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Abstract

This thesis is concerned with the problem of broadband angle of arrival (AoA)

estimation for sensor arrays. There is a rich theory of narrowband solutions to

the AoA problem, which typically involves the covariance matrix of the received

data and matrix factorisations such as the eigenvalue decomposition (EVD) to

reach optimality in various senses. For broadband arrays, such as found in sonar,

acoustics or other applications where signals do not fulfil the narrowband as-

sumption, working with phase shifts between different signals — as sufficient in

the narrowband case — does not suffice and explicit lags need to be taken into

account. The required space-time covariance matrix of the data now has a lag

dimension, and classical solutions such as those based on the EVD are no longer

directly applicable.

There are a number of existing broadband AoA techniques, which are reviewed

in this thesis. These include independent frequency bin processors, where the

broadband problem is split into several narrowband ones, thus loosing coherence

across bins. Coherent signal subspace methods effectively apply a pre-steering

by focussing matrices in the assumed directions of existing sources, and sum the

narrowband covariance matrices coherently. Subsequently, classical narrowband

methods can be applied. A recent auto-focussing approach dispenses with the

requirement of knowing the approximate direction of sources, and calculates the

focussing matrices on a data-dependent fashion. A recent parametric covariance

matrix approach for broadband AoA estimation is also reviewed, and it is shown

that this can only detect a single — the strongest — source.

Based on a polynomial EVD (PEVD) factorisation of polynomial matrices

such as created by a space-time covariance matrix emerging from a broadband

problem, this thesis proposes an extension of the powerful high-resolution but
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narrowband multiple signal classification (MUSIC) algorithm. While narrowband

MUSIC is based on an EVD to identify signal and noise subspaces, the PEVD

can extract polynomial subspaces. This also requires the definition of broadband

steering vectors, which are used in the proposed polynomial MUSIC (P-MUSIC)

method to scan the noise-only subspace. Two different P-MUSIC versions are

proposed here: a spatio-spectral P-MUSIC (SSP-MUSIC) is capable to resolve

sources with respect to the AoA and frequency range, and a spatial P-MUSIC

(SP-MUSIC) extracts the AoA alone.

Broadband steering vectors are proposed as polynomial vectors containing

fractional delay filters. For the implementation, a number of methods are reviewed

and compared, including windowed sinc functions and Farrow structures. All

these techniques show degraded performance as the frequency approaches half of

the sampling rate. Therefore, this dissertation also proposes a highly accurate

fractional delay filter implementation based on undecimated filter banks, whereby

the subband signals are modulated to lower frequency ranges, where individual

fractional delay filters can operate with high accuracy.

For the implementation of P-MUSIC, we demonstrate that the broadband

steering vector accuracy is important. We also apply different iterative PEVD al-

gorithms belonging to the families of second order sequential best rotation (SBR2)

and sequential matrix diagonalisation (SMD) algorithms. We demonstrate the

SMD familly, which offers a better diagonalisation of the space-time covariance

matrix, is also capable of providing a more accurate subspace decomposition than

SBR2. This is evidenced by a higher resolution that can be achieved if SP-MUSIC

and SSP-MUSIC are based on SMD rather than SBR2.

The thesis concludes with an extensive set of simulations for both toy prob-

lems and realistic scenarios. This is to explain and highlight the operation of

the P-MUSIC algorithms, but also compares their performance to other state-of-

the-art broadband AoA methods. For the closest competitor, the auto-focussing

approach, an analysis in a polynomial matrix framework is provided, which high-

lights similarities and differences to P-MUSIC. The simulations indicate that P-

MUSIC is a powerful and robust extension of MUSIC to the broadband case.
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Chapter 1

Introduction

1.1 Background and Motivation

Sensor array signal processing has a growing number of important applications

ranging from radar, mobile communications and acoustic systems to many other

fields. Propagating signals carry information about the sources that generate

them. Of particular important for the work in this thesis is source angle of arrival

(AoA) estimation or direction finding, which needs to be estimated in many

applications. For example, AoA is an important factor for target localisation

in radar [1]. For wireless communications, AoA estimation can provide spatial

diversity that allows multiuser scenarios [2]. In acoustic applications, AoA for

microphone arrays can be used for speaker localisation [3] and source separation

[4], which is required for televideo conferencing and concert halls applications [5,

6, 7].

The main principle of AoA estimation is to use the data received by a sensor

array to estimate the angles of arrival of sources of interest. Moreover, AoA can

be considered as a multiple input multiple output (MIMO) system with K input

signals and M sensors, where it is usually assumed that the number of source

1
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signals is less than the number of sensors, K < M , to guarantee the uniqueness

of AoA estimation [8]. However, AoA algorithms are generally complex and their

performance depends on many factors such as the number of source signals and

their bandwidth, i.e., narrowband or broadband, and also the number of sensors

in the array and their spacing [9].

Many methods and algorithms have been developed for determining the AoA

of source signals received by the sensor array with a trade-off between accuracy

and computations. Most high resolution AoA algorithms have been designed

for narrowband signals, where the bandwidth of the source signal is relatively

small compared to its centre frequency. For example, if the desired signal is

narrowband, then the time delay arising from signal wave fronts travelling across

the array at finite speed can be modelled by phase shifts, whereby these phase

shifts depend only on the AoA. A powerful narrowband AoA estimation technique

is the multiple signal classification (MUSIC) algorithm [10]. MUSIC is a high

resolution subspace method that is based on the eigenvalue decomposition of the

data covariance matrix, which provides the decomposition into two orthogonal

subspaces, i.e., the signal-plus-noise and the noise only subspaces.

In contrast to the widely researched narrowband case, broadband signals

present more complex problems, whereby first time delays rather than phase

shifts need to be considered to distinguish spatially separated broadband sources.

Secondly, the time delay (lag value) has to be taken into account when calculating

the space-time covariance matrix for describing the broadband sensor array sys-

tems, which leads to the elements of the space-time covariance matrix containing

the complete auto- or cross correlation sequences rather than just a single correl-

ation coefficient. This results in its corresponding cross-spectral density (CSD)

matrix forming a polynomial matrix. As a result, MUSIC or any powerful nar-

rowband AoA estimation methods are not directly applicable to the broadband
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case.

Recently a number of efforts to derive broadband algorithms for direction of

arrival estimation problems have been pursued. Most existing broadband AoA es-

timation techniques bypass the broadband AoA problems in favour of narrowband

AoA processing, whereby firstly the broadband sensor data is decomposed into

multiple narrowband signals of various frequencies by means of a discrete Fourier

transform (DFT). Thereafter, narrowband AoA algorithms can be applied to the

different narrowband signals incoherently or coherently to obtain accurate broad-

band AoA estimates. The incoherent based approachesin [11, 12, 13] process the

narrowband problems individually and then combine the results. The coherent

based methods [14, 15, 16, 17] by contrast are based on the idea of cohering the

different frequencies into a single“common” frequency model describing the whole

broadband signal for which narrowband high resolution AoA based method can

then be used to estimate the sources’ angles.

Other broadband AoA estimation techniques include [18], where a frequency

domain approach leads to a decoupling of source parameters such as frequency

and angle of arrival, over which estimation is performed. A wideband time do-

main approach reported in [19] is based on a Markov chain Monte-Carlo method.

While [18, 19] are broadband approaches, they are unrelated to subspace meth-

ods or specifically the MUSIC algorithm. The contributions in [20, 21] introduce

a parameterised spatial covariance matrix, which depends on the AoA and sub-

sequently the relative time delay between array elements. Based on this descrip-

tion, a number of algebraic techniques including a broadband MUSIC algorithm

have been derived [22, 23, 24]. A broadband method that does not perform the

subband decomposition is proposed in [25]. This method builds on a low-rank sig-

nal model which relies on polynomial spline approximation of the source signals,

however, requires inverse problems consisting of very large matrices.



1.2. Thesis Contributions 4

Since the space-time covariance matrix for broadband signals is a polyno-

mial matrix, it can no longer be diagonalised using the eigenvalue decomposition

(EVD). Instead a polynomial matrix EVD (PEVD) technique is required. The

PEVD is a generalisation of the EVD to polynomial matrices and can be cal-

culated using iterative techniques [27, 28, 29]. This decomposition has found

applications in the design of broadband precoding and equalisation of MIMO

systems [30, 31], subband coding [32], filter bank-based channel coding [33], and

other problems.

The motivation of this thesis is to develop reliable broadband AoA estimation

methods using polynomial matrix techniques, which can locate broadband sources

to enhance e.g. the performance of wideband wireless communication systems.

Important performance metrics for candidate algorithms will be their resolution,

robustness, and computational complexity.

1.2 Thesis Contributions

This thesis comprises the following novel contributions in the area of broadband

angle of arrival estimation.

❼ Broadband steering vectors [34, 35, 36]

To model the time delays that arise from signal wavefronts travelling across

a sensor array, the design of broadband steering vectors (BSV) based on

fractional delay filters (FDF) is proposed. Different existing FDF designs

are compared w.r.t. to their accuracy and complexity. Motivated by the

need of highly accurate BSVs for applications such as broadband AoA es-

timation, a new FDF design based on undecimated filter banks is proposed.

Unlike standard fractional delay filters, which break down at frequencies

close to half of the sampling rate, this new design offers very accurate group
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delays across the entire spectrum. If high accuracy is required, the filter

bank approach can also offer computational advantages.

❼ Polynomial MUSIC algorithm [34]

A new novel broadband AoA estimation technique, referred to as polynomial

MUSIC (P-MUSIC) has been proposed, which resolves either AoA alone or

in combination with the frequency range over which sources are active. P-

MUSIC is based on the broadband subspace decomposition afforded by the

PEVD techniques, whereby the sequential best rotation (SBR2) algorithm

is firstly adopted for calculating the PEVD. Performance of the P-MUSIC

algorithm is demonstrated for different simulation scenarios.

❼ An improved P-MUSIC algorithm [37]

Enhanced resolution of the proposed algorithms P-MUSIC has been achieved

by utilising iterative PEVD algorithms that have recently evolved from the

original SBR2 algorithm, in form of a new family of sequential matrix de-

composition (SMD) algorithms [28, 29]. SMD provides a higher level of

diagonalisation than SBR2 which leads to a better identification of the rel-

evant signal subspace. The improved performance of the new P-MUSIC

over the original one is demonstrated in simulations for different scenarios.

❼ Comparison of broadband angle of arrival approaches [38, 39]

The proposed P-MUSIC algorithm has been compared to other broad-

band AoA techniques, including independent frequency bin, auto-focussing,

broadband beamforming and a parametric covariance methods, under an

extensive set of tests and benchmarks. Simulation results highlight the be-

nefits of the proposed algorithms compared to these state-of-the-art AoA

estimation techniques.

❼ Broadband AoA estimation methods in a PEVD framework [40]
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The recently proposed auto-focussing (AF) approach [41] for broadband

AoA estimation is analysed in the framework of polynomial space-time cov-

ariance matrices and their PEVD. This leads to comparisons to the proposed

P-MUSIC algorithms. The analysis is complemented with numerical simu-

lations. Simulation results show that AF is falsely claimed to belong to the

coherent signal subspace (CSS) [14] family of algorithms. While the pro-

posed algorithms perform similarly to AF if exact knowledge of the sources’

spectral parameters is given, they do not require this a priori information

and can outperform AF if spectra are unknown.

1.3 Thesis Organisation

In the following, a brief overview of the remaining chapters in this thesis is presen-

ted.

Chapter 2 introduces the fundamentals of propagating wave fields, and de-

scribes the sensor array signal model for broadband and narrowband scenarios.

The concept of AoA estimation is presented, followed by an overview of narrow-

band AoA techniques, particularly the high resolution narrowband MUSIC signal

subspace based method. Finally, at the end of this chapter, broadband AoA es-

timation approaches are reviewed.

Chapter 3 presents the idea of a BSV for broadband sensor array applications

and describes its implementation using fractional delay filters. It also presents

a review of the state-of-the-arts FDFs, which includes the windowed sinc func-

tions [42, 43] and the Farrow structure [44]. The common feature of these FDF

implementations, poor performance at frequencies of around half of the sampling

rate, is discussed and demonstrated in simulations. A new FDF scheme based

on a filter bank approach is proposed. The new technique aims to approach the

ideal fractional delay over the entire bandwidth. The computational complexity
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of the various FDF schemes is then evaluated. Simulation results are presented,

highlighting the benefits of the proposed filter bank approach in comparison with

windowed sinc functions and Farrow structures. The simulation results show that

the proposed scheme is an accurate tool when compared to these state-of-the-art

FDF schemes [35, 36].

Chapter 4 proposes a novel broadband AoA estimation polynomial MUSIC

(P-MUSIC) algorithm [34]. P-MUSIC is an extension of the powerful narrow-

band MUSIC algorithm for broadband AoA problems. We start by presenting the

broadband (polynomial) subspace estimation afforded by a PEVD. The concept

of the PEVD and its calculation using iterative methods are introduced. Two

iterative algorithms for implementing the PEVD, i.e., the SBR2 and MSME-

SMD algorithms will be reviewed in this chapter. These algorithms can be

viewed as a generalisation of the EVD to polynomial matrices, and can be used

to obtain broadband (polynomial) subspace decompositions. Based on the calcu-

lated polynomial noise-only subspace and the definition of the BSVs introduced

in Chapter 3, a new broadband AoA estimation technique known as polynomial

MUSIC (P-MUSIC) algorithm is proposed. P-MUSIC was originally based on

the SBR2 algorithm. A comparison between the P-MUSIC and an independ-

ent frequency bin (IFB) approach, whereby a narrowband MUSIC algorithm is

independently applied in every frequency bin, is outlined through simulations.

The results show that the proposed method is powerful and very robust when

compared to IFB schemes. The impact of the BSV implementation methods on

the accuracy of the P-MUSIC algorithm is evaluated and demonstrated through

simulations. Moreover, to further enhance the performance of the P-MUSIC al-

gorithms, the recently proposed MSME-SMD algorithm is used to estimate the

polynomial noise-only subspace, instead of using the SBR2 algorithm. Simulation

results are presented, highlighting the potential performance improvements using
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MSME-SMD algorithm when compared to SBR2.

Chapter 5 consists of two parts. The first part addresses links between the

proposed P-MUSIC algorithms and the recently proposed AF approach for broad-

band AoA estimation, that aims to highlight the similarities by analysing the AF

in the framework of polynomial matrix decompositions. The analysis is comple-

mented with numerical simulations. In the second part, a comprehensive compar-

ison between the P-MUSIC algorithms proposed in this thesis and others broad-

band AoA methods for different scenarios are considered in simulations. The

results show that the proposed scheme is a powerful tool when compared with

other AoA algorithms.

Chapter 6 includes a summary and conclusions, along with suggestion for po-

tential future work.



Chapter 2

Angle of Arrival (AoA)

Estimation

For array signal processing, the most common applications include estimating

and tracking signals and determining their parameters such as the number of

contributing sources, their locations, or the angles from which they illuminate the

array. The angle of arrival (AoA) of signal sources is one of the most important

parameters to be estimated in many applications such as radar, sonar, air traffic

control and wireless communication [1]. Furthermore, knowing the AoA, this

information can be used to localise the signal sources via beamforming, by placing

high gains in the direction of desired AoAs or by steering nulls in the direction

of interferers. Depending on the bandwidth of the desired signal, the direction

finding can be classified either into narrowband or broadband techniques. AoA

estimation for broadband signals will be considered in this thesis with the aim to

design and implement high performance broadband direction finding algorithm.

The organisation of this chapter is as follows. Sec. 2.1 begins with an introduc-

tion for wave propagation in space. In Sec. 2.2, a description of a spatio-temporal

signal model that will be used in this thesis is presented and followed by a defin-

9
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ition of a signal model for both narrowband and broadband scenarios. Then the

concept of AoA estimation and its classification from the signal bandwidth per-

spective is reviewed in Sec. 2.3. In Sec. 2.4, various narrowband AoA estimation

methods are introduced, particularly MUSIC signal subspace based method is

considered with more details, followed by broadband AoA estimation techniques

in Sec. 2.5, before conclusions are drawn in Sec. 2.6.

2.1 Propagation of Wave Fields

This section will describe the wave propagation in three dimensions and identify

the space-time signal model that will be considered in this thesis. A wave field

propagates in both time and space. The spatial quantities generally expanded

over all three space dimensions are denoted by Cartesian coordinates (x; y; z)

or by spherical coordinates (r, ϑ, φ). In spherical coordinates, r is the radius,

φ is the azimuth angle φ ∈ [0, 2π] and ϑ is the elevation angle ϑ ∈ [−π
2
, π

2
].

The relationship between the Cartesian and the spherical coordinates is shown in

Fig. 2.1. The space-time signals can be expressed as s(r, t) or s(x, y, z, t) where r

is the spatial location vector r = (x, y, z), and t denotes continuous time.

Assuming that s(r, t) relates to a source signal impinging onto a sensor ar-

ray from far-field such that the signal propagates with a planar wavefront. In

addition, the propagation medium is assumed to be homogeneous and lossless.

Homogeneous means a constant propagation speed throughout space and time,

and a lossless environment implies that there is no amplitude attenuation for sig-

nals due to propagation. Generally, the signal can be represented by the wave

equation [45, 46], such as

∇2s(r, t) =
1

c2
∂2s(r, t)

∂t2
, (2.1)
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x

z

y

r

ϑ

φ

y = rcos(ϑ)sin(φ)

z = rsin(ϑ)

x = rcos(ϑ)cos(φ)

Figure 2.1: 3-dimensional coordinate system with Cartesian coordinates (x; y; z) and spherical
coordinates (r, ϑ, φ).

where ∇2 is the Laplacian operator and c is the propagation speed in the medium.

A possible solution of the wave equation (2.1) is generally assumed to be a

complex exponential and given by

s(r, t) = A exp(j(ωt− kTr)) , (2.2)

whereby A is a complex constant, ω is the angular (temporal) frequency, and (·)T

denotes the transpose operation. The vector k = [kx, ky, kz]
T is referred to the

wavenumber vector of the source wavefront [45] which points to the direction of

propagation and is defined as

|k| = ω

c
=

2π

λ
, (2.3)
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where λ is the wavelength of the complex exponential signal. In addition, k

depends on the elevation ϑ and azimuth φ angles, and can be expressed by

k =
ω

c








kx

ky

kz







=

ω

c








cos(ϑ)cos(φ)

cos(ϑ)sin(φ)

sin(ϑ)








, (2.4)

where these angles, ϑ and φ, define the direction of arrival. Moreover, the

wavenumber vector k can be interpreted as the spatial frequency of a signal ana-

logously to the (temporal) angular frequency ω. In addition, it is important to

point out that k refers to a monochromatic planar wave, i.e. spatial and temporal

frequencies are coupled and cannot be chosen independently.

