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Abstract 

Despite the efforts to achieve a through-life reliable design and the attempts to control the 
failures of wind turbines, some system failures are inevitable. The inherent requirement for 
cost, material, and weight optimisation, together with the extreme operating conditions, can 
lead to unexpected failures. This is true for land-based turbines and has an even greater 
impact on offshore wind systems, where the harsh environment and the high cost of the 
assets and logistics increase the importance of a proactive approach to the system’s 
maintenance.  

The smart management of an asset starts with the identification of the health status of its 
systems, to take cost effective decision on how and when maintain it. The first level of the 
detection of an anomality in the system comprises the recognition only of the failed status 
of the asset (level I). Following, the location of the failure should be identified (level II), 
followed by the detection of its degree of severity (level III) and consequences (level IV). 
Depending on the availability of continuous monitoring data, historical databases, and 
advanced numerical models, different frameworks can be established for the failure 
diagnostics and prognostics. This thesis investigates on the use data-driven, model-based, 
and digital twin solutions to support the diagnosis of failure events of offshore wind turbine 
systems characterised by a low availability of run-to-failure data. This topic is of major 
concern for either the current installations - for which the collection of data is restrained 
either to only few assets or to more cost-effective temporary monitoring campaign – and 
the new offshore wind technologies (e.g., floating wind, large-MW structures), for which no 
or only a limited amount of operating data has been gathered.  

The mechanical failure of the components of the offshore wind speed conversion system 
can have a significant impact to the operational expenditure and can be associated to a 
significant loss of production of the offshore wind farm. The detection of their incipiency 
has been extensively investigated by machine and deep learning techniques on big sets of 
condition monitoring and operational data. By contrast, this research explores the 
implementation of transfer learning to detect anomalies in an offshore wind gearbox with 
low availability of representative failure data. To move towards the quantification of the 
consequences of such a failure (level IV), a case of study is used to explore then most suitable 
the model-reduction techniques to be applied to a full aero-servo-elastic model of the 
offshore wind turbine.  Such a numerical model is the basis for the development of digital 
twin technology; it is aimed at capturing the only the essential dynamics while targeting the 
degree(s) of freedom indicating the presence of the failure mode. 

The presence of a damage in the offshore wind foundation is not commonly recorded, yet 
structural failures can either lead to catastrophic consequence or considerably increase the 
cost of maintenance for the planning of expensive subsea inspections. In particular, the 
fatigue-driven offshore wind jacket foundation designs are sensitive to extreme site 
conditions, and their expected lifetime can decrease considerably if exposed for a long time 
to undetected phenomena such as scour and corrosion. This research demonstrates the 
feasibility of a vibration-based diagnosis (level II) of several damage scenarios for a jacket 
substructure of an offshore wind turbine. Considering than only a percentage of the assets 
in the farm are likely to be instrumented with a high-frequency structural health monitoring 
system, the feasibility of the detection (level I) of a structural failure mode via low-
resolution operational data is additionally explored. These virtual monitoring frameworks 
are supported by the deployment of the digital twin technologies for their setup and their 
future field application. 
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Chapter 1 

1 Importance of health management 

in the offshore wind industry 

The IoT-enabled smart asset management plays a fundamental role in the offshore wind 

industry. The digital twin technology is the one of the main recurring concepts of the industry 4.0. 

In their model- and data-drive form, having the access to a digital copy of the physical asset helps 

to unveil more information from the data collected, and to support a holistic health monitoring 

framework. This chapter provides a brief introduction to this research’s background such as the 

concepts of monitoring, diagnostics, and the digital twin technology. Following, it outlines the 

current gaps in the knowledge, which are associated to some of the most pressing question from 

the offshore wind industry. The aim of this research is then defined, together with its main 

objectives. Its contribution to the scientific community – by the means of open access publications 

in scientific journals and conference proceedings – is documented and linked to this thesis chapters. 

Finally, the structure of the remaining of the manuscript is introduced. 

1.1 Background 

The fast growth of the offshore wind sector not only comes with design challenges, but it 

also needs to cope with the planning and risk mitigation for offshore Operations and 

Maintenance (O&M) activities. The two main contributors to operational expenditures 

(OPEX) are the cost for repairing and/or replacing the assets, and the cost for logistics. It 

has been forecasted that, with the employment of bigger power class turbines, installed 

further offshore, the share of the OPEX could reach the 39% of the lifetime costs of an 

offshore wind farm [1]. This estimate is associated to the implementation of the traditional 

strategies to maintain the offshore wind assets, based on a corrective (run-to-failure) and a 

merely predetermined (time-based) maintenance.  

A corrective maintenance strategy is based on the full utilisation of an asset until this 

leads to its failure – defined as the ‘inability of a system or component to perform its 

required functions within specified performance requirements’ [2] – cf. Figure 1.1. A 

predetermined maintenance strategy relies on the time-based planning of the maintenance 

actions and the inspections. This strategy has the advantage of ensuring a reliable and 

predictable delivery of electricity. The drawbacks, however, include the possibility of over-

maintaining the assets, by replacing the components well before the end of their nominal 
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life, and the scheduling of the inspections at the wrong moment in time – i.e., just shortly 

before a failure mechanism becomes visible and/or quantifiable by in-situ assessments. 

 

Figure 1.1: Influence of 
the maintenance strategy 
on asset condition [3]. 

Optimised maintenances strategies, and thus OPEX reductions, can be achieved, to 

varying extent, by deploying different strategies at the several stages of the offshore wind 

projects – cf. Figure 1.2. At the design phase, the cost of the maintenance can be controlled 

either by taking engineering decision on the reliability of the assets, and thus setting-up a 

reliability-centred maintenance strategy. To take no chances on the occurrence of a failure 

event, the source of the potential issues (i.e., failure cause) can be remove at the design 

conceptualisation phase (design-out maintenance). During the operation, the better 

scheduling of the activities and the performance of multiple tasks per visit (opportunity 

maintenance), can reduce the number of visits. 

In the run to digitalisation, the use of the Internet of Things (IoT) enables the monitoring 

of the assets and their health, allowing it to switch to a condition-based maintenance. The 

maintenance of the turbines and their systems is scheduled on an as-needed basis. As 

illustrated in Figure 1.1, this strategy maximises the potential asset usage life in service, 

while serving to provide advanced warning of a developing failure mechanism. 

 

Figure 1.2: Classification of maintenance strategies, according to EN 13306 [4], and by 
extending it as suggested by Asmai et al. [5]. 

1.1.1 Health management via condition monitoring 

A condition-based maintenance, as the name suggests, is achieved by knowing the actual 

conditions of the assets. This is enabled by applying a so-called Prognosis Health 

Management (PHM) framework [6]. The PHM consists of monitoring, diagnosis, and 

prognosis of the health of the systems – cf. Figure 1.2 – to support the decision-making 

process and asset management. The links between the several blocks are visualised in 
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Figure 1.3. The monitoring refers to the data collection process, which aim is to determine 

if the system is in a normal operating state. Normal behaviour models and anomaly 

detection techniques can help for this purpose, as long as the signals measured can give an 

indication of the presence of an anomaly. The diagnosis, at its lowest level, refers to the 

identification of the presence of a failure event. Higher level of detection includes the 

recognition of the damage location, its corresponding degree, and the assessment of its 

consequences. Once the damage scenario is identified, the prognosis employs models to 

assess the performance degradation and further predicts the remaining useful life. Finally, 

the health management integrates outputs from monitoring, diagnosis, and prognosis for 

the decision making on the optimal maintenance and logistic strategies. 

 

Figure 1.3: Relationship between the building blocks of PHM and 
approaches to support the diagnosis and prognosis on the systems health; 
adapted from [6], by extending it with the concepts from [5]. 

Several approaches have been applied for the purpose of the diagnosis and the prognosis of 

complex engineering systems, as described by Asmai et al. in [5]. These methods and their 

relationships are visualised in  Figure 1.3 (in the “PHM Approaches” block). Although these 

approaches can be applied to the health management of systems from any field of the 

engineering, their description is following contextualized to the offshore wind application. 

It should be further noticed that the conventional classification is here broadened to include 

the concept of the digital twin technology. 

Data-driven approaches 

This approach use the routinely collected data to forecast the performances, the health 

and/or the operating status of the observed systems [7]. The data collected under nominal 

and degraded condition are associated with statistical or artificial intelligence techniques 

to generate an appropriate prognosis model [8]. This model is considered a “black box”, 

because it learns patterns which exist in the data and cannot be tracked back to any physical 

relationship. 

Statistical approaches can be divided into parametric and non-parametric approaches, 

depending on whether the information on the distribution of the data is accessible or not. 
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These methods are generally easy to apply, and they generally require less computational 

power than artificial intelligence methods. However, they do not easily accommodate the 

varying operating regimes and the high fluctuation of the environmental conditions. 

Additionally, they cannot capture the failure mechanism and they need for a large amount 

of failure data for training the detection [5]. 

Machine learning (ML) algorithms organize into supervised and unsupervised 

approaches, based upon if the acquired data contain indication of the health status. The ML 

models can be very flexible and adapt to the varying operating and environmental 

conditions. However, the goodness of their prediction is highly dependent on the quality of 

the data and their processing. The validation of these models, which affect the confidence in 

their prediction, is not easy to perform. 

Model-based approach 

A model, or physical, -based approach is applicable when an accurate physical mathematical 

and/or numerical model of the monitored system can be constructure to mimic its behaviour 

and response. The main advantage of this approach lies in its ability to provide a higher 

understanding of the physics of the failure [5]. 

However, this can be achieved, in the first place, only if the mechanistic knowledge of 

the system and its failure modes can be accessed and modelled. Furthermore, this approach 

is likely to be associated with high computational times. To capture the generally complex 

and holistic dynamics of big engineering systems, it is often required to couple and/or semi-

couple different mathematical model [9]. Numerical models with varying levels of fidelity 

have been developed to represent the wind turbine dynamics depending on the purpose of 

the analysis – the reader is referred to Paper 7 and Paper 11 for more details. When these 

are deployed for the diagnosis and prognosis of a specific failure modes, it is however 

important that they can accurately capture the dynamics which are representative for the 

failure mechanism [10]. 

Experience-based approaches 

Also known as knowledge-based approach, it is solely based on expert judgement based on 

hand-code and/or rule-based methods [7]. This approach does not generally require a 

continuous flow of data, but it rather relies on historical databases [5]. Methods such as the 

fuzzy logic, the Weibull distribution, the Bayesian approach, can be implemented to support 

the diagnosis. Despite its transparency, this approach is applicable to a simple process or 

system. Furthermore, the prediction of these models is generally not as accurate as the one 

from either the data-driven or the physical-based approach. 

