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AbstratThe mountain hare population urrently appears to be under threat in Sotland.The natural population yles exhibited by this speies are thought to be, atleast in part, due to its infestation by a parasiti worm. We seek to gain anunderstanding of these population dynamis through a mathematial model ofthis system and so determine whether low population levels observed in the �eldare a natural trough assoiated with this yling, or whether they point to amore serious deline in overall population densities.A generi result, that an be used to predit the presene of periodi travel-ling waves (PTWs) in a spatially heterogeneous system, is reported. This resultis appliable to any two population host-parasite system with a superritialHopf bifuration in the reation kinetis. Appliation of this result to two ex-amples of well studied host-parasite systems, namely the mountain hare and thered grouse systems, predits and illustrates, for the �rst time, the existene ofPTWs as solutions for these reation advetion di�usion shemes.One method for designing bone sa�olds involves the aousti irradiation ofa reating polymer foam resulting in a �nal sample with graded porosity. Thework in this thesis represents the �rst attempt to derive a mathematial model,for this empirial method, in order to inform the experimental design and tailorthe porosity pro�le of samples. We isolate and study the diret e�et of theaousti pressure amplitude as well as its indiret e�et on the reation rate.We demonstrate that the diret e�et of the aousti pressure amplitudeis negligible due to a high degree of attenuation by the sample. The indirete�et, on reation rate, is signi�ant and the standing wave is shown to produea heterogeneous bubble size distribution. Several suggestions for further workare made.
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Chapter 1Introdution: Host-ParasiteSystems
1.1 MotivationInterest in the mountain hare, Lepus timidus, has resurfaed in the media [21℄, inreent months, with parliamentary questions being lodged at the Sottish par-liament regarding its onservation status, abundane and distribution in Sot-land [73℄. Despite the fat that it has been listed in Annex V of the EC HabitatsDiretive (1992) for many years [97℄, there are urrently renewed onerns aboutthe pereived deline in the population and more spei�ally about the e�et ofulls (both legal and illegal) on the mountain hare population [21℄. There havebeen reports of loalised delines and possible extintions but given the lak ofup to date information on abundane and distribution in the �eld, oupled withthe fat that the mountain hare populations exhibit natural ylial utuationsin density, it is hard to asertain whether observed low levels and possible lo-alised extintions are the result of environmental fators or are simply due tothe inherent peaks and troughs in population levels assoiated with suh ylipopulation dynamis [43℄. It is hoped that a greater understanding of the pop-ulation dynamis of the mountain hare speies along with a knowledge of theausative fators for population utuations will help to inform the management1



Chapter 1 2of the population whih is thought to be urrently under threat. In this the-sis we build on work produed by the former Maauley Institute, Aberdeen inonjuntion with the University of Glasgow [97℄. This work was both empirialand theoretial and looked, in partiular, at the spei� e�et assoiated withthe mountain hare's intestinal parasite, Trihostrongylus retortaeformis. In thisstudy, reation kineti models were developed with an aim to understanding thepopulation utuations observed in the data. We seek to examine the e�etof a spatial extension of this kineti model as well as probing it analytiallyto derive some generi results that an be applied to a spei� sub-ategory ofhost-parasite systems.1.2 BakgroundMany natural speies exhibit some osillatory behaviour in population densitywith yles that are haraterised by their amplitude and period [83℄. Exam-ples inlude Snowshoe hares [46℄, �eld voles [48℄, grouse [37, 98℄ and mountainhares [36, 62, 63, 65, 97℄. These population yles an either be the result ofspatially homogeneous osillations predited by the assoiated reation kinetimodel or the observed spatiotemporal yles are formed by periodi travellingwaves (PTWs) [95℄, whih osillate in spae and time. There are many possiblereasons why temporal or spatial yling ould our and they vary for individualsystems. In some yli systems, a number of fators need to interplay to produeosillations [46℄. Example mehanisms an inlude habitat heterogeneity, sea-sonal foring, interation with other populations, limati foring and landsapeobstales [83℄. In other systems, interspeies interations are thought to resultin yling [39, 48℄. This interation may take di�erent forms depending on thespeies involved. For example, predator-prey interations have been extensivelystudied sine the work of Lotka and Volterra in the 1920s [6℄, and predationhas been shown to be an established ause of yling in the prey speies [80℄.



Chapter 1 3Another example is the host-parasite interation, regarded by Anderson andMay as a `partiular manifestation of the general predator-prey interation' [6℄.In [6℄, the authors show theoretially that where the parasite is loosely aggre-gated in the host population, and where its e�et on survival is small omparedto its e�et on host feundity, the parasite population will tend to destabilisethe system resulting in population yling. Indeed, �eld studies of red grouseand their intestinal nematode exhibit spatiotemporal osillations in host-parasitedensities [68,102℄ and further investigation has also shown that it is the parasitethat is responsible for this yling e�et [39℄. With other host parasite stud-ies, however, observed spatiotemporal osillations in the �eld data have not yetbeen explained [96℄ and many other fators outwith parasite e�ets, for exam-ple predation [46℄, food limitation [42℄, ulling [35℄, territoriality [36℄ have beenproposed as possible drivers of these yles, but as yet nothing has been provedempirially or theoretially.An important aim of population dynamis is to develop a better understand-ing of the ause and e�et of suh yli behaviour so that speies that are underthreat, or those of eonomi importane, may be better managed. For example,a system that we will study in the main body of this thesis is the mountain hareLepus timidus in Sotland. This is the only lagomorph speies native to the UKwith 99% of the population residing in Sotland [57℄. Lagomorphs are membersof the taxonomi order Lagomorpha and inlude hares and rabbits. The moun-tain hare population is believed to be under threat from a number auses and assuh has been listed in Annex V of the EC Habitats Diretive (1992) [97℄ requir-ing the UK to ensure its onservation and sustainable management. In 2007,due to a pereived deline in mountain hare numbers the Sottish Government'swildlife onservation ageny Sottish Natural Heritage (SNH) made the moun-tain hare a UK biodiversity ation plan speies [97℄. Field data measurementsshow that this population exhibits yli dynamis [63℄ with 7-10 year utu-



Chapter 1 4ations in abundane [36℄. Its assoiated intestinal nematode Trihostrongylusretortaeformis has been proposed as a possible driver of these yles [63, 97℄.Based on these propositions, Townsend et al. [97℄ derived a non-spatial reationkineti model (ordinary di�erential equations, ODEs) to desribe these ylesbut onluded that it did not ompletely desribe the e�ets of parasites on themountain hare demography. Spei�ally, the parameter set required to generateosillations with the properties observed in the �eld data resulted in unrealis-tially high parasite burdens. The authors [97℄ proposed a number of possiblereasons for this. First, they highlighted the fat that several of the plausibleparameter ranges were based on small sample sizes or indiret data soures andwere therefore possibly inaurate. It was further suggested that the e�ets ofthe parasites on the system may extend beyond mortality and feundity and thatother parasiti e�ets may need to be inluded in the reation kineti model.Finally, they proposed a seondary role for parasites in the reation kinetis andin a later paper [96℄ the same authors go on to suggest population dispersal, har-vesting and population ontrol as areas of ongoing investigation. In this thesis,we fous on the area of population dispersal and employ a spatially extendedmodel for the mountain hare - parasite system.Another speies whih has been modelled using similar non-spatial ODEs(e.g. see [18℄) is the red grouse, Lagopus lagopus sotius. As the favouritegame bird of Britain [98℄, there is an abundane of long-term data desribinggrouse population dynamis. In ommon with the mountain hare, it is subjet toparasitism by the intestinal nematode Trihostrongylus tenuis, whih has provento be one of the two main mehanisms proposed for red grouse yles [98℄.By modelling both these host-parasite systems in spae and time we hope togain some insight into the population yling observed in the �eld. We will alsoderive a result for the spatial host-parasite system, analagous to a result pre-sented by Koppell and Howard [45℄ for predator-prey reation-di�usion systems.



Chapter 1 5We then show how this generi result may be used to predit the existene ofPTW solutions in general two population yli host-parasite reation-advetion-di�usion systems whih ontain a superritial Hopf bifuration in the reationkinetis.1.3 OverviewThis part of the thesis may be loosely divided into four setions. Chapter 2 intro-dues the neessary theory required to takle the problem of yli host-parasitesystems, both temporal and spatiotemporal. Chapter 3 desribes the motivationand bakground for studying population dynamis of the mountain hare and itsintestinal parasite Trihostrongylus retortaeformis, looking at both the spatiallyhomogeneous system as well as a model inorporating spatial heterogeneity. InChapter 4, a new result is derived for a general two population host-parasitereation-advetion-di�usion model ontaining a superritial Hopf bifurationin the reation kinetis. This generi result is then applied to two host-parasitestudies of partiular interest, namely the mountain hare-Trihostrongylus retor-taeformis system and the red grouse-Trihostrongylus tenuis system. Chapter 5proposes areas of further investigation and some onlusions are drawn. Speif-ially the hapters may be summarised as follows:Chapter 2 presents an overview of the mathematial theory that underpinsthe study of periodi travelling waves in a spatiotemporal domain, as well asthe reation kinetis of generi two population predator - prey systems. Theanalysis of Koppell and Howard [45℄ on general two population predator-preyreation di�usion models haraterised by a superritial Hopf bifuration in thereation kinetis is eluidated. The form and properties of `� � !' systems arestudied. These are a simple lass of reation di�usion equations proposed by [45℄and are a very useful tool in the analysis of yli reation-di�usion systems.



Chapter 1 6Chapter 3 desribes the partiular host-parasite model for the mountainhare-Trihostrongylus retortaeformis system proposed by Townsend et al. [95,97℄. First, the temporal model is investigated and the global and loalisedbehaviour of the system is analysed before illustrating numerially the possibilityof PTW solutions for the assoiated reation-advetion-di�usion system.Chapter 4 derives a new result prediting the presene of PTW solutions,given the existene of limit yle solutions in the reation kinetis, for a er-tain lass of reation-advetion-di�usion equations. This result is tested on twopublished reation kineti models desribing di�erent host-parasite systems.Chapter 5 summarises the results for Chapters 3 and 4 and draws someonlusions before outlining possible areas of advane in the study of this lassof host-parasite systems. It also proposes a linear stability analysis study on thePTW solutions derived in previous Chapters.1.4 Key ContributionsThe prinipal original ontributions of the author for this setion of the thesismay be summarised:� In Setion 3.8 we present the analysis of the spatially augmented mountainhare-Trihostrongylus retortaeformis model originally proposed by [95℄ andthe result that spatial extension does not extend the limit yle behaviourbeyond that observed in the temporal model.� The spatial extension of the red grouse-parasite model published in [18℄,using Fikian di�usion to model host dispersal, and an advetion term todesribe parasite dispersal is proposed in Setion 4.4.2.� The illustration of PTWs, in the spatiotemporal domain, as possible so-lutions for the spatially heterogeneous red grouse-Trihostrongylus tenuismodel proposed in [18℄.



Chapter 1 7� In Chapter 4, the proposition of a generi result that an be applied to thespatially heterogeneous model of any two population, yli, host-parasitereation-advetion-di�usion system ontaining a superritial Hopf bifur-ation in the reation kinetis. This generi result an also predit theminimun speed of the PTW solution; the partiular wave speed is di-tated by initial and boundary onditions.



Chapter 2Mathematial Bakground
2.1 Periodi travelling wavesThe term `periodi travelling wave' (PTW) refers to a partiular type of solu-tion, in whih the model variables vary periodially in spae, as well as in time.They are a fundamental solution form for reation-di�usion systems with a sta-ble limit yle in the kinetis [45℄ and have been studied extensively, typially,in yli two population predator-prey systems [78{83, 85, 86℄. In their review,Sherratt and Smith [83℄ tabulate details of a number of �eld studies reportingperiodi travelling waves in populations undergoing multi-year yles. Aordingto Sherratt and Smith [83℄, the signi�ane of a PTW is the orrelated spatialand temporal density variations that it implies. The synhrony in populationdynamis assoiated with PTWs has been attributed to a number of di�erentfators, for example, population dispersal, large sale perturbations in the envi-ronment or multi-year osillations in some important environmental fator, forexample limati foring or sunspot ativity [83℄. The two main mehanismsknown to generate suh PTWs in predator-prey systems are boundary e�etsand the invasion of a predator population into a prey population [83℄.One of the aims of this work is to study theoretially the existene of PTWsolutions in yli, two population host-parasite systems. Not only are therefundamental di�erenes in the reation kinetis of host-parasite systems (as op-8



Chapter 2 9posed to the predator-prey models) but the spatial augmentation of the temporalmodel will now involve advetion as well as di�usion sine, in many ases, theparasites travel on, or in, their assoiated host population for all or part oftheir life yle. Before examining two population host-parasite systems, we �rstsummarise the PTW theory assoiated with predator-prey systems.2.2 Predator-prey systemsThere are numerous examples of predator-prey interations in nature and, inthese ases, the predator, in e�et, kills and eats the prey. Lotka-Volterra [9℄developed the �rst mathematial model to study these predator-prey systemsand demonstrated that simple predator-prey reations an lead to osillatorybehaviour of the populations. Sine then, predator-prey interations have beenwidely studied and spatially heterogeneous systems are often modelled usingreation-di�usion equations with onstant di�usion oeÆients to model popula-tion dispersal [60℄. An example of a predator-prey reation kineti (non-spatial)system is [83℄, dudt = bene�t from predationz }| {�uv(� + v) � deathz}|{�u ; (2.1)dvdt = v(1� v)| {z }intrinsi birth and death� uv(�+ v)| {z }predation : (2.2)where u and v represent the predator and prey population densities respetively,� is the predator death rate, � is the prey to predator onversion rate and � isthe half-saturation onstant in the rate of prey onsumption term by predators.Note that the bene�t from predation is taken to be proportional to the predationterm in the prey equation and this is thought to be a key driver for temporalosillations in population densities in this system [60℄. The reation kinetisof these type of systems have been studied extensively and it is often shown



Chapter 2 10that predators introdued into a prey population an indue a stable limit yleabout an unstable o-existene steady state. In 1973, Koppell and Howard pro-dued a seminal paper on two population yli systems of this form [45℄. Theyonsidered a spatiotemporal version where population dispersal is modelled byFikian di�usion, for both predator and prey, with predator and prey popula-tions having assoiated onstant di�usion oeÆients Du and Dv, respetively.They showed that all osillatory reation-di�usion equations, of the form�u�t = f(u; v) +Du�2u�x2 ; (2.3)�v�t = g(u; v) +Dv �2v�x2 ; (2.4)where f(u; v) and g(u; v) desribe the reation kinetis of the non-spatial system,have a one parameter family of periodi travelling wave solutions; here the word`osillatory' indiates that the reation di�usion kinetis have a stable limityle [101℄. They proved that there is a family of small amplitude waves providedthat the dispersal oeÆients for the two populations are suÆiently lose. Todo this, they showed that the travelling wave variable ODE systemdudz = f(u; v) + Dus2 d2udz2 ; (2.5)dvdz = g(u; v) + Dvs2 d2vdz2 ; (2.6)where z = t � x=s, has a Hopf bifuration at some positive value of the wavespeed, sHopf , and then used the Hopf theorem to imply a one-parameter familyof periodi solutions as s inreases above this minimum value, sHopf . This limityle solution in z orresponds to the birth of PTW solutions in the assoiatedPDE system in the (x; t) plane. These solutions are `one parameter' in thesense that if we selet a parameter set produing a travelling wave solutionharaterised by a speed, s, then, for this parameter set, the values of amplitude,wavelength and period for the PTW are �xed; similarly if we hoose an amplitudethen the speed, period and wavelength of the resulting PTW are determined [83℄.



Chapter 2 11The wave amplitude an range between zero to that of the amplitude of thespatially homogeneous osillations of the reation kinetis. Similarly, the wavespeed an range from some minimum speed given by sHopf , to in�nity, whihorresponds to the spatially homogeneous osillations of the reation kinetis.The period ranges from a minimum related to the minimum wave speed to amaximum value equal to the period of the limit yle solution in the reationkinetis.In addition, Koppell and Howard [45℄ introdued and developed the analysisof the simple lass of reation-di�usion equations known as `��!' systems; thesehave sine been used extensively in prototype studies of yli reation-di�usionsystems [60℄ and for this reason we will summarise the form and properties ofthese systems in the next setion.2.3 �� ! systemsWe will start with the full ��! reation-di�usion system, introduing some basiassumptions, and then initially onsider the spatially homogeneous limiting asebefore going on to predit the presene and form of periodi plane waves assolutions to the spatial system.A ��! system is a simple type of reation-di�usion system taking the form�u�t = �2u�x2 + �(r)u� !(r)v; (2.7)�v�t = �2v�x2 + !(r)u+ �(r)v; (2.8)where r = (u2 + v2)1=2, u and v are real-valued funtions of spae x and timet, and �(0) and !(0) are both stritly positive. An important property of thissystem is that any isolated zero of �(:) orresponds to a limit yle in the reationkinetis. In theory, any two population yli system near to a superritialHopf bifuration an, by redution to normal form, be desribed by a � � !system [83℄. The reation kinetis of the original system will determine the form



Chapter 2 12of �(r) and !(r). The beauty of the ��! system is that analytial expressions,in terms of system parameters, may be derived for the PTW solution form andits stability. For general reation-di�usion systems, however, unless the reationkinetis of the system are very simple, the redution to normal form to obtain thefuntions �(r) and !(r) an be umbersome and time onsuming and, beauseof this, for the two systems onsidered in the main body of the thesis, we willobtain the properties and stability of the PTW solutions using the numerialbifuration analysis pakage, AUTO [19℄. The �� ! system illustrated in (2.7)and (2.8) is a generi system for PTWs for equations that have a superritialHopf bifuration in the reation kinetis. We will now introdue the analysis forthis generi system before investigating our own spei� host-parasite system.2.3.1 Spatially homogeneous �� ! systemsIn the spatially homogeneous ase, the temporal �� ! system is simply statedas [60℄ dudt = �(r)u� !(r)v; (2.9)dvdt = !(r)u+ �(r)v; (2.10)r = pu2 + v2; (2.11)where r is a funtion of t only. In order to ful�l the onditions neessary for asuperritial Hopf bifuration we need �(r0) = 0 and �0(r0) < 0: that is, �(r) ispositive for 0 � r � r0 and negative for r > r0, and !(r) is a positive funtionfor all r [60℄. This simple system has an exat limit yle solution whih anbe derived expliitly. In the spatially homogeneous system, the two variables uand v are funtions of t only and their form depends on the system parameters,and r0, whih turns out to be the amplitude for the limit yle solution.If we express the variables u and v in the omplex form, namely = u+ iv; so that, jj = pu2 + v2 = r; (2.12)



Chapter 2 13and ddt = dudt + idvdt ;= �(r)u� !(r)v + i(!(r)u+ �(r)v);) ddt = [�(jj) + i!(jj)℄: (2.13)The rate of hange of the modulus, jj, is given by,djjdt = ujj dudt + vjj dvdt : (2.14)Substituting for the rate equations (2.9) and (2.10),djjdt = ujj [�(jj)u� !(jj)v℄ + vjj [!(jj)u+ �(jj)v℄ ; (2.15)= �(jj)jj �u2 + v2� ; (2.16)= �(jj)jj: (2.17)A steady state solution is observed when the above rate equation is equal to zero,that is, when �(jj)jj = 0. But by our earlier de�nition, �(r0) = 0 and thereforeour steady state is a limit yle solution desribed by the irle, jj = r0, in the(u; v) plane. Rewriting the system in polar o-ordinates we have, = rei� ) drdt = r�(r); d�dt = !(r);so that the limit yle solution an be desribed byr(t) = r0; �(t) = !(r0)t+ �0; where �0 is a onstant.The spatially homogeneous system thus has a limit yle solution in the u� vplane given, in polar o-ordinates, by(u; v) = (r0 os[�0 + !(r0)t℄; r0 sin[�0 + !(r0)t℄):



Chapter 2 142.3.2 Spatially heterogeneous �� ! systemsTo obtain travelling wave solutions in the spatially extended system we substi-tute for the polar o-ordinates into (2.7)-(2.8) to get,��t � r os �r sin � � = � �(r) �!(r)!(r) �(r) �� r os �r sin � � + �2�x2 � r os �r sin � � ; (2.18)where now u(x; t) = r(x; t) os(�(x; t)) and v(x; t) = r(x; t) sin(�(x; t)). Di�er-entiating r os � and r sin � with respet to t,��t(r os �) = rt os � � r�t sin �; (2.19)��t (r sin �) = rt sin � + r�t os � (2.20)and twie with respet to x,�2�x2 (r os �) = rxx os � � 2rx�x sin � � r�xx sin � � r�2x os �; (2.21)�2�x2 (r sin �) = rxx sin � + 2rx�x os � + r�xx os � � r�2x sin �: (2.22)Substitution of these into (2.18) and simpli�ation yields (for r 6= 0)�t = !(r) + 1r2 �r2�x�x : (2.23)In a similar way we an obtain an expression for rt, namelyrt = r�(r) + rxx � r�2x: (2.24)Our ��! system for reation di�usion systems with limit yles an, therefore,be now restated as rt = r�(r) + rxx � r�2x; (2.25)�t = !(r) + r�2 �r2�x�x : (2.26)In setion 2.3.1 we showed that if r0 > 0 exists and �0(r0) < 0 then the asymp-totially stable limit yle solution for the non-spatial system isr = r0; � = �0 + !(r0)t: (2.27)



Chapter 2 15In other words the limit yle solutions u and v areu = r os � = r0 os [�0 + !(r0)t℄ ; (2.28)v = r sin � = r0 sin [�0 + !(r0)t℄ : (2.29)In the inhomogeneous system, we look for a travelling plane wave of the formu(x; t) = U(z); z = �t� kx;where � is the frequeny and k the wavenumber. Therefore, in the polar formr = �; � = �t� kx (2.30)where � is a given onstant value of r(x; t).If we substitute for this form of solution into the system (2.25) and (2.26)we an determine neessary and suÆient onditions, for the single parameter�, suh that the solutions are travelling plane waves. Sine � is a onstant valueof r then for eah solution �t = �x = 0, �t = �, �x = �k and from (2.25) and(2.26) 0 = ��(�)� �k2; ) �(�) = k2; (2.31)� = !(�): (2.32)We therefore have a one parameter family of travelling plane wave solutionsgiven by u = � os h!(�)t� x� 12 (�)i ; (2.33)v = � sin h!(�)t� x� 12 (�)i ; (2.34)with wave speed   = �k = !(�)� 12 (�) : (2.35)As an example, we will onsider a partiular simple ase of a �-! system with�(r) and !(r) suh that the kinetis of the system satisfy the superritial Hopf



Chapter 2 16bifuration requirements but are also suh that they are amenable to analysis.We take !(r) � !0 � r2; �(r) = �0 � r2: (2.36)Substituting these forms for �(r) and !(r) into the dynamis in (2.7) and(2.8) we have a steady state solution at u = v = 0, the nature of whih isgoverned by the values �0 and !0.For u = v = 0 it follows that r = 0, �(0) = �0 and !(0) = !0. The dynamisystem then beomes ��t � uv � = � �0; �!0!0; �0 �� uv � ; (2.37)and the orresponding eigenvalues, �� are given by,���� �0 � �; �!0!0; �0 � � ���� = 0: (2.38)Solving the auxiliary equation yields the eigenvalues,� = �0 � !0i; (2.39)so that for �0 < 0! steady state solution is stable; (2.40)�0 = 0! Hopf bifuration value giving � = �!0i; (2.41)�0 > 0! steady state solution is unstable: (2.42)We would therefore expet small amplitude limit yle solutions for small posi-tive �0 =  where r0 = p where 0 <  � 1. The spatially homogeneous limityle solutions are therefore,u = p os[!(p)t + �0℄; v = r0 sin[!(p)t + �0℄;  > 0: (2.43)Now onsidering the reation di�usion system for these partiular �(:) and !(:),we substitute for travelling plane wave solutions of the formr = �; � = �t� kx;



Chapter 2 17where now � = !(�) = !0 � �2;k = � 12 (�) = (p � �2) 12 ;so that the orresponding spatial PTW solutions are thereforeu = � os h(!0 � �2)t� � � �2� 12 xi ; (2.44)v = � sin h(!0 � �2)t� � � �2� 12 xi : (2.45)where the amplitude of the PTWs, � < p. In other words the amplitude of thePTW is less than the amplitude of the limit yle solution in the reation kinetisand as � ! r0 the speed (2.35) tends to in�nity and we retrieve the spatiallyhomogeneous limit yle solution. The above solutions are illustrated in Figure2.1. One parameter set, illustrated in Figure 2.1(a), results in PTWs movingfrom right to left aross the spatial domain; in (b) the parameters hosen produePTWs moving in the opposite diretion aross the domain. These solutions willonly persist if they are stable; unstable waves annot be a long term solution andnumerial analysis indiates that instability results in irregular spatio-temporalosillations [78, 83℄. A detailed desription of the stability analysis of travellingwave solutions of �� ! systems is desribed in [60℄.2.4 General Host-parasite systemsUntil the work arried out by Anderson [5℄ and Anderson & May [6, 56℄ rela-tively little theoretial work was done on the e�ets of parasites on their hostpopulation. Anderson [5℄ de�ned parasitism in terms of the parasite's inueneon the growth rate of its host population and suggested that this e�et is relatedto the average parasite burden per host whih is governed by the statistial dis-tribution of the parasite population within the host population. Anderson [5℄ites a number of important population proesses inluding overdispersion and
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Figure 2.1: Typial numerial solutions of (2.7,2.8), with �(r) = �0 � r2 and!(r) = !0 � r2. It shows a front moving aross the domain at onstant speed,with periodi wave trains behind this wave. In (a) the wave trains move in thenegative x diretion, while in (b) they move in the positive x diretion. Thesolutions for u(x; t) and v(x; t) are plotted as funtions of spae x at suessivetimes t, with the vertial separation of solutions proportional to the time interval.We onsider the system on the semi-in�nite domain [0;1) with initial data ofthe form u(x; 0) = v(x; 0) = A exp(��x). The parameter A a�ets the timeourse of the evolution, but has no e�et on the ultimate behaviour; we takeA = 0:1. The remaining parameter values are: (a) � = 0:8, �0 = 1, !0 = 2,0 < t < 60; (b) � = 4, �0 = 3, !0 = 1,0 < t < 40.density dependene in parasite mortality or reprodution. At that time, mosttheoretial work in eology onentrated on predator-prey systems where thepredator kills and eats its prey. Anderson and May [6℄ �rst de�ned `parasitism'broadly as `an eologial assoiation between speies in whih one, the parasite,lives on or in the body of the other, the host' for all or part of its life yle. Theparasite relies on the host prodution of nutrients as being vital to its own sur-



Chapter 2 19vival so that, where the relationship is obligatory for the parasite, it is harmfulto the host. Three onditions are proposed that must be ful�lled in order thata speies is lassi�ed as a parasite: (1) the host provides the parasite's habitat;(2) the parasite is nutritionally dependent on the host; and (3) the parasite isharmful to the host [6℄. One of the basi reation kineti models presented byAnderson and May [56℄ isdHdt = (a� b)H � (�+ Æ)P; (2.46)dPdt = P � �HH +H0 � (�+ b+ �)� ��k + 1k � PH� ; (2.47)where H is the host population density and P is the parasite population density.It must be noted that this system fails mathematially when H = 0 as theparasite equation blows up due to the singularity in the third term. However,we use this model to desribe the parasite burden per host and therefore makethe assumption that when H = 0, P is neessarily zero. The �rst term in thehost rate equation (2.46), gives the net ontribution of hosts per unit time bysubtrating the intrinsi host mortality rate, b, from the intrinsi host feundityrate, a. � and Æ are the e�et, per parasite, on host mortality and feundity,respetively. Therefore, the e�ets per host are �P=H and ÆP=H, respetivelygiving the total number of hosts killed due to parasite infetion, �P , and thenet redution in host feundity due to the parasites, ÆP .For the parasite rate equation (2.47), � is de�ned as the rate of produtionof transmission stages per parasite, giving a net reprodution rate of �P for aparasite population P . In many natural systems these transmission stages passout in the faees to the environment where, in time, they hath and migrate upblades of grass to be ingested by foraging hosts. As a result, only a ertain pro-portion of these transmission stages will infet the host population. The densityof free stages in the habitat in relation to the density of hosts per unit area isimportant in determining the transmission rate. The term, H=(H+H0), desrib-



Chapter 2 20ing the e�etive transmission fator, determines the proportion of transmissionstages produed that infet the host population in a given time interval, so thatthe total number of stages infeting the host population in this time is given by�PH=(H +H0). As H inreases with respet to H0 the transmission rate tendsto unity so that all transmission stages produed infet the host population. IfH0 is large with respet to H then only a small proportion of transmission stagesare onverted to adult parasites. The total number of adult parasite deaths dueto the ombined e�ets of adult parasite mortality, �, the total host mortalityrate given by the sum of the intrinsi rate, b, and the parasite indued rate,� is �(� + � + b)P . The third term, �P (k + 1)=kH, reets the e�et of thestatistial distribution of parasites within the host population on the numberof parasites removed at eah time point. In most natural systems, the parasitetends to be overdispersed within the host population and the negative binomialprobability model is ommonly used to model this distribution [5℄. A randomdistribution is often desribed by the Poisson model whih is de�ned by the sin-gle parameter of mean parasite burden, P=H, and is given by P=H + (P=H)2.An overdispersed population, on the other hand, is desribed by the two param-eter binomial probability distribution de�ned by the mean and, k, the inversemeasure of the degree of parasite aggregation within the host. It is modelledby P=H + (P=H)2(k+ 1)=k. If k is small, the parasite population is `highly ag-gregated', with a small number of hosts ontaining the majority of the parasitepopulation. As suh the parasite population tends to have less regulatory e�eton the host population; if k is large then the population is `loosely aggregated'and as k !1 we approah a random distribution.Anderson and May [56℄ showed that where the parasite was loosely aggre-gated in the host population and where its e�et on host feundity was greaterthan that on host mortality, it tended to be a destabilising inuene on thereation kinetis of the system, resulting in stable limit yle solutions. These



Chapter 2 21are exatly the properties assoiated with the two natural yli host-parasitesystems (mountain hare and red grouse) that we go on to investigate in the nextsetions.



