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Abstract

This thesis develops models for system reliability prediction considering unobserved

heterogeneity and spatial dependence. Three problems are considered in this thesis.

The first problem concerns models to predict system and component level reliability

for systems subject to minimal repair and unobserved heterogeneity. Existing models

assume that unobserved heterogeneity is constant and methods for component-level

prediction had not been considered. However, there are situations where unobserved

heterogeneity changes and becomes homogeneous over time. This thesis develops a new

reliability model that accounts for the case where unobserved heterogeneity changes

and becomes homogeneous over time. We develop a new frailty model using Inverse

Gaussian (IG) distribution and develop a method using Empirical Bayes that enable

component-level reliability prediction.

The second problem concerns models for reliability assessment for load sharing

systems with spatially dependent components and proximity effects. Existing models

assume equal-load sharing for systems subject to load-sharing. However, there are

systems that operates in a way that the load of a failed component is transferred to

the working proximate components. Existing models do not account for the proximity

effect. This thesis develops a new reliability model that accounts for load sharing and

proximity effect between components. We introduce a function that captures the effect

of each load change on the failure rate of a working proximate component. Numerical

examples are presented to illustrate the developed model.

The third problem concerns models for reliability assessment and preventive mainte-

nance for load sharing systems with spatially dependent components, proximity effects

and shocks. Existing models assume equal-load sharing for systems subject to load-
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sharing and external shocks. However, models that account for external shocks and

proximity effect in the system has not been considered. This thesis develops a function

that captures the effect of each load change and shock on the failure rate of a working

component. We introduce a Modified failure sequence diagram and an algorithm for

system reliability assessment based on Monte Carlo method. In addition, we develop an

extension of the age-replacement model for preventive maintenance of the load sharing

system. Numerical examples are presented to illustrate the developed models.

iv



Contents

List of Figures ix

List of Tables xii

1 Introduction 2

1.1 Introduction to reliability engineering . . . . . . . . . . . . . . . . . . . 2

1.2 Origins of Reliability Modelling . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 System reliability prediction . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Load-sharing dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Unobserved Heterogeneity in repairable systems . . . . . . . . . . . . . . 10

1.6 Research Aim and Objectives . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Review of literature on heterogeneity, stochastic dependence effect

and modelling for multi-component systems 16

2.1 Component failure modelling . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Non-recurrent failure modelling . . . . . . . . . . . . . . . . . . . 18

2.1.2 Recurrent failures modelling . . . . . . . . . . . . . . . . . . . . . 21

2.1.2.1 Nonhomogeneous Poisson process . . . . . . . . . . . . 22

2.1.3 Likelihood inference . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3.1 Maximum likelihood estimation . . . . . . . . . . . . . 25

2.1.3.2 Bayesian inference . . . . . . . . . . . . . . . . . . . . . 26

2.1.3.3 Empirical Bayes method . . . . . . . . . . . . . . . . . 27

v



Contents

2.2 System configurations, multi-state system reliability evaluation, compo-

nent heterogeneity and dependencies . . . . . . . . . . . . . . . . . . . . 29

2.2.1 System configurations . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Multi-state system reliability evaluation . . . . . . . . . . . . . . 30

2.2.2.1 Monte Carlo methods . . . . . . . . . . . . . . . . . . . 31

2.2.2.2 The universal generating function . . . . . . . . . . . . 32

2.2.2.3 Stochastic process models . . . . . . . . . . . . . . . . . 32

2.2.3 Modelling unobserved heterogeneity effect in component failures 34

2.2.3.1 Mixture distributions . . . . . . . . . . . . . . . . . . . 35

2.2.3.2 Frailty model . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.3.3 Frailty distributions . . . . . . . . . . . . . . . . . . . . 41

2.2.3.4 Summary on unobserved heterogeneity . . . . . . . . . 44

2.2.4 Dependence concepts . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.4.1 Structural dependence . . . . . . . . . . . . . . . . . . . 46

2.2.4.2 Economic dependence . . . . . . . . . . . . . . . . . . . 47

2.3 Stochastic dependence and modelling . . . . . . . . . . . . . . . . . . . . 48

2.3.1 Failure interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.1.1 Failure interaction models . . . . . . . . . . . . . . . . . 52

2.3.2 Load-sharing dependence . . . . . . . . . . . . . . . . . . . . . . 56

2.3.2.1 Load-sharing systems with shocks . . . . . . . . . . . . 59

2.3.2.2 Maintenance optimization of the load-sharing system . 60

2.3.2.3 Load-sharing modelling . . . . . . . . . . . . . . . . . . 62

2.4 Gaps in the literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4.1 Gap to be addressed in chapter 3: unobserved heterogeneity . . . 65

2.4.2 Gap to be addressed in chapter 4: load-sharing and spatial de-

pendence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4.3 Gap to be addressed in chapter 5: load-sharing, spatial depen-

dence and shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3 Reliability evaluation of a repairable multi-component system consid-

ering unit heterogeneity using frailty model 74

vi



Contents

3.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 IG frailty model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.1 Maximum likelihood for IG frailty model . . . . . . . . . . . . . 77

3.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.1 Simulation design . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.2 Evaluation of IG Estimator . . . . . . . . . . . . . . . . . . . . . 83

3.3.3 Misspecification study of gamma and IG frailty models . . . . . 85

3.3.3.1 Case One - low heterogeneity . . . . . . . . . . . . . . . 88

3.3.3.2 Case Two - high heterogeneity . . . . . . . . . . . . . . 88

3.3.3.3 Case Three - component early life behaviour . . . . . . 89

3.3.3.4 Case Four - component mid-life behaviour . . . . . . . 89

3.3.3.5 Summary of Analysis . . . . . . . . . . . . . . . . . . . 94

3.4 Application to classic dataset . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Appendix - Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.2 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

C.3 Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4 Reliability analysis of a load-sharing system with spatial dependence,

and proximity effects 110

4.1 System description and load-sharing rule . . . . . . . . . . . . . . . . . . 111

4.2 Modelling spatial dependence and proximity effect . . . . . . . . . . . . 113

4.2.1 Modelling the proximity effect . . . . . . . . . . . . . . . . . . . 114

4.2.2 Proximity models with distance information . . . . . . . . . . . . 115

4.3 A simple example: derivation of load function for a multi-component

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4 Formulation of system state transition . . . . . . . . . . . . . . . . . . . 122

4.4.1 Failure rate function for homogeneous components . . . . . . . . 122

4.4.2 System state transition with homogeneous components . . . . . . 125

4.4.3 Failure rate function for heterogeneous components . . . . . . . . 127

vii



Contents

4.4.4 System state transition with heterogeneous components . . . . . 129

4.5 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.6 Numerical example 1: a simple four-component system . . . . . . . . . . 133

4.7 Numerical example 2: a five-component system with complex spatial

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.8 Numerical example 3: Parameter estimator . . . . . . . . . . . . . . . . 148

4.9 Discussion of results and Conclusion . . . . . . . . . . . . . . . . . . . . 151

Appendix - Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5 Reliability modelling and preventive maintenance of load-sharing sys-

tems with spatial dependence, proximity effects and external shocks159

5.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2 Component and system reliability analysis . . . . . . . . . . . . . . . . . 161

5.2.1 Component reliability analysis . . . . . . . . . . . . . . . . . . . 161

5.2.2 System reliability analysis . . . . . . . . . . . . . . . . . . . . . . 162

5.3 Age-based replacement policy . . . . . . . . . . . . . . . . . . . . . . . . 171

5.4 Numerical example: three-component systems . . . . . . . . . . . . . . 174

5.5 Numerical example: four-component systems . . . . . . . . . . . . . . . 178

5.6 Numerical example: three-component systems with NHPP shocks . . . 183

5.7 Discussion of results and Conclusion . . . . . . . . . . . . . . . . . . . . 188

Appendix - Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6 Conclusion and future research 192

6.1 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.1.1 Reliability evaluation of a repairable multi-component system

considering unit heterogeneity using frailty model . . . . . . . . . 192

6.1.2 Reliability analysis for load-sharing system with spatial depen-

dence, and proximity effects . . . . . . . . . . . . . . . . . . . . . 194

viii



Contents

6.1.3 Reliability modelling and preventive maintenance of load-sharing

systems with spatial dependence, proximity effects and external

shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.2.1 Reliability analysis for systems with failure interaction, spatial

dependence, and proximity effects . . . . . . . . . . . . . . . . . 198

6.2.2 Areas for further research . . . . . . . . . . . . . . . . . . . . . . 203

6.2.2.1 Future Research in Chapter 3 . . . . . . . . . . . . . . 204

6.2.2.2 Future Research in Chapter 4 . . . . . . . . . . . . . . 204

6.2.2.3 Future Research in Chapter 5 . . . . . . . . . . . . . . 204

Bibliography 205

ix



List of Figures

3.1 Simulation flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Plot of the Bias on estimates from IG frailty model estimators. . . . . . 85

3.3 Plot of probability of selecting the wrong model when heterogeneity is

low θ = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4 Plot of probability of selecting the wrong model when heterogeneity is

high θ = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Plot of probability of selecting the wrong model when early life failures

are considered ρ = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.6 Plot of probability of selecting the wrong model when component failures

are similar to the mid-life phase ρ = 0.9. . . . . . . . . . . . . . . . . . . 93

3.7 Plot of the expected number of failures predicted by the IG frailty model,

gamma frailty model and PL model compared to the observed cumula-

tive number of failures within the interval 0 to 1000 hours (system level

prediction). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.8 Plot of the expected number of failures predicted by the IG and gamma

frailty models compared to the observed cumulative number of failures

within the interval 0 to 1000 hours (component level prediction). . . . . 102

4.1 Visual depiction of four component system . . . . . . . . . . . . . . . . . 114

4.2 The four component system structure . . . . . . . . . . . . . . . . . . . 123

4.3 State transitions for the four-component system with homogeneous com-

ponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

x



List of Figures

4.4 State transitions for the four-component system with heterogeneous com-

ponents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5 The four-component systems . . . . . . . . . . . . . . . . . . . . . . . . 134

4.6 State transitions for the four-component system with homogeneous com-

ponents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.7 State transitions for the four-component system with Heterogeneous

components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.8 Variation of system reliability with load factor β considering homoge-

neous components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.9 Variation of system reliability with load factor β considering heteroge-

neous components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.10 Variation of system reliability with performance level L considering ho-

mogeneous components . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.11 Variation of system reliability with performance level L considering het-

erogeneous components . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.12 Comparison of reliability estimation using spatial simulation, the spatial

model and existing models considering homogeneous components . . . . 145

4.13 Comparison of reliability estimation using spatial simulation, the spatial

model and existing models considering heterogeneous components . . . . 145

4.14 The five-component system . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.15 Five-component system state transition diagram. . . . . . . . . . . . . 147

4.16 Comparison of reliability estimation using the spatial model and capacity

flow model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.1 Failure rate function under two shocks with increments ϕ and extra load

zj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.2 Failure rate function under two shocks and two component failures with

increments ϕ and extra loads zj and zk. . . . . . . . . . . . . . . . . . . 167

5.3 MFSD path description . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.4 The two-component system . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.5 MFSD for the two-component system. . . . . . . . . . . . . . . . . . . . 170

xi



List of Figures

5.6 Isosceles system structure . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.7 Comparison of the optimal preventive maintenance time and expected

cost rate using the spatial model and capacity flow model . . . . . . . . 177

5.8 Four-component system structures . . . . . . . . . . . . . . . . . . . . . 180

5.9 Comparison of the optimal preventive maintenance time and expected

cost rate using the spatial model and capacity flow model considering

structure one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.10 Comparison of the optimal preventive maintenance time and expected

cost rate using the spatial model and capacity flow model considering

structure two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.11 Comparison of reliability estimation using spatial model and extension

of the capacity flow considering the complex case . . . . . . . . . . . . . 182

5.12 Comparison of the optimal preventive maintenance time and expected

cost rate using the spatial model and capacity flow model considering

NHPP shocks with b = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.13 Comparison of the optimal preventive maintenance time and expected

cost rate using the spatial model and capacity flow model considering

NHPP shocks with b = 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 188

14 Simulation flowchart for generating the expected cost rate. . . . . . . . . 191

6.1 State transition for a system with one primary component, two influenc-

ing secondary components and one non-influencing secondary components203

xii



List of Tables

3.1 Failures times for Air conditioners in 13 Airplanes . . . . . . . . . . . . 99

3.2 Predictions of the number of failures from gamma, and IG frailty models

and the PL model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3 Parameter estimates of gamma, and IG frailty models and the PL model

when fitted to Air conditioner failure time data. . . . . . . . . . . . . . 100

3.4 AIC and RMSE values of gamma, and IG frailty models and the PL

model when fitted to Air conditioner failure time data. . . . . . . . . . 101

3.5 Predictions of the cumulative number of failures from gamma, and IG

frailty models and the PL model. . . . . . . . . . . . . . . . . . . . . . 101

3.6 Mean frailty z∗j , Mean residual life, and RMSE value for the expected

number of failures of each Airplane . . . . . . . . . . . . . . . . . . . . . 102

4.1 Parameters used to study the effect of β . . . . . . . . . . . . . . . . . . 139

4.2 Parameters used for model comparison . . . . . . . . . . . . . . . . . . . 144

4.3 Root mean squared error of the reliability estimations by the models . . 145

4.4 Parameters used for model comparison on the five-component system . . 147

4.5 Root mean squared error of the reliability estimations by the models . . 148

4.6 Bias and MSE of the estimators. . . . . . . . . . . . . . . . . . . . . . . 151

7 Comparison of reliability estimation using Laplace transform method

and Euler method considering homogeneous and heterogeneous compo-

nents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

xiii



List of Tables

1



Chapter 1

Introduction

1.1 Introduction to reliability engineering

Reliability was first coined by Samuel T, Coleridge in 1816 in praise of his friend [1, 2].

Oxford dictionary defines reliability as the quality of being trustworthy or of performing

consistently well [3]. Broadly, reliability can mean different things to different people.

For example, reliability could be interpreted to mean: trustworthiness, accuracy, qual-

ity, safety etc. Even across academic disciplines, the use of this concept varies. In

psychology, reliability refers to the consistency of a research study, while in statistics,

reliability refers to the consistency of a measuring instrument or measures used to

describe a test [4]. In the field of reliability engineering, reliability is defined as the

probability that a component or system will perform a required function without failure

for a given period of time when used under stated operating conditions [5]. According

to Bazovsky [6] a clear (unambiguous) definition of a concept is essential for measuring

reliability. As a result, the definition used in the field of reliability engineering will be

adopted throughout this thesis.

Driven by the need for reliable systems, the birth of reliability engineering took

place during the 1950’s [1, 2, 7]. Interest in the quality of a system predates the

creation of the discipline [1]. However the need for producing reliable systems was first

sensed in both commercial and military sectors in early 1950s [8]. The key difference

between the quality or reliability of a system rest solely on time. According to Condra
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Chapter 1. Introduction

[9] “reliability is quality over time”. Whilst a product’s quality is associated with

the workmanship and manufacturing of the product [10], reliability assessment of the

product requires testing over a period of time as it may be many months before poor

reliability is identified in the system [11].

Reliability is tailored to convey assurance in the successful operation of a system

[2], and is believed to be a key component for assessing the performance of a system as

“failure of products to function can be costly and lead to unsafe operating conditions”

[12]. The desired target for reliability of different systems depends on the consequence

of unreliability [8]. Unreliability has a number of unfortunate consequences. In some

systems, the ”value placed on reliability is a function of the frustration, annoyance and

financial loss incurred when a failure occurs” [8]. In other systems such as medical

devices, ”unreliability could result in serious consequences; for example, disability or

even death of patients” [13].

The structure of the chapter will take the following form. Section 1.2 introduces the

origins and early developments of reliability modelling. Section 1.3 introduces methods

for system reliability assessment. Section 1.4 discusses multi-component systems with

dependent components. Section 1.5 presents motivation for the thesis with focus on

multi-component systems with stochastic and spatial dependence. Section 1.6 outlines

the research objectives and section 1.7 outlines the overall structure of the remaining

thesis.

1.2 Origins of Reliability Modelling

The vacuum tube is recognized by many as the catalyst for the actual emergence of

reliability engineering [1, 2, 14]. At the onset of World War II the vacuum tube initiated

the electronic revolution, enabling a series of applications such as the radio, television,

radar and others [2]. At the same time, it was also the main cause of equipment

failure during World War II [2]. Keeping military electronic equipment working proved

to be troublesome and expensive [14]. The vacuum tube was observed to be notably

unreliable as replacements were required five times more than all other other electrical

3



Chapter 1. Introduction

equipment [14]. After the war, this experience with the vacuum tubes prompted the

US Department of Defense (DoD) to initiate a number of studies to look into these

failures [1]. The efforts eventually consolidated in the Advisory Group on Reliability of

Electronic Equipment(AGREE) report which gave birth to a new discipline, Reliability

Engineering [1]. The AGREE committee was jointly established in 1952 by the DoD and

the American Electronics Industry, with the mission of [14]: recommending measures

that would result in more reliable equipment; helping to implement reliability programs

in government and civilian agencies; disseminating a better education on reliability

[2, 14].

The key foundation for the mathematical developments of reliability theory is the

theory of probability and statistics (the theory of sampling) [1]. Probability theory was

initiated to satisfy the enthusiastic urge for answers to gaming and gambling questions

by Blaise Pascal and Pierre de Fermat in the 1600s and later expanded into numer-

ous other practical problems by Laplace in the 1800s [2]. Saleh and Marias [1] state

that ”probability and statistics are the essential ingredients without which Reliability

Engineering as a technical discipline could not have emerged.”

Before the World War II, analyses of a system’s reliability was intuitive in nature [7]

and based on experiences in design and utilization [15]. It was common to make state-

ments such as “the system won’t be damaged”, “the system is highly reliable”, or “it

is more reliable than similar products” but these do not represent any measurable and

specific meaning at all [15]. Asgari and Lofti [15] stated that ”this method was always

questionable, improper, and unreliable in terms of engineering judgment”. In contrast,

after World War II, failure data collection and root cause analyses were launched with

the aim of achieving higher reliability in components and devices [2]. Reliability anal-

ysis began to be carried out quantitatively and modern reliability modelling began to

evolve [8].

Between 1950’s and 1960’s, there were a couple of notable publications that focused

on developing quantitative methods to aid reliability engineers. In 1956 Reliability

Analysis Centre (RAC), a major manufacturer of vacuum tubes, published a report

on reliability prediction techniques entitled ‘Reliability Stress Analysis for Electronic

4



Chapter 1. Introduction

Equipment’(TR-1100) [2, 7]. The report presented a number of analytical models for es-

timating component failure rates and was the predecessor of the 1961 military standard

MH-217 that is still used today to make reliability predictions [2]. Given specification

of quantitative reliability requirements, the published models became building blocks

to estimate and predict the reliability of a component before it was built and tested

[2].

Following the development of quantitative models, the discipline of reliability engi-

neering proceeded along two paths with some engineers and mathematicians focusing

on system reliability improvement (reliability growth modelling) whilst the others fo-

cused on maintaining system reliability or availability (asset management). According

to Bhamare [7] before 1950s, the focus was either on quality control or on machine main-

tenance problems. Even now reliability engineering is more established and it aims to

address the questions of: why systems fail; how to develop reliable systems; how to

measure and test reliability in design, operation and management; how to maintain

systems reliability, by maintenance, fault diagnosis and prognosis [2].

1.3 System reliability prediction

Many engineered assets in the industry are repairable systems [16]. The performance of

these assets can affect the level of product’s quality, production costs, quality of service

to customers, and the profit of the company directly [15]. Methods for accurate reliabil-

ity prediction as well as proper implementation of maintenance policies are, therefore,

critical for these assets [17]. Asset management involves the efficient use of assets, main-

taining the availability and quality of assets at acceptable performance levels with the

lowest cost possible [15]. An engineered asset could be a single-component system (e.g.,

valve) or multiple component systems (e.g., an automobile). Systems with multiple

components are referred to as multi-component systems. Formally, multi-component

systems are systems consisting of several subsystems or components organised in a

structure [18].

Asset management is concerned with reliability prediction and optimal maintenance
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policy for assets [15]. Reliability prediction lays a critical foundation for the optimal

maintenance policy of the assets [16]. Hence, it is essential to make an accurate reli-

ability prediction for an asset [16]. Assessing the future reliability of a system, in the

form of reliability prediction, is important for several reasons. First, reliability predic-

tion allows the forecasting of support costs, spares requirements, warranty costs and

marketability [8]. Second, a company can optimise its maintenance strategy based on

the prediction of remaining useful life [16]. Third, reliability prediction can be a valu-

able part of the study and design processes, for comparing options and for highlighting

critical reliability features of an asset’s design [19]. Lastly, reliability prediction can

support decision-making when deciding between different engineering designs [8].

Studies on asset management were first motivated by the military. During the

Korean war, maintenance costs were found to be quite significant for some military

systems, thus calling for methods of reliability prediction and optimization strategies

for asset maintenance and renovation [2]. Many data sets include information about

failures for a time interval which is only a small fraction of the actual lifetime (left

truncation) [20]. Due to the data quantity problem and poor knowledge of factors that

drive component failures, many earlier modelling approaches for reliability prediction

consider the grouping of data sets into classes of similar or ‘homogeneous’ compo-

nents that, for instance, are made of the same material or have the same diameter

and assume component independence [20]. However, heterogeneity or inter-component

dependencies could exist in a system which, if overlooked, may lead to inaccurate

reliability predictions [21, 22, 23, 24]. Heterogeneity may be due to differences in ma-

terial, differences in design, differences in location and so on [21, 22, 23, 24] whereas

inter-component dependencies could be due to factors that range from the design of

the system, maintenance actions conducted on the system’s components, and shared

environmental conditions to note a few [25]. This thesis is focused on reliability pre-

diction for multi-component systems considering heterogeneity and Inter-component

dependencies.
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1.4 Load-sharing dependence

Inter-component dependencies between components can be classified into three cate-

gories: economic, structural and stochastic [26]. Economic dependence implies that

maintenance actions can either save costs (economies of scale) as compared to individ-

ual maintenance or become costly in the form of safety requirements, or production

losses. Structural dependence occurs if components structurally form a part, such

that maintenance of a failed component implies maintenance of working components.

Stochastic dependence occurs when the condition of a component influences the lifetime

distribution of another component. Load-sharing dependence is a form of stochastic

dependence which occurs when multiple components can share the total system load

and the load of a failed component is taken up by the remaining working components

leading to an increased deterioration in these components [22]. In practice, this applies

for example to a set of pumps that are used to distribute gas [27]. Some studies found

that the costs from ignoring load-sharing dependence increase significantly with both

the number of components and the degree of dependence [22, 28, 29].

Two modelling perspectives have been studied in the literature: failure-based load-

sharing and deterioration-based load-sharing. For failure-based load-sharing, upon fail-

ure of a component, the remaining components will deteriorate according to the ac-

celerated deterioration process, until it fails, or maintenance is performed [13, 30, 31].

Deterioration-based load-sharing is where component deterioration can also increase

the load on the other components [27].

The most important element of the load-sharing model is the rule that governs how

the loads on the working components change after some components in the system

fail [32]. The equal load-sharing rule which assumes that a constant system load is

distributed equally among the working components is the most studied form of load-

sharing dependence [32]. Examples of equal load-sharing in practical situations include

yarn bundles and untwisted cables that spread the stresses uniformly after individual

component failures [32]. For example, Yun et al. [33] considered a consecutive k-out-of-

n: F system composed of n identical components with exponential failure distribution.
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Do et al. [34] determine optimal inspection intervals for a two-component series system

where degradation of one component affects the degradation rate of the other. Liang

and Parlikad [35] studied complex systems, where some critical items can be considered

as being in parallel, although more than one may be needed for the system to function.

So far, various techniques based on statistical and probabilistic analyses (includ-

ing the Markov process, Monte Carlo simulations, proportional hazards model and

accelerated failure time models, or a combination of them) have been proposed to pre-

dict load-sharing system reliability [32]. For example, Amari et al. [36] proposed a

closed-form analytical solution to evaluate the reliability of load-sharing k-out-of-n: G

systems with tampered failure rate (TFR). Amari and Bergman [37], based on the cu-

mulative effect (CE) load-sharing model, presented a method to compute the reliability

of k-out-of-n: G load-sharing systems with identical or non-identical components, both

following general failure distributions. Zhang et al. [22] characterised the relationship

between the failure rate of a component and the load imposed on the component using

an accelerated failure time model. Wang et al. [38] studied a load-sharing parallel

system with failure dependency using a semi-Markov process. They introduced a de-

pendence function to quantify the failure dependency between components. Zhang et

al. [39] developed reliability model of the load-sharing k-out-of-n: F system subject to

discrete external load in which the occurrence of the external load follows a nonhomo-

geneous Poisson process (NHPP). Kim and Kvam [40] proposed a maximum likelihood

estimation approach for a load-sharing system with equal and monotone load-sharing

rule. The work was further extended by considering a parallel system with Weibull

distributed components [41].

Most studies on load-sharing systems focus on the determination of reliability or

availability function, statistical inference, and maintenance of systems with equal load-

sharing, very few are focused on local load-sharing systems. Some recent works have

been conducted on systems with equal load-sharing [39, 42, 43, 44, 45, 46, 47, 48, 49].

In contrast, only a handful of recent studies have looked at reliability study on lo-

cal load-sharing problems [50]. Local load-sharing sharing considers that a load on a

failed component is transferred to an adjacent component (that is, due to spatial de-
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pendence). Spatial dependence is the propensity for nearby locations to influence each

other and to possess similar attributes [51]. Examples of practical local load-sharing

systems include cables supporting bridges and other structures, composite materials

with bounding matrix joins, and transmission systems [32]. Another example involves

a warehousing system in which a bigger warehouse is surrounded by several smaller

warehouses such that when the bigger warehouse fails, all the smaller warehouses will

take the load. When a smaller warehouse fails, the load will be redistributed among

the bigger warehouse and the nearby smaller warehouses [52].

We note that most previous studies that consider the load-sharing in reliability

prediction have not distinguished the uniform load distribution associated with equal

load-sharing from the non-uniform load distribution associated with local load-sharing.

Only a handful of works [50, 52, 53, 54] consider the non-uniform distribution of load for

reliability prediction. However, deterministic failure rate values were assumed for each

component’s load change. Given the presence of non-uniform distribution of loads, the

normal failure rate and several accelerated failure rate values will have to be predefined

which can be challenging for a complex system. In general, unlike equal load-sharing

models that are concerned with capturing the effects of uniform distribution of loads

on the failure rate, there is no clear load-failure rate model that captures the impact of

non-uniform distribution of loads on the failure rate in a local load-sharing setting. A

model that captures the load-failure rate relationship can aid the assessment of factors

that influence the system’s reliability.

Furthermore, two key characteristics of spatial dependence are not captured in

the existing local and equal load-sharing models. First is the topology of the system

(i.e., how components in the system are arranged). For instance, Wang et al. [53]

noted that for a large intelligent system with spatial dependent components, the spatial

pattern among the system’s components influences the degree of load-sharing. Second is

proximity of components in the system. According to Amari et al. [32], the proportion

of the load that the surviving components inherit depends on their distance to the

failed component. No methodology has been developed for incorporating these two

key characteristics into the load-sharing model for reliability prediction. In addition,
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none of the studies on local load-sharing have investigated the consequence of ignoring

spatial effect if these exists. Previous work has, however, considered the impact of

assuming independence when local load-sharing exists in a system (for example see

[50, 52, 53, 54]).

1.5 Unobserved Heterogeneity in repairable systems

In practical situations, heterogeneity exist in the inner states of the system and the

related working environments [55]. For example, a manufacturing system may produce

different products under different workloads [55]. Sometimes systems from the same

category may exhibit various failure/degradation processes in the same environment.

The latter refers to unit-to-unit heterogeneity and is commonly studied (for example,

[56, 57, 58, 59, 60] ).

Unit-to-unit heterogeneity may be due to the variability in the inner structures of

the considered system, as well as the diversity in their working environment [55, 61].

The variability in the inner structures could be due to material variation, manufactur-

ing variation, process variation, installation variation, operation variation, variation in

maintenance procedures and so on [21, 55, 61]. All these variations, cause the unit-to-

unit heterogeneity in failure intensity or performance degradation. Furthermore, the

factors of influence, also referred to as covariates, which cause the differences can ei-

ther be observed or unobserved. Covariates describe the system’s characteristics or the

environment in which the system operates, and they may have varying levels. For ex-

ample, to describe the reliability of a pump, vibration as a covariate may be, at a high,

low, or medium level [61]. Observed covariates are factors whose effects on the failure

process are known, and their associated levels are recorded with the failure data [61].

Unobserved covariates are covariates whose effects on the failure process are typically

unknown and their associated levels during the operating time or at the time of the

failure are not available in the failure database [61].

Unobserved covariates may lead to unobserved heterogeneity [62]. Unobserved het-

erogeneity refers to the effect of the unknown, unrecorded, or missing covariates [61].

Consider for example, that some pumps may have a soft foot problem in a production
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process due to a defect in the installation process. The soft foot problem may put the

bearing in an over-stressed situation. If there is no information regarding soft foot in

the failure database of the bearing then an unobserved covariate could be defined to

capture the effect of the soft foot on the reliability of the bearing [61].

Models with random effects are the common technique employed to capture the

unit-to-unit heterogeneity when the deterioration process is modelled and to predict

the system reliability or remaining useful life [24, 56, 57, 58, 62, 63]. The most typical

way to do so is to specify some parameters of the model as random variables governed by

distributions with computing convenience, presenting the individuality in deterioration

processes from different units, and leaving the rest of the parameters as constants

describing the universality in deterioration of systems from the same category or batch

[55, 64, 65]. For example, Lin et al. [57] incorporated gamma random effect into a

piecewise constant hazard model to explore the impact of a locomotive wheel’s position

on its service life and to predict its other reliability characteristics. Using a gamma

distributed random effect, Lin et al. [58] compared classical reliability test models

with Bayesian piecewise constant hazard frailty model and found them to be useful for

analysing degradation data.

In the past years, there has been a rising interest in developing models that cap-

ture unobserved heterogeneity in the failure process of repairable systems. For example,

Lindqvist et al. [63] developed a heterogeneous trend renewal process model, which gen-

eralises the homogeneous Poisson process (HPP) and NHPP, to capture unobserved het-

erogeneity in multiple repairable components. They introduced a gamma-distributed

multiplicative factor on the failure intensity. D’Andrea [66] suspected heterogeneity

in the failure time data for mining trucks in Brazil. They assumed that the mining

trucks were subject to minimal repair and thus modelled the data using NHPP with a

gamma-distributed frailty term. Lindqvist and Slimacek [67] extended the basic NHPP

to include covariates and unobserved heterogeneity in analysing wind turbine failure

data. Yin et al. [68] applied a generalized accelerated failure time frailty model to

study systems subject to imperfect preventive maintenance.

We note that most studies on unobserved heterogeneity for repairable systems with
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the minimal repair assumption have focused on investigating the significance of co-

variates and the frailty term in the fitted model rather than event prediction for the

system and/or individual components (for example see [62, 63, 67]). The few studies

that have considered event prediction for point processes with unobserved heterogene-

ity include: Deep et al. [69] who used a semi-parametric Andersen and Gill model for

failure prediction of a new component in a Teleservice system using collected data from

old units; and Jahani et al. [70] who developed a multivariate Gaussian convolution

process (MGCP) for fleet-based event prediction in which failure prediction for an in-

dividual unit is conducted using data collected from other units. However, neither of

these studies developed a parametric model considering systems subject to minimal re-

pairs. The ability to predict the occurrence of failure events at system or an individual

unit level can aid optimal maintenance decision making for the system or individual

components [69].

Furthermore, in a model with unobserved heterogeneity, it is necessary to define

the distribution of the unobserved effects [71, 72]. Since the modelled heterogeneity

is unobservable, the appropriate choice of distribution of the unobserved effects is not

easily discernible [73, 74]. The choice of the distribution of unobserved effects can give

interesting general results in terms of the variance of the unobserved effects [74]. For

instance, a large variance could indicate deficiencies in the choice of the distribution

which may influence the model fit [73, 74]. It is therefore useful to examine the ex-

tent to which misspecification of the random effect distribution affects the validity of

intensity function estimators [73]. The impact of misspecification of the random effect

distribution with the minimal repair assumption has not been investigated.

1.6 Research Aim and Objectives

The aim of this research is to develop models for reliability prediction of systems sub-

ject to unobserved heterogeneity or load-sharing with spatial dependence. For systems

subject to unobserved heterogeneity and minimal repair, we consider that the com-

ponents in the system becomes homogeneous over time (see section 2.4.1). For the

system subject to load-sharing, we consider two types of systems. First we consider a
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system with load-sharing, spatial dependence and proximity effect (see section 2.4.2).

Second, we consider a system with load-sharing, spatial dependence, proximity effect

and external shocks (see section 2.4.3). The following objectives are to be achieved:

1. Develop a new parametric model to capture the unobserved heterogeneity and

provide a method for system and individual component event prediction.

• The first objective of this research is to develop a new model to predict

component and system reliability for systems subject to minimal repair and

unobserved heterogeneity effects. This new model extends current research

by releasing the assumption that treats unobserved heterogeneity as being

constant and develops a method to estimate individual frailty values that

enable component-level reliability prediction. Most existing methods have

only focused on the case of heterogeneity being constant with time and

modelled by gamma distribution [24, 58, 62, 75]. The case when unobserved

heterogeneity changes and becomes homogeneous over time has not been

studied for a system subject to minimal repair. Currently, existing models

for reliability prediction of systems subject to minimal repair and unobserved

heterogeneity effects cannot make component-level predictions. These mod-

els were often applied for statistical fit (for example, [24, 62]) rather than

explicit prediction of reliability at the system or component-level. This re-

search addresses these issues.

2. Develop a new probabilistic model to capture load-sharing and proximity effects

for reliability prediction of a load-sharing system subject to spatial dependence

and proximity effects.

• The second objective of this research is to develop a new model to predict the

reliability of a load-sharing system with spatial dependence and proximity

effects. This new model extends current research by removing the assump-

tion that the load of a failed component is shared equally by all working

components. Industrial experiences have shown that there are a number
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of situations where the load of a failed component taken up by its spatial

neighbour depends on how close they are to each other. Models for reliabil-

ity of this type of system has not yet been studied. Here, we extend existing

literature to address the issue by incorporating proximity effects in failure

rates of components with load-sharing and spatial dependence.

3. Develop a new probabilistic model to capture load-sharing, proximity effects, and

external shocks for reliability prediction and maintenance optimization of a load-

sharing system subject to spatial dependence, proximity effects, and external

shocks.

• The third objective of this research is to develop a new model to predict the

reliability of a load-sharing system with spatial dependence, proximity effects

and external shocks. This new model extends current research by removing

the assumption that the load of a failed component is shared equally by all

working components in a load-sharing system subject to external shocks.

For load-sharing systems subject to external shocks, industrial experiences

have also shown that there are a number of situations where the load of a

failed component taken up by its spatial neighbour depends on how close

they are to each other. Models for reliability prediction and preventive

maintenance of this type of system has not yet been studied. Here, we

extend existing literature to address the issue by incorporating proximity

effects in failure rates of components with load-sharing, spatial dependence

and external shocks and develop a model for preventive maintenance of the

system.

1.7 Structure of the thesis

This section provides the structure of this thesis with a brief summary of the content

in each chapter. The thesis is structured as follows:

• Chapter 2 provides a review of key literature on multi-component systems with
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unobserved heterogeneity, stochastic dependence and stochastic dependence mod-

elling. The review, informs the direction of the thesis, the modelling framework

and the research objectives.

• Chapters 3, 4 and 5 develop three reliability prediction models.

• Chapter 3 presents the first reliability prediction model for systems subject to

unobserved heterogeneity effect in which the component failure time data is in the

form of recurring failures and modelled by the power law NHPP model. Random

effects introduced in the power law NHPP model are modelled by an Inverse

gaussian (IG) distribution. A comparison of gamma and IG distributed random

effects is presented and a method for failure prediction for individual component

based on empirical Bayes framework is developed.

• Chapter 4 presents the second reliability prediction model for systems subject

to load-sharing, spatial dependence and proximity effect. Systems with homoge-

neous and heterogeneous components are considered. The failure process of the

system is modelled by a Markov model. An analytic function which accounts for

load-sharing, and proximity effect is developed considering cases when distance

information is available or not available.

• Chapter 5, presents the third reliability prediction model for systems subject to

load-sharing, spatial dependence and external shocks. The failure process of the

system is modelled by Monte Carlo method and Modified failure sequence dia-

gram. External shocks are modelled by HPP and NHPP. An analytic function

which accounts for the load-sharing, proximity effect and external shocks is pro-

vided. A preventive maintenance policy based on an extension of the classical

age-replacement model is developed.

• Chapter 6 brings together the results of the work done in the thesis by summaris-

ing this research and the discussions of future research is presented.

15



Chapter 2

Review of literature on

heterogeneity, stochastic

dependence effect and modelling

for multi-component systems

This chapter reviews previous literature published with respect to models that account

for unobserved heterogeneity, stochastic dependence and spatial dependence in relia-

bility assessment and maintenance optimization of multi-component systems. The aim

of this chapter is to establish general concepts relevant to subsequent chapters, identify

popular research areas within the existing studies and to identify the research gaps.

According to Heping [76], ”in order to analyse the reliability of systems, predict

the remain useful life or minimize the maintenance cost, the first step is to model the

physical properties of components or systems such as how they degrade and when they

fail”. This implies modelling the failure process of a component or a system through

mathematical models. Although the primary concern here is multi-component system

with unobserved heterogeneity, stochastic and spatial dependence effect, it is sensible

to start the review by introducing general concepts and basic models which underpin

the modelling of the failure process of a single component.
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The remainder of this chapter is organised as follows. Section 2.1 presents failure

modelling for a single component and likelihood inference. When considering failures

of multi-component systems, unobserved heterogeneity or dependencies as well as the

structure of the system should be taken into account. Therefore section 2.2 presents sys-

tem configurations, multi-state system reliability evaluation, unobserved heterogeneity

and dependencies concepts considered for modelling failures of multi-component sys-

tems. Section 2.3 presents review of literature on stochastic dependence modelling

between components. Also presents review of literature on stochastic dependence and

spatial dependence modelling. Section 2.4 identifies the research gaps in the literature.

2.1 Component failure modelling

The failures of components in a system occur either as recurrent or non-recurrent

events. Non-recurrent event refers to a single observation of an event (e.g., a fault or

failure) while recurrent events refers to several observations of the same event. In relia-

bility theory, recurrent and non-recurrent events occur in repairable and non repairable

components respectively. A non-repairable component is one where after a failure has

occurred the component stops functioning and the component cannot be repaired (e.g.,

light bulb). A repairable component is defined in the literature as a component that is

considered repairable if after a failure, its activity can be satisfactorily resumed through

repair without the need to replace the component (e.g., water pipe) [77]. Bursts from

water pipes represent an example of recurrent failure occurrence while the one-time fail-

ure of a light bulb represents an example of non-recurrent failure. In a non-repairable

component, interest of a reliability engineer generally lies in the time until failure [78].

In contrast, repairable components can be brought back to working condition after a

failure has occurred so that other failures may possibly follow.

Reliability analysis of components are performed using field data or accelerated

failure time data. The purpose of collecting such data, is to study the mechanisms that

may give rise to the failures by modelling the rate of failures per unit time [78]. The

failure of components occur in time according to some underlying physical process which

has a defined structure (e.g., corrosion, or natural ageing of components). In addition,
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the failures occur in time according to the defined structure with some uncertainty

or randomness. This uncertainty may occur due to natural variability or external

factors affecting the process [19]. Statistical models are appropriate for failure modelling

because of their ability to allow for such randomness [78]. For instance, Economou [78]

stated that statistical modelling of recurrent events, in pipes, is beneficial both for

better understanding of the mechanisms that drive the recurrence and for predicting

how these events will behave in the future. In sections 2.1.1, 2.1.2 and 2.1.3, we will

introduce the methods used for modelling non-recurrent failures, recurrent failures and

Likelihood inference respectively.