Hybrid approaches 

A hybrid approach combines one or more of the aforementioned approaches, to offer more 

reliable and potentially more accurate prognostic results [7]. A framework for the 

application of an hybrid approach for the prognostic health management of offshore 

renewable assets is suggested in [11], based on the methodology developed in [8]. As it can 

be visualised in the workflow in Figure 1.4, this framework integrates the models of the 

physics of failure, the experience-based information from standards and/or historical 

databases, and the data-driven approach. 
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Figure 1.4: Hybrid PHM approach, 
adapted from Zhang et al. in [8]. 

Digital twin technology 

The term of “digital twin” is currently applied in a multitude of forms and variety of ways – 

for instance refer to the discussion of Wright and Davidson [12], and reviews of  Wagg et al. 

[13] and Worden et al. [14]. The concept used within the framework of this thesis is the 

so-called Ramboll’s “True Digital Twin” (TDT) developed by Tygesen et al., in [15], [16], for 

the oil and gas industry. This technology is extended to the offshore wind industry by 

Augustyn [17], to be applied for the condition monitoring framework proposed by the 

ROMEO research project [18]–[20]. The TDT distinguishes itself from all the other digital 

twin concepts being based on the idea of creating a coupling between the virtual prototype 

– or a reduced-order model (ROM) of it – and its physical twin, by the means of calibration 

methods based on data from field measurements. A digital twin based on a ROM has a the 

advantage of the computational efficiency, while providing a high-fidelity model of the full 

system [21]. 

1.1.2 State-of-the-art of monitoring and diagnosis concepts for 

offshore wind turbine’s systems 

A key enabler of smart asset management in the offshore wind industry is the ability know 

the status of the wind turbine assets. The monitoring of the health, or the eventual detection 

of the incipiency of some failure mechanisms in the systems of the asset, is the first step 

towards the development of prognostics models.  

In this section, the scientific literature on the monitoring and diagnosis of the main 

systems of offshore wind turbines is briefly reviewed, to outline the current developments 

and challenges. In this process, the gaps in the knowledge are identified – following 

highlighted in bold italic –, and consequently used to formulate the purpose and goals of 

this research. 

no

yes
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Monitoring systems 

The monitoring of the condition of an asset can be obtained from in-situ, non-invasive tests, 

and operating measurement [22]. Especially in the case of structural anomalies, the current 

practice for the detection strongly relies on practical on-site assessments [23]. These 

inspections can be associated with significant costs and risks due to the offshore 

environment – in the event of structural failures below sea-water level and/or at height (for 

the components of the rotor-nacelle assembly) [24]. For this reason, research activities have 

focused their effort on the investigation of remote and continuous monitoring concepts for 

assessing the health status of wind turbine (WT) systems [11]. 

To support the continuous condition monitoring of offshore WTs, a great variety of 

sensing devices and several analysis methods can be implemented [23]. These have been 

extensively reviewed in [22], and classified in [3] as follow: 

• local or direct sensing, aimed at direct measurement and strongly dependent on the 
monitored structure; 

• global or indirect sensing (also called vibration-based), for the indirect detection of 
deviations in the response of the system, and applicable to any type of structure.  

Direct sensing for offshore WTs can include, for instance, the use of strain gauges for the 

local monitoring of fatigue damage, the installation of sonar sensors for the monitoring of 

the scour phenomena, but also the non-destructive test evaluations to be performed on-site 

[25]. Although the post-processing of the measured signals for the detection of anomalies is 

relatively straightforward, the cost for the installation and maintenance of this ad-hoc 

sensor, and/or the performing a visit to the WT, is generally high for offshore applications 

[22]. Furthermore, it is not easy to scale these monitoring strategies to the whole WT 

structure, and to the other assets in the farm [3].  

 

Figure 1.5: Condition monitoring systems 
for offshore wind turbines [23]. These 
systems are, by listing them system from 
low to high frequency signals: SCADA, 
SHMS, CMS, and additional diagnostic data.  

Indirect sensing, which make use of vibrational data for the monitoring of the system 

global dynamics, is relatively cheaper and more flexible than direct sensing. Accelerometers 

are generally used for this purpose, in alternative to strain gauges, being more practical for 

installation and removal, and unaffected by the temperature [26]. A set of accelerometers is 

distributed on a structure, and when this is excited by environmental loads, the vibrations 
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are measured over time and are used to extract modal properties - e.g., mode shape, natural 

frequencies and damping on a global scale. 

A set of direct and indirect sensing devices constitutes a monitoring system. The 

monitoring system of the structural components of a WT, such as the support structure or 

rotor blades, is often referred to as Structural Health Monitoring system (SHMS). In contrast, 

the set of sensors use for the WT mechanical and electrical components, i.e., the ones of the 

drivetrain, is termed Condition Monitoring system (CMS). The SHMS and CMS often record 

high-frequency vibrational measurements, and they are installed on a limited amount of 

assets, depending on the project specific necessity, classifications requirements, and 

possible country regulations [3]. The operating and environmental conditions are recorded 

in a Supervisory Control and Data Acquisition (SCADA) system, which often have a 10-minute 

resolution. The SCADA data collection can increase to 1 Hz frequency if required for some 

specific tasks – e.g., WT control strategy. The reader is referred to Figure 1.5 for a 

visualisation of the location of these systems. 

Challenges of detection methods based on indirect monitoring 

When relying on monitoring system recording vibrational data from SHMS and CMS, it 

should be noticed that the detection of anomalies is challenged by the fact that: 

• the recording of changes in the dynamic behaviour is potentially associated with 
several factors and/or coexisting modes of failure of the structures – e.g., [22], 

• the application of system identification techniques – for the extraction of the 
physical properties of the structure (i.e. modal frequencies and damping, mode 
shapes, and stiffness) – on operational systems in nonstationary conditions is not 
always applicable  [21], and it has some intrinsic uncertainties [27], [28] 

To cope with this latter issue, non-parametric methods can be deployed to detect the 

damage from the vibration measurements. These methods include time series analysis and 

statistical methods for the detection of the damage from features that are not attributed to 

physical changes of the structure. 

However, due to the complex dynamics of offshore WT structures, the parametric 

vibration-based methods are still the prime focus of the research. Consequently, extensive 

effort has been made to improve the system identification methods. In the context of 

offshore wind applications, an operational (output-only) modal analysis (OMA) approach is 

often used to derive the system’s modal properties. To capture a sufficient number of modes 

of vibration, a number sensors should be installed at several levels and/or locations [29]. 

An optimal sensor placement study can be conducted to achieve this in a cost-effective way; 

for instance, Richmond et al. [30] demonstrated that, for an offshore support platform, this 

can be done without sacrificing quality of modes. Data normalisation and clustering are 

generally applied on the raw measurement and/or the OMA extracted modes to reduce the  

effect of operational conditions [31], [32]. Novel approaches and techniques are 

continuously proposed to improve the accuracy of the identification results. In [33], [34] 

researchers investigated a modified stochastic subspace system identification. In [35]  other 

authors suggested the use of data from the blades to improve the observability of 

aerodynamically damped global modes. 

Current practise and knowledge gaps 

This section briefly reviews the current practise for the monitoring of the mechanical 

components of the drivetrain and the structural components of the offshore wind turbine 
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substructures. The scope is to identify the gaps in the knowledge and, consequently, to 

formulate this thesis’ research aim and objectives. 

Health monitoring of drivetrain components 

The components of the drivetrain, such as those of the power generation and conversion, 

and the electronics of the control systems, have been of most concern due to their generally 

low reliability [36]. This has motivated the investigation of their failure modes – e.g. [37] –, 

of virtual prototypes for their condition monitoring – e.g. [38] –, and the development of 

novel approaches to detect their abnormal behaviour – e.g. [39].  

Due to the high costs, and thus generally low data availability, of the dedicated CMS, the 

detection of failure events in the drivetrain systems of installed assets has been extensively 

investigated by using of the SCADA system data [40]. In contrast to the CMS, which often 

record temperature and vibrational measurements, the SCADA system captures 

information from various systems dynamics. Additionally, these data are generally collected 

for every asset in the farm and with a resolution varying from 0,002 Hz to 1 Hz.  

Thanks to the availability of these big datasets, data-driven detection approaches have 

been extensively applied to the signals from the operational turbines, as revised and 

discussed in [41]. The majority of the studies based their analysis on less than 30 turbine 

years of SCADA data [40]. To the knowledge of the author, no study applied a data-driven 

approach for the damage detection task on very small datasets – i.e., for less than 3 turbine 

years. This issue affects new installations – generally associated to new wind turbine 

technologies, which are increasingly more complex and bigger –, for which only a very 

limited amount of data might be available. 

As opposed to data-driven approaches, high fidelity physical models, which can 

represent the full dynamics with respect to the failure mode, can be created to capture the 

physics of failure of the system and calculate their fatigue consumption. Several researchers 

analysed the physics of failure of the drivetrain mechanical systems by simulating the 

complex kinematics and suggesting alternative ways of capturing their malfunctioning, such 

as in [38], [42]. These studies were done for simplified simulation of turbine loads. To 

couple the complex aero-hydro-servo-elastic (AHSE) dynamics of the offshore wind 

turbine’s code to these specialised virtual prototypes, their model-order should be reduced 

to find a good compromise between the accuracy and the computational speed.  

To move towards the development of a digital twin of an offshore wind farm, which is 

able to capture the mechanism of the failure, and the presence of a damage in the drivetrain 

systems, model-order reduction techniques of the turbine dynamics need to be investigated.  

Most of the research work on this matter has been aimed at reducing the complex, multi-

body model of the specific components, e.g., [21]. However, to manage to deal with several 

wind turbine models and their interaction across the location (via their aerodynamics), the 

reduction approaches should act on the AHSE code of dynamics.  

Monitoring of offshore wind structures 

With regard to structural failures, the damage to the turbines’ blades (erosion and 

delamination) are relatively common in the offshore environment [43]. The vibration-based 

monitoring of the wind turbine blades is generally supported by testing in a laboratory 

environment. Examples of such a setup are in [44] for a parametric, and in [45] for a non-

parametric detection approach. If experiments are not possible and/or only a limited 

number of accelerometers is available, the authors of [46] proposed a non-parametric 
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method based on the analysis of the timeseries of the blades’ edgewise frequencies via the 

statistical control of their residual errors from a Gaussian-process prediction.  

