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૩م಍ΞΠᇔ΄୵ᇫΨٟ΄ጦ͘Πͼ܎ጯ΄ྌΞΠහ̸ኮ㾩Ψ氋ͯ;͚͞ͿΘ
Ӡ܈ଙڹኮͥಅ΅䋚΁ݐΡ΁᪃Θ΄΀ͭ
Ӡ܈ӣ಍΁ͭͼᑖ̴ᐷ力ᡩ湂΄ṋ໒ក๙΄ڊኞΨఉͭ஑͵Π
ඳ΁م܈ك಍΁ͭͼ΅ፅ̸昲ΕԜ܈಍΁ͭͼ剸̴ٌॿ఺Ψ䮩ΗӞጯ䵈΁ͭͼ
ྋ΁ᐟও΀ΟΩӨཹ̴ጯํ܈䵈΁ͭͼ΅ӞᅩӞ໒΁ͭͼኞΡͪ͢;ͥ΀ΟΩ
氎ͥΆ槱੖΄ށৼԨ᥺΄উ΀ΟͬΡΨ憎͵Δ΋Ώͭ - Hokusai

“I have drawn things since I was 6. All that I made before the age of 65 is not worth 
counting. At 73 I began to understand the true construction of animals, plants, trees, 
birds, fishes, and insects. At 90 I will enter into the secret of things. At 110, 
everything - every dot, every dash - will come to life”
———————————————————————————
τὸν ἥλιον τοῖς ὁρωμένοις οὐ μόνον οἶμαι τὴν τοῦ ὁρᾶσθαι δύναμιν 
παρέχειν φήσεις, ἀλλὰ καὶ τὴν γένεσιν καὶ αὔξην καὶ τροφήν, οὐ 
γένεσιν αὐτὸν ὄντα...
καὶ τοῖς γιγνωσκομένοις τοίνυν μὴ μόνον τὸ γιγνώσκεσθαι φάναι ὑπὸ 
τοῦ ἀγαθοῦ παρεῖναι, ἀλλὰ καὶ τὸ εἶναί τε καὶ τὴν οὐσίαν ὑπ᾽ ἐκείνου 
αὐτοῖς προσεῖναι, οὐκ οὐσίας ὄντος τοῦ ἀγαθοῦ, ἀλλ᾽ ἔτι ἐπέκεινα τῆς 
οὐσίας πρεσβείᾳ καὶ δυνάμει ὑπερέχοντος - Plato

“The sun light provides not only the power of being seen for things seen but, as I 
think you will agree, also their generation and growth and nurture, although it is not 
itself generation...
Similarly, with things known, you will agree that the good is not only the cause of 
their becoming known but the cause that they are, the cause of their state of being, 
although the good is not itself a state of being but something transcending far 
beyond it in dignity and power”
———————————————————————————
La obscuridad del sepulcro no es mas que el refuerzo para el glorioso sol y la 
oscuridad de la noche, sirve para revelar el esplendor de las estrellas - 
Nezahualcoyotl 

“The darkness of the sepulchre is but the strengthening couch for the glorious sun, 
and the obscurity of the night but serves to reveal the brilliancy of the stars.
————————————————————————————————————— 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Abstract 


Tidal and marine energy has been explored extensively in recent years. Part 
of the studies made in the area includes the resource available, the design 
challenges, the environmental impact and other important areas for research 
and development. One of these research areas focuses on the mechanical 
response of tidal turbines to different operational environments. The 
operational environment can depend on factors such as wave weather, 
turbulence and flow velocity. The changes in these factors will affect the 
mechanical performance of the device. 


	 This thesis explores the changes in the mechanical performance 
markers, which are the turbine torque and thrust, to swell wave systems with 
moderate to low amplitude. The work also explores how a non-even seabed, 
characterised here as a regular bathymetry rise, can affect the wave 
parameters such as wave height and wavelength, changing the unsteady 
flow before and after the geographical obstacle and resulting in a different 
mechanical turbine response.


	 The thesis first explores the wave propagation over an uneven bottom 
using classic theory and expanding into the subject with experiments and 
validation of the theories using physical scenarios resembling normal turbine 
deployment in the ocean. As the classical theory of wave propagation is 
frequency non-variant, theories are explored to expand comprehension of 
the phenomena by addressing frequency variant solutions under larger 
depths relative to the wave wavelength, which in our case cover periods 
from 6s to 14s at depths between 28m and 42m. 


	 The formulations explored are validated against experiments in a 
wave tank. Wave conditions are designed to scale wave heights, depths, 
and periods to the mentioned depth to ensure a good representation of the 
dynamic behaviour of the waves propagating in the tank. The experiments 
show how frequency variant theories can predict more closely the changes 



in the wave amplitude and wavelength when a wave propagates over 
obstacles of limited length. Amplitude changes, and also changes in the 
wavelength and velocity, are measured and detected. However, the latter 
two prove to be harder to measure. The changes in both the amplitudes and 
lengths correlate in many cases to each other in the experiments. When the 
wave path has been obstructed, the length for larger waves is reduced and 
their amplitude increases consistently for larger waves. Validation shows a 
close relationship between frequency variant theories and the results 
obtained in the test campaign.


The formulations validated are then used to modify a Blade Element Moment 
Theory (BEMT) model which calculates the mechanical torque and thrust of 
a tidal turbine. A sensitivity analysis is carried out using the BEMT model to 
understand how different parameters such as the wave height, current, wave 
period, and depth ratio between the original depth and the obstacle affect 
the mechanical turbine response. The results show how wave height is the 
most important parameter and current velocity is the second. The 
formulations are then used to model a specific location for tidal turbine 
deployment in a real case study with data gathered from real buoy systems.


	 Simulation for the case study occurs in three types of wave weather 
using long swells with low amplitude, smaller period swells with steeper 
heights, and a mixed case using some wind-wave components with larger 
heights. The model output shows the large influence of swells on the 
mechanical performance of the turbine, being the largest contributor to the 
torque and thrust variation with the thrust and the torque being 60% and 
40% larger, than conditions with shorter periods but steeper waves. The 
study also shows how the inclusion of a simple irregular seabed interacting 
with large wave components can affect the expected mechanical response 
in our model. The results show how these small changes, paired with the 
wave propagation under larger wave heights, change the simulated 
mechanical response by 50% of their original value when we compare the 
different responses to each type of wave weather.




	 Work made here seeks to highlight the importance of other 
environmental factors different than extreme wave loads, current velocity or 
turbulence that can affect the mechanical behaviours of a tidal turbine 
device. Particularly it aims to expand our understanding of how the sudden 
changes in a field of waves produced by local bathymetry irregularities, 
could modify the forces on a tidal turbine device by integrating with the 
waves which later propagate into a tidal turbine. These factors could prove 
to be important to the turbine fatigue or loads depending on their relative 
impact compared to other already explored factors such as extra waves.  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1 Introduction


1.1 Tidal turbines and marine energy 

	 Due to the high demand for energy in the last four decades, there has 
been a race in energy production; industries like gas, fracking, offshore wind 
and solar have broadened their market footprint. Promising projects like 
hydrogen-based technologies have been rushing to occupy the market, with 
possible solutions in the feasible future to feed our energy needs. During the 
last two decades, the world also saw a set of looming environmental 
problems. Part of those challenges is climate change, pollution, and the 
extinction of hundreds of species. The world governments, realising the 
coming challenges to the environment, energy, and economy, have shifted 
their research and focus to carbon-neutral technologies and renewables. In 
the solar-wind sector alone, growth has been considerable from 2010 to 
2020, increasing their participation from less than 2% to more than 10% by 
2021 [1].   


	 Technological developments during the last 30 years gave rise to 
another promising new renewable technology housed in our planet’s seas: 
marine energy. Marine energy comprises technologies able to harvest energy 
from the sea, and the energy that can be harvested through mechanical or 
chemical means is one of the largest available forms of energy on the planet. 
Two of the main technologies in the field are tidal stream and current 
devices. Tidal streams and currents use the ocean flows to set a turbine in 
motion, and the flows interact with the blades of a rotor producing 
movement. The movement is transmitted to a generator through a shaft. The 
theoretical energy to be harvested is calculated to be around 45,000 TW for 
all ocean-based technologies, with a potential that could be larger than 
130,000 TWh per year according to IRENA [1]. The potential for the more 
mature technologies is theoretically divided into approximately 2,985 GW 
net and  3,702 GW of gross energy wave energy as mentioned by Mørkt et al 
[2] and theoretical potentials between 1 TW for tidal stream [3] to 3 TW per 
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year [4] if tidal range is added. The numbers for potential energy can have a 
wide variation for both. Specifically in the case of tidal energy, which is 
addressed in this work, they vary depending on the method used to quantify 
the resource.  
	 The resource can be quantified as a theoretical resource or potential 
power to be extracted. Most of these methods evaluate a general simplified 
model of the tidal components, flow, and arrays of tidal devices with simple 
fluid interactions. An important case is the Pentland Firth, where the study 
made by Drapper et al [5] provides a theoretical potential of 4.2 GW, placing 

turbines across the strait and calculating the maximum available power. The 
studies are however based on the method proposed by Garret and  
Cummins [6], calculating the average power produced by the turbine and 
taking into account the turbine drag. A more realistic approach to the 
amount of theoretical power available is given when the model includes the 
interaction between the turbine blades and the fluid, the reduction of the 
flow velocity as it passes through it, non-steady flow, and other parameters,  
reducing the power available and giving a more practical power extraction 
[7]. Adcock et al found the available power to be around 1.9 GW in the 
Pentland Firth [8]. However, exploiting all tidal resources is still far from 
possible due to economical limitations such as project cost, energy price, 
maintenance cost, interconnection, and other factors such as the variability 
of flow velocity. These factors reduce the economical viability, giving an even 
lower quantity or “economically feasible resource”.


	 Another challenge for these new technologies is the predictability of 
the resources. The resource characterisation and its availability play another 
important role in the amount of available energy. Even if tides are predictable 
with the main constituents identified in the literature [9], the prediction of the 
flows produced by them is not as accurate as the tides. Studies carried out 

by Polagye et al [10] have found variations in the flow that can be predicted 
with harmonic analysis, first in the current flow with variations in times scales 
around one hour, second by turbulence, with variations of half a meter in 
peak currents of 2.0 m/s, and third, spatially along the sea floor. 
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Despite all constraints, some companies already offer commercial-ready 
devices, and many others are still in development, with many areas still in 
the early stages of research. Areas such as the mechanical response to 
large-time deployment and failure detection are still being researched. As 
most devices are expensive, solutions have been developed to model their 
mechanical responses, using computational-mathematical models. As 
modelling can be time consuming and might require powerful hardware, 
special attention has been given to fast deployment tools. Improvement in 
the tools and models to describe the device's response to the flow would 
help to reduce costs and improve deployment. These improvements have 
been an important area of development in the industry and research, to 
understand not only the device behaviour but also the ocean fluid dynamics. 
A basic diagram of a tidal turbine can be seen in Figure 1.1.


	 The inner mechanics of the machines are complex, as the device is 
subjected to the forces exerted by the sea. The device’s mechanical 

Figure 1.1: Left: basic general diagram of a stream tidal turbine. Current flows will exert a 
force over the turbine blades, causing them to rotate. The movement is then transferred to a 
generator G through a shaft. Right: image of the SeaGen tidal turbine, its blades shown in a 
resting position above the water.
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performance will vary depending on the ocean hydrodynamics of the basin 
where it is placed. As we mentioned, the principal forces analysed here are 
the ones produced by waves. 


	 The waves produce unsteady velocities in the water column, and 
these changes will have an impact on the underwater flow, composed of the 
waves and the current. The results of the research related to flow modelling 
have proved useful for the modelling and design of tidal devices. The 
positive results have helped to install tidal stream devices in recent years 
which are more compact and easier to deploy than the first large tidal 
stream devices. The results of these last developments led to the blooming 
of studies related to areas as diverse as social, biological, and natural 
sciences, legislation, and engineering. In engineering, the areas of 
mechanical performance, ocean weather monitoring, geographical survey, 
and device modelling saw a big leap forward. The device's modelling uses 
computational tools such as BEMT, RANS, CFD, and lift theory, and most of 
these tools have already matured into robust methods that help to study the 
turbine's hydrodynamics. 


	 BEMT is known to give satisfactory results at faster speeds, 
compared to other available methods such as BEM-CFD, reporting 
divergences in the power coefficient of the turbine of 5.4% [11].  However, 
BEMT is not capable of analysing as complete and detailed a structural 
interaction as CFD. Despite this, BEMT is still regarded as a method that can 
help to make key decisions in the early stages of turbine modelling. 


	 However, there are still many challenges, and some of them can be 
linked to local constraints in the area of deployment, such as turbulence or 
geographical constraints that can modify the flow or waves around the 
turbine.
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1.2 State of the problem 

	 Tidal stream turbines will be affected by the oscillation of the velocity 
field and a significant component of this oscillation will be produced by the 
waves. Medium depths can shelter devices against local wind waves, as the 
wave influence will decay fast into the water column; however, this will not 
be true for larger systems. Many studies have been conducted on extreme 
weather conditions with large amplitude waves; however, little attention has 
been given to the continuous forces and loads produced by swell fields.


	 Swells possessing larger wavelengths could reach devices installed at 
large depths. The possible interaction between the larger wave systems and 
the underwater obstacles links our problem to the device's placement, as 
the wave's physical characteristics will change after crossing seafloor 
irregularities. The seafloor profile or bathymetry is known to affect the wave 
amplitude, but this could also have important effects on the wavelength and 
wave period and subsequently on the turbine mechanical responses which 
are sensitive to the unsteady flow produced by the waves. 


	 The work conducted here is focused on the study of the far swell field 
as shown in Figure 1.2, as its large wavelengths could reach the seafloor.


Figure 1.2: The distant wave field in zone B is produced by weather systems far away from 
the coast, meanwhile the local wind or local weather systems in zone A will produce steeper 
waves called wind waves.
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Swell waves are important due to their overall dominant nature in the sea. 
The swell dominance is mentioned in Chapter 2. Swell systems are always 
present at most of the world's coastlines. Even on calm days, waves 
produced thousands of kilometres away in the open ocean will travel to the 
coast where a tidal device could be deployed. Larger swells will be 
consequently forced upon obstacles at the bottom of the ocean and this 
interaction will modify the waves after they propagate over the obstacle, 
thus modifying the loads subsequently felt by a turbine. This is a case which 
has not been studied by other authors and could modify the predicted 
mechanical response of a turbine. It is known that load variation in 
mechanical components can produce fatigue, and these loads will be 
transmitted along with the turbine components. 


	 In our case, we can identify two important scenarios:


1. A turbine is exposed to wave weather that is composed mostly of swell 
systems and how this component affects the turbine's mechanical 
response.


2. How a turbine's mechanical response changes when a turbine is placed 
after or over a sudden change in depth can modify the shape and 
behaviour of very large wave systems that are able to interact with the 
sudden shelf rise.


The mathematical modelling of this is presented in Chapter 3, and Chapter 2 
introduces the phenomena and provides a literature review of past models 
and experiments made by other authors.


	 The hypothesis behind the work can be resumed in two parts, first:  
 
“The mechanical response of a tidal stream turbine to unsteady components 
caused by long systems with low amplitude will have a different impact on 
the response of the system from the ones caused by wind waves or steeper 
systems.” In order to test this, wave systems representing swell systems are 
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used in a BEMT model along with a sensitivity analysis to compare how a 
tidal turbine model behaves in two different wave conditions.


And the second:


“A long wave propagating from point A to point B crossing an obstacle will 
modify its amplitude and period, then any turbine placed in these two 
different points will experiment with two different mechanical responses to 
the loads caused by the changes in the wave parameters.” This is tested by 
experiments made in a wave tank measuring wave propagation over an 
obstacle, where the obstacle and depth are scaled to conditions that could 
resemble a tidal turbine deployment. These conditions are then used in a 
tidal turbine model to observe the changes in the mechanical response at 
two different positions, before and after the obstacle.


1.3 Thesis objectives and research questions 

	 As the technology matures and devices are deployed into open ocean 

areas, different types of wave weather, and possible changes induced over 
the waves by external factors such as bathymetry changes, could modify 
the device loads. This will then have an impact on other turbine parts. The 
unsteady flow and its changes are a vital part of not only the mechanical 
response but also the energy harvested. The study of these responses and 
changes under different conditions can help us to expand the understanding 
of the device response under different physical constraints, which in turn 
can open other study cases for more complex scenarios.


The main research questions in this thesis are as follows: 


A) Is there a given relationship between the changes produced in a wave 
after it propagates over an obstacle and its incident period?


B) Which variables are important for wave propagation over an obstacle 
and how do they influence it?
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C) Given a tidal turbine placed above a bathymetry change, could the wave 

trains propagated over the obstacle modify substantially the mechanical 
performance of the device after the wave trains change some of their 
parameters such as the wave height?


D) What are the effects of swell systems on the mechanical output of the 
tidal turbine rotor and its blades, compared to other types of wave 
weather?
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2 Literature review


2.1 Energy, Renewables and Marine Energy 
	 The modern era as we know started with the invention of the steam 
machine, a pivotal moment that marks the beginning of mankind’s 
production of goods, development of tools, and increasing comfort in ways 
never seen before. This mechanical revolution needed power and the main 
resource for this was cheap and abundant energy. Energy by itself is one of 
the main pillars not only of economic development, but also food 
production, healthcare, transportation of goods, and technological 
development. The need for energy to power the different aspects of human 
development is reflected in its consumption, and the world has increased 
this consumption drastically by 83 times from the early 19th century to the 
21st century [12].


2.1.1 Energy and renewable energy

	 Our main source of energy has changed during the last two centuries 
due to the development of new extractive technologies and the amount of 
power needed by society. At end of the 19th century, the world saw a steady 
rise in the use of hard coal and lignite. Both sources of energy occupied 95% 
of the world's commercial value; meanwhile, hydrocarbons were only 
approximately 2.37%. The beginning of the 20th century saw an inverse 
proportional change and hydrocarbons and gas won a huge market share 
[13]. However at the end of the century, other sources of energy such as 
renewables and nuclear started to shift the energy balance. Nowadays, 
according to the most recent SDG7 report [14], renewables had a share of 
17.5% in the energy market by 2016. The growth experienced by renewable 
energy was mainly focused on solar, wind, and hydro. The growth of 
renewable energy markets during this last phase was focused on the 
American continent, Europe, and East/South Asia, as can be seen in Figure 
2.1.




10

	 

2.1.2 Energy and renewable energy in the last 50 years

	 Energy and renewable sources of energy became a focus of 
legislation and development during the past fifty years, and a renewed effort 
of development came under the banner of multinational organisations. This 
effort has grown around a set of ideas to secure the world’s sustainable 
growth. The ideas cover a broad range of areas including political, social, 
economical, energy, and environmental development. Some of these ideas 
promote openness in the energy market, the increase of renewable energy 
sources, the need to tackle climate change, and the development of new 
ways to promote and use low to zero-carbon energy. The main drivers 
behind this change are climate change, pollution, and a dynamic energy 
market that seeks to diversify its production while securing cheap prices.

The continuous push to work on these new paradigms of growth increased 
the renewable energy share and its development. Both processes then 
began to drop prices to a competitive range against fossil fuels. During 
these 3 decades, solar and wind saw continuous growth and development. 
The effort made in this area was bolstered by energy and climate 
multinational agreements in Kyoto, Paris, and Montreal, despite its 

shortcomings and the complexity behind its success  [15]. It is now at the 
beginning of the 21st century that a more mature energy market, political 
willingness, and environmental compromises have made it possible to 

Figure 2.1: Renewable energy market share by world region in ExaJoules, EJoule = 1018 
Joules
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increase investment and research in clean energies. As mentioned before, 
the main winners behind this success were wind and solar energy, but both 
suffer intermittency depending on climatic factors. Solutions for 
intermittency have been proposed such as smart grids [16] and support 
storage [17], [18]. The problems of intermittent renewable energy could be 
solved if we could rely on a more predictable source of renewable power, the 
answer to which lies in a stable and periodic energy exchange that occurs in 
the different areas of the ocean basin.


2.1.3 Marine renewable energy

	 Marine renewable energy is the area that studies the use of the 
different forms of energy flux in the ocean to produce electrical energy or 
mechanical work. The physical principles to use the ocean as a power 
source are as ancient as mankind, and these methods use the difference of 
pressure or velocity flows to produce mechanical power. This use of the sea 
or river flows to produce work has been known by several ancient 
civilisations. The main mechanics of these ancient devices used water wheel 
effects, wheels connected using simple transmission mechanisms, to 
convert the flows into mechanical work. The relationship between tidal flows 
of water and civilisation goes back to settlements in the Middle East, an area 
known to sustain tides of considerable magnitude. The use of these tidal 
devices was linked to harvesting and crops, as the water was used to 
sustain the fields and the flow to process the crops in ancient 
communities. Examples of the ancient use of tides are spread around the 
zone comprising Iran to Greece. Greeks used this principle to power 
mechanical mills and produce flour [19]. Other important historical places lie 
in ancient cities such as بـَـــــــــــــــصرة ( al-Baṣrah ) in Iraq [20], Εύριπο (Euripus), and 

Κεφαλλονιά (Cephalonia) where they used tidal devices to mill seeds or 

crops [21]. Some of these historical places are shown in Figure 2.2, and they 
still nowadays hold archeological research on the ancient use of tides today 
[22].  
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	 Following advances in the next centuries, the available technology 
gave rise to tide mills in medieval Europe but it was not until the late 19th 
century, with the arrival of the first hydroelectric devices, that the modern era 
of hydrokinetic energy exploitation began. The new devices consisted of an 
electrical generator connected to a turbine using a shaft, and a flow of water 
was used to move the turbine. To obtain the water flow to power the turbine, 
this system uses an artificial basin filled with the convergence of river flows. 
The artificial structure to contain the water is widely known in engineering as 
a dam. After the dam is filled to a certain height, the water is released 
through a set of apertures in the structure. It was not until 1924 that the U.S. 
government seriously considered harvesting the energy produced by the sea 
movement using these same mechanics [23]. The proposal used a dam 
system to contain tides around the northeast coast, but it was never built 
and in 1966 France became the first country to implement a similar project 
at La Rance. The French project currently operated by Électricité de France 
was the last serious development in tidal and marine engineering before the 
beginning of the 21st century. Over the past 20 years, marine energy 
development has increased sharply. The renewed effort was sustained not 
only due to economics, but also due to the maturity reached in diverse 
areas. Development in natural sciences, engineering, coastal studies, 
environmental science, biology, and geography and methods in maths, 

Figure 2.2: Ancient places of tidal energy usage as a means of mechanical work. Left: 
Euripus, Greece. Right: al-Baṣrah, modern Iraq.
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fluids, statistics, and computing powered this revolution. The idea behind 
this renewed push is that, given the enormous energy stored at the ocean 
basin, this could be a reliable source of energy to exploit. The advantages of 
using the sea to harvest energy are numerous and include its stable source 
and low carbon footprint.


2.1.4 The source of marine renewable energy


	 The energy transfer in the sea and the planetary convection are the 
biggest fluxes of planetary energy annually. The large energy flux in the 
ocean is due to its vastness, occupying 71% of the planet's surface. The two 
main phenomena driving this flow are the thermal radiation of the sun and 
the gravitational Earth-Sun-Moon system. The first will intervene directly in 
the weather and is the driving force behind the wave systems. The 
gravitational pull is responsible for the sea-level oscillation better known as a 
tide. The sun's radiation accounts for at least 1353W/m2 of energy in the 
upper atmosphere [24], the rest of the energy being absorbed on its 
trajectory through the ocean surface, covering 361.1x106km2. This radiation 
transmits approximately 36.1 trillion watts, just after reaching the ocean 
surface. The ocean absorbs this heat via its upper layer, and the heat 
absorbed through this process is converted into wind, thermal energy, 
currents, chemical gradients, and mass gradients. This is a very broad range 
of complex life and chemical processes, shown in Figure 2.3. 


Figure 2.3: Simplified model of the sea-Sun energy exchange.
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	 Tides drive big flows of the water stream, a movement caused by a 
dilatation on the sea surface which is itself caused by the Sun-Moon 
gravitational force. The streamflow moves around the planet, and the flow 
floods vast coastal areas around the world periodically. In some 
geographical localities, this flow is amplified by the physical on-site 
characteristics. Energy stored in tides is so large that in the open ocean they 
can lift the sea surface by 0.5m. This effect might not sound impressive but 
if we put it in perspective we can see its real strength. If we model a cylinder 
of water with an average depth of 3km, raising this cylinder 1m  over the 
surface will be equivalent to lifting it 95 times the height of the Statue of 
Liberty.

	 These examples and numbers tell us about the vast amount of energy 
in the sea. As we mentioned before, this energy can be harvested using 
several technologies that use different forms of energy exchange.


2.1.5 Tidal and wave energy


	  If we disregard the already established wind offshore energy, several 
candidates for extracting energy from the sea arise. Some of them are ocean 
temperature gradient converters, salinity basins, and other more traditional 
approaches that use existing technology to harvest kinetic energy in the 
form of flows (stream) or the oscillations produced by waves. From this 
family of technologies, salinity basins and temperature gradients are the 
least developed. Salinity basins use the difference in salinity between two 
fluids. The readiness of this technology is low and, currently, there are two 
main concepts being explored: Pressure Retarded Osmosis Power Plants 
and Reversed Electro Dialysis power plants [25]. However, challenges in 
scalability remain and there is uncertainty surrounding costs. Thermal energy 
converters, better known as OTEC technologies, currently have a few small 
demonstrators such as the Makai plant, which has a capacity of 100kW [26]. 
These devices have been demonstrated to be able to work in parallel with 
other services such as desalinisation processes, such as the one owned by 
the Saga University in Japan which uses an Uehara cycle. This is a closed 



15
cycle [27], adding improvements to the Kalina cycle. However, there are 
obstacles such as deployment and thermal pollution, and impacts of fluid 
exhausts and operational costs [28]. 

	 Meanwhile, stream and wave energy converters are currently the 
more mature in readiness and technical experience, with devices tested at 
full scale [29]. Stream and wave are also the more direct approaches to 
harvesting energy, so industry and research have focused on these areas. 
Wave energy converters use the oscillation produced by the waves due to 
their amplitude variation in time. The oscillations are converted into a 
mechanical movement and subsequently into electrical energy. Waves are 
the predominant phenomenon on the sea surface and the energy estimates 
for this resource range from 10,000TWh to 2000TWh per year available for 
extraction [30]. Waves are widely regarded as a global solution to marine 
energy harvesting, despite their apparent seasonality [31]. One of the main 
challenges to the wave energy converter devices is their complex designs 
which can have an impact on the supply chain.

	 The other main type of marine energy device is based on stream 
flows which are generated by the movement of a body of water. The flow is 
the product of a mass of water moving at some velocity. This is defined as  
and given by equation 2.1 where  ρ  is the fluid density and  v  is the fluid 
velocity [32]. 


	 Devices like these use a continuous or periodic flow of water to move 
a turbine. This technology relies heavily on wind turbine technology,  
hydrokinetic dams, and the flow velocity. As equation 1.2 states, the flow 
depends on its velocity and density. It is known that water currents are 
slower than wind velocities, but water has a higher density of 1025kg/
m3 [33]. Variables that can alter the flow-delivered power are the flow cross-
sectional area and also its velocity. Both variables are important because a 
larger or stronger flow will produce more energy, increasing the flow, since 
the flow is constrained and/or increases its velocity as in Figure 2.4.


·Q

2.1·Q = ∫ ρυdV
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2.2 Phenomena driving the ocean flow: currents, tides, and 
waves 

	 The current flows in the ocean come from a variety of sources but all 
are linked to the energy flux exchange between the sun-moon-atmosphere-
ocean system. Some of the sources are listed below:


• Flows due to a difference in the sea chemistry composition like salinity, 
sediments, or biological suspended particles


• Flows due to a difference in density like thermal gradients (Gulf Stream).

• Tides due to gravitational forces (Bay of Fundy/Pentland Firth/San 

Francisco Bay)

• Flows due to the interaction between the upper ocean layer and the wind

• Wind wave transport and Swell wave transport.

• A combination of the last four and their interaction with the Coriolis effect

	 

	 The actual technologies available for tidal stream energy are focused 
on the tidal and thermal gradient flow. These technologies rely on high 
speed to moderate velocities on the sea or straits to exploit the resource. 
The flows, as seen in Figure 2.4, will vary depending on the on-site physical 

Figure 2.4: Left image showing the increase in flow after volume constriction and right 
showing an increase in flow after an increase in velocity.
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constraints. Geographical features like straits, isles, chains, different basin 
depths and wave occurrence will increase or decrease the flow strength. In 
this work, we will focus on the interaction between current flows produced 
by the tides and long-wave systems under some underwater topographical 
constraints, better known as bathymetry.


2.2.1 Tide and current flows


	 Tides are the movement of massive wave components in the ocean 
masses, which are produced by the gravitational pull of the moon-sun 
system. The gravity of the two bodies exerts an attractive pull over the sea, 
and the interconnected basins of the ocean will react by trying to climb to 
the source of these forces, as we see in Figure 2.5. 


	 As the Earth rotates, the surge flow of water moves around the globe 
following the Moon-Sun gravity, shown in Figure 2.6. 


Figure 2.5: Earth subjected to the gravity of the sun-moon system, producing tides depending 
on the position of these celestial bodies.

Figure 2.6: Tide moving due to the Moon’s position around Earth.
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	 The resulting flow will produce the flood and ebb cyclical pattern. The 
interaction between the basins and the gravitational systems produces very 
complex patterns of harmonics. The patterns arise from the three-body 
interaction, the delays in the tidal reaction due to the orbiting speed of the 
Moon-Earth, and the resonance periods of each basin. In the coastal areas, 
this tidal flow will produce a tidal current stream. Tidal current streams 
amplify their strength not only depending on the physiographical constraints 
such as the contours of the land but also due to the depth of the basin 
where this tide is moving. Shallower areas like continental shelf will amplify 
the tide elevation, and also constrained channels producing stream flows. 
Tidal stream flows can be easily harvested by tidal stream energy 
converters, and also currents produced by thermal gradients. Some 
examples of these thermal gradients are the Gulf of Mexico stream and the 
Kuroshio current, both of which are ocean span phenomenons with relatively 
high velocities. An example of streamflow can be found in the Arcaibh-

Orkneyjar (Orkney) archipelago  [34]. The increase in speed is due to the 

change in a cross-sectional area where the flow moves,  as we saw 

in equation 1.2 and Figure 2.4. This phenomenon is easily explained by the 
Venturi effect and the Bernoulli principle: as the flow enters a constrained 
geographical area the flow must gain speed, which can be seen in the 

vertical cuts of the seabed profile in Figure 2.7 and Figure 2.8 in the Orkney 
case.


Figure 2.7: Map showing the distance between Rora Head (Orkney) and Dunnet Head 
(Scotland), and a mid sector between the Orkney archipelago and mainland Scotland.

A1 A2
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	 From equation 2.2 the flux must be the same as in equation 2.3, 
which implies the next relationship in equation 4.2: . The 

area reduction and equation 2.4, imply that the flow in the middle part of a 
strait is pushed at a higher speed . This reduction can be seen if we 

calculate the overall cross-sectional area in Figure 2.8. The cross-sectional 
planes between Rora Head and Dunne Head have an overall 60% reduction 
in area. The high velocity constrained the first phases of tidal research and 
testing, so projects were focused in scattered geographical locations due to 
the high velocities needed. Some places where research has been focused 
or proposed are shown next page in Figure 2.9.

	 Higher velocity currents pose a complex scenario because they can 
produce more energy but higher energy fluxes also produce extreme forces 
that turbines must withstand. Research has suggested that high velocities 
appear to be linked to a peak in the bending moments on the turbine blades 

[35], and that they have a sensible impact and influence on the turbine’s 
trust [36]. The higher velocity sites are mostly found between straits, a 

Figure 2.8: Bathymetry cut showing the area reduction, cuts from an area open to the sea in 
the Pentland Firth (Red), and a mid section in (Blue).
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geographical feature which shelters them from most of the open sea wave 
weather. 


	 The protection provided by narrow straits is evident in the Orkney 
area, as the Pentland Firth is only exposed to a narrow angle of wave 
incidence. The angles of wave incidence are related to the zones of wave 
formation and in the Orkney case these are the North Atlantic and the North 
Sea. Even with a narrow angle of wave incidence, geographical areas such 
as the Pentland Firth can have a wide exposure to swells depending on the 
season. According to research, the Pentland strait has a lower wave energy 

exposure in its mid-sectional area most of the year [37], except for the winter 

season [38]. The swell seasonality could be explained by storm systems 
located in the North Atlantic basin, at which site swell incidence can be seen 

next page  in Figure 2.10.  

These channels and narrow passages that provide higher energetic 
flows most of the time have been widely studied; however, improvement in 
low-speed technologies has moved developers/researchers to new areas. 
The new areas can have a combination of medium speed and open sea 
space. Open sea environments with technologies that allow lower current 
speeds are not exempt from problems as devices will be probably exposed 
to a wider range of wave weather conditions.


Figure 2.9: Map showing some proposed and used sites addressed by today's energy 
research.

1: Scotland (Orkney and Hebrides)	 	 	 	       9: USA (California)

2: Ireland.		 	 	 	 	       	      10: Mexico (Cozumel)

3: British Channel (France)	 	 	 	 	      11: USA (Maine)

4: Italy	 	 	 	 	 	 	      12: Canada (Bay of Fundy)

5: Hormuz strait (Iran)	 	 	 	 	      13: Australia (Queensland)

6: Taiwan (Kuroshio current)

7: South Korea

8: Canada (British Columbia)
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2.2.2 Waves

	 Waves are produced when the wind blows over the sea surface. The 
weather systems that power wave production are fuelled by the sun’s 
radiation and the temperature differences in different sections of the 
atmosphere. As the wind is an active part of the sea energy system 
exchange, it interacts strongly with the ocean surface. The energy exchange 
of the wind will transmit part of its kinetic energy to the ocean’s upper layer. 
Winds continuously pushing the sea surface in the same direction will slowly 
move the surface in the same direction. The viscosity between the sea layers 
will start the push the water below, thus forming waves. Light winds will 
produce small ripples, which will increase in strength and size, and waves 
will increase in size depending on three factors, the time duration of the wind 
blowing, wind velocity and the distance that the wind can blow in the same 
direction (fetch). Any velocity field produced in the ocean will be disturbed 
by the waves moving across, an example of which is a swell moving over a 
tidal flood. As currents and tidal current streams can be presented in 
relatively unsheltered locations, they will be a main component of the flow 
velocity field. Waves are divided into categories depending on their period Τ 
or frequency f. The principal characteristics that define wave behaviour in 
the ocean basins are its period T, wavelength λ, amplitude (H/2 or A), 

Figure 2.10: Map showing the average wave energy on Orkney per year, adapted from [38]. 
Bathymetry contours for 100 and 50 metres are shown as the correctional positions for cuts 
on Figures 2.7 and 2.8.

A1 A2
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velocity c, and the depth they move in hd. We can see its physical definition 
in Figure 2.11.


	 As the wind blows over a large fetch or increases in strength, waves 
will grow in size from centimetres to several metres, and as the waves 
increase in size, they will differentiate from each other. Waves increasing in 
size will also increase the distance between each crest, a distance that is 
also called wavelength λ. The time that it takes for a crest of the wave to 
reach the position of the crest after it is called the wave period T. The total 
field of wave energy in the sea is called the wave spectrum. The sea wave 
spectrum is composed of the energy and periods of the waves presented in 
any sea condition. The range of the wave periods of the sea spectrum can 
be seen in Figure 2.12, and the different periods depend on the forces 
causing the waves.


Figure 2.12: Wave spectrum covering from tenths of a second to 105s waves [39].

Figure 2.11: The wave’s principal characteristics are: amplitude ( +a/-a ), its wavelength (λ  or 
l ), the undisturbed level ( h0 ), the wave height 2a ( H ), and its frequency f.  



23
	 Waves with short periods will be dominated by the effects of the 
viscosity and these are called capillarity waves. As the waves grow due to 
the wind, the ratio of the inertial forces disrupts the viscous-gravity balance. 
When the balance is broken due to high-speed winds, gravity becomes the 
dominant force. 

	 As gravity takes the lead this produces gravity waves. Gravity waves 
can range from tenths of a second and lengths smaller than a metre to 
massive storm systems generating waves of 300m  in length and heights 
over 10m. Waves with larger wavelengths will leave the weather systems 
that produce them at a greater speed compared to shorter waves due to the 
dispersion relationship [40]. As the waves leave the weather systems, the 
wind stops delivering energy to the surface. In the absence of wind, crests 
will start to fall as the equilibrium of energy exchange has been broken. 


	 The waves that are no longer in equilibrium with the wind and have 
left their storm systems are called swells. Their periods are usually larger 

than 9-10s as a rule of thumb. As current tidal sites are usually sheltered 
against incident waves due to reduced geographical exposition, this will 
lower the probability of large wave exposure; however, this effect is reduced 
as we move outside the geographically constrained areas. In more exposed 
places, waves will play a more important role in the tidal phenomena and 
velocities. 

	 Research has found that waves can not only have an impact on the 
wave stream resource, thus reducing its availability by almost 10% with 
waves of moderate height at H=1-2m and T=11s  [41], but that waves can 
increase in size by 150% to 200%, depending on the current/wave direction. 
This plays a direct role in dissipating or increasing wave energy by 60% [42]. 

	 Waves could also lead to extreme loads on a tidal stream device, and 
this load appears to be related to their amplitude/wavelength ratio or 
steepness λ/Η [43]. Forces produced by the water's oscillation will also play 
a major role in the loading forces on a tidal turbine rotor and its fatigue. 
Studies show that the significant wave height at large periods of 15s will 
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cause the fatigue margin to reduce from 30% to 8% [44]. Other researchers 
have also shown how waves will produce force variation on the rotor, which 

will affect the power peak output [45].  The unsteady forces that will be 
caused by waves are expected to be transmitted to the internal components 
of the turbine, and unsteady sea environment conditions will have 
implications for the device's lifecycle and durability [46]. Waves will have 
several implications for dynamic stability of moored devices deployed at 
sea. Waves with regular periods appear to show stability points that might 
depend on the wave condition, meanwhile, irregular conditions appear to 

show chaotic behaviour [47].


2.3 Wind waves, swell waves, and their seasonal and 
geographical distribution across the sea 

	 Wind waves and swells are not evenly distributed on the sea 
independently of being a predominant phenomenon which is due to the 
seasonality of the storm systems. Storm systems move across the globe 
due to the change in seasons and so do the direction and distribution of the 
swell wave systems.


2.3.1 Wind waves and swell seasonal predominance

	 Wind waves and swells behave differently. A windy sea inside or close 
to a storm system has a very large amount of random wavelengths, heights, 
and directions. Calm seas will have a set of long-spaced swell waves with 
soft heights and well-defined directions. Systems will mix along their path 
with another more random spectrum that is less dominant, containing soft 
wind waves or other swells. Regardless of the geographical zone, studies 
have shown that swell can carry more than 60% of the wave energy on the 
overall wave spectrum [48]. Swells also have a probability of over 80%, thus 
dominating the wave sea weather. This probability has been measured using 
satellite oceanographic surveys [49], as seen in Table 2.1.
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	 The explanation behind swell dominance is partially related to the 
weather spatial variation in the ocean. As winters produce storm systems in 
the polar areas, the swells radiate from the most extreme northern and 
southern areas across the central parts of the ocean basins. Warm months, 
on the other hand, will offer other swell sources. In the summer months, the 
seas near the tropics will gather thermal energy and fuel giant storm 
systems. The storm systems can grow to become hurricanes or supercells 
and systems will produce radiating swells from the tropical zones to the 
other basin areas. As the weather pattern oscillates on a planetary scale, 
swells’ point of radiation will vary. Regardless of the geographical source 
variation, swells will be always present on the spectrum due to the 
constantly varying weather conditions.


2.3.2 Wind waves and swell geographical distribution 


	 The importance of the swell in tidal energy consists of its periodic 
nature, spectrum predominance, and consistency across any weather 
conditions. Swells will form a characteristic component of the load and force 
variation that affects a tidal stream turbine device. The long-distance 
propagation of swells that fuels its predominance can be explained by the 
different interconnected ocean basins, as can be seen next page in Figure 
2.13.


Swell probability

Months MAM JJA SON DJF Total

Norther 
Ocean

84.2 89.6 84.4 78 82.8

Souther 
Ocean

89.5 85.1 89.5 93 88.9

Global 87.6 86.8 87.5 87.4 86.6

Table 2.1: Probability distribution of swell dominance on the wave spectrum 
for the months March-April-May (MAM), June-July-August (JJA), September-
October-November (SON), and December-January-February (DJF) on both 
ocean hemispheres.
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	 As the spatial and geographical distribution is dominated by the 
seasonal distribution,  swells and wind waves will depend directly on the sea 
weather of their shared origin. As we mentioned, the main difference is that 
swells with larger periods T>10s will need a large sustained weather system. 
Winds blowing in the same direction for several hours or days are necessary 
to produce large waves that will later convert into swells after leaving their 
weather systems. As mentioned before, this depends on the fetch which is 
the distance that the waves cover in the weather system that injects energy 
into them. The larger and more sustained the systems, the larger the swells 
and the bigger the waves produced. On the coast of California, it is known 
that swells can arrive from distant locations such as the West of Russia or 
the Southern zone of the Pacific [50]. 


	 Snodgrass show a swell propagation over 7000km [51], [52]; studies 
confirm these events also occur in the Atlantic basin, where wave trains are 

constrained due to geographic features [53] or seasonal storms [54]. These 
long-wave swell systems show a complex relationship with global water 
oscillations, which cause waves to increase statistically in length and size 

depending on the global weather pattern, which is predictable [55]. 

Figure 2.13: Swells arriving from a great circle path. Direction of propagation is west to east in 
all cases.

Snodgrass et al.
Adams et al.
Munk and Snodgrass
Barber and Ursell
Alvaro et al.
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2.4 Waves, their properties, and interaction with currents 
2.4.1 Waves and current velocity field across the water column

	 The current flows produced in the sea can be simplified as a 
horizontal motion along the seabed, with a shear profile near the seabed. 
The ideal flow motion at a velocity v will have just a principal velocity 
component on the horizontal direction x. The current will have a decaying 
profile as it moves vertically to the bottom, and the current value will be zero 

at the bottom hd. The current depth dependence, which is a function of z, 

can be seen in Figure 2.14. Another factor that will affect the current profile 
is the possibility of turbulence induced by obstacles [56], but this 
physiographical feature is not explored here. Waves on the other side will 
induce oscillatory motions on the water column as seen in Figure 2.15, and 
their velocity components are horizontal Vφx and vertical Vφy. 

Figure 2.14: Wave current profile in ideal conditions will have a shear stress across the water 
column depth (z). At the bottom the velocity will be zero.

Figure 2.15: Waves will induce a horizontal and vertical velocity field, both time and spatial 
dependent.
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	 Waves are known to induce a vertical decreasing velocity field. Short 
wind waves will produce a rapid decaying distortion across the water 
column. Swells in the other part might reach the bottom where most of the 
tidal stream devices can be installed. In general waves and currents will 
interact, and the interaction result will be a mixed velocity field. 

	 The field components resulting from this interaction can be seen in 

equations 2.5 to 2.7. Linear deep water theory velocities are used in 

equations 2.8 and 2.9.


In these equations h0 is the sea depth, Vc is the current flow, z is the 

vertical distance from these floor to the surface, w is the angular frequency 

and α is the wave amplitude.  

As tidal stream turbines harness energy from the current flow, the 
underwater velocity field will define its performance and the available energy. 
As swells can reach the deepest parts of the sea, they will imprint an 
important quantity of energy underwater depending on their length and size. 
A wave will exert its kinetic energy at depths proportional to half its 
wavelength. Figure 2.16 depicts the wave velocity at different depths. The 
figures describe a linear swell with period T=12s and a moderate amplitude 
a=1.5m on waters with depths above 200m. Figure 2.16 uses Airy (linear) 
wave theory for its calculation [57]. 

2.5

2.6

2.7

2.8

2.9

Vφx(x, t) = ωα f (z) Sin[(t, x)]

U(z) = Vc (1 − h0
z )

1/n

Ux = U(z) + Vφx(x, t);
Uz = Vφz(x, t);

Vφy(x, t) = ωα f (z) Cos[(t, x)]
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2.4.2 Waves with large wavelength and low amplitude conditions 
and their characteristics


	 Waves in the sea are usually steeper. Certain mathematical and 
physical conditions need to be met for Airy’s theory to be used [58]. The 
conditions for this theory to be used are defined by H/λ<<1 and Hλ2/

hd3<<1, however requirements can be reduced in deep waters. In deep 
water conditions, we only need the wave steepness H/λ to suffice [59], but 

only if the relationship 25H=λ is true. Long wave trains crossing the ocean 
have low amplitudes, and these amplitudes are the results of energy losses. 
Energy losses related to air turbulence [60] or ocean [61] can reduce wave 
heights from H=4.5m to H=1m [62]. Swells, however, can easily satisfy 
these weakly linear conditions in transitional waters. Swells with moderate 
heights H=4.0m and lengths over 100m can be a normal occurrence. Wave 
motion will also depend on the depth they move. Waves moving at large 
depths will develop a circular velocity profile which is what we see in Figure 
2.17, while waves at smaller depths will produce an ellipsoidal velocity 
profile. The ratio Vφy/Vφx will define which velocity is more dominant, and 
this will depend on the depth of propagation. 


Figure 2.16: Velocity field in the vertical direction. Here the positive axis is measured from the 
sea bottom.
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	 For shallower regions, the velocity relationship will satisfy the 
relationship Vφy<Vφx. In general, wave systems with wavelengths short 
enough to not interact with the bottom will be deep water systems that will 
satisfy Vφy/Vφx=1. The opposite case will consist of large systems in the 
shallower region, which will satisfy Vφy/Vφx <1. Long wave systems have a 
different impact from the large amplitude systems that have been studied for 

extreme load cases [63], [64] or wave loads under non-low amplitude 
conditions [65]. Some values for swells that satisfy low amplitude and large 
length conditions are shown in Table 2.2.


Figure 2.17: Velocity field trajectories of a wave in open ocean at section A, left, and 
shallower waters, right, at B. The field trajectories depend on the relationship λ/hd.

Wavelength vs Wave height for linear swells wave conditions

λ ( m ) H (m)

100 4 0.11

110 4.4 0.15

120 4.8 0.20

130 5.2 0.25

140 5.6 0.32

150 6 0.39

160 6.4 0.47

170 6.8 0.57

180 7.2 0.68

190 7.6 0.79

200 8 0.93

Table 2.2:  Wavelength and wave height values from λ=100m to λ=200m 
and their Ursell number at a depth of 70m of a must be one order of 
magnitude lower than the unity to use Airy theory.

 at λ ( h70 m )a = H * λ2

depth3
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2.5 Wave propagation from the open sea into the 
continental shelf 

	 Conditions that we mentioned on the velocities, linearity, and depth of 
the interaction will depend on the zone of wave propagation for any long 
swell system. As many weather systems are produced in remote areas of the 
ocean, the waves will propagate from open zones to the coast over large 
distances, as we mentioned. The propagation zones close to the continent 
will be dominated by the shelf physiography, and the shelf will modify the 
wave behaviour as the wave systems cross over it.


2.5.1 Shelf physiography and wave propagation


	 The ocean basin has average depths of 1000m. However, as we get 
close to the lighter continent crust, it rises. The bathymetry profile will 
sharply increase its height near the continent. Larger waves crossing the 
ocean and propagating on the continental shelf will interact with the sea 
floor. The continental shelf areas can be divided into three principal sections, 
as shown in Figure 2.18: the continental rise, the continental slope, and the 
coastal shallow waters.


	 It becomes evident that, for larger wavelengths, the seafloor 
interaction will become relevant. Shelf topography is relatively regular, 
decreasing its depth by 1.7m every 1km on average [66]; however, it has a 

Figure 2.18. Bathymetry cut showing the open ocean basin and continental rise C, the 
continental slope B and the coastal shallow waters A.

A

B C
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diverse set of geographical accidents and also magnifies tidal flows because 
of its shallow topography.

	 In the case of the tidal sites, most of the engineering efforts are 
constrained by the ocean’s depth. Tidal sites are located near the sea shelf 
(zone A). As the technology matures, reducing the velocities for energy 
harvesting, the area of development for tidal energy will expand on the 
continental shelf. The expansion could move developers not only outside 
traditional sheltered straits but also deeper waters with lower velocities that 
are highly exposed to swell conditions. The continental shelf (zone A) has an 

average depth of 60m [67], extending to the shelf break on B with an 

average depth of 140m [66]. Any tidal system installed in zones A to B would 
be sensible to wave systems with periods T>11s. As wave systems longer 
than T>14s are a normal occurrence, the increased kinetic energy variation 
near the seabed will be more important as the engineering effort moves 
further away from coastal areas. One physiographical characteristic that 
tidal turbines could face is the sudden change in bathymetry after a 
geographical rise.


2.5.2 Classical long wave propagation solution


	 Wave shoaling and bed friction are very well-known phenomena, but 
little attention has been given to analytical solutions to solve wave 
propagation as a function of its period under a wide range of depths. In 
coastal engineering, the explored solutions use assumptions such as 
shallower water depths, no vertical velocity components, and negligible 
amplitudes Pwave~Psurface.. The problem has been addressed before by 
Horace Lamb [68], modelling long waves in a canal of variable depth, as in 
Figure 2.19.
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	 The classical solution requires two conditions: small amplitude ai<<λ 
and wavelengths larger than the depth at which a wave moves λ>>hd. 
Lamb's formulation uses simple geometrical constraints, requiring one only 
to satisfy the surface continuity and low amplitude. Its solution is 
independent of the wave shape. The phenomenon modelled by Lamb is 
explained as a simple wave reflection where the wave moves through a 
canal with a different depth and the same breadth. Wave reflection and 
transmission in this model are non-elastic processes, bouncing back waves 
with the same frequency f and period T as the incident wave. The results of 
Lamb’s coefficient of transmission and reflections are shown in Figure 2.20.


Figure 2.19: Lamb’s model based on geometrical constraints. The model has constant 
breadth and two different depths, namely h1 and h2. The system defines the wave transmitted 
at and reflected ar as part of the incident wave ai.

