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Abstra
tThe mountain hare population 
urrently appears to be under threat in S
otland.The natural population 
y
les exhibited by this spe
ies are thought to be, atleast in part, due to its infestation by a parasiti
 worm. We seek to gain anunderstanding of these population dynami
s through a mathemati
al model ofthis system and so determine whether low population levels observed in the �eldare a natural trough asso
iated with this 
y
ling, or whether they point to amore serious de
line in overall population densities.A generi
 result, that 
an be used to predi
t the presen
e of periodi
 travel-ling waves (PTWs) in a spatially heterogeneous system, is reported. This resultis appli
able to any two population host-parasite system with a super
riti
alHopf bifur
ation in the rea
tion kineti
s. Appli
ation of this result to two ex-amples of well studied host-parasite systems, namely the mountain hare and thered grouse systems, predi
ts and illustrates, for the �rst time, the existen
e ofPTWs as solutions for these rea
tion adve
tion di�usion s
hemes.One method for designing bone s
a�olds involves the a
ousti
 irradiation ofa rea
ting polymer foam resulting in a �nal sample with graded porosity. Thework in this thesis represents the �rst attempt to derive a mathemati
al model,for this empiri
al method, in order to inform the experimental design and tailorthe porosity pro�le of samples. We isolate and study the dire
t e�e
t of thea
ousti
 pressure amplitude as well as its indire
t e�e
t on the rea
tion rate.We demonstrate that the dire
t e�e
t of the a
ousti
 pressure amplitudeis negligible due to a high degree of attenuation by the sample. The indire
te�e
t, on rea
tion rate, is signi�
ant and the standing wave is shown to produ
ea heterogeneous bubble size distribution. Several suggestions for further workare made.
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eThe work in this thesis is divided into two distin
t parts. The �rst �ve 
haptersrelate to resear
h 
arried out, on host-parasite systems, in the �rst year anda half of my PhD programme. The se
ond part of the thesis, 
ontained inChapters 7 to 9, is a study of some of the e�e
ts of a
ousti
 irradiation on area
ting polymer foam. The study of this se
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Chapter 1Introdu
tion: Host-ParasiteSystems
1.1 MotivationInterest in the mountain hare, Lepus timidus, has resurfa
ed in the media [21℄, inre
ent months, with parliamentary questions being lodged at the S
ottish par-liament regarding its 
onservation status, abundan
e and distribution in S
ot-land [73℄. Despite the fa
t that it has been listed in Annex V of the EC HabitatsDire
tive (1992) for many years [97℄, there are 
urrently renewed 
on
erns aboutthe per
eived de
line in the population and more spe
i�
ally about the e�e
t of
ulls (both legal and illegal) on the mountain hare population [21℄. There havebeen reports of lo
alised de
lines and possible extin
tions but given the la
k ofup to date information on abundan
e and distribution in the �eld, 
oupled withthe fa
t that the mountain hare populations exhibit natural 
y
li
al 
u
tuationsin density, it is hard to as
ertain whether observed low levels and possible lo-
alised extin
tions are the result of environmental fa
tors or are simply due tothe inherent peaks and troughs in population levels asso
iated with su
h 
y
li
population dynami
s [43℄. It is hoped that a greater understanding of the pop-ulation dynami
s of the mountain hare spe
ies along with a knowledge of the
ausative fa
tors for population 
u
tuations will help to inform the management1



Chapter 1 2of the population whi
h is thought to be 
urrently under threat. In this the-sis we build on work produ
ed by the former Ma
auley Institute, Aberdeen in
onjun
tion with the University of Glasgow [97℄. This work was both empiri
aland theoreti
al and looked, in parti
ular, at the spe
i�
 e�e
t asso
iated withthe mountain hare's intestinal parasite, Tri
hostrongylus retortaeformis. In thisstudy, rea
tion kineti
 models were developed with an aim to understanding thepopulation 
u
tuations observed in the data. We seek to examine the e�e
tof a spatial extension of this kineti
 model as well as probing it analyti
allyto derive some generi
 results that 
an be applied to a spe
i�
 sub-
ategory ofhost-parasite systems.1.2 Ba
kgroundMany natural spe
ies exhibit some os
illatory behaviour in population densitywith 
y
les that are 
hara
terised by their amplitude and period [83℄. Exam-ples in
lude Snowshoe hares [46℄, �eld voles [48℄, grouse [37, 98℄ and mountainhares [36, 62, 63, 65, 97℄. These population 
y
les 
an either be the result ofspatially homogeneous os
illations predi
ted by the asso
iated rea
tion kineti
model or the observed spatiotemporal 
y
les are formed by periodi
 travellingwaves (PTWs) [95℄, whi
h os
illate in spa
e and time. There are many possiblereasons why temporal or spatial 
y
ling 
ould o

ur and they vary for individualsystems. In some 
y
li
 systems, a number of fa
tors need to interplay to produ
eos
illations [46℄. Example me
hanisms 
an in
lude habitat heterogeneity, sea-sonal for
ing, intera
tion with other populations, 
limati
 for
ing and lands
apeobsta
les [83℄. In other systems, interspe
ies intera
tions are thought to resultin 
y
ling [39, 48℄. This intera
tion may take di�erent forms depending on thespe
ies involved. For example, predator-prey intera
tions have been extensivelystudied sin
e the work of Lotka and Volterra in the 1920s [6℄, and predationhas been shown to be an established 
ause of 
y
ling in the prey spe
ies [80℄.



Chapter 1 3Another example is the host-parasite intera
tion, regarded by Anderson andMay as a `parti
ular manifestation of the general predator-prey intera
tion' [6℄.In [6℄, the authors show theoreti
ally that where the parasite is loosely aggre-gated in the host population, and where its e�e
t on survival is small 
omparedto its e�e
t on host fe
undity, the parasite population will tend to destabilisethe system resulting in population 
y
ling. Indeed, �eld studies of red grouseand their intestinal nematode exhibit spatiotemporal os
illations in host-parasitedensities [68,102℄ and further investigation has also shown that it is the parasitethat is responsible for this 
y
ling e�e
t [39℄. With other host parasite stud-ies, however, observed spatiotemporal os
illations in the �eld data have not yetbeen explained [96℄ and many other fa
tors outwith parasite e�e
ts, for exam-ple predation [46℄, food limitation [42℄, 
ulling [35℄, territoriality [36℄ have beenproposed as possible drivers of these 
y
les, but as yet nothing has been provedempiri
ally or theoreti
ally.An important aim of population dynami
s is to develop a better understand-ing of the 
ause and e�e
t of su
h 
y
li
 behaviour so that spe
ies that are underthreat, or those of e
onomi
 importan
e, may be better managed. For example,a system that we will study in the main body of this thesis is the mountain hareLepus timidus in S
otland. This is the only lagomorph spe
ies native to the UKwith 99% of the population residing in S
otland [57℄. Lagomorphs are membersof the taxonomi
 order Lagomorpha and in
lude hares and rabbits. The moun-tain hare population is believed to be under threat from a number 
auses and assu
h has been listed in Annex V of the EC Habitats Dire
tive (1992) [97℄ requir-ing the UK to ensure its 
onservation and sustainable management. In 2007,due to a per
eived de
line in mountain hare numbers the S
ottish Government'swildlife 
onservation agen
y S
ottish Natural Heritage (SNH) made the moun-tain hare a UK biodiversity a
tion plan spe
ies [97℄. Field data measurementsshow that this population exhibits 
y
li
 dynami
s [63℄ with 7-10 year 
u
tu-



Chapter 1 4ations in abundan
e [36℄. Its asso
iated intestinal nematode Tri
hostrongylusretortaeformis has been proposed as a possible driver of these 
y
les [63, 97℄.Based on these propositions, Townsend et al. [97℄ derived a non-spatial rea
tionkineti
 model (ordinary di�erential equations, ODEs) to des
ribe these 
y
lesbut 
on
luded that it did not 
ompletely des
ribe the e�e
ts of parasites on themountain hare demography. Spe
i�
ally, the parameter set required to generateos
illations with the properties observed in the �eld data resulted in unrealis-ti
ally high parasite burdens. The authors [97℄ proposed a number of possiblereasons for this. First, they highlighted the fa
t that several of the plausibleparameter ranges were based on small sample sizes or indire
t data sour
es andwere therefore possibly ina

urate. It was further suggested that the e�e
ts ofthe parasites on the system may extend beyond mortality and fe
undity and thatother parasiti
 e�e
ts may need to be in
luded in the rea
tion kineti
 model.Finally, they proposed a se
ondary role for parasites in the rea
tion kineti
s andin a later paper [96℄ the same authors go on to suggest population dispersal, har-vesting and population 
ontrol as areas of ongoing investigation. In this thesis,we fo
us on the area of population dispersal and employ a spatially extendedmodel for the mountain hare - parasite system.Another spe
ies whi
h has been modelled using similar non-spatial ODEs(e.g. see [18℄) is the red grouse, Lagopus lagopus s
oti
us. As the favouritegame bird of Britain [98℄, there is an abundan
e of long-term data des
ribinggrouse population dynami
s. In 
ommon with the mountain hare, it is subje
t toparasitism by the intestinal nematode Tri
hostrongylus tenuis, whi
h has provento be one of the two main me
hanisms proposed for red grouse 
y
les [98℄.By modelling both these host-parasite systems in spa
e and time we hope togain some insight into the population 
y
ling observed in the �eld. We will alsoderive a result for the spatial host-parasite system, analagous to a result pre-sented by Koppell and Howard [45℄ for predator-prey rea
tion-di�usion systems.



Chapter 1 5We then show how this generi
 result may be used to predi
t the existen
e ofPTW solutions in general two population 
y
li
 host-parasite rea
tion-adve
tion-di�usion systems whi
h 
ontain a super
riti
al Hopf bifur
ation in the rea
tionkineti
s.1.3 OverviewThis part of the thesis may be loosely divided into four se
tions. Chapter 2 intro-du
es the ne
essary theory required to ta
kle the problem of 
y
li
 host-parasitesystems, both temporal and spatiotemporal. Chapter 3 des
ribes the motivationand ba
kground for studying population dynami
s of the mountain hare and itsintestinal parasite Tri
hostrongylus retortaeformis, looking at both the spatiallyhomogeneous system as well as a model in
orporating spatial heterogeneity. InChapter 4, a new result is derived for a general two population host-parasiterea
tion-adve
tion-di�usion model 
ontaining a super
riti
al Hopf bifur
ationin the rea
tion kineti
s. This generi
 result is then applied to two host-parasitestudies of parti
ular interest, namely the mountain hare-Tri
hostrongylus retor-taeformis system and the red grouse-Tri
hostrongylus tenuis system. Chapter 5proposes areas of further investigation and some 
on
lusions are drawn. Spe
if-i
ally the 
hapters may be summarised as follows:Chapter 2 presents an overview of the mathemati
al theory that underpinsthe study of periodi
 travelling waves in a spatiotemporal domain, as well asthe rea
tion kineti
s of generi
 two population predator - prey systems. Theanalysis of Koppell and Howard [45℄ on general two population predator-preyrea
tion di�usion models 
hara
terised by a super
riti
al Hopf bifur
ation in therea
tion kineti
s is elu
idated. The form and properties of `� � !' systems arestudied. These are a simple 
lass of rea
tion di�usion equations proposed by [45℄and are a very useful tool in the analysis of 
y
li
 rea
tion-di�usion systems.



Chapter 1 6Chapter 3 des
ribes the parti
ular host-parasite model for the mountainhare-Tri
hostrongylus retortaeformis system proposed by Townsend et al. [95,97℄. First, the temporal model is investigated and the global and lo
alisedbehaviour of the system is analysed before illustrating numeri
ally the possibilityof PTW solutions for the asso
iated rea
tion-adve
tion-di�usion system.Chapter 4 derives a new result predi
ting the presen
e of PTW solutions,given the existen
e of limit 
y
le solutions in the rea
tion kineti
s, for a 
er-tain 
lass of rea
tion-adve
tion-di�usion equations. This result is tested on twopublished rea
tion kineti
 models des
ribing di�erent host-parasite systems.Chapter 5 summarises the results for Chapters 3 and 4 and draws some
on
lusions before outlining possible areas of advan
e in the study of this 
lassof host-parasite systems. It also proposes a linear stability analysis study on thePTW solutions derived in previous Chapters.1.4 Key ContributionsThe prin
ipal original 
ontributions of the author for this se
tion of the thesismay be summarised:� In Se
tion 3.8 we present the analysis of the spatially augmented mountainhare-Tri
hostrongylus retortaeformis model originally proposed by [95℄ andthe result that spatial extension does not extend the limit 
y
le behaviourbeyond that observed in the temporal model.� The spatial extension of the red grouse-parasite model published in [18℄,using Fi
kian di�usion to model host dispersal, and an adve
tion term todes
ribe parasite dispersal is proposed in Se
tion 4.4.2.� The illustration of PTWs, in the spatiotemporal domain, as possible so-lutions for the spatially heterogeneous red grouse-Tri
hostrongylus tenuismodel proposed in [18℄.



Chapter 1 7� In Chapter 4, the proposition of a generi
 result that 
an be applied to thespatially heterogeneous model of any two population, 
y
li
, host-parasiterea
tion-adve
tion-di�usion system 
ontaining a super
riti
al Hopf bifur-
ation in the rea
tion kineti
s. This generi
 result 
an also predi
t theminimun speed of the PTW solution; the parti
ular wave speed is di
-tated by initial and boundary 
onditions.



Chapter 2Mathemati
al Ba
kground
2.1 Periodi
 travelling wavesThe term `periodi
 travelling wave' (PTW) refers to a parti
ular type of solu-tion, in whi
h the model variables vary periodi
ally in spa
e, as well as in time.They are a fundamental solution form for rea
tion-di�usion systems with a sta-ble limit 
y
le in the kineti
s [45℄ and have been studied extensively, typi
ally,in 
y
li
 two population predator-prey systems [78{83, 85, 86℄. In their review,Sherratt and Smith [83℄ tabulate details of a number of �eld studies reportingperiodi
 travelling waves in populations undergoing multi-year 
y
les. A

ordingto Sherratt and Smith [83℄, the signi�
an
e of a PTW is the 
orrelated spatialand temporal density variations that it implies. The syn
hrony in populationdynami
s asso
iated with PTWs has been attributed to a number of di�erentfa
tors, for example, population dispersal, large s
ale perturbations in the envi-ronment or multi-year os
illations in some important environmental fa
tor, forexample 
limati
 for
ing or sunspot a
tivity [83℄. The two main me
hanismsknown to generate su
h PTWs in predator-prey systems are boundary e�e
tsand the invasion of a predator population into a prey population [83℄.One of the aims of this work is to study theoreti
ally the existen
e of PTWsolutions in 
y
li
, two population host-parasite systems. Not only are therefundamental di�eren
es in the rea
tion kineti
s of host-parasite systems (as op-8



Chapter 2 9posed to the predator-prey models) but the spatial augmentation of the temporalmodel will now involve adve
tion as well as di�usion sin
e, in many 
ases, theparasites travel on, or in, their asso
iated host population for all or part oftheir life 
y
le. Before examining two population host-parasite systems, we �rstsummarise the PTW theory asso
iated with predator-prey systems.2.2 Predator-prey systemsThere are numerous examples of predator-prey intera
tions in nature and, inthese 
ases, the predator, in e�e
t, kills and eats the prey. Lotka-Volterra [9℄developed the �rst mathemati
al model to study these predator-prey systemsand demonstrated that simple predator-prey rea
tions 
an lead to os
illatorybehaviour of the populations. Sin
e then, predator-prey intera
tions have beenwidely studied and spatially heterogeneous systems are often modelled usingrea
tion-di�usion equations with 
onstant di�usion 
oeÆ
ients to model popula-tion dispersal [60℄. An example of a predator-prey rea
tion kineti
 (non-spatial)system is [83℄, dudt = bene�t from predationz }| {�uv(� + v) � deathz}|{�u ; (2.1)dvdt = v(1� v)| {z }intrinsi
 birth and death� uv(�+ v)| {z }predation : (2.2)where u and v represent the predator and prey population densities respe
tively,� is the predator death rate, � is the prey to predator 
onversion rate and � isthe half-saturation 
onstant in the rate of prey 
onsumption term by predators.Note that the bene�t from predation is taken to be proportional to the predationterm in the prey equation and this is thought to be a key driver for temporalos
illations in population densities in this system [60℄. The rea
tion kineti
sof these type of systems have been studied extensively and it is often shown



Chapter 2 10that predators introdu
ed into a prey population 
an indu
e a stable limit 
y
leabout an unstable 
o-existen
e steady state. In 1973, Koppell and Howard pro-du
ed a seminal paper on two population 
y
li
 systems of this form [45℄. They
onsidered a spatiotemporal version where population dispersal is modelled byFi
kian di�usion, for both predator and prey, with predator and prey popula-tions having asso
iated 
onstant di�usion 
oeÆ
ients Du and Dv, respe
tively.They showed that all os
illatory rea
tion-di�usion equations, of the form�u�t = f(u; v) +Du�2u�x2 ; (2.3)�v�t = g(u; v) +Dv �2v�x2 ; (2.4)where f(u; v) and g(u; v) des
ribe the rea
tion kineti
s of the non-spatial system,have a one parameter family of periodi
 travelling wave solutions; here the word`os
illatory' indi
ates that the rea
tion di�usion kineti
s have a stable limit
y
le [101℄. They proved that there is a family of small amplitude waves providedthat the dispersal 
oeÆ
ients for the two populations are suÆ
iently 
lose. Todo this, they showed that the travelling wave variable ODE systemdudz = f(u; v) + Dus2 d2udz2 ; (2.5)dvdz = g(u; v) + Dvs2 d2vdz2 ; (2.6)where z = t � x=s, has a Hopf bifur
ation at some positive value of the wavespeed, sHopf , and then used the Hopf theorem to imply a one-parameter familyof periodi
 solutions as s in
reases above this minimum value, sHopf . This limit
y
le solution in z 
orresponds to the birth of PTW solutions in the asso
iatedPDE system in the (x; t) plane. These solutions are `one parameter' in thesense that if we sele
t a parameter set produ
ing a travelling wave solution
hara
terised by a speed, s, then, for this parameter set, the values of amplitude,wavelength and period for the PTW are �xed; similarly if we 
hoose an amplitudethen the speed, period and wavelength of the resulting PTW are determined [83℄.



Chapter 2 11The wave amplitude 
an range between zero to that of the amplitude of thespatially homogeneous os
illations of the rea
tion kineti
s. Similarly, the wavespeed 
an range from some minimum speed given by sHopf , to in�nity, whi
h
orresponds to the spatially homogeneous os
illations of the rea
tion kineti
s.The period ranges from a minimum related to the minimum wave speed to amaximum value equal to the period of the limit 
y
le solution in the rea
tionkineti
s.In addition, Koppell and Howard [45℄ introdu
ed and developed the analysisof the simple 
lass of rea
tion-di�usion equations known as `��!' systems; thesehave sin
e been used extensively in prototype studies of 
y
li
 rea
tion-di�usionsystems [60℄ and for this reason we will summarise the form and properties ofthese systems in the next se
tion.2.3 �� ! systemsWe will start with the full ��! rea
tion-di�usion system, introdu
ing some basi
assumptions, and then initially 
onsider the spatially homogeneous limiting 
asebefore going on to predi
t the presen
e and form of periodi
 plane waves assolutions to the spatial system.A ��! system is a simple type of rea
tion-di�usion system taking the form�u�t = �2u�x2 + �(r)u� !(r)v; (2.7)�v�t = �2v�x2 + !(r)u+ �(r)v; (2.8)where r = (u2 + v2)1=2, u and v are real-valued fun
tions of spa
e x and timet, and �(0) and !(0) are both stri
tly positive. An important property of thissystem is that any isolated zero of �(:) 
orresponds to a limit 
y
le in the rea
tionkineti
s. In theory, any two population 
y
li
 system near to a super
riti
alHopf bifur
ation 
an, by redu
tion to normal form, be des
ribed by a � � !system [83℄. The rea
tion kineti
s of the original system will determine the form



Chapter 2 12of �(r) and !(r). The beauty of the ��! system is that analyti
al expressions,in terms of system parameters, may be derived for the PTW solution form andits stability. For general rea
tion-di�usion systems, however, unless the rea
tionkineti
s of the system are very simple, the redu
tion to normal form to obtain thefun
tions �(r) and !(r) 
an be 
umbersome and time 
onsuming and, be
auseof this, for the two systems 
onsidered in the main body of the thesis, we willobtain the properties and stability of the PTW solutions using the numeri
albifur
ation analysis pa
kage, AUTO [19℄. The �� ! system illustrated in (2.7)and (2.8) is a generi
 system for PTWs for equations that have a super
riti
alHopf bifur
ation in the rea
tion kineti
s. We will now introdu
e the analysis forthis generi
 system before investigating our own spe
i�
 host-parasite system.2.3.1 Spatially homogeneous �� ! systemsIn the spatially homogeneous 
ase, the temporal �� ! system is simply statedas [60℄ dudt = �(r)u� !(r)v; (2.9)dvdt = !(r)u+ �(r)v; (2.10)r = pu2 + v2; (2.11)where r is a fun
tion of t only. In order to ful�l the 
onditions ne
essary for asuper
riti
al Hopf bifur
ation we need �(r0) = 0 and �0(r0) < 0: that is, �(r) ispositive for 0 � r � r0 and negative for r > r0, and !(r) is a positive fun
tionfor all r [60℄. This simple system has an exa
t limit 
y
le solution whi
h 
anbe derived expli
itly. In the spatially homogeneous system, the two variables uand v are fun
tions of t only and their form depends on the system parameters,and r0, whi
h turns out to be the amplitude for the limit 
y
le solution.If we express the variables u and v in the 
omplex form, namely
 = u+ iv; so that, j
j = pu2 + v2 = r; (2.12)
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dt = dudt + idvdt ;= �(r)u� !(r)v + i(!(r)u+ �(r)v);) d
dt = [�(j
j) + i!(j
j)℄
: (2.13)The rate of 
hange of the modulus, j
j, is given by,dj
jdt = uj
j dudt + vj
j dvdt : (2.14)Substituting for the rate equations (2.9) and (2.10),dj
jdt = uj
j [�(j
j)u� !(j
j)v℄ + vj
j [!(j
j)u+ �(j
j)v℄ ; (2.15)= �(j
j)j
j �u2 + v2� ; (2.16)= �(j
j)j
j: (2.17)A steady state solution is observed when the above rate equation is equal to zero,that is, when �(j
j)j
j = 0. But by our earlier de�nition, �(r0) = 0 and thereforeour steady state is a limit 
y
le solution des
ribed by the 
ir
le, j
j = r0, in the(u; v) plane. Rewriting the system in polar 
o-ordinates we have,
 = rei� ) drdt = r�(r); d�dt = !(r);so that the limit 
y
le solution 
an be des
ribed byr(t) = r0; �(t) = !(r0)t+ �0; where �0 is a 
onstant.The spatially homogeneous system thus has a limit 
y
le solution in the u� vplane given, in polar 
o-ordinates, by(u; v) = (r0 
os[�0 + !(r0)t℄; r0 sin[�0 + !(r0)t℄):



Chapter 2 142.3.2 Spatially heterogeneous �� ! systemsTo obtain travelling wave solutions in the spatially extended system we substi-tute for the polar 
o-ordinates into (2.7)-(2.8) to get,��t � r 
os �r sin � � = � �(r) �!(r)!(r) �(r) �� r 
os �r sin � � + �2�x2 � r 
os �r sin � � ; (2.18)where now u(x; t) = r(x; t) 
os(�(x; t)) and v(x; t) = r(x; t) sin(�(x; t)). Di�er-entiating r 
os � and r sin � with respe
t to t,��t(r 
os �) = rt 
os � � r�t sin �; (2.19)��t (r sin �) = rt sin � + r�t 
os � (2.20)and twi
e with respe
t to x,�2�x2 (r 
os �) = rxx 
os � � 2rx�x sin � � r�xx sin � � r�2x 
os �; (2.21)�2�x2 (r sin �) = rxx sin � + 2rx�x 
os � + r�xx 
os � � r�2x sin �: (2.22)Substitution of these into (2.18) and simpli�
ation yields (for r 6= 0)�t = !(r) + 1r2 �r2�x�x : (2.23)In a similar way we 
an obtain an expression for rt, namelyrt = r�(r) + rxx � r�2x: (2.24)Our ��! system for rea
tion di�usion systems with limit 
y
les 
an, therefore,be now restated as rt = r�(r) + rxx � r�2x; (2.25)�t = !(r) + r�2 �r2�x�x : (2.26)In se
tion 2.3.1 we showed that if r0 > 0 exists and �0(r0) < 0 then the asymp-toti
ally stable limit 
y
le solution for the non-spatial system isr = r0; � = �0 + !(r0)t: (2.27)



Chapter 2 15In other words the limit 
y
le solutions u and v areu = r 
os � = r0 
os [�0 + !(r0)t℄ ; (2.28)v = r sin � = r0 sin [�0 + !(r0)t℄ : (2.29)In the inhomogeneous system, we look for a travelling plane wave of the formu(x; t) = U(z); z = �t� kx;where � is the frequen
y and k the wavenumber. Therefore, in the polar formr = �; � = �t� kx (2.30)where � is a given 
onstant value of r(x; t).If we substitute for this form of solution into the system (2.25) and (2.26)we 
an determine ne
essary and suÆ
ient 
onditions, for the single parameter�, su
h that the solutions are travelling plane waves. Sin
e � is a 
onstant valueof r then for ea
h solution �t = �x = 0, �t = �, �x = �k and from (2.25) and(2.26) 0 = ��(�)� �k2; ) �(�) = k2; (2.31)� = !(�): (2.32)We therefore have a one parameter family of travelling plane wave solutionsgiven by u = � 
os h!(�)t� x� 12 (�)i ; (2.33)v = � sin h!(�)t� x� 12 (�)i ; (2.34)with wave speed 
 
 = �k = !(�)� 12 (�) : (2.35)As an example, we will 
onsider a parti
ular simple 
ase of a �-! system with�(r) and !(r) su
h that the kineti
s of the system satisfy the super
riti
al Hopf
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ation requirements but are also su
h that they are amenable to analysis.We take !(r) � !0 � r2; �(r) = �0 � r2: (2.36)Substituting these forms for �(r) and !(r) into the dynami
s in (2.7) and(2.8) we have a steady state solution at u = v = 0, the nature of whi
h isgoverned by the values �0 and !0.For u = v = 0 it follows that r = 0, �(0) = �0 and !(0) = !0. The dynami
system then be
omes ��t � uv � = � �0; �!0!0; �0 �� uv � ; (2.37)and the 
orresponding eigenvalues, �� are given by,���� �0 � �; �!0!0; �0 � � ���� = 0: (2.38)Solving the auxiliary equation yields the eigenvalues,� = �0 � !0i; (2.39)so that for �0 < 0! steady state solution is stable; (2.40)�0 = 0! Hopf bifur
ation value giving � = �!0i; (2.41)�0 > 0! steady state solution is unstable: (2.42)We would therefore expe
t small amplitude limit 
y
le solutions for small posi-tive �0 = 
 where r0 = p
 where 0 < 
 � 1. The spatially homogeneous limit
y
le solutions are therefore,u = p
 
os[!(p
)t + �0℄; v = r0 sin[!(p
)t + �0℄; 
 > 0: (2.43)Now 
onsidering the rea
tion di�usion system for these parti
ular �(:) and !(:),we substitute for travelling plane wave solutions of the formr = �; � = �t� kx;



Chapter 2 17where now � = !(�) = !0 � �2;k = � 12 (�) = (p
 � �2) 12 ;so that the 
orresponding spatial PTW solutions are thereforeu = � 
os h(!0 � �2)t� �
 � �2� 12 xi ; (2.44)v = � sin h(!0 � �2)t� �
 � �2� 12 xi : (2.45)where the amplitude of the PTWs, � < p
. In other words the amplitude of thePTW is less than the amplitude of the limit 
y
le solution in the rea
tion kineti
sand as � ! r0 the speed (2.35) tends to in�nity and we retrieve the spatiallyhomogeneous limit 
y
le solution. The above solutions are illustrated in Figure2.1. One parameter set, illustrated in Figure 2.1(a), results in PTWs movingfrom right to left a
ross the spatial domain; in (b) the parameters 
hosen produ
ePTWs moving in the opposite dire
tion a
ross the domain. These solutions willonly persist if they are stable; unstable waves 
annot be a long term solution andnumeri
al analysis indi
ates that instability results in irregular spatio-temporalos
illations [78, 83℄. A detailed des
ription of the stability analysis of travellingwave solutions of �� ! systems is des
ribed in [60℄.2.4 General Host-parasite systemsUntil the work 
arried out by Anderson [5℄ and Anderson & May [6, 56℄ rela-tively little theoreti
al work was done on the e�e
ts of parasites on their hostpopulation. Anderson [5℄ de�ned parasitism in terms of the parasite's in
uen
eon the growth rate of its host population and suggested that this e�e
t is relatedto the average parasite burden per host whi
h is governed by the statisti
al dis-tribution of the parasite population within the host population. Anderson [5℄
ites a number of important population pro
esses in
luding overdispersion and
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Figure 2.1: Typi
al numeri
al solutions of (2.7,2.8), with �(r) = �0 � r2 and!(r) = !0 � r2. It shows a front moving a
ross the domain at 
onstant speed,with periodi
 wave trains behind this wave. In (a) the wave trains move in thenegative x dire
tion, while in (b) they move in the positive x dire
tion. Thesolutions for u(x; t) and v(x; t) are plotted as fun
tions of spa
e x at su

essivetimes t, with the verti
al separation of solutions proportional to the time interval.We 
onsider the system on the semi-in�nite domain [0;1) with initial data ofthe form u(x; 0) = v(x; 0) = A exp(��x). The parameter A a�e
ts the time
ourse of the evolution, but has no e�e
t on the ultimate behaviour; we takeA = 0:1. The remaining parameter values are: (a) � = 0:8, �0 = 1, !0 = 2,0 < t < 60; (b) � = 4, �0 = 3, !0 = 1,0 < t < 40.density dependen
e in parasite mortality or reprodu
tion. At that time, mosttheoreti
al work in e
ology 
on
entrated on predator-prey systems where thepredator kills and eats its prey. Anderson and May [6℄ �rst de�ned `parasitism'broadly as `an e
ologi
al asso
iation between spe
ies in whi
h one, the parasite,lives on or in the body of the other, the host' for all or part of its life 
y
le. Theparasite relies on the host produ
tion of nutrients as being vital to its own sur-



Chapter 2 19vival so that, where the relationship is obligatory for the parasite, it is harmfulto the host. Three 
onditions are proposed that must be ful�lled in order thata spe
ies is 
lassi�ed as a parasite: (1) the host provides the parasite's habitat;(2) the parasite is nutritionally dependent on the host; and (3) the parasite isharmful to the host [6℄. One of the basi
 rea
tion kineti
 models presented byAnderson and May [56℄ isdHdt = (a� b)H � (�+ Æ)P; (2.46)dPdt = P � �HH +H0 � (�+ b+ �)� ��k + 1k � PH� ; (2.47)where H is the host population density and P is the parasite population density.It must be noted that this system fails mathemati
ally when H = 0 as theparasite equation blows up due to the singularity in the third term. However,we use this model to des
ribe the parasite burden per host and therefore makethe assumption that when H = 0, P is ne
essarily zero. The �rst term in thehost rate equation (2.46), gives the net 
ontribution of hosts per unit time bysubtra
ting the intrinsi
 host mortality rate, b, from the intrinsi
 host fe
undityrate, a. � and Æ are the e�e
t, per parasite, on host mortality and fe
undity,respe
tively. Therefore, the e�e
ts per host are �P=H and ÆP=H, respe
tivelygiving the total number of hosts killed due to parasite infe
tion, �P , and thenet redu
tion in host fe
undity due to the parasites, ÆP .For the parasite rate equation (2.47), � is de�ned as the rate of produ
tionof transmission stages per parasite, giving a net reprodu
tion rate of �P for aparasite population P . In many natural systems these transmission stages passout in the fae
es to the environment where, in time, they hat
h and migrate upblades of grass to be ingested by foraging hosts. As a result, only a 
ertain pro-portion of these transmission stages will infe
t the host population. The densityof free stages in the habitat in relation to the density of hosts per unit area isimportant in determining the transmission rate. The term, H=(H+H0), des
rib-



Chapter 2 20ing the e�e
tive transmission fa
tor, determines the proportion of transmissionstages produ
ed that infe
t the host population in a given time interval, so thatthe total number of stages infe
ting the host population in this time is given by�PH=(H +H0). As H in
reases with respe
t to H0 the transmission rate tendsto unity so that all transmission stages produ
ed infe
t the host population. IfH0 is large with respe
t to H then only a small proportion of transmission stagesare 
onverted to adult parasites. The total number of adult parasite deaths dueto the 
ombined e�e
ts of adult parasite mortality, �, the total host mortalityrate given by the sum of the intrinsi
 rate, b, and the parasite indu
ed rate,� is �(� + � + b)P . The third term, �P (k + 1)=kH, re
e
ts the e�e
t of thestatisti
al distribution of parasites within the host population on the numberof parasites removed at ea
h time point. In most natural systems, the parasitetends to be overdispersed within the host population and the negative binomialprobability model is 
ommonly used to model this distribution [5℄. A randomdistribution is often des
ribed by the Poisson model whi
h is de�ned by the sin-gle parameter of mean parasite burden, P=H, and is given by P=H + (P=H)2.An overdispersed population, on the other hand, is des
ribed by the two param-eter binomial probability distribution de�ned by the mean and, k, the inversemeasure of the degree of parasite aggregation within the host. It is modelledby P=H + (P=H)2(k+ 1)=k. If k is small, the parasite population is `highly ag-gregated', with a small number of hosts 
ontaining the majority of the parasitepopulation. As su
h the parasite population tends to have less regulatory e�e
ton the host population; if k is large then the population is `loosely aggregated'and as k !1 we approa
h a random distribution.Anderson and May [56℄ showed that where the parasite was loosely aggre-gated in the host population and where its e�e
t on host fe
undity was greaterthan that on host mortality, it tended to be a destabilising in
uen
e on therea
tion kineti
s of the system, resulting in stable limit 
y
le solutions. These



Chapter 2 21are exa
tly the properties asso
iated with the two natural 
y
li
 host-parasitesystems (mountain hare and red grouse) that we go on to investigate in the nextse
tions.