On the other hand, although structural failures of towers and foundations are relatively 

unlikely, due to design conservatism, their presence could result in dramatic consequences 

if undetected [47]. It might also not always be possible to design the support structure in an 

inspection-free manner; thus, it is sometimes necessary to perform potentially expensive 

inspection activities during its lifetime. Therefore, the ability to detect and reliably monitor 

structural anomalies and failures can have a huge impact on the maintenance costs and on 

the decision-making of lifetime extension strategies [48]. For the investigation of the 

monitoring of offshore wind tower and foundation structures, it is neither easy to scale the 

assets and the representative loads for laboratory testing, nor access run-to-failure data 

from field applications, since they are rare in these safety-critical systems. Some 

speculations have been made on the feasibility of the detection of structural anomalies 

based on the trends and the scatter identified from vibration-based measurements from the 

field [49], [50]. Most of the proposed methods identify the presence of anomalies by 

tracking the natural frequencies, the mode shapes, and their derivatives, such as the 

displacement modal curvature [26]. In [51], [52], the authors adopted a model-based 

approach to investigate the feasibility of the detection of structural anomalies of different 

nature. In [51], they analyse the deviations in the modal parameters (frequencies and mode 

shapes) caused by the three damage types implemented in a finite element model of a 

gravity-based wind turbine tower. However, they conclude that the change induced by these 

failure modes in the global properties is likely be hidden from the variation of wave 

loadings. In [52], they propose the use of a vibration-based artificial neural network for the 

estimation of location and severity of simulated structural damage in onshore turbine 

towers. The main findings outlined that a detection algorithm trained on frequencies only 

performed better for the assessment of the severity.  

For what concerns the offshore wind jacket substructures, the natural frequencies of 

the global modes have been shown to have a low sensitivity to structural damage (e.g. 

member loss, scour, corrosion); in contrast, the mode shapes have greater sensitivity to 

damage [53]. The feasibility of the vibration-based diagnostics methods for offshore wind 

jacket support structures should be further investigated, to prove the viability of the 

monitoring systems to detect and distinct the failure events of different nature.  

However, it should be noted that the assessment of a mode shape requires the 

equipment of high-resolution sensors on the support structure and tower of the wind 

turbine. The installation of global monitoring systems is generally recommended but done 

only on a fraction of the assets in the farm. Besides, the issues related to the application of 

traditional OMA to wind turbine dynamics still impose, to date, difficulties in utilizing mode 

shapes to capture a damaged status in practical applications - refer to [50], [54]. 

Low-resolution statistics from the SCADA system data have been already employed for 

the prediction of the fatigue loads acting on the WT tower and substructure [55], [56]. 

Therefore, these data-driven models should be able to monitor the presence of a structural 

damage and an extreme environmental condition, especially in the case these events affect 

the fatigue life of the structures. The feasibility and the potential applicability of such 

approach based on the use of SCADA data statistics for the detection of structural anomalies 

has not been explored yet.  
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1.2 Research aim and objectives 

The aim of this thesis to investigate diagnostics approaches for offshore wind turbine 

systems, based on data-driven, model-based and hybrid methods, with an eye towards the 

digital twin technology. The contribution to the knowledge is the investigation of the 

detectability of abnormal behaviour and failure events in systems whose run-to-failure data 

are limited and/or cannot be collected.  

This thesis delivers on the following objectives: 

1. Review and classify, in a comprehensive study, the reliability, maintainability, and 

availability (RAM) data from onshore and offshore wind turbines, to identify the 

systems holding the highest criticalities and trends based on deployment 

parameters and environmental conditions of offshore wind turbines. 

2. Investigate model-reduction techniques for a numerical model of wind turbine 

dynamics by targeting a drivetrain failure mode, to support the future development 

of digital twin technology for its remote monitoring. 

3. Experiment a data-driven approach for the detection of anomalies in a component 

of the drivetrain system with low availability of run-to-failure data. 

4. Demonstrate the feasibility of vibration-based detection of several damage scenario 

in the substructure of an offshore wind turbine, with the support of the digital twin 

technology, and develop a framework for the future field application.  

5. Explore the feasibility of the detection of a structural failure via low-resolution data 

and develop a framework for the future field application with the support of the 

digital twin technology. 

1.3 Scientific publications and collaborations 

This thesis is composed of a portfolio of works, that have been published in peer-reviewed 

scientific journals and conference proceedings. The main publications, whose material is 

used for compiling this thesis, are following listed in chronological order. 

Paper 1 D. Cevasco, S. Koukoura, A. J. Kolios, (2021), “Reliability, availability, 

maintainability data review for the identification of trends in offshore wind 

energy applications”, Renewable Sustainable Energy Reviews;136. 

https://doi.org/10.1016/j.rser.2020.110414  

Paper 2 Z. Lin, D. Cevasco, M. Collu (2020), “A methodology to develop reduced-order 

models to support the operation and maintenance of offshore wind turbines”, 

Applied Energy 2020. 

https://doi.org/10.1016/j.apenergy.2019.114228  

Paper 3 D. Cevasco, J. Tautz-Weinert, U. Smolka, A.J. Kolios, (2020), “Feasibility of 

machine learning algorithms for classifying damaged offshore jacket 

structures using SCADA data”, presented at EERA DeepWind2020 

(Trondheim, Norway), published in IOP Conference Series: Journal of Physics. 

https://doi.org/10.1088/1742-6596/1669/1/012021  

Paper 4 D. Cevasco, J. Tautz-Weinert, A.J. Kolios, U. Smolka, (2020), “Applicability of 

machine learning approaches for structural damage detection of offshore 

wind jacket structures based on low resolution data”, presented at The 

https://doi.org/10.1016/j.rser.2020.110414
https://doi.org/10.1016/j.apenergy.2019.114228
https://doi.org/10.1088/1742-6596/1669/1/012021
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Science of Making Torque from Wind: TORQUE 2020 (Delft, Netherlands), 

published in IOP Conference Series: Journal of Physics. 

https://doi.org/10.1088/1742-6596/1618/2/022063  

Paper 5 D. Cevasco, J. Tautz-Weinert, M. Richmond, A. Sobey, A.J. Kolios, (2022), “A 

damage detection and location scheme for offshore wind turbine jacket 

structures based on global modal properties”, ASCE-ASME Journal of Risk and 

Uncertainty in Engineering Systems, Part B: Mechanical Engineering. 

https://doi.org/10.1115/1.4053659  

Paper 6 

 

I. M. Black, D. Cevasco, A. Kolios, (2022), “Deep neural network hard 

parameter multi-task learning for condition monitoring of an offshore wind 

turbine”, presented at The Science of Making Torque from Wind: TORQUE 2022 

(Delft, Netherlands), published in IOP Conference Series: Journal of Physics. 

https://doi.org/10.1088/1742-6596/2265/3/032091  

Paper 7 M. Richmond, D. Cevasco, A. Kolios, (2022), “A review of modelling methods 

for arrays of offshore wind turbines”, Submitted to Renewable Sustainable 

Energy Reviews. 

The co-authors played any of a variety of roles in the preparation of these manuscripts. 

To reduce the ambiguity, and to achieve greater clarity in contributions of all authors, the 

contributions matrices are reported in Section A.3 of the Appendices, by using nowadays 

standard for the taxonomy of the contribution roles (so called “CrediT”).  

Other collaborative publications were achieved by contributing to the investigation on 

a holistic model of dynamics for the HOME-Offshore project [9]. These publications are 

following listed and only cited in the course of the thesis. 

Paper 8 D. Cevasco, M. Collu, Z. Lin, (2018), “O&M cost-based FMECA: identification 

and ranking of the most critical components for 2-4MW geared offshore wind 

turbines”, presented at Global Wind Summit: WindEurope 2018 (Hamburg, 

Germany), published in IOP Conference Series: Journal of Physics. 

https://doi.org/10.1088/1742-6596/1102/1/012039  

Paper 9 Z. Lin, D. Cevasco, M. Collu, (2018), “Progress on the development of a holistic 

coupled model of dynamics for offshore wind farms, phase I: aero-hydro-

servo-elastic model, with drive train model, for a single wind turbine”, 

presented at the 37th International Conference on Ocean, Offshore and Arctic 

Engineering (Madrid, Spain), published in the Proceedings of the ASME 

OMAE2018 - 77886 

Paper 10 Z. Lin, A. Stetco, J. Carmona-Sanchez, D. Cevasco, M. Collu, G. Nenadic, O. 

Marjanovic, M. Barnes, (2019), “Progress on the development of a holistic 

coupled model of dynamics for offshore wind farms, phase II: study on a data-

driven based reduced-order model for a single wind turbine”, presented at 

the 38th International Conference on Ocean, Offshore and Arctic Engineering 

(Glasgow, Scotland), published in the Proceedings of the ASME OMAE2019 - 

95542 

Paper 11 J. Carmona-Sanchez, Z. Lin, M. Collu, M. Barnes, O. Marjanovic, D. Cevasco, 

(2019), “An analysis of the impact of an advanced aero-hydro-servo-elastic 

model of dynamics on the generator-converter dynamics, for an offshore 

fixed 5MW PMSG wind turbine”, presented at the 15th IET International 

https://doi.org/10.1088/1742-6596/1618/2/022063
https://doi.org/10.1115/1.4053659
https://doi.org/10.1088/1742-6596/2265/3/032091
https://doi.org/10.1088/1742-6596/1102/1/012039
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Conference on AC and DC Power Transmission (Coventry, United Kingdom), 

published in the Proceedings of the ACDC2019. 

https://doi.org/10.1049/cp.2019.0080  

A list of additional publications, which were prepared in the context of the EngD 

programme, and related to other academic collaborations, is provided in Section A.1 of the 

Appendices, together with a list of the oral and poster conferences presentations. 

1.4 Thesis outline 

The remaining manuscript is structured as follows: 

Chapter 2 assesses and discusses the criticality of current and future offshore wind 

turbine systems, by integrating the findings from an examination of the 

literature on RAM data with wind farm availability simulations. Challenges 

and limitations associated with the collection and use of offshore RAM 

statistics are finally provided. The results of this investigation have been 

already published in Paper 1.  

Chapter 3 provides case studies for tackling the challenges related to the monitoring of 

offshore wind drivetrain components. The findings of Paper 8 are used to 

support the problem statement. Based on the work of Paper 7 and Paper 2, 

model-order reduction techniques are investigated towards the development 

of a digital twin technology to monitor failures of the gearbox. This chapter 

continues with the investigation of data-drive techniques for detection of 

gearbox anomalies based on the low availability of failure data, as presented 

in Paper 6. 

Chapter 4 introduces to the models - a virtual prototype, and a digital twin model – of 

the jacket substructures of an offshore wind turbine, applied for the 

investigation on the detection of the structural failure events of the following 

chapters. It additionally assesses the impact of the various damage scenario 

on the structure dynamics and its remaining useful life, by running natural 

frequency analysis and fatigue limit state simulations.   

Chapter 5 present a case study to demonstrate the feasibility of detection of structural 

anomalies of different nature in an offshore wind turbine jacket substructure, 

by the support of the digital twin technology for the simulation of the 

vibration-based measurements. This chapter is based on the work of Paper 5.  

Chapter 6 provides a case study for the detection of structural anomalies in offshore 

jacket substructures based on low-resolution data from the operating wind 

turbine. This detection approach is supported by the used of the wind turbine 

models. The virtual prototype of the turbine is used to prove the feasibility of 

the monitoring, which has been documented in Paper 3. Then, as presented 

and discussed in Paper 4, the digital twin technology is deployed to outline 

the challenges and possibility of future field applications. 