2.1.1 Non-recurrent failure modelling

As mentioned in section 2.1, non-repairable components are those that do not get

repaired when they fail. Thus, non-repairable components can fail only once. The

interest in failure modelling of a non-repairable component, generally lies in the time

until failure. Lifetime models provides the distribution of the time to failure of such

components [62]. In lifetime models, components are assumed to have only two states

(either functioning or failed). Before introducing the lifetime models, some concepts

are introduced as follows. Let T be a random variable that represents the lifetime of a

component.

Definition 2.1 Lifetime distribution function is the probability that a component

fails up to and including t time units. If T is a continuous random variable, it can be

expressed as:

F (t) = P (T ≤ t) =

∫ t

0
f(x)dx, (2.1)

where f(x) is the probability density function of T and t is the length of the period of

time (which is assumed to start from time zero).

Definition 2.2 Reliability is the probability that a component performs a given

function during t time units as:
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R(t) = P (T > t) = (1− F (t)) =

∫ ∞

t
f(x)dx. (2.2)

Definition 2.3 The failure (hazard) rate function is defined as:

λ(t) = f(t)/(1− F (t)), (2.3)

provided that function F (.) is differentiable.

The exponential distribution is one of the first statistical models to be applied to

failure data for modelling hazard (failure) rates of components [7]. The exponential

distribution is a basic lifetime distribution whose failure rate is constant and so is an

excellent model for failures of components that occur by chance (at random) [7]. The

exponential distribution has only one parameter which can not fit all types of lifetime

data. As a result, distributions like weibull distribution with two parameters (shape

and scale) are more flexible in applications [76]. Nelson [79] noted that the exponential

distribution is often wrongly used to model failure data that requires the use of more so-

phisticated distributions. Murphy et al. [80] believes that exponential distributions are

not appropriate for modelling the failure behaviour of products that age and are rather

suited for failure modelling of only electronic devices because electronic equipment do

not age.

Whilst the exponential distribution is only limited to modelling mid-life stages of

components, the weibull distribution is more robust statistical model that can ac-

count for all phases of a product’s operational life [76]. Weibull distribution could

either be a two-parameter distribution with only the shape and scale parameters or

three–parameter distribution when it includes the location parameter [7]. Unlike the

exponential model, the weibull assumes a component’s failure frequency could take any

of the forms: decreasing, constant or increasing which makes it even more useful for

modelling the various aspects: early life, mid-life or wear-out stages of a component’s

life [7]. When the shape parameter is 1, the weibull’s failure rate reduces to that of

an exponential distribution with constant failure rate; when the shape parameter is

greater than 1, the failure rate is increasing which means that the deterioration speed
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of a component is accelerated; on the other hand, when the shape parameter is less

than 1, the weibull’s failure rate is decreasing which means that the deterioration speed

is decelerated. Erturk et al. [81] used field data to perform reliability analysis of elec-

tronic boards. They combined exponential and weibull distributions to the same data

to estimate different hazard rate at various service time intervals.

Other models have also been applied for failure modelling in the literature. For

example, the normal distribution is found useful not only for modelling wear - out

failures but also for modelling failure modelling failure mechanisms based on stress

and strength properties of a product [79]. In contrast, normal distributions do not fit

well with data pertaining to failures in the early stages or mid – life of a product [7].

Log-normal distribution is another distribution which is also useful for modelling stress

and strength, and for modelling life data of products that show increasing failure rate

in their early stages and decreasing failure rates in the later stages [7, 79].

Whilst the aforementioned models require one to make an assumption of a compo-

nent’s failure behaviour, in practice, prior specification of components failures behaviour

may not always be possible or obvious [7]. Hence the need for non - parametric lifetime

models. Kaplan-Meier estimator is one of the commonly used, non-parametric models

for such scenarios. It is used to estimate the proportion out of a number of compo-

nents that will still be functioning at a certain time. Kaplan-Meier involves the use of

probabilities to estimate the proportion of surviving components. In this method, the

probability of survival of a component at a certain point in time is calculated based

on the cumulative probabilities of each preceding time. For example, for estimating

mean time to failure of components in an experiment, Kalaiselvan and Rao [82] com-

pared the mean time to failure (MTTF) from Weibull distribution with those from

non-parametric distributions.

Although components in a system deteriorate with usage time, they may also be

affected by other factors such as the operating environment, the maintenance effect

which might have impact on the deterioration rate [55]. In order to take the factors

into consideration, the proportional hazards model was proposed by Cox in 1970s [83].

The proportional hazards model is thereby powerful for modeling lifetime distribution
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to take account not only the age but also covariates which may influence the lifetime

distribution into consideration [76].

The advantage of the proportional hazard model is that, without making any spe-

cific assumptions about the form of the baseline hazard function, it is able to analyze

experimental data, compute maximum likelihood estimates and use likelihood ratio

tests to determine which explanatory variables are highly significant [76]. The weibull

and exponential hazard functions are mostly used as baseline hazard function. You and

Meng [84] studied preventive maintenance scheduling of systems subject to the effect

of imperfect preventive maintenance actions and variable operating conditions. There

are other forms of the proportional hazard model (See Gorjian [85] for extensions of

the proportional hazard model).

In this section we introduced lifetime models for failure modelling of single failures

of components. In practice some components are repairable and as such have recurrent

failure occurrences. In section 2.1.2 we will briefly introduce methods for modelling

recurrent failures.

2.1.2 Recurrent failures modelling

Failures of a repairable component may occur with some randomness in time. The

modelling framework used for recurrent event data which behave stochastically in time

is the one involving counting processes [66]. Counting processes belong to the family

of stochastic processes which describe the evolution of time dependent random vari-

ables according to some specific stochastic structure [78]. Other examples of stochastic

processes include the gamma process [75], wiener process [64], and IG process [65]. As

mentioned in section 2.1, the mechanisms that may give rise to failures are studied by

modelling the rate of failures per unit time. A counting process is characterised through

the intensity function λ(t). Unlike the hazard function in lifetime models, which can be

considered as instantaneous rate of failure, and the intensity function λ(t) is a global

failure rate in the sense that it accounts for rate of failures over multiple time intervals

(ta; tb].

Furthermore, in modelling recurrent failures from repairable components using
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counting process, the degree to which the component is repaired is factored in the

model. There are three main classification of repair actions: perfect repair, minimal

repair and imperfect repair. A perfect repair means that the component is brought

back to the same working condition as if it was new (as good as new). In this case,

the times between subsequent failures must necessarily be identically distributed. the

times between subsequent failures might be identically distributed. In addition, if these

failure times are independent, then the scenario defines a renewal process. One renewal

process commonly used in reliability literature is the HPP where the times between

failures are exponentially distributed, and its the failure rate is constant in time. The

number of failures in any time interval (ta; tb] in a renewal process follows a Poisson

distribution.

When minimal repair is performed, the component is brought to the condition it

was just before the failure occurred (as bad as old). In that case, the times between

subsequent failures might not be identically distributed. This defines a NHPP. In

contrast to the HPP, NHPP has intensity function λ0(t) which depends on time but

still retains the property that the number of failures in an arbitrary time interval follow

a Poisson distribution. A third repair assumption used in the literature is an imperfect

repair which may bring a component to any condition between as good as new and as

bad as old and could be modelled as a superimposition of renewal process and NHPP

model [86]. In section 2.1.2.1, nonhomogeneous Poisson process model is introduced.

2.1.2.1 Nonhomogeneous Poisson process

Ascher [87] introduced a model whose reliability is allowed to decrease with time, calling

this the ”bad-as-old” concept. The idea is that the inter-failure times are dependent in

time (but not on the failures themselves). In that case, the times between subsequent

failures might not be identically distributed. This defines a NHPP. NHPP has intensity

function λ0(t) which depends on time but still retains the property that the number of

failures in an arbitrary time interval follow a Poisson distribution.

A typical repairable product that experiences ageing will have the characteristic

that during its early life it will fail more frequently due to defects or installation errors
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[20]. This period is sometimes called the burn-in or the debugging period. After that,

the ”useful” life of the pipe begins where the failure rate is approximately constant and

smaller than that of the early failures period. Towards the end of its lifetime, ageing

has a significant effect on deterioration and the failure rate increases sharply. As a

result, the overall shape of the failure rate curve resembles a bathtub [20].

A common method for modelling the failure rate λ0(t) of a NHPP is the power law

model which is sometimes referred to as the Weibull model or the Duane model [88, 89].

A NHPP with power law intensity is often referred to as the Power Law Process (PLP).

As the name suggests, this model describes λ0(t) by raising time to a power:

λ0(t) = θρtρ−1 t > 0; ρ > 0; θ > 0, (2.4)

where θ is the scale parameter and ρ is the shape parameter that controls the shape

of the curve. ρ = 1 implies that the rate is constant (HPP); ρ > 1 means that the

function is increasing and ρ < 1 gives a decreasing λ0(t). By definition, λ0(t) = 0

at t = 0. It is worth mentioning that when using a power law for the NHPP, the

distribution of time to the first failure is Weibull and the distributions of inter-failure

times are truncated Weibull distributions where the truncation occurs at the time of

the immediate previous failure [20]. For that reason, the NHPP with a power law

intensity is also referred to as the Weibull process. A paper by Lawless [90] considered

the NHPP with an intensity function in which the baseline intensity function is either

semi-parametric or parametric. The author also discussed inclusion of random effects

in terms of a random intercept in the failure rate. Landers et al. [91] used the semi-

parametric proportional intensity model introduced by [92] and compared it with a

log linear NHPP. Other examples include Pulcini [93] that used a superposition of two

power law functions to capture the complete bathtub shape; Ryan [94] that explored

a NHPP with a time dependent mixture intensity function and Krivtsov [95] that

presented a family of parametric models to represent λ0(t).

In summary, NHPP model is useful for capturing the uncertainty of component’s

failures. As this thesis is interested in the data of systems with unobserved heterogeneity
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where the observed number of failures is in a count form and the system’s failure rate

changes over the time, NHPP is useful for modelling such data. NHPP model has been

frequently applied in many fields, for instance, noise exposure modelling [96], repairable

system reliability [62], software reliability analysis [97]. NHPP can deal with failure data

which is often considered non-stationary [98]. In addition, power law model is flexible

to describe various types of system’s phases [99]. Economou [20] note that power law

model enables analysing systems where the rate of occurrence of failures may be a

decreasing, constant, or increasing function of time, respectively. Such characteristics

might be exhibited in systems with unobserved heterogeneity. One limitation of the

NHPP model is that its model parameters are fixed and cannot reflect unit-to-unit

variation [69]. On the other hand, NHPP can be extended to include covariates and

random effect terms to reflect unit-to-unit variation using the cox model framework

[24, 67, 69]. The structure of the extended NHPP model is flexible such that various

unit-specific factors can be incorporated as covariates [69]. In sections 2.1.1 to 2.1.2 the

modelling of the failure process of a single component have been discussed. In section

2.1.3 we will briefly introduce procedures for drawing inferences from data.

2.1.3 Likelihood inference

Likelihood inference is based on the principle that given a statistical model, all in-

formation from the data that is relevant to inferences about the value of the model’s

parameters are contained in the likelihood function [100, 101]. Likelihood inference

forms the basis of classical methods like maximum likelihood estimation, and it plays

a key role in Bayesian inference [102]. Likelihood inference has been widely used to

study heterogeneity and dependence effects (See [24, 40, 41, 62, 63, 74, 103]). Likeli-

hood inference is useful for several reasons. First, likelihood inference provides a simple

way to deal with mis-specified models [104]. Second, likelihood inference has attrac-

tive asymptotic properties and has good small-sample behaviour even when models

are mis-specified [105, 106]. Third, likelihood inference allows one to compare models

[101]. In contrast, likelihood inference approach may not be preferable, for example, if

we only care about accounting for one dimension of the data, a task that a Method of
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Moments can be more suitable [101]. Method of Moments estimates model parameters

by matching the theoretical moments from the distribution with the observed moments

from the data [107]. Compared to likelihood approaches, Method of Moments may suf-

fer strong biases resulting from using small samples and may not efficiently use all the

existing information [101]. For the above reasons, likelihood inference will be adopted

in this thesis. In section 2.1.3.1, 2.1.3.2, and 2.1.3.3, Maximum likelihood estimation,

Bayesian inference and Empirical Bayesian method which are three established likeli-

hood inference procedures will be discussed.

2.1.3.1 Maximum likelihood estimation

Likelihood inference provides a framework for estimating unknown parameters of a

system in a way that the maximum likelihood estimate (MLE) is the parameter value

that makes the observed data most probable [108]. MLE is one of the most established

parameter estimation methods because it is intuitively appealing and it has many

desirable statistical properties [108, 109]. Under some reasonable conditions on the

statistical model, it can be shown that MLEs have the following asymptotic properties:

• Unbiasedness: the expected value of the MLE is equal to the true parameter

value.

• Efficiency: the MLE has the smallest possible variance among unbiased estimators

of the parameter.

• Normality: the sampling distribution of the MLE is Normal (Gaussian).

• Consistency: the MLE becomes arbitrarily close to the true parameter value.

These asymptotic properties hold as the sample size increases to infinity [108]. Of

course, no real dataset ever has an infinite number of observations [108]. For finite

sample sizes, these properties may not hold; for instance, the MLE may be biased

(systematically high or low relative to the true value of the estimate). Errors in the

estimates obtained from ML estimation method can be large especially when sample
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sizes are small [110]. However, it is often the case that these properties are approx-

imately satisfied in practice for reasonable sample sizes [108]. Some examples of the

MLE application in reliability literature can be found in [24, 62, 111].

2.1.3.2 Bayesian inference

Like the use of likelihood in maximum likelihood estimation procedure, likelihood func-

tions are also a key component of Bayesian inference. Suppose we have data D and a

likelihood model describing the distribution of the data with some unknown parameter

θ. Bayesian methods work by firstly placing some prior belief on the parameters’ dis-

tributions p(θ), the resulting posterior distribution of the parameters is calculated by

the Bayes rule:

p(θ | D) ∝ p(θ)× p(D | θ), (2.5)

where ∝ means “is proportional to.” It is worth noting that the shape of the posterior

depends not only on the prior and the observed data, but also on the sample size [108].

If there exists a finite mean for the posterior distribution, then the posterior mean is a

method of estimation and is written as:

θ̃ = E[θ] =

∫
θp(θ | D)dθ. (2.6)

Bayesian inference and MLE are similar in a way that when the sample size is large,

Bayesian inference often provides results for parametric models that are very similar

to the results produced by MLE [112]. However, compared with Bayesian inference,

MLE requires a large data set (or sample size) to achieve statistically significant results

[7]. Furthermore, under the MLE, model parameters are interpreted as fixed whereas

the Bayesian approach interprets the parameters as random variables [113]. Bayesian

methods provide a framework for dealing with unobserved heterogeneity problems due

to some reasons. First, given that unobserved covariate is commonly modelled by in-

troducing a random effect term [55], the uncertainties in the unobserved covariate can

be modelled using Bayesian method. Gelman et al. [114] note that Bayesian method is

useful for summarizing uncertainty, making estimates, and predictions using probabil-
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ity statements which are conditional on observed data and an assumed model. Second,

the uncertainty about the unobserved covariate can be reduced as more information is

obtained. Bayesian methods provide a way of combining prior information with data

such that past information about a parameter can be incorporated to form a prior

distribution for future analysis [108]. In contrast, there are some limitations with the

use of Bayesian methods. First, there is no correct way to choose a prior. Bayesian

inferences require skills to translate subjective prior beliefs into a mathematically for-

mulated prior and require considerable problem structuring to assess uncertainties with

all possible events [110]. Furthermore, the quantification of an expert’s uncertainty can

result in a significant cognitive burden and so needs to be managed with care [110].

Some examples of applications of Bayesian inference to heterogeneity problems can be

found in [115, 116, 117].

2.1.3.3 Empirical Bayes method

Empirical Bayes method is like the Bayesian method described in section 2.1.3.2 in

the sense that it combines the likelihood function and a prior distribution for statis-

tical inference. However, while Bayesian priors about the probability of an event are

usually constructed from subjective beliefs [118], empirical Bayes provides a means of

pooling observed data to form an empirical prior [110]. In that regard, empirical Bayes

can be classical statistics [119]. Empirical Bayes methods can be categorized as either

parametric empirical Bayes or nonparametric empirical Bayes. In parametric empirical

Bayes, one assumes that the prior distribution of the parameters is in some parametric

class. In nonparametric empirical Bayes, one assumes that the parameters are inde-

pendent and identically distributed [119]. Some examples of applications of empirical

Bayes include Green and Strawderman [120] that used empirical Bayes method to esti-

mate individual tree volume equation development. Brown [121] used empirical Bayes

method to predict the batting averages of players in Major League Baseball. Vesely et

al. [122] discussed application of empirical Bayes method to emergency diesel genera-

tors for binary data. Vaurio [123] used empirical Bayes method for estimating the rate

of common cause failures.
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In summary, empirical Bayes method is useful for dealing with unobserved hetero-

geneity problems for the following reasons. First, empirical Bayes avoids the limitation

of traditional Bayes in the sense that unlike the traditional Bayes method which relies

on subjective opinions, empirical Bayes relies on observed data [119]. Based on this

principle, empirical Bayes could allow the quantity of interest to be described by a

probability distribution and provide estimates by pooling empirical data from multiple

similar objects [124]. This can be very useful for estimating the random effect term for

components whose data is not available. Second, empirical Bayes method allows the

use of the observed data to estimate some features of the prior distribution [119]. To

estimate the prior parameters, a prior predictive distribution can be constructed which

represents the distribution of the observed data. Then, based on the Bayes theorem,

the prior distribution can be updated to obtain a posterior distribution as new ob-

servations become available [125]. Lastly, empirical Bayes can be combined with other

parameter estimation methods such as Maximum Likelihood Estimation and Method of

Moments for estimating the prior parameters [125]. Based on the above, the estimation

of the random effects at the component level is one of the problems in studies on un-

observed heterogeneity and empirical Bayes could be useful for estimating the random

effects terms. As noted by Slimacek and Lindvist [74], the ability to estimate random

effects at the component level is important for predictions and can provide important

additional information about the modelled system, however, it is often overlooked. An

application of empirical Bayes method to unobserved heterogeneity problem can be

found in [69].

So far, we have introduced general concepts and basic models which underpin pa-

rameter estimation and the modelling of the failure process of a single component. One

might also be interested in modelling system level failure behaviour. In this case, un-

observed heterogeneity in component failure processes, component dependence mecha-

nisms as well as the structure of the system are considered. In section 2.2 we will briefly

introduce multi-component systems failure modelling by considering: system configu-

rations in section 2.2.1, multi-state system reliability evaluation 2.2.2, the approach for

modelling unobserved heterogeneity in section 2.2.3 and dependence concepts in section

28



Chapter 2. Review of literature on heterogeneity, stochastic dependence effect and
modelling for multi-component systems

2.2.4.

2.2 System configurations, multi-state system reliability

evaluation, component heterogeneity and dependen-

cies

2.2.1 System configurations

The reliability requirement for products is increasingly set very high in order to meet a

predefined performance level. As such, maintaining a high reliability for an entire sys-

tem, requires that the individual components which make up the system have extremely

high reliability [126]. In addition, the functional arrangement of the components in the

system can have consequences for the system’s reliability [76]. Some of the main con-

figurations for modelling system reliability in literature are classified as series, parallel,

series-parallel, and k-out-of-n.

A series system configuration is one that is arrange such that the system functions

if all components in the system are functioning. In a series system, each component

is essential for the proper functioning of the system. The implication of a series con-

figuration for a maintenance policy can be in two ways. On one hand, the failure of

a single component can lead to high unavailability costs, so maintenance actions are

performed at a relatively early stage to prevent downtime [27]. On the other hand,

the series structure can imply that the complete system may have to be stopped to

perform maintenance on a certain component which offers an opportunity to perform

maintenance actions on the other components and possibly save cost [27]. The impli-

cations for reliability of the system is that a series system is not sensitive to stochastic

dependence because the system fails if one component fails [76].

A parallel system functions properly if at least one component in this system is

functioning. In a parallel configuration, only one component needs to function, while

any other component failure is typically assumed to have no impact on the system

performance. Parallel configuration of a system is a way to prevent a system’s un-
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availability through the use of redundancy [27]. The redundancy occurs in a way that

only a few components may be required for the system to work, thus the remaining

components could be placed as back up [127]. The implication of a parallel system

configuration for maintenance policies is that maintenance actions on the system can

be performed at a relatively late stage [27]. Unlike a series system, the implications of

a parallel configuration for a system’s reliability is that, the system become less reliable

when stochastic dependence effect is present on the components of the system [76].

Other system configurations include: series-parallel system configuration which is

composed of several series subsystems in parallel; a parallel-series system which is

composed of several parallel subsystems in series [128]; and k-out-of-n system which is a

system that functions if at least k number of components in this system are functioning.

Both the series and parallel systems are special cases of the k-out-of-n system, and can

be obtained by setting k equal to n or 1, respectively [76].

Sometimes reliability model for a system may not be based on any of the above

mentioned configurations [129]. Reliability model of complex systems are an example

of such situation. A complex system is composed of a number of components which

cannot be reduced to a series-parallel system [129]. Hwang et al. [129] provides a

review of some complex system structures.

2.2.2 Multi-state system reliability evaluation

Every engineered system is designed to perform an intended task. Some systems can

perform their tasks with various distinguished levels of efficiency usually referred to

as performance rates [130]. A system that can have a finite number of performance

rates is called a multi-state system (MSS) [130]. The performance rates exist because

engineering systems consist of different components whose availability have a cumula-

tive effect on the entire system’s performance. As such different numbers of available

units can provide different levels of the task performance as well as the states of the

system as completely working, total failure or partial failure [130, 131]. In contrast, a

binary system is the simplest case of a MSS having two distinguished states (perfect

functioning and complete failure). Reliability models suitable for reliability analysis of
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binary systems have been introduced in sections 2.1.1 and 2.1.2. The number of system

states that needs to be considered as well as the increasingly high requirements for

accurate reliability evaluation and optimal design make it difficult to use traditional

binary reliability techniques [130]. Reliability analysis considering multiple possible

states is known as multi-state (MS) reliability analysis. Multi-state system reliability

models allow both the system and its components to assume more than two levels of

performance. From reviewing reliability literature, there are three common methods

that are often used for MSS reliability assessment: Monte Carlo methods, stochastic

process approach and universal generating function approach. In section 2.2.2.1 to

section 2.2.2.3, a review of methods for multi-state system reliability is presented.

2.2.2.1 Monte Carlo methods

Monte Carlo methods, also known as Monte Carlo simulation, are often used in simu-

lation of physical and mathematical systems [132]. The idea of Monte Carlo method is

the generation of random events in a computer-based model, the generation of random

events are repeated many times and the number of a specific event is counted [132].

With increasing computer speed, Monte Carlo methods have been widely applied to

studies on heterogeneity and dependence. For example, Zio et al. [133] proposed a

Monte Carlo simulation approach that allows modelling the complex dynamics of multi-

state components subject to operational dependencies with the system overall state.

Asfaw and Lindqvist [62] study the consequence of ignoring unobserved heterogeneity

in system reliability prediction. Zio and Podofillini [134] used Monte Carlo simulation

to estimate all the importance measures of the components at a given performance level

in a multi-state series-parallel system. Taghipour and Kassaei [13] proposed an opti-

mization model based on simulation for periodic inspection of a k-out-of-n load-sharing

system over its lifecycle. Monte Carlo methods can be used to solve the reliability

prediction problem of almost every real world system that cannot be solved analyti-

cally [16, 131]. However, efficient Monte Carlo algorithms are often difficult to develop.

Another issue of concern is the time and expenses involved in the development and

execution of the method [130].
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2.2.2.2 The universal generating function

Universal generating function (UGF) method is an analytical modeling approach for

reliability assessment of multi-state systems [135]. UGF is a method to describe multi-

state components and construct the overall model of complex multi-state systems. UGF

uses the system operating states,its corresponding probabilities, as well as system con-

figuration to obtain the system reliability analysis [136]. For application of UGF,

Wang et al. [137] and Ding et al. [138] used UGF to model wind generators. Levitin

et al. [139] presented an algorithm for evaluating performance distribution of complex

series–parallel multi-state systems with propagated failures and imperfect protections.

Li and Zio [135] used UGF for reliability assessment of a distributed generation system.

2.2.2.3 Stochastic process models

Stochastic process models are commonly used for the MSS reliability analysis. Stochas-

tic process models, as applied for MSS, are of two forms - discrete or continuous. A

continuous-time stochastic process is a stochastic process for which the index variable

t takes a continuous set of values, as contrasted with a discrete-time process for which

the index variable t takes only distinct values [140]. Continuous-time stochastic process

have been used for MSS reliability analysis to describe the degradation of systems. In

the case of degradation modelling, stochastic process models describe the evolution of

one or more degradation parameter by gradual, stochastic increments over time, and the

failure of a system occurs when the degradation parameter value reaches a predefined

threshold [141]. The degradation process in a system is usually traced by measuring

one index or multiple ones [140]. The degradation measures can be visibly observed or

not. For example, the crack growth in civil infrastructures can be visually recorded,

while the reduction in a voltage output of an electronic device cannot be observed and

could be recorded by monitoring sensors [140]. A degrading system is assumed to have

more than two states. The states include perfectly functioning, several partial failed

states and complete failure. The partial failed states are intermediate states which are

unobservable or hard to be measured [76].
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Some examples of works on degradation modelling include: Welte et al. [142] that

model the degradation process of hydro power plant by a Markov chain with four finite

states where the sojourn time of the process is modeled by gamma distribution. Lin

et al. [143] studied reliability assessment of systems subject to dependent degradation

processes and random shocks using a combination of multi-state models (MSM) and

physics-based models (PBM). The MSM and PBM were used to describe the degra-

dation process in a discrete way considering limited degradation data. Kharoufeh and

Cox [144] estimate the residual life distribution for a single-unit system subject to

Markovian environment-based degradation with finite states. They consider that the

environment follows a time-homogeneous Markov chain with finite states with different

degradation. Continuous-time stochastic process models such as gamma process [75],

wiener process [64], and IG process [65] have also been used for degradation modelling.

Another stochastic process for modelling MSS is a Markov chain. A Markov chain

is a stochastic process with a discrete state space and discrete time space [140]. Markov

chains with continuous-time are referred to as Markov processes [140, 145]. The model

assumes that the conditional distribution of a future state of the system is determined

only by the present state and not by previous state or the time at which it reached the

present state [146]. Thus, the sojourn time of each state is exponentially distributed

and the transition probability to each state is independent of the process history. The

Markov model evaluates the probability of jumping from one known state into the next

logical state. The process continues until the system being considered has reached the

final failed state or until a particular mission time is achieved. Natvig and Streller

[147] first applied the Markov model to MS system reliability evaluation. Xue and

Yang [148] proposed combining the Markov chains and coherent structure function.

Sometimes a Markov chain cannot describe a systems deterioration very well, hence a

semi-Markov process is used to model the reliability of the system [16]. A semi-Markov

model is an extension of the Markov chain with discrete states and continuous time

[149]. For instance, Wang et al. [38] studied a load-sharing parallel system with failure

dependency using a semi-Markov model. They introduced a dependence function to

quantify the failure dependency between components.
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Markov models are useful for reliability prediction of systems with dependencies for

several reasons. First, the assumption that a system has a finite state space and a series

of possible transitions between these states suits many systems. For instance, Markov

chains are one of the first MSS models that found application for the reliability as-

sessment of multi-state power systems and some types of communication systems even

before MSS was theoretically defined [130]. Second, using a Markov model, various

failure modes, changing failure rates, standby and maintenance activities all can be de-

scribed as different states and all corresponding transition probabilities can be derived

[16]. For instance, Shao and Lamberson [150] examined the reliability and availability

of shared load repairable k-out-of-n: G system with imperfect switching. Sharifi et al.

[151] studied reliability of a k-out-of-n: G system with increasing failure rates. Liang

and Parlikad [35] developed a condition-based maintenance strategy for an asset with

critical components and non-critical components. Broek et al. [152] investigated joint

condition-based production and maintenance policies for two-unit systems with eco-

nomic dependency and whose units have adjustable production rates. Third, Markov

models are flexible for describing different evolution of systems, for instance, when the

system evolves in time according to the same transition rate as from the beginning [153]

or different transition rates [154]. However, sometimes, it is not easy to find all transi-

tion probabilities as they may be numerous for large systems [16, 130]. Furthermore,

the Markov equations are difficult to solve analytically for some systems [16]. In sec-

tion 2.2.2 we have introduced the MSS models used for system reliability evaluation. In

section 2.2.3 we will introduce methods for modelling unobserved heterogeneity effect

for system reliability prediction and review key literature.

2.2.3 Modelling unobserved heterogeneity effect in component fail-

ures

Traditional reliability models such as Weibull and lognormal models deal with the sim-

plest case of independent and identically distributed data [61, 62]. The models assume

that the study population is homogeneous. When studying the problem of predicting

the behaviour of a system based on failure data from several similar systems, there
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may be unobserved heterogeneity among the systems which, if overlooked, may lead

to inaccurate prediction of a system’s failure behaviour [62, 69, 155]. Unobserved het-

erogeneity among systems may be due to differences in material, differences in design,

differences in location and so on [21, 24]. An example of such a case is a manufacturing

system which may produce different products under different workloads [55].

If covariates are known, they can be included in the analysis, but it is often impossi-

ble to include all important risk factors, either because one has little or no information

at the component level [61]. Sometimes, we may not know the relevance of the risk fac-

tor or even that the factor exists [156]. In other cases, it may be impossible to measure

the risk factor without great financial cost or time effort [156]. As a result, there could

be specific individual factors that result in unobserved heterogeneity of the lifetimes

which cannot be captured by observed covariates [61]. In section 2.2.3.1, 2.2.3.2 and

2.2.3.3, mixture distributions, frailty models and frailty distributions commonly used

for modelling unobserved heterogeneity will be discussed. A summary is provided in

section 2.2.3.4.

2.2.3.1 Mixture distributions

A mixture distribution is the probability distribution of a random variable that is

derived from a collection of other underlying random variables each selected with a

given probability [157]. The mixture distribution is a multivariate distribution. The

distributions of the underlying random variables that are combined to form the mixture

distribution are called the mixture components, and the probabilities (also referred to

as weights) associated with each component are called the mixture weights [157]. Let

Ti be a positive-valued random variable. The distribution of Ti is defined as a mixture

of lifetime distributions if its density function can be represented as:

f(ti | ψ, θ) =
∫
n
f(ti | ψ,wi)dP (wi | θ), (2.7)

where f(ti | ψ,wi) represents the density function of a lifetime distribution parameter-

ized in terms of ψ and wi. wi is a realized value of a random variable Wi which has

35



Chapter 2. Review of literature on heterogeneity, stochastic dependence effect and
modelling for multi-component systems

distribution function PWi(wi | θ).

The mixture distribution has the property that the reliability function retains the

same structure as in Eq.(2.7) but is not valid for the hazard function. A similar repre-

sentation for the hazard function exists, however, it involves a different mixing distribu-

tion. A study of the distributions generated by Eq.(2.7), and its properties is presented

in [158]. This approach intuitively leads to flexible distributions based on a known

distribution by mixing over a parameter. Mixture models are flexible in the sense that

varying the underlying model, generates a wide class of lifetime distributions [159]. A

wide variety of shapes and tails can be generated by Eq.(2.7) which can accommodate

unobserved heterogeneity [156, 159]. Some applications of Mixture models to unob-

served heterogeneous can be found in [160, 161, 162]. Furthermore, mixture modeling

can be interpreted as the introduction of a random effect on the reliability distribution.

In the literature, the random variable Wi is referred to as frailties, a term that was

originally introduced by Vaupel et al. [163]. In this context, the model in Eq.(2.7) is

usually called univariate frailty model [159]. Some examples of frailty modelling can

be found in [62, 164, 165].

Mixture model has occasionally been used to describe a class of models that are

referred to as compound probability distributions. A compound probability distribution

is the probability distribution that results from assuming that a random variable is

distributed according to some parametric distribution whose parameters themselves are

random variables (latent variables) [162]. The compound distribution is the result of

marginalizing (integrating) over the latent random variable representing the parameter

of the parametric distribution. For example, a Poisson-Gamma mixture derived from a

Poisson distribution whose rate parameter is assumed to be a random variable following

a Gamma distribution. The resulting compound probability distribution (Poisson-

Gamma mixture) can be shown to follow a negative binomial distribution [162].

Compound probability distributions have been widely applied to study data that

are often characterized by overdispersion [162, 166]. For instance, Zou et al. [167]

proposed the Sichel generalized additive models to handle severe dispersion in crash

data. The Sichel (SI) distribution is a mixture of Poisson distribution and generalized
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inverse Gaussian distribution. Wu et al. [162] proposed the negative binomial (NB)

model (also called Poisson-gamma) as a good alternative to the Poisson model for

analyzing crash data where the variance is greater than the mean. [166] proposed the

Poisson inverse Gaussian (PIG) model to the same data set.

There is a relationship between the compound probability distribution and the no-

tion of posterior predictive distributions in Bayesian models. For instance, consider

data where some parts of the data are observed, and the others are missing. If we want

to make predictions about the missing data points given the latent variable and the

observed data, a posterior predictive distribution like the Bayesian posterior predic-

tive distribution is derived for the missing data points [168]. The posterior predictive

distribution for a missing data x̃ is given by:

p(x̃ | x) =
∑
z

p(z | x)p(x̃ | z;x), (2.8)

where p(z | x) = p(z|x)p(z)∑
z p(z|x)p(z)

is the posterior distribution of z given the observed data

x.

2.2.3.2 Frailty model

A frailty model is a random effects model for failure data, where the random effect

(frailty) has a multiplicative effect on the baseline hazard function [156]. It can be used

for univariate (independent) lifetimes, that is, to describe the influence of unobserved

covariates in a proportional hazards model (heterogeneity) [156]. Frailty model assumes

that the hazard of an individual depends on an unobservable, age-independent random

variable W , which acts multiplicatively on the baseline hazard function:

λ(t;W ) =Wλ0(t), (2.9)

where W is considered as a random mixture variable, varying across the population.

This frailty model is commonly referred to as a univariate frailty model [164].

The term frailty itself was introduced by Vaupel et al. [163]. In its simplest form,

frailty is an unobserved random proportionality factor that modifies the hazard function
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of an individual, or of related individuals [164]. The key idea of frailty models is

that individuals have different frailties, and that the frailest will die earlier than the

lesser frail. Consequently, systematic selection of robust individuals takes place, which

distorts what is observed [156]. This may be useful where changes in the hazard function

is of interest. An example could be death rates of cancer patients where the longer the

patient lives beyond a certain time, the better his or her chances of survival are. In this

case, the population intensity starts to decline simply because the high-risk individuals

have already died. In contrast, the intensity of a given individual might continue to

increase [156]. Note that frailty modelling is random effect modelling in the sense that

a model parameter is a random variable. However, unlike traditional random effect

modelling where the random variables are allowed to be positive or negative, in frailty

models the random variables are only allowed to be positive random variables [169].

Whilst random effects models are similar to Bayesian methods because they assume

a distribution for the parameters, random effect models including frailty models are not

Bayesian [170]. To be Bayesian, a distribution will be specified for the random effects, a

second set of distributions will be specified for each parameter that defines the random

effect distribution, and distributions will be specified for all the fixed effects parameters

in the model [170]. In order words, all parameters are random effects under the Bayesian

paradigm [170]. In contrast, if we want to predict a random effect for a component,

one will use the component’s data and resort to Bayes rule. Here the random effects

distribution works like a prior and the method can be described as empirical Bayes

[171]. Some examples of Bayesian frailty modelling can be seen in [116, 172, 173].

Some extensions of the univariate frailty model are Shared frailty models, Correlated

frailty models and Cure rate models. Shared frailty models are one of the most popular

extensions of the univariate frailty model. It aims to account for correlation between

clustered observations [164, 174]. These models are used for grouped datasets where,

conditional on the observed covariates, survival times are assumed to have the same

distribution within each cluster [164]. In such a case, the frailty terms take a common

value for all individuals belonging to the same group [175]. As a result, the frailty term

introduces intra-cluster dependencies. A survey about this subject can be found in
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Duchateau and Janssen [175]. Correlated frailty models assume that assigning the same

frailty value to all observations within a cluster is not always appropriate and attempt

to model intra-cluster variations as well [165]. Hence, correlated frailty models assign

a joint distribution to the mixing parameters associated to each group (for example

[117, 175, 176]). Cure rate models are suitable for situations where there is a proportion

of individuals who will never experience the event of interest and another that will

experience the event of interest [160]. Following a medical nomenclature, individuals

that will not experience the event of interest are commonly labelled as cured units

[156, 160]. Frailty models accommodate these type of event data by using a mixing

distribution that assigns a positive probability to not observing the event of interest. In

this case, the hazard function is equal to zero [156]. For example, Price and Manatunga

[161] combined the cure model with a frailty distribution and showed that the extended

cure model can handle both the heterogeneity with the frailty distribution but also the

cured fraction as well.

The study of heterogeneity is widely applied in various fields like politics [177], and

medical research [178]. In survival analysis, the effects of unobserved heterogeneity

have been studied in several papers including but not limited to [163, 165, 172, 174].

Apart from unobserved heterogeneity across individuals, the dependence of the events

experienced by an individual have also been studied using correlated frailty models

[179]. This is because the recurrent events of an individual are possibly correlated

because of underlying characteristics of the individual [180, 181]. In survival analysis,

the papers that have studied correlated events are not limited to [103, 117, 172, 182].

For non-repairable systems, some examples include [56, 57, 58] that used the frailty

model to analyse the lifetime of locomotive wheels. Lin and Asplund [56] considered

an integrated data approach to reliability assessment of locomotive wheels by consid-

ering both degradation data and re-profiling data. They studied the log linear life

stress model and weibull baseline failure rate. Lin et al. [57] incorporated gamma

shared frailty model into a piecewise constant hazard model to explore the impact of

a locomotive wheel’s position on its service lifetime and to predict its other reliability

characteristics. Lin et al. [58] compared classical reliability test models with bayesian
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piecewise constant hazard frailty model and found them to be useful for analysing

degradation data.

For repairable systems, unobserved heterogeneity has been studied with the mini-

mal repair assumption. Early works include [183, 184]. Lindqvist et al. [63] developed

a heterogeneous trend renewal process model, which generalises the HPP and NHPP,

to capture unobserved heterogeneity in multiple repairable components. They intro-

duced a gamma distributed multiplicative factor on the failure intensity. D’Andrea

[66] suspected heterogeneity in the failure time data for mining trucks in Brazil. They

assumed that the mining trucks were subject to minimal repair and thus modelled the

data using NHPP with a gamma distributed frailty term.

Asfaw and Lindqvist [62] investigated heterogeneous population composed of inde-

pendent NHPP using gamma-distributed frailty. Lindqvist and Slimacek [67] extended

the basic NHPP to include covariates and unobserved heterogeneity in analysing wind

turbine failure data. Lindqvist and Slimacek [74] developed the method for parameter

estimations in heterogeneous NHPP population when the distribution of frailty is un-

specified. The NHPP model was extended to include covariates in [24]. Most research

on minimal repair have parametrically modeled heterogeneity using the gamma frailty

model in which unobserved effects are assumed to be gamma distributed.