Chapter 3Mountain Hare, Parasite System
3.1 Ba
kground and motivationThe mountain hare (see Figure 3.1), Lepus timidus, is indigenous to S
otlandand 99% of the UK population resides at altitudes above 500m [33℄. Moun-tain hares are thought to be less fussy about the quality of their forage thanbrown hares and this gives them a 
ompetitive edge espe
ially at high altitudes.In 1995 the total population was of the order of 350,000 [34℄ with populationdensities varying tenfold, rea
hing a peak approximately every ten years [33℄.This same study [34℄, however, did re
ognise that the value proposed may beover/underestimated by as mu
h as 50% [43℄. The mountain hare population is
urrently thought to be under threat with densities approa
hing extin
tion levelsin 
ertain parts of S
otland [43℄. As a result, the spe
ies is listed in Annex V ofthe EC Habitats Dire
tive [97℄ requiring its 
onservation status and sustainablemanagement to be ensured. There are a number of hypothesised 
ontributoryfa
tors to their low densities, in
luding predation, food limitation, territoriality,parasite infestation and 
ulling [97℄.Field studies in S
otland, Finland and elsewhere demonstrate 
y
ling in themountain hare population densities [65℄. The form of the 
y
ling varied betweenstudies and di�erent 
ausative fa
tors have been suggested. For example, inS
andanavian 
ountries, predation is thought to play an important role [37,62℄,22
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Figure 3.1: Mountain hare, Lepus timidus, in its winter 
oat whi
h providesex
ellent 
amo
age on those snowy S
ottish peaks.however, in S
otland, where most of the mountain hare population resides onestates land managed for red grouse, predation is not thought to be an issue [62℄.Other 
ontributory fa
tors have been suggested in
luding food limitation andterritoriality. But observations suggest that mountain hares tend to be non-territorial [30, 36, 97℄ and food limitation is not thought to be an issue [42, 97℄.Mountain hares have been impli
ated in the transmission of louping ill virus tored grouse [35℄ and, as a result, they have be
ome vi
tims of 
ulling, thoughit is hard to quantify this e�e
t sin
e, in many 
ases, the 
ulling is 
arriedout illegally [43℄. S
ottish Natural Heritage (SNH) published the results ofa questionnaire-based survey 
arried out in 2006/07 giving a �gure of 24529mountain hares 
ulled a
ross 90 estates in S
otland [43℄. This report also pointedto the fa
t that the naturally o

uring 
y
li
 dynami
s of the mountain hare may
ompli
ate analysis of long term patterns of abundan
e and that the fa
tors
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ausing these 
u
tuations remain unknown [43℄. We seek to address this pointby mathemati
ally modelling the population dynami
s of the mountain hare andits asso
iated parasite to see if this intera
tion is responsible for the population
y
ling observed in the �eld.Though theoreti
al eviden
e abounds to support the hypothesis of parasiteindu
ed 
y
ling in a host population in general [5, 6, 18, 38, 39, 56℄, empiri
aleviden
e for parasite indu
ed 
y
ling in the mountain hare population is la
k-ing. Properties asso
iated with �eld os
illations in mountain hare populationsre
orded a
ross large areas of S
otland are listed in Table 3.1 and illustrate thevariation in dynami
s observed at a range of di�erent lo
ations [65℄.Period 4-15 yearsMean hare density 20-200km�2Amplitude of os
illations CoeÆ
ient of variation0.39-1.80Mean parasite burden 200-5000 worms per hareTable 3.1: Chara
teristi
s of the highly variable dynami
s of mountain harepopulations a
ross S
otland [65, 95℄.The mountain hare parasite, Tri
hostrongylus retortaeformis, is a wormfound in the intestines of mountain hares (see Figure 3.2). The females pro-du
e eggs in the gut whi
h then pass out in the hare fae
es. After hat
hing, thelarvae 
limb up blades of grass where they are then ingested by foraging haresand the 
y
le re
ommen
es [32℄. This worm has little e�e
t on hare mortalitybut dramati
ally redu
es its fe
undity [64℄. Empiri
al eviden
e suggests that,in most host-parasite systems in the �eld, the parasites are over-dispersed (orloosely aggregated) in their host populations [5℄, where only a small number ofhosts 
ontain the majority of the total parasite population.Simple mathemati
al models predi
t that parasites that are loosely aggre-gated in the host population and whi
h have a stronger e�e
t on host fe
undity
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Figure 3.2: The mountain hare intestinal nematode Tri
hostrongylus retortae-formis.than on host mortality should destabilise the system and indu
e 
y
ling [18,56℄.Newey and Thirgood measured the e�e
t of Tri
hostrongylus retortaeformis onfemale mountain hares and 
on
luded that the experimental redu
tion of par-asites was asso
iated with an in
rease in fe
undity [64℄. A later paper [63℄ bythe same authors demonstrated that Tri
hostrongylus retortaeformis is indeedloosely aggregated in the mountain hare population and they hypothesise thatthis fa
tor along with the parasites' in
uen
e on fe
undity demonstrate that it isthis intestinal parasite that is responsible for the 
u
tuating levels of mountainhares observed in the �eld. In light of these experimental results, Townsendet al. [97℄ derived a mathemati
al model that in
orporates these e�e
ts andthen probed it numeri
ally and analyti
ally to see if it 
an predi
t the 
y
li
population densities observed in the �eld [97℄. The model they developed isa purely temporal rea
tion-kineti
 model (i.e. spatial dispersal of hosts is ne-gle
ted) and a fuller des
ription and analysis of this system will be the subje
tof Se
tions 3.2-3.7. Their results, however, were in
on
lusive in that 
y
les ofthe required amplitude and period 
ould only be produ
ed using parameterswhi
h produ
ed an unrealisti
 mean parasite burden. A number of reasons were
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luding doubts about the reliability of 
ertain parametervalues determined from `small sample size or indire
t data sour
es' [97℄. It wasalso proposed to be due to the fa
t that spatial heterogeneity and host dispersalwas la
king in the original model [97℄. The aim of this part of the thesis isto examine if, by adding spatial heterogeneity, we may be able to theoreti
allypredi
t 
y
les with more realisti
 mean parasite burdens.Addressing this point, we model the system in the spatiotemporal �eld usingthe rea
tion kineti
s of [97℄ and adding di�usion and adve
tion terms for the hostand parasite populations, respe
tively, to determine if os
illations of realisti
amplitude and period 
an be predi
ted in the spatial system with more realisti
parasite burdens.First, for 
ompleteness, we will look at the temporal dynami
s only andassume a spatially homogeneous system in Se
tions 3.2 to 3.7 before 
onsideringthe e�e
ts of spatial heterogeneity in Se
tion 3.8.3.2 Rea
tion kineti
sTownsend et al. [97℄ use a variant of the 
lassi
 Anderson & May ma
roparasitemodel (introdu
ed in [17℄) whi
h des
ribes 
ontinuous growth equations for ahost population of density, H, intera
ting with a parasite population, P . In the�rst instan
e we will des
ribe the 
ase when the population densities are timedependent only in whi
h 
ase the ODE system is,dHdt = ��P � bH + aH � kHÆP + kH�k ; (3.1)dPdt = P � �HH0 +H � (�+ � + b)� ��k + 1k � PH � : (3.2)Parameter des
riptions 
an be found in Table 3.2. Comparing the original An-derson & May model, des
ribed by (2.46) and (2.47), to (3.1) and (3.2) we 
ansee that the parasite rate equations are the same. In the hare rate equations the



Chapter 3 27terms des
ribing the net death rate are also the same and given by (�bH��P ).The di�eren
e between these two systems pertains to the des
ription of the netbirth rate of the host population. In Anderson & May [56℄ the parasite indu
ede�e
t on host fe
undity is assumed to a
t linearly so that the total host birthrate is given by (aH�ÆP ). This allows for a biologi
ally unrealisti
 negative nethost fe
undity. In (3.1) the net host fe
undity is modelled using the non-linearterm introdu
ed by Diekmann & Kret
hsmar [17℄ whi
h takes into a

ount thenegative binomial distribution of the parasite population within the host pop-ulation and its e�e
t on the net host fe
undity. Here Æ also a
ts to redu
e thehost fe
undity, as in (2.46), but it now a
ts non-linearly and the host fe
undityis always a positive quantity. As Æ in
reases for a �xed k the host fe
undityde
reases, however, as k in
reases for a �xed Æ, the net host fe
undity in
reases.3.3 Parameter estimationRanges of the model parameters are also presented in Table 3.2. These rangeswere 
al
ulated by Townsend et al. [97℄ to be the most pra
ti
al based on thebest available empiri
al information. Where possible, �eld data from the moun-tain hares in S
otland were used [65℄, otherwise data were drawn from 
loselyrelated systems [97℄. For our analysis, we use the following set of parameter val-Symbol Parameter Unit Lower Limit Upper Limita Intrinsi
 fe
undity of adult hares yr�1 1.8 2.8Æ Parasite redu
ed indu
tion in hare fe
undity parasite�1yr�1 0 0.0001b Intrinsi
 mortality of adult hares yr�1 0.08 0.61� Parasite-indu
ed hare mortality parasite�1yr�1 0 0.0001� Parasite fe
undity yr�1 80 2800H0 Transmission ineÆ
ien
y 
onstant 13500 66800� Adult parasite mortality yr�1 0 1.2k Degree of overdispersion 0.5 2Table 3.2: Parameter ranges based on empiri
al information [97℄.



Chapter 3 28ues, unless stated otherwise in the text: k = 1, Æ = 1:5� 10�5 parasite�1yr�1,� = 8� 10�6 parasite�1yr�1, b = 0:61 yr�1, a = 1:8 yr�1, � = 100 yr�1, � = 1yr�1, H0 = 3:82� 104. These values lie within the lower and upper limits pro-posed by [97℄ (Table 3.2); they result in a limit 
y
le solution in the rea
tionkineti
s for this system.3.4 System res
alingFor our analysis, we res
ale the system variables so that all 
omputed quantitiesare of relatively similar magnitude; this aids numeri
al integration and alsoredu
es the number of parameters in the governing equations. We let H = H0 �Hand P = P0 �P where H0 and P0 are 
hara
teristi
 host and parasite densities.We then set P0=H0 = b=� so that, with k = 1, (3.1) and (3.2) 
an be restatedas d �Hdt = �b( �H + �P ) + a �H2
1 �P + �H ; (3.3)d �Pdt = �P � � �H1 + �H � (�+ b+ �)� 2b �P�H � ; (3.4)where we take 
1 = Æb=�.3.5 Global behaviourFirst we investigate the global properties of the system by deriving its null
lines,whi
h are found by setting the rate equations (3.3) and (3.4) equal to zero.Example solutions of the zero rate equations, in the �H � �P plane, are shown inFigure 3.3. Along ea
h null
line the 
orresponding dependent variable remains
onstant in time. The steady state solutions of the system then o

ur where the�H and �P null
lines interse
t in the �H � �P spa
e.



Chapter 3 293.5.1 �H Null
lineThe �H null
line (i.e. d �H=dt = 0) is given by,�b( �H + �P ) + a �H2
1 �P + �H = 0; (3.5)For �H � 1, d �P=dt approximates tod �Pdt � �2b �P 2�H ;so that the rate of 
hange of �P along the �H null
line is in the negative �P dire
tionfor �H � 1. Conversely, for �H large (i.e. 1= �H � 1)d �Pdt � � �P;sin
e �H=(1 + �H)! 1. Therefore, the rate of 
hange of �P along the �H null
lineis in the positive �P dire
tion. The arrows in Figure 3.3 illustrate, qualitatively,these 
hanges in �P along the �H null
line.3.5.2 �P Null
lineSimilarly we 
an determine how �H 
hanges along the �P null
lines whi
h aregiven by d �P=dt = 0, namely�P � � �H1 + �H � (�+ b+ �)� 2b �P�H � = 0:There are therefore two �P null
lines; the trivial one, �P = 0, and the non-trivialone de�ned by � �H1 + �H � (�+ b + �)� 2b �P�H = 0:Along the trivial �P null
line d �Hdt = (a� b) �H:Typi
ally a > b, otherwise in the parasite free 
ase the host density will de
ayto zero. So the rate of 
hange of �H along this trivial �P = 0 null
line is in the



Chapter 3 30positive dire
tion. The non trivial �P null
line is given by�P = �H2b � � �H1 + �H � (�+ b + �)� :For �P � 1 on the non-trivial null
lined �Hdt � a �H2
1 �P + �H ;whi
h is always positive. Whereas, for �P large (i.e. 1= �P � 1),d �Hdt � �b �P ;whi
h is negative. These two results then give the arrow stru
ture for the non-trivial null
line as shown in Figure 3.3 illustrating the possibility of limit 
y
lesolutions.Indeed, the bifur
ation analysis pa
kage, AUTO [19℄, was used to 
on�rmthe existen
e of a Hopf bifur
ation for this system, for the set of parameterslisted in Se
tion 3.3, and illustrates the presen
e of stable limit 
y
le solutions(see Figure 3.4). AUTO is a software pa
kage for 
ontinuation and bifur
ationproblems in ODEs.We 
an see from the AUTO plots in Figure 3.4 that the system is linearlyunstable for values of Æ above the Hopf bifur
ation (denoted by ÆHB) and stablelimit 
y
les are observed; for values of Æ less than the Hopf bifur
ation value thesteady state is linearly stable and, following a small perturbation, the popula-tions will qui
kly return to their equilibrium. Illustrations of these two types ofbehaviour are shown in the P �H phase plane, in Figure 3.5, and temporally inFigures 3.6 and 3.7. The bifur
ation shown is a super
riti
al Hopf bifur
ation.Having investigated the global behaviour of the system, we now look at thesteady state solution and the behaviour of the system lo
al to this point.
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line plot for � = 8 � 10�6, Æ = 1:5 � 10�5 and the remainingparameters as stated in Se
tion 3.3. The �H (red line) and �P (green line) null-
lines plotted in the �H � �P plane; the arrows on the �H; �P null
lines show thedire
tion of the rate of 
hange of �P (t) and �H(t) with time, respe
tively. The �Haxis is the trivial �P null
line. The arrow 
on�guration indi
ates the possibilityof limit 
y
le solutions.
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aled variables are H = H0 �H and P = P0 �P , where H0 =3:82 � 104 and P0 = 2:91 � 109, so that, for example, with Æ = 2:5 � 10�5 thehost population density os
illates between approximate maximum and minimumvalues of 2300 and 382, respe
tively and the parasite population density os
illatesbetween approximate maximum and minimum values of 2:6� 108 and 5:8� 106,respe
tively.



Chapter 3 33

0 0.01 0.02 0.03 0.04 0.05
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

PSfrag repla
ements �H
� P

(a)

(b)

0 0.01 0.02 0.03 0.04 0.05
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

PSfrag repla
ements �H
� P

(a)

(b)

Figure 3.5: Null
line and phase plane plots for � = 8 � 10�6, with (a) Æ =1:5� 10�5 (limit 
y
le solution) and (b) Æ = 8� 10�6 (�xed point steady state).The remaining parameters as stated in Se
tion 3.3. The �H (red line) and �P(green line) null
lines are shown and the �H axis is the trivial �P null
line.
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tion 3.3) with Æ = 1:5 � 10�5. In this 
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Figure 3.7: Temporal variation in uns
aled (a) host, H, (b) parasite, P and (
)mean parasite burden, P=H, population densities for the given parameter set(see Se
tion 3.3) with Æ = 8 � 10�6. In this 
ase we observe de
ay to a stable,�xed point steady state. The initial 
onditions are H(0) = 955; P (0) = 5:8�107.



Chapter 3 363.6 The steady state solutionAt the steady state solution, ( �H�; �P �), d �H=dt = 0 = d �P=dt so that�b( �H� + �P �) + a �H�2
1 �P � + �H� = 0; (3.6)�P � � � �H�1 + �H� � 
2 � 2b �P ��H� � = 0; (3.7)where we write 
2 = (� + b + �). This predi
ts a trivial steady state solution(0; 0) and a non-trivial steady state solution whi
h satis�es� �H�1 + �H� � 
2 � 2b �P ��H� = 0: (3.8)By eliminating �H�2 from the simultaneous equations (3.6) and (3.7), we 
anderive the following expression for the host population density at the non-trivialsteady state �H� = �P � ��1 �P � � �2��3 + �4 �P � ; (3.9)where, �1 = b
1(�� 
2);�2 = 2b(a� b);�3 = 
2(a� b);�4 = 2b(a� b)� b(1 + 
1)(�� 
2):�P � is determined by substituting for �H� into the host rate equation at steadystate (3.6)(a� b) �P �2��1 �P � � �2�3 + �4 �P ��2 � b(1 + 
1) �P �2��1 �P � � �2�3 + �4 �P ��� b
1 �P �2 = 0: (3.10)Multiplying a
ross by (�3 + �4 �P �)2= �P �2, where �P �2 6= 0(a� b)(�1 �P � � �2)2 � b(1 + 
1)(�1 �P � � �2)(�3 + �4 �P �)� b
1(�3 + �4 �P �)2 = 0:
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ting together powers of �P � and rearranging gives the following analyti
expression �P � = ��B �p�2B � 4�A�C2�A ; (3.11)where, �A = (a� b)�21 � b(1 + 
1)�1�4 � b
1�24;�B = �2(a� b)�1�2 � b(1 + 
1)(�1�3 � �2�4)� 2b
1�3�4;�C = (a� b)�22 + b(1 + 
1)�2�3 � b
1�23:The steady state �P � value must be positive and so we are only interested in thepositive root. Substitution of �P � into (3.9) then gives the full, non-trivial, steadystate solution ( �H�; �P �). The uns
aled host and parasite steady state densities(H� = H0 �H�, P � = P0 �P �) in the � � Æ plane are depi
ted in Figure 3.8. For�xed �, as we in
rease Æ, the host and parasite steady state population densitiesboth de
rease. On the other hand, if we �x Æ and in
rease � the steady statehost population in
reases while the parasite steady state density de
reases. Æis a measure of the e�e
t of the parasites on the host fe
undity and we wouldindeed expe
t that �xing � and in
reasing Æ, would result in a de
reased hostpopulation.3.7 Linear stability analysisIn order to analyti
ally understand the �H � �P phase spa
e 
lose to the steadystate solutions ( �H�; �P �), it helps to approximate the non-linear system, in thisregion, by a linear one. That is, we perform linear stability analysis. We leth = �H � �H� and p = �P � �P � where �H and �P are taken to be near to the steadystate, ( �H�; �P �), and therefore h and p are small, that is, h; p << 1. Applyingthe Taylor series expansion about the point ( �H�; �P �), retaining only linear termsand noting that � �H=�t � f( �H; �P ) = 0 and � �P=�t � g( �H; �P ) = 0 at ( �H�; �P �),
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ements(a)(b)Figure 3.8: Plots illustrating the uns
aled non-trivial steady state populationdensities for (a) hosts, H� and (b) parasites, P � in the �� Æ plane. The param-eters are quanti�ed in Se
tion 3.3.
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an then des
ribe the behaviour of the transformed 
o-ordinates (h; p) aboutthe steady state by the linear system� h0p0 � = � A BC D �� hp � :where, A = �f� �H ( �H�; �P �); B = �f� �P ( �H�; �P �);C = �g� �H ( �H�; �P �); D = �g� �P ( �H�; �P �);so that, A = 2(a� b) �H� � b(1 + 
1) �P �(
1 �P � + �H�) ;B = �b( �H�(1 + 
1) + 2
1 �P �)(
1 �P � + �H�) ;C = � �P �(2 + �H�)(1 + �H�)2 � 
2 �P ��H� ;D = 2b(
1 �P � + �H�)� 2a �H�(
1 �P � + �H�) :The tra
e of the Ja
obian matrix, trJ = (A + D), is an indi
ator of a Hopfbifur
ation of the system. That is, a Hopf bifur
ation o

urs when there are
omplex eigenvalues and the tra
e 
hanges sign (i.e. the eigenvalues are purelyimaginary). The tra
e of our system is(A+D) = 2(a� b) �H� � b(1 + 
1) �P �(
1 �P � + �H�) + 2b(
1 �P � + �H�)� 2a �H�(
1 �P � + �H�) ; (3.12)= b(
1 � 1) �P �(
1 �P � + �H�) : (3.13)The quantities �H� and �P � are stri
tly positive as are the parameters b and 
1.Consequently, the sign of the tra
e will 
hange only a

ording to the sign of theterm (
1 � 1). In other words, the Hopf bifur
ation for the linear system in theregion of the steady state, lies along the line 
1 = 1 in the �� Æ phase plane, or



Chapter 3 40in terms of � and Æ, 
1 � 1 = 0;() Æb� = 1;so that the Hopf bifur
ation line is des
ribed by � = bÆ in the �� Æ plane. FortrJ( �H�; �P �) > 0, � < bÆ and limit 
y
le solutions, su
h as those in Figure 3.6(a)and (b) are observed; when the tra
e is less than zero, so that � > bÆ the systemde
ays to a stable �xed point solution as illustrated in Figure 3.6(
),(d). Figure3.9 shows a plot of the negative trJ( �H�; �P �) values (that is, solutions with astable �xed steady state in �H � �P densities); all positive tra
e values have beendenoted as white (that is, os
illations in �H � �P densities).3.8 The spatial modelIn the previous se
tion, we 
onsidered the 
hange in population densities withrespe
t to time only, e�e
tively assuming a homogeneous spatial distribution.However, �eld studies [47, 59, 62℄ have shown that the spatial distribution ofthese populations are in fa
t heterogeneous and so, if we want to understandbetter how they intera
t in the �eld then our model should a

ount for thesespatio-temporal variations. The initial motivation for this se
tion of work wasa study 
arried out by Townsend et al. [97℄ on the kineti
s of the host-parasiteme
hanism for the S
ottish mountain hare. We have sin
e extended this workand 
arried out a numeri
al analysis of the spatially extended system and ob-served PTWs for 
ertain parameter sets. We seek (in Chapter 4) to probe thisspatially extended model and derive some analyti
al results that 
an be used topredi
t the properties of the PTWs, but �rst we illustrate the PTWs asso
iatedwith this host-parasite system.For simpli
ity, we assume a spatial distribution in one dimension only sothat �H = �H(x; t) and �P = �P (x; t) and x 2 R. We assume that the hosts move
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Figure 3.9: Hopf bifur
ation in � � Æ phase spa
e. Below the Hopf bifur
ationline, � = bÆ, the tra
e values are all positive indi
ating a limit 
y
le solutionbelow this line, as in Figure 3.6. Above this line we would observe a stable�xed point solution su
h as that in Figure 3.6(
),(d). The parameterisation isdes
ribed in Se
tion 3.3.



Chapter 3 42through the spatial domain a

ording to Fi
kian 
ux, J �H = �DH� �H=�x, whereDH is the di�usion 
onstant for the hosts. The mean parasite burden, �P= �H, isnow a fun
tion of x as well as t. At any given spatial point in the domain theparasite 
ux is given by the host 
ux times the number of parasites per host,sin
e the parasite population lives in the host population. To illustrate, 
onsidera �xed point in the spatial domain where we 
an measure the rate at whi
h thehost population density 
hanges in one dire
tion or the other. Sin
e the parasiteslive in the host population then the rate at whi
h parasite population density
hanges is equal to the rate at whi
h the host population 
hanges times thenumber of parasites per host. The spatial gradient of the parasite 
ux term,�PJ �H= �H, then gives the �nal adve
tion term in (3.15). The governing equationsare � �H�t = �b( �H + �P ) + a �H2
1 �P + �H � �J �H�x ; (3.14)� �P�t = �P � � �H1 + �H � (�+ b + �)� 2b �P�H �� ��x � �PJ �H�H � : (3.15)This des
ribes a rea
tion adve
tion di�usion system. This system 
an be solvednumeri
ally using the method of lines to redu
e it to a 
oupled system of ordinarydi�erential equations (ODEs). A 
entral di�eren
e approximation is used forthe di�usion term in the hare equation and 
ux limiters for the adve
tion termin the parasite equation. The 
ux limiters are designed to ensure physi
allyrealisti
 solutions, in this 
ase, to ensure positivity of the population densities.Further dis
ussion on their 
onstru
tion and e�e
ts 
an be found in AppendixA along with full details of the numeri
al s
heme. No-
ux boundary 
onditionsare applied at ea
h end of the spatial domain and the resulting system is solvedusing a fourth order Runge-Kutta method. The initial spatial distributions forboth populations are des
ribed by�H(x; 0) = �P (x; 0) = A exp(��x); (3.16)



Chapter 3 43where A and � are positive 
onstants, whi
h we take to be 0:03 and 1, respe
-tively. Appli
ation of the parameter set detailed in Se
tion 3.3 generates atravelling wave front, followed by PTWs, where os
illations in hare and parasitedensities o

urred in both spa
e and time. These spatiotemporal os
illationsare illustrated in Figures 3.10 to 3.14. This is the �rst time that PTW solutionbehaviours have been observed in a host-parasite system; normally su
h math-emati
al solution forms are observed and analysed in predator-prey rea
tion-di�usion systems, where the movement of predators and prey are independentof ea
h other. As a qui
k, initial 
omparison, studying Figures 3.6 and 3.10we 
an 
ompare the results from the spatially homogeneous and heterogeneousmodels and note the e�e
t on the amplitude and temporal period of the os-
illations. In the ODE model, the host population os
illates between a densityvalue of approximately 625 to 1500 for the base parameter set used by Townsendet al. [97℄. In the spatial model, this amplitude is slightly redu
ed with mini-mum/maximum values of 700/1400. The temporal period is 4.5 years in both
ases and the mean parasite burden, P=H is of similar magnitude to the spa-tially homogeneous 
ase, that is O(104). The speed of the PTWs, illustrated inFigure 3.11, is 
al
ulated to be 1.2km/yr for this parti
ular parameter set andinitial and boundary 
onditions, and the waves travel in the positive x-dire
tion.When 
onsidering the governing system (3.14) and (3.15), it is important tonote that the alternative s
heme,� �H�t = �b( �H + �P ) + a �H2
1 �P + �H � �J �H�x ; (3.17)� �P�t = �P � � �H1 + �H � (�+ b+ �)� 2b �P�H � ; (3.18)using Fi
kian 
ux for the hosts and omitting the expli
it parasite 
ux term, 
anbe used to produ
e almost identi
al results. In this 
ase the di�usion of thehost population 
oupled with the rea
tion kineti
s and the assumption that theparasite population exists only in the host population, appears to be suÆ
ient to
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Figure 3.10: Temporal os
illations in population densities (a) H, (b) P and (
)P=H at a �xed point in spa
e (x = 30km). The di�usion 
oeÆ
ient, DH = 0:01,Æ = 1:5� 10�5 and all other parameters are as in Se
tion 3.3. The initial spatialdistribution of both H and P are des
ribed by A exp(��x), where A = 1146and � = 1.
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Figure 3.11: Numeri
al solutions of the system (3.14), (3.15) for Æ = 1:5x10�5and DH = 0:01. The periodi
 wave trains, for both host and parasite popula-tions, move in the positive x dire
tion. The solutions for �H and �P are plotted asfun
tions of spa
e x at su

essive times t, with the verti
al separation of solutionsproportional to the time interval. We 
onsider the system on the semi-in�nitedomain [0;1) with initial data of the form �H(x; 0) = �P (x; 0) = Aexp(��x).The parameter A a�e
ts the time 
ourse of the evolution, but has no e�e
t onthe ultimate behaviour; we take A = 1146=H0 and � = 1. The wave speed forthis parameter set with given initial and boundary 
onditions is 1.2km/yr.
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PSfrag repla
ements(a)(b)txFigure 3.12: Colour plot showing the variation in (a) s
aled host, �H, and (b)s
aled parasite, �P , population densities in the spatiotemporal plane. Theseare numeri
al solutions of the system (3.14) - (3.15) for Æ = 1:5 � 10�5 andDH = 0:01. The solutions for �H and �P are plotted in the spa
e-time domainwith the 
olour plot indi
ating population density levels at a given point of spa
eand time. We 
onsider the system on the semi-in�nite domain [0;1) with initialdata of the form �H(x; 0) = �P (x; 0) = A exp(��x). The parameter A a�e
ts thetime 
ourse of the evolution, but has no e�e
t on the ultimate behaviour; wetake A = 1146=H0 and � = 1. The wave speed is 1.2 km/yr and the remainingparameter values are detailed in Se
tion 3.3.
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PSfrag repla
ements(a)(b)txFigure 3.13: Colour plot showing the variation in (a) s
aled host, �H, and (b)s
aled parasite, �P , population densities in the spatiotemporal plane. Theseare numeri
al solutions of the system (3.17) - (3.18) for Æ = 1:5 � 10�5 andDH = 0:01. The solutions for �H and �P are plotted in the spa
e-time domainwith the 
olour plot indi
ating population density levels at a given point of spa
eand time. We 
onsider the system on the semi-in�nite domain [0;1) with initialdata of the form �H(x; 0) = �P (x; 0) = A exp(��x). The parameter A a�e
ts thetime 
ourse of the evolution, but has no e�e
t on the ultimate behaviour; wetake A = 1146=H0 and � = 1. The wave speed is 1.2 km/yr and the remainingparameter values are detailed in Se
tion 3.3.
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Figure 3.14: Spatial and temporal os
illations in s
aled population densities �Hand �P . Spatial os
illations are illustrated in (a) �H and (
) �P at the �xed timepoint t = 75yrs. Temporal os
illations in (b) �H and (d) �P at the �xed spatialpoint x = 30km are also shown. The parameter set and initial 
onditions are asdes
ribed in Figure 3.12.



Chapter 3 49model the spatial 
hange in host and parasite densities. This 
an be observed forour parti
ular parameter set by 
omparing Figures 3.12 and 3.13 whi
h illustratePTW solutions for (3.14) - (3.15) and (3.17) - (3.18), respe
tively. In both 
asesthe wave speed is the same and the only slight di�eren
e 
an be observed nearthe transition wavefront where the host population is moving into empty spa
e.In the former model, as the host moves into empty spa
e the parasite adve
tionterm ensures a non-zero parasite density as well. In the latter 
ase, as the hostmoves into empty spa
e, initially the parasite density is zero there be
ause therehas been no 
orresponding 
ux of parasites. But then the kineti
 terms 
ause theparasite density to qui
kly adjust to a non-zero level. These two models haveonly been 
ompared for this parti
ular parameter set so no general 
omment
an be made about their equivalen
e in di�erent regimes. This would be worthinvestigating in the future but is not explored further in this thesis.Having shown, numeri
ally, the presen
e of PTWs as a possible solutionform for this parti
ular host-parasite system, we will now try to obtain a generi
result to predi
t PTWs in two population 
y
li
 host parasite systems with asuper
riti
al Hopf bifur
ation in the rea
tion kineti
s.3.9 Dis
ussionIn this Chapter, we investigated the mountain hare-Tri
hostrongylus retortae-formis system model derived by Townsend et al. [96, 97℄. First we studied therea
tion kineti
s before going on to derive some numeri
al solutions to the spa-tially extended model and were able to illustrate, for the �rst time in a system ofthis type, PTWs. We derived analyti
al solutions for the homogeneous steadystate population levels and performed a linear stability analysis whi
h yieldedan equation des
ribing the Hopf bifur
ation in the phase plane of two parasiterelated parameters, � and Æ. The partial derivatives of the rea
tion kineti
sderived in this se
tion will be used again in Chapter 4 when we apply a new
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 result to this parti
ular host-parasite system.We introdu
ed the spatially heterogeneous mountain hare-parasite modeland obtained some numeri
al solutions illustrating the possibility of PTWs withthis system. We made a qui
k 
omparison of the amplitude and period of thetemporal os
illations in the temporal and spatial systems and found only a slightredu
tion in the amplitude of the temporal os
illation asso
iated with the spatialmodel, with the period remaining un
hanged. Also, the parasite burden was ofa similar magnitude in both systems. This suggests, therefore, that simplya

ounting for population dispersal in the model is not enough to produ
e PTWsolutions of the amplitude and period observed in the �eld for parameter setsthat give realisti
 parasite burdens.In the following Chapter, we derive a generi
 result, for the spatially het-erogeneous model, based on work done by Koppell and Howard [45℄, that gives
onditions on the parameter set des
ribing the asso
iated rea
tion kineti
 systemresulting in PTW solutions.



Chapter 4A generi
 host-parasite rea
tionadve
tion di�usion system
A generi
 host-parasite rea
tion adve
tion di�usion system 
an be modelled by�H�t = f(H;P )� ��x (JH) ; (4.1)�P�t = g(H;P )� ��x �PHJH� ; (4.2)where f and g des
ribe the rea
tion kineti
s of the host, H, and parasite, P ,system and the spatial derivatives relate to the dispersal e�e
ts of the host;The population densities, H = H(x; t) and P = P (x; t), now depend on theirspatiotemporal 
o-ordinates and we assume Fi
kian di�usion for the hosts, JH =�DH �H�x . Expanding the spatial derivatives we therefore have,�H�t = f(H;P ) +DH �2H�x2 ; (4.3)�P�t = g(H;P ) + DHH  �P�x �H�x + P �2H�x2 � PH ��H�x �2! : (4.4)We are interested in periodi
 plane wave solutions and therefore rewrite theabove system in terms of the travelling wave variable, z = t � x=s, where s isthe speed of the periodi
 plane wave. Noting the following relationships betweenthe two 
o-ordinate systems,��t = ��z ; ��x = 1s ��z ; �2�x2 = 1s2 �2�z2 ;51



Chapter 4 52the system of PDEs with respe
t to (x; t) 
an be redu
ed to a system of ODEswith respe
t to z as shown:dHdz = f(H;P ) + DHs2 d2Hdz2 ; (4.5)dPdz = g(H;P ) + DHs2H  dPdz dHdz + P d2Hdz2 � PH �dHdz �2! : (4.6)Rearranging (4.5) and assigning V = dHdz we obtain three �rst order ODEs,H 0 = V; (4.7)V 0 = s2DH (V � f(H;P )) ; (4.8)P 0 = s2Hs2H �DHV �g(H;P ) + PH (V � f(H;P ))� DHV 2Ps2H2 � : (4.9)where the 0 indi
ates di�erentiation with respe
t to z.4.1 Linearising the rea
tion adve
tion di�usionsystemWe want to investigate the behaviour of the rea
tion adve
tion di�usion systemin the region of the non-trivial steady state solution predi
ted by the rea
tionkineti
s, (H�; P �). The system 
o-ordinates are transformed relative to thesteady state values and linearised, assuming that the perturbations from thesteady state are small. The new system variables are h = H�H�, p = P�P � andv = V �V � where (H�; V �; P �) denotes the 
o-ordinates of the non-trivial steadystate solution. The relationship in this region between the new 
o-ordinates andtheir derivatives with respe
t to z is then approximated by the Ja
obian matrixas shown: 24 h0v0p0 35 = J 24 hvp 35



Chapter 4 53where we de�ne dHdz = l(H; V; P );dVdz = m(H; V; P );dPdz = n(H; V; P );and the Ja
obian matrix, J is de�ned byJ = 24 �l�H �l�V �l�P�m�H �m�V �m�P�n�H �n�V �n�P 35������(H�;V �;P �) : (4.10)Computing the entries for J and noting that at the non-trivial steady state,(H�; V �; P �), we have V � = �H�z (H�; V �; P �) = 0; (4.11)and the rea
tion kineti
s of the system, namely f(H�; P �) and g(H�; P �) go tozero so that �n�H (H�; P �) = �g�H (H�; P �)� P �H� �f�H (H�; P �) ; (4.12)�n�V (H�; P �) = P �H� ; (4.13)�n�P (H�; P �) = �g�P (H�; P �)� P �H� �f�P (H�; P �) : (4.14)The linearised system, about the steady state 
an, therefore, be restated as266664 h0v0p0
377775 = 266664 0 1 0� s2ADH s2DH � s2BDHC � A P �H� P �H� D � B P �H�

377775266664 hvp
377775 (4.15)where we assign �f�H (H�; P �) = A; �f�P (H�; P �) = B;�g�H (H�; P �) = C; �g�P (H�; P �) = D:



Chapter 4 54The eigenvalues � of the transformed 
o-ordinate system are found by solvingdet(J � I�) = 0, that is���������� �� 1 0� s2ADH s2DH � � � s2BDHC � A P �H� P �H� D �B P �H� � �
���������� = 0: (4.16)Multiplying and 
olle
ting 
oeÆ
ients of powers of �, we then obtain the eigen-value equation�3 � �2� s2DH +D �B P �H�� + �� s2DH (A+D)�� � s2DH (AD � BC)� = 0:(4.17)We are seeking PTW solutions to the original PDE system. These solutionsarise at the Hopf bifur
ation of the asso
iated ODE system in the travellingwave variable z, whi
h 
an be found by solving the eigenvalue equation (4.17).4.2 Conditions for PTWsComparing (4.17) with the general form for a 
ubi
 polynomiala3�3 + a2�2 + a1� + a0 = 0; (4.18)and noting that a Hopf bifur
ation is asso
iated with purely imaginary eigen-values, � = �pi say with p 6= 0, we fa
torise the 
ubi
 polynomial as follows,��2 + p2� (q� + r) = 0; where q; r 6= 0: (4.19)Comparing (4.18) and (4.19) then gives rise to the following relationsa3 = q; a2 = r; a1 = p2q; a0 = p2r: (4.20)Therefore, we have a0a3 = a1a2; (4.21)a1a3 = p2q2 > 0; (4.22)a0a2 = p2r2 > 0: (4.23)



Chapter 4 55where, in our 
ase, a0 = � s2DH (AD �BC);a1 = s2DH (A +D);a2 = �� s2DH +D �B P �H�� ;a3 = 1;and the eigenvalue equation at the Hopf bifur
ation then be
omes��2 + s2DH (A+D)��� � � s2DH +D �B P �H��� = 0; (4.24)with eigenvalues �1;2 = �iss(A+D)DH ; (4.25)�3 = s2DH +D � B P �H� : (4.26)Substituting for ai into equations (4.21) - (4.23) then gives three 
onditionson the minimum speed, sHopf , of the PTW, namely,Condition IThe 
ondition a0a3 = a1a2 implies that� s2DH (A +D)� s2DH +D � B P �H�� = � s2DH (AD � BC): (4.27)Rearranging givess2DH � s2DH (A+D) + �D2 +BC � P �H�B(A +D)�� = 0; (4.28)whi
h leads to the following solutions for s2: s2 = 0, 
orresponding to zerotemporal frequen
y for the periodi
 plane wave, and the non-trivial 
ase where,s2 = DH �P �H�B � �D2 +BCA+D �� : (4.29)



