey condition describes an intermediate state 

between failed and operating, and applies to cases where the event reports are vague 

about the- co~ponent state, or describe it as partially or potentially failed. Based on 

similar fundamental assumptions as the BFR model, the TRF model defines parameters 

p, q and r as the probability of a component being in a failed, grey and operating state 

respectively, given that a CCF shock occurs to the system. Consequently, the number 

of failed components, given a CCF shock, is a random variable following the trinomial 

distribution. 
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The Coupling model A further modification of the BFR model is the Coupling 

model [Kreuser and Peschke, 2001; Kreuser et al., 2006]. The model shares the same 

causal structure as the BFR model, and it attempts to incorporate two additional sources 

of uncertainty in the modelling process, referred to as translation uncertainty and in­

terpretation uncertainty. Whereas translation uncertainty relates to the transference of 

CCF data coming from various sources to the system of interest, interpretation un­

certainty stems from the analyst's classification of the component failure states across 

particular classes (failed, degraded, incipient), which is often based on vague event 

reports and insufficient data. 

The Coupling model assumes that different CCF events may have different effects 

on the particular system of interest. The number of failed components, given the oc­

currence of a particular CCF shock j, is a random variable that follows a binomial 

distribution with parameter Pj, multiplied by a probability-filtering factor 

where TCCFj is the failure detection time (test interval), fj is a factor that expresse~ the 

applicability of CCF shock j observed in a different system, to the system of interest, 

and Tobs denotes the total observation time. Factor TCCF/j may be interpreted as the 
Tobs 

probability that a multiple failure, caused by CCF event j, can occur to the system of 

interest (translation uncertainty), but it may be also interpreted as a diagnostic coverage 

factor: the bigger the test interval is TCCFj' the less likely is the failure to be prevented, 

and therefore, the bigger the probability of multiple failures occurring. 

The determination of the component failure probability for phenomenon j, denoted 

by P j and referred to as 'coupling parameter', is based on a Bayesian approach. Sta­

tistical uncertainty on Pj, due to the limited amount of data, is modelled with a beta 

distribution, which is updated in the light of observations. Interpretation uncertainty 

is entered into the model through an impact vector, expressing expert judgment on the 

multiplicity of the event. The resulting posterior on P j, which considers both statistical 

and interpretation uncertainties, is a weighted mixture of updated beta distributions. 
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The Multi-class Binomial Failure Rate model The Multi-class Binomial Fail­

ure Rate model (MCBFR) [Hauptmanns, 1996] constitutes an attempt to incorporate 

additional technical information in the modelling process. The model suggests the 

classification of observed CCF events according to a technical taxonomy, and apply 

the BFR formalism to each class. In particular, the model defines class-specific condi­

tional component failure probabilities PI and failure rates AI, where I ELand L is the 

set of technical classes, to account for the different kinds of underlying failure mecha­

nisms. The classes are considered probabilistically independent, and the overall results 

are obtained as superpositions of the corresponding independent processes . . 
As with the Coupling model, the MCBFR model structure defines additional pa­

rameters applying to each observed event, to account for the subjective translation and 

interpretation of the CCF events. The parameters are an applicability factor, adapting 

the event to the particular system of interest, and an interpretation factor, expressing 

uncertainty in determining the multiplicity of the event. 

Both the MCBFR and the Coupling model attempt to generalise the BFR model and 

integrate expert judgment in their framework. However, whereas the Coupling model 

adopts a Bayesian approach for the estimation of the coupling parameters to account 

for the inherent uncertainty, the MCBFR model takes a frequentist approach. 

The Process-Oriented Simulation (POS) model In principle, the objective of 

most parametric models is to directly 'yield estimators of probabilities or rates, by im­

plicitly modelling the impact of CCF events on the system of interest. The Process­

Oriented Simulation (POS) model [Berg et aI., 2006] is an attempt to develop a more 

structural model, by explicitly modelling the CCF process. The model adopts a stochas­

tic simulatio~ approach to describe the number of components failing dependently at 

the occurrence of a CCF event. The process is described from the time of a root cause 

impact, until the time of detection of component failures. The estimation procedure 

for the parameters of the model includes approaches of heuristic nature, and further 

research is on-going. 
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2.4 Model quantification 

The use of a particular parametric model for the quantification of CCF events requires 

the statistical estimation of the model parameters. As seen in previous sections, es­

timation techniques suggested for most parametric models require the availability of 

system-specific data that describes failures of all possible multiplicities. To be more 

precise, for a system of rn components, the data necessary for parameter estimation is 

of the form 

(2.32) 

where nk is the number of CCF events that involve k components, k = 1, ... , rn, observed 

out of N system demands or during T observation time. However, the assumptions and 

requirements of elegantly developed mathematical theories do not always correspond 

to reality. Especially from a CCF standpoint, the data available hardly comes up to 

these expectations, different sources of uncertainty exist in the quantification of CCF 

parameters and expert judgment becomes an essential source of information. This 

is due to two particular characteristics of CCF events: the fact that CCF events are 

relatively sparse, and the fact that they are comparatively complex. These issues will 

now be described in more detail. 

2.4.1 Rarity of CCF events 

CCF events are in principle rare events. As a result, the number of observations rele­

Vant to a particular system or plant is particularly limited [Parry, 1996; Siu and Kelly, 

1998; Spitzer, 2006], and the accumulated data is insufficient for definite parameter 

estimatiqn procedures. The limited availability of CCF data led to the development of 

efforts towards the construction of generic databases of CCF events. By accumulating 

event reports from the wider industry, data banks are compiled. 

The compilation of data under a standardised scheme is a common approach in reli­

ability [Cooke and Bedford, 2002]. Within the nuclear industry in particular, examples 

of such initiatives include the Electric Power Research Institute Program [Worledge 
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and Wall, 1989]; the D.S. Nuclear Regulatory Commission (NRC) and the Idaho Na­

tional Engineering and Environmental Laboratory (INEEL) [Mosleh et al., 1998b,a] 

database that assimilates CCF-related events that have occurred in U.S. commercial 

nuclear power plants from 1980 through 1995; the ICDE Project2 which is an interna­

tional effort towards the collection and analysis of CCF events; and national initiatives 

such as Electricite de France [Meslin, 1988], and the German Risk Study for Nuclear 

Power Plants [Holtschmidt et al., 2006]. 

Using generic databases for parameter quantification for a particular study involves 

the creation of a pseudo-database. A database relevant to the system being modelled 

(target system) is constructed by pooling data from the generic databases and by 'cus­

tomising' it in relation to the system under assessment. The 'customisation' process 

relates to the adjustment of the observed CCF events, to account for differences be­

tween the system where the event actually occurred and the target system. 

To this end, the use of generic databases leads to a considerable amount of uncer­

tainty entering the data analysis, related to the applicability of the generic events to 

the specific system, and expert judgment becomes an essential source of information. 

Certain models, like the Coupling model and the MCBFR model, define applicability 

factors for each event in their structure, in an attempt to incorporate expert judgment 

and bridge the existing gap between model requirements and data availability. . 

Additionally, methodologies have been suggested to address quantitative differ­

ences between the actual and target system, namely the difference in the sizes of the 

two systems (levels of redundancy). Statistical techniques called mapping procedures 

attempt to transform the data so that it represents a system of the same size as the target 

system. The transformation process is called 'mapping up', when the size of the actual 

system is smaller than this of the target system, and 'mapping down' when the size 

of the actual system is larger than this of the target system. The first effort of map­

ping procedures can be found in [Fleming et al., 1988, 1989], where mapping down 

rules are presented based on the framework of the BFR model. Vaurio [Vaurio, 1994b] 

Suggests mapping down rules defined directly on CCF rates. Mapping up processes 
---~----------------------

2www.nea.frlhtml/jointprojlicde.html 
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are suggested in [Mosleh et al., 1998c]; nevertheless, they involve additional assump­

tions and judgment and they are not consistent with the mapping down rules [Vaurio, 

2006; Johanson et al., 2003]. In [Vaurio, 2006] and [Kvam, 1996] mapping rules are 

suggested for both directions. 

2.4.2 Complexity of CCF events 

CCF events are complex events. Due to this complex structure, event reports are often 

vague or incomplete [Mosleh et al., 1994]. Thereby, understanding the actual fail­

ure mechanism, identifying the potential root causes or the 'Coupling mechanism that 

propagated the failure amongst redundant components is often a process that involves 

subjective interpretation of the event description on behalf of the analyst. To this end, 

lack of sufficient information unavoidably leads to the incorporation of uncertainties in 

the analysis of CCF events. 

Uncertainty also stems from assigning a failure multiplicity to the CCF event. Even 

though most parametric models describe the status of a given component as failed 

or operating, in reality intermediate component statuses are observed, characterised 

by different degrees of degradation. Information on the components statuses is often 

included in verbal descriptions, which need to be classified accordingly in order to 

be included in quantitative analysis. This process introduces a considerable amount 

of uncertainty in the data analysis process, referred to as interpretation uncertainty 

[Kreuser et al., 2006]. 

To provide approaches to data analysis that involves the use of insufficient and 

vague information, Impact Vector methodologies have been suggested. Impact vec­

tors, firstly introduced in [Fleming et al., 1988, 1989], are techniques developed to 

incorporate expert judgment. The methodologies address issues such as intermediate 

component statuses, dispersal of component failures in time and uncertainty regard­

ing the existence of a shared cause. Moreover, applicability factors are suggested to 

account for the transference of a generic event within the particular context [Mosleh 

et al., 1994]. Within this context quantitative values correspond to qualitative cate-
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gories given by the analyst. By using appropriate formulae, adjusted CCF event counts 

are subjectively determined, and 'virtual' numbers of failures are used as an input for 

the quantification of parametric models. 

In the same vein, the use of sUbjective weights to account for interpretation uncer­

tainties is suggested in [Vaurio, 1994a, 2002]. For CCF event i, a weight is defined 

as 

wj(k/m) = Pr(k out of m components failed in observed event i) 

Instead of using 'virtual' numbers of CCF events as an input in estimation formulae, 

Vaurio suggests the determination of a discrete p.d.f. for the number of observed fail­

ures determined based on subjective weights wj{k/m) (k = 1, ... , m). The discrete p.d.f. 

is used to determine the posterior distribution on the model parameters. 

Similarly, within the context of the Coupling model [Kreuser and Peschke, 2001], 

subjective probabilities are defined for CCF event i in terms of 

wj(k/m) = Pr(k out of m components would fail on an additional demand 

in observed event i) 

based on the event classification used in Impact Vector methodologies. The updated 

uncertainty distribution on the coupling parameter Pj, in view of the CCF event i, is 

a mixture of updated beta distributio~s with weights wj(k/m). Moreover, in [Kreuser 

et aI., 2006] an aggregation methodology is suggested within the context of the Cou­

pling model, to combine degradation weights given by different experts. 

2.4.3 International Common Cause Failure Data Exchange (ICDE) 

Project 

The International Common Cause Failure Data Exchange (ICDE) Project constitutes 

a structured effort towards the development of a CCF generic database. The project 

commenced in 1994, when the countries-members of OECDINEA decided upon an 

official attempt to encourage and establish a framework for multilateral co-operation 
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in the collection and analysis of data relating to CCF events. The countries-members 

of the Project at present, and the organisations representing them in the Project group, 

are given in Table 2.1. 

Table 2.1: ICDE participating countries 

Country Organisation 
Canada AECB 
Finland STUK 
France IPSN 

Germany GRS 
Japan JNES 
Korea KAERI 
Spain CSN 

Sweden SKI 
Switzerland HSK 

United Kingdom NIl 
United States NRC 

Amongst the objectives of the ICDE Project is to improve the understanding of 

CCF events by generating qualitative insights into root causes and coupling factors, 

and to quantitatively use the ICDE data in a PSA framework [Johanson et al., 200~]. 

A general problem that arises when quantitatively using a generic database is the 

heterogeneity of the accumulated event reports. This problem becomes even more 

substantial when the event reports are assimilated form across different countries. The 

reason is that there are usually national guidelines towards CCF event recording and 

interpretation of data, and that the CCF event reports are written in the native language 

of the country where the event was observed. Consequently, in order to create a generic 

database serving for both qualitative and quantitative applications, the issue of data 

heterogeneity needs to be considered. 

In an effort to achieve uniformity of the quantitative data, the ICDE Project devel­

oped a common format for coding national CCF data amongst the countries-members 

[Werner et al., 2004]. Each observed CCF event in the database is reviewed and, a num­

ber of features are assigned accordingly, consistently with the ICDE coding guidelines. 

These features include a root cause and a coupling factor, a degradation status for each 
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component, a time factor, and a shared cause factor. The time factor is a description 

of the time difference between the component failures. The shared cause factor is a 

measure of the uncertainty that the components failed indeed due to a shared cause. 

Each of qualitative description corresponds to a quantitative value, allowing for the use 

of the information in statistical analysis. 

On this basis, the ICDE database constitutes. a particularly important advantage 

towards the availability of CCF data. 

2.5 Discussion 

Thus far, the main parametric models have been presented in detail, and an overview 

is given of a number of other CCF models suggested within the literature. This section 

comments on the CCF models presented in terms of three main facets: data require­

ments, model properties and model application. 

2.5.1 Data requirements 

As described in the previous section, the analysis of CCF data involves a considerable 

amount of uncertainty, and the common feature of all the parametric models is the diffi­

culty in the parameter estimation process [Spitzer, 2006]. Compared to most paramet­

ric models, the Beta Factor model, being based on a simple framework of assumptions, 

has comparatively limited data requirements. This is the reason of its popularity within 

the scope of reliability analyses. 

Except from the Beta Factor model, the data typically required for the quantifi­

cation of most parametric models given in (2.32) describes failures up to the high­

est possible multiplicity. The quantification of component-oriented approaches, like 

the Multiple Greek Letter model, demands the data to be counted from a component­

perspective: data (nl, .... ,nm) is translated to (nl,2n2, ... ,mnm), where knk is the num­

ber of component failures that occurred as part of an event failing k components in total. 

The transformed data is expressed by a Poisson or a Binomial distribution, depending 
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on the model parameterisation, which assumes that the failures occur independently. 

However, these failures have not occurred independently, but rather dependently, and 

particularly in k-plets, as a result of a CCF event. The consequence is that, when up­

dating a prior distribution in the light of knk failures instead of nk, the variance of the 

posterior is smaller, implying that the information in the data is stronger. The result of 

this translation process is to artificially increase the content of the data set [Apostolakis 

and Moieni, 1987]. 

The Binomial Failure Rate model assumes the ability to distinguish between inde­

pendent single component failures and single component failures due to a shock, which 

could potentially lead to failures of higher multiplicity, but it did not. In addition, At­

wood's extension of the model assumes that a failure event involving all components 

may have occurred due to two different causes: it is either the result of a lethal shock, 

or it may be caused by a non-lethal shock that coincidentally resulted in the failure 

of all components. Thus, distinction between those two different events is necessary, 

and the data required for the quantification of the model's parameters needs to account 

for this. In the framework of models like the Alpha Factor and the Multiple Greek 

Letter model, these distinctions are not essential; all shocks are of the same kind'and 

the probability or rate of a specific subgroup of components failing is determined only 

by the number of the components comprising the subgroup. In other words, a single 

failure probability or rate is assigned to an event of a specific multiplicity, regardless 

of the cause that triggered it. 

The parameters of the Alpha Factor model and the Multiple Greek Letter model 

are defined in terms of conditional probabilities. These models are also referred to 

as 'ratio' models [Vaurio, 1994b]. The advantage of ratio models is the fact that the 

total number of demands or observation time is not required for the quantification of 

the model parameters; counts of CCF events are sufficient. However, the MGL model 

involves comparatively complicated parameter estimation techniques, especially when 

adopting a Bayesian approach. The alpha-factors may serve as an intermediate stage 
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for the estimation of the Multiple Greek Letters. Indeed, 

f (~~ :)qj/m f jUj 
j=k J j=k 

Pk = m (m _ 1) = ---m -

L '-1 qj/m L jaj 
j=k-I J j=k-I 

for k = 1, .. ,m 

where Pk and ak are the k.- th Greek letter and alpha factor respectively. 

In general, the statistical analysis performed for parameter estimation of the CCF 

models involves a number of particularities. In dealing with the 'data-gaps' existing 

between available observations and model requirements, models have been developed 

that use expert judgment in either the statistical analysis or the model structure it­

self. Examples of the latter case are the Coupling model and the Multi-Class Binomial 

Failure Rate model, which define applicability factors in order to account for existing 

differences between the system where the event was actually observed and the target 

system. In addition, the Coupling Model makes use of vectors defined by experts to 

subjectively describe the multiplicity of a particular CCF event. 

2.5.2 Model properties 

The construct of each model and the assumptions made within each context assign to 

the model certain features. An important feature within the CCF context is the 'sub­

group invariance' property of the model parameters [Johanson et aI., 2003]. When the 

parameters of a model are subgroup invariant, then these parameters are the same for 

Subgroups of components. In other words, it is assumed that the failure state of a given 

component does not depend on the failure state of the other components comprising the 

Subsystem, and the model parameters do not depend on the overall size of the system. 

As a corollary, the existence of the subgroup invariance property allows for the 

model to apply the same parameters in case where only part of the system is chal­

lenged. To this end, the effect of decreasi~g the level of multiplicity could be explored, 

without having to re-estimate the model parameters. In general, parametric models are 

black-box modelling approaches, with a limited diagnostic value. The parameters of 
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the Binomial Failure model and the Multiple Beta Factor model are subgroup invari­

ant, whereas the Multiple Greek Letter model and the Alpha Factor model lack the 

subgroup invariance property. 

The Binomial Failure model shares a practical advantage. Typically, for most of the 

parametric models, the number of the model parameters to be estimated is equal to the 

redundancy level of the system under assessment. The Binomial Failure model defines 

a functional relationship between the basic parameters and the failure rates of different 

multiplicities, requiring the estimation of a fixed number of parameters, regardless of 

the system size. Once these parameters are estimated, it is possible to coherently ex­

trapolate and calculate rates of events of any multiplicity, even for unobserved events. 

This property is also shared by models that are based on the BFR model, like the Ran­

dom Probability Shock model, and models that are based on a load-resistance analogy 

like the Common Load model. Table 2.2 highlights the characteristics of the main 

parametric models. 

Table 2.2: Comparison of main parametric models 

Model Subgroup Component System Single 
invariance orientation architectures CCFs 

BP J 
BF J 

BFR J J J 
AF J 

MOL .J J 

2.5.3 Application 

The CCF parametric models are generally applied to redundant systems of similar 

components. However, certain features render specific models more applicable within 

particular contexts. In particular, the Beta Factor model does not account for CCFs of 

Various multiplicities, as it assumes that CCFs affect all redundant components in the 

system. Due to its pessimistic nature, it is usually used as a crude cut-off model in 

highly redundant systems. 
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The Basic Parameter model, the Alpha Factor model, the Multiple Greek Letter 

model, the Binomial Failure Rate model, and the models that are based on these, are 

generally applicable models. However, the BFR model is not parameterised in terms 

of probabilities on demand. The causal structure of the model assumes that depen­

dent component failures occur 'simultaneously', or in very close periods of time. The 

Extended Common Load model accounts for the increasing dependency in the fail­

ure behaviour of components that are part of big groups. The additional extreme load 

probability part allows to model highly redundant structures that demonstrate strong 

dependence. Therefore, the model is applicable to systems of particularly high redun­

dancy. 

2.6 Conclusion 

Parametric models constitute an integral part of the quantitative stage of the overall 

procedural framework for CCF treatment. They are used for the quantification of the 

impact of CCF events on the system reliability, which is expressed in terms of basic 

eVents included in the system logic model. Depending on the application, the CCF 

basic events may be expressed either in terms of probabilities on demand, or in terms of 

failure rates. In general, the use of failure rates allows for determining time-dependent 

unavailability, and take into account the effect of testing schemes, which cannot be 

defined when using probabilities on demand. 

The parameterisation used within the analysis is related to the operational mode of 

the system. For systems that operate continuously, the CCF quantification is based on 

failure rates. However, for quantifying the CCF basic events of a system on demand, 

it is suggested that different parameterisations are used for different failure modes. On 

the one hand, failure-ta-start events are caused by dormant failures and that are only 

revealed by the demand; in this case, failure rates are considered applicable because 

time-dependent unavailability can be defined. On the other hand, failure probabilities 

on demand are more suitable for the quantification of failures that are caused by the 

demand, which are classified as failure-ta-run events. 
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This chapter provided an overview of models suggested in the literature for CCF 

quantification. The main parametric models, namely the Basic Parameter model, the 

Beta Factor model, the Multiple Greek Letter model, the Alpha Factor model and the 

Binomial Failure Rate model, were presented in detail. Certain CCF models have been 

suggested initially in terms of either probabilities on demand, or failure rates, deter­

mining the area of their application. Essentially, depending on the overall framework 

of supporting assumptions, most CCF models can be used for both operating modes, 

provided that necessary ~hanges are made in the definition of some of the model pa­

rameters, and, therefore, in part of the estimation procedures. Within this chapter 

the mathematical structure of the aforementioned parametric models was defined with 

relevance to two settings: parameterisation in terms of probabilities on demand and 

parameterisation in terms of failure rates. Moreover, parameter estimation techniques 

Were presented regarding each model parameterisation. Finally, this chapter gave a 

less detailed overview of other CCF parametric models suggested within the literature, 

and discussed the presented models in terms of three facets: data requirements, model 

properties and application. 

In general, parametric models are black-box approaches to CCF modelling; CCF 

mechanisms are not represented explicitly, and the models are mostly characterised 

by their input, properties and output. The practical use of parametric models relates 

to a particular issue: the gap that exists between the data requirements of the models 

and the amount of available information on observed CCFs. This is mainly the reason 

that methods like the Beta Factor model constitute popular approaches: the simplicity 

of the model may lead to limited predictive capability, however it also entails limited 

data requirements. To this end, expert judgment is an essential source of information. 

The Unified Partial Method (UPM) has a practical advantage: having been initially 

quantified by experts, UPM can be applied by less knowledgeable analysts by simply 

calibrating the systems across 'a set of factors, and yields a beta factor characterising 

the system under study based on generic scores. The next chapter focuses on UPM. 

The framework of the methodology is presented, and its advantages and disadvantages 

are discussed. 
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Chapter 3 

The Unified Partial Method for 

Common Cause Failure Modelling 

3.1 Introduction 

Chapter 1 presented the overall framework for the treatment of CCFs as performed in 

PRAs. In Chapter 2, the quantitative treatment of CCF events was described, an~ an 

overview was given of the main parametric models used within this context. The main 

models were presented in more detail, and others were briefly reviewed. The chapter 

concluded with a discussion of the parametric models suggested within the literature, 

which revealed the existing gap between data requirements of the models and data 

availability. Due to the nature of CCF events, a considerable amount of uncertainty is 

entered into the data analysis, resulting in expert judgment being an integral part of the 

process. 

The aim of this chapter is to present the Unified Partial Method (UPM) [Brand 

and Gabbot, 1993] for CCF modelling, which constitutes the most frequently applied 

method for Common Cause Failure modelling in the UK [Smith, 2000]. UPM is a 

twofold methodology that employs the structures of the Partial Beta Factor method for 

component level analysis, and the Cut-Off method for system level analysis. It is a 

methodology that has been developed within the UK by the AEA Technology, and is 
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an extension of the Rolls Royce and Associates Partial Beta Factor Model [Rolls Royce 

and Associates, 1986]. 

The popularity of UPM stems from the fact that it is a methodology which is appli­

cable in cases where available data is particularly limited. By using generic scores and 

scoring tables, UPM yields a beta factor characterising the vulnerability of the system 

against CCF events. However, UPM is based on an additive weighting factors scheme. 

The implications of this feature are highlighted, and its conceptual appropriateness is 

explored. For this purpose, a connection is drawn between the UPM additive weight­

ing factors scheme and the additive value function approach of Multiattribute Value 

Theory (MAVT). 

This chapter is structured as follows: Sections 3.2 and 3.3 present the Partial Beta 

Factor (PBF) and the Reliability Cut-Off method respectively, which constitute the 

platforms on which UPM has been developed. Section 3.4 presents the UPM frame­

work and Section 3.5 discusses its advantages and disadvantages. Section 3.6 explores 

the additive weighting scheme of UPM. Finally, Section 3.7 concludes the chapter. 

3.2 Partial Beta Factor model 

Like the Beta Factor model, the Partial Beta Factor (PBF) model has been developed 

for application at a component level. The model formulation defines a ~-factor in an 

identical way as the ordinary Beta Factor model; that is, as the conditional probability 

that a specific component fails dependently, given that the component fails on demand 

or due to a shock. It furthermore assumes that the ~-factor is decomposed to a number 

of partial ~-fa~tors (~j' j = 1,2, ... ) that express contributions from different system 

features (subfactors). These features are related to design and operational aspects of 

the system, which are acknowledged as to be able to influence the occurrence of CCF 

eVents. 

Within the literature, a number of Partial Beta Factor models have been suggested. 

Some of them determine the overall ~-factor according to an additive scheme, whereas 
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Table 3.1: RRA model subfactors 

Design I Operation I Environment I 
Separation Procedures Control 
Similarity Training Tests 

Complexity 
Analysis 

other use a multiplicative scheme [Ansell and Phillips, 1994]: 

Additive: LP j 
j 

Multiplicative: TI /3 j 
j 

The additive model has an advantage over the multiplicative one: the bigger the value 

that a sub factor receives, the more significant is the contribution to the overall p-factor. 

Therefore, the model allo~s the identification of the dominant contributors: 

Rolls Royce and Associates (RRA) developed a refinement of the Partial Beta 

methodology, to result in a model for use with standard systems [Rolls Royce and 

Associates, 1986]. The RRA Partial Beta Factor model decreases the number of sub­

factors to eight (See Table 3.1). The methodology requires the analyst to make judg­

ments, based on a set of standard criteria, and assign a level to each sub-factor. Each 

level corresponds to a score, and the overall p-factor is determined as a function of 

these scores. The scores used within the methodology are determined in such a way, 

so that the upper and lower limits of the overall /3-factor agree with observations and 

generally accepted values. 

The overall p-factor obtained from the Partial Beta Factor model is defined in ex­

actly the same way as the ordinary p-factor. Thus, it is used in exactly the same way. 

Bowever, it is worth mentioning that the two factors are estimated in a different way. 

In particular, the former is determined based on expert judgment, whereas the later is 

estimated based on observations. 
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3.3 Reliability Cut-Off 

The Reliability Cut-Off method is a system level approach. It aims to assess the reli­

ability of the target system, based on considerations of the vulnerability of the system 

as a whole, directly, without identifying the partial groups of components that are po­

tentially subject to CCFs. The model yields a direct estimate of the system failure 

probability on demand for all failures, without distinguishing between dependent and 

independent ones, based on the assumption that the contribution of dependent failures 

dominates the result. 

Table 3.2: Cut-Off features: + indicates that the particular feature decreases the potential for failure; 
- indicates that the particular feature increases the potential for failure. 

I System Features I Assessment I 
Redundancy /Diversi ty + 

Fail-safe design + 
Low failure rate technology + 

Unfamiliar/unreliable components + 
Difficult to test -

Complexity -
Need for human action -

The philosophy behind the Cut-Off method is partially similar to this underlying 

the PBF model, in the sense that it requires the analyst to make assessments across a 

number of criteria related to particular features of the system [Boume et aI., 1981] (see 

Table 3.2). The main assumption underlying this methodology is that the unreliability 

of a system due to CCFs can never exceed some limiting values, determined by the 

system design. A list is provided of pre-assigned limiting failure probabilities to some 

specific basic categories of system designs. 

The Cut-Off method is usually used when no adequate relevant field data is avail­

able. The estimation of the system Cut-Off does not involve system-specific data, but 

it rather provides a rough indicator of the ()verall system vulnerability. 
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3.4 Description of the Unified Partial Method (UPM) 

The UPM framework [Brand and Gabbot, 1993] is a refinement and extension of the 

RRA model, integrating in a single methodology a system level and component level 

approach. The methodology is two-fold, producing either a Partial Beta factor or a 

Cut-Off, depending on the particular application. During the implementation of the 

methodology, the analyst decides which of the two methods to use, depending on the 

requirements of the reliability assessment and the data available. 

As soon as the analyst has decided upon the physical boundaries of the system . 
under investigation, slbe is encouraged to fill in a Pre-Analysis Table. The objective 

of this step is to identify the available data and the time to be spent on the analysis. 

At this point a judgement concerning the appropriate level of analysis has to be made, 

whether Cut-Off or a Beta factor will be used. 

I UPM I Defences 

1 I I I I I I I 
Environmental Environmental Analysis Safety Separation Redundancy Understanding Operator 

Control Tests Culture & Interaction 
Diversity 

D1 D2 D3 D4 D5 D6 D7 D8 

Figure 3.1: UPM subfactors 

Regardless of the level of the analysis, at the next step the analyst is required to 

calibrate the system across a number of subfactors. These subfactors describe different 

elements of the defence of the system towards CCFs, and are related to design, oper­

ational and environmental aspects of the system. In total they count to eight (Db for 

k === I, ... , 8)(Figure 3.1). 

Each subfactor Dk takes one out of five possible levels Xk (Xk E {1 , .. 5} ) correspond­

Ing to levelsA,B, ... ,E respectively. The analyst decides the level that best describes the 

target system, by consulting a related table with a set of standard criteria. To each as-
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Figure 3.2: UPM structural framework taken from [Brand and Gabbot, 1993] 

signed subfactor level corresponds a generic score Sk(Xk), deduced from past research. 

Finally, the overall cut-off (Q) or partial beta factor (~), is obtained as a linear function 

of the scores, characterising the (sub)system under assessment: 

SI (XI) + ... +ss(xs) 
d 

(3.1) 

Where dE R.+ is a scaling constant. Independently of the level of assessment, whether 

a beta factor or a cut-off is required, the analyst follows the same procedural steps. The 

only difference in the framework between the two assessment levels is the category­

Weighting scheme used, and therefore, the denominator in the linear model described 

in Relationship (3.1). The ranges of the two obtained estimates are 1 0-2 ~ Q ~ 10-6 

and 0.302 ~ ~ ~ 0.00102. An overview of the UPM structure is given in Figure 3.2. 
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The model structure is based on an exponential relationship between the level con­

figuration and the contribution to the ~-factor, based on the assumption that improve­

ments on the defence of the system against CCF events become gradually more diffi­

cult. 

Example Consider a system comprised of thTee identical components with 2003 

success logic. The assessment is at a component level, therefore UPM is used to de­

termine a Beta factor. The system is assessed across each sub-factor by consulting the 

appropriate tables, and categories are assigned accordingly .. The classification of the 

system across each subfactor is decided based on expert judgment, and it is followed 

by a justification of the choice. The sub-factor categorisation is given in Table 3.3. 

Table 3.3: System assessment across UPM subfactors 

I Sub-factor Judgment I Sub-factor Category I Score I 
Redundancy/Diversity A 1750 

Separation B 580 
Understanding D 25 

Analysis D 25 
Operator Interaction D 40 

Safety Culture D 20 
Environmental Control C 100 
Environmental Testing D 15 

The estimator for the ~-factor is: 

R= 1750+580+25+25+40+20+100+15 =0051 
jJ 50000 . (3.2) 

The obtained P is used in an identical way as the ordinary ~ factor (See Chapter 2, 

Section 2.3.3). 
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3.5 Discussion 

At the moment, UPM constitutes the most widely used method within the UK nuclear 

industry towards the analysis of CCFs I, and it owes its popularity to a number of 

distinctive features. In contrast to the other parametric models, UPM incorporates 

qualitative aspects of the system when assessing its defence level, such as information 

concerning operator interaction and other system-specific characteristics. During the 

application process of the model, the analyst gains insight into the potential for CCF 

events that may indicate possible modifications of the particular defences in order to 

increase system reliability. Therefore, UPM is a tool that supports the decision-making 

process. 

Moreover, UPM offers a single systematic framework for both system level and 

component level assessments. It is a step-by-step methodology and its framework is 

accessible to a non-specialist analyst as well. The application of UPM is based on 

a standard guide, making it a recordable and reviewable methodology. Finally, the 

fact that the scoring of subfactor levels is based on a generic table of values allows the 

UPM Partial Beta to be used when there is limited availability of CCF data, whereas the 

UPM Cut-Off does not require any system-specific data for its application. However, 

the implementation of the Cut-Off method has been criticised [Ansell and Phillips, 

1994, p.173]. It is argued that the intention of the development of the Cut-Off model 

has been to result in a tool used for indicative purposes, rather than as a methodology 

that yields a reliability estimator. 

Despite the advantages of UPM, some weak features are identified. The weights 

Used for the different defences were determined based on discussions with engineers 

[Bumphreys, 1987], whereas the actual scores were deduced so that the overall beta­

factor and Cut-Off were falling into particular ranges. The extensive use of expert 

jUdgment within UPM does not constitute a thorny issue; the nature of CCFs makes it 

necessary and inevitable. However, the use of expert judgment should be done within 

a well-documented and structured methodological framework. The output of UPM 
--~---------------------

I Reactor Nuclear Research Index 2005. Technical Area: Probabilistic Safety Analysis. Issue: PSA 
Methods. Issue Number 11.2. Open Technical Areas. Health and Safety Executive. 
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consists of a point value, representing the estimated beta factor. In view of the fact that 

this value has been determined based on expert judgment, the epistemic uncertainty 

inherent in this assessment is not captured by the model. 

Moreover, changes in the design and operation of the system raise the issue of 

recalibration of the UPM generic scores. Another criticism that UPM has received is 

being a rather inflexible model, the set of possible model outcomes not being wide 

enough to correspond to the variation of systems. 

UPM is based on the Beta Factor model; thereby, it shares the same fundamental 

assumptions. According to the Beta Factor model, redundancy is not a defence against 

failures and different system architectures are not distinguished2. Nevertheless, oper­

ating experience has proved the practical benefit of redundancy [Edwards and Watson, 

1979]. On this basis, UPM defines redundancy in terms of a subfactor, in an attempt to 

adjust the output of the model in a conceptually consistent manner. 

The additive weighting system that UPM uses for the determination of the overall 

~-factor leads to conceptual inconsistencies in the behaviour of the model. This issue 

will be further explored in the following section by making a connection between UPM 

and Multiattribute Value Theory (MAVT). 

Finally, the attractive features of UPM have given rise to the development of the 

BetaPlus model [Smith, 2000]. The latter, based on the UPM form of the Partial Beta 

Factor model, is an attempt to incorpor~te a diagnostic coverage aspect. In view of the 

fact that dependent failures of components do not always occur simultaneously [Walls 

and Bendell, 1989], the detection and prevention of CCF events for standby systems 

is related to testing scheme characteristics. While maintaining the main features of 

DPM, along with the linear weighting of the system defences, the framework of the 

the BetaPlus model has been further extended to include a category that describes the 

diagnostic frequency and coverage of the system testing scheme. Other enhancements 

that the model includes are: a guide of questions to further assist the subjective classi­

fication of the system across the defence categories; a differentiation of the checklists 

and scoring for programmable and non-programmable systems; a recalibration of the 
--~---------------------

2See Chapter 2, Section 2.3.3 
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scores based on field data; and, a distinction between system defences that protect 

against failures that can be modulated by increased testing. Similarly to UPM, the 

construction of the BetaPlus model is largely dependent on expert judgment. 

3.6 The UPM additive scheme 

3.6.1 Multiattribute Value Theory 

Multiattribute Value Theory (MAVT) is a modelling tool that supports the decision­

making process. Given a decision problem in the general case, the decision-maker is 

free to choose from a number of alternatives/actions. For each course of action there 

is an effect, which has implications across multiple criteria. In the scope of MAVT, 

it is assumed that the effects/outcomes of each action are well defined, known to the 

decision-maker with certainty, prior to the choice of action. MAVT is concerned with 

the definition of a trade-off structure among the different outcomes that reflects the 

preferences of the decision-maker. A value function is defined, that assigns a value to 

each set of outcomes consistent with the preference statements of the decision maker. 

The definition of the preference relation and the value functions should comply with 

the axioms and conditions ofMAVT. 

3.6.2 UPM structure within a MAVT context 

Within the framework of MAVT, in order to completely describe the outcomes of a 

specific course of action, each objective is broken down into a number of measurable 

qualities (attributes) and a hierarchy is formed. Similarly, within the UPM context 

multiple performance measures are used; the initial objective is the determination of the 

system's defence level (~-factor), which is broken down to eight different measurable 

Contributions, the different subfactors (system defences) (see Figure 3.1). 

When using UPM, the target system is assigned to one category Xk across each sub­

factor Dk (k - 1, ... , 8), and scores are given accordingly. Thus, a system configuration 

can be described as a particular 'action', namely the act of accepting the system with 
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these specific categories, that corresponds to the specific outcome of the resulting sys­

tem configuration. In this fashion, a set of actions {bl, b2 ... } is defined, where each 

action bi E {bl, b2 ... } corresponds to an eight-attribute outcome vector (Xli, ... ,X8i)' In 

other words, 

where Xk = {I, ... ,5} is the range of attribute Dk(bi), corresponding to the five subfac-

tor levels {A,B, ... ,E}. 

The actions and attributes in the UPM structure form a matrix in which each row 

corresponds to an action and each column to an attribute (different performance mea­

sures). See Figure 3.3. 

Attributes 

Acts DI Dz D3 ... DB 

b l XII X21 X 31 XS1 

b 2 X I2 X 22 X 32 X S2 

Figure 3.3: Acts and attributes in UPM 

Definition of the preference structure Recall Relationship (3.1) which yields 

the estimated 13- factor for the target system; the formula may be re-written in the 

form 
8 

f3(XI, ... ,xg) = .E Vk(Xk) 
k=1 

UPM implies the existence of a preference structure as follows: 

The smaller the beta factor obtained, the stronger the defence level of the 
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assessed system towards CCFs, and, therefore, the more preferable the 

action yielding this outcome is 

This preference structure can be expressed as a binary relationship ~ defined over 

the outcomes space V = Xl X ... X Xg. Note that ~ is a negatively oriented relationship, 

since the lower scores are preferred. 

Definition : If :!,~ E V, 

Where 

for i E Z+, k = 1, ... ,8. 

s s 
P(Xi) = - E Vk(Xki) = E Uk(Xki) 

k=l k=l 

Uk(Xki) = -Vk(Xki) 

Attributes 
AI,A2 ... ,As 

Outcome Space 

Figure 3.4: The mapping of acts 

(3.4) 

(3.5) 

Relationship ~ represents a preference structure, as it obeys the axioms of compa­

rability, transitivity, consistency of indifference and weak preference, and consistency 
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of strict preference and weak preference. A relationship defined on a set for which the 

above axioms hold is known as a weak order; consequently, set V is a weakly ordered 

set [French, 1993]. 

Every element of the act space is mapped to an eight-dimensional outcome space, 

as equation (3.5) is a function p : V = Xl X ••. X Xs -+ JR, where Uk : Xk -+ R See Figure 

3.4. 

So far, UPM' s preferences are expressed through a weak order ~ and a real-value 

function p is defined such that (3.4) holds. Then, we say that p is an ordinal value func­

tion representing ~. The properties below stem from'the definitions and assumptions 

made so far: 

1. The smaller the failure rate of an action, the more 'preferable' for a decision 

maker this action is: For :!,~ E V, 

2. (Marginal Orders over sets Xk, k = 1, ... , 8). The smaller the score of a category, 

the more 'preferable' to the decision maker this category is, since it results to a 

smaller value of ~: 

These properties imply that p (.) and Uk are monotonic functions3. Therefore, p is 

a value function that represents ~ and Uk are marginal value functions (single attribute 

fUnctions) [French, 1993]. 

3.6.3 Additive form and mutual preferential independence 

Equation (3.5) implies that p is an additive-value function for the preference relation 

defined in (3.4). However, in MAVT the existence of an additive value function over 
---~--------------------

3If <I> : X ~ Y is monotonic, then for every XI ,X2 E X, XI :::; X2 <=> <I> (XI ) :::; <I>(X2) 
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the set requires that the attributes are mutually preferentially independent4• This state­

ment says that every subset Y C V of attributes is preferentially independent of its 

complementary set Z = V - Y. Or, in other words, the conditional preference structure 

of the subset Y does not depend on the level of the subset Z; therefore, the trade-offs 

between the attributes belonging to subset Y do not depend on the level of the attributes 

belonging to set Z [Keeney and Raiffa, 1976]. Mathematically expressed, 

If y' ,y" E Y, 

[(y',z')] >= [(y",z')] =} [(y',z")];; [(y",z'{)] (3.6) 

for all z' ,z" E Z 

3.6.4 Preferential independence within the context of UPM 

The form of the Multiattribute Value Function (3.5) used within the UPM framework 

makes the assumption of mutual preferential independence. Transferring this notion 

in the UPM framework implies that a given set of attributes influences the overall beta 

factor in a fixed way, regardless of the level of the rest of the attributes. However, this 

may not be conceptually consistent with the behaviour of the model. This inconsistency 

will be illustrated by considering three hypothetical cases: 

Case I: In order to demonstrate this argument, we assume an assessment of a 

Particular system. Typical categories ~ ,,iz,Xs,x7 ,xg are chosen for all attributes except 

for Safety Culture (D4), Redundancy/Diversity (D6) and Analysis (D3), which are kept 

fixed. Next, the preference structure in the subspace Y = X3 X X4 X X6 will be examined. 

More precisely, what is going to be examined is the trade-offs between the sub-factors 

of RedundancyIDiversity and Safety Culture, when modifying the level of Analysis. 

First, assume that the target system has been classified to a low category across 
---~---------------------

4Apart from the conditions of weak ordering and mutual preferential independence, there are 
other necessary conditions for the existence of an additive value. These are restricted solvability, 
the Archimedean and essentiality conditions (see [French, 1993]). Even though random variable Xk;, 

k::::: 1, ... , 8, i E Z can take only five values (there are only five categories), we assume that it could be 
conceptually extended to a continuous random variable with the above conditions met. 
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the subfactor of Analysis (denoted with ~)5, to a low category across the subfactor of 

Redundancy IDiversity (denoted with x~l, and to a high category across the subfactor 

of Safety Culture (denoted with x~D 7• Redundancy is considered to impact significantly 

on the defence level of the system; therefore, if the Safety Culture level drops to a low 

level (denoted with xi), redundancy should significantly increase to a high level (de­

noted with .xg) for the defence of the system to stay at the same level. Mathematically 

expressed, 

(3.7) 

Assume now that the configuration of the system in terms of Analysis is high (de­

noted with ~), meaning that previous analyses have taken place. In this case we can 

presume that the aspect of redundancy or diversity has been taken into consideration 

during the previous assessments, and the present design has been recognised as the 

one that functions better in case of a CCF event. Therefore, the impact of enhancing 

RedundancylDiversity on the determination of the overall system defence should be 

smaller. Then, having a low level of RedundancylDiversity and a high level of Safety 

Culture would yield a higher defence level (lower ~-factor) than high Redundancy and 

low Safety Culture. In other words, 

(3.8) 

Bowever, the UPM structure implies that the preference structure stays the same, re­

gardless of the level of analysis, viz. 

(3.9) 

which contradicts the expectation about the behaviour of the model. 

---~---------------------
5Category A in the attribute of Analysis means that no formal safety assessment has taken place and 

that there is no design knowledge of dependent failure issues. 
6Category A in the attribute of Redundancy means that there is simple redundancy (1002) 
7Category D in the attribute of Safety Culture means that there is simulator training of normal 

OPeration AND there is dedicated staff and evidence of good safety culture including systematic training 
of ernergency conditions. 
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Moreover, an additive value function implies from (3.7) and (3.9) that the range 

U6(~) - U6 (~) is constant; consequently, the weight of the subfactor of Redundancy/Diversity 

does not depend on the level of Analysis. This means that the trade-offs between a sub-

set of subfactors do not depend on the categories that the rest of the subfactors have 

received, fact that is not coherent with intuitive expectations. 

Case 11 : In a similar view, consider the subfactors (system defences) of Analysis 

D3 and Understanding D7; the latter describes the level of understanding of designers, 

operators and analysts in relation to the system, which depen~s on the level of techni­

cal complexity of the system and the amount of relevant experience on its operation. 

The impact of the amount of analysis in relation to dependent failures performed on 

the system design (level of Analysis) is expected to vary depending on the complex 

characteristics of the system: for a fairly simple and standard system extensive analy­

sis does not strengthen its defence towards CCFs at the same level, as it would do for 

a comparatively complex and noble system. 

Case III : Finally, consider the subfactors (system defences) of Understanding 

D7 and Operator Interaction Dg. Let it be that, at a specific assessment, the attribute 

of Understanding receives a low level. This suggests that the level of understanding 

of designers, operators and analysts in relation to the system is low. In this case, the 

qUality of the written procedures that are in place and the level of interaction between 

the operating staff and the system, which is described by the defence of Operator In­

teraction, should have a stronger impact to the overall system vulnerability towards 

CCFs, than it would have if the level of understanding of the system were high. 

3.7 Conclusion 

This chapter has presented the UPM method for CCFs. In particular, the framework of 

DPM was described, and its advantages and disadvantages were discussed. To be more 

preCise, UPM is a tool that supports the decision-making process, while it requires 
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a limited amount of data. This is a particularly valuable feature of the methodology, 

since the area of CCF data analysis has in principle a number of problematic issues that 

stem from the very nature of CCF events. Particular emphasis has been given on the 

additive weighting scheme of the system defences that UPM uses. It has been shown 

that the particular system leads to conceptual inconsistencies in the behaviour of the 

model. In order to argue this particular point, a theoretical connection has been drawn 

with MAVT, and three hypothetical practical examples were used for demonstration 

purposes. 

In view of the fact that UPM has a number of practical advantages that lead to the 

popularity of the methodology within the scope of reliability analyses, this research 

aims to explore the possibilities for further development of UPM, by using alternative 

mathematical modelling techniques. The next chapter discusses the approach adopted 

within this context, for pursuing the particular objective and aims discussed in Chapter 

1, and justified in Chapters 2 and 3. 
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Chapter 4 

Foundational issues and ,Bayesian 

methodology 

4.1 Introduction 

The overall goal of this research is strongly associated with the assessment of risk 

POsed on complex technological systems. Within this context, a Bayesian approach to 
risk has been taken. The purpose of this chapter is to justify the particular philosoph­

ical position, and within this context, argue and discuss the methodological choices 

adopted. 