Furthermore, for the discrete-variable representation of signals, spatio-temporal

sampling for the continuous time signal is required for array processing. In order

to permit perfect reconstruction and prevent temporal aliasing of a temporally

sampled signal, i.e., such that there is no loss of information, the sampling fre-

quency fs is higher than twice the maximum frequency component fmax in the

signal, i.e., fs ≥ 2 fmax. In addition, the sensor array samples the incoming signals

spatially, where the distance d between adjacent sensors has to be less than half

the smallest wavelength λmin present in the signal, i.e., d ≤ λmin/2 in order to

avoid spatial aliasing problem. If signals are not correctly sampled by the sensor

array, then sources from different directions can have the same steering vectors

which leads to ambiguity w.r.t. AoA.

For simplicity, linear uniform arrays are to be considered throughout this

thesis, where the sensors are placed on a straight line with equal spacing d between

sensors. The sensors are assumed to have identical characteristics and to be

omnidirectional, having the same sensitivity for all frequencies of interest and to

all directions. In the case of linear arrays when the sensor array is arranged along
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the z-axis, the AoA is uniquely distinguished by elevation angles but there is an

ambiguity w.r.t. azimuth angles.

2.2 Signal Model

There are many ways to classify signals. The category relevant to this thesis

relates to a signal’s bandwidth. According to [47], a signal can be considered

broadband, if the fractional signal bandwidth, ∆f defined as the ratio between the

signal bandwidth SBW and the centre frequency fc, i.e. ∆f = SBW

fc
, is higher than

a specific threshold (typically 0.025). A signal with a fractional bandwidth below

this threshold may be considered narrowband. In [27, 28] another distinction

between narrowband and broadband signals is outlined, whereby a situation is

broadband, if explicit delays need to be modelled, requiring tap delay lines rather

than just phase shifts modelled by complex multipliers.

A uniform linear array (ULA) is the particular structure used for this thesis,

which consist of M equally spaced sensors lying along the z-axis, the inter sensor

spacing d should not exceed half a wavelength (d ≤ λmin/2) to avoid spatial ali-

asing, where λmin is the wavelength corresponding to the highest frequency com-

ponent for any signal impinging onto the sensor array. The sensors are assumed

to have the same characteristics and also they are isotropic (omnidirectional). A

signal source can illuminate a sensor array from an angle ϑ ∈ [−π
2
, π

2
].

Assume K far-field sources sk[n], k = 1 . . . K, illuminating the sensor array,

with the sensor data collected in a vector x[n] ∈ C
M . As the contribution from

the kth source arrives at a reference point in the array it is delayed by ∆τk,m, m =

1 . . .M − 1, to reach each sensor in the array, the propagation delay incurred as

the wavefront travels across the sensors at a finite speed as shown in Fig. 2.2.

This model only considers the relative delay between signals at the sensors which

is dependent on the sources angle of arrival ϑ, but neglects any attenuation in the
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M − 1
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∆τk,M−1

∆τk,2

Figure 2.2: M elements uniform linear array antenna.

medium. Note that it is generally assumed that the number of sensors is greater

than the number of sources, i.e. M > K, to guarantee the uniqueness of the AoA

estimation.

2.2.1 Broadband Signal Model

We assume that the source signals that imping on the array are broadband signals,

such that the received data vector x[n] as depicted in Fig. 2.2 can be expressed

by,

x[n] =
K∑

k=1

sk[n] + v[n]

=
K∑

k=1

ak[n] ∗ sk[n] + v[n] , (2.5)
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where sk[n] is the kth source signal, ak[n] the corresponding broadband steering

vector, and ∗ denotes the convolution operator, which thereby forms the con-

tribution of the kth source to the array. The vector v[n] is the additive noise.

The vector sk[n] in (2.5) describes the contribution from the kth source to

x[n]. Taking the first sensor signal on the top as shown in Fig. 2.2 as reference,

the relative delays of the remaining sensor signals can be characterised as

sk[n] =











sk[n]

sk[n−∆τk,1]
...

sk[n−∆τk,M−1]











= ak[n] ∗ sk[n] , (2.6)

where ∆τk,m denotes the time that the signal takes to propagate from the reference

point to the mth sensor and being a function of AoA ϑ. It can be seen that

spatially sampling a propagating planar wave in a lossless homogeneous medium

(neglecting attenuation) results in delayed versions of the original source signals.

2.2.2 Narrowband Signal Model

If the propagating signals are narrowband, i.e., sk[n] = ejΩn, where Ω is the

normalised angular frequency, the time delays ∆τk,m in (2.6) collapse to simple

phase shifts, and (2.6) becomes

sk[n] =











1

e−jΩ∆τk,1

...

e−jΩ∆τk,M−1











ejΩn = aΩ,ϑ e
jΩn , (2.7)
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where aΩ,ϑ is termed the narrowband steering vector and characterises the phase

shifts of the kth waveform incurred at the different sensors. The dependency of

∆τk,m in (2.7) as a function of the source’s AoA, ϑ, can be obtained using the

planar wave assumption.

Example. We derive the steering vector of a linear equidistant array with critical

sensor spacing d = λmin

2
= c

2fmax
= c

fs
, based on the propagation speed c in the

medium and critical sampling fs = 2fmax. A source illuminates the array with

a complex exponential x0(t) = ejωt from an angle ϑ measured against broadside

as depicted in Fig. 2.2. Once sampled with a sampling period Ts with discrete

time index n such that t = nTs =
n
fs
, leads to the reference signal x0[n] = ejΩn

with normalised angular sampling rate Ω = ω/fs and versions delayed by ∆τm =

md sin(ϑ)
c

,m = 0 . . .M − 1. Then the narrowband steering vector can be written

as

aΩ,ϑ =











1

e−jΩsin(ϑ)

...

e−j(M−1)Ω sin(ϑ)











. (2.8)

As can clearly be seen from (2.8), the steering vector is dependent on the source’s

AoA ϑ.

As a specific case of (2.5), for a narrowband scenario with K narrowband

sources the steering vectors are characterised by pairs {Ωk, ϑk}. Then the received

signal is a superposition of the K source signals and hence the array vector is

given by

x[n] =
K∑

k=1

aΩk,ϑk
sk[n] + v[n] , (2.9)

where ϑk, Ωk are the AoA and normalised frequency of the kth source, sk[n] is the

signal corresponding to the kth source, and v[n] is independent and identically

distributed additive white Gaussian noise, such that E
{
v[n]vH[n− τ ]

}
= δ[τ ]σ2

vI.
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The following section will describe the angle of arrival (AoA) estimation and

its classification.

2.3 Classification of AoA Estimation Methods

AoA estimation is a principle feature for sensor array processing. High resolu-

tion AoA estimation has attracted significant attention in the past few decades

due to its importance in many applications such as radar, sonar, air traffic con-

trol, acoustic detection and wireless communication. Depending on the spectrum

(bandwidth) of the impinging signals, AoA estimation techniques can be classi-

fied as either narrowband or broadband, as shown in Fig. 2.3, where the latter

will be the focus of this thesis. Moreover, the former also can be categorised into

traditional techniques, i.e. beamforming [48, 49] and Capon’s minimum variance

(MVDR) method [50] or to signal subspace based methods such as multiple signal

classification (MUSIC) algorithm [10] and the estimation of signal parameters via

rotational invariance (ESPRIT) technique [51]. On the other hand, the broad-

band AoA estimation methods may also be classified into whether a narrowband

decomposition for the broadband signals is applied or not. Splitting a broadband

signal into several narrowband signals using a filter bank, narrowband direction

finding techniques can be applied to the resulting subband signals. The methods

in [11, 12, 13,14, 41] use this narrowband decomposition, while the methods in

[19, 20, 21] do not. Most AoA estimation techniques are designed for narrowband

signals, which are generally simpler and less complex compared with broadband

techniques. These two categories will be discussed next.
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Angle of Arrival (AoA) Classification

Narrowband AoA techniques Broadband AoA techniques

Figure 2.3: Classification of AoA estimation methods based on the signal bandwidth.

2.4 Review of Narrowband AoA Estimation

In this section, we briefly review the most important narrowband AoA estima-

tion algorithms, whereby we focus on standard and superresolution approaches.

In Sec. 2.4.1, we start by reviewing the most basic narrowband AoA estima-

tion technique, known as the delay and sum beamformer [49]. The idea behind

beamforming also is applied to Capon’s minimum variance distortionless response

(MVDR) technique [50]. Sec. 2.4.2 introduces signal subspace based methods, in

particular the MUSIC algorithm [10] will be described in more details.

2.4.1 Beamforming

The basic idea of the beamforming is to steer the array’s gain towards a source

of interest, thus separating signals arriving from different directions. Moreover,

the beamformer can also be used for AoA estimation by steering the sensor array

in one direction at a time and computing the output power. Peak power is then

assumed to be corresponding to the source’s AoA.

Delay-and-sum is the simplest implementation of the beamformer. In this

technique the sensor outputs in x[n] as shown in Fig. 2.4 are phase-shifted by

complex valued coefficient wm, m = 0...M−1, in a vectorw to create constructive
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ϑ
x0[n]

w0

wM−1

w1

xM−1[n]

x1[n]

y[n]

sk[n]

∆τ

Figure 2.4: A general structure for beamforming.

interference at the output y[n]

y[n] = wHx[n] . (2.10)

The coefficients wm, m = 0, 1, . . . , (M − 1), are the beamforming weights. To

steer the sensor array in a specific direction ϑ, the beamforming weights w can

be calculated as [49]

w(ϑ) =
1

M
aΩ,ϑ , (2.11)

where aΩ,ϑ is the narrowband steering vector as defined in (2.8). It is clear that

the beamforming weights w are independent of the actual received waveforms

data. By using the weight vector in (2.11), we can rewrite (2.10) as

y[n] = (
1

M
aΩ,ϑ)

Hx[n] . (2.12)

The sources AoA’s can be obtained by computing the total mean output power
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of the array’s output in (2.12),

SBeamformer(ϑ) = E
{
|y[n]|2

}

=
aH
Ω,ϑ RaΩ,ϑ

M2
, (2.13)

where R = E
{
x[n]xH[n]

}
is the data covariance matrix. The highest peaks of

SBeamformer(ϑ) are corresponding to the directions of sources. The performance of

this approach is dependent on the beamwidth of the mainlobe, which is inversely

proportional to the array’s aperture and proportional to the narrowband oper-

ating frequency [50], and may require a large number of sensors to achieve high

resolution.

The MVDR [50] beamformer is an enhancement over the simple delay-and-

sum approach. In this technique, the beamformer weights w are obtained by

minimising the output power E {|y[n]|2} subject to unity constraint in the look

direction such as

min
w

E
{
|y[n]|2

}
subject to aH

Ω,ϑw = 1 . (2.14)

The constraint aH
Ω,ϑw = 1 ensures that the desired signal coming from AoA ϑ

passes the beamformer’s output undistorted. While MVDR is minimising the

output power, it reduces the power contributions from directions other than the

look direction as much as possible. This is in contrast to the delay-and-sum

beamformer, where structured interference from directions other than the look

direction can leak through the delay-and-sum beamformer’s sidelobes, and there-

fore distort the estimated power that is received from a particular AoA. The

Lagrange method can be used to solve the constraint problem in (2.14), resulting

in

wMVDR =
R−1aΩ,ϑ

(aH
Ω,ϑR

−1aΩ,ϑ)
. (2.15)
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The MVDR beamformer can be used for AoA estimation by computing the power

spectrum

SMVDR(ϑ) = E
{
|y[n]|2

}
= (aH

Ω,ϑR
−1aΩ,ϑ)

−1 . (2.16)

The AoA estimates are obtained by determining the peaks in the SMVDR(ϑ).

2.4.2 Subspace-based Methods

Subspace based methods are high resolution AoA estimation techniques. Instead

of directly processing the received data as in the beamforming technique, this

approach is based on the eigenvalue decomposition (EVD) of the covariance mat-

rix of the sensor outputs, in order to identify and separate the signal-plus-noise

and noise-only subspaces. A search using either the noise-only subspace or the

signal-plus-noise subspace is performed over all possible AoAs to determine the

angles of target sources. Amongst signal subspace methods, the multiple signal

classification (MUSIC) algorithm [10] is one of the most popular techniques. MU-

SIC is a high resolution technique that can estimate the AoA of closely spaced

signals. MUSIC does not only estimate the AoA of sources, but can also be used

for spectrum estimation, or for determining the number of the incoming signals

and other signal-related parameters [52, 53].

There are a numerous subspace-based methods in addition to MUSIC such

as Root MUSIC [54] and beamspace MUSIC [55]. ESPRIT [51] is another signal

subspace method which does not require the array steering vector to be known.

While its computation complexity and storage requirements are lower than MU-

SIC, however, MUSIC is more accurate, stable and has better resolution than ES-

PRIT [56]. Moreover, all subspace-based techniques are using a common process

for finding both the signal-plus-noise and noise-only subspaces before computing

signals AoAs. In this section the MUSIC algorithm is considered in more detail,

since the proposed method in this thesis is a generalisation of MUSIC for broad-
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band AoA problems and will be presented in Chapter 4.

Narrowband MUSIC.

Referring to the narrowband data model presented in Sec. 2.2.2, we consider

K independent narrowband sources sk[n] characterised by a pair {Ωk, ϑk} that

are impinging on the array antenna with M sensors. The received sampled data

vector x[n] can be expressed as

x[n] =
K∑

k=1

aΩk,ϑk
sk[n] + v[n] , (2.17)

where aΩk,ϑk
is the steering vector for the kth source with normalised angular

frequency Ωk, and angle of arrival ϑk, and v[n] is independent and identically

distributed white Gaussian noise and is assumed uncorrelated with the source

signals. MUSIC requires the spatial covariance matrix and being narrowband,

only correlations for lag zero need to be considered, such that the covariance

matrix R ∈ C
M×M can be calculated as

R = E
{
x[n]xH[n]

}
, (2.18)

where E {·} is the expectation operator and (·)H indicates the Hermitian opera-

tion, i.e., complex conjugate transpose. This covariance matrix entirely describes

the data as modelled in (2.17). In a real application, the data is acquired over a

data window of N samples, and can be assembled into a data matrix

Xn = [x[n−N + 1] . . .x[n− 1]x[n]] . (2.19)

Therefore, the estimated covariance matrix can be obtained using a simple aver-

aging such as

R̂n ≈
1

N
XnX

H
n . (2.20)
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While below the analysis is continued with R, an appropriate estimation of this

covariance matrix according to (2.20) with a sufficiently large N is assumed.

In the case of K independent narrowband sources of power σ2
k, k ∈ (1, K),

and uncorrelated white the noise with a variance σ2
v , R can also be expressed

as [57]

R =
K∑

k=1

σ2
kaΩ,ϑk

aH
Ω,ϑk

+ σ2
vI =A(Ω, ϑ)RsA

H(Ω, ϑ) +Rv , (2.21)

where Rs = E
{
s[n]sH[n]

}
, Rv = σ2

vI are denoting the sources and the noise

covariance matrices respectively, and s[n] is a vector of source signals of dimension

K. The matrix A(Ω, ϑ) ∈ C
M×K contains in its columns the steering vectors for

the K sources

A(Ω, ϑ) = [aΩ1,ϑ1 aΩ2,ϑ2 . . . aΩk,ϑk
] . (2.22)

Since the covariance matrix R is a Hermitian matrix, i.e., R = RH, this matrix

can be decomposed using the eigenvalue decomposition (EVD) to yield

R = QΛQH , (2.23)

where Q is a unitary matrix, i.e. QQH = I, that contains the eigenvectors in

its columns Q = [q0 q1 . . . qM−1], and Λ is a diagonal matrix containing the real

non-negative eigenvalues on its diagonal,

Λ = diag[λ0, · · · , λK , · · · , λM−1] . (2.24)

The eigenvalues λ in Λ can be split into two parts, i.e., a noise floor λm ≈ σ2
v , m ≥

K, and a signal part with eigenvalues λm, m < K above the noise threshold. This

allows identification of the signal-plus-noise and noise-only subspaces. Thus, the

data is known to contain K linearly independent sources which lie in the signal-
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plus-noise subspace spanned by the columns of Qs, while Q
⊥
s spans the noise-only

subspace,

R = [Qs Q
⊥
s ]




Λs 0

0 Λn








QH

s

Q⊥,H
s



 ,

= [Qs Q
⊥
s ]














λ0 + σ2
v · · · | 0

...
. . .

... | 0

· · · λK−1 + σ2
v | 0

|
· · · | σ2

v IM−K

















QH

s

Q⊥,H
s



 ,

(2.25)

When trying to estimate the angle of sources contributed to R, a potential idea

is to investigate the signal-plus-noise subspace Qs. However, since Q is unitary,

scanning Qs with steering vectors for maxima is likely to extract the steering

vector of only the strongest source correctly; otherwise the results will contain

orthonormalised basis vectors of the signal subspace in Qs, which will likely not

match the directions of weaker sources.

Therefore, the idea of the MUSIC algorithm is to scan the noise-only subspace

Q⊥
s , which is spanned by eigenvectors corresponding to the (M −K) eigenvalues

close to the noise floor, Λn ≈ σ2
vI. The eigenvectors of the noise-only subspace

are orthogonal to the steering vectors of sources that contribute to R and will

define the signal-plus-noise subspace Qs. Based on this orthogonality the vector

Q⊥,H
s aΩ,ϑ has to be close to the origin for aΩ,ϑ to be a steering vector of a con-

tributing source. The MUSIC algorithm therefore calculates the inverse of the

squared Euclidean norm of this vector as the MUSIC spectrum SMUSIC(ϑ) such

as

SMUSIC(ϑ) =
1

aH
Ω,ϑQ

⊥
s Q

⊥,H
s aΩ,ϑ

. (2.26)



2.4. Review of Narrowband AoA Estimation 25

−80 −60 −40 −20 0 20 40 60 80
−60

−50

−40

−30

−20

−10

0

angle of arrival ϑ/◦

n
o
rm

a
lis

e
d
 s

p
e
c
tr

u
m

 /
 [
d
B

]

MUSIC
Beamformer
MVDR
sources

Figure 2.5: Comparison of (i)MUSIC, (ii) beamformer and (iii) Capon’s minimum variance
method for a scenario with three sources located at angles [−20◦, 30◦, 35◦].

The K largest peaks of (2.26) corresponding to the direction of arrival for the

sources of interest as proposed by [10]. Fig. 2.5 shows a comparison between

the resolution performance of MUSIC, beamforming and Capon’s minimum vari-

ance method, for a scenario with three uncorrelated narrowband sources of equal

power at an SNR of 10dB. The sources illuminate a sensor array with M = 8

elements from directions −20◦, 30◦ and 35◦ respectively. As can be seen clearly

from Fig. 2.5, MUSIC is able to distinguish between the three signals whereby

three sharp peaks are presented at angles,−20◦, 30◦ and 35◦ where the target

sources are actually located. Note that the closely space angles of 30◦ and 35◦

can be resolved. MVDR provides better resolution than the beamforming for the

source located at −20◦ , while both MVDR and beamformer fail to differenti-

ate between the two closely signals. This demonstrates that MUSIC can provide

higher resolution of detecting and separating the AoAs of multiple sources than

the beamforming and Capon approaches.