Chapter 4 56Condition IIThe inequality a1a3 > 0 implies thats2DH (A+D) > 0; (4.30)and sin
e s2DH > 0 we retrieve the 
ondition for instability in the linearisedrea
tion kineti
 system, namely A+D > 0; (4.31)that is, the eigenvalues of the Ja
obian matrix of the rea
tion kineti
s have apositive real part and the resultant steady state solution is unstable, with anasso
iated stable limit 
y
le.Condition IIIThe third 
ondition, a0a2 > 0, givess2DH (AD � BC)� s2DH +D �B �P ��H�� > 0:and sin
e s2DH > 0 is de�ned by (4.29) we have(AD �BC)��B �P ��H� � D2 +BCA+D �+D � B �P ��H�� > 0:Rearranging gives the inequality 
ondition(AD � BC)2 > 0: (4.32)To summarise, the three 
onditions on the system parameters for the presen
eof (non-trivial) PTW solutions are,s2 = DH �B P �H� � (D2 +BC)A+D � ; (4.33)A+D > 0; (4.34)(AD �BC)2 > 0: (4.35)From here on we shall use sHopf for s in (4.33) to denote the minimum speed of thePTW at the Hopf bifur
ation. In their paper, Koppell & Howard [45℄ assumed
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ondition that the linearised system 
ontained an unstable fo
us; this doesnot appear to be a ne
essary 
ondition required by our analysis. Condition IIIindi
ates that the determinant of the linear system, AD�BC may be negativeor positive, indi
ating an unstable node or fo
us.Following the line adopted by Koppell & Howard [45℄ for a spatially het-erogeneous 
y
li
, two population predator-prey system, we have here produ
edan analagous result for the spatially heterogeneous host-parasite system, whi
hgives 
onditions for the presen
e/absen
e of PTW solutions for a given set ofparameters. This result is generi
 and 
an be applied to any two populationhost-parasite rea
tion kineti
 system 
ontaining a super
riti
al Hopf bifur
a-tion. The Koppell & Howard [45℄ result applied to predator-prey systems wherethe populations ne
essarily move independently of ea
h other, but whose dis-persal 
oeÆ
ients are similar. With the host-parasite system the parasite liveson or in the host and therefore the dispersal 
oeÆ
ients for both populationsare exa
tly the same, that is, the parasite moves with the same velo
ity as thehost.Having produ
ed this new generi
 result for host-parasite systems we willtest it against two sample models to 
on�rm that we 
an predi
t and thennumeri
ally 
on�rm the existen
e of PTW solutions in these systems.4.3 Mountain hare, tri
hostronglyus retortae-formis systemA detailed study of the properties of the non-spatial version of this system was
arried out in Chapter 3. The full spatial version reads�H�t = f(H;P )� �JH�x ; (4.36)�P�t = g(H;P )� ��x �PJHH � ; (4.37)



Chapter 4 58where JH = �DH�H=�x and DH is the dispersion 
onstant for the host popu-lation, and f(H;P ) and g(H;P ) des
ribe the rea
tion kineti
s of the hare andparasite populations, respe
tively. For the numeri
al analysis des
ribed in thisse
tion, we use an alternative, but equivalent res
aling of the system equations,in order to make the numeri
al analysis more tra
tible; the res
aling of thissystem is des
ribed in Appendix B and the res
aled system is given by� �H�t = ��� �P � b �H + a �H2�Æ �P + �H � � �JH�x ; (4.38)� �P�t = �P � � �H1 + �H � �� ���� b+ 2�� �P�H �� ��x � �P �JH�H � ; (4.39)where H = H0 �H, P = P0 �P , � = ���, Æ = ��Æ and � = H0=P0 = 3:82 � 10�4.The s
aling fa
tor H0 is the transmission ineÆ
ien
y 
onstant as in (3.2) andis quanti�ed in Se
tion 3.3. The s
aling fa
tor P0 is 
hosen to ensure that thes
aled population densities lie in the range zero to one. In this parti
ular 
aseP0 = 1 � 108. The rea
tion kineti
s of the spatially homogeneous system aregiven by f( �H; �P ) = ��� �P � b �H + a �H2�Æ �P + �H ; (4.40)g( �H; �P ) = �P � � �H1 + �H � �� ���� b� 2�� �P�H � : (4.41)In order to apply the results from the analysis of the generi
 rea
tion di�usionsystem (Se
tion 4.2) we �rst need to 
ompute the required derivatives of therea
tion kineti
s. A = �f� �H ( �H; �P );= �b + a �H�2 + 2a�Æ �P � �H���Æ �P � + �H��2 ! ; (4.42)B = �f� �P ( �H; �P );= � �� + �Æa �H�2��Æ �P � + �H��2! ; (4.43)



Chapter 4 59C = �g� �H ( �H; �P );= �P � ��1 + �H��2 � 2�� �P ��H�2 ! ; (4.44)D = �g� �P ( �H; �P );= � �H�1 + �H� � (�+ b + ���)� 4�� �P ��H� : (4.45)We 
an insert these expressions for A;B;C;D into (4.29) and investigate nu-meri
ally how the minimum wave speed sHopf varies with di�erent ranges of theparameters � and Æ. The red line, 
al
ulated analyti
ally, in Figure 4.1 is theHopf bifur
ation line for the non-spatial system, namely, � = bÆ. The regionof the plot under this line is the phase spa
e for � < bÆ where there are limit
y
le solutions in the non-spatial kineti
s. The shading indi
ates the predi
tedminimum PTW speed 
al
ulated from (4.33) using (4.42) - (4.45). For in
reas-ing values of � (< bÆ), the greys
ale plot indi
ates that the minimum speed ofthe PTW in
reases and approa
hes in�nity as we approa
h the non-spatial Hopfbifur
ation line. This 
orresponds to the limiting 
ase of in�nite wave speed as-so
iated with spatially homogeneous os
illations [83℄. Stationary steady statesare predi
ted in the white region above the bifur
ation line (� > bÆ). We alsoplot the minimum speed of the periodi
 plane wave at the Hopf bifur
ation,sHopf , against the parameter � for 
onstant Æ (see Figure 4.2). As � approa
hesthe Hopf bifur
ation point, from the rea
tion kineti
s, the speed sHopf tends toin�nity (indi
ated by the verti
al dashed line).To investigate the one parameter family of PTW solutions further, we usethe bifur
ation analysis pa
kage AUTO [19℄. We 
hoose a set of parametervalues that result in PTW solutions a

ording to the above analysis. The �xedparameter values we 
hoose are given in Table 4.1. For the purpose of thisanalysis we also 
hoose several 
ombinations of the parameters � and Æ from theregion of spa
e for whi
h the model predi
ts PTWs. We then explore how the
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Figure 4.1: Minimum speed, sHopf , of the periodi
 plane wave, at the Hopfbifur
ation of the ODE system in z, in the �-Æ phase plane. The remainingparameters are �xed and the same as in Se
tion 3.3 with DH = 0:5. The shadingindi
ates the predi
ted minimum PTW speed 
al
ulated from (4.33) using (4.42)- (4.45). The red line indi
ates the Hopf bifur
ation line, � = bÆ in the �-Æ phaseplane. As we approa
h this line the minimum speed sHopf approa
hes in�nity.However, in order to illustrate this we 
hoose the �nite greys
ale range [0; 4℄.Parameter Valuea 1.8b 0.61� 100� 3:82� 10�4� 1DH 0.5Table 4.1: Fixed parameter values for AUTO [19℄ 
ontinuation analysis 
hosenfrom within the parameter ranges stated in Table 3.2 with the ex
eption of DHwhi
h, in the absen
e of any data, we take to be equal to 0.5.
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PSfrag repla
ementssHopf��Figure 4.2: The minimum speed of the PTW at the Hopf bifur
ation (of theODE system in spatial variable z), sHopf , versus � for �xed Æ = 0:2618. Theverti
al dashed line indi
ates the Hopf bifur
ation of the ODE in the rea
tionkineti
s.



Chapter 4 62amplitude and period of these waves vary as we approa
h the Hopf bifur
ationof the rea
tion kineti
s. These parameter values, their asso
iated steady statesolutions (H�; V �; P �) and the Hopf bifur
ation value of Æ for the given � value,i.e. ÆHopf are listed in Table 4.2.� Æ H� V � P � ÆHopf sHopf2 5 0.0237 0 0.0041 3.28 3.020.5 3 0.0206 0 0.0083 0.82 1.580.0209 0.2618 0.0188 0 0.1058 0.0343 1.19Table 4.2: Parameter sets for AUTO [19℄ 
ontinuation analysisWe 
hoose �rstly � = 2 and Æ = 5 and starting from the asso
iated steadystate solution and a small value for PTW speed, we in
rease s keeping all otherparameters �xed to tra
k the birth of limit 
y
les, whi
h o

urs at sHopf = 3:0235in this 
ase. Then starting from this speed and keeping � �xed we vary Æ towardsÆHopf of the non-spatial system and tra
k the speed s of the PTWs and theirperiod. An example of the results 
an be seen in Figure 4.3. This �gure displaysthe family of PTW solutions asso
iated with this parameter set.We then sele
t a parti
ular speed from this family of PTWs (in the exampleshown, we 
hoose s = 52:566) and with � and s �xed we alter Æ and tra
k thee�e
t on the amplitude and period of the asso
iated wave as Æ approa
hes ÆHopfof the non-spatial system. We 
arried out this pro
edure for two other values of� (indi
ated in Table 4.2) and all of the results are depi
ted in Figure 4.4. This�gure illustrates that the wave amplitude de
reases to zero as Æ approa
hes theHopf bifur
ation value for the rea
tion kineti
s, ÆHopf , and the period tends tosome limiting value whi
h is di
tated by the speed whi
h gives rise to the onsetof the os
illatory solution, sHopf . Importantly, this indi
ates that the os
illationsdie out in the spatially extended system at the same parameter values as in thenon-spatial system. Therefore, 
y
les are still predi
ted in the same parts ofparameter spa
e and, therefore, only predi
ted using parameters whi
h produ
e
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iated Hopf bifur
ation value ÆHopf of the non-spatial system. In ea
h
ase, as Æ tends to ÆHopf , the amplitude of the PTW goes to zero and the periodtends to some limiting value.
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 parasite burdens as found initially by Townsend et al. in [97℄. Thus,the key missing fa
tor in this host-parasite system appears not to be spatialvariations in host-parasite densities, although, lands
ape heterogeneity or non-Fi
kian di�usion terms may yield di�erent results.Considering the PTWs for the parameter set and initial/boundary 
onditionsas illustrated in Figures 3.11 and 3.12 we 
an 
al
ulate the predi
ted minimumwave speed for the one parameter family of PTW solutions. The sHopf given by(4.29) is 0.78km/yr. It is important to note that this minimum speed for thefamily of PTW solutions for this parameter set does not take into a

ount theinitial and boundary 
onditions and it is therefore not surprising that the wavespeed measured in Figure 3.11 is 1.2km/yr, that is, it is greater than sHopf asexpe
ted.4.4 Red grouse, tri
hostrongylus tenuis systemThe mountain hare-parasite system, des
ribed and studied in the previous se
-tion, predi
ts PTW solutions for the theoreti
al rea
tion adve
tion di�usionmodel. Although spatiotemporal os
illations are observed in the �eld data,there is no 
on
rete eviden
e to suggest that the parasites are driving the os
il-lations in this parti
ular system. In the Red grouse system, however, there iseviden
e that points to the parasites as drivers of the spatiotemporal os
illationsobserved [39℄.The red grouse population has been extensively studied for many years dueto its status as a game bird on S
ottish estates and there is a plethora of dataregarding population densities of this spe
ies and its asso
iated parasite, Tri-
hostrongylus tenuis, gathered from many land managed estates in S
otland.This spatio-temporal �eld data demonstrates asyn
hronous 
y
les in spa
e forboth of these populations [59℄. For this reason, we want to apply our generi
result to this well established system to see if the model predi
ts PTW solutions
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e
t those observed in the �eld. In addition, non-spatial mathemati
almodels of this system do indeed predi
t limit 
y
le solutions about an unstablesteady state in the asso
iated rea
tion-kineti
 equations.A number of grouse spe
ies, in
luding Lagopus lagopus s
oti
us are knownto exhibit 
y
li
 
u
tuations in population densities where fa
tors su
h as pre-dation, food, 
over and shooting mortality are not thought to be driving these
y
les [59℄. Dobson and Hudson [39℄ proposed three possible parasite indu
ed
omponents 
ausing this behaviour, the parasite being Tri
hostrongylus tenuis.They hypothesised that `redu
ed host breeding produ
tion, a low degree of ag-gregation of parasites with the host population and developmental time delaysdue to larval arrestment' were the 
ausative fa
tors for the population 
y
lesobserved in the grouse population [39℄. A se
ond theoreti
al paper by these au-thors [18℄ deals with the developement of a series of non-spatial rea
tion kineti
models to illustrate and predi
t this 
y
li
 behaviour of the red grouse system.Similarly to the life 
y
le of Tri
hostrongylus retortaeformis in the mountainhare, the parasite, Tri
hostrongylus tenuis, inhabits the large 
ae
um of the redgrouse where it reprodu
es; eggs are then passed in the red grouse fae
es. Underthe right 
onditions, the eggs hat
h and the larvae migrate to the growing tipsof heather whi
h 
onstitute the main food plant for foraging red grouse. In thisway, the larvae enter the 
ae
um of the red grouse and the 
y
le 
ontinues. Theinfe
tive larvae that migrate from the passed fae
es to the tips of heather areknown as the free living parasite stage.4.4.1 Rea
tion kineti
sA number of theoreti
al models, with di�erent properties, were de�ned and ex-plored by Dobson and Hudson [18℄. We 
hoose their third model whi
h in
ludesa density dependent term, gH, in the host rate equation, to model the territorialbehaviour of the red grouse. This parti
ular model was 
hosen as this extra term



Chapter 4 67is thought to redu
e the propensity for unstable 
y
les and limit the size of thehost population [18℄. The model has three rate equations for the red grouse hostpopulation, H, adult parasite population, P , and the free living parasite, W :dHdt = (a� b� gH)H � (� + Æ)P; (4.46)dWdt = �P � 
W � �WH; (4.47)dPdt = �WH � (�+ b + �)P � �P 2H �k + 1k � ; (4.48)and the parameter set used by Dobson and Hudson [18℄ is des
ribed in Table 4.3.The introdu
tion of a separate rate equation for the free living parasite,W , is oneapproa
h used to model the e�e
ts of a developmental time delay in the e
ologi
alsystem. The time delay o

urs between the produ
tion of the transmission stage(i.e. free living larvae) and its readiness for reinfe
tion [56℄. Here, the third rateequation in W follows the dynami
s of the free living infe
tive stages. The rateof produ
tion of infe
tives is given by �P . A proportion of these, �WH, willbe taken up into the host, where � determines the rate at whi
h the host pi
ksup infe
tive stages and is assumed to be proportional to the density of bothhosts and free living stages; the remainder, 
W represents the loss of infe
tivestages due to any pro
ess that prevents host reinfe
tion, in
luding death of freelarvae due to harsh environmental 
onditions, for example. The adult parasitepopulation density, P , is the population residing in the 
ae
um of the red grouse.The free living parasite stage, W , are the larvae that have hat
hed and migratedfrom the passed fae
es to the tips of heather. Under optimal 
onditions, thelife span of the free living larval stage, W , is roughly seven days [39℄ whi
h isrelatively short 
ompared to the life span of the host population. Therefore we
an apply the following quasi steady state assumption forW , namely dW=dt = 0,thereby redu
ing the three equation system to two equations and enabling usto apply our generi
 two-variable result of Se
tion 4.2. Thus, (4.47), gives the



Chapter 4 68Symbol Parameter Unit Valuea Intrinsi
 fe
undity of adult grouse yr�1 1.8Æ Parasite redu
ed indu
tion in grouse fe
undity P�1yr�1 0.000388b Intrinsi
 mortality of adult grouse yr�1 1.05� Parasite-indu
ed grouse mortality P�1yr�1 0.000300� Parasite fe
undity yr�1 11
 Mortality of free living parasite stages yr�1 13� Transmission rate H�1yr�1 0.1� Adult parasite mortality yr�1 1.0k Degree of overdispersion 1.0g Density dependent 
oeÆ
ient 0.002Table 4.3: Parameter values 
hosed from ranges quoted by Dobson and Hudsonin Table 2 of their paper [18℄, where H denotes host and P denotes parasite.We have 
hosen Æ in order that PTW solutions 
an be illustrated. The densitydependent 
oeÆ
ient, g, was based on information in Hudson et al. [38℄.following expression for W in terms of H and P�P � 
W � �WH = 0;)W = �P
 + �H : (4.49)Substituting for W into (4.48) then yields the following two equation system,dHdt = (a� b)H � (� + Æ)P � gH2; (4.50)dPdt = P � �HH0 +H � (�+ b + �)� �PH �k + 1k �� ; (4.51)where we set H0 = 
=�. We now (for 
onvenien
e) res
ale the system a

ordingto H = H0 �H, P = P0 �P , where P0 = (a� b)H0=(� + Æ) so thatd �Hdt = ( �H � �P )� 
4 �H2; (4.52)d �Pdt = �P � � �H1 + �H � 
2 � 
3 �P�H � ; (4.53)where we write 
2 = (�+ b+ �), 
3 = �(a� b)k0=(�+ Æ), 
4 = g
=�(a� b) andk0 = (k + 1)=k.



Chapter 4 694.4.1.1 Global behaviourWe now perform a null
line analysis to get a qualitative understanding of theglobal behaviour of this non-spatial system. The results of our null
line analysisare shown in Figure 4.5 and indi
ate the possibility of limit 
y
le solutions whi
hare 
on�rmed by a numeri
al parameter 
ontinuation performed in AUTO [19℄(shown in Figure 4.6). In Figure 4.5, the steady state solutions, whi
h aredetermined in the following se
tion, are des
ibed by( �H�1 ; �P �1 ) = (0; 0); ( �H�2 ; �P �2 ) = (
2=(�� 
2); 0);( �H�3 ; �P �3 ) = ( �H�3 ; �H�3 (1� 
4 �H�3)); ( �H�4 ; �P �4 ) = (1=
4; 0):where ( �H�3 ; �P �) is the positive solution given by (4.55) and (4.60).
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y
le solutions. The parameters 
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PSfrag repla
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PSfrag repla
ements�H�PÆFigure 4.6: AUTO [19℄ plot of s
aled host population density, �H, and s
aledparasite population density, �P versus Æ. � = 3� 10�4 and all other parametersare as des
ribed in Table 4.3. The red line before the Hopf bifur
ation indi
atesthat the �xed point steady state solution is stable. Beyond the Hopf bifur
ationthe steady state solution is unstable, indi
ated by the bla
k line, and AUTO [19℄plots the upper and lower limits of the limit 
y
le solution. For the upperplot, the s
aling fa
tor is H0 so that, for example, with Æ = 3:9 � 10�4, thehost population density os
illates between approximate maximum and minimumvalues of 83 and 17, respe
tively. For the lower plot, the s
aling fa
tor is P0 sothat, for example, with Æ = 3:9 � 10�4, the host population density os
illatesbetween approximate maximum and minimum values of 14� 104 and 9:5� 104,respe
tively.



Chapter 4 714.4.1.2 Steady state solutionsThe steady state solutions are determined by setting the rate equations equalto zero, d �Hdt ����( �H�; �P �) = d �Pdt ����( �H�; �P �) = 0;so that, from (4.52) ( �H� � �P �)� 
4 �H�2 = 0; (4.54)so that rearranging for �P � we have�P � = �H� �1� 
4 �H�� : (4.55)Firstly, this pla
es a restri
tion on �H�, to ensure positivity, su
h that,1� 
4H� � 0 <=> �H� < �(a� b)g
 ; (4.56)sin
e for this system (a� b) > 0 and the remaining parameters are assumed tobe positive. Now, from (4.53), we get the trivial steady state solution, �P � = 0,and the non-trivial steady state solution given by� �H�1 + �H� � 
2 � 
3 �P ��H� = 0: (4.57)Substitution of �P � from (4.55) into (4.57) then gives,� �H�1 + �H� � 
2 � 
3 �1� 
4 �H�� = 0: (4.58)After rearranging we then get a quadrati
 in �H:�A �H�2 + �B �H� + �C = 0; (4.59)where we de�ne,�A = 
3
4; �B = (�� 
2)� 
3(1� 
4); �C = �(
2 + 
3):



Chapter 4 72Grouped parameter FormulaH0 
=�P0 
(a� b)=�(� + Æ)k0 (k + 1)=k
1 bÆ=�
2 �+ b + �
3 �k0(a� b)=(� + Æ)
4 g
=�(a� b)Table 4.4: De�nitions of grouped parameters used in the analysis.A full list of grouped parameters are given in Table 4.4. The steady state hostpopulation solutions are, therefore, simply�H� = ��B �p�2B � 4�A�C2�A : (4.60)The s
aled parasite steady state density, �P �, is then obtained by substitutingfor �H� in (4.55). We then 
hoose the steady state solution that is positive forboth �H� and �P �.4.4.2 Spatial extension of the red grouse systemThe generi
 form of the spatial governing equations,� �H�t = f( �H; �P ) +DH �2H�x2 ; (4.61)� �P�t = g( �H; �P ) +DH ��x �PH �H�x � ; (4.62)is the same as the mountain hare-parasite model, in Se
tion 4.3 but the rea
tionkineti
s for the grouse-parasite model are di�erent, so that, nowf( �H; �P ) = ( �H � �P )� 
4 �H2; (4.63)g( �H; �P ) = �P � � �H1 + �H � 
2 � 
3 �P�H � : (4.64)Conversion from the (x; t) system to the wave variable, z = t � x=s, meansthat the results from Se
tion 4.2, for the generi
 spatial model, 
an be applied
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y
le solutions of the ODE system des
ribed by (4.50)-(4.51)showing how the host, H, and parasite, P , population densities vary with time,as well as the mean (per host) parasite burden P=H. The host populationos
illates between minimum and maximum densities of approximately 20 and80, respe
tively. Parameter values for this plot are listed in Table 4.3.
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tly. The entries for the Ja
obian matrix are given byA = �f� �H j( �H�; �P �) = 1� 2
4 �H�; (4.65)B = �f� �P j( �H�; �P �) = �1; (4.66)C = �g� �H j( �H�; �P �) = �1� 
4 �H�� � � �H�(1 + �H�)2 + 
3 �1� 
4 �H��� ; (4.67)D = �g� �P j( �H�; �P �) = �
3 �1� 
4 �H�� : (4.68)Applying the three 
onditions, (4.33)-(4.35) presented in Se
tion 4.2 to the abovesystem, and substituting for A;B;C;D; above and the base set parameter valuesadopted by Dobson and Hudson [18℄ (see Table 4.3), we have,Condition I:s2Hopf = (1� 
4 �H�)DH0�� � �H�(1+ �H�)2 + 
3(1� 
4 �H�)�� 
23(1� 
4 �H�)(1� 
3) + 
4(
3 � 2) � 11A ;= 11:40;so that taking the square root gives a minimum PTW wave speed of sHopf =3:38km/yr. Sin
e we have 
hosen a parameter set that produ
es a limit 
y
lesolution in the rea
tion kineti
s (see Figure 4.8), the se
ond, (4.34), and third,(4.35), 
onditions are also satis�ed.Although this parameter set supports the PTWs with sHopf = 3:38km/yr,we were not able to illustrate them numeri
ally. This is most likely due to thefa
t that this parameter set is 
lose to the Hopf bifur
ation in the ODE systemand the resultant PTWs are ne
essarily of small amplitude. Choosing a value ofÆ = 8�10�4, that is, further away from the Hopf bifur
ation, results in PTWs ofhigher amplitude whi
h we are able to illustrate numeri
ally in Figures 4.9 and4.10. In this 
ase Condition I (4.33) gives sHopf = 0:40km/yr with Condition IIand III also satis�ed.Figures 4.9 and 4.10 illustrate a travelling wave front of hosts and parasites,from left to right, whi
h after a period of time is followed by a regular spatiotem-
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illation over the spatial domain. The wave speed s is 
al
ulated to be0.8km/yr whi
h is greater than the minimum wave speed, sHopf predi
ted byCondition I. This is to be expe
ted sin
e Condition I predi
ts only the minimumwave speed possible for the family of PTWs generated by a given parameter set.It is the initial and/or boundary 
onditions that will determine whi
h parti
u-lar `member' of this family will be 
hosen as a solution. Having des
ribed andillustrated a PTW solution for this system we now dis
uss wave stability. Forany given parameter set, generating a one parameter family of PTW solutions,not all solutions will be stable. Unstable waves 
annot be a long term solutionand numeri
al simulations of unstable PTWs indi
ate irregular spatio-temporalos
illations as the long term behaviour [83℄. Behind the regular spatiotemporalos
illations illustrated in Figure 4.9 instabilities gradually grow and overwhelmthese waves leading to irregular spatiotemporal os
illations. Sherratt et al. [83℄have shown that in some 
ases the instability of the predi
ted wave is su
h thatthey are never seen. This may explain why we were not able to illustrate PTWsfor the wave speed solution sHopf = 3:38km/yr des
ribed above.In this se
tion we have taken a parameter set for this system whi
h is shownto produ
e a limit 
y
le solution in the rea
tion kineti
s (i.e.those generatingthe temporal os
illations shown in Figure 4.8) and applied the generi
 PTW
onditions previously des
ribed, whi
h predi
t the presen
e and properties ofthe PTW solution asso
iated with the spatially extended system.4.5 Dis
ussionWe have used a result derived by Koppell and Howard [45℄ for a two population,
y
li
 system with a super
riti
al Hopf bifur
ation in the rea
tion kineti
s. Kop-pell and Howard derived their result for a spatially extended generi
 predator- prey rea
tion kineti
 system where Fi
kian di�usion is used to des
ribe theindependent population dispersal of both spe
ies. A 
ondition of their result
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Figure 4.9: The solutions H and P plotted as a fun
tion of spa
e x at su

essivetimes t, from t = 117yrs to t = 125yrs, for the generi
 governing system (4.61) -(4.62) with rea
tion kineti
s des
ribed by (4.63)-(4.64). The verti
al separationof solutions proportional to the time interval. The parameter values are listedin Table 4.3 with the ex
eption of Æ = 8 � 10�4 and DH = 0:03. The initial
onditions are given by H(0) = 0:78H0 exp(��x), P (0) = 0:28P0 exp(��x),where � = 1, and the grouped parametersH0; P0 are des
ribed in Table 4.4. Zero
ux boundary 
onditions at ea
h boundary are imposed for both populations.The host population density os
illates between a minimum of approximately 20and maximum of approximately 80 as 
an be seen in Figure 4.10.
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ementsHosts, HFigure 4.10: Colour plot illustrating the peaks and troughs of (a) the hostpopulation density, H, and (b) the parasite population density, P , a
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e-time plane. The generating system and parameterisation, boundary andinitial 
onditions are as des
ribed for Figure 4.9.



Chapter 4 79was that the di�usion 
oeÆ
ients for ea
h population had to be similar. Ouranalagous result pertains to a 
y
li
 host-parasite system with a super
riti
alHopf bifur
ation in the rea
tion kineti
s and assumes that the parasite popula-tion lives on or in the host population and travels with the same host velo
ity.Therefore, the spatially extended system is des
ribed by a single di�usion 
o-eÆ
ient. We have derived three equivalent 
onditions on the rea
tion kineti
sof the asso
iated temporal system that are predi
tors of PTWs in the spatiallyextended system. This is the �rst time that su
h a result has been proposed fora host-parasite system.We went on to test this new result on two spe
i�
 host-parasite systemsthat are of parti
ular interest. The �rst is the mountain hare-Tri
hostrongylusretortaeformis system and the se
ond is the red grouse-Tri
hostrongylus tenuissystem. Cy
li
al os
illations in host/parasite numbers in both systems havebeen reported in the �eld [43℄. Townsend et al. [97℄ showed that a rea
tionkineti
 model for the mountain hare-parasite system 
an predi
t limit 
y
lesolutions. However, the parameter set used to generate these solutions resultedin unrealisti
 parasite burdens and it was not possible therefore to 
on
ludethat it was the parasites that were indu
ing su
h 
y
ling in the mountain harepopulation. We investigated the e�e
t of spatially augmenting this system onthe os
illatory behaviour observed and sought to as
ertain whether or not thespatially heterogeneous system resulted in os
illations for more realisti
 parasiteburdens or for a wider range of system parameters. Comparison of Figures 3.9and 4.1 shows that the emergen
e of PTWs with a �nite minimum speed, sHopf ,o

ur only in the � � Æ plane bounded by the line � = bÆ. This 
oin
idesexa
tly with the limit 
y
le solutions observed in the rea
tion kineti
s whi
hare also 
ontained by the same Hopf bifur
ation line in the � � Æ plane (seeFigure 3.9). The 
ontinuation analysis performed using AUTO [19℄ in Se
tion4.3 
on�rms this result and Figure 4.4 shows that the amplitude of the PTW



Chapter 4 80tends to zero as the �� Æ parameter set approa
h their Hopf bifur
ation values.We 
on
lude, therefore, that the spatial augmentation, that we have 
onsidered,of the mountain hare-parasite system does not alter the parameter set displayingos
illatory behaviour.The red grouse-Tri
hostrongylus tenuis system has been the subje
t of exten-sive study over the years given its position as Britain's favourite game bird [98℄.Field data pertaining to this spe
ies is mu
h more proli�
 than that of the moun-tain hare due to its 
ommer
ial importan
e and a number of theoreti
al studieshave shown that the red grouse-parasite rea
tion kineti
s are responsible for theos
illations observed in the �eld [18℄. To date though, no spatial extension ofthis temporal model has been proposed or investigated. The models suggestedby Dobson and Hudson [18℄ are three population models des
ribing the rea
tionkineti
s of the host, the adult parasite and the parasite larvae. We make a quasisteady state assumption for the parasite larvae thus redu
ing the system to atwo population model and then apply our spatial extension and generi
 result.Numeri
al analysis of the spatially extended simpli�ed two population systempredi
ts PTWs for the parameter sets used in [18℄. This is the �rst time thata spatial system has been proposed for the red grouse-parasite system and the�rst time PTWs have been predi
ted as solutions to the system. We were thenable to take the generi
 result derived via the Koppell and Howard [45℄ analysisand use it to test for PTW solutions for this parameter set.We illustrated PTW solutions for both the mountain hare and red grousesystems. The mountain hare system exhibited a wave speed of 1.2km/yr andthe red grouse system a wave speed of 0.8km/yr. These are not unrealisti
 val-ues given that the range of wave speeds observed empiri
ally in other dynami
systems varies greatly. For example, Lambin et al. [47℄ reported a wave speedof 19km/yr in the �eld vole population in Kielder Forest. Re
ent studies onthe dynami
s of lar
h budmoth populations show that these 
y
les organise into



Chapter 4 81travelling waves with speeds of approximately 250km/yr [83℄. At the slower endof the s
ale Moss et al. reveal travelling waves in red grouse population abun-dan
e, in S
otland, moving at speeds of 2-3km/yr. The minimum possible wavespeeds of the wave family predi
ted by our mathemati
al models, sHopf , dependon the parameterisation of the system; the wave speeds of the parti
ular numer-i
al solutions illustrated are di
tated by the initial and boundary 
onditions andwe 
annot predi
t them analyti
ally for these systems. Currently there are nopublished results on PTW wave speeds measured in the �eld for the S
ottishmountain hare, however, the results produ
ed here give some indi
ation of thepotential wave speeds that may be observed and 
ould be used to dire
t thestru
ture and s
ope of future �eld studies on the S
ottish mountain hare.



Chapter 5Con
lusions and Further Work
5.1 Con
lusionsOne of the main aims of this work was to investigate the spatially heterogeneousmountain hare-Tri
hostrongylus retortaeformis system to see if this extensionof the temporal rea
tion kineti
 model resulted in os
illatory behaviour for awider parameter phase spa
e and more realisti
 parasite burdens than the ki-neti
 model alone. However, the results of our analysis show that the os
illatorybehaviour is only exhibited where the temporal kineti
s 
ontain limit 
y
le so-lutions. The amplitude of the temporal os
illations is only slightly lower in thespatial 
ase and the period remains the same.A result was derived that is appli
able to general two population host-parasite rea
tion adve
tion di�usion systems. This result is analagous to theKoppell and Howard [45℄ result for predator-prey systems and pertains to thespatial augmentation of the rea
tion kineti
 model, where a di�usion term mod-els host dispersal in the environment and parasite movement is governed by anadve
tion term. The new result predi
ts the presen
e of PTW solutions in thespatial model given a parti
ular parameterisation of the rea
tion kineti
s. IfPTWs are possible, the 
al
ulated value, sHopf , gives the minimum speed possi-ble for an emerging PTW.A se
ond host-parasite system of interest was the red grouse-Tri
hostrongylus82



Chapter 5 83tenuis system. A three population model proposed by [18℄ was redu
ed to a twopopulation model via a quasi steady state assumption, and di�usion and adve
-tion terms were added for the host and parasite populations, respe
tively. Ourgeneri
 result was then applied to a parti
ular parameterisation of the systemand a �nite minimum wave speed for emerging PTWs was predi
ted. PTWswere plotted using this same parameterisation. This is the �rst time PTWshave been illustrated in a theoreti
al model of the red grouse-Tri
hostrongylustenuis system.5.2 Further WorkWe propose the following avenues for further investigation. For the mountainhare-parasite system it may be worth modelling the free larvae as a separatepopulation. In Chapters 3 and 4 we made a quasi steady state assumptionfor the free living larvae stage, whi
h is valid under favourable environmen-tal 
onditions. However, larvae development may be retarded under harsherenvironmental 
onditions, for example, and the time delay for parasite develop-ment is no longer short in 
omparison with 
hanges in host population density
hanges. In
lusion of a free living parasite population in the mountain hare-Tri
hostrongylus retortaeformis system is analagous to the three population redgrouse-parasite models proposed by [18℄. In both the spatial mountain hareand red grouse models numeri
al analysis 
ould be performed in order to �ndparameterisations yielding PTW solutions. It may be possible to extend the re-sult obtained for the general two population 
y
li
 rea
tion adve
tion di�usionmodel to a three population system. This would provide a more realisti
 modelthan the two population model derived by assuming a quasi steady state for theparasite larvae.Another area of interest for the mountain hare model, originally developedby Townsend et al. [97℄, is the parameter values proposed for the system. They



Chapter 5 84suggested that some of the parameter values 
hosen were based on small samplesizes or indire
t data sour
es [97℄. It would be useful if more studies 
ould be
arried out to obtain more 
on�den
e in the kineti
 parameters.Seasonal and 
limati
 
hanges have also been shown to be driving me
ha-nisms for spatiotemporal os
illations [83℄ via temporal os
illations in parametersasso
iated with the system. For example, in the mountain hare system, Neweyet al. [63℄ demonstrated in their empiri
al data that the degree of aggregationof the parasite population in the host population, des
ribed by the parameter k,varied from month to month. A model that in
orporated this form of seasonalvariation in the parameter k would be of interest.Although we have illustrated numeri
al PTW solutions for two host-parasiterea
tion adve
tion di�usion models we have said nothing about the stability ofthese solutions. It is worth striving to obtain an analyti
 expression to des
ribethe stability of emerging PTW solutions as well as studying the e�e
t of theboundary and initial 
onditions on the PTW speed observed.