Chapter 7 discusses the main findings of each chapter, by additionally extending on 

their challenges. It additionally provides recommendations, for each of the 

case study, on the readiness of the technologies to the field applications. 

https://doi.org/10.1049/cp.2019.0080
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Chapter 8 concludes the thesis by presenting a summary of the main findings, giving 

advice on future works, and posing the contribution to the knowledge of each 

of the studies conducted in this thesis. 
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Chapter 2 

2 Review of RAM databases and 

identification of failure trends  

The fast growth of the offshore wind sector not only comes with design challenges, but it also 

needs to cope with the planning and risk mitigation for offshore maintenance activities. For this 

reason, research activities have focused their effort on investigating what, and how, failure events 

manifest in a wind turbine system. In this chapter, the initiatives, and the findings of the historical 

collection of reliability, availability, and maintainability (RAM) data are presented. At first, a 

systematic review of the figures for offshore and onshore wind projects is offered. Trends based on 

the deployment parameters are then extracted, to speculate on the impact of design characteristics 

and environmental conditions on the systems’ RAM. Finally, an O&M simulation tool is deployed to 

estimate the operational availability of a next-generation offshore wind farm. The material of this 

chapter has been peer reviewed and published in a peer-reviewed journal 1. 

2.1 Background 

Since the early-stage wind farms, a considerable effort was made in collecting indicators for 

their reliability, maintainability and availability (RAM) statistics and putting them into 

databases [57]. National and international initiatives were mainly directed at creating 

repositories for onshore wind turbines [58]. Only recently have some initiatives focused on 

the collection of RAM data from modern [59], [60] and/or offshore systems [61], [62]. 

Although large and heterogeneous, the populations of some of the most well-known 

campaigns (e.g. [63], [64]) generally include statistics of outdated configurations and small 

rated wind turbines, compared to modern installations and offshore trends. Nonetheless, 

the collection of historical data has shown to be useful for benchmarking critical 

 

 

 
1 D. Cevasco, S. Koukoura, A. J. Kolios (2021), “Reliability, availability, maintainability data review 

for the identification of trends in offshore wind energy applications”, Renewable Sustainable Energy 

Reviews;136. https://doi.org/10.1016/j.rser.2020.110414 

https://doi.org/10.1016/j.rser.2020.110414
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components to support monitoring concept development and a systematic service life 

performance analysis. 

For the purpose of this literature review, only fully operational data are collected, rather 

than test data of single components – i.e. gearbox reliability collaboration [65] and blade 

reliability studies [66], [67]. Starting from a chronological overview of the main initiatives 

for onshore systems, the main findings are then outlined for the more recent offshore data 

collections. Despite including insights on offshore risks, the industry-driven databases are 

generally not available to the public for confidentiality reasons. Consequently, publications 

from other independent authors are reviewed, to obtain an appreciation of the RAM 

experience of various offshore wind farms installed in European waters. 

2.1.1 Chronological overview to data collection initiatives 

Onshore data collection and statistics 

One of the first reliability databases for onshore turbines was compiled by Lynette [68], who 

analysed the trend in availability and costs for the maintenance of various types of small-

scale units installed in California until the end of the 1980s. Similarly, the Electric Power 

Research Institute (EPRI) collected, during 1986 and 1987, failure data for a portion of its 

Californian population [57]. These statistics were reported by the DOWEC (Dutch Offshore 

Wind Energy Converter) research program in [69], which was one of the pioneers in the 

documentation of wind turbine reliability figures. Due to the outdated technologies of the 

Californian population, these data were not integrated in their comparative study. They 

instead cross-analysed the yearly statistics, recorded around the end of the 1990s and first 

years of the 2000s, of the largest European data collection campaigns – the German and 

Danish Windstats newsletter, and the German LWK (Land Wirtschafts-Kammer) and WMEP 

(Wissenschaftliches Mess- und Evaluierungsprogramm) databases. By plotting the results 

per size classes (within the single initiatives) and across the databases, the DOWEC team 

simply observed a significant scatter in the trend, justifying through the unknown age and 

the outdated type of some installations the causes of their statistics’ discrepancy. In 

contrast, some years later, Ribrant et al. [70], [71] outlined some similarities in the share of 

the components to the turbines’ failure rate and downtime, when comparing the Swedish 

and Finnish databases – Vindstat and Felanalys, and VTT, respectively – with the current 

WMEP results.  

In the same period, a substantial contribution to the collection and understanding of the 

turbine reliability statistics was made by Durham University (UK) and Fraunhofer IWES 

(Germany). For the first time, Tavner et al. [72], [73] analysed and compared the time-trend 

of the reliability results from EPRI, Windstats, LWK and WMEP, plotting them against the 

historical data from other industrial turbines. Tavner et al., compared the components’ 

failures of the LWK population, grouping them by layout and size [63], [72], [74]. 

Furthermore, Tavner et al. investigated the effect of weather and location on the turbines’ 

failures, drawing some preliminary conclusions on their correlation. In [75], [76] they 

observed a periodicity in the failure frequency for some of the Danish Windstat components, 

while in [77] they investigated the possible dependency of failures on the wind farm 

location for a population of Enercon E30-33 turbines. In parallel, and consistently with what 

is shown by [31]–[34], Faulstich et al. analysed the effect of the turbines’ configuration and 

location (onshore, coastal, and offshore) on the reliability figures of the WMEP database 
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[78], [79]. In [80], they additionally explored the possible link between WMEP failures and 

wind speed, developing further the first observations of Hahn [81]. 

From the experience of the above-mentioned databases, and because of the increasing 

number of wind farm installations in Europe, more structured RAM data collections were 

launched. Aimed at moving towards a design-for-reliability approach, and targeting 

improved condition monitoring techniques [64], the European ReliaWind project ran for 

three years from 2008. Starting from reviewing previous European projects (EUROWIN and 

EUSEFIA [58]) and national-level initiatives, this project collected and analysed 

heterogeneous data from the turbines operation and maintenance (O&M) activities, based 

on the joint effort of industry (e.g. Siemens Gamesa), technical experts (Garrad Hassan, now 

DNV GL) and academia (Durham University, among others). Contemporarily, in Germany, 

the Fraunhofer Institute continued the WMEP database activity in the “Increasing the 

availability of wind turbines” (EVW) project [82], [83], which ended in 2015. Despite these 

projects representing two of the most recent and complete databases from the European 

experience, due to confidentiality issues, only their final reports and relative values of the 

total statistics are accessible. 

From the first decade of the 21st century, other data collection initiatives from the rest 

of the world have contributed to documenting and tackling the reliability of onshore 

installed systems. Academic and industrial researchers in India, China and Japan published 

the first reliability and availability statistics reports for specific wind farms [84]–[86] and 

turbine manufacturers [59]. The CREW Database and Analysis Program [87], in the USA, 

which is an ongoing activity coordinated by Sandia Laboratories, has become more 

extensive and structured.  

Offshore data collection and statistics 

Little failure data exist in the public domain for offshore wind systems. Performance from 

UK’s offshore round 1 wind farms, with evidence of wind farms’ availability indicators (see 

Appendix B) and capacity factors (CF), were first reported by Feng et al. [88]. In this work, 

as in [61], maintenance records and operational issues of four selected wind farms were 

analysed. Similarly, the reliability figures for the Egmond aan Zee offshore wind farm 

(OWEZ) were derived by Crabtree et al. [89] by accessing the operational report from 

Noordzee Wind [90], for the first three years from installation. In [89], they additionally 

updated the results from the early experience of round 1 wind farms, which were affected 

by technological-immaturity failure events. Besides, they collected the performance 

indicators of round 2 wind farms, showing a growth in the average CF for the more modern 

offshore wind turbines, in line with results presented by the SPARTA [91] and Offshore-

WMEP [92] projects.  

With regard to reliability and maintainability data, one of the most complete 

contributions is the dataset published by Carroll et al. [62], for a population of 350 offshore 

wind turbines. Despite the results presented being from a single manufacturer, the detailed 

definition of the failure, and the further results on the repair time, material costs, and 

required technicians per subassembly, are provided.  

In terms of availability, onshore wind turbines are shown to reach values in a range of 

95-97% for modern systems [58]. For offshore projects, however, the location and 

associated challenges (i.e., accessibility and exposure to extreme weather conditions) can 

considerably lower availability. As observed by [91], [92], older farms – comprising turbines 

with relatively low nominal capacity, and relatively close to the coast – exhibit an 
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availability in the range of the onshore average one. Newer farms – bigger and generally 

located further from the coast – are characterised by an increase in maintenance efforts [1]. 

Despite the higher CFs [89], the technical availability (AE), – as defined in Section B.1 of the 

Appendices – of offshore wind farms can fluctuate across the years, depending on the 

distance from shore and hence the ease to perform the required maintenance operations 

[60]. Additionally, the fluctuation of AE among several surveys can be related to the varying 

maintainability of components for the different wind turbines’ concepts and designs [93], 

[94]. 

Industry-led databases 

Following the compilation of the first databases (e.g. LWK, WMEP), and recognising the 

limits of these earlier data collection initiatives, several authors [87], [95], [96] suggested 

possible improvements to the techniques and processes used for gathering and analysing 

data. Among these, Hameed et al. [97] proposed an optimal RAM database to be applied to 

offshore wind turbines, after having identified the shortcomings of the historical databases 

from the onshore wind and the offshore oil and gas (Offshore Reliability Data, OREDA) 

industries. The IEA Wind Task 33 started compiling recommended practices in [98], 

observing how the lack of standards associated with reliability data adversely impacts 

industry. In line with these conceptual examples are two recently launched RAM databases 

for onshore and offshore systems: 

• The SPARTA (System Performance, Availability and Reliability Trend Analysis) 

initiative [99], started in 2013 by The Crown Estate (UK) under the supervision of 

the Offshore Renewable Energy (ORE) Catapult research centre. SPARTA is 

gathering KPIs (at wind farm level) and reliability figures (at subsystem level) from 

the participating operators, outputting a monthly benchmark.  

• The German equivalent, WInD-Pool (Wind-Energy-Information-Data-Pool), with 

Fraunhofer IEE as trustee [100]. It can be seen as the successor to WMEP [78], 

where additional (but never published) information on the cost of the maintenance 

services was collected. It continues and merges the EVW (Erhöhung der 

Verfügbarkeit von Windenergieanlagen) [82], [83] and Offshore-WMEP [101]–

[103] research projects, gathering historic and recently collected data for both 

onshore and offshore wind turbines.  

2.1.2 Recent review effort 

The onshore and the few offshore available data were already analysed, and cross compared 

by several authors. In 2011, Sheng and Wang [104] compiled the first extensive survey of 

the various databases available until that year. Three more recent studies have significantly 

contributed to gathering and comparing the data available until the year 2018. Pfaffel et al. 