The Chapter is structured as follows: Section 4.2 describes the frequentist and 

Subjectivist interpretations of probability, and argues the philosophical approach taken 

within this thesis; Section 4.3 gives a general overview of the Influence Diagram for­

malism, and argues the choice of the ID modelling technique for the purposes of this 

research 

4.2 Research Philosophy 

The research, field that this thesis aims to contribute to is Probabilistic Risk Analy­

sis (PRA). In the broad sense, risk analyses aim to assess the risk involved with the 
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operation of systems. According to Kaplan and Garrick [Kaplan and Garrick, 1981], 

the term 'risk' involves the set of some scenarios, their likelihood to occur and their 

consequences. Therefore, measuring risk is tantamount to measuring uncertainty on 

events related to the system being studied. More specifically, PRAs aim to construct 

analytical models that produce quantified figures reflecting this uncertainty. 

Within the scientific world, it is commonly accepted that probability theory offers 

a rigorous framework for quantifying uncertainty [Lindley, 2000], Even though Kol­

mogorov's axioms of probability are widely accepted as the most appropriate axiomatic 

framework for uncertainty, within the field of PRA in particular, strong debate exists 

OVer the actual meaning of probability [Apostolakis, 1988; Winkler, 1996; Nilsen and 

Aven, 2003]. The most important interpretations of probability are the frequentist and 

subjectivist views. This research adopts the Bayesian paradigm, which complies with 

the subjective view of probability. The choice of a specific philosophical position to­

Wards probability has major methodological implications, since it defines the type of 

analysis and relevant data. 

In general, the methodological choices made within the scope of a particular re­

search reflect the way the researcher sees the world, and acts within it. Therefore, 

these choices are shaped through the positions regarding three questions: the ontolog­

ical, the epistemological and the methodological question [Guba and Lincoln, 1994]. 

Within the next sections the frequentist. and subjectivist views on these fundamental 

questions are described, and the philosophical position of this research is described. 

4.2.1 Ontological Question - What is the form and nature of real­

ity? 

The essential difference between frequentists and Bayesians lies in their ontological 

Position. The term ontology derives from the Greek word on (ov), which means being. 

There are fundamental differences in the assumptions made by the two approaches on 

the nature of reality and how this is reflected through probability calculus, and thus, 

through probabilistic models. 
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A model sensu lato is considered to be an approximate representation of reality, 

built in order to serve a specific purpose. As Pidd more formally defines, 

'A model is an external and explicit representation of part of reality, as 

seen by the people who wish to use that model to understand, to change, 

to manage and to control that part of reality' [Pidd, 2003, p.12] 

Within a narrower context, a PRA model aims to estimate the probability, which is a 

numerical measure of risk, and consequences of events related to a process or system 

under study [Siu and Kelly, 1998]. 

On the one hand, frequentists accept that reality exists objectively. Thus, probabil­

ity as a measure of risk on a particular event is a natural characteristic of the world. 

According to a frequentist, a PRA model is built in order to predict the 'true', objective 

value of risk. This type of model uses probability to account for the natural variabil­

ity of the system (aleatory uncertainty). Thus, aleatory uncertainty represents intrinsic 

randomness that exists in the natural world, independently of the analyst. 

On the other hand, the Bayesian paradigm accepts a subjective (internal) interpre­

tation of probability as a measure of risk. The foundations of subjective probability 

Were placed by Ramsey [Ramsey, 1926], De Finetti [De Finetti, 1974, 1975] and Sav­

age [Savage, 1954] who establishes a link between subjective probability and statistical 

decision theory. According to the subjective approach, probability is a degree of belief 

in the occurrence of an event attributed by a given person at a given instant and with 

a given set of information [De Finetti, 1974]. In this view, subjective probability is 

a mode of judgment that exists within the mind of the subjects and it is conditional 

on the knowledge and background information that exists at the point of the definition. 

Therefore, risk is not an objective characteristic ofthe system, existing in the real world 

independently of the analyst, and a risk model is the analyst's attempt to represent a 

system in a form that it can be used as an explanatory and exploratory tool [Parry, 

1996, p.120]. 
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4.2.2 Epistemological Question - What is the nature of the rela­

tionship between knowledge and the world? 

The term epistemology derives from the Greek word episteme (effi<nll/1r]), which for 

ancient Greeks equates to knowledge. Within the field of philosophy of science, epis­

temology refers to the process of knowledge acquisition and defines the relationship 

between the knower and what can be known. 

The approach to learning for a frequentist is integrally related to the concept of 

relative frequencies. Probability is a characteristic of the world, and, in order to learn 

about this probability, one needs to perform a series of repeatable experiments (trials) 

in which this event occurs. The probability of the event is the relative frequency of the 

outcomes of these trials. By increasing the number of the experiments performed, the 

inference approaches the 'truth'; thus relative frequencies converge to the true values 

of the probabilities 'in the long run'. In other words, for a sequence of random vari­

ables {Xl, .... ,Xn , .... }, for which Xi = 1 when an event is observed in a sequence of 

independent trials, and Xi = 0 otherwise 

P(X = 1) = lim Xl + ... +Xn 
n-+oo n 

In view of the fact that, according to frequentists, probability has a single 'true', 

yet unknown, value, the objective of frequentist epistemology is to produce an estimate 

of this value, which will be as close to the real value of the parameter as possible. 

Often, confidence intervals are constructed around the estimator, representing a level 

of acceptability for the estimation (for more information on the frequentist approach to 

learning see [Cox and Hindley, 1974]). 

The Bayesian epistemological position defines a formal apparatus with two main 

elements: the first is compliance to the rules of probability as coherent constraints on 

degrees of b~lief, and the second is the introduction of the Principle of Conditionalisa­

tion, which is a rule of probabilistic inference [Talbott, 2001]. 

The grounds between conformity and subjective probability are based on the work 
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of Ramsey [Ramsey, 1926] and De Finetti [De Finetti, 1974]. For a measure ofuncer­

tainty (degree of belief) to be coherent, it needs to satisfy the laws of probability. By 

drawing a connection between degrees of belief and individual betting odds, the argu­

ment of the Dutch Book is formed. A Dutch Book corresponds to a series of bets that 

result in definite loss. De Finetti has shown that, if a Dutch Book is avoided, the sub­

jective probabilities derived by the individual odds are coherent [Loschi and Wechsler, 

2002]. 

The Bayesian apparatus is a systematic mechanism for viewing the world. In par­

ticular, De Finetti's representation theorem offers a platform for constructing an indi­

vidual's degree of belief regarding particular events. Consider an infinite sequence of 

random variables {Xl, .... , Xn, •..• }, for which Xi = 1 when an event is observed in a 

sequence of trials, and Xi = 0 otherwise; {Xl, .... , Xn, •..• } is an exchangeable sequence 

of random variables if, for all finite sub-sequences of length n, the probability of the 

Vector of outcomes is unaffected by their order, i.e. 

for all permutations 1t defined over the set { 1 , ... , n} [Bernardo, 1996]. De Finetti' s rep-

resentation theorem states that if {Xl, .... ,Xn, .... } is an infinite exchangeable sequence, 

then the limiting frequency 

1
. Xl +".+Xn lm-----

n-+oo n 

eXists with probability 1, and there exists a probability measure J.1 supported on [0,1], 

for which 

P(XI =XI, ... ,Xn=xn) = 101 
pLix;(1_p)n-LixidJ.1(p) 

Differently expressed, random variables Xl, ""Xn are conditionally independent and 

identically distributed, given p. The essence of De Finetti' s representation theorem is 

the following: 

if future outcomes are viewed as exchangeable, i.e., no pattern is 

viewed as any more or less likely than any other (with the same num-
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ber of successes), then when an event occurs with a certain frequency in 

an initial segment of the future, we must, if we are to be consistent, think 

it likely that that event will occur with approximately the same frequency 

in later trials .. .' [Zabell, 2006, pp. 6] 

The acceptance of limiting frequencies within the Bayesian canon implies an element 

of 'objectivity', in the sense that, even though probability is defined as an individual's 

degree of belief, the probabilities of two different individuals will converge, if they are 

constructed over the same events [Bedford and Cooke, 2001]. It is interesting to note 

that 'in the long run' or 'for an infinite sequence of exchangeable events', the subjective 

probability of a Bayesian will converge to the limiting frequency of a frequentist. 

The Principle of Conditionalisation, in epistemological terms, defines the effect 

of evidence on degrees of belief. It is a two-stage process: if one begins with initial 

(prior) probabilities, and then acquires an evidentiary statement, then rationality re­

quires that one transforms the initial probabilities in the light of this evidence. The 

process of revising prior beliefs when new information is obtained is done in Bayesian 

statistics through Bayes Rule, to finally obtain a set of updated (posterior) beliefs. T~e 

Conditionalisation principle establishes an extension of deductive reasoning to include 

inductive syllogisms. Indeed, Bayes Rule establishes a 'stochastic dependence through 

an increase in information' [De Finetti, 1974] and defines what one is entitled to say 

about some future event by the virtue of having acquired relevant information. 

4.2.3 Methodological Question - How may the researcher proceed 

to find what can be known? 

The methodological question relates to the nature of data and how it is obtained. From 

a frequentist's point of view, a given parameter p is an objective characteristic of the 

system, representing a 'true' entity. Maki!lg inferences regarding p requires data to 

be acquired by observing this system, or by performing controlled experiments in a 

SUfficiently identical to the system environment. Assuming that the data set:! is gen­

erated by a sequence of independent trials from a given population, the likelihood 
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function f(;~..) of the data is the analyst's hypothesis for the statistical model of the 

data-generating process (random sampling from infinite population). As a corollary, 

parameter estimation for a frequentist restricts to empirical data. From a Bayesian's 

perspective, the data is a sub-sequence of an exchangeable infinite sequence; the like­

lihood function of the data f(J. I p) reflects the analyst's degree of belief in the data 

taking certain values conditionally on certain values ,of the parameter p. 

Whereas both the frequentists and Bayesians define a likelihood function that de­

scribes the data in hand, the Bayesian methodology introduces an additional ingredient. 

The Bayesian ontological thesis considers parameter p as random variable rather than 

an unknown fixed quantity. The additional ingredient is a probability distribution f(p) 

assigned to p separately from the relevant data, that reflects the analyst's degree of 

belief on the values of the parameter, prior to observations (prior distribution). In­

ductive reasoning allows the analyst to update his/her prior knowledge in the light of 

relevant information through Bayes Theorem (Conditionalisation principle), to yield 

the posterior distribution f{p I J.): 

f(p I J.) cc f(J.1 p )f(p) 

In essence, ' ... A Bayesian who makes the exchangeability judgment is effectively mak­

ing the same judgment about data as a frequentist, but with the addition of a probability 

specification for the parameter' [Lindley, 2000]. On this basis, the Bayesian apparatus 

allows for the expression of expert judgment through probability theory, which may 

be updated in the light of observations: the resulting posterior distribution which is an 

alloy of subjective information and empirical data. 

4.2.4 Bayesian paradigm and CCF modelling 

Type of uncertainty 

In essence, the purpose of risk models is to quantify uncertainty. However, uncertainty 

may stem from different sources, and it can be therefore distinguished into different 
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kinds. Most frequently, uncertainty is characterised as either aleatory or epistemic 

[Parry, 1996; Winkler, 1996; Hora, 1996; Bedford and Cooke, 2001]. Aleatory un­

certainty results from an inherent variation in the behaviour of a system. Epistemic 

uncertainty stems from lack of knowledge about the behaviour of a system. Since epis­

temic uncertainty is defined in a subjective dimension, it can be quantified and further 

reduced by knowledge of experts. However, even though aleatory uncertainty can be 

quantified by expert knowledge, it cannot be reduced [Hora, 1996]. Due to this practi­

cal difference, distinguishing the type of uncertainty is significant and it constitutes an 

important part of the modelling process. 

Within the literature it is suggested that distinguishing the type of uncertainty does 

not have a physical dimension [Hora, 1996; Bedford and Cooke, 2001]. Instead, the 

distinction between aleatory and epistemic occurs for practical, quantification reasons. 

To this end, uncertainty is characterised in a certain way for the purposes of the partic­

Ular model; the 'same' uncertainty may be characterised differently in different mod­

els with different purposes [Hora, 1996]. Separating aleatory and epistemic uncer­

tainty is useful in clarifying the modelling choices and in determining the quantifica­

tion process. Moreover, the distinction facilitates the communication between experts·, 

decision-makers and analysts. 

As described in Section 1.4.4, the intention of the ID model is to represent the 

influence of the defence characteristics of the system on its failure behaviour, which 

is being represented by coupling probabilities and failure rates. More particularly, the 

intention is to capture the uncertainty on the model parameters, and propagate this 

uncertainty within the model structure. 

When the defence variables of the ID model take particular levels, the coupling 

prObabilities and failure rates describe the failure behaviour of the system with the par­

ticular defence configuration. However, given the possible combinations of defence 

levels, it is possible for certain defence configurations to correspond to fictitious sys­

tems. Therefore, the definition of an infinite or large enough population is not always 

ObVious. Within this context, uncertainty cannot result from the inherent heterogeneity 

in a population, and the concept of aleatory uncertainty cannot be adopted. From a 
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theoretical standpoint, the uncertainty on the model parameters within this context is 

characterised as epistemic. 

From a Bayesian point of view, all uncertainty is characterised as epistemic [Nilsen 

and Aven, 2003]; to this end, this research adopts the ontological, epistemological and 

methodological thesis of the Bayesian paradigm in order to capture the uncertainty on 

the model parameters. Within this context, risk is no~ viewed as an objective charac­

teristic of the system, which corresponds to a particular population. The ID model is 

the analyst's attempt to represent a system and use it as an explanatory and exploratory 

tool. The model, therefore, is a simplified representation of the world and it is based 

on the available to the analyst information and resources [Apeland et aI., 2002]; and 

the uncertainty represented by the model is associated with the analyst's confidence in 

the model predictions. 

EXpert Judgment and CCF modelling 

The Bayesian paradigm constitutes a systematic framework for axiomatically express­

ing expert judgment. As mentioned previously, epistemic uncertainty stems from lack 

of knowledge, and knowledge regarding an event alters when additional or more com­

plete information is attained. The ability to scientifically elicit expert uncertainty in 

terms of probabilities, combined with the Bayesian methodology, offers a mechanism 

for capturing the effect of observations on the uncertainty. Being able to coherently 

cOmbine subjective (expert judgment) and objective (observations) information is par­

tiCUlarly useful within the CCF modelling context, where, due to the rare and complex 

nature of CCF events, data is sparse and incomplete. 

In general, PRA is one of the pioneering sciences that introduced the quantifica­

tion of expert opinion, and that has the most experience in this field. Even though the 

frequentist approach to risk is the traditional position adopted within reliability anal­

YSis, the Bayesian approach started to emerge over the last thirty years [Apostolakis, 

1988]. The reason is that PRA models often deal with the assessment of risks that 

are associated with rare events, or hypothetical scenarios, or with situations where ac­

tUal observations are insufficient for model quantification. Therefore, expert judgment 
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becomes an essential source of information. 

One of the first applications of lies in the nuclear field, where subjective prob­

abilities where used in the Reactor Safety Study Wash 1400 [Apostolakis 1988 and 

references therein], albeit in an unstructured way. This fact raised a lot of criticism and 

led to a formal review of the methodology, which identified a considerable number of 

deficiencies, but at the same time acknowledged that,the use of subjective probabili­

ties is necessary and provides a reasonable input, once it is done in a structured way. 

This argument formed the basis for the justifiable use of expert judgment within the 

framework of 'hard sciences', such as reliability analysis. 

4.3 Modelling Technique 

As stated at the beginning of the thesis, the purpose of this research is to explore the 

application of advanced modelling techniques within the framework of UPM, so as 

to result in a model with a structural and exploratory character, that allows for the 

representation of epistemic uncertainty and supports the decision-making process. The 

mOdelling technique employed to pursue this purpose is the Influence Diagram (ID) 

formalism, which is supported by the Bayesian methodology. 

Recently, Bayesian Belief Networks (BBNs) and Influence Diagrams (lDs) have 

found numerous applications within the context of system reliability modelling. Gen­

eral examples include software reliability, maintenance modelling, general reliability 

mOdelling of complex systems ([Sigurdsson et al., 2001; Langseth and Portinale, 2005] 

and references therein). Moreover, BBNs have had real applications in problems of as­

sessment of critical systems [Fenton and Neil, 2004], [Fenton and Neil, 2001]. 

The BBN formalism has been suggested as a suitable methodology to represent 

dependencies amongst components in complex systems. The interchangeable use of 

traditional Fault Trees and BBNs has been studied, and a technique is suggested to 

map the former to the latter [Bobbio et al., 2001]. The use of BBNs as a more natural 

enVironment for modelling dependent failures, such as CCFs, has been also studied in 

[Toledano and Sucar, 1998], by comparing BBNs to reliability block diagrams. More-

108 



over, Vatn [Vatn, 1997] explores the use of IDs to model the relationships between 

maintenance actions, system characteristics and preferences. 

Lately, the interest for the BBN formalism has been growing in the nuclear area, 

in particular. In [Celeux et al., 2006] the use of a BBN is considered to model the 

degradation process of a mechanical system, by using an illustrative example of a re­

actor coolant SUb-component, in order to determine t~e optimal maintenance strategy. 

In [Duftoy et al., 2006] the implementation of a BBN for modelling the availability of 

the cold source system of a nuclear power plant is explored. 

Other areas of application include the aerospace safety. In [Kardes and Luxhl1Sj, 

2005] a BBN is constructed to evaluate the impact of safety products to maintenance­

related aircraft accidents. Their model is a BBN, extended to include decision variables 

to represent the safety enhancement products. Other examples may be found in [Sa­

chon and Pate-Corn ell, 2000] and [Anders et al., 2005]. 

4.3.1 Influence Diagrams 

The model developed within the scope of this research aims to provide a platfo~ 

for assessing and comparing defence characteristics of the system in terms of the risk 

inVolved in relation to CCF events, and support decision-making processes. IDs are 

extended BBNs [Pearl, 1988] that include decision and value nodes, and allow the 

representation and comparison of alternative actions and the determination of strategies 

regarding the decisions involved. 

Supported by the Bayesian paradigm, IDs are based on axioms of probability and 

Utility. On the one hand, probability theory provides a coherent framework for rep­

resenting uncertain relationships, and allows for the representation of human expert 

knowledge. On the other hand, utility theory offers an axiomatic structure for mod­

elling consequences or outcomes, and the preference relationships for these. In essence, 

an ID model is a graphical knowledge representation of a decision problem, which al­

lows for reasoning under uncertainty by combining both expert knowledge and quan­

titative data. Some literature on IDs is given in [Howard, 1990; Matheson, 1990; Lau-
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ritzen, 1996; Jensen, 1999]. 

4.3.2 ID terminology 

Like BBNs, an ID model consists of two parts: a qualitative and a quantitative part. 

The ID model is comprised of a directed acyclic graph (ID network) that displays the 

decision problem. The graph consists of a set of nodes representing the main features 

of the problem, and arcs signifying the existence of influence or relevance amongst 

these features. 

The elements of a decision problem fall within three different categories [Morgan 

and Henrion, 1990]: 

Decision variables, represented by square nodes. A decision variable represents a 

set of alternatives that are available to the decision maker. These variables are 

under the direct control of the decision maker, thus they are not associated with 

expressions of uncertainty; 

Chance variables, represented by oval nodes. A chance variable represents quantities 

of the problem that are uncertain. A probability function is associated with each' 

chance variable; this probability function is a set of conditional probabilities 

describing the strength of the dependency relationship existing between the given 

variable and the variables that influence it directly (parent variables); 

Deterministic variables, represented by double circular nodes. These variables repre­

sent deterministic functions of chance or decision variables; 

Value variables, represented by diamond nodes. These variables represent the pref­

erences or utilities of the decision maker. In principle, each ID model has one 

value node. 

The arcs of an ID network fall within two categories: 

Information arcs, that are directed into decision nodes. Information arcs represent 

information flow, indicating the type of information that is available at the stage 

a particular decision needs to be made; and 
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Influence arcs, that are directed into chance nodes. The absence of an arc between two 

chance nodes implies that there is no direct influence between the two variables, 

more precisely, that they are conditionally independent given their parents. The 

arc from a decision node to a chance node implies that the decision affects the 

corresponding chance node. 

Suppose that two nodes are linked with an arc; the node in which the arc feeds into is 

called a descendant V, whereas the influencing node (starting point of the arc) is called 

a parent node, and denoted with Dv 

The network of an ID (or BBN) model portrays the qualitative relationships be­

tween the variables of the domain. In particular, the lack of an influence arc between 

two variables is an expression of probabilistic independence. 

Each chance and decision node V is associated a state space s(V); for the chance 

nodes, s(V) represents the range of possible outcomes outcomes, and for the decision 

variables, s(V) represents the range of possible options. The uncertainty associated 

with each chance node is represented by a conditional probability distribution f(V I 
nv), where Dv are the parent-nodes of variable V. In principle, value nodes have n~ 

descendants. 

Like BBNs, an ID uses the conditional probabilistic independencies existing be­

tween the variables, so as to decompose the joint probability distribution on a set of 

Variables, and offer a more concise representation. For the simple belief network in 

Figure (4.1), the joint probability distribution on the model variables is specified as: 

P(X, Y, Z) = P(X I Z)P(Y I Z)P(Z) 

In essence IDs are comprised by two parts: a qualitative part (ID network), and a 

qUantitative part, which relates to the probabilistic configuration of the model. 
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Figure 4.1: Expressions of conditional independence: Variable Z, having no predecessors, is 
marginally independent. Variable X is conditionally independent of Y, given the common 
predecessor Z 

4.3.3 ID formalism and CCF modelling 
. 

In a nutshell, the ID modelling technique has been judged as appropriate for the pur-

poses of this research for the following reasons. 

Firstly, this research attempts to extend UPM by representing uncertainty on the 

model output. IDs are tools for reasoning under uncertainty that are based on the 

Bayesian canon. Therefore, they allow for the representation of epistemic uncertainty 

on the elements of the model it:l terms of probability distributions. Moreover, epis­

temic uncertainty is coherently propagated through the network to yield an uncertainty 

distribution on the model output. 

Secondly, underlying the ID formalism is the Bayesian methodology. The use of 

Bayes' theorem is a mechanism for updating expert judgment in the light of observa­

tions, to yield coherent posterior probabilities. This information is transmitted through 

the network of the ID model, to become relevant to events for which observations are 

not available. This is a key feature of IDs for modelling CCFs in particular, where 

observations are limited. 

Thirdly, this research attempts to extend UPM by developing a model that incorpo­

rates root cause and coupling factor taxonomies in its structure. IDs are networks that 

POrtray the existing relationships in the problem domain, and give a graphical repre­

sentation of the influences amongst the system defences, the root cause failure events 

and the coupling characteristics of the system. The ID formalism allows for a more 

detailed modelling of CCF events, as it captures the types of CCFs that each defence 

IS able to modulate. 
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Moreover, IDs allow for the modelling of the existing interactions amongst system 

defences in the way they impact on the overall system vulnerability towards CCFs, 

which UPM in its current form fails to do. Finally, IDs permit the effects of interven­

tions to be explored, and what-if analysis to be performed. This structure allows the 

influence of different defence alternatives on the other variables, and ultimately on the 

CCF rate, to be monitored, and supports the decision-I?aking process. 

4.4 Conclusion 

The purpose of this chapter was to outline and clearly justify the methodological ap­

proach adopted for the purposes of the particular research. This research adopts a 

Bayesian view to probability and risk. This chapter described both the frequentist 

and the Bayesian ontology, epistemology and methodology, and, argued the reasons 

for choosing the Bayesian apparatus as the most appropriate for accomplishing the 

Purposes of the research. In brief, the key points that justify such a choice are: the 

axiomatic use of expert judgment, the representation of epistemic uncertainty on the 

Ihodel elements, and the ability to coherently combine subjective opinion with empiri: 

cal data. 

Finally, the choice of the Influence Diagram formalism as the modelling approach 

adopted was argued. In particular, IDs are based on the Bayesian canon. Moreover, IDs 

offer a graphical representation of the existing relationships in the modelling domain, 

allow for the propagation of uncertainty within the model structure, and succeed in 

IhOdelling the CCF mechanisms at a finer level of detail. 

The next chapter introduces the ID model constructed for the purposes of this the-

sis. 
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Chapter 5 

Theoretical structure of the Influence 

Diagram Model 

5.1 Introduction 

In this chapter the theoretical foundations of the Influence Diagram (ID) model for 

CCF modelling will be presented. To be more precise, the model variables are de­

fined both qualitatively and mathematically. As discussed in Chapter 2, parametric 

mOdels such as the Multiple Greek Letter model and the Multiple Beta Factor model 

generalise the simplest Beta Factor model by distinguishing between different levels of 

failure multiplicities. The UPM model generalises the Beta Factor model in a different 

direction, by modelling the impact of design, operational and environmental aspects of 

the system on the CCF measure. 

Chapter 4 proposed the development of an ID model. The focus of this chapter is 

to give the foundations of the ID model. In particular, the present chapter is structured 

as follows: Section 5.2 illustrates the approach taken for the identification of the ID 

variables, and describes them both qualitatively and mathematically. The dimensions 

of the ID variables are initially defined in a general manner; the particular example 

of EDGs is considered afterwards in Section 5.3. Finally, Section 5.4 concludes the 

Chapter. 
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5.2 Identification of ID variables 

CCF events are defined as the result of two distinct factors: the occurrence of a root 

cause of failure, that challenges the susceptibility of the components and renders them 

functionally unavailable, and the existence of a coupling mechanism, that propagates 

the failure amongst components and compels them to fail dependently rather than in­

dependently, [Mosleh et aI., 1998c] (Figure 5.1). Research has shown that, in essence, 

CCF root causes are no different than independent component failure causes [Edwards 

and Watson, 1979; FIeming et aI., 1983]; the additional element, which leads to de­

pendent failures, is the existence of coupling conditions amongst the redundant com­

ponents [Paul a, 1995]. 

Figure 5.1: CCF definition 

On this basis, a defence strategy against CCFs may be separated in three tactics: 

First, defence actions can be taken aiming to reduce the frequency of the root cause 

eVents. This will automatically lead to improved reliability of each component com­

prising the system in general, without necessarily enhancing the defence of the system 

towards CCF events in particular. Second, defence actions can be taken against cou­

Pling factors. In this case, the objective is to reduce the coupling effect. These actions 

Weaken the conditions that result in multiple failures, without necessarily enhancing 

the reliability of each component. Third, defence actions can be taken against both 

rOot causes and coupling factors. 

Based on the above, we can argue that the important elements of the CCF applica­

tion are: the root causes being the main reason for CCFs, the coupling factors creating 

the conditions for CCFs to occur, the defence actions taken against CCFs, and a cho­

sen reliability measure. These elements form the problem domain, and need to be 

eXpressed in terms of ID variables. The network of the ID model will portray rela-
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tionships of two types. The first type is the cause-effect relationship between the root 

causes alongside coupling factors and the CCF performance measure. The second type 

is the impact of the defence actions to either the root causes, either the coupling factors, 

or both. What follows is a description of each of the categories of the ID variables. 

5.2.1 Defence variables 

The first category of variables concerns the defence actions taken against the occur­

rence of CCF events. These may be described in terms of particular defence factors; 
, 

these factors are related to operational, design and environmental aspects of the sys­

tem, and are acknowledged as to be able to influence the occurrence of CCF events. 

The defence characteristics of a system may be described by ascribing to the system a 

particular level across each defence factor. 

The user of the ID model (assessor) assigns the level that best describes the system 

across each defence factor. The defence level that a system takes can be controlled 

and modified; therefore the defence factors are deterministic variables, representing 

the different decision alternatives. 

Let the defence factors be represented by variables Dk (k = 1,2, ... ,m) and letxk be 

the level that defence Dk takes, where Xk = 1,2, ... , mk. The defence variables represent 

a set of mutually exclusive and collectively exhaustive alternatives. 

5.2.2 Root Cause variables 

The second category of variables concerns the root causes, which describe the basic 

reasons of failure. The root cause is defined as the most basic reason for components' 

failure, the most readily identifiable cause [Edwards and Watson, 1979]. Consider 

a system that operates on demand; suppose that the system is challenged and that a 

failure is detected. This failure event (dependent or independent) may be attributed to 

One basic reason, one particular root cause. Within the ID framework this basic reason 

IS described by a root cause category. Equivalently, it is assumed that the root cause 

Categories form mutually exclusive and collectively exhaustive sets of events. 

116 



Let 11 be the notional time to failure considered from the moment the system was 

last activated until a dormant failure due to root cause i occurs (i = 1, ... , p), that would 

be observed if all other causes of failure were suppressed. Each failure cause i is 

assumed to have an exponential distribution for its time of occurrence 11, viz. 

It is assumed that {11} are mutually independent random variables, given Tj. It is further 

assumed that in case of a failure, the failed component goes into repair mode and it gets 

fully restored to its original state, with 'zero' repair time. This means that the mean 

repair time is assumed to be small compared to the minimum of the mean times of root 

causes occurrences. The assumption of a homogeneous Poisson process is typical in 

reliability analyses [Cooke and Bedford, 2002]. Consistently with this assumption, the 

number of failure events due to root cause i occurs according to Poisson distribution 

with parameter riTobs. Failures due to different causes are assumed to occur according 

to independent Poisson processes. 

The rate of failure events occurring to a system that is attributed to a specific root 

cause is influenced by certain design, environmental and operational characteristics 

of the system. Abiding by the Bayesian viewpoint, the interest lies in incorporating 

uncertainty on the value of the rates ri, stemming from incomplete knowledge of the 

system (epistemic uncertainty) and of the mechanics of CCF events. In this vein, the 

root cause rates rj are uncertain quantities, being represented by chance nodes. Influ­

ence arcs from the defence nodes Dk to the root cause nodes rj signify various defence 

tactics that the system employs. 

Bayesian Inference 

Suppose that, during fixed observation time Tobs, nj failure events have been observed, 

attributed to root cause i. The likelihood function of the data is a Poisson distribution, 

viz. 
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The uncertainty on ri, before having observed any failures, is modelled by a prior distri­

bution with p.d.f. f(ri). A natural choice for f(ri) is the gamma family of distributions, 

which is conjugate with the Poisson family. The posterior uncertainty on ri, in the light 

of data (ni, Tobs) , is by Bayes' law: 

f(ri I ni) oc f(ni I ri)f(ri) 

which is again a gamma distribution. 

Suppose that failure data is obtained coming from n different sources, in the form 

of (n~, Tobs), where n~ is the number of observed failure events due to root cause i 

during fixed observation time To\s' k = 1, ... , n. Information from different sources 

may be combined, and Bayesian inference on ri is based on the total number of failures 

ni == Lk= I n~ during the total observation time Tobs = Lk= I T:bs [Vesely, 1977; Barlow 

and Proschan, 1986]. 

Under the model that failures occur according to a homogeneous Poisson process, 

the gamma family of distributions is a standard choice for modelling uncertainty on 

failure rates within reliability analyses [Cooke and Bedford, 2002]. The reason for thi~ 

choice is that, because of the conjugate properties of the gamma and Poisson family of 

distributions, subsequent analysis is simplified considerably. 

5.2.3 Coupling Factor variables 

The third category of variables concerns the coupling mechanisms. The concept of 

COupling mechanism refers to common characteristics of the redundant component; 

these shared similarities make the redundant components susceptible to the same root 

cause, and, create the conditions for multiple dependent failures to occur. Within the 

ID framework it is assumed that a CCF event may be propagated via one only coupling 

factor category. Equivalently, it is assumed that, given a failure of a certain type, the 

COUpling categories form mutually exclusive and collectively exhaustive sets of events. 

Suppose that a failure event occurs to a system that operates on demand due to root 
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cause (rc) i; let Pi be the probability that this event results to a CCF event, viz. 

Pi = P( CCF event I failure event due to rc i) (5.1) 

The probability that the event remains an independent event is 

qi = P(independent event I failure event due to rc i) (5.2) 

and qi = 1 - Pi. 
, 

Denote with Pij the probability that a failure is propagated to all components in the 

system (CCF event) through coupling factor (cf) j (j = 1, ... , le), given that a failure 

OCcurs due to root cause (rc) i = 1, ... , P . Then 

Pi = P( CCF I failure due to rc i) 
le 

= L P( CCF through cf j I failure due to rc i) 
j=l 

le 

= LPij 
j=l 

Moreover, from Pi + qi = 1 we have 

3 

LPij+qi = 1 
j=l ' 

The intensity of coupling factor j is described by a vector of parameters 

Where 

Pij :- P(CCF through cf j I failure due to rc i) 

(5.3) 

Similarly to the root causes, the coupling factor conditions existing in a system 

are influenced by certain design, environmental and operational characteristics of the 

system. Therefore probabilities Pij are subject to uncertainty stemming from incom-
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plete knowledge of the system and of the CCF mechanisms (epistemic uncertainty). To 

this end, coupling probabilities Pij are uncertain quantities, and are represented in the 

model by chance nodes. Influence arcs from the defence nodes to the coupling factor 

nodes signify various defence tactics employed by the system. 

Bayesian Inference 

Suppose that, for a particular system of components, failure data is recorded of the 

form: 

(5.4) 

Where nij is the number of dependent failures due to root cause i and through coupling 

factor j, for j = 1,2, ... , K and niQ is the number of independent failures due to root 

cause i. The joint likelihood function of the data is a multinomial distribution with pa­

rameters 

Pi == (PiO, Pil , Pi2, "',Pile)' where PiO = qi, viz. 

le 
f(ni I p) oc np~~j 

- - I) 
j=o 

The conjugate prior for parameter Pi = (PiO, Pi! ,Pi2, ... , Pile) is a Dirichlet distribution, 

which is the multinomial counterpart of the beta distribution. Let the parameters of the 

Dirichlet distributions be ai = (aiQ, ail, ai2, ... , aile) , viz. 

The means and covariances for parameters Pij, j = 1,2, ... , K, are given by [John son 

and Kotz, 1972]: 

(5.5) 

(5.6) 
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where a. = Ej=l o.ij and Okl is the Kronecker delta (Okl = 0 if k = I and Okl = 1 other­

wise). 

Generally, dependent failures are rare events, implying that 

lC lC 

E Pij« qj=::} E Pij « 1 
j=l j=l 

Consistently with 5.7, it holds that 

Which implies that 

lC 

EE(pij)« 1 
j=l 

a." 
E(p ··) « 1 -'- .-!.l « 1 for every J' - 1 2 3 IJ -r a.' - , , 

Based on Relationship (5.6), it follows that 

for k * I 

(5.7) 

(5.8) 

(5.9) 

implying a weak degree of correlation amongst variables Pij, for j = 1,2,3. Therefore, 

assuming independence of parameters Pil, Pa, Pi3 constitutes a reasonable approxi­

mation. Assumptions of local independence are often employed within the Bayesian 

methodology [Spiegelhalter and Lauritzen, 1990] to serve as a considerable simplifi­

cation. 

Hence, parameters Pit, pa, ... , PilC may be individually parametrised and updated. 

The beta family of distributions is used for modelling prior uncertainty on Pij, denoted 

with f(pij), which shall be updated with data nij. Within this framework, observed 

data nij is assumed to be generated from a binomial distribution with probability Pij, 

viz. 
lc 

f(nij,ni I Pij) oc p7/ (1- Piiti
-

nij
, where ni = E nij 

j=O 
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The posterior distribution f(Pij I ni) is 

which is also a beta distribution. When data is obtained from different sources, infor­

mation may be combined by basing inference on sums of failures of a particular type 

from different systems. 

In principle, any distribution over the interval [0, 1] can be used to model uncer­

tainty on probability Pij' Under the model that failures form a Bemoulli process, with 

probability of success Pij, the beta family of distributions is a standard choice for rep­

resenting uncertainty on Pij [O'Hagan and Forster, 2004]. The reason lies again on the 

Conjugate properties of the beta and binomial families of distributions, which simplify 

Subsequent analysis. 

5.2.4 ID performance ~easure 

This research focuses on systems that are on standby; these systems are idle for a 

period of time and are only challenged to deliver their intended function periodically, 

in the case of a true demand or within the context of a testing scheme. As described in 

Section 2.2.2, a postulated failure of a standby system is classified into two categories: 

failure revealed by the demand and failu~e caused by the demand. The ID model built 

within the scope of this research aims to capture CCF events that belong in the first 

category; in other words, it aims to capture dependent failures of all components of the 

system that occurred during its idle period, and rendered it unavailable to operate when 

challenged. 

The main assumption underlying most CCF models is that failures occur according 

to a Poison process with a constant failure rate [Marshall and Olkin, 1967; Vesely, 

1977; Apostolakis and Moieni, '1987]. The Homogeneous Poisson Process model is 

considered appropriate for the particular purposes for a number of reasons. First, CCFs 

are rare events and, hence, the rates are not driven by factors such as the aging of 

the component. Second, the effect of seasonality is considered insignificant; in other 
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words, environmental conditions and other factors related to seasonal effects do not 

influence the occurrence of CCF events. For CCF events revealed by the demand in 

Particular, it is assumed that the events occur at continuous time during the idle period 

of the system [Vaurio, 1994b]. On this basis, it is of interest to determine the rate at 

which CCF events occur within the system, and, more specifically, the output of the 

ID is chosen to be the rate of CCF events per unit of ~ime occurring within the system 

while it is on standby. 

Suppose that failures due to root cause i, where i = 1, ... , p, occur according to 

a Poisson distribution with parameter ri. The failure is either ,an independent failure 

with probability qi, or it is propagated to the other components via coupling factor j 

with probability Pij, where j = 1,2, ... , 1C (Relationship (5.3». By assuming that prob­

abilities qi, Pij do not change over time, the overall Poisson process is split into four 

sUb-processes. These sub-processes can be treated as independent Poisson processes. 

In particular, CCF events occur via coupling factor j and due to root cause i according 

to a Poisson process with parameter Aij, where 

A" - p--r­I) - I) I (5.10) 

and, independent failures due to root cause i occur according to a Poisson process with 

parameter A;o, where 

(5.11 ) 

Within this set-up, it is assumed that CCF events due to a particular root cause and 

through the different coupling factors occur according to independent Poisson pro­

cesses. Therefore, the overall process of CCF events attributed to root cause i, without 

distinguishing the coupling factor, is a superposition of the independent Poisson pro­

cesses with rates Aij, j = 1,2, ... , 1C. The rate of the superimposed process is Ai, where 

1( 

Ai = E Pijri = Piri 
j=l 

(5.12) 

Relationship (5.12) implies that the rate of CCF events attributed to root cause i is 
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obtained through the total (both independent and dependent) failure rate due to root 

cause i, filtered through the coupling factor intensities Pij. 

Under the assumption that the root cause categories define mutually exclusive and 

collectively exhaustive events, the Poisson process of CCFs is a superposition of the 

root cause Poisson processes; therefore it is 

p P P,l( 

AccF = E Ai = E riPi = E E riPij (5.13) 
;=1 ;=1 ;=1 j=1 

The interest of this research is to capture the epistemic uncertainty on both the . 
model inputs and output; epistemic uncertainty is expressed by subjective probability 

distributions, and depends on various factors. These factors include design, operational 

and environmental aspects of the system, which are captured in the model by the system 

defences. Changing the system features by modifying the defences, in a hypothetical or 

actual manner, affects the behaviour (and related uncertainty) of the failure parameter. 

Therefore, AccF is an uncertain quantity, being represented in the ID network by a 

chance node. The aim is to monitor through the ID model the alterations made to the 

uncertainty distribution on rate AccF, induced by the modifications made to the system 

defences. 

Bayesian Inference 

Suppose that the system of interest has been observed for fixed time Tobs. For standby 

systems, an observed CCF is characterised as either a failure-to-start, of as a failure-to­

run CCF event. Dependent failure events that are revealed by the demand, rather than 

caused by it, are categorised as fail-to-start CCF events. Thus, this class of events is 

the one relevant to the ID model. 

Now, assume that during fixed time Tobs, nCCF dependent failure-to-start events 

have been recorded. The likelihood function of the data is 

f( 1
'1_) (AccFTobs)n

ccF 
-AcCFTobs 

nCCF 1"{.,"cF = ,e 
. nCCF· 
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The uncertainty on AcCF, before having observed any failures, is modelled by a prior 

distribution with p.d.f. f(AcCF). A natural choice for f(AcCF) is the gamma family 

of distributions, which is conjugate with the Poisson family. The updated uncertainty 

on AcCF, in the light of nCCF observations that occurred during fixed time Tabs, is by 

Bayes's law: 

f(AcCF I nccF) oc f(nccF I AcCf' )f(AcCF) 

which is again a gamma distribution. 

Within the Bayesian context, inference concerning AcCF requires only the total 

number of event occurrences and the total observation time [Barlow and Proschan, 

1986]. Thus, information from n different sources (n~CF' Ta~s)' k = 1, ... , n may be 

combined by considering that 
n 

nCCF = E n~CF 
k=l 

CCP events are observed over time period 

n 

Tabs = E Takbs 
k=l 

5.3 The specific application 

The ID model is an application to systems of Emergency Diesel Generators (EDGs) of 

nuclear power plants, which are standby·systems. For this particular example, specific 

taxonomies for the ID variables are used. 

5.3.1 The UPM framework 

In order to describe the system defences, the UPM definition of subfactors [Brand and 

Gabbot, 1993] is used. The definition is preserved from the UPM framework to the 

ID context for all defences, except for th~ defence of Redundancy / Diversity. The 

reason for this distinction is the fact that the ID model is an extension of the UPM 

approach, which in turn is a generalisation of the Beta Factor model. Thus, both UPM 

and the ID model share the same fundamental assumptions as the simplest Beta Factor 
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model. The latter allows only two kinds of failures: independent failures and CCF 

events that impact on all components comprising the system. Consistently with this 

key assumption, increased redundancy is not a defence against CCF events, since a 

potential CCF event would impact on all the components, regardless of their number. 

Nevertheless, UPM recognises redundancy as a defence against CCF events (sub­

factor of Redundancy / Diversity). The reason is that operational experience has shown 

that adding redundancy can actually decrease the likelihood of system failure due to 

CCF events [Edwards and Watson, 1979]. Therefore, UPM attempts to built-in the 

defence of Redundancy by adjusting the resulting beta factor ac.cordingly, even though 

such an argument is opposed to the theoretical set-up of the model. 

For purposes of elegance and consistency with the underlying theoretical frame­

Work, redundancy is not recognised by the ID model as a defence against CCF events. 

The ID model is an attempt to further generalise UPM, and thus the beta factor model, 

by capturing the effect of defence characteristics of the system on its vulnerability 

towards CCF events. Theoretically, a similar approach can be adopted to generalise 

models like the Multiple Beta Factor model that au fond distinguish between different 

failure multiplicities. Within this context, the benefit of redundancy shall be recognised 

and included in the system defences. 

On this basis, aspects of redundancy are excluded from the definition of the Re­

dundancy / Diversity subfactor in UPM, with the remaining definition describing only 

aspects of diversity. Like UPM, the ID model defines eight system defences: Environ­

mental Control, Environmental Testing, Analysis, Safety Culture, Diversity, Separa­

tion, Understanding and Op. Interaction. In essence, the ID model captures the impact 

of the system defences on the uncertainty on the system CCF rate, which may be fur­

ther updated in the light of system-specific data; to this end, the ID model has more 

Similarities with the Partial Beta Factor method of UPM, rather than with the Cut-Off 

method. The latter yields a rough estimator of the total probability of system failure by 

assuming that the unreliability of a system due to CCFs can never exceed some limiting 

values, without using any. actual observations. 

Therefore the system defences are represented by variables Dk for k = 1, ... ,8. 
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Moreover, within UPM each defence is described by five levels, ranging from A to 

E. Therefore, within the ID framework it holds that for each Dk takes, level Xk takes 

values from set {1,2,3,4,5}, corresponding to levels A,B,C,D,E respectively. The 

definitions of the system defences and the corresponding levels are given in Appendix 

A. I. 

5.3.2 The ICDE coding scheme 

Within the particular set-up, a main assumption is that a postulated CCF event is at-
, 

tributed to a single root cause and communicated amongst components via a single 

COupling factor. Therefore, building the ID model requires a classification scheme for 

root causes and coupling factors to be adopted. 

Several suggestions for classification schemes of CCF events have been found in 

the literature [Fleming et al., 1988; Mosleh et al., 1998c; Parry, 1991; Werner et al., 

2004]. According to some of them, describing a CCF event in terms of a single root 

cause or coupling factor is con'sidered simplistic [Mosleh et al., 1998c; Parry, 1991]. 

Alternatively, the CCF classification is based on a more detailed scheme, involving . 
the concepts of proximate cause, conditioning event and trigger event. The proximate 

cause refers to the condition that is readily identifiable as leading to the failure. The 

Conditioning event refers to conditions that increase the component susceptibility to 

failure, and the trigger event is an event that activates the failure. 

In an effort to establish a mechanism that allows for a structured classification pro­

Cess and reporting of CCFs amongst different countries, coding schemes such as the 

International Common Cause Failure Data Exchange Project (ICDE)l. The countries­

members of the Project, are encouraged to document CCF events in terms of a report 

of standard format, by using common guidance for interpretation of the events [Werner 

et al., 2004]. Based on the standardised report, the event is classified across certain 

generic categories, including a root cause and coupling factor characterisation. The 

root cause is defined as the most basic reason for components' failure, the most readily 
---~---------------------

lSee Section 2.4.3 
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identifiable cause, and, licensees are encouraged to select a single root cause and cou­

pling factor for each event, even in cases where, due to the complex nature of the CCF 

event, a single root cause is not readily ascribable. 

Within the ID model, the root cause and coupling factor categories suggested by 

the ICDE coding scheme [Werner et al., 2004] particularly for EDGs are used. The 

reason for the choice of the particular taxonomies is the fact that the ICDE coding 

guidelines establish a coherent documentation of CCF information, according to a 

standard format, that allows for collection and analysis of data coming from various 

countries/members of the project. Thus, the ICDE database inc.orporates extensive in­

formation of a structured form, and by merging the structure of the database with the 

model structure, a valuable association is created. Moreover, observed CCF events are 

assigned a single root cause and coupling factor, a fact which aligns with the frame­

work of assumptions of the ID model. 

