Analysis of Nonlinear
Spatio-temporal Partial
Differential Equations:

Applications to Host-Parasite
Systems and Bubble Growth

Aoibhinn Maire Bradley

A Thesis submitted to
The University of Strathclyde
for the degree of

Doctor of Philosophy

Department of Mathematics and Statistics
University of Strathclyde

2014



Declaration

This thesis is the result of the author’s original research. It has been
composed by the author and has not been previously submitted for

examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms
of the United Kingdom Copyright Acts as qualified by University of
Strathclyde Regulation 3.50. Due acknowledgement must always be
made of the use of any material contained in, or derived from, this

thesis.



Abstract

The mountain hare population currently appears to be under threat in Scotland.
The natural population cycles exhibited by this species are thought to be, at
least in part, due to its infestation by a parasitic worm. We seek to gain an
understanding of these population dynamics through a mathematical model of
this system and so determine whether low population levels observed in the field
are a natural trough associated with this cycling, or whether they point to a
more serious decline in overall population densities.

A generic result, that can be used to predict the presence of periodic travel-
ling waves (PTWs) in a spatially heterogeneous system, is reported. This result
is applicable to any two population host-parasite system with a supercritical
Hopf bifurcation in the reaction kinetics. Application of this result to two ex-
amples of well studied host-parasite systems, namely the mountain hare and the
red grouse systems, predicts and illustrates, for the first time, the existence of
PTWs as solutions for these reaction advection diffusion schemes.

One method for designing bone scaffolds involves the acoustic irradiation of
a reacting polymer foam resulting in a final sample with graded porosity. The
work in this thesis represents the first attempt to derive a mathematical model,
for this empirical method, in order to inform the experimental design and tailor
the porosity profile of samples. We isolate and study the direct effect of the
acoustic pressure amplitude as well as its indirect effect on the reaction rate.

We demonstrate that the direct effect of the acoustic pressure amplitude
is negligible due to a high degree of attenuation by the sample. The indirect
effect, on reaction rate, is significant and the standing wave is shown to produce
a heterogeneous bubble size distribution. Several suggestions for further work

are made.
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Preface

The work in this thesis is divided into two distinct parts. The first five chapters
relate to research carried out, on host-parasite systems, in the first year and
a half of my PhD programme. The second part of the thesis, contained in
Chapters 7 to 9, is a study of some of the effects of acoustic irradiation on a
reacting polymer foam. The study of this second subject arose as a result of
my attendance at a Mathematics in Medicine Study Group at the University of
Strathclyde in 2010.
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Chapter 1

Introduction: Host-Parasite
Systems

1.1 Motivation

Interest in the mountain hare, Lepus timidus, has resurfaced in the media [21], in
recent months, with parliamentary questions being lodged at the Scottish par-
liament regarding its conservation status, abundance and distribution in Scot-
land [73]. Despite the fact that it has been listed in Annex V of the EC Habitats
Directive (1992) for many years [97], there are currently renewed concerns about
the perceived decline in the population and more specifically about the effect of
culls (both legal and illegal) on the mountain hare population [21]. There have
been reports of localised declines and possible extinctions but given the lack of
up to date information on abundance and distribution in the field, coupled with
the fact that the mountain hare populations exhibit natural cyclical fluctuations
in density, it is hard to ascertain whether observed low levels and possible lo-
calised extinctions are the result of environmental factors or are simply due to
the inherent peaks and troughs in population levels associated with such cyclic
population dynamics [43]. Tt is hoped that a greater understanding of the pop-
ulation dynamics of the mountain hare species along with a knowledge of the

causative factors for population fluctuations will help to inform the management
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of the population which is thought to be currently under threat. In this the-
sis we build on work produced by the former Macauley Institute, Aberdeen in
conjunction with the University of Glasgow [97]. This work was both empirical
and theoretical and looked, in particular, at the specific effect associated with
the mountain hare’s intestinal parasite, Trichostrongylus retortaeformis. In this
study, reaction kinetic models were developed with an aim to understanding the
population fluctuations observed in the data. We seek to examine the effect
of a spatial extension of this kinetic model as well as probing it analytically
to derive some generic results that can be applied to a specific sub-category of

host-parasite systems.

1.2 Background

Many natural species exhibit some oscillatory behaviour in population density
with cycles that are characterised by their amplitude and period [83]. Exam-
ples include Snowshoe hares [46], field voles [48], grouse [37,98] and mountain
hares [36, 62, 63, 65,97]. These population cycles can either be the result of
spatially homogeneous oscillations predicted by the associated reaction kinetic
model or the observed spatiotemporal cycles are formed by periodic travelling
waves (PTWs) [95], which oscillate in space and time. There are many possible
reasons why temporal or spatial cycling could occur and they vary for individual
systems. In some cyclic systems, a number of factors need to interplay to produce
oscillations [46]. Example mechanisms can include habitat heterogeneity, sea-
sonal forcing, interaction with other populations, climatic forcing and landscape
obstacles [83]. In other systems, interspecies interactions are thought to result
in cycling [39,48]. This interaction may take different forms depending on the
species involved. For example, predator-prey interactions have been extensively
studied since the work of Lotka and Volterra in the 1920s [6], and predation

has been shown to be an established cause of cycling in the prey species [80].
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Another example is the host-parasite interaction, regarded by Anderson and
May as a ‘particular manifestation of the general predator-prey interaction’ [6].
In [6], the authors show theoretically that where the parasite is loosely aggre-
gated in the host population, and where its effect on survival is small compared
to its effect on host fecundity, the parasite population will tend to destabilise
the system resulting in population cycling. Indeed, field studies of red grouse
and their intestinal nematode exhibit spatiotemporal oscillations in host-parasite
densities [68,102] and further investigation has also shown that it is the parasite
that is responsible for this cycling effect [39]. With other host parasite stud-
ies, however, observed spatiotemporal oscillations in the field data have not yet
been explained [96] and many other factors outwith parasite effects, for exam-
ple predation [46], food limitation [42], culling [35], territoriality [36] have been
proposed as possible drivers of these cycles, but as yet nothing has been proved
empirically or theoretically.

An important aim of population dynamics is to develop a better understand-
ing of the cause and effect of such cyclic behaviour so that species that are under
threat, or those of economic importance, may be better managed. For example,
a system that we will study in the main body of this thesis is the mountain hare
Lepus timidus in Scotland. This is the only lagomorph species native to the UK
with 99% of the population residing in Scotland [57]. Lagomorphs are members
of the taxonomic order Lagomorpha and include hares and rabbits. The moun-
tain hare population is believed to be under threat from a number causes and as
such has been listed in Annex V of the EC Habitats Directive (1992) [97] requir-
ing the UK to ensure its conservation and sustainable management. In 2007,
due to a perceived decline in mountain hare numbers the Scottish Government’s
wildlife conservation agency Scottish Natural Heritage (SNH) made the moun-
tain hare a UK biodiversity action plan species [97]. Field data measurements

show that this population exhibits cyclic dynamics [63] with 7-10 year fluctu-
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ations in abundance [36]. Its associated intestinal nematode Trichostrongylus
retortaeformis has been proposed as a possible driver of these cycles [63,97].
Based on these propositions, Townsend et al. [97] derived a non-spatial reaction
kinetic model (ordinary differential equations, ODEs) to describe these cycles
but concluded that it did not completely describe the effects of parasites on the
mountain hare demography. Specifically, the parameter set required to generate
oscillations with the properties observed in the field data resulted in unrealis-
tically high parasite burdens. The authors [97] proposed a number of possible
reasons for this. First, they highlighted the fact that several of the plausible
parameter ranges were based on small sample sizes or indirect data sources and
were therefore possibly inaccurate. It was further suggested that the effects of
the parasites on the system may extend beyond mortality and fecundity and that
other parasitic effects may need to be included in the reaction kinetic model.
Finally, they proposed a secondary role for parasites in the reaction kinetics and
in a later paper [96] the same authors go on to suggest population dispersal, har-
vesting and population control as areas of ongoing investigation. In this thesis,
we focus on the area of population dispersal and employ a spatially extended
model for the mountain hare - parasite system.

Another species which has been modelled using similar non-spatial ODEs
(e.g. see [18]) is the red grouse, Lagopus lagopus scoticus. As the favourite
game bird of Britain [98], there is an abundance of long-term data describing
grouse population dynamics. In common with the mountain hare, it is subject to
parasitism by the intestinal nematode Trichostrongylus tenuis, which has proven
to be one of the two main mechanisms proposed for red grouse cycles [98].

By modelling both these host-parasite systems in space and time we hope to
gain some insight into the population cycling observed in the field. We will also
derive a result for the spatial host-parasite system, analagous to a result pre-

sented by Koppell and Howard [45] for predator-prey reaction-diffusion systems.
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We then show how this generic result may be used to predict the existence of
PTW solutions in general two population cyclic host-parasite reaction-advection-
diffusion systems which contain a supercritical Hopf bifurcation in the reaction

kinetics.

1.3 Overview

This part of the thesis may be loosely divided into four sections. Chapter 2 intro-
duces the necessary theory required to tackle the problem of cyclic host-parasite
systems, both temporal and spatiotemporal. Chapter 3 describes the motivation
and background for studying population dynamics of the mountain hare and its
intestinal parasite Trichostrongylus retortaeformais, looking at both the spatially
homogeneous system as well as a model incorporating spatial heterogeneity. In
Chapter 4, a new result is derived for a general two population host-parasite
reaction-advection-diffusion model containing a supercritical Hopf bifurcation
in the reaction kinetics. This generic result is then applied to two host-parasite
studies of particular interest, namely the mountain hare- Trichostrongylus retor-
taeformis system and the red grouse- Trichostrongylus tenuis system. Chapter 5
proposes areas of further investigation and some conclusions are drawn. Specif-
ically the chapters may be summarised as follows:

Chapter 2 presents an overview of the mathematical theory that underpins
the study of periodic travelling waves in a spatiotemporal domain, as well as
the reaction kinetics of generic two population predator - prey systems. The
analysis of Koppell and Howard [45] on general two population predator-prey
reaction diffusion models characterised by a supercritical Hopf bifurcation in the
reaction kinetics is elucidated. The form and properties of ‘A — w’ systems are
studied. These are a simple class of reaction diffusion equations proposed by [45]

and are a very useful tool in the analysis of cyclic reaction-diffusion systems.
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Chapter 3 describes the particular host-parasite model for the mountain
hare- Trichostrongylus retortaeformis system proposed by Townsend et al. [95,
97]. First, the temporal model is investigated and the global and localised
behaviour of the system is analysed before illustrating numerically the possibility
of PTW solutions for the associated reaction-advection-diffusion system.

Chapter 4 derives a new result predicting the presence of PTW solutions,
given the existence of limit cycle solutions in the reaction kinetics, for a cer-
tain class of reaction-advection-diffusion equations. This result is tested on two
published reaction kinetic models describing different host-parasite systems.

Chapter 5 summarises the results for Chapters 3 and 4 and draws some
conclusions before outlining possible areas of advance in the study of this class
of host-parasite systems. It also proposes a linear stability analysis study on the

PTW solutions derived in previous Chapters.

1.4 Key Contributions

The principal original contributions of the author for this section of the thesis

may be summarised:

e In Section 3.8 we present the analysis of the spatially augmented mountain
hare- Trichostrongylus retortaeformis model originally proposed by [95] and
the result that spatial extension does not extend the limit cycle behaviour

beyond that observed in the temporal model.

e The spatial extension of the red grouse-parasite model published in [18],
using Fickian diffusion to model host dispersal, and an advection term to

describe parasite dispersal is proposed in Section 4.4.2.

e The illustration of PTWs, in the spatiotemporal domain, as possible so-
lutions for the spatially heterogeneous red grouse- Trichostrongylus tenuis

model proposed in [18].
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e [n Chapter 4, the proposition of a generic result that can be applied to the
spatially heterogeneous model of any two population, cyclic, host-parasite
reaction-advection-diffusion system containing a supercritical Hopf bifur-
cation in the reaction kinetics. This generic result can also predict the
minimun speed of the PTW solution; the particular wave speed is dic-

tated by initial and boundary conditions.



Chapter 2

Mathematical Background

2.1 Periodic travelling waves

The term ‘periodic travelling wave’ (PTW) refers to a particular type of solu-
tion, in which the model variables vary periodically in space, as well as in time.
They are a fundamental solution form for reaction-diffusion systems with a sta-
ble limit cycle in the kinetics [45] and have been studied extensively, typically,
in cyclic two population predator-prey systems [78-83,85,86]. In their review,
Sherratt and Smith [83] tabulate details of a number of field studies reporting
periodic travelling waves in populations undergoing multi-year cycles. According
to Sherratt and Smith [83], the significance of a PTW is the correlated spatial
and temporal density variations that it implies. The synchrony in population
dynamics associated with PTWs has been attributed to a number of different
factors, for example, population dispersal, large scale perturbations in the envi-
ronment or multi-year oscillations in some important environmental factor, for
example climatic forcing or sunspot activity [83]. The two main mechanisms
known to generate such PTWs in predator-prey systems are boundary effects
and the invasion of a predator population into a prey population [83].

One of the aims of this work is to study theoretically the existence of PTW
solutions in cyclic, two population host-parasite systems. Not only are there

fundamental differences in the reaction kinetics of host-parasite systems (as op-
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posed to the predator-prey models) but the spatial augmentation of the temporal
model will now involve advection as well as diffusion since, in many cases, the
parasites travel on, or in, their associated host population for all or part of
their life cycle. Before examining two population host-parasite systems, we first

summarise the PTW theory associated with predator-prey systems.

2.2 Predator-prey systems

There are numerous examples of predator-prey interactions in nature and, in
these cases, the predator, in effect, kills and eats the prey. Lotka-Volterra [9]
developed the first mathematical model to study these predator-prey systems
and demonstrated that simple predator-prey reactions can lead to oscillatory
behaviour of the populations. Since then, predator-prey interactions have been
widely studied and spatially heterogeneous systems are often modelled using
reaction-diffusion equations with constant diffusion coefficients to model popula-
tion dispersal [60]. An example of a predator-prey reaction kinetic (non-spatial)
system is [83],

benefit from predation

/—/H death
du ouv PNy (2.1)
—_ —= — u .
dt (k+v) p
dv uv
L 1 e 2.2
dt u (k +v) (2:2)
intrinsic birth and death — “=——~—
predation

where u and v represent the predator and prey population densities respectively,
it is the predator death rate, o is the prey to predator conversion rate and & is
the half-saturation constant in the rate of prey consumption term by predators.
Note that the benefit from predation is taken to be proportional to the predation
term in the prey equation and this is thought to be a key driver for temporal
oscillations in population densities in this system [60]. The reaction kinetics

of these type of systems have been studied extensively and it is often shown
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that predators introduced into a prey population can induce a stable limit cycle
about an unstable co-existence steady state. In 1973, Koppell and Howard pro-
duced a seminal paper on two population cyclic systems of this form [45]. They
considered a spatiotemporal version where population dispersal is modelled by
Fickian diffusion, for both predator and prey, with predator and prey popula-
tions having associated constant diffusion coefficients D, and D,, respectively.

They showed that all oscillatory reaction-diffusion equations, of the form

ou 0%u
ov 0
a = g(U, U) —+ Dv@, (24)

where f(u,v) and g(u, v) describe the reaction kinetics of the non-spatial system,
have a one parameter family of periodic travelling wave solutions; here the word
‘oscillatory’ indicates that the reaction diffusion kinetics have a stable limit
cycle [101]. They proved that there is a family of small amplitude waves provided
that the dispersal coefficients for the two populations are sufficiently close. To

do this, they showed that the travelling wave variable ODE system

du D, d*u

— i 2.5
dv D, d*v

— v 2.6

where z = t — /s, has a Hopf bifurcation at some positive value of the wave
speed, Swopr, and then used the Hopf theorem to imply a one-parameter family
of periodic solutions as s increases above this minimum value, sgope. This limit
cycle solution in z corresponds to the birth of PTW solutions in the associated
PDE system in the (z,¢) plane. These solutions are ‘one parameter’ in the
sense that if we select a parameter set producing a travelling wave solution
characterised by a speed, s, then, for this parameter set, the values of amplitude,
wavelength and period for the PTW are fixed; similarly if we choose an amplitude

then the speed, period and wavelength of the resulting PTW are determined [83].
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The wave amplitude can range between zero to that of the amplitude of the
spatially homogeneous oscillations of the reaction kinetics. Similarly, the wave
speed can range from some minimum speed given by smepe, to infinity, which
corresponds to the spatially homogeneous oscillations of the reaction kinetics.
The period ranges from a minimum related to the minimum wave speed to a
maximum value equal to the period of the limit cycle solution in the reaction
kinetics.

In addition, Koppell and Howard [45] introduced and developed the analysis
of the simple class of reaction-diffusion equations known as ‘A—w’ systems; these
have since been used extensively in prototype studies of cyclic reaction-diffusion
systems [60] and for this reason we will summarise the form and properties of

these systems in the next section.

2.3 )\ —w systems

We will start with the full A—w reaction-diffusion system, introducing some basic
assumptions, and then initially consider the spatially homogeneous limiting case
before going on to predict the presence and form of periodic plane waves as
solutions to the spatial system.

A A\ —w system is a simple type of reaction-diffusion system taking the form

ou 0%u
% - 9 + A(r)u — w(r)v, (2.7)
ov 0%
% = 9 + w(r)u + A\(r)v, (2.8)

where 7 = (u? + v?)'/?, u and v are real-valued functions of space z and time
t, and \(0) and w(0) are both strictly positive. An important property of this
system is that any isolated zero of A(.) corresponds to a limit cycle in the reaction
kinetics. In theory, any two population cyclic system near to a supercritical
Hopf bifurcation can, by reduction to normal form, be described by a A — w

system [83]. The reaction kinetics of the original system will determine the form
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of A(r) and w(r). The beauty of the A — w system is that analytical expressions,
in terms of system parameters, may be derived for the PTW solution form and
its stability. For general reaction-diffusion systems, however, unless the reaction
kinetics of the system are very simple, the reduction to normal form to obtain the
functions A(r) and w(r) can be cumbersome and time consuming and, because
of this, for the two systems considered in the main body of the thesis, we will
obtain the properties and stability of the PTW solutions using the numerical
bifurcation analysis package, AUTO [19]. The A — w system illustrated in (2.7)
and (2.8) is a generic system for PTWs for equations that have a supercritical
Hopf bifurcation in the reaction kinetics. We will now introduce the analysis for

this generic system before investigating our own specific host-parasite system.

2.3.1 Spatially homogeneous A — w systems

In the spatially homogeneous case, the temporal A — w system is simply stated

as [60]
du
o = A(r)u — w(r)v, (2.9)
dv
o = w(r)u + A(r)v, (2.10)

ro= Vu?+v? (2.11)

where r is a function of ¢ only. In order to fulfil the conditions necessary for a
supercritical Hopf bifurcation we need A(ry) = 0 and N'(ry) < 0: that is, A(r) is
positive for 0 < r < ro and negative for r > rq, and w(r) is a positive function
for all r [60]. This simple system has an exact limit cycle solution which can
be derived explicitly. In the spatially homogeneous system, the two variables u
and v are functions of ¢ only and their form depends on the system parameters,
and ry, which turns out to be the amplitude for the limit cycle solution.

If we express the variables v and v in the complex form, namely

c=u+1v, so that, le| = Vu? + 0% =r, (2.12)
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and

de du dv
at " lar

i
= Ar)u—w(r)v+i(w(r)u+ A(r)v),
=% = e + (e (2.13)

The rate of change of the modulus, |¢|, is given by,

5%:%%+%%. (2.14)
Substituting for the rate equations (2.9) and (2.10),
A (e — wllelo] + - [wo(lelu+ AQe)e],  (2.15)
dt || ||
:A$Mﬁﬂﬂ, (2.16)
= Ale)le] (2.17)

A steady state solution is observed when the above rate equation is equal to zero,
that is, when A(|c|)|c| = 0. But by our earlier definition, A\(rg) = 0 and therefore
our steady state is a limit cycle solution described by the circle, |¢| = ry, in the

(u,v) plane. Rewriting the system in polar co-ordinates we have,

. dr do
_ i0 - R
c=re = o rA(r), o w(r),
so that the limit cycle solution can be described by
r(t) = ro, O(t) = w(ro)t + o, where 6 is a constant.

The spatially homogeneous system thus has a limit cycle solution in the u — v

plane given, in polar co-ordinates, by

(u,v) = (rg cos[fy + w(re)t], ro sin[fy + w(ro)t]).
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2.3.2 Spatially heterogeneous \ — w systems

To obtain travelling wave solutions in the spatially extended system we substi-

tute for the polar co-ordinates into (2.7)-(2.8) to get,

5 (rmd )= (00 5 ) Cmd ) v (g ) em
where now u(z,t) = r(z,t) cos(8(z,t)) and v(z,t) = r(z,t)sin(f(z,t)). Differ-

entiating r cos @ and rsin f with respect to t,

%(rcos@) = rycosf — rf;siné, (2.19)
%(rsin@) = 7rysinf + 76, cosf (2.20)

and twice with respect to x,

2

%(r cosf) = rypco80 — 2r,0,sinf —r0,,sin0 — rh?cosh, (2.21)
2

% (rsinf) = rypsind + 27,0, cosf + rf,, cosd — r2sind. (2.22)

Substitution of these into (2.18) and simplification yields (for r # 0)

0, = w(r) + % (r*0,) - (2.23)

In a similar way we can obtain an expression for r;, namely
T = 1 A(r) + rpe — 762 (2.24)

Our A —w system for reaction diffusion systems with limit cycles can, therefore,

be now restated as

re = TAr) 4 rpp — 702

x?

(2.25)

0, = wr)+r? (rQHx)x : (2.26)

In section 2.3.1 we showed that if 7y > 0 exists and \'(rg) < 0 then the asymp-

totically stable limit cycle solution for the non-spatial system is

r=ry, 0 = 0y + w(ro)t. (2.27)



CHAPTER 2 15

In other words the limit cycle solutions v and v are

u = rcosf = rqcos|fy+ w(ry)t], (2.28)

v = rsinf = rysin [0y + w(ry)t]. (2.29)
In the inhomogeneous system, we look for a travelling plane wave of the form
u(z,t) = U(z), z = ot — kx,
where o is the frequency and k the wavenumber. Therefore, in the polar form
r=aq, 0 =ot— kx (2.30)

where « is a given constant value of r(x,t).
If we substitute for this form of solution into the system (2.25) and (2.26)
we can determine necessary and sufficient conditions, for the single parameter

a, such that the solutions are travelling plane waves. Since « is a constant value

of r then for each solution oy = o, = 0, 6, = 0, 6, = —k and from (2.25) and
(2.26)
0 = aia)—ak? = AMa) = k%, (2.31)
o = w(a). (2.32)

We therefore have a one parameter family of travelling plane wave solutions

given by
u = @cos [w(a)t - x)\%(oz)] : (2.33)
v = asin [w(a)t - :L’)\%(Oé)] , (2.34)
with wave speed ¢
I C) (2.35)
F 3 )

As an example, we will consider a particular simple case of a A-w system with

A(r) and w(r) such that the kinetics of the system satisfy the supercritical Hopf
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bifurcation requirements but are also such that they are amenable to analysis.
We take
w(r) = wy —r?, A(r) = Ao — 72 (2.36)
Substituting these forms for A(r) and w(r) into the dynamics in (2.7) and
(2.8) we have a steady state solution at v = v = 0, the nature of which is
governed by the values \g and wy.
For u = v = 0 it follows that r = 0, A(0) = A\g and w(0) = wy. The dynamic

system then becomes

0 [ u Ao, —Wp u
ot < v ) B ( wo, Ao v )’ (237)
and the corresponding eigenvalues, 14 are given by,

Ao — 1, —Wo

=0. 2.38
Wo, )‘0 -n ( )

Solving the auxiliary equation yields the eigenvalues,

n = Ao + wi, (2.39)
so that for
Ao < 0 — steady state solution is stable, (2.40)
Ao = 0 — Hopf bifurcation value giving n = twjqi, (2.41)
Ao > 0 — steady state solution is unstable. (2.42)

We would therefore expect small amplitude limit cycle solutions for small posi-
tive \g = v where ro = /7 where 0 < v < 1. The spatially homogeneous limit

cycle solutions are therefore,

u = /7 cosfw(y/7)t + bo], v = 1o sinfw(\/7)t + o], v>0. (2.43)

Now considering the reaction diffusion system for these particular A(.) and w(.),

we substitute for travelling plane wave solutions of the form

r=aq, 0 =ot—kz,
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where now

so that the corresponding spatial PTW solutions are therefore

u = «@cos [(wg —a’)t— (v - aQ)% x] , (2.44)

v = asin [(wo —a®)t— (y - 042)% x] : (2.45)

where the amplitude of the PTWs, o < /7. In other words the amplitude of the
PTW is less than the amplitude of the limit cycle solution in the reaction kinetics
and as o — 1o the speed (2.35) tends to infinity and we retrieve the spatially
homogeneous limit cycle solution. The above solutions are illustrated in Figure
2.1. One parameter set, illustrated in Figure 2.1(a), results in PTWs moving
from right to left across the spatial domain; in (b) the parameters chosen produce
PTWs moving in the opposite direction across the domain. These solutions will
only persist if they are stable; unstable waves cannot be a long term solution and
numerical analysis indicates that instability results in irregular spatio-temporal
oscillations [78,83]. A detailed description of the stability analysis of travelling

wave solutions of A — w systems is described in [60].

2.4 General Host-parasite systems

Until the work carried out by Anderson [5] and Anderson & May [6, 56] rela-
tively little theoretical work was done on the effects of parasites on their host
population. Anderson [5] defined parasitism in terms of the parasite’s influence
on the growth rate of its host population and suggested that this effect is related
to the average parasite burden per host which is governed by the statistical dis-
tribution of the parasite population within the host population. Anderson [5]

cites a number of important population processes including overdispersion and
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Figure 2.1: Typical numerical solutions of (2.7,2.8), with A(r) = XAy — r? and
w(r) = wy — r?. Tt shows a front moving across the domain at constant speed,
with periodic wave trains behind this wave. In (a) the wave trains move in the
negative z direction, while in (b) they move in the positive = direction. The
solutions for u(x,t) and v(x,t) are plotted as functions of space x at successive
times ¢, with the vertical separation of solutions proportional to the time interval.
We consider the system on the semi-infinite domain [0, o) with initial data of
the form u(x,0) = v(z,0) = Aexp(—&x). The parameter A affects the time
course of the evolution, but has no effect on the ultimate behaviour; we take
A = 0.1. The remaining parameter values are: (a) & = 0.8, \g = 1, wg = 2,
0<t<60;(b)=4, =3, wy=1,0<t<40.

density dependence in parasite mortality or reproduction. At that time, most
theoretical work in ecology concentrated on predator-prey systems where the
predator kills and eats its prey. Anderson and May [6] first defined ‘parasitism’
broadly as ‘an ecological association between species in which one, the parasite,
lives on or in the body of the other, the host’ for all or part of its life cycle. The

parasite relies on the host production of nutrients as being vital to its own sur-
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vival so that, where the relationship is obligatory for the parasite, it is harmful
to the host. Three conditions are proposed that must be fulfilled in order that
a species is classified as a parasite: (1) the host provides the parasite’s habitat;
(2) the parasite is nutritionally dependent on the host; and (3) the parasite is
harmful to the host [6]. One of the basic reaction kinetic models presented by

Anderson and May [56] is

dH

—r = (a=DH—(a+)P, (2.46)
dP AH k+1\ P
a P<H+H0_(”+b+a)_a<7>ﬁ>’ 240

where H is the host population density and P is the parasite population density.
It must be noted that this system fails mathematically when H = 0 as the
parasite equation blows up due to the singularity in the third term. However,
we use this model to describe the parasite burden per host and therefore make
the assumption that when H = 0, P is necessarily zero. The first term in the
host rate equation (2.46), gives the net contribution of hosts per unit time by
subtracting the intrinsic host mortality rate, b, from the intrinsic host fecundity
rate, a. « and ¢ are the effect, per parasite, on host mortality and fecundity,
respectively. Therefore, the effects per host are «P/H and §P/H, respectively
giving the total number of hosts killed due to parasite infection, aP, and the
net reduction in host fecundity due to the parasites, 0 P.

For the parasite rate equation (2.47), A is defined as the rate of production
of transmission stages per parasite, giving a net reproduction rate of AP for a
parasite population P. In many natural systems these transmission stages pass
out in the faeces to the environment where, in time, they hatch and migrate up
blades of grass to be ingested by foraging hosts. As a result, only a certain pro-
portion of these transmission stages will infect the host population. The density
of free stages in the habitat in relation to the density of hosts per unit area is

important in determining the transmission rate. The term, H/(H + H,), describ-
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ing the effective transmission factor, determines the proportion of transmission
stages produced that infect the host population in a given time interval, so that
the total number of stages infecting the host population in this time is given by
APH/(H + Hy). As H increases with respect to Hy the transmission rate tends
to unity so that all transmission stages produced infect the host population. If
H, is large with respect to H then only a small proportion of transmission stages
are converted to adult parasites. The total number of adult parasite deaths due
to the combined effects of adult parasite mortality, u, the total host mortality
rate given by the sum of the intrinsic rate, b, and the parasite induced rate,
ais —(u+ a+b)P. The third term, aP(k + 1)/kH, reflects the effect of the
statistical distribution of parasites within the host population on the number
of parasites removed at each time point. In most natural systems, the parasite
tends to be overdispersed within the host population and the negative binomial
probability model is commonly used to model this distribution [5]. A random
distribution is often described by the Poisson model which is defined by the sin-
gle parameter of mean parasite burden, P/H, and is given by P/H + (P/H)?.
An overdispersed population, on the other hand, is described by the two param-
eter binomial probability distribution defined by the mean and, k, the inverse
measure of the degree of parasite aggregation within the host. It is modelled
by P/H + (P/H)?(k +1)/k. If k is small, the parasite population is ‘highly ag-
gregated’, with a small number of hosts containing the majority of the parasite
population. As such the parasite population tends to have less regulatory effect
on the host population; if %k is large then the population is ‘loosely aggregated’
and as k — oo we approach a random distribution.

Anderson and May [56] showed that where the parasite was loosely aggre-
gated in the host population and where its effect on host fecundity was greater
than that on host mortality, it tended to be a destabilising influence on the

reaction kinetics of the system, resulting in stable limit cycle solutions. These
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are exactly the properties associated with the two natural cyclic host-parasite
systems (mountain hare and red grouse) that we go on to investigate in the next

sections.



Chapter 3

Mountain Hare, Parasite System

3.1 Background and motivation

The mountain hare (see Figure 3.1), Lepus timidus, is indigenous to Scotland
and 99% of the UK population resides at altitudes above 500m [33]. Moun-
tain hares are thought to be less fussy about the quality of their forage than
brown hares and this gives them a competitive edge especially at high altitudes.
In 1995 the total population was of the order of 350,000 [34] with population
densities varying tenfold, reaching a peak approximately every ten years [33].
This same study [34], however, did recognise that the value proposed may be
over/underestimated by as much as 50% [43]. The mountain hare population is
currently thought to be under threat with densities approaching extinction levels
in certain parts of Scotland [43]. As a result, the species is listed in Annex V of
the EC Habitats Directive [97] requiring its conservation status and sustainable
management to be ensured. There are a number of hypothesised contributory
factors to their low densities, including predation, food limitation, territoriality,
parasite infestation and culling [97].

Field studies in Scotland, Finland and elsewhere demonstrate cycling in the
mountain hare population densities [65]. The form of the cycling varied between
studies and different causative factors have been suggested. For example, in

Scandanavian countries, predation is thought to play an important role [37,62],

22
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Figure 3.1: Mountain hare, Lepus timidus, in its winter coat which provides
excellent camoflage on those snowy Scottish peaks.

however, in Scotland, where most of the mountain hare population resides on
estates land managed for red grouse, predation is not thought to be an issue [62].
Other contributory factors have been suggested including food limitation and
territoriality. But observations suggest that mountain hares tend to be non-
territorial [30,36,97] and food limitation is not thought to be an issue [42,97].
Mountain hares have been implicated in the transmission of louping ill virus to
red grouse [35] and, as a result, they have become victims of culling, though
it is hard to quantify this effect since, in many cases, the culling is carried
out illegally [43]. Scottish Natural Heritage (SNH) published the results of
a questionnaire-based survey carried out in 2006/07 giving a figure of 24529
mountain hares culled across 90 estates in Scotland [43]. This report also pointed
to the fact that the naturally occuring cyclic dynamics of the mountain hare may

complicate analysis of long term patterns of abundance and that the factors
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causing these fluctuations remain unknown [43]. We seek to address this point
by mathematically modelling the population dynamics of the mountain hare and
its associated parasite to see if this interaction is responsible for the population
cycling observed in the field.