[58] presented a comprehensive collection of the to-date available RAM statistics (a total of 

23, of which 20 are onshore), updating the historical data comparison initiatives with the 

results from offshore wind farms, and including datasets from outside the European 

continent. The failure frequencies and downtime are presented in an all-in-one comparison 

according to standardised key performance indicators (KPIs), in their normalised and non-

normalised form. Artigao et al. [105] cross-compared some of these reliability statistics (13 

initiatives, of which two are offshore) with the purpose of identifying the critical 

components of wind energy converters across all technologies, sizes and locations, in order 
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to suggest condition monitoring strategies, techniques and technologies. Similarly, Dao et 

al., in [106], used the averaged statistics of [58] to visualise the trends in reliability and 

maintainability figures of offshore wind turbines, as opposed to the onshore ones, and 

assess their impact on operational cost, to assist operators to identify the optimal degree of 

reliability improvement to minimise the levelized cost of energy. 

2.2 Problem statement and aim 

Previous studies identified some trends in the averaged data, depending on the survey 

location (on- and offshore, and governing country), population size and mean power rating 

(e.g. [106]). However, two main issues related to the use of cumulative statistics still subsist: 

• As highlighted by Leahy et al. [107], and previously by Sheng and O’Connor [108], 

the currently accessible RAM data lack a harmonised practice for their collection, 

processing and publication. The absence of standardisation in the type of data, and 

methods for their collection, leads to different levels of data quality. Furthermore, it 

is challenging to compare data among studies if project-specific and/or 

undocumented taxonomies are employed for the systems and subsystems 

characterisation. 

• As noticed in [57], [109], technologies of different maturity, in different operating 

years, are expected to fail differently. The deployment location and the varying 

environmental conditions can play an important role in the lifespan reliability of the 

wind turbine systems and subsystems [75], [110], [111]. When comparing the 

statistics in terms of averages among the heterogeneous population [58], [105], 

[106], this level of detail is not considered.  

To tackle the first issue,  Leimeister at al. [109] recognised that fuzzy set and/or 

evidence theories can help deal with the uncertainties of vague data. Nonetheless, these 

methods cannot cope with the same level of detail and information as for a RAM database. 

In 2011, the Continuous Reliability Enhancements for Wind (CREW) Database and Analysis 

Program, supported by the US government, introduced a consistent approach for the 

collection of high-resolution supervisory control and data acquisition (SCADA) data with 

the aim of characterising the reliability and performance of the country’s fleet. Motivated by 

the standardisation intent, the members of IEA Wind Task 33 created, in 2013, the 

“Reliability Data Standardization of Data Collection for Wind Turbine Reliability and 

Operation & Maintenance Analyses: Initiatives Concerning Reliability Data”. Similarly, 

industrially-led repositories are currently collecting data with a higher level of detail, 

adopting structured and harmonised procedures to accommodate the different types of 

data from wind farms [99], [100], while providing sufficient information for a consistent 

comparison of the structure per typology, age and location. With regard to the second point, 

some research effort was put into finding a correlation between the turbines’ failure rates 

and the associated environmental conditions [75], [77]. In this regard, Barabadi et al. [112] 

suggested a methodology for RAM data collection of engineering structures in Arctic 

conditions, showing its applicability to the offshore and marine industries. 

Having established the need for more representative RAM databases, this chapter aims 

to perform a comprehensive review of existing published data related to the reliability, the 

availability, and maintainability of onshore and offshore wind turbines, with a view to 

critically discussing commonalities and distinguishing correlation aspects between modern 

and more early-stage assets.  
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2.3 Methodology 

To consistently compare the RAM statistics and unveil potential trends, three methods are 

employed in this study. First, a cataloguing activity is used to gather the information 

available from the literature by using a standardised terminology for: the statistics, the type 

of data, and the wind turbine typology. This process facilitates access to the RAM figures 

and allows the evaluation of the completeness and quality of the data collected by each 

initiative. Next, the adaptation of RAM repositories’ data to a unique taxonomy based on the 

most widely adopted reference designation permits a fair comparison of the data across 

initiatives. Finally, calculations are carried out to uniformly compare the onshore and 

offshore reliability and maintainability data in terms of operational (time-based) 

availability for a hypothetical offshore wind farm scenario. 

2.3.1 Statistics cataloguing 

Categories and convections 

To compile a comprehensive catalogue of the most important (and accessible) information 

for onshore and offshore RAM statistics, it is first necessary to identify what characteristics 

are worth being collected. The database and the population size are usually reported to 

provide an indication of the statistical significance of the data collected. However, 

consistency issues when discussing and comparing the results can arise from the lack of 

sufficient details on the population of wind turbines [69].  

Table 2.1: Wind turbine configuration types, adapted from the classification of [113], and 
integrated with the details from [114], [115]. 

Concept Type Sub-Type Speed  Control Gearbox Generator 
Grid 
connection 

Danish 
   A 

A0 Fixed (dual) Stall 1 
Multi-stage 3 SCIG Capacitor Advanced 

Danish 
A1 

Fixed 
Stall 2 

A2 Pitch 

 
Variable- 
speed 

   B 
Limited 
Variable 4 

Pitch Multi-stage WRIG Capacitor 

   C Variable  Pitch Multi-stage DFIG 
Partial-scale 
power 
converter 5 

   D 

DI 

DImW 

Variable   Pitch 
Multi-stage 

WRSG 
Full-scale 
power 
converter 

DImS SCIG 
DImP PMSG 
DI1P Single stage PMSG 

DD 

DDP 

Variable  Pitch None 

PMSG 

DDE EESG 
Full-scale 
power 
converter 6 

1 passive stall regulation 
2 active stall regulation 
3 generally four-stages and up to two-stages gearbox 

4 with a variable resistance in the rotor windings 

5 converter feed back to the generator 
6 double feed back to the generator 

For this reason, the classification applied here differentiates the turbines by: 

• Power rating. As several studies have already shown (e.g. [69], [116], [117]), the 

number of failures (per turbine and/or per component) can be dependent on the 



Chapter 2                                                                                  Review of RAM databases and identification of failure trends 
 

20 

dimension of the turbines, making it necessary to present the results by power class 

grouping. 

• Age of the installation. It is common knowledge that the failure rate is a time-

dependent variable [76]. Therefore, the age of the system, whenever known, is 

reported to account for the possible influence on the population statistics (e.g., 

infant mortality and end-of-life wear out failure events). 

• Technical concepts and drivetrain configuration. A deep understanding of the 

results also comes from the knowledge of the type of structure and configuration 

analysed. It is proposed here to identify the drivetrain layouts according to the 

concept classes, as presented in Table 2.1. These configurations are similar to those 

of [113]; however, the sub-types acronyms are arranged to meet the concepts used 

by the WMEP [115] and LWK projects [74]. The generators’ description and 

acronyms are retrievable from [118] and [119], respectively. Schematics of the 

configurations, can be found in [114]. 

The terminology introduced in Table 2.1 is used to state if, and which, RAM indicators 

are provided in each reference. The level of detail reported is specified according to the 

conventions introduced in Table 2.2. Even though a constant (averaged) value of the failure 

rate over time is generally reported – based on the generally assumed homogeneous 

Poisson process for the components’ useful life, information on the time variance of the 

failure rate and the other RAM indicators is reported where possible. It must be noted that, 

although the best match between the provided definitions and single initiatives terminology 

is pursued, the classification is completed based on the engineering judgement of the 

authors.  

Table 2.2: Legend of symbols adopted in the synoptic tables. 

Symbol Description 

% ∗ 
Available only as a percentage/share of the ∗, per component (without total/absolute 

values) 

N Number of stops 

∗ (t) Information on the time distribution of the RAM variable (∗) is given 

∗i (t) Information on the time distribution of the RAM variable (∗) is given, per component 

✓/X Information given but not possible and/or easy to access 

 Findings for failure frequency (top three) 

 Findings for failure downtime (top three) 

Ave Averaged information and/or results 

Det Detailed results 

Info Additional/other information 

WT/WF Wind turbines/farms in the population  

On Onshore installations 

Off Offshore installation 

 

To implicitly suggest the definition of failure used, the classification of the typology of 

the O&M data sources is specified if possible. As reported by Kaidis et al. [120] the use of 

different methods for the data collection is associated with multiple RAM information and 

data quality. While in the IEA Wind Task 33 [98], the four main groups of equipment, 

operating, failure and maintenance/inspection data are distinguished, a higher level of 

detail is here given by following the grouping of [120].  As for [107], the data sources are 

classified in Table 2.3. Furthermore, the difference between the collection scheme 
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typologies – either raw or results data approach, as proposed by [58] – is additionally 

made, whenever possible. 

To assist the understanding of incomplete and public-restricted analysis, an additional 

column is added for summarising the main findings. The list of references is then included 

by specifying the type of information given in the case of multiple citations. Other basic 

information, such as country, study period and database size, is also reported for 

completeness. 

Table 2.3: Reliability and maintenance data sources and their characteristics, by adapting and 
extending the [54], [65]. 

Type of data Information derived Notes (disadvantages) 

(i) Maintenance logs 
(incident reports) 

• Accurate information on failures 
• Information for downtimes 
• Cost of repair/ replacement 

• Can be in hard copy (difficult to read 
and/or incomplete) 

(ii) Operation and alarm 
logs 

• Number of stops 
• Stops duration 

• Unknown alarm code 
• Numerous stops for same failure  
• (No information on environment. 

conditions) 
• (No description of maintenance activity) 

(iii)  
a. 10-minutes 
    SCADA 
b. SCADA 
    alarms 

• Failure data (frequency and 
downtime) 

• Information for further analysis 
(e.g., root cause analysis) 

• Environmental conditions 

• Large amount of data (consuming 
processing) 

• Not all alarms are associated with 
failures  

• (No description of maintenance activity)  

(iv) Service provider bills  
• Maintenance cost 
• Indications of failures 

• (No detailed information) 

(v) Component purchase 
bills (work orders) 

• Cost information for components 
’repair/replacement 

• (No information on failure data) 

Synoptic tables 

The characteristics of the 24 databases found in the literature were accessed either through 

the initiatives’ original publications (if possible), or the review works mentioned in 

Section 2.1. Due to the low level of detail in some of these works, their cataloguing remained 

partially completed, not providing a sufficient description for the classification of some 

quantities. It should be noted that further analysis is required to integrate the results from 

the European EUROWIN and EUSEFIA projects [58], the Japanese NEDO initiative [58], and 

the Fraunhofer’s EVW and recently launched WInD-Pool database (see Section 2.1). 

Therefore, only the initiatives that could be fully accessed are reported in the synoptic 

Table 2.4. 
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Table 2.4: Synoptic table cataloguing the details on the literature databases, and the main findings of these initiatives. 