The root cause categories are Environment, Design, Human, Internal, Maintenance 

and Procedures. The definitions of the root causes are given in Appendix A,2. The 

COupling mechanisms are assigned to three main categories: hardware based, operation 

based, and environment based. The definitions of the coupling factors are given in 

Appendix A,3. 

5.3.3 ID variables and graphical representation 

In conclusion, the variables of the ID model are 

• 8 defence variables, signifying the defence characteristics of the system of com­

ponents. They are denoted with Dk (k = 1, ... ,8) and represented by decision 

nodes, each with set of alternatives {1,2,3,4,5}; 

• 6 root cause variables, signifying the rate of failure events due to a particular root 

cause per calendar hour. They are denoted with ri (i = 1, ... ,6) and represented 

by chance nodes; 

• 3 coupling factor variables, signifying the intensity of the coupling mechanisms 
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in the system. Each coupling factor j (j = 1,2,3) is represented by a chance 

node, and associated with a vector of parameters P j = (Plj. ... , P6j) where 

Pij = P( CCF through cf j I failure event due to rc i) 

• a CCF rate, signifying the rate of dependent failure-to-start events occurring to 
, 

the system per calendar hour. It is denoted with AceF and represented by a 

chance node. 

The graph in Figure 5.2 illustrates the associational relationships amongst the ID 

Variables. The defence aspects of the system affect the expected behaviour of the root 

cause and coupling factor variables, which in turn determine the expected behaviour 

of the CCF rate. These relationships are portrayed in the ID network by arrows. In 

particular, arrows between defence variables and root cause or coupling factor nodes 

signify the impact of system features on the occurrence of root cause events and the 

tendency for coupling behaviour; arrows between the root cause alongside coupling 

factor variables and the CCF rate variable represent how changes in the uncertainty of 

the former result in adjustments in the uncertainty of the latter. 

The lack of arrows between nodes signifies assertion of a priori conditional inde­

pendence. To be more precise, it is assumed that the root cause and coupling factor 

variables are independent. Moreover, i~ Section 5.2.2 it is assumed that the rates of 

failures due to different root causes r;, for i = 1, ... ,6, are independent parameters (as­

sumption of independent Poisson process). In Section 5.2.3, a local independence 

assumption is made, according to which parameters Pij, for j = 1,2,3, are a priori 

independent. 

5.4 Conclusion 

This section presented the modelling approach adopted within the particular frame­

Work. In particular, the main assumptions have been clearly stated, and the theoretical 

set-up of the model has been defined. Initially, the important elements of the modelling 
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Derences 

Figure 5.2: Dependency relationships in ID network 

domain have been identified and qualitatively defined. Following, a mathematical def­

inition for each element was given. 

The ID model considers failures that occurred during the period the system was 

on standby, and only detected by the demand. The modelling of this type of failure 

is based on the assumption that CCF events occur at random times during the idle 

period of the system, and at constant rates [Vaurio, 1994b]. Within the scope of CCF 

modelling, it is typical to assume that CCF events of different types occur according 

to independent Homogeneous Poisson Processes [Marshall and Olkin, 1967; Vesely, 

1977]. Moreover, the Homogeneous POisson assumption is considered appropriate 

because CCF events are rare events, and the occurrence of CCF events is not driven by 

factors such as the aging of the component or seasonality. 

Once the mathematical dimensions of the variables of the ID model are strictly 

defined, the mathematical structure of the model may be illustrated, and the implying 

properties presented. This is the aim of the next chapter. 
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Chapter 6 

Mathematical structure of the 

Influence Diagram Model 

6.1 Introduction 

This chapter presents the mathematical structure of the Influence Diagram (ID) model 

for CCF modelling. The ID model extends UPM by reflecting the functional intera~­

tions existing amongst the system defences. This is achieved by defining a mathemati­

cal formulation which associates the failure behaviour of the system, expressed by the 

root cause and coupling factor variables, with the defences that are employed by the 

system. This formulation is referred to as the Geometric Scaling (GS) model. The im­

plied relationships are not graphically portrayed in the model network, but are integral 

in the mathematical formulation of the ID model. 

This setup presents three particularly interesting features. Firstly, the GS model 

is an operationally useful formulation, because it significantly decreases the amount 

of information to be elicited from experts. The model associates any root cause and 

COupling factor variable with the configuration of the system across the influencing 

defences. For the quantification of the ID, experts need to determine their uncertainty 

On the parameters of the geometric scaling model, which will then be used in order to 

determine the subjective distribution on the root cause and coupling factor variable at 
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any defence configuration. 

Secondly, the setup allows for quantitative data to be communicated amongst de­

fence levels. Through application of Bayes' theorem, statistical information from one 

level becomes relevant for making uncertainty statements for other levels. Conse­

quently, updating the prior on a root cause or coupling factor variable at a particular 

defence configuration, modifies the uncertainty on the variable at any other configura­

tion across the influencing defences. 

Thirdly, the model allows for distinguishing between the different types of func­

tional interaction that exist amongst the defence variables that influence a particular 

failure characteristic of the system. 

The chapter is structured as follows: Section 6.2 addresses the issue of existing in­

teractions amongst the defences in the way they impact on the system susceptibility to 

CCF events. Section 6.3 defines the Geometric Scaling model associating the system 

failure behaviour with the employed defences, and shows that it succeeds in capturing 

the structure of the defence domain. In Section 6.4 the process of uncertainty extrapo­

lation to different configuration vectors is presented. Section 6.5 illustrates the process 

of learning form experience, or Bayesian updating. Section 6.6 determines the uncer­

tainty on the rate of component CCF events. Section 6.7 completes the presentation 

of the theoretical foundations of the Influence Diagram (ID) model with some general 

remarks, and Section 6.8 defines the Geo.metric Scaling model and mathematical con­

figuration within the particular application. Finally, Section 6.9 concludes the chapter. 
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6.2 Impact of defences 

6.2.1 Introduction 

The ID model expresses the overall CCF event process in terms of a superposition of 

root cause processes, filtered through coupling factor intensities l , i.e. 

, 

p p P le 

AcCF = I: Ai = I: 'iPi = I: I: 'iPi) 
i=1 i=1 i=1 )=1 

Where 'i are the root cause rates, and Pi) are the coupling factor intensities (i = 1, ... , p, 

j-=. 1,2, ... ,K). 

Thereby, the ID model introduces intermediate stages in the way the system de­

fences impact on the CCF rate AcCF, namely the root causes fj and coupling factors Pi) 

(i -=. 1, ... , P and j = 1,2, ... , K). The impact of the system defences is captured initially 

on these intermediate elements, which in turn determine the overall AcCF. 

Figure 6.1: Defences DJ, ... ,Dn influencing variable V 

Suppose that random variable V (root cause or coupling -factor variable) is influ­

enced by n system defences DI ,D2,'" ,Dn (see Figure 6.1). The system is scored 

across the n defences, and level Xk is assigned to defence Dk. Let K = {I, ... , n} be 

the set of indices of the influencing defences, and let nk = {I, ... , md be the state 

space of Xh so that k E K and Xk E nk. The random variable V at configuration vector 

(XI ,X2, . •. ,Xn) is denoted with 

---~--------------------
ISee Chapter 5, Section 5.2.4 
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It is assumed that the protection of the system against failures does not become 

Worse as a result of enhancing defence Dj (i E K), from level Xj to level Xj + 1 

(Xi,Xi+ 1 E ni). This assumption implies a partial ordering of the configuration vectors. 

For fixed levels of defences Dj for which i,* j (i,j E K) we have 

(Xl, ... ,Xi - 1,1 ,Xi + 1, ... ,xn) :::$ (Xl, ... ,xi - 1, 2,Xi + 1, ... ,xn) :::$ ... 

:::$ (Xl, ... ,xi - 1, 5,Xi + 1, ... ,xn) 

The ordering above induces an (inverse) ordering of random va!iables V(xJ, ... ,x
n

) at each 

defence configuration, viz. 

V(X\,. .. ,xi-l,l,xi+l, ... ,xn) 2: V(X!> ... ,xi- l ,2,xi+ l ,. .. ,xn) 

2: ... 2: V(X\" .. ,Xi- l ,5,Xi+1, ... ,xn) (6.1) 

Let /i(Xl, ... ,Xi, •.. ,xn) be the proportion by which V(X\ , ... ,xn) decreases, when the 

level of Di changes from Xi to Xi + 1, while the levels of the other defences are kept 

fixed, viz. 

v.(X x'+l x) = /j(Xl, •.• ,Xi,· .. ,xn)V.(x X· x) for XI' E n/· (6.2) 1"0,, I " •• , n 1,00" ,,00', n 

Relationships (6.1) imply that 0 < /i(Xl, .... ,Xn ) < 1. 

6.2.2 Types of functional interaction 

Proportion /j(Xl, ... ,Xi, ... ,Xn) (i E K) expresses the impact of defence Di on r.v. V, 

and, ultimately, on the CCF rate, when moving from Xi to Xi + 1 whilst the levels of 

the other defences are kept fixed. In order to describe potential interactions existing 

amongst Di and other defences Dj (j E K, j,* i), it suffices to describe the way the 

other defences influence proportion l;(Xl, ... -,xn). 
S; Si 

Let Xi,e for e = 1,2, "'Si be a partition of ni, that is n Xi,e = 0 and U Xi,e = ni. 
, 0=1 0=1 

When Xi E Xi,O and Xi + 1 E Xi,9+ 1, for some e E {I, 2, ... Sj}, then it is said that drastic 
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changes in the defence of the system occur. Otherwise, moderate changes occur. 

Within the proposed set-up three types of interaction are distinguished, namely 

functional independence, functional dependence and threshold functional dependence. 

It is assumed that between any pair of defences {Di,Dj} (i,j E K, j:::l= i) one of these 

interactions exists. These are defined below. 

Functional independence Defence Di is functionally independent of defence Dj, when 

the effect on V of improving Di by one level (Xi,Xj + 1 E nj), whilst the levels of 

the other defences are kept fixed, is the same regardless of the level of Dj. This 

property is symmetrical, implying that Dj is also functionally independent of Di. 

Mathematically expressed, 

and 

Functional dependence Defence Dj is functionally dependent on Dj, when the effect 

on V of improving Dj by one level (Xj,Xi + 1 E ni), whilst the levels of the other 

defences are kept fixed, depends on the level of Dj, and vice-versa. This property 

is symmetrical, implying that Dj is also functionally dependent on Di. 

Mathematically expressed, 

with Xj,~ E nj, and 
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Threshold functional dependence Defence Dj is threshold functionally dependent 

on defence Dj, when the effect on V of improving Dj by one level (Xj,Xj+ 1 E ,Qj), 

whilst the levels of the other defences are kept fixed, depends on e for which 

Xj E Xj,e. Whereas, the effect on V of moderately improving Dj by one level 

(Xj,Xj + 1 E Xj,e, for some e E {I, ... ,Sj}) is the same regardless of the level of 

Dj. This property is not symmetrical. 

Mathematically expressed, 

if Xj,~ E Xj,e, for some e E {l, ... ,sj}, and for moderate changes 

(when XbXj + 1 E Xj,e), 

for every Xj, X; E nj and constant for all e E {I, ... , sd. 

6.3 The Geometric Scaling (GS) model 

6.3.1 Introduction 

The overall goal is to define a model to support uncertainty statements about the failure 

behaviour of a system employing particular defences, whilst allowing for distinguish­

ing the different types of functional interaction as described above. To achieve this, a 

fUnctional relationship is assumed between r. v. V 2 and the system configuration vector 

of the influencing defences (Xl, ... ,Xn). 

Previously, similar set-ups have been proposed within the area of Accelerated Life 

Testing (ALT). To be more precise, ALT i~ concerned with the failure behaviour of 

devices that operate under different levels of stress. Often, the interest lies on stress 

levels that cannot be reproduced in laboratories, and for which there is no information 

2 V denotes a root cause or coupling factor r. v. 
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available from tests; thus, it is important to define set-ups that allow making inferences 

based on the available knowledge, that is tests performed at different stress levels. 

Within this context, an ordering of the stress levels is assumed, implying an ordering 

of the parameter of interest, and a relationship is defined between the parameter of 

interest and the stress level. Within the literature, different types of relationships have 

been used, such as the power law, the Arrenius model and the Eyring model ([Black­

Well and Singpurwalla, 1988] and references therein]), and different methodologies 

have been explored, both Bayesian [Dorp and Mazzuchi, 2004; Mazzuchi and Soyer, 

1996] and frequentist [Singpurwalla, 1971] in order to determine the unknown param­

eters. In [Mazzuchi and Soyer, 1992] an exponential model is assumed for the system 

. lifetime distribution, and, a power law model is used for describing the stress effect on 

the failure rate. In [Dorp and Mazzuchi, 2004], an exponential life time distribution is 

assumed; the ordering of the rates at different levels is preserved by using a multivari­

ate prior distribution defined over an ordered region. The type of model associating 

the system failure behaviour with the operating conditions depends, in principle, on 

physical patterns identified in the real world [Mazzuchi and Soyer, 1992]. 

6.3.2 The model 

Structure of the defence domain 

For r. v. V being influenced by defence~ Dl, ... , Dn suppose that the structure of the 

defence domain is defined as follows: 

• Let {i, j} C K be a pair of indices of two functionally independent defences Dj 

and Dj, i,j E K. Then we define 

H1t = {{i,j} I Dj,Dj functionally independent} 

as the set of all the pairs of indices of functionally independent defences, and, 

H = {i liE {i,j} for some j E K, where {i,j} E H1t } 
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as the set of indices of all defences that exhibit functional independence with 

some defence Db k E K. 

• Let {i, j} C K be the pair of indices of two functionally dependent defences Dj 

and Dj, i,j E K. Then we define 

Mn = {{i,j} I Dj,Dj functionally dependent} 

as the set of all the pairs of indices of functionally dependent defences, and, 

M = {i liE {i,j} for some j E K, where {i,j} E Mn} 

as the set of indices of all defences that exhibit functional dependence with some 

defence Db k E K. 

• We define Q C K as the set of indices of threshold functionally dependent de­

fences. For each q E Q, define Lq C K as the set of indices of defences on which 

Dq is threshold functionally dependent. Then 

L = {k I k E Lq for some q E Q} 

is the set of indices of all defences that are the counterpart of threshold functional 

dependence with some defence Db k E K. 

Subsets H, M, Q and L are not necessarily mutually exclusive. A given defence 

Dk may be functionally independent of defence Dll ({ k, 11} E Hn), but functionally 

dependent on defence Dl ({ k, I} E Mn), could be functionally dependent on a second 

defence Dl' ({ k, I'} E Mn for I '* I') 3, could be threshold functional dependent on a 

third defence (k E Q), or the counterpart of threshold dependency of a fourth defence 

(k E Lq for some q E Q). Therefore, it is possible that H n M n Q n L '* 0. 

3Punctional dependence is symmetrical but not transitive 
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Model formula 

The following mathematical relationship is assumed, which from now and on will be 

referred to as the Geometric Scaling (GS) model 

(6.3) 

Where V(PJ, ... ,Pn) is r.v. V when defence Dk receives the medium level Pk E Ob for all 

k = 1, ... ,n, <Pi) ER is a cross-term that corresponds to pair {i,j} E M1t and <I>k is a 

function <I>k : OkJ x ... X Okr --t [0, 1] 

The form of function <I>k 

The form of function <I>k is 

with ° < <Pk ~ 1 and <Pk (XkJ , Xk2' ••• , Xkr ) : Ok! x ... X Okr --t [0, 1] being a function defined 

as follows: 

If Xi,S for e = 1,2, ... ,Si is a partition of Oi (i = kl, ... , kr), then YT] = XT]! X .. ,XT]r 

(11i E {1, ... ,Si}) is a partition of Ok! X Okr with 11 = 1, ... ,Sk!· ... ·Skr• Formula 

<Pk(Xk! ,Xk2' ... ,Xkr ) represents a piecewise function with domain Ok! x ... X Okr , viz. 

with ° < <Pk,T] ~ 1. It is further assumed that for Xkj kept fixed, points <Pk(Xk!, ""Xk" ""Xkr ), 

where j '* I and j,l E {1, ... , r}, are symmetrically distanced. 
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The general form of the GS model 

The GS model may be expressed as 

(6.4) 

where hv(XI, ... ,Xn): 01 x ... x On ~ R is a log-linear function that relates each con­

figuration vector (XI, ... ,xn ) to a real number, and with parameters the proportions <Pk 

(k E K) and ~ij (i, j E Mij). Taking the logarithmic transformation of hv(XI, ... ,xn), the 

resulting expression is a multivariate polynomial of second degree. The second degree 

term captures the symmetric dependence between two functionally dependent vari­

ables. The piecewise form of the term <Pk when k E Q, allows to express dependency 

of defence Dk on a set of defences Dk/' 1 = 1, ... , r (kl ELk), without reciprocating this 

effect from Dk/ to Dk. 

The log-linear form of the proposed model reflects the increasing difficulty in en­

hancing the failure behaviour of the system as the levels of the influencing defences 

increase. For the dependent failure problem, there is no indication to suggest devi­

ation from a non-linear relationship between the susceptibility of the system and the 

employed defence levels [Smith, 2000]. 

Using model (6.3) allows to extrapolate uncertainty from a starting point to any 

defence level, once the model paramete~s are determined. Relationship (6.3) suggests 

V(.u\, ... ,,un) as the starting point, which expresses r.v. V at a medium configuration vec­

tor (PI, "',Pn), Pk E Ob k = 1, ... , n. This choice is supported by the fact that it is 

conceptually easier to elicit information on events that are frequently encountered in 

practice (systems with medium defences), rather than on extreme situations (systems 

with exceptionally high or exceptionally low defences). 

Below, it is explored whether the GS model succeeds to distinguish between the 

different types of functional interaction. This property constitutes a model desidera­

tum. 
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The GS model and functional interactions 

Consider defences Di, Dj for which i,j E K. From (6.2) it follows that, 

J
.( . ) _ V(xI, ... ,x;+l, ... ,xn) 
I Xl"",XIl···,Xn - V; 

(XI, .. ·,X;, ... ,xn) 
for Xi = 1, ... , 4 

Using Model (6.3), and after removing the common terms from the nominator and the 

denominator, we have 

Let 

so that 

(6.5) 

Functional independence Suppose that defence Di is functionally independent 

of defence Dj, that is {i,j} E H1t. The impact of defence Di is given by formula (6.5). 

Between any two defences only one kind of interaction exists, thus j f!. Li and <Pi is not 

a function of Xj. Moreover, {i,j} f!. M1t and factor Cl is not a function of Xj. We will 

now explore whether C2 is a function of Xj • 

• Assume that there is no I E Q for which i,j ELt. 

Then, factor C2 is not a function of Xj either, and proportion 

does not depend on Xj. 
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• Assume that there is 1 E Q, for which i,j ELL. 

Then, for some m E {I, ... , r}, it holds that Xlm = X j, and <1>1 (XII' ... ,XI,) is a function of 

If 

Xi,Xi+1EXi,e 8E{1, ... ,s;} 

then 

and 

Therefore, C2 = 1 and Ii(Xl, ••• ,Xi, ••• ,xn) does not depend on Xj' 

However, if Xi E Xi,e and Xi + 1 E Xi,9+1 (8 E {I, ... ,Si}) 

and C2 becomes a function of Xj' In this case, functional independence holds by placing 

additional conditions on the form of the piecewise function <1>1 (Xl, , .. Xl,). It is further 

assumed that 
r 

<1>1 (Xl, , .. Xl,) = n <l>t(Xlm) (6.6) 
m=l 

Where 

Then, 

is not a function of X j. 

Now, in all cases, Ii(Xl, ••• ,Xi, .•• ,xn) does not depend on Xj, and 
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implying that Di is functionally independent of Dj. 

In a similar fashion it may be shown that 

Where factors ct>j, Cl, C2 do not depend on Xi, and that 

, Thus, the formulation agrees with the mathematical expression of functional inde­

pendence. 

Functional dependence Suppose that defences Di and Dj are functionally de­

pendent, i.e., {i,j} E Mrc. The impact of defence Di is given by formula (6.5). 

Based on the assumption that between any two defences only one kind of interac­

tion exists, it holds that j (j. Li; and ct>i is not a function of Xj. Moreover, Cl may be 

re-written as 

CI= 

and 

Proportion Ii(XI, ••. ,Xi, •.. ,Xn ) now becomes 

where factors ct>i, C do not depend on Xj. Similarly, one finds that 
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Where factors 4.>j' C do not depend on Xj. Therefore, if Xj ,*~, then 

and, if Xj ,*,i;, then 

Thus, Model (6.3) agrees with the mathematical expression of functional dependence. 

'In addition, the effect on Ij(Xt, ... ,xn), with respect to the level of Dj, is symmetrical 

to the effect on Ij(xt, ... ,xn), with respect to the level of Dj. 

The two defences may present either a compensating or an aggravating effect. A 

compensating effect implies that improving the defence characteristics of the system 

Concerning one defence becomes less effective when the other defence is strong. An 

aggravating effect implies that improving the defence characteristics of the system con­

cerning one defence becomes more effective when the other defence is strong. The 

range of G>jj determines the nature of interaction between defences Dj and Dj. Indee~, 

0< 4.>j, 4.>j < 1, and for G>ij > 1 we have 

which imply that improving one defence is less effective for higher levels of the other 

defence (compensating effect). In a similar fashion, for 0 < G>ij < 1 we have 

Which imply that improving one defence is more significant for higher levels of the 

other defence (aggravating effect). 

Threshold functional dependence Suppose that defence Dj is threshold func­

tionally dependent on defence Dj, i.e. i E Q and j E Lj. The impact of defence Dj is 
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given by formula (6.5). 

Based on the assumption that between any two defences only one kind of inter­

action exists, it holds that {i, j} ft M1t , which implies that Cl is not a function of Xj. 

Moreover, i ft Lj' and C2 is not a function of Xj, either. Therefore, 

Where 

Consistently with (6.6), we have 

Ii(XI, ... ,Xi, .. · ,Xn) = <Pi' C = ~i(Xj) f1 ~i(Xim)' C 
m,im:Fj 

Where C is not a function of Xj. Therefore, if Xj,~ E Xj,S, then ~i(Xj) = ~i(~) and 

Ii(XI, ••. ,xii'" ,xn) = Ii(XI, •.• ,~, •.. ,xn). 

In a similar fashion, according to (6.5) the impact of Dj is given by 

where 

Cl = n ~:rJli 
{i,j}EM1t 

Threshold functional dependence is not a symmetric property. Therefore, defence Dj, 

which is the counterpart of threshold dependence of defence Di (j E Li), cannot be 

threshold dependent on defence Dj (i ft Lj). Moreover, based on the fact only one type 

of interaction exists between two defences, defences Dj and Dj cannot be functionally 

dependent ({i, j} ft M1t). Thus, <Pj, Cl are not functions of Xj, and 
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The impact of Dj is now expressed as 

(6.7) 

where C is not a function of Xi. For moderate modifications of Xj, i.e., Xj,Xj + I E Xj,S 

We have ~i(Xj) = ~j(Xj + I) and (6.7) becomes 

which implies that 

for every Xj,X; E nj, and constant for all 8 E {I, ... ,Sj}. Therefore, Model (6.3) agrees 

With the definition of threshold functional dependence. 

However, when drastic modifications occur, then ~j(Xj) "* ~j(Xj + I) and 

Ij(XI, ... ,Xi, ... ,Xn) depends on the level of Di. Suppose that the effect of Dj on Dj 

is compensating, implying that enhancing Dj is more effective when Dj is assigned io 
a lower lever, i.e. 

and 

( ~j(Xj + 1))Xi-J.Ji > I 
~i(Xj) 

for Xi > Jii and 

Based on Relationship (6.7), and for Xj E Xj,S, Xj + 1 E Xj,9+1 (8 E {1, ... ,Sj}), we have 

Which implies that for drastic changes in the level of Dj, the higher the level of Dj is, 

the less efficient enhancing the level of Dj becomes. 

In a similar fashion, when the effect of Dj on Dj is aggravating and for drastic 
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modifications of Dj, the higher the level of Dj is, the more efficient enhancing the level 

of Dj becomes. 

6.4 Extrapolation of uncertainty 

The GS model defined in Section 6.3 allows the sP7cification of the uncertainty on 

r.v. V:!. at any configuration vector J. In performing uncertainty analysis on Model 

(6.3) a joint distribution on the proportion parameters <Pt (t = 1, ... , m)4 and variable 

Ve is required, where I:!. = (,ul, ... ,,un) is the 'base-level' configuration vector. Within 

the particular framework, a number of key assumptions are made. In particular, it is 

assumed that 

1. variables <Pt and V~ are a priori independent. This assertion implies that the 

proportions of decrease induced on V~ by modifying a particular defence depend 

exclusively on the environment in which the system operates, and not on the 

actual value of V~; 

2. proportion variables <Pt are mutually a priori independent; 

3. the uncertainty distribution on variable ri,J. is a gamma density5 with parameters 

aj x and hj x, i.e. ,- ,-

4. the uncertainty distribution on variable Pjj,J. is a beta density6 with parameters 

,,(jj,J. and Oij,J.' i.e. 

5. the uncertainty distribution on variable <Pt is a lognormal density with parameters 
---~--------------------

4With Q>1 we denote all the proportion variables Q>ij ({ij} E M7t ) and Cl>k(k E K) 
5See Chapter 5, Section 5.2.2 
6See Chapter 5, Section 5.2.3 
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Function hv(:!) in the OS model given in (6.4) is a log-linear function of proportions 

$t. In view of the fact that products of lognormal variables are themselves lognormally 

distributed, the choice of a lognormal distribution for the prior on $t leads to simple and 

elegant calculations. Moreover, assumptions of local independence also significantly 

simplify uncertainty analysis, and thus are often made within the context of Bayesian 

graphical models [Spiegelhalter and Lauritzen, 1990].. Figure 6.2 embodies these as­

sumptions, which are not graphically represented in the network of the ID model, but 

are integral into its mathematical structure. 

Figure 6.2: A priori dependency relationships in the as model 

The case where V is a root cause variable, and the case where V is a coupling factor 

Variable will be considered separately. . 

6.4.1 Root Cause Variables 

As defined previously, each root cause is expressed in the ID by a random variable 

r; representing the rate of events due to the particular root cause i (i = 1, ... , p). Let 

~ :::: ($;,1, ... , <Pi,m;) be the proportion parameters related to r;. 

The uncertainty distribution on the 'base-level' r.v. ri,1:!. is a gamma density with 

shape parameter a; and scale parameter bi, viz. 
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According to Model (6.4) it holds that 

(6.8) 

where,! = (Xl, ... ,xn ) and hi('!) : nl x ... x nn ~ R is a log-linear function of <Pi,l> 

t == I, ... , mi. By using variable transformation techniques consistently with model (6.8) 

and for given <Pi,t (t = 1, ... , mi), one obtains the prior distribution on n,;!, which is again 

a gamma density, viz. 

(6.9) 

and on the grounds of the GS model (6.8), the prior distribution on ri x is ,-

Parameters <Pi,l> for t = 1, ... , mi, are a priori mutually independent random vari­

ables, and the joint prior is 

where it is the marginal distribution of <Pi,l' 

Thus, f(ri,;!) is a continuous version of a mixture of priors. Mixture priors are 

frequently used in reliability; Diaconis and Ylvisaker [Diaconis and Ylvisaker, 1985] 

showed that any prior can be satisfactorily represented as a 'mixture prior', whereas 

Youngblood and Atwood [Youngblood and Atwood, 2005] defined mixture priors to 

model different performance states of a component. 

The joint prior distribution of rates due to root cause i is 
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6.4.2 Coupling Factor Variables 

Recall that each coupling factor is described by a vector of parameters 

Pi = (Pil,Pi2, "',Pit<) for every i = 1, ... ,p, 

Where 

Pij = P(CCF through coupling factor j I failure due to root cause i), j = 1,2, ... , l( 

, 

Let <{>ij = (<pij, 1, ... , <Pij,m;) be the proportion parameters related to Pij. According to 

the OS model (6.4), 

(6.10) 

where:! = (Xl, ... ,Xn) is the system's configuration vector and hij(:!) : 0 1 x ... x On ~ 

R is a log-linear function of <(>i;h t = 1, ... ,mij. 

Random variable Pij,1!. is a beta distributed variable, therefore it is restricted with!n 

the interval [0, 1]. However, for large enough values of hij (:!), the transformed variable 

Pij,! of Relationship (6.10) may in principle take values outside this interval. Thus, 

the distribution obtained analytically through the variable transformation is no longer 

a beta distribution. However, CCF events are by nature rare, and variables Pij,! essen­

tially take particularly small values. This fact allows to approximate the distribution of 

Pi),! by a beta distribution, without significant loss of information. 

Numerically, this approximation is performed by assuring that the first two mo­

ments of Pij,! agree with (6.10), i.e. 

Let 

E(Pij,!) = hij(:!)E(Pij,l!.) 

Var(Pij,!) = hij (:!)2Var(Pi),I!.) 
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Now, specifying the prior on Pij,~ reduces to the task of determining the beta parameters 

Yij,~ and Bij,~ such that Relationships (6.11) and (6.12) are met, leading to the system 

of equations 

(6.13) 

(6.14) 

The system provides a closed form solution for Yij,~ and Bij,~, and let 

be the solutions of the system, where 

SI : nl x ... x nn -+ (0,00) and S2: nl x ... x nn -+ (0,00) 

are functions with parameters <i>t (t = 1, ... , mij). A similar approach of moment-fitting 

is explored in [Mazzuchi and Soyer, 1992]. 

Now, the prior distribution on Pij,~ is a continuous mixture of prior distributions. 

In particular, 

j+OO 
f(pij,~) = -00 f(pij,~ I fPij )f( fPij )d<pij 

Where 

Parameters fPij,h for t = 1, ... , mij' are considered as independent random variables with 

joint prior: 

Where It is the marginal distribution of <Pij,t· 

The joint prior distribution of r.v.'s expressing the intensity of coupling factor j 
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related to root cause i, is 

6.5 Bayesian Update 

6.5.1 Introduction 

The process of learning from experience, as it occurs within the GS model, is now 

illustrated. Suppose that data regarding a variable at a particular level configuration 

becomes available. Through the GS model the additional information becomes relevant 

to variables at other configuration levels, allowing for revision of inferences. 

Root cause and coupling factor variables will be explored separately. For the pur­

poses of simplification, the indices denoting the category of root cause or coupling 

factor will be omitted. 

6.5.2 Root Cause Variables 

The dependency relationships amongst the parameters of the GS model prior any up­

date are depicted in Figure 6.3. When information for a particular defence configura­

tion level:! = (Xl, ... ,xn) becomes available, this the information is propagated through 

the arcs of Figure 6.3 to the rest of the levels, allowing to revise the uncertainty on rJ:.' 

for any Xi, i = 1, ... ,n. 

Form of data 

The information relevant to r J:. comprises of the number of failures attributed to the 

particular root cause nJ:.' recorded during the fixed observation time of TJ:. units, from a 
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Figure 6.3: A priori dependency relationships for root cause variables rj. 

system with defence configuration vector:! = (Xl, "',Xk)1. Let 

With likelihood represented by the Poisson distribution 

( T, )nX 
f(d I ) - rx ,! - -r~.TJ. x rx - e, - - n' ,!' 

n,! = 0, 1,2, ... , r,! E (0,+00) 

Evidence on base-level r I!. 

Suppose that data relates to rI!.' denoted with dl!. = (nI!.' TI!.)' Prior uncertainty on rl!. is 

represented by the subjective distribution f(rl!.)' Let 

The posterior uncertainty on rI!.' in the light of data dl!.' is by Bayes' law: 

Due to the conjugate properties of the Poisson and the gamma families of distributions, 

f(rl!.) is again a gamma, viz. 

--~---------------------
7See Chapter 5, Section 5.3.2 
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Once uncertainty on the 'base-level' rate is updated, information is propagated 

through the arcs of the graph as depicted in Figure 6.4. The uncertainty on rJ. alters to 

Where f(rJ.1 d~,~) is the uncertainty on rJ. determined through the OS model by con­

sidering the updated uncertainty on the base-level va~iable f(r~ I d~), viz. 

Where rJ. = h(~)r~ and h(~) is log-linear with parameters <Pt (t = 1, ... ,m). 

Figure 6.4: When base-level rate is updated, information is transmitted through the dotted arc 

EVidence at configuration level ~* 

Suppose that data dJ.' = (nJ." TJ.*) becomes available regarding variable rJ.*' where 

-!*:::: (xi, ... ,x~) and xi '* Pi, i = 1, ... ,n. The objective is to specify the updated un­

certainty on rJ.*' in view of data dJ.*. Consistently with the OS model we have 
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Where h: nJ x ... x nn -* R is a function with parameters ~t (t = 1, ... ,m); thereby, 

the prior on r,!* is a mixture prior, viz. 

+00 

f(r,!* ) = J f(r,!* I ~)f(~)d~ 
-00 

where 

The updated uncertainty on r,!* is obtained by averaging over all the values of ~: 

f(r,!* I dJ." ) = E! [f(rJ.* I d,!*,~)] 
+00 

= J f(rJ." I dJ.*, ~)f(~ I d;)d~ 
-00 

Due to the conjugate properties of the Poisson and gamma families of distributions, the 

updated uncertainty f(rJ.* I dJ.";~) is again a gamma distribution, and in particular 

So, the interest lies in specifying the updated joint uncertainty f(~ I dJ.*). By Bayes' 

law 

(6.15) 

Integrating over the range of rJ." gives 

+00 

f(dJ.* I ~) = Er!* [f(dJ.* I ~, rJ.*)] = J f(dJ.* I ~, rJ.* )f(rJ.* I ~)dr,!* (6.16) 
o 
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and (6.15) becomes 

(6.17) 

For the implementation of model (6.15), the distribution f(dJ.* I~) is analytically de­

termined through Relationship (6.16), and more specifically it is 

(6.18) 

However, the integral implicit (6.15) may not be analytically solvable; consequently, 

Subsequent analysis requires the use of computational methods. 

Propagation of evidence to base-level rate 

Once rx• is updated, the prop'agation of evidence is accomplished through the 'arc 

reversal' transformation [Shachter, 1986], representing Bayes' theorem (Figure 6.5) .. 

Figure 6.5: Arc reversal transformation for root cause variables 

In the particular case, the arc reversal represents the inverse variable transformation 

1 h( *)-1 r" = --rx' =:! rx' 
C h(:!*) - -

156 



Figure 6.6: Information transmission from base-level rate to the rest of the defence level configura­
tions 

which leads to 
+00 

f(r~ld!*)oc J f(~ld!*)'f(r~ld!*,~)d~ (6.19) 
-00 

where 

(6.20) 

Note that after the arc reversal process, arrows are added from ~ to r~. This im­

plies that after updating, the aforementioned variables are not independent. This is 

consistent with relationships (6.19) and (6.24). 

Propagation of evidence to other configuration levels 

Now, due to the updated uncertainty on the base-level rate and proportion parameters, 

the distribution on r t for t '* ~* '!:!:. is revised as well (see Figure 6.6). 

For 

it is 
+00 

f(rtld!*)oc J f(rt-ld!*'~)'f(~ld!*)d~ (6.21) 
-00 
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where 

(6.22) 

Acquisition of data at multiple levels 

Suppose that data becomes available regarding rate r at different configuration levels 

XI and X2, for which - -

rXI = h(xI)r~ and rX2 = h(x2)r~ 

Then, the update uncertainty of r at any configuration level,!, for which 

in the light of data dXI = (nI, TI) and dX2 = (n2, T2), is 

+00 

f(r~ I dXI ,dX2 ) cc J f(r~ I ~,dXI ,dX2 )· f(~ I dXI ,dx2)d~ (6.23) 
-00 

where 

and 

(6.25) 

Distribution f(dxl I~) is specified through the model given in (6.16), and distribution 

f(dx2 I dXI ,~) is the likelihood of data dX2 · 

In general, suppose that data set d is divided into different part d = (d I, d2, ... , dm). 

Applying Bayes' theorem sequentially with data d1, d2, ... is equivalent to applying it a 

single time with data d = d1 + d2 + .... In this fashion, the posterior distribution on ~ 

given in (6.25) may be viewed as the result of a single application of Bayes' theorem 
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in the light of the 'transformed' data 

Summary 

Table 6.1 summarises the updating process for root cause variables 

6.5.3 Coupling Factor Variables 

The dependency relationships amongst the parameters of the OS model prior any up­

date are depicted in Figure 6.7. Suppose that information for a particular defence 

configuration level! = (Xl, ... ,xn ) becomes available; the information is propagated 

through the arcs of Figure 6.7 to the rest of the levels, allowing to revise the uncer­
t . amty on P!., for any Xko k = 1, ... , n. 

Figure 6.7: A priori dependency re~ationships for coupling factor variables Pi} 

The information relevant to P!. comprises of the number of failures n!. that resulted 

in a CCF via the particular coupling mechanism j, observed out of m!. failures due to a 

particular root cause i, at a system with configuration vector! = (Xl, ... ,Xk)8. Let 

--~------------~------
8See Chapter 5, Section 5.2.3 
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Table 6.1: Updating root cause variables 

Data: 

Likelihood function: 

GSM: 

Prior Distribution 

b 
f(r!.1 ~) := q (a, h(J.)) 

f(~) = TI!t(<I>t) 
l 

d!. = (n, T) 

Posterior Distribution 

f(1j> Id!.) = +00 f(lj» J f(d!.1 r!.,Ij»f(r!.llj»dr!. 

- l {f(~) J f(d!.1 r!.)f(r!.1 ~)dr!.} d~ 

b h(x) 
f(r~·1 d~,~):= q(a+n, h(J.*) + h(~) T) 
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with likelihood represented by the binomial distribution 

Evidence on base-level PI:!. 

Suppose that the information relates to PI:!.' that is dl:!. .. (nt!., ml:!.)' The prior uncertainty 

on PI:!. is represented by the subjective distribution !(PI:!.). Let 

!(p!!) := IJ3 (y, 0) 

The posterior uncertainty on PI:!.' in the light of data dl:!.' is by Bayes' law: 

Due to the conjugate properties of the binomial and the beta family of distributions, 

f(pl:!.) is again a beta distribution, viz. 

Once !(PI:!.) is updated, the new evidence is propagated through the arcs of the graph, 

as depicted in Figure 6.8, to update the ll:ncertainty on PJ.: 

where !(pJ.1 dl:!.'~) is the uncertainty on PJ.' obtained through the GS model by consid­

ering the updated uncertainty on the base-level variable, !(pl:!.l dl:!.)' In particular, 
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Where parameters 'Y! and o! are the solutions of System 

~ 

~ ~~'''. 
\dvl 

Figure 6.8: When base-level coupling probability is updated, information is transmitted through the 
dotted arc 

EVidence at configuration lev~1 J.* 

Suppose that data d!* = (n!*,m!*) becomes available regarding variable P!*, where 

!* :::: (xi, ... ,x~) and xi '* Pi, i = 1, ... , n for which 

The prior distribution on P!* is a mixture prior, viz. 

+00 

f(p!* ) = J f(p!* I ~)f(~)d~ 
-00 

Where 

with parameters 

162 



that are solutions of the system 

Following similar steps as in Section 6.5.2, one concludes that the updated uncertainty 

on Px' is 

f(p~* I d~. ) = E'1 [f(p~, I d~*,~)] , 
+00 

= J f(p~, I d~*, ~)f(~ I d~* )d~ 
-00 

Due to the conjugate properties of the binomial and beta families of distributions, the 

updated uncertainty f(px* I dx', <p) is again a beta distribution, and in particular 
- --

and the updated joint uncertainty f(~ I d~* ) is given by 

(6.26) 
~{ 1 } la f(~) l f(d~* I P~' )f(p~, I ~)dp~. d~ 

As previously, f(d~. I ~) is analytically determined, and more particularly 

Whereas the specification of the normalising constant in (6.26) requires to numerically 

approximate the implicit integral. 
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Propagation of evidence to base-level coupling variable 

Once Pf* is updated, propagation of information is accomplished through the 'arc re­

versal' transformation [Shachter, 1986], representing Bayes' theorem (Figure 6.9). 

Figure 6.9: Arc reversal transformation for coupling factor variables 

The arc reversal represents the inverse variable transformation 

The uncertainty distribution on PJ3.. is again a mixture of distributions, viz. 

+00 . 

f(pJ3.. I d~* ) oc J f(~ I d~* ) . f(pJ3..1 d~*, ~)d~ 
_00 

For given the proportion parameters ~, let 

. The parameters of f(pJ3..1 dx*, ~)are obtained by matching 

E(pJ3..) = h(,!*)-l E(p~*) 

Var(pJ3..) = h(,!*)-2Var(Pf*) 
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..---------, ,,'" ..... , 
1"" ............. 

Figure 6.10: Information transmission from base-level coupling probability to the rest of the defence 
level configurations 

and y, 3' are the solution of the system of equations 

Y 1 Yx* +nx* 
1 + 3' = h(~*) Y!* + 3!* + m!* 

y3' 1 (Yx*+nx*)(3x*+mx*-nx*) 
(1 + 3')2(1 + 3' + 1) = h(~*)2 (Y!* + 3!* + m!* )2 (Y!* + 3!* + m!* + 1) 

Note that during the arc reversal process, an arrow is added from ~ to r!:!: This 

implies that after updating, the aforementioned variables are no longer independent. 

Propagation of evidence to other configuration levels 

Now, due to the updated uncertainty on the base-level variable Pt!. and proportion pa­

rameters <p, the uncertainty on Px' for i "* ~* ,/1 is revised, as well (see Figure 6.10). - --
For 

Pt = h(l)p!:!. 

the uncertainty on Pt becomes 

+00 

f(pt I d!*) = J f(pj I ~,d!* )f(~ I d!* )d~ 
-00 
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where 

and 

are solutions of the system 

where i and 8' have been determined earlier by solving the system of equations fol­

lowing from (6.29) and (6.30). 

Summary 

Tables 6.2 and 6.3 summarises the updating process for coupling factor variables 

6.6 Rate of CCF events 

The issue of interest, following logically at this stage, is the determination of the sub­

jective distribution on rate 'ACCF at level configuration,! = (Xl, ""Xk)' For purposes of 

Simplification, the notation,!, signifying the configuration vector of the system, is omit­

ted. It is thus assumed that all variables describe failure characteristics of the system 

of components operating under defence environment,! = (Xl, ... ,Xk). 

The rate of CCF events occurring to a system is expressed as 

P 1C P 

f...cCF = E E Pijrj = E 'Ai (6.31) 
i=l j=l i=l 
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Table 6.2: Updating coupling factor variables (1) 

Data: 
d~ = (n,m) 

Likelihood function: 

GSM: 
P~ = h(;r)pl:!. 

Coupling intensity PI:!.' where;r" "* ;r 

Prior Distribution 

Posterior Distribution 

where parameters i, 0' are obtained by solving the system 

i 1 'Yx+ n 
1 + 0' = h(;r) 'Yx + Ox + m 

io' 1 (Yx+n)(ox+m-n) 
(1 +0')2(1 +0' + 1) = h(;r)2 (Y~+O~+m)2(y~+0~+m+ 1) 

Proportion parameters ~ 

Prior Distribution 

f(cp) := TI!t(CPt) 
t 

Posterior Distribution 

f(cp I d~) +00 f(cp) J f(d~ I p~,cp)J(p~ I cp)dp~ 
- J {f(~)Jf(d~lp~)f(p~I~)dp~}d~ 

_00 
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Table 6.3: Updating coupling factor variables (2) 

Coupling intensity PJ. 
Prior Distribution 

where parameters YJ.,0J. are obtained by solving the system 

YJ. - h(x) "I 
YJ. + 0J. - - "I + ° 

/'xox _ h(x)2 1'0' 
(YJ. + OJ.)2(yJ. + 0J. + 1) - - ("1+ 0)2("1+ 0 + 1) 

Posterior Distribution 

Coupling intensity PJ.', where ~. '* ~ 

Prior Distribution 

where parameters "Ix', Ox' are obtained by solving the system 

"Ix' = h(x*)-Y-
Yx'+Ox* - "1+ 0 

YJ.'Ox' _ h(x*)2 "10 
(YJ.' + 0J.' )2 (YJ.' + OJ.* + 1) - - (1'+ 0)2(1'+ 0 + 1) 

Posterior Distribution 

where parameters "Ix', Ox- are obtained by solving the system 

Yx' h( *) i 
"Ix' + Ox* = ~ y' + 0' 

YJ.*ox* _ h(x*)2 io' 
(YJ.-+ 0J.*)2(YJ.*+0J.*+l) - - (y'+o,)2(y'+O'+1) 
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Where ri is the rate of total failure events due to root cause i, 

Pij = P(CCF through cf j I failure due to rc i) 

and, Ai is the rate of CCF events due to root cause i. 

Let Pi = (pil, Pi2, •.. , Pi1C); Figure 6.11 portrays the dependency relationships inher­

ent in model 6.31. 

Figure 6.11: Rate of CCF events 

As described in Chapter 5, failures due to different root causes are assumed to occur 

according to independent Poisson processes. Therefore, r.v.'s Ai (i = 1, ... , p) are con­

ditionally mutually independent. The first two moments of f(Ai) may be determined 

as: 

p 

E(AcCF) = EE(Ai) 
i=1 

P 
Var(AccF) = E Var(Ai) 

i=1 

(6.32) 

(6.33) 

One can estimate the first two moments of AcCF, on the grounds of the first two 

lhoments of Ai , for i = 1, ... , p. . 
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Uncertainty on Ai 

Based on Relationship (6.31), the rate of CCF events due to root cause i is equal to 

le 

Ai = L Pijri 
j=i 

(6.34) 

Based on the OS model, the uncertainty distribution on rate ri is a mixture of gamma 

distributions 

where 

1+00 

f(ri) = -00 f(ri I <Pi)f( <pi)~<pi 

hi 
f(n I <Pi) := q (ai, hi(<Pi)) (6.35) 

with ai, hi being the shape and scale parameters respectively of the gamma distributed 

base-level rate ri,t!., and hi( <Pi) being a log-linear function of the proportion parameters 

~t Moreover, Pij, where j = 1,2, ... , K, are beta distributed variables with parameters 

that are functions of proportions C{>ij. In particular, let 

As described in Chapter 5, the correlation between variables Pij, j = 1,2,3 is weak, 

making the assumption of local independence of parameters Pij a reasonable approxi­

mation. Thus, 

f(pi I C{>ij) = f(Pil I C{>ij)f(Pi21 C{>ij) .. ·f(Pile I C{>ij) 

Variable transformation rules on the basis ofrelationship (6.34) imply that 

--~--------------------
9Thus far the log-linear function h has been denoted as h(!.). At this point there is no need to make 

reference to vector !., but it is of interest to refer to <1>; 
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where 

f(Ai I Pi,G>i) := q (ai, E~ ~i'h'(G>')) 
)=1 PI) I --1. 