Though theoretical evidence abounds to support the hypothesis of parasite
induced cycling in a host population in general [5,6, 18, 38, 39, 56], empirical
evidence for parasite induced cycling in the mountain hare population is lack-
ing. Properties associated with field oscillations in mountain hare populations
recorded across large areas of Scotland are listed in Table 3.1 and illustrate the

variation in dynamics observed at a range of different locations [65].

Period 4-15 years

Mean hare density 20-200km 2

Amplitude of oscillations | Coefficient of variation
0.39-1.80

Mean parasite burden 200-5000 worms per hare

Table 3.1: Characteristics of the highly variable dynamics of mountain hare
populations across Scotland [65,95].

The mountain hare parasite, Trichostrongylus retortaeformis, is a worm
found in the intestines of mountain hares (see Figure 3.2). The females pro-
duce eggs in the gut which then pass out in the hare faeces. After hatching, the
larvae climb up blades of grass where they are then ingested by foraging hares
and the cycle recommences [32]. This worm has little effect on hare mortality
but dramatically reduces its fecundity [64]. Empirical evidence suggests that,
in most host-parasite systems in the field, the parasites are over-dispersed (or
loosely aggregated) in their host populations [5], where only a small number of
hosts contain the majority of the total parasite population.

Simple mathematical models predict that parasites that are loosely aggre-

gated in the host population and which have a stronger effect on host fecundity
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Figure 3.2: The mountain hare intestinal nematode Trichostrongylus retortae-
formuis.

than on host mortality should destabilise the system and induce cycling [18,56].
Newey and Thirgood measured the effect of Trichostrongylus retortaeformis on
female mountain hares and concluded that the experimental reduction of par-
asites was associated with an increase in fecundity [64]. A later paper [63] by
the same authors demonstrated that Trichostrongylus retortaeformis is indeed
loosely aggregated in the mountain hare population and they hypothesise that
this factor along with the parasites’ influence on fecundity demonstrate that it is
this intestinal parasite that is responsible for the fluctuating levels of mountain
hares observed in the field. In light of these experimental results, Townsend
et al. [97] derived a mathematical model that incorporates these effects and
then probed it numerically and analytically to see if it can predict the cyclic
population densities observed in the field [97]. The model they developed is
a purely temporal reaction-kinetic model (i.e. spatial dispersal of hosts is ne-
glected) and a fuller description and analysis of this system will be the subject
of Sections 3.2-3.7. Their results, however, were inconclusive in that cycles of
the required amplitude and period could only be produced using parameters

which produced an unrealistic mean parasite burden. A number of reasons were
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suggested for this, including doubts about the reliability of certain parameter
values determined from ‘small sample size or indirect data sources’ [97]. Tt was
also proposed to be due to the fact that spatial heterogeneity and host dispersal
was lacking in the original model [97]. The aim of this part of the thesis is
to examine if, by adding spatial heterogeneity, we may be able to theoretically
predict cycles with more realistic mean parasite burdens.

Addressing this point, we model the system in the spatiotemporal field using
the reaction kinetics of [97] and adding diffusion and advection terms for the host
and parasite populations, respectively, to determine if oscillations of realistic
amplitude and period can be predicted in the spatial system with more realistic
parasite burdens.

First, for completeness, we will look at the temporal dynamics only and
assume a spatially homogeneous system in Sections 3.2 to 3.7 before considering

the effects of spatial heterogeneity in Section 3.8.

3.2 Reaction kinetics

Townsend et al. [97] use a variant of the classic Anderson & May macroparasite
model (introduced in [17]) which describes continuous growth equations for a
host population of density, H, interacting with a parasite population, P. In the
first instance we will describe the case when the population densities are time

dependent only in which case the ODE system is,

dH kH "

M P —bH4aH [ 1
ar ol —bH +a <5P+kH> ! (3:1)
P \H k+1\ P

°o_ p| A P i e 2
dt {HOJFH (h+atb) O‘( K )H} (3:2)

Parameter descriptions can be found in Table 3.2. Comparing the original An-
derson & May model, described by (2.46) and (2.47), to (3.1) and (3.2) we can

see that the parasite rate equations are the same. In the hare rate equations the
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terms describing the net death rate are also the same and given by (—=bH — aP).
The difference between these two systems pertains to the description of the net
birth rate of the host population. In Anderson & May [56] the parasite induced
effect on host fecundity is assumed to act linearly so that the total host birth
rate is given by (aH —0P). This allows for a biologically unrealistic negative net
host fecundity. In (3.1) the net host fecundity is modelled using the non-linear
term introduced by Diekmann & Kretchsmar [17] which takes into account the
negative binomial distribution of the parasite population within the host pop-
ulation and its effect on the net host fecundity. Here § also acts to reduce the
host fecundity, as in (2.46), but it now acts non-linearly and the host fecundity
is always a positive quantity. As § increases for a fixed k the host fecundity

decreases, however, as k increases for a fixed §, the net host fecundity increases.

3.3 Parameter estimation

Ranges of the model parameters are also presented in Table 3.2. These ranges
were calculated by Townsend et al. [97] to be the most practical based on the
best available empirical information. Where possible, field data from the moun-
tain hares in Scotland were used [65], otherwise data were drawn from closely

related systems [97]. For our analysis, we use the following set of parameter val-

Symbol | Parameter Unit Lower Limit | Upper Limit
a Intrinsic fecundity of adult hares yr—t 1.8 2.8

) Parasite reduced induction in hare fecundity | parasite lyr—1! 0 0.0001
b Intrinsic mortality of adult hares yr—t 0.08 0.61

(e Parasite-induced hare mortality parasite " lyr—! 0 0.0001
A Parasite fecundity yr—! 80 2800
Ho Transmission inefficiency constant 13500 66800
o Adult parasite mortality yr—1 0 1.2

k Degree of overdispersion 0.5 2

Table 3.2: Parameter ranges based on empirical information [97].
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ues, unless stated otherwise in the text: k¥ = 1, § = 1.5 x 10 ° parasite 'yr!,
a =8 x 1075 parasite”'yr=!, b=0.61 yr~!, a =18 yr=', A=100 yr™ !, p=1
yr=!, Hy = 3.82 x 10*. These values lie within the lower and upper limits pro-
posed by [97] (Table 3.2); they result in a limit cycle solution in the reaction

kinetics for this system.

3.4 System rescaling

For our analysis, we rescale the system variables so that all computed quantities
are of relatively similar magnitude; this aids numerical integration and also
reduces the number of parameters in the governing equations. We let H = HyH
and P = P,P where H, and P, are characteristic host and parasite densities.

We then set Py/Hy = b/a so that, with £ = 1, (3.1) and (3.2) can be restated

as
dH _ _ aH?
= = WH+P)+— 3.3
dt (H + )+01P+H’ (3.3)
dP _[ \H 2hP
— = p|-=—— - b - 4
- N (n+b+a) 7| (3.4)

where we take ¢; = db/av.

3.5 Global behaviour

First we investigate the global properties of the system by deriving its nullclines,
which are found by setting the rate equations (3.3) and (3.4) equal to zero.
Example solutions of the zero rate equations, in the H — P plane, are shown in
Figure 3.3. Along each nullcline the corresponding dependent variable remains
constant in time. The steady state solutions of the system then occur where the

H and P nullclines intersect in the H — P space.
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3.5.1 H Nullcline

The H nullcline (i.e. dH/dt = 0) is given by,

_ aH?
~b(H+P)+ ——= =0, 3.5
( ) aP+H (3:5)
For H < 1, dP/dt approximates to
dP 2bP?
dt H '’

so that the rate of change of P along the H nullcline is in the negative P direction

for H < 1. Conversely, for H large (i.e. 1/H < 1)

— ~ AP
dt ’

since H/(1+ H) — 1. Therefore, the rate of change of P along the H nullcline
is in the positive P direction. The arrows in Figure 3.3 illustrate, qualitatively,

these changes in P along the H nullcline.

3.5.2 P Nullcline

Similarly we can determine how H changes along the P nullclines which are
given by dP/dt = 0, namely

_[ \H 2bP
P|l—— — b — | =0.
e A

There are therefore two P nullclines; the trivial one, P = 0, and the non-trivial
one defined by B B
ANH (hi+b+a) 2bP

S Q) — — =
1+ ]

Along the trivial P nullcline

0.

i )
M (a-b)A.
Gt

Typically a > b, otherwise in the parasite free case the host density will decay

to zero. So the rate of change of H along this trivial P = 0 nullcline is in the
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positive direction. The non trivial P nullcline is given by

_ H ([ \H
P (2T _ .
2b<1—|—H (,u+b+a)>

For P < 1 on the non-trivial nullcline
dH aH?
dt Clp + H,
which is always positive. Whereas, for P large (i.e. 1/P < 1),

— ~ —bP
dt ’

which is negative. These two results then give the arrow structure for the non-
trivial nullcline as shown in Figure 3.3 illustrating the possibility of limit cycle
solutions.

Indeed, the bifurcation analysis package, AUTO [19], was used to confirm
the existence of a Hopf bifurcation for this system, for the set of parameters
listed in Section 3.3, and illustrates the presence of stable limit cycle solutions
(see Figure 3.4). AUTO is a software package for continuation and bifurcation
problems in ODEs.

We can see from the AUTO plots in Figure 3.4 that the system is linearly
unstable for values of § above the Hopf bifurcation (denoted by dyp) and stable
limit cycles are observed; for values of § less than the Hopf bifurcation value the
steady state is linearly stable and, following a small perturbation, the popula-
tions will quickly return to their equilibrium. Illustrations of these two types of
behaviour are shown in the P — H phase plane, in Figure 3.5, and temporally in
Figures 3.6 and 3.7. The bifurcation shown is a supercritical Hopf bifurcation.

Having investigated the global behaviour of the system, we now look at the

steady state solution and the behaviour of the system local to this point.
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Figure 3.3: Nullcline plot for « = 8 x 107%, § = 1.5 x 107° and the remaining
parameters as stated in Section 3.3. The H (red line) and P (green line) null-
clines plotted in the H — P plane; the arrows on the H, P nullclines show the
direction of the rate of change of P(t) and H(t) with time, respectively. The H
axis is the trivial P nullcline. The arrow configuration indicates the possibility
of limit cycle solutions.
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Figure 3.4: AUTO [19] plots of scaled host population density, H and scaled
parasite population density, P versus 6. o = 8 x 107% and all other parameters
are as described in Section 3.3. The red line indicates a stable fixed point
(H*, P*). For, § > dug, the steady state solution is unstable (black line). For
reference, the unscaled variables are H = HyH and P = P,P, where Hy =
3.82 x 10* and P, = 2.91 x 10%, so that, for example, with 6 = 2.5 x 10~ the
host population density oscillates between approximate maximum and minimum
values of 2300 and 382, respectively and the parasite population density oscillates
between approximate maximum and minimum values of 2.6 x 10 and 5.8 x 10°,
respectively.
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Figure 3.5: Nullcline and phase plane plots for o = 8 x 1075, with (a) § =
1.5 x 107" (limit cycle solution) and (b) 6 = 8 x 10° (fixed point steady state).
The remaining parameters as stated in Section 3.3. The H (red line) and P
(green line) nullclines are shown and the H axis is the trivial P nullcline.
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Figure 3.6: Temporal variation in unscaled (a) host, H, (b) parasite, P and
(c) mean parasite burden, P/H, population densities for the given parameter
set (see Section 3.3) with § = 1.5 x 107°. In this case we observe limit cycle
solutions for H and P. The initial conditions are H(0) = 1337, P(0) = 1 x 108.
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Figure 3.7: Temporal variation in unscaled (a) host, H, (b) parasite, P and (c)
mean parasite burden, P/H, population densities for the given parameter set
(see Section 3.3) with 6 = 8 x 1075, In this case we observe decay to a stable,
fixed point steady state. The initial conditions are H(0) = 955, P(0) = 5.8 x 10".
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3.6 The steady state solution

At the steady state solution, (H*, P*), dH /dt = 0 = dP/dt so that

_ _ aH*?
WH* +PY+ —— = 0 3.6
(H*+ P+ o P*+ H* ’ (3.6)
_ [ AH? 2bP*
P* R —— - 02 - = - 07 (37)
1+ H* H*

where we write ¢co = (1 + b+ «). This predicts a trivial steady state solution

(0,0) and a non-trivial steady state solution which satisfies

\H* 20P*
— g ——— =0 3.8
1+ H T (3.8)
By eliminating H*’ from the simultaneous equations (3.6) and (3.7), we can
derive the following expression for the host population density at the non-trivial

steady state - -
_ P* (x. P* —
g — (Xl 7X2)
X3 + XaP*

(3.9)

where,

X1 = bei(A— ),

X2 = 2b(a—0),

X3 = c(a—b),

Xa = 2b(a—10)—b(1+c1)(N— ).

P* is determined by substituting for H* into the host rate equation at steady
state (3.6)

i P — o) 2 _ P i
(a — b)P*2 (%) — b(1 + ¢;) P (%) — b, P2 = 0. (3.10)
X3+ Xal’* X3 + Xal’*

Multiplying across by (x3 + x4 P*)?/P*?, where P*2 # 0

(a—b)(x1P* — x2)® = b(1 + 1) a1 P* — x2) (x3 + xaP*) — ber (x3 + xaP*)? = 0.
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Collecting together powers of P* and rearranging gives the following analytic

expression
pr_ kB + /KL — 4&,4/{0, (3.11)
2K 4
where,
ka = (a—Db)xi—b(1+c)xixa — beixi,
kp = —2(a—b)xixz — b1 +cr)(Xixs — XoXa) — 2bcixzXa,
ke = (a—b)x5+b(1+4 ci)xaxs — berxa.

The steady state P* value must be positive and so we are only interested in the
positive root. Substitution of P* into (3.9) then gives the full, non-trivial, steady
state solution (H*, P*). The unscaled host and parasite steady state densities
(H* = HyoH*, P* = PyP*) in the o — § plane are depicted in Figure 3.8. For
fixed o, as we increase d, the host and parasite steady state population densities
both decrease. On the other hand, if we fix 0 and increase a the steady state
host population increases while the parasite steady state density decreases. ¢
is a measure of the effect of the parasites on the host fecundity and we would
indeed expect that fixing o and increasing 9§, would result in a decreased host

population.

3.7 Linear stability analysis

In order to analytically understand the H — P phase space close to the steady
state solutions (H*, P*), it helps to approximate the non-linear system, in this
region, by a linear one. That is, we perform linear stability analysis. We let
h=H — H* and p = P — P* where H and P are taken to be near to the steady
state, (H*, P*), and therefore h and p are small, that is, h,p << 1. Applying
the Taylor series expansion about the point (H*, P*), retaining only linear terms

and noting that 0H /0t = f(H,P) = 0 and 0P/0t = g(H, P) = 0 at (H*, P*),
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Figure 3.8: Plots illustrating the unscaled non-trivial steady state population
densities for (a) hosts, H* and (b) parasites, P* in the & — § plane. The param-
eters are quantified in Section 3.3.
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we can then describe the behaviour of the transformed co-ordinates (h, p) about

the steady state by the linear system

(v)=(e5)(5)

where,
A= 2L(H*, PY), B=2L([* PY),
C =20, P, D=24(H" P,
so that,
A = 2(a — b)H* —b(1+ C1)p*
(1 P*+ H*) ’
B — —b(H*(1 + 1) + 2¢, P¥)
(1 P*+ H*) ’
o APREE) P
(1+ H*)? H*’
D 2b(cy P* + H*) — 2aH*

(1 P* + H*)
The trace of the Jacobian matrix, trJ = (A + D), is an indicator of a Hopf
bifurcation of the system. That is, a Hopf bifurcation occurs when there are
complex eigenvalues and the trace changes sign (i.e. the eigenvalues are purely

imaginary). The trace of our system is

2(a —b)H* —b(1 +¢1)P*  2b(ci P* + H*) — 2aH*

(A+D) = (61{5* Y + (P + 1) , (3.12)

The quantities H* and P* are strictly positive as are the parameters b and ¢;.
Consequently, the sign of the trace will change only according to the sign of the
term (¢; — 1). In other words, the Hopf bifurcation for the linear system in the

region of the steady state, lies along the line ¢; = 1 in the oo — ¢ phase plane, or
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in terms of o and 4,

Cl—]_ = 0,
ob
— = 1,
(¢

so that the Hopf bifurcation line is described by o = b6 in the o — § plane. For
trJ(H*, P*) > 0, a < bd and limit cycle solutions, such as those in Figure 3.6(a)
and (b) are observed; when the trace is less than zero, so that & > bd the system
decays to a stable fixed point solution as illustrated in Figure 3.6(c),(d). Figure
3.9 shows a plot of the negative tr.J(H*, P*) values (that is, solutions with a
stable fixed steady state in H — P densities); all positive trace values have been

denoted as white (that is, oscillations in H — P densities).

3.8 The spatial model

In the previous section, we considered the change in population densities with
respect to time only, effectively assuming a homogeneous spatial distribution.
However, field studies [47, 59, 62] have shown that the spatial distribution of
these populations are in fact heterogeneous and so, if we want to understand
better how they interact in the field then our model should account for these
spatio-temporal variations. The initial motivation for this section of work was
a study carried out by Townsend et al. [97] on the kinetics of the host-parasite
mechanism for the Scottish mountain hare. We have since extended this work
and carried out a numerical analysis of the spatially extended system and ob-
served PTWs for certain parameter sets. We seek (in Chapter 4) to probe this
spatially extended model and derive some analytical results that can be used to
predict the properties of the PTWs, but first we illustrate the PTWs associated
with this host-parasite system.

For simplicity, we assume a spatial distribution in one dimension only so

that H = H(z,t) and P = P(z,t) and x € R. We assume that the hosts move
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Figure 3.9: Hopf bifurcation in o — ¢ phase space. Below the Hopf bifurcation
line, & = bd, the trace values are all positive indicating a limit cycle solution
below this line, as in Figure 3.6. Above this line we would observe a stable
fixed point solution such as that in Figure 3.6(c),(d). The parameterisation is
described in Section 3.3.
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through the spatial domain according to Fickian flux, Jz = —Dy0H /0x, where
Dy is the diffusion constant for the hosts. The mean parasite burden, P/H, is
now a function of x as well as t. At any given spatial point in the domain the
parasite flux is given by the host flux times the number of parasites per host,
since the parasite population lives in the host population. To illustrate, consider
a fixed point in the spatial domain where we can measure the rate at which the
host population density changes in one direction or the other. Since the parasites
live in the host population then the rate at which parasite population density
changes is equal to the rate at which the host population changes times the
number of parasites per host. The spatial gradient of the parasite flux term,

P.Jg/H, then gives the final advection term in (3.15). The governing equations

are
oH o aH? 0J g
— = —b(H+P —— — 14
ot (H + )+01P+H ox ' (3.14)
oP [ \H 20P o (PJg
— = P|— - - - —=. 1
o AR H] 8:0(H) (3.15)

This describes a reaction advection diffusion system. This system can be solved
numerically using the method of lines to reduce it to a coupled system of ordinary
differential equations (ODEs). A central difference approximation is used for
the diffusion term in the hare equation and flux limiters for the advection term
in the parasite equation. The flux limiters are designed to ensure physically
realistic solutions, in this case, to ensure positivity of the population densities.
Further discussion on their construction and effects can be found in Appendix
A along with full details of the numerical scheme. No-flux boundary conditions
are applied at each end of the spatial domain and the resulting system is solved
using a fourth order Runge-Kutta method. The initial spatial distributions for

both populations are described by

H(z,0) = P(x,0) = Aexp(—£x), (3.16)
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where A and £ are positive constants, which we take to be 0.03 and 1, respec-
tively. Application of the parameter set detailed in Section 3.3 generates a
travelling wave front, followed by PTWs, where oscillations in hare and parasite
densities occurred in both space and time. These spatiotemporal oscillations
are illustrated in Figures 3.10 to 3.14. This is the first time that PTW solution
behaviours have been observed in a host-parasite system; normally such math-
ematical solution forms are observed and analysed in predator-prey reaction-
diffusion systems, where the movement of predators and prey are independent
of each other. As a quick, initial comparison, studying Figures 3.6 and 3.10
we can compare the results from the spatially homogeneous and heterogeneous
models and note the effect on the amplitude and temporal period of the os-
cillations. In the ODE model, the host population oscillates between a density
value of approximately 625 to 1500 for the base parameter set used by Townsend
et al. [97]. In the spatial model, this amplitude is slightly reduced with mini-
mum/maximum values of 700/1400. The temporal period is 4.5 years in both
cases and the mean parasite burden, P/H is of similar magnitude to the spa-
tially homogeneous case, that is O(10*). The speed of the PTWs, illustrated in
Figure 3.11, is calculated to be 1.2km/yr for this particular parameter set and
initial and boundary conditions, and the waves travel in the positive z-direction.

When considering the governing system (3.14) and (3.15), it is important to

note that the alternative scheme,

oH o aH? 0J g

— = —-b(H+P = = — 3.17
ot (H+P)+ aP+H or ' ( )
oP [ A\H 2P

— = p|—_ _ - — 1
5 . (p+b+a) 7| (3.18)

using Fickian flux for the hosts and omitting the explicit parasite flux term, can
be used to produce almost identical results. In this case the diffusion of the
host population coupled with the reaction kinetics and the assumption that the

parasite population exists only in the host population, appears to be sufficient to
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Figure 3.10: Temporal oscillations in population densities (a) H, (b) P and (c)
P/H at a fixed point in space (z = 30km). The diffusion coefficient, Dy = 0.01,
§ = 1.5 x 107° and all other parameters are as in Section 3.3. The initial spatial
distribution of both H and P are described by Aexp(—&x), where A = 1146

and £ =1
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Figure 3.11: Numerical solutions of the system (3.14), (3.15) for § = 1.5x107°
and Dy = 0.01. The periodic wave trains, for both host and parasite popula-
tions, move in the positive  direction. The solutions for H and P are plotted as
functions of space x at successive times ¢, with the vertical separation of solutions
proportional to the time interval. We consider the system on the semi-infinite
domain [0,00) with initial data of the form H(z,0) = P(x,0) = Aexp(—&r).
The parameter A affects the time course of the evolution, but has no effect on
the ultimate behaviour; we take A = 1146/H, and £ = 1. The wave speed for
this parameter set with given initial and boundary conditions is 1.2km/yr.
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Figure 3.12: Colour plot showing the variation in (a) scaled host, H, and (b)
scaled parasite, P, population densities in the spatiotemporal plane. These
are numerical solutions of the system (3.14) - (3.15) for 6 = 1.5 x 107" and
Dy = 0.01. The solutions for H and P are plotted in the space-time domain
with the colour plot indicating population density levels at a given point of space
and time. We consider the system on the semi-infinite domain [0, c0) with initial

data of the form H(x,0) = P(x,0) = Aexp(—&x). The parameter A affects the

time course of the evolution, but has no effect on the ultimate behaviour; we
take A = 1146/ H, and £ = 1. The wave speed is 1.2 km/yr and the remaining

parameter values are detailed in Section 3.3.
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Figure 3.13: Colour plot showing the variation in (a) scaled host, H, and (b)
scaled parasite, P, population densities in the spatiotemporal plane. These
are numerical solutions of the system (3.17) - (3.18) for 6 = 1.5 x 107> and
Dy = 0.01. The solutions for H and P are plotted in the space-time domain
with the colour plot indicating population density levels at a given point of space
and time. We consider the system on the semi-infinite domain [0, c0) with initial
data of the form H(z,0) = P(z,0) = Aexp(—£x). The parameter A affects the
time course of the evolution, but has no effect on the ultimate behaviour; we
take A = 1146/Hy and £ = 1. The wave speed is 1.2 km/yr and the remaining

parameter values are detailed in Section 3.3.
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Figure 3.14: Spatial and temporal oscillations in scaled population densities H
and P. Spatial oscillations are illustrated in (a) H and (c) P at the fixed time
point ¢ = 75yrs. Temporal oscillations in (b) H and (d) P at the fixed spatial
point z = 30km are also shown. The parameter set and initial conditions are as

described in Figure 3.12.
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model the spatial change in host and parasite densities. This can be observed for
our particular parameter set by comparing Figures 3.12 and 3.13 which illustrate
PTW solutions for (3.14) - (3.15) and (3.17) - (3.18), respectively. In both cases
the wave speed is the same and the only slight difference can be observed near
the transition wavefront where the host population is moving into empty space.
In the former model, as the host moves into empty space the parasite advection
term ensures a non-zero parasite density as well. In the latter case, as the host
moves into empty space, initially the parasite density is zero there because there
has been no corresponding flux of parasites. But then the kinetic terms cause the
parasite density to quickly adjust to a non-zero level. These two models have
only been compared for this particular parameter set so no general comment
can be made about their equivalence in different regimes. This would be worth
investigating in the future but is not explored further in this thesis.

Having shown, numerically, the presence of PTWs as a possible solution
form for this particular host-parasite system, we will now try to obtain a generic
result to predict PTWs in two population cyclic host parasite systems with a

supercritical Hopf bifurcation in the reaction kinetics.

3.9 Discussion

In this Chapter, we investigated the mountain hare-Trichostrongylus retortae-
formis system model derived by Townsend et al. [96,97]. First we studied the
reaction kinetics before going on to derive some numerical solutions to the spa-
tially extended model and were able to illustrate, for the first time in a system of
this type, PTWs. We derived analytical solutions for the homogeneous steady
state population levels and performed a linear stability analysis which yielded
an equation describing the Hopf bifurcation in the phase plane of two parasite
related parameters, o and §. The partial derivatives of the reaction kinetics

derived in this section will be used again in Chapter 4 when we apply a new
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generic result to this particular host-parasite system.

We introduced the spatially heterogeneous mountain hare-parasite model
and obtained some numerical solutions illustrating the possibility of PTWs with
this system. We made a quick comparison of the amplitude and period of the
temporal oscillations in the temporal and spatial systems and found only a slight
reduction in the amplitude of the temporal oscillation associated with the spatial
model, with the period remaining unchanged. Also, the parasite burden was of
a similar magnitude in both systems. This suggests, therefore, that simply
accounting for population dispersal in the model is not enough to produce PTW
solutions of the amplitude and period observed in the field for parameter sets
that give realistic parasite burdens.

In the following Chapter, we derive a generic result, for the spatially het-
erogeneous model, based on work done by Koppell and Howard [45], that gives
conditions on the parameter set describing the associated reaction kinetic system

resulting in PTW solutions.
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A generic host-parasite reaction
advection diffusion system

A generic host-parasite reaction advection diffusion system can be modelled by

oOH 0
E = f(Hap)_a(JH)a (4'1)
aa—]; = ¢g(H,P)— % <§JH> , (4.2)

where f and ¢ describe the reaction kinetics of the host, H, and parasite, P,
system and the spatial derivatives relate to the dispersal effects of the host;
The population densities, H = H(x,t) and P = P(x,t), now depend on their
spatiotemporal co-ordinates and we assume Fickian diffusion for the hosts, Jg =
—DH%—QI. Expanding the spatial derivatives we therefore have,

OH PH
S = J(HP)+ Dy, (4.3)

oP Dy (0P OH 0?H P [(0H\>
zg(H,P)+—H< +P—— — ( )) (4.4)

ot H \ 0z 0x '~ 022 H\ox
We are interested in periodic plane wave solutions and therefore rewrite the
above system in terms of the travelling wave variable, z = t — x/s, where s is

the speed of the periodic plane wave. Noting the following relationships between

the two co-ordinate systems,

o 0 o 10 2 1P

ot 02 Ox s02 0 202

51
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the system of PDEs with respect to (z,¢) can be reduced to a system of ODEs

with respect to z as shown:

‘;_Z — f(H,P)+ %%, (4.5)

Py D (g_PC;_H I (c;_gff) R
Rearranging (4.5) and assigning V' = % we obtain three first order ODEs,

H =V, (4.7)

Vo= ;—Z(V— f(H,P)), (4.8)

po— SQHSi—};HV <g(H, P)+ TV ~ [(H,P)) - %) (@)

where the ' indicates differentiation with respect to z.

4.1 Linearising the reaction advection diffusion
system

We want to investigate the behaviour of the reaction advection diffusion system
in the region of the non-trivial steady state solution predicted by the reaction
kinetics, (H*, P*). The system co-ordinates are transformed relative to the
steady state values and linearised, assuming that the perturbations from the
steady state are small. The new system variablesare h = H—H*, p = P—P* and
v =V —=V*where (H*,V*, P*) denotes the co-ordinates of the non-trivial steady
state solution. The relationship in this region between the new co-ordinates and
their derivatives with respect to z is then approximated by the Jacobian matrix

as shown:
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where we define
dH
— = I(H,V,P
dZ ( ) ) )7
dv
— = H,V, P
dZ m( ) ) )7
dP
— = H V. P
dz n( ) ) )7
and the Jacobian matrix, .J is defined by
oL ol 9oL
go v gp
J= | ¢» 9m om 4.10
¥ wE )
oH ov  oP J I v* P

Computing the entries for J and noting that at the non-trivial steady state,
(H*,V*, P*), we have
_0OH

V* =
0z

(H*,V*, P*) =0, (4.11)

and the reaction kinetics of the system, namely f(H*, P*) and g(H*, P*) go to

zero so that

dg P af

8—H(H’P) = a—H(H’P)_H*B—H(H’P)’ (4.12)
on P

— (H*,P") = — 4.1
on ,_ . . 9 e ey POf

8_P(H’P) a_P(H’P) H*a_P(H’P)' (4.14)

The linearised system, about the steady state can, therefore, be restated as

where we assign

B 0 1 0 h
v | = —5;—3 % —5};—5 v (4.15)
P C—Afz £ D-Bi: p

of of

L (H*,P")=A, —=(H,P")=B

8H( ) ’ 8P( ) ’

dg dg

—= (H*,P*) = L (H*,P*)=D

aH( ) =G, 8P( )
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The eigenvalues 1 of the transformed co-ordinate system are found by solving

det(J — In) = 0, that is

—n 1 0
2 2 2
_% = - _% = 0. (4.16)
P* P* P*

Multiplying and collecting coefficients of powers of 77, we then obtain the eigen-

value equation

S’ i—l—D—BP* + S—2(A+D) — S—Z(AD—BC) =0
T\ Dy ) "\ Dy Dn -
(4.17)

We are seeking PTW solutions to the original PDE system. These solutions
arise at the Hopf bifurcation of the associated ODE system in the travelling

wave variable z, which can be found by solving the eigenvalue equation (4.17).

4.2 Conditions for PTWs

Comparing (4.17) with the general form for a cubic polynomial
azn® + agn’ + a1n + ag = 0, (4.18)

and noting that a Hopf bifurcation is associated with purely imaginary eigen-

values, n = £pi say with p # 0, we factorise the cubic polynomial as follows,
(n* +p*) (gn+71) =0, where ¢, 7 # 0. (4.19)
Comparing (4.18) and (4.19) then gives rise to the following relations
as = q, (s =T, a; = p’q, ap = p*r. (4.20)
Therefore, we have

apasz = 1G9, (421)
aas = pi¢g® >0, (4.22)

apay = p’r’ > 0. (4.23)
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where, in our case,

s
_ _ 2 (Ap-BC
Qo DH( )7
ol A
— 2 a+D
al DH( + )7
s? P*
- (2 4+p-B
2 (DH+ H*)’

as = ]_,
and the eigenvalue equation at the Hopf bifurcation then becomes

<n2+;—1(A+D)> <77— (;—Z+D—Bgi>> =0, (4.24)

with eigenvalues

A+ D
ma = sy D) (4.95)
Dy
s? P
= — +D-—-B . 4.26

Substituting for a; into equations (4.21) - (4.23) then gives three conditions
on the minimum speed, sgpe, of the PTW, namely,
Condition I

The condition agaz = a,as implies that

- (A+ D) S poplyo_f (AD — BC) (4.27)
Dy Dy H*) Dy . .
Rearranging gives
s A+D)+ D2+ BC- L patp))| =0 (4.28)
Dy | Dy H* - '
which leads to the following solutions for s?: s? = 0, corresponding to zero

temporal frequency for the periodic plane wave, and the non-trivial case where,

P D? + BC
2— J— -
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Condition I1

The inequality a;az > 0 implies that
2
—(A+ D) >0, (4.30)

Dy

and since DS—j{ > 0 we retrieve the condition for instability in the linearised

reaction kinetic system, namely
A+ D >0, (4.31)

that is, the eigenvalues of the Jacobian matrix of the reaction kinetics have a
positive real part and the resultant steady state solution is unstable, with an
associated stable limit cycle.