Chapter 6Introdu
tion: Fun
tionallygraded polymer foams
6.1 Ba
kground and motivationAn empiri
al method developed by Torres San
hez et al. [93℄ for designing bones
a�olds uses a
ousti
 irradiation of a rea
ting polyurethane foam to tailor theporosity pro�le within the �nal 
ured sample. The aim of this se
tion of thethesis is to present the �rst attempt at modelling mathemati
ally some of theme
hanisms involved in this 
omplex rea
tion. In Chapter 7 we look at the e�e
tof inertia on the growth of a single bubble within an Oldroyd B 
uid. This e�e
twould be of interest if 
onsidering mass transfer of gas into the bubble, from thesurrounding liquid, by re
ti�ed di�usion [13℄. In Chapter 8 we are interested inthe dire
t e�e
t of the a
ousti
 pressure amplitude of the irradiating standingwave on the bubble growth dynami
s of a single bubble. We then 
onsider theindire
t e�e
t of the a
ousti
 pressure amplitude on the lo
al rea
tion rate withinthe sample and the bubble distribution pro�les observed within a multibubbledistribution a
ross the sample. The aim is to 
ompare the results from themathemati
al model with the experimental observations of Torres San
hez etal. [93℄ that as the pressure amplitude in
reases a
ross the sample domain, theporosity in
reases, that is the bubble size in
reases.85



Chapter 6 866.1.1 Tissue EngineeringGenerally tissue engineering involves the 
ombination of living 
ells and a s
af-fold or support stru
ture [29℄. Progenitor 
ells are seeded onto the s
a�old whi
hthen slowly degrades as the tissue stru
ture grows [12℄. This te
hnique 
an beused to repla
e portions of, or whole tissues, for example, bone, blood vessels,bladder et
 [29,40,55℄. In this parti
ular 
ase we are interested in the produ
tionand stru
ture of bone s
a�olds whi
h will ultimately be used to repla
e bonetissue. Bone is a natural stru
ture exhibiting a fun
tionally graded porosity,being fairly dense on the periphery and more porous at its 
entre [8℄. This het-erogeneous porosity is one of the fa
tors giving this stru
ture its strength andfun
tionality, and in the area of tissue engineering it is a feature we would like tomimi
 [93℄. The best grafts and bone substitutes are thought to be those withbiome
hani
al and biologi
al properties most 
losely resembling the non-uniformgraded porosity distribution observed in natural bone [8℄. Due to ongoing s
i-enti�
 advan
es it has been possible to fabri
ate tissues in the laboratory by
ombining the use of engineered s
a�olds and stem 
ells with one of the aimsof tissue engineering being the in
orporation of added fun
tionality and biome-
hani
al stability into these laboratory grown tissues in order to improve thesu

ess rate for transplantation [29℄.To a
hieve the goal of tissue re
onstru
tion, s
a�olds must meet some spe
i�
requirements. There needs to be a balan
e between larger and smaller pores inthe s
a�old due to the nature of the roles played by di�erent pore sizes. Largerpores promote better 
ow transportation of nutrients and metaboli
 waste whilesmaller pores provide suÆ
ient surfa
e area for 
ell atta
hment and prolifera-tion [12℄. Biodegradability is often an essential fa
tor sin
e s
a�olds shouldpreferably be absorbed by the surrounding tissues without the ne
essity of asurgi
al removal [29℄.A number of di�erent approa
hes to the design and manufa
ture of bone
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a�olds have been reported [12℄ with some authors using rapid prototyping (RP)to produ
e novel s
a�olds with 
ontrollable porosity and 
hannel size that 
an bea
hieved by varying pro
essing parameters [105℄. Tai et al. [90℄ studied the e�e
tof polymer 
hemi
al 
omposition, mole
ular weight and pro
essing parameters(in
luding temperature and pressure) on the �nal pore size and stru
ture anddemonstrated that the pore size and stru
ture of the super
riti
al s
a�olds 
anbe tailored by 
areful 
ontrol of pro
essing 
onditions.The method employed by Torres-San
hez et al. [93℄ that we seek to modelinvolves another empiri
al approa
h but this time an a
ousti
 standing wave isused to irradiate a sample of polymerising polyurethane foam with the aim oftailoring the porosity pro�le of the �nal sample to a parti
ular porosity spe
i-�
ation. Torres-San
hez et al. [93℄ demonstrated experimentally a relationshipbetween the pressure amplitude of the irradiating sound wave and the porosityvalue at a given position in the sample. One of the aims of this thesis is to pro-vide the �rst stages of a mathemati
al model of this experiment so that in thefuture s
a�olds may be produ
ed with stri
tly de�ned and 
ontrolled porositypro�les.6.1.2 Polymer foamsA polymeri
 foam is a parti
ular example of a vis
oelasti
, heterogeneous ma-terial and su
h materials have been used widely in a number of �elds in
ludingbiomaterials, tissue engineering and stru
tural me
hani
s [93℄. The polymerfoam is 
omposed of at least two phases, one solid plus voids whose size dis-tribution 
an be varied [93℄. They possess a number of properties that makethem parti
ularly suited to the �eld of tissue engineering in
luding their lowdensity, 
hemi
al inertness, high wear resistan
e, biodegradability and thermaland a
ousti
 insulation.Similar to natural bone, the stru
ture of a foam is 
hara
terised by the dis-



Chapter 6 88tribution, size and wall thi
kness of 
ells in the bulk material. That distributionhas a dire
t 
orrelation with the me
hani
al properties of the solid foam. There-fore, when a foamed material's behaviour needs to be engineered, its 
ellularstru
ture is an obvious starting point. Torres-San
hez et al. [93℄ demonstratedthat it was possible to tailor the porosity pro�le of a polymerising polyurethanefoam by altering its position within an a
ousti
 �eld. Although this was doneempiri
ally, they managed to identify `sensitive stages' during the rea
tion whereultrasound was observed to have an impa
t and hypothesized that this was dueto the fa
t that di�usion and 
onve
tion were predominant e�e
ts during thesestages.The polymerisation rea
tion is very 
omplex involving bubble dynami
s,evolving rheology [26,58℄, two phases, re
ti�ed di�usion [13,14,22,23,51℄, Bjerk-nes for
es [3, 49℄ and Ostwald ripening [54, 75℄ to name but a few. In additionwe want to add ultrasoni
 irradiation and model its e�e
ts as well.Ultrasoni
 irradiation of liquids has been shown experimentally to resultin a number of unusual phenomena in
luding re
ti�ed di�usion and in
reasedrea
tion rates [31, 44, 92℄. We seek to strip the problem ba
k by making manyassumptions and 
on
entrate on the bubble evolution, post nu
leation, in avis
oelasti
 
uid and ignore the e�e
ts of re
ti�ed di�usion, Bjerknes for
esand Ostwald ripening. We look at the dire
t e�e
t of the ultrasound pressureamplitude on the long term growth of the bubble and not on its os
illatory e�e
ts.We do, however, seek to in
orporate the e�e
ts of inertia into an existing modelin order to provide a tool to investigate this os
illatory behaviour in the future.A number of arti
les in the literature do
ument the empiri
al e�e
t ob-served of ultrasound enhan
ing the polymerisation rea
tion rate. Pri
e et al. [69℄demonstrated an in
reased polymerisation rea
tion rate when a rea
ting polymersample was irradiated with ultrasound and further demonstrated that in
reas-ing the intensity of the ultrasound lowered the rea
tion time. Although their
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on
lusive they suggest that this e�e
t is due to the `extremelyeÆ
ient mixing of the 
omponents enhan
ed by ultrasound'. Torres-San
hezet al. demonstrate a similar e�e
t through their experimental te
hnique usingresistivity measurements to monitor rea
tion progression [92℄.6.1.3 Bubble dynami
sMu
h work has been done to study and model the nu
leation [28, 76, 88℄ andsubsequent single bubble growth [7, 24{28, 66, 77, 88, 89, 91, 100℄ in vis
oelasti
materials in
luding polymer foams, both rea
ting [26℄ and non-rea
ting [24{27, 106℄. The e�e
ts of ultrasound on nu
leation [107℄ and subsequent growthof a single bubble via re
ti�ed di�usion in an aqueous 
uid [50, 53, 61, 70, 71℄have been studied extensively. Bubble distributions have been studied withan aim to predi
t and des
ribe heterogeneous porosity pro�les in polymer foamsamples [11,66,76,77℄ but no attempt has been made to tailor the pro�le dire
tly.The e�e
t of an a
ousti
 �eld on bubble populations within a non-vis
ous liquidwas studied numeri
ally in [49℄ but we are not aware of any attempt to modelanalyti
ally the e�e
t of an a
ousti
 standing wave on a multi bubble distributionin a vis
oelasti
 liquid. Numeri
al studies have been 
arried out on the evolvingbubble distributions in a polymer foam in the absen
e of a
ousti
 irradiation [24,25, 106℄. Empiri
al studies have been done on the e�e
t of ultrasound on thenu
leation of bubbles in a polymer foam and the resulting �nal bubble sizedistributions [107℄ but here we seek to look at the e�e
t of ultrasound on bubblegrowth post nu
leation and assume homogeneous bubble nu
leation through thesample.There have been a number of studies of the nu
leation and subsequent growthof a single spheri
al gas bubble in a surrounding 
uid due to di�usion of gasthrough the 
uid and into the bubble. Amon and Denson [4℄ proposed a 
ellmodel for the analysis of bubble growth in an expanding polymer foam with ea
h
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ell 
ontaining a spheri
al gas bubble surrounded by a 
on
entri
 liquid envelope
ontaining a limited supply of gas. Their model takes a

ount of heat transferand inertia and 
ouples bubble growth to the 
hanging foam density. Street etal. [89℄ and Ting et al. [91℄ both used the Oldroyd B 
uid model to des
ribe thevis
oelasti
ity of the surrounding 
uid layer whi
h they assumed to be in�nite.This resembles the 
ase of early time foaming where bubble size is small andbubbles are spa
ed at large distan
es from ea
h other, remaining spheri
al andnot interfering with ea
h other. They demonstrated that the vis
oelasti
ity ofthe melt as well as the di�usivity of the gas determined the initial growth rate.Arefmanesh et al. [7℄ 
onsidered the 
ase of a spheri
al gas bubble surrounded bya �nite shell of vis
oelasti
 
uid whi
h they modelled using the upper 
onve
tedMaxwell model. They introdu
ed a Lagrangian transformation to des
ribe themoving bubble/liquid interfa
e and substituted a 
on
entration potential to aidnumeri
al solution. Their model serves to des
ribe the 
ase where a large numberof bubbles exist in 
lose proximity to ea
h other whi
h we would expe
t in anexpanding polymer foam. Other authors [76, 77℄ looked at bubble growth inpolymer foams in 
onjun
tion with nu
leation and 
on
luded that the mostsensitive parameters to �nal bubble size distribution are those asso
iated withnu
leation. They 
on
lude that while growth dynami
s 
an alter the distributionthis is only a se
ondary e�e
t. Feng [28℄ also looks at the e�e
t of nu
leationbut proposes a model for heterogeneous nu
leation and its e�e
t on the �nalbubble size distribution. Venerus [99, 100℄ developed and evaluated transportmodels of di�usion indu
ed bubble growth in vis
ous liquids of both �nite andin�nite extent and 
ompared results with Amon and Denson [4℄ and Arefmaneshet al. [7℄. Both models agree at early stages of the growth pro
ess and di�erat later stages when the equilibrium bubble radius is approa
hed for the �niteliquid model.Everitt et al. [26℄, building on the above work, proposed a model to 
ap-
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hanging 
uid rheology and gaseous phase for a rea
ting polymer foam.The evolving 
uid is treated as a multimode Oldroyd B system and the La-grangian transformation is used to des
ribe the moving bubble boundary witha 
on
entration potential proposed by [7℄ employed to aid numeri
al solutionnear to the liquid/gas boundary. They in
lude an additional equation to modelgas produ
ed by the rea
tion and propose additional terms for the di�usion andmass 
onservation equations to a

ount for the rea
tion e�e
ts on gas 
on
entra-tion. This rea
ting polymerisation model 
ontains the majority of the elementsthat we needed to model the experimental polymerisation rea
tion that TorresSan
hez et al. had published [93℄, ex
ept for the appli
ation of ultrasoni
 irra-diation. We, therefore, settled on this model as a foundation for the work inthis se
tion of the thesis and manipulate it to model the additional ultrasounde�e
t.6.2 OverviewThis se
tion of the thesis examines two di�erent e�e
ts of ultrasoni
 irradiationon the bubble size distribution in an expanding polymer foam. Chapter 7 seeks tomodel the e�e
t of inertia on a non-rea
ting polymer foam, and inner and outerleading order asymptoti
 solutions are proposed. Chapter 8 presents the �rstmathemati
al model of the experiment 
arried out in the laboratory by Torres-San
hez et al. [93℄, with an aim to illustrate mathemati
ally the same qualitativee�e
ts of an irradiating a
ousti
 signal on the porosity distribution of the �nalpolymerised sample, as observed in the laboratory [93℄, and to as
ertain themagnitude/signifan
e of this e�e
t, in isolation. The 
hapters may be summedup as follows:Chapter 7 presents and expounds a model proposed by Everitt et al. [26℄ fora non-rea
ting polymer foam. The original model assumed the e�e
t of inertia tobe negligible and did not in
lude an a
ousti
 irradiation term. The non-rea
ting



Chapter 6 92model is re-derived to in
lude inertia as well as an additional term to des
ribethe a
ousti
 pressure amplitude. An assumption of instantaneous di�usion isthen made in order to partially de
ouple the system and an asymptoti
 analysisis performed so that a leading order outer and �rst order inner solution arepresented. The dependen
e of the a

ura
y of the inner asymptoti
 solutionon the surrounding 
uid volume is dis
ussed and di�erent approximations areproposed for di�erent regimes. An analyti
 leading order and �rst order innersolution are presented for the 
ase when this 
uid volume is large and tendingto in�nity. In the 
ase when it is not, an approximate analyti
 form is suggestedthat minimises the error.Chapter 8 introdu
es and builds on the model derived by Everitt et al. [26℄for the expanding single bubble in a free-rising, rea
ting polymer foam. Thisnumeri
al model is employed to follow the evolution of a single bubble in agiven parameterised system. We look at the indire
t e�e
t of ultrasound ir-radiation on the lo
al rea
tion rate of the sample and the 
ombined e�e
t ofbubble-bubble intera
tion to explain the heterogeneous bubble distributions ob-served experimentally in [93℄. Details of the experimental set up published byTorres-San
hez et al. [93℄ are presented and parameter values are derived. Aone dimensional multi bubble system is 
onsidered and rules for bubble-bubbleintera
tions are proposed. As opposed to Chapter 7, the e�e
t of ultrasoundis modelled indire
tly through its suggested e�e
t on the rea
tion rate [69, 92℄.The ultrasound signal is modelled by a standing wave fun
tion and the lo
alisedpressure amplitude is then 
al
ulated. This means that single bubble evolutionat ea
h spatial point through the sample 
an be 
al
ulated by assuming thatthe spatially distributed rea
tion rate a
ross the domain dire
tly 
orrelates withthe lo
al pressure amplitude.
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ontributionsThe prin
ipal original 
ontributions of the author for this se
ond se
tion of thethesis may be summarised:� A new mathemati
al model is derived to des
ribe single bubble growth ina free rising, non-rea
ting polymer foam irradiated by an a
ousti
 standingwave and in
orporating the e�e
ts of inertia in Chapter 7.� Leading and �rst order asymptoti
 inner solutions in the temporal domainare presented, in Se
tion 7.5, for the 
ase of instantaneous di�usion. Twos
enarios are dis
ussed; the �rst des
ribes the 
ase when the 
uid volumesurrounding the bubble is large 
ompared to the bubble volume and these
ond des
ribes the 
ase when both volumes are of the same order.� In Se
tion 7.6 the leading order asymptoti
 outer solution, for the 
ase ofinstantaneous di�usion, is des
ribed analyti
ally using the �rst iterationof the Pi
ard iteration method. A numeri
al solution for the leading orderouter equation is also presented.� A �rst mathemati
al model of an experiment des
ribed by Torres-San
hezet al. [93℄ is proposed in Se
tions 8.3 to 8.6. The model isolates the e�e
tof the a
ousti
 pressure amplitude on the lo
al rea
tion rate of the sampleand 
an be used to illustrate di�erent heterogeneity pro�les for �nal bubbledistributions through the sample domain, given an initial homogeneousbubble distribution. A relationship between intial bubble spa
ing throughthe sample and the resultant �nal heterogeneity of the sample is dis
ussed.



Chapter 7A mathemati
al model of thegrowth of a bubble in anon-rea
ting polymer foamin
orporating inertia
A paper written by Everitt et al. [26℄ on bubble dynami
s in rea
ting and non-rea
ting polymer foams presents two models for individual bubble expansion in
uring polymer foams. The �rst model is for a non-rea
ting solidifying polymerfoam with 
onstant elasti
 modulus; the se
ond models the gas produ
tion dueto the rea
tion and the evolving rheology of the vis
oelasti
 material in therea
ting polymer foam. Everitt et al. [26℄ negle
t the e�e
ts of inertia sin
eparameterisation of the system results in a very small Reynolds number, andtheir model does not in
lude an a
ousti
 for
ing term.In this 
hapter the non-rea
ting model proposed by Everitt et al. [26℄ isextended to in
lude inertia e�e
ts and this original derivation is des
ribed indetail in Se
tion 7.2. Also in
luded in this model is a term to a

ount for thee�e
ts of a standing a
ousti
 wave insonifying the polymerising sample. Wederive inner and outer asymptoti
 solutions in Se
tions 7.5 and 7.6, respe
tively.The model equations are derived by 
onsideration of an Oldroyd B polymeri

uid [103℄. On
e the governing equations, initial and boundary 
onditions are94



Chapter 7 95obtained, an instantaneous di�usion assumption is made in order to partiallyde
ouple the system whi
h is then probed in an e�ort to derive an approximateanalyti
 solution using asymptoti
 expansions. An inner and outer asymptoti
solution are proposed; the former to �rst order and the latter to leading order.Two di�erent regimes are investigated for the inner asymptoti
 solution. Inthe �rst 
ase the bubble volume is mu
h smaller than the surrounding 
uidvolume whereas in the se
ond 
ase these two volumes are assumed to be ofthe same order. The �rst instan
e may des
ribe the situation at early timein the polymerising sample when bubbles have just nu
leated and are at largedistan
es from ea
h other so that they are e�e
tively surrounded by an in�nite
uid volume. We may assume that the se
ond 
ase des
ribes a regime where thebubbles are larger and more 
losely pa
ked so that the 
uid volume availableto ea
h individual bubble is redu
ed. We dis
uss the a

ura
y of the �rst orderasymptoti
 inner solutions in ea
h regime before deriving a leading order analyti
solution for the outer temporal variable. A numeri
al s
heme is produ
ed to testthe a

ura
y of the analyti
 solution and the limitations of the analyti
 solutionare dis
ussed before using the numeri
al s
heme to predi
t the e�e
ts of 
hangingvis
osity and a
ousti
 pressure amplitude on the outer solution.7.1 Des
ription of non-rea
ting modelIn the non-rea
ting 
ase a polymeri
 liquid 
ontaining a foaming agent is sub-je
ted to a sudden redu
tion in pressure and foaming 
ommen
es as the foamingagent 
omes out of solution [26℄. This is a two phase system with the foam
onsidered to be a system of identi
al, spheri
al bubbles of gas, ea
h surroundedby a layer of vis
oelasti
 
uid 
ontaining a quantity of dissolved gas. The model
on
erns a single bubble with initial volume, 4�u0=3 = 4�R3=3, with bubble ra-dius R and initial gas pressure pg0. The 
uid surrounding the bubble is assumedto be in
ompressible, vis
oelasti
 and 
ontaining a limited supply of dissolved



Chapter 7 96ideal gas. The initial bubble volume is the volume when the bubble gas pres-sure is pg0 and is larger than the nu
leation volume. It is further assumed thatthe bubble undergoes spheri
ally symmetri
 expansion driven by the pressuredi�eren
e a
ross the bubble-
uid interfa
e, (pg0 � pa), where pa is the ambientgas pressure. The 
onditions are isothermal and the bubble-
uid interfa
e isin thermodynami
 equilibrium [26℄. First, the dynami
s of the 
uid layer are
onsidered; the system is modelled using the Oldroyd B system of equations fora vis
oelasti
 medium [103℄. Subsequently, the gaseous phase, its 
on
entrationin, and di�usion through, the 
uid, and its transport a
ross the bubble-
uidinterfa
e are modelled.7.2 Liquid phaseA solution of polymer mole
ules in a Newtonian liquid exhibits both vis
ousand elasti
 behaviour [104℄ and 
an be modelled as an Oldroyd B 
uid [103℄.This is derived by 
onsidering how polymers behave at the mi
ros
opi
 level andthen s
aling upwards to predi
t the ma
ros
opi
 e�e
ts. The general governingequations are r � q = 0; (7.1)�pI + � �rq+ (rq)T �+G(A� I) = �; (7.2)���q�t + q �rq� = r � �; (7.3)�A�t + (q �r)A�A �rq� (rq)T �A = �1� (A� I): (7.4)where q is the velo
ity ve
tor, � is the stress tensor, � is the solvent vis
osity, � isthe 
uid density, G is the relaxation modulus asso
iated with the polymer stress,A the orientation tensor, I the identity matrix and � represents the relaxationtime of a polymer mole
ule.Substituting for q = qrer+q�e�+q�e� into the 
ontinuity equation (7.1) and



Chapter 7 97

Figure 7.1: S
hemati
 illustrating an expanding single bubble in a �nite liquidvolume. The bubble radius is denoted by R(t) and the bubble gas pressure bypg(t). The gas 
on
entration at the bubble surfa
e is 
(R; t); the 
on
entrationpro�le within the liquid, 
(r; t) depends on time t and the radial 
o-ordinate rwhere the origin is at the bubble 
entre. The 
on
entration at the outer 
uidboundary is given by the 
onstant 
0.
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e of the velo
ity ve
tor, q, in spheri
al polar 
o-ordinatesgives r � q = 1r2 ��r (r2qr) + 1r sin � ��� (sin �q�) + 1r sin � �q��� ; (7.5)= 1r2 ��r (r2qr); (7.6)sin
e the spheri
ally symmetri
 bubble expansion means q� = q� = 0 and qr isdependent on r and t only. Therefore,��r (r2qr) = 0 for r � R; (7.7)where R is the radial 
o-ordinate of the bubble-
uid interfa
e. Integration withrespe
t to r gives r2qr = C where C is an arbitrary 
onstant. Letting qr(R) = _Rgives C = _RR2 and, q = qrer; (7.8)= _RR2r2 er: (7.9)In order to substitute for q in equation (7.2) the gradient of this �rst order
artesian tensor is evaluated as [41℄rq = 0BB� �qr�r 1r ��qr�� � q�� 1r sin � �qr�� � q�r�q��r 1r ��q��� + qr� 1r sin � ��q��� �� 
ot �r q��q��r 1r ��q��� � 1r sin � �q��� + qrr + 
ot �r q� 1CCA : (7.10)As above q� = q� = 0, qr is dependent on r and t only and thereforerq = (rq)Tso that rq+ (rq)T = 2 _RR2r3 0� �2 0 00 1 00 0 1 1A : (7.11)Equation (7.2) 
an now be expanded as� = 0� �p 0 00 �p 00 0 �p 1A + 2� _RR2r3 0� �2 0 00 1 00 0 1 1A +G0� Arr 0 00 A�� 00 0 A�� 1A ;(7.12)
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e in the spheri
ally symmetri
 expansion all the o�-diagonal 
omponents ofthe orientation tensor A are equal to zero and A�� = A��. The only non-zero
omponents of the stress tensor � are,�rr = �p� 4� _RR2r3 +GArr; (7.13)��� = �p + 2� _RR2r3 +GA��; (7.14)��� = ���: (7.15)Having determined �, the momentum equation (7.3) 
an be ta
kled. The indi-vidual 
omponents of the divergen
e of the se
ond order 
artesian tensor � inspheri
al polar 
o-ordinates are [41℄(r � �)r = 1r2 ��r �r2�rr�+ 1r sin � ��� (sin ���r) + 1r sin � ���r�� � ��� + ���r ;(r � �)� = 1r2 ��r �r2�r��+ 1r sin � ��� (sin ����) + 1r sin � ������ + ��rr � 
ot �r ���;(r � �)� = 1r2 ��r �r2�r��+ 1r sin � ��� (sin ����) + 1r sin � ������ + ��rr + 
ot �r ���;so that in the spheri
ally symmetri
 
ase the only non-zero 
omponent of thedivergen
e is the radial one. Substituting for �rr, ��� and ��� gives(r � �)r = 1r2 ��r �r2�rr�� 2���r ;= 1r2 �2r�rr + r2 ��r�rr�� 2���r ;= 2r (�rr � ���) + ��rr�r ;= 2r  �p� 4� _RR2r3 +GArr + p� 2� _RR2r3 �GA��!+ ��rr�r ;from (7.13) and (7.14). That is(r � �)r = 2r  �6� _RR2r3 +G(Arr � A��)!+ ��r  �p� 4� _RR2r3 +GArr! ;= �12� _RR2r4 + 2Gr (Arr � A��)� �p�r + 12� _RR2r4 +G�Arr�r ;= ��p�r +G�Arr�r + 2Gr (Arr � A��): (7.16)



Chapter 7 100Using (7.9) and (7.10), the inertia term on the left hand side of equation (7.3)is given by���q�t + q �rq� = � ��t  _RR2r2 ! er + _RR2r2 ��qr�r � er! ; (7.17)= � �RR2 + 2R _R2r2 + _RR2r2  �2 _RR2r3 !! er; (7.18)= � �RR2 + 2R _R2r2 � 2 _R2R4r5 ! er: (7.19)Equation (7.3) 
an therefore be stated as,� �RR2 + 2R _R2r2 � 2 _R2R4r5 ! = ��p�r +G�Arr�r + 2Gr (Arr � A��): (7.20)The boundary 
onditions require 
ontinuity of stress to be applied at the innerand outer 
uid boundaries, and this is dis
ussed in the following se
tion.7.2.1 Lagrangian referen
e frameThe inner and outer boundary 
onditions are to be de�ned at the bubble-
uidinterfa
e and the outer 
uid layer, respe
tively (see Figure 7.1). In the 
urrent
o-ordinate system these interfa
es are both moving with time, and therefore,would need to be updated at 
onse
utive time points. In order to simplifythe analyses, both numeri
al and analyti
al, the system is transformed to theLagrangian volume 
o-ordinate system. This 
an be done sin
e the 
uid volumeis 
onserved. In the Lagrangian volume s
heme the frame of referen
e moveswith the bubble-
uid interfa
e. Due to the spheri
ally symmetri
 expansionwe only need 
onsider the radial 
o-ordinate in the analysis. The Lagrangianvolume transformation is des
ribed below and illustrated in Figure 7.2.Sin
e the 
uid volume is 
onserved then 4� �r3f;0 � r3b;0� =3 = 4� �r3f;t � r3b;t� =3.Letting this 
onserved 
uid volume equal 4�X=3 we 
an restate the equationsand variables using the general 
uid volume variable x whi
h ranges from x = 0
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Figure 7.2: S
hemati
 demonstrating the properties of the Lagrangian volumetransformation. The unit 
ell is made up of the bubble volume and the 
uidvolume. At t = 0 the bubble radius is rb;0 and the unit 
ell radius is rf;0 so thatthe 
uid volume is 43� �r3f;0 � r3b;0�. At all subsequent time points, (0 < t < tend),this 
uid volume is 
onserved so that �r3f;t � r3b;t� = � �r3f;0 � r3b;0� for all t. In thisway the frame of referen
e is given by the bubble-
uid boundary and boundary
onditions do not need to be updated at 
onse
utive time points.t = 0 0 < t < tendBubble volume 43�r3b;0 43�r3b;tTotal volume 43�r3f;0 43�r3f;tFluid volume 43� �r3f;0 � r3b;0� 43� �r3f;t � r3b;t�Table 7.1: Volumes asso
iated with the spheri
ally symmetri
 bubble expansionin a �nite 
uid volume as illustrated in Figure 7.2



Chapter 7 102at the bubble surfa
e to x = X at the outer 
uid volume limit. We 
an do thissin
e the variables are symmetri
 in the � and � dire
tions and depend on rand t only. If we let the general bubble volume 4�u(t)=3 = 4�R(t)3=3 then ata generi
 volume 
o-ordinate 4�u=3 + 4�x=3, we 
an determine the asso
iatedradial position in the 
uid relative to the origin at the 
entre of the bubble as4�r3=3 = 4�(u+ x)=3, or simply r = (u+ x) 13 . This transformation means thatwe 
an follow the bubble-liquid interfa
e as the bubble expands so our bound-ary 
ondition at the bubble surfa
e does not have to be re
al
ulated at ea
hsu

essive time point.Transformation of (7.20) to the Lagrangian volume 
o-ordinate, x, where�=�r = 3r2�=�x, results in� �RR2 + 2R _R2r2 � 2 _R2R4r5 ! = ��p�x3r2 +G�Arr�x 3r2 + 2Gr (Arr � A��); (7.21)Division by 3r2 and substitution for the following relations,_u = 3R2 _R; (7.22)_u2 = 9R4 _R2; (7.23)�u = 3( �RR2 + 2R _R2); (7.24)r = (x + u) 13 ; (7.25)into (7.21) yields,�" �u9(x+ u) 43 � 2 _u227(x+ u) 73 # = ��p�x +G�Arr�x + 2G3(x+ u)(Arr � A��): (7.26)Integration with respe
t to x gives,�"� �u3(x+ u) 13 + _u218(x+ u) 43 # = �p(x) +GArr + 23G Z x (Arr � A��)(x0 + u) dx0 + C1;(7.27)where C1 is an arbitrary 
onstant of integration to be determined by appli
a-tion of the boundary 
onditions. These boundary 
onditions are derived by
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onsidering the stresses a
ting on ea
h boundary, that is, at the bubble/
uidinterfa
eisotropi
pressure + Newtonianstress + polymerstress = bubblepressure + surfa
etension ;and at the outer 
uid surfa
e we haveisotropi
pressure + Newtonianstress + polymerstress = atmospheri
pressure + ultrasoundpressureex
itation :This results in the following two boundary 
onditions, at x = 0 and x = X, inthe Lagrangian frame,�p(0)� 4� _u3u +GArr(0) = �pg + 2Su 13 ; at x = 0; (7.28)�p(X)� 4� _u3(X + u) +GArr(X) = �pa � pu; at x = X; (7.29)where S is the surfa
e tension, pg is the bubble gas pressure, X is the Lagrangianvolume 
o-ordinate for the outer 
uid boundary and pu is the pressure amplitudeof the applied ultrasound signal. Evaluation of (7.27) at x = 0 and x = X gives,23G Z X0 (Arr � A��)x0 + u dx0 = � � �u3(X + u) 13 + _u218(X + u) 43 + �u3u 13 � _u218u 43 !+p(X)� p(0)�GArr(X) +GArr(0); (7.30)and substitution for p(0) � GArr(0) and p(X) � GArr(X) from boundary 
on-ditions (7.28) and (7.29) respe
tively, gives the de�nite integral23G Z X0 (Arr � A��)x0 + u dx0 = � � �u3(X + u) 13 + _u218(X + u) 43 + �u3u 13 � _u218u 43 !� 4� _u3(X + u) + pa + pu + 4� _u3u � pg + 2Su 13 : (7.31)Rearranging (7.31) gives the momentum equation,43� _u�1u � 1X + u� + �" �u3  1u 13 � 1(X + u) 13 !� _u218  1u 43 � 1(X + u) 43 !#= pg � pa � pu + 23G Z X0 (Arr � A��)(x0 + u) dx0 � 2Su 13 : (7.32)



Chapter 7 104The only remaining unknown, in the Oldroyd B system (7.1) - (7.4), is theorientation tensor A whi
h is des
ribed by (7.4). The total derivativeDADt = �A�t + (q �r)A; (7.33)however, in the Lagrangian frame, redu
es (7.4) to�A�t = A �rq + (rq)T �A� 1� (A� I); (7.34)sin
e the 
onve
tion term (q �r)A is now zero. Substitution forrq from (7.10)therefore,0� �Arr�t 0 00 �A���t 00 0 �A���t 1A = _RR2r3 0� �2 0 00 1 00 0 1 1A0� Arr 0 00 A�� 00 0 A�� 1A+ _RR2r3 0� Arr 0 00 A�� 00 0 A�� 1A0� �2 0 00 1 00 0 1 1A�1� 0� Arr � 1 0 00 A�� � 1 00 0 A�� � 1 1A ;so that the rate equations for Arr and A�� are des
ribed by�Arr�t = �4 _RR2r3 Arr � 1� (Arr � 1); (7.35)�A���t = 2 _RR2r3 A�� � 1� (A�� � 1): (7.36)Transformation to the Lagrangian 
o-ordinate system gives the evolution equa-tions �Arr�t = � 4 _u3(u+ x)Arr � 1� (Arr � 1); (7.37)�A���t = 2 _u3(u+ x)A�� � 1� (A�� � 1): (7.38)Subtra
ting (7.37) from (7.38) gives the �rst normal di�eren
e rate equation�(Arr � A��)�t = 2 _u3(u+ x) [(Arr � A��)� 3Arr℄� 1� (Arr � A��); (7.39)where the initial 
onditions are given by Arr = A�� = 1 everywhere at t = 0.