Figure 2.20: Lamb’s model for a depth h1=120m and a varying shelf depth h2 from 120m to 
10m. The terms Kr and Kt  are named as the reflection and transmission coefficients 
respectively.
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	 Mathematical formulations like Kreisel’s [69] confirmed the 
mathematical behaviours of Lamb’s model. Newman’s model later confirmed 
that propagation holds not only for infinite-depth waters (hd~∞) but also for 
finite-depth waters [70]. Newman’s work also found that conditions of 
shallow depth only need to be satisfied for the transmitted wave. Newman's 
proposed model has been verified by authors like Miles [71], and the model 
shows successful agreements for a broad spectrum of waves on the 
transmission side and a 5% error in the transmission coefficient. Miles's 
work shows a proportional increase in wave amplitude depending on 
obstacle depth, meanwhile wave reflection is inversely proportional to it. The 
reflection coefficient however diverges as the depth ratio to wavelength 
increases. Lamb’s formula and those derived by Newman and Miles have a 
theoretical relevance but might not be technically recommended as most 
tidal stream sites are located in deeper zones that break the condition under 
which Lamb’s model is made λ>>hd.

	 Later studies by Takano [72] and Mei and Black [73] consider higher 
complexity propagation on a finite length shelf. Takano’s model agrees with 
Macagno [74], showing an increase in the amplitude over the obstacle. In 
Takano’s studies, an increase in wave period appears to result in a larger 
wave transmission coefficient; however, his results lack a wider range of 
conditions and periods to be more conclusive.  
	 Mei & Black also model Lamb's case and compare their results with 
the experimental data. Their method shows that the reflection coefficients 
and transmission coefficients vary depending on the wavenumber K and 
depth hd. Mei & Black’s studies are important as they cover a wider range of 
depth to wavelength ratios, but the results are only compared to a single 
case of obstacle depth. Another important study is Santos et al.'s [75], using 
different wave periods and different obstacle depths, showing the depth of 
obstacle immersion and wave amplitude dependence for waves with a larger 
set of propagation depths. These studies also show some limiting special 
cases, one of which is an obstacle with a small height Kr~0. Overall the 
variation of the coefficients in many studies shows a consistent behaviour of 
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wave amplitude variation. As the amplitude will define the strength of the 
velocity field and the change in the fluids pressure, it is an important 
characteristic to measure as any change in the amplitude will affect the 
loads felt by any underwater device at suitable depths.


2.5.3 Wave fission

	 Other important processes related to wave propagation are wave 
fission and harmonics. Fission of the incident waves has been found 
previously [60], wherein waves that cross an obstacle will split. The split will 
produce a main wave and a small train that follows behind. Massel 
addressed this phenomenon using a numerical model [76], and his 
simulations were compared to experimental data. 

	 The results of wave fission are also supported by experiments 

conducted by Jolas [77] whose results show that wave transmission 
depends on the incident wave period, as pointed out by Macagno, a 
summary of Jolas results is shown in Table 2.3. This wave fission is also 
observed by experiments carried out by Szmitd under transitional water 
depths [78].


2.5.4 Experimentation and numerical modelling of wave 
propagation

	 A number of experiments and numerical simulations offer insight into 
the experiments carried out later in this thesis. The most important works for 
this PhD will be analysed and discussed in the next pages.


T(s) Kr Kt h1 (cm) h2 (cm) l (cm)

0.816 0.04 0.910

0.910 0.177 0.877 31.2 20 100

1.005 0.222 0.842

1.104 0.110 0.850

Table 2.3: Experiments carried by P. Jolas to measure wave 
transmission over a finite obstacle against wave period. 
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	 Newman’s work analyses the transmission and reflection coefficients 
under a wave propagation from deep waters to transitional waters hd/

λ~0.146 and infinite deep water to shallow waters ht/λ~0.0063. The work 
shows how the transmitted wave amplitude increases as the obstacle 
decrease in depth. Newman’s work extends Lamb’s assumption about wave 
propagation bas the depth of propagation for the incident waves includes 
hd=∞ and the solutions, even if not completely accurate for values 

(kh)1/2>0.5 (where k is the wave number), follow the same behaviour 
predicted by Lamb as long the incident depth of transmission is infinite.

	 Newman’s experimentation, however, is made in a depth regime that 
more resembles a tidal wave condition, which is far from swells with a 
moderate height. The experiment is also focused on an infinite shelf, so it 
does not explore the wave propagation after a limited seize obstacle.

	 The work carried out by Santos et al. used six different depths [15cm 
to 30cm] using an obstacle of 10cm height. Wave generation covered a 
period range of 0.5s to 5s, with the smallest possible wavelength (0.39cm), 
propagating from depth waters to transitional waters. Santos examines the 
relations between the depth of propagation, wave amplitude, and obstacle 
depth. His results show conclusively the same behaviour observed by 
Newman, with waves increasing their amplitude as the depth of immersion 
of the obstacle decreases. Santos also observes the generation of a 
secondary transmitted wave of limited amplitude, which in this case can be 
linked to wave fission and harmonic generation. Santos looks at how the 
transmitted amplitude increases depending on the amplitude of incidence,  a 
result that, like Newman’s, gives evidence about the importance of the wave 
amplitude, which Lamb’s model does not take into account. Despite offering 
more evidence of a greater implication of the incident wave amplitude in the 
process of propagation, there is a lack of information regarding how the 
wave period might affect the amplitude of the wave transmitted. There is 
also a limitation in the experiments as the obstacle is maintained with a fixed 
length, thus it does not allow one to see possible effects on the propagation. 
This is because it is possible that larger obstacles could interact enough to 
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modify the wave shape or amplitude by inducing shoaling or other important 
mechanisms. The wave amplitude is also extremely large, with amplitudes 
larger than 10% of the tank’s maximum depth which is not the case for our 
experiments.

	 Another important experimentation and modelling is Szmidt’s, 
including wave propagation over a finite obstacle. Szmidt models the wave 
transmission and reflection components after a regular obstruction is placed 
in the path of the wave. The obstruction, regular in nature, resembles a 
block. Szmidt's incident waves move in transitional waters, at depth to 
wavelength ratios  (hd/λ) of [0.125-0.1]. The obstacles used by Szmidt have 
a constant depth of 0.24m. In these cases, the propagation occurred on the 
theoretical limit for shallow waters at hd/λ=0.05. Szmidt observed the 
generation of higher-order components which were not predicted by Lamb. 
The two cases modelled by Szmidt λ=8hd and  λ=10hd did not show a larger 
component than the main wave transmitted. He also showed that the main 
waves propagated for his experiments had a wave height equal to 1/6 of the 
tank depth, which reduces its application to wave phenomena close to the 
shore.  

	 Szmidt’s work introduces the high importance of non-linear effects in 
wave propagation. It is noted that the experiments introduce not only a non-
linear interaction, which produces higher harmonics that are released into 
the upper stream, but also a possible relationship between the incident 
amplitude and the higher-order components. It is also important to take note 
of how in Lamb’s theory the amplitude to wavelength relationship is a/λ<<1 s 

not true. How these conditions create higher components of waves and how 
this might interact with the wave amplitude and depth are explained further 
in experiments made by Massel and Ting et al [79]. Work done by Massel 
shows harmonics with larger amplitudes and an increase in wavelengths 
after the obstacle. Simulations and experimental data, when compared, 
appear to show that harmonics will not share the same phase, length, and 
period. It also shows an increase in an important energy transfer to the 2nd 
harmonic, as shown by the extreme increase in the amplitude of this 
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harmonic. Massel experiments also test the frequency dependence of this 
phenomenon for two different wave periods, however the depth to 
wavelength ratio of Massel's data for both periods in their cases is very 
similar, which might reduce how we can extrapolate Massel's observations 
to our case.

	 There are three main physical limitations in Massel’s work. The first is 
in the places where wave measurements are taken. In this case, 
measurements were limited because they were only made before and after 
the obstacles. No observations are made on the wave propagation over the 
obstacle. Secondly, the incident waves propagate only from transitional 
waters to near shallow waters over the obstacle. In Massel's case, examples 
made in his work are focused on a water depth to wavelength ratio of (hd/λ) 
over the obstacle of [0.065-0.14]. The larger wavelengths pushing against 
the barrier will increase the wave height, as predicted by Lamb. In this case, 
the amplitude of the incident wave will be important, which takes us to the 
third point. Massel’s wave data also shows a ratio of amplitude and 
wavelength (a/λ) with a value closer to 1 for finite length obstacles, before 
the obstacle. His amplitudes are also far larger than the work done here. 
Massel’s example of wave propagation over an infinite shelf considers a long 
wave propagating with amplitude to wavelength ratios 15 times larger than 
the largest wave considered in this thesis.

Another important experiment with useful information on wave propagation 
over obstacles with variable depth, width, and different periods is the one 
made by Ting et al [79]. Their experiment analyses harmonic generation and 
energy transfer from the main wave components to higher harmonics. The 
work carried out by Ting et al. explores harmonic generation by non-linear 
behaviour after waves interact with a regular breakwater, and it introduces 
the concepts used by Mason and Keulegan [80] and Mei and Unluata [81], 
where the energy transferred to the harmonics and their generation both 
depend on the Ursell number and the non-linearity to dispersion parameter 
a0hs2/λs. In these cases, the incident wave energy shifts towards higher 



39
harmonics as the number a0hs/λs equals 4 [80]. According to studies carried 
out by Grue [82], harmonics after the obstacle can be equal to 60% of the 
incident wave amplitude. However, Grue’s studies were carried out in 
situations where the waves transferred to very shallow depth waters with a 
maximum depth of hd=5cm and a minimum wavelength of 1.05m which 
indicates a very small depth to wavelength ratio under the range of shallow 
waters hd/λ<0.04.  

 In this case, not only is the depth of propagation different from the 
experiments carried out here, but the concepts introduced by them using 
the Ursell indicate that for a strong transmission of energy to occur to higher 
harmonics, the parameter a0hs/λs should be closer to 4, meaning a0hs=4λs. 
This indicates very large amplitude for these cases as the product of both 
will necessarily be 4 times the wavelength propagation over the obstacle. 

	 Very importantly, Ting et al. derive a formulation using a multivariable 
regression on experimental data. This formulation describes the ratio of the 
maximum amplitude of the second harmonic to the minimum amplitude of 
the first harmonic a2max/a1min.The result is approximately equal to the Ursell 
number multiplied by 0.022. This definition allows one to obtain a possible 
reference to measure how the higher components can alter the transmitted 
wave after it is propagated over and after the obstacle. In this regression, 
the most important parameter is the obstacle to tank depth ratio hs/hd. 

In general, all of these studies reveal important characteristics to take into 
account when modelling and experimenting with wave propagation over 
obstacles. One is the importance of the depth of propagation, the second is 
the importance of harmonics, and the third is the possibility of other factors 
influencing wave propagation over obstacles.


2.5.5 More complex bathymetry scenarios

 Analysis of more complex bathymetry scenarios for wave 

transformation under an arbitrarily varying seabed has been described by 
Jung et al. [83]. This method divides the sea bed into sloped transitions that 
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need to be solved at each step. Cho’s method has been used more recently 
to solve profiles with scouring trenches, and also by authors like Xie et al. 
[84] to solve Kr. 

	 Solutions found by Xie and Cho converge with Lamb’s formulation 
when the scour trenches are set to zero. Xie and Cho use the shallow water 
equations where the phenomena is dominated by the horizontal velocity. Xie 
and Cho’s solutions can only be applied if the condition Vφx>>Vφy is met, 
and these theoretical models can only be used in waters where the 
wavelength has a larger order of magnitude than the depth it propagates. 
Although a solution for Kt is possible, we are constrained by the water depth 
at depths useful for engineering applications.

	 Other complex scenarios to model 2nd order Stokes waves were 
proposed by Athanassoulis, and the solutions found have been coupled with 

non-linear waves [85] and [86]. Athanassoulis's model shows that wave 
transmission appears to depend on the incident wave frequency, a 
dependence similar to the one observed by Jolas and Macagno on linear 
theory. However, results of the 2nd order do not address waves moving from 
infinite-depth waters to transitional waters. The mentioned experiments and 
models lack a feature that is very important to wave propagation: the 
possible changes in the wave frequency, wavelength, and deeper waters. 

2.5.6 Limitations of past experiments and models

	 The most important experiments from past authors briefly analysed in 

the last section provide a window into the conditions and variables to be 
measured in a more general experiment in order to observe and analyse 
wave propagation using a wider set. The limitations of the experiments are 
as follows:


1. Experiments and models working on shallow water theory to verify the 
conditions set by Lamb use shallow water wave conditions. These 
conditions are more suited to experiments and models that analyse 
waves near the shore, far away from the places suitable for tidal energy 
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devices. Two of these experiments are the ones made by Newman and 
Massel, with hd/λ conditions [0.065-0.14] for Massel and [0.146, 0.0063] 
for Newman. These values are closer to the more extreme cases that will 
be analysed here.

2. Wave amplitudes in experiments such as the ones made by Santos et al. 
and Szmidt use waves with amplitudes of at least one order of magnitude 
larger than the amplitudes studied here. Waves in this case have a size 
of 10% of the tank depth for experiments run by Santos et al. and 16% 
for experiments run by Szmidt.

3. The experimental set-up is mostly done to analyse the amplitude of an 
infinite shelf or a single obstacle. In the case of experiments run by 
Santos et al., Newmann, and Szmidt, they use a single obstacle with a 
fixed length. This could obscure certain propagation characteristics 
derived from the obstacle length.

4. In the experiments carried out by Ting et al. and Massel, important 
information is provided about the creation of harmonics. In the case of 
Massel, limitations are not only presented by the lack of data on how 
important the length of an obstacle could be for wave propagation, but 
also the lack of information about measurements taken over the 
obstacle. Information related to how conditions over the obstacle could 
have an impact on the waves propagated afterwards is non-existent. In 
the work carried out by Ting et al., the harmonics are found to be linked 
to the wave amplitudes. However, the depth of propagation and 
transmission occurs in shallow water processes. Another limitation is 
presented by the importance of the wave amplitude to depth product to 
predict the energy transmission to high harmonics. The product of this 
value needs to be equal to or closer to 4 times the wavelength, meaning 
that wave amplitudes would necessarily need to be fairly large. Ting et al. 
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provide no information about waves with a smaller value, which can 
account for large regular waves with a softer amplitude in deeper waters.

The ranges explored by Newmann, Massel, Santos et al., Szmidt, and Ting et 
al. can be observed in the next table. If more than one depth is tested this is 
given a range, like [0.3-0.15], and the same if wave amplitudes cover a wide 
range of values.

2.5.7 Wave velocity and wavelength change

	 Other important subjects on wave propagation that have not been 
addressed properly are wave frequency change, wave velocity shift, and 
wavelength change. Physical characteristic values like wavelength, period, 
and celerity will define cycles of variation on our hydraulic head and possible 
changes to the underwater velocity field, thus proving our wavelength is long 

enough at the transitional depth. Massel’s [76] description of harmonics 
shows that after propagating over an obstacle, the fundamental component 
will have a different wavelength and phase from the incoming wave. As the 
wavelength is a function of the wave frequency, then a frequency change 
after propagation will have effects on the wavelength, period, and wave 
velocity. Very detailed research by Goring [87] shows discrepancies in the 
frequency propagated after a bathymetry rise using a scaled wave 
experiment.


Autor Newmann Santos et al. K. Szmidt Massel Ting et al.

hd(m) 0.6 0.3 0.6 0.3 0.275

λmin(m) 0.2 0.39 4.8 1 1.31

λmax(m) 10 8.57 6 1.5 2.19

ht(m) [0.037-0.15] [0.2-0.05]] 0.24 [0.26-0.141] [0.151-0.065]

ai(m) 0.01 [0.02-0.12] 0.04 [0.0023-0.005] [0.21-1.04]

Table 2.4: Table with the depth (hd), maximum (λmax) and minimum (λmin) wavelengths, 
amplitudes (ai), and depth of immersion (ht) for the main experiments discussed in 2.5.4.
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	 Goring modelled tidal waves produced by tsunamis under linear 
conditions. The experimental campaign showed a consistent change in the 
frequency and wave velocity, as in Figure 2.21. 


	 Experiments designed by Goring address the conditions of tidal 
waves propagating over the continual shelf, where propagation occurs from 
deep-sea waters. The discrepancies between Lamb’s theory and the 
experiments show that the depth ratio h1/h2 affects the transmitted angular 
frequency ωt, where the depth ratio is defined as the depth before obstacle 
h1 and after obstacle h2. Values of the transmitted angular frequency were 
lower than the incoming wave frequency ωi, and the results also appear to 
be affected by the incident wave amplitude. Despite the results obtained, the 
variation of ωt against the wave height H shows a scattered behaviour.

	 Naghdi and Marshall addressed the wavelength change using a 
linearised solution for the wave equation [88]. The analytical solution found is 
proposed to be used for long waves at small amplitude. The formulation can 
be also reduced for shallow waters as in Goring’s case. Naghdi and 
Marshall’s formulation could explain what Goring observed. Their work 
predicts that wavelength will change depending on the depth at which the 
waves propagate. Their results differ in depths λ>20h1 and λ>2h1, showing a 
slight increase in the wavelength and then a decrease as λ/h→∞.


Figure 2.21: Experimental propagated frequency shift ratios ωt/ωi, as a function of depth 
before the obstacle h1, after the obstacle h2, and the incident wave height Ηi.
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2.6 BEMT and the underwater velocity field 
	 Because tidal turbines use hydrodynamic surfaces to capture the 
current stream velocity, converting that flow into mechanical work, modelling 
the mechanical output is necessary to calculate the flow interaction with the 
device. In order to simulate the effects of the fluid velocity over the tidal 
turbine rotor, mathematical models are required. Some models used require 
complex calculations and dedicated software to address this. A brief list of 
models standardised for research and development is given below:


• Lifting Line Theory

• RANS-BEM

• Blade resolved RANS

• Blade resolver LES

• CFD


	 The order of complexity and time to simulate the turbine increases in 
descendant order. One of the established methods to model turbines is the 
Blade Element Momentum Theory (BEMT). BEMT has been developed to 

include corrections for fluid losses [89] and synthetic turbulence [90]. BEMT 
solves systems at a higher velocity compared to other tools such as 
Computational Fluid Mechanics (CFD), producing reliable results despite 
showing an under-prediction of peak power according to studies done by 
Masters et al. [91]. Methods of high complexity like CFD can also be used to 
complement other faster methods like BEMT, using a combination of 
BEMT+CFD. BEMT theory can be divided into two sections: flow 
conservation energy analysis and flow dynamics structure interaction. 

	 The first section analyses the quantity of energy that a flow exerts 
over a rotor on a tidal turbine, where the energy exerted must be equal to 
the energy loss of the fluid. The second part analyses how the flow captured 
by the rotor produces the torque and thrust on a tidal turbine due to the lift 
and drag forces over the airfoil. The method depends on the interaction of 
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the rotor with an incoming flow at speed U∞, just as when the fluid passes 

and produces work it reduces its velocity [92], as shown in Figure 2.22. 

The velocity at the rotor will be reduced by an a factor, and then 
released. The flow released after the rotor interaction will expand its area. As 
the work produced by the rotor depends on the flow, any unsteady condition 
in the regime or an induced flow change in the velocity field will produce a 

change in its performance. Studies done by Nevalainen [46] and Masters et 
al. [91], have shown the turbine mechanical variation induced by the change 
in the inflow velocities. The change in the flow velocities was produced by 
waves. The relationship between the small differential of torque and thrust 
expressed in their works can be shown in equations 2.10 and 2.11. The 
relationship between the torque and thrust expressions is made by replacing 
the term U∞ with expressions 2.5 to 2.9.


	 The equations define the differential of the torque dF and thrust dT 

per a little section of the radius dr. A full description of the equations is given 

2.10

2.11dT
dr

= 4πρb(1 − a)U∞ + Ωrr3

dF
dr

= 4πρ (U2
∞a(1 − a) + (bΩrr)2)r)

Figure 2.22: Diagram of the velocities at a BEMT model, here U∞ is the free stream 
velocity, a is the factor of reduction that depends on the energy absorbed by the rotor to 
produce mechanical work and Ustream is the velocity released after our turbine.
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in Chapter 5. The term U∞ defines the stream velocity. Any change in U∞ will 
produce a direct change in the differential torque and thrust, and the change 

in each blade will have an overall impact on the rotor. The work of 
Nevalanien [46] and Faoudot and Dahlhaug [43] has shown that waves have 
a clear impact on the loads experienced at tidal devices. The change in the 
loads is induced by the oscillation in the wave velocity. This can be 
expressed simply when we take the total underwater velocity U∞  as a 
composition of the current velocity U∞ and the wave velocity G(x,z,t), as seen 
in equation 2.13. 

As the wave velocity field depends on the wave amplitude ai but is 

also a function of the frequency/period f/T, any change in these values will 
modify Vφx and Vφy, and any change in the field will impact equations 2.10 
and 2.11. Wave transformations due to bathymetry changes could have a 
direct impact on our torque and rotor, thus depending on the wavelength to 
be able to reach great depths. Large swells that are a normal phenomenon 
in the sea at T>11s will be able to interact with a tidal device.


2.7 Conclusions 
	 The ocean is currently a viable source of vast renewable energy. In 
this area, technologies such as wave and tidal devices have become more 
mature. Despite advances, however, many challenges have arisen in the 
modelling techniques, device construction, and deployment. These 
challenges are connected to the sea being one of the toughest environments 
on the planet due to the continuously changing weather conditions and 
many other factors. These conditions will determine not only the feasibility of 
the project but also how the design constraints are met to withstand the 
forces that our devices will face in the ocean.

	 Waves are one of the main weather components in the sea and one of 
the main drivers behind unsteady forces felt by marine energy devices and, 

2.13U∞ = U(z) + G (x, z, t)
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in our case, tidal stream devices. The wave weather is strongly dominated 
by swell components across the ocean. Studies show 60% of the energy 
being carried by swells [48] and a weather dominance of more than 80% for 
the swell in both hemispheres [49]. Even if tidal devices are sheltered at 
suitable engineering depths that can reach 50m, the theory shows how wave 
spectrum components with larger periods can interact at depths larger than 
100m.

	 As the sea bottom where these swells move is not perfectly 
horizontal, they will interact with the different obstacles and profile changes 
under the sea. Wave propagation over these geographical constrains will 
cause a change in its parameters, such as the wave height. Studies have 
shown how larger waves interacting with regular topographic obstacles can 
modify the wave amplitude. One classical solution for tidal waves is the one 
found by Lamb [68] which shows how waves increase their height when 
moving to shallow waters in the cases where their length is larger than the 
propagation depth λ>>hd. Newmann’s work extended this model to cases 
where the incident depth is larger than the wavelength [70]. More recently 
Naghdi and Marshall offered a solution for finite depths, which is suitable for 
larger waves which are not tidal in nature and could be used to model larger 
wave components [88]. In Marshall and Naghdi’s case, its solution includes 
a change in the wave frequency as it propagates to shallow waters where 
kincident≠kpropagated. 


	 As turbines and other marine energy devices are deployed in the sea, 
geographical conditions might vary and possible local geographical 
constraints could become important. The possibility of large swell 
components reaching a turbine despite this device being sheltered against 
local wind waves could become an important factor to account for when 
looking at the device’s lifecycle. Wave weather predictions could be different 
in the area if wave components behave differently under local constraints, 
such as changes in amplitudes or cycle loadings.
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	 Due to these changes, it is important to know how the installation of 
our devices over or after a bathymetry will modify the forces felt by our 
turbine. The logical first step is an exploration of these other constraints to 
account for the mechanical response variation in the devices, which is part 
of a long chain of research on the factors that can impact marine energy 
design, deployments, and production.  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3 Methodology


The study of wave propagation over obstacles, and how the change in the 
wave properties could affect a tidal stream device installed nearby, is 
explained in the next pages. The problem is complex, and so it is important 
to understand precisely every part of it. This section covers the subjects 
related to the mathematical model of the swell systems used and the 
proposed formulation. The methods used in the laboratory validation are 
described in Chapter 4, and a more detailed description and application of 
the methods to determine the sea weather conditions are detailed in 
Chapters 5 and 7.


	 The mathematical statement: The mathematical background is 
described as the long-wave theory for small amplitudes. Most of the theory 
used here falls into linear or weakly linear waves, where nonlinearities are 
small. The theory was treated this way, as the first approach to modelling 
radiating long swells from a distant wave field. The mathematical statements 
were used to derive an analytical solution that could model wave 
propagation over an obstacle. The model aimed to take into account the 
frequency shift observed in past studies [77], [87]. The solution found was 
compared to experiments carried out in a wave tank flume in Chapter 4.


	 Spatial and seasonal data processing: Spatial and seasonal data 
was used to gather precise information about sea weather data, including 
wave directionality, wave height, and wave occurrence. The work used data 
from buoy systems owned by several state agencies and research institutes 
in the USA. The data gathered was then processed, allowing us to obtain a 
general view of the wave weather in the area. Swell dominant conditions 
were isolated and applied to a nearby geographical position in Chapter 4.


	 Bathymetry analysis: Information about the seabed in the swell area 
location was fed into software processing tools to obtain a simplified model 
of the seabed. The required models retained the main features of the 
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underwater topography, and these models were later used for the site 
analysis, along with information about the desired tested position.


3.1 Wave properties 
3.1.1 Wavelength in the open ocean under moderate current 
values: MacKeen and Fenton model


	 Waves are an oscillatory phenomenon of energy transmission. In the 
case of ocean waves, they can usually be divided using three methods. The 
first divides waves by their frequency and wavelength, which is a simple 
representation of the wave spectrum that relates to both variables. This can 
be seen in formulation 3.1 and Figure 3.1.


 

Figure 3.1: The relationship for frequency in red (T), wave speed, and wavelength (λ) for 
periods bigger than 1s using linear deep water wave theory.

3.1

3.2

λ = L0 Tanh [ 2πd
L0 ]

3/4 2/3
λ = f (T ) | |λ = f (τ)

Period, wavelength, and wave velocity relationship
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	 The mathematical solution for this relationship depends on the 
solution of the wave equation for infinite depth waters. Solutions to describe 
wave behaviour have been improved during the last 70 years. A solution 
given by Fenton and Mackee [93] allows us to calculate wavelengths 
independently of the current and the amplitude. The solution proposed is 
seen in formulations 2.3 and 3.3. As with all solutions, this one depends on a 
physical range of applicability defined by the physical boundaries of the 
problem. Fenton and Mackee’s solution has been compared to other 
formulations, and this comparison shows a good agreement with values with 
current velocities as high as 1/10 of the wave propagation velocity. As swells 
are long waves, the range of velocity shown can be approximated by the 
long wave theory in infinite deep waters. Infinite depths can be 
approximated in theory as λ/hd~0 and then hd~∞. The solution for this allows 
for swells over 6 to 7 seconds to have wavelength values valid for currents 
around 1.1m/s. The formulation is used in this work to calculate the 
wavelengths of open ocean incident waves in sites where long swells 
propagate, as large swells will have a larger range of applicability due to 
their faster propagation velocity.


3.1.2 Wavelength in deep waters and transitional waters: The long 
wave model


	 As waves move from the deep ocean to the coast they will enter 
shallow waters. The second method to classify waves uses the open ocean 
wavelength and its wave field of penetration into the water column. For this 
method, the ratio between the wavelength and the depth of propagation is 
used to divide waves being propagated. Waves with larger wavelengths will 
reach a greater depth equal to half the wavelength at depth waters. By the 
same token, shorter waves will reach only depths near the ocean surface. 
This relationship has implications for the wave velocity component. This 

3.3
L0 = gT 2

2π
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formulation is useful as a mixed wave spectrum on the surface will likely 
have long swell waves and shorter local wind waves. The regions defined by 
this method are shown in Figure 3.2. Open ocean regions are divided into A 
(deep waters), B (transitional waters), and C (shallow waters).


	 It is known that as the wavelength reaches shallower waters, their 
wavelength value from equation 3.2 will be shorter than the original one. Due 
to the shallower region of propagation, the lengths of the swells after 
reaching the shallower waters will need an iterative correction given by 
equation 3.4. The formulation found by Fenton and Mackee can be used as 
a starting value for the iteration process, and the starting value can then be 
applied to equation 3.4, shown below for long swells at λ/hd<2. This 
correction is needed as long waves will present a velocity profile where the 
horizontal component x will be larger than the vertical  y component.


	 The corrected wavelength and the wavelength depth relationship 
follow the relationship expressed in formulation 3.5, where the indexes i and 
t refer to the incident and transmitted regions.


3.4
λ = g

2π
T 2Tanh( 2πd

λ )

Figure 3.2: Division of the wave theories depending on the depth of field penetration: A, deep 
water theory, B, transitional water theory, and C, shallow water theory. Symbols hd showing 
the depth, the velocity components paths, and the wavelength “λ”.
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3.1.3 Wavelength in deep waters and transitional waters: The 
Stokes model and Stokes expansion


	 The Stokes expansion method relates each type of wave to the theory 
that can be used to study its properties. This method of division is 
commonly used to subdivide the wave spectrum into linear waves, and any 

Stokes order theory as in Figure 3.3. The method uses the wave non-

dimensional height, in equation 3.6, and non-dimensional period values, in 
equation 3.7. The values are used to determine the theory that can be 
applied to this wave. This method allows us to divide the wave spectrum 
easily, find the mathematical theory that could be used to model the wave 
properties, and divide the wave spectrum.


3.5[λTi(hdi) > λTt(hdt)] ⟺ [hdi > hdt]

Figure 3.3: Division of wave 
using the non-dimensional 
values in equations 5.3 and 
6.3. Image from Le Méhauté 
[94]. H referred to the wave 
height, λ to the wavelength 
and indexes o, and B to the 
depth water conditions and the 
breaking limit.
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3.1.4 Long wave swells and their mathematical formulation: The 
long linear wave theory and the Ursell number


	 After leaving the storm systems, wave swells will lose energy due to 
turbulence, wave to wave interaction, currents, and other phenomena. The 
amplitude decay will make swells behave like low amplitude wave systems,  
and this decay will happen far away from the storm generating these 
systems. Given the proper conditions of propagation, these systems can be 
easily modelled using Airy theory as long they do not propagate on shallow 
waters. The conditions necessary for this to apply are that given any 
wavelength, this must be two orders of magnitude larger than the amplitude. 
Since swells can have lengths over 200m and amplitudes of 2m, these 
conditions are easily satisfied. 


	 The general problem for a long wave moving in a volume of water 
with infinite depth can be described theoretically by equations 3.8 to 3.12.


There is no complete solution for the problem stated by equation 3.8 
in all conditions. However, if we look at the swell linear case we can relate 
the conditions that make them linear wave systems. If wave systems above 

3.6

3.7

y = 2a
g f 2

x = hd

g f 2

3.8

3.9

3.10

3.11

3.12

∂2φ
∂x2 + ∂2φ

∂z2 = 0

φ = G (x, y, z, t)

∂η
∂t

+ u
∂η
∂x

= w

p
ρ

+ ∂φ
∂t

+ 1
2 (u2 + v2) + gz = cte

w − ∂φ
∂z

= cte
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T=8s can reach an order larger than 1x102m, then any wave with amplitudes 

lower than linear wave theory at 2m will make the term u(∂η/∂x) of equation 
9.3 vanish, as we see in equation 12.3 and Figure 3.4.


Equation 3.10 shows us that the balance of forces at the surface 
depends on the water velocities too. However, the wave velocities are found 
if we derive the function in equation 3.12 using the variables x and z, 
meaning we will obtain the velocities, as seen in equations 3.14 and 3.15. 


	 The function φ is also called ‘the potential function’. The function 
expresses the amplitude time variation in time and space. As any swell with 
a small amplitude will likely behave as in equation 3.13, then the ratio of 
change expressed in equation 3.13 is smaller than the unity. The 
expressions u2 and v2, after satisfying the small amplitude conditions, can 
be approximated to be smaller than 1, which results in equations 3.16 and 
3.17.


Figure 3.4: Increase in amplitude at a given increase of wavelength, as δx<1, then δη<<1.

3.13∂η
∂x

= Δα
Δλ

→ 0

3.14

3.15dφ (x, y, z, t)
dz

= Vφz

dφ (x, y, z, t)
d x

= Vφx



56

	 The classical boundary condition at the bottom is taken, which states 
that there is no wave velocity at depth z=hd. The constant in equation 3.9 is 
0. This will leave us with a linear wave system in equations 3.18 to 3.21. 


	 Equation 3.12 expresses that we search for a solution that depends 
on variables  (x,y,z,t), as we take the velocity and change to y as constant, 
so the function φ must be only dependent on (x,z,t). The solution for this 
system is known for deep waters and transitional-shallow waters when 
under the conditions stated, such as small amplitude conditions or η(z)/λ~0, 
where the amplitude must be smaller than the wave wavelength or η(z) << λ.  

As mentioned before, this means that wavelengths must be in orders of 
Nx102 and amplitudes in the order of less than 5x100. The solution to the 
linearised equation of the system is known and shown in equation 3.22. 


Another useful parameter with which to calculate the applicability of wave 
theories under low amplitude circumstances is shown in Equation 3.23, a 
parameter known as the Ursell number.


3.16

3.17

∂φ
∂xi

= Δa(x, z, t) → 0
Δλ → 0 ≪ 1

( ∂φ
∂xi )

2

= Vφi
2 → 0

3.18

3.19

3.20

3.21

∂η
∂t

= w

∂2φ
∂x2 + ∂2φ

∂z2 = 0

∂φ
∂t

+ gz = 0

∂φ
∂z

= 0

3.22
φ(x, z, t) = ωα ( Cosh[k * (d + z)]

Sinh(k * d ) ) Cos[(ω * t) + (k * x)]
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	 The Ursell number relates the depth at which a wave moves, its 
amplitude, and wavelength. If the Ursell number is smaller than 100 then the 
linear theory can be used, as the non-linearities of the wave system are 
small and irregular crests are not important. If any swell system satisfies the 
conditions of low amplitude and the Ursell number [59], as in the 
dimensional requirements of Figure 3.3, then it can be treated as a fairly 
linear wave. Figure 3.5 and Table 3.1 show the relationship for several swells 
using the Ursell and Fenton formulations.


3.23
Uursell = Hλ2

δ3

T(s) Max H(m) Depth hd (m)

20 3.55 281

19 3.2 252

18 2.8 225

17 2.5 200

16 2.2 175

15 1.9 153

14 1.65 131

13 1.4 112

12 1.2 94

11 1 78

10 0.8 63

Table 3.1. Values for long swells at infinite 
depths that satisfy the Ursell condition of 
linearity.
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3.1.5 Open sea conditions


	 An open sea environment offers special conditions for the solution. 
The term related to the hyperbolic functions in equation 3.22 can be 
rewritten, as in equation 3.24.


	 If we consider that the average depth of open ocean basins is 5000m 
at the central point and 3800m at the continental borders [67], then the 
exponential ratio can be approximated as 1 at large depths. Large depth 
conditions occur when depths are several orders bigger than z in equation 

3.25. The function that satisfies equations 3.18 to 3.21 in the open ocean is 
3.26. 


3.24
φ(x, z, t) = ωα (ekz 1 + e−2k(z + h)

1 + e−2kz ) Cos[(ω * t) + (k * x)]

3.25
h → 1x103 ∴ 1 + e−2k(z + h)

1 + e−2kz → 1

Figure 3.5: Values for different long swells that can satisfy the Ursell 
equation in the open ocean.

Amplitude and depth conditions for long linear swells
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	 The expression 3.26 tells us how a linear wave like a swell system 
behaves when travelling across the ocean. Here the velocities can be 
obtained as derivates of φ in its components, which is shown in equations 

3.27 and 3.28, where the z component must add a term if the waves are 

under a constant current U that varies with the depth z.


	 The velocities will decay to near zero at half the wave system 
wavelength. These trajectories are approximately circular if we neglect a 
small contribution from the Stokes drift. The trajectories and the velocities tell 
us that a linear swell like systems will have velocities in x and y balanced and 
with a phase displacement of aπ/2 as in equation 3.29.


3.1.6 Transitional water depths or continental shelf conditions


	 After entering the continental shelf, propagated waves will exhibit a 
transitional depth behaviour. This change in the wave properties can be 
expressed by the wave equation in 3.22. However the depth difference will 
modify the potential equation, and velocities are then expressed by the 

modified derivates of φ, as in equations 3.30 and 3.31.


3.26φ(x, z, t) = ωαekzCos[(ω * t) + (k * x)]

3.27

3.28

Vφz = ωa
k

ekzCos[(w * t) + (k * x)] + U(z)

Vφx = ωa
k

ekzSin[(w * t) + (k * x)]

3.29
Vφx(x, z, t) = Vφy (x, z, t ± απ

2 )

3.30

3.31

Vφx(x, t) = ωα ( Cosh[k * (d + z)]
Sinh(k * d ) ) Sin[(ω * t) + (k * x)]

Vφz(x, t) = ωα ( Sinh[k * (d + z)]
Sinh(k * d ) ) Cos[(ω * t) + (k * x)]
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Wave interaction in these regions will reach the bottom of the seabed and 
then its trajectory profile will be ellipsoidal. The main difference will be not 
only the particle trajectories, but the velocity component Vφx will be the 
principal component as the Vφy component will vanish, z~hd. This can be 
seen as the Sinh term and the Cosh term converge to values such as one 
and zero as in equations 3.32 and 3.33.


	 The velocities in the open sea are directly proportional to each other, 
which implies that for a swell like system with low amplitude propagation Vφx 
~ Vφy, the velocity field is also conservative. This means there will not be 
variation as long there is no energy dissipation or this dissipation is minimal. 
We can see the behaviour of the ratio of the velocities mentioned for the 

open sea waves and the transitional waves in Figures 3.6 and 3.7 below. The 
ratio of both will tell us how much kinetic energy will penetrate the velocity 
field below the ocean surface.	 


3.32

3.33Vφx = ωa
k

ekzSin[(w * t) + (k * x)] + U(z)

Vφz = ωa
k

ekzCos[(w * t) + (k * x)]

Figure 3.6: Velocity field ratio of maximum 
velocities for an open sea linear wave.

Figure 3.7: Velocity field ratio of maximum 
velocities for linear waves at transitional 
waters.

Ratio of maximum velocities Ratio of maximum velocities
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3.1.7 The energy carried by a wave


	 The energy of any fluid that is set in motion is expressed as the sum 
of potential, kinetic, thermal, or chemical energy. Variation in the fluid energy 
is given by the gradient on equation 3.34, as in [32]. The equation represents 
the balance of a fluid moving across the sea basin. In this case, the change 
in velocity of the fluid must be equal to the change in the thermodynamic 
energy and the potential energy of the fluid.


	 As swell systems propagate around the globe, the zone of 
propagation can vary drastically in its temperature. Generating swell 
systems in the Antarctic/Artic can reach temperatures lower than 0 degrees, 
and they will later move to zones of tropical seas with temperatures above 
20 degrees at the sea surface. 


	 As density and energy play an important role in the fluid energy 
exchange, the term dw could be important for its propagation on a macro 
scale. However, swells under relatively local circumstances of propagation 
will not have any important thermal exchange. If we neglect the terms 
related to thermal and chemical gradients, then dw ~0 in equation 3.34. 

After neglecting the term dw we obtain the energy balance in equation 3.35. 

	 The partial derivate of the velocity vectors defined by equations 3.28 
and 3.29 is zero, and this relationship then gives us equation 3.36.


	 The equation 3.36 can be rewritten as a new expression using the 
cross product rule of vector calculus. The obtained simplification allows us 
to rewrite it using a rotational term for the velocity; however, if the fluid is 

3.34∂V
∂t

+ (V ∙ ▽ ) V = − dw + g

3.35
dw = (Tds = 0) + Vdp ∴ ∂V

∂t
+ (V ∙ ▽ ) V = − Vdp + g

3.36∂V
∂t

= 0 ∴ (V ∙ ▽ ) V = − Vdp + g
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governed by a potential function as in equation 3.12, then we obtain 
equation 3.37.


	 We can now say that the cross product is zero, and then express the 
velocity that is the volume as a unit of mass between the sea density in 
equation 3.38.


	 Then we multiply by the density on both sides and we remain sure 
that the change in gravity due to the column oscillation is small. Equation 
3.38 converts into 3.39, taking into account that the pressure change 
depends on the amplitude variation.


	 Equation 3.39 tells us that, for a defined wave system, by the 
properties of equations 3.18 to 3.21, under open ocean conditions where 
λ<2a, with maximum height expressed in Figure 3.5 and Table 3.1, and 
following the limits of small amplitude and local changes in propagation with 
a minimum exchange of energy, our wave can be regarded as an exchange 
between its potential and kinetic energy. To obtain the whole energy of the 
long wave particles moving, we must integrate into the column from the 
wave mean depth hd and later through the whole wavelength λ as in 
equations 3.40 and 3.41. 

 As both equations are reciprocal, we obtain 3.42.


3.371
2 ▽ V 2 − (V × ▽ ) V = − Vdp + g

3.38(V × ▽ ) V = 0 ∴ 1
2 ▽ V 2 = − dp

ρ
+ g

3.391
2 ▽ ρV 2 = − ρgz

3.40

3.41

∫
hd

0 ∫
0

λ

1
2 ▽ ρV 2d xdz = ∫

hd

0 ∫
0

λ
− ρgzd xdz

∫
hd

0 ∫
0

λ

1
2 ▽ ρV 2d xdz + ∫

hd

0 ∫
0

λ
ρgzd xdz = 0
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	 It is necessary to say that as waves move through a basin beyond 
4000km [51] there is little attenuation. This means energy is conserved if it 
does not interact with other ocean phenomena. Other phenomena that can 
cause wave energy to change in its propagation are diffraction and shoaling. 
These energy exchanges can be disregarded, if we assume the propagation 
of the local wave over a distance x incurs a very minimal energy loss. Then 
the wave at the locality of propagation on large scales is considered a 
conservative energy phenomenon.


3.2 Wave propagation after obstacles 

	 Waves propagate radially from the point of origin, be that a storm 
system or an earthquake. After leaving the open sea basin where conditions 
are hd>>λ that give rise to equation 3.24, they will change its physical 
properties as we have mentioned before. These changes will produce a 
variation in the wave characteristics, as they propagate over the shelf and 
obstacles. Over the next pages, the theory behind this interaction will be 
developed. Some analytical formulations will be reviewed and also their 
range of application. The formulations will be used to propose a new 
analytical formulation to model wave propagation over an obstacle from 
depth waters to transitional waters. 


3.2.1 Long wave propagation after a seabed level change under 
non-variant frequency


	 If long waves that satisfy conditions λ>>hb, λ>>a, the Ursell number, 
and equations 3.40 to 3.42, they can be modelled as linear swells. Linear 
long swell like waves can be modelled using Lamb formulation [68], wherein 
waves propagate perpendicularly to an obstacle through a canal of fixed 
width. The canal proposed by Lamb has a constant width b, without radial 

3.42E[φ(x, z, t)]Total = E[φ(x, z, t)]pot + E[φ(x, z, t)]kin
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spreading [∆s=∆rθ]~0 or interaction with the walls. Waves will cross a 
section at x=0 with an abrupt depth change, as hd<λ, also ∆h<λ. We can see 

this in Figure 3.8.


	 The conditions imposed by λ>>hb state that only very large wave 
systems can use this formulation, and the wavelengths of these wave 
systems will be two orders of magnitude larger than the shelf mean depth. 
Using these conditions, we can reduce the wave solution to a simple system 
as in equation 3.43.


	 The system depicts three long waves, one travelling from [-∞, 0], φi, a 
reflected wave from [0, -∞],φr, and a transmitted one from [0, ∞]φt. Without 
loss of generality, we can say that the solution for the three waves is shown 
in equation 3.43. The wave amplitude z is a function of x and t in 3.44.


Figure 3.8: Model proposed by Lamb to study wave propagation after crossing a regular 
obstacle. Here ai and at are the reflected and incident wave amplitudes.

3.43φi(x, z, t) + φt(x, z, t) + φr(x, z, t)r = 0

3.44
z = f(t − x

c )
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	 From equation 3.43 we can conclude that three solutions are needed, 
one for a reflected wave f1, a transmitted wave f2, and an incident wave f3, 

as in equation 3.44. Those solutions must satisfy that the wave amplitude is 
the same at x, y=[0, 0].


	 The solutions have certain restrictions. On the right side, we only have 
incident waves at very long distances from the obstacle. Meanwhile, on the 
left side, we only have waves radiating to the shallower region. Another 
important aspect of this formulation is that continuity of the fluid surface 
needs to suffice at x=0 for the fluid. The continuity must also satisfy 
geometrical constraints as in equation 3.45; constraints of the continuity are: 
the depth where the waves propagate hn, the canal breadth bn and the 
wave's phase velocities cn.


	 The term cn is the wave celerity and by combining equations 3.44 and 
3.45 Lamb’s solution is then obtained, as we see below in equations 3.46 

and 3.47 and plotted in Figure 2.21 in Chapter 2.


	 The generality of the solution found by Lamb also tells us that the 
wave energy will be split into a transmitted and an incident wave energy. If 
we look again at equation 3.43 and then we use Lamb’s assumption, we get 
equation 3.48.


3.44
f1(t − x

c1 ) + f2(t − x
c2 ) = f3(t − x

c3 )

3.45gb1h1
c1

f1(t − x
c1 ) − gb2h2

c2
f2(t − x

c2 ) = gb3h3
c3

f3(t − x
c3 )

3.46

3.47Kt = 2
1 + (h2 /h1)(1/2)

Kr = 1 − (h2 /h1)(1/2)

1 + (h2 /h1)(1/2)

3.48Eφi(x, z, t) − Eφr(x, z, t)r = Eφt(x, z, t)
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Wave energy is frequency-dependent, so a split in the overall energy due to 
the obstacle/wave interaction indicates that frequency must not be the same 
for both the propagated and the reflected wave. Lamb’s statements 
expressed by equations 3.46 and 3.47 are however frequency independent. 
As Tshift~0 the formulation shows some inconsistencies that have been 
observed by several authors, as mentioned in Chapter 2. 

3.2.2 Long wave propagation after an uneven seabed level change 
under non-variant frequency at finite depth


	 Lamb addresses wave transmission under regular obstacles, but 
bathymetry in open sea can be more complex. Obstacles range from rocks 
of a few metres, jumps of several dozens of metres, and sudden walls of 
more than hundreds of metres that cover the ocean floor. The result of this is 
an intricate system of wave reflections and transmissions from the ocean 
basin to the coast. Solutions for bathymetric anomalies under long-wave 
and shallow water conditions are known and these methods are based on 
the solution of the equations under shallow water conditions. The proposed 
system that has been addressed by Xie et al. [84], Bender [95], and Jung et 

al. [83] uses solutions of the shallow water equation, as seen in Figure 3.9 
and equations 3.48 to 3.50.


Figure 3.9: Wave propagation model using shallow water equations. The sea bottom is split 
into regions with depths hb, h1, and h2.

3.48z1 = adeik1x + ar1eik1x
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	 In this method, if we assume a solution in the form of equation 3.12, 
which is a general form of a solution, the amplitudes ad, ar1, at1, ar2, and at2 
are the amplitudes of the incident wave ad, and the transmitted and reflected 
waves through the basin. Then we have a system of n equations that must  
be satisfied, as with Lamb’s continuity at the jumps. The system of 
equations can be expressed as a matrix system. The solution that depends 
on the obstacle shape is shown in equation 3.51 by Xie.


	 Ιn this scenario hd=h0, s21=(h2/h1)1/2, s10=(h0/h1)1/2, and θ=2s01πN 

(Ν=obstαcle length/λ). The method has been tested analytically only for 
limits on which depths range from 20-60 times λ, and values like this restrict 
its application for wave periods below 19s in waters not larger than 30m. 

However, numerical studies by Dean [96] and Bender [95] suggest a 
relatively good agreement in ranges with shorter wavelengths as λ<9.42hd.  
The suggested values put Lamb’s formulation in a transitional water regime. 
To obtain the expression for the transmitted wave, we take the conservation 
of energy. This expression comes from the continuity relationship in the 
Lamb formulation. The surface must stay continuous around the bathymetry 
jump on any obstacle. We assume the reflection near the x=0 jump is 
inelastic so energy is conserved. From the energy conservation for the wave 
system energy, we have equation 3.52. 


	 The solution is simple as we only require the same assumption made 
by Lamb, Cho, and Xie that the amplitude does not depend on the 
frequency. The formulation implies then that ki~kr~kt. We require losses to 

3.49

3.50

z2 = at1eik2x + ar2eik2x

z3 = at2eik3x

3.51

Kr =
(s21 − s01)2 + 1

2 (1 − s2
01)((1 − s2

21))(1 − Cos2θ )

(s21 + s01)2 + 1
2 (1 − s2

01)((1 − s2
21))(1 − Cos2θ )

1/2

3.52E[φi]kin + E[φi]pot = (E[φr]kin + E[φr]pot) + (E[φt]kin + E[φt]pot)
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be minimal so that the energy flux is conserved. The transmitted wave 
energy must be the remainder of this energy exchange. Then, we know the 
Laplacian of the potential must be zero after and before the obstacle, at 
least outside the locality of the jump discontinuity, as in equation 3.53.


	 Using this simple relationship we can conclude that at the jump zone 
the energy disregarding dissipation effects must be conserved, and then the 
solution for the transmission must be equation 3.54.


The solution tells us that the wave transmitted must be smaller than 
our incident wave, and this condition is given if no change in frequency is 
allowed. However, the frequency problem is still missing as propagation 
around the jump is regarded as frequency invariant. 

3.2.3 Long wave propagation after a seabed level change under 
variant frequency in shallow and transitional waters


	 As Goring and other authors have shown, even in cases where the 
characteristics are given by wavelengths larger than the propagation depth 
λ>>h, a shallow-water basin, as in λ/h>20, and amplitudes a<<λ, a 
frequency change is presented. Frequency change after propagation could 
arise due to several factors such as energy losses after transmission, 
border-shelf interaction, non-elastic collision against the shelf, or other 
mechanisms of the abrupt change of depth. These mechanisms will modify 
the energy of the wave transmitted, as Naghdi and Marshall suggest [88]. 
The Naghdi and Marshall’s formulation uses an Eulerian reference frame. As 
the solution using Eulerian theory requires a moving frame of reference, the 
frame is given by functions defined under the basis vectors e1i, e2j, and e3k. 
The main theory behind the fluid model and physical terms can be found in 

3.53▽ ∙ φ2 = 0 & E[φ]kin = 1
2 ρ ▽ ∙ φ2 ∴ ∮ E[φ]kin = 0

3.54E[φ]pot = ρgz & z = Aneiki x ∴ Re[eikr x − Kr ∙ eiknx] = Re[Kt ∙ eikt x]
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Green and Marshall’s earliest works [97-77], where every part of the fluid is 
defined by a layer that moves tangentially to the sea bottom. The layers that 
move cause the wave oscillations that are defined by their velocity in any of 
the main directions (e1i=x, e2j=y, e3k=z). The model can be seen in Figure 3.10. 