Condition IIT
The third condition, agas > 0, gives

82

Dy

(AD — BO) RS- Liah
Dy H+ '

and since Ds—j{ > 0 is defined by (4.29) we have

P+ D?+ BC P*
AD — B B— - — = D — B~ .
(D~ 50) (B - 25 ) + D= By ) >0

Rearranging gives the inequality condition

(AD — BCO)* > 0. (4.32)

To summarise, the three conditions on the system parameters for the presence

of (non-trivial) PTW solutions are,

P+ (D?+ BO)
? = Dy|B— - " —— 4,
’ H( H A+D )’ (4.33)
A+ D >0, (4.34)
(AD — BC)? > 0. (4.35)

From here on we shall use spqpf for s in (4.33) to denote the minimum speed of the

PTW at the Hopf bifurcation. In their paper, Koppell & Howard [45] assumed
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the condition that the linearised system contained an unstable focus; this does
not appear to be a necessary condition required by our analysis. Condition IIT
indicates that the determinant of the linear system, AD — BC may be negative
or positive, indicating an unstable node or focus.

Following the line adopted by Koppell & Howard [45] for a spatially het-
erogeneous cyclic, two population predator-prey system, we have here produced
an analagous result for the spatially heterogeneous host-parasite system, which
gives conditions for the presence/absence of PTW solutions for a given set of
parameters. This result is generic and can be applied to any two population
host-parasite reaction kinetic system containing a supercritical Hopf bifurca-
tion. The Koppell & Howard [45] result applied to predator-prey systems where
the populations necessarily move independently of each other, but whose dis-
persal coefficients are similar. With the host-parasite system the parasite lives
on or in the host and therefore the dispersal coefficients for both populations
are exactly the same, that is, the parasite moves with the same velocity as the
host.

Having produced this new generic result for host-parasite systems we will
test it against two sample models to confirm that we can predict and then

numerically confirm the existence of PTW solutions in these systems.

4.3 Mountain hare, trichostronglyus retortae-
formis system

A detailed study of the properties of the non-spatial version of this system was

carried out in Chapter 3. The full spatial version reads

aa_i[ — f(H,P)—% (4.36)
or 0 <PJH>

= (4.37)
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where Jy = —Dy0H/0x and Dy is the dispersion constant for the host popu-
lation, and f(H, P) and g(H, P) describe the reaction kinetics of the hare and
parasite populations, respectively. For the numerical analysis described in this
section, we use an alternative, but equivalent rescaling of the system equations,
in order to make the numerical analysis more tractible; the rescaling of this

system is described in Appendix B and the rescaled system is given by

8]_{ — _ CLH2 8JH
— = —aP —bH + = — — 4.38
of o “S5PrE o (4.38)
OP _[ \H P o (PJy

- p o — @e — 20— | — — [ —— 4.
o i 1 — ae—b+ ozH] 8:0( H)’ (4.39)

where H = HyH, P = PyP, a = ¢&, 0 = ¢6 and ¢ = Hy/Py = 3.82 x 107
The scaling factor Hy is the transmission inefficiency constant as in (3.2) and
is quantified in Section 3.3. The scaling factor P, is chosen to ensure that the
scaled population densities lie in the range zero to one. In this particular case

Py = 1 x 108. The reaction kinetics of the spatially homogeneous system are

given by
o _ aH?
H,P) = —aP —-bH + =—=—— 4.40
- [ M\H P
HP) = P|l———pu—ac—b—2a—=|. 4.41
o(1,P) - de—b- 2 (4.41)

In order to apply the results from the analysis of the generic reaction diffusion
system (Section 4.2) we first need to compute the required derivatives of the

reaction kinetics.

_ g s
A - aH’(H7‘P)7
[7+2 S D* IT*
— py aH7_+2a6_P2H , (4.42)
(6P + H*)
B = p)

P
S L7*2
S <a+ %) : (4.43)
*+ *
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C = £(H,P
8H( - P);
_ p Aol (4.44)
(1+ H*) h
g , - =
D = 2L, P
P |
AH* P*
= __ ne) — dov—=—. 4.4
i (1 + b+ ae) O (4.45)

We can insert these expressions for A, B,C, D into (4.29) and investigate nu-
merically how the minimum wave speed sgope varies with different ranges of the
parameters « and 6. The red line, calculated analytically, in Figure 4.1 is the
Hopf bifurcation line for the non-spatial system, namely, a = bd. The region
of the plot under this line is the phase space for a < bd where there are limit
cycle solutions in the non-spatial kinetics. The shading indicates the predicted
minimum PTW speed calculated from (4.33) using (4.42) - (4.45). For increas-
ing values of a (< bd), the greyscale plot indicates that the minimum speed of
the PTW increases and approaches infinity as we approach the non-spatial Hopf
bifurcation line. This corresponds to the limiting case of infinite wave speed as-
sociated with spatially homogeneous oscillations [83]. Stationary steady states
are predicted in the white region above the bifurcation line (o > bd). We also
plot the minimum speed of the periodic plane wave at the Hopf bifurcation,
SHopf, against the parameter « for constant § (see Figure 4.2). As « approaches
the Hopf bifurcation point, from the reaction kinetics, the speed spe tends to
infinity (indicated by the vertical dashed line).

To investigate the one parameter family of PTW solutions further, we use
the bifurcation analysis package AUTO [19]. We choose a set of parameter
values that result in PTW solutions according to the above analysis. The fixed
parameter values we choose are given in Table 4.1. For the purpose of this
analysis we also choose several combinations of the parameters o and 0 from the

region of space for which the model predicts PTWs. We then explore how the
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Figure 4.1: Minimum speed, spqpr, of the periodic plane wave, at the Hopf
bifurcation of the ODE system in z, in the a-0 phase plane. The remaining
parameters are fixed and the same as in Section 3.3 with Dy = 0.5. The shading
indicates the predicted minimum PTW speed calculated from (4.33) using (4.42)
- (4.45). The red line indicates the Hopf bifurcation line, &« = bd in the a-0 phase
plane. As we approach this line the minimum speed syopr approaches infinity.
However, in order to illustrate this we choose the finite greyscale range [0, 4].

Parameter | Value

a 1.8

b 0.61

A 100

€ 3.82 x 10~
7 1

Dy 0.5

Table 4.1: Fixed parameter values for AUTO [19] continuation analysis chosen
from within the parameter ranges stated in Table 3.2 with the exception of Dy
which, in the absence of any data, we take to be equal to 0.5.
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Figure 4.2: The minimum speed of the PTW at the Hopf bifurcation (of the
ODE system in spatial variable z), spopf, versus a for fixed § = 0.2618. The
vertical dashed line indicates the Hopf bifurcation of the ODE in the reaction
kinetics.
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amplitude and period of these waves vary as we approach the Hopf bifurcation
of the reaction kinetics. These parameter values, their associated steady state
solutions (H*,V*, P*) and the Hopf bifurcation value of § for the given « value,

i.e. Opopr are listed in Table 4.2.

a 5 H* [V [ P" | Onopr | Stiopt
2 5 0.0237 [0 | 0.0041 | 3.28 | 3.02
0.5 |3 0.0206 | 0 | 0.0083 | 0.82 | 1.58
0.0209 | 0.2618 | 0.0188 | 0 | 0.1058 | 0.0343 | 1.19

Table 4.2: Parameter sets for AUTO [19] continuation analysis

We choose firstly & = 2 and 6 = 5 and starting from the associated steady
state solution and a small value for PTW speed, we increase s keeping all other
parameters fixed to track the birth of limit cycles, which occurs at spopr = 3.0235
in this case. Then starting from this speed and keeping « fixed we vary ¢ towards
dnopr Of the non-spatial system and track the speed s of the PTWs and their
period. An example of the results can be seen in Figure 4.3. This figure displays
the family of PTW solutions associated with this parameter set.

We then select a particular speed from this family of PTWs (in the example
shown, we choose s = 52.566) and with « and s fixed we alter § and track the
effect on the amplitude and period of the associated wave as ¢ approaches dope
of the non-spatial system. We carried out this procedure for two other values of
« (indicated in Table 4.2) and all of the results are depicted in Figure 4.4. This
figure illustrates that the wave amplitude decreases to zero as § approaches the
Hopf bifurcation value for the reaction kinetics, dmopr, and the period tends to
some limiting value which is dictated by the speed which gives rise to the onset
of the oscillatory solution, sgeps. Importantly, this indicates that the oscillations
die out in the spatially extended system at the same parameter values as in the
non-spatial system. Therefore, cycles are still predicted in the same parts of

parameter space and, therefore, only predicted using parameters which produce
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Figure 4.3: Tracking wave speed and period of associated PTW solutions when
a = 2 and 6 is varied from 0 = 5 towards dpepr = 3.28. As 0 — Jpepr the
wavespeed tends to infinity and the period approaches a constant value. The
red marker indicates the chosen speed, s = 52.566 which we then employ in the
continuation shown in Figure 4.4.
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Figure 4.4: Continuation plots produced by AUTO [19] for three combinations
of o and initial value of §. The period and amplitude of the PTW solutions are
tracked, in (a) and (b) respectively, as ¢ tends from the value given in Table 4.2
to the associated Hopf bifurcation value dyop¢ of the non-spatial system. In each
case, as 0 tends to dpepr, the amplitude of the PTW goes to zero and the period
tends to some limiting value.
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unrealistic parasite burdens as found initially by Townsend et al. in [97]. Thus,
the key missing factor in this host-parasite system appears not to be spatial
variations in host-parasite densities, although, landscape heterogeneity or non-
Fickian diffusion terms may yield different results.

Considering the PTWs for the parameter set and initial /boundary conditions
as illustrated in Figures 3.11 and 3.12 we can calculate the predicted minimum
wave speed for the one parameter family of PTW solutions. The sgqpr given by
(4.29) is 0.78km/yr. It is important to note that this minimum speed for the
family of PTW solutions for this parameter set does not take into account the
initial and boundary conditions and it is therefore not surprising that the wave
speed measured in Figure 3.11 is 1.2km/yr, that is, it is greater than speps as

expected.

4.4 Red grouse, trichostrongylus tenuis system

The mountain hare-parasite system, described and studied in the previous sec-
tion, predicts PTW solutions for the theoretical reaction advection diffusion
model. Although spatiotemporal oscillations are observed in the field data,
there is no concrete evidence to suggest that the parasites are driving the oscil-
lations in this particular system. In the Red grouse system, however, there is
evidence that points to the parasites as drivers of the spatiotemporal oscillations
observed [39].

The red grouse population has been extensively studied for many years due
to its status as a game bird on Scottish estates and there is a plethora of data
regarding population densities of this species and its associated parasite, Tri-
chostrongylus tenuis, gathered from many land managed estates in Scotland.
This spatio-temporal field data demonstrates asynchronous cycles in space for
both of these populations [59]. For this reason, we want to apply our generic

result to this well established system to see if the model predicts PTW solutions
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that reflect those observed in the field. In addition, non-spatial mathematical
models of this system do indeed predict limit cycle solutions about an unstable
steady state in the associated reaction-kinetic equations.

A number of grouse species, including Lagopus lagopus scoticus are known
to exhibit cyclic fluctuations in population densities where factors such as pre-
dation, food, cover and shooting mortality are not thought to be driving these
cycles [59]. Dobson and Hudson [39] proposed three possible parasite induced
components causing this behaviour, the parasite being Trichostrongylus tenuis.
They hypothesised that ‘reduced host breeding production, a low degree of ag-
gregation of parasites with the host population and developmental time delays
due to larval arrestment’ were the causative factors for the population cycles
observed in the grouse population [39]. A second theoretical paper by these au-
thors [18] deals with the developement of a series of non-spatial reaction kinetic
models to illustrate and predict this cyclic behaviour of the red grouse system.

Similarly to the life cycle of Trichostrongylus retortaeformis in the mountain
hare, the parasite, Trichostrongylus tenuis, inhabits the large caecum of the red
grouse where it reproduces; eggs are then passed in the red grouse faeces. Under
the right conditions, the eggs hatch and the larvae migrate to the growing tips
of heather which constitute the main food plant for foraging red grouse. In this
way, the larvae enter the caecum of the red grouse and the cycle continues. The
infective larvae that migrate from the passed faeces to the tips of heather are

known as the free living parasite stage.

4.4.1 Reaction kinetics

A number of theoretical models, with different properties, were defined and ex-
plored by Dobson and Hudson [18]. We choose their third model which includes
a density dependent term, gH, in the host rate equation, to model the territorial

behaviour of the red grouse. This particular model was chosen as this extra term
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is thought to reduce the propensity for unstable cycles and limit the size of the
host population [18]. The model has three rate equations for the red grouse host

population, H, adult parasite population, P, and the free living parasite, W:

dH

dw

o= AP W - W, (4.47)
dp P? (k+1

and the parameter set used by Dobson and Hudson [18] is described in Table 4.3.
The introduction of a separate rate equation for the free living parasite, W, is one
approach used to model the effects of a developmental time delay in the ecological
system. The time delay occurs between the production of the transmission stage
(i.e. free living larvae) and its readiness for reinfection [56]. Here, the third rate
equation in W follows the dynamics of the free living infective stages. The rate
of production of infectives is given by AP. A proportion of these, SW H, will
be taken up into the host, where S determines the rate at which the host picks
up infective stages and is assumed to be proportional to the density of both
hosts and free living stages; the remainder, vWW represents the loss of infective
stages due to any process that prevents host reinfection, including death of free
larvae due to harsh environmental conditions, for example. The adult parasite
population density, P, is the population residing in the caecum of the red grouse.
The free living parasite stage, W, are the larvae that have hatched and migrated
from the passed faeces to the tips of heather. Under optimal conditions, the
life span of the free living larval stage, W, is roughly seven days [39] which is
relatively short compared to the life span of the host population. Therefore we
can apply the following quasi steady state assumption for W, namely dW/dt = 0,
thereby reducing the three equation system to two equations and enabling us

to apply our generic two-variable result of Section 4.2. Thus, (4.47), gives the
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Symbol | Parameter Unit Value

a Intrinsic fecundity of adult grouse yr=t 1.8

) Parasite reduced induction in grouse fecundity | P=lyr=! | 0.000388
b Intrinsic mortality of adult grouse yro1 1.05

o Parasite-induced grouse mortality pP-lyr—1 0.000300
A Parasite fecundity yro1 11

Y Mortality of free living parasite stages yr—t 13

15} Transmission rate H~1lyr—! 0.1

o Adult parasite mortality yr—1 1.0

k Degree of overdispersion 1.0

q Density dependent coefficient 0.002

Table 4.3: Parameter values chosed from ranges quoted by Dobson and Hudson
in Table 2 of their paper [18], where H denotes host and P denotes parasite.
We have chosen ¢§ in order that PTW solutions can be illustrated. The density
dependent coefficient, g, was based on information in Hudson et al. [38].

following expression for W in terms of H and P

AP — AW — BWH = 0,

AP
v+ BH (4.49)

Substituting for W into (4.48) then yields the following two equation system,

dH

prli (a—b)H — (a+ §)P — gH?, (4.50)
dP ANH P (k+1

>“ _p _ — o= —= 4.51
dt Horm bt O‘H( k )] (4:51)

where we set Hy = v/3. We now (for convenience) rescale the system according

to H = HyH, P = PyP, where Py = (a — b)Hy/(a + 6) so that

dH - _

il (H — P) — c,H?, (4.52)
dp [ AH P

pl P T Co — C3ﬁ ; (4.53)

where we write ¢co = (u+b+ ), ¢ = a(a — b)k'/(a+ ), ¢4 = gv/F(a —b) and
K= (k+1)/k.
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4.4.1.1 Global behaviour

We now perform a nullcline analysis to get a qualitative understanding of the
global behaviour of this non-spatial system. The results of our nullcline analysis
are shown in Figure 4.5 and indicate the possibility of limit cycle solutions which
are confirmed by a numerical parameter continuation performed in AUTO [19]
(shown in Figure 4.6). In Figure 4.5, the steady state solutions, which are

determined in the following section, are descibed by

(Hikapl*):(oao)a (Hgap;):(CZ/()‘_@)ao)a

(H3, P§) = (H3, H; (1 — ¢ H)), (Hj, Pf) = (1/c4,0).

where (Hj, P*) is the positive solution given by (4.55) and (4.60).

0.9 b

0.8 b

0.6 h 4

<~ // \\\\\
N e @)
g 1.7 -r

Figure 4.5: The H (green line) and P (cyan line and magenta line) nullclines
plotted in the H — P plane; the arrows on the H /P nullclines show the direction
of the rate of change of P(t) and H(t) with time, respectively. The H axis is
the trivial P nullcline. The arrow configuration indicates the possibility of limit
cycle solutions. The parameters can be found in Table 4.3.
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Figure 4.6: AUTO [19] plot of scaled host population density, H, and scaled
parasite population density, P versus 6. o = 3 x 10~* and all other parameters
are as described in Table 4.3. The red line before the Hopf bifurcation indicates
that the fixed point steady state solution is stable. Beyond the Hopf bifurcation
the steady state solution is unstable, indicated by the black line, and AUTO [19]
plots the upper and lower limits of the limit cycle solution. For the upper
plot, the scaling factor is Hy so that, for example, with § = 3.9 x 107%, the
host population density oscillates between approximate maximum and minimum
values of 83 and 17, respectively. For the lower plot, the scaling factor is Py so
that, for example, with § = 3.9 x 10~*, the host population density oscillates
between approximate maximum and minimum values of 14 x 10* and 9.5 x 10%,
respectively.
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4.4.1.2 Steady state solutions

The steady state solutions are determined by setting the rate equations equal

to zero, - -
dH dP
— = — e 0,
dt (FI*,P*) dt (H*’P*)
so that, from (4.52)
(H* — P*) — e, H*? = 0, (4.54)
so that rearranging for P* we have
P*=H"(1—c,H"). (4.55)

Firstly, this places a restriction on H*, to ensure positivity, such that,

_ —b
1—cH >0<=> H*<M, (4.56)

97
since for this system (a — b) > 0 and the remaining parameters are assumed to
be positive. Now, from (4.53), we get the trivial steady state solution, P* = 0,

and the non-trivial steady state solution given by

AH* P*
— — Co — Caq— _=
1+H * @+

0. (4.57)

Substitution of P* from (4.55) into (4.57) then gives,

AH* _
T Co — C3 (1 — c4H*) =0. (4.58)

After rearranging we then get a quadratic in H:
O + OpH* + dp =0, (4.59)
where we define,

Dy = c3ey, Pp=(N—co) —3(1 — ¢y), bc = —(c + c3).
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Grouped parameter | Formula
Hy v/B
2 7@ —b)/B(a +9)
k' (k+1)/k
¢ b/
Co w+b+a
3 ak'(a—0b)/(a+9)
Ca 97/B(a —b)

Table 4.4: Definitions of grouped parameters used in the analysis.

A full list of grouped parameters are given in Table 4.4. The steady state host
population solutions are, therefore, simply

P e RV R LY

* 4.60
2, (4.60)

The scaled parasite steady state density, P*, is then obtained by substituting
for H* in (4.55). We then choose the steady state solution that is positive for
both H* and P*.

4.4.2 Spatial extension of the red grouse system

The generic form of the spatial governing equations,

OH O*H

or = = 0 (POH
o g(H, P) +DH£ <ﬁ%> ) (4.62)

is the same as the mountain hare-parasite model, in Section 4.3 but the reaction

kinetics for the grouse-parasite model are different, so that, now

f(H,P) = (H—P_) — e, H?, ) (4.63)
o(@,P) = P {%—CQ—%%. (4.64)

Conversion from the (z,t) system to the wave variable, z = t — x/s, means

that the results from Section 4.2, for the generic spatial model, can be applied
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Figure 4.7: Nullcline and phase plane plots for = 3 x 1074, with (a) § =
3.88 x 10~* (limit cycle solution) and (b) § = 3 x 10~ (fixed point steady state).
The remaining parameters as stated in Table 4.3. The H (green line) and P
(cyan line and magenta line) nullclines are also shown.
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Figure 4.8: Limit cycle solutions of the ODE system described by (4.50)-(4.51)
showing how the host, H, and parasite, P, population densities vary with time,
as well as the mean (per host) parasite burden P/H. The host population
oscillates between minimum and maximum densities of approximately 20 and
80, respectively. Parameter values for this plot are listed in Table 4.3.
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directly. The entries for the Jacobian matrix are given by

A = g—g(g*’p*):1—204f:f*, (4.65)
B = g—}’;(g*,p*):—L _ (4.66)
C = Sy = (1 i) %m (1— )|, (467)
D = g—z(g*,p*):—cg (1 —caH"). (4.68)

Applying the three conditions, (4.33)-(4.35) presented in Section 4.2 to the above
system, and substituting for A, B, C', D, above and the base set parameter values
adopted by Dobson and Hudson [18] (see Table 4.3), we have,

Condition I:

<% + 63(1 — C4H*)) — C%(l — 041:{*)

topt = (1—caH*)D
SHopf ( “ ) " (1 — 03) + C4(03 — 2)

-1,
= 11.40,

so that taking the square root gives a minimum PTW wave speed of spopr =
3.38km/yr. Since we have chosen a parameter set that produces a limit cycle
solution in the reaction kinetics (see Figure 4.8), the second, (4.34), and third,
(4.35), conditions are also satisfied.

Although this parameter set supports the PTWs with spepr = 3.38km/yr,
we were not able to illustrate them numerically. This is most likely due to the
fact that this parameter set is close to the Hopf bifurcation in the ODE system
and the resultant PTWs are necessarily of small amplitude. Choosing a value of
§ = 8x107*, that is, further away from the Hopf bifurcation, results in PTWs of
higher amplitude which we are able to illustrate numerically in Figures 4.9 and
4.10. In this case Condition I (4.33) gives sgopr = 0.40km/yr with Condition IT
and IIT also satisfied.

Figures 4.9 and 4.10 illustrate a travelling wave front of hosts and parasites,

from left to right, which after a period of time is followed by a regular spatiotem-
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poral oscillation over the spatial domain. The wave speed s is calculated to be
0.8km/yr which is greater than the minimum wave speed, Sgops predicted by
Condition I. This is to be expected since Condition I predicts only the minimum
wave speed possible for the family of PTWs generated by a given parameter set.
It is the initial and/or boundary conditions that will determine which particu-
lar ‘member’ of this family will be chosen as a solution. Having described and
illustrated a PTW solution for this system we now discuss wave stability. For
any given parameter set, generating a one parameter family of PTW solutions,
not all solutions will be stable. Unstable waves cannot be a long term solution
and numerical simulations of unstable PTWs indicate irregular spatio-temporal
oscillations as the long term behaviour [83]. Behind the regular spatiotemporal
oscillations illustrated in Figure 4.9 instabilities gradually grow and overwhelm
these waves leading to irregular spatiotemporal oscillations. Sherratt et al. [83]
have shown that in some cases the instability of the predicted wave is such that
they are never seen. This may explain why we were not able to illustrate PTWs
for the wave speed solution Sgepr = 3.38km/yr described above.

In this section we have taken a parameter set for this system which is shown
to produce a limit cycle solution in the reaction kinetics (i.e.those generating
the temporal oscillations shown in Figure 4.8) and applied the generic PTW
conditions previously described, which predict the presence and properties of

the PTW solution associated with the spatially extended system.

4.5 Discussion

We have used a result derived by Koppell and Howard [45] for a two population,
cyclic system with a supercritical Hopf bifurcation in the reaction kinetics. Kop-
pell and Howard derived their result for a spatially extended generic predator
- prey reaction kinetic system where Fickian diffusion is used to describe the

independent population dispersal of both species. A condition of their result
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times ¢, from ¢ = 117yrs to t = 125yrs, for the generic governing system (4.61) -

(4.62) with reaction kinetics described by (4.63)-(4.64). The vertical separation
of solutions proportional to the time interval. The parameter values are listed

in Table 4.3 with the exception of § = 8 x 10~* and Dy

conditions are given by H(0)
where ¢ = 1, and the grouped parameters Hy, P, are described in Table 4.4. Zero

flux boundary conditions at each boundary are imposed for both populations.
The host population density oscillates between a minimum of approximately 20

Figure 4.9: The solutions H and P plotted as a function of space = at successive
and maximum of approximately 80 as can be seen in Figure 4.10.
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Figure 4.10: Colour plot illustrating the peaks and troughs of (a) the host
population density, H, and (b) the parasite population density, P, across the

space-time plane. The generating system and parameterisation, boundary and
initial conditions are as described for Figure 4.9.
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was that the diffusion coefficients for each population had to be similar. Our
analagous result pertains to a cyclic host-parasite system with a supercritical
Hopf bifurcation in the reaction kinetics and assumes that the parasite popula-
tion lives on or in the host population and travels with the same host velocity.
Therefore, the spatially extended system is described by a single diffusion co-
efficient. We have derived three equivalent conditions on the reaction kinetics
of the associated temporal system that are predictors of PTWs in the spatially
extended system. This is the first time that such a result has been proposed for
a host-parasite system.

We went on to test this new result on two specific host-parasite systems
that are of particular interest. The first is the mountain hare- Trichostrongylus
retortaeformis system and the second is the red grouse- Trichostrongylus tenuis
system. Cyclical oscillations in host/parasite numbers in both systems have
been reported in the field [43]. Townsend et al. [97] showed that a reaction
kinetic model for the mountain hare-parasite system can predict limit cycle
solutions. However, the parameter set used to generate these solutions resulted
in unrealistic parasite burdens and it was not possible therefore to conclude
that it was the parasites that were inducing such cycling in the mountain hare
population. We investigated the effect of spatially augmenting this system on
the oscillatory behaviour observed and sought to ascertain whether or not the
spatially heterogeneous system resulted in oscillations for more realistic parasite
burdens or for a wider range of system parameters. Comparison of Figures 3.9
and 4.1 shows that the emergence of PTWs with a finite minimum speed, Sgopf,
occur only in the o — 0 plane bounded by the line a« = bd. This coincides
exactly with the limit cycle solutions observed in the reaction kinetics which
are also contained by the same Hopf bifurcation line in the o — 4 plane (see
Figure 3.9). The continuation analysis performed using AUTO [19] in Section
4.3 confirms this result and Figure 4.4 shows that the amplitude of the PTW
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tends to zero as the o — § parameter set approach their Hopf bifurcation values.
We conclude, therefore, that the spatial augmentation, that we have considered,
of the mountain hare-parasite system does not alter the parameter set displaying
oscillatory behaviour.

The red grouse- Trichostrongylus tenuis system has been the subject of exten-
sive study over the years given its position as Britain’s favourite game bird [98].
Field data pertaining to this species is much more prolific than that of the moun-
tain hare due to its commercial importance and a number of theoretical studies
have shown that the red grouse-parasite reaction kinetics are responsible for the
oscillations observed in the field [18]. To date though, no spatial extension of
this temporal model has been proposed or investigated. The models suggested
by Dobson and Hudson [18] are three population models describing the reaction
kinetics of the host, the adult parasite and the parasite larvae. We make a quasi
steady state assumption for the parasite larvae thus reducing the system to a
two population model and then apply our spatial extension and generic result.
Numerical analysis of the spatially extended simplified two population system
predicts PTWs for the parameter sets used in [18]. This is the first time that
a spatial system has been proposed for the red grouse-parasite system and the
first time PTWs have been predicted as solutions to the system. We were then
able to take the generic result derived via the Koppell and Howard [45] analysis
and use it to test for PTW solutions for this parameter set.

We illustrated PTW solutions for both the mountain hare and red grouse
systems. The mountain hare system exhibited a wave speed of 1.2km/yr and
the red grouse system a wave speed of 0.8km/yr. These are not unrealistic val-
ues given that the range of wave speeds observed empirically in other dynamic
systems varies greatly. For example, Lambin et al. [47] reported a wave speed
of 19km/yr in the field vole population in Kielder Forest. Recent studies on

the dynamics of larch budmoth populations show that these cycles organise into



CHAPTER 4 81

travelling waves with speeds of approximately 250km /yr [83]. At the slower end
of the scale Moss et al. reveal travelling waves in red grouse population abun-
dance, in Scotland, moving at speeds of 2-3km/yr. The minimum possible wave
speeds of the wave family predicted by our mathematical models, spopr, depend
on the parameterisation of the system; the wave speeds of the particular numer-
ical solutions illustrated are dictated by the initial and boundary conditions and
we cannot predict them analytically for these systems. Currently there are no
published results on PTW wave speeds measured in the field for the Scottish
mountain hare, however, the results produced here give some indication of the
potential wave speeds that may be observed and could be used to direct the

structure and scope of future field studies on the Scottish mountain hare.



Chapter 5

Conclusions and Further Work

5.1 Conclusions

One of the main aims of this work was to investigate the spatially heterogeneous
mountain hare- Trichostrongylus retortaeformis system to see if this extension
of the temporal reaction kinetic model resulted in oscillatory behaviour for a
wider parameter phase space and more realistic parasite burdens than the ki-
netic model alone. However, the results of our analysis show that the oscillatory
behaviour is only exhibited where the temporal kinetics contain limit cycle so-
lutions. The amplitude of the temporal oscillations is only slightly lower in the
spatial case and the period remains the same.

A result was derived that is applicable to general two population host-
parasite reaction advection diffusion systems. This result is analagous to the
Koppell and Howard [45] result for predator-prey systems and pertains to the
spatial augmentation of the reaction kinetic model, where a diffusion term mod-
els host dispersal in the environment and parasite movement is governed by an
advection term. The new result predicts the presence of PTW solutions in the
spatial model given a particular parameterisation of the reaction kinetics. If
PTWs are possible, the calculated value, sgops, gives the minimum speed possi-
ble for an emerging PTW.

A second host-parasite system of interest was the red grouse- Trichostrongylus
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tenuis system. A three population model proposed by [18] was reduced to a two
population model via a quasi steady state assumption, and diffusion and advec-
tion terms were added for the host and parasite populations, respectively. Our
generic result was then applied to a particular parameterisation of the system
and a finite minimum wave speed for emerging PTWs was predicted. PTWs
were plotted using this same parameterisation. This is the first time PTWs
have been illustrated in a theoretical model of the red grouse- Trichostrongylus

tenuss system.

5.2 Further Work

We propose the following avenues for further investigation. For the mountain
hare-parasite system it may be worth modelling the free larvae as a separate
population. In Chapters 3 and 4 we made a quasi steady state assumption
for the free living larvae stage, which is valid under favourable environmen-
tal conditions. However, larvae development may be retarded under harsher
environmental conditions, for example, and the time delay for parasite develop-
ment is no longer short in comparison with changes in host population density
changes. Inclusion of a free living parasite population in the mountain hare-
Trichostrongylus retortaeformis system is analagous to the three population red
grouse-parasite models proposed by [18]. In both the spatial mountain hare
and red grouse models numerical analysis could be performed in order to find
parameterisations yielding PTW solutions. It may be possible to extend the re-
sult obtained for the general two population cyclic reaction advection diffusion
model to a three population system. This would provide a more realistic model
than the two population model derived by assuming a quasi steady state for the
parasite larvae.

Another area of interest for the mountain hare model, originally developed

by Townsend et al. [97], is the parameter values proposed for the system. They
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suggested that some of the parameter values chosen were based on small sample
sizes or indirect data sources [97]. It would be useful if more studies could be
carried out to obtain more confidence in the kinetic parameters.

Seasonal and climatic changes have also been shown to be driving mecha-
nisms for spatiotemporal oscillations [83] via temporal oscillations in parameters
associated with the system. For example, in the mountain hare system, Newey
et al. [63] demonstrated in their empirical data that the degree of aggregation
of the parasite population in the host population, described by the parameter k£,
varied from month to month. A model that incorporated this form of seasonal
variation in the parameter k£ would be of interest.

Although we have illustrated numerical PTW solutions for two host-parasite
reaction advection diffusion models we have said nothing about the stability of
these solutions. It is worth striving to obtain an analytic expression to describe
the stability of emerging PTW solutions as well as studying the effect of the

boundary and initial conditions on the PTW speed observed.



Chapter 6

Introduction: Functionally
graded polymer foams

6.1 Background and motivation

An empirical method developed by Torres Sanchez et al. [93] for designing bone
scaffolds uses acoustic irradiation of a reacting polyurethane foam to tailor the
porosity profile within the final cured sample. The aim of this section of the
thesis is to present the first attempt at modelling mathematically some of the
mechanisms involved in this complex reaction. In Chapter 7 we look at the effect
of inertia on the growth of a single bubble within an Oldroyd B fluid. This effect
would be of interest if considering mass transfer of gas into the bubble, from the
surrounding liquid, by rectified diffusion [13]. In Chapter 8 we are interested in
the direct effect of the acoustic pressure amplitude of the irradiating standing
wave on the bubble growth dynamics of a single bubble. We then consider the
indirect effect of the acoustic pressure amplitude on the local reaction rate within
the sample and the bubble distribution profiles observed within a multibubble
distribution across the sample. The aim is to compare the results from the
mathematical model with the experimental observations of Torres Sanchez et
al. [93] that as the pressure amplitude increases across the sample domain, the

porosity increases, that is the bubble size increases.
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6.1.1 Tissue Engineering

Generally tissue engineering involves the combination of living cells and a scaf-
fold or support structure [29]. Progenitor cells are seeded onto the scaffold which
then slowly degrades as the tissue structure grows [12]. This technique can be
used to replace portions of, or whole tissues, for example, bone, blood vessels,
bladder etc [29,40,55]. In this particular case we are interested in the production
and structure of bone scaffolds which will ultimately be used to replace bone
tissue. Bone is a natural structure exhibiting a functionally graded porosity,
being fairly dense on the periphery and more porous at its centre [8]. This het-
erogeneous porosity is one of the factors giving this structure its strength and
functionality, and in the area of tissue engineering it is a feature we would like to
mimic [93]. The best grafts and bone substitutes are thought to be those with
biomechanical and biological properties most closely resembling the non-uniform
graded porosity distribution observed in natural bone [8]. Due to ongoing sci-
entific advances it has been possible to fabricate tissues in the laboratory by
combining the use of engineered scaffolds and stem cells with one of the aims
of tissue engineering being the incorporation of added functionality and biome-
chanical stability into these laboratory grown tissues in order to improve the
success rate for transplantation [29].