Chapter 3Mountain Hare, Parasite System
3.1 Bakground and motivationThe mountain hare (see Figure 3.1), Lepus timidus, is indigenous to Sotlandand 99% of the UK population resides at altitudes above 500m [33℄. Moun-tain hares are thought to be less fussy about the quality of their forage thanbrown hares and this gives them a ompetitive edge espeially at high altitudes.In 1995 the total population was of the order of 350,000 [34℄ with populationdensities varying tenfold, reahing a peak approximately every ten years [33℄.This same study [34℄, however, did reognise that the value proposed may beover/underestimated by as muh as 50% [43℄. The mountain hare population isurrently thought to be under threat with densities approahing extintion levelsin ertain parts of Sotland [43℄. As a result, the speies is listed in Annex V ofthe EC Habitats Diretive [97℄ requiring its onservation status and sustainablemanagement to be ensured. There are a number of hypothesised ontributoryfators to their low densities, inluding predation, food limitation, territoriality,parasite infestation and ulling [97℄.Field studies in Sotland, Finland and elsewhere demonstrate yling in themountain hare population densities [65℄. The form of the yling varied betweenstudies and di�erent ausative fators have been suggested. For example, inSandanavian ountries, predation is thought to play an important role [37,62℄,22
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Figure 3.1: Mountain hare, Lepus timidus, in its winter oat whih providesexellent amoage on those snowy Sottish peaks.however, in Sotland, where most of the mountain hare population resides onestates land managed for red grouse, predation is not thought to be an issue [62℄.Other ontributory fators have been suggested inluding food limitation andterritoriality. But observations suggest that mountain hares tend to be non-territorial [30, 36, 97℄ and food limitation is not thought to be an issue [42, 97℄.Mountain hares have been impliated in the transmission of louping ill virus tored grouse [35℄ and, as a result, they have beome vitims of ulling, thoughit is hard to quantify this e�et sine, in many ases, the ulling is arriedout illegally [43℄. Sottish Natural Heritage (SNH) published the results ofa questionnaire-based survey arried out in 2006/07 giving a �gure of 24529mountain hares ulled aross 90 estates in Sotland [43℄. This report also pointedto the fat that the naturally ouring yli dynamis of the mountain hare mayompliate analysis of long term patterns of abundane and that the fators



Chapter 3 24ausing these utuations remain unknown [43℄. We seek to address this pointby mathematially modelling the population dynamis of the mountain hare andits assoiated parasite to see if this interation is responsible for the populationyling observed in the �eld.Though theoretial evidene abounds to support the hypothesis of parasiteindued yling in a host population in general [5, 6, 18, 38, 39, 56℄, empirialevidene for parasite indued yling in the mountain hare population is lak-ing. Properties assoiated with �eld osillations in mountain hare populationsreorded aross large areas of Sotland are listed in Table 3.1 and illustrate thevariation in dynamis observed at a range of di�erent loations [65℄.Period 4-15 yearsMean hare density 20-200km�2Amplitude of osillations CoeÆient of variation0.39-1.80Mean parasite burden 200-5000 worms per hareTable 3.1: Charateristis of the highly variable dynamis of mountain harepopulations aross Sotland [65, 95℄.The mountain hare parasite, Trihostrongylus retortaeformis, is a wormfound in the intestines of mountain hares (see Figure 3.2). The females pro-due eggs in the gut whih then pass out in the hare faees. After hathing, thelarvae limb up blades of grass where they are then ingested by foraging haresand the yle reommenes [32℄. This worm has little e�et on hare mortalitybut dramatially redues its feundity [64℄. Empirial evidene suggests that,in most host-parasite systems in the �eld, the parasites are over-dispersed (orloosely aggregated) in their host populations [5℄, where only a small number ofhosts ontain the majority of the total parasite population.Simple mathematial models predit that parasites that are loosely aggre-gated in the host population and whih have a stronger e�et on host feundity
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Figure 3.2: The mountain hare intestinal nematode Trihostrongylus retortae-formis.than on host mortality should destabilise the system and indue yling [18,56℄.Newey and Thirgood measured the e�et of Trihostrongylus retortaeformis onfemale mountain hares and onluded that the experimental redution of par-asites was assoiated with an inrease in feundity [64℄. A later paper [63℄ bythe same authors demonstrated that Trihostrongylus retortaeformis is indeedloosely aggregated in the mountain hare population and they hypothesise thatthis fator along with the parasites' inuene on feundity demonstrate that it isthis intestinal parasite that is responsible for the utuating levels of mountainhares observed in the �eld. In light of these experimental results, Townsendet al. [97℄ derived a mathematial model that inorporates these e�ets andthen probed it numerially and analytially to see if it an predit the ylipopulation densities observed in the �eld [97℄. The model they developed isa purely temporal reation-kineti model (i.e. spatial dispersal of hosts is ne-gleted) and a fuller desription and analysis of this system will be the subjetof Setions 3.2-3.7. Their results, however, were inonlusive in that yles ofthe required amplitude and period ould only be produed using parameterswhih produed an unrealisti mean parasite burden. A number of reasons were



Chapter 3 26suggested for this, inluding doubts about the reliability of ertain parametervalues determined from `small sample size or indiret data soures' [97℄. It wasalso proposed to be due to the fat that spatial heterogeneity and host dispersalwas laking in the original model [97℄. The aim of this part of the thesis isto examine if, by adding spatial heterogeneity, we may be able to theoretiallypredit yles with more realisti mean parasite burdens.Addressing this point, we model the system in the spatiotemporal �eld usingthe reation kinetis of [97℄ and adding di�usion and advetion terms for the hostand parasite populations, respetively, to determine if osillations of realistiamplitude and period an be predited in the spatial system with more realistiparasite burdens.First, for ompleteness, we will look at the temporal dynamis only andassume a spatially homogeneous system in Setions 3.2 to 3.7 before onsideringthe e�ets of spatial heterogeneity in Setion 3.8.3.2 Reation kinetisTownsend et al. [97℄ use a variant of the lassi Anderson & May maroparasitemodel (introdued in [17℄) whih desribes ontinuous growth equations for ahost population of density, H, interating with a parasite population, P . In the�rst instane we will desribe the ase when the population densities are timedependent only in whih ase the ODE system is,dHdt = ��P � bH + aH � kHÆP + kH�k ; (3.1)dPdt = P � �HH0 +H � (�+ � + b)� ��k + 1k � PH � : (3.2)Parameter desriptions an be found in Table 3.2. Comparing the original An-derson & May model, desribed by (2.46) and (2.47), to (3.1) and (3.2) we ansee that the parasite rate equations are the same. In the hare rate equations the



Chapter 3 27terms desribing the net death rate are also the same and given by (�bH��P ).The di�erene between these two systems pertains to the desription of the netbirth rate of the host population. In Anderson & May [56℄ the parasite induede�et on host feundity is assumed to at linearly so that the total host birthrate is given by (aH�ÆP ). This allows for a biologially unrealisti negative nethost feundity. In (3.1) the net host feundity is modelled using the non-linearterm introdued by Diekmann & Krethsmar [17℄ whih takes into aount thenegative binomial distribution of the parasite population within the host pop-ulation and its e�et on the net host feundity. Here Æ also ats to redue thehost feundity, as in (2.46), but it now ats non-linearly and the host feundityis always a positive quantity. As Æ inreases for a �xed k the host feunditydereases, however, as k inreases for a �xed Æ, the net host feundity inreases.3.3 Parameter estimationRanges of the model parameters are also presented in Table 3.2. These rangeswere alulated by Townsend et al. [97℄ to be the most pratial based on thebest available empirial information. Where possible, �eld data from the moun-tain hares in Sotland were used [65℄, otherwise data were drawn from loselyrelated systems [97℄. For our analysis, we use the following set of parameter val-Symbol Parameter Unit Lower Limit Upper Limita Intrinsi feundity of adult hares yr�1 1.8 2.8Æ Parasite redued indution in hare feundity parasite�1yr�1 0 0.0001b Intrinsi mortality of adult hares yr�1 0.08 0.61� Parasite-indued hare mortality parasite�1yr�1 0 0.0001� Parasite feundity yr�1 80 2800H0 Transmission ineÆieny onstant 13500 66800� Adult parasite mortality yr�1 0 1.2k Degree of overdispersion 0.5 2Table 3.2: Parameter ranges based on empirial information [97℄.



Chapter 3 28ues, unless stated otherwise in the text: k = 1, Æ = 1:5� 10�5 parasite�1yr�1,� = 8� 10�6 parasite�1yr�1, b = 0:61 yr�1, a = 1:8 yr�1, � = 100 yr�1, � = 1yr�1, H0 = 3:82� 104. These values lie within the lower and upper limits pro-posed by [97℄ (Table 3.2); they result in a limit yle solution in the reationkinetis for this system.3.4 System resalingFor our analysis, we resale the system variables so that all omputed quantitiesare of relatively similar magnitude; this aids numerial integration and alsoredues the number of parameters in the governing equations. We let H = H0 �Hand P = P0 �P where H0 and P0 are harateristi host and parasite densities.We then set P0=H0 = b=� so that, with k = 1, (3.1) and (3.2) an be restatedas d �Hdt = �b( �H + �P ) + a �H21 �P + �H ; (3.3)d �Pdt = �P � � �H1 + �H � (�+ b+ �)� 2b �P�H � ; (3.4)where we take 1 = Æb=�.3.5 Global behaviourFirst we investigate the global properties of the system by deriving its nulllines,whih are found by setting the rate equations (3.3) and (3.4) equal to zero.Example solutions of the zero rate equations, in the �H � �P plane, are shown inFigure 3.3. Along eah nullline the orresponding dependent variable remainsonstant in time. The steady state solutions of the system then our where the�H and �P nulllines interset in the �H � �P spae.



Chapter 3 293.5.1 �H NulllineThe �H nullline (i.e. d �H=dt = 0) is given by,�b( �H + �P ) + a �H21 �P + �H = 0; (3.5)For �H � 1, d �P=dt approximates tod �Pdt � �2b �P 2�H ;so that the rate of hange of �P along the �H nullline is in the negative �P diretionfor �H � 1. Conversely, for �H large (i.e. 1= �H � 1)d �Pdt � � �P;sine �H=(1 + �H)! 1. Therefore, the rate of hange of �P along the �H nulllineis in the positive �P diretion. The arrows in Figure 3.3 illustrate, qualitatively,these hanges in �P along the �H nullline.3.5.2 �P NulllineSimilarly we an determine how �H hanges along the �P nulllines whih aregiven by d �P=dt = 0, namely�P � � �H1 + �H � (�+ b+ �)� 2b �P�H � = 0:There are therefore two �P nulllines; the trivial one, �P = 0, and the non-trivialone de�ned by � �H1 + �H � (�+ b + �)� 2b �P�H = 0:Along the trivial �P nullline d �Hdt = (a� b) �H:Typially a > b, otherwise in the parasite free ase the host density will deayto zero. So the rate of hange of �H along this trivial �P = 0 nullline is in the



Chapter 3 30positive diretion. The non trivial �P nullline is given by�P = �H2b � � �H1 + �H � (�+ b + �)� :For �P � 1 on the non-trivial nulllined �Hdt � a �H21 �P + �H ;whih is always positive. Whereas, for �P large (i.e. 1= �P � 1),d �Hdt � �b �P ;whih is negative. These two results then give the arrow struture for the non-trivial nullline as shown in Figure 3.3 illustrating the possibility of limit ylesolutions.Indeed, the bifuration analysis pakage, AUTO [19℄, was used to on�rmthe existene of a Hopf bifuration for this system, for the set of parameterslisted in Setion 3.3, and illustrates the presene of stable limit yle solutions(see Figure 3.4). AUTO is a software pakage for ontinuation and bifurationproblems in ODEs.We an see from the AUTO plots in Figure 3.4 that the system is linearlyunstable for values of Æ above the Hopf bifuration (denoted by ÆHB) and stablelimit yles are observed; for values of Æ less than the Hopf bifuration value thesteady state is linearly stable and, following a small perturbation, the popula-tions will quikly return to their equilibrium. Illustrations of these two types ofbehaviour are shown in the P �H phase plane, in Figure 3.5, and temporally inFigures 3.6 and 3.7. The bifuration shown is a superritial Hopf bifuration.Having investigated the global behaviour of the system, we now look at thesteady state solution and the behaviour of the system loal to this point.
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Chapter 3 363.6 The steady state solutionAt the steady state solution, ( �H�; �P �), d �H=dt = 0 = d �P=dt so that�b( �H� + �P �) + a �H�21 �P � + �H� = 0; (3.6)�P � � � �H�1 + �H� � 2 � 2b �P ��H� � = 0; (3.7)where we write 2 = (� + b + �). This predits a trivial steady state solution(0; 0) and a non-trivial steady state solution whih satis�es� �H�1 + �H� � 2 � 2b �P ��H� = 0: (3.8)By eliminating �H�2 from the simultaneous equations (3.6) and (3.7), we anderive the following expression for the host population density at the non-trivialsteady state �H� = �P � ��1 �P � � �2��3 + �4 �P � ; (3.9)where, �1 = b1(�� 2);�2 = 2b(a� b);�3 = 2(a� b);�4 = 2b(a� b)� b(1 + 1)(�� 2):�P � is determined by substituting for �H� into the host rate equation at steadystate (3.6)(a� b) �P �2��1 �P � � �2�3 + �4 �P ��2 � b(1 + 1) �P �2��1 �P � � �2�3 + �4 �P ��� b1 �P �2 = 0: (3.10)Multiplying aross by (�3 + �4 �P �)2= �P �2, where �P �2 6= 0(a� b)(�1 �P � � �2)2 � b(1 + 1)(�1 �P � � �2)(�3 + �4 �P �)� b1(�3 + �4 �P �)2 = 0:



Chapter 3 37Colleting together powers of �P � and rearranging gives the following analytiexpression �P � = ��B �p�2B � 4�A�C2�A ; (3.11)where, �A = (a� b)�21 � b(1 + 1)�1�4 � b1�24;�B = �2(a� b)�1�2 � b(1 + 1)(�1�3 � �2�4)� 2b1�3�4;�C = (a� b)�22 + b(1 + 1)�2�3 � b1�23:The steady state �P � value must be positive and so we are only interested in thepositive root. Substitution of �P � into (3.9) then gives the full, non-trivial, steadystate solution ( �H�; �P �). The unsaled host and parasite steady state densities(H� = H0 �H�, P � = P0 �P �) in the � � Æ plane are depited in Figure 3.8. For�xed �, as we inrease Æ, the host and parasite steady state population densitiesboth derease. On the other hand, if we �x Æ and inrease � the steady statehost population inreases while the parasite steady state density dereases. Æis a measure of the e�et of the parasites on the host feundity and we wouldindeed expet that �xing � and inreasing Æ, would result in a dereased hostpopulation.3.7 Linear stability analysisIn order to analytially understand the �H � �P phase spae lose to the steadystate solutions ( �H�; �P �), it helps to approximate the non-linear system, in thisregion, by a linear one. That is, we perform linear stability analysis. We leth = �H � �H� and p = �P � �P � where �H and �P are taken to be near to the steadystate, ( �H�; �P �), and therefore h and p are small, that is, h; p << 1. Applyingthe Taylor series expansion about the point ( �H�; �P �), retaining only linear termsand noting that � �H=�t � f( �H; �P ) = 0 and � �P=�t � g( �H; �P ) = 0 at ( �H�; �P �),



Chapter 3 38

PSfrag replaements(a)(b)

PSfrag replaements(a)(b)Figure 3.8: Plots illustrating the unsaled non-trivial steady state populationdensities for (a) hosts, H� and (b) parasites, P � in the �� Æ plane. The param-eters are quanti�ed in Setion 3.3.



Chapter 3 39we an then desribe the behaviour of the transformed o-ordinates (h; p) aboutthe steady state by the linear system� h0p0 � = � A BC D �� hp � :where, A = �f� �H ( �H�; �P �); B = �f� �P ( �H�; �P �);C = �g� �H ( �H�; �P �); D = �g� �P ( �H�; �P �);so that, A = 2(a� b) �H� � b(1 + 1) �P �(1 �P � + �H�) ;B = �b( �H�(1 + 1) + 21 �P �)(1 �P � + �H�) ;C = � �P �(2 + �H�)(1 + �H�)2 � 2 �P ��H� ;D = 2b(1 �P � + �H�)� 2a �H�(1 �P � + �H�) :The trae of the Jaobian matrix, trJ = (A + D), is an indiator of a Hopfbifuration of the system. That is, a Hopf bifuration ours when there areomplex eigenvalues and the trae hanges sign (i.e. the eigenvalues are purelyimaginary). The trae of our system is(A+D) = 2(a� b) �H� � b(1 + 1) �P �(1 �P � + �H�) + 2b(1 �P � + �H�)� 2a �H�(1 �P � + �H�) ; (3.12)= b(1 � 1) �P �(1 �P � + �H�) : (3.13)The quantities �H� and �P � are stritly positive as are the parameters b and 1.Consequently, the sign of the trae will hange only aording to the sign of theterm (1 � 1). In other words, the Hopf bifuration for the linear system in theregion of the steady state, lies along the line 1 = 1 in the �� Æ phase plane, or



Chapter 3 40in terms of � and Æ, 1 � 1 = 0;() Æb� = 1;so that the Hopf bifuration line is desribed by � = bÆ in the �� Æ plane. FortrJ( �H�; �P �) > 0, � < bÆ and limit yle solutions, suh as those in Figure 3.6(a)and (b) are observed; when the trae is less than zero, so that � > bÆ the systemdeays to a stable �xed point solution as illustrated in Figure 3.6(),(d). Figure3.9 shows a plot of the negative trJ( �H�; �P �) values (that is, solutions with astable �xed steady state in �H � �P densities); all positive trae values have beendenoted as white (that is, osillations in �H � �P densities).3.8 The spatial modelIn the previous setion, we onsidered the hange in population densities withrespet to time only, e�etively assuming a homogeneous spatial distribution.However, �eld studies [47, 59, 62℄ have shown that the spatial distribution ofthese populations are in fat heterogeneous and so, if we want to understandbetter how they interat in the �eld then our model should aount for thesespatio-temporal variations. The initial motivation for this setion of work wasa study arried out by Townsend et al. [97℄ on the kinetis of the host-parasitemehanism for the Sottish mountain hare. We have sine extended this workand arried out a numerial analysis of the spatially extended system and ob-served PTWs for ertain parameter sets. We seek (in Chapter 4) to probe thisspatially extended model and derive some analytial results that an be used topredit the properties of the PTWs, but �rst we illustrate the PTWs assoiatedwith this host-parasite system.For simpliity, we assume a spatial distribution in one dimension only sothat �H = �H(x; t) and �P = �P (x; t) and x 2 R. We assume that the hosts move
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Figure 3.9: Hopf bifuration in � � Æ phase spae. Below the Hopf bifurationline, � = bÆ, the trae values are all positive indiating a limit yle solutionbelow this line, as in Figure 3.6. Above this line we would observe a stable�xed point solution suh as that in Figure 3.6(),(d). The parameterisation isdesribed in Setion 3.3.



Chapter 3 42through the spatial domain aording to Fikian ux, J �H = �DH� �H=�x, whereDH is the di�usion onstant for the hosts. The mean parasite burden, �P= �H, isnow a funtion of x as well as t. At any given spatial point in the domain theparasite ux is given by the host ux times the number of parasites per host,sine the parasite population lives in the host population. To illustrate, onsidera �xed point in the spatial domain where we an measure the rate at whih thehost population density hanges in one diretion or the other. Sine the parasiteslive in the host population then the rate at whih parasite population densityhanges is equal to the rate at whih the host population hanges times thenumber of parasites per host. The spatial gradient of the parasite ux term,�PJ �H= �H, then gives the �nal advetion term in (3.15). The governing equationsare � �H�t = �b( �H + �P ) + a �H21 �P + �H � �J �H�x ; (3.14)� �P�t = �P � � �H1 + �H � (�+ b + �)� 2b �P�H �� ��x � �PJ �H�H � : (3.15)This desribes a reation advetion di�usion system. This system an be solvednumerially using the method of lines to redue it to a oupled system of ordinarydi�erential equations (ODEs). A entral di�erene approximation is used forthe di�usion term in the hare equation and ux limiters for the advetion termin the parasite equation. The ux limiters are designed to ensure physiallyrealisti solutions, in this ase, to ensure positivity of the population densities.Further disussion on their onstrution and e�ets an be found in AppendixA along with full details of the numerial sheme. No-ux boundary onditionsare applied at eah end of the spatial domain and the resulting system is solvedusing a fourth order Runge-Kutta method. The initial spatial distributions forboth populations are desribed by�H(x; 0) = �P (x; 0) = A exp(��x); (3.16)



Chapter 3 43where A and � are positive onstants, whih we take to be 0:03 and 1, respe-tively. Appliation of the parameter set detailed in Setion 3.3 generates atravelling wave front, followed by PTWs, where osillations in hare and parasitedensities ourred in both spae and time. These spatiotemporal osillationsare illustrated in Figures 3.10 to 3.14. This is the �rst time that PTW solutionbehaviours have been observed in a host-parasite system; normally suh math-ematial solution forms are observed and analysed in predator-prey reation-di�usion systems, where the movement of predators and prey are independentof eah other. As a quik, initial omparison, studying Figures 3.6 and 3.10we an ompare the results from the spatially homogeneous and heterogeneousmodels and note the e�et on the amplitude and temporal period of the os-illations. In the ODE model, the host population osillates between a densityvalue of approximately 625 to 1500 for the base parameter set used by Townsendet al. [97℄. In the spatial model, this amplitude is slightly redued with mini-mum/maximum values of 700/1400. The temporal period is 4.5 years in bothases and the mean parasite burden, P=H is of similar magnitude to the spa-tially homogeneous ase, that is O(104). The speed of the PTWs, illustrated inFigure 3.11, is alulated to be 1.2km/yr for this partiular parameter set andinitial and boundary onditions, and the waves travel in the positive x-diretion.When onsidering the governing system (3.14) and (3.15), it is important tonote that the alternative sheme,� �H�t = �b( �H + �P ) + a �H21 �P + �H � �J �H�x ; (3.17)� �P�t = �P � � �H1 + �H � (�+ b+ �)� 2b �P�H � ; (3.18)using Fikian ux for the hosts and omitting the expliit parasite ux term, anbe used to produe almost idential results. In this ase the di�usion of thehost population oupled with the reation kinetis and the assumption that theparasite population exists only in the host population, appears to be suÆient to
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Figure 3.10: Temporal osillations in population densities (a) H, (b) P and ()P=H at a �xed point in spae (x = 30km). The di�usion oeÆient, DH = 0:01,Æ = 1:5� 10�5 and all other parameters are as in Setion 3.3. The initial spatialdistribution of both H and P are desribed by A exp(��x), where A = 1146and � = 1.
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Figure 3.11: Numerial solutions of the system (3.14), (3.15) for Æ = 1:5x10�5and DH = 0:01. The periodi wave trains, for both host and parasite popula-tions, move in the positive x diretion. The solutions for �H and �P are plotted asfuntions of spae x at suessive times t, with the vertial separation of solutionsproportional to the time interval. We onsider the system on the semi-in�nitedomain [0;1) with initial data of the form �H(x; 0) = �P (x; 0) = Aexp(��x).The parameter A a�ets the time ourse of the evolution, but has no e�et onthe ultimate behaviour; we take A = 1146=H0 and � = 1. The wave speed forthis parameter set with given initial and boundary onditions is 1.2km/yr.
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PSfrag replaements(a)(b)txFigure 3.12: Colour plot showing the variation in (a) saled host, �H, and (b)saled parasite, �P , population densities in the spatiotemporal plane. Theseare numerial solutions of the system (3.14) - (3.15) for Æ = 1:5 � 10�5 andDH = 0:01. The solutions for �H and �P are plotted in the spae-time domainwith the olour plot indiating population density levels at a given point of spaeand time. We onsider the system on the semi-in�nite domain [0;1) with initialdata of the form �H(x; 0) = �P (x; 0) = A exp(��x). The parameter A a�ets thetime ourse of the evolution, but has no e�et on the ultimate behaviour; wetake A = 1146=H0 and � = 1. The wave speed is 1.2 km/yr and the remainingparameter values are detailed in Setion 3.3.



Chapter 3 47

PSfrag replaements(a)(b)txFigure 3.13: Colour plot showing the variation in (a) saled host, �H, and (b)saled parasite, �P , population densities in the spatiotemporal plane. Theseare numerial solutions of the system (3.17) - (3.18) for Æ = 1:5 � 10�5 andDH = 0:01. The solutions for �H and �P are plotted in the spae-time domainwith the olour plot indiating population density levels at a given point of spaeand time. We onsider the system on the semi-in�nite domain [0;1) with initialdata of the form �H(x; 0) = �P (x; 0) = A exp(��x). The parameter A a�ets thetime ourse of the evolution, but has no e�et on the ultimate behaviour; wetake A = 1146=H0 and � = 1. The wave speed is 1.2 km/yr and the remainingparameter values are detailed in Setion 3.3.
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Figure 3.14: Spatial and temporal osillations in saled population densities �Hand �P . Spatial osillations are illustrated in (a) �H and () �P at the �xed timepoint t = 75yrs. Temporal osillations in (b) �H and (d) �P at the �xed spatialpoint x = 30km are also shown. The parameter set and initial onditions are asdesribed in Figure 3.12.



Chapter 3 49model the spatial hange in host and parasite densities. This an be observed forour partiular parameter set by omparing Figures 3.12 and 3.13 whih illustratePTW solutions for (3.14) - (3.15) and (3.17) - (3.18), respetively. In both asesthe wave speed is the same and the only slight di�erene an be observed nearthe transition wavefront where the host population is moving into empty spae.In the former model, as the host moves into empty spae the parasite advetionterm ensures a non-zero parasite density as well. In the latter ase, as the hostmoves into empty spae, initially the parasite density is zero there beause therehas been no orresponding ux of parasites. But then the kineti terms ause theparasite density to quikly adjust to a non-zero level. These two models haveonly been ompared for this partiular parameter set so no general ommentan be made about their equivalene in di�erent regimes. This would be worthinvestigating in the future but is not explored further in this thesis.Having shown, numerially, the presene of PTWs as a possible solutionform for this partiular host-parasite system, we will now try to obtain a generiresult to predit PTWs in two population yli host parasite systems with asuperritial Hopf bifuration in the reation kinetis.3.9 DisussionIn this Chapter, we investigated the mountain hare-Trihostrongylus retortae-formis system model derived by Townsend et al. [96, 97℄. First we studied thereation kinetis before going on to derive some numerial solutions to the spa-tially extended model and were able to illustrate, for the �rst time in a system ofthis type, PTWs. We derived analytial solutions for the homogeneous steadystate population levels and performed a linear stability analysis whih yieldedan equation desribing the Hopf bifuration in the phase plane of two parasiterelated parameters, � and Æ. The partial derivatives of the reation kinetisderived in this setion will be used again in Chapter 4 when we apply a new



Chapter 3 50generi result to this partiular host-parasite system.We introdued the spatially heterogeneous mountain hare-parasite modeland obtained some numerial solutions illustrating the possibility of PTWs withthis system. We made a quik omparison of the amplitude and period of thetemporal osillations in the temporal and spatial systems and found only a slightredution in the amplitude of the temporal osillation assoiated with the spatialmodel, with the period remaining unhanged. Also, the parasite burden was ofa similar magnitude in both systems. This suggests, therefore, that simplyaounting for population dispersal in the model is not enough to produe PTWsolutions of the amplitude and period observed in the �eld for parameter setsthat give realisti parasite burdens.In the following Chapter, we derive a generi result, for the spatially het-erogeneous model, based on work done by Koppell and Howard [45℄, that givesonditions on the parameter set desribing the assoiated reation kineti systemresulting in PTW solutions.



Chapter 4A generi host-parasite reationadvetion di�usion system
A generi host-parasite reation advetion di�usion system an be modelled by�H�t = f(H;P )� ��x (JH) ; (4.1)�P�t = g(H;P )� ��x �PHJH� ; (4.2)where f and g desribe the reation kinetis of the host, H, and parasite, P ,system and the spatial derivatives relate to the dispersal e�ets of the host;The population densities, H = H(x; t) and P = P (x; t), now depend on theirspatiotemporal o-ordinates and we assume Fikian di�usion for the hosts, JH =�DH �H�x . Expanding the spatial derivatives we therefore have,�H�t = f(H;P ) +DH �2H�x2 ; (4.3)�P�t = g(H;P ) + DHH  �P�x �H�x + P �2H�x2 � PH ��H�x �2! : (4.4)We are interested in periodi plane wave solutions and therefore rewrite theabove system in terms of the travelling wave variable, z = t � x=s, where s isthe speed of the periodi plane wave. Noting the following relationships betweenthe two o-ordinate systems,��t = ��z ; ��x = 1s ��z ; �2�x2 = 1s2 �2�z2 ;51



Chapter 4 52the system of PDEs with respet to (x; t) an be redued to a system of ODEswith respet to z as shown:dHdz = f(H;P ) + DHs2 d2Hdz2 ; (4.5)dPdz = g(H;P ) + DHs2H  dPdz dHdz + P d2Hdz2 � PH �dHdz �2! : (4.6)Rearranging (4.5) and assigning V = dHdz we obtain three �rst order ODEs,H 0 = V; (4.7)V 0 = s2DH (V � f(H;P )) ; (4.8)P 0 = s2Hs2H �DHV �g(H;P ) + PH (V � f(H;P ))� DHV 2Ps2H2 � : (4.9)where the 0 indiates di�erentiation with respet to z.4.1 Linearising the reation advetion di�usionsystemWe want to investigate the behaviour of the reation advetion di�usion systemin the region of the non-trivial steady state solution predited by the reationkinetis, (H�; P �). The system o-ordinates are transformed relative to thesteady state values and linearised, assuming that the perturbations from thesteady state are small. The new system variables are h = H�H�, p = P�P � andv = V �V � where (H�; V �; P �) denotes the o-ordinates of the non-trivial steadystate solution. The relationship in this region between the new o-ordinates andtheir derivatives with respet to z is then approximated by the Jaobian matrixas shown: 24 h0v0p0 35 = J 24 hvp 35



Chapter 4 53where we de�ne dHdz = l(H; V; P );dVdz = m(H; V; P );dPdz = n(H; V; P );and the Jaobian matrix, J is de�ned byJ = 24 �l�H �l�V �l�P�m�H �m�V �m�P�n�H �n�V �n�P 35������(H�;V �;P �) : (4.10)Computing the entries for J and noting that at the non-trivial steady state,(H�; V �; P �), we have V � = �H�z (H�; V �; P �) = 0; (4.11)and the reation kinetis of the system, namely f(H�; P �) and g(H�; P �) go tozero so that �n�H (H�; P �) = �g�H (H�; P �)� P �H� �f�H (H�; P �) ; (4.12)�n�V (H�; P �) = P �H� ; (4.13)�n�P (H�; P �) = �g�P (H�; P �)� P �H� �f�P (H�; P �) : (4.14)The linearised system, about the steady state an, therefore, be restated as266664 h0v0p0
377775 = 266664 0 1 0� s2ADH s2DH � s2BDHC � A P �H� P �H� D � B P �H�

377775266664 hvp
377775 (4.15)where we assign �f�H (H�; P �) = A; �f�P (H�; P �) = B;�g�H (H�; P �) = C; �g�P (H�; P �) = D:



Chapter 4 54The eigenvalues � of the transformed o-ordinate system are found by solvingdet(J � I�) = 0, that is���������� �� 1 0� s2ADH s2DH � � � s2BDHC � A P �H� P �H� D �B P �H� � �
���������� = 0: (4.16)Multiplying and olleting oeÆients of powers of �, we then obtain the eigen-value equation�3 � �2� s2DH +D �B P �H�� + �� s2DH (A+D)�� � s2DH (AD � BC)� = 0:(4.17)We are seeking PTW solutions to the original PDE system. These solutionsarise at the Hopf bifuration of the assoiated ODE system in the travellingwave variable z, whih an be found by solving the eigenvalue equation (4.17).4.2 Conditions for PTWsComparing (4.17) with the general form for a ubi polynomiala3�3 + a2�2 + a1� + a0 = 0; (4.18)and noting that a Hopf bifuration is assoiated with purely imaginary eigen-values, � = �pi say with p 6= 0, we fatorise the ubi polynomial as follows,��2 + p2� (q� + r) = 0; where q; r 6= 0: (4.19)Comparing (4.18) and (4.19) then gives rise to the following relationsa3 = q; a2 = r; a1 = p2q; a0 = p2r: (4.20)Therefore, we have a0a3 = a1a2; (4.21)a1a3 = p2q2 > 0; (4.22)a0a2 = p2r2 > 0: (4.23)



Chapter 4 55where, in our ase, a0 = � s2DH (AD �BC);a1 = s2DH (A +D);a2 = �� s2DH +D �B P �H�� ;a3 = 1;and the eigenvalue equation at the Hopf bifuration then beomes��2 + s2DH (A+D)��� � � s2DH +D �B P �H��� = 0; (4.24)with eigenvalues �1;2 = �iss(A+D)DH ; (4.25)�3 = s2DH +D � B P �H� : (4.26)Substituting for ai into equations (4.21) - (4.23) then gives three onditionson the minimum speed, sHopf , of the PTW, namely,Condition IThe ondition a0a3 = a1a2 implies that� s2DH (A +D)� s2DH +D � B P �H�� = � s2DH (AD � BC): (4.27)Rearranging givess2DH � s2DH (A+D) + �D2 +BC � P �H�B(A +D)�� = 0; (4.28)whih leads to the following solutions for s2: s2 = 0, orresponding to zerotemporal frequeny for the periodi plane wave, and the non-trivial ase where,s2 = DH �P �H�B � �D2 +BCA+D �� : (4.29)



Chapter 4 56Condition IIThe inequality a1a3 > 0 implies thats2DH (A+D) > 0; (4.30)and sine s2DH > 0 we retrieve the ondition for instability in the linearisedreation kineti system, namely A+D > 0; (4.31)that is, the eigenvalues of the Jaobian matrix of the reation kinetis have apositive real part and the resultant steady state solution is unstable, with anassoiated stable limit yle.Condition IIIThe third ondition, a0a2 > 0, givess2DH (AD � BC)� s2DH +D �B �P ��H�� > 0:and sine s2DH > 0 is de�ned by (4.29) we have(AD �BC)��B �P ��H� � D2 +BCA+D �+D � B �P ��H�� > 0:Rearranging gives the inequality ondition(AD � BC)2 > 0: (4.32)To summarise, the three onditions on the system parameters for the preseneof (non-trivial) PTW solutions are,s2 = DH �B P �H� � (D2 +BC)A+D � ; (4.33)A+D > 0; (4.34)(AD �BC)2 > 0: (4.35)From here on we shall use sHopf for s in (4.33) to denote the minimum speed of thePTW at the Hopf bifuration. In their paper, Koppell & Howard [45℄ assumed