	 In the Eulerian representation, every function of the velocity is related 
to a vector in the direction of this velocity, and then our system consisting of 
a function f that varies on (x,z,t) can be represented as a function consisting 
of three vectors. The formulation that models this can be seen in equation 
3.55.


	 Here the functions w0, w1, and w2, as defined by Green and 
Naghdi ,are functions in the form of φ(x,z,t), and these functions from the 
Lagrangian theory are used to derive the small-amplitude long-wave 
equations on infinite and finite depth. Solutions are related to the ones in 
equations 3.8 to 3.12. As we can see, our hyperbolic functions are the same 
as in classical Linear theory. The advantage of this system is that it can be 
defined for non-linear water waves. In the Eulerian system for directed fluid 
sheets the hyperbolic functions depend on z and the depth they move in 

Figure 3.10: Green and Marshall’s model based on the directed fluid sheets theory. The fluid is 
divided on individual sheets that have associated vectors enj  for each direction.

3.55Vφ = w0 + w1Cosh[a(z + h)] + w2Sinh[a(z + h)]
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h=hd. Then our wave amplitude is defined by z=B(x,z,t), and thus our swell 
height ratio to jump depth ratio is small, Hs/H~0. Then z+h=(B(x,z,t)-h+h)~0. 
The velocity can be defined as below for the directed fluid sheets theory 
derived from Naghdi and Green, shown in equation 3.56.


	 The relationship in equation 3.56 comes from the small amplitude 
requirement as in Lamb and others. However, it extends its application to 
arbitrary depths. The conditions for the jump are similar to those in Lamb’s 
and Naghdi and Green’s formulations, so they must satisfy that the wave 
surface must not break at the discontinuity. This is assumed because if it 
happens it will also break the small amplitude, suggesting that our wave 
entered shallow waters. The other conditions are that the force exerted at 
the jump must be different from 0 and the derivate of the function must be at 
least analytical at the locality from both sides. The expressions for this are 
shown below.


The first condition is in Lamb’s continuity, where the wave system passing 
the step must be continuous and not break at the surface in equation 3.57. 
This condition also states that the fluid must be conserved as it passes over 
the step. The solution for the wavenumber of the wave train’s propagation 

over the obstacle can be seen in equation 3.60, as obtained by Naghdi and 
Marshall.


3.56Vφ = w0 + w1(z + h)

3.57

3.58

3.59

φ′ x+→jump = φ′ x−→jump

Fjump ≠ 0

w11Sinh[a(z + h)]
k x+→jump

= w11Sinh[a(z + h)]
k x−→jump

3.60

k2 = hk2
1

H (1 + 1
3 k2

1 h2 − 1
3 k2

1 h H)

1/2
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	 This solution satisfies for terms that are, as we said earlier, k1h1~0 or 
k2H2~0. Another useful relationship for this case is that the wave numbers 
are related as follows in equation 3.61.


	 The decomposition says that any x value greater than 0.9 at Sinh and 
0.5 at Cosh will have more than 10% deviation from using just the kH value. 
We can then calculate that at operational depths between 70m to 50m our 
wave height is limited under this theory to β=0.5m. The limit can be a long 
swell with high dissipation from the open sea but amplitudes for shorter 
wavelengths offer a very limited range of application. Given conditions for 
kh<0.5 in equation 3.61, our wavenumber depends on the obstacle depth 
ratio. For waters where the wavelength is extremely high with periods 
between 19s to 20s at depths of 50m to 30m, we can reduce the 
denominator as khn~0. The overall value of the denominator is Η(1 +γ) 
where γ~0 the wavenumber relationship is given by equation 3.62.


Equation 3.60 suggests that the wavelength will increase in some cases 
depending on the wavelength and the depth ratio values defined by γ. The 
relationship is known to hold locally mathematically, but has not been 
subjected to more precise experimental tests to the author’s knowledge. 
However, we can see that wavelength will increase after the jump. The 
increase will occur for values ranging from 1/10 of the original depth to 1.4 
times the original depth. The depth ratio for this sudden increase to occur 
places the waves into transitional to deep waters systems. This can be seen 
in Figure 3.11 and Table 3.2 where values for the incident wavelength value 
are in the range k1=[ π/3 , 4π ], and initial depth hd=h..


	 The characteristic wave amplitudes in the order of 1x10-1 make 
Naghdi and Marshall’s formulation limited for a big part of the wave 
spectrum, since waves with smaller lengths need very small amplitudes. As 

3.61k1Tanh[k1h] = k2Tanh[k2H ]

3.62k2 = k1 (h /H)1/2
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ocean waves can retain the linearity at higher values of wave amplitude and 
propagation from deep waters to transitional is not addressed, the next 
pages explain a simple analytical formulation to address this.


3.2.4 Long wave propagation after a seabed level change under 
variant frequency from deep waters


	 We must address the physical problem of long wave propagation 
from the open sea to the continental shelf to understand the possible effects 

Figure 3.11: Variation of the transmitted wavelength ratio λ2/λ1 depending on the obstacle 
obstruction and the incident wavenumber k1.

λ1(m) λ2/λ1 
H=1/6h

λ2/λ1 
H=2/6h

λ2/λ1 
H=3/6h

1 1.6 1.9 1.9

1.5 1.28 1.4 1.4

2 1.13 1.18 1.14

2.5 1.06 1.06 1

3.0 1 1 0.93

Table 3.2. Values for the wavelength 
transmission using equation 3.60.

 H=1/6h 
H=2/6h 
H=3/6h

Wavelength propagation over an obstacle
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on engineering structures installed near bathymetric jumps. The previous 
solutions developed by several authors work in relatively shallow waters, so 
a solution to the problem requires an approximation for the propagation in 
cases where the wave transmits from depths λ/hd<2 to λ/hd>2. As 
engineering devices will be installed at λ/hd>20, one needs a formulation 
addressing these depths that is able to describe the frequency and 
wavelength shift. To address this problem we start with the wave equation in 
open waters where again H<<λ must hold or H~1x100 for λ~1x102 in the 
orders of magnitude. We also require continuity at the surface, energy, and 
mass conservation, as in equations 3.63, 3.64, and 3.65 below.  

	 Now we take an energy balance approach. We know the total energy 
of the wave system, disregarding losses, must be a sum of the wave kinetic 
energy and the wave potential energy in equation 3.66.


If the energy is equally distributed and losses are minimal, we can 
define an integral to apply the energy balance. We assume the length of the 
interval is ∆x<λ and ∆t<T,  and during this interval length the energy must be 
conserved at any two points in the same fluid streamline. The streamlines 
that pass through two fluid layers points, (x1, z1, t1) and (x2, z2, t2), must have 
the total same energy. Given any oscillating wave, the fluid particles over the 
fluid surface and the different sheets that compose the fluid continuum can 
be described as lines. The lines will behave as individual formulations for a 
wave moving in a chord. Every part of the fluid will oscillate at the function 
that defines the wave equation that we have described as having solutions 
as equations 3.22 and 3.24. The fluid lines oscillate at conditions given by 
low amplitude and infinite depth on the incident side, and low amplitude and 

3.63

3.64

3.65

	E[φi]kin + E[φi]pot = (E[φr]kin + E[φr]pot) + (E[φt]kin + E[φt]pot)
φi(x, y, z, t) − φr(x, y, z, t) = φt(x, y, z, t)

[ηi + ηr]x→0+ = [ηt]x→0−

3.66E[φ]kin = 1
2 ρ ▽ ∙ φ2 ∧ E[φpot] = η(z)gρ ∴ E[φ] = ∮ E[φ]kin + ∮ E[φ]pot
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finite depth on the transmitted side. If the same particles also satisfy the 
linear conditions, thus proving the Ursell number is small enough, they can 
be regarded as linear. Given these conditions, they will also satisfy the 
energy equation, 3.64. The physical formulation can be seen in Figure 3.12, 
and the energy then can be regarded as having the expressions for kinetic 
and potential energy as in equation 3.67, where terms are integrated around 
an indefinite volume V, where dV is the total derivate around the wave 
contour from z=[λ/2, 0], x=[0, λ]. 

	 For a stream of fluid oscillating from the negative side of the plane x 
the contained energy is the same, and the energy between a maximum 

potential and kinetic energy are both equal, as in equation 3.68, for the total 
wave energy.


	 As it must suffice for the two arbitrary points in the stream, we can 
express any stream energy as equation 3.69.


3.67E[φ] = 1
2 ρ ∮ ▽ ∙ φ2dV + ∮ η(z)gρdV

Figure 3.12: Model proposed for wave transmission under variant frequency and arbitrary 
obstacle length. Here the functions φn define the wave function for n={ i, r, t } that are the 
respective incident, reflected, and transmitted waves, here hd=H.

3.68∮ ▽ ∙ φ2dV = ∮ η(z)gρdV

3.69▽ ∙ φ2 = η(z)gρ
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	 We also know that the total energy of the incident wave must be 
equal to the transmitted wave energy and the reflected wave energy as in 
equation 3.64, with no dissipation processes given by possible vortexes and 
turbulence at the border of the shelf or obstacle. This relationship is 
expressed in equation 3.70.


	 We know by the mass conservation that the fluid transmitting energy 
to x→∞ is the area between z=[0, hb]; meanwhile, the area from z=[hb, λ/2] is 

the fluid energy that bounces back. This can be seen in equations 3.71 and 
3.72.


	 The index refers to the incident wave, as the energy of the 
propagated wave will be calculated using the incident total energy we 
mentioned. This is, regardless, just an approximation that can only be 
sustained under small amplitudes at large wavelengths as we mentioned 
before. The diagram of the system can be seen  in Figure 3.13 at next page.


	 We know that the potential energy is equal to the kinetic energy in a 
wave with almost no dissipation, so energy is equally distributed between 
the three waves. Then the total energy of the three waves for each 
streamline satisfies all the wave positions after the jump. We can express the 
total energy as the energy of each streamline as in equations 3.73 to 3.75, 
where βn=(a*g)/w, τn=ekzCos(kx-wt) and n=i,r,t. 

3.70E[φi] = 1
2 ρ ▽ ∙ φr2 + ηr(z)gρ + 1

2 ρ ▽ ∙ φt2 + ηt(z)gρ

3.71

3.72

E[φt] = ∮
0

hb

ηi(z)gρdV + ∮
0

hb

▽ ∙ φ2
i dV

E[φr] = ∮
hb

λ/2
ηi(z)gρdV + ∮

hb

λ/2
▽ ∙ φ2

i dV

3.73
∮

0

λ/2
E[φi]kin = ∮

hb

λ/2
E[φr]kin + ∮

0

hb

E[φt]kin
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If we take the next steps, we integrate along the depths of each fluid 
mass that is transmitting energy, and we consider that the reflected wave 
energy is equal to the wave energy flow that is obstructed below the 
obstacle, and thus calculate the integrals assuming continuity at the surface, 

we get equation 3.76. 

As we know st and si are just the surfaces of our waves at s=0, 

changing the integration limits will give us the same relationship. But now hb 

3.74

3.75
∫

0

λ/2

βi

2 ρ ▽2 τi = ∫
0

hb

βt

2 ρ ▽2 τt + ∫
0

λ/2

βr

2 ρ ▽2 τr

λn

hd
< 2 ∴ ∫

0

λn /2
E[φn]kin = ∫

0

λn /2

ang
2ωn

ρ ▽ (eknzCos(knx − ωnt))2

3.76ai2e2ki(si−hb) = at2e2kt(st−hb)

Figure 3.13: Model proposed to calculate the wavelength transmission of a wave propagating 
over a regular obstacle. Arrows show the energy flow of the incident (blue), reflected (green), 
and transmitted (red) wave trains interacting at plane x=0.
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is positive, the difference is just the depth below, the solution to which gives 
the next relationship for our wavelength in equation 3.77. 

	 We can recognise the term ai/at as the inverse of the relationship for 
the transmitted wave amplitude, as found by Lamb [68], Naghdi and 
Marshall, [88] and the extreme cases for Xie et al. [84]. We need to infer a 
wave amplitude as a starting point to obtain an iterative method and, for 
this, we use the Naghdi and Marshall theorem on wave transmitted 
amplitude for non-linear waves at an arbitrary depth. Then we get equations 

3.78 and 3.79 and kt calculated from the Naghdi-Marshall or Lamb 
formulation. 

	 As we can deduce from the expression, the wavelength change 
depends on the amplitude transmitted, as Kt~1 then  λi~λt. The expression 
relates a potential energy property as the amplitude with a kinetic energy 
property as the wavelength. The formulation found shows that the term ln(1/
Kt2) will define the wavelength, and as At grows larger the ratio of 1/Kt2 will 
decrease, thus making the ln a larger negative number. Larger values of at 

will make the denominator larger, and this will decrease the transmitted 
wavelength.


3.3 Model Limitations and Applicability 
	 The model presented here consists of simple geometrical constraints, 
trying to find an approximate close solution to the problem of wave 
propagation. However, the model presents some characteristics that limit its 

3.77λt = −4πhb

ln(ai /at)2 − (4πhb /λi)

3.78

3.79λt = −4πhb

ln(1/Kt)2 − (4πhb /λi)

Kt = At

Ai
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application; the model limitations are physical, mathematical, and also 
methodological.


3.3.1 Mathematical limitations

	 The expression derived here in 3.79 can not be solved by itself, 
requiring a value for the transmission coefficient or the transmitted 
amplitude. In this case, our function f depends on Kt, hb and λi, where only 

hb and λi. can be known.  
	 Here Kt should be calculated using the Lamb or Naghdi-Marshall 
formulation. To calculate Kt the function g from equation 3.47 the solution for 
Naghdi-Marshall needs to be used. After this, the solution can be used in 
3.79. The solutions for Kt, and our model have a condition that does not 
coincide, which is for Lamb and Naghdi-Marshall    λ<< hb and for the model 
presented here λ> hb. However, the studies carried out by Newman probe 
that these solutions could work when the incident wave depth is larger or hb 

→∞, and it is possible that the solutions of our formulation diverge as the 
incident depth grows.

	 Another limitation of the model is related to the depth of propagation 
and the assumption of linearity for the transmitted wave. As the depth of 

propagation is reduced hb →0, the wave amplitude should grow and then the 

linear theory would not apply for the transmitted wave. In this case, as Kt 
increases, the formulation would not work and then it is limited to small 
transmitted waves. The limit for this is not proven in this thesis. 

3.3.2 Modelling assumptions 

	 The model specifically addresses a single wave transmitted and a 
single wave reflected. As is reported from other experiments, such as K. 
Szmidt’s, the production of harmonics can start at relatively large depth to 
wavelength ratios in transitional water depths  (hd/λ)=1/8.  
	 It is expected that as the ratio of immersion (difference between the 
obstacle depth and the propagation depth) decreases, harmonics will 
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increase their size, as observed by Tin C. et al. As the model and 
experiments do not take into account the possibility of harmonics, it is 
probable that amplitudes could be contaminated with large harmonics of 

different frequencies as the obstacle depth decreases ht→0. As problems 
related to waves propagating in shallow waters are expected, the 
experiments and model will work with depth to wavelength ratios above 
those used by other experiments. To conclude, if they are important for the 
modelled waves, the parameter obtained by Tin C. et al. will be used in each 
case.

	 Another important limitation is the apparition of eddies in the corners of 
the obstacles, as reported by Takano. The eddies will dissipate energy, 
making the energy conservation assumption null, and might introduce other 
non-linear mechanisms which are not explored in this work. In the 
model ,another process that could be important is the relative length of the 
obstacle due to shoaling, which is assumed to be negligible for the 
experiments in Chapter 4. However, it is known that large obstacles will 
likely cause more bed friction and, in expectation of this, a series of 
experiments with a variable obstacle length were also run.


3.3.3 Model applicability

	 The model applicability depends on three key assumptions made:

 
1. Incident waves move from depth waters hd/λ=∞ to finite depth waters ht/

λ>1/2hd but no shallow water conditions λ<(1/20)hd. In this case, the models 
of Lamb and Naghdi-Marshall had been proven to work when incident 
waves move from deeper to finite depth waters, but only with obstacles 
under relatively shallow waters. The models and experiments analysed here, 
do not work with larger depth and wavelength ratios, leaving the range ht/

λ=[1/2-1/7] unexplored. As the wave dynamics conditions change when 
moving to deeper waters, the conditions for propagation are explored in our 
model and further experiments.
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2. Waves modelled here do not present harmonics with a large energy shift 
(amplitude peak)  after the wave propagates. This is derived from the depth 
of submergence (ht/hd) as explored by Ting et al. In this case ratio of (ht/hd) 
it is large enough. 

3. Waves have a small amplitude after and before the obstacle, so they can 
satisfy the linear wave equation, before and after the obstacle. In these 
cases, the transmitted wave can not grow extremely large. It is possible that 
certain ratios of Kt will not comply with the proposed model.


3.3.4 Model improvements

	 The model presented here is not a complex numerical model, and 
despite its simplicity can offer fast solutions within a valid range of depths 
and wavelengths. Some advantages compared to the models of Lamb or 
Belibassakis and Athanassoulis are:

• It is faster and easy to implement in code than the finite depth water 

methods used by the authors [83], [84], [85] and [86].

• It provides an analytical solution for cases which can suit normal 

operational conditions for devices in the open ocean. These conditions 
include depths of interest for marine energy applications while covering 
normal wave weather conditions. Others models only apply to tidal waves 
and near shore conditions.


• The solution does not depend on the wave order or shape as long the 
physical conditions remain valid. 


3.4 Wave properties after propagating over an obstacle 

	 In the last two sections, we reviewed the range of applicability. We 
also developed some important formulations that can be used to describe 
its propagation under certain conditions, and also its mathematical 
background, which will be used to study how the waves propagate after a 
sudden change of bathymetry. These changes must resemble jumps on the 
seabed and the wave systems will resemble long swell waves. The main 
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changes in the wave parameters will be in amplitude and frequency, both of 
which will have several impacts on the forces and loads that our devices will 
be subjected to under the sea surface. In the case of the tidal turbines, it is 
expected that the change in the fluid field velocities, will have an overall 
effect on the hydrodynamic performance of the fluid capturing structures. 
The effects of changed properties will be addressed in the next paragraphs, 
as well as the range of applicability for the wave amplitude change 
theories.3.4.1 Wave theories and their range of applicability depending on 
their wavelength. Lamb’s model, and those of Jung et al., Xie et al., and 
others, predict a change in the wave amplitude depending on the jump 
height ratio. All models under relatively low amplitude conditions show that 
regimes will depend on the depth of propagation. As with Lamb and Xie et 
al., the ratio of wavelength/depth where the model is proposed to have 
validity is around 0.3, according to Newman’s results. The value of this ratio 
defines our operational depths in shallow waters. Depth values could range 
from 40m to 30m, for wavelengths above 500m. The results of these 
theories could only be applied effectively to very large swells with 
wavelengths larger than 1/6 of the depth. Results by Naghdi-Marshall 
extend this to transitional waters. In our case, using energy conservation, we 
can propose a range where it can hold as long as the wavelength is shorter 
than the depth before the obstacle. The range is shown in Figure 3.14.

Figure 3.14: Proposed range of applicability for the wave theories according to their 
wavelength to depth ratio.
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	 In the case of the Nahgdi-Marshall formulations and the energy 
balance model, both are independent of the wave shape.


3.4.1 Wave frequency and wavelength changes


	 Operational circumstances can change if we place our turbine after or 
above a bathymetry rise. As cyclical load magnitudes will depend on the 
amplitude magnitude, then wave loads will increase proportionally after 
propagating over the obstacle. The increase in the loads and forces is 
expressed in equations 3.80 and 3.81.


	 As such, the function defining the potential for the waves will be a 

function of w and k as in equation 3.82 and then at conditions where variant 

frequency applies. Here, φ’ is also a function dependent on variables (x,y,z) 
and also its angular frequency w and wavenumber k. Then the velocity and 
force oscillation will be as in equations 3.82 and 3.83.


	 The solutions will define the periodicity and strength of cyclical loads 
and their impact on the device torque and thrust. In the case of transitional 
waters for the Naghdi-Marshall model and the energy formulation proposed 
here, a wavelength increase is given at transitional/deep-water depths. A 
suggested relationship between the wavelengths and theories is shown 
below in Figure 3.15.


3.80

3.81
Finduced = ρA

∂2φ′ 
∂n2

F = m a ∴ Finduced = ρ
∂2φ
∂n2

3.82

3.83

Finduced = ρA
∂2φ′ (ω, k)

∂n2

Vinduced = ∂φ(ω, k)
∂n
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3.4.2 Wave induced velocities


	 The wave velocity field will be sensitive to the amplitude change, as 
the wave formulation states that the amplitude will be the scaling factor of 
the velocity, as in equation 3.84. Here Vφn is the element n of the velocity 
field, namely x or y, and m is the amplitude component of the incident, 
reflected or transmitted wave.


	 The orbital velocities are directly proportional to the amplitude. Under 
normal conditions for short-wavelengths below 100m, operational sites will 
be only affected by the deeper field providing the rotor is close to the central 
part of the canal. Waves with larger amplitudes and longer wavelengths will 
have a bigger effect on the field below. 


Depending on the wave effect after wave trains encounter an obstacle, these 
might produce second-order waves after increasing amplitude, or produce 
transitional water waves after altering wavelength. Wave velocity, as we 
stated, is proportional to the amplitude and its cyclical variation is given by 

3.84Vφn = Am f (x, z, t, w, k)

Figure 3.15: Diagram of water 
wave theories and proposed 
theor ies fo r wave length 
c h a n g e a f t e r w a v e 
propagation over an obstacle, 
based on the work of Le 
Méhauté.
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the frequency of the wave. Any change to both quantities will have a direct 
impact on the velocity field below. As amplitude increases in some ranges of 
the theory, this will increase the wave velocity field proportionally to its value. 
Sudden rises in the seabed might produce a higher velocity flow at the 
upper end of the wave field. For a given situation where the frequency 
changes, the wave velocity fluctuation will increase or decrease its ratio of 
orbital acceleration. This will affect the angular frequency transmitted wt, as 
seen in formulation 3.85.


	 As the waves propagating over an obstacle will modify their 
frequency after propagation, the values after the obstacle will define the new 
loading cycle as this one will depend on the propagated frequency.


3.5 Ocean wave weather 

	 To analyse the possible effects in a real open ocean site, it is 
necessary to acquire wave data to analyse the conditions for a sea state. As 
the sea is composed of a wide range of wave frequencies, it is necessary to 
discern between highly wind-wave dominant seas and swell-dominated 
seas. Wind-dominated sea states will be defined by higher orders of non-
linear terms, which will result in steeper waves that can not be represented 
using linear theory or 2nd order. In general, steeper waves will need a higher 
order of Stokes and higher orders can not be modelled as a linear 
succession of the solutions. As being able to represent the waves in form 
φ=φ1+φ2+…φn is a necessary condition, this will break mathematical 
assumptions for our energy balance equation.


3.5.1 Buckley relationship for swell dominant seas

	 The swell height relationship offers a method by which to divide the 
sea into a wind dominant sea or a wind wave dominant spectrum, and 

3.85ω = 2π
T

∧ Ti ≠ Tt ∴ Δtωi ≠ Δtωt
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Buckley’s formulation [98] can be used here. Buckley’s algorithm and 
equation are given by empirical relationships derived from data gathered by 
the NOAA (National Oceanic Atmospheric Administration). These algorithms 
take into account the energy of the wave spectrum, the periods that 
compose the spectrum, and the dominant wave height. The formulation is 
shown in equations 3.86, 3.87, and 3.88. The significant wave height Hs in a 
sea state is calculated from the mean value of all wave heights for the larger 
1/3 of wave amplitudes. The value fp is the peak frequency on the spectrum 
and SwH is the swell height.


The algorithm states that, for a given sea state with a continuum spectrum, 
there exists a cut frequency fc that divides swell frequencies and wind wave 
frequencies. The wind wave and the swell wave frequencies have separate 
peaks of energy, fpw for wind waves and fps for swell waves. If the value 
given in equation 3.65 is equal to or lower than the wave height and the 
swell height is equal to or higher than Hs in the swell spectrum, then the 
spectrum of this condition will be a swell-dominated sea. The swell must 
necessarily be larger than wind waves and the value of WWH (wind waves 
height) must be lower than the values of the swell to represent a swell-
dominated sea state.


3.5.2 Swell and wind wave spectrum division

	 The wave spectrum is made up of constituents or a broad range of 
wave trains with different frequencies fm, as the spectrum is considered a 
continuum. The full energy of the frequencies range can be expressed as the 
integral from m=1 to n. As the energy spectrum is the integral of the 
frequencies, they can be decomposed on a discrete sum Δf as seen in 

3.86

3.87

3.88

xval = x /1000
Hs > xval ∧ SwH ≥ Hs ∴ H = SwH

x = e3.3ln( fp)
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Figure 3.16. The continuous range of this discretisation of the analogue 

wave signal forms the spectrum function, as given by equation 3.89.


The decomposition of the spectrum is given by function G, and the 
function takes the spectrum in the domain of the time and makes it a 
discrete sum. The constraints given to our swells for linearity allow us to 
recognise that as the function describing φ(x,z,t) is linear, it can be 
decomposed in a sum of solutions using G. As a linear or weakly non-linear 
swell satisfies this, any train of swells can be superimposed. The function G 
is the Fourier transform and this decomposition of the spectrum is given as 
in equation 3.89. The discretisation of the wave signal allows us to obtain 
the different frequency components, where lower frequencies will be related 
to swells.


	 We have established that a wave spectrum is a continuum, as wave 
systems will cross the sea in a radial direction to a focal point as in Figure 

3.89f =
n

∑
m=1

fm

3.90G[ f (t)] = Σ f (τ)

Figure 3.16: Division of the sea spectrum by its components is performed using Fourier 
analysis. The components for a lower frequency are the constituents of the swells propagating 
on the sea.
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3.16. Each section of the radial spectrum has a different peak frequency 
given by the wave systems that integrate that frequency, as in Figure 3.17. 


	 To find the swell frequency for each section, as shown by equations 
3.89 and 3.90 in the given sea data, a partitioning method has to be used. 
The method used by NOAA [99-79] and the WMO (World Meteorological 
Organisation) is based on the work of Gerling [100-80] and improved by 
Gilhousen [101-81]. This method is used to estimate the wave weather in the 
data used from the NDBC buoys. Wave buoys discretise the spectrum into 
ranges of values [f1-fn], and for each radial range, the spectra per square 
metre are calculated. To decompose the spectrum in a radial direction the 
given G is the directional Fourier transform over the range of Δθ as in 
equation 3.91.


	 The results for equation 3.91 will be the components of the spectrum, 
which will be divided into several Δθ angles from 0 to 360o. The transform 
function in equation 3.90 allows us to obtain the diverse spectrums, which 
will be used to calculate the energy of every Δθ. The formulation allows us to 
recognise the main direction of wave incidence, and then a spectrum 
division is used to distinguish between swell dominant or wind-driven states. 
To know the state, the steepness E must be calculated, which is defined as 
the wave height to wavelength ratio for each frequency, as in equation 3.92.


3.19
∫

θi

θf

η(t)dθ = ∫
θi

θf

[η0 +
n

∑
j=1

ajSin( jω(0)t + φj)]dθ

Figure 3.17: The different wave trains at different radial sections [A,B…Z]=Δθn will produce 
different spectrums f=Σfn for each section Δθn, depending on the incident direction.
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	 The significant wave height Hs and the length λ of each wave train 
can be approximated as a function called momentum, as in equation 3.93.


	 The ratio assumes that swells will have a lower amplitude due to 
decay after a wide sea propagation, and then wave swell steepness will be 
lower at lower frequencies (higher periods). Waves with higher periods and 
high amplitudes show behaviour that indicates that the weather system of 
origin must be close to the recording buoy. A typical wave spectrum will 
show two peaks as in Figure 3.17. The wave height where the separation of 
spectrum occurs between both peaks is calculated using a ratio of discrete 
integrals defined in equation 3.94.


	 The frequency separation will be calculated in equation 3.95 where C 
is an empirical constant and fx is the frequency and the maximum energy at 
a certain steepness ratio, as defined in equations 3.92 and 3.93.


	 The values of the frequency cut will depend on the steepness, as 
larger amplitudes will indicate an active sea, while lower indicate a swell 
dominant state. The result applied to the NOAA data sets divides the sea 
spectrum conditions that define a sea state.


3.5.3 Spectrum for a fully developed sea condition and fetch-
dependent conditions


	 Division of the swell and wind waves at any given point in the sea is 
given by the use of empirical formulations. Two widely used spectrum 

3.92E( f ) = Hs( f )
λ( f )

3.93E( f ) = 8π m2( f )
g(m0( f ))1/2

3.94
mn( f ) = ∫

fm

f1
f ns( f )d f

3.95fs = Cfx
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representations are the Pierson-Moskowitz spectrum [102-82] for a fully 
developed sea and the Jonswap spectrum [103-83] for wave growth over a 
limited fetch. Formulations can be seen in formulas 3.96 and 3.97, 
respectively.


	 Both formulations are used to create an approximate representation 
of the sea spectrum components as a continuous function fn. The Pierson-
Moskowitz spectrum assumes the sea has reached an equilibrium with the 
winds, meanwhile the Jonswapp spectrum relates the energy of the wind 
with the distance it blows continuously. In both sea states, β, r, γ, and βj are 
empirical constants and quantities derived from the measured data. Both 
formulations depend on the modal frequency f0 and their equilibrium with 
the wind. The formulations express that for a continuous wind blowing, a 
maximum frequency will be developed and the modal frequency will define 
the spectral maximum. The use of these modal frequencies to discard 
possible local induced long waves is explained more broadly in Chapter 7.


3.5.4 Swell directionality detection and propagation


	 The direction of incidence for the wave propagation is given by the 
directional Fourier transform. To detect the angle of the incident swells, a 
method using the recorded data from buoy stations was proposed. The 
method uses the buoy systems in the geographical area chosen. The 
method will be briefly explained here and expanded in Chapter 7. The 
method divides the incident waves into a discrete range of degrees on each 
buoy, using the directional spectrum data given by the used NOAA systems. 
The systems calculate the wave steepness and the conditions for a swell or 
a wind-dominated sea.  Different buoy systems are used to detect the main 

3.96

3.97
S( f ) = ag2

(2π f )5 exp(−βj (f0 /f )4)γr

S( f ) = ag2

(2π f )5 exp(−β (f0 /f )4)
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angle of swell incidence and its main frequency. The frequency and 
wavelength are then used to calculate the propagation velocity of the swell 
events, and the velocity is used to calculate the time that it takes for the 
system to propagate between two buoy systems using equation 3.98. If 
conditions are met then a swell state is said to occur at the local area of 
propagation. We assume that the swell front developed at a distance where 
the arc of propagation is wide, and then the arc can be approximated as 

Sin(θ)~θ, as depicted in Figure 3.18. 


To identify the swells on each buoy system, the data recorded by the 

systems are divided into Δθ pieces. The method of division for the incident 

swells is explained in section 3.4.2. The angle Δθ at which every incident 
wave belongs is given by the directional Fourier transform, as shown below 
in equation 3.97. The spectrum S here is a function of the frequencies f 
composing the sea state, and the angle range θ being measured.


3.98Δtn−m = Distance ∙ ( fn * λfn)

Figure 3.18: Arrival of the wave train propagating to the buoy system. The time of arrival for 
each one is given by equation 3.96.
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The coefficients a0, an, and bn are the amplitudes of our spectrum 

with an incidence direction θ. With this formulation we can get the direction 
of the energy spectrum for a given period as θ1 and its main component θ2. 
The values for both are shown in equations 3.100 and 3.101.


To identify the wave trains that satisfy our swell conditions to be processed, 
the arrival time and the propagation direction of the wave systems are 
analysed. The process required an algorithm using the data from the buoy 
systems in order to relate the swells propagating between a group of two or 
more buoy systems. The algorithm used can be seen in Figure 3.19.


3.99
S( f, θ ) = a0

2 +
2

∑
n=1

[anCos(nθ ) + bnSin(nθ )]

3.100

3.101θ2 = 1
2 Tan−1( b2 /a2)

θ1 = Tan−1( b1/a1)

Figure 3.19: Algorithm method to search for wave swell dominant conditions in two places  
using directional buoys and the wave directional energy spectrum.
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3.6 Seabed Bathymetry 
	 To study swell propagation over large bathymetry changes, a 
description of the sea bottom topography is needed. A section of the 
seabed was digitised to search for large-scale changes of bathymetry in a 
coastal-tidal exposed area. The digitised version of the bottom surface was 
used to simulate a possible tidal turbine site. The turbine simulated was 
placed before and after the bathymetry change. The data retrieved to 
digitise the sea floor consisted of a set of s (x,y,z) data points defined by 
equation 3.102.


	 The set of points represents the latitude x, longitude y in a map 
projection, and the elevation in the seabed h as a function of (x,y). As such 
elevation is an average of the real physical depth, its fidelity depends on the 
bathymetric type of survey, so an area with high resolution data was chosen. 
The processed data retained the general main characteristics of the area. 
The sea elevation was averaged from the points of acquisition using a 
polynomial fitting technique on QGISTM. The points representing coordinates 
on a form P(x,y,z) allowed us to obtain a fitted function f for the points (x,y,z) 
on each point Pn of a mapped surface A. The function used is a simple linear 
approximation between a Pn to Pn+1. The representation of the process to 
convert the points to a surface is shown below in Figure 3.20.


3.102Sur face = (x, y, h(x, y))

Figure 3.20: Technique to fit polynomial functions to reconstruct the seabed level.
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	 The data files were processed to obtain a 2D elevation profile of the 
seabed, obtained using a bathymetry cut of the area in the main direction of 
swell incidence. The swell incidence was detected using the method 
described in section 3.4.4. 


3.7 Sensitivity analysis 

	 The study of the turbine includes a sensitivity analysis case. The 
study analysed how the different parameters that intervene in the turbine 
model can facet the mechanical performance, in this case, the torque a 
thrust of the machine. The study follows the procedure given by Nevalainen 
[36].  
	 The sensitivity analysis is a method used to detect how the input 
variables of a model can affect their output and how the changes in the 
variables affect the changes in the output. The analysis is similar to the 
concept of the rate of change for multivariable derivates. In this case, the 
results of the changes in the derivates are used to calculate the importance 
of the changes of each variable X={x1,x2,x3…xn} in the main function F when 
the output value Y changes.


	 The Morrison method of sensitivity analysis is a one step at a time 
method, where each variable from the vector X is increased or decreased by 
a fixed amount to detect the changes in the vector Y, as shown in 3.103.


	 In our case, the vector X that contains the variables x1 to xn is 
composed of parameters that define a sea state. The parameters for a sea 
state in this work are the wave period, the wave height, the current, and the 
depth, as shown in 3.104.


3.103F(x1, x2, δx3 . . . xn) = δY

3.104x1 = T, x2 = H, x3 = vc, x4 = hd
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	 The output Y is then composed of the torque and thrust of the 
machine which is affected by these changes in the input parameters, as 
shown in 3.105.


	 Here y1 and y2 are different from the base case where the value of Y is 
Y0 and the values for all variables in X do not have any variation from a 
predefined starting value.

	 As all changes in the variables will produce different outputs in Y, a 
significantly large enough set of outputs Yn can produce a statistically 
significant data set to analyse how the change in X affects the change of Y. 
The method established by M. D. Morris [104] uses randomisation of the 
space in n dimensions that are defined by the input variables. The input 
variables are then increased one by one. 

The elemental change is calculated as the difference after and before the 
change, divided by the change in the variable, as shown in 3.106.


	 For each trajectory, Ri is composed of individual changes of the initial 
variables in the array X, one change at a time, as shown in Figure 3.21. 
Values in equations 3.106 to 3.108 are calculated, where R is the number of 
trajectories in the nth dimensional space defined by the set of variables that 
define the changes of Y in the model, with i as the trajectory number.


3.105F(T, H, (δvc + vc), hd) = Y; Y = y1, y2

3.105EE = F(T, H, (δvc + vc), hd) − F(T, H, vc, hd)
δvc

3.106

3.107

3.108

μi * =
R

∑
r=1

∣ EEi(X )
R

∣

σi =
R

∑
r=1

(EEi(X ) − μi)2

R

μi =
R

∑
r=1

EEi(X )
R
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The results of this analysis are compared with Nevalainen where wave 
components are steeper and no wave propagating over an obstacle exists. 
This is explained in greater detail in Chapter 6.


3.8 Conclusions 

	 Mathematically speaking, wave solutions have been solved for long 
linear waves of arbitrary amplitude since the 19th century and the work of  
Airy. However, the Airy model covers only waves of small amplitude λ>>a in 
arbitrary depths hd. Airy’s model depends on the depth of propagation and 
wavelength. Steeper swell systems will require a different approach as the 
model breaks when the wave steepness grows. Stokes waves of higher 
order can model shorter and steeper swell systems. If we wish to model 
wave propagation over obstacles using larger depths, the solutions need to 
be able to satisfy the next points:


Figure 3.21: Trajectory Ri defined in space A and composed by variables x1, x2 and x3. The 
evaluation of F on each point of A, following the trajectory along individual changes or δ of 
each xn, producιng a response of the model in B, following another trajectory ‘Ri. The values 
in B are the results of F that correspond to the vector with values Y.
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• Finite depth propagation where the wavelength λ is not excessively larger 

than the sea depth hd.


• Shape independence, to model steeper swell systems, including second-
order waves.


• Frequency variant, where the possible shape of the wave after propagation 
is also a function of the frequency variation after it propagates.


	 The non-variant frequency problem has been solved for shallow 
waters by Lamb [68] and, more importantly, some frequency variant 
solutions have been derived for arbitrary and finite depths by Marshall and 
Naghdi [88]. Other authors have solved the problem using complex solutions 
involving matrix solutions and Bessel series, like Cho and Jung [83], Xie et 
al. [84], and Belibassakis-Athanassoulis [85]. Despite many actual wave 
models predicting the wave shape, velocities, and propagation, the problem 
of wave propagation after an obstacle has been addressed in very complex 
solutions that might incur a large computational time, except for the 
solutions found by Naghdi and Marshall.


	 The frequency variant case is important for finite depth where Lamb’s 
linear theory applies partially. Experiments carried out by several authors 
show how even in the case of linear propagation conditions like the ones 
stated by Lamb, frequency it is an important variable. Insightful observations 
on the wave propagation and changes in its properties come from detailed 
experimental works carried out by Goring [68] and Newman [55] which show 
clear frequency effects. As theories explore complex solutions or very simple 
linear cases, a simple approximation of an analytical and close solution is 
reworked here. The formulation uses the same physical arguments made by 
Lamb and Naghdi-Marshall, and the work proposes a function defining 
change in the wave properties after propagating abruptly over an obstacle. 


	 The followed hypothesis is that the energy of the incident wave, the 
transmitted wave, and the reflected wave are almost linear and the energy 
dissipation is almost non-existent. Keeping this in mind, the changes in the 
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wave properties such as the amplitude and the depth of propagation should 
approximate the changes in the wave period and velocity change. The 
formulation does not take into account the wave shape, so any wave profile 
whose steepness is moderate could suffice for this approximation. This 
solution is later explored, along with Naghdi and Marshall, using an 
experimental facility in Chapter 5. These will be used to model a case where 
a tidal turbine sits after a regular bathymetry obstacle which modifies the 
parameters of the incident wave. 


	 The simulation includes these formulations, including a sensitivity 
analysis case and a wave weather analysis of a section in the Pacific to 
simulate a tidal turbine deployment, discussed in Chapters 6 and 7.
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4 Experimental methods and measurements


The models addressed by previous authors mentioned in Chapters 2 and 3 
have been validated through experimental testing by those mentioned in 
sections 2.5.2 to 2.5.5. However, the experiments cover propagation depths 
which are outside the scope of this thesis. The results of the aforementioned 
tests have been published and effects related to the wave of propagation 
over other parameters, rather than the amplitude, have also been explored 
by Goring. The results are limited to the frequency behaviour and the 
possible relationship this has with the obstacle depth and the incident wave 
height. The next pages examine the possibility of measuring the length of a 
wave trough to trough and the velocity of the peak by searching for 
anomalies that link changes in the wave frequency to the depth ratio, as 
described by Goring.

	 The experimentation proposed here is used to model typical long 
waves with low amplitudes, arriving on the coast from deep waters. These 
wave systems will enter the continental shelf from deep waters and will 
move eventually to transitional depths, propagating over obstacles and 
changing the hydrodynamic conditions underwater as the wave parameters 
change over and after the obstacle. The modelled wave systems are chosen 
to resemble swells, which are wave trains that can be expressed as linear 
wave systems, according to the propositions found in Chapter 3. The waves 
also had to comply with the conditions such as wavelengths λ large enough 
compared to their amplitude a.


4.1 Introduction 
	 The validation of a model requires experimentation and simulation. 
This is one of the most important steps in validating how well designed a 
model is and ascertaining whether it is able to retain the main behaviours 
that arise from it and predict our system properties. 
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An important part of this thesis was devoted to describing how long waves 
with low amplitude resembling swells behave on their approach to the coast 
after propagating over an obstacle. Works analysed here and previously 
published on long wave propagation to the coast show consistent results, 
but also a gap in the knowledge for deeper water regimes and other 
possible changes that can arise in the propagated wave, which are not 
related to their amplitude alone. To analyse this gap, an experiment was 
designed to test the theoretical assumptions made in Chapter 3, in the 
conditions which have not been covered by past experiments, and also 
validate previous analytical models explored by other authors and  our own 
predictions.

	 This section is divided into the experimentation background, the 
methods and tools used in the experiment, and the procedure used to 
analyse the data. It is worth noting that special interest was given to other 
measurements apart from the wave amplitude, including possible anomalies 
in the wave as it propagates over the obstacle that could be observed in 
changes related to its shape (trough to trough) or speed decrease related to 
the propagation in shallow waters. The methods explained here were used 
to take measurements and to compare the Lamb and Naghdi-Marshall 
theories of wave propagation. These theories also included the formulation 
proposed here.


4.1.1 Experimental background

	 The particular experimental approach taken in this work was chosen 
to fill the gap in past experimentation procedures on wave propagation at 
larger depths. Studies reviewed include the works of Goring [87], 
Bendykowska [105], Newmann [70], Santos et al. [60], Ting et al. [79], 
Massel [76], K. Szmidt [78], and Charland [106]. Most of these works are 
focused on two main points: the long wave propagation case as λ>>ht or 
cases where ht/λ<1/8, and amplitude measurement. However, these 
experiments are more suited to describing extremely large waves or 
extremely shallow water cases. However, as Naghdi-Marshall [69] pointed 
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out, some of the models can describe fairly well a swell system on 
transitional waters under finite depths k(depth)<λ. A table with a brief 
description of the experimental conditions used by these authors is shown 
in Table 4.1. In this table, the next variables are shown: 


1) Maximum and minimum wavelength tested λ,. 
2) The minimum and maximum wave height H. 

3) The minimum and maximum obstacle depth. 

4) The minimum and maximum submergence ratio ht/hd.  

5) The maximum and minimum Ursell number as defined by Ting et al., 
defines the possibility of energy being transmitted to higher harmonics.


The first variable helps to visualise the depth regime of each experiment by 
comparing it to the 4th column. The second one is the maximum and 
minimum wave height, which can tell us the wave steepness. The third and 
last row are related to studies by Ting et al. and indicate the possibility of a 
strong energy transfer to higher harmonics.

	 The authors include, in some cases, finite and infinite steps. Authors 
with a * indicate experiments where the data comes from a finite step 
obstacle. Experiments without a * only use an infinite shelf.


	 Most of the aforementioned studies are focused on the predictability 
of the reflected and transmitted wave coefficients, as defined by Lamb, 

 λ(m) H (cm)  ht (cm) ht/hd a=0.022Ur

Newman 0.5-10 N/A 3.8-15.2 0.063-0.25 N/A

Szmidt* 4.8-6 4-10 24 0.4 a<0.0005

Massel* 1-1.57 0.5 14.1-26 0.47-0.86 a<0.0005

Ting et. al * 1.81-1.34 0.42-3.78 21-12.4 0.45-0.76 0.039-0.095

Goring 6.26 0.8-1.9 9.46-19.32 0.37-0.73 a<0.008

Charland* 2.62 10-20 150 0.5 a<0.0005

Table 4.1: Experiments on wave propagation over an obstacle. If variables present an NA 
it means the variable was not reported.
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which also occur in regimes of shallow waters, or transitional waters but 
under very shallow depths, as mentioned in Chapter 3.  It is also noticeable 
how only Ting et al. and Goring have larger values of a which defines a large 
transmission of energy to higher harmonics, despite Goring’s experiments 
being conducted on a solitary wave.  A very low number is observed also in 
the experiments of Szmidt, which observe the creation of small waves with 
very low amplitudes compared to the original wave train.

	 If we look at the importance of wave amplitude prediction, this can 
help to predict wave breaking and a wave height increase. The wave height 
will also help to calculate the pressure field below the water system and its 
increase will produce severe sea weather for any device installed near the 
sea surface. The amplitude increase also introduces severe vertical 
acceleration and velocity components which are proportional to the wave 
height, as expressed in Chapter 3. An aspect to take into account which was 
not considered here is the possibility of non-linear interactions such as 
vortices and turbulence over the obstacle. However, past experiments show 
good relationships between the experiments and the models, despite these 
non-linear interactions.


	 To measure the changes induced on a wave by obstacles (as it 
propagates over them), sensors are placed into the tank to measure the 
change in the elevation of the tank surface. Measurements are made without 
obstacles to characterise the wave propagation in the tank, and later 
obstacles are introduced to measure the changes produced by the 
underwater obstruction. Wave probes are installed, semi-submerged along 
the main length of the tank, parallel to the wave propagating, to measure the 
change in the water surface. The main length refers to the length defined as 
that covering the distance from the wave maker to the beach. 

	 Measurements for these experiments are done in three locations: 


1) Before the obstruction or obstacle, measuring the incident wave height.

2) Over the obstacle, measuring the obstacle wave interaction. 

3) After the obstacle, measuring the waves after the obstacle.
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The typical array for these experiments is shown in Figure 4.1. 


	 A set of typical challenges encountered in the process of 
experimentation is the creation of small harmonics after the obstacle. As 
pointed out by Takano [72], these harmonics are normally observed in 
coastal conditions after swells arriving from the open sea propagate over 
sandbanks. As these harmonics have shorter periods and low amplitudes 
they have little impact on the wave transmitted after the obstacle. The 
harmonics measurement requires enough length for them to spread due to 
the wave dispersion process. Other processes include the creation of eddies 
at the corners of the obstacle. Due to the flow that attaches to the obstacle, 
the eddies and turbulence produced are then propagated after the wave 
passes the underwater obstacle and they are a source of energy loss that is 
usually not accounted for in theories due to the complex modelling they 
demand. 


	 All analysed experiments have used relatively shallow waters and very 
long waves on conditions hd(depth)<<λ. Experiments also are limited to 
measuring the wave amplitudes as these are the characteristics which can 
be more easily extracted from the recorded data. However, it is possible that 
other changes or anomalies could be detected in the waves by measuring 
their velocity or wavelength as they propagate over and after the obstacle. 	

Figure 4.1: Figure showing the typical physical arrangement for wave propagation over an 
obstacle. The obstacle O can be finite or infinite as its length extends to the end of the wave 
flume. Sets of n wave probes w1 to wn are placed to measure the wave propagation inside.
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	 These anomalies could be related to conditions such as the obstacle 
length or depth, but more exploration is needed. Part of these explorations 
seek to follow the model addressed by Naghdi and Marshall where the wave 
number of the transmitted wave or k2 depends on the incident wave number 
k1, the incident depth hd, and the upstream depth ht. Some of these 
anomalies are reported in shallow water propagation by Newmann and 
Goring for fairly long waves hd<<λ. The anomalies observed by Goring which 
are not conclusive appear to show a relationship between the wave 
amplitude, the obstacle depth, and the angular frequency of the transmitted 
wave.


	 An important common characteristic of past studies is that 
propagation conditions for these long waves emerge from regimes where 
the depth is closer to shallow waters and extreme cases of depth where the 
water waves will more closely resemble a tsunami.

4.1.2 Proposed experimental characteristics

	 Experiments on wave propagation are focused on methods for 
shallow waters. These methods are more suited to tidal waves and wave 
breakers and the two more important variables that constrain these methods 
are the depth to wavelength ratio and the wave amplitude to wavelength 
ratio, as well as the Froude and Reynolds numbers.


Froude and Reynolds scaling 
Two important factors to take into account to scale our experiment are the 
Reynolds number and the Froude number. However, due to practical 
considerations, it is impossible to keep the Reynolds number similarity. The 
Reynolds number is defined in equation 4.1.


	 As ν, which is the nematic viscosity, is the ratio of the density per the 
dynamic viscosity, it is the same for both. The similarity between the real 
phenomenon (Rer) and Re of the scaled model (Rem) must be the same 

4.1Re = uL
ν
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Rer=Rem and it is reduced to urLr=umLm. As our characteristic length in an 
open flow channel is defined by the area of the channel divided by the 
wetted surface, in our tank this is reduced to equation 4.2 below:


	 This gives us a value of approximately 0.34. If we decide to scale our 
depth to 40m depth, we obtain a value of Lr~66.06Lm. In this case, the 
velocity of the waves in the scaled depth of 40m depth must be 
ur~0.01513um, which is not feasible. In this case, we must assume the 
Reynolds similarity cannot be obtained and then possible effects related to 
turbulence would not be the same, reducing the accuracy of the simple 
formulation obtained to relate the wavelength and amplitude propagation in 
section 3. However, these differences are not accounted for in this work. The 
Froude number is defined in equation 4.3.