Chapter 7 1057.3 Gaseous phaseNext we 
onsider the gas 
on
entration in the liquid, its di�usion through the
uid and its transport a
ross the bubble-
uid interfa
e. The 
uid initially 
on-tains a �nite 
on
entration, 
0, of dissolved gas, distributed homogeneouslythroughout the layer. For t > 0, gas is transported a
ross the bubble-
uid inter-fa
e at a rate governed by Henry's law [2℄. This sets up a 
on
entration gradientthrough the liquid layer and gas di�uses through the liquid in the dire
tionof de
reasing 
on
entration gradient, a

ording to the di�usion equation [52℄.Henry's law relates the gas 
on
entration at the bubble surfa
e, (x = 0), to thepressure inside the bubble, via
(0; t)� 
0 = (pg(t)� pg0)H; (7.40)where pg0 is the initial bubble gas pressure, pg(t) is the bubble gas pressure atsubsequent t > 0 and H is the Henry's law 
onstant. The gas 
on
entration inthe 
uid, 
(x; t), is governed by the 
onve
tion-di�usion equation [106℄ whi
h isderived from the assumption of mass 
onservation in the liquid, to give�
�t + q � r
 = r � (Dr
); (7.41)where D is the di�usion 
oeÆ
ient. In a spheri
ally symmetri
 system, therefore�
�t + qr �
�r = D 1r2 ��r �r2 �
�r� ; (7.42)and in the Lagrangian frame the 
onve
tion term disappears [7℄ to give�
�t = D(x+ u)� 233(x + u) 23 ��x �(x+ u) 233(x + u) 23 �
�x� ; (7.43)= 9D ��x �(x+ u) 43 �
�x� : (7.44)The initial gas 
on
entration throughout the liquid layer is 
(x; 0) = 
0. Asthe bubble expands for t > 0 the pressure drops and a steep 
on
entration gradi-ent is set up in the thin boundary layer surrounding the bubble and propagates



Chapter 7 106through the 
uid 
ausing gas to di�use into the bubble. This steep 
on
en-tration gradient at early t makes numeri
al analysis diÆ
ult and 
onsequentlya 
on
entration potential �(x; t), su
h that ��=�x = 
 � 
0, is introdu
ed toover
ome this problem [26℄; the di�usion of this potential is��t ����x� = 9D ��x �(x+ u) 43 ��x ����x�� :Changing the order of integration��x ����t � = 9D ��x �(x+ u) 43 �2��x2�and integrating with respe
t to x the di�usion equation 
an now be writen as���t = 9D(x+ u) 43 �2��x2 ; (7.45)with ��=�x = (pg � pg0)H at the bubble surfa
e. If we assume that there is notransport a
ross the outer 
uid boundary (ensuring that gas supply is limited)then �2�=�x2 = 0 at the outer 
uid boundary. The bubble volume, u, 
an berelated to the bubble gas pressure pg and the 
on
entration potential at thebubble surfa
e, �(0; t), by appli
ation of the prin
iple of mass 
onservation.From the ideal gas law [2℄, where Rg is the universal gas 
onstant and T is thetemperature, then from (7.45)ddt � pguRgT � = 9Du 43 �2��x2 ����x=0 ;= ���t ����x=0 :Integrating with respe
t to time givespgu = RgT�(0; t) + C1; (7.46)and appli
ation of initial 
onditions, u(0) = u0; pg(0) = pg0; �(0; 0) = 0 retrievesthe 
onstant of integration, C1, so that,pgu = pg0u0 +RgT�(0; t): (7.47)



Chapter 7 107The system is now fully des
ribed by (7.32), (7.37), (7.39), (7.45) and (7.47).Non-dimensionalisation of the governing equations and boundary 
onditions re-sults in the following system,43 _u�1u � 1(X + u)� +R"�u 1u 13 � 1(X + u) 13 !� _u26  1u 43 � 1(X + u) 43 !#= De(Pg � Pu) + 23
 Z X0 (Arr � A��)(x + u) dx� 1�u 13 ; (7.48)�Arr�t = � 4 _u3(x + u)Arr � (Arr � 1); (7.49)�A���t = 2 _u3(x+ u)A�� � (A�� � 1); (7.50)(pa + (pg0 � pa)Pg)pg0 u = (1 + �(0; t)); (7.51)���t = N(x + u) 43 �2��x2 ; (7.52)where N = 9D�=u2=30 , R = �u2=30 =3�� , De = (pg0�pa)�=�, Pg = (pg�pa)=(pg0�pa), Pu = pu=(pg0�pa), 
 = G�=�, � = �u1=30 =2S� and the boundary 
onditionson �(x; t) are, ���x ����x=0 = �(pg0 � pa)pg0 (Pg � 1); (7.53)�2��x2 ����x=X = 0; (7.54)where � = RgTH. The non-dimensional initial 
onditions are,u(0) = 1; Pg(0) = 1; Arr(x; 0) = 1; A��(x; 0) = 1; �(0; 0) = 0:For details of the non-dimensionalisation see Appendix C; individual parametervalues are listed in Table C.1.7.4 Instantaneous di�usion approximationIn order to simplify the analysis the equation in �(x; t) 
an be de
oupled byassuming instantaneous di�usion. In other words, by assuming that N is large



Chapter 7 108so the spatial derivative dominates in (7.52) then�2��x2 = 0; (7.55)and the boundary 
ondition given by (7.53), at the bubble surfa
e now appliesthroughout the domain. Considering the mass 
onservation of the gas we haveddt � pguRgT � = � ddt (
(x; t)X) ; (7.56)where 
(x; t) is the moles of gas per unit volume, X is the 
uid volume andthe minus sign a

ounts for the fa
t that as the gas 
on
entration in the 
uidde
reases, its 
on
entration in the bubble in
reases. Integrating givespguRgT = �
(x; t)X + Ĉ; (7.57)where Ĉ is a 
onstant of integration retrieved by appli
ation of the initial 
on-dition pg0u0RgT = �
0X + Ĉ; (7.58)so that pguRgT = �
(x; t)X + pg0u0RgT + 
0X: (7.59)Substituting for ��=�x = 
(x; t) � 
0 and non-dimensionalising as des
ribed inAppendix C we obtain�pa + (pg0 � pa)Pgpg0 � u = 1� ���xX: (7.60)Applying the boundary 
ondition (7.53), whi
h is now valid throughout thedomain, we have�pa + (pg0 � pa)Pgpg0 � u = 1 + �pg0 � papg0 (1� Pg)X: (7.61)By rearranging for Pg, (7.61) 
an be written asPg = A+Bu+ �Xu+ �X ; (7.62)



Chapter 7 109where A = pg0=(pg0 � pa) and B = �pa=(pg0 � pa). In the following se
tion weemploy multis
ale analysis and asymptoti
 expansions to investigate the e�e
tof the inertia related term R on the inner and outer solutions. We, therefore,use asymptoti
 expansions to derive �rst an inner solution (small time) for timest = O(�) and then 
onstru
t an outer solution (large time) where � is the fa
torused to stret
h the inner time variable.7.5 Asymptoti
 analysis: Inner solutionThere is a brief time whi
h we assume to be O(�) in whi
h u rapidly in
reasesfrom its initial value to a value that is 
ommensurate with the outer solutionderived in the following se
tion 7.6. In this phase of the bubble growth theinertia term dominates. To allow us to study this behaviour we stret
h time byintrodu
ing the inner variable, T = t� ;where � is a s
aling 
onstant su
h that 0 < � � 1. For 
larity we introdu
e thefollowing notation for the inner solutionU(T; �) = u(t; �);AR(x; T; �) = Arr(x; t; �);AQ(x; T; �) = A��(x; t; �);A(x; T; �) = (Arr � A��)(x; t; �);P (T; �) = Pg(t; �);�̂(x; T; �) = �(x; t; �):



Chapter 7 110As before we assume instantaneous di�usion so that the inner governing equa-tions are, from (7.48), (7.49), (7.50), (7.62) and (7.61),�43 _U � 1U � 1X + U�+R �U  1U 13 � 1(X + U) 13 !� _U26  1U 43 � 1(X + U) 43 !!= �2�De(P � Pu) + 23
 Z X0 A(x + U)dx� 1�U 13 � ; (7.63)�AR�T = �43 _U(x+ U)AR� �(AR� 1); (7.64)�AQ�T = 23 _U(x + U)AQ� �(AQ� 1); (7.65)P = A +BU + �XU + �X ; (7.66)�̂ = �pg0 � papg0 (P � 1)X: (7.67)We substitute for inner expansions of the form,U(T; �) = U0(T ) + �U1(T ) +O(�2); (7.68)AR(x; T; �) = AR0(x; T ) + �AR1(x; T ) +O(�2); (7.69)AQ(x; T; �) = AQ0(x; T ) + �AQ1(x; T ) + O(�2); (7.70)A(x; T; �) = A0(x; T ) + �A1(x; T ) +O(�2); (7.71)P (T; �) = P0(T ) + �P1(T ) +O(�2); (7.72)
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eed by making the appropriate Taylor series expansions where ne
essaryto derive the momentum equation,43� � _U0 + � _U1�� 1U0 �1� �U1U0 �� 1X + U0 �1� �U1(X + U0)��+R(� �U0 + � �U1� 1U 130 �1� �U13U0�� 1(X + U0) 13 �1� �U13(X + U0)�!�� _U0 + � _U1�26  1U 430 �1� 4�U13U0 �� 1(X + U0) 43 �1� 4�U13(X + U0)�!9>=>;= �2 �De(P0 + �P1 � Pu) + 23
 Z X0 (A0 + �A1)x + U0 �1� �U1(x+ U0)� dx� 1�U 130 �1� �U1U0 �#+O(�5): (7.73)Colle
ting together powers of � givesR �U0 1U 130 � 1(X + U0) 13 !� _U206  1U 430 � 1(X + U0) 43 !!+� "43 _U0� 1U0 � 1X + U0� +R �U1 1U 130 � 1(X + U0) 13 !� �U0U13  1U 430 � 1(X + U0) 43 !+ 2 _U20U19  1U 730 � 1(X + U0) 73 !� _U0 _U13  1U 430 � 1(X + U0) 43 !!#+O(�2)= 0: (7.74)The rate equations for AR and AQ 
an be treated in a similar manner; startingwith the non-dimensionalised rate equation in AR(x; T ) we have�(AR0 + �AR1)�T = � 43(x + U0)( _U0 + � _U1)(AR0 + �AR1)�1� �U1(x+ U0)���(AR0 + �AR1 � 1) +O(�2); (7.75)



Chapter 7 112so that,�AR0�T + ��AR1�T =  � 4 _U0AR03(x + U0)!+� "� 43(x + U0)  _U0AR1 � _U0AR0U1(x+ U0) + _U1AR0!� (AR0 � 1)#+O(�2); (7.76)and�(AQ0 + �AQ1)�T = 23(x+ U0)( _U0 + � _U1)(AQ0 + �AQ1)�1� �U1(x+ U0)���(AQ0 + �AQ1 � 1) +O(�2); (7.77)giving�AQ0�T + ��AQ1�T =  2 _U0AQ03(x+ U0)!+� " 23(x + U0)  _U0AQ1 � _U0AQ0U1(x+ U0) + _U1AQ0!� (AQ0 � 1)#+O(�2); (7.78)The pressure and di�usion equations are given byP0 + �P1 = A +B(U0 + �U1) + �X(U0 + �U1) + �X +O(�2); (7.79)�̂0 + ��̂1 = �pg0 � papg0 (P0 + �P1 � 1)X +O(�2); (7.80)so that 
olle
ting powers of � together we haveP0 + �P1 = A +BU0 + �XU0 + �X + �� BU1U0 + �X � (A +BU0 + �X)U1(U0 + �X)2 � +O(�2);(7.81)�̂0 + ��̂1 = �pg0 � papg0 (P0 � 1)X + ���pg0 � papg0 P1X�+O(�2): (7.82)



Chapter 7 1137.5.1 Leading order solutionIf we assume that R � � then the leading order system, as des
ribed by (7.74),(7.76), (7.78), (7.81) and (7.82), is�U0 1U 130 � 1(X + U0) 13 ! = _U206  1U 430 � 1(X + U0) 43 ! ; (7.83)�AR0�T = �43 _U0(x+ U0)AR0; (7.84)�AQ0�T = 23 _U0(x + U0)AQ0; (7.85)P0 = A+BU0 + �XU0 + �X ; (7.86)�̂0 = �pg0 � papg0 P0X: (7.87)with initial 
onditions U0(0) = 1; AR0(x; 0) = 1; AQ0(x; 0) = 1; �̂0(0) = 0; P0(0) =1 and we designate _U0(0) = 
v, where we assume 
v > 0. Multiplying the mo-mentum equation (7.83) by U 430 (X + U0) 43 yields,�U0U0(X + U0)�(X + U0) 13 � U 130 �� _U206 �(X + U0) 43 � U 430 � = 0; (7.88)To enable an analyti
 solution, and sin
e we are looking at the early time evo-lution of the bubble, we make the assumption that U0 � X and equation (7.88)redu
es to �U0U0 � _U206 = 0: (7.89)Figure 7.3 shows that this approximation is a reasonable one for very large X,(> O(103)) however, for values ofX of the order used previously [26℄ (X = 53:6),this approximation is not very a

urate. Therefore, we will study two regimes.In the �rst instan
e, the 
ase for large X is 
onsidered, sin
e a fully analyti
solution is a
hievable; the semi-analyti
 approa
h for smaller X is dis
ussed inSe
tion 7.5.1.2.
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Figure 7.3: Plots of the leading order inner solution U0 versus the inner temporalvariable T illustrating the e�e
t of X on the validity of the approximate analyti
leading order solution. The �gures show the numeri
al solution (blue line) of(7.88) and the approximate numeri
al solution (green line) produ
ed by (7.89)for two values of X. In (a)X = 50 and in (b) X = 1000. The initial 
ondition on_U0 is parameterised by 
v = 0:05. The plots demonstrate that the approximatesolution is only reasonable when X is large.



Chapter 7 1157.5.1.1 Case I: X � U0For X � U0 (7.89) 
an be transformed using U0(T ) = eaz(T ) to give�z + 5a6 _z2 = 0:Choosing a = 65 for 
onvenien
e results in the se
ond order, non-linear, ODE inz, �z + _z2 = 0: (7.90)Making another substitution, y = _z, redu
es this to the �rst order equationdydT = �y2; (7.91)whi
h 
an be integrated, as it is of separable type, and this leads toz = log jT + C2j+ C3;where C2 and C3 are arbitrary 
onstants of integration to be determined. Hen
eU0 = AjT + C2j 65 ; (7.92)where A = e 65C3 . Applying the initial 
ondition U0(0) = 1 allows the 
onstantA to be expressed in terms of C2 as follows,U0(0) = 1 = AjC2j 65 ;so that, A = jC2j� 65 ;and U0 = ����1 + TC2 ���� 65 (7.93)To determine the 
onstant of integration C2 we need an initial 
ondition on thevelo
ity _U0, denoted by _U0(0) = 
v. The derivative,_U0 = 65C2 ����1 + TC2 ���� 15 ;



Chapter 7 116evaluated at t = 0 gives, 65C2 = 
v:Rearranging we have C2 = 6=5
v and soU0 = ����1 + 5
v6 T ���� 65 : (7.94)We assume that 
v is always positive, otherwise no bubble expansion would o
-
ur. Therefore, sin
e T � 0 we 
an drop the modulus requirement on (1 + 5
vT=6)so that, U0 = �1 + 5
v6 T� 65 ; (7.95)des
ribes the leading order inner solution for non-dimensional bubble volume U0given by initial 
onditions U0(0) = 1 and _U0(0) = 
v and assuming X � U0.Figure 7.4 illustrates the form of the leading order solution U0(T ), for a parti
ularinitial 
ondition parameter 
v. This leading order solution is parameterised by
v only, and as 
v in
reases so does the �nal volume U0 on the given domain.Next we turn to the zero order rate equations for the orientation tensorarising from (7.76) and (7.78)�AR0�T (x; T ) = � 4 _U03(x + U0)AR0(x; T );�AQ0�T (x; T ) = 2 _U03(x + U0)AQ0(x; T ):We look �rst at AR0 whi
h 
an be solved by separating variables to give,AR0(x; T ) = C(x)(x + U0)� 43 ;where C(x) is an arbitrary fun
tion of integration. Appli
ation of the initial
onditions AR0(x; 0) = 1 and U0(0) = 1 givesAR0(x; T ) = 0� x+ 1x+ �1 + 5
v6 T �651A 43 : (7.96)



Chapter 7 117

0 200 400 600 800 1000

2

4

6

8

10

12

14

T

U
0

PSfrag repla
ementsU0Figure 7.4: A sample plot of the leading order inner solution U0 versus thestret
hed inner variable T , for X � U0, as modelled by (7.95). In this parti
ular
ase 
v = 0:01 and X = 1000.In the same way an expression for AQ0 
an be derived in terms of U0 and isstated below, AQ0(x; T ) = 0�x + �1 + 5
v6 T � 65x + 1 1A 23 : (7.97)The di�eren
e term (AR� AQ)0 is therefore,(AR � AQ)0 (x; T ) = 0� x + 1x+ �1 + 5
v6 T � 651A 43 �0�x + �1 + 5
v6 T � 65x+ 1 1A 23 : (7.98)Figure 7.5 illustrates the fun
tions AR0(x; T ), AQ0(x; T ) and the di�eren
e term(AR�AQ)0(x; T ) at a range of spatial positions in the Lagrangian 
uid envelopeand demonstrates that as distan
e from the liquid/gas interfa
e in
reases thesefun
tions tend to 
onstant values in time.The leading order solutions P0 and �0 are obtained by retaining only leading
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Figure 7.5: Sample plots for the inner solution forms (7.96), (7.97) and (7.98)for di�erent spatial values x given by (a), (b) and (
), respe
tively. In this 
aseX � U0 with 
v = 0:01 and X = 1000. Green 
urve: x = 0, Red 
urve: x = 10,Blue 
urve: x = 100, Purple 
urve: x = 1000. The plots demonstrate thatas we move further from the bubble boundary at x = 0 the �rst normal stressdi�eren
e, (AR � AQ)0, tends to zero and is 
onstant in time.



Chapter 7 119order terms in (7.81) and (7.82) respe
tively and substituting for U0 to giveP0 = A+B �1 + 5
v6 T � 65 + �X�1 + 5
v6 T �65 + �X ; (7.99)�0 = �pg0 � papg0 XP0: (7.100)These fun
tions are shown in Figure 7.6 whi
h 
learly demonstrates that �0 isdire
tly proportional to P0 in this parti
ular 
ase of instantaneous di�usion.
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P0Figure 7.6: Illustration of P0 (blue 
urve) and �0 (purple 
urve) versus the innerstret
hed variable T for the 
ase of instantaneous di�usion with X � U0. Forthis parti
ular example 
v = 0:01 and the leading order solution U0 is modelledby (7.95) with P0 and �0 des
ribed by (7.99) and (7.100), respe
tively. As theplot and equations illustrate, the leading order 
on
entration potential, �0, isdire
tly proportional to the leading order bubble gas pressure, P0, in the 
ase ofinstantaneous di�usion.7.5.1.2 Case II: X=U0 � O(1)For parameter sets 
ontaining X=U0 � O(1), the leading order inner solution,U0, is 
hosen empiri
ally in su
h a way as to minimise the error over the domain



Chapter 7 120of interest, whi
h in this 
ase we take to be T 2 (0; 1000). In the previousse
tion, for X � U0, the analyti
 solution U0 = (1 + 
vT=q)q where q = 6=5 wasderived and shown to be a reasonably a

urate approximation. Here a solutionof the same form is assumed, that is,U0 = �1 + 
vq T�q ; (7.101)but now the exponent q is determined numeri
ally. The normalised error betweenthe numeri
al solution of (7.88) and this ansatz is minimised by varying q. Theerror 
al
ulation is given by,e(q) = R Tend0 jUexa
t(T )� Uapprox(T; q)j dTR Tend0 Uexa
t(T )dT ; (7.102)where Uexa
t(T ) is the numeri
al solution of (7.88) and Uapprox(T; q) = (1 + 
vT=q)q.Figure 7.7 shows the error plots and a sample plot of the numeri
al solution andthe approximate analyti
 solution for two di�erent values of X, for a �xed 
hoi
eof parameter value 
v. Figures 7.7 (a) and (
) illustrate the 
ase when X = 50and (b) and (d) are for X = 1000. They demonstrate that as X in
reases themagnitude of the normalised error over the domain de
reases and the asso
i-ated value of q approa
hes 6=5. For values of X=U0 � O(1), therefore, thisminimising q value is determined and the leading order solution U0 is set toU0 = (1 + 
vT=q)q. Figure 7.8 demonstrates the improved a

ura
y of the semi-analyti
 solution derived for this se
ond 
ase where X=U0 � O(1) and 
omparesit with the analyti
 approximation whi
h assumes X � U0. The two approx-imate solutions are measured against the full numeri
 solution of (7.83) andthe semi-analyti
 result is 
learly the most a

urate although it is less useful interms of qualitative solution analysis.The fun
tion U0 is then used in Se
tion 7.5.2.2 to determine the approximate�rst order term U1 in 
ases where X=U0 � O(1).
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al solution of (7.83) (blueline). In this parti
ular 
ase 
v = 0:05 and X = 50.7.5.2 First order solutionHaving 
onstru
ted leading order solutions in the two regimes for the 
ases ofX � U0 and X=U0 � O(1), we now seek to derive the �rst order term U1 andhen
e 
onstru
t the �rst order asymptoti
 solution U � U0+ �U1. Taking termsof order � in (7.74), (7.76), (7.78), (7.81) and (7.82) results in the �rst ordersystem, �U1 1U 130 � 1(X + U0) 13 !� _U1 _U03  1U 430 � 1(X + U0) 43 !+U1 2 _U209  1U 730 � 1(X + U0) 73 !� �U03  1U 430 � 1(X + U0) 43 !!+4 _U03R � 1U0 � 1(X + U0)� = 0; (7.103)



Chapter 7 123�AR1�T = � 43(x + U0)  _U1AR0 � U1 _U0AR0(x + U0) + _U0AR1!� (AR0 � 1);(7.104)�AQ1�T = 23(x + U0)  _U1AQ0 � U1 _U0AQ0(x+ U0) + _U0AQ1!� (AQ0 � 1);(7.105)P1 = U1U0 + �X �B � A+BU0 + �XU0 + �X � ; (7.106)�̂1 = �pg0 � papg0 P1X: (7.107)As for the leading order solution, two separate 
ases are 
onsidered, namely largeX � U0 and X=U0 � O(1); an analyti
 solution 
an be derived in the former
ase while a semi-analyti
 solution 
an be found in the latter.7.5.2.1 Case I: X � U0Equation (7.103) 
an be expressed as�U1 + N2N1 _U1 + N3N1 U1 + N4N1 = 0; (7.108)where, N1 = 1U 130 � 1(X + U0) 13 ; (7.109)N2 = � _U03  1U 430 � 1(X + U0) 43 ! ; (7.110)N3 = 2 _U209  1U 730 � 1(X + U0) 73 !� �U03  1U 430 � 1(X + U0) 43 ! ; (7.111)N4 = 4 _U03R � 1U0 � 1X + U0� ; (7.112)



Chapter 7 124and U0(T ) = �1 + 5
vT6 � 65 ; (7.113)_U0(T ) = 
v �1 + 5
vT6 � 15 ; (7.114)�U0(T ) = 
2v6 �1 + 5
vT6 �� 45 : (7.115)The expressions for N i ; i = 1; � � � ; 4 
an be expanded in 1=X giving the leadingorder terms, N2N1 = � _U03U0 = � 2
v(6 + 5
vT ) ;N3N1 = 2 _U209U20 � �U03U0 = 6
2v(6 + 5
vT )2 ;N4N1 = 4 _U03RU 230 = 4
v6 353R(6 + 5
vT ) 35 :Substitution of these 
oeÆ
ients into equation (7.108), transforming to the vari-able z = (6 + 5
vT ) and multiplying by z2 yieldsz2 �U1 � 25z _U1 + 625U1 = � 4z26 3575R
vz 35 : (7.116)This is essentially the Euler di�erential equation [67℄z2 �U1 + az _U1 + bU1 = f(z); (7.117)with a = �25 ; b = 625 ; s = 1�a2 ; � = 12 j(1�a)2�4bj 12 > 0, giving the 
omplementaryfun
tion U 
1(z) = E1z(s+�) + E2z(s��);= E1z 65 + E2z 15 ;where the 
onstants E1 and E2 are to be determined from the initial 
onditions.Assuming a parti
ular integral, Up1 , of the form,Up1 (z) = Az 75 ;



Chapter 7 125and substituting into (7.116) givesA = � 6 35 29R
v ; and Up1 (z) = Az 75 :Therefore, the general solution isU1(z) = E1z 65 + E2z 15 � 2(6 35 )9R
v z 75 : (7.118)The initial 
onditions for the �rst order term U1(T ) are U1(0) = _U1(0) = 0 sothat in the transformed system (U1(z)) we have U1(6) = _U1(6) = 0 giving thefollowing values for the arbitrary 
onstantsE1 = 85R
v6 15 ; (7.119)E2 = �E1; (7.120)and so U1(z) = 2R
v  45(6 15 ) �z 65 � z 15�� 6 359 z 75! : (7.121)Rewriting in the original inner variable T ,U1(T ) = 2R
v  45(6 15 ) �(6 + 5
vT ) 65 � (6 + 5
vT ) 15�� 6 359 (6 + 5
vT ) 75! :(7.122)Combining the result for the leading order solution from Se
tion 7.5.1.1, withthis result for U1 the asymptoti
 inner solution, to �rst order, for instantaneousdi�usion where X � U0 
an be written asU(T ) = U0(T ) + �U1(T );= 2�R
v  45(6 15 ) �(6 + 5
vT ) 65 � (6 + 5
vT ) 15�� 6 359 (6 + 5
vT ) 75!+�1 + 5
v6 T� 65 : (7.123)A sample solution is displayed in Figure 7.9, and for the parameter set giventhis �rst order solution 
orresponds well with that generated using the numeri
al



Chapter 7 126solution of (7.108). Whereas the leading order solution (7.95) is parameterisedby the initial 
ondition 
v only, this �rst order solution is parameterised by 
v;R;and �.
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Figure 7.9: Plot of the leading order solution U = U0 (red dashed 
urve) asmodelled by (7.95) and the �rst order solution U = U0+�U1 (blue dashed 
urve)as predi
ted by (7.123) for the 
ase of X � U0 with instantaneous di�usion.The green 
urve, for 
omparison, is U = U0 + �U1 where U = U0 is modelled by(7.95) and U1 is determined numeri
ally from (7.108). The system parametersare given by 
v = 0:05, R = 1, and � = 0:001. For the numeri
al solution we
hoose X = 105.7.5.2.2 Case II: X=U0 � O(1)In this se
tion we examine the se
ond 
ase whi
h des
ribes 
onditions in whi
hevolving bubbles are 
losely spa
ed within the expanding foam so that X=U0 �O(1). We employ two approa
hes and then 
ompare the results. A semi-analyti
solution is �rst derived and then 
ompared to the numeri
al solution of (7.103).Equation (7.103) is rewritten by substituting for the leading order solutionU0(T ) = (1 + 
vT=q)q, where q was determined empiri
ally in Se
tion 7.5.1.2.



Chapter 7 127In (7.108) we then approximate the 
oeÆ
ients byN2(T )N1(T ) � S2(T ) = C2C1 + T ;N3(T )N1(T ) � S3(T ) = C3(C1 + T )2 ;N4(T )N1(T ) � S4(T ) = C4(C1 + T )p ;where Ci; i = 1; � � � ; 4 and the exponent p are to be determined. This yields theapproximate ODE in U1�U1 + S2(T ) _U1 + S3(T )U1 + S4 = 0: (7.124)The fun
tional forms for S2;S3;S4 are 
hosen in su
h a way as to make theanalyti
 approximation more tra
table, while at the same time maintaining areasonable degree of a

ura
y. That is, the denominator exponents for S2;S3are 
hosen as 1 and 2, respe
tively, in order to retrieve the Euler di�erentialequation (7.133) where z = (C1 + T ).First, the 
oeÆ
ients C1 and C2 that best des
ribe the fun
tion N2=N1 giventhe fun
tional form C2=(C1 + T ) are 
al
ulated. The following assignments aremade y2;0 = N2(0)N1(0) = C2C1 ; (7.125)y2;t� = N2(t�)N1(t�) = C2(C1 + t�) (7.126)where t� 
an be 
hosen to minimise the error of the approximation. The valuesfor C1; C2 are derived from (7.125) and (7.126), respe
tivelyC1 = t�y2;t�(y2;0 � y2;t�) ; C2 = t�y2;0y2;t�(y2;0 � y2;t�)giving the approximate fun
tion,S2;t� = t�y2;0y2;t�t�y2;t� + (y2;0 � y2;t�)T :



Chapter 7 128Figure 7.10 shows that the parti
ular 
hoi
e of t� is important for the a

ura
yof the approximating 
oeÆ
ients C1; C2. For ea
h 
hoi
e of t� the error was
al
ulated by integration of the absolute value of the di�eren
e between theexa
t fun
tion, N2(T )=N1(T ), and the parti
ular approximation, S2;t�(T ), overthe domain in T . This error value was then plotted against t�. This is denotedby e(t�) and is de�ned bye(t�) = Z Tf0 ����N2(T )N1(T ) � t�y2;0y2;t�t�y2;t� + (y2;0 � y2;t�)T ���� dT; (7.127)where the domain is given by [0; Tf ℄. Figure 7.10(a) shows the error fun
tionfor the determination of C1 and C2 and indi
ates a minimising value of t� = 300.This value is then used to 
onstru
t the best approximation fun
tion S2 whi
his shown as the blue 
urve in Figure 7.10(
).Having optimised and �xed C1; C2, the 
orresponding error values were 
al-
ulated and plotted for C3 and C4. We designate the �xed values of C1 and C2by C1 and C2 and next determine the fun
tion S3 as follows. We assigny3;t� = N3(t�)N1(t�) ; (7.128)so that S3 = C3(C1 + T )2 ; (7.129)where, C3(t�) = (C1 + t�)2y3;t�: (7.130)The 
hoi
e of t� used to 
al
ulate this value of C3 will result in a parti
ular errorvalue given by e(t�) = Z Tf0 ����N3(T )N1(T ) � y3;t�(C1 + t�)2(C1 + T )2 ���� dT: (7.131)Figure 7.10(b) shows the results of plotting this error fun
tion versus values oft� 2 [0; Tf ℄ and 
learly illustrates a minimising value for the 
hoi
e of t�. Thisvalue is then used to 
onstru
t the best approximation for S3 whi
h is thenplotted in Figure 7.10(d) with N3=N1 for 
omparison.
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Chapter 7 130Note, that in order to determine C4 the 
hoi
e of exponent p must also beoptimised. We would therefore need to de�ne an error fun
tion in terms of t�and p and optimise over the t� � p plane. We automate this 
hoi
e using anon-linear least squares algorithm and use the 
al
ulated values of p and t� thatminimise the error, to 
al
ulate C4 and 
onstru
t S4. Figure 7.11 shows the bestapproximate S4 plotted against the exa
t fun
tion N4=N1 over the domain fora parti
ular 
hoi
e of parameters 
v, R and X. Having derived the fun
tional
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Figure 7.11: Curves of the exa
t fun
tional form N4=N1 (blue 
urve) plottedalongside the best �t approximation for S4 (red 
urve) as predi
ted using a non-linear least squares algorithm. The error of the approximation was optimisedover the domain [0; 1000℄ for the 
hoi
e of t� and exponent p. The systemparameters are 
v = 0:05, q = 1:5, X = 50, and R = 1.forms for S2;S3 and S4 we 
an substitute them into (7.124) to give�U1 + C2(C1 + T ) _U1 + C3(C1 + T )2U1 + C4(C1 + T )p = 0; (7.132)where all 
oeÆ
ients and exponents were approximated in Se
tion 7.5.2.2. Trans-forming variables to z = C1 + T and multiplying a
ross by z2 gives,z2 �U1 + zC2 _U1 + C3U1 = �C4z(2�p); (7.133)



Chapter 7 131whi
h permits a 
omplementary fun
tion of the form [67℄,U 
1(z) = 8><>: jzj 1�C22 (E1jzj� + E2jzj��) if (1� C2)2 > 4C3;jzj 1�C22 (E1 + E2 log jzj) if (1� C2)2 = 4C3;jzj 1�C22 (E1 sin (� log jzj) + E2 
os (� log jzj)) if (1� C2)2 < 4C3:(7.134)where � = 1=2j(1 � C2)2 � 4C3j1=2. In the previous se
tion 7.5.2.2 only theexponential solution to the asso
iated Euler di�erential equation was permittedsin
e the 
oeÆ
ients of _U1 and U1 were known and �xed. In this 
ase, where C2and C3 depend on X and 
v, it is not immediately obvious whi
h bran
h of theEuler solution should be 
hosen for a given parameter set. Therefore, in thisse
tion we 
hose the same fun
tional form that was used in the 
ase of X � U0,so that (1 � C2)2 > 4C3 is satis�ed and the 
omplementary fun
tional form istherefore U 
1 = jzj 1�C22 (E1jzj� + E2jzj��) and the parti
ular integral is given byUp1 (z) = C4z(2�p)(2� p� s� �)(2� p� s+ �) ; where s = 1� C22 : (7.135)The general solution isU1(z) = E1jzjs+� + E2jzjs�� + E3z2�p; (7.136)where, E3 = � C4(2� p� s� �)(2� p� s+ �) : (7.137)and the 
onstants E1; E2 are determined from initial 
onditions, U1(T = 0) =_U1(T = 0) = 0, in the transformed variable z, that is, U1(z = C1) = _U1(z =C1) = 0, so that E1 = C42�(2� p� s� �)C(2�p�s��)1 ; (7.138)E2 = � C42�(2� p� s+ �)C(2�p�s+�)1 : (7.139)Rewriting in the original inner variable T therefore,U1(T ) = E1(C1 + T )(s+�) + E2(C1 + T )(s��) + E3(C1 + T )(2�p) (7.140)



Chapter 7 132and 
ombining with the leading order solution gives the �rst order inner asymp-toti
 approximate solution for �nite X as,U(T ) = �1 + 
vq T�q+� �E1(C1 + T )(s+�) + E2(C1 + T )(s��) + E3(C1 + T )(2�p)� :(7.141)In Figure 7.12 we 
ompare this analyti
 �rst order approximate solution (blue
urve) to the �rst order solution (green 
urve) using U1 generated via the nu-meri
al solution of the original ODE equation (7.108). The approximation isless a

urate than in the 
ase for X � U0 (see Figure 7.9).
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Figure 7.12: Plot 
omparing the leading order solution U = U0 (red 
urve) asmodelled by (7.101) and the �rst order solution U = U0 + �U1 given by (7.141).In this 
ase X is O(U0) and an approximate analyti
 solution is 
hosen for U0 asdes
ribed in Se
tion 7.5.1.2 and for U1 as des
ribed in Se
tion 7.5.2.2. The green
urve, for 
omparison, is U = U0 + �U1, where U0 is determined as des
ribedabove and U1 is the numeri
al solution of (7.108). The pertinent parametervalues are 
v = 0:05, q = 1:5, R = 1 and X = 50.



Chapter 7 1337.5.3 Dis
ussionIn Se
tion 7.5 we derived two possible �rst order inner solutions for U . The �rstwas an analyti
 solution for Case I, when X � U0, given by,U(T ) = �1 + 5
v6 T� 65+ 2�R
v  45(6 15 ) �(6 + 5
vT ) 65 � (6 + 5
vT ) 15�� 6 359 (6 + 5
vT ) 75! ;(7.142)and the se
ond was a semi analyti
 approximation for Case II when X=U0 �O(1),U(T ) = �1 + 
vq T�q+� �E1(C1 + T )(s+�) + E2(C1 + T )(s��) + E3(C1 + T )(2�p)� ;(7.143)where E1; E2 and E3 are de�ned by (7.138), (7.139) and (7.137) respe
tively.In Case I the dependen
e of the solution on the system parameters 
v; �;R isexpli
it whereas in Case II this dependen
e is impli
it and 
an only be illustratednumeri
ally whi
h is a drawba
k of the semi-analyti
 solution.We 
annot make a dire
t 
omparison between Cases I and II, sin
e one of theparameters X ne
essarily 
hanges giving a di�erent solution for ea
h 
ase. We
an, however, 
on
lude that the a

ura
y of the �rst order solutions predi
tedin Case I (X � U0) is greater than observed in the semi-analyti
 solutionsprodu
ed in Case II (X=U0 � O(1)), when both solutions are 
ompared to theirasso
iated numeri
al solution of (7.108). Sin
e we are 
onsidering the innersolution, Case I (X � U0) is most relevant as it des
ribes the polymerisation atearly time when small bubbles are surrounded by a large 
uid volume.For Case I we 
an examine the e�e
t of inertia on the analyti
 �rst ordersolution by altering the grouped parameter R while keeping � and 
v �xed. Inorder to 
ompare these results with the 
ase of negligible inertia we solve (7.63)



Chapter 7 134for R = 0, to �rst order in � as follows:43 _U � 1U � 1X + U� = 0; (7.144)so that, for the stret
hed inner variable T , X � U (as in Case I) we obtain theordinary di�erential equation _U = 0 with solution U = 
vT +1 where the initial
onditions are given by _U(0) = 
v and U(0) = 1. In Figure 7.13 we 
an seethat for �xed values of � and 
v, as R in
reases the bubble volume, U , in
reasesmore rapidly as inertia in
reases and 
onverges to the leading order solutionU0 = (1 + 5
vT=6)6=5. It is important to note that these analyti
 solutions areonly valid for R � � on the times
ale t = �T .For further dis
ussion of the signi�
an
e of the relationship between R and� see Se
tion 7.7.7.6 Asymptoti
 analysis: Outer solutionIn Se
tion 7.5.1 we stret
hed the time variable t a

ording to T = t=� andexpanded in terms of � to derive the inner solution. Then for the sake of amore 
onvenient analysis we assumed the following relationship in s
ale betweenthe inertia-type grouped parameter R and � su
h that R � �. In this way wewere able to redu
e (7.74) to (7.83) and thus derive the analyti
 form for thesolution, (7.123), for the parti
ular 
ase when X � U0. For the outer solutionwe expand in R noting the s
aling assumption we made for the inner solution,namely, R � �. We, therefore, look for an expansion, in the outer temporalvariable, t, of the formu(t;R) = u0(t) +Ru1(t) +O(R2); (7.145)Arr(x; t;R) = Arr0(x; t) +RArr1(x; t) +O(R2); (7.146)A��(x; t;R) = A��0(x; t) +RA��1(x; t) +O(R2): (7.147)
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)(d)Figure 7.13: Plots illustrating the following analyti
 solutions for Case I (X �U0): the leading order solution (7.95) U = U0 (red 
urve), the �rst order solutionU = U0 + �U1 (blue 
urve) given by (7.123) and the leading order solution inthe 
ase of negligible inertia, U = 
vT + 1 (purple 
urve). In all 
ases � = 10�4,
v = 0:05 and R � �. The grouped parameter R is given by (a) R = 0:05, (b)R = 0:1, (
) R = 0:3 and (d) R = 1:0. These �gures demonstrate that as Rin
reases within this regime, the bubble volume in
reases more rapidly.