Chapter 4 57the ondition that the linearised system ontained an unstable fous; this doesnot appear to be a neessary ondition required by our analysis. Condition IIIindiates that the determinant of the linear system, AD�BC may be negativeor positive, indiating an unstable node or fous.Following the line adopted by Koppell & Howard [45℄ for a spatially het-erogeneous yli, two population predator-prey system, we have here produedan analagous result for the spatially heterogeneous host-parasite system, whihgives onditions for the presene/absene of PTW solutions for a given set ofparameters. This result is generi and an be applied to any two populationhost-parasite reation kineti system ontaining a superritial Hopf bifura-tion. The Koppell & Howard [45℄ result applied to predator-prey systems wherethe populations neessarily move independently of eah other, but whose dis-persal oeÆients are similar. With the host-parasite system the parasite liveson or in the host and therefore the dispersal oeÆients for both populationsare exatly the same, that is, the parasite moves with the same veloity as thehost.Having produed this new generi result for host-parasite systems we willtest it against two sample models to on�rm that we an predit and thennumerially on�rm the existene of PTW solutions in these systems.4.3 Mountain hare, trihostronglyus retortae-formis systemA detailed study of the properties of the non-spatial version of this system wasarried out in Chapter 3. The full spatial version reads�H�t = f(H;P )� �JH�x ; (4.36)�P�t = g(H;P )� ��x �PJHH � ; (4.37)



Chapter 4 58where JH = �DH�H=�x and DH is the dispersion onstant for the host popu-lation, and f(H;P ) and g(H;P ) desribe the reation kinetis of the hare andparasite populations, respetively. For the numerial analysis desribed in thissetion, we use an alternative, but equivalent resaling of the system equations,in order to make the numerial analysis more tratible; the resaling of thissystem is desribed in Appendix B and the resaled system is given by� �H�t = ��� �P � b �H + a �H2�Æ �P + �H � � �JH�x ; (4.38)� �P�t = �P � � �H1 + �H � �� ���� b+ 2�� �P�H �� ��x � �P �JH�H � ; (4.39)where H = H0 �H, P = P0 �P , � = ���, Æ = ��Æ and � = H0=P0 = 3:82 � 10�4.The saling fator H0 is the transmission ineÆieny onstant as in (3.2) andis quanti�ed in Setion 3.3. The saling fator P0 is hosen to ensure that thesaled population densities lie in the range zero to one. In this partiular aseP0 = 1 � 108. The reation kinetis of the spatially homogeneous system aregiven by f( �H; �P ) = ��� �P � b �H + a �H2�Æ �P + �H ; (4.40)g( �H; �P ) = �P � � �H1 + �H � �� ���� b� 2�� �P�H � : (4.41)In order to apply the results from the analysis of the generi reation di�usionsystem (Setion 4.2) we �rst need to ompute the required derivatives of thereation kinetis. A = �f� �H ( �H; �P );= �b + a �H�2 + 2a�Æ �P � �H���Æ �P � + �H��2 ! ; (4.42)B = �f� �P ( �H; �P );= � �� + �Æa �H�2��Æ �P � + �H��2! ; (4.43)



Chapter 4 59C = �g� �H ( �H; �P );= �P � ��1 + �H��2 � 2�� �P ��H�2 ! ; (4.44)D = �g� �P ( �H; �P );= � �H�1 + �H� � (�+ b + ���)� 4�� �P ��H� : (4.45)We an insert these expressions for A;B;C;D into (4.29) and investigate nu-merially how the minimum wave speed sHopf varies with di�erent ranges of theparameters � and Æ. The red line, alulated analytially, in Figure 4.1 is theHopf bifuration line for the non-spatial system, namely, � = bÆ. The regionof the plot under this line is the phase spae for � < bÆ where there are limityle solutions in the non-spatial kinetis. The shading indiates the preditedminimum PTW speed alulated from (4.33) using (4.42) - (4.45). For inreas-ing values of � (< bÆ), the greysale plot indiates that the minimum speed ofthe PTW inreases and approahes in�nity as we approah the non-spatial Hopfbifuration line. This orresponds to the limiting ase of in�nite wave speed as-soiated with spatially homogeneous osillations [83℄. Stationary steady statesare predited in the white region above the bifuration line (� > bÆ). We alsoplot the minimum speed of the periodi plane wave at the Hopf bifuration,sHopf , against the parameter � for onstant Æ (see Figure 4.2). As � approahesthe Hopf bifuration point, from the reation kinetis, the speed sHopf tends toin�nity (indiated by the vertial dashed line).To investigate the one parameter family of PTW solutions further, we usethe bifuration analysis pakage AUTO [19℄. We hoose a set of parametervalues that result in PTW solutions aording to the above analysis. The �xedparameter values we hoose are given in Table 4.1. For the purpose of thisanalysis we also hoose several ombinations of the parameters � and Æ from theregion of spae for whih the model predits PTWs. We then explore how the



Chapter 4 60

Figure 4.1: Minimum speed, sHopf , of the periodi plane wave, at the Hopfbifuration of the ODE system in z, in the �-Æ phase plane. The remainingparameters are �xed and the same as in Setion 3.3 with DH = 0:5. The shadingindiates the predited minimum PTW speed alulated from (4.33) using (4.42)- (4.45). The red line indiates the Hopf bifuration line, � = bÆ in the �-Æ phaseplane. As we approah this line the minimum speed sHopf approahes in�nity.However, in order to illustrate this we hoose the �nite greysale range [0; 4℄.Parameter Valuea 1.8b 0.61� 100� 3:82� 10�4� 1DH 0.5Table 4.1: Fixed parameter values for AUTO [19℄ ontinuation analysis hosenfrom within the parameter ranges stated in Table 3.2 with the exeption of DHwhih, in the absene of any data, we take to be equal to 0.5.
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Chapter 4 62amplitude and period of these waves vary as we approah the Hopf bifurationof the reation kinetis. These parameter values, their assoiated steady statesolutions (H�; V �; P �) and the Hopf bifuration value of Æ for the given � value,i.e. ÆHopf are listed in Table 4.2.� Æ H� V � P � ÆHopf sHopf2 5 0.0237 0 0.0041 3.28 3.020.5 3 0.0206 0 0.0083 0.82 1.580.0209 0.2618 0.0188 0 0.1058 0.0343 1.19Table 4.2: Parameter sets for AUTO [19℄ ontinuation analysisWe hoose �rstly � = 2 and Æ = 5 and starting from the assoiated steadystate solution and a small value for PTW speed, we inrease s keeping all otherparameters �xed to trak the birth of limit yles, whih ours at sHopf = 3:0235in this ase. Then starting from this speed and keeping � �xed we vary Æ towardsÆHopf of the non-spatial system and trak the speed s of the PTWs and theirperiod. An example of the results an be seen in Figure 4.3. This �gure displaysthe family of PTW solutions assoiated with this parameter set.We then selet a partiular speed from this family of PTWs (in the exampleshown, we hoose s = 52:566) and with � and s �xed we alter Æ and trak thee�et on the amplitude and period of the assoiated wave as Æ approahes ÆHopfof the non-spatial system. We arried out this proedure for two other values of� (indiated in Table 4.2) and all of the results are depited in Figure 4.4. This�gure illustrates that the wave amplitude dereases to zero as Æ approahes theHopf bifuration value for the reation kinetis, ÆHopf , and the period tends tosome limiting value whih is ditated by the speed whih gives rise to the onsetof the osillatory solution, sHopf . Importantly, this indiates that the osillationsdie out in the spatially extended system at the same parameter values as in thenon-spatial system. Therefore, yles are still predited in the same parts ofparameter spae and, therefore, only predited using parameters whih produe
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Chapter 4 65unrealisti parasite burdens as found initially by Townsend et al. in [97℄. Thus,the key missing fator in this host-parasite system appears not to be spatialvariations in host-parasite densities, although, landsape heterogeneity or non-Fikian di�usion terms may yield di�erent results.Considering the PTWs for the parameter set and initial/boundary onditionsas illustrated in Figures 3.11 and 3.12 we an alulate the predited minimumwave speed for the one parameter family of PTW solutions. The sHopf given by(4.29) is 0.78km/yr. It is important to note that this minimum speed for thefamily of PTW solutions for this parameter set does not take into aount theinitial and boundary onditions and it is therefore not surprising that the wavespeed measured in Figure 3.11 is 1.2km/yr, that is, it is greater than sHopf asexpeted.4.4 Red grouse, trihostrongylus tenuis systemThe mountain hare-parasite system, desribed and studied in the previous se-tion, predits PTW solutions for the theoretial reation advetion di�usionmodel. Although spatiotemporal osillations are observed in the �eld data,there is no onrete evidene to suggest that the parasites are driving the osil-lations in this partiular system. In the Red grouse system, however, there isevidene that points to the parasites as drivers of the spatiotemporal osillationsobserved [39℄.The red grouse population has been extensively studied for many years dueto its status as a game bird on Sottish estates and there is a plethora of dataregarding population densities of this speies and its assoiated parasite, Tri-hostrongylus tenuis, gathered from many land managed estates in Sotland.This spatio-temporal �eld data demonstrates asynhronous yles in spae forboth of these populations [59℄. For this reason, we want to apply our generiresult to this well established system to see if the model predits PTW solutions



Chapter 4 66that reet those observed in the �eld. In addition, non-spatial mathematialmodels of this system do indeed predit limit yle solutions about an unstablesteady state in the assoiated reation-kineti equations.A number of grouse speies, inluding Lagopus lagopus sotius are knownto exhibit yli utuations in population densities where fators suh as pre-dation, food, over and shooting mortality are not thought to be driving theseyles [59℄. Dobson and Hudson [39℄ proposed three possible parasite induedomponents ausing this behaviour, the parasite being Trihostrongylus tenuis.They hypothesised that `redued host breeding prodution, a low degree of ag-gregation of parasites with the host population and developmental time delaysdue to larval arrestment' were the ausative fators for the population ylesobserved in the grouse population [39℄. A seond theoretial paper by these au-thors [18℄ deals with the developement of a series of non-spatial reation kinetimodels to illustrate and predit this yli behaviour of the red grouse system.Similarly to the life yle of Trihostrongylus retortaeformis in the mountainhare, the parasite, Trihostrongylus tenuis, inhabits the large aeum of the redgrouse where it reprodues; eggs are then passed in the red grouse faees. Underthe right onditions, the eggs hath and the larvae migrate to the growing tipsof heather whih onstitute the main food plant for foraging red grouse. In thisway, the larvae enter the aeum of the red grouse and the yle ontinues. Theinfetive larvae that migrate from the passed faees to the tips of heather areknown as the free living parasite stage.4.4.1 Reation kinetisA number of theoretial models, with di�erent properties, were de�ned and ex-plored by Dobson and Hudson [18℄. We hoose their third model whih inludesa density dependent term, gH, in the host rate equation, to model the territorialbehaviour of the red grouse. This partiular model was hosen as this extra term



Chapter 4 67is thought to redue the propensity for unstable yles and limit the size of thehost population [18℄. The model has three rate equations for the red grouse hostpopulation, H, adult parasite population, P , and the free living parasite, W :dHdt = (a� b� gH)H � (� + Æ)P; (4.46)dWdt = �P � W � �WH; (4.47)dPdt = �WH � (�+ b + �)P � �P 2H �k + 1k � ; (4.48)and the parameter set used by Dobson and Hudson [18℄ is desribed in Table 4.3.The introdution of a separate rate equation for the free living parasite,W , is oneapproah used to model the e�ets of a developmental time delay in the eologialsystem. The time delay ours between the prodution of the transmission stage(i.e. free living larvae) and its readiness for reinfetion [56℄. Here, the third rateequation in W follows the dynamis of the free living infetive stages. The rateof prodution of infetives is given by �P . A proportion of these, �WH, willbe taken up into the host, where � determines the rate at whih the host piksup infetive stages and is assumed to be proportional to the density of bothhosts and free living stages; the remainder, W represents the loss of infetivestages due to any proess that prevents host reinfetion, inluding death of freelarvae due to harsh environmental onditions, for example. The adult parasitepopulation density, P , is the population residing in the aeum of the red grouse.The free living parasite stage, W , are the larvae that have hathed and migratedfrom the passed faees to the tips of heather. Under optimal onditions, thelife span of the free living larval stage, W , is roughly seven days [39℄ whih isrelatively short ompared to the life span of the host population. Therefore wean apply the following quasi steady state assumption forW , namely dW=dt = 0,thereby reduing the three equation system to two equations and enabling usto apply our generi two-variable result of Setion 4.2. Thus, (4.47), gives the



Chapter 4 68Symbol Parameter Unit Valuea Intrinsi feundity of adult grouse yr�1 1.8Æ Parasite redued indution in grouse feundity P�1yr�1 0.000388b Intrinsi mortality of adult grouse yr�1 1.05� Parasite-indued grouse mortality P�1yr�1 0.000300� Parasite feundity yr�1 11 Mortality of free living parasite stages yr�1 13� Transmission rate H�1yr�1 0.1� Adult parasite mortality yr�1 1.0k Degree of overdispersion 1.0g Density dependent oeÆient 0.002Table 4.3: Parameter values hosed from ranges quoted by Dobson and Hudsonin Table 2 of their paper [18℄, where H denotes host and P denotes parasite.We have hosen Æ in order that PTW solutions an be illustrated. The densitydependent oeÆient, g, was based on information in Hudson et al. [38℄.following expression for W in terms of H and P�P � W � �WH = 0;)W = �P + �H : (4.49)Substituting for W into (4.48) then yields the following two equation system,dHdt = (a� b)H � (� + Æ)P � gH2; (4.50)dPdt = P � �HH0 +H � (�+ b + �)� �PH �k + 1k �� ; (4.51)where we set H0 = =�. We now (for onveniene) resale the system aordingto H = H0 �H, P = P0 �P , where P0 = (a� b)H0=(� + Æ) so thatd �Hdt = ( �H � �P )� 4 �H2; (4.52)d �Pdt = �P � � �H1 + �H � 2 � 3 �P�H � ; (4.53)where we write 2 = (�+ b+ �), 3 = �(a� b)k0=(�+ Æ), 4 = g=�(a� b) andk0 = (k + 1)=k.



Chapter 4 694.4.1.1 Global behaviourWe now perform a nullline analysis to get a qualitative understanding of theglobal behaviour of this non-spatial system. The results of our nullline analysisare shown in Figure 4.5 and indiate the possibility of limit yle solutions whihare on�rmed by a numerial parameter ontinuation performed in AUTO [19℄(shown in Figure 4.6). In Figure 4.5, the steady state solutions, whih aredetermined in the following setion, are desibed by( �H�1 ; �P �1 ) = (0; 0); ( �H�2 ; �P �2 ) = (2=(�� 2); 0);( �H�3 ; �P �3 ) = ( �H�3 ; �H�3 (1� 4 �H�3)); ( �H�4 ; �P �4 ) = (1=4; 0):where ( �H�3 ; �P �) is the positive solution given by (4.55) and (4.60).
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PSfrag replaements�H�PÆFigure 4.6: AUTO [19℄ plot of saled host population density, �H, and saledparasite population density, �P versus Æ. � = 3� 10�4 and all other parametersare as desribed in Table 4.3. The red line before the Hopf bifuration indiatesthat the �xed point steady state solution is stable. Beyond the Hopf bifurationthe steady state solution is unstable, indiated by the blak line, and AUTO [19℄plots the upper and lower limits of the limit yle solution. For the upperplot, the saling fator is H0 so that, for example, with Æ = 3:9 � 10�4, thehost population density osillates between approximate maximum and minimumvalues of 83 and 17, respetively. For the lower plot, the saling fator is P0 sothat, for example, with Æ = 3:9 � 10�4, the host population density osillatesbetween approximate maximum and minimum values of 14� 104 and 9:5� 104,respetively.



Chapter 4 714.4.1.2 Steady state solutionsThe steady state solutions are determined by setting the rate equations equalto zero, d �Hdt ����( �H�; �P �) = d �Pdt ����( �H�; �P �) = 0;so that, from (4.52) ( �H� � �P �)� 4 �H�2 = 0; (4.54)so that rearranging for �P � we have�P � = �H� �1� 4 �H�� : (4.55)Firstly, this plaes a restrition on �H�, to ensure positivity, suh that,1� 4H� � 0 <=> �H� < �(a� b)g ; (4.56)sine for this system (a� b) > 0 and the remaining parameters are assumed tobe positive. Now, from (4.53), we get the trivial steady state solution, �P � = 0,and the non-trivial steady state solution given by� �H�1 + �H� � 2 � 3 �P ��H� = 0: (4.57)Substitution of �P � from (4.55) into (4.57) then gives,� �H�1 + �H� � 2 � 3 �1� 4 �H�� = 0: (4.58)After rearranging we then get a quadrati in �H:�A �H�2 + �B �H� + �C = 0; (4.59)where we de�ne,�A = 34; �B = (�� 2)� 3(1� 4); �C = �(2 + 3):



Chapter 4 72Grouped parameter FormulaH0 =�P0 (a� b)=�(� + Æ)k0 (k + 1)=k1 bÆ=�2 �+ b + �3 �k0(a� b)=(� + Æ)4 g=�(a� b)Table 4.4: De�nitions of grouped parameters used in the analysis.A full list of grouped parameters are given in Table 4.4. The steady state hostpopulation solutions are, therefore, simply�H� = ��B �p�2B � 4�A�C2�A : (4.60)The saled parasite steady state density, �P �, is then obtained by substitutingfor �H� in (4.55). We then hoose the steady state solution that is positive forboth �H� and �P �.4.4.2 Spatial extension of the red grouse systemThe generi form of the spatial governing equations,� �H�t = f( �H; �P ) +DH �2H�x2 ; (4.61)� �P�t = g( �H; �P ) +DH ��x �PH �H�x � ; (4.62)is the same as the mountain hare-parasite model, in Setion 4.3 but the reationkinetis for the grouse-parasite model are di�erent, so that, nowf( �H; �P ) = ( �H � �P )� 4 �H2; (4.63)g( �H; �P ) = �P � � �H1 + �H � 2 � 3 �P�H � : (4.64)Conversion from the (x; t) system to the wave variable, z = t � x=s, meansthat the results from Setion 4.2, for the generi spatial model, an be applied
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Figure 4.7: Nullline and phase plane plots for � = 3 � 10�4, with (a) Æ =3:88�10�4 (limit yle solution) and (b) Æ = 3�10�4 (�xed point steady state).The remaining parameters as stated in Table 4.3. The �H (green line) and �P(yan line and magenta line) nulllines are also shown.
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Figure 4.8: Limit yle solutions of the ODE system desribed by (4.50)-(4.51)showing how the host, H, and parasite, P , population densities vary with time,as well as the mean (per host) parasite burden P=H. The host populationosillates between minimum and maximum densities of approximately 20 and80, respetively. Parameter values for this plot are listed in Table 4.3.



Chapter 4 75diretly. The entries for the Jaobian matrix are given byA = �f� �H j( �H�; �P �) = 1� 24 �H�; (4.65)B = �f� �P j( �H�; �P �) = �1; (4.66)C = �g� �H j( �H�; �P �) = �1� 4 �H�� � � �H�(1 + �H�)2 + 3 �1� 4 �H��� ; (4.67)D = �g� �P j( �H�; �P �) = �3 �1� 4 �H�� : (4.68)Applying the three onditions, (4.33)-(4.35) presented in Setion 4.2 to the abovesystem, and substituting for A;B;C;D; above and the base set parameter valuesadopted by Dobson and Hudson [18℄ (see Table 4.3), we have,Condition I:s2Hopf = (1� 4 �H�)DH0�� � �H�(1+ �H�)2 + 3(1� 4 �H�)�� 23(1� 4 �H�)(1� 3) + 4(3 � 2) � 11A ;= 11:40;so that taking the square root gives a minimum PTW wave speed of sHopf =3:38km/yr. Sine we have hosen a parameter set that produes a limit ylesolution in the reation kinetis (see Figure 4.8), the seond, (4.34), and third,(4.35), onditions are also satis�ed.Although this parameter set supports the PTWs with sHopf = 3:38km/yr,we were not able to illustrate them numerially. This is most likely due to thefat that this parameter set is lose to the Hopf bifuration in the ODE systemand the resultant PTWs are neessarily of small amplitude. Choosing a value ofÆ = 8�10�4, that is, further away from the Hopf bifuration, results in PTWs ofhigher amplitude whih we are able to illustrate numerially in Figures 4.9 and4.10. In this ase Condition I (4.33) gives sHopf = 0:40km/yr with Condition IIand III also satis�ed.Figures 4.9 and 4.10 illustrate a travelling wave front of hosts and parasites,from left to right, whih after a period of time is followed by a regular spatiotem-



Chapter 4 76poral osillation over the spatial domain. The wave speed s is alulated to be0.8km/yr whih is greater than the minimum wave speed, sHopf predited byCondition I. This is to be expeted sine Condition I predits only the minimumwave speed possible for the family of PTWs generated by a given parameter set.It is the initial and/or boundary onditions that will determine whih partiu-lar `member' of this family will be hosen as a solution. Having desribed andillustrated a PTW solution for this system we now disuss wave stability. Forany given parameter set, generating a one parameter family of PTW solutions,not all solutions will be stable. Unstable waves annot be a long term solutionand numerial simulations of unstable PTWs indiate irregular spatio-temporalosillations as the long term behaviour [83℄. Behind the regular spatiotemporalosillations illustrated in Figure 4.9 instabilities gradually grow and overwhelmthese waves leading to irregular spatiotemporal osillations. Sherratt et al. [83℄have shown that in some ases the instability of the predited wave is suh thatthey are never seen. This may explain why we were not able to illustrate PTWsfor the wave speed solution sHopf = 3:38km/yr desribed above.In this setion we have taken a parameter set for this system whih is shownto produe a limit yle solution in the reation kinetis (i.e.those generatingthe temporal osillations shown in Figure 4.8) and applied the generi PTWonditions previously desribed, whih predit the presene and properties ofthe PTW solution assoiated with the spatially extended system.4.5 DisussionWe have used a result derived by Koppell and Howard [45℄ for a two population,yli system with a superritial Hopf bifuration in the reation kinetis. Kop-pell and Howard derived their result for a spatially extended generi predator- prey reation kineti system where Fikian di�usion is used to desribe theindependent population dispersal of both speies. A ondition of their result
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Figure 4.9: The solutions H and P plotted as a funtion of spae x at suessivetimes t, from t = 117yrs to t = 125yrs, for the generi governing system (4.61) -(4.62) with reation kinetis desribed by (4.63)-(4.64). The vertial separationof solutions proportional to the time interval. The parameter values are listedin Table 4.3 with the exeption of Æ = 8 � 10�4 and DH = 0:03. The initialonditions are given by H(0) = 0:78H0 exp(��x), P (0) = 0:28P0 exp(��x),where � = 1, and the grouped parametersH0; P0 are desribed in Table 4.4. Zeroux boundary onditions at eah boundary are imposed for both populations.The host population density osillates between a minimum of approximately 20and maximum of approximately 80 as an be seen in Figure 4.10.
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PSfrag replaementsHosts, HFigure 4.10: Colour plot illustrating the peaks and troughs of (a) the hostpopulation density, H, and (b) the parasite population density, P , aross thespae-time plane. The generating system and parameterisation, boundary andinitial onditions are as desribed for Figure 4.9.



Chapter 4 79was that the di�usion oeÆients for eah population had to be similar. Ouranalagous result pertains to a yli host-parasite system with a superritialHopf bifuration in the reation kinetis and assumes that the parasite popula-tion lives on or in the host population and travels with the same host veloity.Therefore, the spatially extended system is desribed by a single di�usion o-eÆient. We have derived three equivalent onditions on the reation kinetisof the assoiated temporal system that are preditors of PTWs in the spatiallyextended system. This is the �rst time that suh a result has been proposed fora host-parasite system.We went on to test this new result on two spei� host-parasite systemsthat are of partiular interest. The �rst is the mountain hare-Trihostrongylusretortaeformis system and the seond is the red grouse-Trihostrongylus tenuissystem. Cylial osillations in host/parasite numbers in both systems havebeen reported in the �eld [43℄. Townsend et al. [97℄ showed that a reationkineti model for the mountain hare-parasite system an predit limit ylesolutions. However, the parameter set used to generate these solutions resultedin unrealisti parasite burdens and it was not possible therefore to onludethat it was the parasites that were induing suh yling in the mountain harepopulation. We investigated the e�et of spatially augmenting this system onthe osillatory behaviour observed and sought to asertain whether or not thespatially heterogeneous system resulted in osillations for more realisti parasiteburdens or for a wider range of system parameters. Comparison of Figures 3.9and 4.1 shows that the emergene of PTWs with a �nite minimum speed, sHopf ,our only in the � � Æ plane bounded by the line � = bÆ. This oinidesexatly with the limit yle solutions observed in the reation kinetis whihare also ontained by the same Hopf bifuration line in the � � Æ plane (seeFigure 3.9). The ontinuation analysis performed using AUTO [19℄ in Setion4.3 on�rms this result and Figure 4.4 shows that the amplitude of the PTW



Chapter 4 80tends to zero as the �� Æ parameter set approah their Hopf bifuration values.We onlude, therefore, that the spatial augmentation, that we have onsidered,of the mountain hare-parasite system does not alter the parameter set displayingosillatory behaviour.The red grouse-Trihostrongylus tenuis system has been the subjet of exten-sive study over the years given its position as Britain's favourite game bird [98℄.Field data pertaining to this speies is muh more proli� than that of the moun-tain hare due to its ommerial importane and a number of theoretial studieshave shown that the red grouse-parasite reation kinetis are responsible for theosillations observed in the �eld [18℄. To date though, no spatial extension ofthis temporal model has been proposed or investigated. The models suggestedby Dobson and Hudson [18℄ are three population models desribing the reationkinetis of the host, the adult parasite and the parasite larvae. We make a quasisteady state assumption for the parasite larvae thus reduing the system to atwo population model and then apply our spatial extension and generi result.Numerial analysis of the spatially extended simpli�ed two population systempredits PTWs for the parameter sets used in [18℄. This is the �rst time thata spatial system has been proposed for the red grouse-parasite system and the�rst time PTWs have been predited as solutions to the system. We were thenable to take the generi result derived via the Koppell and Howard [45℄ analysisand use it to test for PTW solutions for this parameter set.We illustrated PTW solutions for both the mountain hare and red grousesystems. The mountain hare system exhibited a wave speed of 1.2km/yr andthe red grouse system a wave speed of 0.8km/yr. These are not unrealisti val-ues given that the range of wave speeds observed empirially in other dynamisystems varies greatly. For example, Lambin et al. [47℄ reported a wave speedof 19km/yr in the �eld vole population in Kielder Forest. Reent studies onthe dynamis of larh budmoth populations show that these yles organise into



Chapter 4 81travelling waves with speeds of approximately 250km/yr [83℄. At the slower endof the sale Moss et al. reveal travelling waves in red grouse population abun-dane, in Sotland, moving at speeds of 2-3km/yr. The minimum possible wavespeeds of the wave family predited by our mathematial models, sHopf , dependon the parameterisation of the system; the wave speeds of the partiular numer-ial solutions illustrated are ditated by the initial and boundary onditions andwe annot predit them analytially for these systems. Currently there are nopublished results on PTW wave speeds measured in the �eld for the Sottishmountain hare, however, the results produed here give some indiation of thepotential wave speeds that may be observed and ould be used to diret thestruture and sope of future �eld studies on the Sottish mountain hare.



Chapter 5Conlusions and Further Work
5.1 ConlusionsOne of the main aims of this work was to investigate the spatially heterogeneousmountain hare-Trihostrongylus retortaeformis system to see if this extensionof the temporal reation kineti model resulted in osillatory behaviour for awider parameter phase spae and more realisti parasite burdens than the ki-neti model alone. However, the results of our analysis show that the osillatorybehaviour is only exhibited where the temporal kinetis ontain limit yle so-lutions. The amplitude of the temporal osillations is only slightly lower in thespatial ase and the period remains the same.A result was derived that is appliable to general two population host-parasite reation advetion di�usion systems. This result is analagous to theKoppell and Howard [45℄ result for predator-prey systems and pertains to thespatial augmentation of the reation kineti model, where a di�usion term mod-els host dispersal in the environment and parasite movement is governed by anadvetion term. The new result predits the presene of PTW solutions in thespatial model given a partiular parameterisation of the reation kinetis. IfPTWs are possible, the alulated value, sHopf , gives the minimum speed possi-ble for an emerging PTW.A seond host-parasite system of interest was the red grouse-Trihostrongylus82



Chapter 5 83tenuis system. A three population model proposed by [18℄ was redued to a twopopulation model via a quasi steady state assumption, and di�usion and adve-tion terms were added for the host and parasite populations, respetively. Ourgeneri result was then applied to a partiular parameterisation of the systemand a �nite minimum wave speed for emerging PTWs was predited. PTWswere plotted using this same parameterisation. This is the �rst time PTWshave been illustrated in a theoretial model of the red grouse-Trihostrongylustenuis system.5.2 Further WorkWe propose the following avenues for further investigation. For the mountainhare-parasite system it may be worth modelling the free larvae as a separatepopulation. In Chapters 3 and 4 we made a quasi steady state assumptionfor the free living larvae stage, whih is valid under favourable environmen-tal onditions. However, larvae development may be retarded under harsherenvironmental onditions, for example, and the time delay for parasite develop-ment is no longer short in omparison with hanges in host population densityhanges. Inlusion of a free living parasite population in the mountain hare-Trihostrongylus retortaeformis system is analagous to the three population redgrouse-parasite models proposed by [18℄. In both the spatial mountain hareand red grouse models numerial analysis ould be performed in order to �ndparameterisations yielding PTW solutions. It may be possible to extend the re-sult obtained for the general two population yli reation advetion di�usionmodel to a three population system. This would provide a more realisti modelthan the two population model derived by assuming a quasi steady state for theparasite larvae.Another area of interest for the mountain hare model, originally developedby Townsend et al. [97℄, is the parameter values proposed for the system. They



Chapter 5 84suggested that some of the parameter values hosen were based on small samplesizes or indiret data soures [97℄. It would be useful if more studies ould bearried out to obtain more on�dene in the kineti parameters.Seasonal and limati hanges have also been shown to be driving meha-nisms for spatiotemporal osillations [83℄ via temporal osillations in parametersassoiated with the system. For example, in the mountain hare system, Neweyet al. [63℄ demonstrated in their empirial data that the degree of aggregationof the parasite population in the host population, desribed by the parameter k,varied from month to month. A model that inorporated this form of seasonalvariation in the parameter k would be of interest.Although we have illustrated numerial PTW solutions for two host-parasitereation advetion di�usion models we have said nothing about the stability ofthese solutions. It is worth striving to obtain an analyti expression to desribethe stability of emerging PTW solutions as well as studying the e�et of theboundary and initial onditions on the PTW speed observed.