Database and 
Organisation Country Period WTs 

Data source 
and type Size 

WT characteristics RAM / Performance data  

Ref. 
Rating 
[MW] 

Age 
[year] 

Type λ DT KPI 
Notes 

(cf. Table 2.2) 

VVT 
Finnish Wind Power 

Association F
in

la
n

d
 

From 1991 
Ongoing 

On 

Performance and 
failure annual/monthly 
reports. 
Reports available from 
1999 at [121] 

Ave n° WTs  
(2000-2004): 71.2 
 
N° WFs (in 2006): ~92 

✓/X  
(info in [121]) 

λ 

M
D

T
 

CF 

2000-2004 statistics 
• hydraulics, blades/ 

pitch, gears 
o gears, blades/pitch, 

hydraulics 

[70], [71] 
(accessing 
2000/2004 
stats from  
[121]) 

N° WTs (1996-2008) 
< 1 MW: 35 
≥ 1MW:  37 

X 
1÷20 

(early fail. 
excluded) 

X 
(%)λ 

λ(t) (%
) D

T
 

M
D

T
(t

) 

X 

In the original study 
[121] (in language) 
∗𝑖 (t) are also 
reported       

[122], [123] 
from [124] 

Vindstats 
ELFORSK 

Sw
ed

en
 

From 1997 
Ongoing 

On 

Performance and 
failure annual reports. 
Online available at 
[125] (from 2002) 

Ave n° WTs  
(until 2005): 723 

✓/X  
 (info in [125]) ✓/X  

(info in [125]) 
X 

%
 D

T
 

X 
2000-2004 statistics 
(the two initiatives 
have some overlap) 

• electrical sys., 
sensors, blades/ 
pitch 

o gears, control sys, 
electrical sys.  

(2000/4) 
[70], [71]  
(2009)  
[122], [123] 

(in 2009) 
≥ 0.15 
≤ 3.0 

X AO 

Felanalys 
Vattenfall Power 
Consultant (prev. 
Swedpower AB) 

From 1989 
to 2005 

Type (i)  
Ave n° WTs  
(in 2005): 786 

< 0.5 
0.5 ÷ 1 
> 1.0 

1÷19 X 
% λ 

λ(t) 
X AO(t) 

Windstats 
Newletter 

Haymarket Media 
Group 

D
en

m
ar

k
 

From 1987 
Ongoing 

On 

Failure monthly 
reports 

Ave n° WTs 
(1999-2001): ~2,000 

X X X 
(%)λ 

λi(t) 
X X • other, control, yaw 

sys. 
[69] 

N° WTs (1994-2004): 
2,345-851 

≥ 0.1 
≤ 2.5 

X ✓/X  
 (all concepts) 

λ(t) X X 

• other, yaw sys., 
hydraulic sys. 

[73] 

Influence of wind 

speed on WT λ 
Det [76] 
Info [126] 

G
er

m
an

y 

Failure quarterly 
reports 

Ave n° WTs 
(1999-2001): ~2,750 

X X X 
(%)λ 

λi(t) 
X X • other, electric, control  [69] 

N° WTs (1994-2004): 
1,291-4,285 

≥ 0.1 
≤ 2.5 

X ✓/X  
 (all concepts) 

λ(t) X X • electrical sys., other, 
yaw sys. 

Ave/Det [73] 
Info [126] 

1999’s WTs n°: ~7,000 
2008’s WTs 
n°:~20,000 

X X X 
Ni(t) 

(%)N D
T

i(
t)

 

 
Based on data from 
Bill Canter (2010), 
Editor at WindStats. 

[122] 

– 

(Finland, Sweden, 
Denmark and Germany 
ave. results) 

N° WTs (in 2012) 
Denmark: ~5,000 
Germany: ~24,000 
Sweden: ~1,200 

X X X X D
T

 

X 

Averaged 2003-2007 
and 2008-2012. 

o gearbox, elect. sys., 
generator, rotor 

[123] 
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Table 2.4: Synoptic table cataloguing the details on the literature databases, and the main findings of these initiatives. 

Database and 
Organisation Country Period WTs 

Data source 
and type Size 

WT characteristics RAM / Performance data  

Ref. 
Rating 
[MW] 

Age 
[year] 

Type λ DT KPI 
Notes 

(cf. Table 2.2) 

WMEP 
Fraunhofer IWES 

(prev. ISET)  G
er

m
an

y 

From 1989 
to 2008 

On 

Type (i), (iv) 
for about 17 years 
(~64,000 reports) 

Ave n° WTs 
(1998-2000): ~1,435 

0 ÷ 1.5 
0.56 ÷ 1.5 

X X λi(t) X X Results per size [69] 

Ave n° WTs 
(2004-2005): 865 

X X X λ 

M
D

T
 

X 

• electrical sys., 
control sys., hydr. 

o generators, gears, 
drivetrain 

[70], [71] 

Ave n° WTs 
(until 2006): ~1,500 

< 0.5 
0.5 ÷ 1 
≥ 1.0 

1÷15 

X λ λ(t) X X 
Results per age, and 
size  

[127] 

all  
(by concept) 

N(t) 
Ni(t) 

X X 

- Results per age, 
size, and concept 

- Only stops for 
unplanned maint. 

[128] 

Ave n° WTs 
(in 2008): over 1,500 

< 0.5 
0.5 ÷ 1 
≥ 1.0 

X 
all  

(by concept) λ 

M
T

T
R

 

AT(t) 
Results per concept, 
and location 

[79], [115], 
[117], [129], 
[130] 

Additional weather 
data from 
meteorological masts 

N° of E32/33 WTs: 32 
(~24% of E32/33 in 
WMEP survey) 

0.3 
0.33 

1÷10 DImW λ X X 
- Periodicity of λ with 

wind speed 
- Influence of site 

[75], [77] 

LWK 
Land Wirtschafts-

Kammer G
er

m
an

y 
(S

ch
le

sw
ig

- 
H

o
ls

te
in

) 

From 1993 
to 2006 

On Failure annual report 

N° WTs (1999-2000): 
510 

0 ÷ 1.5 
0.56 ÷ 1.5 

X X λ X X Results per size  [69] 

N° WTs (1994-2004): 
158-653 

0.225 ÷ 1.5 
(in 3 groups) 

Average 
age(t) 

A0/A1/A2 
B, C, DDE 

 

M
T

T
R

 

X 
Time averaged 
results per size, and 
type 

Det [126] 
Ave [63], 
[72], [74] 

In 13 years  
~5,800 turbine years 

X X X   X 
Average result (per 
component) against 
the WMEP survey 

[58], [61], 
[64]  

MECAL 
MECAL Experts 

Nether- 
lands 

From ~2010 
to 2014 

On Type (iii.a/b) raw data 
N° WTs in WF A: 23 
N° WTs in WF B: 36 
N° WTs in WF C: 4 

3.0 
0.85 ÷ 1.75 

2.0 

1÷2-4 
(early fail. 
excluded) 

A2, B, C, DI (%)λ 

(%
) M

A
R

T
 

X 
Differentiate in 
failure severity and 
MART or MDT  

[120], [131] 

RGU 
Robert Gordon 

University 

United 
Kingdom 

From ~1997  
to 2006 

On Type (i) 
N° WTs: 77 
N° WFs: 26 

0.6 X X X X X 
Weibull distrib. for 
drivetrain 
components 

[132] 

Strathclyde (On) 
University of 
Strathclyde 

United 
Kingdom 

From ~2009 
to 2014 

On 
Type (i), (v) 
from one manufacturer 

Total n° WTs 
C: 1822 
DImP/DI1P: 400 

1.5 ÷ 2.5 1÷5 
C 

DImP 
DI1P 

λ(t) RT CF 

- Broken into cost 
categories 

- Info. per type (only 
drivetrain sub-sys.) 

[133] 
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Table 2.4: Synoptic table cataloguing the details on the literature databases, and the main findings of these initiatives. 

Database and 
Organisation Country Period WTs 

Data source 
and type Size 

WT characteristics RAM / Performance data  

Ref. 
Rating 
[MW] 

Age 
[year] 

Type λ DT KPI 
Notes 

(cf. Table 2.2) 

CIRCE 
Universidad de 

Zaragoza Sp
ai

n
 

From ~2013 
to 2016 

On 

Type (i) and (iii.a),  
raw data from  
14 manufacturers 

Ave n° WTs: <4,300 
Ave n° WFs: 230 
Ave n° WTs 
C < 1 MW: 2,130 
C ≥ 1MW:  2,270 
DD: 215 

0.3 ÷ 1 

X 

C 

% λ 

%
 T

T
R
 

X 

• gearbox, blades, 
blade brake 

o gearbox, generator, 
blades 

[60] 1 ÷ 3 C  

• gearbox, control, 
pitch sys. 

o gearbox, generator, 
blades 

0.6 ÷ 2 DD 

• controller, meteo. 
stat., yaw sys. 

o generator, blades, 
controller 

Type (iii.a/b),  
raw data 

Ave.n° DI WTs: 383 
Ave.n° DD WTs: 57 

0.85 ÷2 
2 

X 
C 

DD 
X X X 

Comparison of 
failures and alarm 
logs (per size/type) 

Det [60] 
Info [134] 

ReliaWind 
European Union 
founded project E

u
ro

p
e 

From 2008 
to 2010 

On 
Type (ii), (iii.a), 
(iv), (v) 

Ave n° WTs: ~350 > 0.85 > 2 
Variable-

speed 
 (%)λ 

(%
) T

T
R
 

X 

- Unpublished 
absolute values 

Insights on impact of 
single systems 

[64], [135]  
 

EPRI 
Electric Power 

Research Institute 

United 
States 

(California) 

From 1986 
to 1987  

On Type (i) Ave.n° WTs: 290 0.04 ÷ 0.6 X ✓/X 
(info in [69])  

λ 

M
A

R
T

 

X 

• gearbox, blades, 
blade brake 

o gearbox, generator, 
blade 

[69] 

CREW 
Sandia National 

Laboratory 

United 
States 

From 2007 
Ongoing 

On 
Type (iii.a/b),  
raw data 

Ave.n° WTs: ~900 
N° WFs: 10  
(until 2012) 

X X X (%)
NA

 

M
D

T
 

AO 

CF 
2012/13 results in 
unavailability (NA) 

Det [136] 
Info [137] 
 

    
Type (i) and (iii. a/b), 
results data 

(in 2016) X X  X X X 
General information 
on the initiative  

[87] 

Muppandal 
Noorul Islam 

University In
d

ia
 

From 2000 
to 2004 

On Type (ii), (iii) N° WTs: 15 0.225 X A0 

λ(t) 
λi(t) 

 M
T

T
R

(t
) 

CF(t) 
AO(t) 
AT(t) 

- mech./ electr. system 
downtime by maint. 
type 

- Cost analysis 

[85] 

CWEA 
Chinese Wind 

Energy Association C
h

in
a 

From 2010 
to 2012 

On 
Performance and  
failure data from 
47 manufacturers 

2010’s WTs n°: 111 
2011’s WTs n°: 560 
2012’s WTs n°: 640 

✓/X  
 (only top 9 
manufact.) 