Chapter 7 136Substituting for (7.145) in (7.62) we 
an derive the expansion for Pg as followsPg = A+B(u0 +Ru1) + �Xu0 +Ru1 + �X +O(R2);= A+Bu0 +RBu1 + �X(u0 + �X)�1 +R u1u0+�X� +O(R2);= (A+Bu0 +RBu1 + �X)u0 + �X �1� Ru1u0 + �X�+O(R2);= �A+Bu0 + �Xu0 + �X �+R� Bu1u0 + �X � u1(A +Bu0 + �X)(u0 + �X)2 �+O(R2);= Pg0 +RPg1 +O(R2):Using these in (7.48) we get the following43( _u0 +R _u1)� 1u0 +Ru1 � 1(X + u0 +Ru1)�+R"(�u0 +R�u1) 1(u0 +Ru1) 13 � 1(X + u0 +Ru1) 13 !�( _u0 +R _u1)26  1(u0 +Ru1) 43 � 1(X + u0 +Ru1) 43 !#= De(Pg0 +RPg1 � Pu) + 23
 Z X0 (Arr0 +RArr1)� (A��0 +RA��1)(x+ u0 +Ru1) dx� 1�(u0 +Ru1) 13 +O(R2):Using a Taylor series expansion we 
an write this as43( _u0 +R _u1) � 1u0 �1� Ru1u0 �� 1(X + u0) �1� Ru1(X + u0)��+R"(�u0 +R�u1) 1u 130 �1� Ru13u0 �� 1(X + u0) 13 �1� Ru13(X + u0)�!�( _u0 +R _u1)26  1u 430 �1� 4Ru13u0 �� 1(X + u0) 43 �1� 4Ru13(X + u0)�!#= De(Pg0 +RPg1 � Pu)� 1�u 130 �1� Ru13u0 �+23
 Z X0 (Arr0 +RArr1)� (A��0 +RA��1)(x+ u0) �1� Ru1(x+ u0)� +O(R2):



Chapter 7 137To leading order in R, therefore, the momentum equation is43 _u0� 1u0 � 1X + u0� = De(Pg0�Pu)+ 23
 Z X0 (Arr � A��)0x + u0 dx� 1�u 130 : (7.148)We then expand the other equations in the system in the same way, so that toleading order in R we have�Arr0�t = �43 _u0Arr0(x + u0) � (Arr0 � 1): (7.149)and �A��0�t = 23 _u0A��0(x + u0) � (A��0 � 1): (7.150)7.6.1 Leading order system for the outer solutionAssembling the leading order equations together then,_u0 = 3u0(X + u0)4X  De(Pg0 � Pu) + 23
 Z X0 (Arr � A��)0x + u0 dx� 1�u 130 ! ;(7.151)�Arr0�t = �43 _u0(x + u0)Arr0 � (Arr0 � 1); (7.152)�A��0�t = 23 _u0(x+ u0)A��0 � (A��0 � 1); (7.153)Pg0 = A +Bu0 + �Xu0 + �X ; (7.154)�0(x; t) = �pg0 � papg0 (Pg0 � 1)X; (7.155)with the arbitrary initial 
onditions u0(t�) = u�0, Pg0(t�) = P �g0, Arr0(x; t�) =A�rr0(x), A��0(x; t�) = A���0(x) and �0(t�) = ��0.In order to make analyti
al headway we need to derive an expression for theintegrand in the momentum equation, that is (Arr �A��)0=(x+ u0). We 
an dothis by applying the integrating fa
tor method to the temporal integration ofthe rate equations in Arr0 and A��0 . We pro
eed by rearranging (7.152) to give,�Arr0�t + �43 _u0(x + u0) + 1�Arr0 = 1;



Chapter 7 138and employing the integrating fa
tor,p(x; t) = exp�Z �43 _u0x+ u0 + 1� dt� ;= et(x + u0) 43 ;we obtain an expression for Arr0(x; t) in terms of x, u0(t) and a fun
tion ofintegration C(x),Arr0(x; t) = e�t(x+ u0)� 43 �Z t et̂(x + u0) 43dt̂+ C(x)� ;where C(x) is given by the initial 
onditions as followsA�rr0(x; t�) = A�rr0(x) = e�t�(x + u�0)� 43 �Z t� et̂(x + u0) 43dt̂+ C(x)� :Rearranging for C(x) gives,C(x) = et�(x+ u�0) 43A�rr0(x)� Z t� et̂(x+ u0) 43dt̂and therefore,Arr0(x; t) = e�t(x+ u0)� 43 Z tt� et̂(x+ u0) 43dt̂+A�rr0(x)et��t�x + u�0x + u0� 43 : (7.156)Similarly,A��0(x; t) = e�t(x+ u0) 23 Z tt� et̂(x+ u0)� 23dt̂+A���0(x)et��t�x + u0x + u�0� 23 : (7.157)The fun
tion (Arr � A��)0(x) is obtained by simply subtra
ting A��0(x) fromArr0(x),(Arr � A��)0(x; t) = e�t �(x + u0)� 43 Z tt� et̂(x + u0) 43dt̂� (x + u0) 23 Z tt� et̂(x+ u0)� 23dt̂+ et�  A�rr0(x)�x + u�0x + u0� 43 � A���0(x)�x + u0x + u�0� 23!#(7.158)



Chapter 7 139Finally, we 
an des
ribe the integrand I(u0; x; t) = (Arr � A��)0(x; t)=(x + u0)asI(u0; x; t) = (Arr � A��)0 (x; t)(x + u0) ;= I1(u0; x; t)� I2(u0; x; t) + I3(u0; x; t);= f1(u0; x; t) Z tt� k1(u0; x; t̂)dt̂� f2(u0; x; t) Z tt� k2(u0; x; t̂)dt̂+ f3(u0; x; t);where,f1(u0; x; t) = e�t(x+ u0)� 73 ;f2(u0; x; t) = e�t(x+ u0)� 13 ;f3(u0; x; t) = et��t �A�rr0(x)(x + u�0) 43 (x+ u0)� 73 � A���0(x)(x + u�0)� 23 (x + u0)� 13� ;k1(u0; x; t̂) = et̂(x+ u0) 43 ;k2(u0; x; t̂) = et̂(x+ u0)� 23 :7.6.2 Analyti
 Pi
ard iteration to determine the leadingorder outer solutionTo leading order the momentum equation (7.151) 
an thus be written,_u0 = 34 u0X (X+u0)"De�A+Bu0 + �Xu0 + �X �� PuDe + 23
 Z X0 I(u0; x; t)dx� 1�u 130 # ;(7.159)that is,_u0 = 34 u0X (X + u0)(De�A+Bu0 + �Xu0 + �X �� PuDe� 1�u 130+23
e�t" Z X0  (x + u0)� 73 Z t et̂(x+ u0) 43dt̂� (x + u0)� 13 Z t et̂(x + u0)� 23dt̂+ et� �(x+ 1) 43 (x+ 1)� 73 � (x + 1)� 23 (x+ 1)� 13�!dx#):This is of the form, _u0 = g(u0; t); (7.160)



Chapter 7 140and an approximate solution 
an be found using the Pi
ard iteration method [10℄.We derive the �rst Pi
ard iterate, up10 (t), analyti
ally and then produ
e a nu-meri
al algorithm to test the a

ura
y of this �rst analyti
 iteration. The �rstiteration of the Pi
ard method is given by,up10 (t) = u�0 + Z tt� g(u�0; t)dt; (7.161)where u�0 = u0(t�) so that, for example, assigning t� = 0, u0(0) = Arr0(x; 0) =A��0(x; 0) = 1 we haveg(1; t) = 3(X + 1)4X �De�A+B + �X1 + �X �� PuDe� 1�+23
e�t" Z X0  (x + 1)� 73 Z t0 et̂(x + 1) 43dt̂� (x+ 1)� 13 Z t0 et̂(x+ 1)� 23dt̂+ �A�rr0(x)(x + u�0) 43 (x + u0)� 73 � A���0(x)(x + u�0)� 23 (x+ u0)� 13�!dx#):The �rst two integrals 
an
el ea
h other out and, the spatial integral vanishesso that g(1; t) = C5;where we assignC5 = 3(X + 1)4X "De�A+B + �X1 + �X �� PuDe� 1�#:The �rst iterate of the Pi
ard approximation, for the leading order outer solutionis therefore, u(p1)0 = u�0 + Z tt� g(u�0; t̂)dt̂;= 1 + Z t0 C5dt̂; (7.162)= 1 + C5t;sin
e the parti
ular initial 
onditions 
hosen pres
ribe a fun
tion of integrationequal to zero. Therefore, u(p1)0 = 1 + C5t; (7.163)
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h is simply a linear solution. The se
ond Pi
ard iteration is given byu(p2)0 = 1 + Z t0 g(1 + C5t̂; t̂)dt̂: (7.164)However, due to the 
omplexity of the momentum equation and the form ofthe �rst Pi
ard iterate, the analyti
 form for the se
ond iteration would be
umbersome and unwieldy. So in order to assess the a

ura
y of the �rst Pi
arditerate, (7.159) was solved numeri
ally, in Se
tion 7.6.3.Plots of this leading order analyti
 Pi
ard approximation are illustrated inFigures 7.14 (a) and (b), for a range of values of Pu and De, respe
tively. Thegrouped parameter De is the ratio of the bubble growth rate in the solvent tothe relaxation rate of the polymer and is inversely proportional to the vis
osityvalue �. We 
an see from Figure 7.14 (b) that as vis
osity de
reases, for a
onstant initial gas pressure di�eren
e a
ross the bubble wall, the initial bubblegrowth rate in
reases as expe
ted. However, we will see in the next se
tionthat, although the numeri
al solution predi
ts the same qualitative in
rease itasymptotes to a steady state value whereas the Pi
ard solution does not. Thisis not unexpe
ted sin
e we have only 
arried out one iteration of the Pi
ards
heme and have retrieved the leading order linear solution (7.163). This leadingorder solution is relatively a

urate near to the inital bubble volume but ast in
reases this solution is no longer a

urate, as illustrated in Figure 7.15.The Pi
ard method is a fun
tion wise iteration and would require several moreiterations to produ
e a reasonable approximation over a larger domain interval.Theoreti
ally this is possible but due to the 
omplexity of the system and theintegro-di�erential momentum equation we do not pro
eed down this analyti
alpath.The relationship between the irradiating a
ousti
 standing wave pressureamplitude, Pu, and the �nal bubble volume 
an be observed in Figure 7.14 (a)and implies that in
reasing this amplitude suppresses the speed of bubble volume



Chapter 7 142growth at early time. Sin
e this linear approximation does not asymptote as wewould expe
t the numeri
al solution to do, we 
annot predi
t the e�e
t of thepressure amplitude on the steady state bubble volume. We will investigate thise�e
t in the following se
tion when we perform a numeri
al analysis for the outersolution in the 
ase of instantaneous di�usion.7.6.3 Numeri
al solution of the leading order momentumequationThe momentum equation (7.159) 
ontains an integral in t within an integral overx. For the temporal integrals within the integrand I(u0; x; t) we use a quadraturerule with weightings �k, where u0k = u0(t̂k); t̂1 = t�; t̂j = tj and tj 2 [t�; t℄ togive,I1(tj) = e�tj (x + u0j)� 73 jXk=1 �ket̂k(x + u0k) 43 ;I2(tj) = e�tj (x + u0j)� 13 jXk=1 �ket̂k(x + u0k)� 23 ;I3(tj) = et��tj �A�rr0(x)(x + u0�j) 43 (x+ u0)� 73 � A���0(x)(x + u�0)� 23 (x + u0j)� 13� :The spatial integral 
an be written asÎ = Î1 � Î2 + Î3; where Îi = Z X0 Iidx; i = 1; 2; 3;so that, for example,Î1(tj) = Z X0 e�tj (x+ u0j)� 73 jXk=1 �ket̂k(x+ u0k) 43dx:



Chapter 7 143

0 200 400 600 800 1000
0

2000

4000

6000

PSfrag repla
ements t
up 1 0

(b)

(a)

0 200 400 600 800 1000
0

200

400

600

PSfrag repla
ements t
up 1 0

(b)

(a)Figure 7.14: Plots of the �rst Pi
ard iterate solution, up10 for a range of valuesof (a) De (whi
h is inversely proportional to vis
osity) and (b) Pu, the non-dimensional value for the pressure amplitude of the irradiating a
ousti
 standingwave. The initial 
onditions and parameters 
ommon to both plots are as follows:t� = 0, u� = 1, X = 1000, pa = 105, pg0 = 10pa, � = 0:32, � = 1000. In (a)Pu = 0 and the range of values for De are 0.1 (blue line), 1 (red line), 10 (greenline), and in (b) the non-dimensional pressure amplitude values, Pu, are zero(blue line), 0.03 (red line), 0.05 (green line), 0.10 (
yan line), 0.50 (magentaline), with De �xed at 1.



Chapter 7 144We introdu
e a quadrature in x via the weightings �L to give,Î1(tj) = e�tj mXL=1 �L(xL + u0j)� 73 jXk=1 �ket̂k(xL + u0k) 43 ;Î2(tj) = e�tj mXL=1 �L(xL + u0j)� 13 jXk=1 �ket̂k(xL + u0k)� 23 ;Î3(tj) = et��tj mXL=1 �LA�rr0(x)(xL + u0j)� 73 (xL + u�0) 43�et��tj mXL=1 �LA���0(x)(xL + u0j)� 13 (xL + u�0)� 23 :So we have dis
retised the leading order momentum equation for the outer so-lution viadu0jdt = 3u0j4X (X+u0j)0�De�A+Bu0j + �Xu0j + �X �� PuDe� 1�u0 13j + 23
Î(u0j; tj)1A :(7.165)We use the following Euler iterative s
heme to then integrate in time this non-linear system of ODEs, to giveu0j+1 = u0j + Æt3u0j4X (X + u0j)�DeA+Bu0j + �Xu0j + �X � PuDe� 1�(u0j) 13 + 23
Î(u0j; tj)! ;with initial 
onditions u0(t�) = u�0, Arr0(x; t�) = A�rr0(x) and A��0(x; t�) =A���0(x). For the purpose of 
onstru
ting Figure 7.15 we 
hoose t� = 0 andu� = A�rr0(x) = A���0(x) = 1. We use the Composite Simpson rule with quadra-ture weightings, �1 = �m = h3 ; �j = 8<: 43h; j even23h; j odd ;where h = Æx; Æt and the a

ura
y is O(h4).Figure 7.15 shows an example solution using this numeri
al analysis. As forthe analyti
 Pi
ard method, we look at the e�e
t of altering the vis
osity via



Chapter 7 145the dimensionless grouped parameter, De and the dimensionless applied a
ousti
pressure amplitude, Pu; the results of this are shown in Figure 7.16. In the 
aseof instantaneous di�usion we 
an see, from Figure 7.16 (a), that an in
rease inPu results in a de
rease in the �nal bubble volume though the time to a
hievethis steady state solution is una�e
ted. In (b) we see the 
onverse e�e
t due toin
reasing vis
osity; that is, the steady state bubble volume is una�e
ted butthe time required to rea
h this steady state volume is in
reased.7.7 Dis
ussionIn this Chapter we derived a governing system of 
oupled equations to des
ribethe evolution of a non-rea
ting polymer foam in
orporating the e�e
ts of inertiaand an irradiating a
ousti
 signal. Having made an assumption of instantaneousdi�usion we were then able to partially de
ouple the system.An asymptoti
 analysis was performed to derive inner solutions in the s
aledtemporal variable, T . Both leading and �rst order solutions, for the non dimen-sional bubble volume were derived in two di�erent regimes; the �rst des
ribedthe 
ase when the ratio of the bubble volume to surrounding 
uid volume isvery small and the se
ond pertains to the 
ase when they are of the same order.The �rst instan
e des
ribes the non-rea
ting foam at early time when the bub-bles have just nu
leated and individual bubbles are lo
ated at large distan
esfrom neighbouring bubbles; the se
ond 
ase des
ribes a time nearer to 
om-pletion when the bubbles are 
losely spa
ed and the 
uid volume surroundingindividual bubbles is smaller.In Case I, X � U0, we were able to derive an analyti
 solution to leadingorder and �rst order. The leading order solution was parameterised by the initial
ondition only and des
ribed the relationship between bubble volume and timeas U / t6=5. The leading order solution in the 
ase of negligible inertia waslinear so the e�e
t of inertia is to in
rease the bubble growth rate to leading
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Figure 7.15: (a) The �rst iterate, up10 , for the analyti
 Pi
ard solution (red line)given by (7.163) and the asso
iated numeri
al solution 
al
ulated using the Euleriterative s
heme as desribed in Se
tion 7.6.3. The zoomed in plot (b) shows thatthis �rst iterate is only reasonably a

urate 
lose to the initial 
ondition at t� = 0and does not provide a good des
ription of u0 as t > t�. The initial 
onditionsand parameters 
ommon to both plots are as follows: t� = 0, u� = 1, X = 1000,pa = 105, pg0 = 10pa, � = 0:32, � = 1000, 
 = 1, Pu = 0 and De = 1.
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Figure 7.16: The numeri
al solution of (7.165) and how it is a�e
ted by (a)a
ousti
 pressure amplitude, Pu, and (b) vis
osity via the dimensionless groupedparameterDe. In (a) the values of Pu are zero (blue line), 0.03 (red line) and 0.05(green line). The Deborah numbers, De, in (b) are 0.1 (blue line), 1.0 (red line)and 10.0 (green line), 
orresponding to vis
osity values of 9 � 106, 9� 105 and9� 104, respe
tively. These are all realisti
 vis
osity values for polymer foams.The initial 
onditions and parameters 
ommon to both plots are as des
ribedin Figure 7.15 ex
ept for those parameter values detailed above for (a) and (b).Note that these Pu = 0:03 and Pu = 0:05 relate to a
ousti
 pressure amplitudevalues of pu = 2:7� 104 Pa and 4:5� 104, respe
tively, and re
e
t instrumentalvalues. The a
tual pressure amplitude, in situ would be mu
h lower due to thee�e
ts of attenuation as we shall see in Chapter 8.



Chapter 7 148order. The �rst order solution was parameterised by the initial 
ondition andthe parameter des
ribing inertia, R. However, this solution is only a

uratefor large X. As R in
reases, with other parameters �xed, the �rst order innersolution predi
ts an in
rease in bubble growth rate with in
reasing inertia, asillustrated in Figure 7.13.In Case II, X=U0 � O(1), we were able to derive a semi-analyti
 solution, forthe leading and �rst order 
ases, by 
onsideration of the normalised error fun
-tions over the domain of interest. Although these solutions had to be derived, inpart, numeri
ally, they did provide improved a

ura
y for smaller values of X.Their dependen
e on the system parameters is impli
it and therefore they 
an-not be used to predi
t the e�e
t of individual parameters on the �nal solution.Further work in this area would involve deriving the se
ond order inner solu-tions, whi
h would in
lude a greater number of parameters in the solution sin
ethe right hand side of (7.63) is of order �2. This would give greater qualitativeand quantitative insight into the e�e
ts of the a
ousti
 pressure amplitude, Pu,for example.In Se
tion 7.6.1 we investigated the outer asymptoti
 solution, whi
h essen-tially des
ribes the 
ase assuming no inertia. The outer problem is de�ned by a
omplex system of �ve 
oupled equations, one of whi
h is an integro-di�erentialequation. This makes an analyti
 solution very hard to obtain. The assumptionof instantaneous di�usion allowed us to de
ouple the 
on
entration potentialequation from the system and we were further able to produ
e an expli
it formfor the integrand, (Arr � A��)0=(x + u0). It was thus possible to use this todes
ribe the bubble volume evolution via a single integro-di�erential equation,(7.159).The inner and outer asymptoti
 solutions have been derived as des
ribedabove. The inner asymptoti
 expansion is in � and the outer asymptoti
 expan-sion is in R with the following pres
ribed relationship of s
ale between them:



Chapter 7 149R � �. We have not attempted to mat
h the inner and outer solutions as weare interested in the early time behaviour only. However, it is important to notethat if mat
hing were ne
essary then we must de�ne quantitatively the relation-ship between � and R so that we 
ould mat
h the inner solution, as the innertemporal variable, T !1, to the outer solution as the outer temporal variable,t! 0.The Pi
ard iteration method was then 
hosen to derive a leading order an-alyti
 solution. The leading order solution was linear in the outer temporalvariable t (7.163) and would not be expe
ted therefore to asymptote as thenumeri
al solution predi
ts; this is illustrated in Figure 7.15 where the Pi
ardsolution (blue line) is 
ompared to the numeri
al solution (red line). Althoughthe leading order Pi
ard solution is not a

urate over the whole domain of inter-est it is reasonably 
lose to the numeri
al solution for early time. It must also beremembered that it is just a leading order solution and further iterations wouldneed to be performed to improve the a

ura
y of this analyti
 approximation.The Pi
ard iteration method 
onverges ve
tor wise as opposed to the pointwise
onvergen
e of other s
hemes e.g. the Euler s
heme, although 
onvergen
e 
anoften be a problem [10℄. Theoreti
ally, it is possible to derive higher order termsfor this system, however, due to the 
omplexity of the integro-di�erential mo-mentum equation we did not perform further iterations and instead employed anumeri
al algorithm to measure the a

ura
y of the Pi
ard iterate (as dis
ussedabove) and to investigate 
ertain parameter e�e
ts su
h as a
ousti
 amplitude,Pu, and vis
osity via the grouped parameter De. We demonstrated that an in-
rease in the a
ousti
 pressure amplitude of the standing wave irradiating thesystem results in a redu
ed steady state bubble volume but does not a�e
t thetime taken to rea
h this steady state value. In
reasing vis
osity, on the otherhand, does not a�e
t the �nal bubble volume but does result in a longer timebefore the steady state is a
hieved. This e�e
t was also des
ribed by Everitt et



Chapter 7 150al. [26℄ who demonstrated two distin
t phases of bubble growth in the 
ase ofinstantaneous di�usion; an initial rapid expansion in bubble volume followed bya slower se
ond phase. In Figure 7.16 (b) we observe the analyti
 inner solutionwhi
h des
ribes the bubble growth at early time and it agrees qualitatively withthe results reported by Everitt et al. [26℄ for their numeri
al solution at earlytime.Both these fa
tors, Pu and De, 
ould have an e�e
t on a bubble size dis-tribution within an expanding polymer foam and in the following 
hapter weinvestigate the e�e
t of the a
ousti
 pressure amplitude of the irradiating stand-ing wave used, by Torres-San
hez et al. [93℄, to tailor the bubble size distributionin a rea
ting polymer foam. Torres-San
hez et al. reported a 
orrelation betweenthe a
ousti
 pressure amplitude at a given spatial point and the porosity valueat that point with porosity dire
tly proportional to the pressure amplitude.The porosity value is related to bubble volume and in the following 
hapter wedevelop a mathemati
al model in order to tra
k the bubble growth of a homoge-neous distribution of bubbles under the in
uen
e of an a
ousti
 standing wave,in order to demonstrate mathemati
ally the same relationship observed by [93℄between porosity/bubble size and a
ousti
 pressure amplitude. First we willlook at the extra fa
tors that need to be 
onsidered in the rea
ting system asopposed to the non-rea
ting system and derive a s
heme to des
ribe the evolu-tion of a single bubble in an expanding rea
ting polymer foam. We negle
t thee�e
ts of inertia and des
ribe the evolving rheology of the 
uid using a multi-mode Oldroyd B system as �rst proposed by Everitt et al. [26℄. Having thusprodu
ed solutions for single bubbles evolving under the in
uen
e of a givena
ousti
 pressure amplitude value, Pu, we then de�ne a framework within whi
hto des
ribe the bubble-bubble intera
tion of a homogeneous bubble distributiona
ross the sample.



Chapter 8Modelling the e�e
t ofultrasound on the porositypro�le in a rea
ting polymer
In the previous 
hapter inertia was introdu
ed into a model for the dynami
sof a single bubble in a non-rea
ting polymer foam. By assuming instantaneousdi�usion and large 
uid volume X, an analyti
 inner solution was derived usingan asymptoti
 expansion. This 
hapter is motivated by the experimental work
arried out by Torres-San
hez et al. [92, 93℄, to produ
e the �rst model of theirobservations, namely, that porosity varies in dire
t proportion to the a
ousti
pressure magnitude of the ultrasound signal [93, 94℄. To this end, the se
ondrea
ting model proposed by Everitt et al. [26℄, whi
h in
orporates gas produ
tionand evolving 
uid rheology, was extended to in
lude the e�e
ts of ultrasound.Due to the extra level of 
omplexity in this rea
ting system, and the parti
ularparameterisation of the model, inertia was assumed to be negligible. In order toillustrate the e�e
ts that an ultrasound standing wave 
an have on the polymerfoam density, a simulation of the di�erential growth dynami
s of a series ofadja
ent bubbles was performed.The original work in this 
hapter, whi
h builds on the model derived byEveritt et al. is 
ontained in the following se
tions: the e�e
t of the a
ousti
151



Chapter 8 152pressure amplitude term, Pu, in
orporated into the momentum equation (8.1)is illustrated in Se
tion 8.4. As opposed to Everitt et al. [26℄ we derive theanalyti
 solution for the extent of rea
tion, �, in Se
tion 8.1. Although wehad the rea
ting model as published by Everitt et al. no numeri
al 
ode wasavailable and therefore we developed one from s
rat
h. The results from ournumeri
al s
heme were validated by 
omparison with plots produ
ed in [26℄to ensure that it was working 
orre
tly. The model was then applied to theexperiment des
ribed by Torres San
hez et al. [93℄ and the results 
an be seenin Se
tion 8.2. Se
tions 8.5 and 8.6 outline the development of a new model totra
k the bubble size distribution pro�le for a given number of post nu
leatedbubbles sited at di�erent spa
ing intervals a
ross the sample, and two metri
sare proposed to quantify the heterogeneity in the resultant distribution. Some ofthis derivation was based on data produ
ed and published by Torres-San
hez etal. [92℄ and is presented in Se
tion 8.5. An explanation of the derivation of theelasti
 modulus term, G(t), published in [26℄ is given in Se
tion 8.1.2 in orderto aid understanding of the model.The 
orresponding rea
ting model is developed, in this 
hapter, to des
ribethe experimental system of Torres-San
hez [93℄; however, due to its added layerof 
omplexity, the rea
ting model will be given a numeri
al treatment.The reader is dire
ted to Everitt et al. [26℄ for a full des
ription and non-dimensionalisation of the governing system of equations and boundary and initial
onditions. Here we simply restate the non-dimensionalised system proposedby [26℄ and explain the origin and derivation of the additional terms due to the
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tion.43 _u �1u � 1X + u� = (Pg � Pu)M + 23
 �xX�=�
h G(�)G0 Z X0 (Arr � A��)x+ u dx� 1� (u) 13 ;(8.1)�Arr�t = � 4 _u3 (x+ u)Arr � �
� (Arr � 1) ; (8.2)� (Arr � A��)�t = 2 _u3(x+ u) [(Arr � A��)� 3Arr℄� �
� (Arr � A��) ; (8.3)�pa + (pg0 � pa)Pgpg0 � u = 1 + �� papg0X (�(0; t) + (�� �0)) ; (8.4)���t = N(x + u) 43 �2��x2 � 1X d�dt (X � x): (8.5)Boundary 
onditions ���x = 1�X pg0 � papa (Pg � 1); x = 0; (8.6)�2��x2 = 0; x = X: (8.7)Initial 
onditionsArr(0) = 1; (Arr � A��) (0) = 0; u(0) = 1; Pg(0) = 1; �(0) = 0,where the dependent variables are as follows: u(t) is the dimensionless bubblevolume, Pg(t) is the dimensionless bubble gas pressure, Arr(x; t) and A��(x; t)are the diagonal 
omponents of the orientation tensor A(x; t) and �(x; t) is thedimensionless gas 
on
entration potential through in the liquid. The indepen-dent variables are x; t. The parameters are as follows: X is the dimensionlessouter 
uid volume, Pu is the dimensionless a
ousti
 pressure amplitude, M isthe ratio of the rate of bubble growth to the rea
tion rate and is de�ned in Table8.1, G0 is the elasti
 modulus of the fully developed gel, 
 is the ratio of polymerto solvent 
ontributions to the steady shear vis
osity and is de�ned in Table 8.1,� is the ratio of vis
ous for
e to surfa
e tension de�ned in Table 8.1, G(�) is therelaxation modulus for a mole
ule with relaxation rate � and 
� is the rea
tionrate 
onstant. The remaining parameters are de�ned and quanti�ed in Table8.2.



Chapter 8 154The non-dimensional grouped parameters di�er slightly from those of thenon-rea
ting model, due to the in
lusion of a rea
tion rate 
onstant 
�, and arelisted in Table 8.1. Individual parameters for the rea
ting system are des
ribedand quanti�ed in Table 8.2. The 
onstru
tion of the evolving relaxation modu-lus term, G(�), is detailed in Se
tion 8.1.2 and the e�e
t of the rea
tion kineti
son (8.4) and (8.5) is des
ribed in Se
tion 8.1.1. The only 
hange to the orienta-tion tensor rate equations, (8.2) and (8.3), is the non-dimensionalisation of thetemporal variable by the rea
tion rate 
onstant, 
�, rather than the relaxationtime, � , as in the non-rea
ting system.M = (pg0 � pa)=�
�
 = G0=�
�� = u 130 �
�=2SN = 9D�=u 230 
�� = RgTHTable 8.1: Dimensionless groups in the non-dimensional formulation for therea
ting model (8.1) - (8.5).Comparing the rea
ting momentum equation (8.1), (with R = 0) to thenon-rea
ting 
ase (7.48), we 
an see that the relaxation moduli for individualmodes 
oming into existen
e at time t need to be 
al
ulated. This derivation isexpounded in Se
tion 8.1.2 and elu
idates work published by Everitt et al. [26℄.The non rea
ting bubble gas pressure equation (7.49) only 
onsiders the gasdissolved, initially, in the 
uid volume. An extra term is therefore in
luded inthe rea
ting 
ase (8.4) to a

ount for the additional bubble gas pressure due tothe generation of gas by the polymerisation rea
tion. Finally, the non rea
tingdi�usion equation (7.52) be
omes a rea
tion di�usion equation in the rea
ting
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Parameter Value Units Commentspa 1� 105 Nm�2 Pressure outside liquid layerRg 8:31 Jmol�1K�1 Gas 
onstantT 323 K TemperatureH 10:5� 10�5 molN�1m�1 Henry's law 
onstantD 1:6� 10�9 m2s�1 Di�usivity [15℄1� 1088 kgm�3 Liquid density2� 2:2 Mole
ular weight distribution exponent� 0:45 Largest mole
ular weight s
aling exponentdf 2:5 Fra
tal dimension of the equilibrium 
oilsize of a mole
ule [16, 26, 87℄mx 0:32 kgmol�1 Molar mass of initial polymerspg0 2� 105 Nm�2 Initial bubble gas pressure� 1� 104 Nsm�2 Solvent vis
osityu0 1� 10�18 m3 Initial bubble volumeS 0:02 Nm�1 Surfa
e tension� 10 Maximum gas 
on
entration produ
edby rea
tion/ba
kground gas 
on
entration�0 0:1 Extent of rea
tion at nu
leationt0 0 s Time of rea
tion at nu
leation�
 0:91 Extent of rea
tion at the gel point
� 0:04 s�1 Rea
tion rate 
al
ulated from data3�x 750 s�1 Relaxation rate of initial polymersX 50 Dimensionless 
uid volumeTable 8.2: Parameters used to 
onstru
t Figure 8.5. 1The parameter range forthe di�usion 
onstant of CO2 is based on the di�usion 
onstant for CO2 in water(1:6x10�9m2s�1). 2Determined experimentally by author of [93℄. 3For details ofthis 
al
ulation and a dis
ussion on the rea
tion kineti
s see Se
tion 8.3. Unlessstated otherwise, parameters values have been taken from [26℄.
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ase (8.5) and 
ontains a sour
e term in addition to the di�usion term.8.1 Rea
ting modelThere are two major di�eren
es whi
h need to be a

ounted for in the rea
tingmodel. Firstly, as well as the dissolved gas already present in the 
uid at t = 0,the gas produ
ed as a by-produ
t of the polymerisation rea
tion must also bea

ounted for in the governing equations. Se
ondly, the relaxation modulus,G, is no longer a 
onstant and the e�e
tive relaxation modulus, G(t), of thepolymer 
hanges as the rea
tion pro
eeds. These e�e
ts are both mediated bythe rea
tion kineti
s of the polymerisation. The polymer is normally formedfrom two rea
ting spe
ies, but here the model is simpli�ed by assuming a singlerea
ting spe
ies that forms self-similar mole
ules of in
reasing mole
ular weightsthat ultimately form a gel [26℄.The rea
tion is followed via the variable �, where � gives the ratio of thenumber of 
hemi
al bonds to the total number of possible 
hemi
al bonds. Thatis, � is a dimensionless quantity measuring the extent of rea
tion with 0 � � < 1.As in [26℄ the rea
tion is assumed to follow se
ond order kineti
s with a rea
tionrate, 
� so that, d�dt = 
�(1� �)2: (8.8)This admits the analyti
 solution,�(t) = 1� (1� �0)
�(t� t0)(1� �0) + 1 ; (8.9)where �(t0) = �0 is the extent of rea
tion at nu
leation. The e�e
t of therea
tion rate 
onstant, 
�, is illustrated in Figure 8.1 and demonstrates that as
� in
reases the rea
tion extent approa
hes (but never rea
hes) unity at a fasterrate. S
aling time, t, by 1=
� we obtain the non-dimensional form�(t̂) = 1� (1� �0)(1� �0)(t̂� t̂0) + 1 ; (8.10)
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�. The extent of rea
tion, �, at time t will di
tate the additionaldissolved gas 
on
entration potential and bubble gas pressure due to the rea
tionas well as govern the mole
ular weight distribution, and hen
e the relaxationmodulus, within a 
luster at any given time.
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Figure 8.1: Plots showing the extent of rea
tion, �, versus time for a se
ondorder rea
tion, for a range of values of the rea
tion rate 
onstant 
�. Therea
tion rate 
onstants are as follows: 
� = 0:01 (blue line), 
� = 0:02 (red line),
� = 0:05 (green line), 
� = 0:10 (
yan line), 
� = 0:20 (magenta line). Theinitial 
ondition is given by �(0) = 0:1. As 
� in
reases the extent of rea
tion,�, approa
hes unity more qui
kly.8.1.1 Gaseous phaseDue to the generation of gas as the rea
tion pro
eeds, the non rea
ting equations(7.51) and (7.52) need to be amended to a

ount for this sour
e. The modi�edgas di�usion equation is now a rea
tion di�usion equation with the total gasprodu
ed by the rea
tion in the 
uid volume X at time t assumed to be pro-portional to d�=dt [26℄ so that at a given volume 
o-ordinate, x, the fra
tion of
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ontribution 
an be added to the di�usion term to give,���t = N(x + u) 43 �2��x2 � 1X d�dt (X � x): (8.11)As in the previous se
tion, the boundary 
onditions at the inner (x = 0) andouter (x = X) boundaries are derived via appli
ation of Henry's law and thezero 
ux 
ondition, respe
tively.8.1.2 Liquid/Gel phaseThe se
ond e�e
t on the e�e
tive relaxation rate of the polymer o

urs in theliquid/gel phase. In the previous 
hapter the relaxation modulus of the polymer,G, was assumed to be 
onstant throughout the bubble expansion phase butwith the rea
ting system the e�e
tive relaxation modulus is 
onstantly 
hangingthrough the di�erent stages of the rea
tion. In this se
tion an expression forG(t) is derived by 
onsidering the behaviour, at a mole
ular level, during thedi�erent phases of the polymerisation rea
tion.As the polymerisation rea
tion pro
eeds the mole
ules in the monomer solu-tion start to rea
t and bond to form mole
ules with a range of mole
ular weights.Before the gel point (`pre-gelation') the 
ross-linking polymer is a distribution of�nite 
lusters 
alled a `sol'. On
e the gel point has been passed (`post-gelation')it is 
alled a `gel' and is an in�nitely large ma
romole
ule whi
h 
an only swell,but not dissolve, in a solvent even though low mole
ular weight mole
ules (solfra
tion) are still extra
table from the gel [104℄. As a result, polymeri
 materialsrelax with a broad spe
trum of modes; longer modes belong to the motion ofentire mole
ules or large 
hain segments, while shorter modes 
hara
terise smalls
ale details of the mole
ules. Extra long relaxation modes herald the onsetof the liquid-solid transition, whi
h in 
hemi
al polymerisation is known as the`gel point'. At this 
riti
al point in the rea
tion the material is neither a liquidor a solid (see Figure 8.2). At and near the gel point, the mole
ular motions



Chapter 8 159slow down while they 
orrelate with motions of other mole
ules over longer andlonger distan
es; relaxation modes are now 
oupled over a wide range of times
ales. The result is a self-similar relaxation spe
trum whi
h is governed by apower law relationship. This 
riti
al extent of rea
tion, �
, is 
hara
terised bythe divergen
e of the mole
ular weight of the largest mole
ule to in�nity and anin�nitely broad mole
ular weight distribution [104℄. The 
ombination of liquidand solid behaviour at the gel point requires unusual regularity in the relax-ation pattern. Furthermore, there is a 
riti
al region in the neighbourhood ofthe gel point where all properties 
an be expanded in powers of the distan
efrom the gel point, j�� �
j. Outside this 
riti
al region the behaviour loses itssimpli
ity. In order to derive an expression for the e�e
tive relaxation modulus,G(t), it is ne
essary to 
onsider the mole
ular stru
ture of the mole
ule and itsdynami
s in a 
uid. Everitt et al. [26℄ developed a s
heme to 
al
ulate the re-laxation modulus of individual modes both pre and post gelation, and then, by
onsidering the distribution of mole
ular weights within evolving 
lusters, theyderived a fun
tion for the e�e
tive relaxation modulus, G(t), of the 
uid. Whatfollows in the remainder of this se
tion is a detailed explanation of Everitt etal.'s derivation as well as further 
lari�
ation.When a polymer mole
ule is put into a homogeneous 
ow it assumes theaspe
t of a statisti
ally spheri
al 
oil with average size (radius of gyration) r.Due to the self similar nature of the polymer mole
ule the radius of gyration isrelated to the mole
ule mass via its fra
tal dimension df [104℄r / m1=df : (8.12)In Rouse dynami
s [20℄ the fri
tion on a mole
ular segment is proportional to thenumber of monomers so that the di�usion 
oeÆ
ient is inversely proportional tomole
ular weight. The longest relaxation time for a mole
ule of mole
ular mass
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Figure 8.2: Before the gel point, when the longest relaxation time �
h !1 and�
h ! 0, the polymer is in a liquid state. At the gel point, t = t
, it is neitherliquid nor solid and for t > t
 it is a solid. Before the gel point the 
rosslinkingpolymer is a distribution of �nite 
lusters and we 
all it a `sol' sin
e it is stillsoluble in good solvents; at this stage all the modes 
an relax. On
e the gelpoint has been passed it is 
alled a gel; an in�nitely large ma
romole
ule whi
h
an only swell but not dissolve in a solvent even though low mole
ular weightmole
ules (sol fra
tion) are still extra
table from the gel [104℄. The in�nite
luster 
annot dissolve although the �nite 
lusters in the sol fra
tion 
an stillrelax and a

ount for the `relaxing sol modes within the gel' in the diagram. Ast!1 (8.47) predi
ts that �
h ! �x.