Chapter 6Introdution: Funtionallygraded polymer foams
6.1 Bakground and motivationAn empirial method developed by Torres Sanhez et al. [93℄ for designing bonesa�olds uses aousti irradiation of a reating polyurethane foam to tailor theporosity pro�le within the �nal ured sample. The aim of this setion of thethesis is to present the �rst attempt at modelling mathematially some of themehanisms involved in this omplex reation. In Chapter 7 we look at the e�etof inertia on the growth of a single bubble within an Oldroyd B uid. This e�etwould be of interest if onsidering mass transfer of gas into the bubble, from thesurrounding liquid, by reti�ed di�usion [13℄. In Chapter 8 we are interested inthe diret e�et of the aousti pressure amplitude of the irradiating standingwave on the bubble growth dynamis of a single bubble. We then onsider theindiret e�et of the aousti pressure amplitude on the loal reation rate withinthe sample and the bubble distribution pro�les observed within a multibubbledistribution aross the sample. The aim is to ompare the results from themathematial model with the experimental observations of Torres Sanhez etal. [93℄ that as the pressure amplitude inreases aross the sample domain, theporosity inreases, that is the bubble size inreases.85



Chapter 6 866.1.1 Tissue EngineeringGenerally tissue engineering involves the ombination of living ells and a saf-fold or support struture [29℄. Progenitor ells are seeded onto the sa�old whihthen slowly degrades as the tissue struture grows [12℄. This tehnique an beused to replae portions of, or whole tissues, for example, bone, blood vessels,bladder et [29,40,55℄. In this partiular ase we are interested in the produtionand struture of bone sa�olds whih will ultimately be used to replae bonetissue. Bone is a natural struture exhibiting a funtionally graded porosity,being fairly dense on the periphery and more porous at its entre [8℄. This het-erogeneous porosity is one of the fators giving this struture its strength andfuntionality, and in the area of tissue engineering it is a feature we would like tomimi [93℄. The best grafts and bone substitutes are thought to be those withbiomehanial and biologial properties most losely resembling the non-uniformgraded porosity distribution observed in natural bone [8℄. Due to ongoing si-enti� advanes it has been possible to fabriate tissues in the laboratory byombining the use of engineered sa�olds and stem ells with one of the aimsof tissue engineering being the inorporation of added funtionality and biome-hanial stability into these laboratory grown tissues in order to improve thesuess rate for transplantation [29℄.To ahieve the goal of tissue reonstrution, sa�olds must meet some spei�requirements. There needs to be a balane between larger and smaller pores inthe sa�old due to the nature of the roles played by di�erent pore sizes. Largerpores promote better ow transportation of nutrients and metaboli waste whilesmaller pores provide suÆient surfae area for ell attahment and prolifera-tion [12℄. Biodegradability is often an essential fator sine sa�olds shouldpreferably be absorbed by the surrounding tissues without the neessity of asurgial removal [29℄.A number of di�erent approahes to the design and manufature of bone



Chapter 6 87sa�olds have been reported [12℄ with some authors using rapid prototyping (RP)to produe novel sa�olds with ontrollable porosity and hannel size that an beahieved by varying proessing parameters [105℄. Tai et al. [90℄ studied the e�etof polymer hemial omposition, moleular weight and proessing parameters(inluding temperature and pressure) on the �nal pore size and struture anddemonstrated that the pore size and struture of the superritial sa�olds anbe tailored by areful ontrol of proessing onditions.The method employed by Torres-Sanhez et al. [93℄ that we seek to modelinvolves another empirial approah but this time an aousti standing wave isused to irradiate a sample of polymerising polyurethane foam with the aim oftailoring the porosity pro�le of the �nal sample to a partiular porosity spei-�ation. Torres-Sanhez et al. [93℄ demonstrated experimentally a relationshipbetween the pressure amplitude of the irradiating sound wave and the porosityvalue at a given position in the sample. One of the aims of this thesis is to pro-vide the �rst stages of a mathematial model of this experiment so that in thefuture sa�olds may be produed with stritly de�ned and ontrolled porositypro�les.6.1.2 Polymer foamsA polymeri foam is a partiular example of a visoelasti, heterogeneous ma-terial and suh materials have been used widely in a number of �elds inludingbiomaterials, tissue engineering and strutural mehanis [93℄. The polymerfoam is omposed of at least two phases, one solid plus voids whose size dis-tribution an be varied [93℄. They possess a number of properties that makethem partiularly suited to the �eld of tissue engineering inluding their lowdensity, hemial inertness, high wear resistane, biodegradability and thermaland aousti insulation.Similar to natural bone, the struture of a foam is haraterised by the dis-



Chapter 6 88tribution, size and wall thikness of ells in the bulk material. That distributionhas a diret orrelation with the mehanial properties of the solid foam. There-fore, when a foamed material's behaviour needs to be engineered, its ellularstruture is an obvious starting point. Torres-Sanhez et al. [93℄ demonstratedthat it was possible to tailor the porosity pro�le of a polymerising polyurethanefoam by altering its position within an aousti �eld. Although this was doneempirially, they managed to identify `sensitive stages' during the reation whereultrasound was observed to have an impat and hypothesized that this was dueto the fat that di�usion and onvetion were predominant e�ets during thesestages.The polymerisation reation is very omplex involving bubble dynamis,evolving rheology [26,58℄, two phases, reti�ed di�usion [13,14,22,23,51℄, Bjerk-nes fores [3, 49℄ and Ostwald ripening [54, 75℄ to name but a few. In additionwe want to add ultrasoni irradiation and model its e�ets as well.Ultrasoni irradiation of liquids has been shown experimentally to resultin a number of unusual phenomena inluding reti�ed di�usion and inreasedreation rates [31, 44, 92℄. We seek to strip the problem bak by making manyassumptions and onentrate on the bubble evolution, post nuleation, in avisoelasti uid and ignore the e�ets of reti�ed di�usion, Bjerknes foresand Ostwald ripening. We look at the diret e�et of the ultrasound pressureamplitude on the long term growth of the bubble and not on its osillatory e�ets.We do, however, seek to inorporate the e�ets of inertia into an existing modelin order to provide a tool to investigate this osillatory behaviour in the future.A number of artiles in the literature doument the empirial e�et ob-served of ultrasound enhaning the polymerisation reation rate. Prie et al. [69℄demonstrated an inreased polymerisation reation rate when a reating polymersample was irradiated with ultrasound and further demonstrated that inreas-ing the intensity of the ultrasound lowered the reation time. Although their



Chapter 6 89work was inonlusive they suggest that this e�et is due to the `extremelyeÆient mixing of the omponents enhaned by ultrasound'. Torres-Sanhezet al. demonstrate a similar e�et through their experimental tehnique usingresistivity measurements to monitor reation progression [92℄.6.1.3 Bubble dynamisMuh work has been done to study and model the nuleation [28, 76, 88℄ andsubsequent single bubble growth [7, 24{28, 66, 77, 88, 89, 91, 100℄ in visoelastimaterials inluding polymer foams, both reating [26℄ and non-reating [24{27, 106℄. The e�ets of ultrasound on nuleation [107℄ and subsequent growthof a single bubble via reti�ed di�usion in an aqueous uid [50, 53, 61, 70, 71℄have been studied extensively. Bubble distributions have been studied withan aim to predit and desribe heterogeneous porosity pro�les in polymer foamsamples [11,66,76,77℄ but no attempt has been made to tailor the pro�le diretly.The e�et of an aousti �eld on bubble populations within a non-visous liquidwas studied numerially in [49℄ but we are not aware of any attempt to modelanalytially the e�et of an aousti standing wave on a multi bubble distributionin a visoelasti liquid. Numerial studies have been arried out on the evolvingbubble distributions in a polymer foam in the absene of aousti irradiation [24,25, 106℄. Empirial studies have been done on the e�et of ultrasound on thenuleation of bubbles in a polymer foam and the resulting �nal bubble sizedistributions [107℄ but here we seek to look at the e�et of ultrasound on bubblegrowth post nuleation and assume homogeneous bubble nuleation through thesample.There have been a number of studies of the nuleation and subsequent growthof a single spherial gas bubble in a surrounding uid due to di�usion of gasthrough the uid and into the bubble. Amon and Denson [4℄ proposed a ellmodel for the analysis of bubble growth in an expanding polymer foam with eah



Chapter 6 90ell ontaining a spherial gas bubble surrounded by a onentri liquid envelopeontaining a limited supply of gas. Their model takes aount of heat transferand inertia and ouples bubble growth to the hanging foam density. Street etal. [89℄ and Ting et al. [91℄ both used the Oldroyd B uid model to desribe thevisoelastiity of the surrounding uid layer whih they assumed to be in�nite.This resembles the ase of early time foaming where bubble size is small andbubbles are spaed at large distanes from eah other, remaining spherial andnot interfering with eah other. They demonstrated that the visoelastiity ofthe melt as well as the di�usivity of the gas determined the initial growth rate.Arefmanesh et al. [7℄ onsidered the ase of a spherial gas bubble surrounded bya �nite shell of visoelasti uid whih they modelled using the upper onvetedMaxwell model. They introdued a Lagrangian transformation to desribe themoving bubble/liquid interfae and substituted a onentration potential to aidnumerial solution. Their model serves to desribe the ase where a large numberof bubbles exist in lose proximity to eah other whih we would expet in anexpanding polymer foam. Other authors [76, 77℄ looked at bubble growth inpolymer foams in onjuntion with nuleation and onluded that the mostsensitive parameters to �nal bubble size distribution are those assoiated withnuleation. They onlude that while growth dynamis an alter the distributionthis is only a seondary e�et. Feng [28℄ also looks at the e�et of nuleationbut proposes a model for heterogeneous nuleation and its e�et on the �nalbubble size distribution. Venerus [99, 100℄ developed and evaluated transportmodels of di�usion indued bubble growth in visous liquids of both �nite andin�nite extent and ompared results with Amon and Denson [4℄ and Arefmaneshet al. [7℄. Both models agree at early stages of the growth proess and di�erat later stages when the equilibrium bubble radius is approahed for the �niteliquid model.Everitt et al. [26℄, building on the above work, proposed a model to ap-



Chapter 6 91ture the hanging uid rheology and gaseous phase for a reating polymer foam.The evolving uid is treated as a multimode Oldroyd B system and the La-grangian transformation is used to desribe the moving bubble boundary witha onentration potential proposed by [7℄ employed to aid numerial solutionnear to the liquid/gas boundary. They inlude an additional equation to modelgas produed by the reation and propose additional terms for the di�usion andmass onservation equations to aount for the reation e�ets on gas onentra-tion. This reating polymerisation model ontains the majority of the elementsthat we needed to model the experimental polymerisation reation that TorresSanhez et al. had published [93℄, exept for the appliation of ultrasoni irra-diation. We, therefore, settled on this model as a foundation for the work inthis setion of the thesis and manipulate it to model the additional ultrasounde�et.6.2 OverviewThis setion of the thesis examines two di�erent e�ets of ultrasoni irradiationon the bubble size distribution in an expanding polymer foam. Chapter 7 seeks tomodel the e�et of inertia on a non-reating polymer foam, and inner and outerleading order asymptoti solutions are proposed. Chapter 8 presents the �rstmathematial model of the experiment arried out in the laboratory by Torres-Sanhez et al. [93℄, with an aim to illustrate mathematially the same qualitativee�ets of an irradiating aousti signal on the porosity distribution of the �nalpolymerised sample, as observed in the laboratory [93℄, and to asertain themagnitude/signifane of this e�et, in isolation. The hapters may be summedup as follows:Chapter 7 presents and expounds a model proposed by Everitt et al. [26℄ fora non-reating polymer foam. The original model assumed the e�et of inertia tobe negligible and did not inlude an aousti irradiation term. The non-reating



Chapter 6 92model is re-derived to inlude inertia as well as an additional term to desribethe aousti pressure amplitude. An assumption of instantaneous di�usion isthen made in order to partially deouple the system and an asymptoti analysisis performed so that a leading order outer and �rst order inner solution arepresented. The dependene of the auray of the inner asymptoti solutionon the surrounding uid volume is disussed and di�erent approximations areproposed for di�erent regimes. An analyti leading order and �rst order innersolution are presented for the ase when this uid volume is large and tendingto in�nity. In the ase when it is not, an approximate analyti form is suggestedthat minimises the error.Chapter 8 introdues and builds on the model derived by Everitt et al. [26℄for the expanding single bubble in a free-rising, reating polymer foam. Thisnumerial model is employed to follow the evolution of a single bubble in agiven parameterised system. We look at the indiret e�et of ultrasound ir-radiation on the loal reation rate of the sample and the ombined e�et ofbubble-bubble interation to explain the heterogeneous bubble distributions ob-served experimentally in [93℄. Details of the experimental set up published byTorres-Sanhez et al. [93℄ are presented and parameter values are derived. Aone dimensional multi bubble system is onsidered and rules for bubble-bubbleinterations are proposed. As opposed to Chapter 7, the e�et of ultrasoundis modelled indiretly through its suggested e�et on the reation rate [69, 92℄.The ultrasound signal is modelled by a standing wave funtion and the loalisedpressure amplitude is then alulated. This means that single bubble evolutionat eah spatial point through the sample an be alulated by assuming thatthe spatially distributed reation rate aross the domain diretly orrelates withthe loal pressure amplitude.



Chapter 6 936.3 Key ontributionsThe prinipal original ontributions of the author for this seond setion of thethesis may be summarised:� A new mathematial model is derived to desribe single bubble growth ina free rising, non-reating polymer foam irradiated by an aousti standingwave and inorporating the e�ets of inertia in Chapter 7.� Leading and �rst order asymptoti inner solutions in the temporal domainare presented, in Setion 7.5, for the ase of instantaneous di�usion. Twosenarios are disussed; the �rst desribes the ase when the uid volumesurrounding the bubble is large ompared to the bubble volume and theseond desribes the ase when both volumes are of the same order.� In Setion 7.6 the leading order asymptoti outer solution, for the ase ofinstantaneous di�usion, is desribed analytially using the �rst iterationof the Piard iteration method. A numerial solution for the leading orderouter equation is also presented.� A �rst mathematial model of an experiment desribed by Torres-Sanhezet al. [93℄ is proposed in Setions 8.3 to 8.6. The model isolates the e�etof the aousti pressure amplitude on the loal reation rate of the sampleand an be used to illustrate di�erent heterogeneity pro�les for �nal bubbledistributions through the sample domain, given an initial homogeneousbubble distribution. A relationship between intial bubble spaing throughthe sample and the resultant �nal heterogeneity of the sample is disussed.



Chapter 7A mathematial model of thegrowth of a bubble in anon-reating polymer foaminorporating inertia
A paper written by Everitt et al. [26℄ on bubble dynamis in reating and non-reating polymer foams presents two models for individual bubble expansion inuring polymer foams. The �rst model is for a non-reating solidifying polymerfoam with onstant elasti modulus; the seond models the gas prodution dueto the reation and the evolving rheology of the visoelasti material in thereating polymer foam. Everitt et al. [26℄ neglet the e�ets of inertia sineparameterisation of the system results in a very small Reynolds number, andtheir model does not inlude an aousti foring term.In this hapter the non-reating model proposed by Everitt et al. [26℄ isextended to inlude inertia e�ets and this original derivation is desribed indetail in Setion 7.2. Also inluded in this model is a term to aount for thee�ets of a standing aousti wave insonifying the polymerising sample. Wederive inner and outer asymptoti solutions in Setions 7.5 and 7.6, respetively.The model equations are derived by onsideration of an Oldroyd B polymeriuid [103℄. One the governing equations, initial and boundary onditions are94



Chapter 7 95obtained, an instantaneous di�usion assumption is made in order to partiallydeouple the system whih is then probed in an e�ort to derive an approximateanalyti solution using asymptoti expansions. An inner and outer asymptotisolution are proposed; the former to �rst order and the latter to leading order.Two di�erent regimes are investigated for the inner asymptoti solution. Inthe �rst ase the bubble volume is muh smaller than the surrounding uidvolume whereas in the seond ase these two volumes are assumed to be ofthe same order. The �rst instane may desribe the situation at early timein the polymerising sample when bubbles have just nuleated and are at largedistanes from eah other so that they are e�etively surrounded by an in�niteuid volume. We may assume that the seond ase desribes a regime where thebubbles are larger and more losely paked so that the uid volume availableto eah individual bubble is redued. We disuss the auray of the �rst orderasymptoti inner solutions in eah regime before deriving a leading order analytisolution for the outer temporal variable. A numerial sheme is produed to testthe auray of the analyti solution and the limitations of the analyti solutionare disussed before using the numerial sheme to predit the e�ets of hangingvisosity and aousti pressure amplitude on the outer solution.7.1 Desription of non-reating modelIn the non-reating ase a polymeri liquid ontaining a foaming agent is sub-jeted to a sudden redution in pressure and foaming ommenes as the foamingagent omes out of solution [26℄. This is a two phase system with the foamonsidered to be a system of idential, spherial bubbles of gas, eah surroundedby a layer of visoelasti uid ontaining a quantity of dissolved gas. The modelonerns a single bubble with initial volume, 4�u0=3 = 4�R3=3, with bubble ra-dius R and initial gas pressure pg0. The uid surrounding the bubble is assumedto be inompressible, visoelasti and ontaining a limited supply of dissolved



Chapter 7 96ideal gas. The initial bubble volume is the volume when the bubble gas pres-sure is pg0 and is larger than the nuleation volume. It is further assumed thatthe bubble undergoes spherially symmetri expansion driven by the pressuredi�erene aross the bubble-uid interfae, (pg0 � pa), where pa is the ambientgas pressure. The onditions are isothermal and the bubble-uid interfae isin thermodynami equilibrium [26℄. First, the dynamis of the uid layer areonsidered; the system is modelled using the Oldroyd B system of equations fora visoelasti medium [103℄. Subsequently, the gaseous phase, its onentrationin, and di�usion through, the uid, and its transport aross the bubble-uidinterfae are modelled.7.2 Liquid phaseA solution of polymer moleules in a Newtonian liquid exhibits both visousand elasti behaviour [104℄ and an be modelled as an Oldroyd B uid [103℄.This is derived by onsidering how polymers behave at the mirosopi level andthen saling upwards to predit the marosopi e�ets. The general governingequations are r � q = 0; (7.1)�pI + � �rq+ (rq)T �+G(A� I) = �; (7.2)���q�t + q �rq� = r � �; (7.3)�A�t + (q �r)A�A �rq� (rq)T �A = �1� (A� I): (7.4)where q is the veloity vetor, � is the stress tensor, � is the solvent visosity, � isthe uid density, G is the relaxation modulus assoiated with the polymer stress,A the orientation tensor, I the identity matrix and � represents the relaxationtime of a polymer moleule.Substituting for q = qrer+q�e�+q�e� into the ontinuity equation (7.1) and
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Figure 7.1: Shemati illustrating an expanding single bubble in a �nite liquidvolume. The bubble radius is denoted by R(t) and the bubble gas pressure bypg(t). The gas onentration at the bubble surfae is (R; t); the onentrationpro�le within the liquid, (r; t) depends on time t and the radial o-ordinate rwhere the origin is at the bubble entre. The onentration at the outer uidboundary is given by the onstant 0.



Chapter 7 98expressing the divergene of the veloity vetor, q, in spherial polar o-ordinatesgives r � q = 1r2 ��r (r2qr) + 1r sin � ��� (sin �q�) + 1r sin � �q��� ; (7.5)= 1r2 ��r (r2qr); (7.6)sine the spherially symmetri bubble expansion means q� = q� = 0 and qr isdependent on r and t only. Therefore,��r (r2qr) = 0 for r � R; (7.7)where R is the radial o-ordinate of the bubble-uid interfae. Integration withrespet to r gives r2qr = C where C is an arbitrary onstant. Letting qr(R) = _Rgives C = _RR2 and, q = qrer; (7.8)= _RR2r2 er: (7.9)In order to substitute for q in equation (7.2) the gradient of this �rst orderartesian tensor is evaluated as [41℄rq = 0BB� �qr�r 1r ��qr�� � q�� 1r sin � �qr�� � q�r�q��r 1r ��q��� + qr� 1r sin � ��q��� �� ot �r q��q��r 1r ��q��� � 1r sin � �q��� + qrr + ot �r q� 1CCA : (7.10)As above q� = q� = 0, qr is dependent on r and t only and thereforerq = (rq)Tso that rq+ (rq)T = 2 _RR2r3 0� �2 0 00 1 00 0 1 1A : (7.11)Equation (7.2) an now be expanded as� = 0� �p 0 00 �p 00 0 �p 1A + 2� _RR2r3 0� �2 0 00 1 00 0 1 1A +G0� Arr 0 00 A�� 00 0 A�� 1A ;(7.12)



Chapter 7 99sine in the spherially symmetri expansion all the o�-diagonal omponents ofthe orientation tensor A are equal to zero and A�� = A��. The only non-zeroomponents of the stress tensor � are,�rr = �p� 4� _RR2r3 +GArr; (7.13)��� = �p + 2� _RR2r3 +GA��; (7.14)��� = ���: (7.15)Having determined �, the momentum equation (7.3) an be takled. The indi-vidual omponents of the divergene of the seond order artesian tensor � inspherial polar o-ordinates are [41℄(r � �)r = 1r2 ��r �r2�rr�+ 1r sin � ��� (sin ���r) + 1r sin � ���r�� � ��� + ���r ;(r � �)� = 1r2 ��r �r2�r��+ 1r sin � ��� (sin ����) + 1r sin � ������ + ��rr � ot �r ���;(r � �)� = 1r2 ��r �r2�r��+ 1r sin � ��� (sin ����) + 1r sin � ������ + ��rr + ot �r ���;so that in the spherially symmetri ase the only non-zero omponent of thedivergene is the radial one. Substituting for �rr, ��� and ��� gives(r � �)r = 1r2 ��r �r2�rr�� 2���r ;= 1r2 �2r�rr + r2 ��r�rr�� 2���r ;= 2r (�rr � ���) + ��rr�r ;= 2r  �p� 4� _RR2r3 +GArr + p� 2� _RR2r3 �GA��!+ ��rr�r ;from (7.13) and (7.14). That is(r � �)r = 2r  �6� _RR2r3 +G(Arr � A��)!+ ��r  �p� 4� _RR2r3 +GArr! ;= �12� _RR2r4 + 2Gr (Arr � A��)� �p�r + 12� _RR2r4 +G�Arr�r ;= ��p�r +G�Arr�r + 2Gr (Arr � A��): (7.16)



Chapter 7 100Using (7.9) and (7.10), the inertia term on the left hand side of equation (7.3)is given by���q�t + q �rq� = � ��t  _RR2r2 ! er + _RR2r2 ��qr�r � er! ; (7.17)= � �RR2 + 2R _R2r2 + _RR2r2  �2 _RR2r3 !! er; (7.18)= � �RR2 + 2R _R2r2 � 2 _R2R4r5 ! er: (7.19)Equation (7.3) an therefore be stated as,� �RR2 + 2R _R2r2 � 2 _R2R4r5 ! = ��p�r +G�Arr�r + 2Gr (Arr � A��): (7.20)The boundary onditions require ontinuity of stress to be applied at the innerand outer uid boundaries, and this is disussed in the following setion.7.2.1 Lagrangian referene frameThe inner and outer boundary onditions are to be de�ned at the bubble-uidinterfae and the outer uid layer, respetively (see Figure 7.1). In the urrento-ordinate system these interfaes are both moving with time, and therefore,would need to be updated at onseutive time points. In order to simplifythe analyses, both numerial and analytial, the system is transformed to theLagrangian volume o-ordinate system. This an be done sine the uid volumeis onserved. In the Lagrangian volume sheme the frame of referene moveswith the bubble-uid interfae. Due to the spherially symmetri expansionwe only need onsider the radial o-ordinate in the analysis. The Lagrangianvolume transformation is desribed below and illustrated in Figure 7.2.Sine the uid volume is onserved then 4� �r3f;0 � r3b;0� =3 = 4� �r3f;t � r3b;t� =3.Letting this onserved uid volume equal 4�X=3 we an restate the equationsand variables using the general uid volume variable x whih ranges from x = 0
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Figure 7.2: Shemati demonstrating the properties of the Lagrangian volumetransformation. The unit ell is made up of the bubble volume and the uidvolume. At t = 0 the bubble radius is rb;0 and the unit ell radius is rf;0 so thatthe uid volume is 43� �r3f;0 � r3b;0�. At all subsequent time points, (0 < t < tend),this uid volume is onserved so that �r3f;t � r3b;t� = � �r3f;0 � r3b;0� for all t. In thisway the frame of referene is given by the bubble-uid boundary and boundaryonditions do not need to be updated at onseutive time points.t = 0 0 < t < tendBubble volume 43�r3b;0 43�r3b;tTotal volume 43�r3f;0 43�r3f;tFluid volume 43� �r3f;0 � r3b;0� 43� �r3f;t � r3b;t�Table 7.1: Volumes assoiated with the spherially symmetri bubble expansionin a �nite uid volume as illustrated in Figure 7.2



Chapter 7 102at the bubble surfae to x = X at the outer uid volume limit. We an do thissine the variables are symmetri in the � and � diretions and depend on rand t only. If we let the general bubble volume 4�u(t)=3 = 4�R(t)3=3 then ata generi volume o-ordinate 4�u=3 + 4�x=3, we an determine the assoiatedradial position in the uid relative to the origin at the entre of the bubble as4�r3=3 = 4�(u+ x)=3, or simply r = (u+ x) 13 . This transformation means thatwe an follow the bubble-liquid interfae as the bubble expands so our bound-ary ondition at the bubble surfae does not have to be realulated at eahsuessive time point.Transformation of (7.20) to the Lagrangian volume o-ordinate, x, where�=�r = 3r2�=�x, results in� �RR2 + 2R _R2r2 � 2 _R2R4r5 ! = ��p�x3r2 +G�Arr�x 3r2 + 2Gr (Arr � A��); (7.21)Division by 3r2 and substitution for the following relations,_u = 3R2 _R; (7.22)_u2 = 9R4 _R2; (7.23)�u = 3( �RR2 + 2R _R2); (7.24)r = (x + u) 13 ; (7.25)into (7.21) yields,�" �u9(x+ u) 43 � 2 _u227(x+ u) 73 # = ��p�x +G�Arr�x + 2G3(x+ u)(Arr � A��): (7.26)Integration with respet to x gives,�"� �u3(x+ u) 13 + _u218(x+ u) 43 # = �p(x) +GArr + 23G Z x (Arr � A��)(x0 + u) dx0 + C1;(7.27)where C1 is an arbitrary onstant of integration to be determined by applia-tion of the boundary onditions. These boundary onditions are derived by



Chapter 7 103onsidering the stresses ating on eah boundary, that is, at the bubble/uidinterfaeisotropipressure + Newtonianstress + polymerstress = bubblepressure + surfaetension ;and at the outer uid surfae we haveisotropipressure + Newtonianstress + polymerstress = atmospheripressure + ultrasoundpressureexitation :This results in the following two boundary onditions, at x = 0 and x = X, inthe Lagrangian frame,�p(0)� 4� _u3u +GArr(0) = �pg + 2Su 13 ; at x = 0; (7.28)�p(X)� 4� _u3(X + u) +GArr(X) = �pa � pu; at x = X; (7.29)where S is the surfae tension, pg is the bubble gas pressure, X is the Lagrangianvolume o-ordinate for the outer uid boundary and pu is the pressure amplitudeof the applied ultrasound signal. Evaluation of (7.27) at x = 0 and x = X gives,23G Z X0 (Arr � A��)x0 + u dx0 = � � �u3(X + u) 13 + _u218(X + u) 43 + �u3u 13 � _u218u 43 !+p(X)� p(0)�GArr(X) +GArr(0); (7.30)and substitution for p(0) � GArr(0) and p(X) � GArr(X) from boundary on-ditions (7.28) and (7.29) respetively, gives the de�nite integral23G Z X0 (Arr � A��)x0 + u dx0 = � � �u3(X + u) 13 + _u218(X + u) 43 + �u3u 13 � _u218u 43 !� 4� _u3(X + u) + pa + pu + 4� _u3u � pg + 2Su 13 : (7.31)Rearranging (7.31) gives the momentum equation,43� _u�1u � 1X + u� + �" �u3  1u 13 � 1(X + u) 13 !� _u218  1u 43 � 1(X + u) 43 !#= pg � pa � pu + 23G Z X0 (Arr � A��)(x0 + u) dx0 � 2Su 13 : (7.32)



Chapter 7 104The only remaining unknown, in the Oldroyd B system (7.1) - (7.4), is theorientation tensor A whih is desribed by (7.4). The total derivativeDADt = �A�t + (q �r)A; (7.33)however, in the Lagrangian frame, redues (7.4) to�A�t = A �rq + (rq)T �A� 1� (A� I); (7.34)sine the onvetion term (q �r)A is now zero. Substitution forrq from (7.10)therefore,0� �Arr�t 0 00 �A���t 00 0 �A���t 1A = _RR2r3 0� �2 0 00 1 00 0 1 1A0� Arr 0 00 A�� 00 0 A�� 1A+ _RR2r3 0� Arr 0 00 A�� 00 0 A�� 1A0� �2 0 00 1 00 0 1 1A�1� 0� Arr � 1 0 00 A�� � 1 00 0 A�� � 1 1A ;so that the rate equations for Arr and A�� are desribed by�Arr�t = �4 _RR2r3 Arr � 1� (Arr � 1); (7.35)�A���t = 2 _RR2r3 A�� � 1� (A�� � 1): (7.36)Transformation to the Lagrangian o-ordinate system gives the evolution equa-tions �Arr�t = � 4 _u3(u+ x)Arr � 1� (Arr � 1); (7.37)�A���t = 2 _u3(u+ x)A�� � 1� (A�� � 1): (7.38)Subtrating (7.37) from (7.38) gives the �rst normal di�erene rate equation�(Arr � A��)�t = 2 _u3(u+ x) [(Arr � A��)� 3Arr℄� 1� (Arr � A��); (7.39)where the initial onditions are given by Arr = A�� = 1 everywhere at t = 0.