(6.36) 

Averaging over all the possible values of G>i gives 

(6.37) 

Moments of Ai 

The k-th moment of Ai is obtained by 

Based on (6.37), it is 

By considering (6.36), 

These calculations cannot be determined analytically. The determination of the 

k-th moment of Ai for i = 1, .. :,6 requires the use of numerical approximation tech­

niques and appropriate computational tools. 
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6.7 Uncertainty analysis 

6.7.1 Prior distributions 

Let V be a root cause or a coupling factor variable. The prior distribution on V is 

f( v) = 1:00 

f( v I ~)f(~)d~ (6.38) 

where ~ = (~1' ... , ~m) is a vector of parameters expressing the effect of the influencing 

defences on r. v. V. Distribution f( v) may be considered as a. continuous mixture of 

distributions f(v I ~). A key assumption within the particular set-up is that parameters 

<l>t. t = 1, ... , m are a priori mutually independent. Thus, 

m 

f(~) = f1f(~~) 
~=1 

The moments of f( v) are: 

It is assumed that distribution f( v I ~) belongs to a particular family of distributions. 

In particular, for rates it is assumed that 

f(v I~) := q (a,b/h(~)) 

with raw moments given by 

I = r(a+m) h(~)m 
Pm bmr(a) -

For coupling probabilities it is assumed that 
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where SI (~), S2 (~) are the solutions of the corresponding system of equations, with raw 

moments given by 
, r(SI(cp) +S2(cp))r(SI(cp) +m) 

f.1m = r(SI (~) +S2(~) +m)r(SI (~)) 

Consequently, 

or 

Moments of the uncertainty distribution on V may be analytically computed, allowing 

for the articulation of probabilistic statements. 

6.7.2 Posterior distributions 

SUppose that data d is acquired, relevant to V. The posterior distribution on V, in the 

light of the new evidence, is 

f(v I d) = i~oo f(v I ~,d)j(~ I d)d~ (6.39) 

The posterior distribution f( v I d) may be considered as a weighted average of the pos­

terior conditional distributions f( v I ~,d), using as weights the posterior probabilities 

f(~ I d), which are given by 

d _ f(d I cp)f(cp) 
f(~ I ) - J~: f(d I ~)f(~)d~ (6.40) 

173 



The distribution j(d I ~,v) implicit in (6.40) is the likelihood of the data, given Vand 

it is obtained by integrating over the parameter space of V, i.e. 

(6.41) 

Within the particular set-up, the data is generated by either a Poisson or a binomial 

process. In both cases, the integral in (6.41) can be evaluated analytically. Indeed, 

( )

a 
Tn b 

j(d I~) oc ( b )n+a h(<\» • 
T+h@ -

Where d = (n, T) and n rv P(vT), or 

r(m - n +S2(<\»)r(n +SI (<1») 

When d = (n,m) and v rv Bp(n J m). In cases where the integral in (6.41) is not analyt­

ically tractable, computational techniques are required. A useful family of techniques 

based on asymptotic approximations of integrals is the Laplace method [Tierney and 

K.adane, 1986]. In cases were the dimensionality is high, Markov Chain Monte Carlo 

methods may be appropriate [Evans and Swartz, 1995]. 

In any case, the integral implicit in (6.40) cannot be carried out analytically. Com­

putational methods are required to approximate the normalising constant, and thus to 

Specify the posterior distribution j(~ I d). 

Within the ID framework, the uncertainty distribution on V is always represented 

by a continuous mixture of distributions. Moreover, model j( v I d) is decomposed 

to two sub-models: the elegant, analytically tractable sub-model j(v I ~,d), and the 

numerically determined sub-model f(~ I d). 
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6.8 The specific application 

This thesis is an application example of the suggested methodology. The research 

focuses on the CCF modelling of EDGs of nuclear power plants, and the ID model 

merges features of the UPM methodology with the structure of the ICDE database. 

Within this context, the definition of the system defences represented by the ID 

model is preserved from the UPM framework IO • Thus, the number of system defences 

COunts to eight, and the number of levels of each defence is five. In other words, 

Xk is the level of defence Dk, where k = 1, ... ,8 and Xk En = {I, ... , 5} 

Therefore, it holds that nk = n for every k. Within the particular framework, n is 

partitioned to low, medium and high levels; viz. Sk = 3 for every k and 

Xk,l =Xl = {1,2}, Xk,2 =X2 = {3}, Xk,3 =X3 = {4,5} fork= 1, ... ,8 

On this basis, the medium level for any defence Dk is 3, and for every k it holds that 

J.lk == J.l = 3. The Geometric Scaling model is now written as 

- IT t!.~~i-3)(xr3) IT <pxk - 3 . V, 
V(X\ , ... ,xn ) - 'I'll k (3, ... ,3) 

{i,j}EMlt kEK 
(6.42) 

where V(3, ... ,3) is r.v. V when all influencing defences receive the medium level, <!>ij ER 

is a cross-term that corresponds to pair {i, j} E M1t and <Pk is a function <Pk : nr ~ [0, 1] 

Moreover, the definition of function 

<!>k(Xk\ ,Xk2"" ,Xkr ) where {ki I i = 1, ... , r} = Lk for k E Q 

IOSee Chapter 5, Section 5.3.1 
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which is found in the GS model given in (6.42), is simplified. In particular, ~k(Xkl ,Xk2"" ,Xkr ) 

is a piecewise function with 

and 

with 0 < ~k,TJ < 1, where YTJ =XTJ1 x ... X XTJr with 11 = 1, ... ,3r and 111, ... , 11r E {1,2, 3}. 

Now, consistently with the assumption according to which for fixed Xkj with j * I and 

j, 1= 1, ... , r, points <!>k(Xkp'" ,Xkl"" ,Xkr ) are symmetrically distanced, we have 

(6.43) 

where x1/ E X2, ~/ E XI and x1: E X3. 

The association between the ICDE database and the ID model is achieved by using 

the taxonomy for the root causes and coupling factors as defined within the ICDE 

Coding guidelines ll . Within this context p = 6 and K = 3; now Relationship (6.31) 

becomes 
6 6 

'ACCF = E (Pil + Pi2 + Pi3) ri = E 'Aj (6.44) 
i=1 i=1 

6.9 Conclusion 

Within this section, the mathematical foundations of the ID model have been presented. 

In particular, the elements of the model have been qualitatively specified and quan­

titatively defined as probabilistic variables. Moreover, the mathematical framework 

of the ID model has been described, which distinguishes between different types of 

functional interactions existing amongst the system defences. Finally, the Geometric 

Scaling (GS) model has been proposed, which has a threefold functionality: first, it 

decreases the amount of information required for the specification of the prior distri-

llSee Section 5.3.2 
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butions on the ID variables, offering a pragmatic approach to the ID building process; 

second, it allows for the propagation of evidence within the ID variables; and, third, it 

allows for the classification of the defence interactions across different categories. 

Once the theoretical and mathematical set-up of the model is grounded, the basis is 

set to allow for a comprehensive description of the building process of the ID model. 
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Chapter 7 

Qualitative Stage of the Influence 

Diagram Building Process 

7.1 Introduction 

The previous chapter described the theoretical foundations of the ID model. At this 

stage, the building process of the model will be described. Essentially, there are thre~ 

main steps in building an ID model: problem structuring (qualitative stage), instantia­

tion (quantitative stage) and inference [van der Gaag, 1996; Sigurdsson et al., 2001]. 

The aim of this chapter is to describe the first stage of the ID building process, 

namely the qualitative stage (Figure 7.1) .. 

Once the basic elements of the ID model are defined and expressed as variables, 

the construction of the network of the ID model takes place. In most applications, 

the construction of the network is usually performed with expert judgment elicitation. 

'Expert judgment elicitation' refers to the extraction of domain knowledge by means 

of a formal, structured process [Cooke, 1991]. The term 'expert' sensu lata refers 

to 'any individual entrusted with providing specific inputs to an analysis, including 

not only those with formal training in analysis, but also untrained individuals with 

unique knowledge needed for the analysis' [Fischhoff, 1989]. Within this stage of the 

application, experts are individuals that are able to identify the topology of the network, 
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I _____________ 1 

INFERENCE STAGE 

Figure 7.1: Qualitative stage of ID building process 

based on concepts of relation, causality and influence. 

The chapter is structured as follows: Section 7.2 describes the overall protocol de­

signed for the purposes of building the ID model. Section 7.3 focuses on the qualitative 

stage of the model building, describes the elicitation process used for this purpose, and 

presents the results. Section 7.4 reflects on the process and discusses on the insights 

gained. Finally, Section 7.5 concludes this chapter. 

7.2 Expert judgment elicitation 

A particular characteristic of models built for PRA purposes is the fact that they are 

intended to be used in settings such as quantitative policy analysis and regulatory 

decision-making [Me1chers, 2001]. Clearly, decisions of such large scale have impli­

cations to the large public sector. Strictly speaking, the Bayesian paradigm applies to 

individual decision makers [French, 1986]. However, in large-scale decision problems, 

it is of high importance to combine the opinions of multiple experts in a scientifically 

justifiable manner. The term scientifically justifiable means that the expert judgment 

methodology adopted for the quantification of the model should conform to the norms 

of scientific research and. it should aim to consensus. As Cooke argues, 'were sci­

ence to abandon its commitment to rational consensus, then its potential contribution 
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to rational decision-making should be compromised' [Cooke, 1991, p. 80]. 

The aim of the methodological framework designed within the context of this re­

search is to use expert judgment both qualitatively and quantitatively, within a scien­

tifically structured approach. The desiderata of a scientifically robust framework for 

expert judgment elicitation are summarised as [Cooke and Goosens, 2000]: 

• Scrutability: all data and models used are documented and open to peer review, 

the process is reproducible; 

• Neutrality: the method for combining/evaluating expert judgment should encour­

age experts to state their true judgments. 

• Fairness: all experts are treated equally, prior to processing the results of obser­

vations. 

7.2.1 Protocol for expert judgment elicitation 

A general protocol for expert judgment elicitation is The Standford Research Institute 

(SRI) assessment protocol [Mo~gan and Henrion, 1990; Merkhofer, 1987; Spetzler and 

von Holsteins, 1975]. The SRI protocol comprises of the following stages: 1. motiva~­

ing, 2. structuring, 3. conditioning, 4. encoding, and 5. verifying. 

The objective of motivating is to establish rapport between the experts and the an­

alyst. This is achieved by providing to the expert panel information on the project in 

hand, explaining the role of expert judgment within the particular context, and present­

ing the methods used for expert judgment elicitation. It is important to clarify that the 

objective of the process is to measure the experts' degree of belief regarding certain 

quantities, rather than to test their knowledge on the particular subject. During this 

stage, motivational biases, which are either conscious or subconscious adjustments on 

the experts' responses stemming from various rewards for particular responses [Spet­

zler and von Holsteins, 1975], are identified and controlled. 

The second stage of structuring aims to clarify the objects and events that are the 

SUbjects of the elicitation process. During this stage, the variables are defined unam­

biguously, along with the corresponding state spaces. In order to ensure a clear un-
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derstanding of the modelling situation, a list of assumptions underlying the modelling 

approach is given. 

Conditioning is the stage where it is explained to the experts how to coherently 

assess their degree of belief. In order to reduce the effect of cognitive biases in assess­

ments, insight is provided into the different types of bias that experts are susceptible 

to. These biases involve: representativeness, which usually appears when subjects are 

requested to assess the probability of an object or event belonging to a particular class 

or process, and describe situations where the same factors of assessing similarity are 

used to asses probability [Tversky, 1974]; availability,which describes the tendency 

to assess probabilities of events based on familiarity and salience. Events that are eas­

ier recallable, are assigned higher probabilities [Cooke, 1991]; and anchoring, which 

refers to the tendency of making an assessment by setting a starting point or an initially 

value, and work out the assessment by adjusting this value [Tversky, 1974]. Anchoring 

may be caused either by the formulation of the problem, or due to incomplete compu­

tations of the expert. 

The stage of encoding is where the actual expert judgment elicitation occurs. Dur­

ing this stage, experts are encouraged to provide numerical assessments of their uncer­

tainty regarding particular variables (elicitation variables). Finally, the stage of veri­

fying aims to ensure that the assessments made by the experts reflect their true belief, 

and check the quality of the results of th~ probability encoding process. 

These stages constitute the building blocks of the protocol designed for the pur­

poses of this research. The overall protocol has been slenderly modified to accommo­

date the particular objectives. It is summarised in Figure 7.2. 

7.2.2 Expert Panel Selection 

Within the scope of the specific research, a resource expert is defined as a person with 

detailed and deep knowledge of a particular area, issue, aspects and particular method­

ologies. Resource experts are acknowledged as being suitable to give the appropriate 

input for the accomplishment of the research objectives. 
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Expert Judgment Elicitation Protocol 

1. Identification and selection of experts 

2. Motivating 

3. Structuring 

4. Qualitative elicitation 

5. Verifying 

6. Probability training - Conditioning • 

7. Probability encoding 

8. Data analysis 

9. Verifying 

Figure 7.2: Protocol used within the scope of the research 

The identification and selection of the resource experts (step 1 of the protocol) 

Was carried out with the help of UK Health and Safety Executive (HSE). Experts are 

selected who have knowledge of the EDG system, expertise in CCF modelling issues, 

and were available within the time framework of the research. The final panel consists 

of six nuclear experts. Out of the six experts, three have experience in Probabilistic 

Safety Assessment; two have experience in failure data analysis and specifically f~r 

diesels; and one has experience in common cause failure modes. 

The intention that the expert panel selection needs to fulfil is twofold: it needs 

to ensure that the experts carry the appropriate expertise to properly respond to the 

requirements of the research, whilst opinion variability is included in the panel. The 

appropriate candidates for the expert panel are people that are involved in the nuclear 

industry and they have one or more of the kinds of expertise mentioned above. 

7.3 Expert Judgment Workshop 

The elicitati~n of the necessary qualitativ~ information was performed by means of 

a workshop with the expert panel. The major part of the workshop had the format 

of a group decision-making exercise, the outcome of which was the network of the 

ID model and the existing functional interactions amongst the system defences. In 
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order to practically reach agreement on these two issues, the concept of moderate con­

sensus decision-making [Ness and Hoffman, 1998] was used. Whereas traditionally 

consensus implies the unanimous agreement of all the members of a group, moderate 

consensus implies that a majority have reached a given decision, and that the minority 

who opposed this decision have had a reasonable opportunity to influence this choice. 

The final decision is approved by the majority, and n~t objected by the minority. The 

rule of moderate decision-making has been chosen because, in practice, experts agree 

completely very rarely. 

The workshop took place on September 29, 2004 at the Atkins Nuclear, Aztec 

West, Bristol, between 9am and 5pm. 

7.3.1 Objectives of the Workshop 

Essentially, the workshop was designed in order to conduct Steps 2 to 4 of the Expert 

Judgment Elicitation Protocol (Figure 7.3). 

Expert Judgment Elicitation Protocol 

I. Identification and selection of experts 

r---------------~ 
I 2. Motivating I 

I I 3. Structuring I 
I 

i"~·"~~~!~~t:e~l:t~~ _. ____ " _. __ . J 
5. Verifying 

6. Probability training - Conditioning 

7. Probability encoding 

8. Data analysis 

9. Verifying 

Figure 7.3: Steps of the protocol accomplished during the workshop 

The specific elicitation goals of the workshop are summarised as: 

• Verification of model assumptions; 

• Structuring the ID network; 
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• Identification of functional interactions amongst system defences. 

7.3.2 Introduction to the workshop 

Prior to the workshop, the expert panel received an introductory document. The doc­

ument outlined the project scope and the important features of the problem addressed. 

The purpose of the document was to prepare the panel for the elicitation process. Re­

ceiving the document before the workshop provided the panel with time to reflect on 

the background of the project and on the relevant information before the actual elicita­

tion took place. 

At the opening of the workshop, a presentation was given to the expert panel. Dur­

ing the presentation the experts were briefed in more detail on the project, on the pur­

pose of the elicitation workshop, and on their role within this context. The aim of the 

presentation was to familiarise experts with the objectives of the workshop and create 

rapport between the analysts and the expert panel. 

The objectives of the workshop included structuring the network of an Influence 

Diagram (ID) model. IDs are advanced mathematical modelling tools; therefore, it w~s 

not expected from the experts to be familiar with the concepts involved. Nevertheless, 

familiarising the panel with the ID formalism was imperative for meeting the objectives 

of the workshop. For this purpose a tutorial on IDs was given before the structuring 

phase. 

More precisely, the aim of the tutorial was to introduce concepts that were neces­

sary for the graph elicitation. To this end, only two types of nodes where described 

(namely decision nodes and chance nodes), and the attention was focused on the con­

cept of causality rather than the concept of conditional independence. To facilitate 

the acquaintance of the panel with lDs, a simple example of an ID model was given. 

The example was taken from the area of reliability. During the tutorial, the panel did 

not show any particular problems in understanding the concept of cause and effect, 

Or influence, and how this is represented by an ID model. This observation was con­

firmed afterwards, during the actual elicitation, when experts tackled the exercise with 
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a particular ease. 

After the tutorial on the ID formalism, a second presentation was given. The aim 

of the presentation was to provide information on the issue of expert judgment. More 

Particularly, the importance of using expert judgment as a source of information for 

the purposes of PRA in general, and for modelling CCFs in particular was highlighted. 

The purpose of expert judgment elicitation was defi~ed, and the role of experts and 

their required input within the particular framework was clearly described (motivating 

stage) . 

. At the end of the presentations and tutorials, it was important to ensure that the 

expert panel had gained a good understanding of the elements of the domain whose 

network was to be elicited. In the effort to establish clear and unambiguous definitions 

on the elements of the model and the component boundaries (EDG), discussion was 

generated amongst the members of the panel. During intense discussion, disagreement 

arose regarding the definition of some of the elements of the problem. The disagree­

ment was resolved during the discussion and interaction amongst the members of the 

panel. This was a critical stage of the elicitation process: this disagreement, if not 

resolved, could have lead to significant misunderstandings and raise problems in the 

actual elicitation. The discussion resulted in the definitions of the elements of the mod­

elling domain to be refined, and the framework of model assumptions to be indirectly 

verified (structuring phase). 

7.3.3 Eliciting the ID network 

Once the model assumptions and the definitions of the elements of the domain were 

verified and refined, the expert panel was ready to proceed with the actual elicitation 

of the ID network. The overall process of eliciting the network is given in Figure 7.5. 

This section describes the steps taken in more detail. Structuring the ID network entails 

the determination of the influencing relationships amongst the system defences and the 

root causes and coupling factors. More particularly, the root causes and/or coupling 

factors that each defence variable is able to modulate need to be identified. These 
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modulating relationships between the defence variables and the root cause/coupling 

factor variables are depicted in the network by arcs from the former to the latter. In 

order to identify these arcs, an exercise was designed for the expert panel. 

The exercise 

For the purposes of the exercise, each expert was handed an acetate containing the 

variables of the model represented by the appropriate nodes, but without the arcs rep­

resenting modulating relationships (Figure 7.4). The experts were requested to identify 

these relationships from the defences to the root causes ~nd coupling factors, and draw 

arcs from the defences to the appropriate nodes. The panel was given roughly half an 

hour to perform this task individually. 

The aim of the next step of the process was to structure the panel's responses, 

and reach consensus on the form of the network. Once the experts' conclusions were 

obtained, a matrix Cjk was drawn on a flipchart, the rows j = 1, .. 8 representing the de­

fences, and the columns k = 1,' .. ,9 representing the root causes and coupling factors. 

Element C jk denoted the number of experts claiming that defence Dj may modulate 

variable Vj (coupling factor or root cause), therefore, should this number include the 

majority of experts, an arc from Dj to Vk should be drawn in the network. Discussion 

Was facilitated amongst the panel over the 'debatable' arcs, in order to reach a con­

clusion for each case. The process lasted for nearly two hours. The overall process 

Was recorded to be further analysed. In areas where unanimous agreement was not 

reached, the analyst had to make some further judgments; the reasoning underlying 

these judgments was described in detail in a feedback document, which was sent to the 

expert panel. Comments were requested from the experts, to ensure that the final ID 

network does not lead to conceptual inconsistencies and that there are no members of 

the panel opposing to the inclusion of particular modulating relationships. This way, it 

Was ensured that decision-making consensus was reached. 

Figure 7.6 depicts the resulting network of the ID model. The relationships por­

trayed in the model network are verbally described in Appendix B. 
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Figure 7.5: Elicitation of ID network 
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Response to the exercise 

As previously stated, the panel showed no difficulty in understanding the concept of 

cause and effect, and how this is represented in a ID network. Experts could easily 

reason in terms of which defences influence which failure characteristics of the sys­

tem (root causes or / and coupling factors), and present related examples to support 

their arguments. Nevertheless, identifying the significance of these relationships, and 

deciding which ones should be included in the model, proved to be rather problematic. 

A model is a simplification of reality, built in order to understand, manage and con-
, 

trol this part of reality [Pidd, 2003]. To this end, not all relationships existing in reality 

and relevant to the situation can be incorporated in the model. This is an aspect that one 

feels comfortable with, given that they have previous experience in model-building; 

however, the members of the panel had limited experience in the actual construction 

of models, resulting in the identification and representation in the network of any pos­

sible modulating relationship, regardless of its significance. As a consequence, when 

the acetates with the networks completed by the experts were gathered, they included 

such a large amount of information, that it was extremely difficult to decipher. 

In order to tackle this development, it was imperative to explain to the panel the fact 

that a model is only an approximation of reality, and to urge experts to include only 

the relationships for which they could retrieve practical examples. Once these points 

Were addressed, a considerable number of arcs was retrieved from the acetates, and the 

analysis of the information became possible by using the matrix. 

7.3.4 Eliciting the functional interactions 

After constructing the network, the functional interactions amongst the defences that 

influence the same element (root cause or coupling factor) were elicited. The elicitation 

process is summarised in Figure 7.7. This section elaborates on this process in more 

detail. 

During the construction of the ID network described previously, the defences that 

influence the same model element (root cause or coupling factor variable) had been 
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Feedback document 
to experts with results 

of process 

Figure 7.7: EIicitation of Functional Interactions 

identified, forming particular subgroups of defences. The intention was to identify the 
I 

nature of interaction between each pair of defences belonging to the same snbgroup. 

Before the actual elicitation, a presentation was given to prepare the panel accord­

ingly . A simple example was used for this purpose, according to which two defences 

Dm and Dn (m, n E {I, ... ,8}) influencing a particular failure characteristic (root cause 

or coupling factor). With the help of the example the different types of functional 

interaction existing between the two defences were clearly defined, in the way they 

influence the defence characteristic of the system. Once it was ensured that the panel 

Was feeling comfortable with these definitions, the actual elicitation proceeded. 

An exercise was designed in order to identify the functional interactions of interest. 

The main component of the exercise was the identification of the type of functional 

interaction that exists between two defences Dm and Dn. For this purpose, questions of 

the following form were used 

Suppose that defence Dm is at a low level, and defence Dn is at level Y. 

You are thinking of spending an amount of money to enhance Dn by one 
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level (to Y + 1). If you were told that the level of Dm is high instead of low, 

would you be prepared to spend the same amount of money? 

In principle, a positive response implies that the impact of enhancing the level of Dn is 

independent of the level of Dm. 

Ye. 

Figure 7.8: Assessing type of functional interaction 

In order to identify the type of functional interaction, a combination of questions 

Was used according to the logiC given in Figure 7.8. The exercise was based on the 

assumption that only one type of functional interaction exists between any pair of de­

fences, and on the non-symmetric property of threshold functional dependence. More­

over, the term 'always' refers to both moderate and drastic modifications of the level 

of the corresponding defence. 

To this end, two negative answers imply functional independency, whereas two 

Positive answers imply functional dependency. Threshold dependency is implied when 

the effect of the one defence is dependent on the level of the other defence, whereas 

the reverse does not always hold. Indeed, the counterpart of threshold dependency 

manifests a dependency only for drastic modifications. 

The exercise designed for the expert panel in order to identify the functional in­

teractions inherent amongst the system defences has similarities with a focus group 

exercise. In particular, specific questions were addressed to the expert panel, stimu­

lating brainstorming and discussion amongst the members. In case of disagreement, 

experts were encouraged to make use of specific engineering examples to support their 

arguments. 
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The whole process was recorded for further analysis. In most cases, the expert 

panel shared similar opinions regarding the particular questions. In few cases, where 

disagreement was not resolved through discussion, the facilitator had to make further 

judgments based on the engineering information given during the debate. In a similar 

fashion as earlier, the rationale behind these judgments was described in detail in a 

feedback report, documenting the results of the exercise. The report was sent to the 

expert panel and individual telephone meetings with each of the experts were arranged, 

in order to provide feedback on the conclusions reached during the workshop. The 

panel as a whole ensured that the final results of the qualitative data do not lead to 

conceptual inconsistencies, and that decision-making consensus is reached. 

The results of the process are given in Figure 7.9. 
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/ implies that Dj is threshold functionally dependent on Dj 

/" implies that Dj and Dj are functionalIy dependent 

Figure 7.9: Functional interactions between defences 
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7.4 Reflections on the elicitation process 

The elicitation process described in the previous sections was used for the particular 

industrial example of EDGs in nuclear power plants. This section reflects on the ap­

plication of the process, with respect to the stated goals of the elicitation workshop. 

Verifying the assumptions of the modelling approach is an integral part of the elic­

itation process. In order to achieve this task, a semi-structured discussion was used 

amongst the expert panel, preceding the network-elicitation exercise. Creating a com­

mon basis of agreement on the fundamental components of the model not only creates . 
rapport, but also ensures consistency in the elicitation process and compatibility of re-

sults. Distributing handouts to the experts describing the framework of assumptions 

facilitates the identification of the arguable points, and assists their further clarification 

and resolution. 

During the initial stages of the elicitation of the ID network, much disagreement 

arose amongst the panel members regarding the influences existing between the ele­

ments of the modelling domain. Naturally, some disagreement was expected, as differ­

ent people share different viewpoints; disagreement is even in some cases welcomed, 

as it helps to gain a more complete appreciation of the problem. However, in some 

cases difference in opinion may stem from other reasons rather than different perspec­

tives, and this option should be examined. In the particular application, we considered 

each area of debate separately, and we encouraged discussion. The discussion process 

revealed that the most significant part of disagreement stemmed from difference in the 

background of the members of the panel. To be more precise, members interpreted the 

model elements differently, according to their personal experience. Furthermore, the 

process revealed overlaps and ambiguity in some definitions of the system defences, 

which were adopted from the UPM framework. It is worth mentioning that once the 

panel agreed on common element definitions, disagreement tended to resolve. 

The identification of the non-linear structure of the modelling domain required the 

form and sequence of questions used to be such that it allowed experts to reason com­

fortably. The elicitation of functional interactions was performed in terms of prefer-
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ences and trade-offs, which created an intuitive environment that helped the experts to 

make assessments more naturally. The sequence of questions used was according to a 

stepwise logic, which involved pairwise comparisons between defences. Overall, it is 

believed that the experts did not encounter any significant problems in reasoning and 

making assessments within the particular context. 

7.5 Conclusion 

This chapter illustrated the elicitation process and the results .obtained used for the 

purposes of the qualitative stage of the ID building process. During this stage, in 

particular, the model assumptions have been verified, the network of the model was 

structured, and the types of functional interaction between the system defences were 

identified. 

The protocol presented within this section is not application- specific. To be more 

precise, the process for the elicitation of the ID network and of the non-linear structure 

of the domain depends neither on the number of defences, root causes and coupling 

factors incorporated in the model, nor on their physical dimensions. The exercise de: 

signed for the structu~ing of the ID network can be essentially used for any problem 

domain; the exercise for eliciting the functional interactions between the system de­

fences depends on preferences and trad~-offs and does not depend on the physical 

definition of the defences. 

The next chapter describes the second part of the ID building process, namely the 

Quantitative stage. 

195 



Chapter 8 

Quantitative Stage of the Influence 

Diagram Building Process 

8.1 Introduction 

The previous chapter presented the Qualitative stage of the model building process. In 

particular,·the chapter described the protocol used for: 1) the construction of the mode~ 

network and and 2) the identification of the functional interactions amongst the system 

defences, and presented the results obtained. 

The aim of this chapter is to describe the second stage of the ID building process, 

namely the quantitative stage (model instantiation) (Figure 8.1). The chapter is struc­

tured as follows: initially, the role of expert judgment within the instantiation context 

is explained. Afterwards, the probability encoding technique used within this context 

is described, and the elicitation strategy is presented. Finally, a brief description of the 

analysis of the results obtained from the process is given. 

8.2 The role of Expert Judgment 

Influence diagrams (IDs), like Bayesian Belief Networks (BBNs), decompose the joint 

probability distribution on the modelling domain by using conditional independency 
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Figure 8.1: Quantitative stage of ID building process 

relationships inherent amongst the model elements. The conditional (in)dependency 

structure of the modelling domain is encoded in the network of the ID model; hence, 

the overall joint probability distribution is expressed as a product of marginal condi­

tional distributions, defined on the basis of the network. 

The marginal conditional distributions are related to the chance nodes of the ID 

model. To be more precise, each chance node is associated with a set of conditional 

distributions, describing uncertainty on the node's random variable, for each combina­

tion of values of the influencing nodes (parent nodes). Instantiation of the ID model 

involves the determination of these sets of marginal conditional distributions, describ­

ing variable uncertainty prior any statistical information. In principle, these conditional 

distributions may be learned from data [Chickering et aI., 1995], or, especially in expert 

systems, defined on the basis of expert judgment [Max et aI., 1991]. 

Regarding the particular application, CCFs are particularly rare events; they cannot 

be studied experimentally and observational procedures yield relatively limited obser­

vations [Mosleh et aI., 1994; Parry, 1991; Paul a, 1995]. Hence, the quantification of 

the ID network on the basis of statistical data proves to be problematic. As a result, 

all necessary priors on the model variables need to obtained from expert judgment 

elicitation 1. 

IThe term 'expert judgment elicitation 'refers to the extraction of qualitative and quantitative domain 
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8.3 The determination of prior distributions 

Instantiation of the ID diagram requires the quantification of two types of chance 

nodes: the root cause nodes, and, the coupling factor nodes. Let r.v. V denote a 

root cause variable n or a coupling factor variable Pij (i = 1, ... ,6 and j = 1,2,3), and 

D I , ... , Dn be the parent defences of r. v. V. The objective at this stage is, for each 

r. v. V, to specify prior distributions for every configuration of the influencing defences 

D I , ... , Dn, based on expert judgment. 

"Given the fact that each defence Dk (k = 1, .. , n) may be assigned to one out of five 

states, denoted by Xk (Xk E {I, ... ,5} ), the set of distributions that need to be determined, 

associated with V only, comprises of 5n distributions. In view of the total number of 

chance nodes that need to be quantified, the number of distributions to be elicited is 

unmanageably large. The Geometric Scaling (GS) model presented in Chapter 6 proves 

to be an operationally useful methodology for quantification purposes. In particular, 

the GS model defines a functional relationship between r. v. V and the configuration 

vector:! = (XI, ... ,xn) of the system, viz. 

(8.1) 

where h(:!) is a log-linear function with parameters ~ = (<PI, ... , <Pm), and, VJ. is the 

variable of interest at the 'base-level' J:;:: (3, ... , 3). Based on (8.1), the marginal dis­

tribution f(Vx ) is decomposed to a product of marginal conditional distributions, i.e. 

Now, for the determination of f(V~.), for every Xk, k = 1, ... , n, it suffices to determine 

the joint distribution on the parameters of the GS model, f(~), and the prior on the 

'base-level' variable, f(VJ.). As"a result of the assumption of 'prior independence' of 

------------------------
knowledge by means of a formal, structured process 
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the proportion parameters (Section 5.5), it is 

and the variables that need to be quantified from expert judgment (target variables) 

reduce to 

• q,t. for t = 1, .. , rn, and 

• VJ. 

8.4 Probability encoding within the ID framework 

The elicited distributions represent judgement of knowledgeable individuals (experts), 

and reflect epistemic uncertainty regarding particular variables. The process used for 

the determination of the probability distributions of interest is referred to as probability 

encoding. Many techniques have been suggested for completing probability encoding 

[Kadane and Wolfson, 1998; Meyer and Booker, 1991; Morgan and Henrion, 1990; 

Merkhofer, 1987]. In the particular application, the approach adopted is parametric .. 

According to the parametric probability encoding approach, specific families of 

probability distributions are presupposed for the target variables. On this basis, experts 

are requested to make predictions regarding probabilities or values of the variable, that 

allow the determination of the parameters of the distributions of interest indirectly. 

Given that there are analytic relationships that link the experts' assessments regarding 

a variable with the parameters of its uncertainty distribution, on the grounds of the 

parametric assumptions made, one is required to solve an analytic problem in order to 

determine the p~ameters of interest. 

For the specific application, the following classes of distributions have been pre­

sUpposed for the target.variables2 
. 

• When V is a root cause variable (ri, for i = 1, ... ,6), the uncertainty distribution 

2See Chapter 6, Section 6.4 
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on V belongs to the gamma family viz. 

for ri E [0, +00] . 

• When V is a coupling factor variable (pij, for i = 1, ... ,6 and j = 1,2,3), the 

uncertainty distribution of V belongs to the beta family of distributions, viz. 

for Pij E [0,1] . 

• The uncertainty distribution on proportion variable <Pt belongs to the lognormal 

family of distributions, viz. 

for <Pt E [0, +00]. 

Approximating subjective distributions 

In principle, the elicitation techniques for determining continuous distributions that are 

a priori identified to belong into specific families, relies on the determination of points 

on the cumulative distribution function (CDF) or on the probability density function 

(PDF). The number of elicited quantities should be in principle equal to the number 

of family parameters to be determined, so that a system of as many equations as the 

number of unknowns is obtained, which may be algebraically solved. Once the family 

parameters are determined, the uncertainty distribution on the variable of interest is 

fully specified. 

However, in practice it is often infeasible to determine closed form solutions for the 

parameters, especially in cases where calculations involve integrals of the incomplete 

beta function. In these cases, numerical approximations are required by the analysis. 

Within the particular framework, the methodology adopted is based on a parametric 

200 



approach. Particular families of distributions are assumed for the elicitation variables, 

and the expert is requested to provide numerical estimates for three fractiles of the 

uncertainty distribution on the variable, namely the median, the 0.5% and the 0.95% 

fractile (fixed probability technique). Note that, although the prior distributions on the 

variables are approximated by two-parameter families (gamma, beta or lognormal), the 

number of elicited quantities for each variable is one,too many for a unique solution. 

Hence, the technique results in a minimisation problem, rather than in a system of 

equations. The minimisation problem aims to determine the parameters of the distri­

bution so that the fractiles are as close as possible to the subjective assessments made 

by the expert. Following, the steps of the techniques are described. 

Suppose that the interest lies in assessing the prior on V, which is approximated by 

a probability distribution with p.d.f. f(v). An expert is requested to make assessments 

regarding V, according to the following steps 

Step 1 The subject is requested to state a 'best estimate' for the variable of interest. 

The 'best estimate' is a value such that there is equal probability (0.5) that the 

actual value of the variable is smaller than this value, as that it is higher; it i.s 

mathematically translated to the median VO.5 of the variable, viz. 

to.5 

Pr(V :S vo.s) = 0.5 {:} lo f(v)dv = 0.5 (8.2) 

Step 2 The subject is requested to state a 'lower value' for the variable of interest. The 

'lower value' is defined as the value for which there is only 0.05 probability that 

the variable is less than that; it is mathematically translated to the 5% percentile 

Vo.os of the variable, viz. 

Io
vo.o5 

Pr(V :S vo.os) = 0.05 {:} f(v)dv = 0.05 
. 0 

(8.3) 

Step 3 The subject is requested to state an 'upper value' for the variable of interest. 

The 'upper value' is defined as the value for which there is only 0.05 probability 

that the variable is higher than that; it is mathematically translated to the 95% 
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percentile VO.95 of the variable, viz. 

la
VO .95 

Pr(V ~ VO.9S) = 0.95 {:} f(v)dv = 0.95 
. 0 

(8.4) 

The expert's responses are denoted by VI (median), V2 (lower bound) and V3 (upper 

bound). The problem is identified as the determination of the parameters of f(v), so 

that f(v) agrees as much as possible with the information obtained from the expert. 

Note that f belongs to a two-parameter family and let these parameters take particu­

lar values 81 and 82. Assuming that f(v) is the 'expert' distri?ution, one can obtain 

the 'expert' quantiles PI, P2 and P3 that correspond to the expert's responses through 

Relationships (8.2), (8.3) and (8.4). It holds that 

In order to fit the most appropriate distribution on the obtained quantiles VI, V2 and 

v3, the mean squared error between the expert probabilities PI, P2, and P3 and the 

theoretical probabilities ql = 0.05, q2 = 0.5, and q3 = 0.95 is minimised. The mean 

squared error is a measure of how close are the subjective and theoretical probabilities. 

Conceptually (Figure 8.2), the squared error (p j - qj)2 corresponds to the square of the 

Euclidean distance d) between points (O,P}) and (O,q}). By minimising the average 

squared length of the paths between (O,P}) and (O,q}), for j = 1,2,3, the distance 

between the subjective and theoretical distributions is reduced. 

Thus, the problem of determining the parameters of f(v) reduces to finding the 
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optimal values of 81, 82 according to the following minimisation problem: 

subject to 

F(v) 

81 E [xI,yd 

92 E [X2,Y2] 
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Figure 8.2: By minimising the distance between the subjective and theoretical quantiles, the distance 
between the corresponding distributions is conceptually minimised 

8.5 Elicitation Strategy 

The elicitation process, designed in order to extract the information required for the 

ID instantiation, is in the form of a questionnaire. In practice, it is often difficult for 

experts to assess the target variables directly. Alternatively, it is considerably more 

straightforward to assess quantities that are somehow related to the target variables. 

The uncertainty on the target variables is subsequently determined based on this infor­

mation. These intermediate quantities are referred to as elicitation variables. At each 
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elicitation variable corresponds a question, which requests to provide a lower value, 

best estimate, and upper value for the particular variable. 

The choice of the particular format for the elicitation exercise is based on two main 
') 

reasons 

• The subject is free to consult other sources of information (past data, event re­

ports, etc), in order to form an assessment they felt comfortable with 

• There are no strict restrictions imposed on the time frame of the exercise; the 

subject has the freedom to adjust the time required to respond to the questions, 

within logical constraints. 

Essentially, the questionnaire was designed in order to conduct Steps 6 and 7 of the 

Expert Judgment Elicitation Protocol (Figure 8.3). The questionnaire is comprised of 

three main parts: an Introductory part, a Root Cause part, and a Coupling Factor part. 

Note that the Questionnaire respondent (subject) has been present during the problem 

structuring stage of the ID building process, thus, is already familiar with the project 

scope and objectives. 

Expert Judgment Elicitation Protocol 

I. Identification and selection of experts 

2. Motivating 

3. Structuring 

4. Qualitative elicitation 

5. VerifYing r----------------
I 6. Probability training - Conditioning 1 

1.3. :!~b~i~~ty~~o~n! ________ J 
8. Data analysis 

9. VerifYing 

Figure 8.3: Steps of the protocol accomplished by the questionnaire 
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8.5.1 Introductory Part 

The purpose of the Introductory part of the Questionnaire is three-fold; in particular, 

the introduction aimed to 1) serve as a reminder of the information provided during 

the structuring phase by giving information on the particular problem, modelling ap­

proach, and problem elements 2) present the results obtained by the qualitative exer­

cise that took place during the expert workshop, and; 3) give explicit instructions on 

the questionnaire, along with virtual examples for purposes of illustration, in order to 

facilitate the process of completing the Questionnaire. 

8.5.2 Root Cause Part 

The Root Cause part of the elicitation questionnaire serves as a means to elicit expert 

knowledge for determining the prior distributions over the Root Cause variables (rj,J.' 

for i = 1, ... ,6 at any configuration vector J). The particular part was comprised of two 

types of assessment questions. . 

The first type of question aims to elicit uncertainty on the 'base-level' variable, rj 

(see Relationship (8.1»; the format of the questions used for this purpose is given in 

Table 8.1. 

Table 8.1: Assess uncertainty on root cause 'base-level' rate rj 

A system of EDGs is assessed at the medium level 5% 50% 95% 
(C) across the influencing defences. Give your per-
centiles for the failure rate of events attributed to 
Root Cause i (per calendar hour). 

Defence D\: C . 

'" 

Defence Dk: C 

'" 

Defence Dn: C 

The aim of the second type of question is to determine the uncertainty on the pro­

portion variables ~ = (~1' "., ~m) of the OS model given in Relationship (8.1). Spec-
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----------------------------------------------------------------

ifying the parameters of the GS model allows the extrapolation of the 'base-level' 

uncertainty to any configuration vector:! = (Xl, ... ,xn), for Xk E n, k E K. The series of 

questions used for this purpose aim to assess the impact of a particular defence on the 

'base-level' root cause rate, by taking into account the different kinds of interactions 

existing amongst the influencing defences. 

Functional independence For defence Dk that is functionally independent (k E 

H), the interest lies in determining the uncertainty on variable <Pk. The respondent is 

requested to assess the impact of modifying the particular defence characteristic by one 

level on the 'base' root cause rate rj. The format of questions used for this purpose is 

given in Table 8.2. 

Table 8.2: Assess uncertainty on the impact of modifying defence Dj on the root cause 'base-level' 
rate 

The system's defence regarding Defence Dk is en- 5% 50% 95% 
hanced to level D (while the levels of the rest de-
fences stay at the same level). Consider the ratio of 
decrease in the failure rate due to Root Cause i. Give 
your percentiles for this ratio. 

Defence DJ: C Defence DJ: C 
... 
Defence Dk: C-+ Defence Dk: D 
... 
Defence Dn: C Defence Dn: C 

Functional dependence For defences Dm and Dz that are functionally dependent 

({ rn, I} E Mrc), the interest lies in determining the uncertainty on variables <Pm, <Pt and on 

the cross-term <Pmt. For eliciting uncertainty on each <Pko k = rn, I, the respondent is re­

quested to assess the impact of modifying defence Dk by one level. The questions used 

for this purpose, similarly to the previous case, request from the respondent to assess 

the impact on the root cause rate rj of modifying the particular defence characteristic 

by one level (see Table 8.2). 

206 



For eliciting uncertainty on cross-term <Pm[, the respondent is requested to evaluate 

the interaction between the two defences, by assessing the impact of modifying both 

defences Dm and D[ by one level. The format of questions used for this purpose is 

given in Table 8.3. 

Table 8.3: Assess interaction between functionally dependent defences Dm and DJ 

The system's defence regarding Defence Dj is en- 5% 50% 95% 
hanced to level D (while the levels of the rest de-
fences stay at the same level). Consider the ratio of 
decrease in the failure rate due to Root Cause i. Give . 
your percentiles for this ratio. 

Defence DJ: C Defence DJ: C 
... 
Defence Dm: C -+ Defence Dm: D 
Defence Dj: C -+ Defence Dj: D 
... 
Defence Dn: C Defence Dn: C 

Threshold functional dependence For defence Dq that is threshold functionally 

dependent on defences Dt (t E Lq , q E Q), the interest lies in determining the uncer­

tainty on the components of the piecewise function <Pq(Xq" ... ,xqr ), where 

and YlC is a partition of .or. 
Initially, the respondent is requested to assess the uncertainty on the impact on rj 

of modifying defence Dq by one level, conditionally on the fact that all defences Dt 

(t E Lq) receive low levels, i.e., Xt E Xl (Table 8.4). In order to facilitate reasoning, the 

respondent is then requested to consider whether defence Dq is more or less signifi­

cant when the defences Dt , t E Lq, are assigned to high levels, i.e., Xt E X3 (see Table 

8.5). Afterwards, the respondent is requested to assess, consistently with the previ­

ous response, the uncertainty on the impact of modifying defence Dq, by one level, 
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conditionally on defences D t being high (Table 8.6). 

Table 8.4: Assess the impact of modifying defence Dq on the root cause rate, whilst defence D/ is low. 

Suppose that the system is assessed at a low level 5% 50% 95% 
across D/ and that the level of defence Defence Dq 
is enhanced from C to level D (while the levels of 
the rest defences stay at the same level). Consider 
the ratio of decrease in the failure rate due to Root 
Cause i. Give your percentiles for this ratio. 

, 

Defence DJ :C Defence DJ: C 

" . 
Defence D q: C -t Defence Dq: D 
Defence D/: A or B Defence Dt : A or B 
... 
Defence Dn: C Defence Dn: C 

Table 8.5: Facilitating question 

Now, suppose that the system is assessed at high levels across defence Dt (D or 
E) and that the level of Dq moves from C to D. Consider the ratio of decrease in 
the root cause rate ri. Compared to the previous case where D/ was low, will this 
ratio 

i. Increase (less significant impact of Dq) 
ii. Decrease (more significant impact of Dq) 

iii. Stay the same 

D 

D 

D 

Within the particular application, the set Lq comprises of one or two indices, cor­

responding to one or two defences. In the case where the counterpart of threshold 

dependence is one only defence Dr. then the information elicited from Questions 8.4 

and 8.6 is sufficient to determine ~q(Xq). Indeed, due to the symmetric form of the 

piecewise function, it is 

~q,2 = v' ~q, I . ~q,3 (8.5) 

Where parameters ~q,1 and ~q,3 correspond to Questions 8.4 and 8.6 respectively. 