However, the performance of the MUSIC algorithm degrades in coherent or

highly correlated signals [58] which arises e.g. through multipath propagation

in the medium. Several algorithms have been developed in order to overcome
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this problem such as maximum likelihood [59], spatial smoothing [60, 61] and

methods based on the fourth order cumulants [62]. In the spatial smoothing

technique the sensor array is divided into multiple overlapping subarrays. The

correlation matrix of each subarray is being estimated from its sampled data.

Then the final correlation matrix is given as the average of all subarray correlation

matrices. As a result, the final correlation matrix has structurally the same

form as the covariance matrix for uncoherent signals [61]. Hence, the subspace-

based techniques can be applied to this smoothed correlation matrix to estimate

the AoA of the correlated sources. In the following section, a brief review of

broadband AoA estimation algorithms is provided.

2.5 Review of Broadband AoA Estimation Tech-

niques

If the source of interest is a broadband signal, then powerful narrowband AoA

methods such as the MUSIC algorithm are not directly applicable. Recently, a

number of efforts to derive broadband algorithms for AoA estimation have been

pursued. Most of the existing broadband AoA methods are based on the idea

of transforming the broadband AoA problem to yield one or several narrowband

problems. Generally, broadband signals can be decomposed (split) into several

frequency bins, either by using a discrete Fourier transformer (DFT) or via band-

pass filtering methods, which then can be processed independently (incoherent)

or coherently by narrowband direction finding techniques, e.g, the high resolution

signal subspace MUSIC algorithm. In the incoherent broadband AoA estimation

methods, narrowband AoA techniques are applied separately for each frequency

bin to estimate the source’s AoAs. Coherent techniques are based on the idea

of cohering the different frequencies into a single frequency to which narrowband
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AoA techniques can then be applied. The new approach proposed in this thesis,

the polynomial MUSIC algorithm [34], is free from such assumptions and instead

it implements a generalisation of the MUSIC algorithm to broadband problems;

it will be introduced in Chapter 4 of this thesis. The next subsections provide a

review of various broadband AoA estimation techniques. In particular, we will

be concentrating on methods that are based on subspace decompositions.

2.5.1 Independent Frequency Bin Processing

The basic idea of the independent frequency bin (IFB) approach is to split the

broadband signal into a number of L independent frequency bins Ωl, l = 1 . . . L,

by means of a DFT. The decomposition into frequency bins is assumed to yield

narrowband signals, and each bin is processed independently by narrowband AoA

techniques such as the MUSIC algorithm.

Assuming that K spectrally overlapping independent broadband sources il-

luminate the sensor array and contribute to x[n] as defined in (2.5). The IFB

approach decomposes x[n] into different frequency bins using a DFT to yield

X(ejΩl) = Aϑk
(ejΩl)S(ejΩl) +V(ejΩl) , (2.27)

where l = 1, . . . , L denotes the number of frequency bins, and S(ejΩl) ∈ C
K ,

V(ejΩl) ∈ C
M are the lth DFT coefficients of the source signal and the noise

respectively. The matrix Aϑk
(ejΩl) ∈ C

M×K is a frequency dependent steering

vector matrix

Aϑk
(ejΩl) = [aΩl,ϑ1 aΩl,ϑ2 . . . aΩl,ϑK

] , (2.28)

containing in its columns the narrowband steering vectors aΩl,ϑk
at frequency Ωl

for different AoAs ϑk.

The covariance matrix for the lth frequency bin of the data model in (2.27)
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can be calculated as

R(ejΩl) = E
{
X(ejΩl)XH(ejΩl)

}

= Aϑk
(ejΩl)Rs(e

jΩl)AH
ϑk
(ejΩl) + σ2

v(e
jΩl)I , (2.29)

where Rs(e
jΩl) = E

{
S(ejΩl)SH(ejΩl)

}
∈ C

K×K is the diagonal source covariance

matrix containing the power spectral density values in the lthe frequency bin of

the K sources along its diagonal. .

Finally, the original narrowband MUSIC algorithm [10] can be applied to each

R(ejΩl) with l = 1, . . . , L, by probing its noise-only subspace Qn(e
jΩl ) with a set

of narrowband steering vectors as defined in (2.8). The broadband IFB-MUSIC

estimator is given by

SIFB(Ωl, ϑ) =
1

aH
Ωl,ϑ

Qn(ej
Ωl )QH

n (e
jΩl )aΩl,ϑ

. (2.30)

The performance of this approach is highly dependent on the location of the

source frequencies with respect to the bin frequencies of the IFB processor, i.e.

if the signal frequencies coincide within frequency bins, the IFB will provide a

very accurate estimation for the sources’ AoAs and their frequency range. On the

other hand, when the signal of interest does not sit exactly on a bin frequency

then the IFB technique is likely to result in a very poor performance [34].

An approach similar to IFB is the incoherent signal subspace (ISS) method [11,

12]. In this technique, in addition to processing each frequency band separately

and estimating the sources’ AoAs, the final estimate of the sources’ angle of

arrival is obtained by averaging individual results. The ISS-MUSIC spectrum
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can be defined as

SISS(ϑ) =
1

L

L∑

l=1

SIFB(Ωl, ϑ)

=
1

L

L∑

l=1

1

aH
Ωl,ϑ

Qn(ej
Ωl )QH

n (e
jΩl )aΩl,ϑ

. (2.31)

The performance of the ISS method can degrade if the signal-to-noise ratio (SNR)

is low or the decomposed narrowband signals are correlated, i.e., the assumption

of the independence between all frequency bins is violated. Additionally, since

the final AoA estimate is the average of the results obtained from all frequency

bins, even few false estimates may lead to a degraded performance of the final

estimate [14].

2.5.2 Coherent Signal Subspace Approach

A fundamental feature of coherent signal subspace (CSS) method [14, 63, 64]

is that it coherently combines narrowband covariance matrices at different fre-

quency bins covering the entire band occupied by the sources into a single gen-

eral (common) covariance matrix. In CSS, instead of processing each frequency

bin individually using a narrowband AoA technique (as is done in the IFB ap-

proach) the covariance matrices are calculated in a number of frequency bins,

and then coherently combined such that their signal subspaces align into one

single scalar-valued correlation matrix that is a representative of the broadband

signal, to which narrowband high resolution AoA techniques such as MUSIC

are applicable. The coherence across different frequency bins is created by a

frequency-dependent and unitary focussing matrix T(ejΩ), which transforms the

correlation matrices for all frequency bins into one common correlation matrix at

one focussing frequency.
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Assuming R(ejΩl) is the covariance matrix for X(ejΩl), with l = 1, . . . , L bin

frequencies, the CSS common covariance matrix is given by

Rcoh =
L∑

l=1

αlT(ejΩl)R(ejΩl)TH(ejΩl) , (2.32)

where αl is a weighting for maximum ratio combination of its coherently rotated

contributions. The basic assumption of CSS is that the designed focussing matrix

T(ejΩl) is used to transform the steering vector matrix Aϑf
(ejΩl) with focussing

angles ϑf at frequency Ωl into another steering matrix Aϑf
(ejΩ0) at a reference

frequency Ω0, such that

T(ejΩl)Aϑf
(ejΩl) = Aϑf

(ejΩ0) , (2.33)

where ϑf is a set of focussing angles based on a pre-estimation or approximate

knowledge of the signal of interest’s AoAs. Therefore, the coherent covariance

matrix in (2.32) can be calculated based on the assumption in (2.33) to yield [14]

Rcoh =
∑

l

T(ejΩl){Aϑf
(ejΩl)Rs(e

jΩl)AH
ϑf
(ejΩl) + σ2

vI}TH(ejΩl)

= Aϑf
(ejΩ0){

∑

l

Rs(e
jΩl)}AH

ϑf
(ejΩ0) + σ2

v

∑

l

T(ejΩl)TH(ejΩl) ,(2.34)

which has approximately the same structure as the narrowband covariance matrix

at a reference frequency Ω0. As a result, any narrowband AoA estimation tech-

nique can be applied to Rcoh. The calculation of focussing matrices can be based

on approximate knowledge of the signals of interest’s angles of arrival (AoA), or

obtained numerically by a best fit of a rotated T(ejΩl) to a reference T(ejΩ0),

whereby the rotation forms the focussing matrix. In the rotational signal sub-

space (RSS) method [64], the focussing matrix is required to be unitary in order

to preserve the SNR before and after the focussing. The focussing matrix is
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constructed based on minimising the Frobenius norm of the mismatches between

steering vectors, such that

min
T(ejΩl )

||Aϑf
(ejΩ0)−T(ejΩl)Aϑf

(ejΩl)||F , (2.35)

subject to TH(ejΩl)T(ejΩl) = I. The solution for (2.35) is given by [51]

T(ejΩl) = Q(ejΩl)UH(ejΩl) , (2.36)

where the columns of Q(ejΩl) and U(ejΩl) are the left and right singular vectors

of Aϑf
(ejΩ0)AH

ϑf
(ejΩl).

Finally, the MUSIC spectrum for CSS is given by

SCSS(ϑ) =
1

aH
ϑ (e

jΩ0)Qn,cohQH
n,cohaϑ(ejΩ0)

, (2.37)

where Qn,coh denotes the noise-only subspace of Rcoh and aϑ(e
jΩ0) is the steering

vector at the reference frequency Ω0.

This technique provides better performance than the IFB and ISS methods as

by using the frequency smoothing (averaging0 technique in (2.32), CSS can deal

with coherent sources [14]. However, CSS is highly dependent on the focussing

angle to construct the focussing matrix. Furthermore, the focussing angles should

be close to the true AoAs in order to provide a good estimation. A poor estimate

of these factors may lead to poor results of this approach.

2.5.3 Auto-focussing Approach

The auto-focussing (AF) technique [41] is similar to the CSS method in the

sense that it uses a focussing matrix for cohering the various frequencies. The

difference with respect to CSS is that the focussing matrix is constructed in a fully
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data dependent manner, directly from the array’s space-time covariance matrix

without the requirement for explicit knowledge of approximate AoAs.

AF calculates, based on a reference frequency Ω0, an EVD of the appropriate

frequency-bin covariance matrix R(ejΩ0),

R(ejΩ0) = Q0Λ0Q
H
0 . (2.38)

Together with the modal matrix extracted for frequency bin l, l = 1...L, the

auto-focussing matrix is constructed according to

TAF(e
jΩl) =

1√
L
Q0Q

H(ejΩl) , (2.39)

where L is the number of frequency bins, and Q(ejΩl) is a unitary matrix con-

taining in its columns the eigenvectors of the autocorrelation matrix R(ejΩl) at

the lth frequency bin. The AF coherent covariance matrix is calculated similar

to (2.32),

RAF =
L∑

l=1

TAF(e
jΩl)R(ejΩl)TH

AF(e
jΩl) , (2.40)

and can be diagonalised by Q0 to provide

ΛAF = QH
0 RAFQ0 = diag{λ1 λ2 . . . λM} , (2.41)

with λm, m = 1 ...M the eigenvalues of RAF in (2.40). If the eigenvalues in

RAF reveal K linearly independent sources, then the last M − K columns of

Q0 =
[
Q0,sQ

⊥
0,s

]
contained in Q⊥

0,s ∈ C
M×(M−K) span the noise-only subspace of

the AF covariance matrix.

Similar to the CSS approach, the narrowband MUSIC algorithm [10] can be

applied to RAF by probing its noise-only subspace Q⊥
0,s with a set of narrowband

steering vectors aϑ(e
jΩ0) at the reference frequency Ω0. Therefore, the AF ap-
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proach estimates the signal’s directions as the peaks of the AF spatial spectrum

estimate given by

SAF(ϑ) = ||Q⊥
0,saϑ(e

jΩ0)||−2
2

=
1

aH
ϑ (e

jΩ0)Q⊥,H
0,s Q⊥

0,saϑ(ejΩ0)
, (2.42)

Although the AF approach does not require focussing angles compared with CSS

method, its performance does depend on the selected focusing (reference) fre-

quency.

2.5.4 Parametrised Spatial Covariance Matrix Approach

The parametrised spatial covariance (PSC) matrix [20, 21] is a different approach

for broadband AoA estimation. Unlike the previously mentioned broadband AoA

methods, where the broadband approach is bypassed in favour of narrowband

AoA processing, PSC is based on testing the zero-lag coherence of a spatial cor-

relation matrix calculated from appropriately pre-steered array data. Knowing

the array configuration, a broadband steering vector can be defined for a specific

AoA represented by elevation angle ϑ, and pre-steering can be accomplished by

a matched broadband steering vector. As such the PSC matrix depends on the

angle of arrival ϑ.

Assuming a linear array, the PSC approach delays every sensor output signal

x[n] by ∆τm(ϑ) to yield an output data vector yϑ[n], such that

yϑ[n] =











x[n−∆τ0(ϑ)]

x[n−∆τ1(ϑ)]
...

x[n−∆τM−1(ϑ)]











= Γϑ[n] ∗ x[n] , (2.43)
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where the time delay ∆τm(ϑ) is calculated according to Sec. 2.2, and the diagonal

pre-steering system is given by [21]

Γϑ[n] = diag{δ[n−∆τ0(ϑ)] δ[n−∆τ1(ϑ)] . . . δ[n−∆τM−1(ϑ)} . (2.44)

The PSC matrix of the pre-steered data yϑ[n] is given by

Rϑ = E
{
yϑ[n]y

H
ϑ [n]

}
. (2.45)

The proposed method then evaluates the maximum eigenvalue of Rϑ in (2.45)

using an EVD for a range of angles ϑ, with the best match indicated by ϑopt ,

ϑopt = argmax
ϑ

{max
i

λi(Rϑ)} , (2.46)

with λi(Rϑ) denoting the ith eigenvalue of Rϑ. The drawback of this method is

that it can only resolve a single source. In a scenario with multiple source signals,

only the strongest source can be estimated.

2.5.5 Other Broadband AoA Estimation Methods

Other broadband AoA estimation methods based on sparse signal representation

are presented in [65, 66 , 67], whereby the idea to recover the spatial distribu-

tion of the incident signals by directly representing the array output by an over-

complete dictionary under sparsity constraint. In [65] the broadband covariance

matrix sparse representation method is presented which forms a new measure-

ment vector by aligning the lower left triangular elements of the array output

covariance matrix and reconstructs this vector to realise wideband AoA estima-

tion. However, it relies on some prior information such as signal modulation types

and the preestimated signal power spectrum which leads to a degradation in per-
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formance when the incident signals arises from different types of modulations or

have different signal power spectra.

The method in [66] firstly performs a subband decomposition of the broad-

band signal and then uses a sparse representation model of the joint narrowband

array covariance data in the frequency domain to enforce joint sparsity in the con-

catenated covariance matrix at all frequencies. Thereafter, based on the greed

matching pursuit algorithm [68], the AoA is estimated by joint processing of the

array covariance data at different frequency bins. A similar technique in [67], ex-

tends an existing narrowband covariance fitting method by additionally introdu-

cing group sparsity regularisation. That jointly fits the powers of the signals using

overcomplete dictionaries of the AoAs, into the estimated covariance matrices for

all narrowband signals, and appropriately chooses the regularisation constants for

both the individual sparsity and the group sparsity. The AoAs are estimated by

finding the directions that contain most of the power. However, this approach

requires additional estimation of the number of directions of arrival and has much

higher complexity than the CSS method [67].

2.6 Conclusion

This chapter has provided a basic introduction to the principles of propagating

wavefields, followed by a definition for narrowband and broadband signals for a

space-time model of the system used in this work. Thereafter, the fundamental

concept of angle of arrival (AoA) estimation was introduced with a classification

of AoA based on the signal bandwidth. Narrowband AoA estimation approaches

were then reviewed. In particular, the narrowband MUSIC algorithm has been

considered in more detail due to its ability to achieve high angular resolution

for narrowband AoA applications compared with other narrowband techniques

such as standard delay-sum beamformer and Capon’s minimum variance tech-
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nique. Simulation results show the accuracy of the MUSIC algorithm compared

with beamformer and MVDR methods for narrowband AoA applications. How-

ever, MUSIC or any narrowband AoA techniques are not directly applicable for

broadband AoA problems. Therefore various existing broadband AoA estimation

techniques have been overviewed.

The next chapter will define the broadband steering vector and its implement-

ation using a fractional delay filter. In addition, a new method for implementing

a fractional delay filter based on a filter bank approach will be presented. This

method is able to achieve high accuracy across the entire bandwidth compared

with the state-of-the-art of the fractional delay techniques which perform best

only at low frequencies.



Chapter 3

Broadband Steering Vector

Implementation

For broadband array signal processing applications, the time delays arising from

signal wave fronts travelling across an array at finite speed cannot be represented

by phase shifts as in the narrowband case but require to be addressed as lags.

Since these delays are normally not integer multiples of the sampling interval,

fractional delay filters need to be used [20, 34]. With broadband sensor array

applications potentially operating across several octaves, the implementation ac-

curacy of such fractional delay is crucial to the accuracy of broadband angle of

arrival estimation or the performance of any other subsequent processing [69].

Therefore, this chapter provides an overview of various fractional delay fil-

ter designs that can be used to implement accurate broadband steering vector

requirements for applications such as broadband AoA estimation. In particu-

lar, we reviews windowed sinc methods and the Farrow structure approach. A

common feature across these techniques is their rapidly decreasing performance

as half of the sampling rate is approached. Therefore, we propose a filter bank

based approach, which operates standard fractional delay filters on a series of

37
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frequency-shifted subband signals, such that they appear in the filter’s lowpass

region, where the above fractional delay techniques can perform very accurately.

The organisation of this chapter is as follows. Sec. 3.1 motivates the require-

ment of highly accurate fractional delay filters by reviewing the construction of

broadband steering vectors. Then, different approaches for designing fractional

delay filters are reviewed in Sec. 3.2. After that, the proposed method based on

the filter bank approach is introduced and outlined in Sec. 3.3. The complexity of

various fractional delay filter implementation methods is then analysed and com-

pared in Sec. 3.4. Simulation results are provided in Sec. 3.5 to demonstrate the

performance of the proposed approach, which is benchmarked against windowed

sinc methods and the Farrow structure, before conclusions are drawn in Sec. 3.6.

3.1 Broadband Steering Vector

This section defines the concept of a broadband steering vector, which character-

ises a broadband signal when it illuminates a sensor array from an angle of arrival

ϑ. For this, an M−element array of omnidirectional sensors located at positions

rm, m = 1 . . .M collects a signal vector x(t) ∈ C
M , with the continuous time

variable t. If a far field source illuminates the array such that the signal at the

origin r = 0 is s(t) and we neglect attenuation, then

x(t) =











s(t− T1)

s(t− T2)
...

s(t− TM)











=











δ(t− T1)

δ(t− T2)
...