	 The Froude number represents the ratio of the inertia forces to the 
gravity forces on the wave. Again in this case, the length L represents the 
characteristic length and this is the hydraulic ratio which was defined in 
equation 4.2. As gravity is the same in both the real-world model and the 
scaled-down version, then the relationship between both Froude numbers, 
Fr and Fm, is reduced in equation 4.4.


	 In this case, again we can simply solve for the velocity of the waves 
moving in the real-world model, as in equation 4.5.


	 As we know Lr=66.06Lm, we can approximate the quantity as 0.123. 
This allows us to have a parameter to compare the wave trains used in the 
wave tank with the simulations that are presented in later chapters.


4.2Lm = (depthtank)(widthtank)
2(depthtank) + widthtank

4.3Fr = u
gL

4.4ur

Lr
= um

Lm

4.5
ur = um

Lr

Lm
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Water depth and wavelength conditions 
Methods for shallow water conditions are suited to the Lamb theory where 
transmitted waves have no frequency change and where the vertical velocity 
and acceleration can be disregarded. In these conditions, variables like the 
wavelength-depth ratio can be defined as λ>>hd. Meanwhile, the velocity 
components obey the relationship Vφx>>Vφy. These conditions are however 
far from applicable to our experiments, as we mentioned before. Wave 
amplitudes should suffice a<<λ for these shallow-water cases.

	 Regarding our depths, these differ from the methods used by other 
authors. Useful depths for tidal and wave energy engineering focus on 
accessible areas in the continental shelf at depths ranging from 40m to 

100m. Under these depths, formulations like the one proposed and Naghdi-
Marshall could have better results. These two analytic models are compared 
in the next chapters. Under the depth conditions mentioned before, 
40m<hd<100m wave periods in the range of 22s>T>7s can approximately 
satisfy the finite water depth and infinite water depth conditions for both 
models.

	 If our tank depth can be defined as hd, then our wavelengths during 
the experiments must be kept in the range of 2hd>λ>20hd. The periods were 
set accordingly to satisfy the wavelength conditions, depending on the wave 
period used in the wave tank. 

	 As other authors have worked with experiments in transitional waters, 
where the wavelength to depth ratio is closer to shallow water (which can be 
defined simply as λ →20hd ), our experiments work in the range 2hd>λ>10hd. 

As the wavelength, in this case, depends on the period or λ=f(T), there is 
only one value of T to produce every λ in the desired range. The dispersion 
relationship for both second-order water depths and the first-order is 
defined by equations 4.1 and 4.2. 


4.6

4.7

ω2 = gk

ω2 = gk +
m

∑
n=2

On(k a)2
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	 The dispersion relationship remains the same as we reduce the term 
that follows the higher orders in equation 4.7 to 0, and then the formulation 
becomes the typical dispersion relationship for linear waves. The dispersion 
relationship relates the wave period to its respective wavelength, and this 
formulation has two expressions in our experimental range. The dispersion 
expression will apply for deep waters and the larger depths of transitional 
waters. Then, theoretically, we can find the wavelengths using linear theory 
given by equations 4.8 and 4.9, for deep waters and transitional waters 
respectively.


	 The wavelength size in transitional waters will be defined by the term 
Tanh[θ] where θ is not an angle but the value of 2πhd/λ. If this value is close 
to θ~π/2, the wavelength will be similar in size to the deep water scenario, 
with a deviation of less than 10% of its real value, as Tanh[θ]~0.91. We can, 
with this result, theoretically assume the wavelengths will have a value closer 
to wave propagation in deep waters, even for some of our transitional water 
cases. However, the scaling of the water depth is still an important issue as 
shown by Noble et al. [107]. An incorrect scaling of the depth, if the depth is 
taken as infinite, can lead to errors in the range of ±30% in wave parameters 
such as the wavelength/celerity and steepness. Because of this, to calculate 
the wavelengths to depth ratio both equations 4.8 and 4.9 are used. 

	 The wave amplitudes in our case must be bounded by the 
relationships Hλ2/h3=26 and H=HB/4, from Figure 3.3 of Chapter 3, where 
HB is the wave breaking limit. To maintain the waves below these values the 
total wave height, which is two times the amplitude, was kept below 2cm. 
The amplitudes in this case also satisfy the condition for which a<<λ. 

	 Under these defined ranges it is possible to examine the amplitude 
evolution for linear and second-order Stokes waves of certain amplitude a, 

4.8

4.9λ = g
2π

T 2Tanh [ 2πhd

λ ]
λ = g

2π
T 2
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propagating over an obstacle, and to measure possible anomalies in their 
wavelength and velocity.

	 The conditions for this experiment were chosen to not only maintain 
the theoretically established constraints for wave propagation but also to 
depict real swell conditions in the open sea at suitable depths of study for 
possible engineering purposes. The differences in the approach we took for 
this experiment are that obstacles will vary not only in their depth but also in 
their length, as wave trains will encounter not only jumps in the seabed but 
sudden obstacles like sandbanks or local geographical rises. 	 	 	
	 The last observation is important as waves were not only measured at 
the locality after the jump but also after they propagated over it. The 
changes associated with propagation again into deeper waters were also 
observed in this work, but not modelled as the approach will require a longer 
process of study and modelling. The approach to the waves produced also 
differs from most experiments, as past studies covered solitary waves that 
can be modelled with different types of theory depending on their shape. 
The solitary wave modelling could hide certain possible effects due to the 
wave trough. 

	 Experimentation also differed as it was carried out using a set of wave 
trains, whereas in real sea conditions wave trains are continuous and will 
occur continuously. Wave trains produced were long enough to have at least 
three complete waves and carefully chosen to not be affected by reflections 
from the wave tank beach.


4.2  Methods and Materials 

	 This project was assisted by the Department of Naval Architecture 
and Ocean Marine Engineering (NAOME) and the fabrication of the obstacle 
by the workshop technicians in the laboratories of the Department of 
Mechanical and Aerospace Engineering (MAE). The experiments were 
carried out in a wave flume tank, for which instrumentation was provided by 
NAOME. Tests were set to analyse and characterise possible tank effects 
that could alter our measurements, such as reflections, noise of natural 
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vibrations, the best wave probe placement, and correct wave dimensions. 
This was to characterise the available and proposed models and also the 
simulated long wave sea characteristics. These methods and materials are 
shown in the next pages.


4.2.1 Materials


	 The installations used for the experimentations consisted of a wave 
tank with a longitude of 21.6m and a width of 1.6m. A set of four-wave 
probes were used to track the waves. The wave probe number was limited 
by the number of ports that could be used at the provided amplifier.  


Wave probes and wave tank

The wave probes were connected using jacketed cables carrying the 
analogue signal to our wave amplifier. The amplifier converted our low power 
signal into a higher value. 


The system is also protected against external noise due to the cable's 
construction. The amplifier was then connected to a Data Acquisition 
System (DAQ) system. The data gathered by the system was fed into a PC 
and software processing tools to be recorded. 

	 The wave tank characteristics respective to the wave generation type, 
measures, and capability are shown in Table 4.2. Meanwhile, a drawing of 
the side view, front view, and upper view of the tank can be seen in Figure 
4.3.


Wave 
tank 
type

Depth hd Width Length Wavemaker type Wave type capability

Wave 
flume.

Variable from 
0.3m to 
0.65m.

1.6m 21.6m, 0.6 
m beach 
length.

Flap type, driven 
by belt, and 

motor.

Regular and Irregular 
wave trains

Table 4.2: The Henry Dyer wave flume tank main characteristics, part of NAOME.
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	 The wave probes used were a resistive type, made of twin wires of 
the same length. The working mechanism that allows the wave probes to 
measure the surface change is the change in conductivity between both 
wires. As the value of the conductivity is affected by the water level, any 
variation in time will be recorded as y=G(t), as shown by equation 4.10. 

	 Wave probes were placed inside using the tank structure, as seen in 
Figure 4.2. The wave probe’s main characteristics can be found in Table 4.3.


	 In equation 4.4 the value a is a constant to be determined by 
calibration, meanwhile hwater is the water level covering our wave probe. The 
wave probes were known to be sensitive to temperature, as the laboratory 
installation lacked any temperature control. Re-calibration had to be done 

Figure 4.2: Wave probes used in the tank, left, and wave probe placement, right. The wave 
probes have an effective length of lm. Wave probes used had a major sensitivity at lm/2, so 
they were half submerged in the tank. The picture shows the initial tests for calibration of the 
wave probes by measuring the voltage signal vs the four probes’ immersion depth.

4.10Voltage ∝ ahwater

Wave probe 
type

length lm. Voltage 
output

Effective length of 
measurement

Connetor type/Cable type

Resistive twin 
wire.

100cm. 0-5V 200mm BNC/Jacketed

Table 4.3: Table with values of the wave probes’ main characteristics.
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every time the wave tank temperature changed drastically. Methods used for 
probe calibration are explained in the next paragraphs.


	 The wave tank itself is now decommissioned and was designed by 
NAOME. The tank can vary in depth from 0.6m to 0.3m. The wave paddle 

Figure 4.3: Experimental tank views with its main dimensions: a) shows the main length of the 
tank [108] and b) a view along the main length inside the tank [109]. The green area in the 
middle is the zone where the obstacle is placed, the orange area is the position of the wave 
maker, and the lower green area is the position of the beach.
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has a maximum aperture of 40o and a hinge depth of 0.6m. With this data, a 
plot of the maximum wave height in the period range [0.1s-5s] at a 
maximum aperture is produced for depths [0.03m, 0.06m]. The plot limited 
by a tank height of 0.65m is below. The tank's high frequency limit is 0.2hz.


Wave probe calibration

The wave probes were calibrated using a pre-marked rod of 1m in length, 
with incisions every 2.5cm. The tank had a metal bar with a rail mechanism, 
allowing the wave probe to move in a vertical motion on the water surface. 
The movement allowed us to change the immersion, as shown in Figure 4.5.  

Figure 4.4: Plot showing the maximum wave height that can be achieved at different depths 
in the Wavemaker, following the procedure given by C. J Galvin [110].

Figure 4.5: Figure showing the configuration to calibrate our wave probes. The rail mechanism 
in the vertical bar (red rectangle) allows the probe to move up and down fixed lengths. The 
movement was used to calibrate our wave probe, measuring the depth of immersion vs the 
voltage.
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 The probes were moved up and down and the voltage was measured 
to obtain a transfer function, as suggested by MARINET  [111].


	 As the wave probe voltage varies depending on the immersion level 
of the probe, the immersion was changed to produce several readings of 
voltage and create a voltage vs depth function which was later transferred to 
the wave recording software. The steps for this are below:


1. The wave probe was attached to the rail mechanism and the wave 
recording software was turned on. 


2. After verifying that any possible disturbance produced by placing the 
wave probe had disappeared, the wave probe’s first recording was 
taken as level 0.


3. The wave probe was moved down 5cm following the incisions made 
in the rail. After disturbances generated by moving the wave probe 
disappeared, a second recording was taken, now by moving the 
wave probe another 5cm down (10cm in total).


4. The procedure was repeated until the wave probe moved 50cm or 11 
measurements. 


5. Measurements were repeated in the opposite direction by moving 
them up 50cm by 5cm at a time. This was to check for possible 
hysteresis.


6. The values of immersion were plotted against the voltage recordings 
(voltage vs immersion).


7. A transfer function defining the immersion vs voltage was then 
created.


8. Measurements to check the calibration of the four wave probes were 
taken. These measurements consisted of mounting the four-wave 
probes in the metal bar. The probes were moved up and down the 
water surface and the displacement recorded was measured against 
the displacement marked in the rail. 
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9. If measurements of the 4 wave probes were consistent and the 

deviation was small, they were mounted along the main length of the 
tank to start the measurement procedure.


A plot of one of the transfer functions produced by the calibration and its 
fitted function can be seen in Figure 4.6. In general, the wave probes provide 
a very good way to measure the water elevation produced by the wave 
maker and have a resolution of ±0.1mm. Data was very linear and almost no 
hysteresis was detected.


Data acquisition system and sampling software

A data acquisition (DAQ) system was used to relay the data from wave 
probes to the computer system. The system is a CED 1401 A2D converter 
with 16 analogue input channels and a 12bit resolution. The DAQ system 
was connected along a system amplifier to compensate for the low voltage 
variation produced by the analogue wave probe signal. The system had 4 
ports used for analogue entries and it was able to sample at a 100Hz rate. 
The software used to relay data after amplification and acquisition was CED 
Spike2, which allows multiple input channels to be acquired in real-time 
from our DAQ-amplifier system and also allows us to control the rate of 
sampling. The set of tools used for capturing the data and preprocessing 
consisted of Spike2 and scripts are written for Wolfram LanguageTM and can 
be exported easily into Python. Spike2 allowed us to import raw data from 

Figure 4.6: Plot of calibration process in blue dots and fitted function f in red.

f 
Data
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the ports and then convert them into arrays of .txt files, the files were later 
analysed using Wolfram Language. Laboratory control software made by 
NAOME was used to control and set up the wave maker characteristics at 
the desired period and wave height.


Obstacles 
To characterise a bathymetry rise on the seabed in the given depths of the 
wave tank, a set of obstacles was fabricated. These obstacles were 
geometrically regular in nature and designed to resemble a sudden blockage 
in the wave train path. The range for the wave blockage r=hd/oh where oh is 
the obstacle height was chosen as r=[1/6, 2/6, 1/2] depth. To ensure that 
obstacles remained at the bottom, aluminium was used to build the surface 
due to its higher density and its easy machining properties. Obstacles were 
made hollow to allow water to fill them and nullify any buoyancy that could 
lead them to rise over the bottom of the tank. As the tank depth could be 
modified from 0.65m to 0.3m a fixed depth of 0.6m was chosen, which 
allowed us to have 5cm free for wave amplitudes and 5cm extra for the 
tank’s upper border. The operational depth of 0.6m meant we designed the 
obstacles as blocks of 0.1m height, then the obstacles could be stacked 
over one another to obtain the desired blockage ratio. Figure 4.7 depicts 
individual obstacle dimensions.


Figure 4.7: The obstacles with main dimensions: 1.5m width, 0.1m length, and 0.1 m height. 
Obstacles were 10cm smaller than the tank main width to allow correct placement.
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4.2.2 Methods

	 Wave shape and properties can be described using theories that 
range from Airy theory to Cnoidal theory, Boussinesq equations, or the 
Stokes expansion method. All wave theories available are approximated 
solutions for the wave equation given a different set of scales for the wave 
parameters such as amplitude and wavelength, or physical properties like 
field velocities or shape. Waves modelled here used the first-order and 
second-order Stokes, which will be described in more detail in Chapter 6 
using the linear equations derived in Chapter 3. Both formulations describe 
the wave shape and its properties using the wave steepness parameter H/λ, 
and the depth of propagation hd. The two parameters were chosen along 
with the wavelength to depth relationship hd/λ to produce the necessary 
waves with the desired scaled properties to simulate long swells in 
transitional and deep waters. 


Scaling process 

As the depth of our tank was set at h=0.6m, calculations were made for the 
waves to satisfy the linear and 2nd order theory. The calculations use the 
non-dimensional depth and height as defined in Chapter 3. The results in 
Table 4.4 show the necessary period and wavelength for waves in the tank. 


T x T λ λ/2 to hd

T7=(h/gxi)1/2 0.02 1.74 2.34 λ/2= > hd

T6 0.028 1.47 1.7 λ/2 > hd

T5 0.039 1.25 1.22 λ/2 > hd

T4 0.049 1.11 0.97 λ/2 > hd

T3 0.059 1.0 0.8 λ/2 > hd

T2 0.074 0.9 0.64 λ/2 ~hd

T1=(h/gxs)1/2 0.093 0.81 0.51 λ/2 < hd

Table 4.4: Values of wavelength λ against depth hd and its non-
dimensional depth x for our experimental range xi to xs.
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As the set of waves that could cover this is large, a small subset of the 
waves was chosen with periods T=[1.7s,1.5s,1.2s,1.1s,1.0s,0.9s,0.8s] to 
obtain every non-dimensional depth (x) as can be shown in Table 4.5.


	 The conditions given by these relationships need to be corrected as 
wavelength can be different depending on the depth at which waves move, 
as explained in Chapter 2. Using the wavelength period relationship for deep 
waters for T1 to T2 and the transitional water theory for T3 to T7 to minimise 
an incorrect wavelength to depth ratio, as mentioned by Noble et al., Table 
4.6 is obtained. 


	 The values obtained in Table 4.6 will be scaled accordingly, as in 
Noble R. D, et al, using the equations below.


	 In these three equations, Ef is the scaling factor defined by Lr and Lm 
from equation 4.1. These values will be used in Chapter 6.

	 Using Table 4.6 we can calculate the wave height to produce wave 
trains of 1st and 2nd order. The order is given by the non-dimensional 
relationship in equation 4.4 of Chapter 3. If we choose our wave height as 

4.11

4.12

4.13λTank = λSiteE f

TTank = TSite E f

hTank = hSiteE f

T(s) 1.7 1.5 1.2 1.1 1.0 0.9 0.8

x 0.021 0.031 0.042 0.05 0.061 0.075 0.095

Table 4.5: Non-dimensional depth values for a tank of 0.6m depth.

T(s) 1.7 1.4 1.2 1.1 1.0 0.9 0.8

Approximated λ (m) 3.5 2.71 2.1 1.8 1.5 1.2 1

Depth regime at 
hd=0.6m

Upper T. Upper T. Upper T. Upper T. Upper T. Deep 
Waters

Depp 
waters

Table 4.6: Approximated wavelength for each wave period, where Upper T. is the upper 
section of the transitional water spectrum for wave propagation at intermediate water depths 
x>0.02.
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H=1±0.5cm, we can then calculate the range of waves using the non-
dimensional parameters and obtain the range of the waves in Figure 4.8. 


Waves generation and wave reflection 

The number of waves produced for each wave train varies depending on the 
wavelength and wave celerity. Our wave tank had an available length of 
21.6m with 21m being its effective length due to the last 0.6m providing a 
beach. The tank beach did not have any mechanism to absorb the incident 
waves. The effects of lacking any dissipation mechanisms meant our waves 
were reflected and caused interference with the incoming wave trains. Due 
to the constraints on the wave reflections, the number of waves that can be 
measured without the overlap of both wave systems is limited to the wave 
velocity and the available tank length. To obtain the number of waves that 
could be produced without reflections interfering from the tank, we used the 
dispersion relationship and wave velocity. Velocity values for the fastest and 
longest wave trains were used to calculate an upper boundary for the time 

Figure 4.8: Periods chosen using the non-dimensional quantities and ranges of the 
dimension order of our tank capabilities from T1 to T7. The red band is the initial 
assumptions made for our experiments. The figure is based on the work of Le Méhauté.
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of propagation between the wave-maker and the wave beach. The 
propagation time was measured using the fastest and longest wave 
available, T7. The values for the longest and fastest wave belong to T7=1.7s, 
and a value known here as the upper boundary value was used as a superior 
limit for the wave propagation time. The upper boundary ensured that, as 
long wave trains were slower than the bigger period wave, reflections from 
the wave tank beach would not interact with the incident waves. The values 
for the upper boundary and the different wave velocities and times for 
reflections to be present in the wave tank are shown in Table 4.7.


	 Wave trains produced showed that the upper boundary for the longer 
waves was around v=2m/s (T7 and T6). A point to place a wave probe at 7m 
from the wave maker will take 14s to detect reflections using the 
configuration shown in Figure 4.9. Several experimental run-ups included 
measures of non-dimensional height y. Observations made and data 
gathered concluded that wave height could be not controlled precisely, as 
shown in Figure 4.10, for each test without any obstacle.


Figure 4.9: Wave reflection time was tested using the fastest and longest waves at T=1.7s, 
and the wave probe was placed at distance b=7m from the wave maker. The distance from 
the wave probe to the beach mid depth is d=14m.

T(s) [T7-T1] 1.7 1.4 1.2 1.1 1.0 0.9 0.8

Approximated C (m/s) 2.0 1.93 1.75 1.63 1.54 1.33 1.25

Time (s) to reach the 
beach at C and return to 

point x=7m

14 14.5 16 17.1 14 21 22.4

Table 4.7: Approximated propagation velocities for each wave period, where the upper 
boundary velocity was marked in bold font and belongs to the values at T7.
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As the non-dimensional height y was necessary for the conditions in Figure 
4.5 to satisfy the experimentation needs, then the wave height only  needs 
to be H<1±0.5cm for the smaller period. This limit however increases for 
larger waves as long as H<<λ. For the wave height, we were limited by the 
height between the tank border and the tank surface which was equal to 
10cm using a depth of 60cm.  

 The paddle did not have any control to stop at a determined position, 
because of this pre-calibration procedures to detect the wave height 
generated show a wider range of values for larger periods T6 and T7 as 
shown in Figure 4.6. This was probably related to the angle of aperture of 
the wave maker, as the first waves would not be able to capture the full 
power if the flap was not in the correct position. However, measurements for 
shorter periods show a smaller variation on their wave height. 

 As the limit is lower, concerns about the possibility of capillarity forces 
on the shape and form of the waves were taken into account. For this a 
minus wavelength was taken into account with a value of 1m length. The 
formula for the wave subjected to gravity and capillarity forces in equation 
4.14 was then used to derive the ratio of gravity to capillary forces on a 
lower boundary at T1.


4.14
ω2 = |k |[( σ

ρ′ + ρ )k2 + ( ρ′ − ρ
ρ′ + ρ )g]

Figure 4.10: Wave height variability for different testing periods, T1 to T7 as shown in Table 
4.7. Black markers represent the mean wave height.
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	 Equation 4.6 value used the higher value of the water surface tension 
σ and the air and water at cold temperatures densities ρ and ρ‘ respectively. 
Capillarity forces, in the worst-case scenario, will only be around 3% of the 
total at our wave trains. The ratio of the forces indicates that at small 
amplitudes our waves will still hold for the non-dimensional values chosen 
because they depend on the gravitational component. In order to measure 
the wave reflection interference in the tank, wave recordings were made with 
the configuration shown in Figure 4.6. 

	 The measurements taken for higher periods allow us to observe the 
wave reflection time, as recommended by experimental practice [90]. The 
reflection time allows us to obtain intervals of data acquisition. For this, 
wave trains of the frequencies T6 to T7 were tested to measure the time of 
reflection. The calculated values for the time of reflection were compared to 
the actual recorded reflection for all wave trains produced on the range T6 
to T7. An example can be seen in an actual plot recording for periods 
T7=1.7s and T6=1.4s in Figure 4.11.


	 As the waves corresponding to T7=1.7s presented a faster 
propagation on the recordings than the calculated reflections,  the recorded 
times were used to adjust the time that every experiment should allow for 
waves to propagate before reflecting. Careful measures were taken of each 
wave component on larger periods. The measurements took individual 

Figure 4.11: Recordings of wave trains T7 and T6 at 1.7s and 1.4s respectively, showing the 
reflected wave trains in red and the expected time of reflection as a red bar.
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waves (crest to trough) and analysed the time it took to propagate. The 
detections of each crest and its movement along the wave probes were 
used to calculate the propagation velocity of each of the wave trains with 
larger periods (T7) across the tank length l. 

	 The velocity of propagation was then used to find the time for wave 
reflections approaching from the tank beach. This method allowed us to 
identify the frequency for each T7=1.7s wave train and calculate its actual 
velocity of arrival in Table 4.8.


	 The methods used to capture characteristics such as the wavelength 
and the velocity were used to compare the generated period with the 
calculated one given the wave shape. The methods used are experimental 
and follow the procedure in 4.3.5. Such a method is not conclusive as the 
wave shape evolution will alter the calculated values. In these 
measurements, only waves with a very well-defined shape were taken and, 
despite this, for the measurements made with no obstacles, we saw only 
very small deviations in the periods of the fastest waves. The largest 
deviation in the period for this was below 9%. The deviation keeps our 
reflection time to around 14s, so this value was used as an upper boundary. 
The method using the wave shape to calculate and approximate wavelength 
detected small deviations for all periods, but they did not appear to be large 

T7=1.7s [f~0.58Hz]

Approximate period T(s) Approximate velocity of the main T 
component (m/s)

1.69 2.08

1.58 2.03

1.69 2.07

1.61 2.04

1.75 2.08

1.58 2.03

Table 4.8: Actual velocities of wave propagation according to its 
approximate measured peak frequency.
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enough to affect our measurements. The result of this can be seen at the 
end of Chapter 5. 


4.3 Experimental procedure 
4.3.1 Wave probe placement


	 During the pre-testing and calibration, wave generation created a 
small wave train. This problem was occasioned by the wave tank, as the flap 
would vibrate after stopping. As the small waves were much shorter in 
length, velocity separated the desired larger waves from the small ones for 
any given Tn value, around a distance of x=5m. The observations made us 
place wave probes in positions x1=7m, x2=9m, and x3=11m, and a fourth 

was added at x0=2m to detect the incoming waves, as in Figure 4.12. The 
probe placement allows for the measurement of the waves along their 
trajectory, as suggested in ITCC recommended guidelines and procedures 
[112].


	 As the wave probe located at 11m from the flap was at a distance 
d=10m from the tank beach, this gave us a length of 20m for wave 
reflections to arrive at the last wave probe installed in order to measure the 
propagation. As every wave lower than T7 has a velocity relationship 
vT7<vTn, this allowed us to restrict the number of wave recordings that we 
made on the last wave probe C using the fastest the wave velocities of T7. 
The higher velocities averaging 2m/s, made us stop the measures of the 

Figure 4.12: Wave probes were put at distances x0=2m, x1=7m, x2=9m, and x3=11m along 
the length of the tank. An obstacle was placed below wave probe B in the centre of the tank 
at 9.05m from the wave maker flap in orange.
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incident waves after 10s passed when the first detection in the last wave 
probe C  was made.


	 

4.3.2 Wave measurements


	 Wave amplitude: Wave amplitude was measured using the transfer 
functions found for each wave probe calibration. The wave probe is inserted 
inside the water at a mid-length of its size, and the value was taken as zero 
amplitude or water surface level. The changes on the level around the zero 
value were taken as the wave amplitudes as they propagated onto the tank. 
The magnitudes of the wave amplitudes were measured from the trough to 
the crest of each wave. To do this, the velocity of the wave crest was 
calculated as it moved, and the wave crest and its respective trough were 
followed on each next sensor.


Wave velocity:  Wave probes are only able to measure the variation of the 
surface height in time H(t), but the distance between each wave probe was 
fixed and this helped us to calculate the velocity. The velocity was calculated 
using the fixed distance between each wave probe that is equal to Δx=2m 

by using the v=Δx/Δt relationship.  

Wavelength: Wavelength was measured from the crest to the trough of each 
wave propagating in the tank. These measures were done by placing 
markers to identify the wave crests and through the recorded data.


Wave train series: Series were made to obtain the time between each 
measurement. The experiments suggested an estimated time ranging from 
5min-2.5min for larger waves and 3min-2min for shorter ones. 
Measurements were done once the wave reflections in the tank were lower 
than the signal equivalent for an 1mm water height increase for each sensor. 
A recording can be seen in Figure 4.13.
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4.3.3 Experimental units and experimental arrangement


	 Obstacles were placed at the mid-point of the central wave probe B, 
at 9.05m from the wave-maker flap. To characterise the change in the 
blockage for incident waves, the obstacles were placed first to reduce the 
depth in the range from 1/6 to 1/2 of the actual tank depth. For the depth 
experiments, the length of the obstacle remained fixed. The second set of 
experiments included a change in the obstacle length using the same 
blockade ratio of 1/6 but modifying the obstacle length from li/lts=[1/3,2/3,1] 
where li is the individual obstacle length and lts the total length of the three 
obstacles, one after another. The experiments revealed that the wave tank’s 
middle depth was narrower than the 1.6m specified, so much so that even 
our obstacles of 1.5m were able to fit. 


	 Experiments were arranged to test every wave period range, from T1 
to T7. Periodic revisions were made to recalibrate the wave probes every 3 
to 4 hours of testing, thus searching for possible sensor deviations [113]. 
During the testing units to calibrate the tank, physical observations were 
made of the wave propagation. Observations using the experimental method 
to detect the wave shape concluded that the lower periods from T1 to T3 
might have period values higher than expected. Values for these periods, 

Figure 4.13: Wave recording showing wave trains and settling times between each test.
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however, did not have a significantly large deviation to compromise our 
experiments, as shown in the results section. The deviations in the possible 
period can be related directly to the wave-maker startup process and our 
need to measure only the first wave trains.

	 Using the period, wave height data, and observations made, the 
experimental plan was devised to test wave propagation over an obstacle. 
The wave propagation to be tested consisted of an obstacle that changes its 
depth with a constant length and an obstacle that modifies its length at a 
constant depth. Both cases can be seen in Table 4.9. On the left are the 
experiments that change the depth of the obstacle, causing a blockade from 
0 to 1/2 of the original depth using a constant obstacle length; on the right, 
experiments with a constant blockade of 1/6 of the original depth and 
obstacle lengths from 0.1m to 0.3m.


	 The wave tank testing was divided into two campaigns. The 
experiments for the 1st test campaign tested wave periods ranging from T7 
to T6 and the 2nd covered periods T5 to T1. It was observed that the tank 
could not produce exactly 0.8 and 1.2 seconds, so the periods were 
modified, as shown in Table 4.10.


	 Due to the wave variability and deformation along the tank length, 
experimental units T1 to T7 were repeated 6 to 12 times. As the number of 
individual waves produced by each wave train was 3, this gave us a 
minimum of 18 waves for 6 repetitions to be measured. This number was 
chosen to maximise the number of waves that can be measured properly. 	

Change of depth Change of length

Depth hd (m) Blockade (hi/
hd)

Obstacle 
length (m)

Depth hd 
(m)

Obstacle 
length (m)

Blockade (hi/
hd)

0.6 0 0.0 0.6 0.0 0

0.6 1/6 0.1 0.6 0.1 1/6

0.6 2/6 0.1 0.6 0.2 1/6

0.6 3/6 0.1 0.6 0.3 1/6

Table 4.9: Arrangement of the experiments for wave propagation after a change of depth and 
change of length of a regular obstacle placed at the bottom of the tank.
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	 The number of repetitions was chosen depending on the wave 
definition; longer waves produced a better-defined shape and had fewer 
small waves as the flap movement was more smooth. The shorter waves 
ranging from T4 to T1 required larger repetition numbers of 10 to 12. The 
shorter waves had a higher number of small waves and irregularities 
produced by the wave-maker at shorter periods, and a possible explanation 
for this is given in the next chapter.


4.3.4 Wave tank measurement procedure


	 The wave tank is equipped with two activation controls, one by 
software and one by manual. To avoid any incidental activation by software, 
the manual control was always non-active. The experimentation procedure 

Campaign No 1 Change of blockade 
hi/hd at hd=0.6m

Change of length 
li(m)

Wave conditions at 
hd=0.6m

T7=1.7s 

T6=1.4s

0 0

Transitional waters 1/6 0.1

2/6 0.2

3/6 0.3

Campaign No 2 Change of blockade 
hi/hd at hd=0.6m

Change of length 
li(m)

Wave conditions at 
hd=0.6m

T5=1.25s 

T4=1.1s 

T3=1.0s

0 0

Transitional waters 1/6 0.1

2/6 0.2

3/6 0.3

T2=0.9s 

T1=0.83s 

0 0

Deep waters 1/6 0.1

2/6 0.2

3/6 0.3

Table 4.10: Arrangement of experiments in two different campaigns and two different sets of 
wave conditions according to the scaling process. The period for the shortest time changed 
as the tank control did not allow one to measure a frequency of 1.25Hz=0.8s and 
0.833Hz=1.2s.
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consisted first of the verification of the wave probes and their calibration. 
The process required measurement of a submersion length of 50cm in both 
the negative and positive z-direction. 


	 The wave probes were re-calibrated if the measurements obtained 
had a deviation of more than 1mm in the 50cm length. The wave tank 
manual control was activated after this, and 2min to 5min was given to 
allow the small wave ripples caused by the wave probe immersion to vanish. 
After the control was started, obstacles were placed at the bottom of the 
tank and small weights were used to add some support. Next, wave probes 
[A, B, C] were verified to be installed at positions x1=7m, x2=9m, and x3=11m 
respectively. 


Experimental sampling rate: Wave probes by design had a sampling rate 
of 100Hz or 100 measurements per second. The sampling rate was left 
unaltered as the higher frequency to measure corresponded to 1.25Hz 
which is very low compared to our sampling rate and it is 40 times the 
minimum required by the Nyquist-Shanon theorem for the original wave 
signal, which is smaller than our set (T=0.8s). As proof of this, camping rates 
also detected smaller waveforms produced in the tank, as shown in Figure 
4.14, caused by the wave-maker mechanism.


Figure 4.14: Small wave trains produced by the wave maker in red, after our main wave train 
in blue.
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Recording procedure: Recordings and observations were made for each 
test to verify that the wave tank had no apparent ripples moving inside. Tests 
did not start until the noise was verified to be equivalent to 0.5mm in wave 
height. After verifying that only natural noise signals from the wave probes 
were present on the recordings, a small wave train was produced by just a 
few flap movements. 


	 The wave-maker presented very irregular wave trains after a long 
period of inactivity; small wave trains were produced at the beginning of 
each experiment for a brief time period to avoid this. Once the wave-maker 
produced the first irregular wave train, the signal on each wave probe was 
tested and the process of producing the wave trains started. Wave trains 
were produced by moving the wave-maker flap 3 times. As the wave-maker 
does not have an automatic stop, one user had to give the signal to stop the 
wave-maker after the third complete flap. After the incident waves stopped, 
a time to stop the experiment Δt was taken until reflections disappeared and 
only the intermittent noise of the sensors was detected. Then the wave-
maker was re-started to record another wave train. The process was 
repeated until all periods were completed. 


4.3.5 Wave data processing


	 Data from the wave trains were pre-processed using Spike2. The 
software allowed us to feed each wave probe channel into the PC to 
produce .txt files with the amplitude vs time values. The files were then 
processed using Wolfram for processing. Filters were applied to clean the 
signal from higher noise frequencies above 0.1Hz. The waveforms were 
plotted for every experiment and the maximums and minimus of each wave 
train were extracted and used as control points to obtain the measurements 
of wave height, wave velocity between wave probes, and wavelength. This 
can be seen in Figure 4.15.
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4.3.6 Discrepancies in the wave peaks and troughs


	  As the instruments were able to measure the wave amplitude with a 
definition of 0.01s, small discrepancies in the values of the peaks and 
troughs appeared. The maximum or minimum values were spread over a 
Δx=Δt, as several time values had the same maximum value that defined the 
maximums or minimums. To address discrepancies in the wave crests and 
troughs, we averaged wave recording results that had more than one point 
defined as a maximum. The average was given around the central point of 
recorded values as local maximums or local minimums adjacent to the 
others. The value of t=xavg was bounded by the maximum and minimum 
deviation of the x coordinate. Since the points adjacent are separated by 
1*10-2s, the deviation in the maximum/minimum was minimal.


4.3.7 Wave tank calibration

	 The wave tank was calibrated against the measurements made for no 
obstacles in the range of T1=0.83s to T7=1.7s. During this procedure, wave 
trains were produced to measure the relative changes in the waves due to 
the wave flume tank constraints and particular effects. Three particular 

Figure 4.15: Control points to measure the wave development and properties.

Sensor A

Sensor B

Sensor C
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effects were addressed in the wave tank calibration: the amplitude change, 
the wavelength change, and the velocity change. 


	 To calibrate the tank, wave trains without obstacles were produced. 
The amplitude, wavelength, and velocity changes were measured against 
their propagation in the tank. As we mentioned in the methods section 4.2.2, 
the calibration assumed that reflections from the beach arrived 14s after the 
first detected wave. The number of waves produced followed the 
observations made, this producing three completed flap movements. From 
the wave calibration records, it was observed that waves will be followed by 
a small irregular wave train. The distance of separation for these small wave 
trains was followed to understand how these wave trains could affect our 
measures. It was found that the small wave train will separate from the 
waves produced before our wave probe C, placed at 7m from the wave-
maker. The wave probes then were installed at the already proposed 
distances of 7m, 9m, and 11m from the wave flap so the interference was 
minimal. No other important sources of waves able to obscure our 
recordings were observed, including reflections from walls.


	 Another important aspect was the calibration against the wave’s 
natural shoaling, as it was expected that waves might reduce the 
wavelength and its speed if they propagate in transitional water depths. The 
wave periods subjected strongly to the wave shoaling were in the range T4 
to T7. The measurements of the shoaling and velocity decay due to the 
wave’s natural propagation over the bottom gave us the natural deviation 
caused by the wave tank, which was expected to be λ>hd. The wave 
shoaling calculation and measurements can be observed in the data 
analysis section in Chapter 5. 


	 The results of this analysis and the change in the wave properties and 
their propagation are presented in Chapter 5. These results are validated 
against the proposed and developed models in Chapter 3.
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4.4 Experimental limitations 

	 During the experiments, limitations and sources of uncertainty were 
observed. We can summarise these in four main categories:


• Energy to higher harmonics

• Irregular wave trains

• Vortex production

• Obstacle design


4.4.1 Energy transfer to higher harmonics

	 As was observed by Ting et al. [79] and Szmidt [78], harmonics would 
be produced after the waves propagate over the obstacle. According to the 
data obtained in experiments carried out by Ting et al. [79], discussed in 
Chapter 3, this energy transfer will be strong depending on the ratio of 
submergence, here defined as the ratio between the obstacle depth and the 
wave tank depth ht/hd and the variable defined es 0/022Ur, where Ur is the 
Ursell number. Mei and Unlata [88] also use the Ursell number as an 
indicator of the energy transferred to the 2nd harmonic. In their case, if the 
Ursell number is larger than 32.9, more than 25% of the wave energy is 
transferred to the second harmonic. The transfer will cause to harmonics 
grow as large as the original wave, near 60% of the original incident wave 
amplitude for Ting et al. and, in extreme cases like Massel's, the second 
harmonic can be larger than the first. 
	 In all three cases, as reported by Ting et al., the depth of 
submergence plays an important role, as well as the depth of wave 
propagation and the incident amplitude. Because of this and in the interest 
of testing larger depths which are suitable for engineering purposes, depths 
were kept larger than those used by the past researchers and amplitudes 
were kept low, in an attempt to minimise these effects. A table with the 
ratios of wave propagation for this experiment and the number defined by 
Ting et al. can be seen below. The ratios of the maximum amplitude for the 
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2nd harmonic vs the wave transmitted amplitude are defined in equation 
4.15.


	 In equation 4.14 a2max is the maximum measured amplitude of the 
second harmonic and a1min is the minimum of the fundamental harmonic. 
Table 4.11 shows the maximum value for this ratio and also the Ursell 
number value, which might indicate a stronger transfer of energy to the 
higher harmonics, as defined by Mei and Ünlata [81].


	 Table 4.11 shows that, for the last experiment, amplitudes for the 2nd 
harmonic could be at least 30% of the minimum height of the main 
component of the wave propagated over the obstacle. It is necessary to say 
that these values are very conservative as they assume our wave increases 
its height at least 2.5 times over the obstacle.


4.4.2 Vortex production

	 Vortex production has been reported by Ting an Kim [114] and it 
depends on the depth of submergence being stronger when waves pass 
over shallower obstacles. According to Ting and Kim, these vortexes will 
have an effect on the transmitted waves and in some cases will absorb 5% 
of the wave energy and flow separation will occur.  
	 In these cases, models where waves do not lose energy due to 

4.15a2max

a1min
= H /2 * (λd)2

(hd)3

Tank obstruction Max a2max/a1min Max Ur

1/6 0.1 4.5<<35.4

2/6 0.16 7.27<35.4

1/2 0.3 13.63<35.4

Table 4.11: Values of the maximum amplitude of the 2nd harmonic vs the fundamental 
harmonic for a wave propagating over an obstacle.
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dissipation processes caused by the viscosity will only apply if the losses 
are small. It is then expected that, for the shallower obstacle cases tested 
here, dissipation could be a factor worth consideration.  
	 

4.4.3 Irregular wave trains

	 Only a few movements of the flap were allowed so reflections coming 
from the beach after the obstacle would not affect our measurements, which 
has an effect on the produced waves. The wave maker does not stop 
completely vertical and does not gain complete acceleration during the first 
movement. Because of the wave maker constrains the first flap movements 
produced waves with certain irregularities, making the first trough or 
amplitude more irregular than expected. 


	 As this directly affected the characteristics we used to measure the 
wave (amplitude and trough), these variables have an associated uncertainty 
which was not defined due to the variability of the flap movement. Due to 
this, wavelength measures for the first waves were not as accurate as 
desired.


4.4.4 Obstacle design constrains

	 The obstacles in this experiment were designed as simple regular 
obstacles, instead of a long regular shelf. Experiments by Goring and Massel 
have two main differences. 


1) They will present interaction with the bottom as the wave moves across 
the tank. This is because the wave will be in contact with the obstacle for a 
larger distance, causing shoaling. It is probable that any effect due to the 
obstacle’s increased length is not properly observed here as wavelengths 
are kept larger than the obstacle’s main length (the length perpendicular to 
the wave path). In these cases and other experiments with longer shelves, 
waves released after the obstacle can not be compared to the ones 
explored here, or the second set of experiments by Massel, Ting et al., and 
Kim.
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2) The models considered here, such as by Marshall and Lamb, are 
proposed for long waves propagating over a single long obstacle. In these 
cases, these models do not take into account any other interaction with the 
obstacle after the wave rides over the first step. These models do not 
consider energy loss due to vortex interaction after the obstacle ends or 
how harmonics are produced and released after the obstacle. Despite 
measures being made after the obstacle, we expect limitations to the 
accuracy of the amplitude values after the obstacle.


4.5 Conclusions 

	 Experiments carried out by authors like Goring [87], Bendykowska 
[105], Macagno [74], Newmann [70], Santos et al. [75], and Charland [106] 
show that, despite the good correlation between wave propagation theory, 
results show that physical parameters like the period and wavelength are 
affected by its propagation over an obstacle, parameters which are not 
accounted for in linear theory. Using these experiments as a base, an 
experiment was designed to explore different theories of wave propagation 
that could be used to enhance a tidal turbine simulation where wave 
propagation over an obstacle occurs, creating different conditions for the 
local wave weather after the obstacle. The experiment seeks to validate the 
models explored and proposed in Chapter 3 by Lamb [68], Marshall-Naghdi 
[88], and also the author’s.


	 Methods to measure properties using tracking points of individual 
waves were used to derive their physical properties, such as the amplitudes, 
velocity of propagation, and wavelength. A certain degree of confidence is 
given to each property measured, given that the amplitude is easier to 
measure. Next is the velocity because it is measured by tracking the 
propagation in time of individual waves, while the wavelength is affected by 
the wave shape evolution and other possible effects. 
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	 A series of scripts that can be found in git/zenodo are included in 
Appendix section C.1. These scripts were done using Wolfram Language, 
and the code is also annexed in the same section at C.2.


	 The experiments were scaled to simulate swells with a moderate 
amplitude that move in transitional depth waters and from deep waters to a 
shallower regime in transitional depth waters. The swells were modelled 
after linear small-amplitude systems and second-order small-amplitude 
systems. The tests were divided into two campaigns that covered periods 
grouped from T1 to T7. The first campaign tested periods T6 and T7 and the 
second periods T1 to T5. For the experiment to measure the effects under 
the desired physical constraints of the formulations, the waves were 
calculated to have a range between T1~0.8s and T7=~1.7s. Meanwhile, 
amplitudes were calculated to be no larger than 1.5cm. Dimensionally, the 
conditions given prove that the wavelength values used are two orders of 
magnitude larger than the amplitudes, O(λ) and O(a-2), which complies with 
the conditions stated in Chapter 3 as λ>>a. It is important to notice that the 
periods were corrected afterwards as the wave maker could not produce 
frequencies for echo, so the period was equal to 0.8s and 1.2s.


	 The experiments were carried out in a wave flume tank with a depth 
of 0.6m. Waves defined by the period groups T1 to T7 were propagated 
over a set of obstacles with two sets of arrangements:


	 Set 1: Wave propagation over an obstacle that changes its depth with 
a constant length.


	 Set 2: Wave propagation over an obstacle that changes its length 
with a constant depth. 


	 The waves defined by the periods and amplitudes also cover 
propagation from deep waters to transitional waters (λi/2<hd) and upper 
transitional waters to transitional waters (λi/2~hd || λi/2<hd).


	 As we mentioned, the experimental design included the measurement 
of the amplitude, the wavelength and the wave velocity before, over, and 
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after propagation over the obstacles. The set of variables was chosen as 
most of previous experiments only measure the transmitted amplitude. The 
design also differs from other authors because the waves measured do not 
propagate in shallow waters but in transitional waters, since this regime 
would be useful for large swell components travelling to the shore.
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5 Data analysis

	 

	 The experiments presented in Chapter 4 are analysed here. This 
section shows their results and the main discussion is at the end of the 
chapter. The experimental analysis consists of four main sections.

	 The first is section 5.1 which analyses wave propagation across the 
wave tank and the measurements made for the amplitudes, the detected 
wavelengths, and the calculated velocity of each peak. Section 5.2 consists 
of the measurements made for the coefficient of transmission and its 
comparison to the theories of  Lamb, Marshall and Naghdi. Section 5.4 
offers insight into some anomalies and changes that occur in the detected 
wavelengths and the tracked velocities when an obstruction is placed in the 
tank. Finally, section 5.5 is a brief observation of changes that occur in 
steepness for shorter waves.


5.1 Wave propagation analysis 

	 Measurements were done to test the wave generation, calibrate the 
wave maker, and also observe its mechanical performance. These tests 
were made without any obstacle in the wave flume tank. The experiments 
carried out covered the range of periods T1 to T7, and were made following 
the experimental arrangements mentioned in Chapter 4. The procedure 
analyses the evolution of the wave amplitudes for each wave, and also the 
changes in the amplitude and possible anomalies related to the wavelength 
and velocity propagating in the tank without any obstruction.


5.1.1 Wave velocity of propagation

	 Measurements for the wave propagation without obstacles were 
included in the wave tank calibration process. The repeatability of the 
experimental periods was tested, generating waves in the range T1 to T7 
without obstacles, as mentioned in section 4.3.8. The system had a 
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limitation. The velocities measured at sensor A are indirectly calculated by 
measuring the wavelength against the desired period, due to our limit on the 
number of wave probes. Subsequent changes in the velocity after sensor A 

are more accurate as they were measured by calculating the time for the 
wave to travel the fixed distances between each of the wave probes. 
Because of the method used, the plots show apparent homoscedasticity 
and a wide spread, which can be related to four main sources.


1. The period is a fixed quantity and the ratio of the wavelength against 
the desired period is not completely exact. The first strokes of the flap 
do not always start at a perfectly horizontal position, hence the first 
waves would present a small deviation from the desired period.


2. The system to detect the wavelengths exaggerated the length of the 
first waves as the detection uses the wave shape. Detections of the 
first trough were exaggerated as the first trough merged with the 
undisturbed surface, making it hard to discern. A comparison of 
abnormal long deformed thoughts with a more defined one can be 
seen in Figure 5.1. This effect makes waves much larger than they 
appear.


3. Only waves with a defined wavelength were chosen by looking at the 
registered shapes to ensure that very long or deformed thoughts were 
not accounted for, resulting in a measurement which might appear 
biased. This was done to ensure no waveforms with very abnormal 
shapes were taken into account.


4. Waves were changing shape as they moved in the tank. Larger waves 
decreased their lengths and increased their size for conditions where 
h<<λ/2. Because of this, larger waves are smaller when they cross 
the last sensor C in Figure 5.11.


In general, the system to detect the wavelengths is less accurate than the 
one that follows the wave crests. The measurements of wavelengths and the 
velocity of propagation give useful insights into possible changes occurring 
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to the waves, but cannot be used as a substitute for the amplitudes which 
are easier to capture than the wavelengths due to possible small harmonics 
and irregular wave shapes.


 	 The plot of the wave velocities is shown in Figure 5.2 for the first 
sensor A. The plot shows consistently larger velocities for many waves. This 
may be due to measuring the first waves which presented abnormal troughs. 
Velocities from sensors A to B and B to C can be seen in Figures 5.3 and 
5.4.


Figure 5.1: The first image shows a deformed trough, which was a normal occurrence 
following the wave shape. The lower part of the image shows a better defined wave 
shape. This variation usually made the wavelengths larger than expected.
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Figure 5.2: Approximated velocity of the generated waves, for the 7 periods proposed, as 
detected by the sensor at 7m from the wave maker.

Figure 5.3: Approximated velocity of the waves generated for the 7 proposed periods, as 
detected by the sensor at 9m from the wave maker.
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	 If the period is calculated using the wavelength and plotted against 
the velocity, as in Figure 5.5, a more defined shape can be seen.


Figure 5.4: Approximated velocity for the wave trains generated for the 7 proposed 
periods, as detected by the last sensor at 11m from the wave maker.

Figure 5.5: Velocity vs period for waves tested in the tank, in this case the variation 
presented horizontally for the waves tested. Sensors are C, B and A, positioned at 7m, 
9m, and 11m from the wave maker.

Velocity vs Period, no obstruction

Velocity vs Period, no obstruction
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In Figure 5.5 the data variation is shown horizontally. The data also shows a 
larger data scatter for larger wavelengths, as shown in Figures 5.6 to 5.7 for 
the first, second, and third sensors at 7m, 9m, and 11m respectively. The 
sensors also show how the evolution of wave shapes across the basin 
clearly does not allow us to define a constant wavelength, even at our 
shorter distances. Figure 5.6 shows that the mean value for the larger 
periods T7 appears smaller than for T6, which is inconsistent. This error 
appears to be linked to the definition of velocity for the first sensor, which is 
calculated using the measured wavelength.


	 In Figures 5.7 and 5.8, the velocity is calculated using the fixed 
distance between the wave probes and dividing by the recorded time from 
sensor A to B and then B to C. 

	 The data in both figures 5.7 and 5.8 shows a decrease in the mean 
value for larger periods, T7 and T6, as might be expected and linked to 
shoaling. The figures also show an increase in the recorded velocity for the 
smaller periods, T1, as opposed to larger periods, T5.


Figure 5.6: Velocity vs period for waves tested in the tank. In this case the data variation 
presented for the waves tested. For sensor A, which is located at 7m from the wave 
paddle, the definition of velocity is calculated using the wavelength detected by the 
software and the period of the wave.