Chapter 7 1057.3 Gaseous phaseNext we onsider the gas onentration in the liquid, its di�usion through theuid and its transport aross the bubble-uid interfae. The uid initially on-tains a �nite onentration, 0, of dissolved gas, distributed homogeneouslythroughout the layer. For t > 0, gas is transported aross the bubble-uid inter-fae at a rate governed by Henry's law [2℄. This sets up a onentration gradientthrough the liquid layer and gas di�uses through the liquid in the diretionof dereasing onentration gradient, aording to the di�usion equation [52℄.Henry's law relates the gas onentration at the bubble surfae, (x = 0), to thepressure inside the bubble, via(0; t)� 0 = (pg(t)� pg0)H; (7.40)where pg0 is the initial bubble gas pressure, pg(t) is the bubble gas pressure atsubsequent t > 0 and H is the Henry's law onstant. The gas onentration inthe uid, (x; t), is governed by the onvetion-di�usion equation [106℄ whih isderived from the assumption of mass onservation in the liquid, to give��t + q � r = r � (Dr); (7.41)where D is the di�usion oeÆient. In a spherially symmetri system, therefore��t + qr ��r = D 1r2 ��r �r2 ��r� ; (7.42)and in the Lagrangian frame the onvetion term disappears [7℄ to give��t = D(x+ u)� 233(x + u) 23 ��x �(x+ u) 233(x + u) 23 ��x� ; (7.43)= 9D ��x �(x+ u) 43 ��x� : (7.44)The initial gas onentration throughout the liquid layer is (x; 0) = 0. Asthe bubble expands for t > 0 the pressure drops and a steep onentration gradi-ent is set up in the thin boundary layer surrounding the bubble and propagates



Chapter 7 106through the uid ausing gas to di�use into the bubble. This steep onen-tration gradient at early t makes numerial analysis diÆult and onsequentlya onentration potential �(x; t), suh that ��=�x =  � 0, is introdued tooverome this problem [26℄; the di�usion of this potential is��t ����x� = 9D ��x �(x+ u) 43 ��x ����x�� :Changing the order of integration��x ����t � = 9D ��x �(x+ u) 43 �2��x2�and integrating with respet to x the di�usion equation an now be writen as���t = 9D(x+ u) 43 �2��x2 ; (7.45)with ��=�x = (pg � pg0)H at the bubble surfae. If we assume that there is notransport aross the outer uid boundary (ensuring that gas supply is limited)then �2�=�x2 = 0 at the outer uid boundary. The bubble volume, u, an berelated to the bubble gas pressure pg and the onentration potential at thebubble surfae, �(0; t), by appliation of the priniple of mass onservation.From the ideal gas law [2℄, where Rg is the universal gas onstant and T is thetemperature, then from (7.45)ddt � pguRgT � = 9Du 43 �2��x2 ����x=0 ;= ���t ����x=0 :Integrating with respet to time givespgu = RgT�(0; t) + C1; (7.46)and appliation of initial onditions, u(0) = u0; pg(0) = pg0; �(0; 0) = 0 retrievesthe onstant of integration, C1, so that,pgu = pg0u0 +RgT�(0; t): (7.47)



Chapter 7 107The system is now fully desribed by (7.32), (7.37), (7.39), (7.45) and (7.47).Non-dimensionalisation of the governing equations and boundary onditions re-sults in the following system,43 _u�1u � 1(X + u)� +R"�u 1u 13 � 1(X + u) 13 !� _u26  1u 43 � 1(X + u) 43 !#= De(Pg � Pu) + 23 Z X0 (Arr � A��)(x + u) dx� 1�u 13 ; (7.48)�Arr�t = � 4 _u3(x + u)Arr � (Arr � 1); (7.49)�A���t = 2 _u3(x+ u)A�� � (A�� � 1); (7.50)(pa + (pg0 � pa)Pg)pg0 u = (1 + �(0; t)); (7.51)���t = N(x + u) 43 �2��x2 ; (7.52)where N = 9D�=u2=30 , R = �u2=30 =3�� , De = (pg0�pa)�=�, Pg = (pg�pa)=(pg0�pa), Pu = pu=(pg0�pa),  = G�=�, � = �u1=30 =2S� and the boundary onditionson �(x; t) are, ���x ����x=0 = �(pg0 � pa)pg0 (Pg � 1); (7.53)�2��x2 ����x=X = 0; (7.54)where � = RgTH. The non-dimensional initial onditions are,u(0) = 1; Pg(0) = 1; Arr(x; 0) = 1; A��(x; 0) = 1; �(0; 0) = 0:For details of the non-dimensionalisation see Appendix C; individual parametervalues are listed in Table C.1.7.4 Instantaneous di�usion approximationIn order to simplify the analysis the equation in �(x; t) an be deoupled byassuming instantaneous di�usion. In other words, by assuming that N is large



Chapter 7 108so the spatial derivative dominates in (7.52) then�2��x2 = 0; (7.55)and the boundary ondition given by (7.53), at the bubble surfae now appliesthroughout the domain. Considering the mass onservation of the gas we haveddt � pguRgT � = � ddt ((x; t)X) ; (7.56)where (x; t) is the moles of gas per unit volume, X is the uid volume andthe minus sign aounts for the fat that as the gas onentration in the uiddereases, its onentration in the bubble inreases. Integrating givespguRgT = �(x; t)X + Ĉ; (7.57)where Ĉ is a onstant of integration retrieved by appliation of the initial on-dition pg0u0RgT = �0X + Ĉ; (7.58)so that pguRgT = �(x; t)X + pg0u0RgT + 0X: (7.59)Substituting for ��=�x = (x; t) � 0 and non-dimensionalising as desribed inAppendix C we obtain�pa + (pg0 � pa)Pgpg0 � u = 1� ���xX: (7.60)Applying the boundary ondition (7.53), whih is now valid throughout thedomain, we have�pa + (pg0 � pa)Pgpg0 � u = 1 + �pg0 � papg0 (1� Pg)X: (7.61)By rearranging for Pg, (7.61) an be written asPg = A+Bu+ �Xu+ �X ; (7.62)



Chapter 7 109where A = pg0=(pg0 � pa) and B = �pa=(pg0 � pa). In the following setion weemploy multisale analysis and asymptoti expansions to investigate the e�etof the inertia related term R on the inner and outer solutions. We, therefore,use asymptoti expansions to derive �rst an inner solution (small time) for timest = O(�) and then onstrut an outer solution (large time) where � is the fatorused to streth the inner time variable.7.5 Asymptoti analysis: Inner solutionThere is a brief time whih we assume to be O(�) in whih u rapidly inreasesfrom its initial value to a value that is ommensurate with the outer solutionderived in the following setion 7.6. In this phase of the bubble growth theinertia term dominates. To allow us to study this behaviour we streth time byintroduing the inner variable, T = t� ;where � is a saling onstant suh that 0 < � � 1. For larity we introdue thefollowing notation for the inner solutionU(T; �) = u(t; �);AR(x; T; �) = Arr(x; t; �);AQ(x; T; �) = A��(x; t; �);A(x; T; �) = (Arr � A��)(x; t; �);P (T; �) = Pg(t; �);�̂(x; T; �) = �(x; t; �):



Chapter 7 110As before we assume instantaneous di�usion so that the inner governing equa-tions are, from (7.48), (7.49), (7.50), (7.62) and (7.61),�43 _U � 1U � 1X + U�+R �U  1U 13 � 1(X + U) 13 !� _U26  1U 43 � 1(X + U) 43 !!= �2�De(P � Pu) + 23 Z X0 A(x + U)dx� 1�U 13 � ; (7.63)�AR�T = �43 _U(x+ U)AR� �(AR� 1); (7.64)�AQ�T = 23 _U(x + U)AQ� �(AQ� 1); (7.65)P = A +BU + �XU + �X ; (7.66)�̂ = �pg0 � papg0 (P � 1)X: (7.67)We substitute for inner expansions of the form,U(T; �) = U0(T ) + �U1(T ) +O(�2); (7.68)AR(x; T; �) = AR0(x; T ) + �AR1(x; T ) +O(�2); (7.69)AQ(x; T; �) = AQ0(x; T ) + �AQ1(x; T ) + O(�2); (7.70)A(x; T; �) = A0(x; T ) + �A1(x; T ) +O(�2); (7.71)P (T; �) = P0(T ) + �P1(T ) +O(�2); (7.72)



Chapter 7 111and proeed by making the appropriate Taylor series expansions where neessaryto derive the momentum equation,43� � _U0 + � _U1�� 1U0 �1� �U1U0 �� 1X + U0 �1� �U1(X + U0)��+R(� �U0 + � �U1� 1U 130 �1� �U13U0�� 1(X + U0) 13 �1� �U13(X + U0)�!�� _U0 + � _U1�26  1U 430 �1� 4�U13U0 �� 1(X + U0) 43 �1� 4�U13(X + U0)�!9>=>;= �2 �De(P0 + �P1 � Pu) + 23 Z X0 (A0 + �A1)x + U0 �1� �U1(x+ U0)� dx� 1�U 130 �1� �U1U0 �#+O(�5): (7.73)Colleting together powers of � givesR �U0 1U 130 � 1(X + U0) 13 !� _U206  1U 430 � 1(X + U0) 43 !!+� "43 _U0� 1U0 � 1X + U0� +R �U1 1U 130 � 1(X + U0) 13 !� �U0U13  1U 430 � 1(X + U0) 43 !+ 2 _U20U19  1U 730 � 1(X + U0) 73 !� _U0 _U13  1U 430 � 1(X + U0) 43 !!#+O(�2)= 0: (7.74)The rate equations for AR and AQ an be treated in a similar manner; startingwith the non-dimensionalised rate equation in AR(x; T ) we have�(AR0 + �AR1)�T = � 43(x + U0)( _U0 + � _U1)(AR0 + �AR1)�1� �U1(x+ U0)���(AR0 + �AR1 � 1) +O(�2); (7.75)



Chapter 7 112so that,�AR0�T + ��AR1�T =  � 4 _U0AR03(x + U0)!+� "� 43(x + U0)  _U0AR1 � _U0AR0U1(x+ U0) + _U1AR0!� (AR0 � 1)#+O(�2); (7.76)and�(AQ0 + �AQ1)�T = 23(x+ U0)( _U0 + � _U1)(AQ0 + �AQ1)�1� �U1(x+ U0)���(AQ0 + �AQ1 � 1) +O(�2); (7.77)giving�AQ0�T + ��AQ1�T =  2 _U0AQ03(x+ U0)!+� " 23(x + U0)  _U0AQ1 � _U0AQ0U1(x+ U0) + _U1AQ0!� (AQ0 � 1)#+O(�2); (7.78)The pressure and di�usion equations are given byP0 + �P1 = A +B(U0 + �U1) + �X(U0 + �U1) + �X +O(�2); (7.79)�̂0 + ��̂1 = �pg0 � papg0 (P0 + �P1 � 1)X +O(�2); (7.80)so that olleting powers of � together we haveP0 + �P1 = A +BU0 + �XU0 + �X + �� BU1U0 + �X � (A +BU0 + �X)U1(U0 + �X)2 � +O(�2);(7.81)�̂0 + ��̂1 = �pg0 � papg0 (P0 � 1)X + ���pg0 � papg0 P1X�+O(�2): (7.82)



Chapter 7 1137.5.1 Leading order solutionIf we assume that R � � then the leading order system, as desribed by (7.74),(7.76), (7.78), (7.81) and (7.82), is�U0 1U 130 � 1(X + U0) 13 ! = _U206  1U 430 � 1(X + U0) 43 ! ; (7.83)�AR0�T = �43 _U0(x+ U0)AR0; (7.84)�AQ0�T = 23 _U0(x + U0)AQ0; (7.85)P0 = A+BU0 + �XU0 + �X ; (7.86)�̂0 = �pg0 � papg0 P0X: (7.87)with initial onditions U0(0) = 1; AR0(x; 0) = 1; AQ0(x; 0) = 1; �̂0(0) = 0; P0(0) =1 and we designate _U0(0) = v, where we assume v > 0. Multiplying the mo-mentum equation (7.83) by U 430 (X + U0) 43 yields,�U0U0(X + U0)�(X + U0) 13 � U 130 �� _U206 �(X + U0) 43 � U 430 � = 0; (7.88)To enable an analyti solution, and sine we are looking at the early time evo-lution of the bubble, we make the assumption that U0 � X and equation (7.88)redues to �U0U0 � _U206 = 0: (7.89)Figure 7.3 shows that this approximation is a reasonable one for very large X,(> O(103)) however, for values ofX of the order used previously [26℄ (X = 53:6),this approximation is not very aurate. Therefore, we will study two regimes.In the �rst instane, the ase for large X is onsidered, sine a fully analytisolution is ahievable; the semi-analyti approah for smaller X is disussed inSetion 7.5.1.2.
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Figure 7.3: Plots of the leading order inner solution U0 versus the inner temporalvariable T illustrating the e�et of X on the validity of the approximate analytileading order solution. The �gures show the numerial solution (blue line) of(7.88) and the approximate numerial solution (green line) produed by (7.89)for two values of X. In (a)X = 50 and in (b) X = 1000. The initial ondition on_U0 is parameterised by v = 0:05. The plots demonstrate that the approximatesolution is only reasonable when X is large.



Chapter 7 1157.5.1.1 Case I: X � U0For X � U0 (7.89) an be transformed using U0(T ) = eaz(T ) to give�z + 5a6 _z2 = 0:Choosing a = 65 for onveniene results in the seond order, non-linear, ODE inz, �z + _z2 = 0: (7.90)Making another substitution, y = _z, redues this to the �rst order equationdydT = �y2; (7.91)whih an be integrated, as it is of separable type, and this leads toz = log jT + C2j+ C3;where C2 and C3 are arbitrary onstants of integration to be determined. HeneU0 = AjT + C2j 65 ; (7.92)where A = e 65C3 . Applying the initial ondition U0(0) = 1 allows the onstantA to be expressed in terms of C2 as follows,U0(0) = 1 = AjC2j 65 ;so that, A = jC2j� 65 ;and U0 = ����1 + TC2 ���� 65 (7.93)To determine the onstant of integration C2 we need an initial ondition on theveloity _U0, denoted by _U0(0) = v. The derivative,_U0 = 65C2 ����1 + TC2 ���� 15 ;



Chapter 7 116evaluated at t = 0 gives, 65C2 = v:Rearranging we have C2 = 6=5v and soU0 = ����1 + 5v6 T ���� 65 : (7.94)We assume that v is always positive, otherwise no bubble expansion would o-ur. Therefore, sine T � 0 we an drop the modulus requirement on (1 + 5vT=6)so that, U0 = �1 + 5v6 T� 65 ; (7.95)desribes the leading order inner solution for non-dimensional bubble volume U0given by initial onditions U0(0) = 1 and _U0(0) = v and assuming X � U0.Figure 7.4 illustrates the form of the leading order solution U0(T ), for a partiularinitial ondition parameter v. This leading order solution is parameterised byv only, and as v inreases so does the �nal volume U0 on the given domain.Next we turn to the zero order rate equations for the orientation tensorarising from (7.76) and (7.78)�AR0�T (x; T ) = � 4 _U03(x + U0)AR0(x; T );�AQ0�T (x; T ) = 2 _U03(x + U0)AQ0(x; T ):We look �rst at AR0 whih an be solved by separating variables to give,AR0(x; T ) = C(x)(x + U0)� 43 ;where C(x) is an arbitrary funtion of integration. Appliation of the initialonditions AR0(x; 0) = 1 and U0(0) = 1 givesAR0(x; T ) = 0� x+ 1x+ �1 + 5v6 T �651A 43 : (7.96)
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Figure 7.5: Sample plots for the inner solution forms (7.96), (7.97) and (7.98)for di�erent spatial values x given by (a), (b) and (), respetively. In this aseX � U0 with v = 0:01 and X = 1000. Green urve: x = 0, Red urve: x = 10,Blue urve: x = 100, Purple urve: x = 1000. The plots demonstrate thatas we move further from the bubble boundary at x = 0 the �rst normal stressdi�erene, (AR � AQ)0, tends to zero and is onstant in time.



Chapter 7 119order terms in (7.81) and (7.82) respetively and substituting for U0 to giveP0 = A+B �1 + 5v6 T � 65 + �X�1 + 5v6 T �65 + �X ; (7.99)�0 = �pg0 � papg0 XP0: (7.100)These funtions are shown in Figure 7.6 whih learly demonstrates that �0 isdiretly proportional to P0 in this partiular ase of instantaneous di�usion.

0 200 400 600 800 1000

0.96

0.97

0.98

0.99

1.

276.48

279.36

282.24

285.12

288.

T

P0

PSfrag replaements
� 0

P0Figure 7.6: Illustration of P0 (blue urve) and �0 (purple urve) versus the innerstrethed variable T for the ase of instantaneous di�usion with X � U0. Forthis partiular example v = 0:01 and the leading order solution U0 is modelledby (7.95) with P0 and �0 desribed by (7.99) and (7.100), respetively. As theplot and equations illustrate, the leading order onentration potential, �0, isdiretly proportional to the leading order bubble gas pressure, P0, in the ase ofinstantaneous di�usion.7.5.1.2 Case II: X=U0 � O(1)For parameter sets ontaining X=U0 � O(1), the leading order inner solution,U0, is hosen empirially in suh a way as to minimise the error over the domain



Chapter 7 120of interest, whih in this ase we take to be T 2 (0; 1000). In the previoussetion, for X � U0, the analyti solution U0 = (1 + vT=q)q where q = 6=5 wasderived and shown to be a reasonably aurate approximation. Here a solutionof the same form is assumed, that is,U0 = �1 + vq T�q ; (7.101)but now the exponent q is determined numerially. The normalised error betweenthe numerial solution of (7.88) and this ansatz is minimised by varying q. Theerror alulation is given by,e(q) = R Tend0 jUexat(T )� Uapprox(T; q)j dTR Tend0 Uexat(T )dT ; (7.102)where Uexat(T ) is the numerial solution of (7.88) and Uapprox(T; q) = (1 + vT=q)q.Figure 7.7 shows the error plots and a sample plot of the numerial solution andthe approximate analyti solution for two di�erent values of X, for a �xed hoieof parameter value v. Figures 7.7 (a) and () illustrate the ase when X = 50and (b) and (d) are for X = 1000. They demonstrate that as X inreases themagnitude of the normalised error over the domain dereases and the assoi-ated value of q approahes 6=5. For values of X=U0 � O(1), therefore, thisminimising q value is determined and the leading order solution U0 is set toU0 = (1 + vT=q)q. Figure 7.8 demonstrates the improved auray of the semi-analyti solution derived for this seond ase where X=U0 � O(1) and omparesit with the analyti approximation whih assumes X � U0. The two approx-imate solutions are measured against the full numeri solution of (7.83) andthe semi-analyti result is learly the most aurate although it is less useful interms of qualitative solution analysis.The funtion U0 is then used in Setion 7.5.2.2 to determine the approximate�rst order term U1 in ases where X=U0 � O(1).
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Chapter 7 123�AR1�T = � 43(x + U0)  _U1AR0 � U1 _U0AR0(x + U0) + _U0AR1!� (AR0 � 1);(7.104)�AQ1�T = 23(x + U0)  _U1AQ0 � U1 _U0AQ0(x+ U0) + _U0AQ1!� (AQ0 � 1);(7.105)P1 = U1U0 + �X �B � A+BU0 + �XU0 + �X � ; (7.106)�̂1 = �pg0 � papg0 P1X: (7.107)As for the leading order solution, two separate ases are onsidered, namely largeX � U0 and X=U0 � O(1); an analyti solution an be derived in the formerase while a semi-analyti solution an be found in the latter.7.5.2.1 Case I: X � U0Equation (7.103) an be expressed as�U1 + N2N1 _U1 + N3N1 U1 + N4N1 = 0; (7.108)where, N1 = 1U 130 � 1(X + U0) 13 ; (7.109)N2 = � _U03  1U 430 � 1(X + U0) 43 ! ; (7.110)N3 = 2 _U209  1U 730 � 1(X + U0) 73 !� �U03  1U 430 � 1(X + U0) 43 ! ; (7.111)N4 = 4 _U03R � 1U0 � 1X + U0� ; (7.112)



Chapter 7 124and U0(T ) = �1 + 5vT6 � 65 ; (7.113)_U0(T ) = v �1 + 5vT6 � 15 ; (7.114)�U0(T ) = 2v6 �1 + 5vT6 �� 45 : (7.115)The expressions for N i ; i = 1; � � � ; 4 an be expanded in 1=X giving the leadingorder terms, N2N1 = � _U03U0 = � 2v(6 + 5vT ) ;N3N1 = 2 _U209U20 � �U03U0 = 62v(6 + 5vT )2 ;N4N1 = 4 _U03RU 230 = 4v6 353R(6 + 5vT ) 35 :Substitution of these oeÆients into equation (7.108), transforming to the vari-able z = (6 + 5vT ) and multiplying by z2 yieldsz2 �U1 � 25z _U1 + 625U1 = � 4z26 3575Rvz 35 : (7.116)This is essentially the Euler di�erential equation [67℄z2 �U1 + az _U1 + bU1 = f(z); (7.117)with a = �25 ; b = 625 ; s = 1�a2 ; � = 12 j(1�a)2�4bj 12 > 0, giving the omplementaryfuntion U 1(z) = E1z(s+�) + E2z(s��);= E1z 65 + E2z 15 ;where the onstants E1 and E2 are to be determined from the initial onditions.Assuming a partiular integral, Up1 , of the form,Up1 (z) = Az 75 ;



Chapter 7 125and substituting into (7.116) givesA = � 6 35 29Rv ; and Up1 (z) = Az 75 :Therefore, the general solution isU1(z) = E1z 65 + E2z 15 � 2(6 35 )9Rv z 75 : (7.118)The initial onditions for the �rst order term U1(T ) are U1(0) = _U1(0) = 0 sothat in the transformed system (U1(z)) we have U1(6) = _U1(6) = 0 giving thefollowing values for the arbitrary onstantsE1 = 85Rv6 15 ; (7.119)E2 = �E1; (7.120)and so U1(z) = 2Rv  45(6 15 ) �z 65 � z 15�� 6 359 z 75! : (7.121)Rewriting in the original inner variable T ,U1(T ) = 2Rv  45(6 15 ) �(6 + 5vT ) 65 � (6 + 5vT ) 15�� 6 359 (6 + 5vT ) 75! :(7.122)Combining the result for the leading order solution from Setion 7.5.1.1, withthis result for U1 the asymptoti inner solution, to �rst order, for instantaneousdi�usion where X � U0 an be written asU(T ) = U0(T ) + �U1(T );= 2�Rv  45(6 15 ) �(6 + 5vT ) 65 � (6 + 5vT ) 15�� 6 359 (6 + 5vT ) 75!+�1 + 5v6 T� 65 : (7.123)A sample solution is displayed in Figure 7.9, and for the parameter set giventhis �rst order solution orresponds well with that generated using the numerial



Chapter 7 126solution of (7.108). Whereas the leading order solution (7.95) is parameterisedby the initial ondition v only, this �rst order solution is parameterised by v;R;and �.

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

T

U

Figure 7.9: Plot of the leading order solution U = U0 (red dashed urve) asmodelled by (7.95) and the �rst order solution U = U0+�U1 (blue dashed urve)as predited by (7.123) for the ase of X � U0 with instantaneous di�usion.The green urve, for omparison, is U = U0 + �U1 where U = U0 is modelled by(7.95) and U1 is determined numerially from (7.108). The system parametersare given by v = 0:05, R = 1, and � = 0:001. For the numerial solution wehoose X = 105.7.5.2.2 Case II: X=U0 � O(1)In this setion we examine the seond ase whih desribes onditions in whihevolving bubbles are losely spaed within the expanding foam so that X=U0 �O(1). We employ two approahes and then ompare the results. A semi-analytisolution is �rst derived and then ompared to the numerial solution of (7.103).Equation (7.103) is rewritten by substituting for the leading order solutionU0(T ) = (1 + vT=q)q, where q was determined empirially in Setion 7.5.1.2.



Chapter 7 127In (7.108) we then approximate the oeÆients byN2(T )N1(T ) � S2(T ) = C2C1 + T ;N3(T )N1(T ) � S3(T ) = C3(C1 + T )2 ;N4(T )N1(T ) � S4(T ) = C4(C1 + T )p ;where Ci; i = 1; � � � ; 4 and the exponent p are to be determined. This yields theapproximate ODE in U1�U1 + S2(T ) _U1 + S3(T )U1 + S4 = 0: (7.124)The funtional forms for S2;S3;S4 are hosen in suh a way as to make theanalyti approximation more tratable, while at the same time maintaining areasonable degree of auray. That is, the denominator exponents for S2;S3are hosen as 1 and 2, respetively, in order to retrieve the Euler di�erentialequation (7.133) where z = (C1 + T ).First, the oeÆients C1 and C2 that best desribe the funtion N2=N1 giventhe funtional form C2=(C1 + T ) are alulated. The following assignments aremade y2;0 = N2(0)N1(0) = C2C1 ; (7.125)y2;t� = N2(t�)N1(t�) = C2(C1 + t�) (7.126)where t� an be hosen to minimise the error of the approximation. The valuesfor C1; C2 are derived from (7.125) and (7.126), respetivelyC1 = t�y2;t�(y2;0 � y2;t�) ; C2 = t�y2;0y2;t�(y2;0 � y2;t�)giving the approximate funtion,S2;t� = t�y2;0y2;t�t�y2;t� + (y2;0 � y2;t�)T :



Chapter 7 128Figure 7.10 shows that the partiular hoie of t� is important for the aurayof the approximating oeÆients C1; C2. For eah hoie of t� the error wasalulated by integration of the absolute value of the di�erene between theexat funtion, N2(T )=N1(T ), and the partiular approximation, S2;t�(T ), overthe domain in T . This error value was then plotted against t�. This is denotedby e(t�) and is de�ned bye(t�) = Z Tf0 ����N2(T )N1(T ) � t�y2;0y2;t�t�y2;t� + (y2;0 � y2;t�)T ���� dT; (7.127)where the domain is given by [0; Tf ℄. Figure 7.10(a) shows the error funtionfor the determination of C1 and C2 and indiates a minimising value of t� = 300.This value is then used to onstrut the best approximation funtion S2 whihis shown as the blue urve in Figure 7.10().Having optimised and �xed C1; C2, the orresponding error values were al-ulated and plotted for C3 and C4. We designate the �xed values of C1 and C2by C1 and C2 and next determine the funtion S3 as follows. We assigny3;t� = N3(t�)N1(t�) ; (7.128)so that S3 = C3(C1 + T )2 ; (7.129)where, C3(t�) = (C1 + t�)2y3;t�: (7.130)The hoie of t� used to alulate this value of C3 will result in a partiular errorvalue given by e(t�) = Z Tf0 ����N3(T )N1(T ) � y3;t�(C1 + t�)2(C1 + T )2 ���� dT: (7.131)Figure 7.10(b) shows the results of plotting this error funtion versus values oft� 2 [0; Tf ℄ and learly illustrates a minimising value for the hoie of t�. Thisvalue is then used to onstrut the best approximation for S3 whih is thenplotted in Figure 7.10(d) with N3=N1 for omparison.
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Chapter 7 130Note, that in order to determine C4 the hoie of exponent p must also beoptimised. We would therefore need to de�ne an error funtion in terms of t�and p and optimise over the t� � p plane. We automate this hoie using anon-linear least squares algorithm and use the alulated values of p and t� thatminimise the error, to alulate C4 and onstrut S4. Figure 7.11 shows the bestapproximate S4 plotted against the exat funtion N4=N1 over the domain fora partiular hoie of parameters v, R and X. Having derived the funtional
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Figure 7.11: Curves of the exat funtional form N4=N1 (blue urve) plottedalongside the best �t approximation for S4 (red urve) as predited using a non-linear least squares algorithm. The error of the approximation was optimisedover the domain [0; 1000℄ for the hoie of t� and exponent p. The systemparameters are v = 0:05, q = 1:5, X = 50, and R = 1.forms for S2;S3 and S4 we an substitute them into (7.124) to give�U1 + C2(C1 + T ) _U1 + C3(C1 + T )2U1 + C4(C1 + T )p = 0; (7.132)where all oeÆients and exponents were approximated in Setion 7.5.2.2. Trans-forming variables to z = C1 + T and multiplying aross by z2 gives,z2 �U1 + zC2 _U1 + C3U1 = �C4z(2�p); (7.133)



Chapter 7 131whih permits a omplementary funtion of the form [67℄,U 1(z) = 8><>: jzj 1�C22 (E1jzj� + E2jzj��) if (1� C2)2 > 4C3;jzj 1�C22 (E1 + E2 log jzj) if (1� C2)2 = 4C3;jzj 1�C22 (E1 sin (� log jzj) + E2 os (� log jzj)) if (1� C2)2 < 4C3:(7.134)where � = 1=2j(1 � C2)2 � 4C3j1=2. In the previous setion 7.5.2.2 only theexponential solution to the assoiated Euler di�erential equation was permittedsine the oeÆients of _U1 and U1 were known and �xed. In this ase, where C2and C3 depend on X and v, it is not immediately obvious whih branh of theEuler solution should be hosen for a given parameter set. Therefore, in thissetion we hose the same funtional form that was used in the ase of X � U0,so that (1 � C2)2 > 4C3 is satis�ed and the omplementary funtional form istherefore U 1 = jzj 1�C22 (E1jzj� + E2jzj��) and the partiular integral is given byUp1 (z) = C4z(2�p)(2� p� s� �)(2� p� s+ �) ; where s = 1� C22 : (7.135)The general solution isU1(z) = E1jzjs+� + E2jzjs�� + E3z2�p; (7.136)where, E3 = � C4(2� p� s� �)(2� p� s+ �) : (7.137)and the onstants E1; E2 are determined from initial onditions, U1(T = 0) =_U1(T = 0) = 0, in the transformed variable z, that is, U1(z = C1) = _U1(z =C1) = 0, so that E1 = C42�(2� p� s� �)C(2�p�s��)1 ; (7.138)E2 = � C42�(2� p� s+ �)C(2�p�s+�)1 : (7.139)Rewriting in the original inner variable T therefore,U1(T ) = E1(C1 + T )(s+�) + E2(C1 + T )(s��) + E3(C1 + T )(2�p) (7.140)



Chapter 7 132and ombining with the leading order solution gives the �rst order inner asymp-toti approximate solution for �nite X as,U(T ) = �1 + vq T�q+� �E1(C1 + T )(s+�) + E2(C1 + T )(s��) + E3(C1 + T )(2�p)� :(7.141)In Figure 7.12 we ompare this analyti �rst order approximate solution (blueurve) to the �rst order solution (green urve) using U1 generated via the nu-merial solution of the original ODE equation (7.108). The approximation isless aurate than in the ase for X � U0 (see Figure 7.9).
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Figure 7.12: Plot omparing the leading order solution U = U0 (red urve) asmodelled by (7.101) and the �rst order solution U = U0 + �U1 given by (7.141).In this ase X is O(U0) and an approximate analyti solution is hosen for U0 asdesribed in Setion 7.5.1.2 and for U1 as desribed in Setion 7.5.2.2. The greenurve, for omparison, is U = U0 + �U1, where U0 is determined as desribedabove and U1 is the numerial solution of (7.108). The pertinent parametervalues are v = 0:05, q = 1:5, R = 1 and X = 50.



Chapter 7 1337.5.3 DisussionIn Setion 7.5 we derived two possible �rst order inner solutions for U . The �rstwas an analyti solution for Case I, when X � U0, given by,U(T ) = �1 + 5v6 T� 65+ 2�Rv  45(6 15 ) �(6 + 5vT ) 65 � (6 + 5vT ) 15�� 6 359 (6 + 5vT ) 75! ;(7.142)and the seond was a semi analyti approximation for Case II when X=U0 �O(1),U(T ) = �1 + vq T�q+� �E1(C1 + T )(s+�) + E2(C1 + T )(s��) + E3(C1 + T )(2�p)� ;(7.143)where E1; E2 and E3 are de�ned by (7.138), (7.139) and (7.137) respetively.In Case I the dependene of the solution on the system parameters v; �;R isexpliit whereas in Case II this dependene is impliit and an only be illustratednumerially whih is a drawbak of the semi-analyti solution.We annot make a diret omparison between Cases I and II, sine one of theparameters X neessarily hanges giving a di�erent solution for eah ase. Wean, however, onlude that the auray of the �rst order solutions preditedin Case I (X � U0) is greater than observed in the semi-analyti solutionsprodued in Case II (X=U0 � O(1)), when both solutions are ompared to theirassoiated numerial solution of (7.108). Sine we are onsidering the innersolution, Case I (X � U0) is most relevant as it desribes the polymerisation atearly time when small bubbles are surrounded by a large uid volume.For Case I we an examine the e�et of inertia on the analyti �rst ordersolution by altering the grouped parameter R while keeping � and v �xed. Inorder to ompare these results with the ase of negligible inertia we solve (7.63)



Chapter 7 134for R = 0, to �rst order in � as follows:43 _U � 1U � 1X + U� = 0; (7.144)so that, for the strethed inner variable T , X � U (as in Case I) we obtain theordinary di�erential equation _U = 0 with solution U = vT +1 where the initialonditions are given by _U(0) = v and U(0) = 1. In Figure 7.13 we an seethat for �xed values of � and v, as R inreases the bubble volume, U , inreasesmore rapidly as inertia inreases and onverges to the leading order solutionU0 = (1 + 5vT=6)6=5. It is important to note that these analyti solutions areonly valid for R � � on the timesale t = �T .For further disussion of the signi�ane of the relationship between R and� see Setion 7.7.7.6 Asymptoti analysis: Outer solutionIn Setion 7.5.1 we strethed the time variable t aording to T = t=� andexpanded in terms of � to derive the inner solution. Then for the sake of amore onvenient analysis we assumed the following relationship in sale betweenthe inertia-type grouped parameter R and � suh that R � �. In this way wewere able to redue (7.74) to (7.83) and thus derive the analyti form for thesolution, (7.123), for the partiular ase when X � U0. For the outer solutionwe expand in R noting the saling assumption we made for the inner solution,namely, R � �. We, therefore, look for an expansion, in the outer temporalvariable, t, of the formu(t;R) = u0(t) +Ru1(t) +O(R2); (7.145)Arr(x; t;R) = Arr0(x; t) +RArr1(x; t) +O(R2); (7.146)A��(x; t;R) = A��0(x; t) +RA��1(x; t) +O(R2): (7.147)
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Chapter 7 136Substituting for (7.145) in (7.62) we an derive the expansion for Pg as followsPg = A+B(u0 +Ru1) + �Xu0 +Ru1 + �X +O(R2);= A+Bu0 +RBu1 + �X(u0 + �X)�1 +R u1u0+�X� +O(R2);= (A+Bu0 +RBu1 + �X)u0 + �X �1� Ru1u0 + �X�+O(R2);= �A+Bu0 + �Xu0 + �X �+R� Bu1u0 + �X � u1(A +Bu0 + �X)(u0 + �X)2 �+O(R2);= Pg0 +RPg1 +O(R2):Using these in (7.48) we get the following43( _u0 +R _u1)� 1u0 +Ru1 � 1(X + u0 +Ru1)�+R"(�u0 +R�u1) 1(u0 +Ru1) 13 � 1(X + u0 +Ru1) 13 !�( _u0 +R _u1)26  1(u0 +Ru1) 43 � 1(X + u0 +Ru1) 43 !#= De(Pg0 +RPg1 � Pu) + 23 Z X0 (Arr0 +RArr1)� (A��0 +RA��1)(x+ u0 +Ru1) dx� 1�(u0 +Ru1) 13 +O(R2):Using a Taylor series expansion we an write this as43( _u0 +R _u1) � 1u0 �1� Ru1u0 �� 1(X + u0) �1� Ru1(X + u0)��+R"(�u0 +R�u1) 1u 130 �1� Ru13u0 �� 1(X + u0) 13 �1� Ru13(X + u0)�!�( _u0 +R _u1)26  1u 430 �1� 4Ru13u0 �� 1(X + u0) 43 �1� 4Ru13(X + u0)�!#= De(Pg0 +RPg1 � Pu)� 1�u 130 �1� Ru13u0 �+23 Z X0 (Arr0 +RArr1)� (A��0 +RA��1)(x+ u0) �1� Ru1(x+ u0)� +O(R2):



Chapter 7 137To leading order in R, therefore, the momentum equation is43 _u0� 1u0 � 1X + u0� = De(Pg0�Pu)+ 23 Z X0 (Arr � A��)0x + u0 dx� 1�u 130 : (7.148)We then expand the other equations in the system in the same way, so that toleading order in R we have�Arr0�t = �43 _u0Arr0(x + u0) � (Arr0 � 1): (7.149)and �A��0�t = 23 _u0A��0(x + u0) � (A��0 � 1): (7.150)7.6.1 Leading order system for the outer solutionAssembling the leading order equations together then,_u0 = 3u0(X + u0)4X  De(Pg0 � Pu) + 23 Z X0 (Arr � A��)0x + u0 dx� 1�u 130 ! ;(7.151)�Arr0�t = �43 _u0(x + u0)Arr0 � (Arr0 � 1); (7.152)�A��0�t = 23 _u0(x+ u0)A��0 � (A��0 � 1); (7.153)Pg0 = A +Bu0 + �Xu0 + �X ; (7.154)�0(x; t) = �pg0 � papg0 (Pg0 � 1)X; (7.155)with the arbitrary initial onditions u0(t�) = u�0, Pg0(t�) = P �g0, Arr0(x; t�) =A�rr0(x), A��0(x; t�) = A���0(x) and �0(t�) = ��0.In order to make analytial headway we need to derive an expression for theintegrand in the momentum equation, that is (Arr �A��)0=(x+ u0). We an dothis by applying the integrating fator method to the temporal integration ofthe rate equations in Arr0 and A��0 . We proeed by rearranging (7.152) to give,�Arr0�t + �43 _u0(x + u0) + 1�Arr0 = 1;