To achieve the goal of tissue reconstruction, scaffolds must meet some specific
requirements. There needs to be a balance between larger and smaller pores in
the scaffold due to the nature of the roles played by different pore sizes. Larger
pores promote better flow transportation of nutrients and metabolic waste while
smaller pores provide sufficient surface area for cell attachment and prolifera-
tion [12]. Biodegradability is often an essential factor since scaffolds should
preferably be absorbed by the surrounding tissues without the necessity of a
surgical removal [29].

A number of different approaches to the design and manufacture of bone
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scaffolds have been reported [12] with some authors using rapid prototyping (RP)
to produce novel scaffolds with controllable porosity and channel size that can be
achieved by varying processing parameters [105]. Tai et al. [90] studied the effect
of polymer chemical composition, molecular weight and processing parameters
(including temperature and pressure) on the final pore size and structure and
demonstrated that the pore size and structure of the supercritical scaffolds can
be tailored by careful control of processing conditions.

The method employed by Torres-Sanchez et al. [93] that we seek to model
involves another empirical approach but this time an acoustic standing wave is
used to irradiate a sample of polymerising polyurethane foam with the aim of
tailoring the porosity profile of the final sample to a particular porosity speci-
fication. Torres-Sanchez et al. [93] demonstrated experimentally a relationship
between the pressure amplitude of the irradiating sound wave and the porosity
value at a given position in the sample. One of the aims of this thesis is to pro-
vide the first stages of a mathematical model of this experiment so that in the
future scaffolds may be produced with strictly defined and controlled porosity
profiles.

6.1.2 Polymer foams

A polymeric foam is a particular example of a viscoelastic, heterogeneous ma-
terial and such materials have been used widely in a number of fields including
biomaterials, tissue engineering and structural mechanics [93]. The polymer
foam is composed of at least two phases, one solid plus voids whose size dis-
tribution can be varied [93]. They possess a number of properties that make
them particularly suited to the field of tissue engineering including their low
density, chemical inertness, high wear resistance, biodegradability and thermal
and acoustic insulation.

Similar to natural bone, the structure of a foam is characterised by the dis-
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tribution, size and wall thickness of cells in the bulk material. That distribution
has a direct correlation with the mechanical properties of the solid foam. There-
fore, when a foamed material’s behaviour needs to be engineered, its cellular
structure is an obvious starting point. Torres-Sanchez et al. [93] demonstrated
that it was possible to tailor the porosity profile of a polymerising polyurethane
foam by altering its position within an acoustic field. Although this was done
empirically, they managed to identify ‘sensitive stages’ during the reaction where
ultrasound was observed to have an impact and hypothesized that this was due
to the fact that diffusion and convection were predominant effects during these
stages.

The polymerisation reaction is very complex involving bubble dynamics,
evolving rheology [26,58], two phases, rectified diffusion [13,14,22,23,51], Bjerk-
nes forces [3,49] and Ostwald ripening [54,75] to name but a few. In addition
we want to add ultrasonic irradiation and model its effects as well.

Ultrasonic irradiation of liquids has been shown experimentally to result
in a number of unusual phenomena including rectified diffusion and increased
reaction rates [31,44,92]. We seek to strip the problem back by making many
assumptions and concentrate on the bubble evolution, post nucleation, in a
viscoelastic fluid and ignore the effects of rectified diffusion, Bjerknes forces
and Ostwald ripening. We look at the direct effect of the ultrasound pressure
amplitude on the long term growth of the bubble and not on its oscillatory effects.
We do, however, seek to incorporate the effects of inertia into an existing model
in order to provide a tool to investigate this oscillatory behaviour in the future.

A number of articles in the literature document the empirical effect ob-
served of ultrasound enhancing the polymerisation reaction rate. Price et al. [69]
demonstrated an increased polymerisation reaction rate when a reacting polymer
sample was irradiated with ultrasound and further demonstrated that increas-

ing the intensity of the ultrasound lowered the reaction time. Although their
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work was inconclusive they suggest that this effect is due to the ‘extremely
efficient mixing of the components enhanced by ultrasound’. Torres-Sanchez
et al. demonstrate a similar effect through their experimental technique using

resistivity measurements to monitor reaction progression [92].

6.1.3 Bubble dynamics

Much work has been done to study and model the nucleation [28,76,88] and
subsequent single bubble growth [7,24-28,66,77,88,89,91,100] in viscoelastic
materials including polymer foams, both reacting [26] and non-reacting [24-
27,106]. The effects of ultrasound on nucleation [107] and subsequent growth
of a single bubble via rectified diffusion in an aqueous fluid [50, 53, 61,70, 71]
have been studied extensively. Bubble distributions have been studied with
an aim to predict and describe heterogeneous porosity profiles in polymer foam
samples [11,66,76,77] but no attempt has been made to tailor the profile directly.
The effect of an acoustic field on bubble populations within a non-viscous liquid
was studied numerically in [49] but we are not aware of any attempt to model
analytically the effect of an acoustic standing wave on a multi bubble distribution
in a viscoelastic liquid. Numerical studies have been carried out on the evolving
bubble distributions in a polymer foam in the absence of acoustic irradiation [24,
25,106]. Empirical studies have been done on the effect of ultrasound on the
nucleation of bubbles in a polymer foam and the resulting final bubble size
distributions [107] but here we seek to look at the effect of ultrasound on bubble
growth post nucleation and assume homogeneous bubble nucleation through the
sample.

There have been a number of studies of the nucleation and subsequent growth
of a single spherical gas bubble in a surrounding fluid due to diffusion of gas
through the fluid and into the bubble. Amon and Denson [4] proposed a cell

model for the analysis of bubble growth in an expanding polymer foam with each
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cell containing a spherical gas bubble surrounded by a concentric liquid envelope
containing a limited supply of gas. Their model takes account of heat transfer
and inertia and couples bubble growth to the changing foam density. Street et
al. [89] and Ting et al. [91] both used the Oldroyd B fluid model to describe the
viscoelasticity of the surrounding fluid layer which they assumed to be infinite.
This resembles the case of early time foaming where bubble size is small and
bubbles are spaced at large distances from each other, remaining spherical and
not interfering with each other. They demonstrated that the viscoelasticity of
the melt as well as the diffusivity of the gas determined the initial growth rate.
Arefmanesh et al. [7] considered the case of a spherical gas bubble surrounded by
a finite shell of viscoelastic fluid which they modelled using the upper convected
Maxwell model. They introduced a Lagrangian transformation to describe the
moving bubble/liquid interface and substituted a concentration potential to aid
numerical solution. Their model serves to describe the case where a large number
of bubbles exist in close proximity to each other which we would expect in an
expanding polymer foam. Other authors [76,77] looked at bubble growth in
polymer foams in conjunction with nucleation and concluded that the most
sensitive parameters to final bubble size distribution are those associated with
nucleation. They conclude that while growth dynamics can alter the distribution
this is only a secondary effect. Feng [28] also looks at the effect of nucleation
but proposes a model for heterogeneous nucleation and its effect on the final
bubble size distribution. Venerus [99,100] developed and evaluated transport
models of diffusion induced bubble growth in viscous liquids of both finite and
infinite extent and compared results with Amon and Denson [4] and Arefmanesh
et al. [7]. Both models agree at early stages of the growth process and differ
at later stages when the equilibrium bubble radius is approached for the finite
liquid model.

Everitt et al. [26], building on the above work, proposed a model to cap-
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ture the changing fluid rheology and gaseous phase for a reacting polymer foam.
The evolving fluid is treated as a multimode Oldroyd B system and the La-
grangian transformation is used to describe the moving bubble boundary with
a concentration potential proposed by [7] employed to aid numerical solution
near to the liquid/gas boundary. They include an additional equation to model
gas produced by the reaction and propose additional terms for the diffusion and
mass conservation equations to account for the reaction effects on gas concentra-
tion. This reacting polymerisation model contains the majority of the elements
that we needed to model the experimental polymerisation reaction that Torres
Sanchez et al. had published [93], except for the application of ultrasonic irra-
diation. We, therefore, settled on this model as a foundation for the work in
this section of the thesis and manipulate it to model the additional ultrasound

effect.

6.2 Overview

This section of the thesis examines two different effects of ultrasonic irradiation
on the bubble size distribution in an expanding polymer foam. Chapter 7 seeks to
model the effect of inertia on a non-reacting polymer foam, and inner and outer
leading order asymptotic solutions are proposed. Chapter 8 presents the first
mathematical model of the experiment carried out in the laboratory by Torres-
Sanchez et al. [93], with an aim to illustrate mathematically the same qualitative
effects of an irradiating acoustic signal on the porosity distribution of the final
polymerised sample, as observed in the laboratory [93], and to ascertain the
magnitude/signifance of this effect, in isolation. The chapters may be summed
up as follows:

Chapter 7 presents and expounds a model proposed by Everitt et al. [26] for
a non-reacting polymer foam. The original model assumed the effect of inertia to

be negligible and did not include an acoustic irradiation term. The non-reacting
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model is re-derived to include inertia as well as an additional term to describe
the acoustic pressure amplitude. An assumption of instantaneous diffusion is
then made in order to partially decouple the system and an asymptotic analysis
is performed so that a leading order outer and first order inner solution are
presented. The dependence of the accuracy of the inner asymptotic solution
on the surrounding fluid volume is discussed and different approximations are
proposed for different regimes. An analytic leading order and first order inner
solution are presented for the case when this fluid volume is large and tending
to infinity. In the case when it is not, an approximate analytic form is suggested
that minimises the error.

Chapter 8 introduces and builds on the model derived by Everitt et al. [26]
for the expanding single bubble in a free-rising, reacting polymer foam. This
numerical model is employed to follow the evolution of a single bubble in a
given parameterised system. We look at the indirect effect of ultrasound ir-
radiation on the local reaction rate of the sample and the combined effect of
bubble-bubble interaction to explain the heterogeneous bubble distributions ob-
served experimentally in [93]. Details of the experimental set up published by
Torres-Sanchez et al. [93] are presented and parameter values are derived. A
one dimensional multi bubble system is considered and rules for bubble-bubble
interactions are proposed. As opposed to Chapter 7, the effect of ultrasound
is modelled indirectly through its suggested effect on the reaction rate [69,92].
The ultrasound signal is modelled by a standing wave function and the localised
pressure amplitude is then calculated. This means that single bubble evolution
at each spatial point through the sample can be calculated by assuming that
the spatially distributed reaction rate across the domain directly correlates with

the local pressure amplitude.
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6.3 Key contributions

The principal original contributions of the author for this second section of the

thesis may be summarised:

e A new mathematical model is derived to describe single bubble growth in
a free rising, non-reacting polymer foam irradiated by an acoustic standing

wave and incorporating the effects of inertia in Chapter 7.

e Leading and first order asymptotic inner solutions in the temporal domain
are presented, in Section 7.5, for the case of instantaneous diffusion. Two
scenarios are discussed; the first describes the case when the fluid volume
surrounding the bubble is large compared to the bubble volume and the

second describes the case when both volumes are of the same order.

e In Section 7.6 the leading order asymptotic outer solution, for the case of
instantaneous diffusion, is described analytically using the first iteration
of the Picard iteration method. A numerical solution for the leading order

outer equation is also presented.

e A first mathematical model of an experiment described by Torres-Sanchez
et al. [93] is proposed in Sections 8.3 to 8.6. The model isolates the effect
of the acoustic pressure amplitude on the local reaction rate of the sample
and can be used to illustrate different heterogeneity profiles for final bubble
distributions through the sample domain, given an initial homogeneous
bubble distribution. A relationship between intial bubble spacing through

the sample and the resultant final heterogeneity of the sample is discussed.



Chapter 7

A mathematical model of the
growth of a bubble in a
non-reacting polymer foam
incorporating inertia

A paper written by Everitt et al. [26] on bubble dynamics in reacting and non-
reacting polymer foams presents two models for individual bubble expansion in
curing polymer foams. The first model is for a non-reacting solidifying polymer
foam with constant elastic modulus; the second models the gas production due
to the reaction and the evolving rheology of the viscoelastic material in the
reacting polymer foam. Everitt et al. [26] neglect the effects of inertia since
parameterisation of the system results in a very small Reynolds number, and
their model does not include an acoustic forcing term.

In this chapter the non-reacting model proposed by Everitt et al. [26] is
extended to include inertia effects and this original derivation is described in
detail in Section 7.2. Also included in this model is a term to account for the
effects of a standing acoustic wave insonifying the polymerising sample. We
derive inner and outer asymptotic solutions in Sections 7.5 and 7.6, respectively.

The model equations are derived by consideration of an Oldroyd B polymeric

fluid [103]. Once the governing equations, initial and boundary conditions are
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obtained, an instantaneous diffusion assumption is made in order to partially
decouple the system which is then probed in an effort to derive an approximate
analytic solution using asymptotic expansions. An inner and outer asymptotic
solution are proposed; the former to first order and the latter to leading order.
Two different regimes are investigated for the inner asymptotic solution. In
the first case the bubble volume is much smaller than the surrounding fluid
volume whereas in the second case these two volumes are assumed to be of
the same order. The first instance may describe the situation at early time
in the polymerising sample when bubbles have just nucleated and are at large
distances from each other so that they are effectively surrounded by an infinite
fluid volume. We may assume that the second case describes a regime where the
bubbles are larger and more closely packed so that the fluid volume available
to each individual bubble is reduced. We discuss the accuracy of the first order
asymptotic inner solutions in each regime before deriving a leading order analytic
solution for the outer temporal variable. A numerical scheme is produced to test
the accuracy of the analytic solution and the limitations of the analytic solution
are discussed before using the numerical scheme to predict the effects of changing

viscosity and acoustic pressure amplitude on the outer solution.

7.1 Description of non-reacting model

In the non-reacting case a polymeric liquid containing a foaming agent is sub-
jected to a sudden reduction in pressure and foaming commences as the foaming
agent comes out of solution [26]. This is a two phase system with the foam
considered to be a system of identical, spherical bubbles of gas, each surrounded
by a layer of viscoelastic fluid containing a quantity of dissolved gas. The model
concerns a single bubble with initial volume, 47uo/3 = 47 R*/3, with bubble ra-
dius R and initial gas pressure pgy. The fluid surrounding the bubble is assumed

to be incompressible, viscoelastic and containing a limited supply of dissolved
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ideal gas. The initial bubble volume is the volume when the bubble gas pres-
sure is pgo and is larger than the nucleation volume. It is further assumed that
the bubble undergoes spherically symmetric expansion driven by the pressure
difference across the bubble-fluid interface, (p,0 — pa), where p, is the ambient
gas pressure. The conditions are isothermal and the bubble-fluid interface is
in thermodynamic equilibrium [26]. First, the dynamics of the fluid layer are
considered; the system is modelled using the Oldroyd B system of equations for
a viscoelastic medium [103]. Subsequently, the gaseous phase, its concentration
in, and diffusion through, the fluid, and its transport across the bubble-fluid

interface are modelled.

7.2 Liquid phase

A solution of polymer molecules in a Newtonian liquid exhibits both viscous
and elastic behaviour [104] and can be modelled as an Oldroyd B fluid [103].
This is derived by considering how polymers behave at the microscopic level and
then scaling upwards to predict the macroscopic effects. The general governing

equations are

V-q = 0, (7.1)
—pI+p(Va+ (Ve )+GA-1I) = o, (7.2)
p <86—(tl +q- Vq) = V.o, (7.3)
0A 1
o T(@V)A-A-Vq-(Vg)' A = ——(A-T) (7.4)

where q is the velocity vector, o is the stress tensor, p is the solvent viscosity, p is
the fluid density, G is the relaxation modulus associated with the polymer stress,
A the orientation tensor, I the identity matrix and 7 represents the relaxation
time of a polymer molecule.

Substituting for q = ¢,e, +gsep+ g4, into the continuity equation (7.1) and
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Bubble

Figure 7.1: Schematic illustrating an expanding single bubble in a finite liquid
volume. The bubble radius is denoted by R(t) and the bubble gas pressure by
pg(t). The gas concentration at the bubble surface is ¢(R,t); the concentration
profile within the liquid, ¢(r,¢) depends on time ¢ and the radial co-ordinate r
where the origin is at the bubble centre. The concentration at the outer fluid
boundary is given by the constant cg.
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expressing the divergence of the velocity vector, q, in spherical polar co-ordinates

gives
via = r2 Or (rar) + rsinﬁaﬂ(sm ba0) + rsing 0¢’ (75)
_ 190
= pg(r ), (7.6)

since the spherically symmetric bubble expansion means ¢y = ¢, = 0 and g, is

dependent on r and ¢ only. Therefore,

62(7“2%) =0 forr>R, (7.7)
r

where R is the radial co-ordinate of the bubble-fluid interface. Integration with

respect to r gives r2q, = C' where C is an arbitrary constant. Letting ¢,(R) = R
gives C' = RR? and,

q = qr€r, (78)
RR?
= Ter. (79)

In order to substitute for q in equation (7.2) the gradient of this first order

cartesian tensor is evaluated as [41]

9qr 1 Oqr _ 1 0qr 9
or r ( 00 qg) rsinf d¢ r
990 1 (940 1 g0\ _ cotf
va=| % (G +a) ( 3¢ ) r do |- (7.10)
%4y 1 (94 1 99 | gr | cotf
or r <60 rsinf 0¢ + r + r o

As above gy = g4 = 0, ¢, is dependent on r and ¢ only and therefore Vq = (Vq)”

so that
: -2 00
2RR?
Vq+ (Vq) = — 0 10 |. (7.11)
g 0 01
Equation (7.2) can now be expanded as
-p 0 0 52 [ —2 0 0 A 0O 0
2uRR
o= 0 —p o |+ 0 1 0]+ 0 Ay 0o |,
0 0 —p " 0 0 1 0 0 Agy
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since in the spherically symmetric expansion all the off-diagonal components of
the orientation tensor A are equal to zero and Apy = Ays. The only non-zero

components of the stress tensor o are,

2

Opr = —p—dp—5 +GA,y, (7.13)
r
2
Ogp = —p-—+ 2M 3 + GAgg, (714)
Opp = 0¢9- (715)

Having determined o, the momentum equation (7.3) can be tackled. The indi-
vidual components of the divergence of the second order cartesian tensor o in

spherical polar co-ordinates are [41]

- 10 9 1 0 . 1 80’¢7~ 099 + Tp¢
(Vo) = r2or (T Urr) * rsin 6 00 (sin fo,) + rsinf 0¢ r ’

. 10 9 1 0 . 1 60¢9 Opr cot 0
(Vo) = r20r (T Uro) + rsin 6 00 (sin Boug) + rsinf d¢ r r 0%

. 10 9 1 0 . 1 60¢¢ Ogr cot 0
(Vo) = r2or (T Jr¢) + rsin 6 06 (sin fogg) + rsinf 0¢ r + 90>

so that in the spherically symmetric case the only non-zero component of the

divergence is the radial one. Substituting for o,,, 0gg and oy gives

. 10 2 20’99
(V : o-)r — ﬁg (T Urr) - Ta
1 0 20’99
= — (2 27 _Zroe
’]"2 ( TO-’I"I‘ + r aro-’!"!‘> r )
_ 2( o ) + 80—1‘7‘
— r Orrp 7] or )
2 RR? RR? 00
= —(—p—4u — +GAy +p—2u—; —GA99>+ oo,
r r r or
from (7.13) and (7.14). That is
2 RR? 0 RR?
(V-0o), = . (—GM = +G(A — A99)> + o <—p— 4u p= +GA,,,,> ,
RR? 2G ap RR? DA,
= —12u o’ +7(AM—A99)— E+12“ o, +G 5
op 0A,, 2G
= "o + G B + T(A” — Agg)- (7.16)
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Using (7.9) and (7.10), the inertia term on the left hand side of equation (7.3)

is given by
dq o [ RR? RR? [ dq,
. _ “ 1
p<at+q Vq) p 8t<r2>er+ 3 <8T>er ,  (717)

RR?2 4+ 2RR? RR? [ —2RR?
— * n ( ))e (7.18)

r2 r2 r3

(7.19)

r2 ro

RR® + 2RR> 2R2R4> .

Equation (7.3) can therefore be stated as,

0A,, 2G
+ T(AM — Agg). (720)

= or or

RR? + 2RR*> 2R’R* Op

P 2 R - +G
r r

The boundary conditions require continuity of stress to be applied at the inner

and outer fluid boundaries, and this is discussed in the following section.

7.2.1 Lagrangian reference frame

The inner and outer boundary conditions are to be defined at the bubble-fluid
interface and the outer fluid layer, respectively (see Figure 7.1). In the current
co-ordinate system these interfaces are both moving with time, and therefore,
would need to be updated at consecutive time points. In order to simplify
the analyses, both numerical and analytical, the system is transformed to the
Lagrangian volume co-ordinate system. This can be done since the fluid volume
is conserved. In the Lagrangian volume scheme the frame of reference moves
with the bubble-fluid interface. Due to the spherically symmetric expansion
we only need consider the radial co-ordinate in the analysis. The Lagrangian
volume transformation is described below and illustrated in Figure 7.2.

Since the fluid volume is conserved then 47 (%, — 73 ) /3 = 4 (r}, —r},) /3.
Letting this conserved fluid volume equal 47X /3 we can restate the equations

and variables using the general fluid volume variable  which ranges from z = 0
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t=0 O<t<t,

Figure 7.2: Schematic demonstrating the properties of the Lagrangian volume
transformation. The unit cell is made up of the bubble volume and the fluid
volume. At ¢ = 0 the bubble radius is 7,y and the unit cell radius is r7¢ so that
the fluid volume is 57 (7“?,0 —r3)- At all subsequent time points, (0 < ¢ < toq),
this fluid volume is conserved so that (r}, —rj,) =7 (r}, — rj,) for all . In this
way the frame of reference is given by the bubble-fluid boundary and boundary
conditions do not need to be updated at consecutive time points.

t=0 0<t< tend
Bubble volume | 377}, ST,
4.3 4_.3
Total volume 30 3Ty
. 4 3 3 4 3 3
Fluid volume 37 (Tf,o — 7“(,,0) 37 (T’f,t - rb,t)

Table 7.1: Volumes associated with the spherically symmetric bubble expansion
in a finite fluid volume as illustrated in Figure 7.2
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at the bubble surface to x = X at the outer fluid volume limit. We can do this
since the variables are symmetric in the # and ¢ directions and depend on r
and ¢ only. If we let the general bubble volume 47u(t)/3 = 4w R(t)?/3 then at
a generic volume co-ordinate 47wu/3 4+ 4wx/3, we can determine the associated
radial position in the fluid relative to the origin at the centre of the bubble as
4713 3 = A (u+1x)/3, or simply 7 = (u+x)3. This transformation means that
we can follow the bubble-liquid interface as the bubble expands so our bound-
ary condition at the bubble surface does not have to be recalculated at each
successive time point.

Transformation of (7.20) to the Lagrangian volume co-ordinate, =, where

d/0r = 3r?0/dz, results in

O 3r? + E(AM — Agg), (7.21)
T

0P, 9
5 ax3r + G e

, (RR2 +2RR? 2R2R4> o

r rd

Division by 3r? and substitution for the following relations,

i = 3R%R, (7.22)
> = 9R'R?, (7.23)
ii = 3(RR®+2RR?), (7.24)
ro= (x+u)%, (7.25)
into (7.21) yields,
i 20/ ap 0A 2G

:——+G 7'7'+

ox or 3(z + u) (A, — Agg). (7.26)

Iz +u)s  27(z+u)3
Integration with respect to = gives,

— 2 ’ (Arr - Aaa)
= —p(z) + GA, + 3G/ (v & )

dl‘, + Cl,

ii u?
P|— Tt 1
3(z+wu)s  18(zx+wu)3
(7.27)

where (] is an arbitrary constant of integration to be determined by applica-

tion of the boundary conditions. These boundary conditions are derived by
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considering the stresses acting on each boundary, that is, at the bubble/fluid

interface

isotropic Newtonian polymer  bubble surface

pressure stress stress pressure tension ’

and at the outer fluid surface we have

. . . . ultrasound
isotropic Newtonian polymer atmospheric
= + pressure
pressure stress stress pressure o
excitation

This results in the following two boundary conditions, at # = 0 and x = X, in

the Lagrangian frame,

4 28
p(0) = P4 GAL(0) = Pyt r, atw=0, (72
dpn
p(X) = + GA (X)) = —p,— =X 2
p( ) 3(X—|—U,) +G T‘T‘( ) pll p’UJ a‘tx ) (7 9)

where S is the surface tension, p, is the bubble gas pressure, X is the Lagrangian
volume co-ordinate for the outer fluid boundary and p, is the pressure amplitude

of the applied ultrasound signal. Evaluation of (7.27) at x = 0 and = = X gives,

2 X AT,T, o A . -9 . -9
_G/ Md‘rl = P~ . T+ . T T u1 - - 1
3 Jo r'+ 3(X +u)s  18(X +wu)s  3uz  18us

u)
+p(X) — p(0) — GA, (X) + GA(0), (7.30)

and substitution for p(0) — GA,,(0) and p(X) — GA,,(X) from boundary con-

ditions (7.28) and (7.29) respectively, gives the definite integral

A .. .2 .. -2
_G/ .
! + u 3(X+u)s  18(X +wu)s  3us  18us
4p dp 25
A e 422 (131
3(X+u)+p Tt pg—i-u% (7.31)

Rearranging (7.31) gives the momentum equation,

%u<l_ ! ) Loplafr_ v Yy @1 1
M\ T X v ) T3\ T (Wt ) B (X )

= Py —Pa— Put G/ — Aw) 25

Are = Aoo) o 25 (7.32)

1
x+u u3
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The only remaining unknown, in the Oldroyd B system (7.1) - (7.4), is the
orientation tensor A which is described by (7.4). The total derivative

DA 0A
0= B +(q-V)A, (7.33)

however, in the Lagrangian frame, reduces (7.4) to

A 1
aa—t:A-Vq+(Vq)T-A——(A—I), (7.34)
T

since the convection term (q-V)A is now zero. Substitution for Vq from (7.10)

therefore,
9A
) 0 . -2 00 A 0 0
ot RR2 rr
0 2= 9 = = 0 10 0 Agp O
0 0 2w : 0 01 0 0 Ay
: A 0 0 -2 00
RRQ rr
+— 0 Ay O 0 10
" 0 0 Ag 0 0 1
A, —1 0 0
- 0  Ap-1 0 :
T 0 0 Ap—1
so that the rate equations for A,, and Ay are described by
DA RR? 1
T o= 4 Ay — — (A — 1), 7.35
ot o 7'( ) (7.35)
0Agg RR? 1
= 2 Agg — —(Agg — 1). 7.36
ot ps 0 7'( 00— 1) (7.36)

Transformation to the Lagrangian co-ordinate system gives the evolution equa-

tions
0A 47, 1
o= _7147'7'__ Arr_l ) .
ot 3(u+ x) 7'( ) (7:37)
0Agg 211 1
= —Apyg— —(App —1). 7.38
ot 3(u+ ) 0o 7'( 00 ) ( )

Subtracting (7.37) from (7.38) gives the first normal difference rate equation

DAy — Ag) 20
ot © 3(u+x)

(A — Agg) — 84] — %(Aw C ), (739)

where the initial conditions are given by A,, = Apy = 1 everywhere at ¢t = 0.
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7.3 Gaseous phase

Next we consider the gas concentration in the liquid, its diffusion through the
fluid and its transport across the bubble-fluid interface. The fluid initially con-
tains a finite concentration, ¢y, of dissolved gas, distributed homogeneously
throughout the layer. For ¢t > 0, gas is transported across the bubble-fluid inter-
face at a rate governed by Henry’s law [2]. This sets up a concentration gradient
through the liquid layer and gas diffuses through the liquid in the direction
of decreasing concentration gradient, according to the diffusion equation [52].
Henry’s law relates the gas concentration at the bubble surface, (z = 0), to the

pressure inside the bubble, via

C(Oa t) —C = (pg(t) - pgo)Hv (740)

where pg, is the initial bubble gas pressure, p,(t) is the bubble gas pressure at
subsequent £ > 0 and H is the Henry’s law constant. The gas concentration in
the fluid, ¢(z,t), is governed by the convection-diffusion equation [106] which is
derived from the assumption of mass conservation in the liquid, to give

% +q-Ve=V-(DVo), (7.41)

where D is the diffusion coefficient. In a spherically symmetric system, therefore

Jc Jc 10 [ ,0c
and in the Lagrangian frame the convection term disappears [7] to give
de _2 2 0 2 2 Oc
i D(x +u)733(x + u) p <(:L‘+u) 3(r + u) 8_x> : (7.43)
6 4 30

The initial gas concentration throughout the liquid layer is ¢(x,0) = ¢y. As
the bubble expands for ¢ > 0 the pressure drops and a steep concentration gradi-

ent is set up in the thin boundary layer surrounding the bubble and propagates
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through the fluid causing gas to diffuse into the bubble. This steep concen-
tration gradient at early ¢ makes numerical analysis difficult and consequently
a concentration potential ¢(z,t), such that 0¢/0x = ¢ — ¢y, is introduced to

overcome this problem [26]; the diffusion of this potential is

D (06) _ g0 (0 (0
a1 <a_> =905, <(““> e <a>>

Changing the order of integration

0 (00\ oy 0 10%9

and integrating with respect to x the diffusion equation can now be writen as

o6 4 0%

(7.45)

with 0¢/0x = (p, — pg,) H at the bubble surface. If we assume that there is no
transport across the outer fluid boundary (ensuring that gas supply is limited)
then 9?¢/02* = 0 at the outer fluid boundary. The bubble volume, u, can be
related to the bubble gas pressure p, and the concentration potential at the
bubble surface, ¢(0,t), by application of the principle of mass conservation.
From the ideal gas law [2], where R, is the universal gas constant and 7" is the

temperature, then from (7.45)

2

dt \R,T 0r2 |, _,
_ %
T
Integrating with respect to time gives
pgu = RyT$(0,t) + Ch, (7.46)

and application of initial conditions, u(0) = ug, py(0) = py,, (0, 0) = 0 retrieves

the constant of integration, ('}, so that,

Pglt = Pgotho + RyT (0, 1). (7.47)
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The system is now fully described by (7.32), (7.37), (7.39), (7.45) and (7.47).

Non-dimensionalisation of the governing equations and boundary conditions re-

(Lo v ) e 1o 1
us (X+u)% 6 \ us (X+u)§

sults in the following system,

%“ (%_ (Xiw)) TR

2 X (Arr - A99) 1
— De(P,— P,) + = M 0 gy — ——, 7.48
=R+ [ (49
0A,, i
o = 3wray Wb, (749)
DA 20
ot 3(z+u) Ago = (Aag = 1), (7:50)
(pa + (p;() - pa)Pg)u — (1 + ¢(0, t)), (751)
go
0p 10%¢

where N = 9D7/ug*, R = pug”* /37, De = (pgy —pa)7/tts Py = (04— pa)/ (Pao
Pa)s Py =pu/(Dgo—Pa), v =G1/p, ' = uué/3/257' and the boundary conditions

on ¢(x,t) are,

oo _ 5 (Pgo — Pa) _
| T o e (P, — 1), (7.53)
0*¢

where ® = R,/TH. The non-dimensional initial conditions are,
u(0) =1, P,(0) =1, App(2,0) =1, Agy(x,0) =1, »(0,0) = 0.

For details of the non-dimensionalisation see Appendix C; individual parameter

values are listed in Table C.1.