V(m/s)

T(s)

Velocity vs Period, no obstruction
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Figure 5.7: Velocity vs period for waves tested. In this case the data variation is presented 
for sensor B which is located at 9m from the wave paddle, and the velocity is calculated 
using the distance between the wave probes A and B.

Figure 5.8: Velocity vs period for waves tested. In this case the data variation is presented 
for sensor C which is located at 11m from the wave paddle, and the velocity is calculated 
using the distance between the wave probes B and C.
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T(s)
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Velocity vs Period, no obstruction

Velocity vs Period, no obstruction

Velocity vs Period, no obstruction
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5.1.2 Wavelength detection

	 Data used to characterise the wave velocity across the tank is used to 
measure the wavelengths for waves propagating from sensor A to sensor C.




Figure 5.10: Wavelength vs period for waves tested in the ranges T1 to T7 at sensor B.

Figure 5.9: Wavelength vs period for waves tested in he ranges T1 to T7 at sensor A.
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T(s)

T(s)

λ(m)

λ(m)
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	 Data shows a consistent increase in the mean value for wavelength 
from T1 and T2 as shown in Table 5.1 and Figures  5.10 and 5.11.


	 A more detailed analysis of the amplitudes is provided in section 
5.2.1.  The data also shows a decrease in the wavelengths for larger periods 
in the range T6 to T7, but Figures 5.8 to 5.11 also show a larger scatter of 
the data for larger wavelengths. It is possible that these anomalies in the 
waves are linked to how the wavelengths are measured and to the wave 
maker mechanism. If the period is calculated using the measured 
wavelengths, Figure 5.12 is obtained.


T(s)

Figure 5.11: Wavelength vs period for waves tested in the ranges T1 to T7 at sensor C.

Wavelength vs Period, no obstruction

λ(m)

T(s)

T(s)
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	 The data in Figure 5.12 shows the detected wavelength, which is 
calculated by detecting the wave shape and subsequently used to calculate 
the period. It shows the variation observed in Figures 5.9 to 5.11 but in a 
horizontal manner as waves show wavelengths and periods higher or lower 
than the ones produced by the wave maker. The calculated wavelengths 
using the system to track the wave shapes increase the wavelength when 
abnormal waveforms are detected. Some extreme wavelengths reach 
lengths of 5m, as seen in Table 5.1. 

	 Table 5.1 shows the extreme wavelengths detected for a given 
desired period in the range T1 to T7 and the expected period calculated 
using the correspondent wave theory for deep waters or transitional waters, 
given by equation 3.3 or 3.4.


Figure 5.12: Wavelength vs period for waves tested in the tank. In this case the variation is 
presented horizontally for the waves tested. Sensors are C, B and A, positioned at 7m, 
9m, and 11m from the wave maker.

Wavelength vs Period, no obstruction
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Wave shoaling: It was expected that shoaling would occur for the larger 
waves. Length values for periods above T3 will show a consistent decrease 
in their value as they propagate across the tank, as Figure 5.13 shows.


We expected larger periods to show larger deviation in their wavelengths, 
which was confirmed by the data shown in Figure 5.11. However, an 
increase is observed in some of the data for periods T4 and T5. Deviations 

Figure 5.13: Wavelength ratio, where λο is the wavelength at sensor A=7m and λ is the 
wavelength at sensor C=11m for all waves in the period range T4 in blue to T7 in orange.

Period range Expected λ(m) Mean (m) Max-Min λ (m) 

T1 1.08 1.2 2.63/1.05

T2 1.25 1.31 1.78/1.22

T3 1.53 1.7 2.06/1.62

T4 1.82 1.97 2.07/1.81

T5 2.26 2.19 2.31/2.12

T6 2.70 3.64 5.09/2.46

T7 3.54 3.88 5.87/2.87

Table 5.1: Mean value, expected value, and maximum and minimum wavelengths detected 
for each period range.

Wave shoaling
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appear for periods T6 and T7, but the tendency is for them to have smaller 
wavelength values at the last sensor C than the first sensor A. The mean 
values for the data and their deviations are shown in Table 5.2. The data 
represents the ratio of the detected wavelength at sensor A and the 
detected wavelength at sensor C across a distance of four metres.


5.2 Model validation and the coefficient of transmission 

	 The models of Lamb, Marshall, and Naghdi are compared against 
experimental measurements of the waves propagating across the tank, 
made by obstructing the tank in the manner described in Chapter 4. The 
waves are measured before and over the obstacle, at 7m and 9m from the 
wave maker flap, respectively. Lamb's formulation has been proven to be 
able to capture wave propagation as long the incident depth is large, which 
suits our experiments. Meanwhile, the Marshall and Naghdi model works 
only for finite depths, capturing deeper propagation depths. The data will 
allow us to analyse the effects of wave propagation and shed light on the 
possible effects on a turbine deployment after a bathymetric rise.


5.2.1 Wave propagation over an obstacle with a constant length 
and variable depth


No tank obstruction 

	 The first set of experiments, using the periods defined in Table 4.10, a 
depth of 0.6m, and positioning the wave probes as described in Figure 4.9, 
is shown here. The wave evolution without obstructions is measured in this 

Period T4 T5 T6 T7

Mean λ/λo 0.99 1.0 0.88 0.89

σ 0.018 0.033 0.077 0.086

Table 5.2: Wavelength decreases for larger periods where λ is significantly larger than two 
times the tank depth and its standard deviation.
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section. The mean values and the standard deviation for the waves is shown 
in Figure 5.14, where data comes from wave probes A and B. The data 
shows the ratio of the wave height as defined in equation 5.1 for units T1 to 
T7, which is also the transmission coefficient as defined by Lamb or Kt 

when an obstacle is placed under probe B.


	 The data is also shown in Table 5.3, in addition to the standard 
deviation.


5.1Rat io = HB

HA
= Kt

Figure 5.14: Mean wave height ratio defined as the ratio of sensor A and sensor B, and its 
standard deviation at 7m and 9m from the wave maker flap respectively.

Period T1 T2 T3 T4 T5 T6 T7

HB/HA 0.73 0.60 0.73 0.75 0.82 1.21 1.13

σ ±0.11 ±0.056 ±0.078 ±0.05 ±0.015 ±0.067 ±0.087

Table 5.3: Mean wave height ratio and standard deviation, defined as the ratio of heights 
in sensor A and sensor B at 7m and 9m from the wave maker flap respectively.

Amplitude change without obstruction
HB/HA



150
	 It can be observed that, except for the waves tested in T1, the 
standard deviation is small, which gives us confidence about the 
measurements of the wave propagation. Data shows a consistent decrease 
in the wave height from sensor A to sensor B for all small periods, which 
corresponds to shorter wavelengths. Figure 5.15 shows the same behaviour 
as wave progress across the tank, but now at the position that corresponds 
to sensor C, 11m from the wave maker.


	 In Figure 5.15, it is observed that for small periods with corresponding 
wavelengths shorter than 4 times the tank depth, the amplitude keeps 
decreasing. Meanwhile, larger waves in units T6 and T7 increase their 
amplitudes, which might be linked to the wave shoaling as is observed in 
Figure 5.12. The mechanism behind this larger increase in Figure 5.14 from 
5.15 will be the compression of the larger wavelengths caused by the bed 
friction and the proportional increase in their heights. This can be observed 
by comparing Table 5.3 and Table 5.4.  


Figure 5.15: Mean wave height ratio defined as the ratio of sensor A and sensor C, and its 
standard deviation at 7m and 11m from the wave maker flap respectively.

Amplitude change without obstruction
HB/HA
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	 A comparison between the changes at sensors A to B and A to C can 
be seen in Table 5.5. The table shows the percentage of increase or 
decrease of the wave height ratios from A to B first (7m to 9m from the wave 
maker) and then A to C (9m to 11m from the wave maker). 


Mean values with tank obstructions 

	 Before addressing graphically the comparison between the theories 
of Lamb and Marshall-Naghdi and the experimental data, it will be helpful to 
pause to consider the summary of the mean values for all the experiments. 
Table 5.6 shows the mean values of the wave height ratios as defined by 
equation 5.1. The data includes the standard deviation for all experiments, 
with obstructions equal to 1/6, 2/6, and 1/2 in the tank’s depth, measuring 
the wave height changes from wave probe A to wave probe B.


	 The data in Table 5.6 shows an increase in the wave height ratios as 
the obstruction increases for waves in the range T1 to T5, with the 
exception of T3. Data for larger waves show a poorly defined progression 
and it is scattered. An increase is observed with an obstruction of 1/6. When 
the obstruction of 2/6 of the original depth is placed in the tank for both 
larger periods T6 and T7, Kt is lower. Data for the obstruction of 2/6 of the 

Period T1 T2 T3 T4 T5 T6 T7

HC/HA 0.43 0.40 0.46 0.52 0.63 1.35 1.22

σ ±0.069 ±0.086 ±0.045 ±0.044 ±0.03 ±0.012 ±0.161

Table 5.4: Mean wave height ratio defined as the ratio of sensor A and sensor C at 7m and 
9m from the wave maker flap respectively and their standard deviation.

Period T1 T2 T3 T4 T5 T6 T7

HB/HA -27% -40% -28% -25% -18% 21% 13%

HC/HA -67% -60% -64% -48% -47% 35% 22%

Table 5.5: Decrease or increase in the mean wave height values from sensor A to B and A 
to C (7m to 9m and 7m to 11m respectively). 
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original depth, however, shows a larger variation, which could account for 
the sudden decrease.


Tank obstruction of 1/6 of the original depth  

	 Measurements for when an obstacle obstructs 1/6 of the tank depth 
are shown in Figure 5.16. The image shows the increase of the transmission 
coefficient defined as the ratio of the transmitted amplitude, which can also 
be defined as the ratio of the wave heights, as in equation 5.1. The data 
shows a substantial increase in the wave height for larger periods T6 and T7 
as Kt is greater than 1 (1.14 and 1.21 respectively). The shorter periods (T1 
to T5) also show a slight increase in the amplitude compared to the 
experiments with no obstruction except for T1.


	 It is observed that large scattering in the data occurs at the shortest 
and largest period, the latter corresponding to the largest wavelength, which 
is the shallowest experiment for the obstruction of 1/6 of the original tank’s 
depth. In the last case, it is possible that an increase in the energy 
transferred into the harmonics is causing this large scatter.


Periods T1 T2 T3 T4 T5 T6 T7

0 0.73±0.11 0.60±0.06 0.73±0.08 0.76±0.05 0.82±0.02 1.21±0.07 1.14±0.06

Kt(1/6) 0.60±0.16 0.63±0.13 0.83±0.33 0.86±0.09 0.84±0.02 1.31±0.07 1.22±0.15

Kt(2/6) 0.74±0.08 0.61±0.06 0.73±0.03 0.81±0.05 0.84±0.05 1.16±0.12 1.19±0.26

Kt(1/2) 0.76±0.05 0.62±0.07 0.71±0.04 0.95±0.07 0.87±0.02 1.20±0.08 1.21±0.08

Table 5.6: Data showing the mean coefficient of transmission Kt defined as the ratio of the wave 
heights. The data shows the mean value and the standard deviation for an obstruction in the wave 
tank of 1/6, 2/6, and 3/6 its original depth, defined here as 1/2, using a regular obstacle at 9m from 
the wave maker with a constant length.
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Tank obstruction of 2/6 of the original depth 

	 Wave height measurements using an obstruction of 2/6 of the tank’s 
original depth show how the experimental data and predicted values for the 
Lamb and Naghdi and Marshall formulation  maintain good agreement, as 
seen in Figure 5.17. However, it is observed that scatter in the data grows 
for the larger periods T6 and T7.


	 In this case, the periods show a larger data variation from the 
experiments without any obstruction, as shown in the standard deviation in 
Table 5.6. Again, T7 and T6 represent the largest waves, which are now at 
shallower waters compared to the previous experiment, with the obstruction 
of 1/6 of the original tank’s depth. The periods and data scatter strengthen 
the idea of harmonics interfering with the wave measurements as the 
experiments move to shallower water regimes, even if these are kept at 
larger depths than those tested by past researchers. Lamb’s theory starts to 
overpredict the values for the transmission coefficient Kt. However, it is 

Figure 5.16: The wave height ratio Ht/Hi also defined as At/Ai=Kt for a wave propagating 
over an obstacle of 10cm height in a wave tank with 60cm water depth, keeping the 
length constant  at 10cm.
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observed in Table 5.6 that all coefficients for this experiment are mostly 
bounded between being smaller than the case where there is an obstruction 
of 1/6 and larger than a wave propagating without any obstruction. 


Tank obstruction of 1/2 of the original depth 

	 The last measurements for an obstacle with varying depth were made 
by obstructing half of its original depth. The tank obstruction is the largest 
for all experiments and, as is also shown in Table 5.6, the amplitudes for 
almost all periods suggest again an increase against the case without any 
obstruction, as shown in Figure 5.18. However, values do not follow a 
natural progression as the author expected. Mean values for all periods are 
not considerably larger than the values for obstruction of 1/6 of the tank’s 
original depth, and the data scatter shows a smaller or similar range than the 
data for the obstruction of 1/6, seen in Table 5.6. The mean values are 
smaller for the largest periods using an obstruction of 2/6 of the original 
depth, which again will correspond with the larger wavelengths and 

Figure 5.17: The wave height ratio Ht/Hi also defined as At/Ai=Kt for a wave propagating 
over an obstacle of 20cm height in a wave tank with 60cm water depth, keeping the 
length constant at 10cm.
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shallower cases where the depth ratios h/λ are 0.018 and 0.084 respectively. 
Further commentary on the possibility of harmonics, given the depth 
conditions for 2/6 and 1/2, is offered at the end of this chapter. 


	 It is also observed that, as the experiment occurs at the shallower 
obstacle, higher harmonics might be presented, perhaps causing a large 
data variation, although the opposite might suggest otherwise.


5.2.2 Wave propagation over an obstacle with constant depth and 
variable length


	 Further experiments were made to try to capture the possible effects 
caused by changes in the obstacle length on the waves propagating over it. 
In these cases, the obstacle was kept at a constant depth of 50cm causing 
an obstruction of 1/6 of the original 60cm depth. The obstacle length 
changed from 10cm to 20cm and 30cm respectively. 


Figure 5.18: The wave height ratio Ht/Hi also defined as At/Ai=Kt for a wave propagating 
over an obstacle of 30cm height in a wave tank with 60cm water depth, keeping the 
length constant (10cm).
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The experiments try to capture the possible effects of the obstacle when its 
length, rather than its depth, changes.


	 The experiments follow the same arrangement described in Chapter 
4. However a slight change was made, as the wave probes were positioned 
at the mid part of the obstacle length, placing them at 7.05m, 7.1m, and 
7.15m (for lengths of 10cm, 20cm, and 30cm respectively). Measurements 
also include the wave heights at 11m from the wave maker, propagated after 
the obstruction. Tables 5.7 and 5.8 show the variation of the transmission 
coefficient over the obstruction and after the obstruction at 11m from the 
submerged obstacle. They offer a summary before the figures are 
introduced.


	 Table 5.7 shows the waves propagated after the obstacle. It is 
observed how most of the coefficients of transmission show a decrease in 
the wave amplitudes after the obstacle for periods in the range T1 to T5. 
However, the trend is not consistent for T1, which is the only wave that 
transitions from deep water to transitional waters over the obstacle.


	 The values that contradict the decreasing trend in T1 for an obstacle 
with 20cm length or Kt(2/6) and 30cm length or Kt(1/2) also show a larger 
data variation, which is observed in Figures 5.17 and 5.18. In Table 5.8 it is 
also observed that, for an obstacle of twice the original length, values are 
lower than for an obstacle of three times the original depth in the case of 
periods in the range T2 to T5 which cover transitional waters. With smaller 

Period T1 T2 T3 T4 T5 T6 T7

0 0.44±0.07 0.40±0.09 0.46±0.05 0.52±0.04 0.63±0.03 1.36±0.13 1.22±0.16

Kt(1/6) 0.48±0.13 0.35±0.08 0.7±0.5 0.65±0.08 0.71±0.03 1.5±0.14 1.29±0.30

Kt(2/6) 0.6±0.9 0.3±0.04 0.40±0.01 0.5±0.04 0.5±0.05 1.53±0.13 1.40±0.18

Kt(1/2) 0.71±0.13 0.47±0.05 0.6±0.07 0.75±0.01 0.67±0.01 1.5±0.13 1.49±0.23

Table 5.7: Data showing the coefficient if transmission is defined as the ratio of the wave heights or 
the amplitudes by Lamb. The data shows the mean value and the standard deviation for an 
obstruction of 1/6 of the tank depth, meanwhile the length of the obstruction changes from 10cm to 
20cm and finally 30cm and the case without any obstruction. The data corresponds to the waves 
propagated after the obstacle at 11m from the wave maker.
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wavelengths than T6 and T7, this reduction can be as large as 60% of the 
original value without an obstacle.


	 It is possible that waves tracked could have passed energy to higher 
harmonics and the amplitude of the original wave could have been greatly 
affected. However, the progression of all mean values remains the same 
comparing the waves without any obstacle in the first row of Tables 5.7 and 
5.8, all waves from T1 to T5 show a smaller amplitude after the obstacle 
than over it, the contrary is true for all mean values of the waves in T6 to T7.


Tank obstruction of 1/6 of the original depth with a length of 20cm 

	 For an obstruction with twice the original length, the transmission 
coefficients drop dramatically for the waves in the range of shorter periods 
T1 to T5. In some cases, the drop is almost 60% of the mean value for 
waves propagating without an obstacle. The drop does not present a large 
variation in the values, and the theory does not point to the dependence of 
the transmission coefficient on the obstacle length. Due to the values, no 
theory appears to follow the wave behaviour since none incorporates the 
obstacle length and transitional water depths, as shown in Figure 5.19 for 
waves over the obstacle. The waves released after the obstacle are shown in 
Figure 5.20 where a small increase in the mean values for the wave 
coefficients of transmission is observed. 


Period T1 T2 T3 T4 T5 T6 T7

0 0.73±0.11 0.60±0.06 0.73±0.08 0.76±0.05 0.83±0.02 1.21±0.13 1.14±0.16

Kt(1/6) 0.60±0.16 0.63±0.13 0.83±0.33 0.86±0.09 0.84±0.2 1.31±0.07 1.22±0.15

Kt(2/6) 0.43±0.04 0.39±0.04 0.42±0.01 0.53±0.04 0.5±0.05 1.12±0.04 1.08±0.07

Kt(1/2) 0.75±0.1 0.67±0.04 0.72±0.07 0.93±0.02 0.82±0.02 1.24±0.04 1.40±0.08

Table 5.8: Data showing the coefficient if transmission is defined as the ratio of the wave heights or 
the amplitudes by Lamb. The data shows the mean value and the standard deviation for an 
obstruction of 1/6 of the tank depth, meanwhile the length of the obstruction changes from 10cm to 
20cm and 30cm. The data corresponds to the waves propagated over the obstacle at 9m from the 
wave maker.
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Figure 5.19: The mean wave height ratio Ht/Hi is also defined as At/Ai=Kt for a wave 
propagating over an obstacle of 10cm height in a wave tank with 60cm water depth, 
having a length of 20cm. This data collects mean values over the obstacle at 9m from the 
wave maker.

Figure 5.20: The mean wave height ratio Ht/Hi is also defined as At/Ai=Kt for a wave 
propagating over an obstacle of 10cm height in a wave tank with 60cm water depth, 
having a length of 20cm. This data collects mean values over the obstacle at 11m from 
the wave maker.
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It could be expected mean values would be larger over the obstacle rather 
than after it, but this is not the case, as shown in Tables 5.7 and 5.8. In 
general, the data for an obstacle of twice the original length does not 
present a valuable conclusion as to how the length could change the 
coefficients of transmission, but it does shed light on a possible dependency 
on the wavelength, which is not addressed by other authors.


	 Theories predict a lower value for the transmission than was obtained 
experimentally after the obstacle, and the contrary is true over the obstacle 
for the larger waves in the period range T6 to T7.


Tank obstruction of 1/6 of the original depth with a length of 30cm 

	 For our next case, the obstacle length was increased to 30cm and the 
depth over the obstacle was kept at 50cm. In both cases, the waves that are 
transmitted grow compared to the data for an obstacle that has a smaller 
length of 20cm for both sensors B and C, at 9m over the obstacle and 11m 

after the obstacle respectively.


Figure 5.21: The mean wave height ratio Ht/Hi is also defined as At/Ai=Kt for a wave 
propagating over an obstacle of 10cm height in a wave tank with 60cm water depth, 
having a length of 30cm. This data collects mean values over the obstacle at 9m from the 
wave maker.
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	 Observing the values in Figures 5.21 and 5.22, for an obstacle with 3 
times the original length, waves crests offer scattered values when 
compared to expectations. In the plots of this section, a decrease in the 
coefficient for waves around the period T2 occurs. The behaviour does not 
appear in the models; however, it corresponds to the limit where the waves 
are large enough to interact with the bottom of the tank λ/2>h. It is probable 
the decrease and the depth-to-wavelength ratio are related. More 
experimentation on this transition between depth regimes might be needed 
to have a better-defined conclusion.


5.3 Wave velocity and wavelength anomalies 

	 Just as the wave heights were followed, the respective wavelengths 
of each wave were measured. The method presented here can not 
substitute the amplitude measurement as abnormalities in the wave shapes 
will produce values with deviations that could be considerably different from 
the expected ones. The value, however, can help us to understand the 

Figure 5.22: The mean wave height ratio Ht/Hi also defined as At/Ai=Kt for a wave 
propagating over an obstacle of 10cm height in a wave tank with 60cm water depth, 
having a length of 30cm. This data collects mean values over the obstacle at 9m from the 
wave maker.
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processes that waves go through after any obstruction and the possible 
effects this can have on the waves propagated over and after the obstacle, 
which in turn would affect any tidal device along the wave perturbation path.


No tank obstruction 

	 The mean values for the approximate wavelength measurements and 
their deviation are shown in Table 5.9 for sensors A, B, and C at 7m, 9m, and 
11m from the wave maker respectively. The data, including the standard 
deviation for each experimental unit from T1 to T7, shows how the 
wavelengths change from sensor A to sensor C. The evolution of the waves 
shows how waves in the range T1 to T5 increase their length as they 
propagate across the tank. If we observe this and relate it to the data 
presented in Tables 5.7 and 5.8 in the first row, which represents the 
amplitude propagation without an obstacle, it becomes evident that the 
mean value for amplitude decrease for waves in the range T1 to T5 is 
consistent with the detection of an increase in the wavelength of the waves 
for those same waves. As shown in Table 5.9, it is also noticeable how the 
increase in the waves’ amplitudes as signalled by the mean values for the 
experiments in T6 and T7, and this is accompanied by a decrease in the 
wavelengths for the same waves from sensor A to C. 


Unit λ(m), Sensor A λ(m), Sensor B λ(m), Sensor C

T1 1.2±0.05 1.4±0.09 1.62±0.32

T2 1.31±0.08 1.44±0.1 1.57±0.11

T3 1.7±0.03 1.74±0.04 1.83±0.09

T4 1.97±0.07 1.98±0.07 1.98±0.06

T5 2.19±0.03 2.24±0.01 2.25±0.03

T6 3.63±0.85 3.5±0.91 3.26±0.79

T7 3.88±0.8 3.71±0.72 3.5±0.68

Table 5.9: Mean values for the wavelength detected by the system and its standard 
deviation for experimental units T1 to T7. The sensors are located at A=7m, B=9m, and 
C=11m from the wave maker respectively.
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This suggests that any mechanism that would affect the wave propagation 
over the tank and does not transfer energy to higher harmonics would be 
observed in wave parameters, wavelength, and amplitude respectively. The 
data shows a higher standard deviation for the larger waves, the reason 
behind which is the existence of very large maximums and minimums.


	 The data in Table 5.10 that follows the wave crests and calculates the 
averaged velocity as the waves pass from sensor A to B and then B to C 
reveals how the waves evolve without any obstruction. Data shows how 
waves above units T2, reduce their velocity as they move along. This is 
significant as the waves between T1 and T2 have a mean value of 1.2m and 
1.31m. The wavelength data means this wave propagation occurs in deep 
waters or transitional waters with large depth. It is expected shoaling will 
occur for waves larger than T2, which is evident for all waves from T3 to T7. 
It also suggests very strongly that the larger changes in the wavelengths for 
the mean values in Table 5.11 in units T1 and T2 are related to this velocity 
change. The same can be observed for the waves from T3 to T7, where the 
decrease in velocity corresponds with the data for the wavelengths, as they 
decrease at the same time they are detected to slow down from sensor A to 
sensor B. However, data does not appear to follow the same progression for 
T3.


Unit V(m/s), sensor A-B V(m/s), sensor B-C

T1 1.38±0.03 1.51±0.05

T2 1.43±0.04 1.53±0.04

T3 1.69±0.04 1.58±0.5

T4 1.77±0.03 1.67±0.02

T5 1.83±0.02 1.76±0.01

T6 2.05±0.12 2.0±0.11

T7 2.10±0.16 2.05±0.13

Table 5.10: Averaged velocity between sensors A-B and B-C without any obstruction in 
the tank.
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Tank obstruction of 1/6 of the original depth and constant length 

	 The mean values for the changes in the wavelengths and the 
velocities are given in Tables 5.11 and 5.12. The data shows how the waves 
for the periods T1 to T5 deform in such a way that data shows an increase 
in the wavelength, but the same increase is detected without any obstacle. 
The comparison between the data with an obstacle shows how the mean 
value of the wavelength decreases as the waves cross the obstacle, which 
could be linked to wave deformation and compression.  


	 The decrease can be observed when comparing the waves near or in 
deep water regimes such as in units T1 and T2. Without any obstruction, the 
waves appear to increase their lengths by 25% and 16% for T1 and T2 
respectively. However, if an obstacle is placed in the tank, these values are 
reduced to 22% and 11% respectively, compared to Table 5.10. In general, 
for all experimental units, T1 to T5, lengths appear to decrease but larger 
waves appear to show changes of less than 5% with respect to the case 
without any obstacle. 


	 For larger wavelengths the case is different: values for the units T6 ad 
T7 show opposite behaviours. The system detects some extreme waves 
which mean for the experiments in T6 the detected wavelength decreases 

Units λ(m), sensor A λ(m), sensor B λ(m), sensor C

T1 1.13±0.19 1.27±0.16 1.46±0.15

T2 1.31±0.17 1.40±0.11 1,48±0.1

T3 1.58±0.049 1.68±0.12 1.76±0.18

T4 1.82±0.053 1.89±0.07 1.96±0.08

T5 2.17±0.01 2.26±0.05 2.36±0.02

T6 3.48±0.7 3.2±0.64 2.83±0.49

T7 2.39±0.54 2.9±0.5 3.44±0.38

Table 5.11: Wavelengths detected by the system as the waves propagate on the tank. The 
detections were made at sensor A, sensor B, and sensor C, which are at 7m, 9m, and 
11m respectively. This for an obstacle at 50cm depth and with 10cm length.
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by around 19% with a single obstruction, which is a larger value than the 
11% without any obstruction. Values for T7 are the opposite, showing an 
apparent increase in their wavelengths. Table 5.12 shows data for the 
velocities which possess more uniform results. Following the individual 
crests, it shows a consistent increase in the velocity after the waves cross 
the obstacle. This is probably related to the waves entering deeper waters 
after crossing the obstacle. 


	 The data is more consistent than the approximated length of the 
waves, at least for waves with smaller wavelengths. Larger wavelengths, T6 
and T7, show again a very large standard deviation, also in the cases with 
shallower depths. The graphical comparison between the wavelength 
calculated by the system while tracking the wave shape for an obstacle of 
10cm length and a depth of 50cm and the experiment without obstruction is 
shown in Figures 5.22 and 5.23 for sensors B and C respectively. 


	 For the waves passing over the obstruction in sensor B in Figure 5.23, 
lengths start to decrease slightly for very large wavelengths compared to the 
case without any obstruction, at least for waves with lengths larger than 4 
times the tank depth. These waves correspond to waves in the units T6 and 
T7. The decrease in the large wavelengths shows a correlation with the 
increase in the mean value for the coefficient of transmission at sensor B in 

Units v(m/s), sensor A-B v(m/s), sensor B-C

T1 1.3±0/2 1.45±0/07

T2 1.41±0/18 1.51±0.03

T3 1.58±0.03 1.6±0.06

T4 1.65±0.03 1.69±0.03

T5 1.80±0.02 1.81±0.01

T6 2.09±0.11 1.88±0.09

T7 1.21±0.07 1.96±0.1

Table 5.12: Velocity tracked by the system as the waves propagate in the tank. The 
detections were made at sensor A, sensor B, and sensor C, which are at 7m, 9m and 11m 
respectively. This for an obstacle at 50cm depth and with 10cm length.
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Table 5.11. Implying a compression of the larger waves. Moreover, data 
showing abrupt decreases in the detected wavelength after the obstacle in 
Figure 5.24 can also be linked back to larger increases in the amplitude in 
the waves in Table 5.9 in larger periods.


Figure 5.23: The detected wavelength for the waves tested using an obstruction of 10cm 
in both height and length and at 9m from the wave maker.

Figure 5.24: The detected wavelength for the waves tested using an obstruction of 10cm 
in both height and length and at 11m from the wave maker.

No obstruction10cm

No obstruction10cm
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The comparison for the velocities shows the same trend in Figures 5.25 and 
5.26 for sensors B and C respectively.


In sensor B several anomalies are detected with velocities lower than 
normal, by almost 40% in some cases. All of them belong to the range with 

Figure 5.25: The tracked velocity for the waves tested using an obstruction of 10cm in 
both height and length and at 9m from the wave maker, in sensor B position.

Figure 5.26: The tracked velocity for the waves tested using an obstruction of 10cm in 
both height and length, and at 11m from the wave maker, in sensor C position.

No obstruction 10cm

No obstruction 10cm
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larger wavelengths and shallower propagation depths. This large deviation 
can be related to a failure in the sensor. The velocities tracked after the 
obstruction show a more consistent, less dispersed pattern. However, 
results show smaller velocities for waves in sensor C after the obstacle vs 
the case with an obstacle, which matches with the slightly smaller 
wavelengths for the waves in sensor C in Figure 5.23. If we look at Table 5.9 
where the wave heights are shown, it also corresponds to an increase in the 
wave height. Figure 5.23 also shows that for waves below T=1.25s, which 
corresponds to T5, waves have a slight increase in the velocity between 
sensors B and C. It can be also observed how wavelengths appear to 
increase by the same length of the tank in Figure 5.24. This is observed for 
all but the shortest waves in the experiment.


	 A comparison of the wavelength predicted by the theory proposed 
here and that of Marshall and Naghdi is also shown in Figure 5.27.


This shows how the finite depth water theory, in blue, predicts values closer 
to the ones obtained in the experiment than the simpler formulation 
introduced in Chapter 3.


Figure 5.27: Comparison for the wavelengths predicted with the theory proposed, Naghdi-
Marshall, and the experimental data.
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Tank obstruction of 2/6 and 1/2 of the original depth and constant 

length 

	 The second and third round of experiments includes an obstruction of 
2/6 and 1/2 of the original depth, leaving a depth over the obstacle of 40cm 
and 30cm respectively. The obstacle maintains the same length of 10cm in 
both cases. The mean values for the wavelength values as they propagate 
along the tank are given in the Appendix, section F. The plots of both 
experiments are shown here. The data for these experiments shows no 
sensible variation for the detected wavelengths over the obstacle at sensor 
B, over the obstruction. However, small increases in the detected length 
appear in Figure 5.28 for waves with shorter periods, in transitional water 
depths. The same happens for some waves in Figure 5.30 when the 
obstruction is half of the original depth.


Figure 5.28: The detected wavelength for the waves tested using an obstruction of 20cm 
height and 10cm length at 9m from the wave maker, compared to a case without 
obstruction at sensor B, which corresponds to a depth of 60cm.

20cm No obstruction
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	 However, waves released after the obstruction in Figures 5.30 and 
5.31 lengths of smaller waves increase in some cases more than 10%.


Figure 5.29: The detected wavelength for the waves tested using an obstruction of 30cm 
height and 10cm length at 9m from the wave maker. This is compared to a case without 
obstruction at sensor B, which corresponds to a depth of 60cm.

Figure 5.30: The detected wavelength for the waves tested using an obstruction of 20cm 
height and 10cm length at 11m from the wave maker. This is compared to a case without 
obstruction at sensor B, which corresponds to a depth of 60cm.

Figure 29.5a: Wave amplitude ratio after an obstacle for a blockade of ht=1/2hd and length 
l=0.1m

30cm No obstruction

20cm No obstruction
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	 The disturbances created by the obstruction are more evident after 
they are released after the obstacle, as shown in Figure 5.32.


Figure 5.31: The detected wavelength for the waves tested using an obstruction of 30cm 
height and 10cm length at 11m from the wave maker. This is compared to a case without 
obstruction at sensor B, which corresponds to a depth of 60cm.

Figure 5.32: The detected wavelength for all the waves tested using an obstruction of 
30cm-20cm-10cm height and 10cm length at 11m from the wave maker.

30cm No obstruction

30cm 20cm 10cm No obstruction
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In the last figure, it is observed how for experiments with obstructions of 2/6 
and 1/2 of the original tank depth, the length detected appears to increase 
after the obstacle. This is at least true for periods below 1.3s which 
correspond to experimental units T1 to T5. The difference between the 
detected lengths for obstructions of 2/6 and 1/2 of the tank’s original depth 
has no more than 10% of variation from its mean value in Tables F.3 and F.4 
in the Appendix, section F. The same is true for the length detected over the 
obstacle in Tables F.1 and F.2.


	 The tracked velocities are shown for the wave crests in Figure 5.33 for 
sensor B over the obstacle, and after the obstacle for sensor C in Figure 
5.34. The results show all experiments as a general comparison. With the 
wavelengths for obstructions with 2/6 and 1/2 of the original depth, small 
changes are observed for shorter periods and larger periods in transitional 
depths, with waves slowing down compared to the case without any 
obstruction in blue, having 60cm depth at sensor B.


Figure 5.33: The tracked velocity for all the waves tested using an obstruction of 30cm, 
20cm, 10cm height and 10cm length compared to a case without obstruction at a depth of 
60cm on sensor B and 9m from the wave maker.

30cm20cm10cmNo 
obstruction
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The variation is still small, with decreases no larger than 15% of the values 
compared to a case without obstruction in the most extreme values. 
However, waves released after the obstruction show a larger impact on the 
crests moving along the tank. Figure 5.34, showing the waves released after 
the obstruction, demonstrates how smaller waves appear to gain speed 
after they cross the obstacle. In some cases, this speed up is as large as 
20% of the velocity for waves without any obstruction, for cases T3 to T5, 
which correspond to periods between 1.0s and 1.25s.


	 The changes in the length of the waves are then compared to the 
theories of Naghdi and Marshall and the one proposed here in Figures 5.35 
and 5.36, again for obstructions of 2/6 and 1/2 of the original tank depth.


Figure 5.34: The tracked velocity for all the waves tested using an obstruction of 30cm, 
20cm, 10cm height and 10cm length compared to a case without obstruction, with a 
depth of 60cm on sensor C and 11m from the wave maker.

No 
obstruction

10cm 20cm 30cm
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	 In both cases, the Naghdi and Marshall formulation offers a better 
result than the one proposed here. The finite depth equation, which uses a 

Figure 5.35: Length detected by the system for all waves after crossing an obstruction of 
20cm height and 10cm length, compared to the formulation of Naghdi-Marshall and the 
one proposed here. Measurements are made by sensor B at 9m from the wave maker.

Figure 5.36: Length detected by the system for all waves after crossing an obstruction of 
30cm height and 10cm length, compared to the formulation of Naghdi-Marshall and the 
one proposed here. Measurements are made by sensor B at 9m from the wave maker.
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more robust and complete mathematical theory than assumptions of 
linearity, appears to behave better for waves in units T1 to T5. Meanwhile, 
the formulation proposed would approach closer to the values as the length 
and period increase, leading to shallower water cases. This could be a result 
of the formulation using the simpler approach taken by Lamb, rather than a 
full linearisation of the finite depth water conditions in Naghdi and Marshall.


Tank obstruction of 1/6 of the original depth with a varying length 

	 The last set of experiments where the length of the obstacle was 
altered to measure the wave properties after propagating over them are 
shown in the next figures. Neither Naghdi and Marshall or the theory 
proposed takes into account the length of the obstacle producing the 
obstruction and these measurements are not included in this section. 
However, the detected lengths and the tracked velocities of the crests as 
they move in the tank are shown here. Figures 5.37 and 5.38 show the 
effects of the obstructions in sensor B as they increase their length from 
10cm to 30cm, having a constant depth of 10cm or 1/6 of the original tank 
depth.


Figure 5.37: The detected wavelength for all the waves tested using an obstruction of an 
increasing length 10cm to 30cm and a height of 10cm at 9m from the wave maker.

No obstruction10cm20cm30cm
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	 The detected wavelengths for all waves tracked do not show a large 
change for small waves in units T1 to T5, however a stronger length 
deformation appears for larger waves when the obstacle length is 20cm. In 
the most extreme cases, this deformation reaches above 10% of the original 
value, if we observe values for the waves moving without any obstruction in 
Figure 5.38. 


	 Length deformation is drastically increased for the obstruction of 
20cm length, as shown in Figure 5.38. Here, the deformation for large waves 
on units T6 and T7 reaches 25% of the length measured without any 
obstruction. The origin of this mechanism is unknown, as the deformation 
caused by an obstacle of 30cm in length does not reach these higher values, 
with extreme cases around 10% of the original length for waves released 
after the obstacle. The effect is the same, however, causing a decrease in 
the detected length for larger waves in units T6 and T7. Changes for smaller 
waves in units T1 to T5 show an increase in their length for the waves 

Figure 5.38: The detected wavelength for all the waves tested using an obstruction of an 
increasing length from 10cm to 30cm and height of 10cm at 11m from the wave maker.

No obstruction10cm20cm30cm
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released after the obstacle, but no clear mechanism that links the length to 
the length deformation emerges. 


	 Plots for the velocities are shown in Figures 5.39 and 5.40.


	 The tracked velocities for waves with shorter periods at the position 
of sensor B do not show a conclusive behaviour either. However, waves with 
larger periods on units T6 and T7 show a larger velocity while arriving at 
sensor B, which in this case is located at the centre of the obstruction of 
20cm length. This is somewhat counterintuitive as the wavelengths show a 
deformation, indicating a decrease in length. 


	 The waves released after the obstacle on the other side follow the 
pattern shown for the detected lengths when the obstruction has 20cm 

length in both the shorter and larger periods. Larger periods show a strong 
decrease in velocity in sensor C after waves arrive from sensor B. This can 
be linked to the amplitudes shown in Figure 5.18 where the wave amplitudes 
are sensibly higher than the ones over the obstacle in Figure 5.20 for this 
same experiment with a length of 20cm. 


Figure 5.39: The tracked velocities for all the waves tested using an obstruction of an 
increasing length from 10cm to 30cm and a height of 10cm at 9.1m from the wave maker.

No 
obstruction

10cm 20cm 30cm
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	 The reason behind this strong effect for a specific length is unclear.


5.4 Changes in the wave steepness 
	 

	 Another important effect on the wave parameters in the wave tank 
after propagating over the obstruction is their wave order. The first waves 
tested in the range of, T1 to T4, were all initially 2nd order waves. 

	 When no obstacle is placed inside the tank, almost all waves from 
shorter periods reduce their steepness from 2nd order to 1st order (linear). 
When obstacles are inside the tank, the waves do not decay to first order. 
The most notable case is the obstruction of 1/6 of the original depth, where 
almost 60% of the waves remain in 2nd order for periods in T2 and 80% for 
unit T1. This effect only occurs for shorter periods and shorter obstacles. 
The reason behind this effect is unknown; however, this could be linked to 
the higher results of Kt for the waves in T1 and T2 and their depth of 
propagation in the tank.


Figure 5.40: The tracked velocities for all the waves tested using an obstruction of an 
increasing length from 10cm to 30cm and height of 10cm at 9.1m from the wave maker.

No 
obstruction

10cm 20cm 30cm
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5.6 Conclusions 
	 Experiments were carried out to measure the wave propagation over 
an obstacle and also to validate the suggested formulations. The measured 
variables were: the wave amplitude, wavelength, and wave velocity of 
propagation. The experiments in this chapter show how wave frequency can 
affect the wave transmission as observed by Goring [87], Newmann [70], 
Jolas [77] and Macagno [74] appear also at wave propagation in deeper 
water regimes. 


	 First, observation and experimental tests were conducted to observe 
the natural evolution of a wave train propagating inside the tank. The 
observations and measurements show an increase in the wave height for the 
largest waves in T6 and T7, while the contrary is observed for shorter waves 
in the range T1 to T4. The effect could be linked to the natural shoaling in 
the largest waves, with wavelengths 4 times larger than the depth of the 
tank. The wavelengths detected appear to react to this behaviour according 
to what could be expected. As in Figure 5.12, they appear to decrease their 
values for the largest waves, which then strengthens the idea behind the 
shoaling of the largest waves inside the tank. For the shortest waves, 
wavelengths detected appear to increase slightly also, which was not 
expected, but information for the waves moving inside the tank suggests 
that wavelength decrease or increase is inversely related to the amplitude of 
the wave as it moves in the tank, which is reasonable for larger wavelengths.


	 When obstacles are placed inside the tank, the waves show an 
increase in their coefficient of transmission for almost all tests, except for 
waves in the period range of T3, and some of the largest waves. The 
progression in their increase is not as regular as could be expected. It is very 
possible that this is due to nonlinearities, however the mean values in Table 
5.5 show a clear tendency to larger amplitudes after waves propagate over 
the obstacle. In Table 5.5 it is also observed that for larger waves, T4 to T7, 
the increase in the coefficients Kt is stronger as the obstacle minimises its 
depth, as was observed by Goring [87] in shallower depth regimes. The 
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increase in the coefficient correlates again to the detected wavelengths in 
Figures 5.22 and 5.28 for an obstruction of 1/6 and 1/2 of the depth of the 
tank. This is weaker for an obstruction of 2/6 of the tank’s depth in Figure 
2.27. This also correlates with Table 5.5 where the Kt coefficient seems to 
have a weaker increase for the case of an obstruction of 2/6 of the depth of 
the tank. This relates directly to the formulation of Naghdi and Marshall and 
the one proposed here, where the transmitted amplitude is a function of the 
incident frequency as the wavelength is a function of the frequency itself 
through the dispersion relationship.


	 For the cases where the obstacle length varies and its depth is kept 
constant, the coefficient of transmission appears to increase to larger values 
than the ones where the depth decreases at a constant length. If we take the 
mean values, the increases in the coefficient of transmission for a variation in 
the depth of the obstruction do not increase their values more than 5% 
compared to waves where no obstacle is placed inside the tank. For waves 
where the obstacle is lower, but with an increase in the length, Kt increases 
to more than 10% in the most extreme cases in Table 5.6. for waves 
released after the obstacle. This indicates that the obstacle length might be 
a very important characteristic to take into account for waves propagating 
over sudden irregular topographies. An increase in Kt could be related to the 
increase in the interaction, as the length is larger than for the cases where 
the obstacle is shorter but shallower.


	 In general, changes in the wavelength and the velocities of 
propagation are observed over the obstacle, and larger waves decrease 
their length and slow down. This is predicted by Naghdi and Marshall theory 
as well as the formulation proposed here. This phenomenon is known in 
oceanography as waves crossing into shallower banks will slow down and 
modify their shape in the shallowest parts of the coast. These observations 
must however be corroborated using experiments designed specially for 
these measurements and reducing the errors caused by the wave maker as 
the detection of the lengths depends on the wave shape and sudden 
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deformities could result in anomalous values. In reality, amplitude is the best 
marker to measure. 


	 The changes product of the wave propagation over an obstacle take 
our future discussion to the possibility of local disturbances in the wave 
weather that cannot be calculated from local measurements. These could 
induce changes in the loads felt by marine energy devices even if they are in 
the same geographical area.


	 The validation of the theories for wave propagation also shows a 
good agreement with Lamb and Naghdi and Marshall being closely accurate 
for the case of a single obstacle with limited length in Figure 5.16. However, 
the formulation of Naghdi and Marshall is more accurate in the two following 
cases where the depth of the obstruction increases in Figures 5.17 and 5.18. 


	 The validation of the simple analytical formulation proposed here and 
the one proposed by Naghdi and Marshall (using the directed fluid sheet 
theory of Green and Marshall [97] to predict the changes in the incident-
transmitted frequency through the changes of the wave number/wavelength) 
shows how the formulation for finite depths proposed by Naghdi and 
Marshall is more accurate for almost all cases of wave propagation. In 
general, the formulation proposed here appears to be more accurate for 
larger waves in the range T6 to T7 as shown in Figures 5.27, 5.35, and 5.36.
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6 Wave propagation over an obstacle and its 
effects over a horizontal axis tidal turbine


	 The models used for tidal stream devices use wave models for 
transitional and deep waters. As established, the oscillations in the velocities 
caused by the waves at these depths will induce unsteady effects and time-
varying forces over the tidal turbine. The unsteady effects will be transmitted 
to the blades and transmission will occur through its hydrodynamical 
interactions with the streamflow. The unsteady effect then will have a long-
standing impact on the fatigue process of these tidal stream devices. 
Because any obstruction in the wave path will modify the wave shape and 
properties, as we saw in the last chapter, it is essential to know how these 
changes will affect the unsteady loads felt by the tidal turbine. Observations 
made in Chapter 4 show a slight increase in the wave height for waves in 
transitional waters. The increase in the amplitude will have a direct impact 
on the waves, as explained in Chapter 2. An increase in wave amplitude will 
lead to an increase in the velocity components and, as result, a direct effect 
on the turbine loads could be expected. The period shift suggested by the 
wavelength changes will also modify the load cycles. 


	 Furthermore, changes in the velocity field as a result of an obstruction 
in the wave propagation path will lead to changes in the amplitudes and 
periods, which could in turn produce a different mechanical response for a 
tidal turbine. As these changes will occur only for larger waves that can 
reach the bottom, it is expected swells would be the main drivers behind 
these changes in the wave properties after the obstruction. 


	 The apparent change in the incident wavelength λi, which is a 
function of the incident period Ti for the depths before the obstacle (x<0), 
shows a variation of less than 10% after the jump vicinity. We can say this is 
located x=0. This is explained in relationships 6.1 and 6.2 where λt and Tt are 
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the transmitted periods and transmitted wavelength respectively, x’ is the 
distance after the jump, located at x=0, and σ is the distance after the jump.


Statements 1 and 2 simply express a distance range after the jump 
where the conditions discussed in Chapter 4 hold. This is because it is 
possible larger lengths will see more changes in the wave parameters as 
they propagate on a large shelf, mostly caused by bed friction. The distance 
at which this is valid is not explored here as the longest obstacle is 
approximately only 1/3 of the shortest wavelength for the shortest wave 
period. The distance σ it is not known but it is assumed to be shorter than λ.

if we look at the changes in the waves in Chapter 4, changes in the 
wavelength after crossing the obstacle and a variation in the amplitude will 
proportionally change the components of the wave velocity. The amplitude 
increase for the larger periods will increase in the horizontal velocity 
component after the obstruction. Meanwhile, a flow obstruction will change 
the total velocity component along the horizontal direction  z, leading to 
different flow conditions and loading cycles.


In order to analyse the wave parameters following a regular bathymetric 
effect on a tidal turbine, two steps are taken.


1. A sensitivity analysis of the numerical model to changes in the period, 
wave height, depth, and current. The results are then compared to the 
Nevalainen et al. [36]. The main difference between this analysis and 
Nevalainen et al.’s is the wave weather, which is composed of a swell-
dominated sea. This is in contrast to the mixed sea with steeper waves 
which corresponds to a wind-dominated sea and also the inclusion of a 
bathymetric obstruction in the wave propagation, which changes the 
wave height.


6.1

6.2

(λi = f (Ti)x<0) < (λt = f (Tt)x′ )
x′ = (x > 0) + σ
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2. A comparison of the torque and thrust over the turbine rotor and a single 

blade and after the obstacle, taking some wave conditions that are 
scaled up from those tested in the wave tank. 


In the next section and the introduction of the BEMT model, the turbine 
characteristics and the conditions used to conduct the sensitivity analysis 
and the simulation are explained in greater depth as their results.

6.1 Blade Element Moment Theory and its dependence on 
the velocity field 

Nevalianen et al. [46] show how the waves’ unsteady loads can impact 
the tidal turbine, affecting the eccentric forces at the shaft and bearing rings. 
The same loads of the waves will modify the harmonics presented on the 
axial thrust, as shown by Tantum et al. [45], thus impacting the blade fatigue 
[43]. It is then assumed that a change in the wave field properties, or the 
properties of the waves as they cross through some volume of water, will 
modify the impact on the same turbine characteristics through its mechanical 
performance. Tidal turbine mechanical performance depends on the 
hydrodynamics of the rotor and its interaction with changing velocity field U∞. 
This will produce deviations in the rotational movements defined by the flows, 
which is shown in Figure 6.1.

The mechanics behind the transmission of movement to the rotor by 
the flow can be explained by the rotor-fluid interaction. The incident flow 
from the turbine’s front, or U∞, will be deflected by the blade in an upward 
direction, thus producing a reaction in the positive direction of  the z-axis. 
The blade’s rotational movement in the positive z-direction will cut the water 
flow and the upward movement will produce a secondary induced velocity 
flow UI perpendicular to U∞. The geometry requires that the overall velocity 
flow on the blade will be the geometrical addition of both flows. The 
apparent velocity of both is named UA. The fluid velocity,  UA, will be 
responsible for the lift and drag properties of the turbine blades. 
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	 The lift and drag forces are relevant because they are the main driver 
behind the turbine hydrodynamic properties. Low drag values in a rotor will 
decrease the resistance produced by our device to the induced rotary 
movement. As the turbine rotational velocity depends intrinsically on the 
flow velocity, the flow components will become important. The changes in 
the wave velocities will modify the blade’s drag and lift, hence the changes 
in its components will be of significance. The most simple expression of the 
velocity components in the water column is shown below in equations 6.3 
and 6.4. The expression G(z) is a function that depends on the depth.