Chapter 7 138and employing the integrating fator,p(x; t) = exp�Z �43 _u0x+ u0 + 1� dt� ;= et(x + u0) 43 ;we obtain an expression for Arr0(x; t) in terms of x, u0(t) and a funtion ofintegration C(x),Arr0(x; t) = e�t(x+ u0)� 43 �Z t et̂(x + u0) 43dt̂+ C(x)� ;where C(x) is given by the initial onditions as followsA�rr0(x; t�) = A�rr0(x) = e�t�(x + u�0)� 43 �Z t� et̂(x + u0) 43dt̂+ C(x)� :Rearranging for C(x) gives,C(x) = et�(x+ u�0) 43A�rr0(x)� Z t� et̂(x+ u0) 43dt̂and therefore,Arr0(x; t) = e�t(x+ u0)� 43 Z tt� et̂(x+ u0) 43dt̂+A�rr0(x)et��t�x + u�0x + u0� 43 : (7.156)Similarly,A��0(x; t) = e�t(x+ u0) 23 Z tt� et̂(x+ u0)� 23dt̂+A���0(x)et��t�x + u0x + u�0� 23 : (7.157)The funtion (Arr � A��)0(x) is obtained by simply subtrating A��0(x) fromArr0(x),(Arr � A��)0(x; t) = e�t �(x + u0)� 43 Z tt� et̂(x + u0) 43dt̂� (x + u0) 23 Z tt� et̂(x+ u0)� 23dt̂+ et�  A�rr0(x)�x + u�0x + u0� 43 � A���0(x)�x + u0x + u�0� 23!#(7.158)



Chapter 7 139Finally, we an desribe the integrand I(u0; x; t) = (Arr � A��)0(x; t)=(x + u0)asI(u0; x; t) = (Arr � A��)0 (x; t)(x + u0) ;= I1(u0; x; t)� I2(u0; x; t) + I3(u0; x; t);= f1(u0; x; t) Z tt� k1(u0; x; t̂)dt̂� f2(u0; x; t) Z tt� k2(u0; x; t̂)dt̂+ f3(u0; x; t);where,f1(u0; x; t) = e�t(x+ u0)� 73 ;f2(u0; x; t) = e�t(x+ u0)� 13 ;f3(u0; x; t) = et��t �A�rr0(x)(x + u�0) 43 (x+ u0)� 73 � A���0(x)(x + u�0)� 23 (x + u0)� 13� ;k1(u0; x; t̂) = et̂(x+ u0) 43 ;k2(u0; x; t̂) = et̂(x+ u0)� 23 :7.6.2 Analyti Piard iteration to determine the leadingorder outer solutionTo leading order the momentum equation (7.151) an thus be written,_u0 = 34 u0X (X+u0)"De�A+Bu0 + �Xu0 + �X �� PuDe + 23 Z X0 I(u0; x; t)dx� 1�u 130 # ;(7.159)that is,_u0 = 34 u0X (X + u0)(De�A+Bu0 + �Xu0 + �X �� PuDe� 1�u 130+23e�t" Z X0  (x + u0)� 73 Z t et̂(x+ u0) 43dt̂� (x + u0)� 13 Z t et̂(x + u0)� 23dt̂+ et� �(x+ 1) 43 (x+ 1)� 73 � (x + 1)� 23 (x+ 1)� 13�!dx#):This is of the form, _u0 = g(u0; t); (7.160)



Chapter 7 140and an approximate solution an be found using the Piard iteration method [10℄.We derive the �rst Piard iterate, up10 (t), analytially and then produe a nu-merial algorithm to test the auray of this �rst analyti iteration. The �rstiteration of the Piard method is given by,up10 (t) = u�0 + Z tt� g(u�0; t)dt; (7.161)where u�0 = u0(t�) so that, for example, assigning t� = 0, u0(0) = Arr0(x; 0) =A��0(x; 0) = 1 we haveg(1; t) = 3(X + 1)4X �De�A+B + �X1 + �X �� PuDe� 1�+23e�t" Z X0  (x + 1)� 73 Z t0 et̂(x + 1) 43dt̂� (x+ 1)� 13 Z t0 et̂(x+ 1)� 23dt̂+ �A�rr0(x)(x + u�0) 43 (x + u0)� 73 � A���0(x)(x + u�0)� 23 (x+ u0)� 13�!dx#):The �rst two integrals anel eah other out and, the spatial integral vanishesso that g(1; t) = C5;where we assignC5 = 3(X + 1)4X "De�A+B + �X1 + �X �� PuDe� 1�#:The �rst iterate of the Piard approximation, for the leading order outer solutionis therefore, u(p1)0 = u�0 + Z tt� g(u�0; t̂)dt̂;= 1 + Z t0 C5dt̂; (7.162)= 1 + C5t;sine the partiular initial onditions hosen presribe a funtion of integrationequal to zero. Therefore, u(p1)0 = 1 + C5t; (7.163)



Chapter 7 141whih is simply a linear solution. The seond Piard iteration is given byu(p2)0 = 1 + Z t0 g(1 + C5t̂; t̂)dt̂: (7.164)However, due to the omplexity of the momentum equation and the form ofthe �rst Piard iterate, the analyti form for the seond iteration would beumbersome and unwieldy. So in order to assess the auray of the �rst Piarditerate, (7.159) was solved numerially, in Setion 7.6.3.Plots of this leading order analyti Piard approximation are illustrated inFigures 7.14 (a) and (b), for a range of values of Pu and De, respetively. Thegrouped parameter De is the ratio of the bubble growth rate in the solvent tothe relaxation rate of the polymer and is inversely proportional to the visosityvalue �. We an see from Figure 7.14 (b) that as visosity dereases, for aonstant initial gas pressure di�erene aross the bubble wall, the initial bubblegrowth rate inreases as expeted. However, we will see in the next setionthat, although the numerial solution predits the same qualitative inrease itasymptotes to a steady state value whereas the Piard solution does not. Thisis not unexpeted sine we have only arried out one iteration of the Piardsheme and have retrieved the leading order linear solution (7.163). This leadingorder solution is relatively aurate near to the inital bubble volume but ast inreases this solution is no longer aurate, as illustrated in Figure 7.15.The Piard method is a funtion wise iteration and would require several moreiterations to produe a reasonable approximation over a larger domain interval.Theoretially this is possible but due to the omplexity of the system and theintegro-di�erential momentum equation we do not proeed down this analytialpath.The relationship between the irradiating aousti standing wave pressureamplitude, Pu, and the �nal bubble volume an be observed in Figure 7.14 (a)and implies that inreasing this amplitude suppresses the speed of bubble volume



Chapter 7 142growth at early time. Sine this linear approximation does not asymptote as wewould expet the numerial solution to do, we annot predit the e�et of thepressure amplitude on the steady state bubble volume. We will investigate thise�et in the following setion when we perform a numerial analysis for the outersolution in the ase of instantaneous di�usion.7.6.3 Numerial solution of the leading order momentumequationThe momentum equation (7.159) ontains an integral in t within an integral overx. For the temporal integrals within the integrand I(u0; x; t) we use a quadraturerule with weightings �k, where u0k = u0(t̂k); t̂1 = t�; t̂j = tj and tj 2 [t�; t℄ togive,I1(tj) = e�tj (x + u0j)� 73 jXk=1 �ket̂k(x + u0k) 43 ;I2(tj) = e�tj (x + u0j)� 13 jXk=1 �ket̂k(x + u0k)� 23 ;I3(tj) = et��tj �A�rr0(x)(x + u0�j) 43 (x+ u0)� 73 � A���0(x)(x + u�0)� 23 (x + u0j)� 13� :The spatial integral an be written asÎ = Î1 � Î2 + Î3; where Îi = Z X0 Iidx; i = 1; 2; 3;so that, for example,Î1(tj) = Z X0 e�tj (x+ u0j)� 73 jXk=1 �ket̂k(x+ u0k) 43dx:
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(a)Figure 7.14: Plots of the �rst Piard iterate solution, up10 for a range of valuesof (a) De (whih is inversely proportional to visosity) and (b) Pu, the non-dimensional value for the pressure amplitude of the irradiating aousti standingwave. The initial onditions and parameters ommon to both plots are as follows:t� = 0, u� = 1, X = 1000, pa = 105, pg0 = 10pa, � = 0:32, � = 1000. In (a)Pu = 0 and the range of values for De are 0.1 (blue line), 1 (red line), 10 (greenline), and in (b) the non-dimensional pressure amplitude values, Pu, are zero(blue line), 0.03 (red line), 0.05 (green line), 0.10 (yan line), 0.50 (magentaline), with De �xed at 1.



Chapter 7 144We introdue a quadrature in x via the weightings �L to give,Î1(tj) = e�tj mXL=1 �L(xL + u0j)� 73 jXk=1 �ket̂k(xL + u0k) 43 ;Î2(tj) = e�tj mXL=1 �L(xL + u0j)� 13 jXk=1 �ket̂k(xL + u0k)� 23 ;Î3(tj) = et��tj mXL=1 �LA�rr0(x)(xL + u0j)� 73 (xL + u�0) 43�et��tj mXL=1 �LA���0(x)(xL + u0j)� 13 (xL + u�0)� 23 :So we have disretised the leading order momentum equation for the outer so-lution viadu0jdt = 3u0j4X (X+u0j)0�De�A+Bu0j + �Xu0j + �X �� PuDe� 1�u0 13j + 23Î(u0j; tj)1A :(7.165)We use the following Euler iterative sheme to then integrate in time this non-linear system of ODEs, to giveu0j+1 = u0j + Æt3u0j4X (X + u0j)�DeA+Bu0j + �Xu0j + �X � PuDe� 1�(u0j) 13 + 23Î(u0j; tj)! ;with initial onditions u0(t�) = u�0, Arr0(x; t�) = A�rr0(x) and A��0(x; t�) =A���0(x). For the purpose of onstruting Figure 7.15 we hoose t� = 0 andu� = A�rr0(x) = A���0(x) = 1. We use the Composite Simpson rule with quadra-ture weightings, �1 = �m = h3 ; �j = 8<: 43h; j even23h; j odd ;where h = Æx; Æt and the auray is O(h4).Figure 7.15 shows an example solution using this numerial analysis. As forthe analyti Piard method, we look at the e�et of altering the visosity via



Chapter 7 145the dimensionless grouped parameter, De and the dimensionless applied aoustipressure amplitude, Pu; the results of this are shown in Figure 7.16. In the aseof instantaneous di�usion we an see, from Figure 7.16 (a), that an inrease inPu results in a derease in the �nal bubble volume though the time to ahievethis steady state solution is una�eted. In (b) we see the onverse e�et due toinreasing visosity; that is, the steady state bubble volume is una�eted butthe time required to reah this steady state volume is inreased.7.7 DisussionIn this Chapter we derived a governing system of oupled equations to desribethe evolution of a non-reating polymer foam inorporating the e�ets of inertiaand an irradiating aousti signal. Having made an assumption of instantaneousdi�usion we were then able to partially deouple the system.An asymptoti analysis was performed to derive inner solutions in the saledtemporal variable, T . Both leading and �rst order solutions, for the non dimen-sional bubble volume were derived in two di�erent regimes; the �rst desribedthe ase when the ratio of the bubble volume to surrounding uid volume isvery small and the seond pertains to the ase when they are of the same order.The �rst instane desribes the non-reating foam at early time when the bub-bles have just nuleated and individual bubbles are loated at large distanesfrom neighbouring bubbles; the seond ase desribes a time nearer to om-pletion when the bubbles are losely spaed and the uid volume surroundingindividual bubbles is smaller.In Case I, X � U0, we were able to derive an analyti solution to leadingorder and �rst order. The leading order solution was parameterised by the initialondition only and desribed the relationship between bubble volume and timeas U / t6=5. The leading order solution in the ase of negligible inertia waslinear so the e�et of inertia is to inrease the bubble growth rate to leading
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Figure 7.15: (a) The �rst iterate, up10 , for the analyti Piard solution (red line)given by (7.163) and the assoiated numerial solution alulated using the Euleriterative sheme as desribed in Setion 7.6.3. The zoomed in plot (b) shows thatthis �rst iterate is only reasonably aurate lose to the initial ondition at t� = 0and does not provide a good desription of u0 as t > t�. The initial onditionsand parameters ommon to both plots are as follows: t� = 0, u� = 1, X = 1000,pa = 105, pg0 = 10pa, � = 0:32, � = 1000,  = 1, Pu = 0 and De = 1.
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Figure 7.16: The numerial solution of (7.165) and how it is a�eted by (a)aousti pressure amplitude, Pu, and (b) visosity via the dimensionless groupedparameterDe. In (a) the values of Pu are zero (blue line), 0.03 (red line) and 0.05(green line). The Deborah numbers, De, in (b) are 0.1 (blue line), 1.0 (red line)and 10.0 (green line), orresponding to visosity values of 9 � 106, 9� 105 and9� 104, respetively. These are all realisti visosity values for polymer foams.The initial onditions and parameters ommon to both plots are as desribedin Figure 7.15 exept for those parameter values detailed above for (a) and (b).Note that these Pu = 0:03 and Pu = 0:05 relate to aousti pressure amplitudevalues of pu = 2:7� 104 Pa and 4:5� 104, respetively, and reet instrumentalvalues. The atual pressure amplitude, in situ would be muh lower due to thee�ets of attenuation as we shall see in Chapter 8.



Chapter 7 148order. The �rst order solution was parameterised by the initial ondition andthe parameter desribing inertia, R. However, this solution is only auratefor large X. As R inreases, with other parameters �xed, the �rst order innersolution predits an inrease in bubble growth rate with inreasing inertia, asillustrated in Figure 7.13.In Case II, X=U0 � O(1), we were able to derive a semi-analyti solution, forthe leading and �rst order ases, by onsideration of the normalised error fun-tions over the domain of interest. Although these solutions had to be derived, inpart, numerially, they did provide improved auray for smaller values of X.Their dependene on the system parameters is impliit and therefore they an-not be used to predit the e�et of individual parameters on the �nal solution.Further work in this area would involve deriving the seond order inner solu-tions, whih would inlude a greater number of parameters in the solution sinethe right hand side of (7.63) is of order �2. This would give greater qualitativeand quantitative insight into the e�ets of the aousti pressure amplitude, Pu,for example.In Setion 7.6.1 we investigated the outer asymptoti solution, whih essen-tially desribes the ase assuming no inertia. The outer problem is de�ned by aomplex system of �ve oupled equations, one of whih is an integro-di�erentialequation. This makes an analyti solution very hard to obtain. The assumptionof instantaneous di�usion allowed us to deouple the onentration potentialequation from the system and we were further able to produe an expliit formfor the integrand, (Arr � A��)0=(x + u0). It was thus possible to use this todesribe the bubble volume evolution via a single integro-di�erential equation,(7.159).The inner and outer asymptoti solutions have been derived as desribedabove. The inner asymptoti expansion is in � and the outer asymptoti expan-sion is in R with the following presribed relationship of sale between them:



Chapter 7 149R � �. We have not attempted to math the inner and outer solutions as weare interested in the early time behaviour only. However, it is important to notethat if mathing were neessary then we must de�ne quantitatively the relation-ship between � and R so that we ould math the inner solution, as the innertemporal variable, T !1, to the outer solution as the outer temporal variable,t! 0.The Piard iteration method was then hosen to derive a leading order an-alyti solution. The leading order solution was linear in the outer temporalvariable t (7.163) and would not be expeted therefore to asymptote as thenumerial solution predits; this is illustrated in Figure 7.15 where the Piardsolution (blue line) is ompared to the numerial solution (red line). Althoughthe leading order Piard solution is not aurate over the whole domain of inter-est it is reasonably lose to the numerial solution for early time. It must also beremembered that it is just a leading order solution and further iterations wouldneed to be performed to improve the auray of this analyti approximation.The Piard iteration method onverges vetor wise as opposed to the pointwiseonvergene of other shemes e.g. the Euler sheme, although onvergene anoften be a problem [10℄. Theoretially, it is possible to derive higher order termsfor this system, however, due to the omplexity of the integro-di�erential mo-mentum equation we did not perform further iterations and instead employed anumerial algorithm to measure the auray of the Piard iterate (as disussedabove) and to investigate ertain parameter e�ets suh as aousti amplitude,Pu, and visosity via the grouped parameter De. We demonstrated that an in-rease in the aousti pressure amplitude of the standing wave irradiating thesystem results in a redued steady state bubble volume but does not a�et thetime taken to reah this steady state value. Inreasing visosity, on the otherhand, does not a�et the �nal bubble volume but does result in a longer timebefore the steady state is ahieved. This e�et was also desribed by Everitt et



Chapter 7 150al. [26℄ who demonstrated two distint phases of bubble growth in the ase ofinstantaneous di�usion; an initial rapid expansion in bubble volume followed bya slower seond phase. In Figure 7.16 (b) we observe the analyti inner solutionwhih desribes the bubble growth at early time and it agrees qualitatively withthe results reported by Everitt et al. [26℄ for their numerial solution at earlytime.Both these fators, Pu and De, ould have an e�et on a bubble size dis-tribution within an expanding polymer foam and in the following hapter weinvestigate the e�et of the aousti pressure amplitude of the irradiating stand-ing wave used, by Torres-Sanhez et al. [93℄, to tailor the bubble size distributionin a reating polymer foam. Torres-Sanhez et al. reported a orrelation betweenthe aousti pressure amplitude at a given spatial point and the porosity valueat that point with porosity diretly proportional to the pressure amplitude.The porosity value is related to bubble volume and in the following hapter wedevelop a mathematial model in order to trak the bubble growth of a homoge-neous distribution of bubbles under the inuene of an aousti standing wave,in order to demonstrate mathematially the same relationship observed by [93℄between porosity/bubble size and aousti pressure amplitude. First we willlook at the extra fators that need to be onsidered in the reating system asopposed to the non-reating system and derive a sheme to desribe the evolu-tion of a single bubble in an expanding reating polymer foam. We neglet thee�ets of inertia and desribe the evolving rheology of the uid using a multi-mode Oldroyd B system as �rst proposed by Everitt et al. [26℄. Having thusprodued solutions for single bubbles evolving under the inuene of a givenaousti pressure amplitude value, Pu, we then de�ne a framework within whihto desribe the bubble-bubble interation of a homogeneous bubble distributionaross the sample.



Chapter 8Modelling the e�et ofultrasound on the porositypro�le in a reating polymer
In the previous hapter inertia was introdued into a model for the dynamisof a single bubble in a non-reating polymer foam. By assuming instantaneousdi�usion and large uid volume X, an analyti inner solution was derived usingan asymptoti expansion. This hapter is motivated by the experimental workarried out by Torres-Sanhez et al. [92, 93℄, to produe the �rst model of theirobservations, namely, that porosity varies in diret proportion to the aoustipressure magnitude of the ultrasound signal [93, 94℄. To this end, the seondreating model proposed by Everitt et al. [26℄, whih inorporates gas produtionand evolving uid rheology, was extended to inlude the e�ets of ultrasound.Due to the extra level of omplexity in this reating system, and the partiularparameterisation of the model, inertia was assumed to be negligible. In order toillustrate the e�ets that an ultrasound standing wave an have on the polymerfoam density, a simulation of the di�erential growth dynamis of a series ofadjaent bubbles was performed.The original work in this hapter, whih builds on the model derived byEveritt et al. is ontained in the following setions: the e�et of the aousti151



Chapter 8 152pressure amplitude term, Pu, inorporated into the momentum equation (8.1)is illustrated in Setion 8.4. As opposed to Everitt et al. [26℄ we derive theanalyti solution for the extent of reation, �, in Setion 8.1. Although wehad the reating model as published by Everitt et al. no numerial ode wasavailable and therefore we developed one from srath. The results from ournumerial sheme were validated by omparison with plots produed in [26℄to ensure that it was working orretly. The model was then applied to theexperiment desribed by Torres Sanhez et al. [93℄ and the results an be seenin Setion 8.2. Setions 8.5 and 8.6 outline the development of a new model totrak the bubble size distribution pro�le for a given number of post nuleatedbubbles sited at di�erent spaing intervals aross the sample, and two metrisare proposed to quantify the heterogeneity in the resultant distribution. Some ofthis derivation was based on data produed and published by Torres-Sanhez etal. [92℄ and is presented in Setion 8.5. An explanation of the derivation of theelasti modulus term, G(t), published in [26℄ is given in Setion 8.1.2 in orderto aid understanding of the model.The orresponding reating model is developed, in this hapter, to desribethe experimental system of Torres-Sanhez [93℄; however, due to its added layerof omplexity, the reating model will be given a numerial treatment.The reader is direted to Everitt et al. [26℄ for a full desription and non-dimensionalisation of the governing system of equations and boundary and initialonditions. Here we simply restate the non-dimensionalised system proposedby [26℄ and explain the origin and derivation of the additional terms due to the



Chapter 8 153reation.43 _u �1u � 1X + u� = (Pg � Pu)M + 23 �xX�=�h G(�)G0 Z X0 (Arr � A��)x+ u dx� 1� (u) 13 ;(8.1)�Arr�t = � 4 _u3 (x+ u)Arr � �� (Arr � 1) ; (8.2)� (Arr � A��)�t = 2 _u3(x+ u) [(Arr � A��)� 3Arr℄� �� (Arr � A��) ; (8.3)�pa + (pg0 � pa)Pgpg0 � u = 1 + �� papg0X (�(0; t) + (�� �0)) ; (8.4)���t = N(x + u) 43 �2��x2 � 1X d�dt (X � x): (8.5)Boundary onditions ���x = 1�X pg0 � papa (Pg � 1); x = 0; (8.6)�2��x2 = 0; x = X: (8.7)Initial onditionsArr(0) = 1; (Arr � A��) (0) = 0; u(0) = 1; Pg(0) = 1; �(0) = 0,where the dependent variables are as follows: u(t) is the dimensionless bubblevolume, Pg(t) is the dimensionless bubble gas pressure, Arr(x; t) and A��(x; t)are the diagonal omponents of the orientation tensor A(x; t) and �(x; t) is thedimensionless gas onentration potential through in the liquid. The indepen-dent variables are x; t. The parameters are as follows: X is the dimensionlessouter uid volume, Pu is the dimensionless aousti pressure amplitude, M isthe ratio of the rate of bubble growth to the reation rate and is de�ned in Table8.1, G0 is the elasti modulus of the fully developed gel,  is the ratio of polymerto solvent ontributions to the steady shear visosity and is de�ned in Table 8.1,� is the ratio of visous fore to surfae tension de�ned in Table 8.1, G(�) is therelaxation modulus for a moleule with relaxation rate � and � is the reationrate onstant. The remaining parameters are de�ned and quanti�ed in Table8.2.



Chapter 8 154The non-dimensional grouped parameters di�er slightly from those of thenon-reating model, due to the inlusion of a reation rate onstant �, and arelisted in Table 8.1. Individual parameters for the reating system are desribedand quanti�ed in Table 8.2. The onstrution of the evolving relaxation modu-lus term, G(�), is detailed in Setion 8.1.2 and the e�et of the reation kinetison (8.4) and (8.5) is desribed in Setion 8.1.1. The only hange to the orienta-tion tensor rate equations, (8.2) and (8.3), is the non-dimensionalisation of thetemporal variable by the reation rate onstant, �, rather than the relaxationtime, � , as in the non-reating system.M = (pg0 � pa)=�� = G0=��� = u 130 ��=2SN = 9D�=u 230 �� = RgTHTable 8.1: Dimensionless groups in the non-dimensional formulation for thereating model (8.1) - (8.5).Comparing the reating momentum equation (8.1), (with R = 0) to thenon-reating ase (7.48), we an see that the relaxation moduli for individualmodes oming into existene at time t need to be alulated. This derivation isexpounded in Setion 8.1.2 and eluidates work published by Everitt et al. [26℄.The non reating bubble gas pressure equation (7.49) only onsiders the gasdissolved, initially, in the uid volume. An extra term is therefore inluded inthe reating ase (8.4) to aount for the additional bubble gas pressure due tothe generation of gas by the polymerisation reation. Finally, the non reatingdi�usion equation (7.52) beomes a reation di�usion equation in the reating
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Parameter Value Units Commentspa 1� 105 Nm�2 Pressure outside liquid layerRg 8:31 Jmol�1K�1 Gas onstantT 323 K TemperatureH 10:5� 10�5 molN�1m�1 Henry's law onstantD 1:6� 10�9 m2s�1 Di�usivity [15℄1� 1088 kgm�3 Liquid density2� 2:2 Moleular weight distribution exponent� 0:45 Largest moleular weight saling exponentdf 2:5 Fratal dimension of the equilibrium oilsize of a moleule [16, 26, 87℄mx 0:32 kgmol�1 Molar mass of initial polymerspg0 2� 105 Nm�2 Initial bubble gas pressure� 1� 104 Nsm�2 Solvent visosityu0 1� 10�18 m3 Initial bubble volumeS 0:02 Nm�1 Surfae tension� 10 Maximum gas onentration produedby reation/bakground gas onentration�0 0:1 Extent of reation at nuleationt0 0 s Time of reation at nuleation� 0:91 Extent of reation at the gel point� 0:04 s�1 Reation rate alulated from data3�x 750 s�1 Relaxation rate of initial polymersX 50 Dimensionless uid volumeTable 8.2: Parameters used to onstrut Figure 8.5. 1The parameter range forthe di�usion onstant of CO2 is based on the di�usion onstant for CO2 in water(1:6x10�9m2s�1). 2Determined experimentally by author of [93℄. 3For details ofthis alulation and a disussion on the reation kinetis see Setion 8.3. Unlessstated otherwise, parameters values have been taken from [26℄.



Chapter 8 156ase (8.5) and ontains a soure term in addition to the di�usion term.8.1 Reating modelThere are two major di�erenes whih need to be aounted for in the reatingmodel. Firstly, as well as the dissolved gas already present in the uid at t = 0,the gas produed as a by-produt of the polymerisation reation must also beaounted for in the governing equations. Seondly, the relaxation modulus,G, is no longer a onstant and the e�etive relaxation modulus, G(t), of thepolymer hanges as the reation proeeds. These e�ets are both mediated bythe reation kinetis of the polymerisation. The polymer is normally formedfrom two reating speies, but here the model is simpli�ed by assuming a singlereating speies that forms self-similar moleules of inreasing moleular weightsthat ultimately form a gel [26℄.The reation is followed via the variable �, where � gives the ratio of thenumber of hemial bonds to the total number of possible hemial bonds. Thatis, � is a dimensionless quantity measuring the extent of reation with 0 � � < 1.As in [26℄ the reation is assumed to follow seond order kinetis with a reationrate, � so that, d�dt = �(1� �)2: (8.8)This admits the analyti solution,�(t) = 1� (1� �0)�(t� t0)(1� �0) + 1 ; (8.9)where �(t0) = �0 is the extent of reation at nuleation. The e�et of thereation rate onstant, �, is illustrated in Figure 8.1 and demonstrates that as� inreases the reation extent approahes (but never reahes) unity at a fasterrate. Saling time, t, by 1=� we obtain the non-dimensional form�(t̂) = 1� (1� �0)(1� �0)(t̂� t̂0) + 1 ; (8.10)



Chapter 8 157where t̂ = t=�. The extent of reation, �, at time t will ditate the additionaldissolved gas onentration potential and bubble gas pressure due to the reationas well as govern the moleular weight distribution, and hene the relaxationmodulus, within a luster at any given time.
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Figure 8.1: Plots showing the extent of reation, �, versus time for a seondorder reation, for a range of values of the reation rate onstant �. Thereation rate onstants are as follows: � = 0:01 (blue line), � = 0:02 (red line),� = 0:05 (green line), � = 0:10 (yan line), � = 0:20 (magenta line). Theinitial ondition is given by �(0) = 0:1. As � inreases the extent of reation,�, approahes unity more quikly.8.1.1 Gaseous phaseDue to the generation of gas as the reation proeeds, the non reating equations(7.51) and (7.52) need to be amended to aount for this soure. The modi�edgas di�usion equation is now a reation di�usion equation with the total gasprodued by the reation in the uid volume X at time t assumed to be pro-portional to d�=dt [26℄ so that at a given volume o-ordinate, x, the fration of



Chapter 8 158this ontribution an be added to the di�usion term to give,���t = N(x + u) 43 �2��x2 � 1X d�dt (X � x): (8.11)As in the previous setion, the boundary onditions at the inner (x = 0) andouter (x = X) boundaries are derived via appliation of Henry's law and thezero ux ondition, respetively.8.1.2 Liquid/Gel phaseThe seond e�et on the e�etive relaxation rate of the polymer ours in theliquid/gel phase. In the previous hapter the relaxation modulus of the polymer,G, was assumed to be onstant throughout the bubble expansion phase butwith the reating system the e�etive relaxation modulus is onstantly hangingthrough the di�erent stages of the reation. In this setion an expression forG(t) is derived by onsidering the behaviour, at a moleular level, during thedi�erent phases of the polymerisation reation.As the polymerisation reation proeeds the moleules in the monomer solu-tion start to reat and bond to form moleules with a range of moleular weights.Before the gel point (`pre-gelation') the ross-linking polymer is a distribution of�nite lusters alled a `sol'. One the gel point has been passed (`post-gelation')it is alled a `gel' and is an in�nitely large maromoleule whih an only swell,but not dissolve, in a solvent even though low moleular weight moleules (solfration) are still extratable from the gel [104℄. As a result, polymeri materialsrelax with a broad spetrum of modes; longer modes belong to the motion ofentire moleules or large hain segments, while shorter modes haraterise smallsale details of the moleules. Extra long relaxation modes herald the onsetof the liquid-solid transition, whih in hemial polymerisation is known as the`gel point'. At this ritial point in the reation the material is neither a liquidor a solid (see Figure 8.2). At and near the gel point, the moleular motions



Chapter 8 159slow down while they orrelate with motions of other moleules over longer andlonger distanes; relaxation modes are now oupled over a wide range of timesales. The result is a self-similar relaxation spetrum whih is governed by apower law relationship. This ritial extent of reation, �, is haraterised bythe divergene of the moleular weight of the largest moleule to in�nity and anin�nitely broad moleular weight distribution [104℄. The ombination of liquidand solid behaviour at the gel point requires unusual regularity in the relax-ation pattern. Furthermore, there is a ritial region in the neighbourhood ofthe gel point where all properties an be expanded in powers of the distanefrom the gel point, j�� �j. Outside this ritial region the behaviour loses itssimpliity. In order to derive an expression for the e�etive relaxation modulus,G(t), it is neessary to onsider the moleular struture of the moleule and itsdynamis in a uid. Everitt et al. [26℄ developed a sheme to alulate the re-laxation modulus of individual modes both pre and post gelation, and then, byonsidering the distribution of moleular weights within evolving lusters, theyderived a funtion for the e�etive relaxation modulus, G(t), of the uid. Whatfollows in the remainder of this setion is a detailed explanation of Everitt etal.'s derivation as well as further lari�ation.When a polymer moleule is put into a homogeneous ow it assumes theaspet of a statistially spherial oil with average size (radius of gyration) r.Due to the self similar nature of the polymer moleule the radius of gyration isrelated to the moleule mass via its fratal dimension df [104℄r / m1=df : (8.12)In Rouse dynamis [20℄ the frition on a moleular segment is proportional to thenumber of monomers so that the di�usion oeÆient is inversely proportional tomoleular weight. The longest relaxation time for a moleule of moleular mass
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Figure 8.2: Before the gel point, when the longest relaxation time �h !1 and�h ! 0, the polymer is in a liquid state. At the gel point, t = t, it is neitherliquid nor solid and for t > t it is a solid. Before the gel point the rosslinkingpolymer is a distribution of �nite lusters and we all it a `sol' sine it is stillsoluble in good solvents; at this stage all the modes an relax. One the gelpoint has been passed it is alled a gel; an in�nitely large maromoleule whihan only swell but not dissolve in a solvent even though low moleular weightmoleules (sol fration) are still extratable from the gel [104℄. The in�niteluster annot dissolve although the �nite lusters in the sol fration an stillrelax and aount for the `relaxing sol modes within the gel' in the diagram. Ast!1 (8.47) predits that �h ! �x.