δ(t− TM)











∗ s(t) (3.1)

where ∗ denotes convolution. For the delays Tm = 1
c
kT rm, m = 1...M, k is the

normal vector of the source’s wave front, and k/c is known as the slowness vector

of the source. Sampling x(t) with a sampling period Ts yields x[n], with discrete
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time index n such that t = nTs. The assumption is a perfectly bandlimited signal

s(t), such that the interpolation function underlying the sampling process is a

sinc. With

x[n] =











δ[n− τ1]

δ[t− τ2]
...

δ[t− τM ]











∗ s[n] = a[n] ∗ s[n] (3.2)

and normalised delays τm = Tm/Ts, the ideal fractional delays δ[n − τm] can be

defined as

δ[n− τ ] =







sin(π(n−τ))
π(n−τ)

, n 6= τ

1 , n = τ

(3.3)

and are now sinc functions which not necessarily remain sampled in the sinc’s

zero crossing, and therefore generally possess infinite support. The quantity a[n]

in (3.2) is referred to as broadband steering vector, and consists of a number of

different fractional delays of the type in (3.3).

A signal model for a scenario with K independent far field broadband sources

sk[n], k = 1 . . . K, each characterised by a broadband steering vector ak[n], there-

fore becomes

x[n] =
K∑

k=1

∞∑

ν=−∞
ak[ν]sk[n− ν] + v[n] (3.4)

with v[n] representing spatially and temporally uncorrelated noise with covariance

E{v[n]vH [n]} = σ2
vI. To capture information contained in the data vector x[n]

requires a space-time covariance matrix R[ν] = E{x[n]xH [n − ν]}with lag para-

meter ν. Its Fourier pair, the cross-spectral density matrix R(z) =
∑

ν R[ν]z−ν

or short R[n]◦ •R(z),

R(z) =
K∑

k=1

a(z)aH(z−1)Sk(z) + σ2
νI (3.5)
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with Sk(z) being the power spectral density of the lth source, forms a polynomial

matrix. In the next section, a brief review of fractional delay filter design and

implementation methods are provided.

3.2 Review of Fractional Delay Filters

A fractional delay filter (FDF) can be defined as a device which delays the discrete

signal by a fraction of the sampling period. In this section, we brief review

various implementation methods for fractional delay filters that can be used for

implementation of broadband steering vector. However, for more details the

reader is referred to [43].

3.2.1 Ideal Delay

The ideal fractional delay can be defined as

fideal[n] = δ[n− τ ] . (3.6)

With the Fourier pair δ[n]◦ •1 and the Fourier transform’s time delay property,

a Fourier transform of the fractional delay yields

Fideal(e
jΩ) = 1 · e−jΩτ . (3.7)

The desired frequency response for the ideal delay is a complex-valued function

that specifies both the magnitude and the phase response respectively, such as

|Fideal(e
jΩ)| = 1 for all Ω

arg{Fideal(e
jΩ)} = Θideal(Ω) = −τΩ.
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Therefore the group delay of the ideal fractional delay can be calculated as

γideal = −
∂(Θideal(Ω))

∂Ω
= − ∂

∂Ω
(−Ωτ) = τ . (3.8)

which is a constant in the entire frequency band.

Based on this ideal delay, an error metric for an arbitrary fractional delay

filter approximation f [n] can be defined as

See(e
jΩ) = |Fideal(e

jΩ)− F (ejΩ)|2, (3.9)

with F (ejΩ)•—◦f [n], such that See(e
jΩ) is a quadratic error type metric for the

approximation of fideal[n] by f [n].

3.2.2 Windowed Sinc Methods

For most cases, the incurred delays τ are not integer multiples of the sampling

period. Therefore, the ideal fractional delay in (3.6) cannot be reduced to a single

impulse, unlike the one shown in Fig. 3.1(a) where the delay is an integer value.

Instead, when sampling off the regular — i.e. integer valued — sampling grid

the impulse response is possessing infinite support and represents a shifted and

sampled version of the sinc function as indicated in Fig. 3.1(b). In addition, the

ideal fractional delay response is not only infinitely long but also non-causal [70]

which makes it impossible to implement in real time applications. Therefore, a

window function wN [n] and time delay τ have to be applied to create a causal

filter of length 2N , such that

f [n] = fideal[n− τ −N ] · wN [n− τ −N ] . (3.10)
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Below, a number of different methods of selecting the window wN [n] will be

explored.

3.2.2.1 Rectangular Window

In order to implement an approximation to ideal fractional delay filter in (3.6),

in the simplest case a rectangular window with wN,rect[n] = pN [n] performs a

truncation to the sinc function according to

pN [n] =







1 , |n| ≤ N

0 , |n| > N

. (3.11)

The resulting discrete prolate spheroidal sequence f [n] = fideal[n − τ − N ] ·
pN [n] [71] provides an approximation of fideal[n] that generally demonstrates in-

creasing accuracy with N at lower frequencies. However, independent from N ,

the performance degrades due Gibbs phenomena as the Nyquist frequency is

approached [72], which compared to an ideal delay system causes ripple in the

group delay and an increasingly poor approximation with increasing frequency.

This leads to a restricted accuracy of the fractional delay filter [43, 72], and a lim-

itation of its application to lowpass-type signals. This Gibbs phenomenon results

in a deterioration of the magnitude response close to half the sampling frequency.

In addition, the group delay response suffers similar deterioration.

The limitation of the rectangular window for a filter length of N = 21, when

modelling the delays previously illustrated in the example for Fig. 3.1 is shown

in Fig. 3.2. The magnitude and the group delay responses in Fig. 3.2(a) and

Fig. 3.2(b) respectively indicate that oscillation (the Gibbs phenomenon) occurs

at higher frequency ranges. In order to overcome these problems, tapered window

methods have been proposed and will be considered next.
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Figure 3.1: Impulse response of a fractional delay filter with (a) integer delay τ = 2 and (b)
fractional delay τ = 2.4.
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Figure 3.2: (a) The magnitude and (b) group delay response for integer delay τ = 2 and
fractional delay τ = 2.4.

3.2.2.2 Tapered ( Hann & Hamming ) Windows

To enhance the performance of fractional delay filters, tapered windows instead of

rectangular have been proposed for the truncation of the sinc [70, 73]. Examples

for such windows include a Hann window [74, 75]

wN,Hann[n] = (0.5 - 0.5 cos(
πn

2N
))pN [n]. (3.12)
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or a Hamming window [75]

wN,Hamming[n] = (0.54− 0.46 cos(
πn

2N
))pN [n]. (3.13)

By using such windowing techniques, the ripple in the frequency response can

be reduced; it also leads to a reduced group delay ripple compared with the

rectangular window, but will result in a wider transition band of the filter, as

depicted in Figs. 3.3(a) and (b) for a fractional delay of τ = 2.4. However,

both windowed sinc methods still perform best at low frequencies, and degrade

significantly in higher frequency ranges.

3.2.3 Farrow Structure

The Farrow structure [44, 76] is a polynomial-based interpolation between input

samples generating fractional delay filters. Fig. 3.4 depicts the structure of the

Farrow filter which is consisting of P + 1 sections of NF th-order FIR filters with

constant coefficients cp,k, p = 1 . . . P, k = 0 . . . NF . The fractional delay parameter

τ is multiplied and accumulated to the outputs of the FIR subfilters. The coef-

ficients of the Farrow structure can be determined from the interpolation filter

based on Lagrange’s or B-spline polynomial interpolation time domain meth-

ods [77, 78, 79], can be optimised directly in the frequency domain [43, 80]. The

transfer function of the Farrow structure is given by

F (z, τ) =
P∑

p=0

Ck(z)τ
k . (3.14)

where τ ∈ [0, 1] is the desired fractional delay, P is the degree of the polynomials
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Figure 3.3: (a) The magnitude and (b) group delay response for tapered (Hann & Hamming)
window and rectangular window for fractional delay τ = 2.4 .
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C1(z)

××

. . .

Y (z)

C0(z)

+

τ

z−1

z−1

cp,0

cp,1

cp,NF −1

CP (z)

Figure 3.4: Farrow structure with P + 1 subsystems of order NF approximating a fractional
delay τ between input X(z) and output Y (z).

and Ck(z) are the transfer functions of the FIR subfilters and given by

Ck(z) =

NF−1∑

k=0

cp,k z
−n (3.15)

with cp,k are the coefficients for the P + 1 FIR subfilters.

The main feature of the Farrow structure is that the coefficients of the FIR

subfilters are fixed for a given filter structure order and the only changeable

parameter is the fractional delay τ . As a result, the Farrow structure can be

implemented as a variable fractional delay with constant coefficients. The mag-

nitude response of the Farrow filter is flat at low frequencies only, thus limiting

its applicability to broadband problems that do not extend beyond lowpass-type

signals.

3.3 Filter Bank Approach

Filter banks have been used in the context of fractional delays previously, since

subband processing can shorten the long impulse responses found when sampling



3.3. Filter Bank Approach 48

a sinc off the zero-crossings [81]. Exploiting the high accuracy of various frac-

tional delay filters reviewed in Sec. 3.2.2 for lowpass signals only, in this section

we will discuss proposed solutions for fractional delay filters suitable for broad-

band signals. A filter bank based structure is proposed as an implementation

framework for fractional delay filters for constructing accurate time delays in the

low frequency range of every subband.

3.3.1 Idea

Filter banks decompose a fullband input signal into a number of different fre-

quency bands; if the analysis filter bank is sufficiently frequency-selective, then

processing can be performed in each band individually. Due to the reduced band-

width, the subband signals generally can be downsampled, leading to a reduced

cost for any processing to be performed on the subband signals. Thereafter, a

fullband output signal can be reconstructed by combining the processed subband

signals using a synthesis filter bank.

For the FDF implementation, we exploit the band limitation not to down-

sample subband signals; instead we keep the subband signals oversampled and

their bandlimited, but modulate each of them to a lowpass characteristic; thus

applying a fractional delay filter to lowpass signals only, accuracy is guaranteed.

Thereafter, demodulation can restore the original band position, followed by a

synthesis filter bank for reconstruction of a fractionally delayed fullband signal.

3.3.2 Filter Bank Characteristic

The proposed filter bank based fractional delay filter structure is illustrated in

Fig. 3.5. In this structure, the input signal x[n] is split into J different frequency

bands or subbands xj[n], j = 0, . . . , J − 1, using an analysis filter bank with
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x[n] y[n]+
×

×

ejΩ1n

ejΩ2n

ejΩJn

...

× f [n]

f [n]

f [n]

...

e−jΩ1n

e−jΩ2n

e−jΩJn

...

×

×

×

...

h0[n]

h1[n]

hJ−1[n]

...

g0[n]

g1[n]

gJ−1[n]

Figure 3.5: Proposed subband-based fractional delay filter with analysis filter bank stage
with analysis filters hj [n]◦—•Hj(z), a modulation stage, the fractional delay filters f [n], a
demodulation stage, followed by a synthesis filter bank with synthesis filters gj [n]◦—•Gj(z).

filters Hj(z), j = 0...J − 1,

xj[n] = hj[n] ∗ x[n] ←→ Xj(z) = Hj(z)X(z), (3.16)

Undecimated, the subband signals xj[n] then are modulated or frequency shifted

by Ωj such that the fractional delay filters are applied to lowpass signals

vj[n] = xj[n]e
jΩjn , (3.17)

in every branch, where Ωj is the normalised angular centre frequency

Ωj =
(2j − 1)π

J
, (3.18)

which translates every subband in frequency to sit symmetrically around Ω = 0.

Subsequently each modulated subband signal vj[n] is processed separately

using a fractional delay filters f [n] (e.g. tapered Hann window or Farrow FDF )
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to reconstruct the accurate time delays

uj[n] = f [n] ∗ vj[n], ←→ Uj(z) = F (z)Vj(z), (3.19)

Then the demodulation process is performed for the subband filter outputs uj[n]

to return them to their original spectral position by

yj[n] = uj[n]e
−jΩjn . (3.20)

Finally, a fullband output signal y[n] can be reconstructed by combining the

demodulated subband signals yj[n] using the synthesis filter bank GJ(z),

y[n] =
J−1∑

j=0

gj[n] ∗ yj[n] ←→ Y (z) =
J−1∑

j=0

Gj(z)Yj(z) . (3.21)

For memory and computational simplicity, the analysis filter can be derived

from a prototype lowpass filter by means of a modulating transform. We here use

a generalised discrete Fourier transform (GDFT) modulated filter bank, which

offers advantages over other modulations in terms of subband uniformity and

the ability to implement a near perfect paraunitary system, where the synthesis

filters Gj(z) can be derived by time reversal from the analysis filters [82]. The

prototype filter can be designed using a least-squares approach [82], whereby the

reconstruction error of the filter bank is a design criterion that is optimised.

Therefore, depending on the quality of the prototype filter, and therefore its

length and complexity, different levels of reconstruction errors can be achieved

for the filter bank.
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3.4 Complexity Consideration

Before assessing and comparing the accuracy of various fractional delay filter

methods and the proposed filter bank approach as discussed in Sec. 3.2 and Sec. 3.3

respectively, this section will analyse the computational complexity of these ap-

proaches.

The straightforward windowed sinc functions with length N requires

CWindow = 2N , (3.22)

multiply accumulates (MACs), which is independent of the particular window

function such as rectangular or Hann window, as the coefficients can be saved

readily multiplied onto sinc values.

The Farrow structure with its polynomial order W and filter length NF con-

sumes

CFarrow = NF (P + 1) + P , (3.23)

MACs per sampling period, which can be substantial if NF ≈ N .

Finally, the computational complexity for the filter bank approach in its most

efficient implementation based on a modulated filter bank in polyphase imple-

mentation [83], requires

CF-Bank = 2Lp + 4J log2 (J) , (3.24)

MACs per filter bank and sampling period, where Lp is the order of filter bank’s

prototype filter and J is the number of subbands. For the proposed approach,

2 filter bank operations and a total of J fractional delay filter implementations
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according to Fig. 2.5 therefore lead to

CProposed = 2CF-Bank + J · C , (3.25)

whereby C takes on the value in (3.22) or (3.23), depending on which fractional

delay scheme is integrated into the proposed architecture.

Considering (3.22), (3.23) and (3.25), it is clear that the filter bank based

approach is significantly more expensive compared to a direct implementation.

Therefore, the performance analysis in the next section will have to demonstrate

if the computational cost that needs to be afforded for the proposed approach is

worthwhile.

3.5 Simulation and Results

In this section, we present simulation results for comparing the error metric of

different implementation methods for FDF introduced in this chapter. In addi-

tion, the complexity of these techniques forms a useful benchmark to which the

computational cost of the proposed method can be compared.

3.5.1 Performance Metrics

For the windowed approaches, Fig. 3.6 provides some preliminary results on the

maximisation of the error See(e
jΩ) over the fractional delay as a variable. The

rectangular window performs worst, and improvements can be made at no cost

through the use of tapered windows. As an alternative to the Hann window, we

also show a Hamming window, which however performs slightly worse than its

competitor. The approximation error for a truncated sinc function with N = 41

is shown in Fig. 3.7, where a maximum error is reached for a fractional delay of

τ = 1
2
and frequencies approaching half the sampling rate.
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Figure 3.6: Approximation error See(e
jΩ) maximised over fractional delay τ , and dependent

on normalised angular frequency Ω.

The degradation towards half the sampling rate is shared by both Hann

and Hamming windowed sinc functions, which are shown in Figs. 3.8 and 3.9

respectively, also with window length of N = 41.

Figs. 3.10 and 3.11 show the performance of the Farrow structure with poly-

nomial orders P = 3 and P = 9. From these figures, it can be seen that while

the Farrow structure does not perform well for higher frequencies, it significantly

exceeds both the rectangular and the tapered windowed sinc approaches at lower

frequency range, in addition its performance can be increased for higher poly-

nomial order, whereby tapered windowing such as with the Hann window offers

advantages over the rectangular window at no cost.

For the proposed filter bank approach to a fractional delay implementation,

Fig. 3.12 shows the combination of a J = 16 channel filter bank with prototype

filter length Lp = 448 and an P = 3 order Farrow structure to implement the

fractional delay in the frequency-shifted subbands. As can be seen from the results

in Fig. 3.12, the error is uniformly low with a maximum error See(e
jΩ) of -55dB
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Figure 3.7: Approximation error for truncated sinc function with N = 41.
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Figure 3.8: Approximation error for Hann windowed sinc function with N = 41.
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Figure 3.9: Approximation error for Hamming windowed sinc function with N = 41.
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Figure 3.10: Approximation error for Farrow structure with polynomial order P = 3.
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Figure 3.11: Approximation error for Farrow structure with polynomial order P = 9.

across all frequencies Ω and over all fractional delays τ . Here, See(e
jΩ) consists

of two contributions — (i) an error due to inaccuracies on the Farrow structure,

and (ii) a reconstruction error within the filter bank. Here, with a reconstruction

error of -55dB [83], the latter dominates. This is underlined by the same error

of -55dB that is obtained in combination with a Hann windowed sinc function,

and a Farrow structure of order P = 9, as illustrated in Fig. 3.13 and Fig. 3.14

respectively. In contrast, embedding the sinc function characterised in Fig. 3.7

into the subbands yields an approximation error of approximately - 37.7dB; i.e.

for this case, the fractional delay filter is sufficiently crude to dominate the overall

error of the system. This is also supported by the approximation error σv2full in

(3.26), which is summarised for the various fractional delay filter methods in

Tab. 3.1. The fractional delay filter methods using the rectangularly truncated

sinc has a length such that the system exhibits equivalent complexity to the

displayed filter bank based methods.

Since the undecimated filter bank approach is costly in terms of computations,
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Figure 3.12: Approximation error for filter bank approach with J = 16, Lp = 448 and an
W = 3 order Farrow filter as subband fractional delay f [n].

Figure 3.13: Approximation error for filter bank approach with J = 16, Lp = 448 and an
Hann windowed sinc function with N = 41 as subband fractional delay f [n].
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Figure 3.14: Approximation error for filter bank approach with J = 16, Lp = 448 and an
W = 9 order Farrow filter as subband fractional delay f [n].