6.1.1 Torque and thrust of a tidal turbine rotor and their 
dependence on the wave velocity field using BEMT 


	 The strength of the wave oscillations and their effects on the tidal 
turbine will depend, as explained in Chapter 2, on the depth at which the 

6.3

6.4

Vx = U∞

Vz = U∞G (z)

Figure 6.1: Image showing the turbine at a depth h with a cut C on the plane Y=yn, left, and 
image of the cut, right, showing the velocities of the rotor in a steady state without waves. 
The right image shows the rotor velocity relationships: U∞ is the free stream velocity, UI the 
induced velocity, and UA the apparent velocity, which is a result of both U∞ and UI.
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turbine is deployed. The overall magnitude will also be proportional to the 
incident wave amplitude. 


	 In this chapter, the type of the waves producing perturbations on the 
field are divided into the following categories:


a) Moderate waves with periods lower than 5s.


b) Moderate waves with periods lower than 7s and higher than 5s.


c) Large waves with periods over 7s.


	 Turbines facing wave weather conditions b and c will show moderate 
to large unsteady forces acting over its components at transitional depths, 
which will affect the mechanical torque and thrust. To explain how the waves 
and flow interact with the rotor torque and thrust, we need to explain the fluid-
rotor interaction and the method known as BEMT.

The extended fluid-rotor system from Figure 1.2 in Chapter 1, 
describing the rotor interaction with the fluid flow, can also be seen below in 
Figure 6.2. 

The figure shows that the stream velocities are also linked to the drop 
of pressure in the fluid stream. The system in Figure 6.2 can be analysed as 
an energy exchange by the flow-turbine system in 4 steps. The upstream 

Figure 6.2: Relationship between the velocities in the BEMT formulation. U∞=U(z) and its value 
corresponds to the stream velocity at a certain depth z, Us being the wake velocity and Ur the 
velocity in the rotor area.
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rotor's flow (1), the flow around the rotor (2-3), and the downstream rotor’s 
flow (4). Physically, the flow will lose part of its incident velocity U∞ and will be 
released to the stream as velocity Us after the rotor interaction. Bernoulli’s 
law states that equating conditions 1-2 and 3-4 allows us to equate 
conditions 1 to 4 in equation 6.5:

	 The energy exchange is equal to the fluid velocity change across the 
area swept by the rotor Ar. The result of this is that equation 6.5 can be 
expressed as equation 6.6.


	 The other mechanism of energy exchange is the mechanical work 
done by the rotor. The rotor’s work must be equal to the mass flow passing 
through the rotor area per ξ. ξ is a value equal to the velocity loss of the fluid, 
as this is the vector for the energy exchange. We can say that the 
variable ξ is a factor a. In the rotor area, Ur must be lower than the incoming 
fluid velocity  U∞. Expressing this as (U∞ -  aU∞), where our factor must 
necessarily be a<1, equation 6.7 is obtained.


	 Expressing the mass flow in the rotor we obtain equation 6.8.


Since there must be a change in the momentum, this would be equal to the 
mass flow per the velocity change and equation 6.9 is obtained.


	 Substituting equation 6.7 into equation 6.9 and equating the change 
in the fluid momentum across the whole rotor to the energy loss, which is 
linked to a drop of pressure, we then obtain equation 6.10.


6.5p2 − p3 = 1
2 ρ(U2

∞ − U2
s )

6.6△ p = 1
2 ρ(U2

∞ − U2
s )

6.7Ur = U∞(1 − a)

6.8·m = ρUr Ar

6.9Δ ·p = ρArUr(U∞ − Us)
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	 For Ur to satisfy the relationship in 6.10, it must have a value Ur 

=(1-2a)U∞. If we also express the turbine force as the drop in pressure 
around the rotor as F=(p2-p3)Ar, we can use it in expression 6.5 to obtain 
the turbine’s thrust.


	 If we add the rotational momentum of the turbine wake, the notion 
that Ar is the turbine's sweep area, and we also express the torque of an 
annular section of the rotor as in Nevalainen [46] and Masters et al. [89], we 
obtain expressions 6.12 and 6.13.


	 The term Ωr is the rotational velocity of the turbine and b is the second 
factor of the BEMT formulation, as defined in equation 6.14.  The value 
w  corresponds to the wake angular velocity in equations 6.12 and 6.13, 
where both are dependent on U∞.

From Chapters 2 and 3, we know the  U∞=G(x,y,z,t). The function 
G(x,y,z,t) must be U(z)+Vφ(x,y,z,t).  As the width of the wave trains is 
assumed to be several magnitudes larger than the other dimensions,  we 
know we can reduce it to U(z)+Vφ(x,z,t). The functions that add the spatial 
and temporal variant fields are the wave velocity solutions of the wave 
equation. As the total rotor torque and thrust will depend on the power 
delivered by the flow U∞, the components Vφ(x,z,t) will affect it 
proportionally. The changes discussed in the experimentation section will 
define a function Vφ(x,z,t)i before the jump and Vφ(x,z,t)t  after the jump. 


6.101
2 ρ(U2

∞ − U2
s )Ar = (U∞ − Us)ρArU∞(1 − a)

6.11Ftr = 2ρArU2
∞a(1 − a)

6.12

6.13Ftq = (4πρU∞a(1 − a)bΩrr2)) rdr

Ftr = (4πρU2
∞a(1 − a) + (bΩr)2)rdr)

6.14
b = ( ws

Ωr )
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6.1.2 Torque and thrust of a blade and its dependence on the wave 
velocity field using BEMT


	 The torque and thrust of the turbine will be equal to the torque and 
thrust produced by the blade’s hydrodynamic responses. The blade 
hydrodynamics are defined by the incoming flow, as can be seen in Figure 
6.1. The forces on the blades will induce drag and lift effects, the values of 
which depend on the blade shape design, also called the airfoil. The airfoil’s 
geometry requires these forces to be components of the direction of rotation 
z and the direction of the incident flow U∞. 


	 In Figure 6.3 we can see the geometrical relationship between the 
flows and the lift and drag forces. Ur is the velocity at the rotor, but as we 
stated before, Ur = U∞( 1 - a ). As Ui is aligned with the turbine rotor rotation, 
then it has the form Ui = Ωrr( 1 + b ). The total velocity will then be UA= ( Ur2 
+ Ui2 )1/2. The drag and lift forces as shown in Figure 6.3 are caused by the 
flow, so from Figure 6.3 we can derivate equations 6.15 and 6.16. The angle 
can be defined by U∞ and Ui as in equation 6.17, and the total flow will be 
then the sum of both, giving us equation 6.18.


Figure 6.3: Figure showing the induced flow on the rotor rotational direction z and the 
incoming flow from the current on axis x. The plot has been rotated from figure 1.6.
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	 The blade's induced forces in the radial direction (torque) and the 
forces in the flow direction (thrust) can be expressed in equations 6.19 and 
6.20.


	 Here, the Drag and Lift coefficients can be defined as in equations 
6.21 and 6.22. Here c is the chord of the blade (the distance from the trailing 
edge t  to the nose of the profile) and L and D are the drag and Lift, where 
both coefficients are functions of the flow conditions [115].


	 The BEMT method equates the thrust and torque expressions for the 
blade with the overall thrust and torque on the rotor. If then we equate 6.12, 
6.13, 19.6, and 20.6, we will obtain two expressions. The expressions are a 
system of equations with two unknown variables a and b. The equations that 
result from this can be seen in 6.21 and 6.22, as are also shown in 
Nevalanien’s thesis.


6.15

6.16

6.17

6.18

ΣFy = d LSin(φ) + d DCos(φ)

UA = (U∞(1 − a))2 + (Ωr(1 + b))2

φ = Tan−1 U∞(1 − a)
Ωrr (1 − b)

ΣFy = d LCos(φ) + d DSin(φ)

6.19

6.20Ftq = B
1
2 ρU2

Ac(CLSin(φ) + CDCos(φ))dr

Ftr = B
1
2 ρU2

Ac(CLCos(φ) + CDSin(φ))dr

6.21

6.22

Cl = L
(1/2)ρU2∞c

Cd = D
(1/2)ρU2∞c

6.21

6.22(4πρU∞a(1 − a)bΩrr2)) rdr = B
1
2 ρU2

Ac(CLSin(φ) + CDCos(φ))dr

(4πρU2
∞a(1 − a) + (bΩr)2)rdr) = B

1
2 ρU2

Ac(CLCos(φ) + CDSin(φ))dr
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	 The unknowns,  a  and  b,  can be solved through iteration methods. 
However, the stream flow velocity U∞ is also a function of time in presence of 
a wave system. As U∞  is composed also of G(x,z,t), the streamflow will be 
composed of two additional components, as in equation 6.23.


	 The current flow will vary along with the depth of the site as a power 
function. This is modelled in this work as a 1/7 power law, and then the 
vertical change in the horizontal velocity will be defined as in equation 6.24.


	 The results of inserting 6.21 and 6.22 into the tidal turbine rotor’s 
torque and thrust expressions will result in an oscillatory rotor performance 
due to the change in the velocity inflow. We can see this in equations 6.25 
and 6.26.


	 The equations 6.25 and 6.26 describe the behaviour of a turbine 
deployed in the seabed below a depth hd. If the depth is large enough to not 
allow local wind spectrums to interact with the tidal device hd>(λ/2)wind, then 
only large wave periods will cause a large oscillation in the torque and thrust 
below the wind wavelength limit.


6.2 Second order wave model for steeper low amplitude-
long waves 

The waves modelled here include terms for higher values of non-
dimensional heights, hence they are steeper. Steeper waves have larger 
crests and at non-dimensional depths, reaching amplitude values of 1.5m 

6.23U∞x = Ucurrent + Vφx

6.24
U∞z = U∞x ( z

h )
1/7

+ Vφz

6.25

6.26(4πρ(Ucurrent + Vφx)a(1 − a)bΩrr2)) rdr = B
1
2 ρU2

Ac(CLSin(φ) + CDCos(φ))dr

(4πρ(Ucurrent + Vφx)2a(1 − a) + (bΩr)2)rdr) = B
1
2 ρU2

Ac(CLCos(φ) + CDSin(φ))dr
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and 4.5m for the period ranges between T=7s and T=14s at depths of around 
40m.

The experimental section in Chapter 4 and 5 included steeper waves 
which belong to 2nd order waves. Steeper waves like the ones described in 
the last paragraph have a higher amplitude. As the waves become steeper, 
they start to develop non-linear behaviours, also known as weak 
nonlinearities. To model waves with weak non-linearities, we use the 
expansion method from Stokes on a parameter called steepness. At this 
point, equations 7.6 to 11.6 from Chapter 3 are first transformed into non-
dimensional equations. The process to transform the expression into 
dimensionless equations uses a set of transformations, which make every 
term of the wave equation non-dimensional, as in equations 6.27 to 6.32.


	 Inserting these new terms in the original equations, a product of the 
factors a and k will appear. The factorisation of the non-dimensional term, 
defined by the amplitude to wavelength ratio  (ak), will modify our original 
wave equations. The result of this variable change produces a set of non-
dimensional modified equations. The parameter, ak, is known as the wave 
steepness ε and it is used by Stokes in the power expansion model [116-93]. 
The modified equations can be seen below.


6.27

6.28

6.29

6.30

6.31

6.32

C′ = cte
ag

z′ = zk

t′ = t /T

x′ = xk

φ′ (x′ , y′ , z′ ) = φ(xk , yk , zk) σ
ag

η′ = η /a

6.33

6.34

∂2φ′ 
∂x′ 2 + ∂2φ′ 

∂z′ 2 = 0

∂φ′ 
∂z′ = 0
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	 The terms can be expanded in a power series around ε, as in 
formulation 6.37.


	 The order of expression 6.37 is represented by the powers (1),(2),(3)…
(n). The power expansion of the Taylor series needs to be applied to each 
term of equations 6.33 to 6.36. The produced terms with the same order 
φ(x',y’,z’)n are gathered together and the result is a set of equations that 
represent the steeper wave system. This formulation allows us to represent a 
steeper swell wave system, expressions for which are shown in equations 
6.38 and 6.39:


	 The terms φ1 and η1 are the already known solutions for the linear 
wave equation that allow us to model long swells on the x  ranges chosen 
for T7 to T4/T3, while the new terms are the corrections to the linear theory. 
The corrections allow us to solve second-order Stokes waves. Solutions for 
these terms are shown below in equations 6.40, 6.41, and 6.42.


	 The term θ=(ωt+kx) is the argument of the wave equation as we know 
it. These terms were introduced in the model of the velocities to represent 
steeper waves, as in equations 6.43 and 6.44.


6.35

6.36∂φ′ 
∂t′ + gz′ = C′ 

∂η′ 
∂t′ = Aw′ 

6.37∑ φ′ (x′ , y′ , z′ ) = φ′ (x′ , y′ , z′ )(1) + εφ′ (x′ , y′ , z′ )(2) + +ε2φ′ (x′ , y′ , z′ )(3) . . .

6.38

6.39

φ2nd = φ1 + φ2

η2nd = η1 + η2

6.40

6.41

6.42

φ2 = 3ak
8Coth[kh] (Coth[kh]2 − 1)2Cosh[2k (z + h)]Sin[2θ ]

η2 = 1
4 Coth[kh](3Coth[kh]2 − 1) a2kCos[2θ ]

C = a2kg
2Sinh[2kh]
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	 These terms are then added to represent the flow velocities of 
second-order waves in our tidal turbine model. The complete terms are 
annexed in the Appendix, section F.


6.3 Analysis of the effects on a horizontal tidal turbine 
induced by waves before and after an obstruction  

The conclusions from Chapter 5 and the expressions to model wave 
propagation over an obstacle are used to explore the effects a simplified 
bathymetry construction will have on the waves and how these changes will 
modify the forces felt by a tidal turbine


	 In order to do this, a set of conditions was established and a 
sensitivity analysis was carried out using the Morris method. The set of 
variables of study were two sea weather conditions and one geographical 
construction, with current flow and wave period being the two explored. The 
geographical constriction refers to an obstruction in the wave propagation, 
which represents a regular obstacle, as used in Chapter 5 for our 
experiments. The study seeks to capture changes in the mechanical 
performance of the turbine when these conditions change without any 
obstruction and when the waves are affected by an obstruction. This section 
is divided in the following manner:


• First and foremost, an explanation of the changes to the BEMT model and 
software used is given in 6.3.1.


• The scaling of the wave trains and the depth conditions are discussed in 
section 6.3.2.


• The tidal turbine dimensions and details are described in section 6.3.3.


6.43

6.44

Vφz = ∂φ1

∂z
+ ∂φ2

∂z
+ U(z)

Vφx = ∂φ1

∂x
+ ∂φ2

∂x
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• The Morris sensitivity method is explained in section 6.3.4.


• Results of the analysis are provided in 6.3.5.


• Simulations of a turbine using a scaled-up version of the waves and 
depths for a limited set of cases are made and results are shown in 6.3.6.


6.3.1 BEMT software


	 The software used to simulate the tidal turbine mechanical response 
was a modified version of the BEMT tool developed by the ESRU team at 
the University of Strathclyde, as documented in Nevalainen’s thesis [46]. The 
in-house software is written in MATLABTM. The software solves the blade 
and rotor hydrodynamic properties to obtain the turbine’s torque and thrust. 
The tool has been expanded and complemented to integrate several types 
of wave models and corrections. This software has been validated against 
experimental and CFD results, achieving good and consistent results 
produced by wave loads and rotor imbalances, as in Porter et al. [117-94] 
and Ordonez-Sanchez et al. [118], with some overestimation of forces.


	 The software capabilities include the solution of unsteady problems 
and mixed wave spectrums. The wave models that BEMT can solve linear 
waves in transitional waters and third and fifth-order Stokes waves. To 
obtain these solutions, the software solves equations 6.25 and 6.26 using an 
iterative method. The solutions then are applied to different annular sections 
of a tidal turbine rotor, and the results are integrated to obtain the torque and 
thrust. The software allows us to modify the current velocity and the blade 
design parameters, as well as to incorporate tip and hub corrections for the 
inflow-rotor interaction. Other software add-ons include a user-defined 
number of blades and variation in the turbine hub height, hub diameter, and 
blade length. The software runs an iterative process of optimisation based 
on multiple searches of points over a hyper-surface. Further detail on the  
BEMT tool is in [46], a link to the ESRU software website is in the Appendix  
section H.
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	 Parts of this software had to be updated in order to calculate the 
mechanical torque and thrust of the turbine at suitable depths. Two 
additions were made:


1. The solutions for infinite depth waters λ/hd→0 which we mention in 

Chapter 2. 
2. The solutions for second-order Stokes waves. 

The rationale for both additions is that the scaling process of the 
waves tested in Chapter 4 resulted in second-order waves for units T1-T2, 
meanwhile T3-T7 were escalated to linear long-wave swells. The conditions 
for simulation can be seen in Table 6.1.

The wave models we can simulate using BEMT are shown in Figure 
6.4:


Period (Tn) Regime ( adimensional parameters ) Depth

T1 2nd order Stokes Deep waters

T2 2nd order Stokes Deep waters

T3 2nd order Stokes/Linear theory Deep/Transitional waters

T4 Linear theory/2nd order Transitional waters

T5 Linear theory/2nd order Transitional waters

T6 Linear theory/2nd order Transitional waters

T7 Linear theory/2nd order Transitional waters

Table 6.1: Wave regimes simulated at BEMT. Waves simulated are in the boundary between 
AIry (linear) and 2nd order Stokes.
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6.3.2 Waves simulated

	 The waves tested in Chapter 4 were scaled up to satisfy the Froude 
number similarity. However, as we mentioned, the Reynolds cannot be 
satisfied due to physical constraints.  Additionally, we could not discard that 
viscosity effects were larger in our tested waves in the tank because of their 
small amplitudes. In this case, the ratio of gravitational forces to viscous 
forces was compared, and both values are given by equations 6.48 and 
6.49.


Figure 6.4: Diagram of the wave models added and modified to the BEMT software (in red) 
and those already developed by ESRU. The values of H and λ show the ranges for which 
each theory is valid.

6.48

6.49Fvis = σ
p + p1 k2

Fgrav = p1 − p
p + p1 g
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	 The values for the gravity to viscosity forces ratio are shown in Table 
6.2. These allowed us to confirm that waves were purely gravitational where 
the ratio of both is small.


 


	 Secondly, the waves in the tank were scaled up comparing the 
Froude number for the waves in the tank. The Froude number was 
compared to waves scaled up using the non-dimensional depth and height, 
as given by Le Méhauté, which is shown in Table 6.3. Here, the depth was 
corrected to 42m instead of 40m when the Froude number was compared.


Periods Tn (s) C=Fvis/Fgrav

0.833 4.4%

0.9 3.7%

1.0 3.0%

1.1 2.4%

1.25 1.9%

1.4 1.5%

1.7 1%

Table 6.2: Percentage value of the gravity 
to viscosity ratios.

Wave tank, depth h=60cm Simulated Model h=42m

Period (s) Height (cm) Froude Period (s) Height (m) Froude 

0.833 1.5 0.535 6.97 0.4 0.534

0.9 1.5 0.576 7.54 0.6 0.576

1.0 1.5 0.634 8.37 0.7 0.631

1.1 1.5 0.685 9.3 0.8 0.686

1.25 1.5 0.748 10.5 0.9 0.742

1.4 1.5 0.796 11.73 1 0.786

1.7 1.5 0.860 14.1 1.1 0.843

Table 6.3: Froude number for waves in the tank  and waves used in the simulation.
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	 We also use the Ursell number with the suggested ranges of validity 
for the linear wave theory [59], as in equations 6.50 and 6.51. The 
wavelength here is calculated using the approximation made by Fenton [93].


6.3.3 Tidal turbine and blade characteristics


	 The tidal turbine simulated is a horizontal axis tidal turbine, also 
known as HATT. The bottom of the channel where the turbine is placed has a 
depth of 42m which was found by scaling the Froude number values in 
Table 6.3. 	 


	 The blade chosen for this simulation is the NRELs814 [119] owing to 
past studies conducted by Nevalainen and Barltrop [120] which tested the 
same airfoil using a BEMT model. Nevalainen tested the same blade under 
wave conditions similar to ours for the period range, current, and depths. 
Navalainen’s works differ in the use of mixed wave weather with high 
amplitudes, rather than swell dominant weather. This in turn will allow us to 
compare his results partially. Nevalainen [46] reproduces the experiments 
made by Barltrop, which show how the BEMT tools used in this thesis can 
reproduce the forces over the individual blades of the rotor. The conditions 
tested by Nevalainen in B and Barltrop in C are shown in Table 6.4, along 
with the conditions in this work, A.


6.50

6.51linear ⟺ H
λ

< 0.04

linear ⟺ Ur < 40

Test T(s) H(m) hd(m) Theory U∞(m/s) hh(m)

A 6.97-14.1 0.4-1.1 42-28 1st-2nd 1.5-3.5 32-18

B 6-10 1-6 ∞ 1st 2.5-4 30-40

C 6-8 1.4-7 ∞ 1st 3.6 20

Table 6.4: Ocean weather used for the turbine simulations using the NRELs814 design under 
different weather cases. Here, hh=hhub which is the depth of the turbine’s hub, and hd is the 
sea depth before the wave propagates over the obstruction.
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	 The other parameters (such as the diameter and tip-to-speed ratio) 
besides the airfoil differ from those used here because the aim of this study 
is to account for the variation caused by waves changing their physical 
parameters, rather than the turbine design or pitch changes due to 
misalignment. The general design parameters of the turbine are shown in 
Table 6.5.


	 The NRELs814 is considered a thick airfoil [119] which is suitable for 
stall-regulated operation and makes the rotors with this blade run at an 
approximate fixed speed when higher velocities are achieved without any 
geometry change. The physical model of the turbine was simulated to be at 
an initial depth of 42m depth, ranging to 28m in its shallower simulation. 


	 The Reynolds number was given as constant. Despite this being 
incorrect, it is assumed to be negligible because the order of magnitude is 
approximately the same. In general, except for the shorter periods, the 
waves move in infinite waters in the simulations, instead of infinite depth 
waters as with the other authors. Also, the other authors use linear wave 
theory for their random case simulations, while the work presented here 
combines linear and 2nd order theory. An image depicting the height of the 

Specification Value

Blade profile NREL S814

Turbine Depth (m) 42-28

Rotor radius (m) 8

Hub radius (m) 1.2

Blade number 3

Pitch angle 0

Twist distribution [1]

Wave model used Linear (1st order), 2nd order

Current time velocity profile Linear shear current profile [46]

Distance between the seafloor and the hub (m) 10

Table 6.5: Characteristics of a tidal turbine modelled using BEMT.
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turbine hub, the depth over the obstacle, and the depth before the obstacle 
is shown in Figure 6.5.


6.3.4 Sensitivity analysis


	 The blade NRELs814 and BEMT have been found to agree with 
enough confidence by authors like Masters et al., Nevalainen et al., and 
Barltrop et al. These cases and simulations have used sea condiments with 
active seas that present active wind-driven waves that are steeper. They 
have also simulated a flat seabed, without any particular irregularity that can 
modify the wave trains that propagate after or over the obstacle. The 
sensitivity analysis performed by Nevalainen et al. focuses particularly on the 
variation of the operational and design parameters of the turbine, as well as 
the sea weather. In our case, we focus on the analysis of a swell-dominated 
sea and a regular seabed that can modify the wave parameters. 


	 As explained in Chapter 3, a sensitivity analysis is a method used to 
determine how the vacation of the input of a function can affect its output, 
which is also known as the uncertainty. In our case F which is our function 
corresponds to the BEMT model, which is composed of several other 
functions related to each other. The only way to ascertain the sensitivity is 
through a complex method known as the Morris method of sensitivity 
analysis [121], introduced byMorris in order to test and sample the 
importance of the inputs of a model. The Morris method is known as a 
global sensitivity analysis method as it samples all variables of a model F.


Figure 6.5: Principal depths for our tested model: hd the seabed before the jump at 42m, h the 
obstacle depth variation, and hh the hub height.

Flow
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In the Morris method, all the parameters that can affect the output of the 
function F are changed to study how each one affects the output Y, which 
can be a vector of several outputs Y={y1, y2, …, yn}. In this case, the inputs 
and outputs can be seen in Table 6.6.


	 Unlike the work of Nevalainen et al, Barltrop et al, and Masters et al, 
in our case the wave height also varies depending on the depth of the 
obstacle. The wave height changes along with the size of the obstruction in 
the path of waves travelling to the coast in our model. This is done by using 
the formulation of Marshall and Naghdi and correcting the wavelengths as 
they move in waters of finite depth.


	 In order to measure the effects of the changes produced by each 
variable, a number of steps were taken according to the method.


• The range of the variables is divided into a fixed number of equally spaced 
sections, so the range [xmin-xmax] is now [xmin, xmin+Δχ, xmin+2Δχ, …, Δχ-

xmax].


• A minimum set of simulations to iterate between each variable change is 
made, known as R.


• A set of random paths where each variable changes one at time during 
every iteration. These are the trajectories taken by our function F to obtain 
the values of Y as the vector of variables X changes. This can be seen in 
equation 6.52.


Input variables X Range Output Y

x1=T (s) 6.97-14.1 y1=Torque

x2=H (m) 0.4-1.1

x3=h,hd (m) 42-28 y2=Thrust

x4=c (m/s2) 1.5-3.5

Table 6.6: Input variables and output values for the sensitivity analysis.

6.52Ri = F(x1, x2, x3, x4) → F(δx1 + x1, x2, x3, x4) → . . . F(x1, x2, x3, δx4 + x4)



202
Each result of the trajectories before and after the change of an individual 
variable, in this case δxn, is divided by the change in the variable made to 
change from one point to another of the trajectory in equation 6.52. This 
ratio of the function at point Fa with variables Xa to Fb with variable Xb 
produces an elementary effect also known as EE. This effect is discussed in 
Chapter 3 and can be seen below, as described by Capolongo et al. [122].


	 The sum of the elementary changes will allow us to calculate the 
moments, which are related to the statistical distribution values of the 
central tendency of the model. The Morris Method of sensitivity calculates 
three moments: 


• The sample moment µi  is an average effect measure, where higher values 
suggest a main dominant contribution of the initial factor x to the 
responses in Y, and effects are expected to be linear. As their symbol 
suggests, as does the calculation method, this is related to the mean in 
statistics. The formula can be seen in equation 6.53. The response can 
also be monotonic, which means a Y variation proportionally to X but 
without a constant rate.


• The sample moment µi*  is the total measure effect. In this case, which 
measures the total effect over the output Y independently of the response 
being negative or positive, the formula can be seen in equation 6.54. This 
moment accounts for the total effect of this factor to the response of the 
input.   

6.52EE = F(x1, x2, (x3 + δx3), x4) − F(x1, x2, x3, x4)
δx3

6.53
μi = 1

R

R

∑
r=1

EEi(X )

6.54
μi * = 1

R

R

∑
r=1

∣ EEi(X ) ∣
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• The third moment σ is used to calculate the non-linear interaction between 

each initial variable xn to produce the output Y. The equation to calculate 
this can be seen in 6.55.


Here i is the individual elementary effect of the ith calculation on the 
trajectory Ri.  

 In order to produce random trajectories that move across the variable 
space, a matrix is made with dimensions k or k+1. Here, k corresponds to 
the length of the array input which contains the variables or X={x1, x2, …, 
xn,}. This is 4 with H and h-hd, related by the equation of Naghdi and 
Marshall, giving a total set of 5 variables related to the sensitivity analysis. 


	 The matrix to find the random paths is defined in equation 6.56:


• Here δ is the pre-defined division made to all variables in the ith space 
domain of the variables, which can be defined as Ω as in Nevalainen’s 
work and which is a 4th-dimensional space. The 4th variable is four 
variables linked by the Naghdi-Marshall relationship because the wave 
height H will vary depending on the wave number, which is period related 
(T), and the ratio of the depth before and after the obstacle (h, hd).


•  is a permutation of the identity matrix.


•  is a triangular lower matrix with entries equal to one in the lower triangle.


•  is a diagonal matrix with entries randomly chosen to be -1 or 1, which 

allows the mapping of the input-output to have a decrease and increase of 
δ for each of the input variables in X.


6.55
σi = 1

R − 1
R

∑
r=1

(EEi(X ) − μ)2

6.56As = Jk+1q* + δ
2 [(2A − Jk+1,k)D* + Jk+1,k]P*

P*

A

D*
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•  is a matrix with values equal to 1 in all entries.


•  is a matrix with elements that have the property of having only 

elements with a value equal to 1, one per column, but where the elements 
never share the same row.


•  is the vector with the initial values X={x1-0, x2-0, …, xn-0,} which are 

different for each trajectory in the Ω space. In our case, these values 
should be inside the range of the sampling space defined by Table 6.6. 
These values are also known as X0 and are defined in the Appendix, 
section H.


	 To run the sensitivity analysis, a relatively large sample of data is 
needed so that model F can be more accurately measured. In this case, 
Wentworth et al. [123] suggest using a division in the ith space of 20 and a 
sample of 50. In this case, R=50 corresponds to 250 experiments using 50 
routes through Ω. As the parameters σ, µ, and µ* represent measures of the 
response of F, the resulting plots can be roughly interpreted as displayed in 
Figure 6.6. 


6.3.5 Sensitivity analysis results 


	 The results of the sensitivity analysis for an individual blade and the 
rotor of the turbine are shown in Figures 6.7 and 6.8 The x axis measures the 
parameter importance from 0 to 1, σ is the parameter value in the y axis.


Jk+1

Jk+1,k

q*

Figure 6.6: Graphical interpretation of the results for the sensitivity analysis using the Morris 
method, where µ* and σ correspond to the values for each parameter in X.

0 Max 
value

Max 

value
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	 The result of the analysis are compared to Nevalainen’s in Table 6.7. 
The comparison must be done with some limitations as the model tested by 
Nevalainen is the result of a mixed state with higher amplitudes, where the 

Figure 6.7: Results of the sensitivity analysis for the tidal turbine, values for the period, T, the wave 
height, H, the current, C, and the depth of immersion, h-hd, exist in the range shown in Table 6.6. 
Letters with a subindex B refer to the blade results; those without refer to the total rotor results.

Figure 6.8: Results of the sensitivity analysis for the tidal turbine, values for the period, T, the wave 
height, H, the current, C, and the depth of immersion, h-hd, exist in the range shown in Table 6.6. 
Letters with a subindex B refer to the blade results; those without refer to the total rotor results.
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0 1

10
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measurements were made to detect events that represent a deviation from 
the mean thrust of the blade in most of his cases. In this work, we can only 
compare the mean thrust to the thrust of the turbine under swell conditions. 
For both the blade and the rotor, the values can be interpreted as in the 
table below.


	 There are some limitations in this comparison. The analysis 
corresponds to the same blade and it was performed under a range of 
conditions that overlap with the new test devised by Nevalainen et al and 
Barltrop et al. However, due to the sea weather conditions simulated for the 
numerical analysis, the magnitude is different. Values for the depth and 
period obtained by Nevalainen appear in the scale of 1x106 Newtons, while 
the values obtained here are one order of magnitude lower in the scale of 
1x105 Newtons. Variables such as the depth and wave period, despite being 
equally low in Nevalainen’s work, they are one order of magnitude lower in 
our case scenario.


	 The results are the contrary for the current and wave height. In our 
scenario, the sensitivity analysis shows a higher magnitude for the wave 
height and current, in some cases almost one order of magnitude larger than 
Nevalainen’s case for the current. The total measured effect for Nevalainen’s 
are in the order of 1x105 N and in our case it has a total effect in the order of 
1x106 N. The results of the analysis show how the current and the wave 
height are the most important parameters in scenarios where the turbine sits 
in a relatively shallow part of the shelf and is exposed to swell dominant 
weather conditions. 


Variables Mixed state Swell weather

Current, C High effect, monotonic Moderate effect, monotonic

Wave height, H Low effect, non-linear High effect, non-linear

Depth, hd-h Low effect, monotonic Low effect, monotonic

Wave Period, T Low effect, monotonic Low effect, monotonic

Table 6.7: Category of the effects as detected by Nevalainen [36]-[46] and in this work.
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	 For us, the turbine presents a high sensitivity to the wave height and a 
moderate to the current, contrary to Nevalainen. This is extremely important 
because the variation of the wave height caused by any geographical 
accident in the vicinity of our turbine will cause a large effect on the torque 
and thrust. However, as our wave height is limited to low step swell 
conditions, it is possible that waves with higher amplitudes in second-order 
will have an even higher effect on the tidal turbine torque and thrust.


	 It is also important to remember that in this analysis the limited 
obstacle size also produces a limited change in the wave height after the 
obstacle. However, as was pointed out by Ting et al. [79], an increase in the 
wave height and a reduced depth will likely cause energy transmission to 
higher harmonics. Since these harmonics are not addressed in this model, it 
is not possible to introduce higher amplitudes if wave fission and harmonics 
are not accounted for, which constitutes a limitation.  


	 The study was also repeated for a single blade as in the case of 
Nevalainen, and the results show no variation. This was expected from the 
rotor case, as Nevalainen does not include the values for the total measured 
effect but he does include graphical information about the order of 
magnitude of the effects the wave weather has on the turbine thrust,  they 
are compared in Table 6.8 below. The comparison between Nevalainen's 
case and the study made here tries to compare the magnitudes of each 
scenario because both scenarios differ in terms of sea weather conditions. 
The table shows the magnitudes in powers of 10 for the period, wave height, 
depth, and current. It is important to notice that mixed sea weather 
measures the standard thrust of the blade, which depends on the mixed sea 
weather conditions, while our case scenario maps a set of swell weather 
cases with a single dominant wave period.


	 Both the wave period and the depth have monotonic effect and have 
a low effect in both cases. However, the low sensitivity and monotonic 
behaviour in our model shows a larger order of magnitude which might be 
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linked to our turbine sitting in a shallower depth range between [34-20]m 
compared to [40-30]m in the mixed state case.


6.3.6 Simulation of the unsteady model with a change in depth and 
wave propagation


	 The set of conditions tested in the sensitivity analysis were chosen to 
model and simulate a tidal turbine. This enabled us to obtain the mechanical 
response of the rotor to compare the changes produced in the torque and 
thrust. 


	 The case uses two different conditions each for depth and for current 
in each case. The depth conditions include a regular obstacle with a limited 
height which obstructs the wave path, so the wave propagates over the 
obstacle and then modifies its amplitude and period. To model this, the 
formulation of Naghdi and Marshall is again used. Several assumptions are 
made for this simulation.


• No turbulence is produced in the flow after the tidal current propagates 
over the obstacle and reaches the turbine.


• The geographical constraints are not large enough in the horizontal area to 
accelerate the flow considerably. On average, the velocity profile will 
therefore stay the same. This is convenient as it allows us to show only the 
variation caused by the wave change in height after it propagates over the 
obstacle. In reality, the flow will accelerate causing a higher velocity profile. 

Variables Mixed state, order of 
magnitude

Swell weather, order of 
magnitude

Current 1x105 1x107

Wave height 1x105 1x107

Depth 1x104 1x106

Wave period 1x104 1x106

Table 6.8: Order of magnitude of the effect parameter µ* for the Mixed stated simulated by 
Navalianen’s and our study using only swell components.
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A possible solution to this is the integration of the flow profile across the 
constraint, using the velocity as a vector-valued function and then 
equating it to the output flow after the geographical constraints.


	 The cases evaluated are then compared to the same turbine when no 
obstruction constrains the wave propagation. The cases simulated using 
BEMT are shown below in Table 6.9.


	 The corrections in the wave height for the obstruction can be seen in 
Table 6.10.


	 The simulation compares the values of the torque and thrust of the 
rotor at different depths if the change in the wave parameters is not taken 
into account. It includes the changes in the wave as it propagates over the 
obstacle. The change in percentage in the total torque and thrust is also 
compared.


6.3.7 Simulation results


	 The torque and thrust are plotted for the two wave periods at the two 
different current velocities. First, the case where no model to compensate 
for the wave propagation is used, as shown in Table 6.10. This is done for a 

Case No obstruction 7 m obstruction 14m obstruction

Current (m/s), C1, C2 [1.9, 2.6] [1.9, 2.6] [1.9, 2.6]

Periods (s), T1, T2 [6.97, 14.1] [6.97, 14.1] [6.97, 14.1]

Heights (m), H1, H2 [1.2, 3.5] [ 1.2, 3.5] [1.2, 3.5]

Table 6.9: Conditions chosen to simulate a tidal turbine and obtain its mechanical response.

Case No obstruction 7 m obstruction 14 m obstruction

Wave heights without 
correction (s)

[1.2, 3.5] [1.2, 3.5] [1.2, 3.5]

Wave height with 
corrections

[1.2, 3.5] [1.0, 3.6] [1.05, 3.8]

Table 6.10: Conditions chosen to simulate a tidal turbine and obtain its mechanical response.
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turbine sitting first at 42m depth and then at 35m and 28m depth. The 
results are shown in Figure 6.9 below.


	 The respective torque values for the same case can be found in 
Figure 6.10. The values follow a logical relationship. As the turbine moves 
into shallower regions from 42m to 28m depth, the increase in both torque 
and thrust values follows the increase of the current profile near the surface 
where the maximum velocity Us is located for the power law. The results of 

Figure 6.9: Thrust variation for a turbine sitting at a depth of 42m, over a sudden rise at 35m 
in green and sudden rise at 28m depth in blue (smaller oscillation). The values T1, T2, C1, 
and C2 correspond to the periods given in Table 6.9 where T1=6.97s, T2=14.1s, C1=1.9m/s, 
and C2=2.6m/s. The wave heights are H1=1.2 and H2=3.5m
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the simulations for changes in the wave parameters post-propagation over 
an obstacle occurs are shown in Figures 6.11 and 6.12 for the turbine 
torque.


	 Changes where the turbine sits over an obstacle at depth of 35m are 
small and, for this case, the model including wave propagation gives values 
that are so close to the model without any change that both plots technically 
overlap each other. However, this is not the case for the larger amplitude 
case at 28m depth, shown in Figure 6.13.


Figure 6.10: Torque variation for a turbine sitting at a depth of 42m, over a sudden rise at 
35m in orange and over sudden rise at 28m depth in pink (smaller oscillation). The values T1, 
T2, C1, and C2 correspond to the periods given in Table 6.9 where T1=6.97s, T2=14.1s, 
C1=1.9m/s, and C2=2.6m/s. The wave heights are H1=1.2 and H2=3.5m.
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Figure 6.11: Variation of the torque over the obstacle for the model without the corrections and 
with the corrections (dotted) shows very little variation when the obstacle has a size of 7m. The 
values T1, T2, C1, and C2 correspond to the periods given in Table 6.9 where T1=6.97s, 
T2=14.1s, C1=1.9m/s, and C2=2.6m/s. The wave heights are H1=1.2 and H2=3.5m.

Figure 6.12: Variation of the torque over the obstacle for the model without the corrections in 
orange and with the corrections (dotted) showing an increase when the obstacle has a size of 
14m. The values T1, T2, C1, and C2 correspond to the periods given in Table 6.9 where T1=6.97s, 
T2=14.1s, C1=1.9m/s, and C2=2.6m/s. The wave heights are H1=1.2 and H2=3.5m.
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It is evident from Figures 6.11 and 6.12 that obstacle size has a moderate 
influence on the torque variation because the larger the obstacle, the larger 
the resulting wave propagating over the obstacle. The effects are low for the 
thrust in Figures 6.13 and 6.14.


Figure 6.13: Variation of the thrust over the obstacle for the model without the corrections in blue 
and with the corrections (dotted) showing very little variation when the obstacle has a size of 7m. 
The values T1, T2, C1, and C2 correspond to the periods given in Table 6.9 where T1=6.97s, 
T2=14.1s, C1=1.9m/s, and C2=2.6m/s. The wave heights are H1=1.2 and H2=3.5m.

Figure 6.14: Variation of the thrust over the obstacle for the model without the corrections in 
orange and with the corrections (dotted) showing small variation when the obstacle has a size of 
14m. The values T1, T2, C1, and C2 correspond to the periods given in Table 6.9 where T1=6.97s, 
T2=14.1s, C1=1.9m/s, and C2=2.6m/s. The wave heights are H1=1.2 and H2=3.5m.
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	 The changes in the wave height corresponds to an increase in the 
torque and thrust of the turbine. In this case, the increase of the wave height 
as a result of the obstacle size also appears to be monotonic. This means an 
increase in the obstacle size will directly affect the turbine mechanical 
response, but only larger heights will have a meaningful impact on the 
responses. 


	 The wave height change shows a larger influence on the turbine 
torque, but all other values remain small. The influence of the wave height 
against the torque and thrust appears to confirm the sensitivity analysis 
where the wave height is the most important parameter for the swell. 
However, the height of the wave after the obstacle remains a function of the 
incident frequency and the obstruction. Changes are small, but the 
sensitivity to wave height is large and this will be observed in the case study 
in Chapter 7 where several wave weather conditions are tested.


	 The values for the changes in torque and thrust are shown in 
percentages in Table 6.11. Changes are measured against the models where 
no modification is made to the BEMT model to account for the wave 
propagation at depths of 35m and 28m.


	 Table 6.12 shows the changes in the percentage of torque and thrust 
due to swell conditions compared to the case where the turbine sits at 42m 
depth. This does not include the changes using the wave propagation as 
these are shown in Table 6.12. In Table 6.11, C1 and C2 are 1.9m/s and 
2.6m/s respectively.


Case Torque change in 
%, T1

Torque change in 
%, T2

Thrust change in 
%, T1

Thrust change in 
%, T2

35m Less than 1% Less than 1% Less than 1% Less than 1%

28m Less than 2% Less than 2% Less than 2% Less than 2%

Table 6.11: Change in total torque and thrust values as percentages, measured against the 
case where the model does not take into account the wave propagation over the obstacle.
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6.4 Conclusions 

	 The wave formulations proposed in Chapter 3 and measured against 
experiments and results in Chapters 4 to 5 were coupled with the BEMT 
model. The model has been developed by the Department of Mechanical 
and Aerospace Engineering in the Energy Systems Research Unit in the 
University of Strathclyde and a detailed description can be found in 
Nevalainen’s work [46]. The software allows us to calculate the changes in 
the torque and thrust of the blades of a tidal turbine. We used this model, a 
sensitivity analysis, and a simulation to obtain the mechanical response of 
the turbine to certain wave weather conditions. The key points of both are 
listed below.


Sensitivity analysis: The analysis uses the Morris method for sensitivity 
analysis to explore how four variables can affect the tidal turbine torque and 
thrust for the individual blade and the rotor. Its main points are to:


• Analyse how variables such as the wave height H, current V, depth of 
immersion, the obstacle h-hd, and the period affect the BEMT model.


• Find which variables offer a lineal and monotonic influence and which are 
non-linear or interact with others.


• Observe how much influence the wave height has over the model 
compared to other sensitivity analyses by Nevalainen which take into 
account mixed-use weather.


Case Current Torque change in 
%, T1

Torque change in 
%, T2

Thrust change in 
%, T1

Thrust change in 
%, T2

35m C1 Less than 1% 5% Less than 1% Less than 1%

35m C2 Less than 1% 2% Less than 1% Less than 1%

28m C1 Less than 2% 10% 1% 1%

28m C2 Less than 1% 5% Less than 1% Less than 2%

Table 6.12: Change in total torque and thrust values as percentages, measured against the 
case where the model does not take into account the wave propagation over the obstacle.
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Its results are as follows:


• The results show a large influence of the wave height parameter compared 
to other parameters such as the current, depth of immersion, and wave 
period. Wave height has a 200% times stronger effect over the turbine 
torque than the current. Meanwhile, for the thrust, the wave height effect is 
almost 300% times stronger than the effect caused by the current. The 
wave height appears to have a non-linear influence over the model. 


• The second most important parameter influencing the mechanical 
response is the current, which is monotonic. The current has a three times 
larger effect compared to the depth of immersion or the wave period for 
the torque associated with the rotor. The current has a five times larger 
effect than the wave period or the depth of immersion, this is for an 
individual blade. The values for the thrust are similar, where the current has 
a three times larger effect than the period and the depth of immersion. The 
last parameters are the depth of immersion and the wave period.


• If we compare our study to the one made by Nevalainen, the current has 
the opposite effect. While for Nevalainen the current is the most important 
parameter for the mean thrust and it appears to be non-linear, in our case 
it appears to have a moderate and monotonic influence.


The simulation of the mechanical response of a tidal turbine torque sitting 
over a large obstruction from 42m depth to 28m depth and 42m depth to 
35m depth offers the next results.


• The influence of the increase in the wave height after the obstacle has a 
negligible effect on the overall torque and thrust when compared against 
the model without any modification. However, this largely depends on the 
wave height. Larger wave heights have a large influence on the amplitudes 
of the torque and thrust variation.


• It is also evident that the current is the second parameter affecting the 
torque and thrust magnitudes of the turbine. In this case, the effect 
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appears to be an attenuation of the extreme values caused by the wave 
height. 


It is important to note, in both the simulation and sensitivity analysis, our 
decision to keep the wave heights in linear order. It is assumed that larger 
waves with large periods would have a stronger interaction with the 
obstacle, causing them to increase their height and then increase the 
amplitude of the extreme values for the torque and thrust of the turbine. It is 
also important to note the limitation of the simulation in that the flow is kept 
constant after the obstacle. In a real case scenario where the magnitude of 
the obstacle is larger horizontally after a sudden bathymetry rise, the flow 
will be constrained and thus cause an increase in the flow for a turbine 
sitting at less depth. 
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7 Case scenario of a horizontal tidal stream 
turbine

	 Tidal turbines are exposed to a broad range of wave weather cases 
from active zones of wave-driven waves to swell zones. However, according 
to satellite data, in the southern and northern hemispheres more than 80% 
of the wave weather is dominated by swells [124]. In this chapter, the case 
of a tidal turbine exposed to swell dominant weather is analysed at a real 
geographical location using real wave and wind data. Geographical 
constrictions required in this case are related to the turbine deployment site, 
because this must occur near a bathymetry jump. The restrictions also cover 
a suitable depth of operation, which is on transitional depths inside the 
reachable domains on the continental shelf. This set of conditions aims to 
study how the change of the swell field propagating after the jump could 
play a major role in modifying the turbine loads in real conditions. Sharp 
bathymetry changes in the seabed will be what drives the wave field 
changes. This is an extension of the conditions studied theoretically in 
Chapter 3, experimentally in Chapters 4 and 5, and simulated in Chapter 6. 


	 In this part of the thesis, these conditions are simulated using a real 
scenario where wave data is gathered and analysed to reproduce two 
meaningful cases where a tidal turbine is placed near the coast in a more 
open sea environment. The coast of California was chosen for our study. It is 
well known that sites with a regular high potential for tidal streams exist in 
the Pentland Firth, the British Channel, and the Bay of Fundy. These sites 
are also open to the sea conditions, at least in the case of the first two of the 
three sites, where swells come from the mid and north Atlantic crosses. 
However, the National Ocean Atmospheric Administration’s (NOAA) 
instruments for measuring wave data and their rich data sets, which are 
verifiable from several sources, make this site ideal for gathering and 
analysing high-quality wave data.
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	 The tidal resource in the area is strong, however, this resource is 
closer to the coast and concentrates near the golden gate area where the 
depth is shallower, limiting its application. 


	 Current flows are strong in the Pentland Firth and the Bay of Fundy, 
where flows can reach 5m/s for the first case [8] and with a theoretical 
power available ranging from 0.01 GW to 1.9 GW depending on the number 
of turbines [8]. Meanwhile, the Bay of Fundy has a larger potential than the 
Pentland Firth, near 2.5 GW [125]. Tides are stronger inside SF Bay, but their 
power is lower compared to the Pentland Firth or the Bay of Fundy. The 
physiography of the place is different. Tidal flows accelerate closer to the 
coast near the bay area, where they can reach over 2m/s [126]. The power 
available according to the calculations is 2500MW. The area is near a major 
urban centre which is an advantage. The geographical location could 
provide an easy connection to the shore. 


7.1 Geographical characteristics 
7.1.1 Onsite wave data acquisition and required parameters


	 Conditions that allow swells to interact with tidal devices suffice for 
wave weather in places like the west coast of the Pentland Firth, the English 
Channel, and many open sea places where swell wave trains are present in 
the summer and winter months. According to studies by Jiang and Chen 
[34], such areas are prone to 75% of swell probability, while vast sea areas 
called swell pools can have 80% of the swell dominance probability.  

	 As swells can be determined by the wave height and the wave period, 
studies using altimeter satellites depict the swell-dominated areas [51], 
[124]. Other authors have also traced their propagation and dissipation 
process as in [60], [61], and [127], using the same satellite methods. The use 
of satellite data for these measurements has been consistent over the past 
20 years. A parameter used to measure a wind-dominated sea is the wave 
age or  Wa,  defined as the ratio of the wind speed at 10m  over the sea 
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surface U10 and the mean wave speed Cm. Wave age values are high when 
the wind speed is larger and the phase of the waves shorter, which indicates 
an active sea and low swell energy. Data provided by satellite indicates that 
large swell pools are formed in the tropics as the swell radiates from the 
arctic and antarctic positions [34]. The zones of swell radiation show that the 
Pentland Firth, like the English Channel, can be affected by the North 
Atlantic swell, meanwhile the Pacific Basin is open to the south and north 
incidences. The data from satellite surveys show that swell incidence is a 
normal phenomenon in most of the oceans, making it important to quantify.

	 The data for sea observations and wave measurements to simulate a 
real tidal site and the swell conditions were taken from buoy systems. The 
properties of the waves modelled here required to have specific 
characteristics. The characteristics used to filter the required data were: 
directionality θ, time of acquisition t, dominant frequency DPD, and 
dominant wave height Hs. Wave directionality depends on the sampling of 
the wave field, which uses an array of three directional accelerometers. The 
specific need for directionality reduced our possible data sources. A search 
on the numerous systems active at sea with data availability was made, and 
the NOAA system was considered fit for this purpose. 

	 The stations of the NOAA system are divided into two kinds of 
systems. The first are systems able to obtain directional wave data from 
specialised sensors and systems that derive this data from the onboard 
sensor analysis. The availability of the first systems is limited due to the use 
of dedicated sensors and different methods to process wave data. The 
second kind are more widespread due to their versatility in obtaining wave 
data after processing, making them the clear choice for this task. The 
widespread NOAA systems in the Pacific and Atlantic ocean basins that 
surround the USA coast can be seen next page in Figure 7.1.


	 The NOAA systems use the FFT (Fast Fourier transform), applied to 
the buoy movements, to obtain the wave spectrum measurements (with the 
directional Fourier analysis explained in Chapter 3). NOAA data provides a 
robust and proven method to measure the wave components at sea and its 
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system has been useful for calibrating altimeters from satellite 
measurements [128], [129].