Chapter 8 161m therefore sales as �m / 1mr2 : (8.13)The polymer moleules in the uid at t = 0 are assumed to be self-similar hainswith moleular weight mx and slowest relaxation rate �x, so that�m = �x �mxm �(2=df+1) (8.14)The relaxation rates for all the other possible modes for the moleule of massm, from k = 1 to k = m=mx, are� = �m(k) = �x �mxm k�2=dr ; (8.15)where 2=dr = 1 + 2=df . For eah moleular weight, m, there is an assoiatedRouse spetrum of relaxation modes [20℄ approximated as a ontinuous spetrum�m(k), so that the relaxation modulus Gm(t) for moleules of mass m an beobtained by integration over the modes k = 1 to k = m=mx viaGm(t) = �mRTm Z m=mx1 e��m(k)tdk; (8.16)where k is the mode number, �m = mn(m)�, n(m) is the number density ofmoleules of moleular weight m, R is the universal gas onstant and T is thetemperature. Rearranging equation (8.15) for k we have,k = mmx � ��x�dr=2 ; (8.17)so that substituting for, dk = mmx � ��x�dr=2 d�(2�=dr) ; (8.18)in (8.16) and hanging the integration limits from k to � we obtain,Gm(t) = mn(m)G0dr2 Z �x�m � ��x�dr=2 e��td�� ; (8.19)where G0 = �RT=mx. Next, the funtion desribing the distribution of moleu-lar weights of the lusters, n(m), must be derived. At the gel point n(m) sales



Chapter 8 162with the moleular weight of the luster, so that a luster or moleule of mole-ular weight m will have a number density whih is related by a power law to itsmoleular weight. That is,n(m) � m�� ; at � = �: (8.20)In the viinity of the gel point a uto� funtion, f � mmh ; mxm �, is introdued,n(m) � m��f � mmh ; mxm � ; (8.21)de�ning the two limits of the saling regime, where mh (moleular weight of thelargest �nite polymer moleule) sales aording tomh � j�� �j�1=�: (8.22)Away from these limits (i.e. m � mh and m � mx) the uto� funtionf(0; 0) = �, where � is a onstant, and in this ase n(m) follows the simplepower law, n(m) = �m�� : (8.23)Near the two ends of the saling region the distribution n(m) is more ompliatedand is ontrolled by the uto� funtion f . However, the analytial form ofthe uto� funtion at these two ends is unknown [74℄. Randrianantoandro etal. [72℄ used Monte Carlo simulations to obtain a more aurate exponentialuto� funtion, however, we retain the double step uto� funtion proposed byRubenstein et al. [74℄ and used by Everitt et al. [26℄. Throughout the reation,therefore, f � mmh ; mxm � = � �; mx < m < mh0; m > mh or m < mx: (8.24)The value of this onstant an be determined from the following normalisationonditionZ n(m)mdm = sol fration = � 1 for � < �;1� gel fration for � > �: (8.25)



Chapter 8 163Up until the gelation point � = �n(m) = 8<: 0 0 < m < mx;�m�� mx < m < mh;0 m > mhwhere � is the onstant that we are trying to determine. Integrating over allmass from 0 to m1Z n(m)mdm = Z mx0 0dm+ Z mhmx �m��mdm+ Z m1mh 0dm;= � �m2��2� � �mhmx ;= �(� � 2)m��2x "1� � mxmh���2# ; (8.26)and applying the normalisation ondition (8.25) for � < � we an obtain theonstant � � = (� � 2)m��2x�1� � mxmh���2� : (8.27)By the same method we have for the post gelation period,�(� � 2)m��2x "1� � mxmh���2# = 1� gel fration;where the remaining � mxmh���2 makes up the gel fration [26℄, so that for � > �� = (� � 2)m��2x : (8.28)Therefore, a full desription of the uto� funtion f( mmh ; mxm ) is given by
f � mmh ; mxm � =

8>>>>>>>>>><>>>>>>>>>>:
0 0 < m < mx; �0 < � < 1;(��2)m��2x�1�� mxmh ���2� mx < m < mh; �0 < � < �;(� � 2)m��2x mx < m < mh; � < � < 1;0 mh < m < m1; �0 < � < 1; (8.29)



Chapter 8 164and the number density for moleules of moleular weight m is
n(m) =

8>>>>>>>>>><>>>>>>>>>>:
0 0 < m < mx; �0 < � < 1;(��2)m��2x�1�� mxmh ���2�m�� mx < m < mh; �0 < � < �;(� � 2)m��2x m�� mx < m < mh; � < � < 1;0 mh < m < m1; �0 < � < 1: (8.30)

Prior to the gel point (�0 < � < �) all moleular weights in the sol lie withinthe range mx < m < mh and all existing modes are relaxing modes with arelaxation rate lying within �x < � < �h. Their ontribution to G(t) is given by(8.19).After the gel point, � > �, the gel is made up of a gel fration and a solfration (see Figure 8.2). The sol fration ontains only relaxing modes with�x < � < �h and their ontribution to G is determined via (8.19). The gelfration, quanti�ed by (mx=mh)��2, ontains both relaxing (�x < � < �h) andnon-relaxing modes (0 < � < �h).The funtions Gpre and Gpost are assigned to de�ne the evolution of therelaxation modulus pre- and post-gelation respetively so that throughout thepolymerisation reation the relaxation modulus an be desribed byG(t) = � Gpre(t) �0 < � < �;Gpost(t) � < � < 1: (8.31)First Gpre is derived by integration of (8.19) over all moleular weights from mxto mh, Gpre(t) = G0dr2 Z �x�h Z mhm� mn(m)� ��x�dr=2 e��t� dmd�; (8.32)



Chapter 8 165and bearing in mind the following relations derived from (8.14)� 1m����2 = � 1mx���2� ��x�(��2)dr=2 ;� 1mh���2 = � 1mx���2��h�x �(��2)dr=2 ;� mxmh���2 = ��h�x �(��2)dr=2 ; (8.33)the pre-gelation relaxation modulus an be stated as,Gpre(t) = G0 dr21� � �h�x �(��2) dr2 Z �x�h  � ��x�(��1) dr2 � ��h�x �(��2) dr2 � ��x� dr2 ! e��td�� :(8.34)Post gelation, when � > �, there are three ontributions to the relaxationmodulus Gpost(t) = Gsol(t) +Grgel(t) +Gnrgel(t) (8.35)where Gsol(t) is the ontribution due to the relaxing modes in the sol fration,Grgel(t) is the ontribution due to the relaxing modes in the gel fration andGnrgel(t) is the ontribution due to the non-relaxing gel mode. The limits ofGsol Grgel Gnrgel� �h < � < �x �h < � < �x 0 < � < �hm mx < m < mh mh < m <1 mh < m <1Table 8.3: Limits of integration for � and m for � > �.integration for � and m are set out in Table 8.3 so that, integrating over therelevant limits, we have, for � > �,Gpost(t) = G0dr2 Z �x�h Z mhm� mn(m)� ��x� dr2 e���tdmd� �Gsol(t)�+ G0dr2 Z �x�h Z 1mh mn(m)� ��x� dr2 e���tdmd� �Grgel(t)�+ G0dr2 Z �h0 Z 1mh mn(m)� ��x� dr2 1� dmd� �Gnrgel(t)� (8.36)



Chapter 8 166Eah ontribution is determined individually as follows: Gsol(t) is obtainedvia integration of the �rst term in (8.36) from mx to mh with n(m) = (� �2)m��2x m�� from (8.30) and soGsol(t) = G0dr2 Z �x�h Z mhm� mn(m)� ��x� dr2 e���tdmd�;= G0dr2 Z �x�h  � ��x� dr2 (��1) � ��h�x � dr2 (��2) � ��x� dr2 ! e��td�� : (8.37)To alulate the ontributions Grgel(t) and Gnrgel(t) we substitute for the gel fra-tion [26℄ given by Z 1mh mn(m)dm = � mxmh���2 ; (8.38)so that, in (8.36)Grgel(t) = G0dr2 Z �x�h � mxmh���2� ��x� dr2 e���td�;= G0dr2 Z �x�h ��h�x � dr2 (��2) � ��x� dr2 e���td�: (8.39)And similarly, from (8.33)Gnrgel(t) = G0dr2 Z �h0 � mxmh���2� ��x� dr2 d�� ;= G0dr2 Z �h0 ��h�x � dr2 (��2) � ��x� dr2 d�� : (8.40)The limits of integration are the same for Gsol(t) and Grgel(t) so that they anbe ombined to give the sum of the ontributions of the relaxing modes in thesol and gel frations post gelation asGsol(t) +Grgel(t) = G0dr2 Z �x�h � ��x� dr2 (��1) e��td�� : (8.41)Post gelation, the total ontribution to the relaxation modulus due to the gel



Chapter 8 167fration is,Gpost(t) = G0dr2 0BBB�Z �x�h � ��x� dr2 (��1) e��td��| {z }relaxing modes + Z �h0 ��h�x � dr2 (��2) � ��x� dr2 d��| {z }non-relaxing mode
1CCCA(8.42)or on integration of the non-relaxing mode,Gpost(t) = G0dr2 Z �x�h � ��x� dr2 (��1) e��td�� +G0��h�x � dr2 (��1) : (8.43)Hene (8.31) an be writtenG(t) = ( R �x�h(t)Gpre(�)e��t d�� ; � < �Ge + R �x�h(t)Gpost(�)e��t d�� ; � > � (8.44)where from (8.34) and (8.43),Gpre(�) = G0 �dr2 �1� � �h(t)�x � dr2 (��2) "� ��x� dr2 (��1) � ��h(t)�x � dr2 (��2) � �ex� dr2 # ;(8.45)Gpost(�) = G0dr2 � ��x� dr2 (��1) and Ge = G0��h(t)�x � dr2 (��1) : (8.46)For the purposes of our model the ontinuous spetrum is disretised to obtaina series of i single modes, as illustrated in Figure 8.3, with relaxation rate �i andrelaxation modulus G(�i). The integrals in (8.44) are thus replaed by summa-tions. Eah mode is treated as an individual mode in a multimode Oldroyd Buid. Details of the logarithmi sampling sheme used to disretise the systeman be found in Setion 8.2 and the G(�i) an be determined for �h<�<�x from(8.45) and (8.46) for pre-gelation and post-gelation, respetively.At eah time point the range of the integration/disretisation is from �h to�x but sine �h is not onstant this interval is hanging with time aording to
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Figure 8.3: Shemati diagram illustrating the logarithmi sampling of relax-ation modes �i for (a) both the pre-gelation and post-gelation stage and (b)the post-gelation stage of the reation. Modes above the �h urve are relaxingmodes; before the gel point they belong to the sol fration and after the gel pointthey belong to the gel fration. Modes below the �h urve are non-relaxing gelmodes and ontribute to the relaxation modulus of the gel.



Chapter 8 169the reation rate �. Near the gel point, perolation theory predits the lustermass distribution sales with the distane from the gel point j�� �j aordingto (8.22). Due to the fratal nature of the moleule it an be shown that therelaxation rate �h � j���j2=�dr [16,87℄. Therefore the harateristi relaxationrate (i.e. the relaxation rate of the largest moleule at time t) an be stated as�h(t) = 8><>: �x ����(t)��� ��� 2�dr ; �(t) < ���x ����(t)��� ��� 2�dr ; �(t) > � (8.47)where �(t) is de�ned by equation (8.9). The fator � is inluded to allow forthe fat that �h(t) is not symmetri about the gel point. Everitt et al. [26℄derived a value for this parameter (� = 0:0049) based on prefators determinedin an earlier paper [72℄. However, for the sake of simpliity they use � = ((1��)=�)2=�dr , as will we, so that as t tends to in�nity, �h tends to �x. Havingfully desribed the relaxation modulus, G(t), of the polymer over the durationof the reation, and disretised it into a series of i modes, we an now use thisinformation to augment the non-reating system, ((7.48) - (7.50)), with R = 0,and derive results for the reating model. A summary of the non-dimensionalisedreating model is now given. The non-dimensional variables are as for the non-reating ase and are detailed in Appendix C, with the exeption of the temporalvariable, whih in the reating ase is saled by 1=�. The variables are assignedindies i; j; n; to denote modal, spatial and temporal disretisation, respetively,with i = 1 � � � I; j = 1 � � �J and n = 1 � � �N . The resultant non-dimensionalgrouped parameters are tabulated in Table 8.1 and the individual parametervalues pertinent to the reating model are listed in Table 8.2.43 _un � 1un � 1X + un� = (P ng � Pu)M + 23 �xX�i=�h(n) G(�i)G0 JXj=1 (Arr � A��)ni;jxj + un � 1� (un) 13 ;(8.48)



Chapter 8 170�Anrri;j�t = � 4 _un3 (xj + un)Anrri;j � �i� �Anrri;j � 1� ; (8.49)� (Arr � A��)ni;j�t = 2 _un3(xj + un) h(Arr � A��)ni;j � 3Anrri;ji� �i� (Arr � A��)ni;j ;(8.50)�pa + (pg0 � pa)P ngpg0 �un = 1 + �� papg0X ��nj (0; t) + (�n � �0)� ; (8.51)��nj�t = N(xj + un) 43 �2�nj�x2 � 1X d�ndt (X � xj): (8.52)Boundary onditions ��nj�x = 1�X pg0 � papa (P ng � 1); x = 0; (8.53)�2�nj�x2 = 0; x = X: (8.54)Initial onditionsA1rri;j = 1; (Arr � A��)1i;j = 0; u1 = 1; P 1g = 1; �1j = 0.It is important to note that ontrary to the non-reating model in the pre-vious hapter, inertia is assumed to be negligible here and di�usion is no longerassumed to be instantaneous.Before the gelation point, as the moleular weight distribution is ontin-ually broadening, new modes ome into existene, i.e. are `swithed on', ateah time step (see Figure 8.3(a)). As eah new mode is `swithed on' it hasinitial orientation tensor A = I. However, at eah time step n we determineAn+1 via (8.49) and (8.50). It an be seen from the right hand side of theseequations, that this An+1, is alulated from �ni modes rather than �n+1i modes.For example, if we have three modes f�1; �2; �3g existing at t(n) and an ex-tra two modes are `swithed on' at t(n + 1), so that we now have �ve modesf�1; �2; �3; �4; �5g, the equation will alulate An+1rr1;j ; An+1rr2;j ; and An+1rr3;j orretly butthe terms An+1rr4;jand An+1rr5;j will be alulated based on �4; �5 = 0 instead of theatual values of these modes at t(n+1). If left untreated, this would mean thatthe stress GA would not be onserved from one time step to the next and so



Chapter 8 171in order to aount for this disrepany we ensure that stress is onserved byadjusting A for eah mode in the following way(G+�G)Â = GA+�GI; (8.55)where Â is the adjusted orientation tensor at time step n determined from theoutput, A, of (8.49) and (8.50). This leads to the following step in the numerialsheme, Ânrri;j = (PiGni )Anrri;j + �PiGn+1i �PiGni �PiGn+1i ; (8.56)�Ârr � Â���ni;j = (PiGni )�Ârr � Â���ni;jPiGn+1i : (8.57)where Gi = G(�i). The piture is slightly di�erent post-gelation; now an in�niteluster exists along with a distribution of �nite lusters [16℄. At the gel pointthe material is neither liquid nor solid [104℄; it has a visosity whih divergesto in�nity and an elasti modulus, Ggel, equal to zero. Proeeding past the gelpoint the elasti modulus begins to grow with time as the larger �nite lustersattah to the in�nite luster and beome frozen (that is, no longer able to relax).These modes, whih we refer to as `swithed o�', an be observed below the �hurve in Figure 8.3(b). Again, beause An+1 is determined from �ni we need toadjust this single gel mode aording to(Ggel +�Ggel +�Go�) Â = GgelA+�GgelI+�Go�Ao� ; (8.58)that is, Anrrj = GngelAnrrj + �Gn+1gel �Gngel�+PiGn+1o�i Anrri;jGn+1gel ; (8.59)�Ârr � Â���nj = Gngel �Ârr � Â���nj +PiGn+1o�i �Ârr � Â���njGn+1gel ; (8.60)where Go�(�i) is the value of the stress modulus for modes �i < �h at a giventime point. The ombined modulus, �Go� = PiGo� i, and stress, �Go�Ao� =



Chapter 8 172PiGn+1o� i Anrri, of these `swithed o�' modes is added to the single gel mode, ateah time step, after the gelation point.8.2 Numerial sheme and resultsA fourth order Runge-Kutta method was used to solve the stress equations(8.49) and (8.50). The momentum equation, (8.48), was solved by a forwardEuler method with a time step less than the shortest relaxation time (1=�x).The solutions to the gas di�usion equation (8.52) and gas pressure equation(8.51) were obtained via the Crank-Niolson method [84℄, hoosing the spatialdisretisation so that �t=(�x)2 < 1=2, thus ensuring spurious osillations donot our. The spatial integration in (8.48) was arried out using the ompositeSimpson's rule. Due to the disretisation of the relaxation modulus into individ-ual modes, (8.49) and (8.50) are solved for eah modal index i = 1; 2; ::; I andspatial index j = 1; 2; ::; J whih are then summed over both the i and j indiesin the momentum equation (8.48). The relaxation spetrum is disretised by�i = �xe�di(i�1), where di = 0:2 and I = 100.The non-dimensionalised system, (8.48) - (8.52), was solved numerially forthe parameterisation desribed in [26℄ and the numerial ode was validatedagainst results published in the same paper. We then examined the output us-ing the parameterisation desribed in Table 8.2 whih pertains to onditions,desribed in [92, 93℄, that we seek to model. For this analysis we ontinue touse the non-dimensional system as we are only onerned with single bubbles.In partiular, we investigate the e�et of the reation rate onstant, �, and thepressure amplitude of the aousti irradiation, on the non-dimensional bubblevolume, u, and the dimensionless bubble gas pressure, Pg, as illustrated in Fig-ures 8.4 and 8.5. As � inreases the bubble volume reahes steady state morequikly and the initial gradient is steeper as shown in Figure 8.4. The steadystate bubble volume is, itself, una�eted by the reation rate onstant. The



Chapter 8 173bubble gas pressure peaks sooner for lower reation rates (see Figure 8.5 (b))but as � inreases the magnitude of this peak gas pressure is larger. The initialbubble growth is ontrolled, via di�usion, by the onentration of gas alreadydissolved in the uid and the di�usion timesale is quanti�ed by 9D=(u0X)2=3.The seond soure for gas into the bubble is its prodution as a by produt ofthe reation, at a rate given by �. For larger � values, therefore, we see a largerpeak in bubble gas pressure as shown in Figure 8.5 (b). In our parameterisation(see Table 8.2) gas di�usion is relatively fast ompared to the initial, visosityontrolled bubble expansion rate, given by �pa�0=�. For eah value of � inFigure 8.5, therefore, the bubble gas pressure initially inreases and only beginsto fall as the reation rate dereases and gas onentration in the uid beginsto fall. Comparing Figures 8.5 (a) and (b) we an see that as the bubble gaspressure deays towards its steady state value, the initial steep bubble growthgradient dereases to a lower value.
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Chapter 8 175When we go on to examine bubble distributions in Setion 8.6 we need to re-dimensionalise the temporal variable in order to ompare neighbouring bubbleradii at onseutive time points.8.3 Calulation of reation rates from experi-mental observationsHaving developed a numerial ode, to trak the growth of a single bubble ina polymerising polymer foam, we now turn to the experimental work desribedin [93℄ and develop a model to measure a bubble size distribution within apolymerising sample. First we detail the experimental set up used by Torres-Sanhez et al. and then propose a model for this system.A shemati of the experimental set up used in [93℄ is shown in Figure 8.6.The reatants were plaed in a ylindrial vessel in the middle of a water bathlined with aousti absorbers to minimise wave reetion. The water bath main-tained a onstant temperature in order to prevent overheating. The sample on-tainer and transduer were aligned along the longitudinal axis of the bath andthe sonotrode tip was immersed 2m below the free surfae on the same planeas that of the entral plane of the ontainer. The ontainer was perpendiularto the soniating probe and had the opposite 180 degrees of its surfae shieldedby absorbent material to minimise reetions. Thermoouples and ondutivityprobes were held in the middle of the mixture to monitor the reation. To startthe reation the blowing agent was added to the mixture whih was then irradi-ated for 20 minutes with a 2 min on/1 min o� yle. When irradiation was om-plete the uring foam was left in the bath for 30 minutes until rigid. Examiningthe polymerisation reation itself, the hemial reation to form polyurethaneours between polyols and diisoyanate groups with distilled water employed
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Figure 8.6: Shemati of the experimental rig as published in [93℄ and reprintedwith the permission of the author.as a blowing agent and an be writtenpolyol + diisoyanate! polyurethane + CO2:In [93℄ the reation is assumed to be of �rst order and an be desribed by thereation kinetis d�dt = �(1� �); (8.61)so that �(1)(t) = 1� (1� �0)e��(t�t0); (8.62)where �(1)(t) is the extent of the �rst order reation. Everitt et al. [26℄ assumeseond order reation kinetis desribed by (8.8) and (8.9) where we assign �(2)as the extent of the seond order reation. In [92℄ the time to gelation point,t = 253s, for samples irradiated at 20Hz, an be alulated as an average ofthe three experimental plots obtained by irradiating the samples at di�erentaousti pressure amplitudes (see Table 8.4 and Figure 8.7).Assuming this value for t and using the values in Table 8.2 for the parameters�0, t0 and � we an alulate the approximate reation rates, (1)� and (2)� ,required for the �rst and seond order reation kinetis, respetively. For the
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Figure 8.7: Experimental plots of eletrial resistivity lines obtained from foamssoniated at 20kHz and di�erent aousti pressures: (a) 7 kPa, (b) 10 kPa, ()17 kPa, (d) 28 kPa. The start of the `gelation stage' has been irled. Datafrom these plots are used to onstrut Table 8.4. Reprinted with the permissionof the author [92℄.



Chapter 8 178Referene [92℄ Amplitude (kPa) t(s) �(s�1)Figure 5(a) 7 300 0.034Figure 5(b) 10 260 0.040Figure 5() 17 200 0.053Table 8.4: Data values approximated from plots (a), (b) and () in Figure 5of [92℄. From these plots we an approximate the time of the gelation point,t, in samples irradiated at 20Hz and aousti pressure amplitudes of 7kPa,10kPa and 17kPa, respetively. This gelation time is approximately identi�ed,in Figure 8.7, as the �rst small plateau in the plots of eletrial resistane versustime reprodued here. The � values for this seond order reation are alulatedvia (8.64).�rst order ase, (1)� = 1(t0 � t) log 1� �(1)1� �0 ! ; (8.63)so that, with �(1) = 0:91, �0 = 0:1, t = 253s and t0 = 10s (see Table 8.2),� = 9� 10�3s�1. For the seond order reation,(2)� = (�(2) � �0)(t � t0)(1� �0)(1� �) ; (8.64)so that � = 0:04s�1. The model that we employ for numerial simulationsassumes seond order reation kinetis and we will therefore use this latter valueof � to model the experimental set up used in [93℄ even though they assumed�rst order reation kinetis with a measured reation rate of � = 1� 10�3s�1.8.4 The diret e�et of pressure amplitude onbubble volume evolutionWe �rst onsider the experimental system in two dimensions only with the lefthand side lower orner of the ontainer positioned at the origin and the sonotrodein line with the vertial plane through the entre of the ylinder positioned at avertial distane h=2 from the origin, where h is the height of the sample ylinder(see Figure 8.8).
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Figure 8.8: Shemati illustrating a 2D vertial segment, in the x � y plane,of the 3D sample ontainer with height, h and width, L. The reating samplewithin the ontainer is irradiated by an aousti signal from the sonotrode tipwhih is positioned a suÆient distane from the sample ontainer so that planewave irradiation may be assumed. The 1D horizontal line `OA' is situated atthe sample half height, h=2. In order to simplify the mathematial model it isassumed that the sample height remains onstant throughout the reation; thisis not the ase in the experimental setup.



Chapter 8 180There are a number of assumptions that we deploy to simplify the situtation.At the point of aousti irradiation we assume that the polymerising sample is ahomogeneous dispersion of post nuleated bubbles of a given initial radius. Wealso assume that the height of the sample is h and remains so for the duration ofthe sample irradiation whih is ontinuous. This does not reet the experimentdesribed above as the upper surfae rises as the reation progresses. We assumethat the sonotrode tip is so small, and the wavelength and distane from thesample suh, that the irradiating wave may be assumed to be planar throughoutthe sample. Choosing the line OA (see Figure 8.8) at y = h=2 we an thereforeredue the pressure distribution to one dimension only.Aousti pressure, Pu, is the loal pressure deviation from the ambient at-mospheri pressure, pa, aused by an aousti wave. The instantaneous soundpressure, Pu(x; t) is the deviation from the loal ambient pressure due to theinsonifying wave at a given point in spae and time. In order to determine thee�etive aousti pressure at a spatial point over a given time interval we analulate the root mean square (RMS) value. For a periodi sinusoidal waveformgiven by, P (x; t) = p1 + p2 os(2�ft) sin(kx);where f is the frequeny and k the wavenumber, the RMS pressure is,Prms(x) = p1 + (p2=p2) sin(kx):The waveform set up in [93℄ is a standing wave resulting from the superposi-tion of an inident and reeted wave of equal aousti pressure amplitude andfrequeny and desribed by,Ps(x; t) = p1 + 2p2 os(2�ft) sin(kx);with an RMS spatial distribution,Prms(x) = p1 +p2p2 sin(kx):



Chapter 8 181The total pressure, Ptotal, is the sum of the ambient and e�etive aousti pres-sure so that in the ase of the standing wave,Pu(x) = p1 +p2p2 sin(kx); (8.65)the total pressure is given by,Ptotal(x) = pa + p1 +p2p2 sin(kx): (8.66)The in situ pressure �eld, �P , proposed by [93℄ was quoted in deibels, dB, andhad approximate minimum and maximum levels of 143dB and 151dB, respe-tively. The onversion equationP = 2� 10( �P=20�5); (8.67)was applied to obtain the orresponding minimum and maximum values of P inPasals, whih were then used to derive a mathematial funtion to model theinsonifying signal. This resulted in the following parameter values for the signalmodelled by (8.65): p1 = 500Pa, p2 = 200=p2Pa, k = �=L, where L = 50 is thesample width in mm. The shemati in Figure 8.9 demonstrates the e�etivepressure �eld in Pasals (green line) and shows bubbles nuleated homogeneouslyaross the one dimensional x domain. The orresponding �eld in deibels is alsoplotted (blue line) and is alulated via�P = 20 log10� P2� 10�5� : (8.68)The in situ pressure amplitude values proposed by Torres-Sanhez et al. [93℄are attenuated by the water bath and polymerising sample. Thus, although theinstrumental value for the pressure amplitude of the standing wave is of theorder 104Pa, the atual amplitude in situ is only of order 102Pa. Substitutingfor the values of p1 and p2, desribed above, in the aousti pressure amplitudeterm, pu, gives non-dimensional minimum and maximum Pu values of 0:0014
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Figure 8.9: Shemati illustrating the idealised sinusoidal waveform used tomodel the e�etive aousti pressure distribution in the sample desribed in [93℄.The waveform is desribed by (8.65) with p1 = 500 Pa, p2 = 200=p2 Pa, k = �=Lwhere L = 50 mm. The values for p1 and p2 were derived via onsiderationof the minimum and maximum pressure values in dB proposed in [93℄. Thegreen line gives the pressure in Pasals and the blue line gives the pressure indeibels (dB) using the onversion equation (8.68). The irles illustrate a seriesof homogeneously spaed nuleated bubbles aross the one dimensional sampledomain.



Chapter 8 183and 0:0050, respetively. These Pu values were entered in (8.1) and plots of theevolving dimensionless bubble volume, u, are shown in Figure 8.10. This �gureillustrates that, at this level of pressure amplitude, the e�et on the expandingbubble volume is negligible. Therefore, beause of the attenuation of the pressureamplitude we look instead at the indiret e�et of the pressure amplitude on thepolymerisation reation rate onstant, �, in the next setion.8.5 The e�et of pressure amplitude on rea-tion rateMotivated by Torres-Sanhez et al. [92℄ we deided to investigate the e�etof pressure amplitude on reation rate. In [26℄ the reation rate is a non-varying onstant and only a single bubble is onsidered. We propose that due tothe loal pressure amplitude distribution we an desribe a loal reation ratedistribution aross the sample so that for a series of bubbles eah one evolvesunder the inuene of its loal reation rate. In order to examine this e�etin isolation we have set the aousti pressure amplitude, Pu, in the momentumequation (8.1) to zero for the remainder of this Chapter. Before looking at thebubble size distribution aross suh a sample we �rst examine the sensitivity ofthe model to the reation rate onstant, �. The evolution of a single bubbleunder a number of di�erent reation rates of the order used in [92℄ is illustratedin Figure 8.5 (a); the parameter values are desribed in Table 8.2. We an seethat the e�et of di�erent � is signi�ant, given that the plot in Figure 8.5 isnon-dimensional, and that it is worth investigating this further and extendingthe result from the single bubble ase to the multibubble ase and inludingbubble-bubble interation.First we derived an empirial relationship between the pressure amplitudeapplied to the sample and the resultant reation rate onstant, �. This wasdone by examining the experimental data used to onstrut Figure 8.11 in [92℄.
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Figure 8.11: Slope onstant `a' value for di�erent samples irradiated at 20 kHzas published in [92℄. Data from this plot were extrated to onstrut Table 8.5.Reprinted with the permission of the author [92℄.

Figure 8.12: (a) Eletrial resistane data olleted by DAQ; (b) The orre-sponding logarithmi phase of the resistivity with di�erent slope onstant `a'.Reprinted with the permission of the author [92℄.



Chapter 8 186The data values are shown in Table 8.5. The parameter a is the oeÆientof the urve y = a log(x) + b �tted to the resistivity-pressure amplitude data(see Figure 8.7) and gives a measure of the reation rate onstant as illustratedby Figure 8.12 (b) from the same paper. Taking the seond order reation rate,� = 0:04, as determined in Setion 8.3, and orrelating it diretly with the valueof a = 68 in the absene of an aousti signal (see Figure 8.11) we determinedthe onstant of proportionality k = 1700. In other words, � = a=k; this anthen be used to alulate the remaining � values tabulated in Table 8.5. Wea �; 10�2s�1 Pressure amplitude, Pa68 4:0 075 4:4 675086 5:1 8250132 7:8 9750129 7:6 11250100 5:9 15000121 7:1 17250132 7:8 19500196 11:5 20000200 11:8 21000196 11:5 22500204 12:0 25000268 15:8 27750343 20:2 28500Table 8.5: Data table showing the a values and aousti pressure amplitudevalues (in Pa) extrated from Figure 8.11 [92℄ and the orresponding � valuealulated using the diret orrelation given by � = a=1700, with units of10�2s�1. The plot, in Figure 8.13, of reation rate onstant versus pressureamplitude was onstruted using this data.then �tted a linear funtion to the experimentally observed relationship betweenpressure amplitude and reation rate (see Figure 8.13) to give� = 3:571� 10�4 + 5:513� 10�6Pa: (8.69)A theoretial irradiating aousti signal, (8.70), was proposed to approximate
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Figure 8.13: Plot of reation rate onstant, � (s�1) versus pressure amplitude(Pa) from data quoted in Table 8.5. The pressure amplitude values were ex-trated from Figure 8.11 [92℄ and the reation rate onstant values determinedby the diret orrelation given by � = a=1700 as desribed in the text.