~ 2-3  
(WTs installed 
in 2008/2009) 

C 
DImP 
DDP 

λ X AT(t) 

- λ derived by [58] 
- AT according to [58] 

per drivetrain type 
(in 2011/12) 

[59] 
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2.3.2 Taxonomy adaption 

As for [58], [105], it was necessary to select a uniform and convenient language to identify 

the equipment in a wind turbine to coherently compare the several statistics. As outlined by 

[98], different lists of terms can be used for categorising aspects of components, failures, 

maintenance tasks etc. as “taxonomies”. Several equipment taxonomies have been 

developed in the past. Among these are the VTT components’ breakdown presented by 

Stenberg in [124], the Sandia Laboratories taxonomy in [138], and the GADS (Generating 

Availability Data System) used for North America wind plants. Another two, more recent, 

sophisticated and comprehensive classifications are the ReliaWind project taxonomy (see 

e.g. [60], [64]) and the RDS-PP® (Reference Designation System for Power Plants) 

taxonomy, published by the VGB PowerTech e.V. in [139].  

The first was created for an extensive failure data analysis and is internationally 

recognised, while the second one, also widely accepted, is currently employed for the 

offshore data collection schemes of SPARTA and WinD-Pool (see Section ). However, the 

ReliaWind complete taxonomy is not publicly available, and there is no ongoing 

development to maintain it. In contrast, the RDS-PP® offers open access to the draft 

document [139], and a high level of detail for both system and subsystem identification and 

components’ technical information. For these reasons, the RDS-PP® was adopted to unify 

the statistical reliability and maintainability data in this analysis. The information necessary 

for the adaptation of the taxonomies is accessed from the VGB PowerTech e.V. draft 

document [139], and summarised in Table 2.5.  

Table 2.5: RDS-PP® taxonomy adopted for system and 
subsystem with numbered labels added for the presentation 
of the results. 

RDS-PP® Acronyms  Labels 
MDA 1. Rotor System 
MDA10    1a. Rotor Blades 
MDA20    1b. Rotor Hub Unit 
MDA30    1c. Rotor Brake System 
-    1d. Pitch System 
MDK 2. Drivetrain System 
MDK20    2a. Speed Conversion System 
MDK30    2b. Brake System Drivetrain 
MDL 3. Yaw System 
MDX 4. Central Hydraulic System 
MDY 5. Control System 
MKA 6. Power Generation System 
MS 7. Transmission 
MSE    7a. Converter System 
MST    7b. Generator Transformer System 
MUD 8. Nacelle      
MUR 9. Common Cooling System 
CKJ10 10. Meteorological Measurement 
UMD 11. Tower System 
UMD10    11a. Tower 
UMD80    11b. Foundation System 
- 12. Others 
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The author mapped, to the best of their knowledge, the initiative-specific taxonomies to 

RDS-PP®. When a proper mapping was not possible, a higher share was given to the 

introduced “Other” category. On the other hand, the generic “electrical systems” category, 

usually adopted in the earlier data collections, is integrated here into the transmission 

group. 

2.3.3 Availability calculation  

Availability assessment tool 

The variance in the failure rate of the wind turbines results in a variance in their estimated 

availability. This can affect decision making for the accurate planning of future offshore 

wind projects. The openO&M assessment tool, developed by the authors in [140], is 

employed to estimate and investigate the impact of the different failure rates provided in 

the literature on the potential availability of an offshore wind farm. The tool was built with 

the aim of supporting the development of wind farms’ maintenance strategies. As for other 

O&M management tools [141], [142], they have a modular structure consisting of the 

following core modules: (1) reliability, (2) power, (3) weather forecasting, (4) maintenance 

and (5) cost. The flowchart of the processes and steps of the tool are shown in Figure 2.1. 

 

Figure 2.1: Workflow of openO&M tool. 

The inputs are weather data, cost data, reliability data, turbine specific data (power curve), 

wind farm layout data (distances from shore), and repair information, such as number and 

type of vessels, and the crew required for the restoring of the system. The wind farm 

lifecycle and maintenance activities are simulated, and a number of KPIs are produced, such 

as the time-based availability, power produced, and operating costs. 

Wind farm availability estimation 

For the calculation of the lifetime availability of a wind farm, both planned and unplanned 

maintenance activities are considered. On the one hand, scheduled maintenance happens at 
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yearly intervals and is performed for each subsystem of the turbines in the farm following 

grouping and prioritisation. The downtimes are calculated based on the maintenance 

activity duration which is assumed to be fixed. On the other hand, unplanned maintenance 

downtime is sensitive to the availability of spare parts, vessels, and personnel for the repair 

of damaged subsystems.  

With regard to the distribution of unforeseen failures in time, this information is 

modelled from the reliability module based on the reliability data from the literature. The 

input failure rates are grouped into minor repair (mr), major repair (Mr) and major 

replacement (MR), according to the material costs indicated by Carroll et al. in [62]. When 

this information is not provided, the downtime statistics are used for the classification of 

the failure rates, similarly to what is suggested by [47] (cp. Table 2.6). When a failure occurs, 

the turbine status varies depending on the failure type. For mr, the turbine is assumed to 

continue operating even after the failure detection, and the shutdown is only assumed 

during the repair time. For Mr and MR, the turbine is stopped after the detection of 

malfunctioning, going back to service only after the system is restored. The time to failure 

associated with each failure mode, for a particular subsystem i, is assumed to be distributed 

by an exponential probability density function f(t) (Equation 2.1) with parameter 𝜆𝑖,𝑚𝑜𝑑𝑒 

being the failure rate for subsystem i under a particular failure mode (i.e., mr, Mr, or MR).  

f(t)= λi,mode e
-λi,modet Equation 2.1 

The cumulative distribution function is the probability of failure (PoF) of the subsystem 

according to the exponential reliability theory and is given in Equation 2.2. The PoF of the 

whole wind turbine is the PoF of all subsystems considering all failure mode classifications, 

as explained further in [140].  

PoF=1-e-λi,modet Equation 2.2 

Further inputs for the availability estimation are the farm layout and the forecast of the 

environmental conditions during its lifetime. For the purpose of this analysis, the wind farm 

reference layout is based on Bak et al. [143]. The weather data simulated throughout the 

lifetime of the farm for its operation (wind speed for power production) and accessibility 

(wave height for the mobilisation of the vessels) are based on the FINO3 database. The 

stochasticity of the weather module is obtained by the implementation of a Markov model 

trained on the historical wind speeds and wave heights. Finally, information on the times 

and logistics for the performance of the unplanned maintenance – including repair times 

and resources needed – are based on [62]. The further assumptions in the maintenance 

module and additional information can be retrieved from [140]. 

Table 2.6: Criteria for the classification of the reliability databases in minor 
and major repair and major replacements. 

Classification mr Mr MR 

Material cost  ≤ 1,000 € 1,000 € < cost ≤ 10,000 € > 10,000 € 

Downtime (onshore) ≤ 3 days 3 days < downtime ≤ 7 days > 7 days 

Downtime (offshore) ≤ 7 days 7 days < downtime ≤ 15 days > 15 days 
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2.4 Results 

A more in-depth view of the data repositories enables a cross-comparison of the statistics 

and critical discussion. Initially, the quality and consistency of the averaged reliability and 

maintainability figures are evaluated in an all-in-one comparison. A detailed discussion of 

the effect of the deployment parameters on the reliability and performance of onshore wind 

turbines is then suggested, leading to either further supporting the trends already identified 

in historical repositories or updating them based on the experience of the more recent 

surveys. 

2.4.1 Trends in the averaged reliability and maintainability 

statistics 

In Figure 2.2, the data from all the complete and accessible initiatives, collected in Table 2.4, 

are presented as dimensional quantities, in failure frequency against time lost to restore the 

system after failure. Due to poor documentation, confidentiality reasons, or the lack of a 

standardised approach, a significant spread across these averaged results is immediately 

observable. These statistics generally collate the data over broad populations, for varying 

characteristics of the units. Based on the detailed analysis of Table 2.4 and the homogeneous 

taxonomy adaption activity, it is possible to discuss and draw the main conclusions from the 

plot. 

 

Figure 2.2: All-in-one comparison of the most complete reliability statistics, as rate of 
failure vs. hours lost per failure per components (bi-logarithmic scale). Some data are 
retrieved from [58], while others are integrated according to Section 2.3.1. 
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It is noticeable that the results from the WMEP and Huadian databases are largely in the 

medium range of lost hours per failure of the components (from 5 to 10 h/turbine/year), 

whilst the data from the other sources are distributed over a wider range. For instance, the 

majority of Spanish (CIRCE) results are distributed below five hours per turbine and year 

limit, while the VTT population shows values largely outside the average range, as observed 

by [113]. A possible contributor to the inconsistencies between these initiatives can be the 

definition of “failure”. This can indeed vary from being just a required visit to the turbine, 

considering only when a maintenance activity is required (e.g. [62], [128]), to when an event 

has a downtime over a certain threshold (e.g. [120]), or, conversely, to account for alarm 

logs and remote resets (e.g. [60], [84]). When counting remote resets, the failure rates 

recorded are higher.  

Likewise, the mean time lost to restore the turbine operation is lower, because of the 

presence of these small downtime events. This is the case with the data collected by the 

Southeast University Nanjing [84], whose outlier behaviour can be traced back to either the 

use of SCADA alarms or the very short period of the survey [106]. The unrealistically high 

failure rate and small downtime of the EPRI statistics can be associated with the infant 

mortality of its early-stage technologies. With regard to the recent CIRCE statistics, while 

the time lost per failure is generally comparable to that of the older data collected (Vindstat 

and Felanalys, VTT, LWK and WMEP), the lower frequencies of the malfunctions can be 

related to the higher maturity of the technology and to the fact that only components’ 

(internally caused) failures were considered, excluding from the analysis all the other 

outage events. 

Regarding the Strathclyde offshore (Strath-Off) statistics, their skewed behaviour is 

associated with the use of the mean active repair time (MART) as an indication of the 

downtime. Nonetheless, the gap between these MARTs and the mean downtime (MDT) of 

the other statistics – except for Huadian and EPRI collections, already suggests the possible 

high impact of logistics and technical delays on the downtime for maintenance actions. Refer 

to Section B.1 of the Appendices for the definition of the MART and the MDT statistics. 

Looking then at the single initiatives’ systems’ share, the drivetrain failures seem to be, 

in general, the highest contributor to the hours lost per turbine per year, due to the presence 

of a gearbox. While this is true for the European initiatives, the Chinese statistics of Huadian 

and Nanjing contrapose a higher criticality for the control and electrical transmission 

system. This is in line with what is reported in the CWEA study, where converters yield the 

highest failure rate among all the subsystems. As explained by the authors [59], this could 

be related to the harsh environment (very low temperature reached) in the area where 

these wind farms are installed. However, Artigao et al. [105] suggest that this is a common 

trend among the Chinese statistics. 