7.1.2 Onsite swell predominance 


	 To test the modelled conditions, the site must have open to ocean 
waves. The US coasts provide a broad range of swell incidence that made 
them compatible with the NDBC data. As studies have shown, swell 
systems follow a great circle route. Wind systems in the Pacific and North 
Atlantic radiate swells throughout the year from their active areas of swell 
generation to the continental coasts [124]. Data on the swell dominance 
shows that the Pacific area of the USA offers a higher swell energy pool, like 
northwest Ireland and Scotland [128]. It is also noticed in the same studies 
that the calculated amplitude shows relatively low swell heights in the east 
Pacific Basin. The swell energy is also higher in the Pacific than in the 
Atlantic, which is probably related to the larger basin area being able to 
produce more powerful weather systems and larger fetch. 


Figure 7.1: Systems managed by the NOAA under the NDBC program for the USA-Alaska 
and Caribbean area.
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7.1.3 Continental shelf conditions


	 Due to the characteristics of the continental shelves, the conditions 
for wave propagation over long distances could change depending on the 
shelf length and geography. In general, there are two kinds of continental 
shelves. There are active shelves which are the result of geological activity 
like a sea plate moving below a continental plate, as in the Pacific. These 
shelves are short and offer a short distance of low depths for large wave 
systems like swells. The other kind of shelf is known as passive, which are 
submerged and produce large areas that can stand for hundreds of 
kilometres with shallow waters, one example being the European shelf 
containing the north sea. The type of shelf is important because  their depth 
and length can constrain engineering deployments.


Long shelves resulting from passive continental margins can offer a longer 
range of wave propagation, while active ones will offer steeper and short 
changes. According to the most recent studies, dissipation of the swell 
appears to be stronger near the shore [130] and it is related to the sudden 
change of the seabed level across short lengths, as in [131]. Because of the 
bed friction, roughness, and changes in shorter distances, the buoy systems 
needed to be short distances from each other to reduce possible large fetch 
seabed effects. Due to the last requirement, the west Pacific coast was 
chosen as it possesses a large arrange of available systems and a short 
length of propagation for large wavelengths as T(9s)=λi and T(22s)=λs. The 
propagation length on the shelf lp ranges lp=[400λi-53λs] for shorter 
extensions, and lp=[700λi-100λs] for its larger areas. 


7.2 Detection of the main direction of swell incidence into 
the coast  
7.2.1 Swell incidence 


	 The Pacific coast of the USA offers a wide angle of aperture for 
incident waves. The aperture angle is larger than 180ο in most of the west 
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coastline and due to this swells are a common phenomenon in the area. 
Directional data of the most important swell trains in the Pacific has been 
recovered and analysed by Adams [35]. The analysed data shows that the 
main angle of incidence is located between 150ο to 320ο with an average 
between 295ο to 200ο. Here, the degrees are measured as 0 from the true 
north, using a system of magnetic sensors which is later corrected by 
measuring the magnetic north, the direction is positive clockwise. 
Considering the detailed studies by Adams, the decision to search for long 
swells in the range 180ο-290ο using the buoy system data was made. The 
search allows us to analyse the principal angle of swell incidence, and define 
the main direction of swell energy. The direction was used to detect the 
swells that will be modelled in our simulated deployment site. To detect the 
angle of incidence and the swell periods, a methodology was designed to 
search and compare the source of swells and their main spectral 
components. The method was divided into two steps. One was to search 
the main source of a swell using a deep water buoy system that can track 
incident swells from the Pacific; the second system, in transitional waters, 
was used to trace swell propagation over the angle of direction defined by 
the first system. The wind weather conditions were also compared to isolate 
distant swells from local wind-produced long wave systems.


7.2.2  Swell detection on the Pacific coast

The method to detect the main angle of incidence of the swell energy 

from the Pacific Basin into the USA coast was done by dividing the swell 
from the rest of the local waves in the buoy acquired data. The data 
analysed only the exposed areas to the open sea, by using a large temporal 
representative sample covering from January to December. The detection 
used a five-buoy system placed by the NOAA administration in deep waters 
to measure wave systems coming from long distances. The system 
coordinates and codes used can be seen next page in Table 7.1, and an 
image of the positions of the systems can be seen next page in Figure 7.2. 
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The systems used in Figure 7.2 detect the angle of the main incidence using 
the wave energy directional spectrum as explained in Chapter 2.

	 The buoy systems A to E use the post-processing method explained 
in section 3.4.2 to divide the spectrum into discrete frequency units, Δf. The 
discretised spectrum has a period range of T= [2s-50s]. Discretised units of 
the spectrum are divided by their angle of incidence in degrees from 0o to 
360o. The data gathered is organised in bands of Δ22.5o aperture, using the 
NOAA standard notation for wave directional data.


Buoy system Coordinates

(A) 46089 45°55'29" N 125°46'17" W

(B) 46005 46°8'2" N 131°4'44" W

(C) 46002 42°36'42" N 130°32'12" W

(D) 46059 38°5'37" N 129°57'4" W

(E) 46047 32°24'13" N 119°30'22" W

Table 7.1: Buoy systems used for the yearly swell direction comparison.

Figure 7.2: Buoy system used to detect the incident swell spectrum energy, buoys A to E 
are listed in Table 7.1.
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	 The number and position of the systems were chosen to allow better 
detection of the swell energy incidence across the whole Pacific area. Their 
spatial disposition also ensures that any abnormal phenomena will not be 
replicated by the other systems. To ensure that local or nearby weather 
systems will not be listed in the incident swells, a method was designed to 
ensure that long waves that are locally produced will not interfere with our 
records. The method divided the wave spectrum into three parts by their 
frequencies. The first division used the possible maximum wave frequencies 
that the local winds could generate in a fully developed sea. The maximum 
frequency was calculated using the Pierson-Moskowitz modal frequency for 
continuous winds blowing over the sea surface. The second spectral 
division was made by calculating the maximum wave frequency that can be 
produced by local winds over a large distance in sustained conditions. The 
peak frequency was calculated using the modal frequency for the Jonswap 
spectrum. Wind data used in the calculations was retrieved from the buoys, 
and also the incident wave frequency. If the wind data results show larger 
periods than the locally recorded swells, the swell events under that period 
were discarded. The methods to calculate the frequencies for the locally 
produced wave systems are explained in the next sections.


7.2.3 Maximum frequencies for local wind-generated waves


	 The maximum wind-wave frequency was found using the relationship 
for the modal wave frequency. The value is calculated using the Pierson-
Moskowitz spectrum relationship in equation 7.1.


The value fw is the frequency at which the waves will travel as fast as 
the onsite wind, meaning that the sea has developed a speed similar to the 
zone winds. The value of the wind at the buoys was then used as a 
threshold value, and for any f>fw the waves were taken as local wind waves. 
The wind value was averaged from January to December, covering 4 years 

7.1fw = g
2πU10



226
or more of consistent data processed by the system. As the buoy systems 
wind measures use a mast at 3.4m over the surface, a correction was done 
using the wind shear stress formula as recommended by offshore wind 
engineering practice [132]. 

The corrections mentioned using the wind shear stress are shown in 
equation 7.2, where lrel is the characteristic roughness of the ocean surface 
which is an average value of the height, cross-section, and space between 
the elements that populate an area. In the case of the ocean, it corresponds 
to the waves and acts as a statistical average of the roughness of the sea 
under certain conditions.


The complete wind data and corrections are shown in Appendix section G.2.


7.2.4 Maximum frequencies for locally generated waves by winds 
blowing over a large fetch


	 The possibility of short swell systems produced near the buoys or at 
the coast was considered. Winds blowing from the coast could produce 
wave systems that could be filtered by their direction, while trade winds, 
seasonal winds, and near/local storms could produce large amplitude local 
swell systems that will be recorded by buoys. The possible long wave 
systems produced near the buoys were discarded, as was mentioned in 
section 7.2.2, by recording only the wave systems with periods larger than 
the modal frequencies produced by local winds. The difference from the 
Pierson-Moskowitz spectrum is that the wind must blow in a sustained way 
over a defined area around the buoy system. In this case, we consider the 
fetch as the maximum distance from the buoy to the coast or x. Just as for 
the Pierson-Moskowitz modal frequency, the Jonswap modal frequency or 

7.2
U10 =

Uref Ln[h10 /hrel]
Ln[href /hrel]
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fm was used to exclude possible local long wave systems. The formula used 
to calculate the modal frequency can be seen in equation 7.3.


	 The value xa is the non-dimensional distance defined by equation 7.4, 
and fm is the non-dimensional frequency as defined in equation 7.5.


	 Equations 3.7 to 5.7 allow us to calculate the threshold value for 
swells that could be produced by nearby weather systems each month. The 
fetch distance taken (x) for every buoy  is shown in Table 7.2; the wind 
value U10 is the weighted mean of the larger wind standard deviation for the 
twelve months in each of the systems listed in Table 7.2. All these systems 
are able to process directional wave data.


7.2.5  Results of the main direction of swell incidence


	 As the systems are sheltered from very large swells on the coastal 
side, the table of the aperture taken to swell systems at each buoy is shown 
in Table 7.3. The geographical angle of detection and the area used as a 
fetch to isolate waves generated by local winds is seen in Figure 7.3. 


7.3fm = 3.5x1/3
a

7.4

7.5	fm = f U10
g

xa = xg
U2

10

Buoy A B C D E

Distanceaprox 138km 541km 495km 610km 180km

Table 7.2: Minimum distance from the buoy system to the coast.

Buoy A B C D E

θaprox [75o-323o] [134o-350o] [128o-360o] [110o-6o] [126o-328o]

Table 7.3: Aperture for each system to the northern Pacific and southern Pacific swell.
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The data sets analysed correspond to the 2017 season. The higher 
percentages of detections depending on the incidence are shown in Table 
7.4. 


	 The results indicate that the predominance of the swell events during 
a whole season focuses on the west direction between 330o to 210o on 
systems A to C, with a main focus in the west direction at 270o. Systems D 
and E have swell events covering a wider angle range. However, as the 
systems are located further south and detect a large number of swells at 

Figure 7.3: Zones delimited for the local wind waves produced at a close fetch in dotted lines 
and angle of aperture for the long range swell detection on yellow.

Buoy %Total/Direction %Total/Direction %Total/Direction

A 27.8 (W) 20.2(WSW) 13.4(WNW)

B 30.5 (W)  16.7(SSW) 15.0(WNW)

C 27.6 (W) 23.0(WNW) 13.8(WSW)

D 31.7(WNW) 19.7(W) 14.2(NW)

E 23.6(NW) 19.7(WNW) 10(W)

Table 7.4: Main directions of incidence for the 5 buoy systems A to E.
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higher values than 270o, the values could correspond to the relatively low 
geographical position of the systems, which in turn indicates a good 
correlation between the 5 systems detecting same events. The average 
number of swells detected in the direction WNW-WSW comprises almost 
2/3 of all events for systems A, B, and C and 1/2 and 1/3 respectively for D 
and E. These west and northwest direction results show a large swell 
dominance from November to March, an example of which is the west 
dominance that has been mentioned by Adams et al. [50]. The C to D results 
detect a large incidence of swell events around the 180o direction, covering 
June to August. The detection of this surge of events occurs prominently in 
the month of July. A relatively high detection of events starts from earlier 
months, as of April, which indicates an active season in the east of the 
Mexican coast with lower numbers than the summer months. 


	 The causes of both main swell directions can be linked to different 
phenomena. Radiating swells from the west and northwest will point to 
weather systems in the mid and northern Pacific Basin, while events at 
higher latitudes of the Pacific Basin could be linked to the storm season in 
the Siberian-Aleuthian area. The winter season where swell events are 
focused in this direction has been reported before as part of the winter 
seasonal weather [35]. The events occurring in the west are linked to an 
ENSO (El Nino Southern Oscillation) winter phenomena in the central Pacific 
area. The south direction events are shown for all systems, but the southern 
events that show a more concise fingerprint in the records are the ones from 
the summer season. It is well known that these correspond to southern swell 
events, which occur in the Antarctic Ocean. The Antarctic Ocean swells are 
related to the yearly winter oscillation, producing strong and long wave 
trains arriving from southern positions [49]. The earlier strong signals from 
the buoys E and D are probably linked to the cyclonic activity in the western 
Pacific Basin near Mexico’s coast. The higher number in the summer 
months points to a superposition of both climatic events, as the cyclonic 
season and the winter oscillation will overlap from June to the end of 
October. Figures 7.4 and 7.5 on the next two pages show part of the 
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processed directional spectrum data of the systems A to D. The processed 
data will then deliver the main peak components and, using the formulations 
and properties mentioned at Chapter 3 in section 3.4.2, Figure 7.4 in next 
page shows the swell events related to the west-northwest detections in the 
month of January, probably related to the ENSO oscillation and the winter 
season around the mid and higher latitudes of the Pacific. It is also 
remarkable how a larger portion of the swell components come from 270o.; 
meanwhile, Figure 7.5 in next page shows the increase of the swell events 
related to the southern direction focused in the month of October. The 
complete set of plots for the twelve months, at every buoy, is annexed in the 
Appendix section G.3.
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Figure 7.4: Swell event numbers for buoys A to E on the month of January, with the radius 
showing the number of swell occurrences and the spectral angle of incidence.

360o

0o



232

Figure 7.5: Swell event numbers for buoys A to E on the month of October, with the radius 
showing the number of swell occurrences and the spectral angle of incidence.

360o

0o
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Wave modal frequencies for the local winds at systems are calculated, using 
the Pierson-Moskowitz and Jonswap spectrums in Tables 7.5 and 7.6.

Mean±σ A(m/s,Hz) B(m/s,Hz) C(m/s,Hz) D(m/s,Hz) E(m/s,Hz)

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Table 7.5: Mean wind value at buoy systems A to E and wave frequency associated with 
these speeds using the Pierson-Moskowitz spectrum.

15.0±6.7, (0.10)

8.3±4.4, (0.18)

9.1±4.3, (0.17)

6.6±3.2, (0.23)

7.9±3.8, (0.19)

12.2±7.0, (0.12)

7.0±3.2, (0.22)

6.7±3.6, (0.23)

8.3±3.7, (0.18)

8.5±3.5, (0.18)

7.2±3.0, (0.21)

12.7±6.0, (0.12)

9.0±4.0, (0.17)

10.4±4.4, (0.15)

7.9±3.3, (0.19)

7.7±4.1, (0.20)

8.3±3.9, (0.18)

9.4±4.4, (0.16)

10.2±4.6, (0.15)

8.1±3.9, (0.19)

14.9±6.9, (0.10)

9.2±4.2, (0.16)

14.5±7.2, (0.10)

7.4±3.1, (0.20)

8.9±4.1, (0.17)

7.6±3.6, (0.20)

6.6±2.9, (0.23)

7.4±3.4, (0.21)

8.2±3.9, (0.18)

7,1±3.3, (0.21)

8.1±4.0, (0.19)

7.1±2.9, (0.21)

7.1±3.3, (0.21)

12.9±6.9, (0.12)

7.9±4.5, (0.19)

8.7±4.4, (0.17)

7.9±3.7, (0.19)

7.5±3.2, (0.20)

9.6±4.5, (0.16)

9.3±4.3, (0.16)

10.3±4.6, (0.15)

7.7±3.5, (0.20)

13.4±6.0, (0.11)

8.9±4.2, (0.17)

16.2±6.9, (0.09)

7.3±3.1, (0.21)

12.7±7.0, (0.12)

7.0±3.0, (0.22)6.9±3.0, (0.22) 7.2±3.0, (0.21)

12.6±6.8, (0.12)

14.1±5.5, (0.11)

7.9±3.3, (0.19) 7.5±3.6, (0.20) 7.6±3.3, (0.20) 7.9±3.5, (0.19)

9.0±4.1, (0.17)

13.4±5.7, (0.11)

7.3±3.2, (0.21)

8.2±4.1, (0.19)

Mean A(Hz) B(Hz) C(Hz) D(Hz) E(Hz)

Jan 0.15 0.05 0.09 0.09 0.12

Feb 0.16 0.05 0.10 0.09 0.12

Mar 0.16 0.05 0.10 0.09 0.11

Apr 0.16 0.06 0.10 0.09 0.11

May 0.16 0.06 0.10 0.10 0.11

Jun 0.17 0.06 0.10 0.09 0.11

Jul 0.16 0.06 0.10 0.10 0.12

Aug 0.16 0.06 0.10 0.10 0.12

Sep 0.16 0.06 0.10 0.09 0.12

Oct 0.15 0.06 0.10 0.09 0.12

Nov 0.16 0.05 0.10 0.09 0.12

Dec 0.15 0.05 0.09 0.09 0.12

Table 7.6: Peak frequency for the local winds blowing over a fetch for systems A to E.
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Wind data processed during the representative time indicates that the 
regional wind weather has an average of 8.0m/s, with a larger deviation on 
the south of the west Pacific Basin. The results for the modal frequency of 
the Pierson-Moskowitz spectrum show that waves with an average value of 
T=5s might dominate the spectrum of the local open sea area; however, 
large deviations of gusts producing wave periods over 8s are shown in the 
local area. Results for the local long waves produced by winds blowing 
continuously over the fetch x defined in Table 7.3 show that wind waves can 
reach values of f=0.1Hz, with a max deviation in buoy B of f=0.6Hz.


7.3 Characterisation of the local swell conditions 
	 To track and record swells, the next boundaries were defined: a 
boundary for the frequencies to detect and discriminate short swells, and a 
threshold value to account for a large quantity of the swell spectrum 
occurring on the coast. The main angle of incidence and the chosen 
frequency value of f=0.1Hz were used to search for swell dominant 
conditions in a suitable geographical location on the coast. The aperture for 
this search was chosen to cover more than 50% of the swell events during 
eight years. Two of the systems listed below were used to track swells and 
determine the most common frequencies larger than f=0.1Hz in the west 
direction. The description of the methods, the systems where the data is 
taken, and the results are explained in the next sections.


7.3.1 Local swell measurement and local wave height


	 The local area designated as the Farallones area on the San 
Francisco coast was chosen to use a simple track and detection swell 
algorithm due to its wide data availability and also the detailed 
physiographical surveys that provide bathymetry data in the area. The buoys 
systems used to characterise the local swell events and their properties are 
shown next page in Figure 7.6. The buoys’ number code and geographical 
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location can be found in Table 7.7. Swell conditions were measured using 
the algorithm defined in section 3.4.4. 


The algorithm searches the swell propagating from the west direction, this 
direction being defined by the angle of aperture [281.25o-258.75o], which 
covers almost 50% of the swell events. The event search covered the 
spectral bands over f=0.1Hz. The analysis of the local conditions was 
conducted by characterising the local swell’ propagation and the statistical 
significant wave height for the zone. The method used the systems B’ and C’ 

for the local swell propagation characterisation and the systems A’, B’, and 

D’ to find the distribution for the significant wave heights at the dominant 
swell periods. To characterise the dominant swell propagation and its 
periods, data from systems B’ and C’ were used. The systems measure the 
sea weather conditions every 30min. If detection of dominant swell 
conditions occurred at system B’ in deep waters, calculations for the wave 

Figure 7.6: Buoy configuration A’-D’ used to detect incoming swell from the direction adjusted 
at buoys A-E.

Buoy system Coordinates Depth (m)

(A’) 46013 38°15'12" N 123°18’12" W 550

(B’) 46214 37°56'12" N 123°27'47" W 550

(C’) 46026 37°45'14" N 122°50'20" W 54.9

(D’) 46237 37°47'11" N 122°38’6" W 550

Table 7.7: Buoy systems used for the swell local detection on the 
California coast.
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linearity using the statistically measured sea conditions are performed. To 
calculate the possible linearity of the sea weather during these events, the 
dominant peak frequency (DPD) and the significant wave height  Hs were 
used. With the aforementioned values, the swell non-dimensional 
characteristics are calculated using equations 2.6 and 2.6 from Chapter 2, 
as seen below.


Equations 7.6 and 7.7 use the local gravity gl for the specific latitude 
and longitude. Swell events that dominate the spectrum and satisfy the 
linearity conditions are isolated. Isolated events used the dominant frequency 
band corresponding to the swell event being propagated to find its 
approximate velocity of propagation vp. The velocities of all events detected 
on system B’ were used to calculate the swell arrival time at station C’ in 
transitional water depths. The conditions matched for both systems were 
then stored and divided using their frequency bands, and the data stored 
shows the most common swell dominant conditions in the area. To 
characterise statistically significant wave height for the sea surface for the 
area, the data from the systems in Figure 7.6 was used to obtain the 
distribution of all wave events and their significant wave height. The method 
used the registered data from the year 2017. The data recovered from the 
systems registry was processed to create a distribution of the wave periods 
and wave height events during the decade covered.  from this sample The 
data sample covers short waves of frequencies f=0.33Hz to long swells with 

frequencies f=0.04Hz. Wave height measured conditions range from Hs=0.5m 

to Hs=8.5m. 

7.3.2 Local swell measurement and local wave height results

	 The results of the swell events analysed show a total number of 976 
swell dominant events, where both events were found to be detected at 

7.6

7.7

y = 2Hs

glDPD2
swell

x = h0
glDPD2

swell
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system B’ and then propagated to system C’. The swell occurrences show 
that almost 94% of the events fall in the range of [0.085-0.059]Hz, which 
belongs to the period range T=[11.75-17]s. The percentage distribution of 
swell events distributed from f=0.094Hz to f=0.045Hz is shown in Figure 7.7.	 


	 The data analysed to find the statistical distribution of the dominant 
wave heights in the area is shown in Figure 7.8. Wave events occurring have 
a defined period range of T=7s to T=17s. Wave amplitudes were found to be 
less or equal to one metre with values of Hs<2m 60% of the time.


Figure 7.7: Percentage of occurrences of swell events, where spectra is divided into 10 
frequency ranges from 0.094 Hz to 0.045 Hz.

Figure 7.8: Percentage of occurrence relative to significant wave height in the local zone.

Significant wave height vs periodHs
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The moderate steepness values suggest that swell and long-wave systems 
are the dominant wave weather phenomena in the area. Lower amplitude 
values for frequencies above f=0.09Hz indicate that the swells detected 
might radiate to our positions from far away. Wave data for long waves in the 
range of T>7s to T<10s with larger amplitudes suggests wave systems are 
created in the near zone. The most frequent dominant swells with 
frequencies f=[0.085-0.059]Hz and wave heights Hs≤2m were used to 
characterise a representative set of swell conditions in the simulated zone.


	 The case study also includes values for wind waves. The simulation is 
run in this case with a swell-dominated seas and then a wind-dominated sea 
including swell components. The spectrum for waves with lower periods and 
higher amplitudes was extracted from sensors which belong to the Scripps 
Institution of Oceanography, which was the device with NBCD ID “46237”. A 
file with the wave conditions for smaller waves from which the conditions 
simulated were extracted is located in the Appendix section C, covering at 
least five years of measurements from where the representative data was 
extracted. The current values used for the simulations, are the predicted in 
the area outside the bay near the San Francisco Bay bar. Currents can range 
from 2 knots to 3-4 knots or [1-2]m/s. Velocities near, inside, and over the 
bar can be larger, topping [5-6] knots, however these conditions were not 
simulated as the author believes the changing physiography of the sand bar, 
and the denser area of navigation, might make the place inaccessible for any 
turbine case scenario. The velocities were taken from the model Operational 
Forecast System (OFS) which belongs to the NOAA and has been 
thoroughly validated by several case studies [133], [134], [135].


7.4 Geographical location for the simulated turbine
The modelled zone is known to have an abrupt bathymetry change in 

less than 100km due to the geological composition of the area. The area is 
composed of the subduction zone of the Pacific Plate and its border with 
the North American Plate, giving the shelf narrow and very steep 
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physiographical characteristics. The narrow length is composed of a 
transition zone from -3000m on the abyssal depths that rise to an average of 
50m at system B’. 

The area also features several faults that cover the coast and the 
shallow waters. The bathymetry result of this interaction is a very linear and 
plain platform, with very small variations of one metre along more than 1km 
of length. The shelf is known to be very accessible for any purpose and also 
to have large biodiversity. The currents in deep waters are known to have 
higher velocities relative to their depth. Values at 250m  can reach 0.4m/

s depending on the season, as pointed out by Noble et al. [136] and Steger 
et al. [137]. Studies have shown that feasible currents for energy production 
exist, and ADCP transects have shown high velocities around the Golden 
Gate area with peaks of [1.8-2.0]m/s [138]. These currents are produced by 
tides, however they are strong enough to reach over 1m/s in the area 
between the Farallones Gulf and the Golden Gate area, covering more than 
20 kilometres inside the ocean. The area of interest is shown in Figure 7.9.

7.4.1 Turbine geographical position

The area chosen to simulate our wave and obstacle condition was a 
section on the parallel coordinates (-122.57,37.704) and (-123.738,37.708), 
in the shelf zone of the Farallones Gulf area. Publicly available data, part of 
the United States Geology Survey (USGS), was used to create a contour 
map which retained the main characteristics of the sea bathymetry surface. 
The area offers a gradual slope, going from 60m  to 47m  over a 
20km extension along the designed swell main direction of incidence 270o.

The final transect of the approach to the simulated site covers a bathymetry 
jump from 48m to 36m depth. In this case, we modelled the turbine to sit at 
30m after a jump from 38m. This makes our case scenario close to our 
simulation and experimentation case. The general transect is in Figure 7.9. 
The current value, used as a representative value of the peak currents of the 
area, was set at 2.0m/s, which is a top current found in the area during ebb 
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and flow according to the Operational Forecast System [139]. The turbine 
measures were kept in the same dimensions as the blade profile, hub height, 
and rotor radius, as in Chapter 6.

7.4.2 Case Scenario
To characterise the sea weather, three case scenarios were chosen 

under the 59.3% of wave weather conditions at the chosen site. The first 
scenario is composed of large swells with small wave heights of no more 
than 1.8m and periods larger than 14s. The second case scenario is 
composed of shorter swells with periods between 12s to 7s and amplitudes 
reaching 2.5m, and the third case is composed of soft swells and local wind 
waves. The conditions are the ones related to the swell weather analysed in 
this section and the periods, heights, and wave order can be found in Table 
7.8. 

The conditions studied are chosen to analyse three main points

• Characterise the mechanical response to swell weather composed of the 

large period with soft amplitudes vs shorter period with amplitudes.


Figure 7.9: Map showing the area of the bathymetry cut chosen in orange, marking the end of 
the continental rise, where the length y covers approximately 50km. In the figure the square 
represents the area of turbine placement.
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• Characterise the changes in the mechanical thrust and torque if the BEMT 

model is modified to account for possible wave changes caused by a 
bathymetry rise.


• Characterise how the mechanical response changes if the model is 
modified to account for the wave propagating over an obstacle just before 
our simulated tidal turbine deployment.

T (s) H(m)

Long swell

15.38 1.27

16.67 0.8

18.18 1

13.3 1.27

19 1.4

14.24 1.8

Short swell

12.5 1.33

11.76 1.5

10.5 2.1

9.09 2.5

7.57 2.2

8.33 2

Mixed (Wind waves)

16.67 0.8

18.18 1

9.09 2.5

5.6 2

6.5 3

14.24 1.5

Table 7.8: Weather cases simulated in the chosen area.
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7.4.3 Wave weather and mechanical turbine response
	 The responses to the three types of wave weather characterised 
show how different the responses for the torque and thrust can be 
depending on the type of waves propagating on the deployment site. The 
responses for the torque and thrust show how long swells with a limited 
amplitude cause a larger mechanical response than the soft swells and 
mixed wave weather with larger wind-wave amplitudes reaching 2m to 3m in 
height, which could represent steeper wind waves that are locally produced. 
The response to large swells in length and period shows an increase larger 
than 60% for the thrust and 40% for the torque in Figures 7.10 and 7.11.


	 The difference between the response using wind waves in green and 
short steeper waves is very similar, almost 95%, which was caused by the 
amplitudes chosen. However, this shows a very small variation if higher wind 
waves are included compared to larger swells with moderate amplitude, 
which appear to dominate the signal produced by the turbine.


Figure 7.10: Mechanical response of the thrust to three types of wave weather in the studied 
zones using the BEMT model without modifications.
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7.4.4 Wave weather and mechanical turbine response using the 

modified model
	 The mechanical response of the turbine when the BEMT model is 
modified to take into account an obstacle before the turbine shows how the 
torque in the rotor of the device changes in the three cases. In this case, as 
the changes depend on the wave height, its relative size before and after has 
a large impact on how the model reacts to these changes. 


Figure 7.11: Mechanical response of the torque to three types of wave weather in the studied 
zones using the BEMT model without modifications.

Figure 7.12: Mechanical response of the torque to a wave weather made of long and soft 
swells in the studied zone using the BEMT model, with and without modifications.
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	 Larger swells with low height see a change of 11% in the torque value 
if the model is modified. Larger heights in shorter swells and wind waves see 
a larger change of 17% for the shorter swells and 16% for wind waves with 
higher amplitudes mixed with swells. The results for the torque can be seen 
in Figures 7.12, 7.13, and 7.14.


Figure 7.13: Mechanical response of the torque to a wave weather made of short steeper 
swells in the studied zone using the BEMT model with and without modifications.

Figure 7.14: Mechanical response of the torque to  a mixed wave weather in the studied zone 
using the BEMT model with and without modifications.
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	 The thrust shows the same patterns, with larger differences of 30% 
and 27% for the short steer waves and the mixed wave weather 
respectively. The wave propagation only causes an 18% difference in the 
turbine thrust for long swells with moderate amplitude. If the values are then 
compared to the original cases, Figures 7.15 and 7.16 are obtained.


Figure 7.15: Mechanical response of the thrust to three types of wave weather in the studied 
zone using the BEMT model with modifications.

Figure 7.16: Mechanical response of the torque to three types of wave weather in the studied 
zone using the BEMT model with modifications.

Torque with modifications



246
	 The effects caused by the changes in the wave height after it 
propagates over the obstacle cause large differences in the signature of the 
torque and thrust for the BEMT model in Figures 7.15 and 7.16 compared to 
the original model in Figures 7.10 and 7.11, showing a high sensitivity to the 
wave height, as was found in the sensitivity analysis in Chapter 6. The 
differences between the torque and thrust for the long waves, compared to 
the short swells and mixed wave weather with steeper wind components, is 
19% and 21% respectively for the thrust and 27% and 30% for the torque in 
the rotor. A table showing the differences in the percentage of mixed 
weather with wind waves and short swells compared to  long swells is 
shown below in Table 7.9:


	 The values in Table 7.9 are compared against the soft large swell 
weather as found in Table 7.8. Values for the columns where the short swell 
and the mixed weather are not modified are compared against the case 
where the large swell is not modified. Values for the columns where the 
model is modified are compared against the case where the large swell 
wave weather is also modified. In general, the model reacts by producing 
more significant differences in the mechanical response for this wave 
weather than height changes, this being the case for a limited change in 
depth before and after the obstacle of 8m. 

	 It is necessary to say that this occurs at depths below 50m where the 
wave velocities caused by the wave heights would have a large impact. 
Waves simulated here have larger amplitudes and periods than the ones 
extracted to simulate the model reaction in the previous chapters, but all 
remain linear or second order.

	 


Not modified Modified

Short swell Mixed Short swell Mixed

Torque 60% 60% 27% 30%

Thrust 40% 40% 19% 21%

Table 7.9 Torque and thrust difference in percentage for a mixed wave weather and short 
steeper swells vs wave a weather composed of soft large swells, as found in Table 7.8.
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7.5 Conclusions 

	 The wave data analysed in this chapter proves to be consistent with a 
seasonal phenomenon, having a preferred directionality as shown in Figures 
7.4 and 7.5. A zonal analysis shows how the wave weather is characterised 
statistically by the mean wave height and period, showing a clear height and 
period range in the local area, and having heights lower than 3m and periods 
between 7s to17s more than 66% of the time. This is particularly useful as it 
makes the sea weather easier to characterise for the purposes of tidal 
turbine deployment.


	 The case study using BEMT shows how three possible types of wave 
weather found in the area affect the tidal turbine response. In this aspect, it 
is clear how large swells are the first contributor to the non-steady response 
of the turbine for the torque and thrust, followed by steeper swells and wind 
waves. In this case, where the turbine is in a large plain area over the shelf, 
the torque and thrust signals are 60% and 40% greater than those caused 
by short swells and mixed water, as shown in 7.4.3. 


	 The inclusion of changes in the wave height after the wave 
propagates over the obstacle results in a different response in the turbine's 
torque and thrust for all three types of wave weather. In these cases, the 
non-steady values for the mixed weather and the short swells produce a 
response which is closer to the torque and thrust produced by short swells 
with moderate amplitude.


	 The long swells remain the main contributor to non-steady forces felt 
by the turbine. However, in this case, the difference between wave weather 
dominated by gentle soft swells with heights no larger than 1.8m and the 
other two cases is reduced by half for both the torque and the thrust.
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8 Discussion


A brief discussion of Chapters 5, 6, 7, and the mathematical models are 
made in the next pages. The discussion does not follow a chapter-by-
chapter progression, but instead addresses the subjects of wave 
propagation, the turbine mechanical response, and the different wave 
weather effects on the simulated model. The discussion takes the 
mentioned chapters as a base and extracts useful information from them.


The key points of discussion will be:


• The model challenges and limitations;


• The scaling and harmonic generation;


• The experimental conditions;


• The predicted and measured effects;


• The sensitivity analysis and power output as predicted by the model;


• The wave weather analysis and case scenario results.


8.1 Experimental model 

The two kinds of experiments run by past researchers are focused on 
two cases: solitary waves, as for Goring [83], and wave trains under 
relatively shallow water conditions, as for Ting et al. [79]. These experiments 
are designed for different purposes. The first aforementioned studies 
measure the propagation of a wave resembling a tidal wave, while the 
second one focus on the analysis of the harmonics and scattering of the 
incident waves produced by an obstacle.


	 In these cases, two main differences compared to our experiment are 
found: first, the depth of propagation for both cases before the obstacle; 
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and second, the depth of the obstacle obstructing the wave path in the 
experiments analysing the harmonics and scattering.  


	 The depth of propagation was inadequate for our experiments if we 
take the physical conditions set for Goring [83] and other researchers like 
Newmann [70], where depths range from h=2πλ to conditions where the 
wave behaves more like a tidal wave arriving over a shelf h<<λ. In the 
harmonic analysis cases, like Ting et al. [114] and Massel [76], obstructions 
in the tank are equal to the most extreme of our cases, and wave heights are 
at least 10 times higher in the case modelled by Massel’s work with H=10m. 
Their conditions were in fact chosen to study harmonics, increasing the 
energy transmission to higher harmonics.


	 To minimise the possibility of our experiments enhancing the energy 
transfer to the upper harmonics, the depth over which the wave transmitted 
was larger than the experiments by Ting et al. and the amplitudes were 
lower than experiments by Massel, with waves having a very low height of 
1.1m for the sensitivity analysis and no more than 3.5m for the case study. 
This does not eliminate the possibility of harmonic generation but made the 
possibility of energy transfer minimal so no large amplitudes produced by 
harmonics could obscure our wave signature in the instruments. However, it 
is possible that experiments using the larger obstruction ratio with the 
largest periods had a moderate energy transmission, as in the numbers 
shown in Table 4.11 for the ratio defined by Mei and Ünlata [81]. These 
cases where the obstruction is larger and where larger amplitudes occur 
would need a frequency analysis to analyse the effects caused by 
harmonics. Experiments to test a wider range of amplitudes and depths to 
characterise the energy transmission as the depth decreases and the 
amplitude increases could be necessary, but no such study exists to the 
author’s knowledge.


	 In the case of the challenges related to the physical model occurring 
in a deeper wave regime, the experiment had to be designed with the aim of 
measuring the smallest changes in the amplitude over and after the 
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obstacle. It was not known if the models would be able to behave the same 
at different depths, even if scholars such as Newmann suggested a working 
region from shallow waters to transitional water, in the case of Lamb’s 
theory. Validation of the theories, in this case, could not be the primary 
objective for the author, so it was theorised that measuring the wave-
obstruction interaction was a better solution. Despite validation not being a 
primary objective, the results obtained where the accuracy of Naghdi and 
Marshall’s theory was reasonable were useful to include this later on as a 
factor in our BEMT model. 

8.2 Scaling and harmonic generation


	 For physical modelling of wave phenomena, it is normal to scale 
using the Froude number. In our case the Froude number is consistent, but 
another approach was taken. The scaling process first scales the wave 
trains depending on their wave order and depth of propagation in the wave 
tank, and later scales these conditions for a real case scenario for large 
swells which could normally be found in the sea. A comparison of the 
Froude number was done later, and here an error was found of 2m for the 
depth. 


	 The method proved to be precise enough, but as the conditions need 
to be closer to the real ones, a cross-checking using the Froude number for 
both conditions is advised, as errors in the length of waves and depth of 
propagation could lead to different results and unknown margins of errors, 
as mentioned by Noble et al. [107]. The method proposed by Noble et al. 
proves to be very useful. In our case, the relative depths in the tank and area 
of interest using our method to scale the waves were initially calculated to 
be 40m depth per 0.6m inside the tank, later was found our model had an 
error of around 1.8m using the Froude number and it was corrected to (42m/
0.6m). The accuracy of Noble et al.’s diagram is close to giving us an error of 
1.5m, proving to be a useful way to crosscheck our initial calculations and 
later correct them using the Froude number.
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	 Returning to the discussion about the harmonic generation, it is 
important to notice the central tendency values in Table 5.11, showing a very 
large data scatter for the larger waves. The large data scatter and the values 
for the factor defined by Mei and Ünlata [81] in the largest waves in Table 
4.11 show the possibility of harmonics interfering. Neither author indicates 
how to identify when harmonic generation could start to be important as this 
depends on the experiment characteristics. 


	 A good procedure could be to not only look at the number defined by 
the authors to account for the amplitude of the harmonics, but also the data 
scatter and irregularity of waves, while also using the aforementioned 
numbers. In cases where the obstructions are large and higher wave orders 
are tested, a frequency analysis would be required to know how the wave 
energy is transferred and how these harmonics could affect the induced 
wave velocities along the water column.


8.3 Experimental conditions 


Experimentally, there were a number of limitations which make it 
harder to measure wave propagation in the tank, solutions for which had to 
be found so measurements could deliver useful information. In this case, the 
normal evolution of the waves, deforming themselves as they move in the 
tank, was particularly difficult. 


	 Larger period waves registered an increase in their heights and a 
decrease in their detected lengths as they moved inside the tank. 
Meanwhile, shorter waves will increase their detected length as the wave 
shape deforms across the tank. In this case, this normal progression of the 
waves as they unfold, as in Figure 5.12, was used as a useful marker. If the 
wave’s tendency was to shorten in length and increase in amplitude, any 
behaviour to the contrary after propagating over an obstacle was an 
indicator of the obstacle interaction. The effect is visible in Figures 5.31 and 
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5.37 where the lengths detected start to move away from the case where no 
obstacle is placed in the tank. 


	 While measuring the detected wavelengths, the comparison between 
values was more important than the validation of theories, mostly because 
the length detected was not considered accurate enough, so tendencies will 
be the main marker to follow the obstacle and wave interaction for this 
parameter. Heights on the other side were easier to detect and follow.


8.4 Predicted and measured effects


The formulations validated to account for wave propagation show 
how Lamb’s theory is less accurate than Naghdi and Marshall’s for larger 
depths. There is however little variation in the theories validated because of 
the very limited wave height which makes their predicted values very close 
to each other.  


	 In this case, again, an analysis of the effects rather than a simple 
validation seems more useful as it can divert attention to fit a model, rather 
than measuring the actual effects of the wave propagation. In these cases, 
the methods based on linear regression might be more useful if a very large 
set of waves are tested using methods such Ting et al.’s. 

  

8.5 The sensitivity analysis and the predicted mechanical  
performance


	 When analysing the results of the sensitivity for an individual blade 
and the overall rotor, both were less sensitive to the obstacle size and the 
wave period than to the wave height and current velocity. The larger factor in 
the sensitivity analysis is the wave height.


	 If we take the results as they are, this could lead to misleading 
conclusions. If the obstacle size were to increase substantially, then this 
would have a direct effect on the wave height, leading to a link between the 
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smaller factor and the larger factor in the model. This also takes us to 
another connection between the variables where the sensitivity analysis is 
made, which is the wave period.


	 The theory proposed here and the one by Naghdi and Marshall point 
to dependence between the incident wave period, the obstacle ratio of 
obstruction, and the transmitted wave amplitude. Experiments by Goring, 
and Newmann and the one conducted in this research also point to this 
relationship. In this case, three variables where the sensitivity analysis is 
made are related to each other and, depending on their values, they could 
have a strong influence on the wave height after the obstacle. In this case, 
the Morris method gives us insightful information, but it does so under the 
limited range we gave to our variables. It is possible for steeper swells and 
larger swells under larger obstructions to have a different signature than the 
one seen in Figures 6.8 and 6.9. This leads us to the difference in the 
sensitivity and the thrust studied by Nevalainen and the author of this work. 
While for Nevalainen current is the first factor and wave height the second, 
in our case, this is the other way around.


	 The sensitivity analysis should also be used with care as it only 
indicates the way variables behave in the limited range of space where they 
are measured. The exact ratio of their monotonic behaviour, or the exact 
relationship of their non-linearity, is not known. Changes in the model will 
also alter the responses of the output as seen in this work for the wave 
height and current when compared to Nevalainen’s work. The author 
believes it must be used as a tool to approximate the first possible 
interaction between the turbine mechanical response and their variables, but 
never as a tool to know (with certainty) their behaviour. However, it remains a 
useful first approach.


	 Despite its shortcomings, the usefulness of the Morris method is 
observed in Figures 6.12 to 6.15. Figures 6.12 to 6.15 show the torque and 
thrust variation, which is small because the values chosen for this induce 
only smaller changes. In the mentioned figures, thrust and torque are plotted 
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for two different types of waves with two different current values. The 
turbines sit over a sudden bathymetry rise which modifies the wave height. 
However, the limited amplitude, limited rise, and single wave component do 
not show a very large change in the mechanical signal. This is proven to be 
a misleading observation in the case where many wave systems interact and 
create larger crests and troughs.


8.6 Case study results and mechanical response


	 Observations were made for the mechanical response of the torque 
and thrust under different wave weather conditions, showing the importance 
of testing several data ranges for wave weather. For waves moving on a flat 
bottom, a calm sea without wind waves is a large contributor to the 
unsteady mechanical response of the turbine. 


	 The model predicting a higher response than when using steeper 
waves and wind waves shows how local surface weather could be a bad 
indicator for the turbine response if only parameters such as the local height 
produced by wind-driven waves are taken. 


	 It also observed how the results change if no wave propagation is 
included. Figures 7.10 and 7.11 show a very different response when the 
model includes the wave propagation in Figures 7.15 and 7.16. The large 
difference between results shows the limitations of the actual BEMT physical 
model and of its implementation. Despite the large differences, BEMT 
remains a useful preliminary tool to calculate the turbine behaviour. However, 
a need to upgrade the physical model could be necessary if more complex 
case scenarios were going to be solved in the future. 


	 One of these possible complex scenarios is wave directionality which 
our case omits. Despite this omission, it is clear that if technologies can 
harvest low speeds and open ocean environments, swell directionality could 
be an important factor to take into account because swells have a large 
range of incidence, as shown in the Appendices section G3.  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9 Conclusions

In the area of marine and tidal energy, a lot of emphasis has been put on the 
calculation of unsteady loads produced by wave events [36], [43], [44], [65], 
[120]. The work presented in the previous pages looks to contribute to the 
analysis of the mechanical response of a tidal turbine device using wave 
weather conditions that are common in the sea. It also includes a sudden 
obstacle interacting with the waves, modifying the local wave weather by 
changing the wave parameters, such as amplitude and wavelength. In this 
context, it is of greater importance to take into account not only the extreme 
events leading to higher loads and extreme mechanical responses, but also 
cases that can impact the lifecycle of the turbine in the long term.


9.1 Findings and contributions


The contributions of this thesis can be summarised in three main points:


• An analysis of the most important cases of wave propagation over an 
obstacle and the experimental validation of formulations for wave 
propagation under a wider range of depths and periods. The physical 
conditions tested try to resemble real-depth scenarios which are useful for 
engineering purposes in the coastal zone. Scenarios include a tidal turbine 
energy device under suitable deployment depths.


• The extension of the BEMT model to account not only for parameters with 
higher impact on the turbine such as current and wave height, but also for 
what could be considered local effects that are not linked directly to the 
flow over the rotor, such as a sudden rise in the sea bottom affecting the 
wave incident over the turbine.


• The proposal of an analytical and simple formulation to a model long 
waves propagating over an obstacle when they transmit from deep waters 
to transitional waters.
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The findings, which can be linked directly to our main research questions, 
are as follows:


A) Is there a given relationship between the changes produced in a 

wave after it propagates over an obstacle and its incident period?. 
There are indications of a relationship between the transmitted amplitude 
of a wave, its wavelength, the obstacle size, and the incident wave 
period. The wavelength detected in these cases decreases consistently 
as the obstacle grows in size or length. However, the wave amplitude, 
which is also shown to be affected by the obstacle size, demonstrates a 
larger deviation in the values for the transmitted amplitude. We can 
divide these results as follows:


• Waves are disrupted by the obstacle, and the behaviour of the 
waves depends on the type of experiment. For exeriments where 
there is a decrease in the original tank's depth, waves with larger 
wavelengths increase their height by 40% in the most extreme 
cases and 3% for the lower values. The increase happens for the 
waves over the obstacle and after the waves propagated over the 
obstacle. For shorter-period waves, the effects are different. Short 
period waves see an increase in 20% of their original height of 20% 
in the most extreme cases over the obstacle. When waves proagate 
after their height can change 40% of their original value. The 
measurements to detect the change in the wave shape show other 
interesting effects of the wave propagation over the obstacle. 
Waves with larger wavelengths in the most extree cases have 
changes equal to 25% of its original value. Shorter waves see their 
original length changed by 10% of their original value.


• For experiments where the obstacle depth decreases, the waves 
transmitted are larger in height than the incident waves, as long as 
the obstacle is deeper. As the obstacle become shallower, waves 
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are more irregular in nature, and then even small amplitudes are 
detected. 


• For experiments where the waves propagate over an obstacle of 
increased length, transmitted amplitudes are larger, reaching in the 
most extreme cases an increase of more than 10% of its original 
value for an obstruction of half the tank’s original depth. However, 
all experiments where the obstacle obstructs 2/6 of the original tank 
depth show a large reduction in the wave heights.


• For the observations made about the calculated wavelengths 
detected by analysing the wave shape and movement, a direct 
effect is detected, especially for large waves which decrease their 
wavelength over the obstacle, as observed in Figure 5.36. However, 
this effect can be seen more clearly in Figures 5.37 and 5.31 for 
waves propagating over an obstacle of increasing length or 
decreasing depth.


• The results of the experiments are used to validate the theories of 
Naghdi and Marshall and Lamb, as well as the one proposed here. 
The results can be summarised as follows. Lamb's formulation 
predicts close values for the wave height, but Naghdi and Marshall’s 
theory is accurate in predicting the transmitted height. The same is 
true for the formulation proposed here and the one by Naghdi and 
Marshall. The results behind the accuracy of Nahdi and Marshall 
can be linked to its formulation using finite depth water to solve the 
coefficient of transmission, this depth resembles most of our 
experiments. In this case, if a model of wave propagation should be 
used for long waves at moderate depths, Naghdi and Marshall’s 
work is best suited for this. It is important to notice how then the 
formulation proposed here would suffice better for waves moving 
from deep waters to transitional waters, however, more 
experimentation is needed.
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B) Which variables are important for wave propagation over an 

obstacle and how do they influence it?. Is observed how the length of 
the obstacle increases the wave height in a stronger manner than its 
height. The large variation in some cases for an increase of height 
suggests the creation of irregular waves over shallow and short 
obstacles. However, the variation is too large to obtain a clear 
relationship, telling us how much these values change the amplitude. It is 
very probable that the observed values are caused by non-linear 
interactions between the waves and the obstacle. In these cases, more 
experiments and a different type of study might be needed, for instance 
using statistical tools.


C) Given a tidal turbine placed above a bathymetry change, could the 

wave trains propagated over the obstacle modify substantially the 

mechanical performance of the device after the wave trains change 

some of their parameters such as the wave height?. The simulation of 
the turbine deployed after a bathymetry rise, using the formulation of 
Naghdi and Marshall to calculate the wave heights,  shows how the 
mechanical response of the turbine changes if the wave propagation is 
taken into account.


• For larger swells and moderate amplitudes, the model shows that the 
torque and thrust are reduced if the turbine is placed after the 
obstacle. Short swells with steeper amplitudes and a mixed wave 
case scenario show an increase in the torque and thrust. The 
changes are 10% higher when compared to the model where no 
wave propagation occurs according to the BEMT model predictions 
in all cases.


• The sensitivity analysis of the system also shows a larger response to 
the wave height and a lesser response to the current velocity. This is 
contrary to what has been found by past researchers [36]. It is 
important here to observe how the obstacle size appears to be a 
small factor for both the overall rotor and the blade. However, it also 
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shows the importance of the interpretation of the sensitivity analysis 
results in some situations. In this case, the sensitivity analysis placing 
the obstacle size as a small factor is the result of the physical range 
we use for the depths and the obstacle size. Larger incident waves 
will create large wave heights if the obstruction is large enough, as 
observed in Chapter 7. The small effect of the obstacle size could be 
misleading if we only observe the Morris method results.


• The inclusion of the wave propagation also shows a large change if 
we compare three different types of wave weather. The model 
predicts a large difference between the response caused by long 
swells and shorter waves. If the wave propagation is included, for all 
cases the model shows a decrease as large as 50% in this difference. 