208 



Table 8.6: Assess the impact of modifying defence Dq on the root cause rate, whilst defence D/ is 
high. 

Suppose that the system is assessed at a high level 5% 50% 95% 
across D/ and that the level of defence Defence Dq 
is enhanced from C to level D (while the levels of 
the rest defences stay at the same level). Consider 
the ratio of decrease in the failure rate due to Root 
Cause i. Give your percentiles for this ratio. 

Defence Dj :C Defence Dj: C 
.. ~ 

Defence D q: C -+ Defence Dq: D 
Defence D/: D or E Defence D/: D or E 
... 
Defence Dn: C Defence Dn: C 

In the case where Dq is threshold dependent on two defences Dtl and Dt2 , it is of 

interest to perform a check regarding the additional conditions placed on the form of 

function <!>q(XtI'Xt2)3, namely 

(8.6) 

For this purpose, two additional questions are included in the questionnaire. The first 

question (see Table 8.7) requests from the respondent to assess the impact of enhancing 

Dq by one level, given that Dtl has a low level (Xr
j 

E Xl) and Dt2 has a high level 

(Xr
2 

E X3). The second question (see Table 8.8) requests the respondent to assess the 

same event, this time given that the reverse occurs (Xr~ E X3 and x:~ E Xl). If the 

assessments for variables <!>q(X: I ,Xr2) and <!>q(Xr~ 'Xr~)' for Xrl ,Xr~ E Xl and Xr' ,Xr E X3 
. I 2 

are close, then (8.6) is a reasonable assumption. 

3See Chapter 6, Section 6.3.2 
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Table 8.7: Checking additional condition on piecewise function - Question 1 

Suppose that the system is assessed at a low level 5% 50% 95% 
across DtJ and at a high level across Dt2 . The level 
of defence Defence Dq is enhanced from C to level D 
(while the levels of the rest defences stay at the same 
level). Consider the ratio of decrease in the failure 
rate due to Root Cause i. Give your percentiles for 
this ratio. 

, 

Defence Dl:C Defence DJ: C 
... . 
Defence Dq: C -+ Defence Dq: D 
Defence DtJ: A or B Defence DtJ: A or B 
Defence Dt2 : D or E Defence Dt2 : D or E 
... 
Defence Dn: C Defence Dn: C 

8.5.3 Coupling Factor Part 

The Coupling Factor part of the questionnaire serves as a means to elicit the expert 

judgment required for the quantification of the Coupling Factor nodes. The coupling' 

factors describe the similar characteristics of a system that propagate a failure event 

due to a particular root cause amongst several components, compelling them to fail 

dependently rather than independently. Depending on the nature of the root cause 

event, certain coupling factor mechanisms may be more significant in propagating the 

root cause event, than others. 

The elicitation burden imposed on the Expert may be reduced by taking advantage 

of the weak association existing amongst particular root causes and coupling factors. 

The respondent is initially requested to assess the association of each root cause to each 

coupling factor. The format of the questions serving the particular purpose is given in 

Table 8.9. 

Consider root cause i (i = 1, ... ,6) and coupling factor j (j = 1,2,3). If the associ-
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Table 8.8: Checking additional condition on piecewise function - Question 2 

Suppose that the system is assessed at a low level 5% 50% 95% 
across DtJ and at a high level across Dt2 . The level 
of defence Defence Dq is enhanced from C to level D 
(while the levels of the rest defences stay at the same 
level). Consider the ratio of decrease in the failure 
rate due to Root Cause i. Give your percentiles for 
this ratio. 

Defence Dl:C Defence Dl: C 
... 
Defence D q: C -+ Defence Dq: D 
Defence DtJ: D or E Defence DtJ: D or E 
Defence Dt2 : A or B Defence Dt2 : A or B 
... 
Defence Dn: C Defence Dn: C 

ation between them is evaluated as irrelevant, then it is assumed that 

Pij =0 

and the variable is not quantified (link between root cause i and coupling factor j is 

omitted from the model). If the association between them is evaluated as significant, 

then 

Pij '* 0 

and the respondent is encouraged, by being referred to the appropriate section of the 

questionnaire, to proceed with a range of questions aiming to assess the uncertainty on 

Pij. 

The probability encoding questions designed for eliciting uncertainty on the cou­

Pling factor variables Pij comprised of two types of assessment questions. 

The first type of questions are designed in order to elicit uncertainty on the 'base­

level' coupling factor intensity, Pij,'J.. (see Relationship 8.1); the format of the questions 

is given in Table 8.10. 
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Table 8.9: Assess association between a particular root cause and different coupling factors 

Suppose that a failure event occurs attributed to Root Cause i. Identify the cou-
pling factors that are IRRELEVANT in propagating the specific root cause event 
to multiple components of the (sub)system, thus, resulting in a CCF event rather 
than an independent failure. For each coupling factor, tick the appropriate box. 

IRRELEVANT RELEVANT If RELEVANT ticked, fill , 
in section 

Coupling Factor 1 0 0 Al 
Coupling Factor 2 0 0 B1 
Coupling Factor 3 0 0 Cl 

Table 8.10: Assess uncertainty on coupling factor 'base-level' intensity 

A system of EDGs is assessed at the medium level 5% 50% 95% 
across the influencing defences, i.e. Defence 1 and 
Defence 2. Suppose that a failure occurs due to Root 
Cause i. Give the percentiles for the probability that 
the event will result to a CCF via Coupling Factor j. 

Defence 1: C 
Defence 2: C 
Defence 3: C 

The second type of question is designed in order to elicit uncertainty on proportion 

variables <i>ij,l, ... , <i>ij,m' The series of questions used for this purpose aim to assess 

the impact of a particular defence on the 'base-level' coupling intensity, by taking into 

account the different kinds of interactions existing amongst the influencing defences, 

and they are similar to the type of questions used in the Root Cause Part of the ques­

tionnaire. 

8.6 ElicitationExercise 

Whereas the qualitative stage of the ID building process is strongly dependent on the 

interaction between the members of the expert panel, the quantitative stage is in the 

form of a questionnaire that is individually completed by the experts. In view of the 

212 



fact that the aim of this research is not to produce a definitive industry model, but rather 

to explore the feasibility of the proposed methodology within the particular context, the 

elicitation exercise has been conducted with the help of one expert, thereafter referred 

to as the Expert. 

In principle, the questionnaire designed for probability encoding purposes may be 

completed by various experts. In this case, the results of the elicitation exercise are 

sets of subjective distributions over the elicitation variables. By using aggregation 

techniques, the various subjective distributions are mathematically combined to yield 

overall priors on the model variables [Genest and Zidek, 1986; Thorpe and Williams, 

1992; Cl em en and Winkler, 1999; Hora, 2004]. 

The Root Cause Part of the elicitation questionnaire was sent to the participating 

Expert by mail. Note that the Expert participated in the structuring phase of the model 

building process, thus he was already aware of the particular problem and modelling 

approach. Shortly after, a telephone meeting was arranged. The purpose of the meeting 

Was to ensure that the Expert was feeling comfortable with the tasks that he was re­

quested to conduct. In order to achieve this objective, analyst and Expert interactively 

Went through the instructions of the questionnaire, in a stepwise manner. The Expert 

Was provided with a time frame, within which he was encouraged to complete and send 

the questionnaire to the analyst. 

On receipt of the questionnaire, the responses of the Expert were analysed. Prob­

abilistic distributions were fitted on the elicited fractiles, and on the grounds of the 

GS model, the Expert's uncertainty on the 'base-level' rates was extrapolated to all the 

defence levels. 

In order to verify that the responses of the Expert reflected his true beliefs, an 

individual meeting was arranged. During the meeting, graphical aids were used to 

visually project the encoded distributions to the expert, along with the extrapolated 

distributions obtained through the GS model. The Expert was given the opportunity to 

reflect on the results and potentially make further adjustments on his initial responses. 

Given the extensive number of the encoded distributions, it was not possible to request 

feedback on the whole range of distributions. Instead, a manageable set of distributions 
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was chosen to serve as a sample. 

The individual meeting was also an introductory session to the second part of the 

questionnaire, namely the Coupling Factor Part. The purpose of the particular section 

of the questionnaire was explained, along with instructions on the completion of the 

tasks involved. The particular assumptions implied by the theoretical structure of the 

model were described and elicitation examples were visually illustrated to the Expert, 

by using interactive plotting means. Having gained a comprehensive view on the sec­

ond part of the Questionnaire, the Expert was provided with a time frame, during which 

he was encouraged to complete the Questionnaire, and send it to the analyst via mail. 

After analysis of the Expert's assessments on the Coupling Factor section, received 

via mail, a telephone meeting was arranged with the Expert. The purpose of the meet­

ing was to receive feedback on the assessments made by the Expert regarding the cou­

pling factor variables, and perform any adjustments when requested. Prior the meeting, 

an excel file was sent illustrating the results of the analysis, in order to prepare the Ex­

pert and allow a margin of time to be used for consideration. 

The overall expert judgment elicitation process used for the determination of the 

aforementioned priors is portrayed in Figure 8.4. 

8.7 Analysis of the results of the elicitation exercise 

This section aims to describe the analysis involved in the determination of the subjec­

tive distributions on the root cause and coupling factor variables of the model based on 

the information extracted from the elicitation exercise. 

The methodology is described by using a particular variable as an illustrative ex­

ample, this of the Internal to Component root caUSe rate. Detailed computations for 

this particular variable, and the rest of the variables of the ID model, may be found in 

Appendix C. 
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8.7.1 Target and elicitation variables 

The rate of failure events due to Internal to Component causes occurring to a system 

with defence configuration 

is represented by random variable r3,!' The defences that are targeted against the oc­

currence of this type of failures are Environmental Testing (DI), Analysis (D3), and, 

Understanding CD7). The identified functional interactions existing amongst these de­

fences are: Analysis (D3) and Understanding (D7) are functionally dependent; Under­

standing (D7) is threshold dependent on Env. Testing (DI)' 

Consistently with the OS model defined in Chapter 6, this rate is given by: 

(8.7) 

where G>1,G>3,G>37,G>7(Xt) E (0,1] are the proportion variables, and r3,(3,3,3) is the 'base­

level' rate at defence configuration J = (3,3,3). Note that G>7 (Xl) is a piecewise func-' 

tion, viz. 

and Xl = {1,2},X2 = {3} andX3 = {4,5}. 

Performing uncertainty analysis on model (8.7) requires the determination of the 

uncertainty on the 'base-level' rate and the proportion variables. These constitute the 

uncertain quantities of interest and referred to as the target variables, which will be 

determined through the use of elicitation variables. Each question of the question­

naire extracts sufficient information to assess the uncertainty on a particular elicitation 

variable. The part relevant to the Internal to Component root cause rate consists of 

six questions. Let en denote the elicitation variable associated with the n-th question, 

n = 1, ... ,6. 

The first question relates to the assessment of the uncertainty on the 'base-level' 
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rate r3,(3,3,3), which is assessed directly. Therefore, 

el = r3,(3,3,3) 

The following questions aim to assess the uncertainty on the proportion variables, 

which are related to the impact of enhancing a particular defence on the rate. The 

relationships associating the elicitation with the target variables are 

e2 = <l>1 

e4 = <l>3<l>37<l>7,2 

e6 = <l>7,3 

(8.8) 

(8.9) 

(8.1 0) 

In order to elicit the uncertainty on the cross-term <l>37, which expresses the dependency 

between the two functionally dependent variables D3 and D7, the expert is requested 

to assess the impact on the rate induced by enhancing both dependent defences at the 

same time by one level, whilst keeping the rest fixed at the medium level. This quantity 

corresponds to elicitation variable e4· Moreover, the uncertainty on <l>7,2 is determined' 

based on the symmetry assumption 

(8.11 ) 

Therefore, assessing the uncertainty on the elicitation variables is sufficient for the de­

termination ofthe uncertainty on the target variables. The subsequent analysis is signif­

icantly simplified by making two key assumptions: firstly, it is assumed that the propor­

tion variables are a priori independent, and secondly, it is assumed that the proportion 

variables are lognormally distributed4• Therefore, by applying log-transformations on 

relationships (8.8), (8.9), (8.10) and (8.11) one gets linear transformations of indepen­

dent normally distributed variables. 

4See Chapter 6, Section 6.4 
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8.7.2 Conditions on target variables 

According to the theoretical setup of the model, the target variables need to meet two 

types of conditions. Firstly, it is assumed that the vulnerability of the system does 

not become worse as a result of enhancing the defence characteristics of the system. 

In the particular example, for functionally dependent variables D3 and D7, the impact 

proportion of the defences is expressed by 

t!. t!.x7-3 d t!. ( )t!.x3-3 
't'3't'37 an 't'7 XI 't'37 

For the defence enhancement to be beneficial, the respective rate should decrease, im­

plying the associated impact proportion should take values in the interval (0, 1], viz. 

(8.12) 

Secondly, when a defence interaction is identified as compensating, enhancing one 

defence becomes less effective for higher values of the other defence. In this case D7 

is threshold functionally dependent on DI, and the following needs to hold 

(8.13) 

Within the particular framework, the following relaxation of Conditions (8.12) and 

(8.13) is applied: let v pi,~\ be the Pi . 100% fractile of the distribution F on <Pt. for 

PI = 0.05,P2 = 0.5,P3 = 0.95, viz. 

F(Vpj,~J = Pi, i = 1,2,3 

it is then requested that 

O<F(v x/-3),F(V ..... xm-3)<I, i=I,2,3,xm,Xl=I, ... ,5 
- Pi,~m~m/ P','f/'fm/ 

(8.14) 
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and 

(8.15) 

During the analysis of the encoding results, there may be cases where conditions 

8.14 and 8.15 are not met. In order to avoid violation of these conditions, minimisa­

tion problems are solved for the parameters of the subjective distributions subject to 

conditions 8.14 and 8.15. The details are given in Appendix C. 

8.8 Conclusion 

This chapter described the methodological steps employed in order to obtain the infor­

mation required for the quantification of the ID model. In particular, the probabilistic 

configuration (prior distributions) of the ID model is determined based on probability 

encoding, which was conducted with the help of one participating expert. Through 

probability encoding, the Expert was encouraged to provide numerical assessments of 

his uncertainty in terms of quantiles of random variables. These assessments consti­

tute summaries of the prior distributions, and the expert priors are then specified by 

choosing distributions that conform to the conditions posed by the summaries. 

Within this particular application, it is assumed that the expert prior distributions 

belong to particular families, namely the gamma, beta and lognormal families. These 

modelling choices have been made on the grounds of both common practice and con­

venience. As discussed in Chapter 5, particular families of distributions constitute 

standard choices within reliability analyses; moreover, they simplify subsequent anal­

ysis because of the conjugate properties of these families. In addition, the particular 

selection has been verified during the feedback sessions with the Expert, where it was 

ensured that the fitted distributions reflected adequately his uncertainty on a sample 

of variables. Retrospectively, the particular families of distributions seem to fit suffi­

Ciently well to the expert summaries: the mean squared error between the correspond­

ing expert probabilities and the theoretical probabilities is in most cases low. 

Moreover, the chapter described the analysis of the results that this process yielded 
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in order to determine the priors, by using a practical example. It is interesting to remark 

that, in this practical example, the checks performed on the additional condition placed 

on the form of the piecewise function 

r 

<\>(Xl, ... ,xr ) = n <\>(xm ) 
m=l 

showed that this is a reasonable assumption. 

In principle, the probability encoding process described in this chapter is not application­

specific. The same process may be used to determine the probab,ilistic specification on 

the ID variables, regardless of their number and their physical dimensions. Moreover, 

the same protocol may be repeated with the help of more experts. By using mathemat-

ical techniques to combine the assessments of more than one experts, the results will 

be representing aggregated field knowledge. 

The next chapter describes the validation process employed within this thesis. 

Firstly, sensitivity analysis is performed on the probability specifications of the ID vari­

ables; secondly, the behaviour of the ID model is compared to this of UPM; thirdly, the 

behaviour of the ID model is generally explored. 
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Chapter 9 

Model Validation 

9.1 Introduction 

The purpose of this chapter is to discuss the concept of verification and validation 

within the context of this research. The concepts of verification and validation are cen­

tral not only to Probabilistic Safety Assessment (PSA), but also to any other discipline 

that is concerned with modelling. Only when a model is verified and validated, it caT! 

stand up to scrutiny and it is accepted by the scientific community as a sound and le­

gitimate piece of scientific work. Therefore, confirming the quality of a model is a key 

aspect of the modelling process and should be given the appropriate attention. 

The concept of validation is often used interchangeably with the concept of veri­

fication. Nevertheless, the two concepts are not equivalent. Normally, the concept of 

verification refers to checking the conformity of a model to some well-defined speci­

fication, while the concept of validation normally refers to assessing that the model is 

suitable for its intended purpose [Kristensen, 2004]. The main difference between the 

two concepts is the fact that, while verification is related to a set of objective standards, 

validation is closely related to the particular situation and methodological approach in 

hand. 

This Chapter is structured as follows: Section 9.2 defines the set of quality criteria 

and conditions used for model evaluation, with reference to the model definition and 
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the philosophical position of the research, and Section 9.3 describes the validation 

process used within the context of the ID model. Section 9.4 presents the sensitivity 

analysis performed on the model. The ID model is compared to UPM in Section 9.5, 

and the overall behaviour of the model is explored in Section 9.6. Finally, Section 9.7 

concludes the chapter. 

9.2 Validation Criteria 

Whereas model verification is achieved by comparing the model against scientifically 

acceptable specifications and assumptions, model validation is in principle established 

based on the pragmatic criterion. The pragmatic criterion is based on comparison with 

'objective' values [Aven, 2003] and it is achieved by exploring how close to obser­

vations the predictions of the model lie. Within a Bayesian context, data-based di­

agnostics can be computed in order to explore how well the model predictions fit the 

observed data [O'Hagan and Forster, 2004]. However, in many cases sufficient data is 

not available and the specification of 'objective' probability is philosophically incon­

sistent. Thus, scientific acceptance is often achieved through agreed formalisms and 

'peer' reviews, rather than comparison with an objective reality [Me1chers, 2001]. 

Within the particular scope, the pragmatic criterion is not relevant. The reason is 

that this research does not seek to produce a definitive tool for performing risk as­

sessments within the industry; instead, the feasibility of the proposed methodology is 

explored. This aim can be achieved by performing the model quantification with the 

participation of a single expert. To this end, model predictions are of a highly subjec­

tive nature, and it is not appropriate to assess the quality of the model in an absolute 

way, to accept or refute it on the basis of 'right' or 'wrong', or on the basis of how 

accurate to reality the outputs of the model are. Instead, it is of key importance to 

confirm that the model is consistent, meaning that the probability assignments abide 

by the laws of probability (syntactic criterion) and they are the outcome of a formal 

encoding process (se~antic criterion)[Aven, 2003]. 

Moreover, the concept of validation cannot be defined outside the scope of the ob-
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jectives of the model. A model may be consistent and with a strong predictive ability, 

however, if it fails to fulfill its intended purposes, it is of no use. In general, a PRA 

model can be described as the analyst's attempt to represent the system in a form that 

can be used as an explanatory and exploratory tool [Parry, 1996]. Within the particular 

context, the ID model attempts to serve as an exploratory tool by capturing the impact 

of the system characteristics on its vulnerability towards CCF events and permitting to 

explore postulated modifications; the ID model intends to serve as an explanatory tool 

by providing a detailed understanding of the CCF mechanisms through root causes 

and coupling factors. Therefore, validating the model based on its predictive ability 

would address the issue only partially. A comprehensive model validation should in­

volve attaining credibility in terms of the construction of the model, and assurance 

that it sufficiently represents and communicates the relationships existing within the 

modelling domain. 

During the model building process, assumptions are stated and modelling decisions 

are made. To achieve verification, it is important to ensure that these choices are appro­

priate within the particular context, or that they abide by generally accepted standards. 

Clear documentation of the mathematical assumptions of the methodology renders the 

modelling choices admissible to peer review. To achieve validation, we seek to assure 

that the model is consistent and usefulfor its intended purpose. 

9.3 Validation process 

Validating the ID model as a whole equates to validating the components comprising 

the model. In order to identify how credibility of these components may be achieved, 

it is important to define the nature of what is being assessed. 

The ID model is comprised of a qualitative and a quantitative part. The qualitative 

part is the network of the model, which portrays the important features of the modelling 

domain and the inherent relationships amongst these features. The network of the 

model is constructed during the qualitative stage of the model building process. 

The quantitative part of the model comprises of probabilistic expressions relevant 
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to each feature, describing the impact of the influencing features. These probabilis­

tic specifications are determined during the quantitative stage of the model building 

process. 

Finally, the model yields quantified figures related to the vulnerability of the system 

towards the occurrence of CCFs. These figures are obtained and interpreted during the 

inference stage of the model building process. 

Therefore, model validation is defined with reference to the following three com-

ponents 

• Model network (Qualitative stage) 

• Probability specifications (Quantitative stage) 

• Model outputs (Inference stage) 

Overall, model validation is an ongoing process, that takes place during the different 

stages of the model-building process. The overall validation process adopted within 

the particular framework is portrayed in Figure 9.1. 

STAGE COMPONENT VALIDATION 

Validate assumptions and modelling 

Qualitative Model network 
principles 

Feedback on model network 

Quantitative Probability specifications 
Fonnal elicitation protocol 

Frequent feedback 

Model output 
Sensitivity Analysis 

Inference 
Comparison of behaviour of the 
model with UPM 

Figure 9.1: Validation process 
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9.3.1 The model network 

The model network describes the structure of the modelling situation from a concep­

tual perspective. Validating the model structure involves ensuring that the model is 

a meaningful representation of the particular situation. This is achieved by certifying 

that the assumptions, simplifications and limitations used are valid within the particular 

context, and that the network consistently portrays the inherent relationships. 

Validation of the model structure is achieved by ensuring that the modelling ap­

proach is perceived as reasonable by the people that have a thorough understanding of 

the modelling domain. At a first stage, an extensive presentation was given (Gartmore, 

Gloucester) at the early stages of the model building process, to a group of people 

that are involved in risk analysis within the nuclear industry. The group comprised of 

assessors, regulators and analysts. During the presentation, the modelling approach 

. was described in detail. Particularly, the ID formalism was explained, the elements of 

the ID were identified, and the modelling approach towards CCF treatment in terms of 

system defences, root causes and coupling factors was presented. Relevant feedback 

certified that the particular approach is sensible for achieving the model's intendec;l 

purpose. 

The construction of the model network is based on expert judgment and was com­

pleted during the workshop with the expert panel. Validation of the model network re­

lates to ensuring that the resulting graph captures the inherent dependencies in the mod­

elling domain and does not lead to any conceptual inconsistencies. This is achieved by 

requesting frequent feedback from the expert panel, both during the elicitation exer­

cise and afterwards, by providing a clear documentation of the process and the results 

obtained (see Figures 7.5 and 7.7 in Chapter 7). 

9.3.2 Probability specifications 

Within the model's context, the uncertainty on the elements of the model is captured 

through probabilistic expressions. Specifically within the particular application, ex­

pert judgment is the major source of data. Validation of the quality of the elicited 
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information occurs in two facets. Firstly, it needs to be ensured that expert judgment 

was elicited through a formal process, in an axiomatic and structured way that min­

imises inherent biases. Within the particular context, this is achieved by constructing 

a comprehensive elicitation protocol for expert judgment that meets the desiderata of 

scrutability, neutrality and fairness l . Secondly, it is necessary to assure that the infor­

mation elicited succeeds to sufficiently reflect the a~tual beliefs of experts, and that 

the elicitation results are conceptually consistent. This is achieved by requesting fre­

quent feedback from the participating experts, during and after the completion of each 

elicitation exercise (see Figure 8.4 in Chapter 8). 

9.3.3 Model outputs 

In principle, validation of the outputs of a Bayesian Belief Network, in particular, is 

supported by two types of analysis: sensitivity analysis, and comparison of the be­

haviour of the model with well-known scenarios [Langseth and Portinale, 2005]. 

The probabilistic specification of the model is based on expert judgment. Encoding 

the expert's degrees of belief is not just a simplification of reality, it is 'a simplificatio~ 

of the expert's perception of reality' [Pradhan et al., 1996]. Therefore, the resulting 

probability distributions are inevitably inaccurate. In order to ensure that these inac­

curacies do not influence significantly the reliability of the model's output, one needs 

to explore the extent to which deviations from the determined probability distribu­

tions influence the model output. "The study of how the uncertainty in the output of 

a modeL.can be apportioned to different sources of uncertainty in the model input" is 

achieved by performing sensitivity analysis [Saltelli, 2002]. The purpose behind sensi­

tivity analysis is twofold: it serves as a means for understanding the robustness of the 

inferences obtained by the model, and, as a method for identifying the areas that are 

more influential of the model output. 

Moreover, it needs to be ensured that the model serves its intended purpose. In the 

particular case, the ID model is an extension of UPM, seeking to address particular 

1 See Chapter 7. Section 7.2 
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features. In particular, the ID model attempts to capture the dependencies existing 

amongst the system defences, something that the linear weighting system of UPM 

fails to do. Thus, the behaviour of the model is explored in relation to the behaviour of 

UPM. 

The validation process of the model outputs is presented in the following sections. 

9.4 Sensitivity Analysis 

For a mathematical model, sensitivity analysis relates to exploring the effect of input 

inaccuracies on the model output, and it is achieved by systematically varying the 

model's parameters [Morgan and Henrion, 1990]. For a Bayesian Belief Network in 

particular, sensitivity analysis is achieved by investigating the effect of inaccuracies in 

the probability specifications of the model variables on a probability of interest [Coupe 

and van der Gaag, 2002; Laskey, 1995]. This is achieved by varying the network's 

parameters. The simplest technIque to perform sensitivity analysis involves varying 

directly one parameter of the model at a time, while keeping the other parameters. 

fixed, and exploring the effects of these changes on the probabilities of interest. 

In principle, there are two approaches towards performing sensitivity analysis: the 

brute-force approach and the analytical approach. Brute-force sensitivity analysis is 

achieved by examining directly the effect of a number of deviations from the parame­

ter in question [Kjrerulff and van der Gaag, 2000]. Such an approach, even in principle 

the simplest, is particularly cumbersome when used for graphical models, as it requires 

numerous network evaluations. Analytical sensitivity analysis establishes an analytical 

function between expressing the probability on a parameter in terms of the parameters 

under study. For instance, sensitivity values may be obtained by computing partial 

derivatives of a marginal probability with respect to the parameters of study [Laskey, 

1995]. This method yields a first order approximation of the effect of varying a par­

ticular parameter on an uncertainty distribution, and defines sensitivity measures ana­

lytically. Alternatively, in [Kjrerulff and van der Gaag, 2000] and [Coupe and van der 

Gaag, 2002] a given probability is expressed as a polynomial over the parameter un-
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der study. By analytically determining the coefficients of the polynomial, one is able 

to determine the effect of varying the parameters of interest. Analytical treatment of 

sensitivity analysis is an automated technique, and the computational cost involved is 

significantly reduced in comparison to the direct variation approach. 

The ID model decomposes the overall structure on the modelling domain to smaller 

structures. The chance node of the ID model that represents either a root cause or a 

coupling factor variable, generally denoted with V, is expressed through the GS model 

in terms of a 'base-level' variable V(3, ... ,3), and proportion variables ~t, through a geo­

metric scaling model, viz. 

(9.1) 

where! = (Xl ,X2, ... ,xn) is the configuration vector and hv(XI, ... ,xn) : nn ~ R is also 

a function of the proportion variables ~ = (~l' ... , <Pm). 

The quantification of the root cause/coupling factor nodes requires the determina­

tion of the probability distributions on variables V(3, ... ,3) and proportion variables ~t 

(t = 1, ... , m); the latter are elicited from expert judgment. Performing sensitivity anal-' 

ysis locally regarding each sub-model (9.1) allows us to identify the variables with the 

most impact on output Vx• 

9.4.1 Method 

The approach adopted for performing sensitivity analysis on the ID model exploits the 

mathematical structure of the model, resulting in an analytical approach to sensitivity 

analysis. First order sensitivity measures are used to explore the relative contribution 

of distributions of parameters on the distribution of the target variable. 

Within the particular framework, a model variable v is linked to its influencing or 

parent variables, denoted by V1t, through a mathematical function (Relationship (9.1», 

viz. 
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Suppose that V1t is a vector of n random variables, i.e. 

V1t = (V1t, 1, ... , V1t,n) 

Consider a nominal scenario, v~, where all the parent variables take their expected 

values, i.e. 
, 

v~ = (E[V1t,l], ... ,E[v1t,n]) 

yielding 

The interest lies in exploring the deviations of the output from the nominal scenario. 

By considering a Taylor expansion of v - vD and assuming that the expected value of 

the deviation in v is zero, i.e. 

one can obtain afirst order approximation for the variance of the model output as 

n ' [av]2 
var[v] ~ E var[v1t,d ~ 

t=l 1t,t vO 

(9.2) 

A key assumption of the ID theoretical structure is the fact that the input variables 

in Relationship (9.1) are a priori independent. Relationship (9.2) is simplified to 

n [av]2 var[v] ~ E var[v1t,d a-
t=l V1t,t vO 

(9.3) 

Relationship (9.3) offers an analytic means to determine the relative contribution of 

each parent variable to the uncertainty on the output. In particular, the contribution of 
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variable Vn,t to the variation of v is 

Relationship (9.3) may be rewritten as 

1 "" t var[vn,tl [ dv ]2 
"" t=1 var[v] dVn,t vO 

(9.4) 

Hence, the quantities 

en t = var[vn,d [~] 2 
, var[vl dVn,t vO 

(9.5) 

for t = 1, ... , n, rank the parameters of the model according to the fraction of the total 

variation of the model output due to small variations in the parameter values, taken one 

at a time. Measures en,t consider both sensitivity and uncertainty aspects [Morgan and 

Henrion, 1990]: en,t is the product of the sensitivity of Vn,lo 

[ 
dv ]2 

Snt = --
, aVn,t vO 

which is the squared rate of change of v with respect to variation of Vn,lo and the relative 

uncertainty in Vn,h 

so that 

u _ var[vn,tl 
n,t -, var[vl 

en,t = Sn,t X Un,t 

Note that within the particular framework, function f(·) is log-linear; by applying a 

lognormal transformation on v, it becomes 

n 

In[vl = E Ut In [vn,tl 
t=1 -

Consequent1y~ the variance approximations are exact, given that the inputs are inde-
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pendent, with finite means. The partial derivatives are now 

[ 
olnv 1 oln v 

o In Vn,t In vO = 0 In Vn,i = aL 

which are independent of the nominal scenario vo. Consequently, the uncertainty mea­

sure Cn L considers scenarios distant from the nominal scenario. Cn L is a measure to , , 

assess the relative importance of input factors (parameters) in the presence of uncer­

tainty. Under the assumption that variance is a measure of uncertainty, Cn,L is assessing 

the contribution of the uncertainty of each factor to the overall uncertainty of the out­

put. 

9.4.2 Root Cause variables 

This section presents results from the sensitivity analysis performed on the root cause 

variables of the model n (i = 1, ... ,6). Recall that the root cause rate ri at configuration 

vector (XI, ... ,xn ) is given by the'OS model2, viz. 

r·( )=h·(xI x).r·(33) I, X\> ... ,Xn I, ... , n I, , ... , (9.6) 

where 

h ·( ) = Il th~xi-3)(xr3) Il",,"xk-3 
1 Xl, "',Xn • 'I'I} 'i"k 

{i,}}EMlt kEK 

and 0 < <Pk ::; 1 for every k E K. By applying a log transform to (9.6), a linear relation­

ship is established between ri,(x\, ... ,Xn) and parameters ~L 3 and ri,(3, ... ,3), i.e. 

In ri,(x\, ... ,Xn) = E (Xi - 3)(Xj - 3) ln~ij + E(Xk - 3) In<Pk + Inri,(3, ... ,3) (9.7) 
{i,j}EMlt k 

The importance measures for proportion parameters In( ~L) are given in Table 9.1. It 

may be seen that the sensitivity of parameter In( ~L) depends on the level XL of the asso­

ciated defence: the further XL is from the base leve13, the more sensitive the distribution 

2See Chapter 6, Section 6.3 
3With 1j>1 we denote aIJ the proportion variables Ij>ij and <l>k, for i,j E Mij and k E K 
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of In ~t is to the distribution of parameter In r(XI , ... ,xn), 

Table 9.1: Formulae for importance measures of parameters influencing the root cause rate ri 

Parameter Srt,t Urt,t Crt,t 

In( ~t) (Xt - 3)2 
var[ln~d (Xt - 3)2 var[ln~d 

var[ln r(XI , ... ,Xn)] var[ln r(XI , ... ,Xn)] 
, 

The relative importance of each parameter is investigated in relation to two extreme 

scenarios: the first scenario::1:- considers the lowest possible defence configuration, and 

the second scenario ::1:+ considers the highest possible defence configuration i.e. 

::1:- = (1, ... ,1) and::1:+ = (5, ... ,5) 

The importance measures Crt,t for the two scenarios are given in Figure 9.2. The values 

measure the contribution of the assessed uncertainty on the decrease induced to the 

root cause rate by modifying a particular defence. 

Note that for the base level rates In ri,(3, ... ,3) (i = 1, ... ,6), the coefficients of parame-. 

ters In ~t are zero for all t; this is expected as In ri,(3, ... ,3) is a parent node of In ri, (Xl , ... ,xn)' 

Moreover, the importance measures Crt,t for a particular root cause rate do not always 

sum up to unity. The reason is that the cross-terms ~ij ({i,j} E M rt ) are also contribu­

tors to the uncertainty on the root cause rate lnri,(xl, ... ,xn)' However, their contribution 

is relatively very small resulting in small deviations from unity, and are thus omitted. 

Moreover, the contribution of the base rates In ri,(3, ... ,3) is comparatively insignificant. 

Finally, the importance measure of the impact of Safety Culture on the Maintenance 

root cause rate (In ~4) is 1, because the latter is the only defence that is able to modulate 

the particular type of failures. 

From the values in Figure 9.2 it may be seen that for scenario::1:-, the proportion of 

decrease by modifying Env. Control is the dominant contributor to the uncertainty of 

the Design root cause (C = 0.66), with the impact of Diversity and Separation being 

relatively unimportant for both scenarios. Env. Control is also a significant contributor 

to the uncertainty of the Internal root cause rate (C = 0.31), but only for scenario::1:+. 
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The impact of Env. Testing is an important contributor to the uncertainty on the 

Human root cause rate, whereas it is an insignificant contributor to the uncertainty of 

the External root cause rate. 

The impact of Analysis is almost entirely responsible for the uncertainty on the 

External root cause rate CC = 0.94) for both scenarios, and a significant contributor to 

the uncertainty on the root cause rates ofInternal CC =,0.36) and Procedures CC = 0.43) 

for scenario ,!+ . 

The impact of Safety Culture is comparatively limited, for both scenarios ,!+ and 

The uncertainty on the Internal root cause rate is almost entirely attributed to impact 

of Understanding (C = 0.82) for scenario,!-, whereas for scenario,!+ the impact of the 

influencing defences are almost equally responsible. Assessing the impact of Under­

standing contributes significantly to the uncertainty on the Procedures root cause rate 

(C = 0.49), on the Human root cause rate (C = 0.41) and on the Internal root cause rate 

(0.32). 

Finally, the impact of Op. Interaction appears to be a significant contributor to the 

uncertainty of Human and Procedures root cause rates, however only for the low-level 

scenario ,!- . 

Overall, for scenario ,!- assessing the impact of Env. Control, Analysis, Under­

standing and Op. Interaction are the main contributors to the uncertainty on the root 

cause rates as a whole. For scenario ,!+, the contribution of the impact of Op. In­

teraction decreases significantly, whereas the contributions of the other three defences 

remain approximately at the same level. 

9.4.3 Coupling Factor variables 

This section presents results of the sensitivity analysis performed on the coupling factor 

variables of the model Pij (i = 1, ... ,6 and j = 1,2,3). Recall that coupling factor 

variable Pij at configuration vector (Xl, ... ,xn ) is given by the GS model, viz. 
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P ··( )=h"(Xl X)'P"(33) 'l, Xl,···,Xn 'l' ... , n'l, , ... , (9.8) 

where 

.. ( ) - n (Xi- 3)(xr3) n Xk- 3 
h,lXl, ... ,Xn - Cf>ij <Pk 

i,jEMij . kEK 

and 0 < <Pk ~ 1 for every k E K. 

By applying a log transform to (9.8), a linear relationship is established between 

Pij,(Xl,""Xn) and parameters Cf>t and Pij,(3, ... ,3)· In a similar fashion as previously, the 

importance measures C1t,t for the two scenarios:!- and:!+ are given in Figure 9.3. The 

values measure the contribution of the assessed uncertainty on the decrease induced to 

the root cause rate by modifying a particular defence. 

Environmental Coupling Factor Hardware Coupling Factor 

Scenario x- x+ x- x+ 
Analysis Separation Analysis Separation Analysis Diversity Analysis Diversity 

Desi n 0.04 0.96 0.50 0.50 0.08 0.92 0.11 0.89 
Human 0.88 0.12 0.93 0.07 
Internal 0.07 0.93 0.51 0.49 0.08 0.92 0.11 0.89 

Maintenance 0.06 0.94 0.06 0.94 0.49 0.51 0.52 0.48 
Procedures 0.11 0.89 0.22 0.78 

External 0.00 1.00 0.22 0.78 0.39 0.61 0.88 0.12 
Average 0.21 0.79 0.44 0.56 0.23 0.77 0.37 0.63 

Figure 9.3: Importance measures Clt,l for coupling factor variables 

Note that for the base level rates In Pij,(3, ... ,3) for (i = 1, ... ,6 and j = 1,2,3), the 

coefficients of parameters In Cf>t are zero for all t; this is expected as In Pij,(3, ... ,3) is a 

parent node of In Pij,(Xl , ... ,Xn)· 

From the values in Figure 9.3 it may be seen that for scenario ::C, the uncertainty 

on the Environmental coupling intensities is almost entirely attributed to the impact 

of Separation: for all root causes apart from Human, the impact of Separation is re­

sponsible for over the 90% of the uncertainty on the coupling factor intensity. The 

contribution of the impact of Separation is less important for scenario :!+, but still 

remains dominant. 

A similar pattern may be identified for the Hardware coupling intensities. Here, 

235 



the main contributor to the uncertainty of the coupling probabilities is the impact of 

Diversity, for all root causes apart form Maintenance, where the contribution is almost 

equally distributed between the impact of Analysis and Diversity. This holds for both 

scenarios and in relevance to all root causes, except from the External root cause; here, 

the main contributor at scenario :!+ is the impact of Analysis. 

9.4.4 Restrictions on parameter variations 

The structure of the ID model poses a number of restrictions on the model parameters. 

To be more precise, the proportion variables <Pt comprising sub-models (9.1) need to 

meet a set of conditions in order to be conceptually consistent. In particular, the im­

pact of any defence Dk (k = 1, ... ,8), denoted with h(xt, ... ,xn ) needs to take values 

within the interval [0, 1]. These restrictions pose stringent conditions on the propor­

tion variables, forbidding unrestricted variations on their values. During the analysis 

of the results that were obtaine? from the probability encoding exercise, there were 

cases where these fundamental assumptions were violated (see Chapter 8). In order 

to avoid these violations, small minimisation problems were employed. Within this 

context, cross-terms <Pij ({i, j} E M1t) have been forced to have low variation. This 

fact is reflected in the Sensitivity Analysis, where cross-terms receive particularly low 

importance measures. 

9.5 Comparison to UPM 

9.5.1 Functional Interactions 

Both the ID model and UPM are methods for assessing the vulnerability of the system 

under study towards dependent failures. However, the two methods use different per­

formance indicators. On the one hand, the output of UPM is a beta factor (~), which is 

defined as the probability that a component in the system fails dependently, given that 

it fails. On the other hand, the output of the ID model is a rate AceF, which represents 

the rate of failure-to-start CCF events that occur to the system. 
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According to the fundamental assumptions of the Beta Factor model4, B is the 

fraction of the total component failure rate A that is associated to CCFs, denoted with 

Ad viz. 

A CCF event results in the dependent failure of all components comprising the system. 

Therefore, Ad corresponds to the rate of system CCFs. If the rate A represents failure­

to-start component failures per unit of time, then Ad coincides with the rate of system 

CCF failure-to-start events 'AcCF, which is the output of the ID model. 

As described in Chapter 3, UPM u'ses a linear scheme to capture the impact of 

system defences on the B factor, and, thus, on the rate Ad, viz. 

8 

Ad = E Sk(Xk) . A 
k=l 

where Sk is the score related to defence Dk that receives level Xk. where k = 1, ... , 8 

and Xk E {I, ... , 5}. It may be seen that the change induced by modifying the level of 

defence Dl from Xl to ~ is 

8 8 

(E Sk(Xk) + SI(XI)) . A - (ESk(Xk) + SI (~)) . A = (SI (Xl) - Sl(~)) • A 
k:t-l k# 

This change is constant, implying that the impact of a particular defence on the system 

vulnerability is independent of the level of any other defence; in other words UPM 

does no recognise any interactions amongst the defences. 

In contrast, the ID model attempts to distinguish between three types of defence 

interactions, namely functional dependency, functional independency and threshold 

functional dependency. In order to demonstrate the different approaches of ID and 

UPM, three cases are considered. Each case describes an identified interaction, and 

has been used in Chapter 3 to demonstrate the conceptual fallacies that the UPM linear 

model falls into. 

For illustration purposes, a particular value for A is considered to determine the 

4See Chapter 2, Section 2.3.2 

237 



failure rate Ad based on p. The value of A is of no particular importance, since the 

interest lies in the pattern of change induced in this rate, rather than the absolute values. 

Case I: Interaction between Analysis and Diversity 

The defence of Analysis describes the amount of analysis that has been done on the 

design of the system, and the degree of awareness of the designers of the dependent 

failures issue. For a high level of Analysis, one can presume that diversity issues have 

been considered during previous assessments and appropriate feedback has been given 

to designers. Thus, the present design .is recognised as the one that functions better 

in case of a CCF event. Therefore, improving or degenerating the level of diversity 

when comprehensive analysis has been performed (Analysis has a high level) should 

have a smaller effect compared to the case when a limited amount of analysis has been 

performed on the design of the system (Analysis receives a low level). 

Figure 9.4 illustrates the change in Ad induced by modifying the level of Diversity, 

whilst the rest of the defences are fixed at the medium level, as captured by UPM. It 

may be seen that, regardless of whether the level of Analysis is fixed at a high or at ~ 

low level, the change in Ad is constant. Within the ID model, the defence of Diversity 

is threshold functionally dependent on the defence of Analysis. Figure 9.5 illustrates 

the change induced in AcCF for the same scenario, as captured by the ID model. Now, 

it may be seen that when Analysis is fixed at a high level, the change induced in AcCF 

takes smaller values, implying that the effect of enhancing Diversity is less significant. 

UPM 

2,SE·07 ,------------
~OB"7 -1-.::::.'..--,,--------1 .--_...,.--.1 
I.SE.07 I-+-Low Analysis 

1.0E-07 -1-__ "::..-____ ---1 I.....-.-Hlgh Analysll 

S.OB·OS +---\...a....::::------1 
0.01J.tOO -I-_....--_~~-= .. :::::;::=='-0--1 

A-B R·e e-D D-B 

Level of Diversity 

Figure 9.4: Change in Ad as captured by UPM 

ID model 

\.08-06 ....---:--_____ ---, 

8.0E·

07

1 ~ = 
~: k?:-:~ 

A·B 8-e C_O D·B 

Level of DlversllY 

Figure 9.5: Change in E[A.cCFJ as captured by 
the ID model 
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Case 11: Interaction between Analysis and Understanding 

Consider the defences of Analysis and Understanding. Conceptually, the positive ef­

fect of improving the amount of analysis conducted during the design phase of the 

system (level of Analysis) is not as substantial when the system is fairly simple (high 

level of Understanding), as when the system is complex or novel (low level of Under­

standing). Thus, one can argue that the effectiveness of Analysis depends on the level 

of Understanding. In reverse, aiming for a high level of Understanding (trade-offs be­

tween experience, complexity and novelty of the system) is more important when the 

amount of analysis on the design of the system conducted is limited (low level of Anal­

ysis), rather than when significant analysis is undertaken an extensive knowledge on 

dependent failures issues exists (high level of Analysis). Similarly, one can argue that 

the effectiveness of Understanding depends on the level of Analysis. 

UPM 
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Figure 9.6: Change in Ad as captured by UPM 
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Figure 9.8: Change in Ad as captured by UPM 
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Figure 9.7: Change in E[A.cCFJ as captured by 
the ID model 
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Figure 9.9: Change in E[A.ccFl as captured by 
the ID model 

Figures 9.6 and 9.8 illustrate the change induced in the failure rate by changing one 

of the two defences, while the other is fixed at a high and at a low level respectively, 
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as modelled by UPM. It may be seen that the impact of the one defence is the same 

regardless of the level of the other defence. Within the ID model, the defences of 

Analysis and Understanding are identified as being functionally dependent. The effect 

of modelling this functional interaction is illustrated in Figures 9.7 and 9.9. It may be 

seen that, unlike within UPM, the impact of Analysis is different for a high and low 

level of Understanding, and vice-versa. To be more precise, a compensating effect is 

exhibited, where the change induced by modifying one defence is smaller for higher 

levels of the other defence. 

Case Ill: Interaction between Ope Interaction and Understanding 

Similar conclusions can be drawn for the defences of Op. Interaction and Understand­

ing. Consider a system for which no written procedures are in place (low level of 

Op. Interaction), leaving high margin for interpretation and decision by the staff. It is 

of interest to distinguish between two different cases: the case of not having written 

procedures as a reasonable decision, as the system is familiar or simple enough and 

detailed procedures are redundant; and the case where no written procedures in plac~ 

is an omission that has negative effects. Similarly, the effectiveness of having detailed 

procedures in place (high level of Op. Interaction) should be limited for a system that 

is simple or familiar, compared to the case of a complicated or noble system. This im­

plies that the impact of Op. Interaction depends on the level of Understanding, which 

describes the level of understanding of designers, operators and analysts in relation to 

the system. 