FDF implementation σ2
full/[dB]

sinc -21.1
Farrow, P = 9 -0.5
fiba & sinc -38.0
fiba & Hann -55.3

fiba & Farrow, P = 3 -55.5
fiba & Farrow, P = 9 -55.8

Table 3.1: Table of average errors over entire Nyquist band for different fractional delay filter
implementations. The filter bank (fiba) methods use a J = 16 channel filter bank with a
reconstruction error of approx. -55dB.

the filter bank should be designed such that it is just sufficiently good to match

the desired approximation error for the FDF f [n]. This ensures that the system

is not over-designed, and that the cost of the filter bank can be kept as low as

possible.
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3.5.2 Error Analysis and Complexity for Various Frac-

tional Delay Filter Approaches

To quantitatively assess the performance of the proposed filter bank based frac-

tional delay filters, two approximation errors are defined. A first error represents

the average deviation from an ideal delay over the entire band,

σ2
full =

1

π

π̂

0

See(e
jΩ) dΩ . (3.26)

A second error metric removes the highest octave, where the approximation is

least accurate, therefore only integrating over the lower half of the spectrum

σ2
half =

2

π

π/2
ˆ

0

See(e
jΩ) dΩ . (3.27)

According to (3.26) and (3.27), the resulting measure for the windowed sinc func-

tion and the Farrow structure are shown in Fig. 3.15. This provides a clear indic-

ation that a restriction to lowpass signals provides accurate results, particularly

for the Hann window, while state-of-the-art methods are unsuitable when applied

over the entire Nyquist band.

3.6 Conclusion

The need for accurate broadband steering vectors for applications such as broad-

band angle of arrival estimation has motivated the implementation of fractional

delay filters that can approach the ideal fractional delay over a large bandwidth.

Since state-of-the-art fractional delays such as windowed sinc and Farrow filters

perform best at low frequencies, this chapter has proposed high accuracy frac-

tional delay filter based on a filter bank approach. Simulation results indicate
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that accuracy can be achieved across the entire bandwidth, and that the approx-

imation error w.r.t. an ideal delay is either limited by the FDF inaccuracy or the

reconstruction error of the filter bank, whichever is greater.

The next chapter will apply the broadband steering vectors introduced here

to broadband AoA problems, to be addressed by polynomial MUSIC algorithm.



Chapter 4

Broadband MUSIC Algorithm

This chapter proposes a new method for broadband angle of arrival estimation,

which is a generalisation of the narrowband multiple signal classification (MU-

SIC) algorithm to the broadband case. Based on the formulation of polyno-

mial space-time covariance matrices, a polynomial eigenvalue decomposition is

used to determine the noise-only subspace of this matrix, which can be scanned

by appropriately defined broadband steering vectors as illustrated previously in

Chapter 3, leading to the definition of a polynomial MUSIC (P-MUSIC) approach.

Moreover, two broadband P-MUSIC algorithm versions are presented, which can

resolve either angle of arrival alone or additionally the frequency range over which

sources are active.

The chapter is organised as follows. Sec. 4.1 motivates the work within this

chapter. In Sec. 4.2, the broadband subspace decomposition afforded by a polyno-

mial eigenvalue decomposition (PEVD) for broadband signals is presented. We

show how it can be implemented using two different iterative techniques: the

second order sequential best rotation (SBR2) algorithm and the sequential matrix

diagonalisation (SMD) algorithm. The proposed approach for AoA estimation for

broadband sources, the polynomial MUSIC algorithm, is introduced in Sec. 4.3.

62
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Two broadband P-MUSIC algorithm versions are presented, which resolve either

the AoA alone or the AoA in combination with the frequency range over which

sources are active. The performance and sensitivity of the proposed algorithms

are analysed in Sec. 4.4 and Sec. 4.5 respectively, before conclusions are drawn in

Sec. 4.6.

4.1 Introduction

As reviewed in Chapter 2, the original MUSIC algorithm [10] has been defined

for the narrowband AoA scenario, and is not directly applicable to broadband

cases. The reason is that the angle of incident in the broadband scenario has to

be modelled by explicit time delays rather than phase shifts. Therefore, the lag

value has to be taken into account when calculating the space-time covariance

matrix for the sensor outputs, which leads to the elements of the space-time

covariance matrix containing the complete auto- or cross correlation sequences

rather than just a single correlation coefficient. This results in its corresponding

cross-spectral density (CSD) matrix forming a polynomial matrix. In this case,

the EVD cannot be used to diagonalise such a polynomial matrix at more than

one time lag, and hence is not able to identify and separate the broadband signal

subspaces, which are the core of the MUSIC algorithm.

In the past a number of efforts to derive broadband algorithms for AoA estim-

ation have been pursued. As has been mentioned in Chapter 2, most broadband

AoA techniques cleverly bypass the broadband problem in favour of narrowband

processing, where first the broadband array data is decomposed into multiple nar-

rowband signals of various frequencies by means of a discrete Fourier transform

(DFT). Based on this decomposition, several algorithms have been proposed that

vary by processing the different narrowband signals independently or coherently

to get accurate AoA estimates. The incoherent methods in [11, 12] apply a nar-
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rowband AoA technique separately for each frequency bin; thereafter a strategy is

used for combining these independent estimates to obtain the final AoA estimate.

The performance of this approach degrades when the sources are correlated or the

frequencies of the signal of interest do not coincide with frequency bins [34]. The

coherent approaches in [14, 15, 41] by contrast are based on the idea of cohering

the different frequencies into a single “common” frequency for which narrowband

high resolution AoA based method can then be used to estimate the source angles.

However, the CSS approach [14] requires approximate knowledge of the AoA for

pre-steering of the data in order to provide a good AoA estimation [41]. The novel

method proposed in this chapter is free of such assumptions and implements a

generalisation of the well known MUSIC algorithm directly to the broadband ar-

ray data. The proposed polynomial MUSIC algorithm [34] offers the functionality

of broadband AoA estimation, as well as the detection of the frequency range over

which broadband sources are active, which differ from the previous methods that

estimate the AoAs only.

4.2 Broadband Subspace Decomposition

Different from the narrowband case, in a broadband sensor array time delays

rather than phase shifts bear information on the direction of a source. Therefore,

the lag component has to be taken into account when calculating the space-time

covariance matrix of the sensor outputs, which results in each element of this

broadband covariance matrix to consist of the complete auto- or cross-correlation

sequence between the various sensors, rather than just a single correlation coeffi-

cient. The z transform of this space-time covariance matrix is the cross-spectral

density (CSD) matrix which includes Laurent polynomial elements and forms a

polynomial matrix [28]. Since the EVD can only measure and remove instantan-

eous spatial correlations, it cannot sufficiently diagonalise the polynomial covari-
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ance matrix. Instead, a polynomial matrix decomposition technique is required

to factorise such a polynomial matrix at more than one lag value. A recently

proposed polynomial matrix EVD (PEVD) [27] technique can be used to achieve

this decomposition. PEVD is considered as a generalisation of the EVD to poly-

nomial matrices, which transforms a polynomial (space-time) covariance matrix

into a diagonal polynomial matrix using paraunitary matrices [27], and allows for

the identification of the broadband (polynomial) signal and noise subspaces.

Therefore, this section will focus on a PEVD technique, whereby the idea of a

polynomial EVD is introduced in Sec. 4.2.1. This is followed by a brief description

of two iterative methods: the sequential best rotation (SBR2) algorithm [27] and

the multiple shift maximum element sequential matrix diagonalisation (MSME-

SMD) algorithm [29] which can be used to compute an approximation of the

PEVD. The SBR2 algorithm is illustrated by a numerical example to demonstrate

its ability for achieving strong decorrelation for a set of broadband signals, for

identifying the broadband subspaces and then separating the signal-plus-noise

and the noise-only subspaces, such that the polynomial space-time covariance

matrix R[τ ] will be diagonalised for all lag values.

4.2.1 Polynomial Eigenvalue Decomposition (PEVD)

The main idea of the PEVD is to extend the conventional EVD for Hermitian

matrices to the polynomial parahermitian matrices. The PEVD aims to factorise

a parahermitian matrix R(z) by means of a paraunitary, i.e., lossless matrix

Q(z). Therefore this section starts with a number of definitions to explain some

extended properties for a polynomial matrix before stating the PEVD and its

approximation by iterative methods such as SBR2 and MSME-SMD algorithms.
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4.2.1.1 Parahermitian and Paraunitary Matrices

For scalar matrices, the Hermitian operator {·}H performs a transposition and

complex conjugation, e.g., for any matrix QH = (QT)∗ = (Q∗)T. For the polyno-

mial case, the parahermitian operator {̃·} implies

Q̃(z) = QH(1/z) , (4.1)

i.e. Hermitian transposing all matrix-valued coefficients, while z is replaced by

z∗ = (1/z) and thus time-reversing the time domain matrix Q[τ ].

A Hermitian matrix is defined as the complex valued generalisation of a sym-

metric matrix such as QH = Q. A polynomial matrix Q(z) is parahermitian if

Q̃(z) = Q(z) [84], where all coefficients associated with the polynomial elements

have to satisfy qij[t] = q∗ji[−t] ∀t ∈ Z.

Paraunitarity is a generalisation of the unitary characteristic for a complex

matrix, where Q is a unitary matrix if it fulfils QQH = QHQ = I. Particularly,

a unitary matrix Q is a transformation matrix which only performs a rotation

of a vector but does not change its Euclidean norm, ||Qw||2 = ||w||2, with w

arbitrary, i.e. the total power of the input vector is preserved [23, 63].

For the polynomial scenario, paraunitarity of a polynomial matrixQ(z) means

that

Q(z)Q̃(z) = Q̃(z)Q(z) = I . (4.2)

A paraunitary matrixQ(z) can be interpreted as the polyphase matrix of a lossless

filter bank.

4.2.1.2 Idealistic PEVD

The Hermitian matrix R can be decomposed using the EVD, and the factor-

isation yields R = QΛQH, with a unitary matrix Q and a diagonal matrix Λ
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containing real value eigenvalues. If we extend the narrowband EVD to a poly-

nomial EVD (PEVD) of a parahermitian matrix R(z), then the decomposition

becomes R(z) ≈ Q(z)Λ(z)Q̃(z), with Q(z) is a paraunitary matrix, and Λ(z) is

a polynomial diagonal matrix whose entries have the properties of PSDs. This

factorisation can be accurate for FIR paraunitary matrices with sufficiently high

order [85].

For a given polynomial parahermitian matrix R(z), the aim of the ideal poly-

nomial EVD for a broadband scenario is to find a paraunitary matrix Q(z) such

that

Λ(z) = Q̃(z)R(z)Q(z) , (4.3)

where Λ(z) is a diagonal matrix containing the polynomial eigenvalues, such that

the diagonal elements

Λ(z) = diag{Λ0(z),Λ1(z),Λ2(z), . . . ,ΛM−1(z)} . (4.4)

In addition, Λ(z) is spectrally majorised such that power spectral densities (PSDs)

Λm(e
jΩ) = Λm(z)|z=ejΩ fulfil

Λm(e
jΩ) ≥ Λm+1(e

jΩ) ∀Ω, m = 0 . . . (M − 2) . (4.5)

In (4.5), the PSDs are ordered in descending fashion, similar to the ranking of

the eigenvalues in an ordered EVD. The matrix Q(z) is a paraunitary polynomial

matrix as illustrated in (4.2).

So far, no algorithms exist to compute the factorisation of a parahermitian

polynomial matrix R(z) as illustrated in (4.3). Hence the PEVD exists in approx-

imation only, i.e., R(z) ≈ Q(z)Λ(z)Q̃(z), and can be calculated using iterative

methods.
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4.2.1.3 Iterative PEVD algorithms

In order to achieve the decomposition according to (4.3) currently two main fam-

ilies of algorithms exist: SBR2 and SMD. Below, we will detail SBR2 [27] and the

MSME-SMD [29] as a member of the SMD family [28].

Second Order Sequential Best Rotation Algorithm. The SBR2 algorithm

is an extension of the classical Jacobi algorithm [86] to parahermitian matrices

[27]. At each step SBR2 finds the maximum off-diagonal element in the para-

hermitian matrix and transfers its energy onto the diagonal using an elementary

paraunitary transformation. The paraunitary transformation includes two oper-

ations: first the maximum element is brought onto the zero lag R[0] with a delay

matrix, next the energy of this maximum element is transferred to the diagonal

using a Jacobi rotation.

With S(0)(z) = R(z), the ith iteration begins by finding the maximum off-

diagonal element of S(i−1)(z). This maximum is found by inspecting a set of

modified column vectors ŝ
(i)
k [τ ] ∈ C

M−1, that contain all elements of the kth

column of S(i−1)[τ ] excluding the element on the diagonal. The lag, τ (i), and

column index, k(i), of the maximum off-diagonal element are found using

{k(i), τ (i)} = argmax
k,τ

‖ŝ(i−1)
k [τ ]‖∞ . (4.6)

Based on τ (i) and k(i) the maximum element is then delayed onto the zero lag

using

S(i)′(z) = Λ̃(i)(z)S(i−1)(z)Λ(i)(z) , i = 1 . . . I , (4.7)

where

Λ(i) = diag{1 . . . 1
︸ ︷︷ ︸

k(i)−1

z−τ (i) 1 . . . 1
︸ ︷︷ ︸

M−k(i)

} , (4.8)

modifies the k(i)th column of S(i−1)(z), shifting it by τ (i) samples. The matrix
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Λ̃(i) brings the corresponding k(i)th row onto the zero lag by shifting it by −τ (i)

in the opposite direction.

A Jacobi rotation is then used to eliminate the maximum off-diagonal element.

The unitary matrix Q(i) is used to apply the Jacobi rotation,

S(i)(z) = Q(i)HS(i)′(z)Q(i) . (4.9)

The Jacobi rotation affects only two rows and columns of the parahermitian

matrix S(i)′(z) based on the column and row indices obtained from the maximum

off-diagonal element search, (4.6). The energy of the maximum element found

using (4.6) is transferred onto the diagonal with the majority of the energy going

to the element which is higher on the diagonal. Even though it does not guarantee

it, this encourage spectral majorisation.

Convergence of the SBR2 algorithm has been proven in [27], as the paraunitary

operations do not affect the overall energy in the parahermitian matrix and at

each iteration more energy is transferred to the diagonal. The SBR2 algorithm

continues until either a set number of iterations have passed or the maximum

off-diagonal element falls below a pre-defined threshold. The delay and rotation

matrices can be combined into a single paraunitary matrix,

Q(z) =
I∏

i=1

Q(i)Λ(i)(z) , (4.10)

which performs the decomposition computed by SBR2.

Multiple Shift Maximum Element Sequential Matrix Diagonalisation.

MSME-SMD algorithm [29] has two major differences compared to the SBR2

method. First, rather than using a simple Jacobi rotation to transfer energy from

a single element on the zero lag, as is used in SBR2, MSME-SMD performs a
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full EVD of the zero lag which clears the energy from all elements in the zero

lag matrix S(i)[0] at each iteration. Also where SBR2 brings a single maximum

onto the zero lag during each iteration MSME-SMD uses a set of reduced search

spaces to bring a total of (M − 1) maxima onto the zero lag at each iteration.

In addition to the two major differences mentioned above, the MSME-SMD

algorithm also has an initialisation EVD step which ensures that all instantaneous

correlations in the parahermitian matrix are removed,

S(0)[0] = Q(0)HR[0]Q(0) , (4.11)

where S(0)[0] is diagonal and the model matrix obtained by its EVD, Q(0), is

applied to all lags of the parahermitian matrix such that S(0)(z) = Q(0)HR(z)Q(0).

The ith iteration of the MSME-SMD algorithm starts the same way as that

of SBR2, using (4.6) to find the maximum element in the parahermitian matrix

S(i−1)(z). Rather than immediately shifting the energy onto the diagonal as

in SBR2, MSME-SMD continues to bring energy onto the zero lag by shifting

multiple (locally) maximum elements. Due to the parahermitian nature of the

polynomial matrix, maximum elements occur in complex conjugate pairs, which

are translated onto the zero lag. Once the first maximum element pair has

been brought onto the zero lag the rows and columns are permuted so that the

maximum pair appears in the upper left 2× 2 sub-matrix as shown in Fig. 4.1(a).

Next the search space in Fig. 4.1(b) is used to find the second maximum within

a reduced search space, which when brought onto the zero lag will not affect

the first maximum in the upper left corner. The second maximum pair is then

permuted such that it appears in the upper left 3 × 3 sub-matrix. The process

is repeated for the third and fourth maxima using the search spaces shown in

Fig. 4.1(c) and (d).

The reduced search spaces shown in Fig. 4.1 are used to guarantee that a total
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Figure 4.1: View of a 5  5 parahermitian matrix during the ith iteration, not showing the lag
dimension: starting from the top 2 2 matrix containing the maximum off-diagonal element in
(a), (b) shows an example of an element resistant to permutations, the third and fourth stages
of the set of reduced search space strategy are shown in (c) and (d) [29].

of (M − 1) maxima are brought onto the zero lag at each iteration. In contrast,

if we simply ignored the rows and columns in which previous maxima appear,

we can only guarantee a total of (M/2) maxima to be brought onto the zero

lag. In MSME-SMD the delay matrix Λ(i) combines the delay and permutation

operations,

Λ(i) = diag{1 z−τ (i,1) . . . z−τ (i,M−1)} P(i) , (4.12)

where the P(i) combines the permutations used to send the maximum elements

unto the upper left corner. The lag values used to find the maximum elements

τ (i,m), m = 1 . . . (M − 1) form the delays for each column in (4.12).

The next step in the ith iteration of MSME-SMD is to diagonalise the zero

lag matrix, S(i)′[0], according to (4.7). In this case Q(i) is the modal matrix of an

EVD instead of the simple Jacobi rotation used in SBR2.

To finish an iteration of the MSME-SMD algorithm, the zero lag is ordered

based on the diagonal entries to encourage spectral majorisation. The stopping

criterion for MSME-SMD is either reached after a fixed number of iterations or

when the maximum off-diagonal element falls below a given threshold, similar to
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SBR2. The convergence of the MSME-SMD algorithm is given in [29] along with

a more in-depth description of the algorithm and its performance with respect to

other iterative PEVD algorithms.

Compared to SBR2 the major advantage of the MSME-SMD algorithm is the

ability to diagonalise the parahermitian matrix in fewer iterations. In addition

the MSME-SMD algorithm can achieve levels of diagonalisation that cannot be

achieved using the SBR2 algorithm [87]. The main drawback of the MSME-SMD

algorithm compared to SBR2 is extra computational cost of both the multiple

element search and the application of the EVD modal matrix, Q(i), to all lags.

4.2.1.4 Numerical Example

This section will demonstrate the operation of the SBR2 algorithm by a simple

numerical example. The SBR2 algorithm is applied to a parahermitian matrix

R(z) =











1 −0.2z + 0.3z2 −0.2z−1 + 0.7z 0.4z−1

0.3z−2 − 0.2z−1 1 −0.5z−1 0.4z

0.7z−1 − 0.2z −0.5z 1 0.3z−1 − 0.2z2

0.4z 0.4z−1 −0.2z−2 + 0.3z 1











,

where the largest off-diagonal element is ξ0 = 0.7. After 50 iterations of SBR2,

the largest off-diagonal value is now ξ50 = 0.0328. The polynomial matrices

obtained through this decomposition, Q(z) andΛ(z), are shown in Figs. 4.2 and

4.3 respectively. Fig. 4.2 shows the paraunitary matrix Q(z) that diagonalises

R(z).