For studies on repairable systems that consider perfect or imperfect repair assump-

tion, Lindqvist et al. [185] developed a trend renewal process model which is a general

case of NHPP and renewal process. They considered gamma distribution and power

law model as baseline. The TRP model was illustrated on Tractor engine and Air

conditioner data. Yin et al. [68] applied a generalized accelerated failure time frailty

model to study systems subject to imperfect preventive maintenance. Liu et al. [186]

investigated the effect of heterogeneity on the failures of repairable systems that un-

dergo imperfect repairs. The basic model they considered is the Kijima type II virtual

age process with constant repair efficiency and a Weibull baseline distribution. The

heterogeneity between the systems were assumed to be gamma-distributed.

Unobserved heterogeneity effect has also been studied on degradation data when

components observed over time are assumed to degrade at different rates, even though
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there is no apparent difference in treatment or their environments (e.g., unobserved

heterogeneity in degradation data modelled by: gamma process [75], wiener process

[64], IG process [65]. A review on degradation modelling for systems with unobserved

heterogeneity can be found in [55].

Another thing worth noting is that frailty modelling approach is also useful for

studying spatial dependence with respect to spatial correlated events. Spatial correlated

events occurs when it is suspected that there is spatial correlation between observations

in different geographical locations [187, 188]. In biostatistics literature the approach has

been used for studying spatially correlated survival data and for analysing patterns in

health and ecological related data (see for example [187, 188, 189, 190, 191, 192]). When

frailty model is applied for studying spatial dependence effect, log normal distribution

is used. Log normal frailty models are useful in modelling dependence structures in

multivariate frailty models [193]. The frailty model makes use of a single parameter to

capture the spatial dependence.

2.2.3.3 Frailty distributions

The choice of the frailty distribution is very important in the area of frailty modelling. A

suitable distribution for heterogeneity modelling is one with a positive random variable.

The shape of the distribution also plays an important role in frailty modelling. The

tails of the distributions can determine the type of dependence a frailty model describes.

Distributions with a large right tail such as positive stable distribution led to strong

early dependence, whereas distributions with a large left tail such as gamma, and

Weibull distributions lead to strong late dependence [181].

There are various frailty distributions that have been suggested in the literature,

however, the gamma and IG distributions are the two commonly used distributions.

According to Gachau [169], some of the other suggested distributions are not used

in practice due to software limitations and the lack of sound estimation procedures

for more complex frailty models. The one-parameter gamma distribution, which was

first proposed by Clayton [194], is the most popular frailty distribution since it is very

tractable. Hougaard [195] also proposed the gamma, and the IG distributions for frailty
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model. Oakes [196] introduced the IG and log-normal models for the distribution of

frailty. We will focus on the IG and gamma distributions in this thesis.

The gamma distribution takes variety of shapes as the shape parameter varies.

When the shape parameter equals 1, the distribution is identical to the exponential

distribution. The gamma distribution has simple density function. Although gamma

frailty models does not have closed form expressions for reliability and hazard functions,

from a computational view, it fits well to frailty data and it is easy to derive the closed

form expressions for unconditional reliability and hazard functions. For this reason,

this distribution is used often in most applications [197]. When a gamma distribution

is applied to model frailties, the frailty terms in the conditional likelihood function can

be integrated to give a simple expression for the marginal likelihood. Thus, it is easy

to obtain parameter estimates of a gamma frailty model by maximizing the marginal

likelihood. The likelihood construction is discussed in more detail in chapter 3.

Early applications of gamma frailty model can be found in several disciplines. For

instance, Lancaster [198] used this model for the duration of unemployment. Vaupel

[163] used the gamma distribution in their studies on population mortality data from

Sweden. Aalen [199] studied the expulsion of intrauterine contraceptive devices. Eller-

mann et al. [200] studied recidivism among criminals using gamma-Weibull model.

Andersen et al. [201] used the gamma frailty model to check the proportional hazards

assumptions in his study of malignant melanoma. The gamma distribution has two

advantages as a frailty distribution. The frailty distribution of the survivors at any

given age is again a gamma distribution, with the same parameter and a different scale

parameter [197]. The second advantage is that the frailty distribution among the per-

sons dying at any age is also a gamma distribution, with the same shape parameter

plus one, and a scale parameter as a function of the age at death [197].

As an alternative to the gamma distribution, Hougaard [202] introduced the IG

as a frailty distribution. The IG distribution has a history dating back to 1915 when

Schrodinger and Smoluchowski presented independent derivations of the density of

the first passage time distribution of Brownian motion with positive drift. The IG

distribution has a unimodal density and is a member of the exponential family. Its
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shape resembles that of other skewed density functions, such as lognormal and gamma

distribution. Gacula et al. [203] analysed shelf life of several products using the IG

law and found the distribution to be a good fit. Vilmann and Svend [204] have studied

the histomorphometrical analysis of the influence of soft diet on masticatory muscle

development in the muscular dystrophic mouse. The muscle fibre size distributions were

fitted by an IG. Barndorff [205] considers a finite tree whose edges are endowed with

random resistances, and shows that, subject to suitable restrictions on the parameters,

if the resistances are either IG or reciprocal IG random variables, then the overall

resistance of the tree follows a reciprocal IG law. For more real-life applications (see

[206]).

Chhikara et al. [207] studied the IG distribution and found that there are many

striking similarities between the statistics derived from this distribution and those of the

normal distribution. These properties make the IG potentially attractive for modeling

purposes with survival data [165]. The IG distribution has some advantages as a frailty

distribution. It provides much flexibility in modelling, when early occurrences of failures

are dominant in a lifetime distribution and its failure rate is expected to be non-

monotonic [165]. In such situations, the IG distribution might provide a suitable choice

for the lifetime model. Also, IG is almost an increasing failure rate distribution when it

is slightly skewed and hence is also applicable to describe lifetime distribution which is

not dominated by early failures [165]. Secondly, Hougaard [202] remarked that survival

models with gamma and IG frailties behave very differently, noting that the relative

frailty distribution among survivors is independent of age for the gamma, but becomes

more homogeneous with time for the IG. The conclusion was derived by observing the

coefficient of variation of the two frailty distributions of survivors. For the gamma

distribution, this is a constant. For the IG distribution, the coefficient of variation is a

decreasing function of time. The IG distribution has a shape that resembles the other

skewed density functions, such as log-normal and gamma. Duchateau and Janssen [175]

fit the IG frailty model with Weibull hazard to the udder quarter infection data.
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2.2.3.4 Summary on unobserved heterogeneity

Traditional reliability methods in reliability analysis assume that populations are ho-

mogeneous, meaning all individuals have the same risk of failure. As mentioned above,

it is often important to consider the population as heterogeneous, that is, a mixture of

components with different failure rate.

Mixtures of life distributions is useful for modelling unobserved heterogeneity prob-

lems, particularly when traditional models are not able to capture this feature of the

data for the following reasons. First, a wide variety of shapes and tails can be generated

by Eq.(2.7) which can accommodate unobserved heterogeneity [156, 159]. Second, if an

(underlying) distribution is underpinned by theoretical or practical reasons, the same

reasons hold for the mixture model in the presence of unobserved heterogeneity [159].

Conditional on the mixing parameters, lifetimes are distributed as in the underlying

model but with a different value wi for each individual component. Lastly, the extent

of unobserved heterogeneity is controlled by the spread of the mixing distribution. If

n is a finite set of values, the distribution of Ti is a finite mixture of life distributions

whereas if n contains a single value, the mixture recovers the original underlying distri-

bution (no unobserved heterogeneity) [159]. Discrete mixtures of lifetime distributions

are explored in [208, 209, 210] among others. For the case in which wi in Eq.(2.7) is a

continuous random variable, some studies can be found in [163, 174, 175].

Mixture modeling can be interpreted as the introduction of a random effect on the

reliability distribution and the random variableWi can be referred to as frailties. Thus,

the mixture model in Eq.(2.7) can be called univariate frailty model [159]. Frailty mod-

els which are based on hazard functions have been widely used for studying unobserved

heterogeneity for certain reasons. One of the reasons this model is so popular is be-

cause of the ease with which technical difficulties such as censoring, and truncation are

handled by hazard-based models [156]. This is due to the interpretation of the hazard

function as a risk that changes over time [156]. In addition, the model allows for the

entering of covariates in order to describe their influence and to model different levels

of risk for different subgroups. However, in general it is impossible to include all rele-
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vant risk factors, perhaps because we have no information on individual values, which

is often the case in many studies (for example in demography [156] and in reliability

[61]). Lastly, beyond representing unobserved heterogeneity between specific individ-

uals, frailty models can also accommodate more complex data structures [159]. For

the above reasons this thesis will focus on modelling unobserved heterogeneity using

frailty models. So far, we have presented methods for modelling unobserved hetero-

geneity effect for system reliability prediction and key literature. In section 2.2.4 we

will introduce dependence concepts used for system reliability prediction.

2.2.4 Dependence concepts

Dependencies occur due to several factors which range from the design of the system,

maintenance actions on the system’s components, and shared environmental conditions

to name a few [25]. Thomas [26] was first to identify the forms of dependencies (in-

teractions) that occurs between components in a system. These were identified as;

economic, structural or stochastic.

Stochastic dependence involves the influence of a state change between component.

The state change might be caused by degradation factors like age or failure rate [211].

Economic dependence occurs when components are joined by the cost of their collective

spare parts. Here it is assumed that it cost less to buy replacement parts for a group of

components [211]. Structural dependence is mostly observed in coupled systems where

a working component has to be removed in other to repair the failed component hereby

resulting in the downtime of the working component [211]. Stochastic dependence

focuses on interaction between the failure mechanisms of components [27]. Economic

dependence focuses on the maintenance activities performed on the components while

structural dependence is concerned with the placement of components in the system

[27].

Keizer et al. [27] introduced a new form of dependence as resource dependence.

According to Keizer et al. [27], resource dependence occurs when multiple components

are connected through, e.g. shared spares, tools, or maintenance workers, budget and

so on. See Keizer et al. [27] for more on resource dependence. In section 2.2.4.1
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and 2.2.4.2, structural and economic dependencies will be briefly discussed respectively

while stochastic dependence will have a deeper review in section 2.3 because we are

interested in spatial dependence with respect to stochastic dependence between com-

ponents.

2.2.4.1 Structural dependence

Structural dependence occurs if components structurally form a part, such that main-

tenance of a failed component implies shutting down other working component [26].

Structural dependence concerns the structural, and static relationships between differ-

ent components. Of all the main classifications of dependencies studied in the litera-

ture, structural dependence is the least studied without considering other dependence

mechanism [27]. Structural dependence is mostly observed in coupled systems where a

working component has to be removed in other to repair the failed component hereby

resulting in the downtime of the working component [211]. The reason for this is that

structural dependence involves explaining how one component’s performance, mainte-

nance or failure affects another because of the way the system is coupled [27]. Camci

[212] studied a system in which a working component is shutdown by the maintenance

personnel due to failure of or maintenance action on another component.

Keizer et al. [27] classified structural dependence as technical dependence or per-

formance dependence. Technical dependence involves restrictions that one might en-

counter in the usage of or maintenance of components because of a system’s highly

technical configuration. Performance dependence occurs when the performance of a

system depends on both the performance of its components and their configuration

within the system. Performance dependence also referred to as functional relationships

of series, parallel, k-out-of-n and so on which were introduced earlier in section 2.2.1.

From the definition of technical dependence, one may notice two forms of restrictions

emerging which are based on maintenance and usage. Usage restrictions occurs when

the failure of or maintenance on a component can have negative impacts on other

components. One example concerns the processing of milk, where different processes

have to take place shortly after each other, and all related components (such as dryers
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and mixers) are coupled via pipelines [27]. Maintenance restrictions occurs in a situation

where in order to perform maintenance actions on a certain component one might need

to either perform maintenance on other components or prohibit maintenance on the

others. An example concerns the tires of an airplane, which are required to have the

same thickness and are thus replaced jointly [27]. Dismantling working components to

fix a faulty component, because they block access to it, could make them damaged as

well and require maintenance [27].

2.2.4.2 Economic dependence

Economic dependence pertains to whether maintenance actions can either save costs

(economies of scale) or become costly in form of safety requirements, or production

losses [26]. The dependence occurs when components are joined by the cost of their

collective spare parts. Here it is assumed that it cost less to buy replacement parts for

a group of components [211]. The two forms of economic dependence identified in the

literature are negative and positive economic dependencies.

Positive economic dependence occurs when maintaining several components simul-

taneously is cheaper than maintaining them separately [213]. This occurs, for instance,

when high costs are involved in travelling to a location where maintenance activities

have to be executed on windmills at sea [27]. In contrast, a system is subject to nega-

tive economic dependence when maintaining several components simultaneously leads

to higher costs than maintaining them separately. According to Nicolai and Dekker

[214], such negative economic dependence can be present in systems with manpower

restrictions, safety requirements, or production losses, which are usually incorporated

via restrictions in the maintenance model. However, such restrictions are examples of

structural dependence or resource dependence [213].

Given that structural and stochastic dependencies can occur between components

of a multi-components system, how to schedule an effective maintenance action on the

components may be the next concern to keep the system functional [27]. Maintenance

actions on a system incurs costs and the costs related to a certain maintenance policy

can be influenced by the degree of economic dependence. As a result, a maintenance
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manager may have to decide whether it is better to perform group maintenance or

individual maintenance given the economic dependence [27].

Now that we have introduced component failure modelling, system configuration,

unobserved heterogeneity, and dependence concepts; in section 2.3 we will review key

literature pertaining to the forms of stochastic dependence effect studied for multi-

component systems. We will also review existing modelling approaches for studying

stochastic dependence effect.

2.3 Stochastic dependence and modelling

Stochastic dependence occurs if the state of a component influences the lifetime dis-

tribution of other components, or if there are causes outside the system which bring

about simultaneous failures and hence correlate the lifetimes [211]. Stochastic depen-

dence means that the failure of one component can affect or modify one or more of

the remaining components of the system. Stochastic dependence is also referred to as

failure dependence or failure interaction in reliability literature.

Murthy and Nguyen [215], and [216] introduced the two forms of failure interaction

as: Type I, and Type II. Type I failure interaction occurs when the failure of one

component can either induce simultaneous failure of the other components or have no

effect on them. Type II failure interaction occurs when the failure of a component only

induces an increase in the failure rate of the other components. Nicolai and Dekker

[217] put the Types I and II failure interactions together into one definition that the

failure of a component could either affect the failure rate of other components or cause

their immediate failure. This definition is sometimes referred to as Type III.

Whilst failure interaction addresses the dependence between components when fail-

ure occurs, degradation interaction can also happen. Degradation interaction occurs

when the state of one component influences the state of other components without

failure of the influencing component [27] (see [27], and [218] for details on degradation

interactions for multi-component systems).

The review of stochastic dependence literature will be done in two parts. The studies

that involve stochastic dependence will be classified either under failure interaction, or
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load-sharing. Then a review of the models used for studying each stochastic dependence

effect will be presented. Failure interaction occurs when the failure of one component

can cause damage to other components which can lead to instantaneous failure or

increase in the deterioration level of these components. Load-sharing is when the load

of a failed component is taken up by the remaining working components leading to

an increased deterioration in these components. The review of failure interaction and

load-sharing dependence will be presented in section 2.3.1 and 2.3.2 respectively. Lastly

we will present the research gaps in section 2.4.

2.3.1 Failure interaction

Failure interaction occurs when the failure of one component can cause a major, one-

time, damage to other components leading to an increase in their deterioration level or

even an immediate failure of these components [27]. The concept can be seen in the

definition of stochastic dependence by Dekker [211] as the situation where the state

of a component influences the lifetime distribution of other components. For example,

a propeller can come off of an airplane and pierce the fuselage, causing tremendous

additional damage and safety risks [27]. Another example can be observed in a gearbox,

where defects in a bearing will cause it to vibrate. The deterioration of the subsystem

that includes related shaft and several gears can accelerate due to the excessive vibration

caused by the bearing [219]. This forms of stochastic dependence will be referred to as

failure interaction in this thesis.

Failure interaction interactions assumes that components in the system can be split

into two groups: the influencing components and the victim components where the

influencing components affects the victim component by some factors such as vibrations

which acts as shocks (e.g., see Sun et al. [219]). Whether a system is well-designed

or not, it is assumed that it is merely impossible to perfectly prevent an interaction

with external factors [220]. According to Sung et al. [220], the effect of external shocks

is particularly important for mechanical systems that often have a protective external

component subject to the state of the surrounding environment. Nakagawa and Murthy

[221] derived the optimal number of failures to minimize the expected cost per unit of a
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two-component system with shock damage interaction for an infinite time case. Satow

and Osaki [222] extended the work of Nakagawa and Murthy [221] and proposed a

two-parameter (T, k) replacement model for a two-component system subject to shock

damage interaction. Where the first component is repaired whenever it fails. Failure

of the first component occurs according to a NHPP and causes damage to the second

component. The damage is accumulated in the second component. Lai and Chen [223],

and Lai [224] proposed an economic periodic replacement model for a two-component

system with failure rate interaction and with or without external shocks. The system

is assumed to be completely replaced upon failure, or preventively replaced at age T ,

whichever occurred first. Sung et al. [220] derived a long-term replacement policy for

a two-component system by combining the concepts of type II failure interaction and

external shocks.

There are also studies that consider influence of shocks in multi-component systems.

Jhang and Sheu [225] considered Type I interaction in a multi-component system. They

compare maintenance strategies for a system with n components where each component

i can be subject to a minor failure with a probability (1− p)i or cause a major failure

to all other components that could stop the system with a probability pi. Lai [226]

extended their work on Type II interactions from two components to multi-component

systems. They considered a system consisting of n components with one dominant

(non-repairable) component and (n − 1) secondary (repairable) components. Li et al.

[227] consider reliability assessment of a voting system with n components where one

of them is dominant and non repairable and the others are secondary and repairable.

They assume the failure of the any of the (n − 1) secondary components causes an

increase in the failure rate of primary component.

In practice industrial systems tend to be more and more complex and multiple

components can share a critical function or have more than one critical component

[228]. Considering Type I interactions, Liu et al. [23] represent the interaction between

components by a probability matrix Pij . Thus, a component i was assumed to cause

an instant failure to a component j with a probability pij and has no effect with a

probability (1− pij). They identify some issues in the early stages of a system’s design
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that could affect the predetermined warranty given interaction between component. In

addition to reliability implications of failures on a system, they showed that failure

interaction would in the long run have an extensive and accelerating effect on the

decrease of a system’s economic value. They define w as a system’s period of warranty,

pi(w) the probability of failure for a component i during w and Fi(w) is the probability

that a component i failure will cause the system failure, and Fs(w) is the system’s

probability distribution. The model was applied to adjust the warranty cost of series

and parallel structures considering the number of failures occurrences.

Although, there are systems that function in a way that the shock interaction is uni-

directional, there are other systems where the shock interaction can be bidirectional.

Sun and co-authors [229] and [219] studied a multi-component system in which the

shock interaction could be bidirectional. They identify the interactions with an im-

mediate effect and the interactions with a gradual effect. They assume the hypothesis

accurately represents physical systems.

There are also considerations of failure mode interactions on a component. In prac-

tice, some system may be subject to diverse failure modes such that the modes can influ-

ence each other, mutually or not [228]. Zequeira and Berenguer [230] studied inspection

policies for a two-component parallel standby system with failure interaction. They

classified failure modes as maintainable and non-maintainable modes. The modes are

distinguished based their repairability in the occurrence of a failure. Preventive main-

tenance corrects the deterioration due to maintainable modes while Non-maintainable

modes can only be corrected by a complete overhaul of the system. Minimal repairs

are considered in the case of failures. Castro [231] assumed that the occurrence of

maintainable failures could be correlated with the number of non-maintainable failures

denoted by N2(t) following the installation of a system. Fan et al. [232] a system

whose component are subject to two failure modes that have bidirectional stochastic

dependence. They assumed that the failure rate of mode i depends on the number of

the failure in the other mode and vice versa.

One of the few research on failure interaction considering spatial interaction was

presented by Levitin [233] who studied reliability analysis of a series-parallel multi-
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state system in which the failure of a component can cause an immediate failure of

nearby component (known as Type I stochastic dependence). They assume local failure

interaction only occurs between nearby components. They refer to the selective form

of failure interaction as propagated failures. The study was motivated by the failure

interaction between the pumps and reactors in a production module where the fires

from a failed pump unit affects nearby reactors. They developed a model for reliability

assessment based on universal generating function.

2.3.1.1 Failure interaction models

In the literature on failure interaction, application of analytical models of component

failure rates is very common. In this case, the failure rates of several components or

failure modes are linked by an analytical function. In general, the analytical function

then has an incremental effect on the system’s overall failure rate. Whatever struc-

tural and/or economic dependencies that exists within the system also influence the

development of the function [228]. As a result, these models address configuration such

as series, parallel, and so on. The analytical models are built from failure times in

maintenance logs and do not explicitly address physical degradation processes [228].

Thus the accuracy of this models rely solely on the accuracy of the maintenance logs

[228]. In contrast, the main point of this modelling approach is to introduce a certain

proportionality in failure rate interaction that is intuitively assumed. The potential for

chain reactions and the shared environment contribute to an acceleration of the failure

rate.

Some papers applied analytical modelling approach for studying systems with two

components referred to as two-component systems. Lai et al. [226], Lai and Chen

[223], [234] and Lai [224] base their work on Type II failure interaction to determine

a replacement policy with an optimal number of minimal repairs for a maintenance

cycle of optimal duration T. They developed a model that considers one repairable

(component 2) and one non-repairable (component 1). The failure rate of component

2 follows a NHPP of intensity h2(t). Every failure of component 2 increases the failure

rate of component 1. Inversely, if component 1 fails, component 2 instantly fails. The
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expected failure rate of component 1 h1(t) is given by

h1(t) =
∞∑
0

h1(t | N2(t) = j)× P (N2(t) = j), (2.10)

where N2(t) is the number of failures of component 2. P (N2(t) = j) is the probability

of j number of failures of component 2. h1(t | N2(t) = j) is the conditional failure rate

of component 1 given that component 2 had j number of failures.

Golmakani and Moakedi [235] extended the model in Eq.(2.14). They considered a

two-component system with Type II failure interaction. They assume the components

are subject to two kinds of failures. In their work, they assumed that Component

1 is subject to soft failures following a NHPP while component 2 is subject to hard

failures following a HPP. Each hard failure has an instant detectable effect and requires

immediate intervention when they occur. The soft failures can only be detected by a

scheduled inspection because they do not stop the system but decrease its performance.

A component’s hard failure can be the root cause of another component’s soft failure if

this component serves a secondary function (e.g., protective apparel) for a more critical

component. In their work, a coefficient p was introduced to depict the percentage of

increase of the failure rate of component 1 due to hard failures from component 2. The

developed model is given by

h1(t) =
∞∑
0

(1 +
p

100
)jh01(t)× P (N2(t) = j), (2.11)

where h01(t) is the initial failure rate of component 1. They assumed that the estima-

tion of the coefficient p would rely on experimental data or the availability of a physical

model. However, assuming a constant incremental effect (p), suggests that the inter-

action have little to no variability. A limitation of the two models is that they can be

restrictive since no retroactive effect is accounted for.

Sung et al. [220] derived a long-term replacement policy for a two-component sys-

tem by combining the concepts of Type II failure interaction and external shocks. They

assumed that the effect of external shocks is critical for mechanical systems that of-

ten have a protective external component whose state is subject to the state of the
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surrounding environment. They assume that the external shocks occur following a

NHPP with intensity r(t) and could cause minor failures with a probability p or catas-

trophic failures with a probability (1−p) to a component (component 2). They assume

that the failures of component 2 act as internal shocks as well and increase the fail-

ure rate of another component (component 1). The entire system fails if component

1 fails. The number of component 2 failures N2(t) follows a NHPP with intensity

h2(t) = h02(t) + pr(t). Where h2(t) is the baseline failure rate which is independent of

the external shocks. Thus the failure rate of the system depends on the failure rate of

component 1 and the number of external shocks endured by the other component. The

expected failure rate of component 1 is

h1(t) =
∞∑
0

h1(t | N2(t) = j)× P (N2(t) = j). (2.12)

The analytic model was also extended for studying multi-component systems. Li

et al. [227] studied a series-parallel (voting) system with n components. They as-

sumed that one of the components is dominant and non repairable while the others are

secondary and repairable. The secondary components are mutually independent and

follow exponential distribution. Unlike the study of Lai [226] the set of components

interacting and failing can vary. The failures of secondary components increase the

failure rate of the dominant component denoted by

hcp(t) = P (t | k1, k2 . . . , kn−1). (2.13)

where kj is the number of failures of the jth secondary component. Where hcp(t) is

the failure rate of the dominant component and is assumed to depend on the conditional

probability of failures of the secondary component. Thus the expected failure rate of

the primary component is given as

hp(t) =
∑
k1

∑
k2

. . .
∑
kn−1

hcp(t)P (N1(t) = k1)P (N2(t) = k2) . . . P (Nn−1(t) = kn−1)).

(2.14)
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Likewise Lai [226] extended their work on Type II interactions from two components

to multi-component systems using the same modelling approach. They considered a

system consisting of N components with one dominant (non-repairable) component

and (N − 1) secondary (repairable) components. They assumed that the secondary

components are mutually independent and follow NHPP. The failure of a secondary

component increases the failure rate of the primary component. They proposed a

replacement policy following the system’s age and assumed that the secondary failures

are corrected by minimal repairs.

Although, there are systems that function in a way that a single component is

dominant, leading to a unidirectional interaction. In practice some systems tend to

have more complex structure with components having bidirectional relationships [219]

[228]. Sun et al. [219], and [229] studied systems where failure interaction between

components is bidirectional. They classify the interaction as one that either occurs with

an immediate effect or with a gradual effect. They assume that the interactions that

occur with a gradual effect accurately represents physical systems. They considered a

system with N identical components that has an independent failure rate h0i (t) and an

interactive failure rate hi(t), which depends on the failure rate of other components in

the system. They distinguish an independent failure rate denoted by

hi(t) = h0i (t) +

n−1∑
j=1

θijh
0
j (t). (2.15)

where θij is an interactive coefficient that captures how much influence the jth compo-

nent’s failure rae will have on the interactive failure rate of component i. The derived

analytical expression provides an idea of an update in a failure rate from independent

to dependent by a linear combination with coefficients denoted by θij .

Zhao et al. [236] extended the model by Sun et al. [219] and applied it to study

a gyroscope. They demonstrate that the concept of interactive failures are indeed

applicable and have a significant influence on the overall reliability of a system subject

to multiple failure modes. Wang and Li [237] reprise the analytic model of Sun et al.

[219], and [229] and propose an allocation method of redundancies in the design of a
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system. They demonstrate that the effect of interactive failures can be minimized if

they are properly modeled in the system design process.

2.3.2 Load-sharing dependence

Load-sharing dependence occurs when the load imposed on a system is shared by mul-

tiple components in the system [22]. Systems with this kind of dependence mechanism

are called load-sharing systems. According to Zhang et al. [42], Type II failure inter-

action between components is common in the load-sharing systems. In a load-sharing

system, if a component fails the remaining components share its load and the increased

load on the remaining components induces higher failure rate in them causing their

reliability to be affected due to the increased load in form of added stress, current, and

so on [22]. Improper treatment of such dependency can lead to misleading reliability

assessment [22].

An example of a load-sharing system is seen in the operating process of cables in

a suspension bridge [37]. Another example can be observed in a system consisting of

several pipelines used to transport water, oil, or gas; whenever a pipeline segment fails,

its load is transferred to other segments which are still operational [13]. Therefore, the

components of a load-sharing system are stochastically dependent on each other due

to the components sharing a specific amount of load [13].

A common feature in a load-sharing system, is that all components in the system

comply by a certain set of load-sharing rule by which the load of a failed component is

automatically re-distributed to the remaining components [238]. Some common load-

sharing rules include equal load-sharing, monotone load-sharing [32], and local load-

sharing. Equal load-sharing assumes the same workload is shared by all the remaining

components [239]. Monotone load-sharing rule indicates that the load on the surviving

components is non-decreasing even after the repair of the failed component while Local

load-sharing rule implies that the load on a failed component is transferred to adjacent

components [37].

The literature on load-sharing can also be viewed from the two types of load-sharing

mechanism studied i.e., static load-sharing (constant total load) and dynamic load-
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sharing (time-varying total load). Studies with static load-sharing models assumes

that the total load imposed on a system is fixed while dynamic load-models assumes

that the load imposed on the system can change during the systems usage time [37].

According to Amari [37] majority of published works are based on the assumption

of static load-sharing. Some works that consider static load-sharing problem include

[240, 241, 242].

Due to the ease of application, a lots of studies of load-sharing systems assumes

that components are identically distributed. Scheuer [243] obtained the reliability of

k-out-of-n system when the component failure induces higher failure rates in survivors

by assuming iid components with constant failure rates. Shao and Lamberson [150]

examined the reliability and availability of shared load repairable k-out-of-n: G system

with imperfect switching comprising n independent and identically distributed (iid)

components with constant failure rates. Gupta [244] discussed load-sharing effects

on reliability of k-out-of-n: G system. Tang and Wang [245] studied a load-sharing

repairable parallel system with time varying failure rates. Sharifi et al. [151] studied

a k-out-of-n: G system having n identical components with increasing failure rates.

Yun et al. [33] considered a consecutive k-out of-n: F system composed of n identical

components with exponential failure distribution.

In practice, components of a load-sharing system may not be identically distributed.

As a result, there are studies that have considered systems with non identically dis-

tributed components. Altiol and Baykai-Gursoy [246] considered the load-sharing sys-

tem with two types of load affecting properties under different failure rates. Liu [247]

developed a model to assess the reliability of a load-sharing k-out-of-n: G system which

consists of non-identical components with arbitrary failure distributions. Yinghui and

Jing [248] studied a k-out-of-n load-sharing system with different components. The

components were assumed to be non-repairable with exponentially distributed life-

times. Huang and Xu [249] estimate the reliability of a load-sharing system with

general life distributions. However, they make the assumption that the components are

non-repairable. Jain [250] studied the reliability of a load-sharing system with common

cause failures. Maatouk et al. [251] studied a series-parallel multi-states system with
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propagated failures and load-sharing occurs between the system’s components. They

developed an approach for analysing the system’s reliability based on the hybridization

of markov process and universal generating function.

Some works consider impact of load on degradation rate, Ye et al. [252] used

the cumulative exposure model to describe the degradation process of components

in the system. They assumed that degradation is the main reason for the system

failure, and the relationship between the degradation of components and components

cumulative shared workload follows the inversely Gaussian distribution. Yang et al.

[253] considered a load-sharing system subject to degradation. They assumed that the

value k in the k-out-of-n system changes as the degradation rate changes, and this

variable k is derived by a performance degradation model. Zhao et al. [43] used a link

function to describes the relationship between the work load and the degradation rate

for a load-sharing system with degrading components.

Some researchers have also focused on statistical inference for load-sharing systems.

For example, Kim et al. [40] proposed classical maximum-likelihood estimation for

parameter estimation of a load-sharing system with equal and monotone load-sharing

rule. They assumed that all the components have identical exponential distribution.

Park et al. [41] extended the model of Kim et al. [40] by considering a parallel system

with Weibull distributed components. Closed-form Maximum Likelihood Estimator

and conditional Best Unbiased Estimator of the Weibull parameters were derived. Singh

et al. [254] considered classical and Bayesian estimation of the parameters a load-

sharing parallel system whose components in which some of the components are non-

identical with respect to their failure-rates. They assumed that some of the components

have constant failure rates while the others have linearly increasing failure rates. Singh

et al. [255] also considered classical and Bayesian estimation of the parameters a

load-sharing system whose components are arranged in parallel and each component’s

lifetime follows Lindley distribution.

Ibnabdeljalil and Curtin [256] studied the reliability and strength of fiber-reinforced

composites under a local load-sharing condition in which they assumed that stress from

broken fibers is transferred predominantly to the nearby unbroken fibers. Durham et al.
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[257] and Ibnabdeljalil and Curtin [256] both used monte carlo simulation for system

reliability analysis. Although the studies by Ibnabdeljalil and Curtin [256], and Durham

et al. [257] were first to consider local load-sharing system in which their models were

developed for specific application to fibers. Wang and co-authors [52, 53, 54, 258],

proposed markov models to study the availability of markov repairable local load-

sharing systems and considered circular, star, and lattice system structures. They

assumed that if a component fails, its left and right neighbours will detect the change

and take up its load. Guo et al. [259] developed a reliability model for a consecutive

(2, k)-out-of-(2, n) systems. They assumed that the system is subject to local load-

sharing. A consecutive system assumes that the system fails if k consecutive adjacent

component fails.

2.3.2.1 Load-sharing systems with shocks

In section 2.3.2, the studies reviewed only account for the workload shared by each

surviving component. Sometimes, the components in a load-sharing system may not

only bear the workload but also experience the external load, such as temporary shocks

[50]. In reality, systems can be exposed to random shock processes, which are caused by

technical conditions (e.g., overvoltage, overheating, mechanical stresses), environmen-

tal threats (e.g., extreme temperatures, wind gusts, floods) or malicious attacks [260].

The workload usually leads to the component internal degradation, while the shock

load caused by temporary shocks results in the abrupt degradation. According to Che

et al. [261] it is a common phenomenon that most of load-sharing systems are subject

to degradation processes and random shocks simultaneously. As a result, competing

failures may occur and any of them can cause the failure of the system [261]. Thus,

shock load generated either during the intended operation of the systems or from ex-

ternal sources, is an important mechanism accounting for load-sharing systems failure

[261].

For the load-sharing system with shocks, Ye et al. [252] used the cumulative ex-

posure model to describe the degradation process of components in the system. They

assumed that degradation is the main reason for the system failure, and the rela-
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tionship between the degradation of components and components cumulative shared

workload follows the inversely Gaussian distribution. Che et al. [261] propose a numer-

ical reliability model to describe the dependent degradation and shock processes of the

components in a global load-sharing system. They considered that once a component

in the system fails, it would equally increase the work and shock load of the surviving

components.

Only one paper was found which has considered local load-sharing, and shocks. Guo

et al. [50] developed a reliability model for a consecutive k-out-of-n: F system with local

load-sharing subject to dependent degradation and external shocks. They assumed that

the components degradation processes may be different because their degradation rate is

dependent on work load and abrupt degradation is dependent on shocks. They modelled

the continuous degradation of each component as a linear degradation model and the

abrupt degradation caused by the shocks by normal distribution and poisson process.

They assumed that the workload and shock load on failed components will be equally

shared by their adjacent neighbours. In sections 2.3.2 and 2.3.2.1 we reviewed research

on reliability prediction, availability prediction and statistical inference of load-sharing

systems. In section 2.3.2.2, we will review research on maintenance optimization of

load-sharing systems.

2.3.2.2 Maintenance optimization of the load-sharing system

Most of the studies on maintenance policies for load-sharing can be largely grouped

into inspection policies and condition-based maintenance policies. For systems whose

deterioration are constantly monitored via sensors, condition-based maintenance has

been studied. For example, Liang and Parlikad [35] developed a two-tiered approach to

model and optimize the condition-based maintenance strategy for an asset with critical

components and non-critical components that undergoes fault propagation and load-

sharing between components. The optimization model was based on a continuous-time

markov model. Keizer et al. [29] explored condition based maintenance for a parallel

system that is subject to both failure dependence through load-sharing and economic

dependence. The system’s states were modelled using a Markov decision process. Broek

60



Chapter 2. Review of literature on heterogeneity, stochastic dependence effect and
modelling for multi-component systems

et al. [152] investigated joint condition-based production and maintenance policies for

two-unit systems with economic dependency and whose units have adjustable produc-

tion rates. The system states were formulated as a Markov decision process in order to

determine optimal policies.

For systems whose deterioration are not monitored via sensors but by physical

inspection of the system, inspection policies for load-sharing systems have also been

considered. For example, Taghipour and Kassaei [13] proposed an optimization model

for periodic inspection of a k-out-of-n load-sharing system over its lifecycle. They

considered a finite planning horizon in which the optimization model finds the optimal

inspection interval for the system. They assume that the failures follow a NHPP. Liu et

al. [239] developed constant and cumulative load models for assessing the reliability of

load-sharing systems with continuously degrading components. The developed models

were used to formulate preventive maintenance policies with periodic inspection. To

evaluate the performance of the maintenance policy, they adopt a long-run cost rate

model, where the preventive maintenance threshold and the periodic inspection interval

are the two decision variables. Ahmadi [262] explored the joint determination of optimal

inspection and threshold-type replacement policy for a repairable load-sharing k-out-

of-n system whose components state is hidden and detected only by inspections.

For other maintenance policies, Zhang et al. [42] proposed system and component

level maintenance policies for a two-component load-sharing system. The system is

assumed to be subject to imperfect preventive maintenance. Jamali and Pham [263]

developed an opportunistic maintenance model for load-sharing k-out-of-n systems.

The proposed maintenance model considers two intervals where minimal repairs are

sufficient for the failed components in the first interval. In the second interval, cor-

rective Maintenance of the failed components together with opportunistic preventive

Maintenance of the survived ones are performed after m failures.

Some studies consider optimal design problems, for instance, Shekhar et al. [264]

studied the optimal design of fault-tolerant machining system with various types of ma-

chining hindrance. They considered a K-out-of-M+Y+S: F redundant repairable ma-

chining system with the support of mixed standbys facing independent failure, switching
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failure, state-dependent failure, and common cause failure. The repair facility (rates)

was considered as decision variables. Endharta and Ko [154] considered the design prob-

lem for a circular k-out-of-n: G balanced system with equal load-sharing units. Two

maintenance polices were considered: corrective maintenance, which was only triggered

by a failure event, and CBM, which was triggered when the number of failures reached

a certain number or at system failure time, whichever occurred first.

2.3.2.3 Load-sharing modelling

In sections 2.3.2, 2.3.2.1 and 2.3.2.2 we provided an overview of research for multi-

component systems with load-sharing dependence. In this section, we will discuss

the models used for modelling load-sharing in the literature. Research on load-sharing

systems can be placed under the following methods: markov-processes, covariate models

(proportional hazards model (PHM) and accelerated failure time models (AFTM)),

simulation and statistical distributions.

The first method for modelling load-sharing dependence was introduced by Freund

et al. [265] in 1960s. Freund et al. [265] presented a bivariate exponential distribution

to model a two component dynamic load-sharing system. The model considers a 1-

out-of-2 system where components A and B are assumed to have individual constant

failure rates λ1 and λ2. After one component has failed, the surviving component gets

a modified (higher) failure rate (λ
′
1 or λ

′
2). The combination of the components’ failure

density functions to the system density yields a bivariate density function. However

because the failure behaviour of one component depends on the failure behaviour of the

other, it is then assumed that the marginal distribution of the bivariate distribution can

not be exponential [266]. Whilst it is possible to expand the Freund model for systems

with n components. It has some limitations. First the number of possible failure

combinations m will increase tremendously (m = n!) if components sizes increases to

n [22].In addition, it is limited to parallel systems [22]. Lin et al. [267] later extended

the Freund’s model to a three-component model and a special n-component model by

using Markov model to derive the system reliability function.

Markov process is another method used for analysing load-sharing systems. Using
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markov model, the transition rate of a working component is modified to include the

effect of an extra load. The markov model can be applied to systems with more than two

components with individual load steps and for deriving the systems reliability function

[22]. Shao and Lamberson [150] present a markov model to analyze the reliability

and availability of a k-out-of-n load-sharing system with repairable components. Wang

et al. [38] studied a load-sharing parallel system with failure dependency using a

semi-markov process. They introduced a dependence function to quantify the failure

dependency between components.