Chapter 8 161m therefore s
ales as �m / 1mr2 : (8.13)The polymer mole
ules in the 
uid at t = 0 are assumed to be self-similar 
hainswith mole
ular weight mx and slowest relaxation rate �x, so that�m = �x �mxm �(2=df+1) (8.14)The relaxation rates for all the other possible modes for the mole
ule of massm, from k = 1 to k = m=mx, are� = �m(k) = �x �mxm k�2=dr ; (8.15)where 2=dr = 1 + 2=df . For ea
h mole
ular weight, m, there is an asso
iatedRouse spe
trum of relaxation modes [20℄ approximated as a 
ontinuous spe
trum�m(k), so that the relaxation modulus Gm(t) for mole
ules of mass m 
an beobtained by integration over the modes k = 1 to k = m=mx viaGm(t) = �mRTm Z m=mx1 e��m(k)tdk; (8.16)where k is the mode number, �m = mn(m)�, n(m) is the number density ofmole
ules of mole
ular weight m, R is the universal gas 
onstant and T is thetemperature. Rearranging equation (8.15) for k we have,k = mmx � ��x�dr=2 ; (8.17)so that substituting for, dk = mmx � ��x�dr=2 d�(2�=dr) ; (8.18)in (8.16) and 
hanging the integration limits from k to � we obtain,Gm(t) = mn(m)G0dr2 Z �x�m � ��x�dr=2 e��td�� ; (8.19)where G0 = �RT=mx. Next, the fun
tion des
ribing the distribution of mole
u-lar weights of the 
lusters, n(m), must be derived. At the gel point n(m) s
ales
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ular weight of the 
luster, so that a 
luster or mole
ule of mole
-ular weight m will have a number density whi
h is related by a power law to itsmole
ular weight. That is,n(m) � m�� ; at � = �
: (8.20)In the vi
inity of the gel point a 
uto� fun
tion, f � mm
h ; mxm �, is introdu
ed,n(m) � m��f � mm
h ; mxm � ; (8.21)de�ning the two limits of the s
aling regime, where m
h (mole
ular weight of thelargest �nite polymer mole
ule) s
ales a

ording tom
h � j�� �
j�1=�: (8.22)Away from these limits (i.e. m � m
h and m � mx) the 
uto� fun
tionf(0; 0) = �, where � is a 
onstant, and in this 
ase n(m) follows the simplepower law, n(m) = �m�� : (8.23)Near the two ends of the s
aling region the distribution n(m) is more 
ompli
atedand is 
ontrolled by the 
uto� fun
tion f . However, the analyti
al form ofthe 
uto� fun
tion at these two ends is unknown [74℄. Randrianantoandro etal. [72℄ used Monte Carlo simulations to obtain a more a

urate exponential
uto� fun
tion, however, we retain the double step 
uto� fun
tion proposed byRubenstein et al. [74℄ and used by Everitt et al. [26℄. Throughout the rea
tion,therefore, f � mm
h ; mxm � = � �; mx < m < m
h0; m > m
h or m < mx: (8.24)The value of this 
onstant 
an be determined from the following normalisation
onditionZ n(m)mdm = sol fra
tion = � 1 for � < �
;1� gel fra
tion for � > �
: (8.25)



Chapter 8 163Up until the gelation point � = �
n(m) = 8<: 0 0 < m < mx;�m�� mx < m < m
h;0 m > m
hwhere � is the 
onstant that we are trying to determine. Integrating over allmass from 0 to m1Z n(m)mdm = Z mx0 0dm+ Z m
hmx �m��mdm+ Z m1m
h 0dm;= � �m2��2� � �m
hmx ;= �(� � 2)m��2x "1� � mxm
h���2# ; (8.26)and applying the normalisation 
ondition (8.25) for � < �
 we 
an obtain the
onstant � � = (� � 2)m��2x�1� � mxm
h���2� : (8.27)By the same method we have for the post gelation period,�(� � 2)m��2x "1� � mxm
h���2# = 1� gel fra
tion;where the remaining � mxm
h���2 makes up the gel fra
tion [26℄, so that for � > �
� = (� � 2)m��2x : (8.28)Therefore, a full des
ription of the 
uto� fun
tion f( mm
h ; mxm ) is given by
f � mm
h ; mxm � =

8>>>>>>>>>><>>>>>>>>>>:
0 0 < m < mx; �0 < � < 1;(��2)m��2x�1�� mxm
h ���2� mx < m < m
h; �0 < � < �
;(� � 2)m��2x mx < m < m
h; �
 < � < 1;0 m
h < m < m1; �0 < � < 1; (8.29)
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ules of mole
ular weight m is
n(m) =

8>>>>>>>>>><>>>>>>>>>>:
0 0 < m < mx; �0 < � < 1;(��2)m��2x�1�� mxm
h ���2�m�� mx < m < m
h; �0 < � < �
;(� � 2)m��2x m�� mx < m < m
h; �
 < � < 1;0 m
h < m < m1; �0 < � < 1: (8.30)

Prior to the gel point (�0 < � < �
) all mole
ular weights in the sol lie withinthe range mx < m < m
h and all existing modes are relaxing modes with arelaxation rate lying within �x < � < �
h. Their 
ontribution to G(t) is given by(8.19).After the gel point, � > �
, the gel is made up of a gel fra
tion and a solfra
tion (see Figure 8.2). The sol fra
tion 
ontains only relaxing modes with�x < � < �
h and their 
ontribution to G is determined via (8.19). The gelfra
tion, quanti�ed by (mx=m
h)��2, 
ontains both relaxing (�x < � < �
h) andnon-relaxing modes (0 < � < �
h).The fun
tions Gpre and Gpost are assigned to de�ne the evolution of therelaxation modulus pre- and post-gelation respe
tively so that throughout thepolymerisation rea
tion the relaxation modulus 
an be des
ribed byG(t) = � Gpre(t) �0 < � < �
;Gpost(t) �
 < � < 1: (8.31)First Gpre is derived by integration of (8.19) over all mole
ular weights from mxto m
h, Gpre(t) = G0dr2 Z �x�
h Z m
hm� mn(m)� ��x�dr=2 e��t� dmd�; (8.32)



Chapter 8 165and bearing in mind the following relations derived from (8.14)� 1m����2 = � 1mx���2� ��x�(��2)dr=2 ;� 1m
h���2 = � 1mx���2��
h�x �(��2)dr=2 ;� mxm
h���2 = ��
h�x �(��2)dr=2 ; (8.33)the pre-gelation relaxation modulus 
an be stated as,Gpre(t) = G0 dr21� � �
h�x �(��2) dr2 Z �x�
h  � ��x�(��1) dr2 � ��
h�x �(��2) dr2 � ��x� dr2 ! e��td�� :(8.34)Post gelation, when � > �
, there are three 
ontributions to the relaxationmodulus Gpost(t) = Gsol(t) +Grgel(t) +Gnrgel(t) (8.35)where Gsol(t) is the 
ontribution due to the relaxing modes in the sol fra
tion,Grgel(t) is the 
ontribution due to the relaxing modes in the gel fra
tion andGnrgel(t) is the 
ontribution due to the non-relaxing gel mode. The limits ofGsol Grgel Gnrgel� �
h < � < �x �
h < � < �x 0 < � < �
hm mx < m < m
h m
h < m <1 m
h < m <1Table 8.3: Limits of integration for � and m for � > �
.integration for � and m are set out in Table 8.3 so that, integrating over therelevant limits, we have, for � > �
,Gpost(t) = G0dr2 Z �x�
h Z m
hm� mn(m)� ��x� dr2 e���tdmd� �Gsol(t)�+ G0dr2 Z �x�
h Z 1m
h mn(m)� ��x� dr2 e���tdmd� �Grgel(t)�+ G0dr2 Z �
h0 Z 1m
h mn(m)� ��x� dr2 1� dmd� �Gnrgel(t)� (8.36)
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h 
ontribution is determined individually as follows: Gsol(t) is obtainedvia integration of the �rst term in (8.36) from mx to m
h with n(m) = (� �2)m��2x m�� from (8.30) and soGsol(t) = G0dr2 Z �x�
h Z m
hm� mn(m)� ��x� dr2 e���tdmd�;= G0dr2 Z �x�
h  � ��x� dr2 (��1) � ��
h�x � dr2 (��2) � ��x� dr2 ! e��td�� : (8.37)To 
al
ulate the 
ontributions Grgel(t) and Gnrgel(t) we substitute for the gel fra
-tion [26℄ given by Z 1m
h mn(m)dm = � mxm
h���2 ; (8.38)so that, in (8.36)Grgel(t) = G0dr2 Z �x�
h � mxm
h���2� ��x� dr2 e���td�;= G0dr2 Z �x�
h ��
h�x � dr2 (��2) � ��x� dr2 e���td�: (8.39)And similarly, from (8.33)Gnrgel(t) = G0dr2 Z �
h0 � mxm
h���2� ��x� dr2 d�� ;= G0dr2 Z �
h0 ��
h�x � dr2 (��2) � ��x� dr2 d�� : (8.40)The limits of integration are the same for Gsol(t) and Grgel(t) so that they 
anbe 
ombined to give the sum of the 
ontributions of the relaxing modes in thesol and gel fra
tions post gelation asGsol(t) +Grgel(t) = G0dr2 Z �x�
h � ��x� dr2 (��1) e��td�� : (8.41)Post gelation, the total 
ontribution to the relaxation modulus due to the gel
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tion is,Gpost(t) = G0dr2 0BBB�Z �x�
h � ��x� dr2 (��1) e��td��| {z }relaxing modes + Z �
h0 ��
h�x � dr2 (��2) � ��x� dr2 d��| {z }non-relaxing mode
1CCCA(8.42)or on integration of the non-relaxing mode,Gpost(t) = G0dr2 Z �x�
h � ��x� dr2 (��1) e��td�� +G0��
h�x � dr2 (��1) : (8.43)Hen
e (8.31) 
an be writtenG(t) = ( R �x�
h(t)Gpre(�)e��t d�� ; � < �
Ge + R �x�
h(t)Gpost(�)e��t d�� ; � > �
 (8.44)where from (8.34) and (8.43),Gpre(�) = G0 �dr2 �1� � �
h(t)�x � dr2 (��2) "� ��x� dr2 (��1) � ��
h(t)�x � dr2 (��2) � �ex� dr2 # ;(8.45)Gpost(�) = G0dr2 � ��x� dr2 (��1) and Ge = G0��
h(t)�x � dr2 (��1) : (8.46)For the purposes of our model the 
ontinuous spe
trum is dis
retised to obtaina series of i single modes, as illustrated in Figure 8.3, with relaxation rate �i andrelaxation modulus G(�i). The integrals in (8.44) are thus repla
ed by summa-tions. Ea
h mode is treated as an individual mode in a multimode Oldroyd B
uid. Details of the logarithmi
 sampling s
heme used to dis
retise the system
an be found in Se
tion 8.2 and the G(�i) 
an be determined for �
h<�<�x from(8.45) and (8.46) for pre-gelation and post-gelation, respe
tively.At ea
h time point the range of the integration/dis
retisation is from �
h to�x but sin
e �
h is not 
onstant this interval is 
hanging with time a

ording to
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Figure 8.3: S
hemati
 diagram illustrating the logarithmi
 sampling of relax-ation modes �i for (a) both the pre-gelation and post-gelation stage and (b)the post-gelation stage of the rea
tion. Modes above the �
h 
urve are relaxingmodes; before the gel point they belong to the sol fra
tion and after the gel pointthey belong to the gel fra
tion. Modes below the �
h 
urve are non-relaxing gelmodes and 
ontribute to the relaxation modulus of the gel.
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tion rate �. Near the gel point, per
olation theory predi
ts the 
lustermass distribution s
ales with the distan
e from the gel point j�� �
j a

ordingto (8.22). Due to the fra
tal nature of the mole
ule it 
an be shown that therelaxation rate �
h � j���
j2=�dr [16,87℄. Therefore the 
hara
teristi
 relaxationrate (i.e. the relaxation rate of the largest mole
ule at time t) 
an be stated as�
h(t) = 8><>: �x ����(t)��
�
 ��� 2�dr ; �(t) < �
��x ����(t)��
�
 ��� 2�dr ; �(t) > �
 (8.47)where �(t) is de�ned by equation (8.9). The fa
tor � is in
luded to allow forthe fa
t that �
h(t) is not symmetri
 about the gel point. Everitt et al. [26℄derived a value for this parameter (� = 0:0049) based on prefa
tors determinedin an earlier paper [72℄. However, for the sake of simpli
ity they use � = ((1��
)=�
)2=�dr , as will we, so that as t tends to in�nity, �
h tends to �x. Havingfully des
ribed the relaxation modulus, G(t), of the polymer over the durationof the rea
tion, and dis
retised it into a series of i modes, we 
an now use thisinformation to augment the non-rea
ting system, ((7.48) - (7.50)), with R = 0,and derive results for the rea
ting model. A summary of the non-dimensionalisedrea
ting model is now given. The non-dimensional variables are as for the non-rea
ting 
ase and are detailed in Appendix C, with the ex
eption of the temporalvariable, whi
h in the rea
ting 
ase is s
aled by 1=
�. The variables are assignedindi
es i; j; n; to denote modal, spatial and temporal dis
retisation, respe
tively,with i = 1 � � � I; j = 1 � � �J and n = 1 � � �N . The resultant non-dimensionalgrouped parameters are tabulated in Table 8.1 and the individual parametervalues pertinent to the rea
ting model are listed in Table 8.2.43 _un � 1un � 1X + un� = (P ng � Pu)M + 23
 �xX�i=�
h(n) G(�i)G0 JXj=1 (Arr � A��)ni;jxj + un � 1� (un) 13 ;(8.48)



Chapter 8 170�Anrri;j�t = � 4 _un3 (xj + un)Anrri;j � �i
� �Anrri;j � 1� ; (8.49)� (Arr � A��)ni;j�t = 2 _un3(xj + un) h(Arr � A��)ni;j � 3Anrri;ji� �i
� (Arr � A��)ni;j ;(8.50)�pa + (pg0 � pa)P ngpg0 �un = 1 + �� papg0X ��nj (0; t) + (�n � �0)� ; (8.51)��nj�t = N(xj + un) 43 �2�nj�x2 � 1X d�ndt (X � xj): (8.52)Boundary 
onditions ��nj�x = 1�X pg0 � papa (P ng � 1); x = 0; (8.53)�2�nj�x2 = 0; x = X: (8.54)Initial 
onditionsA1rri;j = 1; (Arr � A��)1i;j = 0; u1 = 1; P 1g = 1; �1j = 0.It is important to note that 
ontrary to the non-rea
ting model in the pre-vious 
hapter, inertia is assumed to be negligible here and di�usion is no longerassumed to be instantaneous.Before the gelation point, as the mole
ular weight distribution is 
ontin-ually broadening, new modes 
ome into existen
e, i.e. are `swit
hed on', atea
h time step (see Figure 8.3(a)). As ea
h new mode is `swit
hed on' it hasinitial orientation tensor A = I. However, at ea
h time step n we determineAn+1 via (8.49) and (8.50). It 
an be seen from the right hand side of theseequations, that this An+1, is 
al
ulated from �ni modes rather than �n+1i modes.For example, if we have three modes f�1; �2; �3g existing at t(n) and an ex-tra two modes are `swit
hed on' at t(n + 1), so that we now have �ve modesf�1; �2; �3; �4; �5g, the equation will 
al
ulate An+1rr1;j ; An+1rr2;j ; and An+1rr3;j 
orre
tly butthe terms An+1rr4;jand An+1rr5;j will be 
al
ulated based on �4; �5 = 0 instead of thea
tual values of these modes at t(n+1). If left untreated, this would mean thatthe stress GA would not be 
onserved from one time step to the next and so
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ount for this dis
repan
y we ensure that stress is 
onserved byadjusting A for ea
h mode in the following way(G+�G)Â = GA+�GI; (8.55)where Â is the adjusted orientation tensor at time step n determined from theoutput, A, of (8.49) and (8.50). This leads to the following step in the numeri
als
heme, Ânrri;j = (PiGni )Anrri;j + �PiGn+1i �PiGni �PiGn+1i ; (8.56)�Ârr � Â���ni;j = (PiGni )�Ârr � Â���ni;jPiGn+1i : (8.57)where Gi = G(�i). The pi
ture is slightly di�erent post-gelation; now an in�nite
luster exists along with a distribution of �nite 
lusters [16℄. At the gel pointthe material is neither liquid nor solid [104℄; it has a vis
osity whi
h divergesto in�nity and an elasti
 modulus, Ggel, equal to zero. Pro
eeding past the gelpoint the elasti
 modulus begins to grow with time as the larger �nite 
lustersatta
h to the in�nite 
luster and be
ome frozen (that is, no longer able to relax).These modes, whi
h we refer to as `swit
hed o�', 
an be observed below the �
h
urve in Figure 8.3(b). Again, be
ause An+1 is determined from �ni we need toadjust this single gel mode a

ording to(Ggel +�Ggel +�Go�) Â = GgelA+�GgelI+�Go�Ao� ; (8.58)that is, Anrrj = GngelAnrrj + �Gn+1gel �Gngel�+PiGn+1o�i Anrri;jGn+1gel ; (8.59)�Ârr � Â���nj = Gngel �Ârr � Â���nj +PiGn+1o�i �Ârr � Â���njGn+1gel ; (8.60)where Go�(�i) is the value of the stress modulus for modes �i < �
h at a giventime point. The 
ombined modulus, �Go� = PiGo� i, and stress, �Go�Ao� =



Chapter 8 172PiGn+1o� i Anrri, of these `swit
hed o�' modes is added to the single gel mode, atea
h time step, after the gelation point.8.2 Numeri
al s
heme and resultsA fourth order Runge-Kutta method was used to solve the stress equations(8.49) and (8.50). The momentum equation, (8.48), was solved by a forwardEuler method with a time step less than the shortest relaxation time (1=�x).The solutions to the gas di�usion equation (8.52) and gas pressure equation(8.51) were obtained via the Crank-Ni
olson method [84℄, 
hoosing the spatialdis
retisation so that �t=(�x)2 < 1=2, thus ensuring spurious os
illations donot o

ur. The spatial integration in (8.48) was 
arried out using the 
ompositeSimpson's rule. Due to the dis
retisation of the relaxation modulus into individ-ual modes, (8.49) and (8.50) are solved for ea
h modal index i = 1; 2; ::; I andspatial index j = 1; 2; ::; J whi
h are then summed over both the i and j indi
esin the momentum equation (8.48). The relaxation spe
trum is dis
retised by�i = �xe�di(i�1), where di = 0:2 and I = 100.The non-dimensionalised system, (8.48) - (8.52), was solved numeri
ally forthe parameterisation des
ribed in [26℄ and the numeri
al 
ode was validatedagainst results published in the same paper. We then examined the output us-ing the parameterisation des
ribed in Table 8.2 whi
h pertains to 
onditions,des
ribed in [92, 93℄, that we seek to model. For this analysis we 
ontinue touse the non-dimensional system as we are only 
on
erned with single bubbles.In parti
ular, we investigate the e�e
t of the rea
tion rate 
onstant, 
�, and thepressure amplitude of the a
ousti
 irradiation, on the non-dimensional bubblevolume, u, and the dimensionless bubble gas pressure, Pg, as illustrated in Fig-ures 8.4 and 8.5. As 
� in
reases the bubble volume rea
hes steady state morequi
kly and the initial gradient is steeper as shown in Figure 8.4. The steadystate bubble volume is, itself, una�e
ted by the rea
tion rate 
onstant. The
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tion rates (see Figure 8.5 (b))but as 
� in
reases the magnitude of this peak gas pressure is larger. The initialbubble growth is 
ontrolled, via di�usion, by the 
on
entration of gas alreadydissolved in the 
uid and the di�usion times
ale is quanti�ed by 9D=(u0X)2=3.The se
ond sour
e for gas into the bubble is its produ
tion as a by produ
t ofthe rea
tion, at a rate given by 
�. For larger 
� values, therefore, we see a largerpeak in bubble gas pressure as shown in Figure 8.5 (b). In our parameterisation(see Table 8.2) gas di�usion is relatively fast 
ompared to the initial, vis
osity
ontrolled bubble expansion rate, given by �pa�0=�. For ea
h value of 
� inFigure 8.5, therefore, the bubble gas pressure initially in
reases and only beginsto fall as the rea
tion rate de
reases and gas 
on
entration in the 
uid beginsto fall. Comparing Figures 8.5 (a) and (b) we 
an see that as the bubble gaspressure de
ays towards its steady state value, the initial steep bubble growthgradient de
reases to a lower value.
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Chapter 8 175When we go on to examine bubble distributions in Se
tion 8.6 we need to re-dimensionalise the temporal variable in order to 
ompare neighbouring bubbleradii at 
onse
utive time points.8.3 Cal
ulation of rea
tion rates from experi-mental observationsHaving developed a numeri
al 
ode, to tra
k the growth of a single bubble ina polymerising polymer foam, we now turn to the experimental work des
ribedin [93℄ and develop a model to measure a bubble size distribution within apolymerising sample. First we detail the experimental set up used by Torres-San
hez et al. and then propose a model for this system.A s
hemati
 of the experimental set up used in [93℄ is shown in Figure 8.6.The rea
tants were pla
ed in a 
ylindri
al vessel in the middle of a water bathlined with a
ousti
 absorbers to minimise wave re
e
tion. The water bath main-tained a 
onstant temperature in order to prevent overheating. The sample 
on-tainer and transdu
er were aligned along the longitudinal axis of the bath andthe sonotrode tip was immersed 2
m below the free surfa
e on the same planeas that of the 
entral plane of the 
ontainer. The 
ontainer was perpendi
ularto the soni
ating probe and had the opposite 180 degrees of its surfa
e shieldedby absorbent material to minimise re
e
tions. Thermo
ouples and 
ondu
tivityprobes were held in the middle of the mixture to monitor the rea
tion. To startthe rea
tion the blowing agent was added to the mixture whi
h was then irradi-ated for 20 minutes with a 2 min on/1 min o� 
y
le. When irradiation was 
om-plete the 
uring foam was left in the bath for 30 minutes until rigid. Examiningthe polymerisation rea
tion itself, the 
hemi
al rea
tion to form polyurethaneo

urs between polyols and diiso
yanate groups with distilled water employed
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Figure 8.6: S
hemati
 of the experimental rig as published in [93℄ and reprintedwith the permission of the author.as a blowing agent and 
an be writtenpolyol + diiso
yanate! polyurethane + CO2:In [93℄ the rea
tion is assumed to be of �rst order and 
an be des
ribed by therea
tion kineti
s d�dt = 
�(1� �); (8.61)so that �(1)(t) = 1� (1� �0)e�
�(t�t0); (8.62)where �(1)(t) is the extent of the �rst order rea
tion. Everitt et al. [26℄ assumese
ond order rea
tion kineti
s des
ribed by (8.8) and (8.9) where we assign �(2)as the extent of the se
ond order rea
tion. In [92℄ the time to gelation point,t
 = 253s, for samples irradiated at 20Hz, 
an be 
al
ulated as an average ofthe three experimental plots obtained by irradiating the samples at di�erenta
ousti
 pressure amplitudes (see Table 8.4 and Figure 8.7).Assuming this value for t
 and using the values in Table 8.2 for the parameters�0, t0 and �
 we 
an 
al
ulate the approximate rea
tion rates, 
(1)� and 
(2)� ,required for the �rst and se
ond order rea
tion kineti
s, respe
tively. For the
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Figure 8.7: Experimental plots of ele
tri
al resistivity lines obtained from foamssoni
ated at 20kHz and di�erent a
ousti
 pressures: (a) 7 kPa, (b) 10 kPa, (
)17 kPa, (d) 28 kPa. The start of the `gelation stage' has been 
ir
led. Datafrom these plots are used to 
onstru
t Table 8.4. Reprinted with the permissionof the author [92℄.
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e [92℄ Amplitude (kPa) t
(s) 
�(s�1)Figure 5(a) 7 300 0.034Figure 5(b) 10 260 0.040Figure 5(
) 17 200 0.053Table 8.4: Data values approximated from plots (a), (b) and (
) in Figure 5of [92℄. From these plots we 
an approximate the time of the gelation point,t
, in samples irradiated at 20Hz and a
ousti
 pressure amplitudes of 7kPa,10kPa and 17kPa, respe
tively. This gelation time is approximately identi�ed,in Figure 8.7, as the �rst small plateau in the plots of ele
tri
al resistan
e versustime reprodu
ed here. The 
� values for this se
ond order rea
tion are 
al
ulatedvia (8.64).�rst order 
ase, 
(1)� = 1(t0 � t
) log 1� �(1)
1� �0 ! ; (8.63)so that, with �(1)
 = 0:91, �0 = 0:1, t
 = 253s and t0 = 10s (see Table 8.2),
� = 9� 10�3s�1. For the se
ond order rea
tion,
(2)� = (�(2)
 � �0)(t
 � t0)(1� �0)(1� �
) ; (8.64)so that 
� = 0:04s�1. The model that we employ for numeri
al simulationsassumes se
ond order rea
tion kineti
s and we will therefore use this latter valueof 
� to model the experimental set up used in [93℄ even though they assumed�rst order rea
tion kineti
s with a measured rea
tion rate of 
� = 1� 10�3s�1.8.4 The dire
t e�e
t of pressure amplitude onbubble volume evolutionWe �rst 
onsider the experimental system in two dimensions only with the lefthand side lower 
orner of the 
ontainer positioned at the origin and the sonotrodein line with the verti
al plane through the 
entre of the 
ylinder positioned at averti
al distan
e h=2 from the origin, where h is the height of the sample 
ylinder(see Figure 8.8).
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Figure 8.8: S
hemati
 illustrating a 2D verti
al segment, in the x � y plane,of the 3D sample 
ontainer with height, h and width, L. The rea
ting samplewithin the 
ontainer is irradiated by an a
ousti
 signal from the sonotrode tipwhi
h is positioned a suÆ
ient distan
e from the sample 
ontainer so that planewave irradiation may be assumed. The 1D horizontal line `OA' is situated atthe sample half height, h=2. In order to simplify the mathemati
al model it isassumed that the sample height remains 
onstant throughout the rea
tion; thisis not the 
ase in the experimental setup.



Chapter 8 180There are a number of assumptions that we deploy to simplify the situtation.At the point of a
ousti
 irradiation we assume that the polymerising sample is ahomogeneous dispersion of post nu
leated bubbles of a given initial radius. Wealso assume that the height of the sample is h and remains so for the duration ofthe sample irradiation whi
h is 
ontinuous. This does not re
e
t the experimentdes
ribed above as the upper surfa
e rises as the rea
tion progresses. We assumethat the sonotrode tip is so small, and the wavelength and distan
e from thesample su
h, that the irradiating wave may be assumed to be planar throughoutthe sample. Choosing the line OA (see Figure 8.8) at y = h=2 we 
an thereforeredu
e the pressure distribution to one dimension only.A
ousti
 pressure, Pu, is the lo
al pressure deviation from the ambient at-mospheri
 pressure, pa, 
aused by an a
ousti
 wave. The instantaneous soundpressure, Pu(x; t) is the deviation from the lo
al ambient pressure due to theinsonifying wave at a given point in spa
e and time. In order to determine thee�e
tive a
ousti
 pressure at a spatial point over a given time interval we 
an
al
ulate the root mean square (RMS) value. For a periodi
 sinusoidal waveformgiven by, P (x; t) = p1 + p2 
os(2�ft) sin(kx);where f is the frequen
y and k the wavenumber, the RMS pressure is,Prms(x) = p1 + (p2=p2) sin(kx):The waveform set up in [93℄ is a standing wave resulting from the superposi-tion of an in
ident and re
e
ted wave of equal a
ousti
 pressure amplitude andfrequen
y and des
ribed by,Ps(x; t) = p1 + 2p2 
os(2�ft) sin(kx);with an RMS spatial distribution,Prms(x) = p1 +p2p2 sin(kx):



Chapter 8 181The total pressure, Ptotal, is the sum of the ambient and e�e
tive a
ousti
 pres-sure so that in the 
ase of the standing wave,Pu(x) = p1 +p2p2 sin(kx); (8.65)the total pressure is given by,Ptotal(x) = pa + p1 +p2p2 sin(kx): (8.66)The in situ pressure �eld, �P , proposed by [93℄ was quoted in de
ibels, dB, andhad approximate minimum and maximum levels of 143dB and 151dB, respe
-tively. The 
onversion equationP = 2� 10( �P=20�5); (8.67)was applied to obtain the 
orresponding minimum and maximum values of P inPas
als, whi
h were then used to derive a mathemati
al fun
tion to model theinsonifying signal. This resulted in the following parameter values for the signalmodelled by (8.65): p1 = 500Pa, p2 = 200=p2Pa, k = �=L, where L = 50 is thesample width in mm. The s
hemati
 in Figure 8.9 demonstrates the e�e
tivepressure �eld in Pas
als (green line) and shows bubbles nu
leated homogeneouslya
ross the one dimensional x domain. The 
orresponding �eld in de
ibels is alsoplotted (blue line) and is 
al
ulated via�P = 20 log10� P2� 10�5� : (8.68)The in situ pressure amplitude values proposed by Torres-San
hez et al. [93℄are attenuated by the water bath and polymerising sample. Thus, although theinstrumental value for the pressure amplitude of the standing wave is of theorder 104Pa, the a
tual amplitude in situ is only of order 102Pa. Substitutingfor the values of p1 and p2, des
ribed above, in the a
ousti
 pressure amplitudeterm, pu, gives non-dimensional minimum and maximum Pu values of 0:0014
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Figure 8.9: S
hemati
 illustrating the idealised sinusoidal waveform used tomodel the e�e
tive a
ousti
 pressure distribution in the sample des
ribed in [93℄.The waveform is des
ribed by (8.65) with p1 = 500 Pa, p2 = 200=p2 Pa, k = �=Lwhere L = 50 mm. The values for p1 and p2 were derived via 
onsiderationof the minimum and maximum pressure values in dB proposed in [93℄. Thegreen line gives the pressure in Pas
als and the blue line gives the pressure inde
ibels (dB) using the 
onversion equation (8.68). The 
ir
les illustrate a seriesof homogeneously spa
ed nu
leated bubbles a
ross the one dimensional sampledomain.



Chapter 8 183and 0:0050, respe
tively. These Pu values were entered in (8.1) and plots of theevolving dimensionless bubble volume, u, are shown in Figure 8.10. This �gureillustrates that, at this level of pressure amplitude, the e�e
t on the expandingbubble volume is negligible. Therefore, be
ause of the attenuation of the pressureamplitude we look instead at the indire
t e�e
t of the pressure amplitude on thepolymerisation rea
tion rate 
onstant, 
�, in the next se
tion.8.5 The e�e
t of pressure amplitude on rea
-tion rateMotivated by Torres-San
hez et al. [92℄ we de
ided to investigate the e�e
tof pressure amplitude on rea
tion rate. In [26℄ the rea
tion rate is a non-varying 
onstant and only a single bubble is 
onsidered. We propose that due tothe lo
al pressure amplitude distribution we 
an des
ribe a lo
al rea
tion ratedistribution a
ross the sample so that for a series of bubbles ea
h one evolvesunder the in
uen
e of its lo
al rea
tion rate. In order to examine this e�e
tin isolation we have set the a
ousti
 pressure amplitude, Pu, in the momentumequation (8.1) to zero for the remainder of this Chapter. Before looking at thebubble size distribution a
ross su
h a sample we �rst examine the sensitivity ofthe model to the rea
tion rate 
onstant, 
�. The evolution of a single bubbleunder a number of di�erent rea
tion rates of the order used in [92℄ is illustratedin Figure 8.5 (a); the parameter values are des
ribed in Table 8.2. We 
an seethat the e�e
t of di�erent 
� is signi�
ant, given that the plot in Figure 8.5 isnon-dimensional, and that it is worth investigating this further and extendingthe result from the single bubble 
ase to the multibubble 
ase and in
ludingbubble-bubble intera
tion.First we derived an empiri
al relationship between the pressure amplitudeapplied to the sample and the resultant rea
tion rate 
onstant, 
�. This wasdone by examining the experimental data used to 
onstru
t Figure 8.11 in [92℄.
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ousti
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ompared. Thelower plot is a zoomed in version of that on the left to quantify the magnitudeof the di�eren
e in ea
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Figure 8.11: Slope 
onstant `a' value for di�erent samples irradiated at 20 kHzas published in [92℄. Data from this plot were extra
ted to 
onstru
t Table 8.5.Reprinted with the permission of the author [92℄.

Figure 8.12: (a) Ele
tri
al resistan
e data 
olle
ted by DAQ; (b) The 
orre-sponding logarithmi
 phase of the resistivity with di�erent slope 
onstant `a'.Reprinted with the permission of the author [92℄.



Chapter 8 186The data values are shown in Table 8.5. The parameter a is the 
oeÆ
ientof the 
urve y = a log(x) + b �tted to the resistivity-pressure amplitude data(see Figure 8.7) and gives a measure of the rea
tion rate 
onstant as illustratedby Figure 8.12 (b) from the same paper. Taking the se
ond order rea
tion rate,
� = 0:04, as determined in Se
tion 8.3, and 
orrelating it dire
tly with the valueof a = 68 in the absen
e of an a
ousti
 signal (see Figure 8.11) we determinedthe 
onstant of proportionality k = 1700. In other words, 
� = a=k; this 
anthen be used to 
al
ulate the remaining 
� values tabulated in Table 8.5. Wea 
�; 10�2s�1 Pressure amplitude, Pa68 4:0 075 4:4 675086 5:1 8250132 7:8 9750129 7:6 11250100 5:9 15000121 7:1 17250132 7:8 19500196 11:5 20000200 11:8 21000196 11:5 22500204 12:0 25000268 15:8 27750343 20:2 28500Table 8.5: Data table showing the a values and a
ousti
 pressure amplitudevalues (in Pa) extra
ted from Figure 8.11 [92℄ and the 
orresponding 
� value
al
ulated using the dire
t 
orrelation given by 
� = a=1700, with units of10�2s�1. The plot, in Figure 8.13, of rea
tion rate 
onstant versus pressureamplitude was 
onstru
ted using this data.then �tted a linear fun
tion to the experimentally observed relationship betweenpressure amplitude and rea
tion rate (see Figure 8.13) to give
� = 3:571� 10�4 + 5:513� 10�6Pa: (8.69)A theoreti
al irradiating a
ousti
 signal, (8.70), was proposed to approximate
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Figure 8.13: Plot of rea
tion rate 
onstant, 
� (s�1) versus pressure amplitude(Pa) from data quoted in Table 8.5. The pressure amplitude values were ex-tra
ted from Figure 8.11 [92℄ and the rea
tion rate 
onstant values determinedby the dire
t 
orrelation given by 
� = a=1700 as des
ribed in the text.
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ribed in [93℄. The signal is a sine wave with one and a half wavelengthsa
ross the sample width and a maximum amplitude value at half the samplewidth. The maximum pressure amplitude is 30kPa and the minimum is 5kPa.This re
e
ts approximately the instrumental range of values used to irradiatethe sample. The irradiating signal is de�ned byPa = 17500� 12500 sin�3�xL � ; (8.70)where L = 50mm is the width of the sample and x, the spatial 
o-ordinatewithin the sample, is also measured in the same units. We 
an then substitutefor this form of Pa into (8.69) to plot the resultant rea
tion rate distributiona
ross the sample.8.6 Simulation of the foam porosity pro�leHaving tailored a pre-existing model to tra
k the evolution of a single bubblein an expanding rea
ting polymer foam we now examine how a one dimensionalseries of bubbles, spread homogeneously a
ross the sample domain, evolve underthe in
uen
e of an ultrasound standing wave (expressed as a lo
al rea
tion rate)and the in
uen
e of their nearest neighbours. These post nu
leation bubbleswere initially pla
ed a
ross the sample domain with a number of di�erent spa
-ings to analyse the e�e
t of the density of bubbles on the heterogeneity of the�nal sample. It is important to note that sin
e we are now 
omparing results fordi�erent rea
tion rate 
onstants we must re-dimensionalise the temporal vari-able. The remaining results in this se
tion, therefore, refer to the dimensionaltemporal variable. Sin
e the rea
tion rate distribution a
ross the sample is sym-metri
 we 
an redu
e the 
omputational 
ost by redu
ing the domain to halfthe sample width, that is L=2. A dis
rete set of 
� values (see Figure 8.14) wasobtained for ea
h 0.25mm spatial point and the bubbles were initially spa
ed at0.25mm intervals. Having determined the lo
al rea
tion rates for ea
h bubble
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ontinuous spatial distri-bution 
urve for lo
al rea
tion rate 
onstant, 
�, with dis
rete spatial intervalÆx = 0:25mm. Due to the symmetry of the sample domain we are only interestedin the spatial region up to L=2, where in this 
ase L = 50mm.