D) What are the effects of swell systems on the mechanical output of 

the tidal turbine rotor and its blades, compared to other types of 

wave weather?. The model shows a large response to swells with 
moderate amplitude. It is observed how the response for larger waves 
with larger periods can be 19% larger than when using other wave 
weather conditions. In this sense, it shows how the wave period is a 
more important factor to take into account than the wave height when 
steady forces and loads are calculated at larger and even moderate 
depths. It is clear that wave height will have an important role, but 
because the wave velocities decrease as the depth grows and the depth 
of influence for the wave depends on the wavelength and depth, the 
period will be an important factor too. Swells with even moderate 
amplitudes will show a larger influence at larger depths. It is also 
important to observe how the measurements made only of the wave 
height on the surface will be insufficient to determine the response of a 
given tidal turbine simulated at a given depth in a specific location, but it 
would be equally important to utilise frequency analysis to determine the 
period T of the components. 
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9.2 Commentaries

	 The work carried out in this thesis shows how different sets of wave 
conditions and other changes such as a bathymetry constraints could have 
a substantial impact on a tidal turbine’s mechanical performance. The work 
also shows how large unsteady forces caused by the waves are not unique 
to waves with larger crests, but also apply to waves with more moderate 
amplitude but larger wavelengths and periods, as observed using the case 
scenario. These observations move the attention from extreme events 
caused by larger waves to wave conditions which constitute a larger 
percentage of the wave weather in an area of deployment, such as steeper 
swells.


	 It is also necessary to comment on how this can have an impact on 
the understanding of wave loadings. It is true that wave systems will add 
their amplitudes, causing larger waves, but as the strength of the wave 
velocities depends on how far the wave penetrates into the water column, 
local wind waves that add height to the local wave conditions would 
theoretically have a small effect for unsteady loads at larger depths. In these 
cases, the height of the swell systems would have a more important role to 
play than local constructive or destructive interference of waves causing 
larger heights. This does not exclude wave height as an important value in 
order to calculate the loads caused by waves on a turbine, but puts into 
perspective how variables such as the depth of propagation and the period 
can have the same importance.


	 Regarding the BEMT model and the sensitivity analysis, the study 
shows how the difference in conditions can impact the analysis. The studies 
by Nevalainen et al. [36] point to the current being more important than in 
our study. This is because the ranges for the variables appear to have a 
large importance in the results obtained with the models. In this case, a 
sensitivity analysis of a device would not be applicable to another case 
scenario if the ranges for the variables are different.
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	 The wave propagation model, unsurprisingly, shows how the inclusion 
of new conditions that can modify the wave parameters locally and a change 
in the depth has a large effect on the simulated results. As we mentioned in 
Chapter 7, these differences are large enough to give a more detailed look at 
how devices need to be modelled, as changes can be significant enough to 
modify the mechanical response considerably depending on the physical 
conditions, as shown in Table 7.9.


	 Experiments show how wave parameters change depending on the 
obstacle depth and length. It is especially important to see how the wave 
height increases as the obstacle length increases for the largest waves 
tested, as shown in Table 5.7. If swells are to behave in a similar manner 
after crossing an obstacle, this would mean different amplitudes as they 
propagate over a longer obstacle. The changes would be large for longer 
periods relative to the depth they move in, having also large amplitudes of 
several meters. These changes would mean two positions along the same 
trajectory could face differences in the underwater wave weather and the 
velocity components it produces. It is not known how important these local 
changes along different positions in the shelf might be, but it should depend 
on how much the wave heights and lengths have changed. Data in the 
experiments and simulations lead us to believe, that the important values to 
determine the changes, will be the relative depth to wavelength ratio after 
the obstacle and the steepness of the wave. In this case, if two turbines are 
placed in the same zone, affected by larger long swells and one of these 
turbines is placed after a bathymetry obstruction; the second one would 
face a different mechanical response to waves as the underwater velocity 
components would be different.


9.3 Future research and recommendations

The last point to discuss in this work is recommendations for future research 
and analysis of tidal turbine devices. Evidently, analysis of the relationship 
between the wave obstacle and the wave propagated cannot be conducted 
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by using simple analytical tools. Future research will require statistical 
analysis. The first recommendation and possible extension is the need to 
include more complex models that simulate a tidal turbine device. If BEMT is 
a fast model that can give reasonable results, as authors have found [117], 
[118], it also remains a tool that depends on the right set of conditions being 
given as the input. If these conditions vary, local changes in the waves or 
current velocities could have very different mechanical responses after 
simulations are made. The results can also lead to incorrect estimations of 
the loads and forces on the turbine rotor and blades.


	 The second recommendation is the study of long-term weather 
patterns. As Chapter 7 shows, wave weather has a certain seasonality and 
could be predicted with a certain margin of error. The seasonality and 
predictability open the possibility of studies on fatigue and failure to simulate 
long-term deployments if a large set of data is gathered on the sea 
conditions.


	 The third point is related to the inclusion of more complex physical 
conditions. As was observed, the inclusions of a moderate change in depth 
and an obstacle result in a large change in the mechanical response. In the 
same wave, other parameters (such as turbulence and changes in the 
currents) could lead to larger changes in the rotor and blade response (to the 
changes in the flow and other unsteady components such as turbulence and 
waves). In this case, turbulence, waves, and current will be the main drivers 
behind changes in the turbine’s mechanical performance and also in 
elements as fatigue and failure.

The last point is a recommendation to researchers and practitioners  
regarding tools such as BEMT, the Morris method, and other mathematical 
formulations used here. Despite offering a useful way to observe preliminary 
results, in no way can these replace simulations or models using local 
conditions and more complex methods of analysis for the model variables. 
As observed in the case of the Morris method, which cannot tell us exactly 
the nature of the variable’s relationship or the formulations which are 
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accurate to a certain range of values, other tools and models need to be 
explored. Further tools and models would enable us to see the response of 
marine energy devices once the points of interest have been identified after 
running preliminary tools of analysis, such as BEMT and the Morris method.

9.4 Closing remarks

	 This work tries to extend the models used to simulate the mechanical 
response of a tidal turbine to waves. It also looks to extend the 
understanding of how wave weather can affect tidal turbine devices, beyond 
the case study of extreme events. The models, experiments, and tools used 
here have their own limitations but, despite their limitations, they show how 
including different conditions into our physical representation of a tidal 
turbine could have important impacts that cause variations in turbine 
behaviour. 


	 These changes could be missed if they are not studied in enough 
detail, and they could also have a larger impact on the turbine lifecycle. The 
study also raises the question of how to enhance our tools and physical 
models to make more realistic predictions of how tidal devices work by 
adding more complex scenarios. 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Appendix


Section A 
Appendix A is composed of two sections; section A.1 has a resume of the formulas used 

to calculate the long wave properties at first order theory as has been discussed in 

Chapter 2 and 2. Second order terms used in Chapter 5 are included in the Appendix 

section D. The second part A.2, includes plots to calculate the Ursell number define 

possible linear swells; the plots cover depths from 30m to 100m. 

A.1 Expressions for Airy or first order wave theory 
A1, Table with the formulas for long waves with low amplitudes, better known as airy 

theory. 

A2, Equation terms. 

First order Potential

Deep 
waters

Potential

Velocities (x)

Velocities (z)

Transitional 
waters

Potential

Velocities (x)

Velocities (z)

V(x, z, t) = ωαekzCos[(ω * t) + (k * x)]
hd

2 < λi < hd

20

φ(x, z, t) = ωα ( Cosh[k * (hd + z)]
Sinh[k * hd] ) Cos[(ω * t) + (k * x)]

V(x, z, t) = − kωα * Cosh[k * (hd + z)] * Csch[hd * k] * Sin[(ω * t) + (k * x)]

V(x, z, t) = kωα * Sinh[k * (hd + z)] * Csch[hd * k] * Cos[(ω * t) + (k * x)]

λi < hd

2
φ(x, z, t) = ωαekzCos[(ω * t) + (k * x)]
V(x, z, t) = − ωαekzSin[(ω * t) + (k * x)]

Name Term Name Term

Angular frequency Time

Wave number Distance of propagation, 
arbitrary x=0

Amplitude Incident wavelength

Depth of 
propagation, 
surface z=0

Wave field depth

λi

k x

α

hd z

ω t
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A.2 Long waves Ursell number for large period waves 
Ursell number at depths ( hd ) on the range [30-100]m, using wave periods ( T ) covering 

[7-22]s, for moderate wave heights ( H ) on the range [0.5-6]m. Red arrows show the cuts 

for the plots at different depths in Figures A.II to A.IX, meanwhile blue arrows show the 

depths of propagation in the wave tank (A) and the site chosen (B). 

Figure A.I Ursell number at depths hd=[30-40]m, under moderate wave heights H=[0.5-6]m, 
and its period T=[7-22]s at open sea  hd>1000m.

Figure A.II Ursell number at hd=30m, for wave periods T=[7-22]s.
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Figure A.III Ursell number at hd=40m, for wave periods T=[7-22]s.

Figure A.IV Ursell number at hd=50m, for wave periods T=[7-22]s.
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Figure A.V Ursell number at hd=60m, for wave periods T=[7-22]s.

Figure A.VI Ursell number at hd=70m, for wave periods T=[7-22]s.

Ursell number vs Period 

Ursell number vs Period 

H=2a

0.5m
1.0m
1.5m
2.0m
2.5m
3.0m

H=2a

0.5m
1.0m
1.5m
2.0m
2.5m
3.0m



268

 
 
 

Figure A.VII Ursell number at hd=80m, for wave periods T=[7-22]s.

Figure A.VIII Ursell number at hd=90m, for wave periods T=[7-22]s.
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Figure A.IX Ursell number at hd=100m, for wave periods T=[7-22]s.
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Section B 
Section B is divided into two parts, the first B.1 correspond to the values of the range of 

waves modelled in Chapter IV and used in Chapter V. The values included the maximum 

wave height, the non-dimensional depth/height range and the wavelength range; the 

values of the waves in a real 1:1 scale at open sea conditions are also shown. The 

second part B.2, includes the transfer functions of the wave probes during its first 

characterisation, as the voltage vs centimetres measured. 

B.1 Wave period range and wave properties used at 
experimental testing and simulation. 
B1, Table with values of the range of waves modelled in Chapter IV and analysed in 

Chapter 5. 

B.2 Transfer functions for all wave probes 
B2, Transfer functions, wave probes A to D. 

T(s) Hmax(mm) λ(m) Non-Dimensional Depth

T~[0.8 -1.7]
 Tank 0.6m depth

15 1-3.5 0.095-0.021

T(s) Hmax(m) λ(m) Non-dimensional depth

T~[6.9 -14.1]
Sea 40m depth

[0.35-1.7] [75-257] 0.095-0.021

Wave Probe Function

A

B

C

D

−8.87111 + 67.5139x

−11.1933 + 167.834x

−9.89713 + 79.9405x

−9.89286 + 382.06x
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B3, Voltage vs depth h(cm) for all transfer functions. 

h(cm) 0 10 20 30 40 50 60 70 80 90

V(A) 0.062 0.124 0.185 0.253 0.314 0.348 0.424 0.495 0.552 0.586

V(B) 0.125 0.253 0.370 0.497 0.622 0.747 0.872 0.999 1.124 1.252

V(C) 0.138 0.285 0.418 0.570 0.720 0.871 1.018 1.172 1.315 1.467

V(D) 0.026 0.053 0.077 0.103 0.129 0.156 0.181 0.209 0.235 0.262
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Section C 
Section C is divided into two parts, the first C.1 correspond to the links where the code 
for wave analysis is stored in a GitHub account, the files contain a little introduction and 
explanation on its inner workings. The code has a MIT license and uses Wolfram 
Language. Wolfram language has a free use and can be used with a limited license in 
platforms as in a Raspberry Pi computer. The code can be easily translated to Python. 
Section C.2 corresponds to the code itself and the annexed explanation on the 
measurements done and how they were done. 

C.1 Addresses to data and code 

Code, wave tank analysis:  
Github: https://github.com/manelcamacho/wavetankanalisyscode  
Zenodo: https://zenodo.org/record/4617236#.YLiBbC2ZMWo  
Code, wave probe calibration and data sorting:  
Github: https://github.com/manelcamacho/waveprobes 
Zenodo: https://zenodo.org/record/4617267#.YLiDby2ZMWo  

C.2 Code 
————————————————————————————————————————-

Mathematica code for wave feature extraction, with commentaries. 
“Code Font”.

“Commentary font.”
————————————————————————————————————————-
During the 1st block, the main variables are set and data is imported from cvs files in order 
to be analysed. Also the boundaries of X (time) where our wave lives are set. 


SetDirectory[“/Users/sialuk/Desktop/laboratory1sttest/
mathematica2/"] 

“Sets the directory path where mathematica will search for the files” 

Cdatam = Import["Test1sortedC.csv", {"Data", Range[10, 1000]}]; 
Bdatam = Import["Test1sortedB.csv", {"Data", Range[10, 1000]}]; 
Adatam = Import["Test1sortedA.csv", {"Data", Range[10, 1000]}]; 

%datam [Cdatam, Bdatam, Adatam]:” are arrays to store data from the first seconds of 
testing when the water is still, this data will be used to calculate a mean value. The wave 
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mean value of the 1st seconds will be used to plot the data moving it up from its deviation on 
the y axis caused by the function y=mx+b.

Cmean = Cdatam[[All, 2]]; 

Bmean = Bdatam[[All, 2]]; 

Amean = Adatam[[All, 2]]; 

%mean : [Cmean, Bmean, Amean]: The arrays will sure only the Y data to be averaged and 
then used to plot correctly the signal. 

Due to the high degree of harmonics the signal had to be most of the time analysed one 
wave train each time, a value on time in milliseconds was chosen for the inferior and 
superior boundaries on each wave train. 

cs1 = 2500; bs1 = 2600; as1 = 2700; 

ci1 = 2400; bi1 = 2500; ai1 = 2600; 

%s1-%i1: [cs1, bs1, as1, ci1,bi1, ai1]: These variables are the superior (s) and inferior (i) 
time for each analysis on the experiment number 

datactest1 = Import[“Test1sortedC.csv", {"Data", Range[ci1, cs1]}]; 

datcx = datactest1[[All, 1]]; 
datcy = datactest1[[All, 2]]; 
cymean = Mean[Cmean]; 

datcy = datcy - Abs[cymean]; 
datactest1 = Transpose[{datcx, datcy}]; Length[datactest1]*100; 

databtest1 = Import[“Test1sortedB.csv", {"Data", Range[bi1, bs1]}];  

datbx = databtest1[[All, 1]]; 
datby = databtest1[[All, 2]]; 
bymean = Mean[Bmean]; 

datby = datby + Abs[bymean]; 
databtest1 = Transpose[{datbx, datby}]; Length[databtest1]*100; 

dataatest1 = Import[“Test1sortedA.csv", {"Data", Range[ai1, as1]}]; 

datax = dataatest1[[All, 1]]; 
datay = dataatest1[[All, 2]]; 
aymean = Mean[Amean]; 

datay = datay + Abs[aymean]; 
dataatest1 = Transpose[{datax, datay}]; Length[dataatest1]*100; 

data%test1: [dataatest1,databtest1,datactest1]: Are the variables that store the arrays 
containing the data from wave probes A,B,C. Each array goes from the inferior range to 
superior one. The data is imported from a .csv file. 
dat%x-dat%y: [datay, datby, datcy, datax, datbx, datcx]: The array is divided in their sections 
x and y to work on each one individually. 
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%mean: [amean, bmean, cmean]: each sample from the first seconds on each wave prove is 
averaged with function Mean []. 

dat%y: the data for the variables on y for each wave probe is then corrected after displacing 
it with the mean value of each wave probe first seconds. 

data%test1: The data is again joined transposing the two arrays and then is measured to see 
if has the correct number of members with the command Lenght[]. 

{minci} = {MinimalBy[#, Last]} &@datactest1; {minbi} = {MinimalBy[#, 
Last]} &@databtest1; {minai} = {MinimalBy[#, Last]} &@dataatest1; 

Cplot = ListLinePlot[datactest1, PlotRange -> {{22, 30}, {-110, 
60}}, PlotLegends -> "Load Coefficient", 
Epilog -> {PointSize -> Medium, Red, Point@minci}] 

Bplot = ListLinePlot[databtest1, PlotRange -> {{22, 30}, {-110, 
60}}, PlotLegends -> "Load Coefficient", 
Epilog -> {PointSize -> Medium, Red, Point@minbi}] 

Aplot = ListLinePlot[dataatest1, PlotRange -> {{22, 30}, {-110, 
60}}, PlotLegends -> "Load Coefficient", 
Epilog -> {PointSize -> Medium, Red, Point@minai}] 

Mindatactest1yi = minci[[All, 2]]; Mindatabtest1yi = minbi[[All, 
2]]; Mindataatest1yi = minai[[All, 2]]; avgMindatactest1yi = 
N[Mean[Mindatactest1yi]]; avgMindatabtest1yi = 
N[Mean[Mindatabtest1yi]]; avgMindataatest1yi = 
N[Mean[Mindataatest1yi]]; 

Mindatactest1xi = minci[[All, 1]]; Mindatabtest1xi = minbi[[All, 
1]]; Mindataatest1xi = minai[[All, 1]]; avgMindatactest1xi = 
N[Mean[Mindatactest1xi]]; avgMindatabtest1xi = 
N[Mean[Mindatabtest1xi]]; avgMindataatest1xi = 
N[Mean[Mindataatest1xi]];  

min%: [minc,minb,mina]: are the values for the 1st maximum on the specific wave train time, 
this for each data set data%test1. 

%plot: [Cplot, Bplot, Aplot]: A plot is made from all data sets and a marker is put to verify 
each maximum on the wave, see fig 3. From here the array name needs to be used 
data%test1 and the plot range on {x, y} has to be specified. The command ListLinePlot 
needs to take two arguments, the 1st one is the name of the array to be plotted, in this case 
the variable containing the datasets, and second the range to plot on {{x inferior, x superior} , 
{y inferior, y superior}}. 

On the 2nd block the analysis moves to the second part of our wave, this by dividing the 
wave in two sections with the crest as the middle part. 

cs2 = 2600; bs2 = 2700; as2 = 2800; 

ci2 = cs1; bi2 = bs1; ai2 = as1; 

Here the superior boundary is changed and the inferior boundary is now the inferior 
boundary of our wave zone.

{maxc} = {MaximalBy[#, Last]} &@datactest1; {maxb} = {MaximalBy[#, 
Last]} &@databtest1; {maxa} = {MaximalBy[#, Last]} &@dataatest1; 
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max%: [maxc,maxb,maxa]: are the values for the 1st maximum on the specific wave train 
time, this for each data set data%test1. 

plot = ListLinePlot[datactest1, PlotRange -> {{22, PlotLegends -> 
"Load Coefficient", 
Epilog -> {PointSize -> Medium, Red, Point@maxc}] 

Bplot = ListLinePlot[databtest1, PlotRange -> {{22, PlotLegends -> 
"Load Coefficient", 
Epilog -> {PointSize -> Medium, Red, Point@maxb}] 

Aplot = ListLinePlot[dataatest1, PlotRange -> {{22, PlotLegends -> 
"Load Coefficient", 
Epilog -> {PointSize -> Medium, Red, Point@maxa}] 

30}, {-110, 60}}, 30}, {-110, 60}}, 30}, {-110, 60}}, 

%plot: [Cplot, Bplot, Aplot]: A plot is made from all data sets and a marker is put to verify 
each maximum on the wave, see figure 5. From here the array name needs to be used 
data%test1 and 

the plot range on {x, y} has to be specified. 

Maxdatactest1y = maxc[[All, 2]]; Maxdatabtest1y = maxb[[All, 2]]; 
Maxdataatest1y = maxa[[All, 2]]; 

Maxdata%text1y: [Maxdatactest1y, Maxdatactest1y, Maxdatactest1y]: Cause is usual that we 
have several maximums on our data sets due to sampling at 100 hhz all of them are stored. 

avgMaxdatactest1y = N[Mean[Maxdatactest1y]]; avgMaxdatabtest1y = 
N[Mean[Maxdatabtest1y]]; avgMaxdataatest1y = 
N[Mean[Maxdataatest1y]]; 

avgMaxdata%text1y: [avgMaxdatactest1y, avgMaxdatactest1y, avgMaxdatactest1y]: Each 
maximum appears at some time t around the main crest of our wave, this is due to the signal 
noise, several maximums appear at t+Δτ. This delta is small enough that we can make an 
average of all points and then get the average time of our crest with a deviation of not more 
than ms. 

Maxdatactest1x = maxc[[All, 1]]; Maxdatabtest1x = maxb[[All, 1]]; 
Maxdataatest1x = maxa[[All, 1]]; avgMaxdatactest1x = 
N[Mean[Maxdatactest1x]]; avgMaxdatabtest1x = 
N[Mean[Maxdatabtest1x]]; avgMaxdataatest1x = 
N[Mean[Maxdataatest1x]]; 

velchbc = 2/(avgMaxdatabtest1x - avgMaxdatactest1x); velchab = 2/
(avgMaxdataatest1x - avgMaxdatabtest1x); 

Maxdata%text1x: [Maxdatactest1x, Maxdatactest1x, Maxdatactest1x]: The time (coordinate 
x) of our array is tired for each maximum found around the crest main point, then they are 
averaged again. 

velch%%: [velchab, velchbc]: Cuase our wave probes are at a distance of two meters each 
the averaged time for each wave peak is used to calculate the velocity. 

In the 3rd block, the exactly same procedure is applied to search now for a superior 
minimum; this block will be the superior bound of our wave. in this section the wavelengths 



276
are calculated along with the creation of the arrays for each variable that will be plotted 
afterwards. 

{mincs} = {MinimalBy[#, Last]} &@datactest1; {minbs} = {MinimalBy[#, 
Last]} &@databtest1; {minas} = {MinimalBy[#, Last]} &@dataatest1; 

Cplot = ListLinePlot[datactest1, PlotRange -> {{22, 30}, {-110, 
60}}, PlotLegends -> "Load Coefficient", 
Epilog -> {PointSize -> Medium, Red, Point@mincs}] 

Bplot = ListLinePlot[databtest1, PlotRange -> {{22, 30}, {-110, 
60}}, PlotLegends -> "Load Coefficient", 
Epilog -> {PointSize -> Medium, Red, Point@minbs}] 

Aplot = ListLinePlot[dataatest1, PlotRange -> {{22, 30}, {-110, 
60}}, PlotLegends -> "Load Coefficient", 
Epilog -> {PointSize -> Medium, Red, Point@minas}] 

Mindatactest1ys = mincs[[All, 2]]; Mindatabtest1ys = minbs[[All, 
2]]; Mindataatest1ys = minas[[All, 2]]; avgMindatactest1ys = 
N[Mean[Mindatactest1ys]]; avgMindatabtest1ys = 
N[Mean[Mindatabtest1ys]]; 

deltatimeb = avgMindatabtest1xs - avgMindatabtest1xi; deltatimea = 
avgMindataatest1xs - avgMindataatest1xi; 

λc = velchbc*deltatimec; 
λb = (velchbc + velchab)/2*deltatimeb; λa = velchab*deltatimea; 

Hratioc = avgMindatactest1yi - avgMaxdatactest1y Hratiob = 
avgMindatabtest1yi - avgMaxdatabtest1y Hratioa = avgMindataatest1yi 
- avgMaxdataatest1y 

listλc1 = {λc} 
listλb1 = {λb} 
listλa1 = {λa} 
listvelbcnew1 = {velchbc} listvelabnew1 = {velchab} listMaxc1 = 
{avgMaxdatactest1y} listMaxb1 = {avgMaxdatabtest1y} listMaxa1 = 
{avgMaxdataatest1y} listHratioc12 = {Hratioc} listHratiob12 = 
{Hratiob} listHratioa12 = {Hratioa} 

deltatime%: [deltatimec, deltatimeb, deltatimea]: The  
trough pass on each sensor is calculated simply subtracting time form each one. 

λ%: [λa, λb, λc]: The wavelength is calculated multiplying the velocity of the wave and the 
difference of time between each trough passing at our sensor. 

Hratio%= [Hratioc, Hratiob, Hratioa]: Apart from the maximums of each wavelength being 
calculated for that specific wave, the ratio between the maximum and the thought is 
specified. The reason for this, is because of shoaling the peak of the wave will decay but 
also the trough will attenuate giving a better value if we take the wave trough-peak ratio than 
just the maximum. 

list%%%%: lists are created to store the data gathered, like the wavelength, velocity and 
maximums. 

Particularities of the block 
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Cause each wave train is analyse separately then at the 1st script the function to create a 
lost is used: 

listHratioa12 = {Hratioa} 

That is: 

“listname” = {variable to put on the list} 

Then at the next script the next variable needs to be added at the end of the list using a new 
function called insert: 

listHratioa12 = Insert[listHratioa12, Hratioa, -1] 

That is: 

“listname”=Insert[“listname”, v”ariable to insert on list”, 
“position where it will be inserted”] 

The procedure needs to be repeated each time a new script is called to obtain new variables 
to the list before export the file as .csv using: 

Export["listc12ratioa.mx", listHratioa12]  

————————————————————————————————————————-

Mathematica code for wave probe calibration, with commentaries. 
“Code Font”.

“Commentary font.”
————————————————————————————————————————-
Voltage and depth of immersion are set into arrays, and then whet are transposed to create 
an (x,y) list. The data is then formatted into a Table and also plotted. 

voltaged = {v0, v10, v20, v30, v40, v50, v60, v70, v80, v90}; 

heightd = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90}; dataxyd = 
Transpose[{voltaged, heightd}]; 
datad = TableForm[Tablexyd = Table[dataxyd]] 
ad = ListPlot[dataxyd]  

The data is fitted into a linear function as, our physical range of depths must satisfy a linear 
relationship for the sensor to be easy to read. The function fitted is then plotted and is 
compared to the data obtained in the tank. 

std = Fit[dataxyd, {1, x}, x] add = Plot[{std}, {x, 0, 100}] 

Show[{add, std}] 

The same process if done for the wave probe as it is retrieved from the tank. 

voltaged2 = {v02, v102, v202, v302, v402, v502, v602, v702, v802, 

v902}; 
heightd2 = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90}; dataxyd2 = 
Transpose[{voltaged2, heightd2}]; 
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datad2 = TableForm[Tablexyd2 = Table[dataxyd2]] 
ad2 = ListPlot[dataxyd2] 

std2 = Fit[dataxyd2, {1, x}, x] add2 = Plot[{std2}, {x, 0, 100}] 

Show[{add2, std2}] 

 
The difference between the voltage measured is calculated and it is transposed to the 
respective measured depths, this to create a list of the voltage lecture difference between 
the calibration by immersion and the calibration by subtraction. The standard deviation is 
calculated to search for any large deviation on the measured voltages. 

Dif = Abs[voltaged2 - voltaged] 
heightd = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; Transpose[{heightc, Dif}] 
StandardDeviation[Dif] 

————————————————————————————————————————-

Matlab code for wave probe cleaning and ordering, with commentaries. 
“Code Font”.

“Commentary font.”
————————————————————————————————————————-
During the 1st block, we only call to the data stored in the file from a certain location of the 
computer using a readTable() command. Then we measure the table size cause this will 
work as our boundaries for our loop cycles. 

datatotal=readtable(‘Directory where the file is stored'); 
HD=height(datatotal); 
WD=width(datatotal); 
i=1; 

datatotal=readtable() The command readtable reads the text data stored in a file, every black 
space is treated as a division for a different cell of data and every jump in line as a different 
row on the table of data. 

HD=height()/WD=width(): We set the variables of the table size, so our script will only read 
till the final of our file (HD-final time) and the end of the column (WD-final wave probe). 

Then we simply set a counter to read every repetition till HD (final time is reached).  

In the 2nd block the information from each columns is stored on and individual list, one list 
will be used per counting time and the other ones to store the value of the wave height. 

while i<=HD for j=1:5 

if j==2 cd=datatotal{i,1}; CD{i,1}=cd; cd=datatotal{i,j}; CD{i,j}
=cd; 

end 

if j==3 cd2=datatotal{i,1}; CD2{i,1}=cd2; cd2=datatotal{i,j}; 
CD2{i,j}=cd2; 

end 
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if j==4 cd3=datatotal{i,1}; CD3{i,1}=cd3; cd3=datatotal{i,j}; 
CD3{i,j}=cd3; 

end 

if j==5 cd4=datatotal{i,1}; CD4{i,1}=cd4; cd4=datatotal{i,j}; 
CD4{i,j}=cd4; 

end 

end i=i+1; 

end 

In our first cycle while i<=HD we will repeat the process till i reaches HD (final time 
value). Then we pass through every column that contains data being sorted as: Column 1 = 
time, Column 2 = wave probe 1, Column 3 = wave probe 2… Column n = wave probe n. If 
more sensors need to be added just a copy of the block if j == “wave prove number=n” 
needs to be added to this script. 

if j==“n” cd”n”=datatotal{i,1}; CD”n”{i,1}=cd”n”; 
cd”n”=datatotal{i,j}; CD”n”{i,j}=cd”n”; 

end 

CD is an array that will contain only two columns CD{n,2}, taken from 
datatotal{mxn}, the first one that we will call on each column datatotal{i,1} it 
stores the time and the second one datatotal{i,2} will store the wave height collected 
for each sensor. 

The process will be repeated for every wave probe variable: 

if j==3 cd2=datatotal{i,1}; 

CD2{i,1}=cd2; cd2=datatotal{i,j}; CD2{i,j}=cd2; 

end 

if j==4 cd3=datatotal{i,1}; CD3{i,1}=cd3; cd3=datatotal{i,j}; 
CD3{i,j}=cd3; 

end 

if j==5 cd4=datatotal{i,1}; CD4{i,1}=cd4; cd4=datatotal{i,j}; 
CD4{i,j}=cd4; 

end 

In the 3rd block the tables are put into an individual file using the character / as a delimiter, 
this will add black spaces that can be then used to save it as a .csv file 

Table=cell2table(CD); 
writetable(Table,’Directory where the file will be stored, Sensor 
1','Delimiter','\t'); 

Table2=cell2table(CD2); 
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writetable(Table2,'Directory where the file will be stored, Sensor 
1','Delimiter','\t'); 

Table3=cell2table(CD3); 
writetable(Table3,'Directory where the file will be stored, Sensor 
1','Delimiter','\t'); 

Table4=cell2table(CD4); 
writetable(Table4,’Directory where the file will be stored, Sensor 
1','Delimiter','\t'); 

Table=cell2table() is used to write a cell type array like excel type to convert it into a 
text table. Then writetable(“tablename”, “path and name of file to be 
saved”) is used to store it. The code at this point can use delimiters to separate the files. 

In the 4th block files are checked for blank spaces or other non-numeric data, this one will 
be erased from the files. Most of the time this data is just inserted wrong by the sensor and is 
not lost, data file then will contain a black space instead of the data; however this correct 
data will be stored on the next line. 

% Read the file as cell string line by line: 
fid = fopen('Directory where the file is stored, Sensor 1', 'r'); if 
fid < 0, error('Cannot open file: %s'); end 
Data = textscan(fid, '%s', 'delimiter', '\n', 'whitespace', ''); 
fclose(fid); 

% Remove empty lines: 
C = deblank(Data{1}); % [EDITED]: deblank added C(cellfun('isempty', 
C)) = []; 
% Write the cell string: 
fid = fopen('Directory where the file is stored, Sensor 1', 'w'); if 
fid < 0, error('Cannot open file: %s', FileName); end fprintf(fid, 
'%s\n', C{:}); 
fclose(fid); 

fid = fopen('Directory where the file is stored, Sensor 2', 'r'); if 
fid < 0, error('Cannot open file: %s'); end 
Data = textscan(fid, '%s', 'delimiter', '\n', 'whitespace', ''); 
fclose(fid); 

C = deblank(Data{1}); % [EDITED]: deblank added C(cellfun('isempty', 
C)) = []; 
% Write the cell string: 
fid = fopen('Directory where the file is stored, Sensor 2', 'w'); if 
fid < 0, error('Cannot open file: %s', FileName); end fprintf(fid, 
'%s\n', C{:}); 

fclose(fid); 
fid = fopen('Directory where the file is stored, Sensor 3', 'r'); if 
fid < 0, error('Cannot open file: %s'); end 
Data = textscan(fid, '%s', 'delimiter', '\n', 'whitespace', ''); 
fclose(fid); 

C = deblank(Data{1}); % [EDITED]: deblank added C(cellfun('isempty', 
C)) = []; 
% Write the cell string: 
fid = fopen('Directory where the file is stored, Sensor 3', 'w'); if 
fid < 0, error('Cannot open file: %s', FileName); end fprintf(fid, 
'%s\n', C{:}); 
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fclose(fid); 
fid = fopen('Directory where the file is stored, Sensor 4', 'r'); if 
fid < 0, error('Cannot open file: %s'); end 
Data = textscan(fid, '%s', 'delimiter', '\n', 'whitespace', ''); 
fclose(fid); 

C = deblank(Data{1}); % [EDITED]: deblank added C(cellfun('isempty', 
C)) = []; 
% Write the cell string: 
fid = fopen('Directory where the file is stored, Sensor 4', 'w'); if 
fid < 0, error('Cannot open file: %s', FileName); end fprintf(fid, 
'%s\n', C{:}); 

fclose(fid); 
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Section D 
Section D is divided into two parts. Section D.1 defines the online directions where the 
data is stored for public access; the section includes the public repositories, to store the 
scripts used to analyse the waves and calibrate the wave probes. Section D.2 includes 
the data obtained from the calibration test, which was also used to characterise the 
wave natural shoaling inside the tank. 

D.1 Addresses data and code 

Wave experimental data: https://pureportal.strath.ac.uk/en/datasets/wave-propagation-
over-obstacles. 

D.2 Wave tank calibration 
D1, Wavelengths(m), red colour indicates abnormal larger wavelengths, in green two 
cases that are related to an irregular minimum wave train detection on sensor A: 

T1 T2 T3 T4 T5 T6 T7

1.1888 1.3431 1.6800 1.8632 2.2453 4.4947 3.7800

1.0581 1.4394 1.6975 1.9823 2.2617 3.0495 3.4490

1.1944 1.2394 1.7142 2.0727 2.2018 2.7429 3.5306

1.2113 1.3188 1.6833 2.0180 2.2018 4.6776 3.2800

1.2361 1.4668 1.6949 1.9464 2.1261 3.3469 4.1042

1.2199 1.2727 1.7000 1.9649 2.1818 4.9681 3.5464

1.1944 1.2222 1.7094 2.0714 2.2000 3.2653 3.1456

1.2778 1.3188 1.6667 2.0000 2.1636 2.8269 5.8734

1.1831 1.2308 1.7119 1.9821 2.1802 3.2653 3.5208

1.2676 1.2222 1.6529 1.8120 2.2018 2.8350 4.8208

1.2222 1.3237 1.8018 2.0180 2.1818 5.0235 3.6907

2.8077

4.6923

3.3265
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D2, Wavelengths(m), red colour indicates abnormal larger wavelengths, in green two 
cases that are related to an irregular minimum wave train detection on sensor B: 

D3, Wavelengths(m), red colour indicates abnormal larger wavelengths, in green two 

cases that are related to an irregular minimum wave train detection on experiment 6: 

T1 T2 T3 T4 T5 T6 T7

1.2917 1.3971 1.7900 1.8418 2.2489 4.8251 3.9861

1.2054 1.6491 1.6993 2.0013 2.2562 2.9163 3.1814

1.4344 1.3795 1.7950 2.0212 2.2530 2.6040 3.3943

1.4855 1.3628 1.7571 2.0189 2.2433 4.0258 3.0992

1.4696 1.6340 1.7656 2.0188 2.2323 3.1364 3.8109

1.4961 1.3695 1.7477 2.0178 2.2507 4.7532 3.4405

1.4402 1.3905 1.7637 2.0097 2.2150 3.0962 2.9211

1.4402 1.4789 1.7504 2.0456 2.2426 2.6860 5.0802

1.4440 1.3695 1.7862 2.0278 2.2323 3.0666 3.4024

1.3051 1.3649 1.7472 1.8512 2.2530 2.6867 5.0145

1.4696 1.4946 1.6270 2.0198 2.2426 5.0991 3.5078

1.4450 1.4146 2.7241

4.8132

3.1364

T1 T2 T3 T4 T5 T6 T7

2.6345 1.4026 1.9030 1.8525 2.2301 4.9778 3.8913

1.4638 1.7886 1.7619 1.9832 2.2478 2.7843 2.9623

1.6154 1.5267 1.9191 1.9833 2.2478 2.4673 3.1400

1.6250 1.4074 1.7778 2.0513 2.2105 3.9184 2.9423

1.6124 1.7800 1.7480 2.0000 2.2832 2.9703 3.6596

1.5455 1.5758 1.7920 2.0000 2.2807 4.2174 3.2500

1.6124 1.6154 1.7778 2.0342 2.2281 2.9505 2.8704

1.6279 1.5231 1.7638 2.0000 2.2832 2.5660 4.4086

1.5692 1.5909 1.8226 2.0000 2.2655 2.8738 3.1633
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D4, Wave velocities(m/s), sensors A to B 

D5, Wave velocities(m/s), sensors B to C: 

Continuation of table D3

T1 T2 T3 T4 T5 T6 T7

1.3431 1.5758 1.8065 1.8699 2.2478 2.5421 5.0115

1.5969 1.5504 2.0600 2.0000 2.3186 4.0206 3.2653

1.5814 1.5400 2.5849

4.2637

2.9109

2.8824

T1 T2 T3 T4 T5 T6 T7

1.3986 1.4599 1.6800 1.7094 1.8868 2.1053 2.0000

1.2903 1.5152 1.6807 1.7699 1.8692 1.9802 2.0408

1.3889 1.4085 1.6800 1.8182 1.8349 1.9048 2.0408

1.4085 1.4493 1.6667 1.8018 1.8349 2.1858 2.0000

1.3889 1.5150 1.6949 1.7857 1.8018 2.0408 2.0833

1.4184 1.3986 1.6667 1.7544 1.8182 2.1277 2.0619

1.3889 1.3889 1.7094 1.7857 1.8182 2.0408 1.9417

1.3889 1.4493 1.6667 1.8018 1.8182 1.9231 2.5316

1.4085 1.3986 1.6949 1.7857 1.8018 2.0408 2.0833

1.4085 1.3889 1.6529 1.7094 1.8349 1.9417 2.3121

1.3889 1.4388 1.8018 1.8018 1.8182 2.3529 2.0619

1.3986 1.4286 1.9231

2.1978

2.0408

T1 T2 T3 T4 T5 T6 T7

1.3793 1.4815 1.6120 1.6393 1.7699 2.2222 2.1739

1.4493 1.6260 1.5873 1.6807 1.7699 1.9608 1.8868
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Figure D.I Abnormal detections in green, these abnormal values appear to be related to 

large and irregular troughs in the records: 

Continuation of table D5

T1 T2 T3 T4 T5 T6 T7

1.5385 1.5267 1.6120 1.6667 1.7699 1.8692 2.0000

1.5625 1.4815 1.5873 1.7094 1.7544 2.0408 1.9231

1.5504 1.6200 1.5748 1.6949 1.7699 1.9802 2.1277

1.5152 1.5152 1.6000 1.6949 1.7544 2.1739 2.0833

1.5504 1.5385 1.5873 1.7094 1.7544 1.9802 1.8519

1.5504 1.5385 1.5748 1.6949 1.7699 1.8868 2.1505

1.5385 1.5152 1.6129 1.6807 1.7699 1.9417 2.0408

1.4599 1.5152 1.6129 1.6260 1.7699 1.8692 2.2989

1.5504 1.5504 1.4280 1.6807 1.7699 2.0619 2.0408

1.5504 1.5000 1.8868

2.1978

1.9802

Sensor C

Exp 1

Exp 11
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Continuation Figure C1

Exp 13
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Section E 
Section E is solely composed of the plot of the wavelength transmitted ratios fitted for all 
the periods T1 to T7 on the experiments composed of an obstacle of 1/6 of length and a 
depth from 0 to 1/2 of the tank's depth. This is described in section 5.2.1. 

 

E.1 Fitted data for the wavelength ratio of propagation vs wave period, the data shown 
is for waves passing over the obstacle.

E.2 Fitted data for the wavelength ratio of propagation vs wave period, the data shown 
is for waves passing after the obstacle.

no obstacle

1/6 blockage

2/6 blockage

1/2 blockage

no obstacle

1/6 blockage

2/6 blockage

1/2 blockage

λt/λi vs Period over obstacle

λt/λi vs Period after obstacle
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Section F 
Section F is solely composed of the mathematical terms used to model and describe 
second-order wave velocities, the terms are part of the Stokes expansion in Chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L = Coth[2 * k * h]
C0 = [g * k * Tanh[k * h]]1/2

K = Coth[k * h]
X = (x − ct)
Z = z

b22 = K * (3 * K 2 − 1) + ω * (2 * a11 + ω * K ))
(4 * a112)

a0 = − (ω * k * h) − ((ω2 + 4 * K 2)1/2 − ω)
(2 * K ) ;

a01 = ω
2

a11 = ω2 + 4 * K 2 − ω
2 * K

a22 = (3 * K * k2 − 1 + ω * (3 * a11 + ω * K ))
(4 * a11)

a20 =
−(a11 * a22 + b22

2 ) * K 2 − K + 0.5 * b22 * a2
11 − ω * (a22 * L + (b22 * K )

(2 * a11) − a11
4 )

(2 * a11 * K + ω)

B1 = 2 * Z * a01 * k2 + (a11 * ϵ * k * Cos[X * k] . * Cosh[Z * k])
Sinh[h * k]/k ;

A1 = (C0 * (+a0 * k + ϵ2 * (a20 * k + (2 * a22 * k * Cos[2 * X * k] . * Cosh[2 * Z * k])
Sinh[2 * h * k]

Vx(x , z , t) = A1 + B1

B2 = (a11 * k * Sin[X * k] * Sinh[Z * k] * ϵ)
Sinh(h * k)/k

A2 = (C0 * (2 * a22 * k * Sin[2 * X * k] . * Sinh[2 * Z * k] * ϵ2)
Sinh[2 * h * k]

Vz(x , z , t) = A2 + B2
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Section G 
Section F is composed of three subsections, the subsection G.1 includes the web 
addresses of the products used to feed data into the swell search algorithms. This 
section also contains the public web addresses for the code used in Chapter 7. The 
second subsection G.2, includes the full data used for the wind-wave generation in 
Chapter 7. The data was obtained through the NDBC program, which address can be 
found also in this section. Wind data is composed of the mean value of the local winds at 
the buoy areas; fpP refers to the Pierson Moskowitz modal frequency, and fpJ refers to 
the Jonswapp modal frequency. The third subsection G.3, includes the complete 
seasonal wave directional data for buoy systems A to E. This data covers the full-wave 
weather season of 2017 from January to December. 

G.1 Wave data and code for swell detection 
Bathymetry data products: https://www.usgs.gov/products/data-and-tools/data-and-
tools-topics 
Buoy data products: https://www.ndbc.noaa.gov/maps/Northwest.shtml 
Code to process swell data: https://github.com/manelcamacho/wavecodebuoys 

G.2 Modal frequency wave data 
Wind data used in Chapter 7, to calculate the modal frequency of the wave weather at 
the buoy systems is shown below, this using the maximum and minimum monthly 
averaged wind data velocity WVM. 

G1, Maximums and minimums data of winds at buoy systems A to E. 

Month\Buoy A[m/s] B[m/s] C[m/s] D[m/s] E[m/s]

Jan 4.69, 11.32 5.50, 13.58 4.58, 12.66 4.32, 11.97 5.14, 18.05

Feb 3.58, 9.80 4.58, 12.56 4.32, 12.03 4.42, 11.97 5.28, 17.74

Mar 3.17, 11.66 4.57, 12.00 4.05, 11.21 3.82, 11.06 6.68, 19.8

Apr 3.72, 10.493 3.83, 11.17 3.87, 10.76 3.82, 10.21 8.43, 21.12

May 2.89, 9.73 3.63, 9.97 3.52, 9.57 3.72, 9.65 7.55, 19.89

Jun 3.10, 9.25 3.44, 9.41 3.89, 9.49 4.17, 10.26 7.35, 19.92

Jul 4.07, 9.87 3.43, 8.76 3.90, 9.22 3.97, 9.81 6.70, 17.78
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G2, Corrected mean wind data at 10m height in buoy systems A to E. 

G3, Modal frequencies using the Pierson-Moskowitz (fpP) spectrum and Jonswapp (fpJ) 

spectrum at buoys A to E. 

Continuation table G1

Month\Buoy A[m/s] B[m/s] C[m/s] D[m/s] E[m/s]

Aug 3.93, 9.87 3.61, 9.12 3.72, 9.23 3.87, 9.35 7.76, 17.93

Sep 4.28, 10.63 3.60, 10.21 3.92, 10.07 4.02, 10.46 6.99, 17.50

Oct 3.79, 11.52 3.59, 11.67 3.74, 10.81 4.22, 11.06 6.10, 17.19

Nov 3.45, 11.11 5.14, 13.59 4.58, 12.38 3.92, 11.16 5.45, 18.14

Dec 4.07, 12.35 5.23, 13.76 4.68, 12.94 4.32, 12.27 4.68, 17.60

Month\Buoy A[m/s] B[m/s] C[m/s] D[m/s] E[m/s]

Jan 8.57 10.40 9.40 8.95 12.74

Feb 7.17 9.34 8.91 9.01 12.65

Mar 7.94 9.03 8.32 8.18 14.56

Apr 7.61 8.18 7.98 7.71 16.23

May 6.76 7.42 7.14 7.35 15.07

Jun 6.61 7.01 7.30 7.93 14.98

Jul 7.46 6.65 7.16 7.57 13.45

Aug 7.39 6.94 7.07 7.27 14.11

Sep 7.98 7.53 7.62 7.96 13.45

Oct 8.20 8.32 7.93 8.40 12.80

Nov 7.80 10.21 9.24 8.29 12.96

Dec 8.79 10.35 9.60 9.12 12.24

Buoy A[Hz] B[Hz] C[Hz] DHz] E[Hz]

Month fpP fpJ fpP fpJ fpP fpJ fpP fpJ fpP fpJ

Jan 0.18 0.16 0.06 0.05 0.10 0.10 0.09 0.09 0.16 0.13

Feb 0.22 0.17 0.06 0.06 0.09 0.10 0.09 0.09 0.16 0.13

Mar 0.20 0.16 0.05 0.06 0.09 0.10 0.08 0.10 0.18 0.12
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Continuation table G3

Month fpP fpJ fpP fpJ fpP fpJ fpP fpJ fpP fpJ

Apr 0.21 0.16 0.05 0.06 0.09 0.11 0.08 0.10 0.19 0.12

May 0.23 0.17 0.05 0.06 0.08 0.11 0.08 0.10 0.18 0.12

Jun 0.24 0.17 0.05 0.06 0.08 0.11 0.08 0.10 0.18 0.12

Jul 0.21 0.16 0.04 0.06 0.08 0.11 0.08 0.10 0.17 0.12

Aug 0.21 0.16 0.04 0.06 0.08 0.11 0.08 0.10 0.17 0.12

Sep 0.20 0.16 0.05 0.06 0.08 0.11 0.08 0.10 0.17 0.12

Oct 0.19 0.16 0.06 0.07 0.09 0.11 0.08 0.10 0.16 0.13

Nov 0.20 0.16 0.06 0.06 0.09 0.10 0.08 0.10 0.16 0.12

Dec 0.18 0.16 0.06 0.06 0.10 0.10 0.09 0.09 0.16 0.13
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G.3 Wind directional data 

Figure G.I Swell events number for buoys A to E on the month of January, radius shows 
the number of swell occurrences and its spectral angle of incidence.
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Figure G.II Swell events number for buoys A to E on the month of February, radius shows 
the number of swell occurrences and its spectral angle of incidence.
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Figure G.III Swell events number for buoys A to E on the month of March, radius shows 
the number of swell occurrences and its spectral angle of incidence.
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Figure G.IV Swell events number for buoys A to E on the month of April, radius shows the 
number of swell occurrences and its spectral angle of incidence.
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Figure G.V Swell events number for buoys A to E on the month of May, radius shows the 
number of swell occurrences and its spectral angle of incidence.
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Figure G.VI Swell events number for buoys A to E on the month of June, radius shows the 
number of swell occurrences and its spectral angle of incidence.
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Figure G.VII Swell events number for buoys A to E on the month of July, radius shows the 
number of swell occurrences and its spectral angle of incidence.
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Figure G.VIII Swell events number for buoys A to E on the month of Aug, radius shows the 
number of swell occurrences and its spectral angle of incidence.
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Figure G.IX Swell events number for buoys A to E on the month of Sep, radius shows the 
number of swell occurrences and its spectral angle of incidence.
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Figure G.X Swell events number for buoys A to E on the month of Oct, radius shows the 
number of swell occurrences and its spectral angle of incidence.

360o

0o

A B

C D

E



302
 
 

Figure G.XI Swell events number for buoys A to E on the month of Nov, radius shows the 
number of swell occurrences and its spectral angle of incidence.
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Figure G.XII Swell events number for buoys A to E on the month of Dec, radius shows the 
number of swell occurrences and its spectral angle of incidence.
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Section H 
Section H is composed of the maps used to compose the bathymetry profile of the 

Farallones area in the SF Bay region, the seeds used for the sensitivity analysis and the 

link to the ESRU software website containing the BEMT tool. 

Data files: 

Github: https://github.com/manelcamacho/SFBaythesis 

Contains: 

Point data file: dsf X, Y, Z file corresponding to the latitude, longitude and elevation of the 
terrain from 88X.XX meter elevation to -35XX meter depth.

Raster data file: dsfcontour Raster file that contains the interpolated points to create a 2D 
contour map.

Vector data files: dsf_depth and depth500to0 that contain the vector shape files to create 
a simplified bathymetry cut perpendicular to the coastline.

CVS data files: Files containing the latitude and longitude of the buoy systems along with 
their names.

Seed data files: https://github.com/manelcamacho/morrisseeds 

ESRU website: https://www.esru.strath.ac.uk//applications/
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Section I 
Section I contains the tables for the mean values of all wavelengths detected for all 
experiments. The first table refers to the experiments where the obstacle has a constant 
length and decreases its depth. As also the maps of the case scenario. The maps 
correspond to the area of study in Chapter 7. Map I.1 is adapted from NOAA [140] and 
the direction to the GitHub service that contains the GIS files are in section H. 

 

I1, Mean wavelengths values for and experiment where the obstacle blocks 1/6 of the 

tank’s original depth at a constant length, all values are expressed in meters.

I2, Mean wavelengths values for and experiment where the obstacle blocks 2/6 of the 

tank’s original depth at a constant length, all values are expressed in meters.

I3, Mean wavelengths values for and experiment where the obstacle blocks 1/2 of the 

tank’s original depth at a constant length, all values are expressed in meters.

A DC
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