A widely applied approach for modelling load-sharing mechanism is a capacity flow

model [266]. The model assumes that given the total system load L, total number of

components n and an equal load-sharing rule, then each working component will carry

a load of L/n at time t. If one component fails, the remaining components will obtain

a higher load of L/(n − 1). The failure behaviour of the components is statistically

dependent. The failure rate for each working component is given by

λi =

(
n

n− x

)γ

λ0, (2.16)

where x = number of failed components and γ is the load factor. The load factor

describes the influence of the increased load to the surviving components (γ = 0: no

influence of the increased load). According to [266], the system reliability function can

be obtained using a general erlang distribution with n steps.

Accelerated failure time model (AFTM) have been used to characterize the relation-

ship between the failure rate of a component and the load imposed on the component

[22]. It is assumed that the failure rate of a component increases if a higher load is

imposed on the component. Hence, the failure rate of component is formulated as

λ(t; z) = ϕ(z).λ0(t.ϕ(z)), (2.17)

where λ0(.) . the baseline failure rate. The function ϕ(.) is modelled by either the power

law (i.e. ϕ(z) = zγ ) or the exponential law (i.e. ϕ(z) = ez
γ
). The model parameter

can be obtained from accelerated life testing analysis [268].
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Combining the concept of capacity flow model and AFTM models, Amari et al. [36]

proposed a closed-form analytical solution to evaluate the reliability of load-sharing k-

out-of-n: G systems with tampered failure rate (TFR). A tampered failure rate model

assumes that the fluctuations in load does not affect the age of the remaining com-

ponents, and only change their hazard rates [13]. Amari and Bergman [37], based on

cumulative effect (CE) load-sharing model, presented a method to compute the relia-

bility of k-out-of-n: G load-sharing systems with identical or non-identical components,

both following general failure distributions. Cumulative effect model assumes that the

load changes affect not just the failure rate but also the age of the working components

[13].

Proportional hazard model (PHM) have also been used to characterize the relation-

ship between the failure rate of a component and the load imposed on the component

[22]. Similar to the Accelerated failure time model, it is assumed that the failure rate

of a component increases if a higher load is imposed on the component. The failure

rate of a component in the proportional hazard model is written as

λ(t; z) = λ0(t)f(z, β), (2.18)

where z = z1, z2, . . . , zn is a set of loads imposed on the component, and λ0(t) is the

baseline failure rate (also called hazard rate) function and β is the load factor. The

term f(zβ) is the function that characterizes the relation between loads and the baseline

failure rate.

Mohammad et al. [269] applied proportional hazards method to model the load-

dependent time varying failure rate of a component in a load-sharing system. The

effects of load on a component was assumed to be multiplicative in nature. As such,

the failure rate of the component was modelled as a product of both a baseline hazard

rate, which can be a function of time t, and a multiplicative factor which is function

of the current load on the component. Zhang et al. [22] applied proportional hazards

method to model the load-dependent time varying failure rate of a component in a

multi-state load-sharing system.

Lastly, Pozsgai et al. [266] proposed the use of simulation techniques for modelling
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load-sharing dependence. According to Pozsgai et al. [266] the failure rates of compo-

nents of a mechanical system are not constant due to aging and wear-out mechanisms

as such a more adequate method for modelling load-sharing in the case of mechanical

systems is the application of simulation techniques.

2.4 Gaps in the literature

In sections 2.3.1 and 2.3.2, we presented current research and modelling approaches

for stochastic dependence effect in the form of failure interaction and load-sharing

respectively. In section 2.2.3, we presented current research and modelling approaches

for unobserved heterogeneity effect. Sections 2.4.1, 2.4.2 and 2.4.3 presents the gaps in

the literature that will be addressed in chapter 3, chapter 4 and chapter 5 respectively.

Furthermore, with regards to failure interaction and spatial dependence effect, only two

studies have considered spatial dependence in the form of propagated failure on multi-

state system [233, 251]. Existing studies have considered Type I stochastic dependence

where the failure of a component can cause an immediate failure of nearby component.

However, there is no other work yet that has considered Type II or Type III failure

interaction together with spatial dependence for reliability assessment or maintenance

optimization of a multi-component system. An example of such systems can be found

in a water distribution system consisting of several pipe components in which the failure

of a pipe can trigger failures in neighboring pipes due to sudden pressure changes in

the system [270, 271].

2.4.1 Gap to be addressed in chapter 3: unobserved heterogeneity

In section 2.2.3, we reviewed literature on unobserved heterogeneity. For repairable

systems subject to minimal repair, the following research gaps have been identified.

First, most studies on unobserved heterogeneity have predominantly focused on inves-

tigating the significance of covariates and the frailty term in the fitted model rather

than prediction for the system and/or individual components. The few works that

have considered event prediction for point processes with unobserved heterogeneity in-
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cludes Deep et al. [69] that used a semi-parametric Andersen and Gill model for failure

prediction of a new component in a Teleservice system using collected data from old

units; and Jahani et al. [70] who developed a multivariate Gaussian convolution process

(MGCP) for fleet-based event prediction in which failure prediction for an individual

unit is conducted using data collected from other units. The ability to predict the

occurrence of failure events at an individual unit level can aid optimal maintenance

decision making for individual components [69]. The first objective of chapter 3 is

to develop a parametric method for predicting the occurrence of failure events at the

component level considering a repairable system with minimal repair. To accomplish

this objective, an empirical Bayes framework will be adopted to update the frailty term

and the chapter will concentrate on the modeling of repairable systems using the power

law NHPP. NHPP provides flexibility to model the failure time occurrences such as

whether a system is improving or deteriorating [74]. In addition, power law model is

flexible to describe various types of system’s phases [99]. Lastly, NHPP can be ex-

tended to include random effect terms to reflect unit-to-unit variation using the Cox

model framework [24, 67, 69].

Second, no other distribution has been investigated for modelling unobserved het-

erogeneity effect apart from gamma distribution because it is mathematically tractable.

As an alternative to gamma, Hougaard [202] introduced the inverse Gaussian (IG) dis-

tribution for modeling unobserved effects. The IG distribution has a unimodal density

and is a member of the exponential family. Its shape resembles that of other skewed

density functions, such as the lognormal and gamma distributions. Chikara and Folks

[272] studied the IG distribution and found that there are many striking similarities

between the statistics derived from this distribution and those of the normal distribu-

tion. These properties make the IG potentially attractive for modeling the failure data

[165]. The IG distribution has some advantages as a frailty distribution. It provides

flexibility in modelling, when early occurrences of failures are dominant in a lifetime

distribution and its failure rate is expected to be non-monotonic [165]. Also, IG is

almost an increasing failure rate distribution when it is slightly skewed and hence is

also applicable to describe lifetime distribution which is not dominated by early failures
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[165]. Hougaard [202] noted that survival models with gamma and IG frailties behave

very differently, specifically that the relative frailty distribution among survivors is in-

dependent of age for the gamma but becomes more homogeneous with time for the IG.

The conclusion was derived by observing the coefficient of variation of the two frailty

distributions of survivors. For the gamma distribution, the coefficient of variation is a

constant. However, for the IG distribution, the coefficient of variation is a decreasing

function of time. The likelihood function for the IG frailty model can be easily obtained

and has closed-form representation, which indicates fast and simple estimation of pa-

rameters [165, 273]. In fact, a few studies in areas such as medicine and epidemiology

have suggested the IG frailty model as an alternative to the gamma frailty model for

modeling unobserved effects (for example, [172, 178, 274, 275, 276]). IG frailty model

have also been considered for degradation analysis (see [277]). In the paper, IG process

was extended to include gamma and IG distributed frailties. When compared on real

data, they found that the two models presented similar results.

Despite these desirable properties, IG distribution has not been investigated for

modelling unobserved heterogeneity in repairable systems failure data. Hence, another

objective of chapter 3 is to evaluate the application of the NHPP model with IG dis-

tributed frailties for analysing failure data from repairable systems and to compare

its results with the gamma distributed frailties. To achieve this objective, we shall

consider a system in its burn-in phase. A system in its burn-in phase has increasing

inter-failure times. Also, within a mission time, components in the wear-out phase

(components with decreasing inter-failure times) are replaced with new components

whereas components in the burn-in phase (relatively new components) are subject to

minimal repair upon failure. As more components are replaced, the relative frailty

among the components in the system become homogeneous over time.

We present one example to illustrate this situation - water distribution systems.

Many pipes behave heterogeneously in terms of failures mainly due to the age of the

pipes and the type of materials used in water delivery to the end user [20, 278]. Com-

pared with other material types, asbestos cement pipes fail more frequently and is no

longer allowed to be used in some countries (for example, Sweden [279], and Mexico
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[280]). However, due to limited financial resources, asbestos-cement pipes are either

refurbished by reinforcement or replaced by polyethylene pipes [279, 280]. As a result,

more homogeneous failure behaviour might be observed in the pipes failure data over

time.

Lastly, the impact of misspecification of the frailty distribution has not been in-

vestigated. In a model with unobserved heterogeneity, it is necessary to define the

distribution of the unobserved effects [71, 72]. Since the modeled heterogeneity is un-

observable, the appropriate choice of distribution of the unobserved effects is not easily

discernible [73, 74]. Furthermore, the choice of the distribution of unobserved effects

can give interesting general results in terms of the variance of the unobserved effects

[74]. For instance, a large variance could indicate deficiencies in the choice of the dis-

tribution which may influence the model fit [73, 74]. It is therefore useful to examine

the extent to which misspecification of the frailty distribution affects the validity of

intensity function estimators [73]. The third objective of chapter 3 is to examine the

impact of wrongly specifying the frailty distribution in a NHPP model. To accomplish

these objectives, NHPP model with IG distributed frailties will be developed and com-

pared with a gamma distributed frailty model through a simulation study and analysis

of a real dataset. Statistical fit and prediction performance of the two models will

be compared over different heterogeneity levels, sample sizes and component failure

behaviours.

Although chapter 3 of this thesis is like Morita et al. [274] and Kheiri et al. [172]

in the use of IG distributed frailties to model heterogeneity effects, it is different from

the work done by Morita et al. [274] and Kheiri et al. [172] in three ways. First,

the underlying process studied differs from the two studies. Chapter 3 of this thesis

considers recurrent failures using Power law NHPP model, whereas Kheiri et al. [172]

and Morita et al. [274] considered non-recurrent failures and degradation using piece

constant hazard model and IG process respectively. Second, using simulation study,

Morita et al. [274] studied the consequences of ignoring unobserved heterogeneity in

the degradation rate of a systems by comparing two IG process models – one IG process

model with IG or gamma distributed frailties and another ordinary IG process models.
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Kheiri et al. [172], fit three models – univariate frailty model, IG shared frailty model

and IG correlated frailty model to a bilateral corneal graft rejection dataset to identify

the best model for that data. In contrast, this chapter studies the impact of misspeci-

fication of the frailty distribution by comparing two power law models - one power law

model with gamma distributed frailties with another power law with IG distributed

frailties. The study was conducted using both simulation study and an application to

real data. Finally, this chapter considers prediction of a component’s mean residual

life and prediction of the expected number of failures at the component and system

levels. In contrast, Morita et al. [274] focused on investigating the significance of the

frailty term in the fitted model rather than prediction for the system and/or individual

components. Kheiri et al. [172] focused on fitting three frailty models to a bilateral

corneal graft rejection dataset to identify the best model for that data.

To summarise, we have established that most research focused on investigating the

significance of covariates and the frailty term in the fitted model and a parametric

method for system and component event prediction has not been developed. We also

established that unobserved heterogeneity is commonly modelled by gamma distribu-

tion which assumes constant heterogeneity over time and systems whose components

becomes homogeneous over time have not been studied. Lastly, we established that the

impact of misspecification of the random effect distribution has not been investigated

for systems with minimal repair assumption. The contribution of chapter 3 is threefold.

First, methods for predicting the occurrence of failure events at system and component

levels will be developed. Second, a model for systems whose components becomes ho-

mogeneous over time will be developed. Lastly, the impact of wrongly specifying the

random effect distribution in a NHPP model will be investigated.

One of the significant questions that this thesis will explore in chapter 3 is what is

the impact of wrongly assuming a random effect distribution for a repairable system

subject to minimal repair.
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2.4.2 Gap to be addressed in chapter 4: load-sharing and spatial de-

pendence

In section 2.3.2, we reviewed literature on load-sharing systems. The following research

gaps have been identified. First, no research has considered models for reliability pre-

diction for load-sharing system with spatial dependence and proximity effect. Most of

the recent studies have focused on the determination of reliability or availability func-

tion, statistical inference, and maintenance of systems with equal load-sharing. Very

few are focused on local load-sharing, however, these studies focused on local load-

sharing without considering proximity effect. In chapter 4, we will develop a novel

model for reliability prediction of load-sharing systems with spatial dependence and

proximity effect. In such systems, if a component fails, its neighbours will take up

extra load if they are close enough. Each working component’s performance depends

on its spatial neighbour’s state, proximity, and the spatial pattern among components.

Unlike equal load-sharing structure, where the load of a failed component is taken up

by all the remaining working components, in a system with spatial dependence, the

load of a failed component is taken up either by its nearest neighbouring components

(while non-neighbours operate at their normal rate) [52] or there may exist a proximity

effect that measures the degree to which components in the system affect each other

depending on how close they are [32].

We present two examples to illustrate this situation. First, example involves a ware-

housing system in which a bigger warehouse is surrounded by several smaller warehouses

such that when the bigger warehouse fails, all the smaller warehouses will take the load

depending on how close they are to the big warehouse. When a smaller warehouse fails,

the load will be redistributed among the bigger warehouse and the smaller warehouses

based on the distance between the warehouses [52]. Second, a water utility has a net-

work of pipes that collectively serve the purpose of delivering water from a treatment

site to houses and businesses. When a leak occurs, there will be a drop in pressure but

when the maintenance action takes place, the network is shut off, and so an increase in

pressure will be observed higher up the network as water is backed up. An individual
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pipe failure causes a drop in pressure but does not cause the system to fail. If suffi-

cient failures occur, a sufficient drop in pressure results in failure and an increased load

on neighbouring pipes. The distribution of that load is not uniform across the entire

network. Instead, neighbouring pipes will pick up that additional pressure, and hence

have an increased failure rate.

Second, the importance and significance of the spatial effect in a load-sharing system

has not been studied. None of the studies on local load-sharing have not considered

studying the consequence of ignoring spatial effect if it exists. The contribution of

chapter 4 is twofold. First a generic model for estimating the reliability of a load-

sharing system with spatial dependent components will be developed. Second, using

the developed model, the consequence of ignoring spatial effect if it exists will be

studied. An extension of the capacity flow model described in section 2.3.2.1 will be

used to characterize the relationship between the failure rate of a component and the

load imposed on the component. A Markov model will be used to characterize the

deterioration process of the entire system. Markov model evaluates the probability

of jumping from one known state into the next logical state. The process continues

until the system being considered has reached the final failed state or until a particular

mission time is achieved [145]. Markov model have been found to be useful and suitable

for modelling the distribution of time to failure of load-sharing systems in various

research [47, 49, 52, 53, 54, 281].

To summarise, we established in this section that no research has considered models

for reliability prediction for load-sharing system with spatial dependence and proximity

effect. We also established that the works that focused on local load-sharing failed to

consider proximity effect and the consequence of ignoring spatial effect if it exists. The

contribution of chapter 4 is twofold. First a generic model for estimating the reliability

of a load-sharing system with spatial dependent components will be developed. Second,

using the developed model, the importance and significance of the spatial effect will be

studied.

Another significant question that this thesis will explore in chapter 4 is what is the

impact of ignoring spatial dependence if it exists in a load-sharing system.
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2.4.3 Gap to be addressed in chapter 5: load-sharing, spatial depen-

dence and shocks

In section 2.3.2.1 and 2.3.2.2, we reviewed literature on reliability and maintenance

optimization of load-sharing systems with external shocks. The following research gaps

have been identified. First, that no research has considered models for reliability pre-

diction for load-sharing system with spatial dependence, proximity effect and external

shocks. Most of the recent studies on load-sharing systems with shocks have focused

on equal load-sharing systems with external shocks. Only one paper (Guo et al. [50])

focused on reliability assessment with respect to local load-sharing and shocks. Thus,

chapter 5 of this thesis will develop a novel model for reliability prediction of load-

sharing system with spatial dependence, proximity effect and shocks. In the system, if

a component fails, its neighbours will take up extra workload if they are close enough.

Each working component’s performance depends on its spatial neighbour’s state, prox-

imity, and the spatial pattern among components. The components in the system may

not only bear the workload but also experience the external load, such as temporary

shocks. The failure rate of a component is affected by the extra workload taken from

failed neighbours and random shock processes.

We present an example to illustrate this situation. One example is a cable structure

system in suspension bridge where component failures usually only affect proximate

components instead of all working components. When one boom in the system fails,

all the working proximate booms are subjected to direct force transmission and they

suffer the most power of the force, so the proximate booms take an increased force.

However, the booms far from the failed one are only subjected to the indirect force and

the transfer effect on them less compared with those on the proximate booms. As a

result, the load added to the booms far from the failed one is very small. The working

booms constantly suffer from the continuous shock processes of random winds, which

cause abrupt wear debris of the booms.

Second, preventive maintenance optimization of load-sharing system with spatial

dependence, proximity effect and external shocks has not been studied so far. Most
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of the research on maintenance optimization of load-sharing systems have focused on

equal load-sharing. No study was found that focused on maintenance optimization

with respect to local load-sharing and load-sharing system with spatial dependence,

proximity effect and external shocks.

Lastly, the impact of ignoring spatial dependence effect if it exists in a load-sharing

system subject to spatial dependence and external shocks have not been considered

and its implication for maintenance decisions have not been investigated. Thus, the

contribution of this chapter is twofold. First, a generic model for estimating the relia-

bility of a load-sharing system with spatial dependent components and random shock

processes will be studied. Second, preventive maintenance optimization of load-sharing

system with spatial dependence, proximity effect and external shocks will be developed.

Lastly, using the developed model, we will investigate the impact of ignoring spatial

dependence effect if it exists in a load-sharing system subject to external shocks.

To summarise this section, we have established that no research has considered re-

liability prediction for load-sharing system with spatial dependence, proximity effect

and external shocks. We also established that preventive maintenance optimization of

load-sharing system with spatial dependence, proximity effect and external shocks have

not been developed. Lastly, we established that the impact of ignoring spatial depen-

dence if it exists in a load-sharing system subject to spatial dependence and external

shocks has not been investigated. The contribution of this chapter is threefold. First, a

generic model for estimating the reliability of a load-sharing system with spatial depen-

dent components and random shock processes will be developed. Second, preventive

maintenance of load-sharing system with spatial dependence, proximity effect and ex-

ternal shocks will be studied. Lastly, using the developed model, we will investigate

the impact of ignoring spatial dependence effect if it exists in a load-sharing system

subject to external shocks.

The third significant question that this thesis will explore in chapter 5 is what is the

impact of ignoring spatial dependence if it exists in a load-sharing system with external

shocks.
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Chapter 3

Reliability evaluation of a

repairable multi-component

system considering unit

heterogeneity using frailty model

In chapter 2, we reviewed the literature on multi-component systems with unobserved

heterogeneity, stochastic dependence and spatial dependence. In section 2.4.1 of chapter

2, we established the following: First, for systems with minimal repair assumption,

most research focused on investigating the significance of covariates and the frailty

term in the fitted model and a parametric method for system and component event

prediction has not been developed. Second, unobserved heterogeneity is commonly

modelled by gamma distribution which assumes constant heterogeneity over time and

systems whose components becomes homogeneous over time have not been studied.

Lastly, the impact of misspecification of the random effect distribution has not been

investigated for systems with minimal repair assumption.

Based on the established gaps in section 2.4.1 of chapter 2, our contribution in

this chapter is threefold. First, we will develop an IG frailty model and the parameter

estimators for repairable systems whose components become homogeneous over time.
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Using a simulation study, we will examine the performance of the estimators. Second,

the impact of wrongly assuming the random effect distribution for a repairable system

subject to minimal repair will be examined by comparing the robustness of the IG and

gamma frailty models on simulated data and a classic dataset. We will develop the two

frailty models as an extension of the NHPP with power law (PL) intensity function.

Finally, using empirical Bayes framework, we will develop a method for prediction of

a component’s mean residual life and prediction of the expected number of failures at

the component and system levels.

The remainder of this chapter is outlined as follows: Section 3.1 describes a general

system and its failure process. Section 3.2 presents the IG frailty model and develops the

procedure of the maximum likelihood estimation. Section 3.3 presents the design and

results of examining the performance of the IG model estimators and the robustness

of the IG and gamma frailty models in a simulation study. The method for event

prediction and application to a classic dataset is presented in section 3.4. Section 3.5

presents the conclusion.

3.1 System description

Consider a system subject to minimal repairs upon failure. When a minimal repair is

performed upon failure, the times between subsequent failures may not be identically

distributed, which constitutes an NHPP [77, 86].

A system in its burn-in phase has increasing inter-failure times. Also, within a

mission time, components in the wear-out phase (components with decreasing inter-

failure times) are replaced with new components whereas components in the burn-in

phase (relatively new components) are subject to minimal repair upon failure. As more

components are replaced, the relative frailty among the components in the system

become homogeneous over time.

A common method for modelling the intensity function of a NHPP is the PL model

(see section 2.1.2.1). In this chapter, the PL model will be used to describe the intensity

function of the system. The PL model is flexible to describe various types of system

phases [20, 99]. Furthermore, PL model is effective in representing a system which is
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experiencing reliability improvement (i.e., inter-failure times are increasing) [282]. The

PL model is given as:

ψ0(t) = ωρtρ−1, (3.1)

where ψ0(t) is the intensity function at time t, ω is the scale parameter and ρ is the

shape parameter that controls the shape of the curve. The parameter ρ in the power

law model gives the following information about the system: if ρ > 1, then the system

is deteriorating; if 0 < ρ < 1, then the system is improving and if ρ = 1 the NHPP

model reduces to an HPP.

Consider that a system hasm independent repairable components. Each component

is observed from the start of operation to time τ . Let nj be the recorded number of

failures for the jth component and let tij be the age at the ith occurrence of failure for

component j, where i = 1, 2, . . . , nj , and j = 1, 2, . . . ,m. We assume that the number of

failures vary across the components and there is no available covariate recorded for each

component (however this information could be easily incorporated to the modelling). A

positive random variable zj , drawn from a distribution f(zj ; θ), is included in the NHPP

model to account for component unobserved effects, where θ is the variance parameter.

zj acts multiplicatively on the intensity function [62], making the model a NHPP with

random effect (also referred to as a frailty model [66]). The variance parameter θ is

the parameter of interest in which small values of θ reflects homogeneity in the failure

pattern of a group of components and large values of θ reflects high heterogeneity in the

failure pattern of a group of the components. To make the baseline intensity function

identifiable, a restriction is placed on f(zj , θ) such that the frailties (random effects)

are assumed to have an expected value E(zj) = 1 and V ar(zj) = θ. Thus components

with zj > 1 will fail more often than components with zj < 1 [163].

Conditional on the frailty term zj , the intensity function for component j can be

expressed as:

ψ(t | zj) = ωjρt
ρ−1
ij = zjλρt

ρ−1
ij , (3.2)

where ωj = zjλ is the scale parameter and ρ is the shape parameter. We assume that

components in system have the same ageing behaviour (i.e., same shape parameter ρ)

76



Chapter 3. Reliability evaluation of a repairable multi-component system considering
unit heterogeneity using frailty model

but different magnitudes (i.e scale parameter). As a result, the scale parameter ωj will

be made to be component specific by making λ fixed then we will introduce a random

effect zj which is modelled by a parametric distribution. We will assume that λ has a

value of one to reduce the effect λ might have on each zj .

3.2 IG frailty model

This section presents an IG frailty model based on the NHPP with IG distributed ran-

dom effects. IG distribution has a simple Laplace transform which is useful for deriving

the reliability function [283, 284]. In addition, gamma and IG distributions both have

uni-modal density functions [284]. IG distribution is described by two characteristics,

namely, a mean parameter µ > 0 and precision parameter δ > 0. The two-parameter

IG distribution is given as:

f(z) =

√
δ

2πz3
exp

(
−δ(z−µ)2

2zµ2

)
. (3.3)

As mentioned above, the frailty model poses restrictions on the mean and variance

on the distribution. Let E(z) = 1 = µ and V ar(z) = θ = µ3

δ . The one-parameter IG

distribution is:

f(z) =
1√
2πθ

z
−3
2 exp

(
−(z − 1)2

2zθ

)
. (3.4)

3.2.1 Maximum likelihood for IG frailty model

Consider that the random effect zj of the conditional intensity Eq.(3.2) is drawn from

an IG distribution Eq.(3.4), then the conditional likelihood function for data from

component j with random effect zj is given below as:

Lj(λ0(tij) | zj) =

( nj∏
i=1

zjλ0(tij)

)
exp−zjΛ0(τ), (3.5)

where λ0(tij) = λρtρ−1
ij and Λ0(τ) = λτρ. τ is the observation length of component

j. Here, j is a fixed identification number for a component. tij represents each failure
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time ti observed over the entire life span of component j. zj is a fixed value generated

for component j and it influences each failure time ti of component j for the rest of its

life.

Since zj is unobservable from the data, the contribution of the jth component to

the full likelihood is obtained when the marginal likelihood of the jth component is

derived. The marginal likelihood of the jth component is derived after integrating out

the random effects from the conditional likelihood function. The conditional likelihood

function of the jth component is given as:

Lj(θ | λ0(tij)) =

( nj∏
i=1

λ0(tij)

)∫ ∞

0
z
nj

j exp(−zjΛ0(τ))f(zj ; θ)dzj , (3.6)

where f(zj ; θ) is the IG density.

Lj(θ | λ0(tij)) =

( nj∏
i=1

λ0(tij)

)∫ ∞

0

1√
2πθ

z
nj− 3

2
j exp

(
−zjΛ0(τ)−

(zj−1)2

2zjθ

)
dzj . (3.7)

The marginal likelihood of the jth component is given as:

Lj(marg) =

(∏nj

i=1 λ0(tij)
)
2exp

1
θ

√
2πθ

(2θΛ0(τ) + 1)−
nj−1/2

2 . . .

× k(nj−1/2)

[√
(1 + 2θΛ0(τ))

θ

]
,

(3.8)

where k(nj−1/2)[.] is a modified bessel function of the second kind and
∫∞
0 xs−1exp(ax

h−bx−h)dx =

2
h(

b
a)

( s
2h

)k( s
h
)[2

√
ab] (see Shoukri et al. [285]).

78



Chapter 3. Reliability evaluation of a repairable multi-component system considering
unit heterogeneity using frailty model

The total likelihood function for all the components is given by:

L =
m∏
j=1

Lj(marg)

=
m∏
j=1

(∏nj

i=1 λ0(tij)
)
2exp

1
θ

√
2πθ

(2θΛ0(τ) + 1)−
nj−1/2

2 . . .

× k(nj−1/2)

[√
(1 + 2θΛ0(τ))

θ

]
.

(3.9)

Taking the logarithm of the likelihood function of Eq.(3.9) results in:

l =
m∑
j=1

( nj∑
i=1

log(λ0(tij))

)
+

m∑
j=1

log

(
2exp

1
θ

1√
2πθ

(1 . . .

+ 2θΛ0(τ))
−

nj−1/2

2 k(nj−1/2

2

)
[√

(1 + 2θΛ0(τ))

θ

]
,

(3.10)

l = n log λ+ n log ρ+ (ρ− 1)

m∑
j=1

nj∑
i=1

log tij +mlog(2) . . .

+
m

θ
− m

2
log(2πθ)−

m∑
j=1

(nj − 1/2)

2
log(1 + 2θλτρ) . . .

+
m∑
j=1

logknj−1/2

2

[
(1 + 2θλτρ)

θ

]
,

(3.11)

where k(nj−1/2

2

)[.] is a modified bessel function of the second kind. n =
∑m

j=1 nj .

Taking the derivative of the log likelihood function with respect to λ, ρ and θ:

δl

δλ
=
n

λ
−

∑m
j=1 τ

ρknj+1/2

2

[
(
√
ro)
θ

]
√
roknj−1/2

2

[
(
√
ro)
θ

] , (3.12)
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where ro = 2θλτρ + 1.

δl

δρ
=
n

ρ
+

m∑
j=1

nj∑
i=1

log tij −mλτρ log τ . (3.13)

δl

δθ
= − n

θ2
− n

2θ
+

m∑
j=1

nj − 1/2

θ
+

m∑
j=1

√
roknj+1/2

2

[
(
√
ro)
θ

]
θ2knj−1/2

2

[
(
√
ro)
θ

] . . .

−
m∑
j=1

λτρknj+1/2

2

[
(
√
ro)
θ

]
θ
√
roknj−1/2

2

[
(
√
ro)
θ

] .
(3.14)

Estimates of λ, ρ and θ can be obtained by setting the derivatives to zero. The

expression for the estimators of λ, ρ, and the heterogeneity parameter θ cannot be

derived analytically. One way to deal with this problem is to use a numerical method

such as Newton-Raphson’s method which run a gradient descent algorithm to optimise

the likelihood function [62]. Gradient descent approaches assume that the likelihood

function to be maximised is smooth and concave. The limit of the algorithm is that

it may provide a sub-optimal (local optimal) solution if the objective function is not

concave. For illustrative purpose, we present the maximum likelihood estimation of

gamma frailty model in the appendix A.

3.3 Simulation Study

In this section, we conduct a simulation study. This section is structured as follows.

In Section 3.3.1 we describe the simulation design and data simulated. In Section

3.3.2 we assess the performance of the parameter estimators of the IG frailty model.

The performance of the IG estimators will be examined with respect to bias in the

estimates of the scale λ, shape ρ, and heterogeneity parameter θ given some known

input parameter values. In Section 3.3.3 we assess the robustness of the IG and gamma

frailty model in a misspecification study.
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3.3.1 Simulation design

Throughout the simulation study, we consider that the underlying failure process for

the components in a system follows a NHPP with basic rate of occurrence of failures of

a PL process λρtρ−1
ij and is conditional on a frailty term zj whose distribution f(zj , θ)

is known. When the IG frailty model estimators are examined, the frailty term zj is

IG distributed. However, when the effectiveness of the IG and gamma frailty models

are examined, the frailty term zj is either gamma or IG distributed. For each process,

input values of λ are fixed to 1 while ρ and θ are varied. We use 19 sample sizes, n = 10

to 100 with 5 step size increments, to assess the impact of increasing the sample size on

parameter estimates. Sample size in this chapter refers to the number of components

in the system. The mean of 1000 parameter estimates are assessed for ρ and θ. We

assume equal observation length of τ = 0 to τ=10 for each system. Whilst it is, in

principle, straight forward to generalize the likelihood function to the case of different

observation lengths, doing so complicates the computation of estimates [62]. Thus, in

order to simplify the estimation, we decided to keep the observation lengths equal.

To perform the simulation study, we generate data. The following algorithm is used

to generate failure time data from each frailty model. If we assume that failure times

of a component are independent given the frailty term and that the sequence of failure

times forms a counting process, we can then generate samples of an NHPP from an

HPP. Let us consider an HPP with intensity function λ(t), an interval (t(i−1), ti) for

component j, and mean function:

Λ(t(i−1), ti) = Λ(ti)− Λ(t(i−1)),

where the random variables Λ(t(i−1), ti) are independent and identically exponential

distributed with mean 1. Let us suppose that there is no failure at installation time

(t = 0), then by inverse probability method we can express the reliability function as:

exp(−Λ(t(i−1))) = U(i−1),
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and

Λ(t(i−1)) = − log(U(i−1)),

where U(i−1) is drawn from a uniform distribution with an interval between 0 and 1.

Suppose there are covariates then the mean function conditional on the frailty term

becomes:

Λ(t(i−1)) = Λ0(t(i−1))zjexp(βX),

where β is a vector of regression coefficients. The covariates are depicted by X such

that when X = x(t) the covariates are time varying and X = x implies time invariant

covariates. If we assume that the intensity function is based on the PL model and each

zj is drawn from either a gamma or an IG distribution then we have:

Λ(t(i−1)) = λt(i−1)
ρzjexp(βX). (3.15)

Solving for a failure time t(i−1) from Eq.(3.15) leads to the expression given by:

t(i−1) =

[
Λ(t(i−1))

zjλexp(βX)

]1/ρ
,

and

t(i−1) =

[− log(U(i−1))

zjλexp(βX)

]1/ρ
. (3.16)

The NHPP process of component j observed up to the ith failure time ti can be

generated by the following recurrence formula:

ti =

[
− log(Ui)

zjλexp(βX)
+ t(i−1)

ρ

]1/ρ
. (3.17)

If we assume that there are no available covariates i.e., X = 0, Eq.(3.16) becomes:

t(i−1) =

[− log(U(i−1))

zjλ

]1/ρ
, (3.18)

and the recurrence formula becomes:
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ti =

[
− log(Ui)

zjλ
+ (t(i−1))

ρ

]1/ρ
. (3.19)

To illustrate how to generate data when covariates are unavailable, we will simulate

a single NHPP process for component j by the recurrence formula in Eq.(3.19) using

the algorithm below. For clarity, we present the simulation flowchart in Figure 3.1.

1. Set parameter values for λ, ρ and θ

2. Set a value for τ

3. Draw a random value zj from the known frailty distribution f(zj , θ)

4. Set t0 = 0

5. Set i = 1

6. Draw Ui from a uniform distribution ∼ U(0, 1)

7. Generate the ith failure time by

ti =

[
− log(Ui)

zjλ
+ (t(i−1))

ρ

]1/ρ

8. If ti > τ stop simulation otherwise i = i+ 1

9. Repeat steps 6 to 8 until ti > τ .

3.3.2 Evaluation of IG Estimator

To assess the performance of the IG frailty model’s estimator developed in Section 3.2.1,

the Bias % of the mean from each estimated parameter will be determined. Given the

input value of an arbitrary parameter p with its estimator p̂. The Bias of the estimates

after 1000 simulations will be calculated using

Bias(p) =

∑1000
n=1 p̂n
1000

− p. (3.20)
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Generate ith failure time 


 

Figure 3.1: Simulation flowchart.
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Figure 3.2: Plot of the Bias on estimates from IG frailty model estimators.

We assess the IG estimators developed in section 3.2.1 by observing the Bias(p)

from the mean of 1000 estimates of ρ and θ. The results are presented in Figure

3.2. The input values for λ, ρ, and θ are 1, (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and

(0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7) respectively.

From Figure 3.2a we observe that the bias in the estimated ρ values was 2.5 % for

sample size 10 however the bias in the estimated ρ values reduced as the sample size

increased. From Figure 3.2b, the bias in the estimated θ values ranged between −0.3

and 0.1 when the sample size is set to 10 but the estimated values rapidly improve and

converge to the input value as the sample size is increased. We see that the estimator

is robust to different choices of ρ and θ, and beyond a sample size of 10, the estimator

performs well.

3.3.3 Misspecification study of gamma and IG frailty models

In this section, we assess the performance of the gamma and IG estimators to misspec-

ification of the frailty distribution. When one of the models is known as the correct

frailty model which the data is generated from, the other frailty model will be wrongly

specified. The performance of the wrongly specified model will be assessed in terms of

the model’s goodness of fit to generated data and prediction accuracy when predicting

the expected number of component failures. Since model selection using only maximum

likelihood could be misleading due to variation in data, the sample sizes will be chosen

to be sufficiently large in order to reduce the probability of selecting the wrong model
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[286].

Analysis of the robustness of each wrongly specified frailty model (gamma or IG)

is conducted by an assessment of the proportion of selections of each wrongly specified

model using Akaike information criterion (AIC). AIC is used for goodness-off fit (GOF)

test because AIC is one of the commonly used information-based criteria for model

selection [287] and the AIC has been widely used either on its own or together with

other tests (for example, [288] and [60]). AIC is similar to the Bayesian information

criterion (BIC) in the sense that they both compare maximum likelihood values to

select the appropriate model. Compared to AIC, BIC penalizes model complexity more

heavily meaning that more complex models will perform worse and will, in turn, be less

likely to be selected [289]. In this paper, the Gamma and IG frailty models considered

have the same number of parameters and similar level of complexity. Thus, model

selections from BIC will not differ from AIC because the penalty term in the BIC will

have the same effect on the two model’s values. AIC has been widely used to compare

frailty models in the literature some examples include [290, 291]. The expression of

AIC is given by [287]:

AIC = −2log(L) + 2p, (3.21)

where L is the maximized likelihood value and p is the number of parameters in the

model. When two models are compared, AIC considers the model with the smallest

AIC value to have a better fit to the data. Further information on the AIC can be

found in [287]. We will generate 1000 simulated data for fixed input values of λ, ρ and

θ and then we will count the number of times each of fitted model is chosen by the

AIC. Out of the 1000 simulated data, we will note the number of times the wrongly

specified model is selected as the better model.

Furthermore, we examine the robustness of each wrongly specified frailty model in

terms of their prediction of the expected number of component failures in the simulated

data. The expected number of component failures in the system in a specific interval

is given as:
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E[NS(t1, t2)] =
m∑
j=1

E[Nj(t1, t2)], (3.22)

where E[Nj(t1, t2)] is the expected number of the failures of the jth component be-

tween times t1 and t2. E[Nj(t1, t2)] = 1
θ log(θΛ0(t1, t2) + 1)−

1
θ and E[Nj(t1, t2)] =

1
θ (
√

1 + 2θΛ0(t1, t2) − 1) for gamma and IG frailty models respectively. E[Nj(t1, t2)]

is derived from the marginal reliability function for each component. We present the

derivation of E[Nj(t1, t2)] and the marginal reliability function in the appendix B and

C.

We compare the predicted results with those from the correct model using root mean

squared error (RMSE). We then assess the proportion of the wrong model selected as

the better model by the RMSE. The expression of RMSE is given by:

RMSE =

√∑nI
i=1(fi − oi)2

nI
, (3.23)

where fi = E[NS(ti, ti+1)] is the forecasts (expected number of component failures be-

tween time (ti, ti+1) and oi depicts the observed number of component failures between

time (ti, ti+1) from the simulated data. nI is the number of time intervals of equal

length that the observed data is grouped into and tnI = τ . To compute RMSE, the dif-

ference between the forecasts and observed number of component failures are squared

and averaged over the number of time intervals to get the mean squared error (MSE);

RMSE is the square root of MSE [292]. The model with the smallest RMSE value has

the best prediction accuracy.

The performance of each specified model is assessed in four cases involving fixed ρ,

and θ values.

• Case one involves setting θ to 0.3 to reflect low heterogeneity between components

and modifying ρ.

• Case two involves setting θ to 3 to reflect high heterogeneity between components

and modifying ρ.

• Case three involves setting ρ to 0.3 to reflect components’ early life behaviour
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with frequent failures and modifying θ.

• Case four involves setting ρ to 0.9 to reflect components with similar behaviour

as those in the mid-life phase and modifying θ.

In each case, when one of the two parameters is fixed, the other is varied. For fixed

settings of ρ, the θ values analysed are (0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3). For

fixed settings of θ, the ρ values analysed are (0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). The result

for each case is presented in Figures 3.3, 3.4, 3.5 and 3.6.

3.3.3.1 Case One - low heterogeneity

In case one, we set θ = 0.3 to reflect low heterogeneity between components. The results

are presented in Figure 3.3. For low heterogeneity, the likelihood of mis-specifying the

IG or the gamma model is zero for ρ values from 0.4 to 0.9. In contrast, when ρ = 0.3

the proportion of assumed model selection was 1.5 % for IG and 1 % for gamma for

sample size less than 25. The probability of mis-specifying the models was zero for

sample sizes greater than 25. Thus, for data with low heterogeneity when one wrongly

specify either the IG or gamma frailty model, either in terms of model fit or prediction,

the chances of the wrong model being selected is very small.