7.4 Instantaneous diffusion approximation

In order to simplify the analysis the equation in ¢(x,t) can be decoupled by

assuming instantaneous diffusion. In other words, by assuming that N is large
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so the spatial derivative dominates in (7.52) then

%

and the boundary condition given by (7.53), at the bubble surface now applies

throughout the domain. Considering the mass conservation of the gas we have

4 ( gﬁ,) — L)), (7.56)

where ¢(z,t) is the moles of gas per unit volume, X is the fluid volume and
the minus sign accounts for the fact that as the gas concentration in the fluid

decreases, its concentration in the bubble increases. Integrating gives

pgu A

= — X .
R,T c(z,t)X + C, (7.57)

where C is a constant of integration retrieved by application of the initial con-

dition
pgouo A
= —c X +C 7.58
RgT Co + ) ( )
so that
pgu ngUU
= = — HX + =— X. 7.59
R,T (1) TRT O (7.:59)

Substituting for 0¢/0x = c(x,t) — ¢y and non-dimensionalising as described in

Appendix C we obtain

<pa + (pgo — pG)Pg> u=1— @X (760)
Dao oz

Applying the boundary condition (7.53), which is now valid throughout the

domain, we have

a — Pa P - Fa
(p+@@ p)ﬂu:1+¢@Lﬁ%LJ®X- (7.61)
pgo pgo

By rearranging for P, (7.61) can be written as

A+ Bu+0X

P
g u+®X

(7.62)
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where A = py,/(Pgo — Pa) and B = —p,/(pgy — Pa)- In the following section we
employ multiscale analysis and asymptotic expansions to investigate the effect
of the inertia related term R on the inner and outer solutions. We, therefore,
use asymptotic expansions to derive first an inner solution (small time) for times
t = O(n) and then construct an outer solution (large time) where 7 is the factor

used to stretch the inner time variable.

7.5 Asymptotic analysis: Inner solution

There is a brief time which we assume to be O(n) in which u rapidly increases
from its initial value to a value that is commensurate with the outer solution
derived in the following section 7.6. In this phase of the bubble growth the
inertia term dominates. To allow us to study this behaviour we stretch time by
introducing the inner variable,

T = -
n

where 7 is a scaling constant such that 0 < n < 1. For clarity we introduce the

Y

following notation for the inner solution

U(T,n) = ult,n),
AR(z,T,n) = Ap(z,t,7),
AQ(x,Tym) = Agy(x,t,7),
A(x,T,n) = (A — Agg)(z,t,1),

P(T,n) = Py(t,n),

oz, T,n) = o(x,t,n).
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As before we assume instantaneous diffusion so that the inner governing equa-

tions are, from (7.48), (7.49), (7.50), (7.62) and (7.61),

4. (1 1 (1 1 72 (1 1
77—U<—— )"‘R O R L T N
3 U X+U Us (X+U)s 6 \ Uz (X +U)s

= 2<De(P—P)+2 /X A dz — — ) (7.63)
! s e o) |
AR 4 U
DAQ 2 U
9T 3@+ AQ —n(AQ - 1), (7.65)
A+ BU +®X
P = T (7.66)
T Pgo — Da
¢ = P2 p (P—-1)X. (7.67)
go

We substitute for inner expansions of the form,

U(T,n) = Us(T) +nUi(T) +O(), (7.68)
AR(x,T,n) = ARy(z,T)+nAR(z,T) + O(n?), (7.69)
AQ(x,T,n) = AQ(x,T)+nAQ:(x,T) + O(n), (7.70)
Az, T,n) = Ao(z,T) +nAi(z,T) + O(n?), (7.71)

P(T,n) = PRy(T)+nP(T)+O(r), (7.72)



CHAPTER 7 111

and proceed by making the appropriate Taylor series expansions where necessary

to derive the momentum equation,
4 . . 1 nUy 1 nU;
-n (U U — | 1- — l——
377<0+771><U0< U0> X+Ug< (X+U0)>>
nUi 1 nUi )
+R A (Uy +nU - — - 1—
{< v 1> <U3 < 3Uo> (X + Up)s < 3(X + )
Uo+77U1 477U1> 1 (1 o >
30, (X +Uy)3 3(X +Up)
2 X (A +77A1) T]Ul
=1 | De(Py+nP, — P, —/70 11— ———)d
n |: 6( U+771 )+3,}/0 ZU—"UO (SU"‘U[]) X

30 %)
(1=
rug Us

Collecting together powers of n gives

3 1 1 U2 (1 1
R | Us I a— T R — T TN
U03 (X + U[))3 6 U03 (X + U[))3

+0(°). (7.73)

(7.74)

The rate equations for AR and A(Q) can be treated in a similar manner; starting

with the non-dimensionalised rate equation in AR(z,T") we have

a(ARg + UARl) . 4 . . 77U1

—n(ARy +nAR; — 1) + O(n?), (7.75)
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so that,

0AR, 0AR, _ (  AUpAR
or " Tor T \ 3+uh)

4 : UyAR U,
+77 —m (UgARl - m + UlAR()) — (ARO — 1)]
+0(n?), (7.76)
and
aT T 310y (To +nl7)(AQo +nAQH) <1 (z + U0)>
—n(AQo +nAQ: — 1) + O(n?), (7.77)
giving

3AQ0+ 0AQ, 205 AQo
or " Tar T \ 3+

2 . UOAQ0U1 :
300+ 0y) <U0AQ1 BTN + U1AQ0> — (AQo — 1)]

+0(n?), (7.78)

+1

The pressure and diffusion equations are given by

A+ B(Uy+nU;) + X
Pyt P, — (UO(+°77U$ i)@( OO, (7.79)

bo+nd = P2 "Pup P — X+ 0>, (7.80)

g0

so that collecting powers of 77 together we have

A+ BU, + ®X BU, (A + BU, + ®X)U, ,
P, P, = _ 1)
05 Uy + X +77<U0+<I>X Toroxe ) TO):
(7.81)
do -1 = @pigfjp_ Papy—1)X + 1 (@pigf)p_ Pa P1X> +O(pR). (7.82)
go go
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7.5.1 Leading order solution

If we assume that R > n then the leading order system, as described by (7.74),
(7.76), (7.78), (7.81) and (7.82), is

. 1 1 U2 (1 1
Ul x- v a] = |\ 2 v (7.83)
U03 (X + Ug)3 6 U03 (X + U0)3
OAR, 4 U,
= ——— % AR 7.84
oT 3(w+Uy) " (7.84)
DAQ, 2 U,
. | 7.85
oT 3 (z+ Uyp) Co. (7.85)
A+ BUy + ®X
P, = .
0 Uy + DX (7.86)
by = oPw"Pup x (7.87)
pgo

with initial conditions Uy(0) = 1, ARy(z,0) = 1, AQy(x,0) = 1, qgg(()) =0,P(0) =
1 and we designate UO(O) = ¢,, where we assume ¢, > 0. Multiplying the mo-
mentum equation (7.83) by Uog (X 4 Uy)3 yields,

Don(X + Uo) (X +Tp)s — U5 ) — %5 (X +00)i-U5) =0, (7388)
To enable an analytic solution, and since we are looking at the early time evo-
lution of the bubble, we make the assumption that Uy < X and equation (7.88)
reduces to _

Us

UyUy — - =0 (7.89)

Figure 7.3 shows that this approximation is a reasonable one for very large X,
(> O(10%)) however, for values of X of the order used previously [26] (X = 53.6),
this approximation is not very accurate. Therefore, we will study two regimes.
In the first instance, the case for large X is considered, since a fully analytic
solution is achievable; the semi-analytic approach for smaller X is discussed in

Section 7.5.1.2.
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Figure 7.3: Plots of the leading order inner solution U, versus the inner temporal
variable T illustrating the effect of X on the validity of the approximate analytic
leading order solution. The figures show the numerical solution (blue line) of
(7.88) and the approximate numerical solution (green line) produced by (7.89)
for two values of X. In (a) X = 50 and in (b) X = 1000. The initial condition on
U, is parameterised by ¢, = 0.05. The plots demonstrate that the approximate
solution is only reasonable when X is large.
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7.5.1.1 Casel: X > U,

For X > U, (7.89) can be transformed using Uy(T) = e**(") to give

Sa
LTI
Z+ =

Choosing a = g for convenience results in the second order, non-linear, ODE in

Z,

P4+ =0. (7.90)
Making another substitution, y = z, reduces this to the first order equation

dy 2
= 91

which can be integrated, as it is of separable type, and this leads to
z =log|T + Cs| + Cj,
where Cy and (5 are arbitrary constants of integration to be determined. Hence
Us = A|T + Cs)3, (7.92)

where A = e5C. Applying the initial condition Uy(0) = 1 allows the constant

A to be expressed in terms of C5 as follows,

Up(0) =1 = A|Cy)3,

so that,
A=|Cy|73,
and
T |5
Uy=1|14+— 7.93
=1+ & (7.99

To determine the constant of integration Cy we need an initial condition on the

velocity Uy, denoted by UO(O) = ¢,. The derivative,

1

: 6 5
U, = —

7 50,

1+T
Cs

Y
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evaluated at t = 0 gives,

6
3G Cy-
Rearranging we have Cy = 6/5¢, and so
6
Uy = ‘1 4 %T 5 (7.94)

We assume that ¢, is always positive, otherwise no bubble expansion would oc-
cur. Therefore, since T' > 0 we can drop the modulus requirement on (1 + 5¢,7/6)

so that,

6

describes the leading order inner solution for non-dimensional bubble volume Uj

6
5, \ ¢
U0:<1+ CT) : (7.95)

given by initial conditions Uy(0) = 1 and Uy(0) = ¢, and assuming X > U.
Figure 7.4 illustrates the form of the leading order solution Uy(T'), for a particular
initial condition parameter c,. This leading order solution is parameterised by
¢, only, and as ¢, increases so does the final volume Uy on the given domain.
Next we turn to the zero order rate equations for the orientation tensor

arising from (7.76) and (7.78)

OAR, B AT,

8T (:L‘, T) — mARO(l‘, T),
9AQo 20,

or »T) = 3(z + UO)AQO("T’ T).

We look first at ARy which can be solved by separating variables to give,
ARy(,T) = C()(w + Up)~3,

where C(x) is an arbitrary function of integration. Application of the initial

conditions ARy(z,0) =1 and Uy(0) = 1 gives

ol

r+1

ARU(Z‘,T) =
x4+ (14 227)

(7.96)

)
5
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Figure 7.4: A sample plot of the leading order inner solution U, versus the
stretched inner variable T, for X > U, as modelled by (7.95). In this particular
case ¢, = 0.01 and X = 1000.

In the same way an expression for AQy can be derived in terms of U, and is

stated below,

6\ 3
x4+ (14 227)°
A T) = 6 .
Qo(z,T) ] (7.97)
The difference term (AR — AQ), is therefore,

4 2

41 B 5ﬂT)g '
(AR - AQ), (x,T) = - 6 - (799)

5 r+1

x4 (1+227)

Figure 7.5 illustrates the functions ARy (x, T'), AQo(z,T) and the difference term
(AR— AQ)o(z,T) at a range of spatial positions in the Lagrangian fluid envelope
and demonstrates that as distance from the liquid/gas interface increases these
functions tend to constant values in time.

The leading order solutions P, and ¢, are obtained by retaining only leading
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Figure 7.5: Sample plots for the inner solution forms (7.96), (7.97) and (7.98)
for different spatial values = given by (a), (b) and (c), respectively. In this case
X > U, with ¢, = 0.01 and X = 1000. Green curve: x = 0, Red curve: x = 10,
Blue curve: x = 100, Purple curve: x = 1000. The plots demonstrate that
as we move further from the bubble boundary at x = 0 the first normal stress
difference, (AR — AQ)o, tends to zero and is constant in time.
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order terms in (7.81) and (7.82) respectively and substituting for Uy to give

6

A+ B(1+2T)° + X
(1+5%T)%+<I>X

, (7.99)

0 pu
oo = P2 Lexp, (7.100)
ng
These functions are shown in Figure 7.6 which clearly demonstrates that ¢, is

directly proportional to P, in this particular case of instantaneous diffusion.

1.7 = 288.
0.99~ 1285.12
o 0.98- 1282.24 s
0.97- 1279.36
0.96 - 1276.48
6 o 2(‘)0‘ N 4(‘)0‘ N 6(‘30‘ N 8C‘)O‘ | ‘1000

Figure 7.6: Illustration of P, (blue curve) and ¢, (purple curve) versus the inner
stretched variable T for the case of instantaneous diffusion with X > U,. For
this particular example ¢, = 0.01 and the leading order solution Uy is modelled
by (7.95) with Py and ¢q described by (7.99) and (7.100), respectively. As the
plot and equations illustrate, the leading order concentration potential, ¢y, is
directly proportional to the leading order bubble gas pressure, P, in the case of
instantaneous diffusion.

7.5.1.2 Case II: X/U, ~ O(1)

For parameter sets containing X/Uy ~ O(1), the leading order inner solution,

Uy, is chosen empirically in such a way as to minimise the error over the domain
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of interest, which in this case we take to be T" € (0,1000). In the previous
section, for X > Uy, the analytic solution Uy = (1 + ¢,T/q)" where ¢ = 6/5 was
derived and shown to be a reasonably accurate approximation. Here a solution
of the same form is assumed, that is,

c q
Uy = (1 + ;”T> : (7.101)

but now the exponent ¢ is determined numerically. The normalised error between
the numerical solution of (7.88) and this ansatz is minimised by varying ¢. The

error calculation is given by,

fTend
0

Uexact (T) - Uapprox (T’ q) | dT

fOTend exact (T)dT

e(q) = (7.102)

where Ueyact (T') is the numerical solution of (7.88) and U,pprox (T, ¢) = (1 4+ ¢,T/q)".
Figure 7.7 shows the error plots and a sample plot of the numerical solution and
the approximate analytic solution for two different values of X, for a fixed choice
of parameter value ¢,. Figures 7.7 (a) and (c) illustrate the case when X = 50
and (b) and (d) are for X = 1000. They demonstrate that as X increases the
magnitude of the normalised error over the domain decreases and the associ-
ated value of ¢ approaches 6/5. For values of X/Uy ~ O(1), therefore, this
minimising ¢ value is determined and the leading order solution Uj is set to
Uo = (1+¢,T/q)". Figure 7.8 demonstrates the improved accuracy of the semi-
analytic solution derived for this second case where X /Uy ~ O(1) and compares
it with the analytic approximation which assumes X > U,. The two approx-
imate solutions are measured against the full numeric solution of (7.83) and
the semi-analytic result is clearly the most accurate although it is less useful in
terms of qualitative solution analysis.

The function Uy is then used in Section 7.5.2.2 to determine the approximate

first order term U in cases where X /Uy ~ O(1).
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Figure 7.7: Plots (a) and (b) show the normalised error e(g), given by (7.102),
versus ¢, for X = 50 and X = 1000, respectively. They clearly illustrate an
error minimising value for ¢ for a given value of X. Plots (¢) and (d) show the
corresponding numerical Uegacet, (blue line), and analytical, Uypprox, (green line)
solutions for this minimising ¢ value which is denoted by ¢min. In (¢) ¢min = 1.5
and in (d) gmin = 1.26; in both cases ¢, = 0.05. As X — 00, ¢min — 6/5.
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Figure 7.8: A sample plot of the leading order inner solution U, versus the
stretched inner variable T, for X /Uy ~ O(1), as modelled by (7.95) (green line),
(7.101) with ¢ = 1.5 (red line) and the full numerical solution of (7.83) (blue
line). In this particular case ¢, = 0.05 and X = 50.

7.5.2 First order solution

Having constructed leading order solutions in the two regimes for the cases of
X > Uy and X/Uy ~ O(1), we now seek to derive the first order term U; and
hence construct the first order asymptotic solution U ~ Uy 4+ nU;. Taking terms
of order n in (7.74), (7.76), (7.78), (7.81) and (7.82) results in the first order

system,

(7.103)
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OAR, 4 - UsARy, -
—_ U ARy — Uy —2220 L [70AR, | — (AR, — 1
oT 3(z + Uy) < Lo 1(:c+U0)+ 0 1) (ARy )
(7.104)
DAQ, 2 . UsAQy -
— U, AQy — Uy -2 4 17,4 —(AQy — 1
(7.105)
U, A+ BU, + ®X
p=—"" _(B- 1
! Uo+<I>X< Up + dX ) (7.106)
o1 = oPe —Pap x (7.107)

Dgo
As for the leading order solution, two separate cases are considered, namely large
X > Uy and X/Uy ~ O(1); an analytic solution can be derived in the former

case while a semi-analytic solution can be found in the latter.

7.5.2.1 CaselI: X > U,

Equation (7.103) can be expressed as

LNy N N,
U +—=U +=U +—=0 7.108
1+ N, 1+ N, 1+ N, ) ( )

where,
1 1
N, = _ (7.109)
Uve (X +Up)s
' 1 1
A — (7.110)
3 UO§ (X + UO)§

22 [ 1 1 Uy [ 1 1
Ny = 20 - ———— )| -2 - ——— |, (7111)
9 e (X—|—U0)3 3 U03 (X—|—U0)3
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and
5e,T\ *
Uy(T) = <1+ Cg ) , (7.113)
. 5¢,T 7
U(T) = e <1+ C6 > , (7.114)
- 2 5e,T\ 7
Oo(r) = 2 (1+22) (7.115)

The expressions for N;,i = 1,--- ,4 can be expanded in 1/X giving the leading

order terms,

Ny Ug 2¢,

N 30U,  (6+5cT)

N, 2 U, 6

N, OUZ  3Uy (64 5c,T)2
N, AU, e

N grui 3R(6+5¢,T)7

Substitution of these coefficients into equation (7.108), transforming to the vari-

able z = (6 + 5¢,T) and multiplying by 2? yields

.2 .6 42°65
2
U—-zU0i+ =Uj = ——. 7.116
o 5Z o 25 75Rcvz% ( )
This is essentially the Euler differential equation [67]
22Uy 4 azUy + bU, = f(2), (7.117)
with a = —%, b= %, s = 1_70‘, v = %|(1—a)2—4b|% > 0, giving the complementary
function

U(z) = E 20t 4 Eprt),

[ 1
= E125 +EQZ5,

where the constants E; and E, are to be determined from the initial conditions.

Assuming a particular integral, U7, of the form,

o~

UP(z) = Az,
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and substituting into (7.116) gives

Therefore, the general solution is
2(63
Ul(z) == Elz% + EQZ% - —9,(}2032:%

(7.118)
The initial conditions for the first order term Uy (T') are U;(0) = U;(0) = 0 so
that in the transformed system (U;(z)) we have U;(6) = U,(6) = 0 giving the

following values for the arbitrary constants

8
B, = - (7.119)
5Re,63
EQ - —El, (7120)

and so

Ui(z) = 72201, (% (zg - z%) - %z%> : (7.121)

Rewriting in the original inner variable T,

oo

o=
olw

o~y

U\(T) = =2 ( 1 ((6+5¢,7)% (6 -+ 5¢,T) )—%(6+5CUT)

- Rey 5(6%)
(7.122)
Combining the result for the leading order solution from Section 7.5.1.1, with

this result for U; the asymptotic inner solution, to first order, for instantaneous

)

+G+?ﬂ. (7.123)

diffusion where X > U, can be written as

U(T) = Uo(T)+nU(T),

SIS

_ 2 ( 1 <(6—|—50,,T)%—(6+5CUT)

o=
[SHENS

6
— —(6 + 5¢,T
Re, 5(6%) ) 9( +50,T)

[Sii[e)

A sample solution is displayed in Figure 7.9, and for the parameter set given

this first order solution corresponds well with that generated using the numerical
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solution of (7.108). Whereas the leading order solution (7.95) is parameterised
by the initial condition ¢, only, this first order solution is parameterised by ¢,, R,

and .

1407
120+ .

100

Figure 7.9: Plot of the leading order solution U = U, (red dashed curve) as
modelled by (7.95) and the first order solution U = Uy+nU; (blue dashed curve)
as predicted by (7.123) for the case of X > U, with instantaneous diffusion.
The green curve, for comparison, is U = Uy + nU; where U = Uy is modelled by
(7.95) and U, is determined numerically from (7.108). The system parameters
are given by ¢, = 0.05, R = 1, and n = 0.001. For the numerical solution we
choose X = 10°.

7.5.2.2 Case II: X/Uy ~ O(1)

In this section we examine the second case which describes conditions in which
evolving bubbles are closely spaced within the expanding foam so that X /Uy ~
O(1). We employ two approaches and then compare the results. A semi-analytic
solution is first derived and then compared to the numerical solution of (7.103).
Equation (7.103) is rewritten by substituting for the leading order solution
Us(T) = (14 ¢,T/q)?, where ¢ was determined empirically in Section 7.5.1.2.
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In (7.108) we then approximate the coefficients by

N, (T) e
Ny (T) ~ &(T) = C+T’
Ny(T) G

Nl (T) ~ SB(T) - (Cl + T)Qa
N(T) o

Nl (T) ~ 54(T) - (Cl + T)pa

where C;,2 = 1,--- ,4 and the exponent p are to be determined. This yields the

approximate ODE in U;
U + S(T)U, + S3(T)Uy 4+ S, = 0. (7.124)

The functional forms for Sy, S3, S, are chosen in such a way as to make the
analytic approximation more tractable, while at the same time maintaining a
reasonable degree of accuracy. That is, the denominator exponents for Ss, S3
are chosen as 1 and 2, respectively, in order to retrieve the Euler differential
equation (7.133) where z = (C; + 7).

First, the coefficients C; and C, that best describe the function Ny /Ny given

the functional form Cy/(Cy 4+ T') are calculated. The following assignments are

made
N,(0) G
- —_— 7.125
Y2,0 N, (0) Cl ( )
M) G (7.126)

LT N T G+t
where t* can be chosen to minimise the error of the approximation. The values

for Cy,Cy are derived from (7.125) and (7.126), respectively

t* Y9 4
C1=¢ Co =

(y2,0 - y2,t*) ’

T Y2,0Y2,1+
(y2,0 - y2,t*)

giving the approximate function,

_ t*y2,0y2,t*
tya e + (Y20 — Yo )T

82 t*

)
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Figure 7.10 shows that the particular choice of t* is important for the accuracy
of the approximating coefficients C;,Cy. For each choice of t* the error was
calculated by integration of the absolute value of the difference between the
exact function, Ny (7")/N; (T), and the particular approximation, Sy (7"), over
the domain in 7. This error value was then plotted against t*. This is denoted

by e(t*) and is defined by

(1) = /0 v

where the domain is given by [0,7%]. Figure 7.10(a) shows the error function

No(T) 1" Ya,0Y2,+
N (T)  t*your + (Y2,0 — youe)T

dT, (7.127)

for the determination of C; and C, and indicates a minimising value of ¢* = 300.
This value is then used to construct the best approximation function Sy which
is shown as the blue curve in Figure 7.10(c).

Having optimised and fixed C;,C,, the corresponding error values were cal-
culated and plotted for C3 and C;,. We designate the fixed values of C; and Cy

by C, and C, and next determine the function S; as follows. We assign

N; (%)
* = 7.128
y3,t Nl (t*) ) ( )
so that
S=—2 (7.129)
e+ |
where,
Cs(t") = (Ci + t*)2y3,t*- (7.130)

The choice of t* used to calculate this value of C5 will result in a particular error
value given by
N (T) gz (Cy +17)°

)= | N(T) G+ TP

Figure 7.10(b) shows the results of plotting this error function versus values of

dT. (7.131)

t* € [0,Ty] and clearly illustrates a minimising value for the choice of ¢*. This
value is then used to construct the best approximation for S3 which is then

plotted in Figure 7.10(d) with N3 /N; for comparison.
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Figure 7.10: Plots showing the error functions e(¢*) versus t* in order to de-
termine the value of ¢* that minimises the error between N;/N; and S; for (a)
i = 2 and (b) i = 3. For i = 2 the error function is given by (7.127); for
i = 3 it is (7.131). As illustrated by (a), for this particular parameterisation,
the minimum error for i = 2 occurs when ¢* = 300 and (b) indicates that when
t = 3 a value of t* = 210 should be chosen to provide the best approximation
for C3. Plots (¢) and (d) show N;/N; and S; versus T, plotted using the error
minimising values of t* determined in (a) and (b) respectively. The blue curves
show the exact functions N; /Ny (determined from (7.109) - (7.111)) that we are
trying to approximate and the red curves show the closest approximation given
the functional forms we require. The system parameters are ¢, = 0.05, ¢ = 1.5,
X =50,and R = 1.
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Note, that in order to determine C4 the choice of exponent p must also be
optimised. We would therefore need to define an error function in terms of ¢*
and p and optimise over the t* — p plane. We automate this choice using a
non-linear least squares algorithm and use the calculated values of p and ¢* that
minimise the error, to calculate C4 and construct S;. Figure 7.11 shows the best
approximate Sy plotted against the exact function N;/N; over the domain for

a particular choice of parameters ¢,, R and X. Having derived the functional

0.08]
0.07 "

0.06 -

Ny /Ny ,84

0.05

0.04

0.037“‘\“‘\“‘\“‘\“‘
0 200 400 600 800 1000

Figure 7.11: Curves of the exact functional form N;/N; (blue curve) plotted
alongside the best fit approximation for S, (red curve) as predicted using a non-
linear least squares algorithm. The error of the approximation was optimised
over the domain [0,1000] for the choice of ¢* and exponent p. The system
parameters are ¢, = 0.05, ¢ = 1.5, X =50, and R = 1.

forms for S, S3 and S, we can substitute them into (7.124) to give

CQ : CS C4

U+ ——=U; + Ui + =
! e T2t e+ T

T+ T 0, (7.132)

where all coefficients and exponents were approximated in Section 7.5.2.2. Trans-

forming variables to 2 = C; + T and multiplying across by 22 gives,

22Uy + 2CU, + CUy = —C2%7P), (7.133)
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which permits a complementary function of the form [67],

12727 (Ey|2]” + Ea|2|™) if (1 —Cy)2 > 4Cs,

Ui(z) = |2|2 (1 + By log|z)) if (1 —Cy)? = 4Cs,
2|27 (B, sin (vlog |2]) + Es cos (vlog |2])) if (1= Cy)? < 4Cs.

(7.134)

where v = 1/2|(1 — C3)? — 4C3]*/2. In the previous section 7.5.2.2 only the
exponential solution to the associated Euler differential equation was permitted
since the coefficients of U1 and U; were known and fixed. In this case, where Cy
and C3 depend on X and ¢, it is not immediately obvious which branch of the
Euler solution should be chosen for a given parameter set. Therefore, in this
section we chose the same functional form that was used in the case of X > U,
so that (1 — C3)? > 4C; is satisfied and the complementary functional form is

therefore Uf = |z|% (Ey|z]” + E2|z|7") and the particular integral is given by

C4Z(2_p) 1-0C,

UP(2) = h = : 7.135
1(2) 2—-p—s—v)2—p—s+v) where s 2 ( )

The general solution is
Ui(2) = E1[2]°T + Ey|2|°7 + E32°7P, (7.136)

where,
Cy

E5 = — (7.137)

2—-p—s—v)2—p—s+v)
and the constants Ey, Ey are determined from initial conditions, U;(T = 0) =
U(T = 0) = 0, in the transformed variable z, that is, U;(z = C;) = Uy(z =
C;) =0, so that

C4 (2—p—s—v)
E, = cy? 7.138
! w2 —-—p—s—v) ' ’ ( )
C4 (2—p—s+v)
E, = — cy? . 7.139
? w2 —p—s+v) ' ( )

Rewriting in the original inner variable T" therefore,

UlT) = Ey(C + T)™) + By(Cy + T)7) + By (Cy + T) 7P (7.140)
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and combining with the leading order solution gives the first order inner asymp-

totic approximate solution for finite X as,

U(T) = (1 + @T> q+n (By(Cr +T)) + By(Cr + T) ) + B3(C + T)P) .

! (7.141)
In Figure 7.12 we compare this analytic first order approximate solution (blue
curve) to the first order solution (green curve) using U; generated via the nu-
merical solution of the original ODE equation (7.108). The approximation is

less accurate than in the case for X > Up (see Figure 7.9).

140
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Figure 7.12: Plot comparing the leading order solution U = Uy (red curve) as
modelled by (7.101) and the first order solution U = Uy 4+ nU; given by (7.141).
In this case X is O(U) and an approximate analytic solution is chosen for Uy as
described in Section 7.5.1.2 and for U; as described in Section 7.5.2.2. The green
curve, for comparison, is U = Uy + nU;, where U, is determined as described
above and U is the numerical solution of (7.108). The pertinent parameter
values are ¢, = 0.05, ¢ = 1.5, R =1 and X = 50.
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7.5.3 Discussion

In Section 7.5 we derived two possible first order inner solutions for U. The first

was an analytic solution for Case I, when X > U, given by,

U(T) = < 5C”T>

6
6 5¢,T
’Rcv( 6% +5eT)

6
5

S
[SHENS

— (6 + 5¢,T) (6 + 5¢,T)

©|?3w

) -

)

(7.142)

and the second was a semi analytic approximation for Case IT when X/Uy ~

o),

U(T) = (1 + @T> q+n (B (Cy + T)) + By (Cy + T)™) + E3(Cy + 1)),
! (7.143)
where Ey, E5 and Ej are defined by (7.138), (7.139) and (7.137) respectively.

In Case I the dependence of the solution on the system parameters c,,n, R is
explicit whereas in Case II this dependence is implicit and can only be illustrated
numerically which is a drawback of the semi-analytic solution.

We cannot make a direct comparison between Cases I and II, since one of the
parameters X necessarily changes giving a different solution for each case. We
can, however, conclude that the accuracy of the first order solutions predicted
in Case I (X > Up) is greater than observed in the semi-analytic solutions
produced in Case II (X/U, ~ O(1)), when both solutions are compared to their
associated numerical solution of (7.108). Since we are considering the inner
solution, Case I (X > Up) is most relevant as it describes the polymerisation at
early time when small bubbles are surrounded by a large fluid volume.

For Case [ we can examine the effect of inertia on the analytic first order
solution by altering the grouped parameter R while keeping 1 and ¢, fixed. In

order to compare these results with the case of negligible inertia we solve (7.63)
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for R = 0, to first order in n as follows:

4. (1 1
Syl - 144
5V <U X+U> 0 (7.144)

so that, for the stretched inner variable T, X > U (as in Case I) we obtain the

ordinary differential equation U = 0 with solution U = ¢,T + 1 where the initial
conditions are given by U(0) = ¢, and U(0) = 1. In Figure 7.13 we can see
that for fixed values of 1 and ¢,, as R increases the bubble volume, U, increases
more rapidly as inertia increases and converges to the leading order solution
Us = (1 + 5¢,7/6)%5. Tt is important to note that these analytic solutions are
only valid for R > n on the timescale ¢t = nT.

For further discussion of the significance of the relationship between R and

n see Section 7.7.

7.6 Asymptotic analysis: Outer solution

In Section 7.5.1 we stretched the time variable ¢ according to T = t/n and
expanded in terms of n to derive the inner solution. Then for the sake of a
more convenient analysis we assumed the following relationship in scale between
the inertia-type grouped parameter R and 7 such that R > n. In this way we
were able to reduce (7.74) to (7.83) and thus derive the analytic form for the
solution, (7.123), for the particular case when X > U,. For the outer solution
we expand in R noting the scaling assumption we made for the inner solution,
namely, R > 7n. We, therefore, look for an expansion, in the outer temporal

variable, ¢, of the form
u(t,R) = wup(t) + Ruy(t) + O(R?), (7.145)

Ap(z,t, R) = A, t) + RA,,, (2,1) + O(R?), (7.146)

Ago(x,t,R) = Apgy(2,t) + RAgg, (7,1) + O(R?). (7.147)
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Figure 7.13: Plots illustrating the following analytic solutions for Case T (X >
Up): the leading order solution (7.95) U = Uy (red curve), the first order solution
U = Uy + nU; (blue curve) given by (7.123) and the leading order solution in
the case of negligible inertia, U = ¢, T + 1 (purple curve). In all cases n = 104,
¢, = 0.05 and R > 1. The grouped parameter R is given by (a) R = 0.05, (b)
R =0.1, (¢c) R =0.3 and (d) R = 1.0. These figures demonstrate that as R
increases within this regime, the bubble volume increases more rapidly.
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Substituting for (7.145) in (7.62) we can derive the expansion for P, as follows

A+ B(up + Ruy) + X
ug + Ru1 +®X

A+ B RB dX
_ + U + (5} + + O(RQ),

(g + ®X) (1+ Ry )
- o + X up + X

+O(R?),

P, =

) +O(R?),

uy + X u+ X (ug+ PX)?

= P, +RP, +0(R?).