From Fig. 4.3 it is clear that SBR2 has approximately diagonalised the para-

hermitian matrixR(z), which indicates that a strong decorrelation can be achieved
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Figure 4.2: Paraunitary matrix Q(z) obtained from SBR2.
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Figure 4.3: Diagonalised polynomial matrix Λ(z) obtained from SBR2.
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Figure 4.4: PSDs along the diagonal of Λ(z).

through the use of the SBR2 algorithm for parahermitian matrices. In addition,

the SBR2 algorithm aims to achieve spectral majorisation by ordering the poly-

nomial eigenvalues in descending fashion. The effect of the spectral majorisation

is depicted in Fig. 4.4, which shows the power spectral densities along the diagon-

alised CSD matrix Λ(z). From Fig. 4.4, it can be seen that spectral majorisation

has been achieved.

4.3 Proposed Polynomial MUSIC Algorithm

Based on the previous discussion of MUSIC, we propose to estimate the broad-

band AoAs using the same idea of a high resolution subspace based method. As

a generalisation of narrowband MUSIC, this section will introduce the proposed

polynomial MUSIC algorithm [34] for broadband AoA problems. The system

model for the proposed method is illustrated in Fig. 4.5. In this technique, we
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• SBR2
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x[n]

Figure 4.5: System model of the proposed polynomial MUSIC algorithm.

utilise a polynomial form of the space-time covariance matrix in combination with

PEVD algorithms discussed in [23, 25] to determine its noise-only and signal-

plus-noise polynomial subspaces. Thereafter, similar to narrowband MUSIC, the

polynomial noise-only subspace is scanned by a broadband steering vector which

has been presented in Chapter 3. The proposed algorithm as depicted in Fig. 4.5

will be described in detail below.

In Sec. 4.3.1, the definition of the space-time covariance matrix of the received

sensor outputs is presented. SBR2 and MSME-SMD algorithms are used to calcu-

late an approximate PEVD in order to identify polynomial noise-only subspace.

A broadband steering vector is defined in Sec 4.3.2, which is required to emu-

late the time delay for broadband array signal processing. Sec 4.3.3 details the

proposed polynomial MUSIC algorithms.

4.3.1 Space-Time Covariance Matrix and Polynomial EVD

AnM -element array of omnidirectional sensors located at positions rm,m = 1...M

collects K broadband signals that contribute to a data vector x[n] ∈ C
M , in
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addition to isotropic white noise v[n],

x[n] =
K∑

k=1

ak[n] ∗ sk[n] + v[n] , (4.13)

where sk[n] is the kth source signal, ak[n] the corresponding broadband steering

vector, and ∗ the convolution operator. The space-time covariance matrix of the

data vector x[n] can be calculated as

R[τ ] = E
{
x[n]xH[n− τ ]

}
, (4.14)

where E {·} denotes expectations and {·}H is the Hermitian transpose oper-

ator, and includes a time delay in form of the lag value τ . Its z transform

R(z)• ◦R[τ ],

R(z) =
∑

τ

R[τ ] z−τ , (4.15)

is the cross spectral density (CSD) matrix, which is parahermitian, i.e. R(z) =

R̃(z) = RH(z−1). In practise, this polynomial space time covariance matrix R[τ ]

needs to be estimated over a data window of N samples, and for a finite length

of lag values L as well, and can therefore be calculated as.

R(z) =
L∑

τ=−L

R[τ ] z−τ , (4.16)

where

R[τ ] =
N−1∑

n=0

x[n]xH[n− τ ]

N
. (4.17)

The CSD matrix can be factorised into a PEVD [23, 25],

R(z) ≈ Q(z)Λ(z)Q̃(z) , (4.18)
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whereby Q(z) is a paraunitary matrix and Λ(z) ∈ C
M×M(z) is an approximately

diagonal matrix such that

Λ(z) = diag{Λ0(z) Λ1(z) . . . ΛM−1(z)} , (4.19)

which contains the polynomial eigenvalues Λm(z). These are spectrally majorised

such that the power spectral densities (PSDs) Λm(e
jΩ) = Λm(z)|z=ejΩ fulfil

Λm+1(e
jΩ) ≥ Λm(e

jΩ) ∀Ω, m = 0 . . . (M − 2) . (4.20)

The approximation in (4.18) holds for a sufficiently high order of an FIR Q(z)

[61]. Thresholding the polynomial eigenvalues Λm(z) reveals the number of inde-

pendent broadband sources, K, contributing to R(z), and permits a distinction

between signal-plus-noise and noise only subspaces, such that

R(z) = [ Qs(z) Qn(z) ]




Λs(z) 0

0 Λn(z)








Q̃s(z)

Q̃n(z)



 , (4.21)

where Qs(z)∈ C
M×K holds the first K columns of the paraunitary matrix Q(z)

which define the broadband (polynomial) signal-plus-noise subspace. The remain-

ing M −K columns of Q(z) contained in Qn(z)∈ C
M×(M−K) form a basis for the

null space, and is also referred to as the polynomial noise-only subspace. Similar

to narrowband MUSIC, the proposed P-MUSIC probes the noise-only subspace

spanned by the columns of Qn(z),

Qn(z) =
[

qK(z) . . . qM−1(z)
]

, (4.22)

The probing requires the definition and implementation of the broadband steering

vector which will be briefly revisited in the next section.
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4.3.2 Broadband Steering Vector (BSV)

Based on the definition of the broadband steering vector outlined in Chapter 3,

here, in order to accurately reflect the time delays required to describe the received

broadband sensor array data, a polynomial vector containing fractional delay

transfer functions is required [34]. One possibility to implement these fractional

delays is by means of an appropriately sampled sinc function, such that

al[n] = sinc(nTs −∆τl) . (4.23)

With Al(z)• ◦al[n], a broadband steering vector in the z-domain can be defined

as

aϑ(z) =








A0(z)
...

AM−1(z)








. (4.24)

The parameter ϑ on the l.h.s. of (4.24) indicates the dependency of ∆τi on the

angle of arrivals of the sources. For the implementation of fractional delays in

(4.23), a truncation has to be introduced, leading to an approximation error. More

accurate implementations for the broadband steering vector than a truncated sinc

function have been discussed previously in Secs. 3.2 and 3.3.

4.3.3 Polynomial MUSIC

Similar to the narrowband MUSIC as described in Chapter 2, the null ( polynomial

noise-only ) space in (4.22) is scanned by broadband steering vectors in (4.24)

and leading to the generalised quantity

Γϑ(z) = ãϑ(z)Qn(z)Q̃n(z)aϑ(z) . (4.25)
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This is no longer a norm measuring the vicinity of a broadband steering vector

aϑ(z) to the null-space of Q̃n(z) as in narrowband MUSIC, but instead will com-

pute a power spectral density (PSD). This motivates two versions of the P-MUSIC

algorithm [34], which are presented in the following.

4.3.3.1 Spatial P-MUSIC (SP-MUSIC)

In order to measure the energy contained in the signal vector Q̃(z)aϑ(z), which

is related to the zero lag term γϑ[0] of the autocorrelation type sequence γϑ[τ ]◦
• Γϑ(z) , we integrate the PSD in (4.25) and provide a power term

γϑ[0] =
1

2π

˛

Γϑ(z)|z=ejΩ dΩ . (4.26)

This measure only depends on the angle of arrival ϑ, and collects all energy across

the spectrum. Instead of explicity searching for the steering vectors that provide

minimum energy, the SP-MUSIC spectrum is given by the reciprocal of (4.26)

PSP-MUSIC(ϑ) =
1

γϑ[0]
, (4.27)

which is maximised by the true angle of arrival ϑ of the signal sources.

4.3.3.2 Spatio-Spectral P-MUSIC (SSP-MUSIC)

With (4.25) describing a PSD, spectral clues can be exploited in addition to the

spatial information extracted by (4.27). The spatio-spectral polynomial SSP-

MUSIC is based on inverting a PSD-type function, and can be defined as

PSSP-MUSIC(ϑ, e
jΩ) =

1

ãϕ,ϑ(z)Q⊥
s (z)Q

⊥
s (z)aϕ,ϑ(z)

|z=ejΩ . (4.28)



4.4. Simulation and Results 80

Therefore in addition to localisation of sources with respect to ϑ , SSP-MUSIC

can determine over which frequency range sources in the direction defined by the

steering vector aϑ(z) are active.

4.4 Simulation and Results

This section will demonstrate the performance of the two proposed versions of P-

MUSIC for AoA estimation defined in (4.27) and (4.28) respectively. First, some

controlled scenarios with numerical examples are presented to highlight the ability

for spatial discrimination of the spatial SP-MUSIC for both a single source and

multiple sources scenarios. Thereafter, a more complex scenario is tested for the

spatio-spectral SSP-MUSIC algorithm and benchmarked against the independent

frequency bin (IFB-MUSIC) algorithm that was described in Chapter 2.

4.4.1 Simple Angle of Arrival Estimation Scenario

For simplicity, we will consider a simple problem where a linear array with M = 4

uniformly spaced sensors separated by distances d = c/fs is receiving one or two

broadband source(s) in a noise-free environment.

4.4.1.1 Single Source

Case 1. The source of interest impinging onto a sensor array is located at

broadside (ϑ = 0◦). In this case, the source wavefront will arrive at all sensors at

the same time such that ∆τ = 0. Therefore, the broadband steering vector for

this case is given by

aϑ=00 = [1 1 1 1]T . (4.29)
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Figure 4.6: SP-MUSIC PSP-MUSIC(ϑ) for a source located at broadside ( ϑ = 0◦ ).

If the source emits an uncorrelated random signal with zero mean (µ = 0) and

unit variance (σ2
s = 1), then the resulting covariance matrix is

R1(z) = a(ϑ=0o)(z) · ã(ϑ=0o)(z) =











1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1











. (4.30)

This matrix R1(z) has rank one, and the SP-MUSIC algorithm is identical to the

narrowband MUSIC except for the use of broadband steering vectors in evaluating

(4.27). The result in Fig. 4.6 shows that the proposed SP-MUSIC clearly identifies

the source angle (ϑ = 0◦) with a sharp peak at the exact location.

Case 2. In this situation, the source now is located at the end-fire position

(ϑ = −90◦), therefore the wavefront arriving at each sensor is delayed by exactly
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Figure 4.7: SP-MUSIC PSP-MUSIC(ϑ) for a source located at end-fire ( ϑ = −90◦ ).

one sampling period. The broadband steering vector can be calculated as

aϑ=−90o(z) = [1 z−1 z−2 z−3]T . (4.31)

As a result, the spatio-temporal covariance matrix for the end-fire position is

R2(z) = a(ϑ=−90o)(z)ã(ϑ=−90o)(z) =











1 z1 z2 z3

z−1 1 z1 z2

z−2 z−1 1 z1

z−3 z−2 z−1 1











. (4.32)

The result for the spatial P-MUSIC algorithm is depicted in Fig. 4.7, which cor-

rectly identifies the angle of arrival ( ϑ = −90◦) of the desired source.
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Figure 4.8: SP-MUSIC PSP-MUSIC(ϑ) for a scenario with two independent sources of equal
strength located at broadside and end-fire positions.

4.4.1.2 Multiple Sources

For this situation, we assume that two independent sources, one located at broad-

side and the other at the end-fire positions, are impinging upon the sensor array,

hence the space-time covariance matrix is given by

R(z) = a(ϑ=0o)(z)ã(ϑ=0o)(z) + a(ϑ=−90o)(z)ã(ϑ=−90o)(z)

=











2 1 + z1 1 + z2 1 + z3

1 + z−1 2 1 + z1 1 + z2

1 + z−2 1 + z−1 2 1 + z1

1 + z−3 1 + z−2 1 + z−1 2











. (4.33)

The proposed spatial P-MUSIC algorithm identifies two large polynomial eigen-

values, and from the noise-only subspace, the spatial P-MUSIC algorithm derives

the result in Fig. 4.8. It can be seen from the figure that the proposed SP-MUSIC

can accurately identify the angles of arrival of both sources.
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Number of sensors M 8
Number of broadband sources K 2

AoAs ϑ1 = 30◦,ϑ2 = −20◦

Sources frequency ranges
Ω1 ∈ [0.3125π, 0.7182π]
Ω2 ∈ [0.4688π, 0.9375π]

Table 4.1: The specification of the simulation.

4.4.2 Spatio-Spectral Estimation

For a more realistic scenario, we consider an M = 8 element array illumin-

ated by two uncorrelated broadband sources, with the characteristic as indicated

in Table 4.1. The array signals are corrupted by uncorrelated independent and

identically distributed complex Gaussian noise at SNR of 20dB. The source sig-

nals are simulated as a series of complex exponentials of different frequencies Ωi

with randomised phases. The delay with which the waveform propagates across

the array is implemented in the frequency domain by separately implementing

the steering vector as defined in Chapter 2 for every complex harmonic. The

number of samples used to estimate the space time covariance matrix is chosen

to be 64000, with the range of lags set to |τ | ≤ 20. Two different scenarios are

considered, which are highlighted below.

Scenario 1. The exact frequency locations of the source components coincide

with the bin frequencies of an independent frequency bin processor, i.e, at integer

multiples of Ω = 2π/L, where L = 64 is the number of frequency bins. For

the DFT-based independent bin processing methods provides the inputs to inde-

pendent MUSIC algorithms operating in every frequency bin. Results depicted

in Fig. 4.9 indicate that the IFB provides very accurate retrieval of both sources

in terms of angle of arrival as well as their spectral range.

Scenario 2. In this case, the source frequencies are located at frequencies which

are not bin frequencies in the DFT. The IFB here is used to benchmark the
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Figure 4.9: Narrowband MUSIC applied to independent frequency bins, for an M = 8 element
array and bin frequencies coinciding with those of the sources.

proposed SSP-MUSIC method. The IFB approach is known to yield a very poor

worst-case performance [88]. As can be seen in Fig. 4.10, the result exhibits a large

number of spurious components in the lower frequency range. In addition the IFB

approach is not able to extract the source at ϑ = 30◦ as well as in scenario 1.

The proposed spatio-spectral P-MUSIC algorithm (??) is applied to the same

data as the IFB processor in Fig. 4.10. The estimated polynomial covariance mat-

rix R(z) from this data is illustrated in Fig. 4.11, from which the SBR2 algorithm

generates a paraunitary matrix Q(z) and a diagonal polynomial matrix Λ(z) as

depicted in Fig. 4.12 and Fig. 4.13, respectively.

The result in Fig. 4.13 shows that R(z) is approximately diagonalised, while

the output signal power is concentrated in the first and the second elements of

the polynomial diagonal matrix Λ(z) which allows to identify the polynomial

noise only subspace Qn(z) contained in the paraunitary matrix Q(z) as depic-

ted in Fig. 4.12. Fig. 4.14, shows the PSDs along the diagonalised CSD matrix

Λ(z) in Fig. 4.13. It can be seen from Fig. 4.14, that spectral majorisation has

been achieved and that the polynomial signal subspace is defined by the first two
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Figure 4.10: Narrowband MUSIC applied to independent frequency bins, for an M = 8
element array and bin frequencies not coinciding with those of the sources.
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Figure 4.11: Estimated polynomial covariance matrix R(z).
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Figure 4.12: A paraunitary matrix Q(z) obtained when the SBR2 is applied to R(z) shown
in Fig. 4.11.
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Figure 4.13: The diagonal polynomial matrix Λ(z) produced by applying the SBR2 algorithm
to the polynomial space-time covariance matrix R(z) demonstrated in Fig. 4.11.
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Figure 4.14: Power spectral densities of diagonal elements of Λ(z) demonstrating spectral
majorisation.

polynomial eigenvalues Λ1(e
jΩ),Λ2(e

jΩ) which have the highest spectra, while the

noise only subspace is identified by the polynomial eigenvalues with the lowest

spectra i.e., Λ3(e
jΩ), . . . ,Λ8(e

jΩ). As a result the broadband (polynomial) sub-

spaces have been identified.

With broadband steering vectors computed according to (4.24), the results

of the proposed spatio-spectral P-MUSIC approach (??) is shown in Fig. 4.15.

Different from Fig. 4.10, SSP-MUSIC allows to accurately extract both angles of

arrival and the frequency ranges of the two contained broadband sources, the

resolution is not as sharp as the IFB processor with coinciding frequency bins as

in Fig. 4.9 (scenario 1). This is due to the constructed nature of the IFB setup,

as well as the fact that the fractional delay filters implementing the time delays

associated with different angles ϑ are not accurate across the entire frequency

range [43]. Also the accuracy of the polynomial matrix decomposition algorithms

leading to the identification of the polynomial noise-only subspace [37] is lim-

ited. However, it is important to note that while the IFB processor is extremely

sensitive to the location of the sinusoidal components, the proposed SSP-MUSIC
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Figure 4.15: Performance of Spatio-Spectral SSP-MUSIC.

algorithm has been found very robust.

4.5 Sensitivity Analysis

In this section, we present simulation results to demonstrate the impact of the

accuracy of both the broadband steering vector (BSV) implementation techniques

as discussed in Chapter 3 as well as the PEVD techniques on the performance of

the proposed P-MUSIC algorithms. In Sec. 4.5.1, we compare the performance of

the SP-MUSIC algorithm based on four different BSV implementation methods

such as a windowed sinc function (rectangular and Hann) windows, the Farrow

structure with polynomial order 9 and a novel proposed method based on the

filter bank approach [36]. In Sec.4.5.2, two polynomial matrix decomposition

approaches are applied to diagonalise the space-time covariance matrix of the

array broadband signals. Iterative PEVD approaches based on both the SBR2

and the recently proposed MSME-SMD algorithms are shown with impact on the

accuracy for both versions of the P-MUSIC algorithm.
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4.5.1 Performance of P-MUSIC Based on the Broadband

Steering Vector Implementation

In the following simulations, the impact of the broadband steering vector im-

plementations on the performance of the proposed SP-MUSIC algorithm will be

analysed. As has been described in Chapter 3, the broadband steering vector

can be implemented using various methods based on the required accuracy for

different applications. Four different implementation methods for the BSV are

included to asses the performance of the SP-MUSIC. The simulation scenario has

two broadband sources impinging onto an array with M = 4 sensors from broad-

side, ϑ1 = 0◦, and end-fire, ϑ2 = −90◦. Fig. 4.16 shows the simulation results for

the SP-MUSIC algorithm based on various implementation of broadband steer-

ing vector. Results as depicted in Fig. 4.16 indicate that the implementation of

the broadband steering vector based on the filter bank approach outperforms the

other design methods in terms of high resolution of the SP-MUSIC algorithm, i.e.

SP-MUSIC provides sharp peaks at both angle of arrivals, while the truncated

sinc (rectangular) and Hann windowed with length N = 100, implementation

methods perform approximately the same and provide slightly higher resolution

than the Farrow structure-based implementation with order P = 9.