3.3.3.2 Case Two - high heterogeneity

For case two, we set θ to 3 to reflect high heterogeneity between components. The

results are presented in Figure 3.4. From Figure 3.4a and 3.4b we see that in terms of

model fit, the proportion of the wrong model selected when the sample size is less than

50 ranged between 3% to 11% and 1% to 10% for IG and gamma model respectively.

However, as the sample size is increased, the proportion reduces to zero for ρ values

from 0.3 to 0.8. For ρ = 0.9 the proportion of wrong models selected can be seen to

slowly decline. Because ρ = 0.9 mimics the behaviour of components in the mid-life

stages, failure observations in the data are few. The few failure occurrence together

with high heterogeneity between components increases the possibility of selecting the

wrong model. In contrast, the proportion of the wrong model selected can be seen to
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reduce as sample size increased.

The results for determining the appropriate model when using prediction as the

measurement are presented in Figure 3.4c and 3.4d. We observe a similar reduction

in incorrectly selected models when gamma is wrongly specified. When IG is wrongly

specified, the proportion of IG model selection is zero for ρ values from 0.4 to 0.9. In

contrast, when ρ = 0.3 the proportion of IG model selection was up to 6% for sample

size less than 50 and zero otherwise. The 6% selection of the IG model may be due to

the sensitivity of the RMSE to outliers in the predicted number of component failures.

For data with high heterogeneity, the probability of selecting the wrong model whether

for model fit or for prediction is low and only happens when the sample size is small.

3.3.3.3 Case Three - component early life behaviour

In case three, we set ρ to 0.3 to reflect components’ early life behaviour in which failures

occur due to component defects or installation issues. The results for case three are

presented in Figure 3.5. From the four plots 3.5a, 3.5b, 3.5c and 3.5d we see that in

terms of prediction or model fit, the proportion of wrong model selections (whether

IG or gamma) could be as high as 10% when the sample size is less than 50 and

heterogeneity is high, i.e. close to 3. However, as the sample size is increased from 50,

the likelihood of selecting the wrong model reduces to zero. More broadly, we see that

the proportion of wrong models selected increases as θ increases from 0.3 to 3. This

supports our findings when we compare Sections 3.3.3.1 and 3.3.3.2.

3.3.3.4 Case Four - component mid-life behaviour

In case four, we set ρ to 0.9 to reflect components nearing the mid-life stages where

time between component failures are almost constant. The results are presented in

Figure 3.6. From Figure 3.6a and 3.6b we see that in terms of model fit, the proportion

of selections of the wrong model increased as heterogeneity levels increased for IG and

gamma model reaching 12% and 10% respectively. In contrast, as the sample size is

increased from 10 to 100 the proportion of wrong model selections reduced for all θ

values from 0.3 to 3.
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Figure 3.3: Plot of probability of selecting the wrong model when heterogeneity is low
θ = 0.3.
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Figure 3.4: Plot of probability of selecting the wrong model when heterogeneity is high
θ = 3.
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Figure 3.5: Plot of probability of selecting the wrong model when early life failures are
considered ρ = 0.3.
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Figure 3.6: Plot of probability of selecting the wrong model when component failures
are similar to the mid-life phase ρ = 0.9.
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3.3.3.5 Summary of Analysis

Reflecting on our study, some conclusions can be drawn from our analysis. First,

when the sample sizes increase above 50, the likelihood of selecting the wrong model

significantly reduces for almost all choice of parameters. This provides confidence that

when we have many components, we are likely to select the correct model. However,

there will be many cases where the sample size will be much smaller. Second, the effect

of heterogeneity for low sample sizes is noticeable. As we increase the heterogeneity from

θ = 0.3 to θ = 3, the probability of incorrectly selecting the model increases. Third, we

see little difference between the ability of the AIC or the RMSE to select the correct

model. When the distribution is known to be gamma, there is little difference between

the two methods for selecting the correct distribution. In terms of model selection with

respect to the predictive accuracy of the models for the number of observed failures,

there were two cases when the underlying distribution is from an IG, that the correct

model was identified by RMSE regardless of sample size. In contrast, in terms of

statistical fit, the correct model was not easily identified by AIC for small sample sizes,

but the selection of the correct model improved as sample size increased. One reason

why the RMSE could have identified the correct model regardless of sample size could

be because it is a direct measure of the fit of the models to the observed data compared

with the AIC that depends on the value of the likelihood function. Another reason

why the RMSE could have identified the correct model regardless of the sample size

could be because its result is not based on the maximum likelihood whose asymptotic

performance depends on the sample size.

3.4 Application to classic dataset

We compare the two frailty models and a PL model using a dataset from the literature,

i.e. failure times of air conditioner components from a set of airplanes studied by [293].

This data was used as [293] compared a Heterogenous trend renewal process, an NHPP

model with gamma distributed random effect, and a HPP with gamma distributed

random effect. [293] found that an NHPP model with gamma distributed random effect
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provides a better fit than Ordinary NHPP model, identifying heterogeneity among

systems in the data. Here we compare the IG and gamma frailty models using the

successive failure times before truncation as given in Table 3.1 to see if the IG provides

a better fit.

The results of fitting IG frailty model, gamma frailty model and PL model are sum-

marised in Table 3.3. Parameter estimates for the gamma frailty model were obtained

as λ = 3.353× 10−3, ρ = 1.1424, and θ = 0.1334 while the parameter estimates of the

IG frailty model were obtained as λ = 5.861 × 10−3, ρ = 1.1186, and θ = 0.9805. Pa-

rameter estimates of the PL model were obtained as λ = 5.502× 10−3, and ρ = 1.0720.

The values of θ by the two frailty models, show a low level of heterogeneity between the

components of the system. Whilst Lindqvist et al. [293] found the gamma frailty model

as the better model for the data when compared to Ordinary NHPP model, based on

AIC values in Table 3.4, the IG frailty model has a better fit compared with the PL

model and gamma frailty model.

Variance of the estimates in Table 3.3 were derived using bootstrap technique. Boot-

strapping is sampling with replacement from observed data to estimate the variability

in a statistic of interest. In other words, bootstrap is typically used to estimate quan-

tities associated with the sampling distribution of estimators and test statistics [294].

By resampling from the pseudo-population, we can compute any quantity of interest

using the bootstrap technique [284]. From Table 3.3 we observe that the variance of

the estimates of λ and ρ of the data are low for all the models. In contrast, the variance

of the estimate of θ from IG is higher than those from gamma indicating that the value

of the estimate of θ from IG will differ a bit for each sample.

Furthermore, we compared predictions of the expected number of failures for the

system from the three models with observed data using RMSE (see Table 3.2 and

column ”RMSE” in Table 3.4 for the predicted number of failures and RMSE values

respectively). The expected number of failures from IG and gamma frailty models were

calculated from Eq.(3.22) while the expected number of failures for the PL model was

calculated using E[NS(t1, t2)] = Λ0(t1, t2). We found that there is little difference in the

performance of the models when observed in terms of their predictions of the observed
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number of system failures.

Next, we compared the models in term of the cumulative number of failures, the

cumulative number of failures were derived using the values in Table 3.2. Column

”RMSE (cumulative failures)” in Table 3.4 presents the RMSE values for the three

models. We found that there is little difference in the predictions of the cumulative

observed number of system failures from the PL, gamma and IG frailty models when

time is less than 500 days (see Table 3.5 and Figure 3.7 for the cumulative number of

failures and the plot of the cumulative number of failures respectively). However, in

line with Hougaard [202] findings that the relative frailty distribution among survivors

from an IG model becomes more homogeneous with time, we found that once we

extend beyond 500 days the survivors become more homogeneous and the IG model

substantially outperforms the gamma but it’s performance was similar to the PL. Based

on the selection values of AIC and ”RMSE (cumulative failures)”, in terms of model fit

and prediction, one can infer that the IG frailty model is marginally better in terms of

model fit and better than gamma frailty model in terms of predictions of the expected

number of component failures for the air conditioner data when number of days is

greater than 500.

Equation (3.22) is useful for predicting the expected number of failures at the system

level. For component level prediction, the predicted number of failures for all the

components will always be the same, even if there are clear differences in the pattern

of failure occurrences. The reason is that the value of the variance parameter θ in the

equation for the expected number of failures Eq.(3.22) is the same for each component.

Thus, predictions of the expected number of failures for individual components will be

computed by using an empirical Bayes approach to account for variability using the

mean frailty estimates (see Carlin et al. [295] for more on empirical Bayes).

Using an empirical Bayes approach, we developed a method for individual com-

ponent prediction of the mean residual life (MRL) and expected number of failures

conditional on the expected frailty value. The developed method is then applied to

make predictions for components in the Airconditioner data. The developed method

uses Bayes theorem to update the frailty distribution for each j component based on
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the observed data from the jth component. With the updated frailty distribution, we

get a point estimate (in this case the mean of the distribution) of the value of the

frailty term for the jth component. Then, we use the new frailty term to compute

the intensity, survival function, and make individual event prediction of the MRL and

expected number of failures for each jth component.

Using Bayes theorem, we can have the posterior distribution of the frailty term z∗j

of the jth component as:

hj(z
∗
j | θ) = Lj(λ0(tij) | zj)f(zj ; θ)∫∞

0 Lj(λ0(tij) | zj)f(zj ; θ)dzj
, (3.24)

where hj(z
∗
j | θ) is the posterior distribution of Z∗

j , Lj(λ0(tij) | zj) is the data like-

lihood for component j, and f(zj ; θ) is the prior distribution (i.e., the gamma or IG

distributions). Lj(marg) =
∫∞
0 Lj(λ0(tij) | zj)f(zj ; θ)dzj is the marginal likelihood for

component j. We present the derivations of hj(z
∗
j | θ), and the point estimate of the

value of the frailty term for IG and gamma in appendix B and C respectively. We

used the maximum likelihood methods presented in the third section to estimate θ,

and parameters of λ0(tij) then we used the Bayesian method to estimate the updated

frailty term. The use of frequentist to estimate parameters and Bayesian method to

estimate the value of the random effects is common in mixed-effects models (see for

example [69, 296]).

The expected number of failures of the jth component conditional on the expected

frailty value between time t1 and t2is given as:

E[Nj(t1, t2 | zj)] =
∫ t2

t1

z∗jλ0(t)dt. (3.25)

System level prediction of expected number of component failures is E[NS(t1, t2)] =∑m
j=1E[Nj(t1, t2)]. The expression of the MRL is given as:

mrlj(τ) =

∫ ∞

τ
Rj(x | τ)dx =

∫∞
τ Rj(x)dx

Rj(τ)
, (3.26)

where τ is the end of observation length and Rj(.) = exp−z∗jΛ0(.).
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For each of the components (Airplanes) in the Air conditioner data, we predicted

the mean residual life and compared predictions of the expected number of failures

from the IG and Gamma models with observed data using RMSE. The mean frailty

estimate for each component zj , mean residual life prediction, and RMSE values for the

expected number of failures for each Airplane is presented in Table 3.6. The RMSE and

RMSE (cumulative no. of failures) values in Table 3.6 shows that out of 13 components,

the IG frailty model is better at predicting the expected number of failures for atleast

9 components compared to the gamma frailty model. For illustration we present the

plots of the predictions of the expected number of failures for four Airplanes (Airplane

7909, Airplane 7914, Airplane 7915, and Airplane 7917) in Figures 3.8a, 3.8b, 3.8c, and

3.8d. From the Figures, we see a difference in the predictions of the observed number

of failures for each of the Airplanes from the gamma and IG frailty models when time

is more than 250 days.

In terms of mean residual life predictions for each component Airplane, we apply

Eq.(3.26) for IG and gamma frailty models and found that there are differences in the

MRL predictions of the Airplanes by the two models. For some Airplanes, for example

Airplanes 7910, 7912, and 8044, the difference was as little as one or two days. In

other Airplanes such as: 7909, 7911, 7913, 7914, 7915, 7916 and 7917, the differences

ranged from eleven to seventy seven days. However, given the selection of the IG frailty

by the RMSE values of a lot of the Airplanes, the MRL predicted values by the IG

frailty model may be chosen for optimal maintenance decision making for most of the

Airplanes.

As illustrated in Figure 3.7, using only the PL model, the expected number of

failures and MRL at the system level can be estimated. In contrast, predictions of

the expected number of failures and MRL at the component level cannot be estimated

using the PL model. The reason is that the predicted values will be the same for all

the components given that they have the same parameter values.
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Table 3.1: Failures times for Air conditioners in 13 Airplanes

Airplane Number

7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 8044 8045

194 413 90 74 55 23 97 50 359 50 130 487 102
209 427 100 131 375 284 148 94 368 304 623 505 311
250 485 160 179 431 371 159 196 380 309 605 325
279 522 346 208 535 378 163 268 650 592 612 382
312 622 407 710 755 498 304 290 627 710 436
493 687 456 722 994 512 322 329 639 715 468

696 470 792 574 464 332 800 535
865 494 813 621 532 347 891 594

550 842 846 609 544 934 728
570 917 689 732 880
649 690 811 907
733 706 899 921
777 812 945
836 950
865 955
983 991
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Figure 3.7: Plot of the expected number of failures predicted by the IG frailty model,
gamma frailty model and PL model compared to the observed cumulative number of
failures within the interval 0 to 1000 hours (system level prediction).
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Table 3.2: Predictions of the number of failures from gamma, and IG frailty models
and the PL model.

Expected number of failures

Time (days) observed gamma IG PL

0 - 90.90 6 7.2554 8.8649 8.9968
90 - 181.82 11 8.6956 10.0487 9.9176
181.83 - 272.73 6 9.3348 10.5468 10.2977
272.73 - 363.64 15 9.7746 10.8819 10.5525
363.64 - 454.55 11 10.1145 11.1369 10.7462
454.55 - 545.55 16 10.3935 11.3438 10.9031
545.55 - 636.36 12 10.6310 11.5183 11.0353
636.36 - 727.27 12 10.8385 11.6695 11.1498
727.27 - 818.18 10 11.0230 11.8030 11.2508
818.18 - 909.09 9 11.1894 11.9227 11.3414
909.09 - 1000 9 11.3412 12.0313 11.4235

Table 3.3: Parameter estimates of gamma, and IG frailty models and the PL model
when fitted to Air conditioner failure time data.

λ Var λ ρ Var ρ θ Var θ

gamma 0.003353 0.0000035 1.142425 0.00224294 0.133469 0.0048281
IG 0.005861 0.0000046 1.118666 0.00454367 0.980574 0.3487936
PL 0.005502 0.0000036 1.0720 0.00189678

3.5 Conclusion

In this chapter, we applied the IG frailty model for analysing failure data from het-

erogeneous repairable systems. The IG frailty model, which combines the PL model

and IG distribution, assumes that the relative frailty distribution among survivors be-

comes more homogeneous over time. This is in contrast to the commonly used gamma

frailty models which assume that the relative frailty distribution among survivors is

independent of age. The main objective of this paper were to evaluate the application

of IG frailty model for analysing failure data from heterogeneous repairable systems,

compare its results with the gamma frailty model, and develop a method for event

prediction based on the IG and gamma frailty models. To accomplish the objective,

we developed the IG frailty model and a method for parameter estimation of the IG
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Table 3.4: AIC and RMSE values of gamma, and IG frailty models and the PL model
when fitted to Air conditioner failure time data.

AIC RMSE RMSE (Cumulative failures)

gamma [293] 1335.281 2.893 7.490
IG 1331.92 2.856 3.207
PL [293] 1337.34 2.844 3.570

Table 3.5: Predictions of the cumulative number of failures from gamma, and IG frailty
models and the PL model.

Cumulative number of failures

Time (days) observed gamma IG PL

90.90 6 7.2554 8.8649 8.9968
181.83 17 15.9510 18.9137 18.9145
272.73 23 25.2859 29.4605 29.2122
363.64 38 35.0605 40.3425 39.7648
454.55 49 45.1751 51.4794 50.5110
545.55 65 55.5686 62.8233 61.4142
636.36 77 66.1996 74.3416 72.4496
727.27 89 77.0381 86.0112 83.5994
818.18 99 88.0612 97.8143 94.8503
909.09 108 99.2507 109.7371 106.1917
1000 117 110.5919 121.7684 117.6153

frailty model using maximum likelihood estimation and numerical methods. We found

that the estimator is robust to different parameter values, and beyond a sample size of

10, the estimator performs well.

A comparison of the gamma and IG frailty models was conducted to examine

whether both models are good alternatives of each other. Statistical fit of the gamma

and IG frailty models as well as the prediction performance was thoroughly studied

and compared. We found that regardless of the degree of heterogeneity or frequency

of failures when early component behaviour is concerned, the probability of selecting a

wrong model is low whether for model fit or for prediction purpose. A wrong model is

only selected when the sample size is small.

Furthermore, we compared the two frailty models and a PL model to a classic

dataset where the gamma frailty model had been studied. Our results found that the
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Table 3.6: Mean frailty z∗j , Mean residual life, and RMSE value for the expected number
of failures of each Airplane

z∗j Mean residual life (Days) RMSE RMSE (cumulative no. of failures)

Airplane ID gamma IG gamma IG gamma IG gamma IG

Plane.7907 0.8197 0.4849 117.3 136.5987 1.0137 1.0012* 1.5184 1.7143

Plane.7908 0.9412 0.6105 102.3372 108.7911 0.8338 0.8375 1.2177 1.2283

Plane.7909 1.4272 1.1561 67.8388 56.3213 0.8103 0.7582* 2.0142 0.7714*

Plane.7910 1.0019 0.6758 96.2018 98.3719 0.8536 0.8498* 1.0555 1.0336*

Plane.7911 0.8197 0.4849 117.3 136.5987 0.6726 0.6603* 0.905 0.5656*

Plane.7912 1.0627 0.7424 90.7624 89.6296 0.7873 0.7863* 1.0447 0.9446*

Plane.7913 1.2449 0.9469 77.5854 70.3957 1.3625 1.3511* 2.6173 1.8336*

Plane.7914 1.4272 1.1561 67.8388 56.3213 1.3958 1.3664* 2.0152 1.4194*

Plane.7915 0.6982 0.3696 137.3962 178.5138 0.6737 0.6463* 1.1075 0.6626*

Plane.7916 0.8197 0.4849 117.3 136.5987 0.807 0.7939* 0.6757 0.738

Plane.7917 0.5767 0.2703 165.8234 242.7943 0.4922 0.4183* 1.6388 0.7609*

Plane.8044 1.0019 0.6758 96.2018 98.3719 0.774 0.7828 1.7996 1.8478

Plane.8045 1.1842 0.8781 81.5381 75.8732 0.7651 0.7569* 1.1155 0.8169*
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Figure 3.8: Plot of the expected number of failures predicted by the IG and gamma
frailty models compared to the observed cumulative number of failures within the in-
terval 0 to 1000 hours (component level prediction).
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IG frailty model was better in terms of model fit and outperforms the gamma for system

level prediction of expected number of failures when the number of days was greater

than 500.

Using empirical Bayes framework, we developed a method for prediction of expected

number of failures and mean residual life at the component level based on IG and

gamma frailty models. We applied the developed method to the same classic dataset.

Our results show that there is difference in the predictions of the observed number of

failures and MRL for each of the Airplanes from the gamma and IG frailty models

when time is more than 250 days.

Lastly, whilst still accounting for heterogeneity, the standard PL model is not suit-

able for predictions of the expected number of failures and MRL at the component level

because the predicted values will be the same for all the components given that they

have the same parameter values.

In the next chapter (chapter 4), we will develop a system reliability model for esti-

mating the reliability of a load sharing multi-component system with spatial dependent

components considering proximity effects.

Appendix - Chapter 3

A.1 Appendix A

The derivation of the Maximum likelihood estimation for gamma frailty model is pre-

sented below. If we let zj be the frailty random variable following iid gamma distribu-

tion then the density of the two-parameter gamma distribution will be:

f(zj) =
zk−1
j exp−

zj
δ

δkΓ(k)
,

where zj ≥ 0, k is shape parameter and δ is scale parameter. Further more, E(zj)=kδ

and Var(zj)=kδ
2. To make gamma frailty model identifiable, restriction is used which

requires expectation value to equal 1. Thus, if we set k = 1 and δ = θ, we will have a

one-parameter gamma distribution given by:
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f(zj) =
z

1
θ
−1

j exp−
zj
θ

θ
1
θΓ(1θ )

,

where E(zj) = 1 and Var(zj) = θ. The conditional likelihood function for a single

component j with random effect zj is given below as:

Lj(λ0(tij) | zj) =

( nj∏
i=1

zjλ0(tij)

)
exp(−zjΛ(τ)),

where λ0(tij) = λρtρ−1
ij and Λ0(τ) = λτρ. Since zj is unobservable from the data, the

contribution of component j to the full likelihood from the conditional likelihood can

only be obtained by deriving the unconditional likelihood function with respect to zj .

This implies computing the expected value by integrating out zj and thus deriving the

gamma distribution parameter which directly affects the full likelihood. Thus, we have

that:

Lj(θ | λ0(tij)) =
∏nj

i=1 λ0(tij)

θ
1
θΓ(1θ )

∫ ∞

0
z

1
θ
−1+nj

j exp−
zj
θ
−zjΛ(T )dzj .

For gamma frailty model, the expression of Lj(marg) is given by:

Lj(marg) =

 ∏nj

i=1 λ0(tij)Γ(nj +
1
θ )

θ
1
θΓ(1θ )

(
Λ0(t) +

1
θ

)(nj+
1
θ
)

 . (27)

It then follows that the full unconditional likelihood of all the components is given

below:

L =

m∏
j=1

∏nj

i=1 λρt
ρ−1

θ
1
θΓ(1θ )

Γ(nj +
1
θ )(

λ(τ)ρ + 1
θ

)(nj+
1
θ
)

 .
Taking the derivative of the log likelihood function with respect to λ and ρ and θ

leads to:

δl

δλ
=
n

λ
−mτρ = 0,
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where n =
∑m

j=1 nj .

δl

δρ
=
n

ρ
+

m∑
j=1

nj∑
i=1

log tij −mλτρ log τ .

δl

δθ
=

m∑
j=1

log Γ(nj +
1

θ
)−

[
m log Γ(

1

θ
) +m log(θ

1
θ ) +m(nj +

1

θ
) log[λτρ +

1

θ
]

]
.

Thus estimators for the scale λ and shape ρ parameters are of the form:

λ̂ =
n

mτρ
,

and

ρ̂ =
n

n log τ −
∑m

j=1

∑nj

i=1 log tij
.

As can be seen, estimators for λ and ρ are explicitly derived whereas an analytic

expression for the estimator of θ can not be easily derived. So a numerical optimization

algorithm will be used to estimate the parameters.

B.2 Appendix B

The expressions for the posterior distribution, expected frailty value, expected number

of failures and marginal reliability function for the IG frailty model is derived as follows.

The marginal reliability function of the jth component is given as:

Rj(t) =

∫ ∞

0
Rj(t | zj)f(zj ; θ)dzj , (28)

where f(zj ; θ) is the IG distribution and Rj(t | zj) = exp−zjΛ0(t). Thus,

Rj(t) =

∫ ∞

0

1√
2πθ

z
− 3

2
j exp

(
−zjΛ0(t)−

(zj−1)2

2zjθ

)
dzj , (29)

and
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Rj(t) = exp

(
1
θ

(
1−
√

1+2θΛ0(t)
))
, (30)

where Rj(t) is derived by replacing s with Λ0(t) in the Laplace transform for gamma

distribution Lj [s] = exp(
1
θ (1−

√
1+2θs)). (See Mundo et al [297] for derivation of Laplace

transform of IG and Gamma frailty models).

The marginal expected number of failures of the jth component between time t1

and t2 is given as:

E[Nj(t1, t2)] = Λj(t1, t2) = −log(Rj(t1, t2))

=
1

θ
(
√

1 + 2θΛ0(t1, t2)− 1).
(31)

The marginal expected number of component failures in the system between time t1

and t2 is given as:

E[NS(t1, t2)] =
m∑
j=1

E[Nj(t1, t2)] =
m

θ
(
√
1 + 2θΛ0(t1, t2)− 1). (32)

where m is the number of components in the system.

Next we derive the posterior distribution for z∗j given a IG prior distribution. Re-

placing the expressions of Lj(marg), Lj(λ0(tij) | zj), and f(zj ; θ) in the Bayes formula

Eq.(3.24), then the posterior distribution of z∗j for the jth component will be derived

as:

hj(z
∗
j | θ) =

z
nj− 3

2
j exp

(
−zj

(2θΛ0(t)+1)
2θ

− 1
2θzj

)

2 (2θΛ0(t) + 1)−(
nj−1/2

2
) k(nj−1/2)

[√
(1+2θΛ0(τ))

θ

] . (33)

The value of the frailty term for component j is then derived as a point estimate

by finding the mean of the updated frailty distribution hj(z
∗
j | θ). The mean of the

updated frailty distribution z∗j = E[z∗j ] is derived as:
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E[z∗j ] =

∫ ∞

0
z∗jhj(z

∗
j | θ)dz∗j . (34)

Then

E[z∗j ] =

∫∞
0 z∗j .z

∗
j
nj− 3

2 exp

(
−z∗j

(2θΛ0(t)+1)
2θ

− 1
2θzj

)
dz∗j

2 (2θΛ0(t) + 1)−(
nj−1/2

2
) k(nj−1/2)

[√
(1+2θΛ0(τ))

θ

] , (35)

and

E[z∗j ] =

(2θΛ0(t) + 1)−(
nj+1/2

2
) k(nj+1/2)

[√
(1+2θΛ0(τ))

θ

]
(2θΛ0(t) + 1)−(

nj−1/2

2
) k(nj−1/2)

[√
(1+2θΛ0(τ))

θ

] , (36)

where nj is the number of events that component j has experienced. θ is the estimated

variance parameter from the gamma frailty likelihood estimator, and Λ0(t) is the cumu-

lative intensity of the component until time t. k(nj−1/2)[.] is a modified bessel function

of the second kind.

C.3 Appendix C

The expressions for the posterior distribution, expected frailty value, expected number

of failures and marginal reliability function for the gamma frailty model is derived as

follows.

The marginal reliability function of the jth component is given as:

Rj(t) =

∫ ∞

0
Rj(t | zj)f(zj ; θ)dzj , (37)

where f(zj ; θ) =
z
1
θ
−1

j exp−
zj
θ

θ
1
θ Γ( 1

θ
)

is a gamma distribution and Rj(t | zj) = exp−zjΛ0(t).
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Thus,

Rj(t) =

∫ ∞

0
exp−(zjΛ0(t))

z
1
θ
−1

j exp−
zj
θ

θ
1
θΓ(1θ )

dzj , (38)

and

Rj(t) = (θΛ0(t) + 1)−
1
θ , (39)

where Rj(t) is derived by replacing s with Λ0(t) in the Laplace transform for gamma

distribution Lj [s] = (θs+ 1)−
1
θ .

The expected number of failures of the jth component between time t1 and t2 can

be derived from the marginal reliability as:

E[Nj(t1, t2)] = Λj(t1, t2) = −log(Rj(t1, t2))

=
1

θ
log(θΛ0(t1, t2) + 1)−

1
θ .

(40)

The expected number of component failures in the system between time t1 and t2

is given as:

E[NS(t1, t2)] =
m∑
j=1

E[Nj(t1, t2)] =
m

θ
log(θΛ0(t1, t2) + 1)−

1
θ . (41)

where m is the number of components in the system.

Next we derive the posterior distribution for z∗j given a gamma prior distribution.

Replacing the expressions of Lj(marg), Lj(λ0(tij) | zj), and f(zj ; θ) for the gamma

frailty model in the Bayes formula Eq.(3.24), then the posterior distribution of z∗j for

the jth component will be derived as:

hj(z
∗
j | θ) =

z
nj+

1
θ
−1

j exp−zj(Λ0(t)+
1
θ )(Λ0(t) +

1
θ )

nj+
1
θ

Γ(nj +
1
θ )

. (42)

The expression for the mean of the updated frailty distribution z∗j = E[z∗j ] is given

as:
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E[z∗j ] =

∫∞
0 z∗j .z

∗
j
nj+

1
θ
−1exp−z∗j (Λ0(t)+

1
θ )(Λ0(t) +

1
θ )

nj+
1
θ dz∗j

Γ(nj +
1
θ )

. (43)

However, hj(z
∗
j | θ) is a gamma density function, thus the associated posterior mean

is:

E[z∗j ] =
(nj +

1
θ )

(Λ0(t) +
1
θ )
, (44)

where nj is the number of events that component j has experienced. θ is the esti-

mated variance parameter from the gamma frailty likelihood estimator, and Λ0(t) is

the cumulative intensity of the component until time t.
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Chapter 4

Reliability analysis of a

load-sharing system with spatial

dependence, and proximity

effects

In chapter 3, we studied the problem of reliability prediction for a repairable system

subject to unobserved heterogeneity. This chapter considers dependence in the form of

load-sharing in multi-component systems. In section 2.4.2 of chapter 2, we established

the following: First, no research has considered models for reliability prediction of load-

sharing systems with spatial dependence and proximity effect. Second, the consequence

of ignoring spatial effect in a load-sharing system has not been investigated.

Based on the established gaps in section 2.4.2 of chapter 2, our contribution in this

chapter is twofold. First, we will develop a model for estimating the reliability of a load-

sharing system with spatial dependent components. Second, using the developed model,

we will examine the importance and significance of the spatial effect. We will extend

the classic capacity flow model to characterize the relationship between the failure rate

of a component and the load imposed on the component. The proposed model will

capture the load-life relationship of a component considering spatial dependence. In

110



Chapter 4. Reliability analysis of a load-sharing system with spatial dependence, and
proximity effects

the setup of the chapter, proximity effect will be considered in load-sharing, that is, we

will consider the case that the redistribution of a failed component’s load depends on

proximity to the failed component. A Markov model will be used to characterize the

deterioration process of the entire system. Furthermore, a modified Euler’s method will

be used to derive the system state probabilities and corresponding system reliability.

We will then formulate an algorithm based on Monte Carlo simulation to validate the

derived reliability estimations. Finally, numerical analysis will be conducted to assess

the developed model.

The remainder of this chapter is outlined as follows: Section 4.1 introduces the

System description and load-sharing rule for the study. Section 4.2 presents the meth-

ods for modelling spatial dependence and proximity effect when distance information is

either available or not available. Section 4.3 shows the derivation of the load function

expression. Section 4.4 presents the formulation of the system state transition and fail-

ure rate function for homogeneous and heterogeneous components. Section 4.5 presents

parameter estimation. Sections 4.6, 4.7 and 4.8 presents illustrations of the developed

model through numerical examples. Section 4.9 presents the conclusion.

4.1 System description and load-sharing rule

Consider a load-sharing system that consists of n components connected in parallel.

The following assumptions are made to better position our study:

• Each component can either be in a working or failed state while the system is

multi-state and can function at different performance levels depending on the

states of its components.

• The lifetimes of the components are load dependant and follow exponential dis-

tributions.

• The system fails if the sum of the loads on each working component at time t is

less than the total system load L.
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• When a component fails, its working spatial neighbours in any direction (as long

as they are in close proximity) can take up the failed component’s load.

The components are spatial dependent and the system structure is known before-

hand. The number of spatial neighbours a component has is determined by the number

of links with other components. The system operates such that at time t = 0 the total

load L of the system is shared by all the components. The components share the con-

stant system load L in the proportion γ1, γ2, . . . , γn, where γi is the proportion taken

by component i at time t = 0 and n is the number of components in the system. If the

components equally share the load, then we can simply let γi = γj for any 1 ≤ i, j ≤ n.

Let i denote a working component, and j denote the index of a failed neighbour of

component i. The load zi taken by component i at initial time t = 0 is given by [248]:

zi =
γiL∑n
i=1 γi

. (4.1)

Denote zi(j) as load on component i given that its neighbour component j has

failed. We have

zi(j) = zi + ϑijzj , (4.2)

where ϑij denotes the ratio of a failed component’s load that affects the failure rate of a

working adjacent component. It can be viewed as the proportion of a failed component’s

load that its working spatial neighbour will take on. The proportion of extra load is a

function of whether or not a failed component is proximate to a working component.

ϑij takes values between 0 and 1 as a result. If ϑij = 0 a working component is not

impacted by the failure of component j. We will refer to ϑij as the proximity effect and

refer to the expression zi(j) as the interacting load function.

Similarly, the load on component i after the failure of its second neighbour k, zi(j,k),

is given by:

zi(j,k) = zi(j) + ϑikzk.

112



Chapter 4. Reliability analysis of a load-sharing system with spatial dependence, and
proximity effects

The system fails when the sum of loads on the working components is less than the

load placed on the system, i.e.,
∑n

i=1 zi < L.

In this chapter, we focus on parallel system because parallel structures are more

common in practice for load-sharing systems. However, the parallel system considered

here is different from traditional parallel systems. Traditional parallel systems fail when

all components fail, while the system under investigation here fails when the system

cannot bear a specified load. As such, our system is more analogous to a performance-

based system that fails when it cannot sustain its performance (load).

4.2 Modelling spatial dependence and proximity effect

In order to account for components’ interaction with each other, we will define spatial

dependence in terms of a given system structure. We assume that if we know the spatial

arrangement of components and connections between them, we may be able to infer

their dependency. We introduce a conceptual dependence model to account for spatial

dependence between components. The dependence model is based on the assumption

that pairs of components with a direct link (in the form of solid lines) between them

are close enough to interact while pairs of components without a link (i.e, have no line)

are independent even if they are positioned next to each other.

To illustrate the dependence concept, we consider the four-component system de-

picted in Figure 4.1. Note that in Figure 4.1b, the system is in a parallel structure, and

in Figure 4.1a the links between the components indicate proximity of the components.

The systems are composed of four components indexed as A, B, C and D. Components

A, B, and C have solid lines between them while A and D have no line indicating that

even though components A and D are spatial neighbours in terms of their position next

to each other, they do not influence each other. By definition, component B is spatially

dependent on A and C while component A is only spatially dependent on component B.

Component C is spatially dependent on component B and D while component D is only

spatially dependent on component C. While the performance of components B and C

could be influenced by its two spatial neighbours, components A and D’s performance

is only influenced by one spatial neighbour. In contrast, component pair A and D in
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(b) Block diagram of parallel connections

Figure 4.1: Visual depiction of four component system

the two structures are not spatially dependent so if one of them is in failed state, the

other one’s reliability is not affected.

4.2.1 Modelling the proximity effect

In this section, we will assume that the spatial arrangement (spatial pattern) of com-

ponents in the system is known and that there is no information about the distance

between components. In section 4.2.2 we will develop proximity models assuming that

we know the distance between components. We assume that one can derive the proxim-

ity effect (which describes the proportion of load that a working proximate component

takes from a failed component) between components using their spatial arrangement

and the link between them (that is, the spatial dependence). An example of a load-

sharing system that the method could be applied to is an intelligent air conditioning

system. In the literature, the lattice, star and circular structures of the intelligent air

conditioning has been used to infer spatial dependence and load distribution between

components (see [52, 53, 54]). Let θij represent spatial dependence of two components

such that if they have a direct link θij = 1 otherwise θij = 0. We will introduce a

dependence matrix to capture each θij .
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Let us assume that θij is updated according to the state of the components then at

time t = 0 when all components are working, the dependence matrix [θij ] will be:

[θij ] =


θ11 θ12 . . .
...

. . .

θn1 θnn

 ,
where the jth column of matrix [θij ] denotes the index of a failed component while the

ith row is the index of its working neighbours.

In order to ensure that the sum of proportion of the jth failed component’s load

taken up by all its working neighbours at time t sum up to one, the elements of each

column in matrix [θij ] will be column normalized. If we assume that the jth column of

[ϑij ] represents the proportion of its load that a failed component j will transfer to its

working proximate neighbours i at time t, then the normalization equation will be:

ϑij =
θij∑n
i=1 θij

. (4.3)

After column normalizing, we would derive a new matrix [ϑij ] with normalized

values ϑij which represents the proximity effect, i.e.,

[ϑij ] =


ϑ11 ϑ12 . . .
...

. . .

ϑn1 ϑnn

 ,
where ϑii = 0 and ϑij is non-negative and the values in each column have unit sum,

i.e.,
∑n

i=1 ϑij = 1, for any j = 1, . . . , n.

4.2.2 Proximity models with distance information

For load-sharing systems with spatial dependent components, [32] defined the load-

sharing rule as a rule in which the load on a failed component is transferred to proxi-

mate components, and the proportion of the load that the working components inherit

depends on their distance to the failed component. They mentioned that examples of
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this kind of systems include cables supporting bridges and other structures, composite

materials with bounding matrix joins, and transmission. Following the load distribution

rule, a working component will be affected by its failed neighbour j with an increased

load zi(j) as:

zi(j) = z0(1 + pij), (4.4)

where pij describes how much a failed component’s load affects its working proximate

neighbours. If pij = 0, it means two components are not close enough to have load-

sharing interaction whereas pij ≤ 1 represents the degree to which two proximate

component affect each other’s performance.

In this section we consider the case that there is information about the distance dij

between components and one can derive the proximity values pij which would describe

how much a failed component’s load affects its working proximate neighbours. Accord-

ing to [32], the proportion of the load inherited by the working component depends

on their distance to the failed component thus we will assume that pij is a function

of the distance dij between components. We will introduce two distance decay spatial

weights matrix methods applied in geostatistics for deriving the proximity values. We

shall refer to the distance decay spatial weights methods as constant proximity model

and an exponential proximity model. The methods are based on the idea that areas

closer to an area of interest have more of an influence than those further away and thus

are weighted as such in [298].

Let us assume that one can represent all the distances between components as

elements of a distance matrix [Dij ] given as:

[Dij ] =


d11 d12 . . .
...

. . .

dn1 dnn

 ,

where d11 = d22 = . . . = dnn = 0. Let us assume that distance is an important

criterion of the degree of influence between components and that there is a threshold

distance beyond which there is no influence between components. Let α denote the
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threshold distance. First, we introduce the constant proximity model which assumes

that all component pairs within a distance threshold α have the same proximity effect

pij regardless of their distance apart while component pairs with distance more than

the threshold do not interact [298]. Each pij is derived by:

pij =

c, 0 ≤ dij ≤ α

0, dij > α,
(4.5)

where c is a predefined constant value and is the same for all pair of components within

the threshold distance α. All other components outside the threshold distance have

pij = 0.

In contrast, the exponential proximity model assumes a diminishing proximity ef-

fect which reduces as the distance between components increase up to the threshold

α. The exponential proximity model could find application to a cable-strut system

in suspension bridge where the booms far from the failed one are only subjected to

the indirect force and the transfer effect on them is less compared with those on the

proximate booms [50]. The exponential proximity model unlike the constant proximity

model allows for variability of the pij . The exponential proximity model is given by:

p̂ij = e−
dij
α , (4.6)

where α is the threshold and dij is the distance between component i and j. If we take

the limit of the exponential proximity model as dij is close to zero i.e.,

lim
dij→0

e−
dij
α = 1. (4.7)

As the distance between two components is reduced to zero, the influence component

j can have on a neighbour i increases to one. In contrast, if we take the limit of the

exponential proximity model as dij tends to ∞, i.e.,

lim
dij→∞

e−
dij
α = 0. (4.8)
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In the operation of industrial systems in real-life, highly distant components would

barely interact directly. As a result, we set every element p̂ij = 0 for all (dij > α). In

this work, we will consider the exponential model. We also assume that the threshold

α can be derived as the average of pairs of distances in the system (without repetition)

and α =
∑

dij
l . l is the number of inter-component links and dij = dji. α ensures

that all components j whose distances dij from a component i less than or equal to

mean distance (dij ≤ α) are influenced by i while components j with distances greater

than the mean distance (dij > α) are not affected. Note that α is a scaling parameter

used to scale the effect of distance. In practice, average distance is used to scale the

distance (e.g., see [298]). Mathematically other scaling factors can also be explored.