Chapter 8 188that desribed in [93℄. The signal is a sine wave with one and a half wavelengthsaross the sample width and a maximum amplitude value at half the samplewidth. The maximum pressure amplitude is 30kPa and the minimum is 5kPa.This reets approximately the instrumental range of values used to irradiatethe sample. The irradiating signal is de�ned byPa = 17500� 12500 sin�3�xL � ; (8.70)where L = 50mm is the width of the sample and x, the spatial o-ordinatewithin the sample, is also measured in the same units. We an then substitutefor this form of Pa into (8.69) to plot the resultant reation rate distributionaross the sample.8.6 Simulation of the foam porosity pro�leHaving tailored a pre-existing model to trak the evolution of a single bubblein an expanding reating polymer foam we now examine how a one dimensionalseries of bubbles, spread homogeneously aross the sample domain, evolve underthe inuene of an ultrasound standing wave (expressed as a loal reation rate)and the inuene of their nearest neighbours. These post nuleation bubbleswere initially plaed aross the sample domain with a number of di�erent spa-ings to analyse the e�et of the density of bubbles on the heterogeneity of the�nal sample. It is important to note that sine we are now omparing results fordi�erent reation rate onstants we must re-dimensionalise the temporal vari-able. The remaining results in this setion, therefore, refer to the dimensionaltemporal variable. Sine the reation rate distribution aross the sample is sym-metri we an redue the omputational ost by reduing the domain to halfthe sample width, that is L=2. A disrete set of � values (see Figure 8.14) wasobtained for eah 0.25mm spatial point and the bubbles were initially spaed at0.25mm intervals. Having determined the loal reation rates for eah bubble
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Chapter 8 190we evolve them independently (they are initially unhindered by neighbouringbubbles) so that we have a vetor of radii for eah time point during the expan-sion. We further assume that the bubbles do not translate during the reation,that is the bubble entre positions are �xed. The parameterisation for this anal-ysis is desribed in Table 8.6. For eah bubble in the domain we then appendits vetor to produe a matrix, r(tn; m), of radii for m = 1; � � � ; N bubbles attn = 1; � � � ; T time points. At eah time point we need to assess whether ornot a given bubble is touhing either of its neighbours and to this end at eahtimepoint tn, M(t; :) = R(t; 1 : N � 1)�L(t; 2 : N) is alulated, where R(t; N)and L(t; N) give the right and left hand bubble positions, respetively. If any ofthe entries in the vetor M are not stritly positive then the bubbles assoiatedwith those entries are touhing and so their growth is stopped. The shematiin Figure 8.15 demonstrates this. At the end of the temporal loop therefore weParameter Value Units CommentsD 1 10�2m2s�1 essentially instantaneous di�usionpg0 10 105Nm�2 pg0 = pa(1 + ��0) [26℄u0 9 10�12m3S 1 10�6Nm�1 negligible surfae tension� 90X 500� 0:028� 0:166 s�1 alulated from data in [92℄*Table 8.6: Parameter values used to onstrut Figures 8.16 to 8.20. The remain-ing parameter values, not already listed in this table are as detailed in Table8.2. * For details of this alulation and a disussion on the reation kinetissee Setion 8.3.will have a matrix of right and left position vetors and hene the �nal radius ofeah of the N bubbles at t = T . We use these values to onstrut the shematisin Figures 8.16 - 8.18 and the plots in Figures 8.19 - 8.22. Table 8.6 shows themaximum and minimum bubble radii for eah initial bubble spaing value Æx.The shematis in Figures 8.16 - 8.18 were onstruted by taking the �nal
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Figure 8.15: Shemati illustrating the simple rule for bubble-bubble interation.At time point t� 1 the position and radii of the neighbouring bubbles are suhthat they are not touhing and bubble evolution is ontinued until the next timestep when the bubble position and radii are heked again. In this ase, atthe subsequent time point t the bubble evolution means that the orrespondingentry in the vetor M (see text) is not stritly positive and therefore the growthof these bubbles in the mathematial ode is stopped and their positions frozenfor the duration of the time loop.
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Figure 8.16: Illustrative plots showing the �nal bubble size distribution, arossthe half sample domain, given the loal reation rate onstant pro�le presribedin Figure 8.14, for (a) 50, (b) 25, () 17 and (d) 13 bubbles. The bubblesare positioned homogeneously aross the domain at 0.5, 1.0, 1.5 and 2.0 mmintervals, respetively, and eah bubble is allowed to evolve, given the loalreation rate onstant value presribed at its entral position, until the reationeases or it touhs a neighbouring bubble. x is the horizontal o-ordinate, in thesample, in millimetres and the parameter values used are listed in Table 8.6.
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Figure 8.17: Illustrative plots showing the �nal bubble size distribution, arossthe half sample domain, given the loal reation rate onstant pro�le presribedin Figure 8.14, for (a) 11, (b) 9, () 8 and (d) 7 bubbles. The bubbles are posi-tioned homogeneously aross the domain at 2.5, 3.0, 3.5 and 4.0 mm intervals,respetively, and eah bubble is allowed to evolve, given the loal reation rateonstant value presribed at its entral position, until the reation eases or ittouhs a neighbouring bubble. x is the horizontal o-ordinate, in the sample, inmillimetres and the parameter values used are listed in Table 8.6.
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Figure 8.18: Illustrative plots showing the �nal bubble size distribution, arossthe half sample domain, given the loal reation rate onstant pro�le presribedin Figure 8.14, for (a) 6, (b) 5, () 4 and (d) 3 bubbles. The bubbles are posi-tioned homogeneously aross the domain at 5.0, 6.0, 7.0 and 9.0 mm intervals,respetively, and eah bubble is allowed to evolve, given the loal reation rateonstant value presribed at its entral position, until the reation eases or ittouhs a neighbouring bubble. x is the horizontal o-ordinate, in the sample, inmillimetres and the parameter values used are listed in Table 8.6.
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Figure 8.19: Plots illustrating the relative size distribution (RSD) alulatedby dividing eah bubble radius by the average bubble radius for a given bubbleseparation. (a), (b) and () relate to Figures 8.16, 8.17 and 8.18, respetively,with line olour order of red, green, blue and yan ranging from the smallest Æxvalue to the largest in eah ase. A quik visual inspetion indiates that as weinrease bubble separation the bubble size heterogeneity inreases. We measurethis heterogeneity in Figure 8.20 using two di�erent metris �1 and �2 given by(8.71) and (8.72), respetively.



Chapter 8 196Æx, mm N min radius, mm max radius, mm % di�erene0:5 50 0:2453 0:2456 0:121:0 25 0:4893 0:4992 2:021:5 17 0:7345 0:7489 1:962:0 13 0:9819 1:0026 2:112:5 11 1:2310 1:2552 1:973:0 9 1:4801 1:5119 2:153:5 8 1:7251 1:7608 2:074:0 7 1:9737 2:0222 2:465:0 6 2:4110 2:5887 7:376:0 5 2:7529 3:2455 17:897:0 4 3:1599 3:8321 21:279:0 3 4:3118 4:6881 8:73Table 8.7: The �nal maximum and minimum bubble radii, in an N bubble dis-tribution aross a sample domain of length L=2 (where L = 50mm) with bubblespaing given by Æx. The perentage di�erene is alulated with referene tothe minimum bubble radius. The maximum perentage di�erene ours withN = 4 bubbles and a bubble spaing of 7mm. Parameter values used to on-strut this table are detailed in Tables 8.2 and 8.6.bubble radius for eah ith bubble in the distribution and plotting a irle ofthe given radius entred on the bubble position xi. These �gures over a rangein Æx of 0.5mm to 9.0mm. The larger the number of bubbles, the smaller thesteady state bubble volume due to interation with neighbouring bubbles beforethe natural steady state volume is ahieved. In Figure 8.16 (a) and (b), inpartiular, it is hard to disern any heterogeneity in bubble size with the nakedeye. As the number of bubbles dereases below 17 we an observe heterogeneityin the bubble size distributions due to the spatial reation rate pro�le arossthe sample. This is easiest to observe in Figure 8.18 as the redued number ofbubbles means larger �nal volumes are ahieved before bubble-bubble interationhalts further growth.To aid the illustration of the heterogeneity through eah of the distributionsshown in Figures 8.16 - 8.18 we plot the relative size distribution (RSD) withrespet to the average bubble radius in eah ase. The results are displayed in



Chapter 8 197Figure 8.19 (a) - () and appear to show that heterogeneity of bubble size distri-bution through the sample inreases as Æx inreases. In the following setion wederive two metris to quantify this observed heterogeneity and look for a bubblespaing value, Æx, to maximise it.8.6.1 De�nition and analysis of bubble size heterogeneityWe looked at two di�erent metris to apture the �nal bubble size heterogene-ity aross the sample domain. The �rst de�nition takes into onsideration thedi�erene in bubble size for adjaent bubbles through the sample and is de�nedthus �1 =  NXj=L jr(T; j)� r(T; j � 1)j!, NXj=1 r(T; j)=N! : (8.71)The seond de�nition onsiders only the di�erene between the largest and small-est bubbles in the sample so that,�2 = �maxj2(1;N)fr(T; j)g �minj2(1;N)fr(T; j)g�, NXj=1 r(T; j)=N! : (8.72)These two values were alulated for eah initial bubble spaing and the resultsare plotted in Figure 8.20. We an see that qualitatively both de�nitions showthe same trends for heterogeneity versus bubble spaing. There appears to bean optimal bubble spaing that results in inreased heterogeneity in �nal bubbleradii through the sample and this ours at a bubble spaing of approximately6-7mm.Figure 8.21 shows the results of the same analysis as desribed here and inSetion 8.6 with the exeption that the value of the uid volume surroundingthe bubble is X = 150 as opposed to X = 500. In this ase the value for thebubble spaing interval, Æx, dereases so that the maximum heterogeneity inbubble size distribution is ahieved when Æx = 5mm, as opposed to 7mm in thease when X = 500.
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Figure 8.20: Plot illustrating the results for bubble size heterogeneity versus thebubble spaing, Æx (mm), through the sample, given by the metris �1 (8.71)and �2 (8.72). Curves for �1 (red urve) and �2 (blue urve) agree qualitativelyif not quantitatively. They both suggest that the initial bubble spaing intervalrequired to aheive the maximum bubble size heterogeneity aross the sample isapproximately Æx = 6. The metri �1 also suggests a loal maxima at Æx = 2but this is not observed using �2. The parameter values used to onstrut this�gure are listed in Table 8.6 with X = 500.
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Figure 8.21: Plot illustrating the results for bubble size heterogeneity versus thebubble spaing, Æx (mm), through the sample, given by the metris �1 (8.71)and �2 (8.72). Curves for �1 (red urve) and �2 (blue urve) agree qualitativelyif not quantitatively. They both suggest that the initial bubble spaing intervalrequired to aheive the maximum bubble size heterogeneity aross the sample isapproximately Æx = 6. The metri �1 also suggests a loal maxima at Æx = 2but this is not observed using �2. The parameter values used to onstrut this�gure are listed in Table 8.6 with the exeption that X = 150.
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Figure 8.22: Plot illustrating the �nal bubble radius distribution for 50 bubblesin the sample domain. The pro�le of this size distribution is qualitatively similarto the reation rate distribution pro�le in Figure 8.14, however, as demonstratedby the vertial axis, the magnitude of this e�et is small.



Chapter 8 201Having isolated the e�et of pressure amplitude on reation rate and exam-ined the resultant e�ets in the model, we have shown that the pressure ampli-tude of the irradiating aousti standing wave, an e�et bubble size distributionthrough its e�ets on reation rate. The reation rate distribution aross thesample does lead to spatial heterogeneity in �nal bubble sizes. However, as Fig-ure 8.19 demonstrates, the bubble size does not neessarily orrelate with theloal pressure amplitude pro�le as illustrated in Figure 8.14. An exeption tothis is the ase for Æx = 0:5mm and we an observe by omparing Figure 8.14to 8.22 that bubble volume is indeed proportional to the pressure amplitude al-though the magnitude of this e�et is small. This is the same qualitative e�etreported by Torres-Sanhez et al. in [93℄. The magnitude of the experimentallyobserved e�et of aousti pressure amplitude on bubble size reported in theirpaper is more signi�ant than that produed by our model and therefore anothermehanism, or perhaps several mehanisms, may be responsible and these willbe disussed in the next setion.For a given steady state bubble volume, our model an predit a homogeneousbubble spaing value, Æx, that produes maximum heterogeneity through thesample. Figure 8.21 demonstrates analysis of heterogeneity under the sameonditions as in Figure 8.20 with the exeption of a lower dimensionless uidvolume, X = 150. This results in a redued steady state volume for eah bubblein the sheme and, as Figure 8.21 illustrates, the spaing interval required tooptimise heterogeneity in bubble size distribution is redued.Mathematially we an hoose any bubble spaing we like but experimentallythis is not possible and initial bubble spaing will depend on many fators gov-erning nuleation. Furthermore, bubble spaing will also hange as new bubblesnuleate at subsequent timepoints.



Chapter 8 2028.7 DisussionIn this hapter we extended a model, introdued by Everitt et al. [26℄, for thegrowth of a single bubble within a reating polymer foam, to inlude the e�etsof an irradiating aousti standing wave. First we developed a numerial ode tosolve the oupled system of �ve PDEs, and validated our results by omparingwith those of Everitt et al. in the ase of no insonifying aousti signal. Satis�edthat the numerial ode was produing the right results we then looked to applythis model to the experiment desribed by Torres-Sanhez et al. [93℄. Beforeonsidering a multibubble distribution we �rst examined the e�et of this newparameterisation, and in partiular, the role played by the pressure amplitudeof the aousti standing wave. Due to the attenuating e�et of the sample,on the aousti standing wave, this pressure amplitude was shown to have nodiret e�et on the bubble volume (see Figure 8.10). However, the value of thereation rate onstant, � was demonstrated to have a muh more signi�ante�et as illustrated in Figure 8.1. In another related paper by Torres-Sanhezet al. [92℄ the authors point to a relationship between the reation rate of thepolymerisation and the pressure amplitude of the aousti standing wave. Weextrated, from their data, a relationship between the loal aousti pressureamplitude and the loalised reation rate onstant �, and used this to proposea spatial reation rate pro�le aross the sample, that orrelates with the pressureamplitude pro�le.Having developed a numerial ode to trak the evolution of an individualbubble insoni�ed at a given aousti pressure amplitude we then onsidered aone-dimensional distribution of nuleated bubbles `seeded' homogeneously arossthe sample. An empirial set of rules was de�ned in order to desribe bubble-bubble interation and, for a given steady state bubble volume, the e�et ofdi�erent bubble spaings aross the sample was examined. Two heterogene-



Chapter 8 203ity metris were de�ned and both agreed qualitatively, prediting an optimumbubble spaing interval to aheive maximum bubble heterogeneity.Although the reation rate distribution did inrease the heterogeneity ofthe �nal bubble size distribution, it did not onsistently predit the orrelationbetween bubble size and pressure amplitude value measured aross the sample aswas so learly illustrated in the experimental work arried out by Torres-Sanhezet al. [93℄. They demonstrate, experimentally, that for realisti in situ aoustipressure amplitudes aross the sample domain the porosity value orrelates withthe pressure amplitude. RMS pressure amplitudes ranged from 0 to 600 Pa andthe dimensionless porosity values (as de�ned in [94℄) were in the range 0 to160 where porosity inreases with porosity value. We have shown, theoretially,that in ases of high bubble number density it is possible to illustrate a bubblesize distribution pro�le that orrelates with the aousti pressure amplitudedistribution aross the sample (ompare Figures 8.9 and 8.22), as demonstratedby [93℄, although the magnitude of this orrelation is smaller. We have furtherdemonstrated that the initial bubble spaing an a�et the �nal bubble sizedistribution and heterogeneity of the sample. Optimum initial bubble spaingvalues an be determined, for a given parameter set, that will result in themaximum heterogeneity for the �nal bubble size distribution. This e�et ofinitial bubble spaing ould be onsidered in the future modelling of nuleatione�ets on the �nal bubble size distribution through the sample.



Chapter 9Conlusions and Further Work
9.1 ConlusionsThe main motivation for this setion of the thesis was a problem proposed, atthe MMSG 2010 [1℄, by Dr Carmen Torres-Sanhez [93℄ regarding the tailoringof the porosity gradients within a ured sample of a polymerising foam under theinuene of an aousti standing wave. This is a very omplex proess involvingmany interating fators and e�ets, for example, reti�ed di�usion, Ostwaldripening and nuleation, all of whih are a�eted by the variations in pressureamplitude that omes with an aousti standing wave. Due to the omplexityof the problem we deided to investigate the diret e�et of the applied aoustipressure amplitude on the system, in the �rst instane, and then latterly its e�eton the bubble size distribution via the reation rate onstant, �. We added anaousti amplitude to the right hand side of the momentum equation publishedin [26℄ to examine the diret e�et of the standing wave. However, although theinsonifying aousti signal has amplitude of order 104Pa, the attenuating natureof the water bath surrounding the sample and the sample medium itself, meanthat the atual amplitude in situ is only of order 102Pa and has no observablee�et on the bubble size. We an therefore onlude that this is not a mehanismresponsible for the bubble size heterogeneity observed in [93℄.An indiret e�et of the aousti pressure amplitude is demonstrated through204



Chapter 9 205the reation rate onstant, �. This link has been proposed in previous publia-tions [69, 92℄ and we deided to examine whether or not it ould be responsiblefor the porosity pro�les reported by [93℄. We parameterised the system for theonditions reported in [92, 93℄ and de�ned a spatial reation rate pro�le dueto the aousti standing wave. Individual bubbles were allowed to grow un-der the inuene of their loal reation rate onstant and a simple sheme forbubble-bubble interation was proposed so that �nal bubble distributions ouldbe obtained. We were thus able to demonstrate that the aousti pressure am-plitude e�et on reation rate was responsible for introduing heterogeneity inthe bubble size distribution aross the sample domain. In ertain ases thisbubble size distribution orrelated with the pressure amplitude pro�le arossthe sample, that is, larger bubble sizes ourred at spatial points with a largerloal pressure amplitude.The bubble spaing required to aheive the maximum heterogeneity in thebubble size distribution was shown to depend, through the non-dimensional uidvolume, X, on the steady state volume of the individual bubbles. That is, thesmaller the unimpeded steady state volume of individual bubbles, the smallerthe spaing interval required to aheive the maximum heterogeneity.Although we have demonstrated that the aousti standing wave used toirradiate the polymerising sample in [93℄ is indeed responsible for a ertain degreeof bubble size heterogeneity aross the domain, the bubble size distribution doesnot always orrelate with the applied pressure amplitude pro�le as reportedin [93℄. Furthermore, the magnitude of the heterogeneity observed in [93℄ wasmuh more signi�ant than that demonstrated here. This is not unexpetedwhen we onsider the number of interating e�ets involved in this proess andthe fat that we have examined, in isolation, only one suh mehanism. Avenuesof further investigation are suggested in the next setion.In Chapter 7 we produed a model to trak the growth of a bubble in a



Chapter 9 206free rising, non-reating polymer foam inorporating the e�ets of inertia. Wepartially deoupled the system by assuming instantaneous di�usion and wereable to derive, �rst and leading order, inner and outer asymptoti solutions,respetively. The dimensionless uid volume, X, played an important role in theform and derivation of the leading and �rst order inner solutions, with improvedsolution auray for large X. The leading order bubble volume was exponentialwith respet to the inner temporal variable. By a variable transformation, wewere able to redue the �rst order system to the Euler di�erential equation andsolve for the partiular branh de�ned by our parameterisation. Two separateregimes were onsidered; the �rst desribed the ase when the uid volume wasmuh larger than the bubble volume and the seond pertained to volumes of thesame order.The outer asymptoti solution essentially relates to the sheme with zeroinertia. We were able to redue the oupled �ve equation PDE system to asingle integro-di�erential equation to desribe bubble volume evolution for theouter asymptoti problem. This essentially desribes the ase of negligible iner-tia whih we investigated further in Chapter 8. This was ahieved by assuminginstantaneous di�usion to deouple the gas onentration potential, as well as de-riving an expliit form for the integrand, (Arr�A��)0=(x+u0). We attempted toderive an analyti approximation using the Piard iterative sheme but beauseof the omplexity of the equation, only the �rst iterate was derived. A numerialode was developed instead and this provided a must faster tool for analysing thebubble evolution than the full numerial analysis performed as in [26℄. However,it must be remembered that many assumptions and approximations have beenmade along the way so that fewer mehanisms and parameters are onsidered.Given the parameterisation of the system, in the absene of an insonifyingaousti standing wave, inertia would in fat be negligible. However, if we wereto add an aousti foring term to the right hand side of the momentum equation



Chapter 9 207to model the e�ets of the irradiating standing wave, then in a saled temporalvariable, the e�ets of inertia would be signi�ant due to the phenomenon ofreti�ed di�usion aused by the osillatory motion of the bubble. Although, inthis instane, we only look at the time averaged RMS signal for the aoustiwave and derive inner asymptoti solutions to leading and �rst order, we haveprodued a sheme that an be employed in the future to examine the e�ets ofthe aousti pressure amplitude on reti�ed di�usion.9.2 Further WorkSuggestions for further work inlude, but are not limited to, the following areas.The basi rules for bubble-bubble interation desribed in Chapter 8 ould beimproved in various ways, possibly oupling bubbles through the stress evolutionin the surrounding uid. In our basi sheme the bubbles interat as if no uidwas present and the only variable onsidered is the bubble radius.The nuleation proess, whih ontinues for some time after the polymeri-sation reation has ommened, has not been onsidered here. It would bepossible to model the e�et of this aspet of nuleation using our sheme, byassuming a funtion to desribe nuleation so that di�erent bubbles nuleateat di�erent times during the reation. These results ould be ompared withthe same nuleation funtion in the absene of an aousti pressure amplitude.This additional mehanism would be likely to introdue further heterogeneitythrough the sample. It is important to note that this version of the nuleatione�et does not onsider the diret e�et of the aousti pressure amplitude onthe atual nuleation rate of bubbles.The phenomenon of Bjerknes fores is another pressure sensitive mehanismthat organises bubbles aording to size; bubbles less than the resonane sizemigrate to pressure antinodes and bubbles larger than the resonane size to pres-sure nodes. The Bjerknes fore is diretly proportional to the applied aousti



Chapter 9 208pressure amplitude as well as depending on bubble size. Rather than governingbubble growth it ats to translate bubbles and as suh may be partially respon-sible for the heterogeneity in bubble size distributions observed experimentally.The work done in Chapter 7, to inlude the inertia term ould be extendedto inlude an investigation into the e�et of the aousti standing wave on thepumping e�ets of the aousti signal on mass transfer into the bubble by re-ti�ed di�usion.The inner asymptoti solutions, in Chapter 7, were derived to leading and�rst order. The onstrution of higher order asymptoti solutions would enablethe e�ets of a greater number of parameters to be investigated. Due to the largenumber of parameters involved in the reating sheme, a sensitivity analysiswould prove useful in identifying whih key fators are driving the proess, andthus help to inform the diretion of any future analysis.The ability to tailor the porosity pro�les within polymerising materials willlead to signi�ant improvements in a range of manufatured produts suh asarti�ial bone. Given the omplexity of the physis involved it is essential thatmathematial modelling is used to design the manufaturing proess. This the-sis is the �rst step in this diretion and it is hoped that it will inspire otherresearhers to take up the baton and develop the model to fully explain thisfasinating problem.



Appendix ANumerial sheme for thespatially heterogeneoushost-parasite model
Spatial disretisationThe spatial domain [0; L℄ is divided into N intervals of length dx and we use thestandard notation Pj(t) as an approximation of P (jdx; t) for j = 0; 1; � � � ; N .Hj(t) is de�ned in a similar manner.Treatment of the hare equationThe PDE is a standard reation-di�usion equation and is disretised using aseond order aurate entral di�erene sheme,�H�t = DHHj+1 � 2Hj +Hj�1dx2 � b(H + P ) + aH21P +H ; j = 0; 1; � � � ; N:In order to satisfy the presribed no ux boundary onditions and to maintainseond order auray, we set the following values H�1 = H1 and HN+1 = HN�1.Treatment of the parasite equationThe parasite equation has a reation term and an advetion term sine the par-asite lives in the host and travels with the host veloity. A �rst order upwindsemidisretisation ould be used that would maintain positivity but ould intro-209



Appendix A 210due a large amount of numerial di�usion, unless the spatial disretisation issuÆiently �ne. On the other hand, high order spatial disretisations often leadto osillations in solutions whih may break the positivity requirement when thesolution values are small. Instead we use ux limiters whih are designed to limitthe spatial derivatives to realisti, or physially realisable values. They tend tobe favoured when sharp wave fronts are present. The ux limiter sheme for ourproblem is onstruted as follows. We denote the veloity of the advetive uxat grid point j by wj = DHH �Hj�x ; j = 0; 1; � � � ; N:We de�ne the derivative ofH at grid point j using entral di�erenes as standardand let fj denote the semidisretised advetive ux at grid point j, i.e.fj = wjPj; j = 0; 1; � � � ; N:We then introdue the semidisretised general ux funtion Fj+1=2 whih is afuntion of the uxes f surrounding the grid point j. Using a entral di�ereneapproximation for the spatial derivative, the advetion term an be approxi-mated by the expression1dx �Fj+1=2 � Fj�1=2� ; j = 0; 1; � � � ; N:The semidisretisation of the parasite equation then yields�P�t = 1dx �Fj+1=2 � Fj�1=2�+ P � �H1 +H � (�+ b+ �)� 2bPH �We set F�1=2 = FN+1=2 = 0 to ensure that the no-ux boundary onditions aresatis�ed. It only remains to hoose the ux funtions Fj+1=2. To this end, wede�ne the funtion rj = fj+1 � fj + �fj � fj�1 + � ; j = 0; 1; � � � ; N;



Appendix A 211whih enapsulates the ratio of the gradients of uxes about grid point j. Notethat the quantity � is a small number that ensures that rj is well de�ned evenwhen the uxes surrounding grid point j are idential. We set � = 10�30.Consistent with the boundary onditions, we set f�1 = fN+1 = 0. Finallywe introdue a limiter funtion �(r) and de�ne the general ux funtion for anon-negative veloity asFj+1=2 = fj + 12�(rj)(fj � fj�1); j = 0; 1; � � � ; N � 1:However, for a negative veloity wj < 0 we reet all the indies about j + 1=2to obtainFj+1=2 = fj+1 + 12�� 1rj+1� (fj+1 � fj+2) ; j = 0; 1; � � � ; N � 1:We hoose a symmetri, van Leer ux limiter funtion, namely�(r) = r + jrj1 + jrj ;whih tends to 2 as r !1 and has the following symmetry property�(r)r = ��1r� ;whih ensures that the limiting ation operates in the same way for forward andbakward gradients. Note that �(r) = 0 would be equivalent to a �rst-orderupwind disretisation.Numerial integration of the ODE systemThe spatial disretisation desribed above redues the PDE system to a systemof ODEs whih we solve using a fourth order Runge-Kutta method.



Appendix BResaling of Mountain hare,Trihostrongylus-retortaeformissystem
The ontinuous growth equations for a host population of density, H interatingwith a parasite population, P in a spatially heterogeneous system are statedbelow. The original reation-kineti system is augmented by a spatial termrelated to the rate of hare ux JH . The population densities are thereforedependent on a one-dimensional spatial omponent, x as well as time, t andevolve aording to�H�t = ��P � bH + aH2(ÆP +H) � �JH�x ; (B.1)�P�t = P � �HH0 +H � (�+ � + b)� 2�PH �� ��x �PJHH � ; (B.2)where x,t2R, H = H(x; t), P = P (x; t), JH = �DH�H=�x and DH is the di�u-sion oeÆient for the hare population.We introdue the dimensionless onstants h and p and substituting into (B.1)for H = h �H and P = p �P gives��t(h �H) = ��p �P � bh �H + a(h �H)2Æp �P + h �H � h� �JH�x ; (B.3)! h� �H�t = ��p �P � bh �H + h2a �H2Æp �P + h �H � h� �JH�x : (B.4)212



Appendix B 213Dividing through by h and rearranging we have� �H�t = �ph� �P � b �H + a �H2phÆ �P + �H � � �JH�x : (B.5)Assigning �� = ph� and �Æ = phÆ we an rewrite (B.5) as� �H�t = ��� �P � b �H + a �H2�Æ �P + �H � � �JH�x : (B.6)We non-dimensionalise (B.2) in the same way,��t(p �P ) = p �P � �h �HH0 + h �H � �� �� b� 2�p �Ph �H �� ��x �ph �P �JHh �H � : (B.7)Dividing through by p and setting h = H0 and p = P0 we obtain� �P�t = �P � � �H1 + �H � �� �� b� P0H02� �P�H �� ��x � �P �JH�H � : (B.8)De�ning the parameter � = H0P0 the above equation an be rewritten as� �P�t = �P � � �H1 + �H � �� ���� b� 2�� �P�H �� ��x � �P �JH�H � ; (B.9)and our resaled system an now be presented� �H�t = ��� �P � b �H + a �H2�Æ �P + �H � � �JH�x ; (B.10)� �P�t = �P � � �H1 + �H � �� ���� b� 2�� �P�H �� ��x � �P �JH�H � ; (B.11)where the non-dimensional parameters are given by�� = �P0H0 = 0:0209, �Æ = ÆP0H0 = 0:2618, � = H0P0 = 3:82� 10�4,and P0 = 1� 108.



Appendix CNon dimensionalisation ofnon-reating system of equations
All lengths are saled with u 130 and volumes with u0, we sale time with therelaxation time of the polymer � , pg aording toPg = pg � papg0 � pa ; (C.1)and � with pg0u0=RgT , that is, the initial number of moles of gas. The fol-lowing substitutions are made in the governing equations, boundary and initialonditions: t = � t̂; u = u0û; pg = (pg0 � pa)Pg + pa;x = u0x̂; _u = u0� _̂u; pu = (pg0 � pa)Pu;X = u0X̂; �u = u0�2 �̂u; and � = pg0u0RgT �̂:Starting with the momentum equation (7.32)43� _u�1u � 1X + u� + �" �u3  1u 13 � 1(X + u) 13 !� _u218  1u 43 � 1(X + u) 43 !#= pg � pa � pu + 23G Z X0 (Arr � A��)(x0 + u) dx0 � 2Su 13 ; (C.2)

214



Appendix C 21543 �� u0 _̂u 1u0û � 1u0(X̂ + û)!+�"u0� 2 �̂u3  1u 130 û 13 � 1u 130 (X̂ + û) 13 !� u20� 2 _̂u218  1u 430 û 43 � 1u 430 (X̂ + û) 43 !#= (pg0 � pa)Pg � (pg0 � pa)Pu + 23G Z u0X̂0 (Arr � A��)u0(x̂+ û) d(u0x̂)� 2Su 130 û 13 :Dividing by �=� and olleting powers of u0 together gives43 _̂u 1̂u � 1(X̂ + û)!+R"�̂u 1̂u 13 � 1(X̂ + û) 13 !� _̂u26  1̂u 43 � 1(X̂ + û) 43 !#= De(Pg � Pu) + 23 Z X̂0 (Ârr � Â��)(x̂+ û) dx̂� 1�û 13 ; (C.3)where the following non dimensional grouped parameters are de�ned by,R = �u 2303�� ; De = (pg0 � pa)�� ;  = G�� ; � = �u 1302S� :Substitution for the non-dimensional variables into (7.37) and (7.39) gives,�Arr��t̂ = � 4u0 _̂u3�u0(x̂ + û)Arr � 1� (Arr � 1);�Arr�t̂ = � 4 _̂u3(x̂ + û)Arr � (Arr � 1); (C.4)and, �(Arr � A��)��t̂ = 2u0 _̂u3�u0(x̂ + û) [(Arr � A��)� 3Arr℄� 1� (Arr � A��);�(Arr � A��)�t̂ = 2 _̂u3(x̂+ û) [(Arr � A��)� 3Arr℄� (Arr � A��); (C.5)respetively. We an re-write (7.47) aspgu0û = pg0u0 +RgT �̂(0; t)pg0u0RgT :Dividing through by u0 and rearranging gives,(pa + (pg0 � pa)Pg)pg0û = (1 + �̂(0; t)): (C.6)



Appendix C 216For the di�usion equation (7.45) we havepg0u0RgT� ��̂�t̂ = 9D(u0(x̂ + û)) 43 pg0u0RgT �2�̂u20�x̂2 ;��̂�t̂ = N(x̂ + û) 43 �2�̂�x̂2 ; where N = 9D�u 230 : (C.7)Finally we need to non-dimensionalise the boundary ondition on � at the bubblesurfae, that is, ���x ����x=0 = (pg � pg0)H;so that, ��(u0x̂) �pg0u0RgT �̂�����(u0x̂)=0 = [(pa + (pg0 � pa)Pg)� pg0℄H;��̂�x̂ �����x̂=0 = �(pg0 � pa)pg0 (Pg � 1); (C.8)where � = RgTH.Parameter Value UnitsPressure outside the uid layer, pa 1 105Nm�2Initial bubble gas pressure, pg0 10 105Nm�2Elasti modulus, G 1� 10 105Nm�2Solvent visosity, � 1; 6 105Nsm�2Polymer relaxation time, � 1 sInitial bubble volume, u0 1 10�18m3Surfae tension, S 0� 5 10�1Nm�1Gas onstant, Rg 8:31 Jmol�1K�1Temperature, T 370 KHenry's law onstant, H 10:5 10�5molN�1m�1Di�usivity, D 0:1� 100 10�12m2s�1Fluid density, � 1200 kgm�3Table C.1: Parameters required for bubble expansion in the non-reating system(7.48) - (7.52).
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