4.5.2 Performance of P-MUSIC Based on Different Iter-

ative PEVD Algorithms

In this section we demonstrate and highlight the accuracy of SSP-MUSIC by

exploring the impact of the performance of different iterative PEVD algorithms

in [23], [25]. For this set of simulations, two broadband sources are impinging

onto a M = 8 sensor array antenna from ϑ1 = 20◦ and ϑ2 = −30◦ directions.

Further, independent and identically distributed white Gaussian noise is added
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Figure 4.16: Comparison of the performance of SP-MUSIC algorithm for different BSV im-
plementation methods.

to the sensors at an SNR of 20 dB. The two sources are active over the normal-

ised angular frequency range of Ω1 ∈ [0.3125π, 0.7182π], Ω2 ∈ [0.4688π, 0.9375π]

respectively. To exclude error sources other than inaccuracies in the subspace

identification, we have modelled the data as a sum of closely spaced sinusoids

with randomised phases, for whom the individual and highly accurate narrow-

band steering vectors can be used to simulate the data. Two different polynomial

matrix decomposition techniques, i.e. SBR2 and MSME-SMD, are used for diag-

onalising the estimated space-time covariance matrix R[τ ] of the sensor output

data, in order to identify the noise only subspace. In the simulation below, the

number of iterations are chosen to be 50 for both algorithms and the energy

of the polynomial matrices is calculated using the squared Frobenius norm of a

polynomial matrix A(z) ∈ C
n×m [27] defined as

||A(z)||2F =
∑

τ

N∑

n=1

M∑

m=1

|anm[τ ]|2 , (4.34)

where anm[τ ] is the element in the nth row and mth column of A[τ ]◦—•A(z).
The space-time covariance matrix R(z) for this scenario is calculated accord-

ing to (4.16) whereby the correlation lag value is set to τ = 20. Fig. 4.17 shows the
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polynomial covariance matrix R(z) estimated from the received signals. There-

after, both the SBR2 and the MSME-SMD algorithms are applied to factorise

this matrix according to (4.18). For the SBR2 algorithm, the obtained diagonal

matrix Λ(z) can be seen in Fig. 4.18, whereby the order of Λ(z) after 50 itera-

tions is 175. The input estimated polynomial space time covariance matrix R(z)

has a squared Frobenius norm of 1.3078e+05, with 2.7439e+04 positioned in the

main diagonal elements. This is approximately 20.98 % of the total energy of the

matrix.

Following the application of the SBR2 algorithm, the energy on the off-

diagonal elements in Λ(z) is decreased to 2.6577e+03, amounting 2.03 % (-16.9204

dB) of the total energy of the matrix. On the other hand, applying MSME-SMD

to R(z), produces a decomposition similar to (4.18). The resulting polynomial

diagonal matrix Λ(z) is depicted in Fig. 4.19. The order of Λ(z) in this case is

735, with the squared Frobenius norm of the off-diagonal elements being 429.807

which amounts 0.3286 % (-24.8327 dB) of the total energy of the matrix. There-

fore, a higher level of diagonalisation can be achieved via MSME-SMD algorithm

compared to the SBR2 algorithm, by transferring more energy onto the main

diagonal. Thus a better identification of the signal-plus-noise and the noise-only

subspaces is achieved.

The performance of the SSP-MUSIC algorithm based on SBR2 and MSME-

SMD approaches is illustrated in Figs. 4.20 and 4.21 respectively. It can be seen

that SSP-MUSIC based on MSME-SMD decomposition outperforms the one using

SBR2, whereby a cleaner estimate for both angles and frequency of the estimated

sources is extracted.

Finally, we study the impact of PEVD approaches on the performance of

the spatial P-MUSIC algorithm. Fig. 4.22 compares the performance of the SP-
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Figure 4.17: The polynomial space-time covariance matrix R(z).
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Figure 4.18: The diagonalised polynomial matrix Λ(z) obtained when the SBR2 algorithm is
applied to the polynomial covariance matrix R(z) shown in Fig. 4.17.
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Figure 4.19: The diagonalised polynomial matrix Λ(z) obtained when the MSME-SMD al-
gorithm is applied to the polynomial covariance matrix R(z) depicted in Fig. 4.17.

Figure 4.20: Performance of SSP-MUSIC based on SBR2 for PEVD for a scenario with two
independent broadband sources located at ϑ1 = 20◦ and ϑ2 = −30◦.
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Figure 4.21: Performance of SSP-MUSIC based on MSME-SMD for PEVD for a scenario
with two independent broadband sources located at ϑ1 = 20◦ and ϑ2 = −30◦.

MUSIC based on the SBR2 and the MSME-SMD decomposition techniques,

where the simulation results are normalised to a spectrum peak value of one.

It can be seen that the SP-MUSIC based on the MSME-SMD provides superior

resolution than the one using the SBR2 algorithm, which demonstrates that the

accuracy of the PEVD is crucial to the performance of any subsequent polynomial

subspace based techniques.

4.6 Conclusion

Motivated by the desire for high resolution AoA estimation for broadband sig-

nal processing applications, this chapter has proposed a novel algorithm known

a polynomial MUSIC (P-MUSIC). The new algorithm is a generalisation of the

well-known narrowband MUSIC to broadband AoA problems. The derived P-

MUSIC approach offers two variations, either estimating the angle of arrival

alone (SP-MUSIC), or providing both spatial and spectral information for the

broadband sources that contributing to the space-time covariance matrix (SSP-



4.6. Conclusion 96

−80 −60 −40 −20 0 20 40 60 80
−35

−30

−25

−20

−15

−10

−5

0

ϑ/◦

n
o

rm
a

lis
e

d
 s

p
e

c
tr

u
m

 /
 [

d
B

]

SP-MUSIC (MSME-SMD)
SP-MUSIC (SBR2)
sources

Figure 4.22: Performance of the SP-MUSIC based on the polynomial matrix decomposition
techniques,i.e. the SBR2 and the MSME-SMD algorithms for a scenario with two broadband
sources located at ϑ1 = 20◦ and ϑ2 = −30◦.

MUSIC). Both versions of P-MUSIC require the identification of the polynomial

noise-only subspace from the estimated covariance matrix as well as the definition

of a broadband steering vector.

Since the broadband covariance matrix is a polynomial matrix, a recently pro-

posed novel PEVD technique has been applied to diagonalise this polynomial mat-

rix. PEVD algorithms such as SBR2 and MSME-SMD can acheive approximate

diagonalisation and allow for the identification and separation of the broadband

(polynomial) subspaces, i.e. signal-plus-noise and noise only subspaces.

Simulation results have highlighted the ability of the proposed P-MUSIC al-

gorithms based on SBR2 to accurately estimate the directions and the spectrum

clues for broadband sources. Moreover, we have demonstrated that the proposed

P-MUSIC outperforms the IFB approach if signal frequencies do not coincide

with frequency bins [28], where the latter was found to be very sensitive to the

exact location of frequency components within the array data. In contrast, the
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proposed P-MUSIC algorithms have shown to be very robust.

Further enhancement in the performance for the proposed algorithm can

be achieved by using the recently proposed MSME-SMD algorithm [25], which

provides a better diagonalisation compared to SBR2 [23]. The simulation results

show that SSP-MUSIC based on the MSME-SMD decomposition outperforms the

one using SBR2. Therefore, we have demonstrated that a higher level of diag-

onalisation leads to a better identification of the relevant signal subspaces, such

that the proposed P-MUSIC can extract a more accurate estimate w.r.t. both

angles and frequency of the estimated sources.

In the next chapter, a link between the proposed P-MUSIC algorithm with

the recently proposed auto-focusing method for broadband AoA estimation will

be addressed.



Chapter 5

Analysis and Comparison of

Broadband AoA Techniques

In Chapter 4, the P-MUSIC algorithm was introduced as a generalisation of

narrowband MUSIC to broadband AoA estimation, based on polynomial matrix

decomposition techniques. In this chapter we express the link between P-MUSIC

and the recently proposed auto-focussing MUSIC (AF-MUSIC) method.

This chapter is divided into two parts: firstly, a connection between the

P-MUSIC algorithm and the AF-MUSIC approach is presented. We analyse

the AF technique in the framework of polynomial covariance matrix decomposi-

tions, leading to insight into similarities and differences with P-MUSIC. Secondly,

the chapter contains an extensive comparison between P-MUSIC algorithms and

other broadband AoA estimation methods presented in Chapter 2, including AF-

MUSIC, PSCM and broadband beamforming techniques, where different scen-

arios are considered. This aim is to demonstrate the ability of these techniques in

resolving sources’ AoAs. We show that compared to other techniques, P-MUSIC

robustly estimates the AoAs and the frequency spectrum of broadband signals

for different scenarios.

98
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This chapter is organised as follows. Sec. 5.1 motivates the work within this

chapter. In Sec. 5.2 we begin by reviewing the AF broadband AoA estimation

approach and the formulation of MUSIC based on the AF method is then related

to the two P-MUSIC algorithms. Simulation results to verify the relation between

these algorithms are found in Sec. 5.3. A comparison between the two versions

of P-MUSIC and other broadband AoA approachers for different scenarios is

performed through simulations in Sec. 5.4. The chapter ends with conclusion in

Sec. 5.5.

5.1 Introduction

As mentioned Chapter 2, most of the existing broadband AoA methods are based

on transforming the broadband AoA problem into one or several narrowband

problems. Then, narrowband direction finding techniques such as subspace-based

methods can be applied to each bin-frequency individually or coherently. Different

from broadband coherent AoA estimation methods in [14, 15], where the broad-

band approach is cleverly bypassed in favour of narrowband processing, an EVD

algorithm for polynomial space-time covariance matrices [27, 29] has recently led

to the P-MUSIC algorithm [34]. P-MUSIC exploits the idea of subspace decom-

position created by the polynomial EVD and is applicable directly to broadband

array data. While this approach seems quite distinct from AF-MUSIC [41], the

purpose of the first part of this chapter is to express the auto-focussing approach

in the framework of polynomial matrix notations to highlight similarities and

differences to P-MUSIC. The second part of this chapter provides a compar-

ison between different broadband AoA estimation techniques with the P-MUSIC

method proposed in this thesis.
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5.2 Coherent Covariance and Focussing Matrices

A large family of broadband angle of arrival estimation algorithms are based

on the idea of the coherent signal subspace (CSS) method, whereby focussing

matrices appropriately align covariance matrices across narrowband frequency

bins. The recently proposed AF approach, claiming to belong to this family. The

AF approach has reviewed in Sec. 2.5.3, and will be expressed in the framework

of a polynomial matrix decomposition and also will be compared to P-MUSIC

next.

5.2.1 Auto-Focussing Approach via CSDMatrix and PEVD

Based on a L-point DFT of the space-time covariance matrix,

R(ejΩl) =
L−1∑

τ=0

R[τ ]e−jΩlτ , (5.1)

with Ωl = 2π
L
l, l = 0 . . . (L − 1), the auto-focussing method [40] is based on a

autofocussing covariance matrix

RAF =
L−1∑

l=0

T(ejΩl)R(ejΩl)TH(ejΩl) , (5.2)

obtained by coherently combining across frequency bins through unitary and

frequency-dependent focussing matrices T(ejΩl).

With the modal matrix Q0 obtained at the reference frequency Ω0 via EVD of

(5.1), the focussing matrix can be formulated as a paraunitary matrixT(z)|z=ejΩ =

Q0Q
H(ejΩ). Replacing the summation over frequency bins in (5.2) by the integ-
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ration over the Fourier transform (i.e. L→∞) will lead to

RAF ≈ 1

2π

˛

{
{

T(z)R(z)T̃(z)
}

z=ejΩ
dΩ

= Q0
1

2π

˛ {

Q̃(z)R(z)Q(z)
}

z=ejΩ
dΩQH

0 . (5.3)

Since the paraunitary matrix Q(z) diagonalises R(z), the argument under the in-

tegral is the polynomial EVD of (4.3), resulting in a diagonal matrix of power spec-

tral densities, 1
2π

¸

Γ(ejΩ)dΩ=Γ[0], where Γ[0] is the evaluation of Γ[τ ]◦ •Γ(z)
for zero lag. Therefore

RAF ≈ Q0Γ[0]Q
H
0 = Q0








σ2
1

. . .

σ2
M







QH

0 , (5.4)

represents the coherent covariance matrix in terms of the polynomial EVD of the

CSD matrix.

Further, the PEVD of the CSD matrix provides a paraunitary Q(z) leading

to an auto-focussing matrix Q0Q̃(z) that is continuous in frequency.

5.2.2 Polynomial MUSIC algorithms and Auto-Focussing

Approach

For the P-MUSIC algorithm [34], a spatial (SP-MUSIC) and a spatio-spectral

version (SSP-MUSIC) have been presented in Secs. 4.3.3.1 and 4.3.3.2 respectively.

From the spectrum of AF-MUSIC in (2.42) and SSP-MUSIC in (4.28), then

with Q0 being the evaluation of the paraunitary Q(z) at the reference frequency

Ω0, such as Q0 = Q(z)|z=ejΩ0 , it can be noticed that the former is equivalent

to evaluating the spatio-spectral polynomial MUSIC spectrum at a reference fre-
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quency Ω0, and can be expressed by

SAF(ϕ, ϑ) = SSSP(ϕ, ϑ, e
jΩ)|Ω=Ω0 . (5.5)

In addition, to obtain the same spatio-spectral characterisation of the array data

as provided by SSP-MUSIC with the auto-focussing approach, a sequence of dif-

ferent modal matricesQ0 at different reference frequencies Ω0 could be calculated,

for all of which the AF spectrum in (2.42) is then evaluated.

The SP-MUSIC integrates the power spectral density (PSD) in the denomin-

ator of (4.28), and provides a power term

γ =
1

2π

˛ (

ãϕ,ϑ(z)Q
⊥
s (z)Q̃

⊥
s (z)aϕ,ϑ(z)

)

|z=ejΩ dΩ . (5.6)

Therefore the SP-MUSIC spectrum can be calculated by the reciprocal of (5.6).

If the integral in (5.6) is approximated by a sum over L discrete frequency

bins, i.e.

γ ≈ 1

L

L−1∑

l=0

aH
ϕ,ϑ(e

jΩl)Q⊥
s (e

jΩl)Q⊥,H
s (ejΩl)aϕ,ϑ(e

jΩl) , (5.7)

then (5.7) is the summation over the denominator terms of (4.28) for all possible

reference frequencies Ωl with Ωl =
2π
L
l, l = 0 . . . (L− 1). The paraunitary matrix

Q(z) that feeds into (5.7) has been demonstrated in (5.4) to cohere the spatio-

temporal covariance matrix in the auto-focussing sense.

5.3 Numerical Simulations

In this section, we present simulation results to demonstrate the connection

between the P-MUSIC algorithm and the AF approach.



5.3. Numerical Simulations 103

5.3.1 Implementation Aspects

It has been shown in [85] that the polynomial EVD in (4.3) fulfilling spectral

majorisation can be approximated very closely by FIR paraunitary matrices even

if an exact decomposition by FIR filter banks may not exist. Therefore, here we

rely on the PEVD based on both the SBR2 and SMD algorithms [27, 28, 29],

which iteratively approximates the decomposition in (4.3), and has been proven

to converge, whereby the number of iterations will determine the accuracy with

which diagonalisation and spectral majorisation are approximated. Broadband

steering vectors are based on fractional delay filters as presented in Chapter 3..

5.3.2 Idealistic Example with Exact PEVD

In this scenario, a single source emits an uncorrelated Gaussian signal. In an

otherwise noise-free scenario, this signal is received by a spatially and temporally

critically sampled array with M = 4 sensors from end-fire position ϑ = 90◦.

Therefore, the broadband steering vector of the source is given by

a
ϑ=90

(z) =
1√
M

[
1 z−1 . . . z−M+1

]T

=
1

2

[
1 z−1 z−2 z−3

]T
, (5.8)

and the space-time covariance matrix can be calculated as

R(z) =











1 z1 . . . zM−1

z−1 1
...

...
. . .

...

z−M+1 . . . . . . 1











. (5.9)
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Because R(z) is rank one, a manifold of diagonalising decompositions exists, with

one possibility

Q(z) = diag
{
1 z−1 . . . z−M+1

}
TDFT , (5.10)

where TDFT is a normalised, unitary L-point DFT matrix. For SSP-MUSIC in

(4.28), the spectrum is shown in Fig. 5.1(a), the AoA of the end-fire source is

clearly identified. In line with broadband arrays, at lower frequencies the fixed

aperture degrades the spatial resolution, with no ability to discern sources at DC.

However, for the AF technique, at a given reference frequency Ω0, it can be

shown that Rcoh,Ω0 = R(z)|z=ejΩ0 and Λcoh,Ω0 = diag {1, 0, . . . , 0}. Using the

null space Q⊥
s (e

jΩ0) obtained from the EVD of Rcoh,Ω0 , the MUSIC spectrum

is evaluated for a range of N = 64 reference frequencies Ω0. This leads to a

spectrum very closely related to SSP-MUSIC, with the difference, Sdiff(ϑ, e
jΩ) =

|SSSP(ϑ, e
jΩ) − SAF(ϑ,Ω)|, plotted in Fig. 5.1(c). It can be seen that the error

reaches a maximum of 10dB where the SSP-MUSIC spectrum is numerically

most sensitive, i.e. towards the source at the end-fire ϑ = 90◦, and for the DC

component, Ω = 0, which can be attributed to the inaccuracies in implementing

broadband steering vectors. Note the trivial broadband steering vector towards

broadside ϑ = 0◦, a0◦(z) = 1√
4
[1 1 . . . 1]T, for which the error in Fig. 5.1(c) is

negligible.

Due to the trivial space-time covariance matrix, SBR2 converges instantly to

the exact PEVD, yielding exact results for SP-MUSIC in Fig. 5.2. AF-MUSIC

is shown both for a single reference frequency, and integrated over a range of

reference frequencies, with results somewhat degraded compared to SP-MUSIC.
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Figure 5.1: (a) SSP-MUSIC spectrum, (b) AF-MUSIC spectrum and (c) difference between
SSP-MUSIC and AF-MUSIC for a single source at ϑ = 90◦.
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Figure 5.2: Comparison between AF-MUSIC (i) at Ω0 = π
2
, (ii) integrated according to (5.7),

and SP-MUSIC (iii) with estimated and (iv) ideal PEVD.

5.4 Comparison of P-MUSIC with Other AoA

Methods

In this section, the benefit of the proposed P-MUSIC algorithms is demonstrated

and compared with other broadband AoA estimation techniques introduced in

Chapter 2, which includes the auto-focussing (AF), parametric spatial-covariance

matrix (PSCM) and the broadband beamforming approaches for different simu-

lation scenarios. Performance measures employed for this assessment include the

accuracy of AoA estimates and their ability to resolve closely spaced sources, and

estimating the frequency spectrum of the broadband sources.