In this research, we adopt the average distance to model α. α is calculated by taking

an average of the upper or lower triangular matrix instead of the entire matrix as the

distance values will be doubled.

After deriving each proximity value p̂ij using an exponential proximity model, we

represent the proximity effects between components of a system as elements of a prox-

imity matrix:

[
P̂ij

]
=


1 p̂12 . . .
...

. . .

p̂n1 1

 .

The diagonal elements p̂ii of the
[
P̂ij

]
matrix contains unit values indicating that

a component is in close proximity with itself. If the unit values of each p̂ii elements

are left, they would affect how the load of a failed component is shared by its working

neighbours. In order to remove the unit values, we will subtract unit matrix from
[
P̂ij

]
so that we have:

[
P ∗
ij

]
=


1 p̂12 . . .
...

. . .

p̂n1 1

−


1 0 . . .
...

. . .

0 1

 =


0 p∗12 . . .
...

. . .

p∗n1 0

 .
Similar to θij in section 4.2.1, p∗ij functions according to the state of the components
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and the matrix [Pij
∗] provides proximity information at time t = 0 when all components

are working.

Similar to [ϑij ], the proximity elements of the
[
P ∗
ij

]
matrix will be column normal-

ized, assuming that the jth column of
[
P ∗
ij

]
contains all proximity effects of neighbours

influenced by the failed state of component j. The normalization equation is given by:

pij =
p∗ij∑n
i=1 p

∗
ij

. (4.9)

After column normalizing, we derive a new matrix [Pij ] with normalized proximity

values of pij . The proximity values in each column are normalized to have unit sum,

i.e.,

n∑
i=1

pij = 1, j = 1, . . . , n , (4.10)

where pii = 0 and pij is non-negative.

To illustrate the methodology, let us consider the four-component system illustrated

in section 4.2.1. If we are given the distance between each pair of component in the

distance matrix [Dij ] as

[Dij ] =


0 30 110 20

30 0 10 100

110 10 0 50

20 100 50 0

 .

The average distance α = 53.33333 is derived by taking the mean of elements in

the upper triangle of the distance matrix. We then applied the exponential proximity

model to derive the proximity values in matrix [Pij ] below:

[Pij ] =


1 0.5697828 0 0.6872893

0.5697828 1 0.8290291 0

0 0.8290291 1 0.3916056

0.6872893 0 0.3916056 1

 ,
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[
P ∗
ij

]
=


1 0.5697828 0 0.6872893

0.5697828 1 0.8290291 0

0 0.8290291 1 0.3916056

0.6872893 0 0.3916056 1

−


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,

[
P ∗
ij

]
=


0 0.5697828 0 0.6872893

0.5697828 0 0.8290291 0

0 0.8290291 0 0.3916056

0.6872893 0 0.3916056 0

 .

The column normalized proximity matrix [p̂ij ] at time t = 0 is given by:

[p̂ij ] =


0 0.4073334 0.0000000 0.6370308

0.4532618 0 0.6791787 0.0000000

0.0000000 0.5926666 0 0.3629692

0.5467382 0.0000000 0.3208213 0

 .

If at time t1 component B fails, and its two neighbours A and C are working then com-

ponent A and C will take up 40.7 and 59.3 percent of component B’s load respectively.

However, if at time t2 component C fails while component A still works, then p̂AB is

recalculated as 1 because θCB = 0 at time t2.

4.3 A simple example: derivation of load function for a

multi-component system

We use a multi-component system to illustrate the derivation of the load functions

shown in Eq.(4.4). Let us consider a system that consists of n components connected in

parallel. Without generality, consider the case that the components share the constant

system load L in the proportion γ1, γ2, . . . , γn, where γi is the proportion taken by

component i at time t = 0. From Eq.(4.1) the system load is derived as:
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L =

∑n
i=1 γi
γi

zi, (4.11)

where zi is the load taken by component i at initial time t = 0. Let γi = γj for any

1 ≤ i, j ≤ n then for t ≥ 0 the system load can be rewritten as:

L =

n−j∑
i=1

zi(j) = zi(j) × (n− j), (4.12)

where i denotes a working component, and j denotes the number of failed components in

the system. zi(j) is the load of the ith working component after j number of components

have failed. Eq.(4.12) is the system load when we consider that the components equally

share the system load. When j = 0 Eq.(4.12) and Eq.(4.11) are equal.

If we consider that an increased load on each working component i for i = 1, 2, . . . , n−

j is a function of both its own independent load zi and the load of a failed component

zj then zi(j) can be written as:

zi(j) = zi + lj , (4.13)

where lj is the proportion of the load of the jth component taken up by component i.

lj is given by:

lj =
γi∑
i ̸=j γi

zj . (4.14)

When the first component failure occurs, zi(j) equals:

zi(1) = zi + l1.

When the second component failure occurs, zi(j) will become:

zi(2) = zi(1) + l2 = zi + l1 + l2.

After the jth component failure has occurred, zi(j) can be written as:
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zi(j) = zi(j−1) + lj = zi +
∑

j lj

= zi +
γi∑
i̸=j γi

∑
j zj .

(4.15)

Let eij =
γi∑
i ̸=j γi

be the proportion of the load of component j taken by component

i. From Eq.(4.15), eij does not have a spatial element. However, consider the load-

sharing rule such that an increased load on a component is a function of both its

own independent load zi and the load of its influencing proximate component zj . To

introduce spatial dependence between components in zi(j) we set eij = pij if distance

information is known otherwise eij = ϑij .

If we consider that γi = γj for any 1 ≤ i, j ≤ n in Eq.(4.1) then zi = zj = z0

and we derive our expression for the load function where equal load is allocated to all

components at time t = 0. This is written as:

zi(j) = z0 +
∑
j ̸=i

eijz0.

4.4 Formulation of system state transition

4.4.1 Failure rate function for homogeneous components

When a component fails, the load of the failed component is added to the proximate

components and causes an increase in their failure rates. In this chapter, the relation

between component i and the load of its failed proximate neighbour j is defined as

follows:

λi(jr) =


λ0, if j = 0,

λ0(zi(j))
β = λ0(z0 + ϑijz0)

β, j ̸= 0,

(4.16)

where r is the number of working neighbours of component j that shares its load. z0

represents the load imposed on components i and j when zi = zj . λ0 is the baseline

failure rate (also called hazard rate) function. Whenever a working neighbour of com-

ponent j fails after component j has failed, the load of component j is redistributed to

the remaining working neighbours and r changes. We assume that the initial load im-
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Figure 4.2: The four component system structure

posed on each working component i cannot be less than 1. Otherwise, the load shared

between components will have a reducing effect on a working component’s failure rate.

β is the load factor which describes the influence of the increased load on the failure

rate of a working component. When β = 0, an increased load has no impact on a

component’s failure rate. The higher β is, the higher the impact of load on the working

neighbours; thus, the working neighbours have higher failure rates. At time t = 0, we

assume that all the components have the same initial failure rate given as λi = λ0.

Obviously, we have λi ≤ λi(jr).

To illustrate the load-sharing concept, let us consider a four-component system

whose components are indexed by A, B, C, and D as seen in Figure 4.2. Using the

spatial dependence concept introduced in section 4.2 component pairs (A, B), (A, D),

(B, C), and (C, D) are spatially dependent while (A, C) and (B, D) are independent

as depicted in Figure 4.2a. If component B first failed at time t1 then its two working

neighbours component A and C will have increased loads of zA(B) and zC(B) given by:

zA(B) = z0 + ϑABz0,
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and

zC(B) = z0 + ϑCBz0.

Their failure rate will become λA(B2) = (z0 + ϑABz0)
βλ0 and λC(B2) = (z0 +

ϑCBz0)
βλ0 respectively.

On the other hand, component D will remain as z0 with failure rate λD since it is

not spatially dependent on component B.

If one of components A or C fails at time t2 given that component B has failed, the

dependence matrix is updated and the only working neighbour of B will take all the

load of B. The load and failure rate of the working component will be:

zi(B) = z0 + ϑi(B)z0,

and

λi(B1) = (z0 + ϑi(B)z0)
βλ0,

where i indicates component A or C, and ϑi(B) = 1.

However, if components A and C are still working and both have two neighbours

in failed state, say component D has failed at time t2 after component B failed, then

components A and C will have increased load and failure rate functions of:

zi(B,D) = zi(B) + ϑiDzD = z0 + ϑiBz0 + ϑiDz0,

and λi(B2,D2) = (z0 + z0ϑiB + z0ϑiD)
βλ0, where i denotes node A and C.

On the other hand, if we assume that there is information about the distance

dij between components. Then given the distance values dij between each pair of

components one can derive proximity values pij and the failure rate in Eq.(4.16) will

become:

λi(jr) = (z0 + pijz0)
βλ0.
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4.4.2 System state transition with homogeneous components

In order to describe the behaviour of the load-sharing system with proximity and spatial

dependence, we will apply the aforementioned proximity concept and failure rate model

in a Markov model. The proximity model will be used to infer proximity between

components, while the failure rate model model will be used to account for effect of

component load on the transition rates in the Markov model. Markov models are

frequently used in reliability and maintainability work where events, such as the failure

or repair of a component, can occur at any point in time. The Markov model evaluates

the probability of jumping from one known state into the next logical state. The

process continues until the system being considered has reached the final failed state

or until a particular mission time is achieved. The model assumes that the conditional

distribution of a future state is independent of the past states of the process i.e., the

behaviour of the system in each state is memoryless [145]. Thus, the sojourn time of

each state is exponentially distributed and the transition probability to each state is

independent of the process history. An advantage of Markov models is that they are

simple to generate even though they require a complicated mathematical approach.

To apply the Markov model, we will construct a state diagram of load-sharing

system representing all possible states of the system. The transition from one state

to another will be specified by an arrow whose direction indicates the direction of

transition. The failure rate expressions in section 4.1 will denote the rate parameter of

the transition from one state to another.

Consider the four-component system in Figure 4.2. The components in the system

are linked in a way that each component is connected to its two immediate neighbours

but distant from the third component. The system fails whenever the sum of loads on

the working components is less than the load placed on the system. Thus the system

failure occurs after three components in the system has failed.

Consider that the system’s state can be in any one of a discrete set of states

S0, S1, . . . , S4 at time t. Let each system’s state Si for i = 0, 1, . . . , 4 be described

by the vector of its components’ states. The definitions of state Si are given as follows
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S0(1,1,1,1)

S1(0,1,1,1)

S3(0,0,1,1)

S4(0,0,0,1)

S2(0,1,0,1)

Figure 4.3: State transitions for the four-component system with homogeneous com-
ponents

(see Figure 4.3). Let a vector of zeros and ones represent the states of components in

a system such that a working component is denoted by 1 and a failed component is

denoted by 0. If we let the vector also denote the arrangement of components in the

system and assume that the order of components in the system is a function of the first

component to fail. Therefore (1,1,1,1) will denote that all components in the system are

working. If one component fails, say component A first fails, then (0,1,1,1) will denote

that component A is in failed state while components B, C, and D are working. Oth-

erwise if any other component failed first, say component C, then (0,1,1,1) will mean

that the working components are D, A and B in that order. If two components fail,

say components A and B, then (0,0,1,1) denotes that the two proximate components

are in failed state. If two non spatially dependent components are in failed state, say

components A and C, then (0,1,0,1) will denote failed state of the two components.

(0,0,0,1) denotes that three spatially dependent components A, B and C are in failed

state while component D is still working. (0,0,0,0) denotes that all components have

failed. For other forms of system states, (0,1,0,1) and (1,0,1,0) indicates that two com-

ponents are in failed state and there is a working component between the two failed

components. (0,1,1,0) denotes that two proximate working components each have one

failed neighbour.

The four-component system’s evolution is determined by the transitions among
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states. State transitions of the system goes as follows. The transition from state

(0,1,1,1) to state (0,0,1,1) means that one of the two working components that is spa-

tially dependent on the failed component has now failed. The transition from state

(0,1,1,1) to state (0,1,0,1) means that one working component which is not spatially

dependent on the failed component has now failed. If a component has one failed spa-

tial dependent neighbour, its transition rate will become λi(jr). So the transition from

state (0,1,1,1) to state (0,0,1,1) will have a transition rate of λi(j2). For example, since

component B is spatially dependent on component A then the transition from state

(0,1,1,1) to (0,0,1,1) will have a transition rate of λi(j2) while the transition from state

(0,1,1,1) to state (0,1,0,1) would have a transition rate of λ0 because component C is

not spatially dependent on component A. If we consider a transition from state (0,1,0,1)

to state (0,0,0,1), it shows that the working component between two failed neighbours

has now failed. Since the component has two failed neighbours, its transition rate will

be λi(j2,k2). Transition from state (0,1,1,0) to state (0,0,1,0) denotes that one of two

working components with a failed neighbour has failed with transition rate λi(j1).

The states where the sum of loads on the working components are less than the

load placed on the system (i.e.
∑n

i=1 zi < L ) are system failure states. For instance,

if we consider transition from state (0,1,1,0) to state (0,0,1,0). The transition denotes

that one of the last two working components in the system has failed. Thus, the last

working component will take up all the load of its two proximate neighbour and the

load of all other failed components will be lost. Due to the load distribution, the total

load on the working component in state (0,0,1,0) will be less than the required and the

system fails.

4.4.3 Failure rate function for heterogeneous components

This section considers the load-sharing system with heterogeneous components, which

is very common in reality. An example of a system with non-identically distributed

components is a tri-engine airplane which can operate when at least both of its wing

engines or its central engine are working. The wing engines and the central engine

are not necessarily identical [13]. A representative sample of such study is [248] that
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suggested a new model for load-sharing k-out-of-n: G system with different component.

The model was developed as an extension of the capacity flow model. The model

describes the increase of the component’s failure rates under different loads. [250]

extended the model by introducing common cause failure. An example can be observed

in a load-sharing system with identical types of components, but having a mix of old

(used) and new components. This section extends the work of [248] and [250] that both

studied systems with equal load-sharing and heterogeneous components by considering

spatial dependence and proximity effects in load-sharing systems. Thus we extend

the load-sharing model developed in the previous sections by considering systems with

heterogeneous components.

Assume that there is no information about the distance between components and

one cannot estimate how close the components are to each other. Whilst other as-

sumptions are maintained, we assume that the life times of the components are load

dependant and follow the non-identical exponential distributions. In this case, at time

t = 0 all components have the different initial failure rates given by:

λi = λ∗i , (4.17)

where λi ̸= λj for i and j = 1, 2, . . . , n.

If we assume for example that all the components in the system take up varied load

proportions zi derived from Eq.(4.1), then when one component fails, its neighbours

will have an increased failure rate of:

λi(jr) = (zi(j))
βλ∗i = (zi + ϑijzj)

βλ∗i , (4.18)

where λi < λi(j
r).

When the second neighbour of a working component fails, the working component

will have an increased load of λi(jr,kr) given by:

λi(jr,kr) = (zi(j) + ϑikzk)
βλ∗i . (4.19)
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4.4.4 System state transition with heterogeneous components

In this section, we will formulate a method of accounting for the states of the system

with heterogeneous components using Markov model. We will then integrate the for-

mulated failure rates into the Markov model. To illustrate the method, we will consider

the four-component system in Figure 4.2 with heterogeneous components indexed as

A, B, C, and D. The definition of each state of the system will be as follows (see Figure

4.4). If any one component in the system is in failed state, say component B, then

components A and C will have increased failure rates of λA(B2) and λC(B2) respec-

tively while component D remains the same as λi since it is not spatially dependent on

component B. If component A has two spatial dependent components in failed state,

say component B and D, then component A and C will have increased failure rates of

λA(B2,D2) and λC(B2,D2) respectively.

The four-component system’s evolution will be determined by the transitions among

states. When all components are working, we indicate this initial state by 0 meaning

that zero components have failed. When one component fails we denote this state by

1. The procedure is continued until the system fails.

The transition rate from 0 to 1 when one component has failed is λA+λB+λC+λD

implying that anyone of the four components could fail. The transition rate of one

possible path from 1 to 2 is 2λi(j2)+λi. For example, using the four-component system,

if component B first failed, then anyone of component A, C and D could be the next to

fail with transition rate λA(B2) + λD + λC(B2). Likewise, if we assume that component

C is the second component to have failed, then anyone of component A, or D could be

the next to fail with transition rate λA(B1)+λD(C1). Here component A is not affected

by the failed state of component C, likewise component D is also not affected by the

failed state of component B. In contrast, component A and D are affected by the failed

state of components B and C in a way that A and D take up 100 percent of their load.

When either component A or D fails, the system fails because the sum of loads on the

working component will be less than the load placed on the system. The process is

applied to derive all possible state transition equations for the system.
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Figure 4.4: State transitions for the four-component system with heterogeneous com-
ponents.

4.5 Parameter estimation

In this section, we extend the method introduced by [40] for equal load models to es-

timate parameters λ0 and β. Each λi(jr) values in the system model can be calculated

from the estimated values of λ0 and β. The system load L, component spatial depen-

dence matrix [θij ], and initial load-sharing proportion γi are assumed to be estimated

from operators of the system. Let us consider p load-sharing parallel systems each

having n components that are put on test and their failure times are recorded. Let

Tsi(s = 1, 2, ..., p; i = 1, 2, ..., n) be the failure time of the ith component in the sth

parallel system. Let λ
(J)
s be the system failure rate given that J number of components

have failed. J is the sum of all components j that has failed in the system. Note that

J counts the number of failed components while j is an index of a failed component.

When all components are working, J = 0 and

λ(0)s =

n∑
i=1

λi. (4.20)
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After the failure of the J th component, the failure rates of n−J working components will

be a mixture of λi(jr) and λi. The system failure rate after the J th failure becomes λ
(J)
s

which is the sum of λi(jr) and λi for n−J remaining components. Let σJ = (zi+ϑijzj)
β

such that after the J th failure, λi(jr) = σJλi.

To illustrate the estimation method, let us consider the four-component system in

Figure 4.2 with homogeneous components. If all the four components are working, then

any of the components can fail with failure rate λi = λ0, and λ
(0)
s = 4λ0.

After the first component failure has occurred, the failure rates of the three remain-

ing components becomes λi(j2) for two components and λ0 for the third component.

λi(j2) = σ1λ0. Thus, the system failure rate becomes λ
(1)
s = 2σ1λ0 + λ0. Note that

σ0 = 1.

After the second component failure has occurred, the failure rates of the two re-

maining components becomes 2σ2λ0. σ2 = (z0 + z0ϑi1 + z0ϑi2)
β. The system failure

rate becomes λ
(2)
s = λi(j2) + λi2(j2) + λ0.

After the second component failure has occurred, the failure rates of the two re-

maining components becomes 2σ2λ0. σ2 = (z0 + z0ϑi1 + z0ϑi2)
β. The system failure

rate becomes λ
(2)
s = 2σ2λ0. The system fails when one of the two components fails

because the sum of loads on the last working component will be less than the load

placed on the system.

The likelihood function for the sth load-share parallel system model is:

Ls(λ0; ts1, ts2, ts3) =
(
4λ0exp

(−4λ0ts1)
)(

(2σ1 + 1)λ0exp
(−(2σ1+1)λ0ts2)

)
× . . .(

2σ2λ0exp
(−2σ2λ0ts3)

)
,

(4.21)

Ls(λ0; ts1, ts2, ts3) = 8 ((2σ1 + 1)σ2)λ
3
0exp

−(λ0[4ts1+(2σ1+1)ts2+2σ2ts3]). (4.22)

The likelihood function corresponding to p systems is:
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L(T | λ0, σ1, σ2) = 8p ((2σ1 + 1)pσp2)λ
3p
0 exp

−(λ0
∑p

s=1[4ts1+(2σ1+1)ts2+2σ2ts3]). (4.23)

The log likelihood function is:

l = log(L) = plog(8) + 3plog(λ0) + plog(2σ1 + 1) + plog(σ2) . . .

−

(
λ0

p∑
s=1

[4ts1 + (2σ1 + 1)ts2 + 2σ2ts3]

)
.

(4.24)

Taking the derivative of the log likelihood function with respect to λ0, σ1, and σ2

leads to:

δl

δλ0
=

3p

λ0
−

p∑
s=1

[4ts1 + (2σ1 + 1)ts2 + 2σ2ts3] = 0, (4.25)

δl

δσ1
=

2p

(2σ1 + 1)
− λ0

p∑
s=1

2ts2 = 0, (4.26)

δl

δσ2
=

p

σ2
− λ0

p∑
s=1

2ts3 = 0. (4.27)

From Eq.(4.25), (4.26), and (4.27), one cannot obtain a closed form solution for λ0, σ1,

and σ2. However, from Eq.(4.25), we have:

λ̂0 =
3p∑p

s=1[4ts1 + (2σ1 + 1)ts2 + 2σ2ts3]
. (4.28)

Thus, on using Eq. 4.26, 4.27, and 4.28, one gets:

σ̂1 =
2p

(2σ1 + 1)
− 3p

∑p
s=1 2ts2∑p

s=1[4ts1 + (2σ1 + 1)ts2 + 2σ2ts3]
, (4.29)

σ̂2 =
p

σ2
− 3p

∑p
s=1 2ts3∑p

s=1[4ts1 + (2σ1 + 1)ts2 + 2σ2ts3]
. (4.30)

Eq.(4.26), and (4.27) can be solved for σ̂1 and σ̂2 by using some suitable iterative
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procedure

After each σJ has been estimated, β will be derived as:

β =
log(σJ)

log(zi + ϑijzj)
, (4.31)

where zi, ϑij , and zj are known. Based on the method introduced by Kim and Kvam

[40], the first, second, . . ., J + 1th failure times are needed to estimate λ0, σ1, . . .σJ

respectively. However, for systems with large number of components, the challenge

lies in the exponential explosion of the large number of states and the number of

σJ parameters to be estimated. Given that β can be calculated from any σJ using

Eq.(4.31), and other σJ values can be calculated using the estimated λ0 and β, we will

estimate only σ1 in this thesis while other σJ ’s will be ignored. Furthermore, we will

estimate λ0 and σ1, using the first and second component failure times of any system

studied.

4.6 Numerical example 1: a simple four-component sys-

tem

In this section we use a four-component system with a simple structure to illustrate

the developed model. The purpose is to highlight the importance of spatial effect and

demonstrate the proposed spatial model through numerical example. The structure

of the system is depicted in Figure 4.5. Note that the components are connected in

parallel as seen in Figure 4.5b, while the links between the components indicate spatial

dependence. The system has four components indexed as component 1, 2, 3, and 4.

From Figure 4.5a, we note that the components are linked together in a way that the

system is composed of two subsystems (that is, subsystem having components 1 and 2

and another subsystem having components 3 and 4). The system fails whenever the sum

of loads on the working components is less than the load placed on the system. When

one component fails, its immediate working neighbour takes up all the load so that the

system still works. If a third failure occurs, two components in one of the subsystems

must have failed, hence the system fails. We assume that there is no information about
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Figure 4.5: The four-component systems

the distance between components in the system so that the component arrangement

will be used to infer component proximity. In the analysis, we will consider two systems;

one with homogeneous components and another with heterogeneous components. We

assume that the parameters to be used for the numerical analysis are known. The

parameters for this numerical analysis are taken from [250].

We examine the effect of the load factor on the reliability estimations of a load-

sharing system with spatial dependence and proximity effect. We also examine the

system’s reliability at different performance levels. Consider a system composed of

homogeneous components with equal load allocations at time t = 0. Since we aim to

highlight the importance of spatial effect and demonstrate the proposed spatial model

through numerical example, we do not assume any unit for time. The state transitions

are presented as Figure 4.6. The system failed or ”down” states are S3 and S4 while

the system ”up” states are S0, S1, and S2. Let Qi(t) = Pr(System is in state Si at time

t). In order for the system to be in state S0 at time t+∆t, the system must be in state

S0 at time t, and no transition occurs from state S0 in time (t, t+∆t). Thus, we have:
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S0(1,1,1,1)

S1(0,1,1,1)

S3(0,0,1,1)

S4(0,0,0,1)

S2(0,1,0,1)

Figure 4.6: State transitions for the four-component system with homogeneous com-
ponents.

Q0(t+∆t) = Q0(t)(1− 4λ0∆t)

lim∆t→0
Q0(t+∆t)−Q0(t)

∆t = −4λ0Q0(t)

d
dtQ0(t) = Q′

0(t) = −4λ0Q0(t).

(4.32)

Likewise for the system to be in state S1 at time t + ∆t, either the system is in

state S1 at time t and no transition occurs during (t, t+∆t) or the system is in state

S0 at time t and a transition S0 → S1 occurs in (t, t+∆t). Thus, we have:

Q1(t+∆t) = Q1(t)(1− (2λ0 + λi(j1))∆t) +Q0(t)4λ0∆t

lim∆t→0
Q1(t+∆t)−Q1(t)

∆t = −(2λ0 + λi(j1))Q1(t) + 4λ0Q0(t)

Q′
1(t) = −(2λ0 + λi(j1))Q1(t) + 4λ0Q0(t).

(4.33)

Using the same logic, we can derive the corresponding differential equation for Q′
2(t)

as follows:

Q ′
2 (t) = −2λi(j1)Q2(t) + 2λ0Q1(t), (4.34)

Q3(t) and Q4(t) are not needed for calculating the system reliability because they are

the probabilities of the system being in failed states S3 and S4.
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In contrast, if we assume that the components in the system are heterogeneous

(non-identically distributed), then the state transitions can be derived as shown in

Figure 4.7. The system failed or ”down” states are S5, S8, S13, S16, and S17 while the

system ”up” states are S0, S1, S2, S3, S4, S6, S7, S9, S10, S11, S12, S14, S15. The set

of differential equations derived for the up states are given as:

Q ′
0 (t) = −(λ1 + λ2 + λ3 + λ4)Q0(t)

Q ′
1 (t) = −(λ1 + λ2 + λ3(41))Q1(t) + λ4Q0(t)

Q ′
2 (t) = −(λ1 + λ2 + λ4(31))Q2(t) + λ3Q0(t)

Q ′
3 (t) = −(λ1(21) + λ3 + λ4)Q3(t) + λ2Q0(t)

Q ′
4 (t) = −(λ2(11) + λ3 + λ4)Q4(t) + λ1Q0(t)

Q ′
6 (t) = −(λ1(21) + λ3(41))Q6(t) + λ2Q1(t)

Q ′
7 (t) = −(λ2(11) + λ3(41))Q7(t) + λ1Q1(t)

Q ′
9 (t) = −(λ1(21) + λ4(31))Q9(t) + λ2Q2(t)

Q ′
10 (t) = −(λ2(11) + λ4(31))Q10(t) + λ1Q2(t)

Q ′
11 (t) = −(λ1(21) + λ3(41))Q11(t) + λ4Q3(t)

Q ′
12 (t) = −(λ1(21) + λ4(31))Q12(t) + λ3Q3(t)

Q ′
14 (t) = −(λ2(11) + λ3(41))Q14(t) + λ4Q4(t)

Q ′
15 (t) = −(λ2(11) + λ4(31))Q15(t) + λ3Q4(t).

(4.35)

We will use the derived equations to estimate the system reliability for both the homo-

geneous and heterogeneous systems.

The failure rate of the component depends on the load function and proximity

effect of the components. To derive the proximity effect of a failed component on

the working components, the column normalized values of the working components are

derived. Therefore, the spatial dependence matrix of components in the system is given

as matrix [θij ]:
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Figure 4.7: State transitions for the four-component system with Heterogeneous com-
ponents.

[θij ] =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 .

The corresponding proximity matrix [ϑij ] for components at time t = 0 is given by:

[ϑij ] =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 .

Consider the failure rates for the components if they are homogeneous. When all

components are working, their failure rate is λi = λ0 for i = 1, 2, 3, 4. Using the prox-

imity effects of ϑij derived in the column normalized matrix, when one component in

the system has failed, the failure rate of the neighbour in the same subsystem becomes:
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λi(j1) = (z0 + ϑij × z0)
β λ0,

where ϑij = 1 for i = 1, 2, . . . , 4, and where z0 = γiL∑4
i=1 γi

= L/n where γi = γj for any

1 ≤ i, j ≤ n. If the working components are non-neighbours of the failure component

their failure rate would remain as λ0.

For the system with heterogeneous components, when all four components are in a

working state, their failure rate is λ∗i where i = 1, 2, 3, 4 and λ1 ̸= λ2 ̸= λ3 ̸= λ4. When

one component has failed, the failure rate of its spatial neighbour is given by one of the

following failure rates:

λ1(21) = (z1 + ϑ12z2)
β λ∗1

λ2(11) = (z2 + ϑ21z1)
β λ∗2

λ3(41) = (z3 + ϑ34z4)
β λ∗3

λ4(31) = (z4 + ϑ43z3)
β λ∗4,

where zi =
γiL∑4
i=1 γi

and γi ̸= γj for any 1 ≤ i, j ≤ n.

From this, we can estimate the reliability of the system for varied values of β. Let

R(t) be the probability that the system is functioning at time t, the reliability of the

system is given by:

R(t) =

s−h∑
i=0

Qi(t), (4.36)

where s is the number of system states, h is the number of system down states and

Qi(t) are the state probabilities for the system up states. The state probabilities Qi(t)

can be computed by solving the Kolmogorov equations (i.e., the set of differential

equations) expressed in Eq.(4.32), (4.33), (4.34), and (4.35). Let the initial conditions

be set as Q0(0) = 1 and Qi(0) = 0 for i = 1, 2, . . . , s. Calculating the system’s

reliability could be cumbersome depending on the method applied and the number of

components considered. The main challenge lies in the exponential explosion of number

of states. The large number of states makes it difficult to calculate system reliability.

Appropriate methods should be used to ease the computational burden for a large-

scale system. Analytical methods such as Laplace transform can be applied to derive
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the system’s reliability function from the Kolmogorov equation. Laplace transform

converts differential equations to algebraic forms by means of a transformation defined

as L(s) =
∫∞
0 exp(−st)f(t)dt [299]. The algebraic equations may then be easily solved,

the inverse of the transformation applied to obtain the final solution [299]. However, the

derivation of the analytic expression of the reliability function could be time consuming

and cumbersome when large number of states are involved (see appendix A of chapter

4 for a comparison of reliability estimations using Laplace and Euler method). On

another hand, numerical methods such as the modified Euler’s method can be used

to easily derive the system state probabilities and corresponding reliability estimate.

The Euler method is a first-order numerical procedure for solving ordinary differential

equations (ODEs) with a given initial value. Euler’s method uses the simple formula,

y(x + h) = y(x) + hf(x, y) to construct the tangent at the point x and obtain the

value of y(x + h), whose slope is dy
dx [300]. In Euler’s method, one can approximate

the curve of the solution by the tangent in each interval (that is, by a sequence of

short line segments), at steps of h [300]. [301] and [302] used a numerical method to

solve a system of differential-equations and demonstrated that the approximate results

obtained by numerical method match considerably well with the results obtained by

laplace transform technique. We will implement the method using deSolve package in

R. Table 4.1 presents the parameters used to study the effects of β where β values will

be made to vary between 0 to 4 by steps of 1.

Table 4.1: Parameters used to study the effect of β

β λ0 λ∗1 λ∗2 λ∗3 λ∗4 L γ1 γ2 γ3 γ4

Homogeneous (0, 4) 0.05 - - - - 4 0.5 1 1.5 2

Heterogeneous (0, 4) - 0.05 0.10 0.15 0.12 4 0.5 1 1.5 2

Figures 4.8 and 4.9 show the variation of system reliability with respect to β. Fig-

ures 4.8a and 4.8b present two cases for systems with homogeneous components. Figure

4.8a represents reliability estimations when the system load is assumed to be equally

distributed to the components at time t = 0. Figure 4.8b represents reliability esti-

mations when the system load is not equally distributed. For the case of equal initial
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Figure 4.8: Variation of system reliability with load factor β considering homogeneous
components
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Figure 4.9: Variation of system reliability with load factor β considering heterogeneous
components

load distribution, when β = 0, which indicates that the system is not load-sharing,

the system reliability hits zero at time t = 60. However, when β = 1 indicating the

presence of load-sharing, the system’s reliability reduces. As β is increased, indicating

that the impact of load-sharing between components is increased, the system’s fails

faster. For the case of unequal initial load distribution, a similar pattern is observed.

In Figure 4.9a and 4.9b we present systems with heterogeneous components. In

both cases, we observe that β = 0, indicating that the system is not load-sharing, the

system reliability hits zero at time t = 27. However, as the impact of load-sharing

between components is increased, the system’s reliability reduces sharply.

Next, we investigate the system reliability for different performance levels. We use

the same parameters in Table 4.1 except that the system performance level (load L)

will be made to vary. L = 4, 8, 20, 40, and 100 are the values used for the study. β will
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Figure 4.10: Variation of system reliability with performance level L considering ho-
mogeneous components

be set to 1 to indicate the presence of load-sharing in the system. Figures 4.10 and 4.11

show the variation of system reliability with respect to load L. Figures 4.10a and 4.10b

present two cases for systems with homogeneous components. Figure 4.10a represents

reliability estimations when the system load is assumed to be equally distributed to

the components at time t = 0. Figure 4.10b represents reliability estimations when the

system load is not equally distributed. For the case of equal initial load distribution,

when L = 4, which indicates that the load placed on the system is low, the system reli-

ability hits zero at time t = 50. However, when L = 8 indicating that an increased load

is placed on the system, the system’s reliability reduces. As L is increased, indicating

that a heavy load is placed on the system’s components, the system fails faster. For

the case of unequal initial load distribution, a similar pattern is also observed.

Figure 4.11a and 4.11b presents systems with heterogeneous components. In both

cases, when L = 4 and 8, we observe that when a light load is placed on the system,

the system reliability hits zero at time t = 20. However, when the level of load on

the system is increased beyond 20, the system’s reliability reduces sharply to zero at

time t = 10. Overall, when compared with the reliability of the system with homoge-

neous components, the reliability of a system with heterogeneous components decreases

sharply over time.

We compare our developed models with existing models to investigate the impor-

tance and significance of the spatial effect. We compare our spatial model with capacity

flow models developed for a k-out-of-n: G systems, in the setting of equal load-sharing
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Figure 4.11: Variation of system reliability with performance level L considering het-
erogeneous components

with homogeneous components [248] and heterogeneous components [248, 250]. The

four-component system fails when two components in the same subsystem fails, i.e.

components 1 and 2, or components 3 and 4. This behaviour can be likened to those

of k-out-of-n: G system in which the system works when k components work and the

system fails when n − k + 1 components have failed. The case where the system de-

scribed in Figure 4.5 fails due to the failure of two components in the same subsystem

can be likened to 3-out-of-4: G system. Likewise, the case where the system fails when

three components fail can be likened to 3-out-of-4: G system. As a result, we will com-

pare reliability estimation from our spatial model with models of equal load-sharing for

2-out-of-4 and 3-out-of-4: G systems. We will examine the performance of the three

models for reliability estimation of the four-component system with homogeneous and

heterogeneous components. We use Monte Carlo simulation (MCS) to estimate the sys-

tem reliability and compare with our models. The simulation model is used to compare

the underlying data generating process with the modelling approaches. Using MCS,

it is possible to modify the failure behaviour of the working components after one of

the proximate components have failed. We denote the Monte Carlo simulation as Spa-

tial simulation. The algorithm for generating the system lifetime Tsys is described as

follows.

Algorithm 1 Algorithm for generating lifetime data of a system with load-sharing

and spatial dependence

Require: Load factor β; component failure rate λ; system load L; number of compo-
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nents n; proximity matrix [ϑij ].

Ensure: System lifetime Tsys at the end of the observation period.

1: start at k = 1.

2: repeat

3: for all working components i ∈ {k, k + 1, . . . , n} do

4: calculate ti =
− ln(U0,1)

λi
where U0,1 is a random value drawn from a uniform

distribution.

5: end for

6: let the kth component failure time Tk = min(tk, tk+1, . . . , tn);

7: calculate zi(j) = (zi + ϑijzj) for proximate neighbours of failed component j.

8: replace λi by λi(jr) = (zi + ϑijzj)
βλi for proximate neighbours of failed compo-

nent j.

9: recalculate the proximity matrix [ϑij ] by excluding the failed component.

10: set k = k + 1.

11: until
∑n−k

i=1 zi < L;

12: return Tsys =
∑

k Tk.

If one generates a large number of system lifetimes Tsys, the cumulative distribution

function of the system can be evaluated. Using the above algorithm, 1000 system

lifetimes Tsys are generated and used to evaluate the system’s reliability Rsys(t) =
m(t)
1,000

where m(t) denotes the number of times the system survived beyond time t. Table 4.2

presents the parameters for the two forms of the four-component systems used for the

comparison. Figure 4.12 and 4.13 present system reliability when homogeneous and

heterogeneous components are considered respectively.

An example of a system where k-out-of-n system model maybe suitable for reliability

analysis of systems with local load-sharing is when the system has n components and

each component is a neighbour of all the remain n-1 components. Such system structure

will likely have a regular shape.

In addition, Table 4.3 presents root mean squared error (RMSE) of reliability es-

timations from the three compared models and the Spatial simulation predictions. It

can be observed that the spatial model’s estimation error is way less that those by the
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models that assume equal load-sharing. In other words, the simulation results validate

the results from the spatial model for heterogeneous and homogeneous components. It

can be observed that when heterogeneous components are considered, the model for

3-out-of-4 systems had a better performance than the model for 2-out-of-4 systems.

From Figure 4.13, it can be observed that compared with the model for 2-out-of-4 sys-

tems, the reliability estimations by the model for 3-out-of-4 systems closely matched

those from the spatial model from t = 0 to t = 10. We also observe how close the

results are based on the RMSE values indicating that the model for 3-out-of-4 systems

could be suitable for reliability estimation of the four-component system when hetero-

geneous components are considered. When homogeneous components are considered

as seen in Figure 4.12, it can be observed that from time t = 5 to t = 20 reliability

estimations from the models for 2-out-of-4 and the model for 3-out-of-4 systems diverge

from the spatial simulation. The result indicates that when homogeneous components

are considered, neither the models for 2-out-of-4 nor the model for 3-out-of-4 system

is suitable. Overall, for the four-component system studied in this section, when het-

erogeneous components are considered, the spatial effect may be ignored and a simpler

model such as the model for 3-out-of-4 systems which does not account for spatial ef-

fects could be applied. However, when homogeneous components are considered for the

four-component system, predictions by the models which assumes equal load-sharing

for 2-out-of-4 and 3-out-of-4 systems either overestimate or underestimate the reliability

of the four-component system.

Table 4.2: Parameters used for model comparison

β λ0 λ∗1 λ∗2 λ∗3 λ∗4 L γ1 γ2 γ3 γ4

Homogeneous 1 0.05 - - - - 4 - - - -

Heterogeneous 1 - 0.05 0.10 0.15 0.12 4 0.5 1 1.5 2
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Figure 4.12: Comparison of reliability estimation using spatial simulation, the spatial
model and existing models considering homogeneous components
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Figure 4.13: Comparison of reliability estimation using spatial simulation, the spatial
model and existing models considering heterogeneous components

Table 4.3: Root mean squared error of the reliability estimations by the models

RMSE

Homogeneous

2-out-of-4 model Spatial model 3-out-of-4 model

0.0650 0.0076 0.0528

Heterogeneous

2-out-of-4 model Spatial model 3-out-of-4 model

0.0351 0.0056 0.0170
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Figure 4.14: The five-component system

4.7 Numerical example 2: a five-component system with

complex spatial structure

We extend the example in Section 5 to consider a more complex spatial structure

with 5 components. For brevity, we only consider homogeneous components for the

system depicted in Figure 4.14, however, the modelling could be easily extended for

heterogeneous components. The components are linked together in a way that the

system is composed of one dominant component (component 1) and four secondary

components (component 2, 3, 4, and 5). As indicated by Figure 4.14a, the system fails

when the dominant component and at least three secondary components fail. In this

case the load on the only working component is less than the load placed on the system.