Chapter 8 190we evolve them independently (they are initially unhindered by neighbouringbubbles) so that we have a ve
tor of radii for ea
h time point during the expan-sion. We further assume that the bubbles do not translate during the rea
tion,that is the bubble 
entre positions are �xed. The parameterisation for this anal-ysis is des
ribed in Table 8.6. For ea
h bubble in the domain we then appendits ve
tor to produ
e a matrix, r(tn; m), of radii for m = 1; � � � ; N bubbles attn = 1; � � � ; T time points. At ea
h time point we need to assess whether ornot a given bubble is tou
hing either of its neighbours and to this end at ea
htimepoint tn, M(t; :) = R(t; 1 : N � 1)�L(t; 2 : N) is 
al
ulated, where R(t; N)and L(t; N) give the right and left hand bubble positions, respe
tively. If any ofthe entries in the ve
tor M are not stri
tly positive then the bubbles asso
iatedwith those entries are tou
hing and so their growth is stopped. The s
hemati
in Figure 8.15 demonstrates this. At the end of the temporal loop therefore weParameter Value Units CommentsD 1 10�2m2s�1 essentially instantaneous di�usionpg0 10 105Nm�2 pg0 = pa(1 + ��0) [26℄u0 9 10�12m3S 1 10�6Nm�1 negligible surfa
e tension� 90X 500
� 0:028� 0:166 s�1 
al
ulated from data in [92℄*Table 8.6: Parameter values used to 
onstru
t Figures 8.16 to 8.20. The remain-ing parameter values, not already listed in this table are as detailed in Table8.2. * For details of this 
al
ulation and a dis
ussion on the rea
tion kineti
ssee Se
tion 8.3.will have a matrix of right and left position ve
tors and hen
e the �nal radius ofea
h of the N bubbles at t = T . We use these values to 
onstru
t the s
hemati
sin Figures 8.16 - 8.18 and the plots in Figures 8.19 - 8.22. Table 8.6 shows themaximum and minimum bubble radii for ea
h initial bubble spa
ing value Æx.The s
hemati
s in Figures 8.16 - 8.18 were 
onstru
ted by taking the �nal
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Figure 8.15: S
hemati
 illustrating the simple rule for bubble-bubble intera
tion.At time point t� 1 the position and radii of the neighbouring bubbles are su
hthat they are not tou
hing and bubble evolution is 
ontinued until the next timestep when the bubble position and radii are 
he
ked again. In this 
ase, atthe subsequent time point t the bubble evolution means that the 
orrespondingentry in the ve
tor M (see text) is not stri
tly positive and therefore the growthof these bubbles in the mathemati
al 
ode is stopped and their positions frozenfor the duration of the time loop.
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Figure 8.16: Illustrative plots showing the �nal bubble size distribution, a
rossthe half sample domain, given the lo
al rea
tion rate 
onstant pro�le pres
ribedin Figure 8.14, for (a) 50, (b) 25, (
) 17 and (d) 13 bubbles. The bubblesare positioned homogeneously a
ross the domain at 0.5, 1.0, 1.5 and 2.0 mmintervals, respe
tively, and ea
h bubble is allowed to evolve, given the lo
alrea
tion rate 
onstant value pres
ribed at its 
entral position, until the rea
tion
eases or it tou
hs a neighbouring bubble. x is the horizontal 
o-ordinate, in thesample, in millimetres and the parameter values used are listed in Table 8.6.
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Figure 8.17: Illustrative plots showing the �nal bubble size distribution, a
rossthe half sample domain, given the lo
al rea
tion rate 
onstant pro�le pres
ribedin Figure 8.14, for (a) 11, (b) 9, (
) 8 and (d) 7 bubbles. The bubbles are posi-tioned homogeneously a
ross the domain at 2.5, 3.0, 3.5 and 4.0 mm intervals,respe
tively, and ea
h bubble is allowed to evolve, given the lo
al rea
tion rate
onstant value pres
ribed at its 
entral position, until the rea
tion 
eases or ittou
hs a neighbouring bubble. x is the horizontal 
o-ordinate, in the sample, inmillimetres and the parameter values used are listed in Table 8.6.
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Figure 8.18: Illustrative plots showing the �nal bubble size distribution, a
rossthe half sample domain, given the lo
al rea
tion rate 
onstant pro�le pres
ribedin Figure 8.14, for (a) 6, (b) 5, (
) 4 and (d) 3 bubbles. The bubbles are posi-tioned homogeneously a
ross the domain at 5.0, 6.0, 7.0 and 9.0 mm intervals,respe
tively, and ea
h bubble is allowed to evolve, given the lo
al rea
tion rate
onstant value pres
ribed at its 
entral position, until the rea
tion 
eases or ittou
hs a neighbouring bubble. x is the horizontal 
o-ordinate, in the sample, inmillimetres and the parameter values used are listed in Table 8.6.
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Figure 8.19: Plots illustrating the relative size distribution (RSD) 
al
ulatedby dividing ea
h bubble radius by the average bubble radius for a given bubbleseparation. (a), (b) and (
) relate to Figures 8.16, 8.17 and 8.18, respe
tively,with line 
olour order of red, green, blue and 
yan ranging from the smallest Æxvalue to the largest in ea
h 
ase. A qui
k visual inspe
tion indi
ates that as wein
rease bubble separation the bubble size heterogeneity in
reases. We measurethis heterogeneity in Figure 8.20 using two di�erent metri
s �1 and �2 given by(8.71) and (8.72), respe
tively.



Chapter 8 196Æx, mm N min radius, mm max radius, mm % di�eren
e0:5 50 0:2453 0:2456 0:121:0 25 0:4893 0:4992 2:021:5 17 0:7345 0:7489 1:962:0 13 0:9819 1:0026 2:112:5 11 1:2310 1:2552 1:973:0 9 1:4801 1:5119 2:153:5 8 1:7251 1:7608 2:074:0 7 1:9737 2:0222 2:465:0 6 2:4110 2:5887 7:376:0 5 2:7529 3:2455 17:897:0 4 3:1599 3:8321 21:279:0 3 4:3118 4:6881 8:73Table 8.7: The �nal maximum and minimum bubble radii, in an N bubble dis-tribution a
ross a sample domain of length L=2 (where L = 50mm) with bubblespa
ing given by Æx. The per
entage di�eren
e is 
al
ulated with referen
e tothe minimum bubble radius. The maximum per
entage di�eren
e o

urs withN = 4 bubbles and a bubble spa
ing of 7mm. Parameter values used to 
on-stru
t this table are detailed in Tables 8.2 and 8.6.bubble radius for ea
h ith bubble in the distribution and plotting a 
ir
le ofthe given radius 
entred on the bubble position xi. These �gures 
over a rangein Æx of 0.5mm to 9.0mm. The larger the number of bubbles, the smaller thesteady state bubble volume due to intera
tion with neighbouring bubbles beforethe natural steady state volume is a
hieved. In Figure 8.16 (a) and (b), inparti
ular, it is hard to dis
ern any heterogeneity in bubble size with the nakedeye. As the number of bubbles de
reases below 17 we 
an observe heterogeneityin the bubble size distributions due to the spatial rea
tion rate pro�le a
rossthe sample. This is easiest to observe in Figure 8.18 as the redu
ed number ofbubbles means larger �nal volumes are a
hieved before bubble-bubble intera
tionhalts further growth.To aid the illustration of the heterogeneity through ea
h of the distributionsshown in Figures 8.16 - 8.18 we plot the relative size distribution (RSD) withrespe
t to the average bubble radius in ea
h 
ase. The results are displayed in



Chapter 8 197Figure 8.19 (a) - (
) and appear to show that heterogeneity of bubble size distri-bution through the sample in
reases as Æx in
reases. In the following se
tion wederive two metri
s to quantify this observed heterogeneity and look for a bubblespa
ing value, Æx, to maximise it.8.6.1 De�nition and analysis of bubble size heterogeneityWe looked at two di�erent metri
s to 
apture the �nal bubble size heterogene-ity a
ross the sample domain. The �rst de�nition takes into 
onsideration thedi�eren
e in bubble size for adja
ent bubbles through the sample and is de�nedthus �1 =  NXj=L jr(T; j)� r(T; j � 1)j!, NXj=1 r(T; j)=N! : (8.71)The se
ond de�nition 
onsiders only the di�eren
e between the largest and small-est bubbles in the sample so that,�2 = �maxj2(1;N)fr(T; j)g �minj2(1;N)fr(T; j)g�, NXj=1 r(T; j)=N! : (8.72)These two values were 
al
ulated for ea
h initial bubble spa
ing and the resultsare plotted in Figure 8.20. We 
an see that qualitatively both de�nitions showthe same trends for heterogeneity versus bubble spa
ing. There appears to bean optimal bubble spa
ing that results in in
reased heterogeneity in �nal bubbleradii through the sample and this o

urs at a bubble spa
ing of approximately6-7mm.Figure 8.21 shows the results of the same analysis as des
ribed here and inSe
tion 8.6 with the ex
eption that the value of the 
uid volume surroundingthe bubble is X = 150 as opposed to X = 500. In this 
ase the value for thebubble spa
ing interval, Æx, de
reases so that the maximum heterogeneity inbubble size distribution is a
hieved when Æx = 5mm, as opposed to 7mm in the
ase when X = 500.
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Figure 8.20: Plot illustrating the results for bubble size heterogeneity versus thebubble spa
ing, Æx (mm), through the sample, given by the metri
s �1 (8.71)and �2 (8.72). Curves for �1 (red 
urve) and �2 (blue 
urve) agree qualitativelyif not quantitatively. They both suggest that the initial bubble spa
ing intervalrequired to a
heive the maximum bubble size heterogeneity a
ross the sample isapproximately Æx = 6. The metri
 �1 also suggests a lo
al maxima at Æx = 2but this is not observed using �2. The parameter values used to 
onstru
t this�gure are listed in Table 8.6 with X = 500.
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Figure 8.21: Plot illustrating the results for bubble size heterogeneity versus thebubble spa
ing, Æx (mm), through the sample, given by the metri
s �1 (8.71)and �2 (8.72). Curves for �1 (red 
urve) and �2 (blue 
urve) agree qualitativelyif not quantitatively. They both suggest that the initial bubble spa
ing intervalrequired to a
heive the maximum bubble size heterogeneity a
ross the sample isapproximately Æx = 6. The metri
 �1 also suggests a lo
al maxima at Æx = 2but this is not observed using �2. The parameter values used to 
onstru
t this�gure are listed in Table 8.6 with the ex
eption that X = 150.
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Chapter 8 201Having isolated the e�e
t of pressure amplitude on rea
tion rate and exam-ined the resultant e�e
ts in the model, we have shown that the pressure ampli-tude of the irradiating a
ousti
 standing wave, 
an e�e
t bubble size distributionthrough its e�e
ts on rea
tion rate. The rea
tion rate distribution a
ross thesample does lead to spatial heterogeneity in �nal bubble sizes. However, as Fig-ure 8.19 demonstrates, the bubble size does not ne
essarily 
orrelate with thelo
al pressure amplitude pro�le as illustrated in Figure 8.14. An ex
eption tothis is the 
ase for Æx = 0:5mm and we 
an observe by 
omparing Figure 8.14to 8.22 that bubble volume is indeed proportional to the pressure amplitude al-though the magnitude of this e�e
t is small. This is the same qualitative e�e
treported by Torres-San
hez et al. in [93℄. The magnitude of the experimentallyobserved e�e
t of a
ousti
 pressure amplitude on bubble size reported in theirpaper is more signi�
ant than that produ
ed by our model and therefore anotherme
hanism, or perhaps several me
hanisms, may be responsible and these willbe dis
ussed in the next se
tion.For a given steady state bubble volume, our model 
an predi
t a homogeneousbubble spa
ing value, Æx, that produ
es maximum heterogeneity through thesample. Figure 8.21 demonstrates analysis of heterogeneity under the same
onditions as in Figure 8.20 with the ex
eption of a lower dimensionless 
uidvolume, X = 150. This results in a redu
ed steady state volume for ea
h bubblein the s
heme and, as Figure 8.21 illustrates, the spa
ing interval required tooptimise heterogeneity in bubble size distribution is redu
ed.Mathemati
ally we 
an 
hoose any bubble spa
ing we like but experimentallythis is not possible and initial bubble spa
ing will depend on many fa
tors gov-erning nu
leation. Furthermore, bubble spa
ing will also 
hange as new bubblesnu
leate at subsequent timepoints.
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ussionIn this 
hapter we extended a model, introdu
ed by Everitt et al. [26℄, for thegrowth of a single bubble within a rea
ting polymer foam, to in
lude the e�e
tsof an irradiating a
ousti
 standing wave. First we developed a numeri
al 
ode tosolve the 
oupled system of �ve PDEs, and validated our results by 
omparingwith those of Everitt et al. in the 
ase of no insonifying a
ousti
 signal. Satis�edthat the numeri
al 
ode was produ
ing the right results we then looked to applythis model to the experiment des
ribed by Torres-San
hez et al. [93℄. Before
onsidering a multibubble distribution we �rst examined the e�e
t of this newparameterisation, and in parti
ular, the role played by the pressure amplitudeof the a
ousti
 standing wave. Due to the attenuating e�e
t of the sample,on the a
ousti
 standing wave, this pressure amplitude was shown to have nodire
t e�e
t on the bubble volume (see Figure 8.10). However, the value of therea
tion rate 
onstant, 
� was demonstrated to have a mu
h more signi�
ante�e
t as illustrated in Figure 8.1. In another related paper by Torres-San
hezet al. [92℄ the authors point to a relationship between the rea
tion rate of thepolymerisation and the pressure amplitude of the a
ousti
 standing wave. Weextra
ted, from their data, a relationship between the lo
al a
ousti
 pressureamplitude and the lo
alised rea
tion rate 
onstant 
�, and used this to proposea spatial rea
tion rate pro�le a
ross the sample, that 
orrelates with the pressureamplitude pro�le.Having developed a numeri
al 
ode to tra
k the evolution of an individualbubble insoni�ed at a given a
ousti
 pressure amplitude we then 
onsidered aone-dimensional distribution of nu
leated bubbles `seeded' homogeneously a
rossthe sample. An empiri
al set of rules was de�ned in order to des
ribe bubble-bubble intera
tion and, for a given steady state bubble volume, the e�e
t ofdi�erent bubble spa
ings a
ross the sample was examined. Two heterogene-
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s were de�ned and both agreed qualitatively, predi
ting an optimumbubble spa
ing interval to a
heive maximum bubble heterogeneity.Although the rea
tion rate distribution did in
rease the heterogeneity ofthe �nal bubble size distribution, it did not 
onsistently predi
t the 
orrelationbetween bubble size and pressure amplitude value measured a
ross the sample aswas so 
learly illustrated in the experimental work 
arried out by Torres-San
hezet al. [93℄. They demonstrate, experimentally, that for realisti
 in situ a
ousti
pressure amplitudes a
ross the sample domain the porosity value 
orrelates withthe pressure amplitude. RMS pressure amplitudes ranged from 0 to 600 Pa andthe dimensionless porosity values (as de�ned in [94℄) were in the range 0 to160 where porosity in
reases with porosity value. We have shown, theoreti
ally,that in 
ases of high bubble number density it is possible to illustrate a bubblesize distribution pro�le that 
orrelates with the a
ousti
 pressure amplitudedistribution a
ross the sample (
ompare Figures 8.9 and 8.22), as demonstratedby [93℄, although the magnitude of this 
orrelation is smaller. We have furtherdemonstrated that the initial bubble spa
ing 
an a�e
t the �nal bubble sizedistribution and heterogeneity of the sample. Optimum initial bubble spa
ingvalues 
an be determined, for a given parameter set, that will result in themaximum heterogeneity for the �nal bubble size distribution. This e�e
t ofinitial bubble spa
ing 
ould be 
onsidered in the future modelling of nu
leatione�e
ts on the �nal bubble size distribution through the sample.



Chapter 9Con
lusions and Further Work
9.1 Con
lusionsThe main motivation for this se
tion of the thesis was a problem proposed, atthe MMSG 2010 [1℄, by Dr Carmen Torres-San
hez [93℄ regarding the tailoringof the porosity gradients within a 
ured sample of a polymerising foam under thein
uen
e of an a
ousti
 standing wave. This is a very 
omplex pro
ess involvingmany intera
ting fa
tors and e�e
ts, for example, re
ti�ed di�usion, Ostwaldripening and nu
leation, all of whi
h are a�e
ted by the variations in pressureamplitude that 
omes with an a
ousti
 standing wave. Due to the 
omplexityof the problem we de
ided to investigate the dire
t e�e
t of the applied a
ousti
pressure amplitude on the system, in the �rst instan
e, and then latterly its e�e
ton the bubble size distribution via the rea
tion rate 
onstant, 
�. We added ana
ousti
 amplitude to the right hand side of the momentum equation publishedin [26℄ to examine the dire
t e�e
t of the standing wave. However, although theinsonifying a
ousti
 signal has amplitude of order 104Pa, the attenuating natureof the water bath surrounding the sample and the sample medium itself, meanthat the a
tual amplitude in situ is only of order 102Pa and has no observablee�e
t on the bubble size. We 
an therefore 
on
lude that this is not a me
hanismresponsible for the bubble size heterogeneity observed in [93℄.An indire
t e�e
t of the a
ousti
 pressure amplitude is demonstrated through204
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tion rate 
onstant, 
�. This link has been proposed in previous publi
a-tions [69, 92℄ and we de
ided to examine whether or not it 
ould be responsiblefor the porosity pro�les reported by [93℄. We parameterised the system for the
onditions reported in [92, 93℄ and de�ned a spatial rea
tion rate pro�le dueto the a
ousti
 standing wave. Individual bubbles were allowed to grow un-der the in
uen
e of their lo
al rea
tion rate 
onstant and a simple s
heme forbubble-bubble intera
tion was proposed so that �nal bubble distributions 
ouldbe obtained. We were thus able to demonstrate that the a
ousti
 pressure am-plitude e�e
t on rea
tion rate was responsible for introdu
ing heterogeneity inthe bubble size distribution a
ross the sample domain. In 
ertain 
ases thisbubble size distribution 
orrelated with the pressure amplitude pro�le a
rossthe sample, that is, larger bubble sizes o

urred at spatial points with a largerlo
al pressure amplitude.The bubble spa
ing required to a
heive the maximum heterogeneity in thebubble size distribution was shown to depend, through the non-dimensional 
uidvolume, X, on the steady state volume of the individual bubbles. That is, thesmaller the unimpeded steady state volume of individual bubbles, the smallerthe spa
ing interval required to a
heive the maximum heterogeneity.Although we have demonstrated that the a
ousti
 standing wave used toirradiate the polymerising sample in [93℄ is indeed responsible for a 
ertain degreeof bubble size heterogeneity a
ross the domain, the bubble size distribution doesnot always 
orrelate with the applied pressure amplitude pro�le as reportedin [93℄. Furthermore, the magnitude of the heterogeneity observed in [93℄ wasmu
h more signi�
ant than that demonstrated here. This is not unexpe
tedwhen we 
onsider the number of intera
ting e�e
ts involved in this pro
ess andthe fa
t that we have examined, in isolation, only one su
h me
hanism. Avenuesof further investigation are suggested in the next se
tion.In Chapter 7 we produ
ed a model to tra
k the growth of a bubble in a
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ting polymer foam in
orporating the e�e
ts of inertia. Wepartially de
oupled the system by assuming instantaneous di�usion and wereable to derive, �rst and leading order, inner and outer asymptoti
 solutions,respe
tively. The dimensionless 
uid volume, X, played an important role in theform and derivation of the leading and �rst order inner solutions, with improvedsolution a

ura
y for large X. The leading order bubble volume was exponentialwith respe
t to the inner temporal variable. By a variable transformation, wewere able to redu
e the �rst order system to the Euler di�erential equation andsolve for the parti
ular bran
h de�ned by our parameterisation. Two separateregimes were 
onsidered; the �rst des
ribed the 
ase when the 
uid volume wasmu
h larger than the bubble volume and the se
ond pertained to volumes of thesame order.The outer asymptoti
 solution essentially relates to the s
heme with zeroinertia. We were able to redu
e the 
oupled �ve equation PDE system to asingle integro-di�erential equation to des
ribe bubble volume evolution for theouter asymptoti
 problem. This essentially des
ribes the 
ase of negligible iner-tia whi
h we investigated further in Chapter 8. This was a
hieved by assuminginstantaneous di�usion to de
ouple the gas 
on
entration potential, as well as de-riving an expli
it form for the integrand, (Arr�A��)0=(x+u0). We attempted toderive an analyti
 approximation using the Pi
ard iterative s
heme but be
auseof the 
omplexity of the equation, only the �rst iterate was derived. A numeri
al
ode was developed instead and this provided a must faster tool for analysing thebubble evolution than the full numeri
al analysis performed as in [26℄. However,it must be remembered that many assumptions and approximations have beenmade along the way so that fewer me
hanisms and parameters are 
onsidered.Given the parameterisation of the system, in the absen
e of an insonifyinga
ousti
 standing wave, inertia would in fa
t be negligible. However, if we wereto add an a
ousti
 for
ing term to the right hand side of the momentum equation
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ts of the irradiating standing wave, then in a s
aled temporalvariable, the e�e
ts of inertia would be signi�
ant due to the phenomenon ofre
ti�ed di�usion 
aused by the os
illatory motion of the bubble. Although, inthis instan
e, we only look at the time averaged RMS signal for the a
ousti
wave and derive inner asymptoti
 solutions to leading and �rst order, we haveprodu
ed a s
heme that 
an be employed in the future to examine the e�e
ts ofthe a
ousti
 pressure amplitude on re
ti�ed di�usion.9.2 Further WorkSuggestions for further work in
lude, but are not limited to, the following areas.The basi
 rules for bubble-bubble intera
tion des
ribed in Chapter 8 
ould beimproved in various ways, possibly 
oupling bubbles through the stress evolutionin the surrounding 
uid. In our basi
 s
heme the bubbles intera
t as if no 
uidwas present and the only variable 
onsidered is the bubble radius.The nu
leation pro
ess, whi
h 
ontinues for some time after the polymeri-sation rea
tion has 
ommen
ed, has not been 
onsidered here. It would bepossible to model the e�e
t of this aspe
t of nu
leation using our s
heme, byassuming a fun
tion to des
ribe nu
leation so that di�erent bubbles nu
leateat di�erent times during the rea
tion. These results 
ould be 
ompared withthe same nu
leation fun
tion in the absen
e of an a
ousti
 pressure amplitude.This additional me
hanism would be likely to introdu
e further heterogeneitythrough the sample. It is important to note that this version of the nu
leatione�e
t does not 
onsider the dire
t e�e
t of the a
ousti
 pressure amplitude onthe a
tual nu
leation rate of bubbles.The phenomenon of Bjerknes for
es is another pressure sensitive me
hanismthat organises bubbles a

ording to size; bubbles less than the resonan
e sizemigrate to pressure antinodes and bubbles larger than the resonan
e size to pres-sure nodes. The Bjerknes for
e is dire
tly proportional to the applied a
ousti




Chapter 9 208pressure amplitude as well as depending on bubble size. Rather than governingbubble growth it a
ts to translate bubbles and as su
h may be partially respon-sible for the heterogeneity in bubble size distributions observed experimentally.The work done in Chapter 7, to in
lude the inertia term 
ould be extendedto in
lude an investigation into the e�e
t of the a
ousti
 standing wave on thepumping e�e
ts of the a
ousti
 signal on mass transfer into the bubble by re
-ti�ed di�usion.The inner asymptoti
 solutions, in Chapter 7, were derived to leading and�rst order. The 
onstru
tion of higher order asymptoti
 solutions would enablethe e�e
ts of a greater number of parameters to be investigated. Due to the largenumber of parameters involved in the rea
ting s
heme, a sensitivity analysiswould prove useful in identifying whi
h key fa
tors are driving the pro
ess, andthus help to inform the dire
tion of any future analysis.The ability to tailor the porosity pro�les within polymerising materials willlead to signi�
ant improvements in a range of manufa
tured produ
ts su
h asarti�
ial bone. Given the 
omplexity of the physi
s involved it is essential thatmathemati
al modelling is used to design the manufa
turing pro
ess. This the-sis is the �rst step in this dire
tion and it is hoped that it will inspire otherresear
hers to take up the baton and develop the model to fully explain thisfas
inating problem.



Appendix ANumeri
al s
heme for thespatially heterogeneoushost-parasite model
Spatial dis
retisationThe spatial domain [0; L℄ is divided into N intervals of length dx and we use thestandard notation Pj(t) as an approximation of P (jdx; t) for j = 0; 1; � � � ; N .Hj(t) is de�ned in a similar manner.Treatment of the hare equationThe PDE is a standard rea
tion-di�usion equation and is dis
retised using ase
ond order a

urate 
entral di�eren
e s
heme,�H�t = DHHj+1 � 2Hj +Hj�1dx2 � b(H + P ) + aH2
1P +H ; j = 0; 1; � � � ; N:In order to satisfy the pres
ribed no 
ux boundary 
onditions and to maintainse
ond order a

ura
y, we set the following values H�1 = H1 and HN+1 = HN�1.Treatment of the parasite equationThe parasite equation has a rea
tion term and an adve
tion term sin
e the par-asite lives in the host and travels with the host velo
ity. A �rst order upwindsemidis
retisation 
ould be used that would maintain positivity but 
ould intro-209
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e a large amount of numeri
al di�usion, unless the spatial dis
retisation issuÆ
iently �ne. On the other hand, high order spatial dis
retisations often leadto os
illations in solutions whi
h may break the positivity requirement when thesolution values are small. Instead we use 
ux limiters whi
h are designed to limitthe spatial derivatives to realisti
, or physi
ally realisable values. They tend tobe favoured when sharp wave fronts are present. The 
ux limiter s
heme for ourproblem is 
onstru
ted as follows. We denote the velo
ity of the adve
tive 
uxat grid point j by wj = DHH �Hj�x ; j = 0; 1; � � � ; N:We de�ne the derivative ofH at grid point j using 
entral di�eren
es as standardand let fj denote the semidis
retised adve
tive 
ux at grid point j, i.e.fj = wjPj; j = 0; 1; � � � ; N:We then introdu
e the semidis
retised general 
ux fun
tion Fj+1=2 whi
h is afun
tion of the 
uxes f surrounding the grid point j. Using a 
entral di�eren
eapproximation for the spatial derivative, the adve
tion term 
an be approxi-mated by the expression1dx �Fj+1=2 � Fj�1=2� ; j = 0; 1; � � � ; N:The semidis
retisation of the parasite equation then yields�P�t = 1dx �Fj+1=2 � Fj�1=2�+ P � �H1 +H � (�+ b+ �)� 2bPH �We set F�1=2 = FN+1=2 = 0 to ensure that the no-
ux boundary 
onditions aresatis�ed. It only remains to 
hoose the 
ux fun
tions Fj+1=2. To this end, wede�ne the fun
tion rj = fj+1 � fj + �fj � fj�1 + � ; j = 0; 1; � � � ; N;
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h en
apsulates the ratio of the gradients of 
uxes about grid point j. Notethat the quantity � is a small number that ensures that rj is well de�ned evenwhen the 
uxes surrounding grid point j are identi
al. We set � = 10�30.Consistent with the boundary 
onditions, we set f�1 = fN+1 = 0. Finallywe introdu
e a limiter fun
tion �(r) and de�ne the general 
ux fun
tion for anon-negative velo
ity asFj+1=2 = fj + 12�(rj)(fj � fj�1); j = 0; 1; � � � ; N � 1:However, for a negative velo
ity wj < 0 we re
e
t all the indi
es about j + 1=2to obtainFj+1=2 = fj+1 + 12�� 1rj+1� (fj+1 � fj+2) ; j = 0; 1; � � � ; N � 1:We 
hoose a symmetri
, van Leer 
ux limiter fun
tion, namely�(r) = r + jrj1 + jrj ;whi
h tends to 2 as r !1 and has the following symmetry property�(r)r = ��1r� ;whi
h ensures that the limiting a
tion operates in the same way for forward andba
kward gradients. Note that �(r) = 0 would be equivalent to a �rst-orderupwind dis
retisation.Numeri
al integration of the ODE systemThe spatial dis
retisation des
ribed above redu
es the PDE system to a systemof ODEs whi
h we solve using a fourth order Runge-Kutta method.



Appendix BRes
aling of Mountain hare,Tri
hostrongylus-retortaeformissystem
The 
ontinuous growth equations for a host population of density, H intera
tingwith a parasite population, P in a spatially heterogeneous system are statedbelow. The original rea
tion-kineti
 system is augmented by a spatial termrelated to the rate of hare 
ux JH . The population densities are thereforedependent on a one-dimensional spatial 
omponent, x as well as time, t andevolve a

ording to�H�t = ��P � bH + aH2(ÆP +H) � �JH�x ; (B.1)�P�t = P � �HH0 +H � (�+ � + b)� 2�PH �� ��x �PJHH � ; (B.2)where x,t2R, H = H(x; t), P = P (x; t), JH = �DH�H=�x and DH is the di�u-sion 
oeÆ
ient for the hare population.We introdu
e the dimensionless 
onstants h and p and substituting into (B.1)for H = h �H and P = p �P gives��t(h �H) = ��p �P � bh �H + a(h �H)2Æp �P + h �H � h� �JH�x ; (B.3)! h� �H�t = ��p �P � bh �H + h2a �H2Æp �P + h �H � h� �JH�x : (B.4)212



Appendix B 213Dividing through by h and rearranging we have� �H�t = �ph� �P � b �H + a �H2phÆ �P + �H � � �JH�x : (B.5)Assigning �� = ph� and �Æ = phÆ we 
an rewrite (B.5) as� �H�t = ��� �P � b �H + a �H2�Æ �P + �H � � �JH�x : (B.6)We non-dimensionalise (B.2) in the same way,��t(p �P ) = p �P � �h �HH0 + h �H � �� �� b� 2�p �Ph �H �� ��x �ph �P �JHh �H � : (B.7)Dividing through by p and setting h = H0 and p = P0 we obtain� �P�t = �P � � �H1 + �H � �� �� b� P0H02� �P�H �� ��x � �P �JH�H � : (B.8)De�ning the parameter � = H0P0 the above equation 
an be rewritten as� �P�t = �P � � �H1 + �H � �� ���� b� 2�� �P�H �� ��x � �P �JH�H � ; (B.9)and our res
aled system 
an now be presented� �H�t = ��� �P � b �H + a �H2�Æ �P + �H � � �JH�x ; (B.10)� �P�t = �P � � �H1 + �H � �� ���� b� 2�� �P�H �� ��x � �P �JH�H � ; (B.11)where the non-dimensional parameters are given by�� = �P0H0 = 0:0209, �Æ = ÆP0H0 = 0:2618, � = H0P0 = 3:82� 10�4,and P0 = 1� 108.



Appendix CNon dimensionalisation ofnon-rea
ting system of equations
All lengths are s
aled with u 130 and volumes with u0, we s
ale time with therelaxation time of the polymer � , pg a

ording toPg = pg � papg0 � pa ; (C.1)and � with pg0u0=RgT , that is, the initial number of moles of gas. The fol-lowing substitutions are made in the governing equations, boundary and initial
onditions: t = � t̂; u = u0û; pg = (pg0 � pa)Pg + pa;x = u0x̂; _u = u0� _̂u; pu = (pg0 � pa)Pu;X = u0X̂; �u = u0�2 �̂u; and � = pg0u0RgT �̂:Starting with the momentum equation (7.32)43� _u�1u � 1X + u� + �" �u3  1u 13 � 1(X + u) 13 !� _u218  1u 43 � 1(X + u) 43 !#= pg � pa � pu + 23G Z X0 (Arr � A��)(x0 + u) dx0 � 2Su 13 ; (C.2)

214



Appendix C 21543 �� u0 _̂u 1u0û � 1u0(X̂ + û)!+�"u0� 2 �̂u3  1u 130 û 13 � 1u 130 (X̂ + û) 13 !� u20� 2 _̂u218  1u 430 û 43 � 1u 430 (X̂ + û) 43 !#= (pg0 � pa)Pg � (pg0 � pa)Pu + 23G Z u0X̂0 (Arr � A��)u0(x̂+ û) d(u0x̂)� 2Su 130 û 13 :Dividing by �=� and 
olle
ting powers of u0 together gives43 _̂u 1̂u � 1(X̂ + û)!+R"�̂u 1̂u 13 � 1(X̂ + û) 13 !� _̂u26  1̂u 43 � 1(X̂ + û) 43 !#= De(Pg � Pu) + 23
 Z X̂0 (Ârr � Â��)(x̂+ û) dx̂� 1�û 13 ; (C.3)where the following non dimensional grouped parameters are de�ned by,R = �u 2303�� ; De = (pg0 � pa)�� ; 
 = G�� ; � = �u 1302S� :Substitution for the non-dimensional variables into (7.37) and (7.39) gives,�Arr��t̂ = � 4u0 _̂u3�u0(x̂ + û)Arr � 1� (Arr � 1);�Arr�t̂ = � 4 _̂u3(x̂ + û)Arr � (Arr � 1); (C.4)and, �(Arr � A��)��t̂ = 2u0 _̂u3�u0(x̂ + û) [(Arr � A��)� 3Arr℄� 1� (Arr � A��);�(Arr � A��)�t̂ = 2 _̂u3(x̂+ û) [(Arr � A��)� 3Arr℄� (Arr � A��); (C.5)respe
tively. We 
an re-write (7.47) aspgu0û = pg0u0 +RgT �̂(0; t)pg0u0RgT :Dividing through by u0 and rearranging gives,(pa + (pg0 � pa)Pg)pg0û = (1 + �̂(0; t)): (C.6)



Appendix C 216For the di�usion equation (7.45) we havepg0u0RgT� ��̂�t̂ = 9D(u0(x̂ + û)) 43 pg0u0RgT �2�̂u20�x̂2 ;��̂�t̂ = N(x̂ + û) 43 �2�̂�x̂2 ; where N = 9D�u 230 : (C.7)Finally we need to non-dimensionalise the boundary 
ondition on � at the bubblesurfa
e, that is, ���x ����x=0 = (pg � pg0)H;so that, ��(u0x̂) �pg0u0RgT �̂�����(u0x̂)=0 = [(pa + (pg0 � pa)Pg)� pg0℄H;��̂�x̂ �����x̂=0 = �(pg0 � pa)pg0 (Pg � 1); (C.8)where � = RgTH.Parameter Value UnitsPressure outside the 
uid layer, pa 1 105Nm�2Initial bubble gas pressure, pg0 10 105Nm�2Elasti
 modulus, G 1� 10 105Nm�2Solvent vis
osity, � 1; 6 105Nsm�2Polymer relaxation time, � 1 sInitial bubble volume, u0 1 10�18m3Surfa
e tension, S 0� 5 10�1Nm�1Gas 
onstant, Rg 8:31 Jmol�1K�1Temperature, T 370 KHenry's law 
onstant, H 10:5 10�5molN�1m�1Di�usivity, D 0:1� 100 10�12m2s�1Fluid density, � 1200 kgm�3Table C.1: Parameters required for bubble expansion in the non-rea
ting system(7.48) - (7.52).
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