A uniform linear array with M = 8 sensors is selected for all simulation

scenarios. The sensors are separated by distances equal to half of the smallest

wavelength d = λmin/2 of the incoming broadband signals to guarantee that there

is no spatial aliasing. The number of broadband sources K is changed in each

scenario to demonstrate the resolution of the different methods, i.e, the ability

for distinguishing between multiple sources with close AoAs. All simulations

below assume that the number of sources K is known or correctly estimated

from the covariance matrices, and consequently the (polynomial) subspaces, i.e.
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sources frequency ranges sources AoAs (ϑk)

source 1 Ω ∈
[
2
8
π; 6

8
π
]

20◦

source 2 Ω ∈
[
3π
8
; 7

8
π
]

−10◦

Table 5.1: Specification for scenario with two sources.

the noise only and the signal-plus-noise subspaces, have the correct dimensions.

Furthermore, for the P-MUSIC algorithm the order of the space-time covariance

matrices (number of lags) used in the algorithm is |τ | ≤ 50, and the PEVD

is calculated based on two iterative algorithms, i.e., SBR2 and MSME-SMD.

Both algorithms were allowed to run for 100 iterations and the number of bin

frequencies used for implementing the AF approach is fixed to L = 256 and is the

same for all simulation scenarios.

The broadband data model discussed in Sec. 2.2.1 and given by (2.5) is used

throughout all the simulations, whereby the broadband sources are modelled as

a white Gaussian signal with unit variance. Sensor signal are generated from the

sources using the broadband steering vectors discussed in Chapter 3.

5.4.1 Realistic Scenario with Two Sources

In the first set of simulations, the sensor array with M = 8 elements is illu-

minated by two overlapping uncorrelated broadband sources of equal power with

specifications as indicated in Tab. 5.1.. The sources are active over two different

frequency ranges as shown in Fig. 5.3. Further, independent and identically dis-

tributed white Gaussian noise with zero mean and unit variance is added to the

sensor signals at an SNR of 20 dB. Fig. 5.4 compares the performance of SSP-

MUSIC based on both SBR2 and MSME-SMD approaches, AF-MUSIC and the

broadband beamformer techniques, whereby the sources’ AoAs and the frequency

spectrum contained in the broadband sources can be extracted from this figure.

From Fig. 5.4, we can see that both versions of SSP-MUSIC and AF-MUSIC
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Figure 5.3: PSDs of the two broadband signals of interest.

provide good estimates for both sources’ AoAs and frequency ranges, while the

broadband beamformer has poor resolution due to its resolution limit, also known

as the beamwidth as defined in [50, 89]

∆ϑ ≈ λ

LN

, (5.11)

where λ is the wavelength of the incoming source signals, LN is the length of the

sensor array equal to LN = (M − 1) · d, with d the spacing between neighbouring

sensors. The beamwidth decreases with an increase in the number of sensors, the

spacing between adjacent sensors, and the source signal frequency.

Fig. 5.5 demonstrates the performance of SP-MUSIC with the other algorithms

for extracting only AoA information. In this figure, the simulation results are

normalised to a spectrum peak value of one. Furthermore, we add the PSCM

approach [19,20] for this comparison to test its ability to resolve multiple sources.

From Fig. 5.5 it can be seen that SP-MUSIC based on MSME-SMD extracts the

two sources well: they look equal in power and offers a slightly higher resolution

than AF-MUSIC, especially for the source located at 20◦. In addition, in spectral

ranges where all sources are active, AF-MUSIC outperforms SP-MUSIC based

on SBR2 and retains the equality of the powers. Note that both versions of SP-
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Figure 5.4: Spectra comparison; (a) SSP-MUSIC (MSME-SMD) (b) SSP-MUSIC (SBR2)
(c)AF-MUSIC and (d)Broadband beamformer for 2 overlapping sources.
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Figure 5.5: Comparison between SP-MUSIC based on (i) MSME-SMD (ii) SBR2 PEVD, (iii)
broadband beamformer, (iv) AF-MUSIC and (v) PSCM approaches for a scenario with two
broadband sources arriving from −10◦ and 20◦.

MUSIC in Fig. 5.5 are evaluated over the entire spectrum, hence not requiring any

prior spectral knowledge, while AF-MUSIC is required to be within the overlap

spectral ranges of the sources in order to provide accurate result, as indicated by

a snapshot for Ω = 3
4
π in Fig. 5.5; outside the overlap region, the performance is

degraded.

The simulation results in Figs. 5.4 and 5.5 also indicate that the broadband

beamformer is able to distinguish the sources but with lower resolution compared

with both SP-MUSIC and AF-MUSIC algorithms, while the PSCM technique

fares worst and fails to identify more than one source while only providing a very

poor estimate for the source at 20◦.

5.4.2 Realistic Scenario with Three Sources

A second realistic simulation scenario contains a mixture of three broadband

overlapping uncorrelated sources of equal power impinging onto the array from

different directions with specifications as shown in Tab. 5.2. The sources are

active over different frequency ranges as highlighted by the PSDs of these sources

depicted in Fig. 5.6. Additive white Gaussian noise corrupts the sensor signals at
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sources sources frequency ranges AoA (ϑk)

source-1 Ω ∈ [2π
8
; 7π

8
] −30◦

source-2 Ω ∈
[
π
2
; π

]
20◦

source-3 Ω ∈
[
3π
8
; π

]
40◦

Table 5.2: Specification for scenario with three sources
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Figure 5.6: PSDs of the three overlapping broadband sources.

a signal-to-noise ratio (SNR) of 20dB.

The PSCM approach is left out here since it does not provide comparable

performance as demonstrated in the previous section. Results for the remaining

methods are depicted in Fig. 5.7. As with the previous section, these figures aim

to reveal both the true AoAs of the sources and their frequency spectra. From

Fig. 5.7, it can be seen that SSP-MUSIC based on the MSME-SMD outperforms

all methods: it offers high resolution and the extracted sources appear to be

approximately equal in power over the entire spectrum and for all AoAs.

Moreover, the results indicate that the two versions of P-MUSIC and AF-

MUSIC provide a robust estimation by correctly extracting the sources’ AoAs and

their frequency ranges, while the broadband beamformer performs worst, with its

beamwidth imposing a resolution limit.

Similarly to the previous section, the spectra in Fig. 5.8 are normalised such
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Figure 5.7: (a) SSP-MUSIC (MSME-SMD) (b) SSP-MUSIC (SBR2) (c)AF-MUSIC and
(d) beamformer spectra for 3 overlapping sources.
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that their maxima are unity. The results can be interpreted such that the SP-

MUSIC based on MSME-SMD and AF-MUSIC algorithms have similar perform-

ance, whereby the three peaks in Fig. 5.8 are corresponding to the correct direc-

tions of the sources. The width of the spectrum peaks especially at the source

locations ϑ ∈ [20◦, 40◦] are sharper than those achieved by SP-MUSIC based

on the SBR2 and the broadband beamformer. SP-MUSIC based on the SMD

family of decompositions provides superior resolution compared to SP-MUSIC

with SBR2. This result can be attributed to the higher level of diagonalisation

obtained by the MSME-SMD decomposition algorithm, which leads to accurate

estimation of the broadband noise-only subspace. Similar to the previous section,

in spectral ranges where all sources are active, AF-MUSIC provides better resol-

ution than SP-MUSIC based on the SBR2 algorithm. However, both versions of

SP-MUSIC in Fig. 5.8 are calculated over the entire spectrum, hence not requir-

ing any prior spectral knowledge, while the AF-MUSIC is required to be within

the overlap spectral ranges of the sources in order to provide accurate results,

as indicated by a snapshot for Ω = 3
4
π in Fig. 5.8; outside the overlap region,

the performance is degraded. Moreover, in both situations, SP-MUSIC based on

SBR2 is much better than the broadband beamformer which cannot correctly

detect the sources at 20◦ or 40◦. The next section investigates how closely spaced

sources affect the AoA estimates.

5.4.3 Resolution of Closely Spaced Sources

We further study the ability of these algorithms to resolve closely spaced source

signals. In this case we only change the location of the third source from 40◦

to 25◦ to be close to the source located at 20◦ with angle separation ∆ϑ = 5◦.

The simulation parameters otherwise remain as before. It is clearly seen from
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Figure 5.8: Comparison between SP-MUSIC based on (i) MSME-SMD (ii) SBR2 PEVD and
(iii) broadband beamforming and AF-MUSIC for a scenario with three sources.
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Figure 5.9: Scenario with 3 sources and close angular spacing.
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Figure 5.10: PSDs of the two broadband sources with unequal power.

Fig. 5.9 that the performance of all methods degrades as the angle separation is

decreased. However, SP-MUSIC with MSME-SMD and AF-MUSIC have reli-

able performance and closely spaced sources can be resolved, while SP-MUSIC

based on SBR2 and the beamformer fail to differentiate between the two adja-

cent sources. The other source located at ϑ = −30 is detected by all methods,

whereby SP-MUSIC with MSME-SMD and AF-MUSIC are almost identical and

outperform the others. In the next section we will investigate how a difference in

PSDs between the sources affects the AoA estimates.

5.4.4 Sources with Unequal Power Spectral Densities

In the following, we study the impact of varying power between sources on the

performance of AoA algorithms. Fig. 5.10 shows the PSDs of two overlapping

broadband sources that arriving on the sensor array from angles of ϑ ∈ [−10◦, 20◦],
and active over the frequency ranges Ω ∈ [2

8
π, 6

8
π] and Ω ∈ [3

8
π, 7

8
π]. In addition,

the sensor signals are corrupted by spatially and temporally uncorrelated noise

at 20 dB SNR. It can be seen from Fig. 5.10 that the sources are not spectrally

majorised. The effect of spectral majorisation during a PEVD factorisation is

highlighted in Fig. 5.11, where the PSDs along the diagonal of Λ(z) are obtained
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Figure 5.11: The majorised output spectra obtained using SBR2 for the given input signals
spectra in Fig. 5.10

using the SBR2 algorithm. Although not shown here, the MSME-SMD algorithm

produces majorised spectra similar to those obtained via SBR2 in Fig. 5.11.

The MUSIC spectra for SP-MUSIC based on both SBR2 and MSME-SMD, AF-

MUSIC and broadband beamforming methods are depicted in Fig. 5.12. Here,

AF-MUSIC is evaluated at different reference frequencies, while the other meth-

ods are evaluated similar to the previous simulation scenarios; their graphs are

simply repeated for Fig. 5.11(a)-(c) for a more straightforward comparison to AF-

MUSIC. It is clear from Figs. 5.12(b) and (c) that once the source power is lower

than some level in a specific frequency range, the performance of AF-MUSIC is

degraded, whereby the second source cannot be detected. They also show that

both SP-MUSIC versions work quite well with unequal and frequency-dependent

PSDs, and they produce estimates that are nearly as accurate as the estimates

produced for equally powered sources.
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Figure 5.12: AoA estimates for different methods applied to a scenario with two sources
having unequal power and frequency-dependent PSDs.
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Figure 5.13: Resolution performance of SP-MUSIC based on MSME-SMD for different SNR.

5.4.5 Statistical evaluation of resolution

Finally, we study the impact of varying SNR on the accuracy of the polyno-

mial MUSIC algorithm. This simulation demonstrate the resolution performance

of SP-MUSIC based on the MSME-SMD technique under different SNR. The

simulation scenario consists of two independent broadband source signals arriv-

ing from −10◦and 10◦ directions. The source signals are white noise with equal

power. Th e simulation process is repeated for several values of SNR, namely

❂5, 0, 10, 20, 30 dB. The simulation results are depicted in Fig. 5.13

As can be seen from Fig. 5.13, with the increase in the SNR, the beam width

of SP-MUSIC spectrum becomes narrow and the direction of the signals become

clearer. The resolution accuracy of SP-MUSIC algorithm is increased and the

two signals are clearly identifiable. It can be concluded that the value of the

SNR can affect the performance of high resolution AoA estimation algorithm

directly, whereas at low SNR the estimation error increases and the performance

of SP-MUSIC algorithm will sharply decline.
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5.5 Conclusion

In this chapter, we have linked the proposed polynomial MUSIC algorithms with

the auto-focussing approach for broadband AoA estimation. The AF approach

has been expressed in the framework of polynomial space-time covariance matrices

and their polynomial eigenvalue decomposition obtained from the iterative SBR2

and SMD algorithms, and under the assumption of the DFT sufficiently well

approximating the Fourier transform. Simulation results have shown that the

polynomial spatio-spectral SSP-MUSIC algorithm is able to equate to the AF

approach when evaluated at the reference frequency, while the polynomial spatial

MUSIC algorithm has been illustrated to relate to a summation of AF terms

for a set of reference frequencies. Numerical simulations have indicated that the

polynomial MUSIC methods perform similar to the AF-approach where the exact

PEVD is known or easily determined. For more realistic scenarios, restricting AF

to sensible fractional bandwidths will provide superior resolution over P-MUSIC;

however, the latter does not rely on a-priori spectral information and can be

calculated over the entire bandwidth with appealing results.

In addition, in this chapter we have compared the performance of the pro-

posed P-MUSIC algorithms with other broadband AoA estimation methods such

as AF-MUSIC, PSCM and broadband beamforming algorithms for different sim-

ulation scenarios. Different from other broadband techniques, P-MUSIC works

directly on the broadband sensor array data, and is designed to retrieve both AoA

information and the frequency spectrum of the sources. Simulation results have

highlighted that P-MUSIC algorithms are robust and can provide reliable per-

formance, and that closely spaced broadband sources can be resolved. P-MUSIC

based on SMD algorithms can outperform P-MUSIC with SBR2 and provide re-

liable performance for closely spaced sources. The MSME-SMD tends to achieve

a better diagonalisation than the SBR2 algorithm, which allows for a better iden-
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tification of the polynomial subspaces, making MSME-SMD an attractive PEVD

algorithm in the context of broadband AoA estimation.



Chapter 6

Conclusion and Future Work

In this chapter, a summary and some concluding remarks are given, and several

directions for future work are discussed.

6.1 Summary

The main aim of the research presented in this thesis has been to design and im-

plement high resolution AoA estimation for broadband sensor array applications.

This aim was accomplished by presenting a novel high resolution polynomial MU-

SIC algorithm. P-MUSIC differs from most AoA estimation methods which are

designed to only retrieve the AoA information of sources, while the P-MUSIC

algorithms can be used to estimate the sources’ AoAs alone or in combination

with their frequency content. In this thesis, the proposed algorithms were shown

to be robust when compared to other broadband AoA estimation algorithms.

The fundamental concept of AoA estimation and its classification based on the

signal bandwidth was introduced in Chapter 2. In addition, it also highlighted

the differences between the broadband and narrowband array cases, and also

reviewed narrowband and broadband AoA estimation approaches.The concept of

121
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a broadband steering vector was formally introduced in Chapter 3, together with

its implementation based on fractional delay filters. To attain high accuracy

over a large bandwidth, a new design of fractional delay filter (FDF) based on

undecimated filter banks was proposed. We have demonstrated that very accurate

group delays across the entire spectrum can be achieved using the proposed new

design. This differs from standard FDFs such as the windowed sinc functions and

Farrow structures, which break down at frequencies close to half of the sampling

rate. In addition, if high accuracy is required, the filter bank approach can also

offer computational advantages. Although the complexity of the proposed FDF is

slightly higher than the standard FDFs, it has been shown that such a deployment

yields significant improvements in terms of error performance.

In Chapter 4, the P-MUSIC algorithm for broadband AoA estimation was

presented. P-MUSIC is based on the broadband (polynomial) subspace decom-

position afforded by the PEVD. Moreover, P-MUSIC algorithm was originally

implemented using the SBR2 algorithm for a PEVD decomposition. The per-

formance of two versions of P-MUSIC algorithms, the polynomial spatial (PS-

MUSIC) and the polynomial spatio-spectral (PSS-MUSIC), was compared with

an IFB approach. Simulation results have shown the robustness of P-MUSIC

compared with the IFB approach, especially if the signal frequencies do not co-

incide with the bin frequencies of the IFB processor. For further enhancement of

the proposed P-MUSIC, the recently proposed SMD approach has been adopted,

which offers a better diagonalisation compared with the SBR2 approach. We

have demonstrated that a higher level of diagonalisation leads to a better identi-

fication of the relevant signal subspaces, such that the new version of P-MUSIC

can extract a cleaner estimate w.r.t. both angle and frequency of the estimated

sources.

In Chapter 5, we have addressed the link between the P-MUSIC algorithms
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and the recently proposed AF approach for broadband AoA estimation. For

this, the latter is expressed in the framework of polynomial space-time covariance

matrices and their polynomial eigenvalue decomposition, and under the assump-

tion that the DFT sufficiently well approximates the Fourier transform. Simu-

lation results have shown that the polynomial spatio-spectral MUSIC algorithm

equates to the AF method when evaluated at the reference frequency, while the

polynomial spatial MUSIC algorithm has been shown to relate to a summation of

auto-focussing terms for a set of reference frequencies. While for the AF method,

this requires side- or a priori information on the sources’ PSDs, no prior know-

ledge is required for the P-MUSIC algorithms. In the last part of this chapter,

an extensive comparison of different broadband AoA estimation algorithms by

means of simulations was included. Simulation results have illustrated that the

proposed P-MUSIC has been found very robust and shown that it can effectively

work for scenarios with multiple sources, closely spaced sources and frequency

variant source signals.

6.2 Future Work

There are several possibilities for future work based on the research presented

throughout this thesis. In the following, some further directions are outlined.

Throughout Chapter 4, it has been assumed that the broadband sources are

independent or uncorrelated which follows the assumption made for narrowband

MUSIC. It will be interesting to investigate the estimation of sources’ AoAs when

there is a correlation between the broadband signals which arises e.g. through

multipath propagation in the medium. Most AoA estimation techniques are de-

graded in this scenario while a broadband steering vector could be made to in-

corporate multiple directions.

The current design of the P-MUSIC algorithm is based on linear arrays, but
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could be extended to other array geometries, e.g. circular, planar or arbitrary ar-

ray structures. This could be achieved by applying suitable changes to the design

of the broadband steering vectors, thereafter extending it to both azimuth and

elevation angles. Challenges can also be found in the design of P-MUSIC to deal

with more complicated propagation models whereby the ideal far-field assumption

no longer holds for sources, such as in the case of near-field propagation whereby

wavefronts impinging onto the array are no longer planar but spherical.

The proposed P-MUSIC algorithm is based on the iterative PEVD algorithms

such as SBR2 and MSME-SMD algorithms. These algorithms have been used

to diagonalise the space-time covariance matrix of the sensor signals, yielding

polynomial matrices of high orders. In other contexts, such as for broadband

communications, ideas have been pursue to shorten these systems in order to

reduce the effort in both design and implementation [90, 91]. In order to reduce

the P-MUSIC complexity, the reduction of the PEVD computation complexity

with no or little loss in performance might be possible and very worthwhile.

Finally, the algorithms proposed in this thesis could be applied to real, meas-

ured, experimental data in order to verify the results obtained with both ideal

and realistic multi-source data.
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