We assume that there is no information about the distance between components in the

system so that the component arrangement will be used to infer component proximity.

We compare our spatial model to an equal load-sharing model for a 1-out-of-5 system.

Table 4.4 presents the parameters used in the model while the system state transi-

tion diagram is presented in Figure 4.15.

Table 4.5 presents RMSE from comparing the spatial model with the 1-out-of-5
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Figure 4.15: Five-component system state transition diagram.

Table 4.4: Parameters used for model comparison on the five-component system

β λ0 L

Homogeneous 1 0.05 5
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Figure 4.16: Comparison of reliability estimation using the spatial model and capacity
flow model.

model. We observe that our spatial model’s estimation error is less than those by the

1-out-of-5 model that assumes equal load-sharing. Figure 4.16 present the system reli-

ability predictions by our spatial model and the 1-out-of-5 model where the predictions

from the 1-out-of-5 model at time t = 1 and t = 30 is far from the Spatial simulation

prediction compared to the spatial model whose prediction closely matches the Spatial

simulation. Hence, it suggests that our spatial model is more accurate at modelling

these more complex scenarios when homogeneous components are considered. Our re-

sults demonstrate that our model is more accurate than standard load-sharing models

in evaluating system reliability when spatial effects exist.

Table 4.5: Root mean squared error of the reliability estimations by the models

RMSE
Homogeneous

1-out-of-5 model Spatial model

0.0741657 0.003929705

4.8 Numerical example 3: Parameter estimator

In this section, we assess the performance of the parameter estimation method devel-

oped in section 4.5 using simulated data. We use the four-component system studied

in section 4.6. The components in the system are connected in parallel, while the links
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between the components indicate spatial dependence. The system has four components

indexed as component 1, 2, 3, and 4. The components are linked together in a way that

the system is composed of two subsystems (that is, subsystem having components 1

and 2 and another subsystem having components 3 and 4). The system fails whenever

the sum of loads on the working components is less than the load placed on the system.

When one component fails, its immediate working neighbour takes up all the load so

that the system still works. If a third failure occurs, two components in one of the

subsystems must have failed, hence the system fails. We assume that there is no infor-

mation about the distance between components in the system so that the component

arrangement is used to infer component proximity. In the analysis, we will consider that

the system has homogeneous components. We assume that λ0, and β are parameters

to be estimated while the system load L, component spatial dependence matrix [θij ],

and initial load-sharing proportion γi are known. The performance of the estimators

will be examined with respect to bias and mean squared error (MSE) in the estimates

of λ0, and β given some known input parameter values. The expression for the MSE

is MSE = V ar(p̂) +Bais2(p̂) . See Eq.(3.20) of section 3.3.2 for the expression of the

Bias.

Spatial simulation described in section 4.6 is used to generate data in order to study

the performance and asymptotic properties of the Maximum Likelihood Estimation

approach. The Spatial simulations were based on 1,000 replications. In each simulation,

we drew random samples of various sizes (s = 25, 50, 100, 1000) of the same system

described. Sample size in this section refers to the number of parallel systems drawn.

Table 4.2 presents the input values of λ0, and β used for the simulation.

If all the four components in the system are working, then any of the components

can fail with failure rate λi = λ0, and λ
(0)
s = 4λ0.

After the first component failure has occurred, the failure rates of the three re-

maining components becomes λ0 for two components and λi(j1) for the third com-

ponent. λi(j1) = σ1λ0. Thus, the system failure rate becomes λ
(1)
s = (σ1 + 2)λ0.

σ1 = (z0 + z0ϑij)
β.

As stated in section 4.5, λ0 and σ1 will be estimated using the first and second

149



Chapter 4. Reliability analysis of a load-sharing system with spatial dependence, and
proximity effects

failure times of the studied system then β will be calculated using Eq.(4.31).

The likelihood function for the sth load-share parallel system model is:

Ls(λ0; ts1, ts2, ts3) =
(
4λ0exp

(−4λ0ts1)
)(

(σ1 + 2)λ0exp
(−(σ1+2)λ0ts2)

)
, (4.37)

Ls(λ0; ts1, ts2, ts3) = 4(σ1 + 2)λ20exp
−(λ0[4ts1+(σ1+2)ts2]). (4.38)

The likelihood function corresponding to p systems is:

L(T | λ0, σ1, σ2) = 4p(σ1 + 2)pλ2p0 exp
−(λ0

∑p
s=1[4ts1+(σ1+2)ts2]). (4.39)

The log likelihood function is:

l = log(L) = plog(4) + 2plog(λ0) + plog(σ1 + 2) + . . .

−

(
λ0

p∑
s=1

[4ts1 + (σ1 + 2)ts2]

)
.

(4.40)

From Table 4.6 we observe that the bias and MSE in the estimated λ values were

less than 1 % for all sample sizes and improved as sample size increased. However,

the bias in the estimated σ1, and β values were −0.15 and −0.20 and reduced as the

sample size increased. The MSE in the estimated σ1, and β values were quite large for

sample size 25 and reduced as sample size increased. Overall, the estimator performs

well beyond sample size 25.
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Table 4.6: Bias and MSE of the estimators.

λ0 σ1 β

Size 0.10 4 2

s=25
Bais 0.01019 -0.15426 -0.20498
MSE 0.00073 2.83202 0.54028

s=50
Bais 0.00259 0.09251 -0.02962
MSE 0.00025 1.44490 0.18995

s=100
Bais 0.00146 0.05104 -0.01254
MSE 0.00011 0.70987 0.09087

s=1000
Bais 0.00054 -0.0105 -0.00752
MSE 0.00001 0.08380 0.01078

4.9 Discussion of results and Conclusion

In this chapter, we studied the problem of estimating the reliability of a load-sharing

system with spatial dependence and proximity effects. We have assumed that a system

exists that operates in a way that the load on a failed component is taken up only

by its working spatial neighbours in close proximity. The system fails whenever the

sum of loads on the working components is less than the load placed on the system

i.e.
∑n

i=1 zi < L. We developed a model to evaluate system reliability, extending the

capacity flow model to take into account load-sharing interactions and proximity effects.

The model was developed for both homogeneous or heterogeneous components and

illustrated through two numerical examples. Sensitivity analysis of the load factor was

conducted to examine its effect on reliability estimations. We found that an increased

load on the system reduced the system reliability faster.

We examined the impact of using a wrong model for reliability estimation of a

four-component load-sharing system with spatial dependent components. The analysis

was conducted by comparing our spatial model with existing equal load-sharing models

for 2-out-of-4 and 3-out-of-4 systems. Monte Carlo simulation was used to generate
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cumulative distribution function of the four-component system and to validate the

reliability estimation from the compared models. We found that when heterogeneous

components are considered, the spatial effect may be ignored and a simpler model such

as the model for 3-out-of-4 systems which does not account for spatial effects could be

applied. However, when homogeneous components are considered, an application of

equal load-sharing model for reliability analysis of a load-sharing system with spatial

dependence could lead to either overestimated or underestimated reliability prediction.

A similar analysis was made on a five-component system with a more complex structure.

Comparison was made between the spatial model and an equal load-sharing model for

1-out-of-5. It was found that when homogeneous components are considered, the equal

load model had overestimated reliability assessment.

From the analysis of both the four-component and five-component systems, we can

infer that considering homogeneous components regardless of the level of component

connections and system size, if it exists, spatial effect should not be ignored in reliability

prediction of a system with load-sharing.

Lastly, when the number of components in the system is more than 7 or 5 for systems

with homogeneous or heterogeneous components respectively, the computation of the

system reliability becomes very lengthy and tedious because we have to consider all

possible permutations of the failure sequences of the components. R software was used

to develop the computational program to analyse the reliability of the systems.

Appendix - Chapter 4

A.1 Appendix A

Solution of the differential equations describing the state probabilities of the four-

component system described in section 4.6 using laplace transforms is presented below.

A comparison of the results of Laplace transform method and Euler method used in

sections 4.6.

Let us consider the four-component system with homogeneous components. Given

the initial conditions of Q0(0) = 1 and Qi(0) = 0 for i = 1, 2, . . . , s, the differential
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equations describing the state probabilities in Eq.(4.32), (4.33), and (4.34) can be

rewritten using laplace transform as:

SL0(s)− 1 = −4λ0L0(s), (41)

SL1(s) = −(2λ0 + λi(j1))L1(s) + 4λ0L0(s), (42)

SL2(s) = −2λi(j1)L2(s) + 2λ0L1(s). (43)

Next, we rearranging the three equations. For Eq.(41), we get:

SL0(s) + 4λ0L0(s) = 1,

L0(s) =
1

(S+4λ0)
.

(44)

For Eq.(42), we get:

SL1(s)(S + 2λ0 + λi(j1)) = 4λ0L0(s)

L1(s) =
4λ0L0(s)

(S+2λ0+λi(j1))

L1(s) =
4λ0

(S+2λ0+λi(j1))(S+4λ0)
.

(45)

Using partial decomposition with repeated factors on Eq.(45) given that 2λ0 +

λi(j1) = 4λ0, we get:

L1(s) =
4λ0

(S+2λ0+λi(j1))(S+4λ0)

4λ0
(S+4λ0)(S+4λ0)

= C
(S+4λ0)

+ D
(S+4λ0)2

.
(46)
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After solving the equation, C = 0 and D = 4λ0, we have:

L1(s) =
4λ0

(S+4λ0)2
. (47)

Using the same steps for Eq.(43), we get:

SL2(s) + 2λi(j1)L2(s) = 2λ0L1(s)

L2(s) =
2λ0L1(s)

(S+2λi(j1))

L2(s) =
8(λ0)2

(S+4λ0)2
.

(48)

Using partial decomposition with repeated factors, we get:

L2(s) =
8(λ0)2

(S+4λ0)3
. (49)

Applying Laplace inverse transforms on Eq.(44), (47), and (49) then replace 4λ0

with 2λ0 + λi(j1) and 2λi(j1) in Eq.(47) and (49) respectively to get:

Q0(t) = exp(−4λ0t), (50)

Q1(t) = 4λ0texp
(−2λ0+λi(j1)t), (51)

Q2(t) = 4(λ0)
2t2exp

(−2λi(j1)t). (52)
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The reliability of the system is given by:

R(t) =
2∑

i=0

Qi(t). (53)

Next,if we assume that the components in the system are heterogeneous (non-

identically distributed), then given the initial conditions of Q0(0) = 1 and Qi(0) = 0 for

i = 1, 2, . . . , s, the differential equations describing the state probabilities in Eq.(4.35)

can be rewritten using laplace transform as:

SL0(s)− 1 = −(λ1 + λ2 + λ3 + λ4)L0(s)

SL1(s) = −(λ1 + λ2 + λ3(41))L1(s) + λ4L0(s)

SL2(s) = −(λ1 + λ2 + λ4(31))L2(s) + λ3L0(s)

SL3(s) = −(λ1(21) + λ3 + λ4)L3(s) + λ2L0(s)

SL4(s) = −(λ2(11) + λ3 + λ4)L4(s) + λ1L0(s)

SL6(s) = −(λ1(21) + λ3(41))L6(s) + λ2L1(s)

SL7(s) = −(λ2(11) + λ3(41))L7(s) + λ1L1(s)

SL9(s) = −(λ1(21) + λ4(31))L9(s) + λ2L2(s)

SL10(s) = −(λ2(11) + λ4(31))L10(s) + λ1L2(s)

SL11(s) = −(λ1(21) + λ3(41))L11(s) + λ4L3(s)

SL12(s) = −(λ1(21) + λ4(31))L12(s) + λ3L3(s)

SL14(s) = −(λ2(11) + λ3(41))L14(s) + λ4L4(s)

SL15(s) = −(λ2(11) + λ4(31))L15(s) + λ3L4(s).

(54)

After using partial decomposition without repeated factors and applying Laplace in-

verse transforms on Eq.(54), we have:

Q0(t) = exp−(λ1+λ2+λ3+λ4)t, (55)
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Q1(t) = λ4texp
−(λ1+λ2+λ3(41))t, (56)

Q2(t) = λ3texp
−(λ1+λ2+λ4(31))t, (57)

Q3(t) = λ2texp
−(λ2(11)+λ3+λ4)t, (58)

Q4(t) = λ1texp
−(λ1(21)+λ3+λ4)t, (59)

Q6(t) =
(
λ2λ4
2

)
t2exp

−(λ1(21)+λ3(41))t, (60)

Q7(t) =
(
λ1λ4
2

)
t2exp

−(λ2(11)+λ3(41))t, (61)

Q9(t) =
(
λ2λ3
2

)
t2exp

−(λ1(21)+λ4(31))t, (62)
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Q10(t) =
(
λ1λ3
2

)
t2exp

−(λ2(11)+λ4(31))t, (63)

Q11(t) =
(
λ2λ4
2

)
t2exp

−(λ1(21)+λ3(41))t, (64)

Q12(t) =
(
λ2λ3
2

)
t2exp

−(λ1(21)+λ4(31))t, (65)

Q14(t) =
(
λ1λ4
2

)
t2exp

−(λ2(11)+λ3(41))t, (66)

Q15(t) =
(
λ1λ3
2

)
t2exp

−(λ2(11)+λ4(31))t, (67)

The reliability of the system is given by:

R(t) =

15∑
i=0

Qi(t). (68)

From Table 7 we observe that the system reliability estimations using laplace and

numerical method (Euler method) are the same for the systems with homogeneous and
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heterogeneous components.

Table 7: Comparison of reliability estimation using Laplace transform method and
Euler method considering homogeneous and heterogeneous components.

Homogeneous components Heterogeneous components

Time Laplace method Euler method Laplace method Euler method

0 1.000000 1.000000 1.000000 1.000000
10 0.541341 0.541341 0.082052 0.082052
20 0.164840 0.164840 0.018221 0.018220
30 0.039660 0.039659 0.000033 0.000032
40 0.008386 0.008386 0.000000 0.000000
50 0.001634 0.001633 0.000000 0.000000
60 0.000301 0.000300 0.000000 0.000000
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Chapter 5

Reliability modelling and

preventive maintenance of

load-sharing systems with spatial

dependence, proximity effects

and external shocks

In chapter 4, we studied the problem of reliability estimation of a load-sharing sys-

tem with spatial dependence and proximity effects. This chapter considers reliability

estimation and maintenance of systems subject to load-sharing, spatial dependence,

proximity effects and external shocks. In section 2.4.3 of chapter 2, we established

the following: First, no research has considered models for reliability prediction for

load-sharing system with spatial dependence, proximity effect and external shocks.

We also established that models for maintenance optimization of load-sharing systems

with spatial dependence, proximity effect and external shocks have not been developed.

Lastly, we established that the impact of ignoring spatial dependence if it exists in a

load-sharing system subject to spatial dependence and external shocks has not been

investigated.
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Based on the established gaps in section 2.4.3 of chapter 2, our contribution in this

chapter is threefold. First, we will develop a model for estimating the reliability of a

load-sharing system with spatial dependent components and random shock processes.

Second, we will develop a model for preventive maintenance of load-sharing system with

spatial dependence, proximity effect and external shocks. Lastly, using the developed

models, we will conduct an assessment of the impact of ignoring spatial dependence if

it exists in a load-sharing system subject to external shocks.

The remainder of this chapter is outlined as follows: Section 5.1 introduces the sys-

tem description for the study. Section 5.2 presents component reliability quantities and

system reliability quantities. Section 5.3 presents expressions for the age-replacement

policy. Section 5.4, 5.5 and 5.6 presents illustrations of the developed methods through

numerical examples. Section 5.7 presents the conclusion.

5.1 System description

The system consists of m components connected in parallel. The system starts with a

certain amount of load equally distributed to its components. The following assump-

tions are made to better position our study:

• Each component can either be in a working or failed state while the system is

multi-state and can function at different performance levels depending on the

states of its components.

• The system fails if the sum of the loads on each working component at time t is

less than the total system load L.

• When a component j fails, its working proximate component i in any direction

can take up the failed component’s load.

• The effect of a failed component’s load acts multiplicatively on the failure rate of

a proximate component.

• Component i is operating in a random environment modelled by the HPP of

shocks N(t), t ≥ 0, with rate v, where N(t) is the number of shocks in [0, t).
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• Shocks on its own do not cause immediate component failure but they cause some

damage.

• The effect of external shock acts additively on the failure rate of a working com-

ponent.

5.2 Component and system reliability analysis

5.2.1 Component reliability analysis

Let us consider a component i in the load-sharing system described in section 5.1.

Let Ns(t) be the number of shocks from the beginning of the planning horizon until

time t. Given that component i is affected by extra loads and external shocks, whose

occurrence are random, we introduce the piece wise failure rate of component i at time

t considering a sample path in Figure 5.1. Provided that one spatial neighbour j has

failed and there were two external shocks from the beginning of the planning horizon

until time t, the failure rate is:

λi(jr)(t) =



λ0, j = 0, 0 < t < ts1

λ0 + ϕ, j = 0, ts1 ≤ t < tj1

λ0zi(j) + ϕ, j > 0, tj1 ≤ t < ts2

λ0zi(j) + 2ϕ, j > 0, ts2 ≤ t

, (5.1)

where ts denotes the arrival time of shocks and tj denotes the failure time of com-

ponent j. zi(j) = (zi + ϑijzj)
β. zi is the initial load imposed on component i, and

λ0 is the baseline failure rate (also called hazard rate) function. β is the load factor

which describes the influence of the increased load on the failure rate of component

i. When β = 0, an increased load has no impact on a component’s failure rate. j

denote the index of a failed neighbour of component i. r is the number of working

neighbours of component j that shares its load. ϑij denotes the percentage of a failed

component’s load that affects the failure rate of a working proximate component. If

ϑij = 0 a working component is not impacted by the failure of component j. ϕ is a

constant deterministic jump that occurs on each shock arrival. ϕ denotes the shock

161



Chapter 5. Reliability modelling and preventive maintenance of load-sharing systems
with spatial dependence, proximity effects and external shocks

Time

Figure 5.1: Failure rate function under two shocks with increments ϕ and extra load
zj .

size and it represents the effect that each shock has on the failure rate. If ϕ = 0 then

the shocks do not influence the failure rate. Thus, the shock process and the lifetime

of component i are independent. If there is no external shock until time t, then the

failure rate of component i becomes Eq.(4.16) which was studied in chapter 4. Note

that external shocks on the system affects all the working components at the same time.

5.2.2 System reliability analysis

Consider a system consisting of m components in parallel. Assume that the duration

of one mission, which is equal to the system’s lifecycle is T . The system may start

with new or used components. The age of new components when the system starts

operating is zero whereas the age of a used component is not zero. Components of the

system might not have the same initial age at the beginning of the mission, even though

they are both subject to the same amount of load and external shocks. Therefore, their
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failure rates may vary to reflect their different initial ages. The components may or may

not fail during a mission. If the system works at the end of a mission, its components

are preventively maintained otherwise they are correctively maintained. As such, the

following cases may arise.

• Case 1 : a number of components fail during the mission but the system still

works because the sum of loads on the working components still equals the system

load. In this case, the system is preventively maintained by replacing the failed

components at a predetermined time.

• Case 2 : a number of components fail during the mission and the system fails

because the sum of loads on the working components is less than the system load.

In this case, the system is correctively maintained by replacing all components in

the system before the predetermined time.

• Case 3 : None of the components fail during the mission. The components are

preventively maintained.

In each case, the probability of system failure, depend on the sequence of the com-

ponent failures. For instance, let us consider case 2 for a two-component system whose

components are indexed as A and B. Component A could fail first and its load is trans-

ferred to component B after the failure before component B fails. In the same way,

component B could fail first before component A fails. Both scenarios present a possi-

ble path to the system failure. However, when external shock arrivals are considered in

each case, the cases become even more complex as the arrival of shocks are also random.

The stochastic behaviour of external shocks and failures of each component j makes

it difficult to have a closed form failure rate function as seen in section 5.2.1. Thus,

two approaches for modelling the system reliability will be introduced in this chapter.

First modelling approach considers a complex case and is based on simulation. For the

complex case, Monte Carlo simulation is used to derive the system reliability quantities.

Monte Carlo methods are useful for estimating system reliability that cannot be derived

analytically [16, 131]. The idea of Monte Carlo method is the generation of random

events which are repeated many times and the number of a specific event is counted
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[132]. The second approach considers a simple case where the effect of each external

shock is added on all working component after the failure of a component in the system.

For the simple case an analytic model is used to derive the system reliability quantities.

Let us consider the complex case described earlier. Consider that there were n

number of external shocks from the beginning of planning horizon until time t which

occur according to HPP with constant failure rate v. Thus, we introduce algorithm 2

for generating the system reliability and failure distribution as follows.

Algorithm 2 Algorithm for generating lifetime data of a system with load-sharing,

spatial dependence and external shocks

Require: shock size ϕ; load factor β; shock inter-arrival time Xs; component failure

rate λi(jr); baseline failure rate λ0; observation time τ ; number of shocks n; arrival

rate of shocks v; system load L; number of components m; proximity matrix [ϑij ].

Ensure: System lifetime Tsys at the end of the observation period.

1: compute Tsys =
∑

k Tk for k = m+ n.

2: set up the value of parameters: v, τ , ϕ, L, λ0, and β.

3: generate a random number n from Pois(V (τ)) where V (τ) = vτ .

4: generate n shock inter-arrival times Xs =
− ln(U [0,1])

v where s = 1, 2 . . . , n.

5: set p = 0, h = 0 and zi(j) = 1.

6: start at k = 1.

7: repeat

8: for all i ∈ {k, k + 1, . . . ,m} do

9: simulate m random variate ui from U [0, 1].

10: calculate ti =
− ln(ui)
λi(jr)

where λi(jr) = λ0zi(j) + ϕp.

11: end for

12: select the component with least failure time tj = min(tk, tk+1, . . . , tm).

13: set the next shock inter-arrival time ts = Xs in order from s = 1 to s = n.

14: select Tk = min(ti, ts).

15: if Tk = ts, then shock arrived before component j failed. go to step 17.

16: if Tk = tj , then component failed before shock arrival. go to step 18.
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17: set p = p+ 1 then update p in λi(jr) = λ0zi(j) + ϕp. go to step 21.

18: calculate zi(j) = (zi + ϑijzj) for proximate neighbours of failed component j.

19: set h = h+ 1 then evaluate whether
∑m−h

i=1 zi = L.

20: recalculate zi(j) in λi(jr) = λ0zi(j) + ϕp for proximate neighbours of failed com-

ponent j.

21: set k = k + 1.

22: until
∑m−h

i=1 zi < L;

23: return Tsys =
∑

k Tk.

The probability that the system survives till time T is:

Rsys(T ) =
r(T )

q
. (5.2)

where r(T) denotes the number of times the system survived beyond time T. q is the

number of system lifetimes generated.

The probability that the system fails before time T is:

Fsys(T ) = 1− r(T )

q
. (5.3)

Given the failed components and the number of external shocks, we can derive the

failure rate for component i as:

λi(jr)(t) =

 λ0 + ϕn, j = 0

λ0zi(j) + ϕn, j > 0
. (5.4)

For the simple case, we consider a specific scenario where shocks arrive before the

failure of any component in the system. We assume that one shock arrives before the

failure of a component in the systems and the shock does not cause component failure.

We also assume that the shock arrival time is not known. However, the effect of each

external shock is added on all working component after the failure of a component in

the system.

Let us consider a component in a system with the sample path in Figure 5.2. Pro-

vided that two spatial neighbours j and k have failed and there were two external
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shocks from the beginning of the planning horizon until time t, the failure rate is:

λi(jr)(t) =


λ0, j = 0, 0 < t < tj1

λ0zi(j) + ϕ, j > 0, tj1 < t < tk2

λ0zi(j,k) + 2ϕ, j > 0, k > 0, tj1 < t < tk2

. (5.5)

Note that the failure rate of component i can be generalised as:

λis(jr)(t) =

 λ0 + ϕs, j = 0, s = 0, 1, ...

λ0zi(j) + ϕs, j > 0, s = 0, 1, ...
, (5.6)

where s is the number of shocks that have arrived. Given that the effect of shocks

influences each components’ failure rate after a component has failed s is then linked

to the number of failed components in the system. Note that s counts the number of

shocks as well as the numbers failed components while j is an index of a failed spatial

neighbour of component i. When all components are working, and no shock arrival

s = 0. For the simple case, the probability density function (pdf) of component i at

time t is given by:

fi(t) = λis(jr)(t)e
−

∫ t
0 λis(jr)(u)du. (5.7)

The cumulative distribution function (cdf) of component i is given by:

Fi(t) = 1− e−
∫ t
0 λis(jr)(u)du. (5.8)

The reliability function is:

Ri(t) = e−
∫ t
0 λis(jr)(u)du. (5.9)

Next, for the simple case, we consider the system reliability quantities. The system

failure distribution and density will be derived by utilizing the paths to the system

failure event. To aid in identifying all the paths that could lead to the system failure

event, we introduce a modified failure sequence diagram (MFSD) as an extension of the

failure sequence diagram (FSD) introduced by Wang et al. [303] for linear consecutive
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Time

Figure 5.2: Failure rate function under two shocks and two component failures with
increments ϕ and extra loads zj and zk.

k-out-of-n system. The failure sequence diagram is a tree diagram that provides a visual

representation of the all the possible path to the system failure (e.g., see Figure 5.3).

Unlike FSD which considers only adjacent neighbour interactions, MFSD accounts for

proximity effect between components in the system. Whilst the visual representation

of system’s failure path derived by the MFSD is like the system state diagram of

a Markov model in the way that both models evaluate the probability of jumping

from one known state into the next logical state until the system being considered

has reached the final failed state or until a particular mission time is achieved. The

difference is that using the MFSD allows the modelling of the sojourn time of each

state by arbitrary lifetime distributions whose failure rates are functions of the baseline

failure rate, load redistributed and external shocks. The use of system state diagram,

outside a Markov model,which captures arbitrary distributions for load-sharing system

reliability analysis has been considered in the load-sharing literature. For example, Liu

[304] studied the reliability of a load-sharing k-out-of-n:G system with arbitrary load-

dependent component lifetime distributions. In their study, it was assumed that after
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load redistribution, the component age changes according to an accelerated failure-

time model. Li et al [305], conducted reliability analysis of a two component hydraulics

system with arbitrary lifetime distribution. The algorithm for constructing the MFSD

is as follows:

1. Start the MFSD construction with the representation of the entire system indi-

cated by an initial node “S”. If there are no failed components in the entire system

during a mission, we indicate it by adding node 0. When a component fails, we

add a node j which indicates that component j has failed where j = 1, 2, . . . ,m.

The failure rate of component i before failure is indicated on the arrow pointing

to node i. We indicate the updated failure rates of the working components below

node i.

2. According to the characteristics of the load-sharing system, that the system fails

if the sum of loads on the working components is less than the load on the system,

we need to judge if the system has failed or not in any path. If the condition is

satisfied, then we indicate that the system fails by adding node Cm to the path.

If the system survives till the end of the mission after component j has failed,

then we indicate by adding node Pm.

3. Once the jth level for the MFSD has been constructed, the (j + 1)th level for

the MFSD can be constructed similarly to step 2. The construction of the MFSD

stops when all the paths end either at node 0, node Pm or node Cm.

To illustrate the developed model, we will consider a two-component system in

Figure 5.4 with heterogeneous components indexed as 1 and 2. Let us assume that

both components have ages zero. The system fails when both components fail before

T . Using the paths derived in Figure 5.4 we will derive the probabilities for the system

to fail or work at time t for each path. Let fjkl and Fjkl denote the pdf and cdf of the

system’s life given that components j, k and l failed. Let Pjkl indicate probability that

the system survives till time t given that components j, k and l failed. The probability

that the system survives till the end of mission denoted by time t and no component
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0
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Figure 5.3: MFSD path description

failed is given by:

P0(t) = R1(t|0, λ1)R2(t|0, λ2). (5.10)

The probability that the system survives till the end of mission denoted by time t and

only component 1 failed is given by:

P1(t) =

∫ t

0
f1(t1|0, λ1)R2(t1|0, λ2))R2(t− t1|t1, λ21(11))dt1. (5.11)

The probability that the system survives till time t and only component 2 failed is

given by:

P2(t) =

∫ t

0
f2(t1|0, λ2)R1(t1|0, λ1)R1(t− t1|t1, λ11(21))dt1. (5.12)

The density of the system failure at a time T before end of mission time t given that

component 1 failed first is:

f12(T ) =

∫ t

0
f1(t1|0, λ1)R2(t1|0, λ2)f2(T − t1|t1, λ21(11))dt1. (5.13)

The density of the system failure before time T given that component 2 failed first is:

f21(T ) =

∫ t

0
f2(t1|0, λ2)R1(t1|0, λ1)f1(T − t1|t1, λ11(21))dt1. (5.14)
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1 2

(a) Spatial connections - two links

2
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(b) Block diagram of parallel connections

Figure 5.4: The two-component system

1

S

2

12

0

Figure 5.5: MFSD for the two-component system.

Using derived expressions, we can derive approximations of the system reliability

quantities as follows.

The probability that the system survives till time T is:

Rsys(T ) =
∑
jk..

Pjk(T ). (5.15)

The density of the system failure time is:

fsys(T ) =
∑
jk..

fjk(T ). (5.16)
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The probability that the system fails before time T is:

Fsys(T ) =
∑
jk..

(∫ t

0
fjk(t)dt

)
,

where Fsys(T ) +Rsys(T ) = 1.

Alternatively, fsys(T ) =
∑

jk..

(
dFjk(T )

dT

)
.

The system’s failure rate is:

hsys(T ) =
fsys(T )

Rsys(T )
. (5.17)

5.3 Age-based replacement policy

In this section, we consider the problem of finding the optimal replacement time which

minimizes the total long-run average cost per unit time. According to the classical age-

replacement policy, the system is replaced at time tPM or at failure, whichever occurs

first. It is assumed that a component’s failure can be known at any time. If the sum

of loads on the working components equals that placed on the system at time tPM , the

system is preventively maintained (PM) by replacing all failed components with new

components. If the system failure occurs before tPM , corrective maintenance (CM) is

done by replacing the system. Assume that repair times are negligible.

Let cCM denote the replacement cost at failure (the cost of CM) and cPM denote

the cost of PM, where cCM > cPM . If cR is the cost of component replacement, then

the expected cost of replacing the system is:

CT (tPM ) =

 cCM + cRE(Nj(T ) | T < tPM ), if T < tPM

cPM + cRE(Nj(tPM ) | T ≥ tPM ), if T ≥ tPM ,
(5.18)

whereNj(tPM ) denote the total number of failed components by time tPM . E(Nj(tPM ) |

T ≥ tPM ) =
∑

jk.. pPjk(tPM ) is the expected number of failed components given that

the system survives till tPM . In contrast, E(Nj(T ) | T < tPM ) =
∑

jk.. pFjk(t) is the

expected number of failed components given that the system failed before tPM .

Assume that if the system is replaced at time tPM , then all failed components are
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replaced by new components. The long-run expected cost per unit of time is equal to

the expected cost per unit of time for one renewal cycle because of the renewal reward

theorem (see, e.g. [306]). The expected cost for one cycle is defined as:

CT (tPM ) = [cCM + cRE(Nj(T ) | T < tPM )]Fsys(tPM )

+ [cPM + cRE(Nj(tPM ) | T ≥ tPM )]Rsys(tPM ),
(5.19)

where Rsys(t) is the probability that the system will be preventively maintained. Fsys(t)

is the probability that the system will be correctively maintained.

Thus, the expected cost rate can be represented as is:

E(CR(tPM )) = CT (tPM )
E(min(T,tPM ))

=
[cCM+cRE(Nj(T )|T<tPM )]Fsys(tPM )+[cPM+cRE(Nj(tPM )|T≥tPM )]Rsys(tPM )∫ tPM

0 Rsys(u)du
,

(5.20)

where
∫ tPM

0 Rsys(u)du = tPMRsys(tPM ) +
∫ tPM

0 ufsys(u)du. We are interested in min-

imizing E(CR(tPM )) with respect to the decision variable tPM . Note that we ignore

the cost of rejuvenating all non-failed components at time tPM . A component is as

good as new after rejuvenation. The cost of rejuvenating a component can easily be

included in the model.

For the complex case, we introduce algorithm 3 for generating the expected cost

rate as follows (see Appendix A for the flowchart).

Algorithm 3 Algorithm for generating the expected cost rate of a system with

load-sharing, spatial dependence and external shocks

Require: preventive maintenance time tPM ; Optimal preventive maintenance time

t∗PM ; number of shocks n; shock inter-arrival time Xs; component failure time

tj ; cycle time corrective maintenance CLCM ; cycle time preventive maintenance

CLPM ; simulation number SN ; number of simulation runs SRN ; number of failed

components NF ; number of working systems NWS; number of system failures

NSF ; number of failed components at corrective maintenance NFCM ; number of

failed components at preventive maintenance NFPM .

Ensure: Expected cost rate E(CR(tPM )) at the end of the simulation.
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1: set up the value of parameters: tPM(max), v, ϕ, L, λ0, and β.

2: set tPM = 1.

3: set SN = 1, NF = 0, NWS = 0, NSF = 0, NFPM = 0, NFCM = 0, CLPM =

0 and CLCM = 0.

4: generate a random number n from Pois(V (t)) where V (t) = vtPM .

5: generate n shock inter-arrival times Xs =
− ln(U [0,1])

v where s = 1, 2 . . . , n.

6: set p = 0, h = 0 and zi(j) = 1.

7: start at k = 1.

8: repeat

9: for all i ∈ {k, k + 1, . . . ,m} do

10: simulate m random variate ui from U [0, 1].

11: calculate ti =
− ln(ui)
λi(jr)

where λi(jr) = λ0zi(j) + ϕp.

12: end for

13: select the component with least failure time tj = min(tk, tk+1, . . . , tm).

14: set the next shock inter-arrival time ts = Xs in order from s = 1 to s = n.

15: select Tk = min(ti, ts).

16: if Tk = ts, then NF = NF + 0, and p = p+ 1.

17: if Tk = tj , then NF = NF + 1, h = h + 1 and recalculate zi(j) in λi(jr) =

λ0zi(j) + ϕp for proximate neighbours of failed component j.

18: Tsys =
∑

k Tk.

19: if Tsys ≥ tPM , then NWS = NWS+1, NFPM = NFPM +1, and CLPM =

CLPM + tPM and go to step 23.

20: if Tsys < tPM and
∑m−h

i=1 zi = L, set k = k + 1 then go to step 9.

21: if Tsys < tPM and
∑m−h

i=1 zi < L, then NSF = NSF+1, NFCM = NFCM+1,

and CLCM = CLCM + tPM and go to step 22.

22: if SN < SRN then SN = SN + 1 and go to step 4. Else if SN = SRN then

go to step 23.

23: calculate Rsys(tPM ) =
∑

NWS
SRN .

24: calculate Fsys(tPM ) =
∑

NSF
SRN .

25: calculate E(Nj(T ) | T < tPM ) =
∑

NFCM
SRN .
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26: calculate E(Nj(T ) | T ≥ tPM ) =
∑

NFPM
SRN .

27: calculate E(min(T, tPM )) =
∑

(CLCM+CLPM)
SRN .

28: calculate E(CR(tPM )) = CT (tPM )
E(min(T,tPM )) , then go to step 29.

29: set tPM = tPM + 1.

30: until tPM < tPM(max);

31: return E(CR(t∗PM )) = min(E(CR(tPM ))) and t∗PM where tPM = 1, 2 . . . , tPM(max).

5.4 Numerical example: three-component systems

In this section we use a three-component system with a simple structure to illustrate the

developed spatial model for the complex case. The purpose is to present the behaviour

of the developed model, and to investigate the importance and significance of the spatial

effect in maintenance decision making if it exists. We refer to the structure as an

Isosceles structure. The Isosceles structure is depicted in Figure 5.6. Note that the

components in the system are connected in parallel as seen in Figure 5.6b, while the

links between the components in Figure 5.6a indicate spatial dependence. Components

in the Isosceles system are linked together in a way that the system is composed of one

dominant component (component 2) and two secondary components (component 1, and

3). As indicated by Figure 5.6a, the system fails when the dominant component and one

secondary component fail. In this case the load on the only working component is less

than the load placed on the system. We assume that there is no information about the

distance between components in the system so that the component arrangement will be

used to infer component proximity. We assume that the combined effects of load-sharing

and shocks could have a significant impact on the whole system and that the impact on

the system could vary depending on the form of load-sharing between components in the

system, that is, whether load-sharing is uniform (equal) or non-uniform (with spatial

dependence). The effects of load-sharing considering spatial dependence and external

shocks will be investigated from the perspective of how long the load-sharing system

should be in usage? and at what cost? to highlight the importance and significance of

spatial effect.
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(b) Block diagram of parallel connections

Figure 5.6: Isosceles system structure

Load-sharing in the Isosceles system is such that after the failure of component

2, components 1 and 3 take up an equal amount of extra load. However, if either

of component 1 or component 3 fails, component 2 takes up all the extra load. We

compare optimal replacement time and cost from our developed model with a model

that assumes equal load-sharing and shocks. We extend the capacity flow model [248]

which models equal load-sharing to account for shocks similar to Eq.(5.4). The extended

equal load model is given by:

λi(J)(t) =

 λ0 + ϕn, J = 0

λ0
L

(m−J) + ϕn, J > 0
, (5.21)

where m is the number of components in the system. J is the number of components

that has failed. Note that J counts the number of failed components while j is an index

of a failed spatial neighbour of component i. L is the total load placed on the system.

We assume that the parameters to be used for the numerical analysis are known.

The following parameters are used in the numerical analysis:

L = 3, β = 1, λi = 0.05, ϕ = 0, ϕ = 0.01, ϕ = 0.1, ϕ = 0.2, ϕ = 0.4, ϕ = 0.5, v = 0.25

L is the load placed on the system. β = 1 indicates the presence of load-sharing which

has an impact on the failure rate. ϕ = 0 assumes that the system is not affected by
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external shocks. When the system is not subject to external shocks, the system is

similar to the load-sharing system studied in chapter 4. ϕ from 0.01 to 0.5 indicates

low to high impact of shocks on the system. We assume that the cost of component re-

placement cR = 50. Cost of corrective maintenance cCM = 1000 and cost of preventive

maintenance cPM = 400.

We use algorithm 3 in section 5.3 to estimate the system reliability quantities for

the two models which were applied in the age replacement model. The results are

generated from 1000 simulation runs. To ease the computation of the system reliability

quantities, we implement the method using R. The optimal preventive maintenance

time and expected cost rate from the two models are presented in Figure 5.7a and 5.7b

respectively. If spatial effect is not known to exist in the Isosceles system even though it

exists and maintenance decisions are based on the capacity flow model due to existence

of load-sharing, then the following outcomes will be recommended. If the system is

operating in an environment where it is either not subject to shocks or the impact

of shocks on the system is very low, the optimal time for preventive maintenance is

tPM = 23 and tPM = 17 while the cost rates are $54.34 and $61.37 respectively. If the

impact of shocks on the system is high, that is from ϕ = 0.1 to ϕ = 0.5, the system

is recommended for preventive maintenance ranging from tPM = 10 to tPM = 6 at a

high cost rate ranging from $90.35 to $138.12. If maintenance decisions for the system

are based on the developed spatial model, which captures the spatial effect, then the

following outcomes will be observed. If the system is operating in an environment where

it is either not subject to shocks ϕ = 0 or the impact of shocks on the system is very

low ϕ = 0.01, the optimal time for preventive maintenance is tPM = 14 and tPM = 11

while the cost rates are $72.92 and $83.13 respectively. If the impact of shocks on

the system is high, that is from ϕ = 0.1 to ϕ = 0.5, the system is recommended for

preventive maintenance ranging from tPM = 7 to tPM = 5 at a high cost ranging from

$122.96 to $170.30. It can be noticed from Figure 5.7a that the optimal tPM derived

based on the two models decreases as the shock size ϕ are increased. Implying that it

is better to schedule preventive maintenance faster for a system subject to increased

shocks due to the cumulative damage on the system. Furthermore, it can be noticed
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Figure 5.7: Comparison of the optimal preventive maintenance time and expected cost
rate using the spatial model and capacity flow model

from Figure 5.7b that the expected cost rate from both models increases as impact of

shocks increases.