UPM 

;:~~:~~ ..• -.~------------... -.. -.-... -.. 
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Figure 9.10: Change in Ad as captured by UPM Figure 9.11: Change in E[A.cCFJ as captured by 
the ID model 
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Figure 9.11 shows that UPM does not capture the dependence of Op. Interaction on 

Understanding - the effect of enhancing Op. Interaction is the same regardless of the 

level of Understanding. However, by identifying that Op. Interaction is threshold func­

tionally dependent on Understanding, the ID model addresses this issue. The change in 

the CCF rate induced by enhancing the level of Op. Interaction takes smaller values for 

high levels of Understanding, entailing that this defence becomes less effective (Figure 

9.11). 

Discussion 

For both the ID model and UPM, the change induced in the rate by enhancing a partic­

ular defence decreases exponentially with the level at which the enhancement occurs. 

This implies that, as the system defences are enhanced, it becomes gradually more 

difficult to improve the defence of the system towards CCF events. 

Moreover, it may be seen that, for Cases I and n, the change induced by modifying 

the defences of Analysis, Diversity and Understanding, as captured by UPM, is iden­

tical. The ID model not only considers a broader range for the defence impacts, bu~ 

it also captures different intensities of defence interaction. For example, the change 

induced by modifying the level of Diversity differentiates significantly between high 

and low levels of Analysis (see Figure 9.5); whereas, the change induced by modify­

ing the level of Op. Interaction differentiates far less between high and low levels of 

Understanding (see Figure 9.11). 

Overall, the ID model is a more flexible approach in terms of capturing the impact 

of the defence characteristics of the system on the CCF rate. 

9.5.2 Ranking of defences 

It is of interest to explore the relative effect that the action of enhancing each defence 

has on the overall system vulnerability to CCFs, as represented within the two models. 

For this purpose, consider the following hypothetical scenario: a system receives 

the lowest level configuration;!-, implying that it has generally very poor defence char-
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acteristics against dependent failures. Then, a particular defence at a time is enhanced 

to the maximum level, whilst keeping the rest of the defence levels fixed. For the ID 

model, the performance indicator for the impact of each defence is considered to be the 

ratio of decrease of the expected value of AccF, induced by the defence enhancement. 

Within the UPM framework, the performance indicator is the ratio of decrease induced 

to ~, which corresponds to the proportion of decrease induce to Ad. The results are 

shown in Table 9.2. 

ID model 'UPM 
System 

Decrease in Defence Decrease in 
CCFrate beta factor 

Diversity 0.69 0.88 
Separation 0.77 0.84 
Understanding 0.22 0.88 
Analysis 0.43 0.88 
Op. Interaction 0.54 0.80 
Saf. Culture 0.57 0.90 
Env. Control 0.75 0.88 
Env. Testing 0.54 0.92 

Table 9.2: Performance indicators for each defence within the UPM and ID framework 

Firstly, it may be seen that the ID model represents a stronger effect of enhancing 

the system defences on the system vulnerability towards CCF events, compared to 

UPM. Whereas the resulting ratios within the ID framework range between 0.26 and 

0.91, within UPM the respective ratios range within a much narrower interval, taking 

values between 0.84 and 0.92. 

In terms of relative strength, within the ID framework the most potent defence is 

Understanding: increasing the particular defence from the lowest to the highest con­

figuration, whilst keeping the rest defences at a minimum defence level, results in the 

expected value of the CCF rate to reduce to nearly the 20% of its initial value. Within 

UPM, Understanding has a comparatively medium impact on the beta factor, equiv­

alent to the ones of Diversity, Analysis and Env. Control. The least potent defences 

within the ID framework seem to be Separation and Env. Control. Within UPM on the 

other hand, Separation is the first defence in the impact ranking. Finally, the defence 
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of Env. Testing is the least potent defence within the UPM framework, whereas within 

the ID model is a relatively strong defence, inducing the expected value of the overall 

CCF rate to decrease to the 54% of its initial value. 

9.6 Behaviour of the ID model 

9.6.1 Impact of system defences 

The ID model captures the impact of the defence characteristics, on the overall vulner­

ability of the system to CCFs by using root cause rates and coupling factor intensities 

as intermediate variables in the modelling process. This feature allows to explore the 

impact of the defences initially on the intermediate variables, and afterwards on the 

rates of CCF events. 

Certain of the system defences protect against CCFs by impeding the occurrence of 

both dependent and independent failures. Others, by alleviating the coupling tendency 

of the failures that occur to the system. Finally, there are defence characteristics that 

are targeted against both the occurrence of total failures, and their capacity to propagate 

amongst components. 

In order to investigate the impact of a particular defence on a root cause and cou­

pling factor variable (denoted generally with V), the following hypothetical scenario 

is used: consider a system that employs generally poor defences against failures, i.e. 

receives the minimum configuration vector ,!-, where 

,!- = (Xl, .. "XS), wherexk = 1 for every k = 1, ... ,8 

Enhancing a particular defence Dl to the maximum level, whilst keeping the rest at a 

minimum level of defence, viz. 

,!l = (Xl, ... ,Xl, ... xs), where Xl = 5,Xk = 1 for every k,* I and k, I E {I, ... , 8} 

impacts on the uncertainty of a given variable V. The interest lies in exploring the 
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impact on the model variables caused by the particular enhancement. An indicator of 

this impact is the ratio of decrease in the expected value of variable V 

The smaller this ratio is, the stronger is the impact on V by enhancing Dt. When for a 

given defence the ratio is 1, then this defence does not 'influence the particular variable. 

Root cause rates 

Ratios I{ 

DefenceD{ Diversity Separation Understanding Analysis 

Root Cause 

Design 0.239 0.408 I 0.311 
Human I I 0.140 1 
Internal 0.029 0.114 
Maintenance 1 
Procedures 0.082 0.044 
External 1 0.062 

DefenceD{ Op. Interaction Saf. Culture Env. Control Env. Testing 

Root Cause 

Design. 0.097 
Human 0.192 0.005 0.406 1 
Internal I I 0.057 
Maintenance 0.002 I 
Procedures 0.237 I I 
External I 0.410 

Table 9.3: Ratio of change for the root cause rates, induced by enhancing one defence at a time, from 
the lowest to the highest level 

Table 9.3 shows the ratios It (1 = 1, ... , 8) for the root cause rates rj (i = 1, ... , 6). 

It may be seen that the more dominant influence on the Design root cause rate 

comes from the Env. Testing characteristics of the system. The rest three design-related 

defences of Analysis, Separation and Diversity have approximately equivalent impact, 

with Separation subtly being the less effective defence against this type of failures. 

The Safety Culture defence seems to be able to considerably modulate the Human 

root cause rate. The defences of Op. Interaction and Understanding also have a strong 
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impact, whereas enhancing Env. Control seems to be comparatively less efficient in 

impeding this type of failures. 

The defence that is most capable to modulate failures due to the Internal to Com­

ponent root cause appears to be Understanding. Env. Testing and Analysis are also 

potent defences against this type of failures. 

The failure rate due to Maintenance causes is influenced exclusively by the Safety 

Culture characteristics of the system. However, enhancing the particular defence has 

drastic impact on the rate, as the corresponding ratio is particularly low. 

The Procedures root cause rate is mostly influenced by the defence of Analysis. 

Understanding is an important defence against this type of failures, and Op. Interaction 

has a smaller, but still substantial impact on the Procedures root cause rate. 

Finally, the External Environment root cause rate is modulated by the defences 

of Analysis and Environmental Control. Analysis has the most impact, while the de­

fence of Environmental Control has considerably less impact on the particular type of 

failures. 

Coupling factor intensities 

Table 9.4 shows the ratios It Cl = 1, ... ,8) for coupling probabilities Pij (j = 1,2,3 and 

i = 1, ... ,6). For the coupling mechanisms that do not have effect at the occurrence of 

particular root cause events, there is no ratio. 

The Operational coupling probabilities Pi2, i = 1, ... ,5, are influenced only by 

the defence of Operator Interaction. The impact of this defence is the same for all 

probabilities Pi2, regardless of the root cause event. 

The defence of Analysis is targeted against both Environmental and Hardware 

coupling probabilities. Enhancing the level of Analysis seems to have the most impact 

on the coupling tendency of Design and Internal to Component CCF events, propagated 

through environmental and hardware similarities. The least impact appears to be on the 

coupling tendency of Maintenance CCF events, through both coupling mechanisms. 

The defence of Separation is targeted against environmental coupling characteristics, 

and is more effective in relation to Design, Internal to Component and External Envi-
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Table 9.4: Ratio of change for the coupling probabilities, induced by enhancing one defence at a time, 
from the lowest to the highest level 

Ratio 1/ 

Derence Analysis Separation 

Coupling Factor Environ. Hardware Operalional Environ. Hardware Oparationat 

Root Cause 

Design 
Human 
Internal 
Maintenance 
Procedures 
External 

Derence 

Coupling Factor 

Root Cause 

Design 
Human 
Internal 
Maintenance 
Procedures 
External 

0.17 
0.37 
0.18 
0.81 

0.22 

Environ. 

0.22 0.06 
0.66 

0.22 0.13 
0.46 0.52 
0.48 
0.32 0.\3 

Diversity Op. Intersctlon 

Hardware Operational Environ. Hardware Operational 

0.01 0.13 
0.13 

0.01 0.13 

0.41 0.13 

0.24 0.13 

0.41 

ronment CCFs. Finally, the defence of Diversity is targeted against hardware coupling 

mechanisms, and has the most drastic effect on the coupling tendency of Design and 

Internal to Component CCFs. 

Different types of CCF rates 

By being targeted against certain root ca~se rates and coupling factors, defences are 

able to modulate particular types of CCF events. In a similar fashion as earlier, each 

defence is enhanced to the maximum level, whilst the rest defences remain fixed to 

the minimum level, and the resulting ratios of decrease in the CCF rates due to the a 

particular root cause are determined, viz. 

The expected values of rates Aj (i = 1, ~ .. , 6) at configuration vectors J- and Jl 

(l = 1, ... , 8) are given in Table 9.5, along with the ratios of decrease It. 

It may be seen that CCF events due to Design causes are mostly impeded by the de-
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Table 9.5: Decrease induced in CCF rate by enhancing one defence at a time, distributed across the 
root causes. 

Lowest Different 
Configuration Scenarios 

Root Expected Value Expected 
Decrease Expected Decrease 

Cause ofCCF rate Value Value 

Diversity Separation 

Design 3,47E-06 2.98E-07 0.09 9.9SE-07 0.29 
Human 2. lSE-OS 2. lSE-OS 1.00 2. 12E-OS 0.98 
Internal 2,47E-OS 1.18E-OS 0,48 1. 62E-OS 0.66 
Maintenance 2.86E-06 2.6SE-06 0.93 2.78E-06 0.97 
Procedures 1.74E-06 8.S1E-07 0.49 1.74E-06 1.00 

External 2.S6E-06 2.20E-06 0.86 8.70E-07 0.34 
Overall S.69E-OS 3.93E-OS 0.69 4.38E-OS 0.77 

Understanding Analysis 

Design 3,47E-06 3.47E-06 1.00 2,48E-07 0.07 
Human 2. 1 SE-OS 3.01E-06 0.14 2.09E-OS 0.97 
Internal 2.47E-OS 7.24E-07 0.03 7,46E-07 0.03 
Maintenance 2.86E-06 2.86E-06 1.00 2.64E-06 0.92 
Procedures 1.74E-06 1.42E-07 0.08 S.0IE-08 0.03 
External 2.S6E-06 2.S6E-06 1.00 3.90E-08 0.02 
Overall S.69E-OS 1.28E-OS 0.22 2,46E-OS 0.43 

Op. Interaction Safety Culture 

Design 3.47E-06 3.36E-06 0.97 3,47E-06 1.00 
Human 2. lSE-OS 6.98E-07 0.03 2.1SE-OS O.OOS 
Internal 2.47E-OS 2.30E-OS 0.93 2.47E-OS 1.00 
Maintenance 2.86E-06 8.21E-07 0.29 2.86E-06 0.002 
Procedures 1.74E-06 2.93E-07 0.17 1.74E-06 1.00 
External 2.S6E-06 2.S6E-06 1.00 2.56E-06 1.00 
Overall S.69E-OS 3.08E-OS 0.S4 S.69E-OS 0.S7 

Env. Control Env. Testing 

Design 3.47E-06 3,47E-06 1.00 3.37E-07 0.10 
Human 2. lSE-OS 8.7SE-06 0.41 2. lSE-OS 1.00 
Internal 2.47E-OS 2.47E-OS 1.00 1.40E-06 0.06 
Maintenance 2.86E-06 2.86E-06 1.00 2. 86E-06 1.00 
Procedures 1.74E-06 1.74E-06 1.00 1.74E-06 1.00 
External 2.S6E-06 1.0SE-06 0,41 2.S6E-06 1.00 
Overall S.69E-OS 4.26E-OS 0.7S 3.04E-OS 0.S4 

247 



fence of Analysis, which is targeted against Design, Procedures, Internal and External 

failures and their capability to propagate amongst components. Diversity and Separa­

tion also protect the system from two fronts: the occurrence of Design total events, and 

the coupling capability of this type of failures. Finally, Env. Testing is a strong defence 

against Design failures by having a substantial impact on the occurrence of Design and 

Internal total failures. 

CCFs due to Human factors are mostly modulated by the Safety Culture and Oper­

ator Interaction. Understanding constitutes a strong defence against this type of CCFs, , 

followed by Environmental Control. These defences are targeted against the occur-

rence of failure events, rather than the alleviation of coupling mechanisms. 

Internal to Component CCF events appear to be substantially impeded by the 

defences of Understanding, Analysis and Env. Testing. Diversity and Separation are 

also targeted against this type of failures. 

The most efficient defences against CCF events due to Maintenance causes are 

Safety Culture and Operator Interaction. Whereas the former impacts on the rate of 

total events due to this cause, the latter is effective by removing the conditions respon; 

sible for failure propagation. 

Procedures CCF events are modulated by the defences of Understanding, Op. In­

teraction and Analysis. The two first are targeted against the occurrence of both depen­

dent and independent failures, while Analysis is also able to modulate the propagation 

tendency of this type of failures amongst all components. 

Finally, External Environment CCF events are impeded by enhancing Analysis, 

Separation and Env. Control. The most efficient defence is Analysis, which has a 

strong impact not only on the occurrence of total failures, but also on their propagation 

through environmental and hardware coupling mechanisms. 

9.6.2 Limiting scenarios 

The expected rates of CCF events due to the different root causes are presented in 

relation to two extreme scenarios: the 'low-level' scenario ,!-, which describes the 

248 



setting where the system under study receives the minimum possible configuration 

across all defences, and the 'high-level' scenario::!+, which describes the setting where 

the system receives the maximum possible configuration across all defences, viz. 

::!- = (XI , ... ,xg), where Xk = 1 for every k = 1, ... ,8 

and 

::!+ = (XI, ... ,xg), where Xk = 5 for every k = 1, ... , 8 

'Low-level' CCF rate This scenario implies that the system is particularly poorly 

equipped against the occurrence of dependent failure events. The expected values of 

the comprising root cause rates are given in Figure 9.12. For the lowest defence config­

uration, the overall CCF rate is dominated by failures due to the Internal to Component 

and Human root causes, with expected rates 2.5 . ] 0- 5 and 2· 10- 5 per calendar hour 

respectively. Design failures are a considerable contributor to the overall CCF rate (ex­

pected rate 3.5 . 10- 6 per calendar hour), and Maintenance and External root causes are 

almost equivalent, with expected rates at approximately 2.5· 10- 6 per calendar hour. 

Finally, CCFs due to Procedures are the least significant contributor, with expected 

value of the corresponding rate of approximately 1.7 . ] 0- 6 per calendar hour. 

l.OOE-05 

Figure 9.] 2: Expected values of the 'low-level' CCF rate (per calendar hour) across the different root 
causes 
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'High-level' CCF rate 

This scenario implies that the system is mostly equipped against the occurrence of 

dependent failures. The distribution of the expected CCF rates across the different root 

causes is summarised in Figure 9.13. It may be seen that External events constitute the 

main contributor to the overall CCF rate (expected rate of 9· 10- 9 per calendar hour), 

whereas Internal CCFs are still expected to occur at a relatively high rate (4· 10- 9 

per calendar hour). Human root cause events are expected to decrease to a rate of 

approximately 2 . 10- 9 per calendar hour, whereas Maintenance causes constitute the 

least threatening source of CCFs (expected rate of 7.6.10- 10 per calendar hour). 

LOOE-08 

9.00E-09 +---------------
8.00E-09 +---------------
7.00E-09 t---------------, 
6.00E-09 +---------------, 
S.OOE-09 +---------------
4.00E-09 +-------
3.00E-09 -j-------

2.00E-09 +-----.I!'!!ft--

Figure 9.13: Expected value of the 'high-level' CCF rate (per calendar hour) across the different root 
causes 

9.6.3 Discussion 

From the analysis of the results obtained from the elicitation exercise, the following 

insights are gained: 

The defence of Safety Culture seems to be a potent defence against root cause 

events, since the ratios of decrease induced in the Human and Maintenance root cause 

rates by enhancing Safety Culture are overall the lowest ones. This effect is demon­

strated in the comparison of the two extreme scenarios ! - and!+. For a system that 

lacks defences, Human failures are expected to occur at a particularly high rate; how­

ever, when the defences are enhanced to the maximum, Human failures tend to con­

stitute one of the weakest expected threats to the system. Similarly, the Maintenance 
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root cause rate is the second failure rate to decrease by the highest proportion after the 

Human one. 

For a system that overall lacks defence characteristics, Internal to Component fail­

ures constitute the most significant threat to the system vulnerability to CCF events. 

When all the defences are enhanced to the highest level, internal causes remain the 

second most significant source of CCF events. 

Failures due to procedural faults occur at a particularly low rate to a system with 

the lowest levels across the system defences, compared to the rest types of failures, this 
, 

type of failures occur at a comparatively significant rate to a system with the highest 

configuration across the system defences. This fact implies that the system defences 

are overall weak regarding this type of failures. 

The impact of enhancing the defence of Analysis on a specific type of failures 

seems to be relatively small, compared to the other defences. However, Analysis is 

targeted against most root causes and coupling factors; indeed, the amount of anal­

ysis performed on the system modulates the rate of Design, Internal to Component, 

Procedures and Ext. Environment failures, and the Operational and Hardware cou­

pling factors. Therefore, overall, Analysis proves to be a comparatively potent defence 

against dependent failures. 

The defences of Separation and Diversity influence the occurrence of total failures 

due to only the Design root cause. However, they are targeted mostly against the 

coupling characteristics of the system: the former against environmental similarities, 

and the latter against hardware similarities. It may be seen that the defence of Diversity 

has a drastic impact on the coupling effect of hardware similarities of the system mostly 

in relation to Design and Internal to Component failure events. 

9.7 Conclusion 

This chapter described the validation process within the scope of this research. The 

behaviour of the ID model is explored across two facets: sensitivity analysis and com­

parison with UPM. 
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Sensitivity analysis aims to identify the dominant sources of uncertainty that con­

tribute to the determination of the probabilistic specification of the model's root cause 

and coupling factor nodes. This type of analysis allows to gain insight in the properties 

of the model, and to draw the attention on areas that manifest the highest sensitivity. 

For the purposes of the analysis, two scenarios are considered: the minimum level con­

figuration,!- and the maximum level configuration K: across the system defences. An 

interesting point is that often significant differences are identified in the contribution of 

the impact of a particular defence to the overall uncertai~ty on a root cause or coupling 

factor (target) variable between the two scenarios. This differe"nce is attributed to the 

effect of threshold functional dependency. In particular, suppose that defence Dq is 

threshold functionally dependent on defence Dt • The quantification of the ID model 

requires the determination of the uncertainty on the proportion of decrease of the tar­

get variable induced by modifying defence Dq with relevance to two settings: when Dt 

receives a high level, and when defence Dt receives a low level. Considerable differ­

ence in the importance factor C~,q between scenarios,!- and,!+ implies that there is a 

substantial difference in the confidence with which the impact of Dq has been assesse~ 

within the two aforementioned settings. 

The second part of the analysis explores the behaviour of the model in terms of the 

impact of the defence characteristics of the system on the overall system vulnerability. 

The approach compares the behav.iour of the ID model with UPM. Whereas UPM does 

not make any distinction between the interactions existing amongst the defences in the 

way they impact on the overall system unavailability, with the impact of each defence 

being independent of the configuration across the rest of defences, the ID model suc­

ceeds to represent a range of functional interactions. This is shown by considering the 

threecases used for illustration purposes in Chapter 3. 

Finally, the behaviour of the model has been explored. By incorporating a root 

cause and coupling factor classification, the model allows to explore which types of 

failure the system defences are more capable to modulate. This allows a more detailed 

modelling of CCF events .. 
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Chapter 10 

Discussion 

10.1 Introduction 

The aim of this final chapter is to discuss the application of the ID formalism within 

the context of CCF modelling. 

The chapter will proceed as follows: Section 10.2 will discuss the goal, aims and 

objectives of this research and will identify the extent to which they have been fulfilled. 

Section 10.3 will discuss the features of the proposed methodology that bring theoret­

ical and practical value. Section 10.4 will discuss the limitations identified during the 

implementation of the ID formalism within the particular application. In relation to 

these limitations, areas of future. research are identified. This chapter will conclude 

with Section 10.5. 

10.2 Review of goal and objectives of the research 

10.2.1 Goal 
.. 

The overall goal of this thesis has been to_ explore the feasibility of the application 

of advanced modelling techniques within the framework of UPM, so as to result in a 

model with a structural and exploratory character, that allows to represent epistemic 

uncertainty and support the decision - making process. Within this context, an Inftu-
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ence Diagram (ID) has been constructed to model CCF events on systems, and applied 

to EDGs in nuclear power plants. 

The application of the proposed methodology seeks to maintain the strong features 

of UPM, and at the same time, to address those that are identified as weak. The aim is 

not to produce a definitive model for the modelling of CCFs within the industry; it is 

to explore the feasibility of the proposed methodology, by identifying the benefits and 

limitations of the application, and provide a documentation of this process. 

10.2.2 Objectives 

This section reviews the objectives of this research as described at the beginning of the 

thesis 1, and explores the extent to which they have been fulfilled. 

A desideratum of the proposed model is the incorporation of qualitative aspects into 

the CCF modelling process (Objective 1). This constitutes the strong feature of UPM, 

which the ID model seeks to maintain. The output of UPM (beta factor) is determined 

by calibrating the system under study across design, operational and environmental 

characteristics. The ID model has been built on the same structure: the system de­

fences have been taken exactly from UPM for all defences except for Redundancy2, 

and represented in the model network by decision variables. The output of the ID 

model (uncertainty distribution on the system failure rate) is determined on the basis 

of states given to the defence variables by the user of the model. Moreover, by chang­

ing the states of the defence variables, the changes induced onto the other elements 

of the model are identified. On this basis, the effects of interventions in the defence 

aspects of the system are explored without making actual changes on the system, and 

what-if analysis may be in principle performed. Thereby, the ID model succeeds in 

capturing the effect of design, operational and environmental aspects of the system to 

its susceptibility to CCF events, and supports the decision-making process. 

A second advantage of UPM is the fact that, having been initially quantified by 

I See Table 1.1 in Chapter 1 
2Redundancy characteristics have been removed from the definition, and the resulting defence de­

scribes only diversity aspects of the system. See Chapter 5. 
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experts, can be applied by less knowledgable analysts by simply scoring the system 

across the defences. Analysts making use of UPM do not use their expert judgment 

during the modelling process, apart from deciding on the system configuration, based 

on a set of standard criteria; the defence categories are generically defined, along with 

the scores corresponding to each category. In a similar fashion, the ID model uses 

expert judgment in a quantitative manner. The process of expert judgment elicitation 

is applied during the model construction. Being based on the Bayesian methodology, 

it is possible to update the expert judgment in the light of observations. The updating 

process involves relatively cumbersome calculations, requiring'a standard knowledge 

of probability theory. The updated model may be used by analysts within the context 

of standard risk analyses, who are not required to have the same level of insight in 

dependent failures as the experts used for the quantification of the model, or the same 

knowledge of probability theory as the analysts that performed Bayesian update on the 

model. Thus, the ID model maintains this practical advantage of UPM (Objective 2). 

UPM captures the effect that system defences have on its susceptibility to CCFs. 

The ID model expands this feature by incorporating intermediate stages between th~ 

system defences and the model output. These are rates of total failures attributed to 

particular root causes, and intensities of coupling mechanisms existing in the system. 

On this basis, the system defences are distinguished in terms of whether they reduce 

the occurrence of different types of failures, whether they alleviate certain coupling 

conditions, or whether they achieve both. Therefore, the ID model offers a more de­

tailed modelling of CCF events, by identifying the types of failure events that each 

defence aspect of the system is able to modulate, and extends UPM to a finer causal 

level (Objective 3). 

UPM uses a linear weighting system to capture the effect of system defences on 

its susceptibility to CCF events. This implies that the effect of enhancing a particular 

defence aspect is independent of the level of any other defence aspect of the system. 

However, interactions exist amongst defences, that render the effect of modifying the 

system more or less beneficial, depending on the level of certain existing system char­

acteristics. For example the effect of improving the safety culture of the operating staff 
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on the system vulnerability depends on the degree of the existing man-machine interac­

tion3. Although not portrayed in the network of the ID model, within the mathematical 

formulation of the model different types of functional interaction amongst defences are 

represented4, which are elicited from experts5. Thus, the ID model succeeds in captur­

ing the non-linearity of the defence domain, something that UPM does not to address 

(Objective 4). 

From a decision-making perspective, it is often of interest not only to determine 

the amount by which the vulnerability of the system is modified by performing certain 

actions, but also to provide indicators of the uncertainty involved in this prediction. 

This aspect is central in the area of CCF modelling which, due to the rare and com­

plex nature of CCF events, is characterised by considerable uncertainty. By adopting a 

Bayesian approach to risk, the ID model allows for the quantitative use of expert judg­

ment and the coherent expression of epistemic uncertainty (Objective 5). Moreover, 

information is propagated through the structure of the ID model, to support uncertainty 

statements regarding quantities on which information is not available6• 

Finally, the last objective is to associate the ID model with the ICDE generic. 

database of CCF events. As described in Chapter 2, the International Common-Cause 

Failure Data Exchange (ICDE) Project is an international effort to collect CCF events 

from various sources, so as to create a generic CCF data bank. In order to achieve a 

consistent format of the data, general ICDE coding guidelines [Werner et aI., 2004] are 

used by the participating operators. According to the guidelines, a root cause and cou­

pling factor is assigned to each failure event, amongst other characteristics. The defi­

nition of the root cause and coupling factor variables in the ID model has been taken 

exactly from the ICDE guidelines. Therefore, the ID model associates the structure 

of the database with the model structure, nevertheless not in a way that will presently 

allow the use of the ICDE data for model update (Objective 6). 

3 See Chapter 3 
4See Chapter 6 and 8 
5 See Chapter 7 
6See Chapter 6 
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10.3 Benefits of the proposed methodology 

The ID model proposed in this thesis bears features of both theoretical and practical 

value. This section discusses the two main novelties of the model, namely the definition 

of the defence interactions and the Geometric Scaling (GS) model. 

10.3.1 Functional interactions 

To capture the non-linear structure of the defence domain, the ID model distinguishes 

between three different types of functional interaction: functional independence, func­

tional dependence and threshold functional dependence 7 . Functional independence 

represents the case where the impact of modulating particular characteristics of the 

system stays unaffected by any other characteristic; this situation corresponds to UPM. 

The modelling of functional dependence and threshold functional dependence to ex­

press the existing interactions amongst the related defences is a new feature. 

The main difference between functional dependence and threshold functional de­

pendence is the fact that the former is symmetric, whereas the latter is asymmetric. In, 

functional dependence, the impact of enhancing one defence differentiates for every 

level of the other defence, and vice-versa. Threshold functional dependence implies 

that dependency is exhibited only between certain sets of level configuration, and not 

within: the impact of a defence that is threshold dependent on a second defence always 

depends on whether the level of the second defence is at a low, medium or high level. 

However, the impact of the second defence exhibits a dependency on the level of the 

first defence only when it changes between low, medium, or high levels (drastic modifi­

cations). For modifications within these sets (moderate modifications), no dependency 

is exhibited. For example, the effect of increasing separation depends on the amount 

of analysis performed on the system design; however, the effect of increasing analysis 

depends on the degree of separation employed by the system only for drastic changes; 

this effect is the same if the level of analysis remains within the same configuration set 

after the modification. 

7 See Chapter 6 
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Succeeding to express the functional interactions amongst defences has been a de­

sired property of the GS model. In order to fulfill this property, an additional assump­

tion has been placed on the form of the piecewise function expressing the impact of a 

threshold dependent defence8• In particular, 

r 

<l>k(Xkt, .... ,Xkr ) = n <l>k(Xkt)' where k E Q,kl, E Lk for 1 = 1, ... ,r 
1=1 

(10.1) 

During the probability encoding exercise, additional questions have been used as a 

means of checking the validity of this assumption9• It is 'interesting to remark that this 

assumption has been intuitively met by the expert in many cases. This fact implies that 

(10.1) is a reasonable assumption to make. 

Within the ID framework, the state space of the defence variables is comprised of 

five levels. Levels A and B constitute low levels, level C constitutes the medium level, 

and levels D and E constitute the high levels. This categorisation is relatively fine, 

with the defined sets consisting of two, or even of one level. Due to this feature, the 

effect of threshold dependence is not exhibited clearly and the two types of functional 

interaction tend to be close, however not equivalent. 

10.3.2 The Geometric Scaling model 

The quantification of the ID model requires the determination of prior distributions 

on the model root cause and coupling factor variables, for each configuration of the 

influencing defences. Given that each defence may receive one out of five levels, and 

that a particular variable may be influenced by one up to eight defences, the number of 

distributions that 'need to be determined becomes significantly increased. This results 

into an unmanageable amount of information to be elicited from experts by means 

of probability encoding. Problems arise because firstly, the availability of experts is 

within particular limits, and, secondly, subjecting an expert to a long and particularly 

demanding elicitation exercise may affect the results of the process. 

8See Chapter 6, Section 6.3 
9See Chapter 8, Section 8.5 
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Therefore, it has been imperative to adopt a pragmatic approach, which will allow 

for reducing the requirements posed on the participating experts, and for gathering the 

information necessary without setting unrealistic demands on them, both in terms of 

time availability and their actual ability to respond. This has been achieved by asso­

ciating the root cause and coupling factor variables with the levels of the influencing 

defences, through a mathematical relationship. This relationship is referred to as the 

Geometric Scaling (GS) model. 

The as model is an operationally useful methodology that reduces the computa­

tional burden of the quantification process in the following way: instead of eliciting a 

probability distribution on a target variable for each combination of configuration lev­

els of the influencing defences, one needs to determine a probability distribution on the 

target variable at a base configuration, and assess the effect of modifying the levels of 

the influencing defences. This relationship supports uncertainty statements about the 

variable of interest at levels where no information has been elicited from experts. The 

as model decreased the number of elicitation variables to a manageable size, allow­

ing for the instantiation of the ID model to be completed by means of an elicitatio~ 

questionnaire 10. 

The definition of the GS model has an additional advantage. Defining a functional 

relationship between the variable of interest and the defence levels of the system cre­

ates a framework that allows for the communication of information amongst different 

defence levels. Through the as model, statistical data is propagated amongst differ­

ent levels. Thereby, observations regarding a particular defence configuration become 

relevant to configurations on which there is no available information 11. 

Moreover, the as model creates a structured framework for uncertainty analysis. 

The uncertainty distribution on a variable is expressed as a weighted average of condi­

tional distributions, viz. 

f{v) = J f{v j ~)f{~)d~ 

Through Bayes' theorem, the weighted average f(v) is updated in the light of data d, 

IOSee Chapter 8 
11 See Chapter 6 
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to yield a posterior distribution, viz. 

f(v I d) = J f(v I ~,d)f(~ I d)d~ 

The posterior distribution is again a weighted average of conditional distributions, with 

weights the updated weights of the prior distribution f(~ I d). The theoretical set-up 

of the GS model is based on gamma-Poisson and beta-binomial models. This allows 

for the analytical determination of the conditional distributions f(v I ~,d). However, 

the normalising constants implicit in the posterior weights f(~ I d) are not analytically 

tractable. Within the GS set-up, the inference problem is divided to simple, analyt­

ically solvable subproblems, and subproblems that require numerical approximation 

techniques. 

10.4 Limitations of the proposed methodology and fur­

ther research 

This chapter proceeds with the limitations of the proposed methodology. These are 

issues that arose during the implementation of the protocol, creating room for further 

research. 

10.4.1 Model boundaries 

The ID model constitutes an application on Emergency Diesel Generators (EDGs) of 

nuclear power plants. The application characteristics of the model are summarised in 

Table 10.1. 

The ID model is comprised of two parts: the model network and the probabilistic 

specification of the model. The application boundaries of the ID model are defined by 

exploring which components are generalised, and to what extent. 
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Table 10.1: Application characteristics of the ID model 

Application characteristics 

I. The model is a system-oriented approach. It is built for carrying 

out assessments of the vulnerability of systems of Emergency Diesel 

Generators to dependent failures. 

2. Emergency Diesel Generators are stand-by systems. 

3. The output of the model is a failure rate of CCF events per calendar 

hour. 

4. The ID model captures failure events that occur during the idle period 

of the system, and are revealed by the demand (failure-to-start mode). 

Model Network 

The theoretical definition of the ID variables has been based on two recognised frame­

works l2• In particular, the system defences and respective levels have been defined 

as within UPM, and the coupling factor and root cause features of the ID model are 

defined exactly as in the ICDE Project. UPM is a generic methodology for dependent 

failure assessment on standard systems. Similarly, the ICDE taxonomies are defined 

for application in any event report included in the database, regardless of the con­

tributing system. Therefore, the definition of the ID variables is not system-specific. 

Moreover, the relationships portrayed by the model network are conceptually coherent 

interactions existing amongst the model elements. On this basis, the ID model network 

is not focused on EDGs specifically, but is generalisable to standard systems. 

Probability specification 

The mathematical definition of the ID variables 13 seeks to capture failure events that 

occur to systems of EDGs during standby, and only revealed when the systems were 

12See Chapter 5, Section 5.2 
13See Chapter 5, Section 5.3 
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challenged to deliver their intended function. These failures are classified as failure-to­

start events. On this basis, the output of the model is a system failure-to-start rate. For 

the model instantiation, the amount and type of the information to be elicited on experts 

has been based on the GS model, and the probability encoding has been achieved 

through the means of a questionnairel4 . In view of the fact that the GS model is not 

accommodating a specific system, the elicitation methodology and questionnaire are 

applicable to any standard system. Thus, even though the numerical results obtained 

from the expert judgment elicitation process are EDG specific, the process itself is 

generalisable to failure-to-start events occurring in any standard system. 

A similar approach may be used for capturing failure-to-run events. Failure-to-run 

events are typically described by probabilities on demand. For accommodating this 

type of events, the theoretical foundations of the model need to be modified accord­

ingly. 

A parameterisation of the ID model is possible in terms of probabilities on demand. 

In this case, the output of the model would describe the probability of the system failing 

on demand due to a CCF, viz. 

PCCF = Pr(system fails on demand due to a CCF) 

Given that the root cause taxonomy describes mutually exclusive and collectively ex­

haustive events, it holds that 

PCCF= 

6 

= E Pr( CCF I system fails due to root cause i)Pr( system fails due to root cause i) 
i=l 
6 

= E Pr(CCF I system fails due to root cause i). qi 
i=l 

Based on the assumption that a CCF event is propagated to more than one components 

14See Chapter 8, Section 8.5 

262 



via one out of the three defined coupling mechanisms, it holds that 

Pr( CCF I system fails due to root cause i) 
3 3 

= E Pr( CCF via coupling factor j I system fails due to root cause i) = E Pij 

j=1 j=1 

Finally, the failure probability on demand due to a CCF is expressed as 

6 3 

PCCF = .E .E Pij . qi 
i=1 j=1 

Table 10.2 portrays the ID variables for each parameterisation. For the parameteri­

sation of the system in terms of probabilities on demand, the variables that need to be 

adjusted are the model output and the root cause variables. 

Table 10.2: Parameterisation of ID model in terms of probabilities of failure on demand and failure 
rates 

Parameterlsation 

Model elements Probability on demand Failure rate (per calendar hour) 

Output PCCF = Pr(CCF on demand) AcCF := rate ofCCFs 

Root causes ql = Pr( failure due to root casue i) ri := rate offailure events due to 
root cause i 

j = 1 ..... 6 

Coupling factors Pi) = Pr(CCF via coupling factor) I Pi} = Pr(CCF via coupling factor) I 

)=1.2.3 
failure due to root cause" failure due to root cause i) 

For the parameterisation of the ID model in terms of probabilities on demand, the 

probability distributions need to be re-determined. The expert elicitation process may 
" 

be adjusted to accommodate the new parameterisation of the model. However, the 

main structure of the strategy and the elicitation techniques remain the same. 
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10.4.2 Expert judgment elicitation 

The ID building process is separated into a qualitative and a quantitative part. In this 

application, both parts were completed by using expert judgment. 

The objective of the qualitative stage is to construct the network of the model, and 

has been completed during a workshop with six participating experts 15. 

The objective of the quantitative part of the ID building process is to determine 

the probability specification on the model variables. Due to limited amount of avail­

ableCCF data, this part was completed through a probability e~coding exercise. The 

exercise was designed to extract uncertainty distributions from the participating expert. 

To increase confidence in the results of the quantitative part, the exercise is in prin­

ciple repeated to a number of participating experts, generating a set of uncertainty 

distributions for each elicitation variable. Subsequently, the elicited distributions are 

mathematically combined by using aggregation techniques [Genest and Zidek, 1986; 

Thorpe and Williams, 1992; Cl em en and Winkler, 1999; Hora, 2004], to yield an over­

all prior on the elicitation variable. However, the aim of this research is not to produce 

a definitive tool for CCF modelling, readily used within the industry. Rather, it is to' 

explore the feasibility of the proposed methodology. Insights can be gained from ap­

plying the process once, and practical issues can be identified without repeating the 

methodology to a number of experts. On these grounds, in the particular application 

the quantitative part has been completed with the help of a single expert. 

10.4.3 Restrictions on elicitation variables 

The probability encoding exercise was achieved by means of a questionnaire, which 

was completed by the participating expert. During subsequent analysis, the uncertainty 

on the elicitation variables was determined, and the GS model was used to extrapolate 

this uncertainty to variables for which assessments were not directly made (target vari­

ables). 

The GS model results in a relatively complex mathematical structure. Based on 

lSSee Chapter 7 
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the fundamental assumption that the vulnerability of the system to failures does not 

become worse as a result of enhancing the level of a defence, particular restrictions 

on the uncertainty distributions are posed. These restrictions apply both to the vari­

ables the uncertainty on which has been assessed directly (elicitation variables), and 

to the variables the uncertainty on which has been derived indirectly (target variables). 

On this basis, it needs to be ensured that the subjective distributions do not lead to 

conceptual inconsistencies, by violating these assumptions. 

Avoiding violation of the fundamental assumptions proves to be a comparatively 

straightforward task when it comes to elicitation variables. During the structuring 

phase, the participating expert is informed on the conditions that conceptually need 

to hold, and encouraged to keep these into consideration when making assessments. 

Within the particular application, contradictions in the experts' assessments on elicita­

tion variables have been rare. 

However, a number of incoherences arose related to the uncertainty distributions 

of target variables that are assessed indirectly. The reason is that, during the proba­

bility encoding exercise, experts are not aware of the extrapolation techniques and the. 

computational processes involved in the determination of the uncertainty on the target 

variables, nor they are expected to. Therefore, no tangible indication is available to 

them to check the coherency of the assessments when extrapolated to other variables, 

and adjust them respectively. This problem is addressed by two means. Firstly, the 

'problematic' assessments were reviewed during the arranged feedback sessions. By 

using visual aids like plots and spreadsheets the reasons of violation of the conditions 

were explored. It has been crucial at this point to ensure that the analyst does not 

lead the expert, and that the expert's assessments, even when adjusted, do not cease 

to reflect their true beliefs. Secondly, minimisation problems were used to 'tune' the 

parameters of the subjective distributions of target variables (mostly cross-terms), so 

that violations of conditions are avoidedl6• -

16See Chapter 6 
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10.4.4 Use of data for update 

ID data requirements 

As described in Chapter 5, the data required for updating the priors on the root cause 

variables ri and coupling factor variables Pij (i = 1, ... ,6 and j = 1,2,3) at configuration 

vector (Xl, ... ,xs) is of the following form (see Table ,10.3): 

Table 10.3: Format of data required for updating the root cause and coupling factor variables of the 
ID model 

For system with defence configuration x=(XI,""XS) 

Observation time: Coupling Factors 

Tobs years 
CFI CF2 CF3 Independent 

failures 

RI nll n12 n13 nlO 

'" R2 Qi n21 ... :g 
~ R3 U .... 
0 R4 0 
~ 

R/ii 

R6 n61 n62 n63 n60 

• For root cause variables r;, the relevant data is (ni, Tobs) where ni = [,]=0 nij is 

the number of failures attributed to root cause i that are recorded during time 

Tobs, from a system with configuration vector (Xl, ... ,xs) . 

• For coupling factor variables Pij, the relevant data is (nij,ni) where nij is the 

number of CCFs propagated through coupling factor j, out of ni failures at­

tributed to root cause i, from a system with configuration vector (Xl, ... ,xs). 

As mentioned, the ID model integrates the structure of the ICDE database. Each 

observed CCF event in the database is reviewed and, a number of features are assigned 

accordingly, consistently with the ICDE guidelines. These features include a root cause 
-

and a coupling factor. The observed CCF events from all contributing systems are 

accumulated, and classified according to system size. Relevant data from the ICDE 

database is illustrated in Table 10.4. 
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Table 10.4: Format of relevant to the ID variables data incorporated in the ICDE database 

Contributing system of size m 

Observation time: Coupling Factors 

Tobs years 
CFI CF2 CF3 

RI nn n12 n13 

'" R2 n21 ... QJ 

~ 
~ R3 U .... R4 0 
0 
~ RS 

R6 n61 ... n63 

The root cause and coupling factor ID variables are defined as within the ICDE 

guidelines, and in principle the ICDE data can be used for model update. Nevertheless, 

there are two main drawbacks that make the use of ICDE data within the framework of 

the ID model presently un feasible. Firstly, the ICDE event reports do not include infor­

mation on the configuration of the contributing system across defences Db k = 1, ... ,8, . 

apart from the system size. Therefore, the data contained in the database comes from 

a combination of defence configurations, and it is not relevant to a specific variable 

ri,;! or Pij,;!' Secondly, the ICDE database does not always include information on the 

number of independent failures that occurred to the system, classified across the root 

causes. Therefore, the total number of failures due to a particular root cause ni cannot 

be determined. 

Even though the ID model creates a context for using the information incorporated 

in such a generic database, this information cannot be used at its present form. How­

ever, it can be potentially used in the future, provided that a documentation scheme 

is developed for ICDE. This scheme should allow for the incorporation in the event 

reports of: firstly, the system configuration across defences Dk ; secondly, the number 

of independent failures classified across the root causes. Given such a development, 

the use of the ICDE data in a quantitative way can be achieved, rather than as a means 
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for gaining insight into the relevant failure mechanisms. 

10.4.5 Definition of system defences 

Like UPM, the ID model is based on the basic Beta Factor model. Within this frame­

work, CCF events of different multiplicities are not recognised, as a CCF event fails . 
all components, despite the size of the system. Therefore, according to the underly­

ing assumptions, aspects of redundancy do not constitute a defence against dependent 

failures. 

Using the Beta Factor model as a platform is inevitably a conservative approach to 

CCF modelling. Operating experience has proved the practical benefit of redundancy 

[Edwards and Watson, 1979]. Defining redundancy as a system defence is an attempt 

of UPM to 'correct' the output of the model accordingly, even though the fundamental 

assumptions of the model are violated. 

For purposes of consistency, the ID model does not include redundancy amongst 

the system defences. Thus, the defence variables Dk (k = 1, ... ,8) defined within the 

context of the ID model, along with the corresponding five levels Xk (Xk = 1, ... ,5) have 

been accurately taken from the UPM framework for all defences, apart from the Re­

dundancy and Diversity defence. For this particular defence, the aspects that describe 

redundancy characteristics of the system have been excluded, and only characteristics 

of diversity are described. Although a limitation, addressing this issue has not been an 

objective of the particular research. In principle, a similar methodology may be used to 

generalise models such as the Multiple Greek Letter model 17, which considers CCFs of 

different multiplicities. This research explores the feasibility of this methodology, and 

provides a documentation of the particular application, which may provide a platform 

for further research and future applications. 

Another limitation concerns the original definition of the system defences. During 

interactions with the expert panel, the extent to which the UPM definitions of the sys­

tem defences as a whole capture the system vulnerability has been criticised. Firstly, 

17 See Chapter 2 
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the panel felt that the sub-factor of Safety Culture is very narrowly defined within the 

UPM framework. The experts were uncomfortable with the fact that the definition fo­

cuses entirely on the training of the operators and that it does not include the aspect 

of safety culture in a more general fashion. Secondly, the panel argued that the de­

sign characteristics of Redundancy and Diversity should not be described be a single 

defence. They ultimately describe different design aspects of the system, thus, they 

should be describes by different defences. 

These insights raise the question of whether the defence definitions should be de­

veloped further, and modified in order to represent the system under study in a more 

comprehensive manner. Re-defining the defence characteristics and their classification 

has not been an objective of this research. However, insights have been gained through 

the process that motivate further research. 

10.5 Conclusion 

This thesis is an application of the ID formalism on the CCF modelling of EDGs in 

nuclear power plants. 

Within this research, UPM has played a particular role: it constituted the plat­

form on which the ID model has been constructed. As stated in the objectives of 

this research, maintaining the strong features of UPM has been a desideratum. Apart 

from capturing the effect of system defences and using expert judgment in a quanti­

tative way, UPM has another advantage: it constitutes a structured, well-documented 

methodology for CCF modelling. 