Using these in (7.48) we get the following

L g+ Rin) [ ——— — !
3 0 ! Uy + ’Rul (X + ug + ’Rul)

+R

wl—

. . 1 1
(UU + ’Rul) T
(UO+RU1)§ (X+U[)+RU1)

(itp + Rin)? 1 - 1

B 6 ((u0+7zu1)§ (X+u0+7zu1)§>
AT‘T‘O + RATT‘l) - (A6’90 + RAHGH)

2 [
= De(P,,+RP,, — P,) + =
¢(Poo + RPy, )+37/0 (x + up + Ruy)
1
————— + 0(R?).
['(uo + Ruq)s
Using a Taylor series expansion we can write this as

%(uo—FRul) HO (1 - 72?) - (XJlruo) <1 R %ﬂ

o (3 1-32) et ()
_M (i (1 - 4;1?) - (Xqu)é (1 - %D]

2 /X (Arro + RA,) — (Aggy + RAg,) <1 - a > + O(RQ)-
i (z + o) (z + up)

B <A+Bu0+<I>X> R( Bu, ul(A—l—Bqur@X))_’_O(Rg)’

dx



CHAPTER 7 137

To leading order in R, therefore, the momentum equation is

4. (1 1 2 [ (A — Agg)o 1
_ = = De(P, — P,)+ - ——dr — . (7.148
30 (uo X +u0> e(Foo )+ 37/0 PR Tu ( )

(=110

We then expand the other equations in the system in the same way, so that to

leading order in R we have

8147‘7‘@ _ _é uOArro
ot 3 (x4 up)

— (Apry — 1). (7.149)

and
aAggo 2 ﬂoAggo
= ———nx — (Apy, — 1). 7.150
ot 3(z+u) (Ao = 1) (7.150)

7.6.1 Leading order system for the outer solution

Assembling the leading order equations together then,

X —
o B (1 gy 2 [, 1)
0

(7.151)
DA, 4 i
o 2 U0 4 (A, —1), 7.152
ot 3+ ) o~ (Amo =) (7.152)
aAggo 2 o
—2 = ——— Ay — (Apy. — 1 7.153
g 3ot ) (Agg, — 1), ( )
A+BUO+(I>X
P = 7.154
go UO"‘@X ) ( )
do(z,1) = @%(Pgo—l)X, (7.155)
g0

with the arbitrary initial conditions wuy(t*) = u§, Py,
ALro (), Aga (2, 17) = Agy, () and ¢o(1*) = ¢5.

In order to make analytical headway we need to derive an expression for the

(t*) = P, A (x,t") =

90’

integrand in the momentum equation, that is (A, — Agg)o/(z + uy). We can do
this by applying the integrating factor method to the temporal integration of
the rate equations in A,,, and Agy,. We proceed by rearranging (7.152) to give,

DA, 4 g
: a7/ N 1 Arr = 17
ot (3 (z + up) * ) °
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and employing the integrating factor,

4 g
t) = — 11 dt
p(a,1) exp</[3x+%+] )
4
3

= ez + up)3,

we obtain an expression for A, (x,t) in terms of z, uy(t) and a function of

integration C'(z),
Aoz, t) = ez +ug) "2 [/t el (z + ug)3di + C’(x)] :
where C(x) is given by the initial conditions as follows
AE () = A%, (2) = e (w4 ud) e {/t el + uo) 3 df + C(a:)] :
Rearranging for C(z) gives,
C(z) =e" (z + ué)gA;‘fro (x) — /t* el (z + uo)gdf

and therefore,

Wl

PR 4 o~ « T+ up
Appo (1) = e_t(x—l-uO)_?/ e'(x +uo)3di+ A5, (z)e ! <70> . (7.156)

Similarly,

t

Wi

Agg, (1) = e_t(x+u0)%/

t*

i _2 N vy [T+ Up
dt+ A — ) . (7.157
o+ Fai+ Ay (o) (2E2) " (rasm)

The function (A,. — Agg)o(x) is obtained by simply subtracting Agy,(z) from

Arro(:r)a

t N 4.
(App — Agg)o(x,t) = e {(x+u0)g/ e'(z + ug) 2 dt
t*

Wl

t 7 ~
/ el (z + uo) 3 di
t*

. + ug 3 T+ ug 3
t A* T 0 _A*
o ( ) <x+Uo> () <x+u3> )]

(7.158)

— (= + up)
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Finally, we can describe the integrand I(ug,z,t) = (Ayr — Agg)o(z,t)/(x + uo)

as
A, — A t
[(U/O;xat) — ( 00)0 (x )7
(x + up)
= [1(U0,$,t)—IQ(Uo,l',t)—i—[g,(U,o,l‘,t),
t t
= fl(UOal‘at)/ kl(UOal‘atA)th_fQ(anl‘at)/ kQ(ufJaxvf)df"'f?)(uOvl‘at)v
t* t*
where,
fl Ug,fL’,t = B_t($+U0)_%,
f2 anxat = B_t($+U0)_%,

Wit

(x 4 up)~

wl=
N———

4

(o, 7, 1)
(o, 7, 1)
folun,2,t) = € (AL, (0) (@ + u) (o + o) F — Ay, (@) (0 + )
(upz,8) = (2 +ug)s,

(o, 7, 7)

= ez + uo)_%.

7.6.2 Analytic Picard iteration to determine the leading
order outer solution

To leading order the momentum equation (7.151) can thus be written,

. 3ug A+ Buy+ ®X 2 X 1
= -——(X D —P,D — I(ug, z,t)dr — =1,
o 4X( +ug) e( o ax ) 6+37/0 (ug, x, t)dx rd
(7.159)
that is,
= ——(X D — P,De — -
U 4X( +uo){ e< o+ DX ) e g

wl~
wl—

t A t L
/et(:r;—i-u())%dt—(x-i-uo)_ /et(x—i-u())_%dt

+§7@‘t [/UX ((x + ug)”
+el ((x—l— Die+1)7F (@ + 1) S+ 1)—%) )d:r] }

This is of the form,
o = g(uo, 1), (7.160)
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and an approximate solution can be found using the Picard iteration method [10].
We derive the first Picard iterate, ugl(t), analytically and then produce a nu-
merical algorithm to test the accuracy of this first analytic iteration. The first

iteration of the Picard method is given by,

t
uP (1) = uf +/ g(ug, t)dt, (7.161)
t*

where ul = ug(t*) so that, for example, assigning t* = 0, u(0) = A,,,(z,0) =

Ao, (x,0) =1 we have

3(X+1) A+B+oX 1
1,t) = —++2<¢De| ————— ) — P,De — =
9Lt = =% { e( 1+ ox ) °°T

+§76t[/0 ((:c+1)§ /Otei(x—irl)gdf— (x+1)"

- (Any (@) + ) (2 + o) F = A () (& + )

wl=

t 7 PPN
/ ef(x +1) 3dt
0

(x + uo)’%) )d:c] }

The first two integrals cancel each other out and, the spatial integral vanishes

Wl

so that
g(lat):C5a
where we assign
3(X +1) A+ B+ ®X 1
=—F ————— | — P,De— —|.
C="x ( 1+ ox ) ue r]

The first iterate of the Picard approximation, for the leading order outer solution

is therefore,

t
) = it [ gt
t

*

t
= 1+ / Cidt, (7.162)
0
=1 + C5t,
since the particular initial conditions chosen prescribe a function of integration

equal to zero. Therefore,

uPY =14 Cst, (7.163)
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which is simply a linear solution. The second Picard iteration is given by
t ~ A, ~
uP? =1 +/ g(1 + Cst, )di. (7.164)
0

However, due to the complexity of the momentum equation and the form of
the first Picard iterate, the analytic form for the second iteration would be
cumbersome and unwieldy. So in order to assess the accuracy of the first Picard
iterate, (7.159) was solved numerically, in Section 7.6.3.

Plots of this leading order analytic Picard approximation are illustrated in
Figures 7.14 (a) and (b), for a range of values of P, and De, respectively. The
grouped parameter De is the ratio of the bubble growth rate in the solvent to
the relaxation rate of the polymer and is inversely proportional to the viscosity
value p. We can see from Figure 7.14 (b) that as viscosity decreases, for a
constant initial gas pressure difference across the bubble wall, the initial bubble
growth rate increases as expected. However, we will see in the next section
that, although the numerical solution predicts the same qualitative increase it
asymptotes to a steady state value whereas the Picard solution does not. This
is not unexpected since we have only carried out one iteration of the Picard
scheme and have retrieved the leading order linear solution (7.163). This leading
order solution is relatively accurate near to the inital bubble volume but as
t increases this solution is no longer accurate, as illustrated in Figure 7.15.
The Picard method is a function wise iteration and would require several more
iterations to produce a reasonable approximation over a larger domain interval.
Theoretically this is possible but due to the complexity of the system and the
integro-differential momentum equation we do not proceed down this analytical
path.

The relationship between the irradiating acoustic standing wave pressure
amplitude, P,, and the final bubble volume can be observed in Figure 7.14 (a)

and implies that increasing this amplitude suppresses the speed of bubble volume
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growth at early time. Since this linear approximation does not asymptote as we
would expect the numerical solution to do, we cannot predict the effect of the
pressure amplitude on the steady state bubble volume. We will investigate this
effect in the following section when we perform a numerical analysis for the outer

solution in the case of instantaneous diffusion.

7.6.3 Numerical solution of the leading order momentum
equation

The momentum equation (7.159) contains an integral in ¢ within an integral over
x. For the temporal integrals within the integrand I(ug, =, t) we use a quadrature
rule with weightings ay, where g, = wuo(fy), 1, = t*,t}- =t; and t; € [t*,t] to

give,
Li(t) = e %(x+up;)” Zake x+u0k)§

L(t) = e "(z+uy) Zake x+u0k)’%,

wllv

Iity) = ¢ (A5, ><x+u0;>%(x+uo>-%—A;90<x>(x+uzs> (1 + uoz)”

w|>~
N———

The spatial integral can be written as
o . A . X
I=1 -1+ I, where Ii:/ I;dzx, 1=1,2,3,
0

so that, for example,

X
jl(tj):/o e’tf(:c—l—ugj ’§Zake a:+u0k)3d:1:

k=1
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Figure 7.14: Plots of the first Picard iterate solution, u}' for a range of values
of (a) De (which is inversely proportional to viscosity) and (b) P,, the non-
dimensional value for the pressure amplitude of the irradiating acoustic standing
wave. The initial conditions and parameters common to both plots are as follows:
t* =0, u* =1, X = 1000, p, = 10°, py, = 10p,, ® = 0.32, T = 1000. In (a)
P, = 0 and the range of values for De are 0.1 (blue line), 1 (red line), 10 (green
line), and in (b) the non-dimensional pressure amplitude values, P,, are zero
(blue line), 0.03 (red line), 0.05 (green line), 0.10 (cyan line), 0.50 (magenta

line), with De fixed at 1.
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We introduce a quadrature in x via the weightings o, to give,

m J
- -y _7 ; 4
Li(t;) = e i ZCYL(«TL + Uoj) 3 Zaketk (zr + wor)®,
L=1 k=1
~ e 1 ] 7 2
Lt;) = e Z ar (T + ugj) 73 Z are'* (1, + ugy) 73,
L=1 k=1

ol

L(t) = "5 apds, (@) (wr + uoy) 7F (o, + up)
L=1

Wit

m
. . 1 .
—e'" N " ap Ay, (@) (wr + uey) 3w +up)
L=1

So we have discretised the leading order momentum equation for the outer so-

lution via

dug;  3ug, A+ Bug; + X 1 2 .

— = —(X 3| D J — P,De — —~vI(ug:, t;
dt 4X ( +UU]) ¢ U +dX € 1 + 37 (UOJJ J)

FUU;
(7.165)

We use the following Euler iterative scheme to then integrate in time this non-

linear system of ODEs, to give

3. A+ Bug; + X
Upjr1 = Uoj + (5t4—)(](X —|—UJ0]) <D6 u; _|_J(I)X — PuDe
1 2 .
— + =yl (w;,t5) |,
D(ug;)d 3 (to; 3)>

with initial conditions wug(t*) = wug, Ap,(z,t*) = A, (z) and Agy,(z,t*) =
Ajp, (). For the purpose of constructing Figure 7.15 we choose t* = 0 and

u* = A, (x) = Ajy, () = 1. We use the Composite Simpson rule with quadra-

ture weightings,
L %h, j even
57 ;= )

2, j odd

= Oy =

where h = 0z, 6t and the accuracy is O(h?).
Figure 7.15 shows an example solution using this numerical analysis. As for

the analytic Picard method, we look at the effect of altering the viscosity via
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the dimensionless grouped parameter, De and the dimensionless applied acoustic
pressure amplitude, P,; the results of this are shown in Figure 7.16. In the case
of instantaneous diffusion we can see, from Figure 7.16 (a), that an increase in
P, results in a decrease in the final bubble volume though the time to achieve
this steady state solution is unaffected. In (b) we see the converse effect due to
increasing viscosity; that is, the steady state bubble volume is unaffected but

the time required to reach this steady state volume is increased.

7.7 Discussion

In this Chapter we derived a governing system of coupled equations to describe
the evolution of a non-reacting polymer foam incorporating the effects of inertia
and an irradiating acoustic signal. Having made an assumption of instantaneous
diffusion we were then able to partially decouple the system.

An asymptotic analysis was performed to derive inner solutions in the scaled
temporal variable, T. Both leading and first order solutions, for the non dimen-
sional bubble volume were derived in two different regimes; the first described
the case when the ratio of the bubble volume to surrounding fluid volume is
very small and the second pertains to the case when they are of the same order.
The first instance describes the non-reacting foam at early time when the bub-
bles have just nucleated and individual bubbles are located at large distances
from neighbouring bubbles; the second case describes a time nearer to com-
pletion when the bubbles are closely spaced and the fluid volume surrounding
individual bubbles is smaller.

In Case I, X > U,, we were able to derive an analytic solution to leading
order and first order. The leading order solution was parameterised by the initial
condition only and described the relationship between bubble volume and time
as U o t5/°. The leading order solution in the case of negligible inertia was

linear so the effect of inertia is to increase the bubble growth rate to leading



CHAPTER 7 146

2000}

1500}
5 :
1000}
500}
|
t
(b)
40 —
S

Figure 7.15: (a) The first iterate, u?', for the analytic Picard solution (red line)
given by (7.163) and the associated numerical solution calculated using the Euler
iterative scheme as desribed in Section 7.6.3. The zoomed in plot (b) shows that
this first iterate is only reasonably accurate close to the initial condition at t* = 0
and does not provide a good description of ug as ¢ > ¢*. The initial conditions
and parameters common to both plots are as follows: t* =0, u* = 1, X = 1000,
Pa = 10°, pgy = 10p,, ® = 0.32, ' = 1000, v =1, P, = 0 and De = 1.
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Figure 7.16: The numerical solution of (7.165) and how it is affected by (a)
acoustic pressure amplitude, P,, and (b) viscosity via the dimensionless grouped
parameter De. In (a) the values of P, are zero (blue line), 0.03 (red line) and 0.05
(green line). The Deborah numbers, De, in (b) are 0.1 (blue line), 1.0 (red line)
and 10.0 (green line), corresponding to viscosity values of 9 x 10%, 9 x 10° and
9 x 10%, respectively. These are all realistic viscosity values for polymer foams.
The initial conditions and parameters common to both plots are as described
in Figure 7.15 except for those parameter values detailed above for (a) and (b).
Note that these P, = 0.03 and P, = 0.05 relate to acoustic pressure amplitude
values of p, = 2.7 x 10* Pa and 4.5 x 10, respectively, and reflect instrumental
values. The actual pressure amplitude, in situ would be much lower due to the
effects of attenuation as we shall see in Chapter 8.
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order. The first order solution was parameterised by the initial condition and
the parameter describing inertia, R. However, this solution is only accurate
for large X. As R increases, with other parameters fixed, the first order inner
solution predicts an increase in bubble growth rate with increasing inertia, as
illustrated in Figure 7.13.

In Case IT, X /Uy ~ O(1), we were able to derive a semi-analytic solution, for
the leading and first order cases, by consideration of the normalised error func-
tions over the domain of interest. Although these solutions had to be derived, in
part, numerically, they did provide improved accuracy for smaller values of X.
Their dependence on the system parameters is implicit and therefore they can-
not be used to predict the effect of individual parameters on the final solution.
Further work in this area would involve deriving the second order inner solu-
tions, which would include a greater number of parameters in the solution since
the right hand side of (7.63) is of order n?. This would give greater qualitative
and quantitative insight into the effects of the acoustic pressure amplitude, P,,
for example.

In Section 7.6.1 we investigated the outer asymptotic solution, which essen-
tially describes the case assuming no inertia. The outer problem is defined by a
complex system of five coupled equations, one of which is an integro-differential
equation. This makes an analytic solution very hard to obtain. The assumption
of instantaneous diffusion allowed us to decouple the concentration potential
equation from the system and we were further able to produce an explicit form
for the integrand, (A, — Agpg)o/(x + up). It was thus possible to use this to
describe the bubble volume evolution via a single integro-differential equation,
(7.159).

The inner and outer asymptotic solutions have been derived as described
above. The inner asymptotic expansion is in 1 and the outer asymptotic expan-

sion is in R with the following prescribed relationship of scale between them:
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R > n. We have not attempted to match the inner and outer solutions as we
are interested in the early time behaviour only. However, it is important to note
that if matching were necessary then we must define quantitatively the relation-
ship between n and R so that we could match the inner solution, as the inner
temporal variable, T" — oo, to the outer solution as the outer temporal variable,
t—0.

The Picard iteration method was then chosen to derive a leading order an-
alytic solution. The leading order solution was linear in the outer temporal
variable ¢ (7.163) and would not be expected therefore to asymptote as the
numerical solution predicts; this is illustrated in Figure 7.15 where the Picard
solution (blue line) is compared to the numerical solution (red line). Although
the leading order Picard solution is not accurate over the whole domain of inter-
est it is reasonably close to the numerical solution for early time. It must also be
remembered that it is just a leading order solution and further iterations would
need to be performed to improve the accuracy of this analytic approximation.
The Picard iteration method converges vector wise as opposed to the pointwise
convergence of other schemes e.g. the Euler scheme, although convergence can
often be a problem [10]. Theoretically, it is possible to derive higher order terms
for this system, however, due to the complexity of the integro-differential mo-
mentum equation we did not perform further iterations and instead employed a
numerical algorithm to measure the accuracy of the Picard iterate (as discussed
above) and to investigate certain parameter effects such as acoustic amplitude,
P,, and viscosity via the grouped parameter De. We demonstrated that an in-
crease in the acoustic pressure amplitude of the standing wave irradiating the
system results in a reduced steady state bubble volume but does not affect the
time taken to reach this steady state value. Increasing viscosity, on the other
hand, does not affect the final bubble volume but does result in a longer time

before the steady state is achieved. This effect was also described by Everitt et
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al. [26] who demonstrated two distinct phases of bubble growth in the case of
instantaneous diffusion; an initial rapid expansion in bubble volume followed by
a slower second phase. In Figure 7.16 (b) we observe the analytic inner solution
which describes the bubble growth at early time and it agrees qualitatively with
the results reported by Everitt et al. [26] for their numerical solution at early
time.

Both these factors, P, and De, could have an effect on a bubble size dis-
tribution within an expanding polymer foam and in the following chapter we
investigate the effect of the acoustic pressure amplitude of the irradiating stand-
ing wave used, by Torres-Sanchez et al. [93], to tailor the bubble size distribution
in a reacting polymer foam. Torres-Sanchez et al. reported a correlation between
the acoustic pressure amplitude at a given spatial point and the porosity value
at that point with porosity directly proportional to the pressure amplitude.
The porosity value is related to bubble volume and in the following chapter we
develop a mathematical model in order to track the bubble growth of a homoge-
neous distribution of bubbles under the influence of an acoustic standing wave,
in order to demonstrate mathematically the same relationship observed by [93]
between porosity /bubble size and acoustic pressure amplitude. First we will
look at the extra factors that need to be considered in the reacting system as
opposed to the non-reacting system and derive a scheme to describe the evolu-
tion of a single bubble in an expanding reacting polymer foam. We neglect the
effects of inertia and describe the evolving rheology of the fluid using a multi-
mode Oldroyd B system as first proposed by Everitt et al. [26]. Having thus
produced solutions for single bubbles evolving under the influence of a given
acoustic pressure amplitude value, P,, we then define a framework within which
to describe the bubble-bubble interaction of a homogeneous bubble distribution

across the sample.
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Modelling the effect of
ultrasound on the porosity
profile in a reacting polymer

In the previous chapter inertia was introduced into a model for the dynamics
of a single bubble in a non-reacting polymer foam. By assuming instantaneous
diffusion and large fluid volume X, an analytic inner solution was derived using
an asymptotic expansion. This chapter is motivated by the experimental work
carried out by Torres-Sanchez et al. [92,93], to produce the first model of their
observations, namely, that porosity varies in direct proportion to the acoustic
pressure magnitude of the ultrasound signal [93,94]. To this end, the second
reacting model proposed by Everitt et al. [26], which incorporates gas production
and evolving fluid rheology, was extended to include the effects of ultrasound.
Due to the extra level of complexity in this reacting system, and the particular
parameterisation of the model, inertia was assumed to be negligible. In order to
illustrate the effects that an ultrasound standing wave can have on the polymer
foam density, a simulation of the differential growth dynamics of a series of
adjacent bubbles was performed.

The original work in this chapter, which builds on the model derived by

Everitt et al. is contained in the following sections: the effect of the acoustic

151
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pressure amplitude term, P,, incorporated into the momentum equation (8.1)
is illustrated in Section 8.4. As opposed to Everitt et al. [26] we derive the
analytic solution for the extent of reaction, «, in Section 8.1. Although we
had the reacting model as published by Everitt et al. no numerical code was
available and therefore we developed one from scratch. The results from our
numerical scheme were validated by comparison with plots produced in [26]
to ensure that it was working correctly. The model was then applied to the
experiment described by Torres Sanchez et al. [93] and the results can be seen
in Section 8.2. Sections 8.5 and 8.6 outline the development of a new model to
track the bubble size distribution profile for a given number of post nucleated
bubbles sited at different spacing intervals across the sample, and two metrics
are proposed to quantify the heterogeneity in the resultant distribution. Some of
this derivation was based on data produced and published by Torres-Sanchez et
al. [92] and is presented in Section 8.5. An explanation of the derivation of the
elastic modulus term, G(¢), published in [26] is given in Section 8.1.2 in order
to aid understanding of the model.

The corresponding reacting model is developed, in this chapter, to describe
the experimental system of Torres-Sanchez [93]; however, due to its added layer
of complexity, the reacting model will be given a numerical treatment.

The reader is directed to Everitt et al. [26] for a full description and non-
dimensionalisation of the governing system of equations and boundary and initial
conditions. Here we simply restate the non-dimensionalised system proposed

by [26] and explain the origin and derivation of the additional terms due to the
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reaction.
4. T1 1 2 S Gle) [~ (A — Agy) 1
- |— — =(P,— P,)M + - dr — -
SU[u X—l—u] (Fs ) +37€;h Go /0 PN I (u)?
(8.1)
0A 44 €
LR A —— (A, — 1), 8.2
ot 3(x+u) Ca ( ) (8.2)
8 (Arr — Agg) - 2u €
6t — 3(1‘ + u) [(Arr AGG‘) 3Arr] Co (Arr A99)7 (83)
a - VPa P a
(p + (Pgo — Pa) g)a:l—kf@p—X (6(0,1) + (o — ap)) (8.4)
ng ng
0P _ 482q§ 1 da
Boundary conditions
¢ _ 1 pgo — Pa o
% - é—X pg, (Pg 1)7 xr = 07 (86)
82¢

Initial conditions

A0) =1, (Ar—Aw) () =0, u(0)=1,  P0)=1,  6(0)=0,
where the dependent variables are as follows: u(t) is the dimensionless bubble
volume, P,(t) is the dimensionless bubble gas pressure, A,.(z,t) and Agy(z,1)
are the diagonal components of the orientation tensor A(x,t) and ¢(x,t) is the
dimensionless gas concentration potential through in the liquid. The indepen-
dent variables are x,t. The parameters are as follows: X is the dimensionless
outer fluid volume, P, is the dimensionless acoustic pressure amplitude, M is
the ratio of the rate of bubble growth to the reaction rate and is defined in Table
8.1, GGy is the elastic modulus of the fully developed gel, v is the ratio of polymer
to solvent contributions to the steady shear viscosity and is defined in Table 8.1,
[ is the ratio of viscous force to surface tension defined in Table 8.1, G(e) is the
relaxation modulus for a molecule with relaxation rate € and ¢, is the reaction
rate constant. The remaining parameters are defined and quantified in Table

8.2.
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The non-dimensional grouped parameters differ slightly from those of the
non-reacting model, due to the inclusion of a reaction rate constant c,, and are
listed in Table 8.1. Individual parameters for the reacting system are described
and quantified in Table 8.2. The construction of the evolving relaxation modu-
lus term, G/(¢), is detailed in Section 8.1.2 and the effect of the reaction kinetics
on (8.4) and (8.5) is described in Section 8.1.1. The only change to the orienta-
tion tensor rate equations, (8.2) and (8.3), is the non-dimensionalisation of the
temporal variable by the reaction rate constant, c,, rather than the relaxation

time, 7, as in the non-reacting system.

M = (pg() - pa)/ljlca
v = Go/pca

1
['=udpcy/2S

2
N =9D7/ujc,

®=R,TH

Table 8.1: Dimensionless groups in the non-dimensional formulation for the
reacting model (8.1) - (8.5).

Comparing the reacting momentum equation (8.1), (with R = 0) to the
non-reacting case (7.48), we can see that the relaxation moduli for individual
modes coming into existence at time ¢ need to be calculated. This derivation is
expounded in Section 8.1.2 and elucidates work published by Everitt et al. [26].
The non reacting bubble gas pressure equation (7.49) only considers the gas
dissolved, initially, in the fluid volume. An extra term is therefore included in
the reacting case (8.4) to account for the additional bubble gas pressure due to
the generation of gas by the polymerisation reaction. Finally, the non reacting

diffusion equation (7.52) becomes a reaction diffusion equation in the reacting
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Parameter | Value Units Comments

Da 1 x 10° Nm 2 Pressure outside liquid layer

R, 8.31 Jmol™'K™! | Gas constant

T 323 K Temperature

H 10.5 x 107° | moIN~'m~" | Henry’s law constant

D 1.6 x 107 | m?s~! Diffusivity [15]'

p 1088 kgm * Liquid density?

v 2.2 Molecular weight distribution exponent

o 0.45 Largest molecular weight scaling exponent

dy 2.5 Fractal dimension of the equilibrium coil
size of a molecule [16,26,87]

My 0.32 kgmol ™! Molar mass of initial polymers

Do 2 x 10° Nm~2 Initial bubble gas pressure

L 1 x 10* Nsm—2 Solvent viscosity

o 1x 10718 m? Initial bubble volume

S 0.02 Nm ! Surface tension

19 10 Maximum gas concentration produced
by reaction/background gas concentration

Q) 0.1 Extent of reaction at nucleation

to 0 S Time of reaction at nucleation

Q. 0.91 Extent of reaction at the gel point

Cor 0.04 s ! Reaction rate calculated from data®

€r 750 s 1 Relaxation rate of initial polymers

X 50 Dimensionless fluid volume

Table 8.2: Parameters used to construct Figure 8.5. 'The parameter range for
the diffusion constant of CO, is based on the diffusion constant for CO, in water
(1.6x107"m?s™"). ?Determined experimentally by author of [93]. 3For details of
this calculation and a discussion on the reaction kinetics see Section 8.3. Unless
stated otherwise, parameters values have been taken from [26].
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case (8.5) and contains a source term in addition to the diffusion term.

8.1 Reacting model

There are two major differences which need to be accounted for in the reacting
model. Firstly, as well as the dissolved gas already present in the fluid at ¢t = 0,
the gas produced as a by-product of the polymerisation reaction must also be
accounted for in the governing equations. Secondly, the relaxation modulus,
G, is no longer a constant and the effective relaxation modulus, G(t), of the
polymer changes as the reaction proceeds. These effects are both mediated by
the reaction kinetics of the polymerisation. The polymer is normally formed
from two reacting species, but here the model is simplified by assuming a single
reacting species that forms self-similar molecules of increasing molecular weights
that ultimately form a gel [26].

The reaction is followed via the variable «, where a gives the ratio of the
number of chemical bonds to the total number of possible chemical bonds. That
is, v is a dimensionless quantity measuring the extent of reaction with 0 < o < 1.
As in [26] the reaction is assumed to follow second order kinetics with a reaction

rate, ¢, so that,

d
d—j = co(l - a)2. (8.8)
This admits the analytic solution,
(1 — o)

alt)=1- (8.9)

Calt —t)(1 — ) + 17
where a(ty) = ap is the extent of reaction at nucleation. The effect of the
reaction rate constant, c,, is illustrated in Figure 8.1 and demonstrates that as
¢, increases the reaction extent approaches (but never reaches) unity at a faster
rate. Scaling time, ¢, by 1/¢, we obtain the non-dimensional form

N _ (]_—O[O)
alt) =1 (1—ao)(f — o) + 1

, (8.10)
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where £ = t/c,. The extent of reaction, o, at time ¢ will dictate the additional
dissolved gas concentration potential and bubble gas pressure due to the reaction
as well as govern the molecular weight distribution, and hence the relaxation

modulus, within a cluster at any given time.

extent of reaction, o

0.1

0 500 1000 1500 2000 2500
time, s

Figure 8.1: Plots showing the extent of reaction, «, versus time for a second
order reaction, for a range of values of the reaction rate constant c,. The
reaction rate constants are as follows: ¢, = 0.01 (blue line), ¢, = 0.02 (red line),
¢o = 0.05 (green line), ¢, = 0.10 (cyan line), ¢, = 0.20 (magenta line). The
initial condition is given by a(0) = 0.1. As ¢, increases the extent of reaction,
«, approaches unity more quickly.

8.1.1 Gaseous phase

Due to the generation of gas as the reaction proceeds, the non reacting equations
(7.51) and (7.52) need to be amended to account for this source. The modified
gas diffusion equation is now a reaction diffusion equation with the total gas
produced by the reaction in the fluid volume X at time ¢ assumed to be pro-

portional to da/dt [26] so that at a given volume co-ordinate, x, the fraction of
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this contribution can be added to the diffusion term to give,

¢ _
ot

582¢ 1 do

As in the previous section, the boundary conditions at the inner (z = 0) and
outer (z = X) boundaries are derived via application of Henry’s law and the

zero flux condition, respectively.

8.1.2 Liquid/Gel phase

The second effect on the effective relaxation rate of the polymer occurs in the
liquid/gel phase. In the previous chapter the relaxation modulus of the polymer,
(G, was assumed to be constant throughout the bubble expansion phase but
with the reacting system the effective relaxation modulus is constantly changing
through the different stages of the reaction. In this section an expression for
G(t) is derived by considering the behaviour, at a molecular level, during the
different phases of the polymerisation reaction.

As the polymerisation reaction proceeds the molecules in the monomer solu-
tion start to react and bond to form molecules with a range of molecular weights.
Before the gel point (‘pre-gelation’) the cross-linking polymer is a distribution of
finite clusters called a ‘sol’. Once the gel point has been passed (‘post-gelation’)
it is called a ‘gel’ and is an infinitely large macromolecule which can only swell,
but not dissolve, in a solvent even though low molecular weight molecules (sol
fraction) are still extractable from the gel [104]. As a result, polymeric materials
relax with a broad spectrum of modes; longer modes belong to the motion of
entire molecules or large chain segments, while shorter modes characterise small
scale details of the molecules. Extra long relaxation modes herald the onset
of the liquid-solid transition, which in chemical polymerisation is known as the
‘gel point’. At this critical point in the reaction the material is neither a liquid

or a solid (see Figure 8.2). At and near the gel point, the molecular motions
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slow down while they correlate with motions of other molecules over longer and
longer distances; relaxation modes are now coupled over a wide range of time
scales. The result is a self-similar relaxation spectrum which is governed by a
power law relationship. This critical extent of reaction, «., is characterised by
the divergence of the molecular weight of the largest molecule to infinity and an
infinitely broad molecular weight distribution [104]. The combination of liquid
and solid behaviour at the gel point requires unusual regularity in the relax-
ation pattern. Furthermore, there is a critical region in the neighbourhood of
the gel point where all properties can be expanded in powers of the distance
from the gel point, | — a.|. Outside this critical region the behaviour loses its
simplicity. In order to derive an expression for the effective relaxation modulus,
G(t), it is necessary to consider the molecular structure of the molecule and its
dynamics in a fluid. Everitt et al. [26] developed a scheme to calculate the re-
laxation modulus of individual modes both pre and post gelation, and then, by
considering the distribution of molecular weights within evolving clusters, they
derived a function for the effective relaxation modulus, G(t), of the fluid. What
follows in the remainder of this section is a detailed explanation of Everitt et
al.’s derivation as well as further clarification.