In general, when load-sharing exists but the impact of shocks on the system is low

or does not exist, the optimal preventive maintenance time based on the spatial model

is almost half the time and the expected cost rates are less than those recommended

by the capacity flow model. If decisions are made based on the capacity flow model,

one implication could be that the system might fail before the scheduled preventive

maintenance time. Another implication could be that the budget for maintenance

would be underplanned by almost half of what is needed. In contrast, when load-

sharing exists and the impact of shocks on the system is high, the difference in the

expected cost rate from both models is significant whereas the difference in the optimal

preventive maintenance time is not significant. The closeness of the optimal preventive

maintenance time from both models may be because the impact of spatial effect on the

system cannot be distinguished by the two models given the high effect of shocks.

Given that spatial effect on the Isosceles system cannot be distinguished between

the two models when the effects of shocks are high, the effect can be ignored and simple

equal load-sharing models such the capacity flow model would be suitable for modelling

load-sharing and shocks. However, when the effect of shocks on the system is low and

spatial effect exists then the model that accounts for spatial effect is suitable.
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5.5 Numerical example: four-component systems

In this section, we use two four-component systems structures to further investigate the

importance and significance of the spatial effect if it exists. We consider the complex

case. The structure of the two four-component systems are depicted in Figure 5.8. The

components in each of the four-component systems are connected in parallel as depicted

in Figure 5.8c, while the links between the components indicate spatial dependence.

For structure one depicted in Figure 5.8a, the components are linked together in a way

that the system is composed of two subsystems (that is, subsystem having components

1 and 2 and another subsystem having components 3 and 4). The system fails when

two connected components have fail. For structure two depicted in Figure 5.8b, the

components are linked together in a way that every component is linked with two

other components. The system fails when three components fail. We assume that load

distribution in the two structures are not uniform given the presence of spatial effect.

The level of non-uniform load distribution changes from high to low as more components

are connected. Non-uniform load distribution in the two systems naturally becomes

uniform load distribution when each component is connected to the other 3 components.

Structure one has a high level of non-uniform load distribution while structure two has

a low level of non-uniform distribution given the number of connected components.

The purpose of this section is first to identify how the degree of spatial dependence

which is controlled by the number of connected components can influence maintenance

decision making. Second, how well the extended capacity flow model performs given

the varied spatial dependence. Similar to example one in section 5.4, we assume that

there is no information about the distance between components in the two systems so

that the component arrangement will be used to infer component proximity. We will

consider that the two structures have homogeneous components.

We consider the same parameters as those used in section 5.4. The following pa-

rameters are used in the numerical analysis:

L = 4, β = 1, λi = 0.05, ϕ = 0, ϕ = 0.01, ϕ = 0.1, ϕ = 0.2, ϕ = 0.4, ϕ = 0.5, v = 0.25
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L is the load placed on the system. β = 1 indicates the presence of load-sharing which

has an impact on the failure rate. ϕ = 0 assumes that the system is not affected by

external shocks. When the system is not subject to external shocks, the system is

similar to the load-sharing system studied in chapter 4. ϕ from 0.01 to 0.5 indicates

low to high impact of shocks on the system. We assume that the cost of component re-

placement cR = 50. Cost of corrective maintenance cCM = 1000 and cost of preventive

maintenance cPM = 400.

The optimal preventive maintenance time and expected cost rate for the two struc-

tures are presented in Figures 5.9a, 5.9b, 5.10a and 5.10b. When the systems are

subject to zero shocks or low shock sizes, capacity flow model estimates the same op-

timal preventive replacement time and expected cost rate for the two structures. In

addition, estimates of the optimal preventive maintenance time are 2 times that of the

spatial model, for example, capacity flow estimates tPM = 32 and tPM = 27 for cases

of the system being either not subjected to shocks or low shocks.

From all the figures, it can be noticed first that the estimate of optimal preventive

maintenance time and expected cost rate of the capacity flow model is the same for

the two structures. The similarity in the time and cost values indicates that capacity

flow model assumes identical structures by ignoring the connections between the com-

ponents. Furthermore, from Figures 5.9a and 5.10a, it can be noticed that the optimal

t∗PM decreases as the shock size ϕ increases in the two structures whereas the expected

cost rates are increasing as the shock size increases.

A comparison of the spatial model’s estimated optimal preventive maintenance time

shows that a system with few component connections should be scheduled for main-

tenance earlier than a system with more component connections due to high level of

non-uniform distribution of load caused by fewer links. In addition, comparing the

expected cost rate of the two structures from the spatial model, it is concluded that a

system with high level of non-uniform distribution of loads is more expensive to main-

tain. The result further indicates that the degree of component connections (spatial

dependence) should be considered in maintenance modelling.

Moreover, compared with structure one, we can observe a closer gap between the
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Figure 5.8: Four-component system structures
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Figure 5.9: Comparison of the optimal preventive maintenance time and expected cost
rate using the spatial model and capacity flow model considering structure one
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Figure 5.10: Comparison of the optimal preventive maintenance time and expected cost
rate using the spatial model and capacity flow model considering structure two

optimal preventive maintenance and expected cost rate from the two models in structure

two. The close gap could be because of the low level of non-uniform load distribution

due to the presence of more connections between components in structure two compared

with structure one that exhibits high level of non-uniform load distribution.

Compared to the numerical analysis of Isosceles system in section 5.4 where the

capacity flow model is suitable for cases that the system is subject to high shock sizes, for

structure one and structure two we observe a huge difference in the optimal preventive

maintenance time and expected cost rate from the two models, indicating the poor

performance of capacity flow models as the number of components increases.

Using algorithm 2, we compare reliability estimations of the spatial model with
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Figure 5.11: Comparison of reliability estimation using spatial model and extension of
the capacity flow considering the complex case

the extended capacity flow model for structure one. We examine the difference in the

reliability estimation of the two models given that structure one is subject to load-

sharing, spatial dependence and shocks. Figure 5.11 presents system reliability for

cases when ϕ is 0.01 and 0.5. Figure 5.11a represents reliability estimations when

ϕ = 0.01 indicating that the shock size is low. When ϕ = 0.01 the system reliability

from the spatial model and capacity flow model hits zero at time t = 50 and t = 60

respectively. For the spatial model, the system reliability at times t = 10, 20, 30 and

40 are 0.483, 0.083, 0.007, and 0.002 respectively. In contrast, for the capacity flow

model, the system reliability at times t = 10, 20, 30 and 40 are 0.852, 0.307, 0.062,

and 0.007 respectively. Figure 5.11b represents reliability estimations when ϕ = 0.5

indicating that the shock size is high. When ϕ = 0.5 the system reliability from the

spatial model and capacity flow model hits zero at time t = 30 and t = 50 respectively.

For the spatial model, the system reliability at times t = 10, and t = 20 are 0.109, and

0.006 respectively. In contrast, for the capacity flow model, the system reliability at

times t = 10, 20, 30 and 40 are 0.217, 0.037, 0.004, and 0.001 respectively.

It can be observed that when ϕ = 0.01 there is difference between the reliability

estimations of the two models and reliability estimations from the capacity flow model

is twice those from the spatial model. The result indicates that when shock size is

low, both models cannot be used as alternatives to the other. In this case, spatial

dependence should not be ignored if it exists. When ϕ = 0.5 the difference between the

reliability estimations of the two models is reduced indicating that when shock size is
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increased, reliability estimations from both models become closer. In this case, spatial

dependence could be ignored and a model that does not account for spatial dependence

might be appropriate. The finding supports the earlier findings with respect to preven-

tive maintenance optimization of structure one.

5.6 Numerical example: three-component systems with

NHPP shocks

In this section we use the three-component system studied in section 5.4 to investigate

the importance and significance of the spatial effect in the context that the system is

operating in an environment modelled by NHPP of shocks. The system is referred to as

an Isosceles structure. The complex case is considered here. The Isosceles structure is

depicted in Figure 5.6. Note that the components in the system are connected in paral-

lel, while the links between the components indicate spatial dependence. Components

in the Isosceles system are linked together in a way that the system is composed of one

dominant component (component 2) and two secondary components (component 1, and

3). As indicated by Figure 5.6, the system fails when the dominant component and one

secondary component fail. In this case the load on the only working component is less

than the load placed on the system. We assume that there is no information about the

distance between components in the system so that the component arrangement will

be used to infer component proximity.

A power law NHPP model is employed to model the rate of shocks as the rate

of shocks is considered changing over time. Let the expected number of shocks be

expressed using power law model:

V (t) = atb. (5.22)

A NHPP model with a power law intensity function can be written as follows:

P (Ns(t) = n) =
(V (t))n

n!
exp(−V (t)), n = 0, 1, 2, . . . (5.23)
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where a is the scale parameter that stretch out or squeezes the distribution and b is

the shape parameter that affects the general shape of the distribution. If b is not equal

to 1, the behaviour of shocks is a non-stationary process as the shock rate changes

with respect to time. That is, if b > 1, the shock rate increases with t, and if b < 1,

otherwise.

We consider the same parameters as those used in section 5.4. The following pa-

rameters are used in the numerical analysis:

L = 3, β = 1, λi = 0.05, ϕ = [0, 0.01, 0.1, 0.2, 0.4, 0.5], a = 1, b = [0.5, 1.5]

L is the load placed on the system. b = 0.5 indicates decreasing shock rate of shocks

while b = 1.5 indicates increasing shock rate of shocks. β = 1 indicates the presence of

load-sharing which has an impact on the failure rate. ϕ = 0 assumes that the system

is not affected by external shocks. When the system is not subject to external shocks,

the system is similar to the load-sharing system studied in chapter 4. ϕ from 0.01 to

0.5 indicates low to high impact of shocks on the system. We assume that the cost

of component replacement cR = 50. Cost of corrective maintenance cCM = 1000 and

cost of preventive maintenance cPM = 400. We present algorithm 4 to generate the

expected cost rate when shocks are modelled by NHPP.

Algorithm 4 Algorithm for generating the expected cost rate of a load-sharing

system with spatial dependence and shocks modelled by NHPP

Require: preventive maintenance time tPM ; Optimal preventive maintenance time

t∗PM ; number of shocks n; shock arrival time X
′
s; shock gap time Xs; component

failure time tj ; cycle time corrective maintenance CLCM ; cycle time preventive

maintenance CLPM ; simulation number SN ; number of simulation runs SRN ;

number of failed components NF ; number of working systems NWS; number

of system failures NSF ; number of failed components at corrective maintenance

NFCM ; number of failed components at preventive maintenance NFPM .

Ensure: Expected cost rate E(CR(tPM )) at the end of the simulation.

1: set up the value of parameters: tPM(max), v, ϕ, L, λ0, and β.
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2: set tPM = 1.

3: set SN = 1, NF = 0, NWS = 0, NSF = 0, NFPM = 0, NFCM = 0, CLPM =

0 and CLCM = 0.

4: generate a random number n from Pois(V (t)) where V (t) = atbPM .

5: generate X
′
s = tPM × U [0, 1]

1
b where s = 1, 2 . . . , n.

6: sort X
′
s from 1 to n and calculate shock gap time Xs = X

′
s − X

′
s−1 where s =

1, 2 . . . , n and X
′
0 = 0.

7: set p = 0, h = 0 and zi(j) = 1.

8: start at k = 1.

9: repeat

10: for all i ∈ {k, k + 1, . . . ,m} do

11: simulate m random variate ui from U [0, 1].

12: calculate ti =
− ln(ui)
λi(jr)

where λi(jr) = λ0zi(j) + ϕp.

13: end for

14: select the component with least failure time tj = min(tk, tk+1, . . . , tm).

15: set the next shock gap time ts = Xs in order from s = 1 to s = n.

16: select Tk = min(ti, ts).

17: if Tk = ts, then NF = NF + 0, and p = p+ 1.

18: if Tk = tj , then NF = NF + 1, h = h + 1 and recalculate zi(j) in λi(jr) =

λ0zi(j) + ϕp for proximate neighbours of failed component j.

19: Tsys =
∑

k Tk.

20: if Tsys ≥ tPM , then NWS = NWS+1, NFPM = NFPM +1, and CLPM =

CLPM + tPM and go to step 24.

21: if Tsys < tPM and
∑m−h

i=1 zi = L, set k = k + 1 then go to step 10.

22: if Tsys < tPM and
∑m−h

i=1 zi < L, then NSF = NSF+1, NFCM = NFCM+1,

and CLCM = CLCM + tPM and go to step 23.

23: if SN < SRN then SN = SN + 1 and go to step 4. Else if SN = SRN then

go to step 24.

24: calculate Rsys(tPM ) =
∑

NWS
SRN .

25: calculate Fsys(tPM ) =
∑

NSF
SRN .
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26: calculate E(Nj(T ) | T < tPM ) =
∑

NFCM
SRN .

27: calculate E(Nj(T ) | T ≥ tPM ) =
∑

NFPM
SRN .

28: calculate E(min(T, tPM )) =
∑

(CLCM+CLPM)
SRN .

29: calculate E(CR(tPM )) = CT (tPM )
E(min(T,tPM )) , then go to step 30.

30: set tPM = tPM + 1.

31: until tPM < tPM(max);

32: return E(CR(t∗PM )) = min(E(CR(tPM ))) and t∗PM where tPM = 1, 2 . . . , tPM(max).

We use algorithm 4 in this section to estimate the system reliability quantities for

the two models which were applied in the age replacement model. The results are

generated from 1000 simulation runs. Consider when b = 0.5, the optimal preventive

maintenance time and expected cost rate from the two models are presented in Figure

5.12a and 5.12b respectively. If spatial effect is neglected in the Isosceles system even

though it exists and maintenance decisions are based on the capacity flow model due

to existence of load-sharing, then the following outcomes are observed. If the system

is operating in an environment where it is either not subject to shocks ϕ = 0 or the

impact of shocks on the system is very low ϕ = 0.01, the optimal time for preventive

maintenance is tPM = 26 and tPM = 20 while the cost rates are $55.14 and $70.16

respectively. If the impact of shocks on the system is high, that is from ϕ = 0.1 to

ϕ = 0.5, the system is recommended for preventive maintenance ranging from tPM = 13

to tPM = 8 at a high cost rate ranging from $143.44 to $284.01. If maintenance decisions

for the system are based on the developed spatial model, which captures the spatial

effect, then the following outcomes will be observed. If the system is operating in an

environment where it is either not subject to shocks ϕ = 0 or the impact of shocks

on the system is very low ϕ = 0.01, the optimal time for preventive maintenance is

tPM = 17 and tPM = 15 while the cost rates are $74.46 and $95.01 respectively. If the

impact of shocks on the system is high, that is from ϕ = 0.1 to ϕ = 0.5, the system is

recommended for preventive maintenance ranging from tPM = 11 to tPM = 6 at a high

cost rate ranging from $195.39 to $377.85.

Consider when b = 1.5, the optimal preventive maintenance time and expected

cost rate from the two models are presented in Figure 5.13a and 5.13b respectively. If
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Figure 5.12: Comparison of the optimal preventive maintenance time and expected cost
rate using the spatial model and capacity flow model considering NHPP shocks with
b = 0.5

spatial effect is not known to exist in the Isosceles system even though it exists and

maintenance decisions are based on the capacity flow model due to existence of load-

sharing, then the following outcomes are observed. If the system is operating in an

environment where it is either not subject to shocks ϕ = 0 or the impact of shocks

on the system is very low ϕ = 0.01, the optimal time for preventive maintenance is

tPM = 18 and tPM = 10 while the cost rates are $102.83 and $141.60 respectively. If

the impact of shocks on the system is high, that is from ϕ = 0.1 to ϕ = 0.5, the system

is recommended for preventive maintenance ranging from tPM = 4 to tPM = 2 at a

high cost ranging from $232.99 to $373.42. If maintenance decisions for the system

are based on the developed spatial model, which captures the spatial effect, then the

following outcomes will be observed. If the system is operating in an environment where

it is either not subject to shocks ϕ = 0 or the impact of shocks on the system is very

low ϕ = 0.01, the optimal time for preventive maintenance is tPM = 14 and tPM = 6

while the cost rates are $146.51 and $185.96 respectively. If the impact of shocks on

the system is high, that is from ϕ = 0.1 to ϕ = 0.5, the system is recommended for

preventive maintenance ranging from tPM = 3 to tPM = 2 at a high cost rate ranging

from $284.90 to $464.88.

Similar to the HPP considered in section 5.4, when b = 0.5 and b = 1.5 the optimal

tPM derived based on the two models decreases as the shock size ϕ are increased,
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Figure 5.13: Comparison of the optimal preventive maintenance time and expected cost
rate using the spatial model and capacity flow model considering NHPP shocks with
b = 1.5

indicating that it is better to schedule preventive maintenance faster for a system

subject to increased shocks due to the cumulative damage on the system. Furthermore,

the cost of maintenance from both models increases as impact of shocks increases.

When shock rate is increasing, that is b = 1.5, and the effects of shocks are high,

the difference in the optimal preventive maintenance time from both models is not

significant compared to when shock rate is decreasing b = 0.5. The difference in the

optimal preventive maintenance time implies that when shock rate is increasing and the

effects of shocks are high, the spatial effect can be ignored and simple equal load-sharing

models like the capacity flow model would be suitable for modelling load-sharing and

shocks. However, when the effect of shocks on the system is low and spatial effect exists

then the model that accounts for spatial effect is suitable.

5.7 Discussion of results and Conclusion

In this chapter, we studied the problem of estimating the reliability of a load-sharing

system with spatial dependence, proximity effects and external shock. We then inves-

tigated the impact of ignoring spatial dependence effect in maintenance optimization if

it exists in a load-sharing system with shocks. We have assumed that a system exists

that operates in a way that the load on a failed component is taken up only by its

working spatial neighbours in close proximity and each working component is subject
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to external shocks that damage the components but does not cause immediate failure.

The system fails when the sum of loads on all working components is less than system

load. Age-replacement model was considered for the optimizing the replacement age of

the system. We developed an additive failure rate model to evaluate component relia-

bility. The failure rate model accounts for load-sharing interactions, proximity effects,

and external shocks on each component. We developed an algorithm using Monte Carlo

method to compute the system’s reliability. We also considered a simple case where

one external shock arrives before each component failure. We developed a method for

computing the system’s reliability using modified failure sequence diagram.

In the age-replacement model, preventive maintenance actions are performed on

the system to either preventively renew the system at a pre-determined age tPM or

correctively maintain the system if the system fails at time T . Component failures were

assumed to follow exponential distribution while the effect of shocks were assumed to

be modelled by HPP and NHPP.

Numerical examples were used to demonstrate the developed method for the com-

plex case on different configurations of a three-component system and a four-component

system. We found first that the degree of component connections (spatial dependence)

should be considered in maintenance modelling. The reason is that the level of compo-

nent connections reflects the level of non-uniform or uniform load-sharing taking place

in the system. A system with few component connections is more expensive to main-

tain compared with those with more connections due to a high level of non-uniform

load-sharing. Second, when the shock size is high, the difference in the optimal pre-

ventive maintenance time from the developed spatial model and an extension of the

capacity flow models is not significant for a system with small components. However,

as components size increases, the difference increases, indicating that a model that does

not account for spatial effects might be suitable for modelling a system with spatial

effects when shock sizes are high and component sizes are low. Lastly, when the shock

sizes are low and regardless of component size, a model that does not account for spa-

tial effects when it exists would overestimate the time for preventive maintenance and

underestimate the expected cost of maintenance of the system.
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Appendix - Chapter 5

A.1 Appendix A

Simulation flowchart for generating the expected cost rate is presented below.
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Figure 14: Simulation flowchart for generating the expected cost rate.
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Chapter 6

Conclusion and future research

This chapter draws together the various strands of the thesis and summarises its key

contributions. This thesis has developed new models to improve the accuracy of reliabil-

ity prediction in multi-component systems subject to heterogeneity or load-sharing with

spatial dependence. This was done by considering the limitations in existing reliability

prediction models identified from the literature. These developments are summarised

in section 6.1. The chapter will conclude with discussions on future research in section

6.2.

6.1 Summary and Conclusion

6.1.1 Reliability evaluation of a repairable multi-component system

considering unit heterogeneity using frailty model

Reliability prediction of repairable systems subject to minimal repair and unobserved

heterogeneity have been widely studied in recent years and models that account for

unobserved heterogeneity when it exists in failure data have demonstrated improved

reliability prediction compared to models that assume homogeneity. However, the

literature on repairable systems subject to minimal repair did not previously include:

1. A parametric model for reliability prediction at component level. The ability

to predict the occurrence of failure events at an individual unit level can aid

maintenance decision making for individual components.
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2. An assessment of the impact of misspecification of the random effect distribution

with the minimal repair assumption. The choice of the random effect distribution

for modelling unobserved heterogeneity effects can affect the validity of intensity

function estimators.

3. Consideration of systems whose components become homogeneous overtime.

In chapter 3, we address each of these issues in turn. To address issue 3, an IG frailty

model was developed for modelling unobserved heterogeneity in the failure processes of

components in a multi-component system. The developed IG frailty model builds on

the NHPP based gamma frailty model considered by Asfaw et al. [62], Slimacek and

Lindqvist [67]. The IG frailty model, which combines the power law NHPP model and

IG distributed frailties, assumes that the relative frailty distribution among surviving

components becomes more homogeneous over time. This contrasts with the commonly

used gamma frailty models which assume that the relative frailty distribution among

surviving components is independent of age. We considered a repairable system whose

components become homogeneous over time due to the burn in phase. We developed

a parameter estimator for the IG frailty model using a maximum likelihood method.

We examined the performance of the IG frailty model estimators using a simulation

study and found that the estimator is robust to different parameter values, and that

the estimators perform well for large sample sizes.

To address issue 2, the impact of misspecification of the random effect distribu-

tion with the minimal repair assumption was investigated. Using a simulation study,

a comparison of the power law NHPP with gamma and IG distributed frailties was

conducted to investigate the impact of wrongly assuming the random effect distribu-

tion for a repairable system subject to minimal repair. We examine the statistical fit

of the gamma and IG frailty models as well as their prediction performance. We found

that regardless of the degree of heterogeneity or the frequency of failures when early

component behaviour is concerned, the probability of selecting a wrong model is low

whether for model fit or for prediction purpose. The wrong model is only selected when

the sample size is small.

To address issue 1, using empirical Bayes framework, we developed a method for
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prediction of a component’s mean residual life and prediction of the expected number

of failures at the component levels. The developed method uses Bayes theorem to

update the frailty distribution for each component based on the observed data from

the component. Using the developed empirical Bayes framework for component level

prediction of expected number of failures and mean residual life based on air conditioner

data from a set of airplanes. We found that the IG frailty model outperforms the gamma

frailty model for component level prediction. We also compared the two frailty models

and a power law NHPP model. Our results indicate that the IG frailty model is better

in terms of model fit and outperforms the gamma for system level prediction.

6.1.2 Reliability analysis for load-sharing system with spatial depen-

dence, and proximity effects

Models that account for load-sharing dependence for reliability prediction of systems

subject to load-sharing have demonstrated improved reliability prediction compared

to models that assume component independence. However, the existing literature on

systems subject to load-sharing did not include:

1. A mathematical method to capture the effect of each load change on the failure

rate of a working spatial neighbour for system reliability prediction. A model

that captures the load-failure rate relationship can aid the assessment of factors

that influence the system’s reliability.

2. An investigation of the importance and significance of accounting for the spatial

effects in load-sharing system reliability prediction. One of the significant ques-

tions that this thesis answers in chapter 4 is what is the impact of ignoring spatial

dependence if it exists in a load-sharing system?

In chapter 4, we address both of these gaps in the literature. To address gap 1,

we developed a model for reliability analysis of load-sharing systems subject to spatial

dependence and proximity effect. The model was developed considering homogeneous

and heterogeneous components. The capacity flow model was extended to capture

spatial dependence and proximity effects in the failure rate function. Closed form
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expressions for component load function and failure rate were derived. We considered

that the system operates in a way that the load on a failed component is taken up

only by its working spatial neighbours in proximity. Each component’s failure rate was

considered changing as a function of extra load taken from a failed spatial neighbour and

the load-failure rate relationship was modelled by extending the capacity flow model.

The traditional capacity flow model considers that the load of a failed component is

shared equally by all the working components. Markov model was used to characterise

the deterioration process of the entire system. Sensitivity analysis of the load factor was

conducted to examine its effect on reliability estimation. We found that an increased

load on the system reduces the system reliability faster. The mathematical formulation

for parameter estimation procedure was developed.

To address gap 2, the importance and significance of accounting for the spatial

effect was investigated. Using numerical experiment, a comparison of the extended

capacity flow model and traditional capacity flow model was conducted to investigate

the impact of ignoring spatial dependence if it exists in a load-sharing system. Monte

Carlo simulation was used to generate cumulative distribution function of the system

and to validate the reliability estimation from the compared models. We found that

when heterogeneous components are considered for a four-component system with few

component connections, the spatial effect may be ignored and a simpler model such as

the model for 3-out-of-4 systems which does not account for spatial effects could be

applied. However, when homogeneous components are considered, reliability predic-

tion of a load-sharing system based on capacity flow model can be overestimated or

underestimated if spatial effect exists. A similar result was found for a five-component

system with complex connections. Overall, we infer that considering homogeneous

components, regardless of the level of component connections and system size, if it

exists, spatial effect should not be ignored in reliability prediction of a system with

load-sharing.
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6.1.3 Reliability modelling and preventive maintenance of load-sharing

systems with spatial dependence, proximity effects and external

shocks

Chapter 5 extends the work in chapter 4 by considering maintenance and external

shocks. Like chapter 4, literature on systems subject to load-sharing and shocks did

not include:

1. A model for reliability prediction of systems subject to load-sharing, spatial de-

pendence, and shocks.

2. A model for maintenance optimization of load-sharing system with spatial depen-

dence, proximity effect and external shocks.

3. An investigation of the importance and significance of accounting for the spatial

dependence in load-sharing system with external shocks. One of the significant

questions that this thesis answers in chapter 5 is what is the impact of ignoring

spatial dependence if it exists in a load-sharing system with external shocks?

In chapter 5, we address each of these issues in turn. To address issue 1, we de-

veloped two methods for reliability analysis of load-sharing systems subject to spatial

dependence, proximity effect and external shocks. We considered that the system op-

erates in a way that the load on a failed component is taken up only by its working

spatial neighbours in proximity. Each component’s failure rate is considered changing

as a function of extra load taken from a failed spatial neighbour and external shocks.

We assume that external shocks damage the components but does not cause immediate

failure. Using Monte Carlo method, we developed an algorithm to model the system’s

reliability. For the developed model, an additive failure rate model was derived as

a function of the load, baseline failure rate and shocks for each component. Exter-

nal shocks on the components were modelled by HPP and NHPP models respectively.

Sensitivity analysis of the shock size was conducted to examine its effect on reliability

estimation. We found that an increased load on the system reduces the system relia-

bility faster. We also considered a simple case where one external shock arrives before
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each component failure. We developed a method for computing the system’s reliability

using modified failure sequence diagram.

To address issue 2, we developed an age-replacement model as an extension of tra-

ditional age-replacement model. To address issue 3, we assessed the impact of ignoring

spatial dependence in a load-sharing system with external shocks using the developed

algorithm. A comparison of the optimal maintenance time and expected cost based on

the developed spatial model and an extended capacity flow model was conducted. The

extended capacity flow model incorporates the effect of external shocks and considers

that the load of a failed component is shared equally by all the working components.

When we varied the parameter controlling the shock size, we found that when shock

size is high, the difference in the optimal preventive maintenance time from the de-

veloped spatial model and an extension of the capacity flow models is not significant

for a system with small components. However, as components size increases, the dif-

ference increases. Indicating that a model that does not account for spatial effects

might be suitable for modelling a system with spatial effects when shock sizes are high

and component sizes are low. In addition, when shock sizes are low and regardless of

component size, a model that does not account for spatial effects when it exists would

overestimate the time for preventive maintenance and underestimate the expected cost

of maintenance of the system. Lastly, the number of component connections should

be considered in maintenance modelling. The reason is that the level of component

connections reflects the level of non-uniform or uniform load-sharing taking place in

the system. A system with few component connections is more expensive to maintain

compared with those with more connections due to a high level of non-uniform load

distribution.

6.2 Future Research

In the process of completing the research objectives described in chapter 1, several

avenues of research were considered. Some of these were considered superficially, while

others were considered in more detail. In section 6.2.1, we describe one of the areas

that was explored in detail. In section 6.2.2, we explore areas of research that were
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only briefly considered but exist as useful avenues to explore.

6.2.1 Reliability analysis for systems with failure interaction, spatial

dependence, and proximity effects

In chapter 4, we developed a model for reliability prediction of a load-sharing system

subject to spatial dependence and proximity effects. However, there is no model yet

in the literature for reliability prediction of systems subject to local failure interaction

considering proximity effects. Consider a system in which one component performs

a crucial function (Dominant component) and others performs less crucial function

(Secondary components). The failure behaviour of such a system is such that whenever

any secondary component has failed, its failure causes an increase in the deterioration

rate of the dominant component. In addition, the deterioration rate of the dominant

component is only influenced by the failed state of the secondary components that are

its spatial neighbours.

We present an example to illustrate this situation. An example of such system

is a water distribution system, in which the repair of failed distribution pipes causes

pressures that could increase the deterioration in a nearby main pipe while a service

pipe’s state has no effect on the main pipe’s deterioration [233].

Others such as [227] and [233] have studied these systems. However, we explored

this topic in two ways. First, whilst previous works assume type I interaction, i.e,

that the failure of the influencing component leads to the immediate failure of the

affected component, we could assume that the failure of the influencing component only

increases the deterioration rate of the affected component. Unlike [227] that assumes the

failure of any secondary component will affect the dominant component, we assume that

the failure of only nearby secondary components will affect the dominant component.

As nearby secondary components in the system will affect the deterioration of the

primary component, a proportional hazard model (PHM) could be used to describe

the relationship between the influencing components and the influenced component.

Markov model could be used to describe the deterioration process of the entire system.

To illustrate, here we will formulate the failure rate model for the dominant component
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before describing future work.

Consider a multi-component system with local failure interaction. The system con-

sists of one primary andm+n secondary components where n secondary component are

spatial neighbours of the primary component and m components are non neighbours.

The failure of the jth secondary components j = 1, 2, . . . ,m + n, does not make the

system stop, but can reduce the system’s performance while the failure of the primary

component can cause the system to stop functioning.

The failure interaction between components of this system is as follows. Failure of

the jth secondary component, j = 1, 2, . . . ,m+n, has no effect on the behaviour of the

other secondary component. However, failure of a nearby secondary component acts

as a shock to the primary component without inducing an instantaneous failure, but

increasing its failure rate. We assume that the failure of the dominant and secondary

component occurs according to a HPP with constant failure rate.

In addition to the above assumptions, we make the following assumptions:

1. The jth secondary component starts as good as new, i.e., the initial age of this

component is zero.

2. We assume that when a secondary component fails, shocks from it increase the

failure rate of the primary component within a distance threshold α by ϑij per-

cent.

3. ϑij is assumed to be time-invariant.

If we assume that shocks from the jth secondary components would increase the

failure rate of the primary component by ϑij percent and each ωij is a function of

the distance between secondary component jth (influencing component) and primary

component (affected component).

Given the number of failures of each secondary component, and the percentage of

shock ϑij transferred from them to a surviving primary component, the conditional

failure rate for the primary component p is given by:

199



Chapter 6. Conclusion and future research

hconp (t) = hp(t | N1(t) = k1, N2(t) = k2, . . . , Nm+n(t) = km+n)

= h0p(t)(1 + ϑp1)
k1(1 + ϑp2)

k2 . . . (1 + ϑp(m+n))
k(m+n)

hconp (t) = h0p(t)
m+n∏
j=1

(1 + ϑpj)
kj , (6.1)

where hconp (t) is the conditional failure rate of the primary component. h0p(t) is the

baseline failure rate for the primary component. kj is the number of failures of the jth

secondary component. ϑpj represents the degree of the effect a secondary component

has on the primary component and 0 ≤ ϑpj < 1. If ϑpj = 0, then the failure of a

secondary component has no effect on the primary component.

For simplicity, we assume that the secondary components are independent of each

other. The probability of having Nj(t) failures of the j
th secondary component at time

t is:

Pr(Nj(t)) =
hj(t)

kjexp−hj(t)

kj !
. (6.2)

The expected failure rate for the primary component at a time t is given by:

hp(t) = hconp (t | N1(t) = k1, . . . , Nm+n(t) = km+n)Pr(N1(t) = k1), . . . ,

P r(N(m+n)(t) = k(m+n))

hp(t) =
∞∑
k1

. . .
∞∑

k(m+n)

hconp Pr(N1(t)) . . . P r(N(m+n)(t)). (6.3)

Thus the failure rate model for the primary component is

hp(t) = h0p(t)exp

(
ϑp1h0

1(t)+ϑp2h0
2(t)+,...,+ϑp(m+n)h

0
(m+n)

(t)
)

, (6.4)

where h0j (t) for j = 1, . . . ,m+n is the baseline failure rate of the secondary components.

Since all the m secondary components are not close enough to the primary com-

ponent to affect, ϑpj = 0 for each mth component thus the failure rate of the primary
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component is only affected by all n neighbour secondary components given by:

hp(t) = h0p(t)exp

(
ϑp1h0

1(t)+ϑp2h0
2(t)+,...,+ϑp(n)h

0
(n)

(t)
)

, (6.5)

where Eq.(6.5) indicates that the failure rate of the primary component is greater than

its own independent failure rate because ϑpn > 0.

The failure distribution function of the primary component is given by

Fp(t) = 1− exp{
∫ t
0 hp(x)dx}. (6.6)

Since we assume the components are spatially dispersed, ϑpj could be modelled by

a distance function. We assume that the distance between all secondary components

and the primary component is an important criterion of spatial influence between the

components. If we assume that there is a threshold distance beyond which there is no

direct spatial influence between the primary and secondary components then we can

apply the constant proximity model introduced in section 4.2.2 of chapter 4 to derive

ϑpj by:

ϑpj =

c, 0 ≤ dpj ≤ α

0, dpj > α
, (6.7)

where c is a predefined constant value and its the same for all pair of primary and

n secondary components within the threshold distance α while all other m components

outside the threshold distance have ϑpj = 0. In this work, we assume that all n

secondary components have a predefined constant value ϑpj = c.

If we assume that the each secondary component has varied effect on the primary

component, we could model the influence by an exponential model introduced in section

4.2.2 of chapter 4. The exponential model assumes a diminishing effect, in which ϑpj

reduces as the distance between the primary and secondary component increases up to

a threshold α (see section 4.2.2 of chapter 4 for more details on the exponential model).

In order to describe the behaviour of the load-sharing system with proximity and

spatial dependence, we will apply the aforementioned failure rate model in a Markov
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model. The failure rate model will be used to account for the effect of the influencing

secondary components on the transition rates of the primary component in the Markov

model. As introduced in chapter 4, Markov models are frequently used in reliability

and maintainability work where events, such as the failure or repair of a component,

can occur at any point in time. The model assumes that the conditional distribution

of a future state is independent of the past states of the process i.e., the behaviour of

the system in each state is memory less [145]. Thus, the sojourn time of each state is

exponentially distributed and the transition probability to each state is independent

of the process history. For any given system, a Markov model consists of a list of the

possible states of that system, the possible transition paths between those states, and

the rate parameters of those transitions.

Let λ denote the rate parameter of the transition from State 1 to State 2 and Si(t) be

the probability of the system being in State i at time t. An advantage of Markov models

is that they are simple to generate even though they require a complicated mathematical

approach. Consider a voting system with one primary component, two influencing

secondary components and one non-influencing secondary components. Using Figure

6.1, the state transition for the system will be described. We start by defining each

state S(t) of the system. When the system is at state S0, all components in the system

are working (functional). When the system is in state S7-S13, the primary component

has failed as a result the system no longer functions. States S1-S6 is the system state

when any of the secondary components have failed. When the system is in state S6,

we assume that the system has partially failed, as such the system’s performance is

reduced.

The system’s evolution is determined by the transitions among states. We shall dis-

cuss the state transitions of the system in the following way. Denote the transition rate

of the influencing and non-influencing secondary components by λ∗1 and λ1 respectively.

The transition from state S0 to S1 means that one of the influencing secondary

components have failed with transition rate 2λ∗1 while transition from state S0 to S2

means that the functional non-influencing component has now failed with transition

rate λ1. The transition from state S1 to S3 or S4 implies that a second influencing or

202



Chapter 6. Conclusion and future research

3

1

22

0

2

1

Figure 6.1: State transition for a system with one primary component, two influencing
secondary components and one non-influencing secondary components

non-influencing component has failed with transition rate λ∗1 or λ1. This procedure is

continued until the last working secondary components have failed.

When r influencing secondary component is in failed state, i.e states, the transition

rate of the primary component is then given by hrp where r is the number of failed

influencing (secondary) components. For example, transition from state S1 to S8 means

that the primary component has failed with failure rate h1p.

In order to fully develop this modelling, we could do the following three things:

• We could consider a more complex spatial model than the discrete threshold

considered here.

• Here, we have only considered a single primary component. Further work would

be required to expand this to m primary components.

• Numerical analysis is required to evaluate the accuracy of the model.

However, we have laid the ground work for future analysis to build upon.

6.2.2 Areas for further research

Here, we consider future research around the contributions of each chapter.

203



Chapter 6. Conclusion and future research

6.2.2.1 Future Research in Chapter 3

In chapter 3 we studied reliability prediction for a system subject to unobserved het-

erogeneity and developed a method based on empirical Bayes for prediction at the

component level. However, the effect of covariates was not captured in the modelling.

One area to consider for further work would be to extend the developed prediction

method to include covariate effect. A component level prediction method that cap-

tures both observed and unobserved factors of heterogeneity has not been studied in

the literature for system subject to minimal repair. A method that combines both ob-

served and unobserved covariates would improve the accuracy of reliability prediction

if covariates were recorded for each component in the system. Also, the developed pre-

diction framework could be extended considering systems subject to imperfect repairs.

The impact of misspecification of a random effect distribution could be investigated

considering systems subject to imperfect repairs.

6.2.2.2 Future Research in Chapter 4

We studied reliability prediction for a load-sharing system with spatial dependent com-

ponents and proximity effect in chapter 4. The components in this study only have

two states. For further work, a system with multi-state components can be consid-

ered. In addition, the impact of ignoring spatial effect can be investigated for systems

with multi-state components. Considering systems with binary state components, the

impact of ignoring spatial effect can also be further explored for a large system with

heterogeneous components. Also, it would be valuable to develop an efficient method

suitable for reliability prediction of systems with large components. Furthermore, a

more elaborate proximity model could be considered.

6.2.2.3 Future Research in Chapter 5

We studied reliability modelling and preventive maintenance of a load-sharing system

with spatial dependent components, proximity effect, and external shocks. We consid-

ered an optimal age-replacement policy for the load-sharing system in chapter 5. For
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future work, an optimal inspection policy can be considered for the system and the

policy can be extended to the case where the maintenance action required for a failed

component is also a decision variable. In this case, at an inspection time, one could

decide the best course of action for each failed component (i.e replacement or minimal

repair), and also determine the next optimal inspection time. Also, one could consider

non-periodic inspection policy.
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