The ID model partly maintains this feature in its current form. The checklists 

used within the UPM framework in order to guide and document the calibration of 
N 

the system against the defences have been preserved within the ID framework, along 

with the defence definitions and corresponding levels. However, based on a Bayesian 

methodology, the ID model involves cumbersome numerical calculations compared to 

UPM, requiring standard knowledge of probability theory. On this basis, developing a 

standardised algorithm and a user-friendly interface by means of appropriate computer 

269 



tools constitutes an interesting potential that would increase the practical value of the 

ID model. 

The modelling approach presented in this thesis is an attempt to merge aspects of 

the qualitative treatment of CCF failures with quantitative analysis. In particular, root 

cause and coupling factor issues are expressed in the model quantitatively, as inter­

mediate stages of the modelling process. The purpose behind this modelling choice 

is to allow for the use of qualitative in sights regarding root cause and coupling factor 

characteristics of CCF events at a quantitative level. Combined with the modelling 

of defence characteristics of the system that have been acknowledged as relevant, the 

ID model offers a more detailed representation of CCF events and their mechanisms. 

This aspect of the proposed model emphasizes its use as a decision-making tool, with 

a strong structural and exploratory character. 

Within a decision-making context, the interest lies not only in the model predic­

tions, but also in the uncertainty related to these predictions. The ID model allows to 

coherently express the uncertainty related to the assessment of the risk contribution to 

the system. Gaining insight in this uncertainty allows control of certain outcomes in re- . 

stricting them within a particular tolerance envelope. Moreover, based on the Bayesian 

methodology, the ID model allows to propagate uncertainty within the model struc­

ture, and support uncertainty statements regarding events for which information is not 

available. 

The Geometric Scaling model defines a functional relationship that associates fail­

ure characteristics of the system with the defence characteristics that it employs. This 

relationship allows to extrapolate information and the related uncertainty to any de­

fence configuration within the particular context, provided that the parameters of the 

model are determined. Moreover, the mathematical format of the GS model allows 
.. 

for the distinction of the functional interactions existing amongst the system defences, 

in the way they impact on the overall system susceptibility to failures. Finally, the 

use of the Geometric Scaling model offered a pragmatic approach to address the ex­

pert judgment elicitation process. Problems that demand a particularly large amount 

of information to be elicited from experts are frequently encountered in practice. The 
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proposed methodology offers a way to tackle this problem. 

This thesis explored the application of a methodology that approaches CCF mod­

elling from a structural and exploratory viewpoint. The insights gained throughout this 

process suggest the feasibility of such a methodology and set the grounds for further 

research towards this direction. 

271 



Bibliography 

Anders, D. M., Loxh~j, J. T., and Coit, D. W. (2005). Modelling of human-system . 
risk and safety: aviation case studies and exemplars. Human Factors and Aerospace 

Safety, 5(2): 137-167. 

Ansell, J. I. and Phillips, M. J. (1994). Practical Methodsfor Reliability Data Analysis. 

Oxford University Press. 

Apeland, S., Aven, T., and Nilsen, T. (2002). Quantifying uncertainty under a predic­

tive, epistemic approach to risk analysis. Reliability Engineering and System Safety, 

75:93-102. 

Apostolakis, G. (1988). The interpretation of probability in probabilistic safety assess­

ments. Reliability Engineering and System Safety, 23:247-252. 

Apostolakis, G. and Moieni, P. (1987). The foundations of models of dependence on 

probabilistic safety assessment. Reliability Engineering, 18: 177-195. 

Atwood, C. (1996). The Binomial Failure Rate common cause model. Technometrics, 

28(2): 139-148. 

Aven, T. (2003). Foundations of Risk Analysis: a knowledge and decision-oriented 

perspective. John Wiley and Sons Ltd. 

Aven, T. and Kval~y, J. T. (2002). Implementing the Bayesian paradigm in risk analy­

sis. Reliability Engineering and System Safety, 78:195-201. 

272 



Barlow, Rand Proschan, F. (1986). Inference for the exponential life distribution. 

In Serra, A and Barlow, R, editors, Theory of Reliability, pages 143-164. North­

Holland, Amsterdam. 

Bedford, T. and Cooke, R (2001). Probabilistic Risk Analysis: Foundations and Meth­

ods. Cambridge University Press. 

Berg, H. P., Gortz, R, Schimetschka, E., and Kesten, J. (2006). The process-oriented 

simulation model for common cause failures: recent progress. Kerntechnik, 71 (1-

2):54-59. 

Bemardo, J. M. (1996). The concept of exchangeability and its applications. Far East 

J. Mathematical Sciences, 4:111-121. 

Blackwell, L. M. and Singpurwalla, N. D. (1988). Inference from accelerated life tests 

using filtering in coloured noise. Journal of the Royal Statistical Society. Series B, 

Methodology, 50(2):281-292 .. 

Bobbio, A, Portinale, L., Minichino, M., and Ciancamerla, E. (2001). Improving. 

the analysis of dependable systems by mapping fault trees into Bayesian networks. 

Reliability Engineering and System Safety, 71 :249-260. 

Boume, A, Edwards, G., Hunns, D., Po~lter, D., and Watson, I. (1981). Defences 

against common-mode failures in redundancy systems. Technical report, UKAEA 

Safety and Reliability Directorate. 

Brand, P. V. and Gabbot, D. (1993). Unified Partial Method for dependent failures 

assessment. Technical Report AEA Technology, AEA Project Reference Number: 

GNSRlPSN6, NSMRU Project Reference Number: PSA/GNSRf11., AEA Technol­

ogy. 

Celeux, G., Corset, E, Lannoy, A, and Ricard, B. (2006). Designing a Bayesian 

network for preventive maintenance from expert opinions in a rapid and reliable 

way. Reliability Engineering and System Safety, 91(7):849-856. 

273 



Chickering, D. M., Geiger, D., and Heckerman, D. (1995). Learning Bayesian net­

works: The combination of knowledge and statistical data. Machine Learning, 

20: 197-243. 

Clemen, R. T. and Winkler, R. L. (1999). Combining probability distributions from 

experts in risk analysis. Risk Analysis, 19(2): 187-203. 

Cooke, R. (1991). Experts in Uncertainty: Opinion and Subjective Probability in 

Science. Oxford University Press. 

Cooke, R. and Bedford, T. (2002). Reliability databases in perspective. IEEE Trans­

actions on Reliability, 51(3):294-310. 

Cooke, R. M. and Goosens, L. J. H. (2000). Procedures guide for structured expert 

judgment. Technical Report EUR 18820, Nuclear Science and Technology, Euro­

pean Commision. 

Coupe, V. M. H. and van der Gaag, L. C. (2002). Properties of sensitivity analysis 

of Bayesian Belief Networks. Annals of Mathematics and Artificial Intelligence, 

36(4):323 - 356. 

Cox, D. and Hindley, D. (1974). Theoretical Statistics. Chapman and Hall. 

De Finetti, B. (1974). Theory of ProbabilitY: A Critical Introductory Treatment, vol­

ume 1. John Wiley, New York. 

De Finetti, B. (1975). Theory of Probability: A Critical Introductory Treatment, vol­

ume 2. John Wiley, New York. 

Diaconis, P. and Ylvisaker, D. (1985). Quantifying prior opinion. In Bemardo, M., 

Degroot, M. H., Lindley, D. V., and Smith, A. F. M., editors, 2nd Valencia Int'l 

Meeting, pages 133-156, North-Holland, Amsterdam. 

Dorp, J. R. V. and Mazzuchi, T. A. (2004). A general Bayes inference model for 

accelerated life testing. Journal of Statistical Planning and Inference, 119:55-74. 

274 



Duftoy, A, Pierplot, S., and Deleuze, G. (2006). An innovating application of Bayesian 

Networks. Presented in The First International Conference on Availabilty, Reliabil­

ity and Security (ARES 2006), Vienna, Austria. 

Ebeling, C. E. (1997). An Introduction to Reliability and Maintainability Engineering. 

The McGraw-Hill Companies, Inc. 

Edwards, G. T. and Watson, I. A (1979). A study of common-mode failures. Technical 

Report SRD R 146, Safety and Reliability Directorate, United Kingdom Atomic . 
Energy Authority, Wigshaw Lane, Culcheth Warrington, WA3 4NE. 

Fenton, N. and Neil, M. (2001). Making decisions: using Bayesian nets and MCDA 

Knowledge-Based Systems, 14:307-325. 

Fenton, N. and Neil, M. (2004). Combining evidence in risk analysis using bayesian 

networks. Safety Critical Systems Club Newsletter, 13(4):8-13. 

Fischhoff, B. (1989). Eliciting knowledge for analytical representation. IEEE Trans­

actions on Systems, Man, and Cybernetics, 19(3):448-459. 

Fleming, A M. K, Parry, G., Paula, H., Worledge, D., and Rasmuson, D. (1988). Pro­

cedures for treating common cause failures in safety and reliability studies. Tech­

nical Report NUREG/CR-4780, EPRI NP.-5613, U.S. Nuclear Regulatory Commis­

sion and Electric Power Research Institute. Vol 1. 

Fleming, A M. K, Parry, G., Paula, H., Worledge, D., and Rasmuson, D. (1989). Pro­

cedures for treating common cause failures in safety and reliability studies. Tech­

nical Report NUREG/CR-4780, EPRI NP-5613, U.S. Nuclear Regulatory Commis­

sion and Electric Power Research Institute. Vol 2. 

Fleming, K N. (1975). A reliability model f()r common mode failure in redundant 

safety systems. In Proceedings of the Sixth Annual Pittsburgh Conference on Mod­

eling and Simulation, pages 23-25. General Atomic Report GA-A 13284. 

275 



Fleming, K. N., Mosleh, A., and Kelley, A. P. (1983). On the analysis of dependent 

failures in risk assessment and reliability evaluation. Nuclear Safety, 24(5):637-657. 

French, S. (1986). Decision Theory: An Introduction to the Mathematics of Rationality. 

Ellis Horwood Limited, Chichester. 

Genest, C. G. and Zidek, J. V. (1986). Combining probability distributions: A critique 

and annotated bibliography. Statistical Science, 1(1):114-135. 

Guba,E. G. and Lincoln, Y. (1994). Competing paradigms in qualitative research. In 

Denzin, N. K. and Lincoln, Y. S., editors, Handbook in Qualitative Research, pages 

105-117. Sage. 

Han, S. G., Yoon, W. H., and Chan, S. H. (1989). The trinomial failure rate model 

for treating common mode failures. Reliability Engineering and System Safety, 

25(2): 131-146. 

Hanks, B. 1. (1998). An appreciation of common cause failures in reliability. Proc 

Instn Mech Engns, 212(Part E):31-35. 

Hauptmanns, U. (1996). The multi-class binomial failure rate model. Reliability En­

gineering and System Safety, 53:85-90. 

Hirschberg, S. and Pulkkinen, U. (1985). Common cause failure data: Experience from 

diesel generator studies. Nuclear Safety, 26(3):305-313. 

Hokstad, P. (1988). A shock model for common-cause failures. Reliability Engineering 

and System Safety, pages 127-145. 

Hokstad, P. and Comeliussen, K. (2004). Loss of safety assessment and the IEC 61508 

standard. Reliability Engineering and System Safety, 83: 111-120. 

Hokstad, P., Maria, A., and Tomis, P. (2005). Estimation of common cause factors 

from systems with different numbers of channels. To appear in IEEE transactions 

on Reliability. 

276 



H~land, A. and Rausand, M. (1994). System Reliability Theory: Models and Statistical 

Methods. Wiley Series in Probability and Mathematical Statistics. John Wiley and 

Sons Inc. 

Holtschmidt, H., Kreusur, A, and Verstegen, C. (2006). Extension of the German 

database for common cause failure events. Kerntechnik,71(1-2):22-28. 

Hora, S. C. (1996). Aleatory and epistemic uncertainty in probability elicitation with 

an example from hazardous waste management. Reliability Engineering and System 
, 

Safety,54:217-223. 

Hora, S. C. (2004). Probability judgments for continuous quantities: linear combina­

tions and calibration. Management Science, 50(5):597-604. 

Howard, R. (1990). From influence to relevance to knowledge. In R.M., O. and Q., 

S. J., editors, Diagrams, Belief Nets and Decison Analysis, pages 3-23. John Wiley 

and Sons, Chichester. 

Humphreys, R. A (1987). Assigning a numerical value to the beta factor common 

cause failure evaluation. In Proceeding of Reliability '87. Rolls Royce and Asso­

ciates Ltd. Paper 2C/5. 

Jensen, F. N. (1999). An introduction to Bayesian Belief Networks. VCL Press Limited, 

London. 

Johanson, G., Kreuser, A, Pyy, P., Rasmuson, D., and Werner, W. (2006). OECDINEA 

International Common Cause Failure Data Exchange project - insights and lessons 

learnt. Kerntechnik, 71(1-2): 13-16. 

Johanson, G., Mankamo, T., and Knochenhauer, M. (2003). Summary report of the 

Nordic Working Group on Common Caus~ Failure Analysis. Technical Report 

NAFCS-PR21, Nordisk Arbetsgrupp f~r CCF studier. 

Johnson, N. Land Kotz, S. (1972). Distributions in Statistics: Continuous Multivari­

ate Distributions. John Wiley and Sons, New York. 

277 



Kadane, J. B. and Wolfson, L. J. (1998). Experiences in elicitation. The Statistician, 

47(1 ):3-19. 

Kaplan, S. and Garrick, B. J. (1981). On the quantitative definition of risk. Risk 

Analysis, 1:11-27. 

Kardes, E. and Luxh(2Sj, J. T. (2005). A hierarchical probabilistic approach for risk 

assessments of an aviation safety product portofolio. Air Traffic Control Quarterly, 

13(3):279-308. 

Kjrerulff, U. and van der Gaag, L. C. (2000). Making sensitivity analysis computa­

tionally efficient. In Proceedings of the 16th Conference on Uncertainty in Artificial 

Intelligence (UAI), pages 317-325, San Francisco, California. Morgan Kaufmann 

Publishers. 

Kreuser, A. and Peschke, 1. (2001). Coupling model: a common-cause-failure model 

with consideration of interpretation uncertainties. Reactor Safety, 136:255-260. 

Kreuser, A., Peschke, J., and Stiller, J. C. (2006). Further development of the coupling. 

model. Kerntechnik,71(1-2):50-53. 

Kristensen, V. (2004). A proposal to a holistic framework for validation of risk analy­

sis. Submitted for publication in Reliability Engineering and System Safety. 

K vam, P. (1998). A parametric mixture model for common-cause failure data. IEEE 

Transactions on Reliability, 47(1):30-34. 

K vam, P. H. (1996). Estimation techniques for common cause failure data with differ­

ent system sizes. Technometrics, 38(4):382-388. 

Langseth, H. an:d Portinale, L. (2005). Bayesian networks in reliability. Technical Re­

port TR-INF-2005-04-01-UNIPMN, Dipartimento di Informatica, Universita Degli 

Studi del Piemonte Orientale "A. Avogadro". 

Laskey, K. (1995). Sensitivity analysis for probability assessments in Bayesian Net­

works. IEEE Transactions on Systems, Man, and Cybernetics, 25(6):901-909. 

278 



Lauritzen, S. (1996). Graphical Models. Clarendon Press, Oxford. 

Lindley, D. V. (2000). The philosophy of statistics. The Statistician, 49(3):293-337. 

Loschi, R. and Wechsler, S. (2002). Coherence, Bayes theorem and posterior distribu­

tions. Brazilian Journal of Probability and Statistics, 16: 169-185. 

Mankamo, T. (1994). Extended Common Load Model, a tool for dependent fail­

ure modeling in highly redundant structures. Technical Report SKI Report 94:3, 

Swedish Nuclear Power Inspectorate. Publication manuscript, 1990, NKS/SIK-

1(92)3,26 p. Published as part of "Supporting Documentation for Safety Evaluation 

by Living Probabilistic Safety Assessment". 

Mankamo, T. and Kosonen, M. (1992). Dependent failure modelling in highly re­

dundant structures - application to BWR safety valves. Reliability Engineering and 

System Safety, 35:235-244. 

Marshall, A. W. and Olkin, I. (1967). A multivariate exponential distribution. Journal 

of the American Statistical Association, 62(317):30-44. 

Martz, H., K vam, P., and Abramson, L. (1996). Empirical Bayes estimation ofthe relia­

bility of nuclear power plant emergency diesel generators. Technometrics, 38(1): 11-

24. 

Matheson, J. E. (1990). Using influence diagrams to value information and control. 

In Oliver, R. and Smith, 1. Q., editors, Diagrams, Belief Nets and Decison Analysis, 

pages 25-48. John Wiley and Sons, Chichester. 

Max, H., John, B., and Eric, H. (1991). Decision analysis and expert systems. Artificial 

Intelligence, pages 64-91. 

Mazzuchi, T. A. and Soyer, R. (1992). A dynamic general linear model for inference 

from accelerated life tests. Naval Research Logistics, 39:757-773 . 

.. 
Mazzuchi, T. A. and Soyer, R. (1996). A Bayesian perspective on some replacement 

strategies. Reliability Engineering and System Safety, 51 :295-303. 

279 



Me1chers, R. E. (2001). On the ALARP approach to risk management. Reliability 

Engineering and System Safety, 71:201-208. 

Merkhofer, M. W. (1987). Quantifying judgmental uncertainty: methodology, ex­

periences and insights. IEEE Transactions on Systems, Man, and Cybernetics, 

17(5):741-752. 

Meslin, T. (1988). Analysis and quantification of common-cause failures on the basis 

of operating experience. Nuclear Safety, 84:239-246. 

Meyer, M. A and Booker, J. M. (1991). Eliciting and Analysing Expert Judgment: A 

Practical Guide. American Statistical Association and the Society of Industrial and 

Applied Mathematics. 

Mitchell, G. (1993). The Practice of Operational Research. John Wiley and Sons, 

Chichester. 

Morgan, M. G. and Henrion, M. (1990). Uncertainty: A Guide to Dealing with Uncer­

tainty in Quantitative Risk and Policy Analysis. Cambridge University Press. 

Mosleh, A, Fleming, K. N., Parry, G. W., Paula, H. M., Worledge, D., and Rasmuson, 

D. M. (1987). Procedures for treating common cause failures in safety and relia­

bility studies. volume 1: Procedural framework and examples. Technical Report 

NUREGICR-4780-Vol.1;EPRI-NP-5613-Vol.1, U.S. Nuclear Regulatory Commis­

sion and Electric Power Research Institute. 

Mosleh, A, Parry, G. W., and Zikria, A. F. (1994). An approach to the analysis of 

common cause failure data for plant-specific application. Nuclear Engineering and 

Design, 150:25-47. 

Mosleh, A, Rasmuson, D., and Marshal, F. (1998a). Common cause failure database 

and analysis: System software reference manual. Technical Report NUREGICR-

6268, U.S. Nuclear Regulatory Commission. Volume 4. 

280 



Mosleh, A., Rasmuson, D., and Marshal, F. (1998b). Common cause failure database 

and analysis: System/overview. Technical Report NUREG/CR-6268, U.S. Nuclear 

Regulatory Commission. Volume 1. 

Mosleh, A., Rasmuson, D., and Marshal, F. (1998c). Guidelines on modeling common­

cause failures in probabilistic risk assessment. Technical Report NUREG/CR-5485, 

INEELIEXT-97-01327, U.S. Nuclear Regulatory Commission. 

Ness, J. and Hoffman, C. (1998). Putting Sense Into Consensus: Solving the Puzzle of , 
Making Team Decisions. VISTA Associates, Tacoma, Wash. . 

Nilsen, T. and Aven, T. (2003). Models and model uncertainty in the context of risk 

analysis. Reliability Engineering and System Safety, 79:309-317. 

O'Hagan, A. and Forster, J. (2004). Kendall' s Advanced Theory of Statistics, Volume 

2B: Bayesian Inference. Arnold, London, second edition. 

Parry, G. W. (1991). Common cause failure analysis: a critique and some suggestions. 

Reliability Engineering and System Safety, 34:309-326. 

Parry, W. G. (1996). The characterisation of uncertainty in probabilistic risk assess­

ments of complex systems. Reliability Engineering and System Safety, 54:119-126. 

Paula, H. (1995). Technical note: on the definition of common-cause failures. Nuclear 

Safety,36(1):53-57. 

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible 

Inference. Morgan Kaufmann Publishers Inc, San Mateo, CA. 

Pidd, M. (2003). Tools for Thinking: Modelling in Management Science. Wiley and 

Sons Ltd., England, second edition. 

Pradhan, M., Henrion, M., Provan, G., Favero, B. D., and Huang, K. (1996). The sen­

sitivity of belief networks to imprecise probabilitites: an experimental investigation. 

Artificial Intelligence, 85:363-397. 

281 



Ramsey, F. P. (1926). Truth and probability. In Braithwaite, R. B., editor, Foundations 

of Mathematics and Other Logical Essays, pages 156-198. Kegan Paul. 

Roberts, N. H., Vesely, W. E., Haasl, D. F., and Goldberg, F. F. (1981). Fault tree 

handbook. Technical Report NUREG-0492, US Nuclear Regulatory Commission. 

Rolls Royce and Associates (1986). Numerical values for beta factor common cause 

failure evaluation. Technical Report RRAl7692. 

Sachon, M. and Pate-Comell, E. (2000). Delays and safety in airline maintenance. 

Reliability Engineering and System Safety, 67:301-309. 

Saltelli, A. (2002). Sensitivity analysis for importance assessment. Risk Analysis, 

22(3):579-590. 

Savage, L. J. (1954). The Foundations of Statistics. John Wiley, New York. 

Shachter, R. D. (1986). Evaluating influence diagrams. Operations Research, 

34(6):871-882. 

Sigurdsson,1. H., Walls, L. A., and Quigley, 1. (2001). Bayesian Belief Nets for man­

aging expert judgment and modelling reliability. Quality and Reliability Engineering 

International, 17: 181-190. 

SingpurwalIa, N. D. (1971). Inference from accelerated life tests when observations 

are obtained from censored samples. Technometrics, 13(1):161-170. 

Siu, N. and Mosleh, A. (1989). Treating data uncertainties in common-cause failure 

analysis. Nuclear Technology, 84:265-281. 

Siu, N. O. and Kelly, D. L. (1998). Bayesian parameter estimation in probabilistic risk 

assessment. Reliability Engineering and System Safety, 62:89-116. 

Smith, D. 1. (2000). Developments in the use of failure rate data and reliability pre­

diction methods. Isbn: 0951656260, DELFT University of Technology. 

282 



Spetzler, C. S. and von Holsteins, C.-A. S. S. (1975). Probability encoding in decision 

analysis. Management Science, 22(3):340-358. 

Spiegelhalter, D. J. and Lauritzen, S. L. (1990). Sequential updating of conditional 

probabilities on directed graphical structures. Networks, 20:579-605. 

Spitzer, C. (2006). CCF treatment in PSA: insights and recommendations from review­

ing procedures. Kerntechnik, 71 (1-2):35-40. 

Talbott, W. (2001). Bayesian Epistemology. The Stanford Encyclope-

dia of Philosophy, fall 2001 edition. Edward N. Zalta (ed.), URL = 
http://plato.stanford.edularchives/fa112001/entries/epistemology-bayesian/. 

Thorpe, M. C. and Williams, M. M. R. (1992). A review of expert judgment techniques 

with reference to nuclear safety. Progress in Nuclear Energy, 27(2-3):91-223. 

Toledano, J. G. T. and Sucar, L. E. (1998). Bayesian networks for reliability analysis 

of complex systems. Lecture Notes in Artificial Intelligence, 1484: 195-206. 

Tversky, A. (1974). Assessing uncertainty. Journal of the Royal Statistical Society. 

Series B, Methodology, 36(2):148-159. 

van der Gaag, L. C. (1996). Bayesian Belief Networks: odds and ends. The Computer 

Journal,39(2):97-113. 

Vatn, J. (1997). Maintenance optimisation from a decision theoretical point of view. 

Reliability Engineering and System Safety, 58: 119-126. 

Vaurio, J. (1994a). Estimation of common cause failure rates based on uncertain event 

data. Risk Analysis, 14(4):383-387. 

Vaurio, J. (1994b). The theory and quantification of common cause shock events for 

redundant standby systems. Reliability Engineering and System Safety, 43(3):289-

305. 

283 



Vaurio, J. (1995). The probabilistic modeling of external common cause failure shocks 

in redundant systems. Reliability Engineering and System Safety, 50:97-107. 

Vaurio, 1. K. (2002). Extensions of the uncertainty quantification of common cause 

failure rates. Reliability Engineering and System Safety, 78:63-69. 

Vaurio, J. K. (2006). Is mapping a part of common caus~ failure quantification? Kern­

technik,71(1-2):41-49. 

Vesely, W. E. (1977). Estimating common cause failure probabilities in reliability and 

risk analysis: Marshall-olkin specializations. In Fussell, J. B. and Burdick, G. R, 

editors, Nuclear Systems Reliability Engineering and Risk Assessment, Society for 

Industrial and Applied Mathematics, page 3140341. Philadelphia. 

Walls, L. A. and Bendell (1989). Exploring field reliability data for potential dependent 

failures. In UK Reliability Symposium, Reliability 89. Paper 4Ab/3. 

Werner, W., Johanson, G., and Concepcion, M. (2004). International common-

cause failure data exchange general coding guidelines. 

NENCSNIIR(2004)4, Nuclear Energy Agency. 

Technical Report 

Wierman, T. E., Rasmuson, D. M., and Marshall, F. M. (2000). ICDE project report 

on collection ans analysis of common-cause failures of emrgency diesel generators. 

Technical Report NENCSNIIR(2000)20, Nuclear Energy Agency, France. 

Winkler, R (1996). Uncertainty in probabilistic risk assessment. Reliability Engineer­

ing and System Safety, 54:127-132. 

Worledge, D. H. and Wall, I. B. (1989). Overview of the electric power research 

institute - research programme on common cause failures. Nuclear Technology, 

84:256-259. 

Youngblood, R. W. and Atwood, C. L. (2005). Mixture priors for Bayesian perfor­

mance monitoring 1: fixed-constituent model. Reliability Engineering and System 

Safety,89(2):151-163. 

284 



Zabell, S. L. (2006). Symmetry and its discontents: Essays on the history of inductive 

probability. In Cambridge Studies in Probability, Induction and Decision Theory. 

Cambridge University Press. 

Zitrou, A. (2002). Common cause failure modelling. Master's thesis, Department of 

Management Science, University of Strathclyde, Glasgow, UK. 

285 



Appendix A 

Variables of the ID model 

A.I Defence variables 

A.I.I Diversity 

This defence describes the diverse characteristics of the system. 

A No diversity 

B Similar items with small differences in manufacturing/design 

C Diverse items which achieve the same purpose/function 

i.e. same method and principle of operation 

D Different items which achieve the same principle of operation 

and redundancy exists below diversity 

E Two entirely diverse independent redundant sub-systems 

A.I.2 Separation 

This defence describes the degree of segregation of the redundant components by an 

appropriate form of ,barrier. The categorisation below describes increasing levels of 

segregation wh~ch must be interpreted appropriately for the type of system being as­

sessed. 

A.1 



Levell Appropriate wall or barrier (e.g. for blast or flooding protection) 

within the same room 

Level2 Separate cubicle or room (implies separate physical environment) 

Level 3 Separate buildings or possibly well separated rooms. 

A Redundant identical items separation level less than Level 1 

B Redundant identical items separation Level 1 

C Redundant identical items, adjacent separation Level 2 

D Redundant identical items, adjacent separation Level 3 

E Redundant identical items in separate rooms 

A.1.3 Understanding 

This defence is a general measure of the vulnerability of the system to "unknown" 

dependent failure threats. It describes the level of understanding of designers, operators 

and analysts in relation to the system. 

The Understanding defence levels are described in terms of four factors: 

1. The factor of experience describes the amount of available experience with the 

system either from operational experience or from data coming from similar sys­

tems 

2. The factor of novelty describes the degree to which the system uses new ideas 

(principles of operation, configuration). It is seen as increasing the uncertainty 

regarding possible dependent failure modes and causes. 

3. The factor of complexity describes the complexity of the system. 

4. The factor of specific design refers to the extent to which the equipment has been 

designed specifically for the application. 

A.2 



Limited experience ( < 10 years) 

Novelty Complexity Specific Design 

A Big Big Small OR software in system 

B Big Big Big OR 

Big Small Small OR 

Big Big Small 

C Big Small Big OR 

Small Big Big OR 

Small Small Small , 

D Small Small Big 

E 

Level E not pemlitted for limiting experience 

Extensive experience ( < 10 years) 

Novelty Complexity Specific Design 

A 

B Big Big Small 

C Big Big Big OR 

Big Small Small OR 

Small Big Small 

D Big Small Big OR 

Small Big Big OR 

Small Small Small 

E Small Small Big 

Level A not permitted for extensive experience 

A.1.4 Analysis 

This defence refers to the amount of analysis that has been done on the design/system and to 

the degree of awareness of the designers of the dependent failures issue. 

A.3 



A No formal safety assessment. No design knowledge of dependent 

failures issues. 

B High level study (perhaps FMEA) or designer has general knowledge 

of dependent failure issues (demonstrated in the design). 

C Previous reliability assessment and evidence on feedback or 

designer has specific guidelines and knowledge of ~ependent failure 

issues (demonstrated in design). 

D Previous reliability assessment and evidence on feedback or 

designer has specific guidelines and knowledge 
, . 

of dependent failure issues (demonstrated in design) plus evidence 

of management support for feedback from assessment to design/operations. 

E Previous reliability assessment with clear evidence of results feedback 

and management support AND evidence of designer knowledge of 

dependent failure issues. 

A.1.5 Operator Interaction 

This defence refers to the degree of interaction with the operation of the item and whether there 

are written procedures or not that minimise the requirement for interpretation and decision by 

the staff. 

A No written procedures - Normal operator interaction 

B No written procedures - Minimal operator interaction 

OR Written procedures - Normal operator interaction 

C Written procedures - minimal operator interaction 

D Checklist procedures - Minimal operator interaction 

E Checklist procedures and evidence that procedures are followed 

- Minimal operator interaction 

A.1.6 Safety Culture 

This defence considers the training of the staff; such training is particularly relevant to emer­

gency operations. Training relates to how well trained and what experience the person operat­

ing, maintaining and repairing the system has. Also, an active safety culture and a dedicated 

A.4 



staff should be considered. 

A On the job training 

B Systematic regular training covering 

general and emergency operations 

C Simulator training of normal operations 

OR Dedicated staff and evidence of good safety culture 

including a systematic training programme 

D Simulator training of normal operations 

AND Dedicated staff and evidence of good safety culture 

including systematic training of emergency conditions 

E Simulator training of normal and emergency conditions. 

Clear safety policy/culture 

A.I.7 Environmental Control 

This defence relates to the control exercised over the environment in which the system is in­

stalled. The worst case might be repr~sented by installation in an area ill which other major 

processes, not related to the system are present. The potential dangers result from the unlimited 

access of people with no knowledge of the system. The dependent failure effect may be direct, 

or may simply cause the operator to leave his post without warning. It does not relate to the 

severity of the environment that should be taken into account by the designer. 

A Minimum control, other machines and processes 

not related in function are also present (e.g. Machine shop) 

B Separate building limits access - Other activities 

are associated. Small risk of mechanical damage by vehicles etc 

(e.g. Repair shop) 

C Access by authorised personnel only - All activities related (e.g. Laboratory) 

D Limited access area, trained personnel only, except under close supervision. 

All equipment and services subject to design control .. 
(e.g. remote sub-station) 

E As D but smaller scale with closely related activities (e.g. Flight 

deck of aircraft, power station control room) 

A.S 



A.l.S Environmental Testing 

This defence describes the intention of the designer that the system should be able to stand a 

number of environmental effects such as shock, vibration, temperature, humidity, etc. Good 

intentions are not sufficient in practice, environmental testing is capable of revealing celtain 

dependent failure susceptibilities. The variety, type and range of testing at the manufacturing, 

construction, installation and commission stages should be considered. 

A No environmental tests other than the standard ones conducted by 

the manufacturers 

B Environmental tests on example unit specific to usage and . 
operator defined 

C Detailed tests on example unit, unit tested to ensure that it will 

withstand all that is required to i.e. shock, vibration, temperature, 

humidity, electrical interference and water spray 

D Commissioning tests carried out. Run through of checks in a reasonable 

period of time i.e. example unit tested to ensure that it will withstand all 

excess fault conditions that they may be required to 

E Example unit run in parallel e.g. operate the unit for a year before it is 

brought on line 

A.2 Root cause variables 

Environment Represents causes related to harsh environment that is not within the component 

design specifications. 

Design This category encompasses actions and decisions taken during design, manufacture, or 

installation of components, both before and after the plant is operational. Included in the 

design process are the equipment and system specification, material specification, and 

initial construction that would not be considered a maintenance function. This category 

also includes design modifications. 

Human This category represents causes related to errors of omission or commission on the 

part of the plant staff or contractor staff. An example is failure to follow the correct 

procedure. -This category includes accidental actions and failure to follow procedures 

A.6 



for construction, modification, operation, maintenance, calibration and testing. This 

category also includes deficient training. 

Internal to Component This category deals with malfunctioning of parts internal to the com­

ponent. Internal causes result from phenomena such as normal wear or other intrin­

sic failure mechanisms. It includes the influence of the environment on the compo­

nent. Specific mechanisms include erosion/corrosion, internal contamination, fatigue, 

and wearout/end of life. 

Procedures This category refers to ambiguity, incompleteness or error in procedures for op-
, 

eration and maintenance of equipment. This includes inadequacy in construction, mod-

ification, administrative, operational, maintenance, test and calibration procedures. This 

can also include the administrative control of procedures, such as change control. 

Maintenance This category includes all maintenance causes not captured by Human or Pro­

cedures. (e.g. lubrication oil contamination due to work practices, incorrect fuel oil 

sampling schedule). 

A.3 Coupling factor variables 

Hardware Refers to factors that propagate a failure mechanism among several components 

due to identical physical characteristics. There are two subcategories of hardware cou­

pling factors: (1) Hardware design: components have the same physical appearance, 

components share the same design and internal parts, components share the same main­

tenance/calibration/testing characteristics; (2) Hardware quality: components share the 

same manufacturing staff, quality control procedure, manufacturing method, material; 

components share the same construction/installation staff, construction/installation pro­

cedure, construction/installation schedule. 

Operational Refers to factors that propagate a failure mechanism among several components 

due to identical operational characteristics. Such characteristics may be same oper­

ational staff, same operating procedures, same maintenance/test/calibration schedule, 

same maintenance/test/calibrations procedures. 

A.7 



Environmental Refers to factors that propagate a failure mechanism among several compo­

nents due to identical external or internal environmental characteristics. It includes sit­

uations where components are exposed to similar environmental stresses because of the 

same location (external environment) or situations where components share the same 

internal medium of operation (internal environment). 
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AppendixB 

Causality relationships in t~e ID 

network 

B.I Influences between model elements 

Following, the influences between the system defences and the root cause / coupling factor 

variables, which are portrayed in the ID network, are described. 

Influences to Root Causes 

Environmental Testing -t Design Root Cause During the environmental testing process, is­

sues that could lead to failures related to design aspects (equipment and system specifi­

cations) of the system might be detected. Appropriate feedback given to the designers of 

the component could be used to make changes in the design of the system, and impede 

these failures from occuning; consequently, the variety, type and range of testing affects 

the rate of failures due to the Design root cause. 

Analysis -t Design Root Cause A good level of analysis performed on the design of the sys­

tem increases the quality of the decisions taken during the design process and review, 

and, thus,.~he rate of failures attributed to the Design root cause. 

Diversity -t Design Root Cause Diversity is a design characteristic of the system (redundant 

group) and influences the occurrence of (total) design failures. 
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Separation -> Design Root Cause Separation is a design characteristic of the system (redun­

dant group) and its use or absence may lead to design failures. 

Environmental Control -+ Human Root Cause Applying 'strict control and limited access 

to the site of the system decreases the likelihood for untrained or unsupervised staff to 

access the system and minimises the potential for accidental actions or failures due to 

human error. 

Safety Culture -> Human Root Cause The quality of training provided to the personnel is 

strongly related to the amount of errors performed on the part.of the staff (operating and 

. contractor) and, thus, to the rate of failures attributed to the Human root cause. 

Operator Interaction -+ Human Root Cause During the panel discussions, it was assumed 

that having no procedures is a procedure itself. Thus, one making a mistake because 

there are no procedures to follow falls under the Procedures root cause. Having assumed 

this, some members of the panel suggested to remove the influence from Operator Inter­

action to Human because the arrow to Procedures already captures the errors made due 

to lack of procedures. However, the defence of Operator Interaction not only describes 

the degree to which procedures exist, but also the degree of man-machine interaction. 

It is argued that when man-machine interaction is minimised (by automated functions), 

then it is less likely the operating staff to follow procedures erroneously, which is de­

scribed under the Human root cause. Therefore, it is argued that Operator Interaction 

does infl uence the Human root cause. 

Understanding -> Human Root Cause Aspects such as the amount of existing experience, 

design features and the complexity of the system are related to the frequency with which 

human errors occur. On the one hand, existing experience gives insights and knowledge 

on how to operate the system, thus reduces the potential for human errors, especially in 

emergency cases. On the other hand, the simpler the design of the system is or more 

experience exists, the less likely is for human errors to occur. Overall, the level of 

Understanding affects the rate of failures due to the human element. 

Environmental Testing -> Internal to Component Root Cause The intention of environmen­

tal testing is to increase the durability of the units against of environmental shocks. Some 
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of these shocks result in mechanisms that lead to internal failures (e.g. corrosion mech­

anisms). Therefore, the type and range of environmental testing influences the rate of 

internal failures. 

Analysis ~ Internal to Component Root Cause During the analysis stage, particular design 

features that can lead to failures may be identified, and thus removed. A proportion of the 

related impeded failures falls under the category of the D~sign root cause (influence of 

the Analysis subfactor on the Design root cause), however, a proportion of these failures 

are related to internal failures. 

Understanding ~ Internal to Component Root Cause Existing experience and design char­

acteristics of the system provides insight into internal failure issues. A good level of 

Understanding (experience compensating for system complexity) provides knowledge 

on how to protect against Internal to component failures. 

Safety Culture ~ Maintenance Root Cause A good level of Safety Culture (adequate train­

ing of the staff and quality of safety culture) reduces the likelihood of operating and 

maintenance staff disturbing the control and instrumentation of the system during activ­

ities leading to maintenance failures. 

Operator Interaction ~ Procedures Root Cause The subfactor of Operator Interaction de­

scribes the condition of procedures for the system. The quality and amount of detail in 

written procedures determines the degree of interpretation and decision by the staff, and 

therefore affects the rate of failures occurring due to ambiguity or misinterpretation. 

Analysis ~ Procedures Root Cause The aspect of analysis on the design of the system is as­

sociated with the correctness and adequacy of the written procedures. The more analysis 

has been performed, the more probable it is for the procedures to be honed. 

Understanding ~ Procedures Root Cause The degree of Understanding influences the qual­

ity of procedures. Firstly, the simpler the system is, the more likely the procedures are 

to be correct. Secondly, the more experience with the system exists, the more likely the 

procedures are to be honed. 

Environmental Control ~ External Environment Root Cause The level of control exercised 

on the environment in which the system is installed is related to the kind of shocks that 
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occur to the system: if the system is isolated, then the shocks are more likely to fall 

within the design specifications of the system. However, When other major processes, 

unrelated to the system, are present in the same location, there is increased likelihood 

that shocks initiated by the other processes will be posed on the system. These shocks 

are not foreseen by the system design specifications. 

Analysis -+ External Environment Root Cause The higher the level of analysis, the more , 

prepared the system is to sustain environmental shocks. 

Influences to Coupling Factors 

Analysis -+ Environmental Coupling Factor Sufficient analysis during the design phase and 

awareness on the part of the designers of dependent failure issues would lead to the 

detection and removal of problematic external or internal environmental characteristics 

of the design of the system that create coupling effects. Therefore, a good level of 

analysis decreases the tendency of a failure event to be coupled due to environmental 

issues. 

Separation -+ Environmental Coupling Factor In principle, separation is a defence targeted 

against removing the common environmental characteristics from the system, which 

propagate a failure mechanism amongst several components. 

Analysis -+ Hardware Co~pllng Factor In a similar fashion as earlier, a high level of anal­

ysis during the design stage and awareness of dependent failure issues, allows for the 

detection and removal of similar physical characteristics that increase the tendency of a 

failure to be propagated amongst components. 

Diversity -+ Hardware Coupling Factor Functional diversity is oriented towards reducing 

the effect of coupling (due to hardware similarities) amongst failures. 

Operator Interaction -+ Operational Coupling Factor When the man-machine interaction 

is minimised (by automated functions), then the likelihood of a failure being propagated 

amongst several components due to the same operational characteristics decreases. Such 

examples include errors on the part of the operating staff that, when is the same for all 

units, are shared amongst the units. Moreover, well-written procedures would cater for 

procedural mistakes being propagated amongst several components. 
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Appendix C 

Probability encoding results, 

C.I Root cause part 

C.I.I Design Root Cause 

The rate of system failures due to the Design root cause is denoted by Tt. The defences that are 

targeted against the occurrence of this type of failures are Environmental Testing (LD. Anal­

ysis (D3 ). Separation (Ds). and Diversity (Db). The identified functional interactions existing 

amongst these defences are: 

• Separation (Ds) is threshold functionally dependent on Env. Testing (~) and Analysis 

• Diversity (D6 ) is threshold functionally dependent on Env. Testing (~) and Analysis 

Consistently with the GS model. the Design rate 'I at configuration:! = (XI,X3,XS,X6) ( X" E 

{1, ... ,5} for k = 1,3,5,6) is given by 

(C.l) 

Determination of subjective distributions 

Performing uncertainty analysis on Model (C.I) requires the determination of the prior distribu­

tions on the model parameters. Let en denote the elicitation variable associated with Question n 

of the Design part of the questionnaire. The relationships between the elicitation and the target 
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variables are: 

e1 = T1,(3,3,3,3) 

e3 = ~3 

eS = ~S,3~S,3 
e7 = <l>S(XI ,X3) XI E X3 ,X3 E XI 

e9 = <1>6,3 <1>6,3 

e11 = <1>6 (Xl ,X3) Xl E X3 ,X3 E Xl 

where for i = 5,6 

e2 =<1>1 

e4 = ~S,l ~S,I 

e6 = <1>5 (XI ,X3) Xl E XI ,X3 E X3 

eS = <1>6,1<1>6,1, 

elO = <l>6(X1,X3) Xl E X1,X3 E X3 

~i(X)=~i,e whenxEXe for8 =I,2,3 

Base rate The rate variable T1,(3,3,3,3) is gamma distributed. Thus, the prior distribution 

of e1 is approximated by a gamma distribution, viz. 

TI,(3,3,3,3) rv G(a,b) 

Proportion random variables Elicitation variables e2 and e3 coincide with propor­

tion variables <1>1 and <1>3. Let en rv A (Jln,cr~) for n = 2,3 be the fitted distributions. Then 

Piecewise proportion functions The elicitation variables en for n = 4, ... ,11 are log­

normally distributed, as products of independent lognormally distributed random variables. Let 

en rv A (Jln,cr~) be the fitted distributions. It is 

~S,3 = (es)! so ~S,3 rvA (~JlS'~cr~) 

and, based on the symmehy assumption, one gets 
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Similarly, 
I 

4>6,1 = (esp so 

so 

and, based on the symmetry assumption, one gets 

Elicitation variables e6, e7 and elO, ell are used as checks for the symmetry assumption 

Within this example, the condition is exactly met for c!t(Xl,X3). 

Results The parameters and the first two moments of the expert's distributions are given 

in Table c.l. 

Table C.l: Parameters of subjective distributions related to the Design root cause rate 

r ~I ~3 

a 1.97 ]J -O.S150 -0.2240 

b 4.06E+06 cr 0.19% 0.0757 

Elr] 4.86E-07 E[~l O.6J 0.80 
Vm'[r] . 1.1981~-1:; Var[~l 0.01416 CUlO369 

~5 ~6 

8 I 2 3 8 I 2 3 

]J ·0.112 ·0.083 -0.053 ]J -0.179 -O.IIG -0.053 
cr 00:;8 0.025 0.034 cr 0.043 0.023 0.016 

E[~l O.S9 0.92 0.95 E[~l 0.84 0.89 0.95 
Var[~l O.OOll O.OOOS 0.0010 Var[~l 0.00.13 0.0004 0.0002 

Extrapolation .~f Uncertainty 

Using Model (C.l), the uncertainty distribution on Tl can be determined at any configuration 

(Xl,X3,X5,X6). Information on the mean and st. deviation of Tl for particular defence configu­

ration vectors are given in Figures C.l and C.2. 
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Figure C.l: Expected value of Design Root Cause 
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Figure C.2: Standard deviation of Design Root 
Cause rate at {larticular configuration 
vectors 

Threshold dependencies The defence of Separation is threshold dependent on Env. 

Testing and Analysis. This fact implies that the impact of Separation differentiates for classes 

of configuration vectors of the system across Env. Testing and Analysis. It is 

Similarly, The defence of Diversity is threshold dependent on Env. Testing and Analysis. 

This fact implies that the impact of Diversity depends on classes of configuration vectors of the 

system across Env. Testing and Analysis. It is 

Figure C.3 illustrates the proportion of decrease of the expected value of 1j by modifying 

Separation, for the different levels of Analysis and Env. Testing. Similarly, Figure C.4 illus­

trates the proportion of decrease of the expected value of r1 by modifying Diversity, for the 

different levels of Analysis and Env. Testing. It may be seen that for both defences, the change 

induced in E[rJ] is bigger (lower proportion) for high levels of Analysis and Env. Testing, and 

smaller (low proportion) for low levels of Analysis and Env. Testing. 