When a polymer molecule is put into a homogeneous flow it assumes the
aspect of a statistically spherical coil with average size (radius of gyration) r.
Due to the self similar nature of the polymer molecule the radius of gyration is

related to the molecule mass via its fractal dimension d; [104]
roc m (8.12)

In Rouse dynamics [20] the friction on a molecular segment is proportional to the
number of monomers so that the diffusion coefficient is inversely proportional to

molecular weight. The longest relaxation time for a molecule of molecular mass
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Figure 8.2: Before the gel point, when the longest relaxation time 7., — oo and
€., — 0, the polymer is in a liquid state. At the gel point, ¢t = t., it is neither
liquid nor solid and for ¢ > t. it is a solid. Before the gel point the crosslinking
polymer is a distribution of finite clusters and we call it a ‘sol’ since it is still
soluble in good solvents; at this stage all the modes can relax. Once the gel
point has been passed it is called a gel; an infinitely large macromolecule which
can only swell but not dissolve in a solvent even though low molecular weight
molecules (sol fraction) are still extractable from the gel [104]. The infinite
cluster cannot dissolve although the finite clusters in the sol fraction can still
relax and account for the ‘relaxing sol modes within the gel’ in the diagram. As
t — oo (8.47) predicts that €., — €.
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m therefore scales as

1
m X ——. 8.13
n o (8.13)
The polymer molecules in the fluid at t = 0 are assumed to be self-similar chains

with molecular weight m, and slowest relaxation rate €,, so that

(mx> (Q/df-l-l)
€m = € | —
m

(8.14)
The relaxation rates for all the other possible modes for the molecule of mass
m, from k =1 to k = m/m,, are

2/d,
Ma ) , (8.15)

e=en(k) =€ <Ek

where 2/d, = 1+ 2/d;. For each molecular weight, m, there is an associated
Rouse spectrum of relaxation modes [20] approximated as a continuous spectrum
em(k), so that the relaxation modulus G,,(t) for molecules of mass m can be

obtained by integration over the modes k = 1 to k = m/m, via

_ puBT (™
=

Gm(1) e~ Mt (8.16)

where k£ is the mode number, p,, = mn(m)p, n(m) is the number density of
molecules of molecular weight m, R is the universal gas constant and 7" is the

temperature. Rearranging equation (8.15) for k& we have,

h= <i>dr/2, (8.17)

so that substituting for,

dy /2
()7 de
dk = ——2——— 8.18
in (8.16) and changing the integration limits from & to € we obtain,

d, [ ( e\ _.d
Gon(t) = mn(m)Go 2 / <i> e (8.19)
2 J.,, \€z €
where Gy = pRT /m,. Next, the function describing the distribution of molecu-

lar weights of the clusters, n(m), must be derived. At the gel point n(m) scales



CHAPTER 8 162

with the molecular weight of the cluster, so that a cluster or molecule of molec-
ular weight m will have a number density which is related by a power law to its

molecular weight. That is,

n(m) ~m™", at o = . (8.20)
In the vicinity of the gel point a cutoff function, f <mﬂh, %), is introduced,
m m
~m™ ,— 8.21
) o= (2, ) (821)

defining the two limits of the scaling regime, where m,; (molecular weight of the

largest finite polymer molecule) scales according to
Men ~ o — | 7. (8.22)

Away from these limits (i.e. m < mg, and m > m,) the cutoff function
f(0,0) = x, where x is a constant, and in this case n(m) follows the simple
power law,

n(m) =xm". (8.23)

Near the two ends of the scaling region the distribution n(m) is more complicated
and is controlled by the cutoff function f. However, the analytical form of
the cutoff function at these two ends is unknown [74]. Randrianantoandro et
al. [72] used Monte Carlo simulations to obtain a more accurate exponential
cutoff function, however, we retain the double step cutoff function proposed by
Rubenstein et al. [74] and used by Everitt et al. [26]. Throughout the reaction,

therefore,

f<m,%>:{0Xa My <M < Mepy (824)
Mep, M y, M > Mep, O M < My

The value of this constant can be determined from the following normalisation

condition

/n(m)mdm = sol fraction = { 1 for o < a,

1 — gel fraction for a > a,. (8.25)
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Up until the gelation point o = a

0 0<m< my,
n(m) =< xm™ my; <m < Mep,
0 m > Mgy,

where x is the constant that we are trying to determine. Integrating over all

mass from 0 to my,

mg Mech Moo
/n(m)mdm = / 0dm+/ Xm”mdm—l—/ 0dm,
0 mg Mech

m27ll Mch
= X3

S

and applying the normalisation condition (8.25) for @ < «a, we can obtain the

constant
(v =2)my*

)

By the same method we have for the post gelation period,

v—2
X My '
(v —2)my 2 [1 - (mCh> ] = 1 — gel fraction,

x

(8.27)

X:

My
Mch

v—2
where the remaining ( ) makes up the gel fraction [26], so that for a > «..

x=(v—2)m: (8.28)
Therefore, a full description of the cutoff function f (mih, M=) s given by
(0 0<m < my, o) < o < 1,
(v=2)ms 2

My <M < Mep, g << g,

my

-G (8.29)

mo My
/ <mch, E)

e

(v =2)m"2 my <m < me, a.<a<l,

0 Mep, <M< Mo, g < <1,
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and the number density for molecules of molecular weight m is

(0 0<m < my, ap < a <1,

v—2)m% =2 _
(v=2)ms m"Y my<m< mey, qp<a<ag,

n(m) =} ()] (8.30)

(v =2)mE2m™ my <m<meg, a<a<l,

L 0 Mep, <M< Meo, ap < < 1.

Prior to the gel point (ay < o < a) all molecular weights in the sol lie within
the range m, < m < m,, and all existing modes are relaxing modes with a
relaxation rate lying within e, < € < €.,. Their contribution to G(t) is given by
(8.19).

After the gel point, a > a., the gel is made up of a gel fraction and a sol
fraction (see Figure 8.2). The sol fraction contains only relaxing modes with
€z < € < € and their contribution to G is determined via (8.19). The gel

~?_ contains both relaxing (e, < € < €,) and

fraction, quantified by (m,/mes)”
non-relaxing modes (0 < € < €).

The functions Gpre and Gpos are assigned to define the evolution of the
relaxation modulus pre- and post-gelation respectively so that throughout the

polymerisation reaction the relaxation modulus can be described by

Gpre(t) g < a < a,

G(t) = { Gpost(t) e < a <1 (8:31)

First Gpre is derived by integration of (8.19) over all molecular weights from m,

d €x Meh € dT/2 6—6t
Gonet) = Go'5 / / mn(m) (-) dmde, (8.32)
€ch €

m €x €

to Meh,
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and bearing in mind the following relations derived from (8.14)
1 \"2 L \""2 [/ ¢\ -2 /2
G) =) )
< 1 )V—Q B <L>u—2 <6Lh>(u—2)dr/2,
M, my €x

€z

dr € (v=1)% (v=2)%
Grlt) = —2 [ (i> ‘<z§
1-— (fch ) =% €ch €x €x

(8.34)

Post gelation, when a > «., there are three contributions to the relaxation
modulus

Giposs (1) = Gla(1) + Gl (1) + G (1) (8.35)

where Gy, (t) is the contribution due to the relaxing modes in the sol fraction,

gei(t) is the contribution due to the relaxing modes in the gel fraction and

Gpa(t) is the contribution due to the non-relaxing gel mode. The limits of
GSOl Gg;el Gggl
€ €cn < € < €, €cn < € < €, 0<e<ey

m | my <m< Mep | Mep <M <00 | Mep, <M< 00

Table 8.3: Limits of integration for ¢ and m for a > a.

integration for ¢ and m are set out in Table 8.3 so that, integrating over the
relevant limits, we have, for a > a.,
dy

€x Mech € 2 e —et
/Eh /m mn(m) <;> . dmde (Gsol(t)>

c

. €\ 2 e—¢t .
+ Go;/E mChmn(m) (;) p; dmde ( gel(t))

c

h
d, [Cr [ e\ 21 o
+ Gy /0 mcﬁmn(m) (-) ~dmde ( gel(t)) (8.36)

€z

d,
Gpost(t) - GO?
d
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Each contribution is determined individually as follows: Gg(t) is obtained
via integration of the first term in (8.36) from m, to m., with n(m) = (v —

2)m“~2m~" from (8.30) and so

Mech €

Gsol(t) — GO_/ / < )
€ch €x

d, € 5 (=) €ch

- G [ ((a) -(

(t) and Go (¢

gel

d
d
) e*tf. (8.37)

(t) we substitute for the gel frac-

~
ol
PN
b
N
2
/N
Do
N—
wl§

To calculate the contributions G,

/:; mn(m)dm = (ﬂ”;;)y_Q , (8.38)

tion [26] given by

so that, in (8.36)

Gea(t) = Go

2
d, ez c 7 2) ‘ et
- GO—/ <€—h> <i> e, (8.39)
2 Je, \ € €x €
And similarly, from (8.33)
dy [ (my "7 [ €
G (¢ = @G or z _
gel( ) "2 /0 <mch> (6:!:)
d
d, [€h . T (v=2) de
- GO—/ <€—h> (—) = (8.40)
2 Jo €x €x €

The limits of integration are the same for Gyi(t) and Gy, () so that they can

de
!
€
dp
2

be combined to give the sum of the contributions of the relaxing modes in the

sol and gel fractions post gelation as

Giol(t) + G (t GO—/ ( ) )e—et%. (8.41)

Post gelation, the total contribution to the relaxation modulus due to the gel
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fraction is,

d (e 5 (1) de b €on 5 (=2) € E de
Grost(t) = Go— / <—> e " — +/ <L> (—) —
2 eon \ €z e Jo € € €
relaxingmodes non—rela;glg mode
(8.42)

or on integration of the non-relaxing mode,

d, [ e\ F¢ de €ch 5 =)
Gpost(t) - GOET/ <_> eid? + Go <L> . (843)
€ch

€x €x

Hence (8.31) can be written

G(t) = { Jor o) Gorel€)e™E, a<a,

- —et de 8.44
Ge+ fech(t) Ghost(€)€ td?, a >, (8.44)

where from (8.34) and (8.43),

Go (ﬁ) €
Gpre(e) = (t) %(VﬁZ) (;)

d d
d, Fv-1) on(t T w=1)
Gpost(e) = GOE <i> and G. =Gy <€ h( )> .

(8.46)

For the purposes of our model the continuous spectrum is discretised to obtain
a series of 4 single modes, as illustrated in Figure 8.3, with relaxation rate ¢; and
relaxation modulus G(¢;). The integrals in (8.44) are thus replaced by summa-
tions. Each mode is treated as an individual mode in a multimode Oldroyd B
fluid. Details of the logarithmic sampling scheme used to discretise the system
can be found in Section 8.2 and the G(¢;) can be determined for €., <e<e, from
(8.45) and (8.46) for pre-gelation and post-gelation, respectively.

At each time point the range of the integration/discretisation is from €., to

€; but since €., is not constant this interval is changing with time according to
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Figure 8.3: Schematic diagram illustrating the logarithmic sampling of relax-
ation modes ¢; for (a) both the pre-gelation and post-gelation stage and (b)
the post-gelation stage of the reaction. Modes above the €., curve are relaxing
modes; before the gel point they belong to the sol fraction and after the gel point
they belong to the gel fraction. Modes below the €., curve are non-relaxing gel
modes and contribute to the relaxation modulus of the gel.
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the reaction rate a. Near the gel point, percolation theory predicts the cluster
mass distribution scales with the distance from the gel point |a — o | according
to (8.22). Due to the fractal nature of the molecule it can be shown that the
relaxation rate €., ~ |a—a,|?/7% [16,87]. Therefore the characteristic relaxation

rate (i.e. the relaxation rate of the largest molecule at time ¢) can be stated as

ST aft) < ae
€cn(t) = 2 (8.47)
Bey | 20=2 7" (1) > a

Qe

where «(t) is defined by equation (8.9). The factor [ is included to allow for
the fact that e.,(¢) is not symmetric about the gel point. Everitt et al. [26]
derived a value for this parameter (8 = 0.0049) based on prefactors determined
in an earlier paper [72]. However, for the sake of simplicity they use 5 = ((1 —
o) /a.)?/?%  as will we, so that as t tends to infinity, €., tends to €,. Having
fully described the relaxation modulus, G(t), of the polymer over the duration
of the reaction, and discretised it into a series of i modes, we can now use this
information to augment the non-reacting system, ((7.48) - (7.50)), with R =0,
and derive results for the reacting model. A summary of the non-dimensionalised
reacting model is now given. The non-dimensional variables are as for the non-
reacting case and are detailed in Appendix C, with the exception of the temporal
variable, which in the reacting case is scaled by 1/c¢,. The variables are assigned
indices 7, j, n, to denote modal, spatial and temporal discretisation, respectively,
with¢ =1---I,7 =1---J and n = 1---N. The resultant non-dimensional
grouped parameters are tabulated in Table 8.1 and the individual parameter

values pertinent to the reacting model are listed in Table 8.2.

Z'Ln|:1 1 ]:(pn_p)M+27 GZI G(ei)Z(ATT_A%)Zj— 1

X DEXTE oY
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0A” 4
M= Al Al —1 8.49
ot 3(zj+un) "V ¢y ( i ) ’ (8:49)
0 (Arr - AHG‘)T'Z]- 2u™ €:
2 — Ay — Agg)? . —3A™ | — (A, — Agg)? .,
ot 3(w; +un) [( )iy ”“w] Ca ( )i
(8.50)
o T a
(p p-"o ) —1+ 5@5—){ (67(0,4) + (" — ) , (8.51)
g0
8@5? 4 8 1 da™
N 3 X — ;). 52
Boundary conditions
ad);l 1 ng Pa
—L P'—1 = .
5 fX o ( p ), x =0, (8.53)
0?7

Initial conditions

Ao=1 (Aw—Ap),=0, w'=1, P/=1, ¢/ =0

i ’

It is important to note that contrary to the non-reacting model in the pre-
vious chapter, inertia is assumed to be negligible here and diffusion is no longer
assumed to be instantaneous.

Before the gelation point, as the molecular weight distribution is contin-
ually broadening, new modes come into existence, i.e. are ‘switched on’, at
each time step (see Figure 8.3(a)). As each new mode is ‘switched on’ it has
initial orientation tensor A = I. However, at each time step n we determine
A" via (8.49) and (8.50). It can be seen from the right hand side of these

1 modes.

equations, that this A" is calculated from e modes rather than €'
For example, if we have three modes {¢j, €y, €3} existing at ¢(n) and an ex-
tra two modes are ‘switched on’ at #(n + 1), so that we now have five modes
{e1, €2, €3, €4, €5}, the equation will calculate A;’;tl ,Aﬁ;‘gl ,and A"Jrl correctly but
the terms Aﬁj;lj and A,’},fgl] will be calculated based on €4, €e; = 0 instead of the
actual values of these modes at ¢(n+1). If left untreated, this would mean that

the stress GA would not be conserved from one time step to the next and so
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in order to account for this discrepancy we ensure that stress is conserved by

adjusting A for each mode in the following way
(G +AG)A = GA + AGI, (8.55)

where A is the adjusted orientation tensor at time step n determined from the

output, A, of (8.49) and (8.50). This leads to the following step in the numerical

scheme,
Arm‘,j - Zz G?+1 ! (8'56)
. . n (Zz G?) (Arr - 12106‘):2].
(AM - A%)i’j = =G . (8.57)

where G; = G(¢;). The picture is slightly different post-gelation; now an infinite
cluster exists along with a distribution of finite clusters [16]. At the gel point
the material is neither liquid nor solid [104]; it has a viscosity which diverges
to infinity and an elastic modulus, G, equal to zero. Proceeding past the gel
point the elastic modulus begins to grow with time as the larger finite clusters
attach to the infinite cluster and become frozen (that is, no longer able to relax).
These modes, which we refer to as ‘switched off’, can be observed below the €.,
curve in Figure 8.3(b). Again, because A" is determined from € we need to

adjust this single gel mode according to

(Ggot + AGgar + AGor) A = GuaA + AGuul + AGoz A, (8.58)
that is,
Gn An Gn-i—l + Gn—i—l rr
A:-Lr. _ gel ( gel nffl) Z i , (859)
! Ggel
X o Gl (A Aae) + 3Gt ( Ay — Aaa)j
(AM - Aea)j - e . (8.60)

where Gog(€;) is the value of the stress modulus for modes €; < €., at a given

time point. The combined modulus, AGox = >, Go;, and stress, AGogAog =
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> GZ&TA" of these ‘switched off” modes is added to the single gel mode, at

rri?

each time step, after the gelation point.

8.2 Numerical scheme and results

A fourth order Runge-Kutta method was used to solve the stress equations
(8.49) and (8.50). The momentum equation, (8.48), was solved by a forward
Euler method with a time step less than the shortest relaxation time (1/e,).
The solutions to the gas diffusion equation (8.52) and gas pressure equation
(8.51) were obtained via the Crank-Nicolson method [84], choosing the spatial
discretisation so that At/(Az)? < 1/2, thus ensuring spurious oscillations do
not occur. The spatial integration in (8.48) was carried out using the composite
Simpson’s rule. Due to the discretisation of the relaxation modulus into individ-
ual modes, (8.49) and (8.50) are solved for each modal index 7 = 1,2,.., and
spatial index j = 1,2, .., J which are then summed over both the ¢ and j indices
in the momentum equation (8.48). The relaxation spectrum is discretised by
€ = eze "0~ where di = 0.2 and I = 100.

The non-dimensionalised system, (8.48) - (8.52), was solved numerically for
the parameterisation described in [26] and the numerical code was validated
against results published in the same paper. We then examined the output us-
ing the parameterisation described in Table 8.2 which pertains to conditions,
described in [92, 93], that we seek to model. For this analysis we continue to
use the non-dimensional system as we are only concerned with single bubbles.
In particular, we investigate the effect of the reaction rate constant, ¢, and the
pressure amplitude of the acoustic irradiation, on the non-dimensional bubble
volume, u, and the dimensionless bubble gas pressure, P, as illustrated in Fig-
ures 8.4 and 8.5. As ¢, increases the bubble volume reaches steady state more
quickly and the initial gradient is steeper as shown in Figure 8.4. The steady

state bubble volume is, itself, unaffected by the reaction rate constant. The
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bubble gas pressure peaks sooner for lower reaction rates (see Figure 8.5 (b))
but as ¢, increases the magnitude of this peak gas pressure is larger. The initial
bubble growth is controlled, via diffusion, by the concentration of gas already
dissolved in the fluid and the diffusion timescale is quantified by 9D /(uoX )%/
The second source for gas into the bubble is its production as a by product of
the reaction, at a rate given by c,. For larger ¢, values, therefore, we see a larger
peak in bubble gas pressure as shown in Figure 8.5 (b). In our parameterisation
(see Table 8.2) gas diffusion is relatively fast compared to the initial, viscosity
controlled bubble expansion rate, given by &p,an/u. For each value of ¢, in
Figure 8.5, therefore, the bubble gas pressure initially increases and only begins
to fall as the reaction rate decreases and gas concentration in the fluid begins
to fall. Comparing Figures 8.5 (a) and (b) we can see that as the bubble gas
pressure decays towards its steady state value, the initial steep bubble growth

gradient decreases to a lower value.

dimensionless bubble volume, u

0 200 400 600 800 1000
time, s

Figure 8.4: The effect of reaction rate constant coefficient, ¢,, on dimensionless
bubble growth rate. Blue line: ¢, = 0.01; Red line: ¢, = 0.02; Green line:
co = 0.05; Cyan line: ¢, = 0.08; Magenta line: ¢, = 0.10; Data obtained from
the numerical integration of (8.48) - (8.52) using parameter values in Table 8.2
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Figure 8.5: The effect of reaction rate constant coefficient, c,, on (a) dimension-
less bubble growth rate, and (b) dimensionless bubble gas pressure. Blue line:
co = 0.01; Red line: ¢, = 0.02; Green line: ¢, = 0.05; Cyan line: ¢, = 0.08;
Magenta line: ¢, = 0.10; Data obtained from the numerical integration of (8.48)
- (8.52) using parameter values in Table 8.2. Note that (a) is effectively a scaling

of Figure 8.4.
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When we go on to examine bubble distributions in Section 8.6 we need to re-
dimensionalise the temporal variable in order to compare neighbouring bubble

radii at consecutive time points.

8.3 Calculation of reaction rates from experi-
mental observations

Having developed a numerical code, to track the growth of a single bubble in
a polymerising polymer foam, we now turn to the experimental work described
in [93] and develop a model to measure a bubble size distribution within a
polymerising sample. First we detail the experimental set up used by Torres-
Sanchez et al. and then propose a model for this system.

A schematic of the experimental set up used in [93] is shown in Figure 8.6.
The reactants were placed in a cylindrical vessel in the middle of a water bath
lined with acoustic absorbers to minimise wave reflection. The water bath main-
tained a constant temperature in order to prevent overheating. The sample con-
tainer and transducer were aligned along the longitudinal axis of the bath and
the sonotrode tip was immersed 2cm below the free surface on the same plane
as that of the central plane of the container. The container was perpendicular
to the sonicating probe and had the opposite 180 degrees of its surface shielded
by absorbent material to minimise reflections. Thermocouples and conductivity
probes were held in the middle of the mixture to monitor the reaction. To start
the reaction the blowing agent was added to the mixture which was then irradi-
ated for 20 minutes with a 2 min on/1 min off cycle. When irradiation was com-
plete the curing foam was left in the bath for 30 minutes until rigid. Examining
the polymerisation reaction itself, the chemical reaction to form polyurethane

occurs between polyols and diisocyanate groups with distilled water employed
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Figure 8.6: Schematic of the experimental rig as published in [93] and reprinted
with the permission of the author.

as a blowing agent and can be written
polyol + diisocyanate — polyurethane + CO,.

In [93] the reaction is assumed to be of first order and can be described by the

reaction kinetics

d
d—(Z = co(l — @), (8.61)
so that
aD(t) =1— (1 —ap)e =l (8.62)

where ") () is the extent of the first order reaction. Everitt et al. [26] assume
second order reaction kinetics described by (8.8) and (8.9) where we assign a/(?
as the extent of the second order reaction. In [92] the time to gelation point,
t. = 253s, for samples irradiated at 20Hz, can be calculated as an average of
the three experimental plots obtained by irradiating the samples at different
acoustic pressure amplitudes (see Table 8.4 and Figure 8.7).
Assuming this value for ¢. and using the values in Table 8.2 for the parameters
(1) (2)

g, tp and o, we can calculate the approximate reaction rates, c,’ and cy’,

required for the first and second order reaction kinetics, respectively. For the
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Figure 8.7: Experimental plots of electrical resistivity lines obtained from foams
sonicated at 20kHz and different acoustic pressures: (a) 7 kPa, (b) 10 kPa, (c)
17 kPa, (d) 28 kPa. The start of the ‘gelation stage’ has been circled. Data
from these plots are used to construct Table 8.4. Reprinted with the permission

of the author [92].



CHAPTER 8 178

Reference [92] | Amplitude (kPa) | t.(s) | ca(s™)

Figure 5(a) 7 300 | 0.034
Figure 5(b) 10 260 | 0.040
Figure 5(c) 17 200 | 0.053

Table 8.4: Data values approximated from plots (a), (b) and (c) in Figure 5
of [92]. From these plots we can approximate the time of the gelation point,
t., in samples irradiated at 20Hz and acoustic pressure amplitudes of 7kPa,
10kPa and 17kPa, respectively. This gelation time is approximately identified,
in Figure 8.7, as the first small plateau in the plots of electrical resistance versus
time reproduced here. The ¢, values for this second order reaction are calculated
via (8.64).

first order case,

(to—tc 1-0[0

so that, with ol = 0.91, ap = 0.1, t, = 253s and #, = 10s (see Table 8.2),

1 1—afM
(O L S 1N de ). 8.63
0 jlog

co = 9 x 10 3s~ . For the second order reaction,

A2 — (0 — ) (8.64)
C (e —to)(I—ag)(l —ar)’ '

so that ¢, = 0.04s7'. The model that we employ for numerical simulations

assumes second order reaction kinetics and we will therefore use this latter value

of ¢, to model the experimental set up used in [93] even though they assumed

first order reaction kinetics with a measured reaction rate of ¢, =1 x 10735~

8.4 The direct effect of pressure amplitude on
bubble volume evolution

We first consider the experimental system in two dimensions only with the left
hand side lower corner of the container positioned at the origin and the sonotrode
in line with the vertical plane through the centre of the cylinder positioned at a
vertical distance h/2 from the origin, where h is the height of the sample cylinder
(see Figure 8.8).
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Figure 8.8: Schematic illustrating a 2D vertical segment, in the © — y plane,
of the 3D sample container with height, A and width, L. The reacting sample
within the container is irradiated by an acoustic signal from the sonotrode tip
which is positioned a sufficient distance from the sample container so that plane
wave irradiation may be assumed. The 1D horizontal line ‘OA’ is situated at
the sample half height, h/2. In order to simplify the mathematical model it is
assumed that the sample height remains constant throughout the reaction; this
is not the case in the experimental setup.



CHAPTER 8 180

There are a number of assumptions that we deploy to simplify the situtation.
At the point of acoustic irradiation we assume that the polymerising sample is a
homogeneous dispersion of post nucleated bubbles of a given initial radius. We
also assume that the height of the sample is h and remains so for the duration of
the sample irradiation which is continuous. This does not reflect the experiment
described above as the upper surface rises as the reaction progresses. We assume
that the sonotrode tip is so small, and the wavelength and distance from the
sample such, that the irradiating wave may be assumed to be planar throughout
the sample. Choosing the line OA (see Figure 8.8) at y = h/2 we can therefore
reduce the pressure distribution to one dimension only.

Acoustic pressure, P,, is the local pressure deviation from the ambient at-
mospheric pressure, p,, caused by an acoustic wave. The instantaneous sound
pressure, P,(x,t) is the deviation from the local ambient pressure due to the
insonifying wave at a given point in space and time. In order to determine the
effective acoustic pressure at a spatial point over a given time interval we can
calculate the root mean square (RMS) value. For a periodic sinusoidal waveform
given by,

P(z,t) = p1 + po cos(27 ft) sin(kx),

where f is the frequency and k the wavenumber, the RMS pressure is,
Prms(x) =D + (p2/\/§) Sln(kx)

The waveform set up in [93] is a standing wave resulting from the superposi-
tion of an incident and reflected wave of equal acoustic pressure amplitude and

frequency and described by,
Py(z,t) = p1 + 2ps cos(2m ft) sin(kx),
with an RMS spatial distribution,

Prs(z) =p1 + \/§p2 sin(kzx).
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The total pressure, P;qa1, is the sum of the ambient and effective acoustic pres-

sure so that in the case of the standing wave,
P,(z) = py + V2pysin(kx), (8.65)
the total pressure is given by,
Proga () = po + p1 + V2p2 sin (k). (8.66)

The in situ pressure field, P, proposed by [93] was quoted in decibels, dB, and
had approximate minimum and maximum levels of 143dB and 151dB, respec-

tively. The conversion equation
P =2 x 10(P/20-5), (8.67)

was applied to obtain the corresponding minimum and maximum values of P in
Pascals, which were then used to derive a mathematical function to model the
insonifying signal. This resulted in the following parameter values for the signal
modelled by (8.65): p; = 500Pa, p, = 200/v/2Pa, k = /L, where L = 50 is the
sample width in mm. The schematic in Figure 8.9 demonstrates the effective
pressure field in Pascals (green line) and shows bubbles nucleated homogeneously
across the one dimensional x domain. The corresponding field in decibels is also

plotted (blue line) and is calculated via

_ P

The in situ pressure amplitude values proposed by Torres-Sanchez et al. [93]
are attenuated by the water bath and polymerising sample. Thus, although the
instrumental value for the pressure amplitude of the standing wave is of the
order 10*Pa, the actual amplitude in situ is only of order 10?Pa. Substituting
for the values of p; and p,, described above, in the acoustic pressure amplitude

term, p,, gives non-dimensional minimum and maximum P, values of 0.0014



CHAPTER 8 182

700 151

650} {150
600} 1149

550 1148

OO0OO0OO0O0O0O0 OO0OO0OO0O0O0O0

500 | 1147

450 1146

400 1145

Applied acoustic pressure amplitude, Pa
Applied acoustic pressure amplitude, dB

3501 1144

300
0

143
50

Space, mm

Figure 8.9: Schematic illustrating the idealised sinusoidal waveform used to
model the effective acoustic pressure distribution in the sample described in [93].
The waveform is described by (8.65) with p; = 500 Pa, p, = 200/v/2 Pa, k = /L
where L = 50 mm. The values for p; and ps were derived via consideration
of the minimum and maximum pressure values in dB proposed in [93]. The
green line gives the pressure in Pascals and the blue line gives the pressure in
decibels (dB) using the conversion equation (8.68). The circles illustrate a series
of homogeneously spaced nucleated bubbles across the one dimensional sample
domain.
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and 0.0050, respectively. These P, values were entered in (8.1) and plots of the
evolving dimensionless bubble volume, u, are shown in Figure 8.10. This figure
illustrates that, at this level of pressure amplitude, the effect on the expanding
bubble volume is negligible. Therefore, because of the attenuation of the pressure
amplitude we look instead at the indirect effect of the pressure amplitude on the

polymerisation reaction rate constant, c,, in the next section.

8.5 The effect of pressure amplitude on reac-
tion rate

Motivated by Torres-Sanchez et al. [92] we decided to investigate the effect
of pressure amplitude on reaction rate.  In [26] the reaction rate is a non-
varying constant and only a single bubble is considered. We propose that due to
the local pressure amplitude distribution we can describe a local reaction rate
distribution across the sample so that for a series of bubbles each one evolves
under the influence of its local reaction rate. In order to examine this effect
in isolation we have set the acoustic pressure amplitude, P,, in the momentum
equation (8.1) to zero for the remainder of this Chapter. Before looking at the
bubble size distribution across such a sample we first examine the sensitivity of
the model to the reaction rate constant, ¢,. The evolution of a single bubble
under a number of different reaction rates of the order used in [92] is illustrated
in Figure 8.5 (a); the parameter values are described in Table 8.2. We can see
that the effect of different ¢, is significant, given that the plot in Figure 8.5 is
non-dimensional, and that it is worth investigating this further and extending
the result from the single bubble case to the multibubble case and including
bubble-bubble interaction.

First we derived an empirical relationship between the pressure amplitude
applied to the sample and the resultant reaction rate constant, ¢,. This was

done by examining the experimental data used to construct Figure 8.11 in [92].
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Figure 8.10: Plots demonstrating the effect of the in situ acoustic pressure
amplitude levels on the bubble volume evolution. In both cases P, = 0 (blue
line), P, = 0.0014 (red line) and P, = 0.0050 (green line) are compared. The
lower plot is a zoomed in version of that on the left to quantify the magnitude
of the difference in each case.
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Figure 8.11: Slope constant ‘a’ value for different samples irradiated at 20 kHz
as published in [92]. Data from this plot were extracted to construct Table 8.5.
Reprinted with the permission of the author [92].
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Figure 8.12: (a) Electrical resistance data collected by DAQ; (b) The corre-
sponding logarithmic phase of the resistivity with different slope constant ‘a’.
Reprinted with the permission of the author [92].
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The data values are shown in Table 8.5. The parameter a is the coefficient
of the curve y = alog(z) + b fitted to the resistivity-pressure amplitude data
(see Figure 8.7) and gives a measure of the reaction rate constant as illustrated
by Figure 8.12 (b) from the same paper. Taking the second order reaction rate,
co = 0.04, as determined in Section 8.3, and correlating it directly with the value
of a = 68 in the absence of an acoustic signal (see Figure 8.11) we determined
the constant of proportionality k¥ = 1700. In other words, ¢, = a/k; this can

then be used to calculate the remaining c, values tabulated in Table 8.5. We

a cay10725~1 | Pressure amplitude, P,
68 4.0 0
75 4.4 6750
86 5.1 8250
132 7.8 9750
129 7.6 11250
100 5.9 15000
121 7.1 17250
132 7.8 19500
196 11.5 20000
200 11.8 21000
196 11.5 22500
204 12.0 25000
268 15.8 27750
343 20.2 28500

Table 8.5: Data table showing the a values and acoustic pressure amplitude
values (in Pa) extracted from Figure 8.11 [92] and the corresponding ¢, value
calculated using the direct correlation given by ¢, = /1700, with units of
107257!. The plot, in Figure 8.13, of reaction rate constant versus pressure
amplitude was constructed using this data.

then fitted a linear function to the experimentally observed relationship between

pressure amplitude and reaction rate (see Figure 8.13) to give
Ca=3.571 x 107" +5.513 x 107°P,. (8.69)

A theoretical irradiating acoustic signal, (8.70), was proposed to approximate
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Figure 8.13: Plot of reaction rate constant, ¢, (s™') versus pressure amplitude
(Pa) from data quoted in Table 8.5. The pressure amplitude values were ex-
tracted from Figure 8.11 [92] and the reaction rate constant values determined
by the direct correlation given by ¢, = a/1700 as described in the text.
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that described in [93]. The signal is a sine wave with one and a half wavelengths
across the sample width and a maximum amplitude value at half the sample
width. The maximum pressure amplitude is 30kPa and the minimum is 5kPa.
This reflects approximately the instrumental range of values used to irradiate

the sample. The irradiating signal is defined by
. [ 3nx
P, = 17500 — 12500 sin <T> , (8.70)

where I = 50mm is the width of the sample and z, the spatial co-ordinate
within the sample, is also measured in the same units. We can then substitute
for this form of P, into (8.69) to plot the resultant reaction rate distribution

across the sample.