The proportion by which r1 changes, when the level of Env. Testing is modified by one, is 
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and, the proportion by which rl changes, when the level of Analysis is modified by one, is 

Due to the threshold dependency of Separation and Diversity on Env. Testing and Analysis, 

the impact of the threshold counterparts is independent of the level of Separation and Diversity 

for moderate modifications. This effect is illustrated in Figure C.S, which includes plots of the 

proportion of decrease induced in E[rd by modifying the level of Env. Testing by one, with 

reference to the levels of Separation and Diversity. It may be seen that for drastic changes and 

for high levels of Separation and Diversity, this proportion takes higher values, implying that 

the impact of Env. Testing weakens. 
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Figure CS: Proportion of decrease in E[rJ] by modifying Env. Testing 

Figure C.6 illustrates the proportion of decrease induced in E[rIJ by modifying the level of 

Analysis by one, with reference to the levels of Separation and Diversity. Similar conclusions 

may be drawn as previously. 
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Figure C.6: Proportion of decrease in E[rd by modifying Analysis 

C.l.2 Human Root Cause 

The rate of system failures due to the Human root cause is denoted by l'i . The defences that are 

targeted against the occurrence of this type of failures are Environmental Control (4), Safety 

Culture (D4), Understanding (D,), and, Operator Interaction (Vs). The functional interactions 

existing in the defence domain are: 

• Env. Control (Dz) is threshold functionally dependent on Safety Culture (D4) and Un­

derstanding (D,) 

• Operator Interaction (Vs) is threshold functionally dependent on Env. Control (4) and 

Understanding (D,) 

• Safety Culture (D4) and Understanding (D,) are functionally dependent 

• Safety Culture (D4) and Operator Interaction (Vs) are functionally dependent 

Consistently with the GS model, the Human rate at configuration~ = (.A\i. ,X4 ,X7 , XS), where 

Xk E {I , ... ,5} and k = 2,4,7 ,8, is given by 

Determination of subjective distributions 

Performing uncertainty analysis on Model (C.2) requires the determination of the prior distribu­

tions on the model parameters. Let en denote the elicitation variable associated with Question 

n of the Human part of the questionnaire. The relationships between the target and elicitation 
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variables are: 

el = '2,(3,3,3,3) 

e3 = <1>7 

eS = <1>4<1>8,2<1>8,2<1>48 

e7 = <1>2,3<1>2,3 

elO = <1>8,1 <1>8,1 
, 

el2 = <1>8 (X2,X7 ), X2 E X I ,X7 E X3 el3 = <1>8 (X2,X7 ) X2 E X3,X7 E XI 

where for i = 2,8 

Mx) = <l>i,e when x E Xe for e = 1,2,3 

Base rate The rate variable '2,(3,3,3,3) is gamma distributed. Thus, the prior distribution 

of el is approximated by a gamma distribution, viz. 

'2,(3,3,3,3) rv G(a, b) 

Proportion random variables Elicitation variables e2 and e3 coincide with propor­

tion variables <1>4 and <1>7. Let ell rv A (]lit, a~) for n = 2,3 be the fitted distributions. Then 

Piecewise proportion functions The elicitation variables ell for n = 6, ... ,13 are log­

normally distributed, as products of independent lognormally distributed random variables. Let 

ell rv A (]lll,a~) be the fitted distributions. It is 
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and, based on the symmetry assumption, one gets 

Similarly, 

and, based on the symmetry assumption, one gets 

Elicitation variables eg, e9 and e12, e13 are used as checks. Within this example, the sub­

jective distributions imply the expected value of <jQ(X4,X7) when X4,X7 E Xl is higher than the 

expected value of ~ (H, L) when X4 E X3 and X7 E Xl. This violates the fundamental assump­

tions of the model, thus it is directly assumed that 

Cross-terms The elicitation variables en for n = 4,5 are lognormally distributed, as 

products of independent lognormally distributed random variables. Let ~J rv A (Jln'~), n = 

4,5, be the fitted distributions. By taking logarithms, we have the subsystem of equations 

Ine4 = In<p4 + In<p7 + In<p47 

Ines = In<p4 + 2In<l>s,2 + In<p48 

Let z = -lne2 -lne3, so that 

(C.3) 

We have z rv N (Jl:,oD, where Jl: = -Jl2 - Jl3 and ~ = o~ +o~ +2cov( -lne2, -lne3). But it 

is 

-
which leads to ~ = o~ + o~. Now, from Relationship (C.3) follows that In<jl47 is normally 
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distributed with mean 11147 = -]12 -]13 + 14 and variance ~7 = a~ + a~ + 2cov(z,lne4). But 

and finalIy 

cov(z, In e4) = cov( -In <P4 -In<P7, In <P4 + In <P7 + In <P47) 

= -var[ln<p4]- var[ln<P7] = -~ - a~ 

Let w = Ines -lne2, so that 

In<P48 = w - 2In<pS,2 

We have w rv N (]1w,a~) where J1w =]1s -]12 and 0; = a~ + a~ + 2cov(lnes, -lne2) But 

(CA) 

so 0; = ag - a~. Now, from Relationship (CA) follows that ln~ is normally distributed with 

mean m48 = J1w - ! (]110 + ]111) and variance 

S~S = ~ + ~(aTo + ~1) + 2cov(w, -2In<Ps,2) 

2 2 1 22 
= OS - a2 + 4(alO + DJt) - 2cov(2ln <Ps,2 + In<p4s,2In <Ps,2) 

1 1 
= <?s - ~+ 4(aTo + art) - 2(aro +aTt) 

1 
= <?s - ~ - 4(aro+art) 

and finalIy 

Condition In agreement with the fundamental assumption that the defence of the system 

does not become worse as a result of increasing the levels of defences, it needs to hold: 

(C.S) 

(C.6) 
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Adjustments Let X = <I>7<p~r3 ,for given X4 E {I, ... , 5}. X is lognormally distributed, as 

a product of independent lognormally distributed variables. The distribution of X is determined 

analytically based on the distributions of <1>7, <P47. Let X rv 1x(x I <P7,<P47), and let vPi be the 

Pi· 100% percentile of X, where PI = 0.05, P2 = 0.5 and P3 = 0.95, viz. 

Based on the Expert's distributions on <1>7, <P47 one finds that VO.95 > I for X4 = 4,5. This violates 

Conditions (C.5), and thereby appropriate adjustments need to be made. 

In order to overcome the aforementioned inconsistency, the prior on <P17" is tuned to 147 so 

that Conditions (C.5) are not violated. Let 147:= A(m47,s47) be the adjusted distribution. The 

tasks reduces to determining parameters ",7 and S47' according to the following minimisation 

problem: 

1 3 
... ~(F-l( I ) F*-l( I * *))2 mInimise - 4. 47 Pi m47,S47 - 47 Pi m47,s47 

3 1=1 

subject to 

Fil(VI' Im47,S47) < 1, forp=0.95 

for X4 = 4,5. 

Similarly, let Y = <I>s(X2,X7 )<p~r3 (X2,X7 E {I, ... , 5}) with distribution jy(y I <P8(X2,X7 )<1>48). 

Based on the Expert's distributions, one finds that \b.95 = Fi 1 (0.95) > 1 for X4 = 4,5, which 

violates Conditions (C.6). The problem is treated as a minimisation problem in a similar fashion 

as previously, and, the prior on cross-term </48 is tuned so that the conditions are met. 

The values of the objective functions in the two afore-described minimisation problems 

correspond to the minimum squared error (MSE) of the adjustments applied. For the re­

determination of 147 it is MSE = 0.0752 and for the re-determination of .148 it is MSE = 0.065. 

Results The parameters and the first two moments of the expert's distributions are given 

in Table C.2. 
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Table C.2: Parameters of sUbjective distributions related to the Human root cause rate 

<P4 <P7 
a 9.3455 p ·1.l96 -(122:1 

b 11':·t{)7 cr n.7.X6 0.072 

Ell'] 9.:l4E'·O'l 

~~1l1 
0.31 OWl 

Vu .. !:!'.] 1),34E .. 014 8.461.'·1)3 lJ01'Al3 

p~ 4>s 
8 1 2 :; 1 2 3 

P -0.11 -008 -005 .() 18 ~().1':2 -0. Cl:) 

cr (1.(14 (j,I!3 003 () 05 I) 03 o ():~ 

E[tl 0.89 092 095 084 () 89 095 
Var<\l] 0.<)011 n.OO')" (J'/)()JO () 0018 () ()OO6 () 0003 

Extrapolation of Uncertainty 

Using Model (e.2), the uncertainty distribution on ~ can be determined at any configuration 

(X2,X4,X7,X8). Information on the mean and st. deviation of ~ for particular defence configu­

ration vectors are given in Figures C.7 and e.S. 

1'I.0H·00 ----------------~-----.----
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Figure C.7: Expected value of Human Root 
Cause rate at particular configuration 
vectors 

r.Q~·(;$ -----------------------

1.0[-OG 

t).(II~·I(I(I }--,--;-:-:--,----::-:c::C:=:;:--O"""'--r-:-:.....,....,.-""",,7"O 
~c;,c.q 10.1",,\)1); (f..fuft'.) 

a,M!:.(l7 :}o.47r:'·n" ·U.4f.·06 

Figure C.8: Standard deviation of Human Root 
Cause rate at particular configuration 
vectors 

Functional dependence of Safety Culture and Understanding The defences of 

Safety Culture (D4) and Understanding (D?) are functionally dependent, which implies that the 

influence of Safety Culture depends on the level of Understanding, and vice versa. According 

to model e.2, the proportion by which '2 changes by modifying the level of Safety Culture by 
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Fi gure C.lO: Standard deviation of Human root 
cause at different levels of Safety Culture, 
with reference to the level of Understand­
ing, while the other defences are medium. 

and the proportion by which rz changes, by modifying the level of Understanding by one is 

The common term <1>47 implies a symmetric dependence between Safety Culture and Under­

standing. The two defences exhibit a compensating effect (<147 > I), implying that enhancing 

the one defence becomes more effective when the level of the other is low;. Figures C.9 and 

C.I0 illustrate the changes in the mean and standard deviation of~. As the level of Under­

standing increases, the interaction between 4(X2X7XS) and X7 decelerates, thus the influence of 

Safety Culture on the Human root cause rate weakens. Similar conclusions may be drawn from 

Figures C.ll and C.12. 

Functional dependence of Safety Culture and Operator Interaction The de­

fences of Safety Culture (D4) and Operator Interaction (Vs) are functionally dependent, which 

implies that the influence of Safety Culture depends on the level of Operator Interaction, and 

vice versa. As seen previously, the proportion by which ~ changes by modifying the level of 
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Figure C.ll: Expected value of Human root 
cause at different levels of Understand­
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Figure C.12: Standard deviation of Human root 
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medium. 
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Figure C.14: Standard deviation of Human root 
cause at different levels of Safety Culture, 
with reference to the level of Op. Interac­
tion 

and the proportion by which 1'2 changes by modifying the level of Operator Interaction by one 

is 

The common term <1>48 implies a symmetric dependence between Safety Culture and Op. Inter­

action. The two defences exhibit a compensating effect (<148 > 1), implying that enhancing the 
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Figure C.l5: Mean of Human root cause at dif­
ferent levels of Op. Interaction, with ref­
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Figure C.l6: Standard deviation of Human root 
cause at different levels of Op. Interac­
tion, with referen~e to the level of Safety 
Culture 

defence of the one defence becomes more effective when the level of the other defence is low. 

As before, the effect is demonstrated in Figures C.13 and C.14, C.IS and C.16. 

Threshold dependence of Environmental Control on Safety Culture and Un­

derstanding The defence of Env. Control is threshold dependent on Safety Culture and 

Understanding. This fact implies that the influence of Env. Control depends on classes of 

configurations of the system across Safety Culture and Understanding. It is 

Thus, the proportion of decrease in '2 induced by changing the level of Env. Control by one is 

a stepwise function defined over Q2, where Q is t~e state-space of X4 (level of Env. Control), 

and X7 (level of Understanding). Figure C.17 is a plot of the proportion of decrease induced 

in Eh] by modifying the level of Env. Control by one, with reference to the levels of Safety 

Culture and Understanding. A higher level across Safety Culture and Understanding weakens 

the effect of improving Env. Control in the system (higher proportion of decrease). 

Due to the threshold dependency of Env. Control on Safety Culture and Understanding, the 

impact of the threshold counterparts is independent of the level of Env. Control for moderate 

modifications. This effect is illustrated in Figure C.19, which includes plots of the proportion 

of.decrease induced in Eh] by modifying the level of Safety Culture and Understanding by 

one, with reference to the level of Env. Control. It may be seen that for drastic changes and for 
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Figure C17: Proportion of decrease in Eh] by 
modifying Env. Control, for high (H) and 
low (L) levels of S. Culture and Under­
standing 

O •• +-~---.---~----.-
o .• +-~---~-------_l 
o., +-~----- -~~-----l 

0.6 [ ] : =~ 0.' +---------------1 
0.' +---------------1 
0.1 +---------------1 

A·B B·C c·n n·E 
Level ofOp.l.D.ttn.ction 

Figure C18: Proportion of decrease in Eh] by 
modifying Operator Interaction, for high 
(H) and low (L) levels of Env. Control 
and Understanding 

a high level of Env. Control, this proportion takes higher values, implying that the impact of 

Safety Culture and Understanding weakens. 
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Figure C19: Proportion of decrease in Eh] by modifying Safety Culture and Understanding, for the 
different levels of Env. Control 

Threshold dependency of Operator Interaction on Env. Control and Under­

standing The defence of Op. Interaction is threshold dependent on Env. Control and Under­

standing. This fact implies that the influence of Qp. Interaction depends on different classes of 

configurations of the system across Env. Control and Understanding. It is 

Figure C.18 is a plot of the proportion of decrease induced in E[~J by modifying the level 

of Qp. Interaction by one, with reference to the levels of Env. Control and Understanding. 

A higher level across Env. Control and Understanding weakens the effect of improving Qp. 

Interaction in the system (higher proportion of decrease). 
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Due to the threshold dependency of Op. Interaction on Env. Control and Understanding, the 

impact of the threshold counterparts is independent of the level of Op. Interaction for moderate 

modifications. This effect is illustrated in Figure C.20, which includes plots of the proportion 

of decrease induced in Eh] by modifying the level of Env. Control and Understanding by one, 

with reference to the level of Op. Interaction. It may be seen that for drastic changes and for a 

high level of Op. Interaction, this proportion takes higher values, implying that the impact of 

Safety Culture and Understanding weakens. 
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Figure C.20: Proportion of decrease in Eh] by modifying Safety Culture and Understanding, for the 
different levels of Env. Control 

C.I.3 Internal to Component Root Cause 

The rate of system failures due to the Internal to Component root cause is denoted with ~ . 

The defences that are targeted against the occurrence of this type of failures are Environmental 

Testing (DJ), Analysis (D3), and, Understanding (0.,). The functional interactions existing in 

the defence domain are: 

• Analysis (D3) and Understanding (D,) are functionally dependent 

• Understanding (D,) is threshold functionally dependent on Env. Testing (Dt) 

Consistently with the GS model, the Internal to Component root cause rate 1'3 at configura­

tion (XI ,X3 ,X7) is given by 

(C.7) 
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Determination of subjective distributions 

Performing uncertainty analysis on Model (C.7) requires the determination of the prior distribu­

tions on the model parameters. Let ell denote the elicitation variable associated with Question 

n of the Internal to Component part of the questionnaire, n = 1, ... ,6. The elicitation variables 

are 

where 

el = '3,(3,3,3) 

e3 = <P3 

es = <1>7,1 

e2 = <PI 

e4 = <I>3<1>37<P7,2 

e6 = <P7,3 ' 

Base rate The rate variable '3,(3,3,3) is gamma distributed. Thus, the prior distribution 

of el is approximated by a gamma distribution, and 

'3,(3,3,3) '" G(a, b) 

Proportion random variables Elicitation variables f2 and e3 coincide with propor­

tion variables <PI and <P3. Let ell '" A (llll' a~) for n = 2,3 be the fitted distributions. Then 

Piecewise proportion functions Elicitation variables ell for n = 5,6 coincide with 

proportion variables <1>7,1 and <1>7,3 respectively. Let ell rv A (llll' a~) for n = 5,6 be the fitted 

distributions. It is 

Due to the symmetric form of <I>7(XI), it is 
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Cross-term Variable e4 is 10gnormalIy distributed as a product of independent lognor­

malIy distributed variables. Let e4 rv A (14, o~). After taking the logarithms, we have 

Let w = Ine4 -lne3 and z = Ines + Ine6, so that 

I 
In<l>37 =w--z 

2 
(C.8) 

where w rv N (]lw, o~) and z rv N (]I;., o~). Variable transformation techniques yield JIw = 14 -

]13 and ~ = o~ + 05 - 2cov(ln e4, In e3). But 

cov( lne4, Ine3) = cov(ln<l>3, In <1>3 + In<P37 + In <1>7 (M)) = 05 

therefore w rv N (14 - ]13, o~ - oD. Similarly, Jlz = ]15 + Jl6 and o~ = o~ + o~. 
From Relationship (C.8) we have Incp.37 rv N (m37,s37) where m37 = 14 -]13 - ! (]IS +]16) 

and S57 = ~ + ~~ - cov(z, w). But 

1 1 1 1 
cov(z, w) = cov(ln <1>7,1 + <1>7,3, In <1>37 + 2" In <1>7,1 + 2"<1>7,3) = 2"03 + 2"~ 

giving 

Condition In agreement with the fundam~ntal assumption that the defence of the system 

does not become worse as a result of increasing the levels of defences, it needs to hold: 

(C.9) 

Adjustments Let X = <P3<P~r3, for given X7 E {1, ... ,S} and Y = <I>7(Xl)<p~r3 < 1, for 

given Xl ,X3 E {I, ... ,S}. R.v.'s X and Y are 10gnormalIy distributed, as products of independent 

lognormally distributed variables. The distributions on X and Y are determined analytically 

based on the distributions on cI>3,<P7(xd,<P37 are known, Le., X rv fx(x I <P3,<P37) and Y rv Jy(y I 
<P7(Xl ),<P37). Let vpi,x be the Pi' 100% percentile of X and Vp"y be the Pi' 100% percentile of Y, 
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where PI = 0.05, P2 = 0.5 and P3 = 0.95, viz. 

and 

Based on the Expert's assessments, one finds that VPi,X > I and vPi,Y > 1 for X3 ,X7 = 4, 5 and 

i = 2,3. Thus, Condi tions (c. 9) are violated, and appropriate adjustments need to be made. 

In order to overcome the aforementioned inconsistency, the prior on ~7, denoted by h7, 

is tuned to 147* so that the conditions are not violated. Let 137 := A(m3;' S37) and h7* := 

A(m~h, si?). The task reduces to determining parameters ~7 and s37' according to the following 

minimisation problem: 

. " 1 ~ (F-I (I ) F*-I ( I * * ))2 minimise "34. 37 Pi m37,s37 - 37 Pi m37,s37 
1=1 

subject to 

Fi l 
(Vp,x I mbs:h) < 1, for P = 0.95,x7 = 4,5 

Fy- I (vp,y I m37,s37) < 1, for P = 0.95,X3 = 4,5 

The value of the objective function corresponds to the minimum squared error (MSE) of the 

adjustments applied. For the re-determination of 137 it is MSE = 0.05. 

Results The parameters and the first two moments of the expert's distributions are given 

in Table C.3. 

Extrapolation of Uncertainty 

Using Model (C.7), the uncertainty distribution on J:3 can be determined at any configuration 

(XI ,X3 ,X7). Information on the mean and st. deviation of J:3 for particular defence configuration 

vectors are given in Figures C.21 and C.22. 
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Table C.3: Parameters of subjective distributions related to the Internal root cause 
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Figure C.21: Expected value of Internal 
to Component Root Cause rate 
at particular configuration vec­
tors 
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Figure C.22: Standard deviation of In­
ternal to Component Root Cause 
rate at particular configuration 
vectors 

Functional dependence between Analysis and Understanding The proportion 

by which r3 changes by modifying the level of Analysis by one is 

and, the proportion by which t:i changes, by modifying the level of Understanding by one is 

The common term <1>37 entails a symmetric dependency between Analysis and Understanding, 

which implies that the influence of Analysis depends on the level of Understanding, and vice 

versa. 
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Figure C.23: Expected value of Inter­
nal to Component root cause at 
different levels of Analysis, with 
reference to the level of Under­
standing 
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Figure C.25: Expected value of Inter­
nal to Component root cause at 
different levels of Understand­
ing, with reference to the level 
of Analysis 
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Figure C.26: Standard deviation of In­
ternal to Component root cause 
at different levels of Under­
standing, with reference to the 
level of Analysis 

The two defences exhibit a compensating effect «Rn> 1), implying that enhancing the 

defence of one becomes more effective when the level of the other is low. Figures C.23 and C.24 

illustrate the changes in the mean and standard deviation of ~ when modifying Analysis with 

reference to the different levels of Understanding, whilst keeping the level of Env. Testing fixed 

at the medium level. As the level of Understanding increases, the interaction between! (X7XS) 

and X7 decelerates, thus the influence of Analysis on the Internal to Component root cause rate 

weakens. Similar conclusions may be drawn when modifying Understanding with reference 

to the different levels of Analysis, whilst keeping the rest defences fixed at the medium level 

(Figures C.25 and C.26). 
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Threshold dependence of Understanding on Env. Testing The proportion of 

decrease of r3 induced by changing the level of Understanding by one level is 

which is a stepwise function defined over Q, where Q is the state-space of -Xi (level of Env. 

Testing). This implies that the influence of Understanding depends on classes of configuration 

of the system across Env. Testing. Figure C.27 is a plot of the proportion of decrease induced 

in Eh] by modifying the level of Understanding by one, with reference to the level of Env. 

Testing. A higher level across Env. Testing weakens the effect of improving Env. Control in 

the system (higher proportion of decrease). 

Due to the threshold dependency of Understanding on Env. Control, the impact of the 

threshold counterparts is independent of the level of Env. Control for moderate modifications 

This effect is illustrated in Figure C.28, which includes plots of the proportion of decrease 

induced in Eh] by modifying the level of Env. Testing by one, with reference to the level of 

Understanding. It may be seen that for drastic changes and for a high level of Understanding, 

this proportion takes higher values, implying that the impact of Env. Testing weakens. 
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Figure C27: Pcoportion of decrease in Eh] by 
modifying Understanding 
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C.1.4 Maintenance Root Cause 

The rate of system failures due to the Maintenance root cause is denoted by~. The defence that 

is targeted against the occurrence of this type of failures is Safety Culture (.Q.). Consistently 

with the GS model, the Maintenance root cause rate 1) at configuration (XI ,X3 ,X7) is given by 

X4 = 1, ... ,5 (C.lO) 

Determination of subjective distributions 
, 

Performing uncertainty analysis on Model (C.l 0) requires the determination of the prior distri-

butions on the model parameters. Let en denote the elicitation variable associated with Question 

n of the Internal to Component part of the questionnaire, n = 1,2. The elicitation variables are 

Base rate The rate variable r4,3 is gamma distributed. Thus, the prior distribution of ~ 

is approximated by a gamma distribution, and 

r4,3 '"" G(a,b) 

Proportion random variables Elicitation variable e2 coincides with the proportion 

variable <\>4. Thus the prior distribution of ez is approximated by a lognormal distribution, and 

Results The parameters and the first two moments of the expert's distributions are given 

in Table C.4. 

Table C.4: Parameters of subjective distributions related to the Maintenance root cause 

Rate Proportion 
r <\>4 

a 9.35 Jl -1.6 
b 1.5 ·lO-7 a 0.4647 

E[r] 6.22·10' E[<\>4] 0.225 
Var[r] 4.14.10 14 Var[<\>4] 0.0122 
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Extrapolation of Uncertainty 

Using Model (C.lD), the uncertainty distribution on '4 can be determined at any configuration 

(X4), for X4 = 1, ... ,5. Information on the mean and st. deviation of '4 for particular defence 

configuration vectors are given in Figures C.29 and C.30. 
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Figure C.29: Expected value of Maintenance 
Root Cause rate at particular configura­
tion vectors 
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Figure C.30: Standard deviation of Maintenance 
Root Cause rate at particular configura­
tion vectors 

The rate of system failures due to the Procedures root cause is denoted by 1$. The defences that 

are targeted against the occurrence of this type of failures are Analysis (.l!), Understanding 

(D7), and, Operator Interaction (Ds). The functional interactions existing in the defence domain 

are: 

• Analysis (D3 ) is functionally dependent on Understanding ('D?) 

• Op. Interaction (Vs) is threshold functionally dependent on Analysis (D.3) and Under­

standing (~) 

Consistently with the GS model, the Procedures root cause rate 15 at configuration (Xl ,X3,X7) 

is given by 

cc. 11) 

wherex3,x7,x8 E {1, ... ,5}. 
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Detennination of subjective distributions 

Performing uncertainty analysis on Model (C.II) requires the determination of the prior distri­

butions on the model parameters. Let ell denote the elicitation variable associated with Question 

n of the Procedures part of the questionnaire (n = 1, ... ,8). The elicitation variables are 

e1 = '5,(3,3,3) 

e3 = <1>7 

e5 = <l>s,l <l>S.1 

e7 = <l>S(X3,X7), X3 E X3,X7 E Xl 

where <Ps(x) = !j>S,B when x E XB (8 = 1,2,3). 

e2 =!j>3 

e4 = <1>3 <1>37<1>7 

e6 = <l>S(X3,X7) X3 E X1,X7 E X3 

es = <l>S,3<1>S,3 

Base rate The rate variable '5,(3,3,3) is gamma distributed. Thus, the prior distribution 

of e1 is approximated by a gamma distribution, viz . 

. '3,(3,3,3,3) rv G(a, b) 

Proportion random variables Elicitation variables e2 and e3 coincide with propor­

tion variables <!>J and <1>7. Let en rv A (JlII' cr~) for n = 2,3 be the fitted distributions. Then 

Piecewise proportion functions Elicitation variables ell for n = 5, ... , 8 are lognor­

mally distributed, as products of independent lognormally distributed random variables. Let 

en rv A (Jln, cr~) be the fitted distributions. It is 

<l>s,1 = (e5)! so <Ps,1 rv A (~Jl5' ~ifs) 

<l>S,3 = (e6)! so <Ps,3 rv A (~J16' ~~ ) 
and, based on the symmetry assumption, one gets 

<l>s,2 = (!j>S,l . !j>S,3)! so <Ps,2 ,...., A (~(Jl5 + 116), /6 (ifs +~)) 
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Cross-term Variable e4 is lognormally distributed as a product of independent lognor­

mally distributed variables. Let e4 rv A (/4, ol). After taking the logarithms, we have 

Let z = Ine2 + Ine3, so that 

(C.12) 

It is z rv N (Jlz, an with Jlz = Jl2 + Jl3 and az = a~ + a~. Note that 

From Relationship (C.12) we have In<!>J7 rv N(n137,S37) with m37 = /4 - Jl2 - Jl3 and S~7 = 

a?+a~+2cov(z,lne4). But 

giving 

cov(z,lne4) = cov(In<!>J + Incjry,lncJ>J + Incjry + IncJ>J7) 

= var[lncJ>JJ +var[lncjryJ = ifz+~ 

Elicitation variables e6, e7 are used as checks the symmetry assumption 

Within this example, the expert's assessments meet this condition. 

Condition In agreement with the fundamental assumption that the vulnerability of the 

system does not become worse as a result of enhancing defences, it needs to hold: 

(C.13) 

Adjustments Let X = cJ>J <j>~r3, for given X7 E {I, ... , 5}, and let Y = cjry<j>~r3, for given 

X3 E {I, ... ,5}. R.v.'s X and Y are lognormally distributed, as products of independent lognor­

maIIy distributed variables. The distributions on X and Y are determined analytically based on 
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the distributions of <\>3, <1>7, <jJ37, Le., X", /X(X I <jJ3,<jJ37) and Y '" Jy(y I <jJ7,<jJ37)' Let vpi,x be the 

Pi' 100% percentile of X and vPi,Y be the Pi' 100% percentile of Y, where PI = 0.05, P2 = 0.5 

and P3 = 0.95, viz. 

and 

. Based on the Expert's assessments, one finds that vpi,x > I for X7 = 5 and vPi,Y > I for . 
X3 = 5 and i = 3. Thus, Conditions (CI3) are violated, and appropriate adjustments need to be 

made. 

In order to overcome the aforementioned inconsistency, the prior on ~7 is tuned to .t47 so 

that Conditions (CI3) are not violated. Let};7:= A(m37,s;7) be the adjusted distribution. The 

task reduces to determining parameters n1i7 and s37' according to the following minimisation 

problem: 

subject to 

'" I~(F-J( I ) F*-I( 1* *))2 minImise 3' 4. 37 Pi m37,s37 - 37 Pi m37,s37 
1=1 

Fil(vp,x I m37,s37) < I, for P = 0.95,x7 = 5 

Fy-I(vp,y I m37,s37) < I, for P = 0.95,x3 = 5 

The value of the objective function corresponds to the minimum squared error (MSE) of the 

adjustments applied. For the re-determination of /37 it is MSE = 0.08. 

Results The parameters and the first two moments of the expert's distributions are given 

in Table CS. 

Extrapolation of Uncertainty 

Using Model (C.II), the uncertainty distribution on r:; can be determined at any configuration 

(X3,X7,XS), for Xi = 1, ... ,5. Information on the mean and st. deviation of r:; for particular 
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Table C.5: Parameters of subjective distributions related to the Procedures root cause rate 
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Figure C.31: Expected value of Procedures 
Root Cause rate at particular configura­
tion vectors 
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Figure C.32: Standard deviation of Procedures 
Root Cause rate at particular configura­
tion vectors 

defence configuration vectors are given in Figures C.31 and C.32. 

Functional dependence between Analysis and Understanding The proportion 

by which '5 changes by modifying the level of Analysis by one is 

and, the proportion by which '5 changes, by modifying the level of Understanding by one is 
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The common term <1>37 implies a symmetric dependency between Analysis and Understanding. 
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Figure C.33: Expected value of Internal to Com­
ponent root cause at different levels of 
Analysis, with reference to the level of 
Understanding 
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level of Analysis 

7..5()f.·;-IltJ 

UiuE-06 

1.0!lE·06 

~, OO(-: .. (!'i' 

O.OOE+OO 

Standard Deviation 

~~:j.~:::~:::::::::::::::::::::::::::~: ~ .. r~~~:\ ............. --................ :::: .. :;:~ 
"", \. -·.·-)C7~:4 

-.- _____ , _____ ~"', __ ~~ __ ~H __ ~ ________ ___ ~ .. _.. • •• 1:"" .(7,..S 

...',,, ;.......,......-. ., " 

". -~-::;.:~:·r:~~:::t=~;i::i;;,;~,~ .. ·· 
1 I 2 3 4 f) 

x3 

Figure C.34: Standard deviation of Internal to 
Component root cause at different levels 
of Analysis, with reference to the level of 
Understanding 
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Figure C.36: Standard deviation of Internal to 
Component root cause at different levels 
of Understanding, with reference to the 
level of Analysis 

The two defences exhibit a compensating effect «Rn> 1), implying that enhancing the 

defence of Analysis becomes more effective when the level of Understanding is low, and vice­

versa. Figures"C.33 and C.34 illustrate the changes in the mean and standard deviation of 

'5 when modifying Analysis with reference to the different levels of Understanding, whilst 

keeping the level of Op. Interaction fixed at the medium level. As the level of Understanding 

increases, the interaction between h (X7,xg) and X7 decelerates, thus the influence of Analysis 
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on the Procedures root cause rate weakens. Similar conclusions may be drawn when modifying 

Understanding with reference to the different levels of Analysis, whilst keeping Op. Interaction 

fixed at the medium level (Figures C.35 and C.36). 

Threshold dependence of Operator Interaction on Analysis and Understand­

ing The defence of Op. Interaction is threshold dependent on Analysis and Understanding. 

This fact implies that the influence of the former defence depends on the configuration of the 

system across the two latter defences. Note that 

Thus, the proportion of decrease in rs induced by changing the level of Op. Interaction by one is 

a stepwise function defined over 'l.3 x 07, where 0 3 is the state-space of ~ (level of Analysis), 

and 07 is the state-space of X:'J (level of Understanding). Figure C.37 is a plot of the proportion 

of decrease induced in E[rs] by modifying the level of Op. Interaction by one, with reference 

to the levels of Analysis and Understanding. A higher level across Analysis and Understanding 

weakens the effect of improving Op. Interaction in the system (higher proportion of decrease) . 
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Figure C.37: Proportion of decrease in E[rs] by modifying Op. Interaction, for the different levels of 
Analysis and Understanding 

Due to the threshold dependency of Op. Interaction on Analysis and Understanding, the 

impact of the threshold counterparts is independent of the level of Op. Interaction for moderate 

modifications. This effect is illustrated in Figure C.38, which includes plots of the proportion 
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of decrease induced in E[rs] by modifying the level of Analysis and Understanding by one, 

with reference to the level of Op. Interaction. It may be seen that for drastic changes and for a 

high level of Op. Interaction, this proportion takes higher values, implying that the impact of 

Analysis and Understanding weakens. 
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Figure C.38: Proportion of decrease in E[rs] by modifying Analysis and Understanding, for the 
different levels of Op. Interaction 

C.l.6 External Root Cause 

The rate of system failures due to the Maintenance root cause is denoted with 16. The defences 

that are targeted against the occurrence of this type of failures are Environmental Control (In 

and Analysis (D3). The two defences are functionally independent. Consistently with the GS 

model, the External Environment root cause rate r6 at vector configuration (XZ,X3) is given by 

(C. 14) 

wherexz,x3 = 1, ... ,5. 

Determination of subjective distributions 

Performing uncertainty analysis on Model (C.14) requires the determination of the prior distri­

butions on the model parameters. Let en denote the elicitation variable associated with Question 

n of the External Environment part of the questionnaire, n = 1,2,3. The elicitation variables 

are 
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Base rate The rate variable '6,(3,3) is gamma distributed. Thus, the prior distribution of 

el is approximated by a gamma distribution, and 

'6,(33) ,...., G(a, b) 

Proportion random variables Elicitation variables e2 and e3 coincide with the pro­

portion variables iJ>2 and <1>:3 respectively. Let en ,...., A (Jln, a~) f~r n = 2,3 be the fitted distribu­

tions. Then 

Results The parameters and the first two moments of the expert's distributions are given 

in Table C.6. 

Table C.6: Parameters of subjective distributions related to the External root cause rate 

r cjJ2 cjJ3 

a 1.15 ]I -0.2231 -0.6'139 
b 2,1E'{)6 a 0.1)716 0.2<)03 

.El r] 5,5[·07 E[cjJ] 0.8 0.5 
Var! r] 2,6E·01:l Var[<j>] o 0033l 0023S9 

Extrapolation of Uncertainty 

Using Model (C.14), the uncertainty distribution on 15 can be determined at any configuration 

vector. Information on the mean and st. deviation of '4 for particular defence configuration 

vectors are given in Figures C.39 and CAO. 
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Figure C.39: Expected value of External En­
vironment Root Cause rate at particular 
configuration vectors 

C.2 Coupling factor part 
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Elicitation of target variables 
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Figure C.40: Standard deviation of External En­
vironment Root Cause rate at particular 
configuration v'ectors 

The intensity of the Operational coupling conditions in the system is described by a vector of 

parameters 

where 

Pi! = P(CCF through the Operational cfl failure due to rc i) 

for i = 1, ... ,6. The Operational coupling factor.intensity is influenced by the defence of Oper­

ator Interaction (Dg). According to the GS model, the Operational coupling factor intensity n! 

at level Xs across the defence of Operator Interaction (~ E {I, 2, ... , 5}) is given by 

_ Xg-3 
Pi! ,(Xg) - 'Pi! Pi! ,(3) (C.15) 

Determination of subjective distributions 

Performing unCertainty analysis on Model (C.15) requires the determination of the prior dis­

tributions on the model parameters. Question I of Section Ci of the Questionnaire extracts 

percentile information on Pil,(3), and, Question 2 extracts information on 'Pi! (i = 1, ... ,6). We 
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have 

and 

Results The parameters and the first two moments of the expert's distributions are given 

in Table C.7. 

Table C.7: Parameters of subjective distributions related to the Operational coupling factor 

Bela Distributions 

Parameters Moments 
y 5 Expected Variance 

Design 4.66 861.63 0.005 6.16L·06 
[1l1nulIl 24.35 276.55 0.081 2.46[·04 

Internal \.IS 83.60 0.014 1.56[-04 
Maintenance 5.38 163.52 0.032 J.81E·04 
Procedures U5 83.66 0.014 1.56E-04 

Lognorlnal Distributiolls 

All causes 
m 

·0.5108 
s 

0.2465 
Expected Variance 

0.62 2.40E·O::! 

Figures C.41 and C.42 include information on the central moments of the coupling factor 

intensity Pil,(xs)' associated with the different root cause events and for different Op. Interaction 

levels Xs. 
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Figure C.41: Expected value of the Op­
erational coupling factor inten­
sity 
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C.2.2 Hardware Coupling Factor 

Elicitation of target variables 

The intensity of the Hardware coupling factor is described by a vector of parameters 

where 

PiZ = P(CCF through the Hardware cfl failure due to rc i) 

for i = 1, ... ,6. The Hardware coupling factor intensity is influenced by the defences of Analy­

sis (D3) and Diversity (D6), with Diversity being threshold functionally dependent on Analysis. 

According to the geometric scaling model, the Hardware coupling factor intensity J/2 at con­

figuration (X3,X6), where Xk is the level of defence Dk (Xk = 1,2, ... ,5 for k = 3,6) is given 

by 

(C.16) 

Determination of subjective distributions 

Performing uncertainty analysis on Model (C.16) requires the determination of the prior distri­

butions on the model parameters. Let en denote the elicitation variable associated with Question 

n of the Ri part of the questionnaire. The elicitation variables are 

el = PiZ,(3) eZ = (jJ3,iZ 

e3 = (jJ6,;z(X3) X3 E Xl 

Base intensity The intensity variable PiZ,(3) is beta distributed. Thus, the prior distribu­

tion on el is approximated by a beta distribution, and 
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Proportion random variable Elicitation variable e2 coincides with proportion vari­

able qJ3,i2. Thus, the prior distribution on ~ is approximated by a lognormal distribution, and 

Piecewise proportion function The form of the piecewise function is 

qJ6,dx3) = qJ6,i2,a when X3 E Xa, e = 1,2,3 

The elicitation variables en for n = 3,4 coincide with proportion variables %,i2,1 and qJ6,i2,3 

respectively. Let the fitted distributions be 

and qJ6,i2,3""" A (JI4,a~) 

Due to the symmetric form of %,i2(X3), it is 

I 

qJ6,i2,2 = (qJ6,i2, 1 . qJ6,i2,3) :1 so qJ6,i2,2""" A (~(Jl3 + JI4), ~(a~ + ~)) 

Results The parameters and the first two moments of the expert's distributions are given 

in Table C8. 

Table C.8: Parameters of subjective distributions related to the Hardware coupling factor 

p 
Parnmctt't's Ml)m~~nW 

y 6 EXPf.'t~lf.·d V;lril.lI)C~~ 

[)esi~tn 1.1),1:) gU74() Q,C)I 1.611",..0-1 

Internal 1.15,15 83657', 0.01 1.56E~{J4 

MaUlh:nanc.e 1.I:U8 1(13 ;'380 001 4.1.n.:,~(J:5 

pl"()(.:f.'dure~ ,3767 16:15175 (J 032 UIE·()4 

Extc..>Tllal 1 847:\ 293304 o o() I 73E·()J 

<po,l 
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Extrapolation of Uncertainty 

Using Model (C.16), the uncertainty distribution on A2,(X3,x6 (i = 1, ... ,6) can be determined 

for any (X3,X6). Figures C.43 and C.44 illustrate the change in mean and standard deviation of 

the Hardware intensity when the system configuration is modified, in relation to the occurrence 

of a failure event due to the different root causes. Note that coupling of Human failures via 

hardware similarity conditions is assessed as insignificant 
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Figure C.43: Expected value of the Hardware 
coupling factor intensity 
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Figure C.44: Standard deviation of the Hardware 
coupling factor intensity 

hardwaremeanrange 

Threshold functional dependence of Diversity on Analysis The defence of Di· 

versity is threshold dependent on the level of Analysis. This fact implies that the influence of 

Diversity differentiates for low, medium and high levels of Analysis. Indeed, the influence of 

Diversity is mathematically expressed as 

which is a piecewise function defined over the state space of~, denoted with Q. Figures C.45 

and C.46 portray the central moments of k(X3) for the different levels of Analysis, in relation 

to the different root causes. 

The influence of Analysis is given by 

I () (
'P6,;z(X3+1))X6-1 

3 X6 = 'P3,i2 ( ) 
, 'P6,i2 X3 

For given -X6 E {I, ... ,5}, 13 (-X6) is a random variable with a lognormal distribution. 

It is assumed that enhancing the level of Analysis never results in decreasing the protection 

C.49 



I 

:::t! ========;;==3 

Figure C.45: Expected value of the influence of 
Diversity h(X3) 

Figure C.46: Variance of the influence of Diver­
sity 16 (X3) 

of the system against CCFs. Mathematically expressed, it should hold 

(C.l7) 

However, the domain of the lognormal distribution is [0, + 00], therefore MX6) is not restricted 

in the interval [0, 1] . In order to avoid falling into conceptual inconsistencies, the p.d.f. on 

13 (x6) is defined as follows : 

g(x) ~ { J(x) ,O<x< 1 

I-F(x) ,x = 1 

0, otherwise 

C.2.3 Environmental Coupling Factor 

Elicitation of target variables 

The intensity of the Environmental coupling factor is described by a vector of parameters 

where 

PI3 = P(CCF through the Environmental cfl failure due to rc i) 

for i = 1, ... ,6. The Environmental coupling factor intensity is influenced by the defences of 

Analysis (~) and Separation (Ds), with Separation being threshold functionally dependent 

on Analysis . According to the GS model, the Environmental coupling factor intensity Jl3 at 
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configuration (X3,XS), where Xk is the level of defence Dk (Xk = 1,2, ... ,5 for k = 3,5) is given 

by 

(C18) 

Determination of subjective distributions 

Performing uncertainty analysis on Model (C18) requires the determination of the prior distri-. 
butions on the model parameters. Let en denote the elicitation variable associated with Question 

. n of the Ai(i = 1, ... ,6) part of the questionnaire. The elicitation variables are 

el = P13,(3) 

e3 = CfJS,13(X3) X3 E Xl 

Base intensity The intensity variable P;2,(3) is beta distributed. Thus, the prior distribu­

tion on el is approximated by a beta distribution, and 

Proportion random variable Elicitation variable e]. coincides with proportion vari­

able CfJ3,13. Thus, the prior distribution on e]. is approximated by a iognormal distribution, and 

Piecewise proportion function The form of the piecewise function is 

CfJS,13(X3) = CfJs,i3,e when X3 E Xe, 8 = 1,2,3 

The elicitation variables en for n = 3,4 coincide with proportion variables ([5,13,1 and CfJS,13,3 

respectively. Let en": A (IIn, a~) for n = 3,4 be the fitted distributions. It is 
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Due to the symmetric form of CP5,13 (X3), it is 

I 

CP5,i3,2 = (CP5,i3,] . CP5,13,3)'i 

Results The parameters and the first two moments of the expert's distributions are given 

in Table C.9. 

Table C.9: Parameters of subjective distributions related to the Environmental coupling factor 

p <p:j 

PaJ'aJnel~~rs. ~ ... 1om1.~ms Parameters tvlmrJcnts 
y 1\ hp"ctod Variance p er Exp",,[cd VHlHiIlce 

, D(l'.ign 0.4665 19.4581 0.02 00011 De<)fgn .{J IIl61 O.(;67:l ,,090 0.00:17 

Human 4.4050 'i8 17"8 I) 04 0.0<)04 Humall .. O.2:!13 0.1W;1 O.SO 0.01)52 
Intf:rnal 44050 9S.17:~8 (i.(i.j I) 1)(104 Inlt:rnal H{).:~:~J:!. (11)717 o SO 011033 

M<linl'1.~nanc~ 1.H434 8858UI4 0,004 4 k1F¥()tj lV!ail~h:mlnCt: ·00'; I 3 O.O:!51 () 95 1).0006 

EXlclnal 10.2·117 895::.72 (;.11I n.t)o()(') [xtC-I'II<,1 HI).35(/i C),nuOI 0.70 4. 97r':"'09 

Cl'S,1 Cl'S,3 
Paramet'1.~fS M(lJlIt.~nts Parmnct(.~rs ~ .... 1on\l,.~ms 
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Extrapolation of uncertainty 

Figures C.47 and C.48 illustrate the change in mean and standard deviation of Environmental 

intensity when the system configuration is modified, in relation to the occurrence of a failure 

event due to the different root causes. Note that coupling of Procedures failures via environ­

mental similarity conditions is assessed as insignificant. 

Threshold ~~pendency of Separation on Analysis The defence of Separation is 

threshold dependent on the level of Analysis. This fact implies that the influence of Separation 

differentiates for low, medium and high levels of Analysis. Indeed, the influence of Separation 
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Figure C.47: Expected value of the Environmen­
tal coupling factor intensity 

is mathematically expressed as 

Figure C.48: Standard deviation of the Environ­
mental coupling factor intensity 

which is a piecewise function defined over the state space of.l3, denoted with Q . Figures C.49 

and C.50 portray the central moments of Is (X3) for the different levels of Analysis, in relation 

to the different root causes. 
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Figure C.49: Expected value of the influence of 
Separation 15 (X3) 

Figure C.50: Variance of the influence of Separa­
tion 15(X3) 

The proportion by which Pz3 changes, when modifying the level of Analysis by one, is 

given by 

I () _ (<VS,i2(X3+ 1))X5-1 

3 Xs - <V3,z3 ( ) 
<VS,i2 X3 

For given Xs E {I ) ... ) 5}, h (xs) is a random variable with uncertainty distribution f. Due to the 

properties of the lognormal distribution, f is also a lognormal distribution, whose parameters 

are determined based on variable transformation techniques. 

It is assumed that enhancing the level of Analysis never results in decreasing the protection 
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of the system against CCFs. Mathematically expressed, it should hold 

0< h(xs) < 1, for every Xs (C.19) 

However, the domain of the lognormal distribution is [0, +00], therefore ~ (xs) is not restricted 

in the interval [0,1]. In order to avoid falling into conceptual inconsistencies, the p.d.f. on 

h (xs) is defined as follows: 

g(x} ~ { f(x),O < x < 1 

I-F(x),x=l 

0, otherwise 
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