8.6 Simulation of the foam porosity profile

Having tailored a pre-existing model to track the evolution of a single bubble
in an expanding reacting polymer foam we now examine how a one dimensional
series of bubbles, spread homogeneously across the sample domain, evolve under
the influence of an ultrasound standing wave (expressed as a local reaction rate)
and the influence of their nearest neighbours. These post nucleation bubbles
were initially placed across the sample domain with a number of different spac-
ings to analyse the effect of the density of bubbles on the heterogeneity of the
final sample. It is important to note that since we are now comparing results for
different reaction rate constants we must re-dimensionalise the temporal vari-
able. The remaining results in this section, therefore, refer to the dimensional
temporal variable. Since the reaction rate distribution across the sample is sym-
metric we can reduce the computational cost by reducing the domain to half
the sample width, that is L/2. A discrete set of ¢, values (see Figure 8.14) was
obtained for each 0.25mm spatial point and the bubbles were initially spaced at

0.25mm intervals. Having determined the local reaction rates for each bubble
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Figure 8.14: Plot showing the discretised form of the continuous spatial distri-
bution curve for local reaction rate constant, c,, with discrete spatial interval
d0x = 0.25mm. Due to the symmetry of the sample domain we are only interested
in the spatial region up to L/2, where in this case L = 50mm.
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we evolve them independently (they are initially unhindered by neighbouring
bubbles) so that we have a vector of radii for each time point during the expan-
sion. We further assume that the bubbles do not translate during the reaction,
that is the bubble centre positions are fixed. The parameterisation for this anal-
ysis is described in Table 8.6. For each bubble in the domain we then append
its vector to produce a matrix, r(¢,, m), of radii for m = 1,--- | N bubbles at
t, = 1,--- T time points. At each time point we need to assess whether or
not a given bubble is touching either of its neighbours and to this end at each
timepoint ¢,, M(t,:) = R(t,1: N —1)— L(t,2 : N) is calculated, where R(t, N)
and L(¢, N) give the right and left hand bubble positions, respectively. If any of
the entries in the vector M are not strictly positive then the bubbles associated
with those entries are touching and so their growth is stopped. The schematic

in Figure 8.15 demonstrates this. At the end of the temporal loop therefore we

Parameter | Value Units Comments

D 1 10~2m?2s™! | essentially instantaneous diffusion
Do 10 10°Nm 2 | pyo = pa(1 + Eayg) [26]

U 9 10~ ?m?

S 1 10~°Nm™" | negligible surface tension

¢ 90

X 500

Ca 0.028 — 0.166 | s~ calculated from data in [92]*

Table 8.6: Parameter values used to construct Figures 8.16 to 8.20. The remain-
ing parameter values, not already listed in this table are as detailed in Table
8.2. * For details of this calculation and a discussion on the reaction kinetics
see Section 8.3.

will have a matrix of right and left position vectors and hence the final radius of
each of the NV bubbles at ¢t = T. We use these values to construct the schematics
in Figures 8.16 - 8.18 and the plots in Figures 8.19 - 8.22. Table 8.6 shows the

maximum and minimum bubble radii for each initial bubble spacing value dz.

The schematics in Figures 8.16 - 8.18 were constructed by taking the final
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Figure 8.15: Schematic illustrating the simple rule for bubble-bubble interaction.
At time point ¢t — 1 the position and radii of the neighbouring bubbles are such
that they are not touching and bubble evolution is continued until the next time
step when the bubble position and radii are checked again. In this case, at
the subsequent time point ¢ the bubble evolution means that the corresponding
entry in the vector M (see text) is not strictly positive and therefore the growth
of these bubbles in the mathematical code is stopped and their positions frozen
for the duration of the time loop.
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Figure 8.16: Illustrative plots showing the final bubble size distribution, across
the half sample domain, given the local reaction rate constant profile prescribed
in Figure 8.14, for (a) 50, (b) 25, (¢) 17 and (d) 13 bubbles. The bubbles
are positioned homogeneously across the domain at 0.5, 1.0, 1.5 and 2.0 mm
intervals, respectively, and each bubble is allowed to evolve, given the local
reaction rate constant value prescribed at its central position, until the reaction
ceases or it touchs a neighbouring bubble. x is the horizontal co-ordinate, in the
sample, in millimetres and the parameter values used are listed in Table 8.6.
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Figure 8.17: Illustrative plots showing the final bubble size distribution, across
the half sample domain, given the local reaction rate constant profile prescribed
in Figure 8.14, for (a) 11, (b) 9, (¢) 8 and (d) 7 bubbles. The bubbles are posi-
tioned homogeneously across the domain at 2.5, 3.0, 3.5 and 4.0 mm intervals,
respectively, and each bubble is allowed to evolve, given the local reaction rate
constant value prescribed at its central position, until the reaction ceases or it
touchs a neighbouring bubble. x is the horizontal co-ordinate, in the sample, in
millimetres and the parameter values used are listed in Table 8.6.
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Figure 8.18: Tllustrative plots showing the final bubble size distribution, across
the half sample domain, given the local reaction rate constant profile prescribed
in Figure 8.14, for (a) 6, (b) 5, (¢) 4 and (d) 3 bubbles. The bubbles are posi-
tioned homogeneously across the domain at 5.0, 6.0, 7.0 and 9.0 mm intervals,
respectively, and each bubble is allowed to evolve, given the local reaction rate
constant value prescribed at its central position, until the reaction ceases or it
touchs a neighbouring bubble. x is the horizontal co-ordinate, in the sample, in
millimetres and the parameter values used are listed in Table 8.6.
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Figure 8.19: Plots illustrating the relative size distribution (RSD) calculated
by dividing each bubble radius by the average bubble radius for a given bubble
separation. (a), (b) and (c) relate to Figures 8.16, 8.17 and 8.18, respectively,
with line colour order of red, green, blue and cyan ranging from the smallest dx
value to the largest in each case. A quick visual inspection indicates that as we
increase bubble separation the bubble size heterogeneity increases. We measure
this heterogeneity in Figure 8.20 using two different metrics ©; and ©, given by
(8.71) and (8.72), respectively.
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dx, mm | N | min radius, mm | max radius, mm | % difference
0.5 50 0.2453 0.2456 0.12
1.0 25 0.4893 0.4992 2.02
1.5 17 0.7345 0.7489 1.96
2.0 13 0.9819 1.0026 2.11
2.5 11 1.2310 1.2552 1.97
3.0 9 1.4801 1.5119 2.15
3.5 8 1.7251 1.7608 2.07
4.0 7 1.9737 2.0222 2.46
5.0 6 2.4110 2.5887 7.37
6.0 5 2.7529 3.2455 17.89
7.0 4 3.1599 3.8321 21.27
9.0 3 4.3118 4.6881 8.73

Table 8.7: The final maximum and minimum bubble radii, in an N bubble dis-
tribution across a sample domain of length L/2 (where L = 50mm) with bubble
spacing given by dx. The percentage difference is calculated with reference to
the minimum bubble radius. The maximum percentage difference occurs with
N = 4 bubbles and a bubble spacing of Tmm. Parameter values used to con-
struct this table are detailed in Tables 8.2 and 8.6.

bubble radius for each ith bubble in the distribution and plotting a circle of
the given radius centred on the bubble position z;. These figures cover a range
in 0x of 0.5mm to 9.0mm. The larger the number of bubbles, the smaller the
steady state bubble volume due to interaction with neighbouring bubbles before
the natural steady state volume is achieved. In Figure 8.16 (a) and (b), in
particular, it is hard to discern any heterogeneity in bubble size with the naked
eye. As the number of bubbles decreases below 17 we can observe heterogeneity
in the bubble size distributions due to the spatial reaction rate profile across
the sample. This is easiest to observe in Figure 8.18 as the reduced number of
bubbles means larger final volumes are achieved before bubble-bubble interaction
halts further growth.

To aid the illustration of the heterogeneity through each of the distributions
shown in Figures 8.16 - 8.18 we plot the relative size distribution (RSD) with

respect to the average bubble radius in each case. The results are displayed in
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Figure 8.19 (a) - (¢) and appear to show that heterogeneity of bubble size distri-
bution through the sample increases as dx increases. In the following section we
derive two metrics to quantify this observed heterogeneity and look for a bubble

spacing value, dx, to maximise it.

8.6.1 Definition and analysis of bubble size heterogeneity

We looked at two different metrics to capture the final bubble size heterogene-
ity across the sample domain. The first definition takes into consideration the
difference in bubble size for adjacent bubbles through the sample and is defined
thus
N N
O = (Z [r(T.5) = r(T.5 - 1>|> / (ZT(T,J')/N> . (8.71)
=L 7=1
The second definition considers only the difference between the largest and small-

est bubbles in the sample so that,

0, = (maxjeq,n{r(T,j)} - minje(l,N){T(T,j)})/ (Z r(T,j)/N) . (8.72)

j=1
These two values were calculated for each initial bubble spacing and the results
are plotted in Figure 8.20. We can see that qualitatively both definitions show
the same trends for heterogeneity versus bubble spacing. There appears to be
an optimal bubble spacing that results in increased heterogeneity in final bubble
radii through the sample and this occurs at a bubble spacing of approximately
6-7Tmm.

Figure 8.21 shows the results of the same analysis as described here and in
Section 8.6 with the exception that the value of the fluid volume surrounding
the bubble is X = 150 as opposed to X = 500. In this case the value for the
bubble spacing interval, dx, decreases so that the maximum heterogeneity in
bubble size distribution is achieved when 0z = 5mm, as opposed to 7mm in the

case when X = 500.
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Figure 8.20: Plot illustrating the results for bubble size heterogeneity versus the
bubble spacing, dz (mm), through the sample, given by the metrics ©; (8.71)
and O, (8.72). Curves for O, (red curve) and O, (blue curve) agree qualitatively
if not quantitatively. They both suggest that the initial bubble spacing interval
required to acheive the maximum bubble size heterogeneity across the sample is
approximately dx = 6. The metric ©; also suggests a local maxima at dr = 2
but this is not observed using ©5. The parameter values used to construct this
figure are listed in Table 8.6 with X = 500.
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Figure 8.21: Plot illustrating the results for bubble size heterogeneity versus the
bubble spacing, dz (mm), through the sample, given by the metrics ©; (8.71)
and O, (8.72). Curves for O, (red curve) and O, (blue curve) agree qualitatively
if not quantitatively. They both suggest that the initial bubble spacing interval
required to acheive the maximum bubble size heterogeneity across the sample is
approximately dx = 6. The metric ©; also suggests a local maxima at dr = 2
but this is not observed using ©5. The parameter values used to construct this
figure are listed in Table 8.6 with the exception that X = 150.
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Figure 8.22: Plot illustrating the final bubble radius distribution for 50 bubbles
in the sample domain. The profile of this size distribution is qualitatively similar
to the reaction rate distribution profile in Figure 8.14, however, as demonstrated
by the vertical axis, the magnitude of this effect is small.
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Having isolated the effect of pressure amplitude on reaction rate and exam-
ined the resultant effects in the model, we have shown that the pressure ampli-
tude of the irradiating acoustic standing wave, can effect bubble size distribution
through its effects on reaction rate. The reaction rate distribution across the
sample does lead to spatial heterogeneity in final bubble sizes. However, as Fig-
ure 8.19 demonstrates, the bubble size does not necessarily correlate with the
local pressure amplitude profile as illustrated in Figure 8.14. An exception to
this is the case for z = 0.5mm and we can observe by comparing Figure 8.14
to 8.22 that bubble volume is indeed proportional to the pressure amplitude al-
though the magnitude of this effect is small. This is the same qualitative effect
reported by Torres-Sanchez et al. in [93]. The magnitude of the experimentally
observed effect of acoustic pressure amplitude on bubble size reported in their
paper is more significant than that produced by our model and therefore another
mechanism, or perhaps several mechanisms, may be responsible and these will
be discussed in the next section.

For a given steady state bubble volume, our model can predict a homogeneous
bubble spacing value, dx, that produces maximum heterogeneity through the
sample. Figure 8.21 demonstrates analysis of heterogeneity under the same
conditions as in Figure 8.20 with the exception of a lower dimensionless fluid
volume, X = 150. This results in a reduced steady state volume for each bubble
in the scheme and, as Figure 8.21 illustrates, the spacing interval required to
optimise heterogeneity in bubble size distribution is reduced.

Mathematically we can choose any bubble spacing we like but experimentally
this is not possible and initial bubble spacing will depend on many factors gov-
erning nucleation. Furthermore, bubble spacing will also change as new bubbles

nucleate at subsequent timepoints.
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8.7 Discussion

In this chapter we extended a model, introduced by Everitt et al. [26], for the
growth of a single bubble within a reacting polymer foam, to include the effects
of an irradiating acoustic standing wave. First we developed a numerical code to
solve the coupled system of five PDEs, and validated our results by comparing
with those of Everitt et al. in the case of no insonifying acoustic signal. Satisfied
that the numerical code was producing the right results we then looked to apply
this model to the experiment described by Torres-Sanchez et al. [93]. Before
considering a multibubble distribution we first examined the effect of this new
parameterisation, and in particular, the role played by the pressure amplitude
of the acoustic standing wave. Due to the attenuating effect of the sample,
on the acoustic standing wave, this pressure amplitude was shown to have no
direct effect on the bubble volume (see Figure 8.10). However, the value of the
reaction rate constant, ¢, was demonstrated to have a much more significant
effect as illustrated in Figure 8.1. In another related paper by Torres-Sanchez
et al. [92] the authors point to a relationship between the reaction rate of the
polymerisation and the pressure amplitude of the acoustic standing wave. We
extracted, from their data, a relationship between the local acoustic pressure
amplitude and the localised reaction rate constant c,, and used this to propose
a spatial reaction rate profile across the sample, that correlates with the pressure
amplitude profile.

Having developed a numerical code to track the evolution of an individual
bubble insonified at a given acoustic pressure amplitude we then considered a
one-dimensional distribution of nucleated bubbles ‘seeded’” homogeneously across
the sample. An empirical set of rules was defined in order to describe bubble-
bubble interaction and, for a given steady state bubble volume, the effect of

different bubble spacings across the sample was examined. Two heterogene-
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ity metrics were defined and both agreed qualitatively, predicting an optimum
bubble spacing interval to acheive maximum bubble heterogeneity.

Although the reaction rate distribution did increase the heterogeneity of
the final bubble size distribution, it did not consistently predict the correlation
between bubble size and pressure amplitude value measured across the sample as
was so clearly illustrated in the experimental work carried out by Torres-Sanchez
et al. [93]. They demonstrate, experimentally, that for realistic in situ acoustic
pressure amplitudes across the sample domain the porosity value correlates with
the pressure amplitude. RMS pressure amplitudes ranged from 0 to 600 Pa and
the dimensionless porosity values (as defined in [94]) were in the range 0 to
160 where porosity increases with porosity value. We have shown, theoretically,
that in cases of high bubble number density it is possible to illustrate a bubble
size distribution profile that correlates with the acoustic pressure amplitude
distribution across the sample (compare Figures 8.9 and 8.22), as demonstrated
by [93], although the magnitude of this correlation is smaller. We have further
demonstrated that the initial bubble spacing can affect the final bubble size
distribution and heterogeneity of the sample. Optimum initial bubble spacing
values can be determined, for a given parameter set, that will result in the
maximum heterogeneity for the final bubble size distribution. This effect of
initial bubble spacing could be considered in the future modelling of nucleation

effects on the final bubble size distribution through the sample.



Chapter 9

Conclusions and Further Work

9.1 Conclusions

The main motivation for this section of the thesis was a problem proposed, at
the MMSG 2010 [1], by Dr Carmen Torres-Sanchez [93] regarding the tailoring
of the porosity gradients within a cured sample of a polymerising foam under the
influence of an acoustic standing wave. This is a very complex process involving
many interacting factors and effects, for example, rectified diffusion, Ostwald
ripening and nucleation, all of which are affected by the variations in pressure
amplitude that comes with an acoustic standing wave. Due to the complexity
of the problem we decided to investigate the direct effect of the applied acoustic
pressure amplitude on the system, in the first instance, and then latterly its effect
on the bubble size distribution via the reaction rate constant, c,. We added an
acoustic amplitude to the right hand side of the momentum equation published
in [26] to examine the direct effect of the standing wave. However, although the
insonifying acoustic signal has amplitude of order 10*Pa, the attenuating nature
of the water bath surrounding the sample and the sample medium itself, mean
that the actual amplitude in situ is only of order 10?Pa and has no observable
effect on the bubble size. We can therefore conclude that this is not a mechanism
responsible for the bubble size heterogeneity observed in [93].

An indirect effect of the acoustic pressure amplitude is demonstrated through
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the reaction rate constant, ¢,. This link has been proposed in previous publica-
tions [69,92] and we decided to examine whether or not it could be responsible
for the porosity profiles reported by [93]. We parameterised the system for the
conditions reported in [92,93] and defined a spatial reaction rate profile due
to the acoustic standing wave. Individual bubbles were allowed to grow un-
der the influence of their local reaction rate constant and a simple scheme for
bubble-bubble interaction was proposed so that final bubble distributions could
be obtained. We were thus able to demonstrate that the acoustic pressure am-
plitude effect on reaction rate was responsible for introducing heterogeneity in
the bubble size distribution across the sample domain. In certain cases this
bubble size distribution correlated with the pressure amplitude profile across
the sample, that is, larger bubble sizes occurred at spatial points with a larger
local pressure amplitude.

The bubble spacing required to acheive the maximum heterogeneity in the
bubble size distribution was shown to depend, through the non-dimensional fluid
volume, X, on the steady state volume of the individual bubbles. That is, the
smaller the unimpeded steady state volume of individual bubbles, the smaller
the spacing interval required to acheive the maximum heterogeneity.

Although we have demonstrated that the acoustic standing wave used to
irradiate the polymerising sample in [93] is indeed responsible for a certain degree
of bubble size heterogeneity across the domain, the bubble size distribution does
not always correlate with the applied pressure amplitude profile as reported
in [93]. Furthermore, the magnitude of the heterogeneity observed in [93] was
much more significant than that demonstrated here. This is not unexpected
when we consider the number of interacting effects involved in this process and
the fact that we have examined, in isolation, only one such mechanism. Avenues
of further investigation are suggested in the next section.

In Chapter 7 we produced a model to track the growth of a bubble in a
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free rising, non-reacting polymer foam incorporating the effects of inertia. We
partially decoupled the system by assuming instantaneous diffusion and were
able to derive, first and leading order, inner and outer asymptotic solutions,
respectively. The dimensionless fluid volume, X, played an important role in the
form and derivation of the leading and first order inner solutions, with improved
solution accuracy for large X. The leading order bubble volume was exponential
with respect to the inner temporal variable. By a variable transformation, we
were able to reduce the first order system to the Euler differential equation and
solve for the particular branch defined by our parameterisation. Two separate
regimes were considered; the first described the case when the fluid volume was
much larger than the bubble volume and the second pertained to volumes of the
same order.

The outer asymptotic solution essentially relates to the scheme with zero
inertia. We were able to reduce the coupled five equation PDE system to a
single integro-differential equation to describe bubble volume evolution for the
outer asymptotic problem. This essentially describes the case of negligible iner-
tia which we investigated further in Chapter 8. This was achieved by assuming
instantaneous diffusion to decouple the gas concentration potential, as well as de-
riving an explicit form for the integrand, (A,, — Agg)o/(x+up). We attempted to
derive an analytic approximation using the Picard iterative scheme but because
of the complexity of the equation, only the first iterate was derived. A numerical
code was developed instead and this provided a must faster tool for analysing the
bubble evolution than the full numerical analysis performed as in [26]. However,
it must be remembered that many assumptions and approximations have been
made along the way so that fewer mechanisms and parameters are considered.

Given the parameterisation of the system, in the absence of an insonifying
acoustic standing wave, inertia would in fact be negligible. However, if we were

to add an acoustic forcing term to the right hand side of the momentum equation
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to model the effects of the irradiating standing wave, then in a scaled temporal
variable, the effects of inertia would be significant due to the phenomenon of
rectified diffusion caused by the oscillatory motion of the bubble. Although, in
this instance, we only look at the time averaged RMS signal for the acoustic
wave and derive inner asymptotic solutions to leading and first order, we have
produced a scheme that can be employed in the future to examine the effects of

the acoustic pressure amplitude on rectified diffusion.

9.2 Further Work

Suggestions for further work include, but are not limited to, the following areas.
The basic rules for bubble-bubble interaction described in Chapter 8 could be
improved in various ways, possibly coupling bubbles through the stress evolution
in the surrounding fluid. In our basic scheme the bubbles interact as if no fluid
was present and the only variable considered is the bubble radius.

The nucleation process, which continues for some time after the polymeri-
sation reaction has commenced, has not been considered here. It would be
possible to model the effect of this aspect of nucleation using our scheme, by
assuming a function to describe nucleation so that different bubbles nucleate
at different times during the reaction. These results could be compared with
the same nucleation function in the absence of an acoustic pressure amplitude.
This additional mechanism would be likely to introduce further heterogeneity
through the sample. It is important to note that this version of the nucleation
effect does not consider the direct effect of the acoustic pressure amplitude on
the actual nucleation rate of bubbles.

The phenomenon of Bjerknes forces is another pressure sensitive mechanism
that organises bubbles according to size; bubbles less than the resonance size
migrate to pressure antinodes and bubbles larger than the resonance size to pres-

sure nodes. The Bjerknes force is directly proportional to the applied acoustic
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pressure amplitude as well as depending on bubble size. Rather than governing
bubble growth it acts to translate bubbles and as such may be partially respon-
sible for the heterogeneity in bubble size distributions observed experimentally.

The work done in Chapter 7, to include the inertia term could be extended
to include an investigation into the effect of the acoustic standing wave on the
pumping effects of the acoustic signal on mass transfer into the bubble by rec-
tified diffusion.

The inner asymptotic solutions, in Chapter 7, were derived to leading and
first order. The construction of higher order asymptotic solutions would enable
the effects of a greater number of parameters to be investigated. Due to the large
number of parameters involved in the reacting scheme, a sensitivity analysis
would prove useful in identifying which key factors are driving the process, and
thus help to inform the direction of any future analysis.

The ability to tailor the porosity profiles within polymerising materials will
lead to significant improvements in a range of manufactured products such as
artificial bone. Given the complexity of the physics involved it is essential that
mathematical modelling is used to design the manufacturing process. This the-
sis is the first step in this direction and it is hoped that it will inspire other
researchers to take up the baton and develop the model to fully explain this

fascinating problem.



Appendix A

Numerical scheme for the
spatially heterogeneous
host-parasite model

Spatial discretisation
The spatial domain [0, L] is divided into N intervals of length dx and we use the
standard notation P;(t) as an approximation of P(jdz,t) for j = 0,1,---, N.

H;(t) is defined in a similar manner.

Treatment of the hare equation
The PDE is a standard reaction-diffusion equation and is discretised using a

second order accurate central difference scheme,

OH Hjp — 2H; + Hj_ aH’
—— =Dy~ J LI W(H A P)+ ———
ot d da2 P+ Cp

j:()a]-a"'aN'

In order to satisfy the prescribed no flux boundary conditions and to maintain

second order accuracy, we set the following values H | = H; and Hy 1 = Hy ;.

Treatment of the parasite equation
The parasite equation has a reaction term and an advection term since the par-
asite lives in the host and travels with the host velocity. A first order upwind

semidiscretisation could be used that would maintain positivity but could intro-
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duce a large amount of numerical diffusion, unless the spatial discretisation is
sufficiently fine. On the other hand, high order spatial discretisations often lead
to oscillations in solutions which may break the positivity requirement when the
solution values are small. Instead we use flux limiters which are designed to limit
the spatial derivatives to realistic, or physically realisable values. They tend to
be favoured when sharp wave fronts are present. The flux limiter scheme for our
problem is constructed as follows. We denote the velocity of the advective flux
at grid point j by

Dy 0H,
= ——— j=0,1,---,N.
w] H 837 ) ] ) )
We define the derivative of H at grid point j using central differences as standard

and let f; denote the semidiscretised advective flux at grid point j, i.e.
fJ:wJ-P]7 .]:07]-77N

We then introduce the semidiscretised general flux function Fj,/, which is a
function of the fluxes f surrounding the grid point j. Using a central difference
approximation for the spatial derivative, the advection term can be approxi-

mated by the expression

1

%(Fjﬂ/z—qu/z), Jj=0,1,---,N.

The semidiscretisation of the parasite equation then yields

oP 1 ANH 2bP
a:%(Fj-l—l/Q_Fj—l/Q)"‘P 1+7H—(,u+b+a)—?

We set F_i/2 = Fny1/2 = 0 to ensure that the no-flux boundary conditions are
satisfied. It only remains to choose the flux functions Fj, /. To this end, we
define the function

i fite

Ty = ) jZO,l,"',N,
T fi—fite
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which encapsulates the ratio of the gradients of fluxes about grid point j. Note
that the quantity € is a small number that ensures that r; is well defined even
when the fluxes surrounding grid point j are identical. We set ¢ = 1073,
Consistent with the boundary conditions, we set f_; = fyi1 = 0. Finally
we introduce a limiter function ¢(r) and define the general flux function for a

non-negative velocity as

1 .
FJ+1/2:fJ+§¢(TJ)(fJ_f9—1)7 .]:07]-7 7N_]-

However, for a negative velocity w; < 0 we reflect all the indices about j + 1/2

to obtain

1 1 .
Fiii0= fj1+ 505 <r—> (fi41 — fi+2) s j=0,1,---,N—-1

j+1

We choose a symmetric, van Leer flux limiter function, namely

_rA4r|
1+ |r|

o(r)

Y

which tends to 2 as » — oo and has the following symmetry property

w4 (1),

which ensures that the limiting action operates in the same way for forward and
backward gradients. Note that ¢(r) = 0 would be equivalent to a first-order

upwind discretisation.

Numerical integration of the ODE system
The spatial discretisation described above reduces the PDE system to a system

of ODEs which we solve using a fourth order Runge-Kutta method.
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Rescaling of Mountain hare,

Trichostrongylus-retortaeformas

system

The continuous growth equations for a host population of density, H interacting

with a parasite population, P in a spatially heterogeneous system are stated

below. The original reaction-kinetic system is augmented by a spatial term

related to the rate of hare flux Jy. The population densities are therefore

dependent on a one-dimensional spatial component, x as well as time, ¢ and

evolve according to

om o 0Ty
o - PTG T e
oP T %aP] & (PJy
Z _p _ e 2
di Moy m  mratd) H} 8x< i

(B.1)

) . (B.2)

where z,teR, H = H(x,t), P = P(x,t), Jy = —Dy0H/0z and Dy is the diffu-

sion coefficient for the hare population.

We introduce the dimensionless constants h and p and substituting into (B.1)

for H = hH and P = pP gives

%(hH) = —apP — bhH +

a(hI:[)2 . hajH
SpP + hH ox’

81:{ — — h2CLI_{2 ajH
h— = —apP — bhH = — —h )
- ot op + opP + hH ox
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Dividing through by h and rearranging we have

oOH P - _ aH? 0Jy
I Pop ey S T
ot~ n° TPy A o
Assigning @ = 2o and 6 = 26 we can rewrite (B.5) as
8FI — — GI:IQ 8JH
— =—aP —-b0H + ——= — .
o~ " TSP+ A on

We non-dimensionalise (B.2) in the same way,

(pP) =

n—a—>b—

ot Ho + hH hH |  or

0, - l NhH 2ap]5] 0 <ph]5jH
p
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(B.5)

(B.6)

— ) . (BT

Dividing through by p and setting h = Hy and p = P, we obtain

opP [ )\H_ Py 1_3] 9] <

Py

= ) . (B.S)

Defining the parameter ¢ = %‘; the above equation can be rewritten as

orP  _[ \H P o (PJy
_— = P —_— — — Qe — - 2_T - A 7 B
ot [1+H p—ae—b O‘H] oz < H ) (B-9)
and our rescaled system can now be presented
8]:[ — — GI:IZ ajH
— = —aP—-bH+ =—=——= — B.10
ot “ TPy E o (B.10)
oP _ [ \H P o (Ply
— = P|l———p—ac—b—-2a=|—— | — B.11
ot [1+H p—ae—b O‘H] oz ( H > (B.11)

where the non-dimensional parameters are given by

a =290 =0.0209, 6=77=02618 e="5=382x10"

andP0:1><108.
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Non dimensionalisation of
non-reacting system of equations

1
All lengths are scaled with uj and volumes with wuy, we scale time with the

relaxation time of the polymer 7, p, according to

pg — Pa
p, == C.1
7 ng — Da ( )

and ¢ with pyouo/R,T, that is, the initial number of moles of gas. The fol-
lowing substitutions are made in the governing equations, boundary and initial

conditions:
t=rTt, U:UOﬁ: by = (pgo _pa)Pg + Da,
€T = upr, U= —u, Pu = (ng - pa)PU7
X =upX, ii="%ii, and ¢ =229,

Starting with the momentum equation (7.32)

4 . <1 1 >+ U 1 1 0?2 1 1
— u _ R _— _— _—
3” v X+u p 3\ us (X—l—u)% 18 \ u3s (X—l—u)%

2 X (4, — A 25
0
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[u0u< 1 1 ) ugfﬂ( 1 1 )]

Pl =3 T, "1 & T T, 1

3 \uiar wi(X +a)s) T8 ga% ud (X + )3
X

— Agg) R 25

= (ng _pa)P (ng pa)P + G/ md(’dgl‘) —

Lo
ugus

Dividing by p/7 and collecting powers of ug together gives

4. (1 1 L1 1 y 1 1
QU = T TS +RVU| ==~ | 7 =
3\t (X +a) us (X +a)s 6 us (X +a)s

— De(P, - P,) + gdﬂ (Arr = Agp)

where the following non dimensional grouped parameters are defined by,

R:@ Dez(pgo—pa)T Gr F_u_ug

3ut’ L ’ 7:7’ - 257’

Substitution for the non-dimensional variables into (7.37) and (7.39) gives,

8147;7‘ = - 4“?” < Arr - l("41"1" - 1)7
TOt 3Tuo (T + ) T
0A 44
L= A — (A — 1), C.4
ot 3(2 + ) ( ) (C-4)
and,
8(Arr - Agg) QUU& 1
————F = ——— (A — App) — 34, ] — = (A, — App),
0t 3Tuo (L + u) i o) ] 7'( )
O(Apr — Agy) pli
——— = — (A — Apg) — 34| — (Arr — Apg), C.5
57 3G 1) [( 00) J—( 00) (C.5)

respectively. We can re-write (7.47) as

Pgolo

Pgliolh = Pgotiy + R T¢(0 t) BT
g

Dividing through by wu and rearranging gives,

~

(Pa + (Pgo = Pa) Py)pgott = (1 + (0, 1)). (C.6)
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For the diffusion equation (7.45) we have

Pgolo 3¢Z . ~\\ 4 PgoUo 3203
— = 9D
R,TT ot ! (UO(:E * U))3 R,T U%a:i‘Z’
O 4 0% 9Dr
il N(& 4+ a)3 ProL where N = u§ : (C.7)

Finally we need to non-dimensionalise the boundary condition on ¢ at the bubble

surface, that is,

09

it - _ H

oz, (Pg — Pgo) H,

so that,
° () — (o + (200 — 1) Py) — piol
a(U[)l') RQT (uod)=0
9 _ plew—p)p _y) (C.8)
Oz =0 Pgo
where ® = R,/TH.

Parameter Value Units
Pressure outside the fluid layer, p, | 1 10°Nm ™~
Initial bubble gas pressure, pgo 10 10°Nm 2
Elastic modulus, G 1-10 10°Nm™
Solvent viscosity, j 1,6 10°Nsm 2
Polymer relaxation time, 7 1 S
Initial bubble volume, wug 1 10 ¥m3
Surface tension, S 0—-5 10 'Nm™!
Gas constant, R, 8.31 Jmol 'K~!
Temperature, T' 370 K
Henry’s law constant, H 10.5 10 °moIN 'm!
Diffusivity, D 0.1 —100 | 107"2m2s~!
Fluid density, p 1200 kgm *

Table C.1: Parameters required for bubble expansion in the non-reacting system
(7.48) - (7.52).
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