2.4.2 Trends based on design parameters 

At a turbine and a farm level 

The authors from the DOWEC project [69] were the first to identify the need to separate the 

data also by power classes when plotting and comparing the reliability statistics. By using 

the data available at the time from the WMEP statistics, they observed that the turbines 

rated between 0.56-1.5 MW fail significantly more often than the smaller turbines; however, 

the population is 95% represented by lower rating units. Based on the German “250 MW 

Wind” program, more detailed and complete results for the WMEP project were collected 
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and published. From the data of the first 15 years of the initiative, Hahn et al. [127] and 

Echavarria et al. [128] observed a time invariant increase of the turbine failure frequency 

with power rating.  

In the LWK survey, the distribution of failure intensity among 12 different turbine 

models was sorted by turbine size [113]. The same authors who, in [73], already intuitively 

appreciated a lower reliability in the newer German turbines comparing them to their 

smaller predecessors, reaffirmed in [63] the general trend of failure rate to increase 

proportionally with the turbines’ rating. This was shown to be particularly true for the type 

A1 turbines [113], while the direct-drive technologies (DDE type) seemed not to follow the 

rule, maintaining an almost constant overall failure rate of about 2.5 failures per turbine 

and year for larger units. Nothing can be stated for other concepts, such as type B, due to 

the lack of data for large units. Looking at the averaged failure rates for type C, the more 

recent CIRCE data collection reported results are in line with the discussed hypothesis: 0.46 

and 0.52 failures per turbine and year, for the population below and above 1 MW, 

respectively [60].  

This higher reliability would lead to generally higher technical availability. Reinforcing 

this argument, Harman et al. [116] observed that the operational availability of sub-MW 

units is higher than that of the larger units. However, at the array level, they additionally 

observed that an increase in the availability of larger farms (with more than 40 units), was 

proportional to the number of turbines and is independent of the units’ rating.  

At a system and a subsystem level 

While this last deduction cannot be verified yet, as the wind farm specific data are limited 

and incomplete, the trend of the failure rate with the power rating is investigated here at 

the system (Figure 2.3) and subsystem (Figure 2.4) levels. When summarising the WMEP 

survey main findings in [115], [117], [130], Faulstich et al. developed a detailed analysis at 

the subsystem level (Figure 2.3). Significant differences in the contribution of single 

components’ failures to the total failure frequency were detected for small and large sized 

turbines. 

   

Figure 2.3: WMEP program final results in terms of share per subsystem, of the total average 
failure rate of each group of MW-class, adapted from [82]. 

A smaller scatter for the share of each system to the failure rate is generally observed 

for medium rating turbines (above 500 kW and below 1.5 MW), reaffirming what was 
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noticed by Dao et al. [106].  For the higher power class, the reduction in the percentage 

failure of the mechanical and structural components is balanced by an increase in the 

percentage of the electrical failures. As they are associated with an overall rise of the annual 

failure frequency [127], the electrical and control systems can be seen as the most critical 

components for the WMEP larger sized turbines. Although these results are in agreement 

with the project final average statistics [130], information on the distribution of the power 

rating in the final WMEP population is missing. Furthermore, it has to be noted that these 

results are mainly representative of technologies and layouts that are no longer adopted 

(type A0-A2) [78]. For these reasons, the results from other initiatives were analysed, 

seeking for a match with the WMEP trends. 

  

Figure 2.4: Comparison of the failure rates per systems (left) and subsystems (right) of 
different rating turbines. Statistics for type C turbines from CIRCE database (top) and type 
DDE turbines in LWK database (bottom). 

The WMEP statistics are cross compared with those of the LWK and CIRCE surveys. To 

maintain the analysis as unbiased for the drivetrain configuration, a comparison is 

suggested among turbines of the same typology. The LWK results for the Enercon E40 (500 

kW) and E66 (1.5 MW) gearless turbines [74], [113] are presented in Figure 2.4-bottom, to 

better understand the anomalous behaviour of LWK’s DDE model’s failures. Similarly, the 

failure rates derived by accessing CIRCE data [60] for the type C turbines, above and below 

1 MW, are compared in Figure 2.4-top. The conclusions on the effect of the power class on 

the reliability figures per component, without the effect of multiple configurations’ 

averaged results, are the following: 

• The number of shutdowns caused by the rotor system (1) and the power generator 

system (6) – either EESG of LWK or the DFIGs of CIRCE – decrease when the turbine 

rating increases, in agreement with WMEP results. 

• An opposite trend characterises the control (5) and transmission (7) systems of 

CIRCE turbines, in agreement with the WMEP observation. In contrast, the 

transmission failure rates for small sized DDE turbines are higher than for larger 

systems, as verified by [113] as well. 

• The speed conversion (2a) and drivetrain brake (2b) subsystems of the CIRCE 

population seem to fail less frequently for higher power ratings, in line with WMEP 

results for the drivetrain system (2) and with what is reported by [144] for the type 

A1 turbines of the LWK survey. 
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• The pitch system (1d) – not identified as a separate subsystem in the WMEP results 

and likely to be integrated and averaged into the hydraulic system – follows the 

same trend for both LWK and CIRCE initiatives, increasing its number of failures 

with increasing turbine size. 

Modern layouts statistics 

With regard to the influence of drivetrain configurations on the statistics, the WMEP authors 

noticed a general decrease in the average reliability of the assets moving towards more 

advanced concepts, compared to the simple Danish concepts and standard variable speed 

[78]. Similarly, the analysis of van Bussel et al. [93], [94] identified the robust design – 

consisting of a two-bladed turbine, with no pitch control installed on a monopile foundation 

– as the best design solution for obtaining the highest availability in a large offshore wind 

farm project. 

For the direct-drive configurations, the WMEP researchers observed that gearless 

layouts are not necessarily more reliable than geared ones [115]. Echavarria et al. [128] 

highlighted this aspect in more detail by analysing 10 years of WMEP time-trend results. 

They noticed that the direct-drive synchronous generator is not mainly responsible for the 

generally higher failure rate of these turbines compared to the geared alternative with an 

induction generator. In contrast, the failure events of power electronic components, in 

systems using synchronous generators, were significantly more frequent. This suggests that 

the statistics could possibly have been affected by the young age and novelty of the 

technology. Similarly, the LWK’s authors [63], [73], [74] noticed that the aggregate failure 

of the generator and converters in direct-drive layouts (DDE) is greater than the aggregate 

failure rate of gearbox, generator and converters in indirect-drive ones. Indeed, the 

elimination of a gearbox resulted in a substantial increase in the failure rate of electrical-

related subassemblies. 

Table 2.7: Comparison of CIRCE type C and type DD reliability and 
maintainability statistics. 

 

Some authors justified this tendency as being due to the immaturity of these 

technologies and the presence of new issues related to the new design [110] and larger 

dimensions [73] of the direct-drive generators. In agreement with this hypothesis, the more 

CIRCE C 

(< 1 MW)

CIRCE DD 

(≤ 2 MW)

CIRCE C 

(0.3÷3 MW)

CIRCE DD 

(≤ 2 MW)

1. Rotor System 0.084 0.011 131.19 556.63

2. Drivetrain System 0.080 0.002 133.31 79.69

3. Yaw System 0.021 0.014 77.42 110.80

4. Central Hydraulic System 0.021 0 33.40 0.00

5. Control System 0.058 0.052 32.18 61.26

6. Power Generation System 0.025 0.011 305.70 508.41

7. Transmission 0.044 0.024 107.96 50.28

8. Nacelle     0 0 0.0

9. Common Cooling System 0.041 0.005 28.53 51.79

10. Meteorological Measurement 0.012 0.019 7.61 14.28

11. Tower System 0.004 0.002 44.34 52.00

12. Others 0.126 0.042 27.49 42.46

λ [failure/turbine/year] Downtime/Turbine [h]
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recent data collection from Reder et al. [60] registered an overall decrease in the failure rate 

for the Spanish direct-drive population compared to the type C one: 0.19 vs. 0.49 failure per 

turbine and year, respectively. The updated RAM statistics for the newer typology of DDP 

published by Lin et al. [59], highlighted an increase in the availability, during the second 

year of operation, of direct-drive design compared to the C type. To complete the discussion 

investigating the variance in failure frequency and downtimes, per component, between 

type C and DD turbines, a comparison among CIRCE statistics [60] is suggested in Table 2.7. 

Analysing only the data for turbines above 1 MW, an unexpected higher failure of the rotor 

system is observed for the type C turbines. This behaviour could be affected by several 

factors. In contrast, the 50% reduction in the number of failures of the direct-drive 

generators, could be explained by a profound technology improvement of EESG and/or a 

switch to the PMSGs’ direct-drive concept [133]. Nonetheless, as mentioned by [110], the 

lack of detailed information about the typology of the generator only allows us to speculate 

about the cause of this higher failure rate.  

As far as the medium-speed configurations are concerned, it has been shown [145], 

[146] that they have the potential to offer a good compromise between reliable operations 

and cost optimisation. On the one side, Carroll et al. [133] compared the statistics of a 

population of 1,800 type C turbines with those of a group of 400 DImP. They observed that 

the full-rated converters are the most critical components in terms of failure rate, while the 

PMSG fails almost 40% less than a DFIG and its failure modes are for minor repairs of the 

auxiliary (lubrication and cooling) system. Nonetheless, due to the presence of the gearbox, 

they noticed that the hybrid layout fails nearly three times more often than the traditional 

type C configuration. On the other side, Lin et al. [59] reported a significantly higher 

technical availability of the hybrid configuration compared to both type C and DDP. This 

latter study is likely to be skewed by early-stage failures. Because of this contrast and due 

to the recent and sporadic installations, it is not yet possible to draw any conclusions on 

their robustness. Thus, more information needs to be collected and compared for these 

kinds of systems. 

2.4.3 Trends with the deployment parameters 

Although site-specific information is not yet available for supporting the observation of 

Harman et al. [116] on how the farm size influences its availability, some experience on the 

effect of the location and the environmental parameters on the turbine reliability figures 

can be found in the literature. Indeed, much research effort has been dedicated to 

identifying the critical meteorological parameters that influence the turbine failure 

behaviour negatively.  

One of the first extensive analyses on the effects of weather on turbine reliability was 

presented by Hahn et al. [81] showing increased failure rates of certain components with 

rising average daily wind speeds. The electrical system subassemblies showed the strongest 

dependency on wind speed, followed by the control system, while a significantly weaker 

correlation was exhibited by the other main subassemblies. Tavner et al. [76] identified an 

annual periodicity in failure rates due to seasonal variation in weather conditions, by 

analysing the correlation between monthly averaged wind speed conditions and component 

failures. Following this first study, they extended their analysis in [75], [77] by cross-

correlating the component failures with average monthly maximum and mean wind speed, 

maximum and minimum air temperature, and average daily mean relative humidity. They 

concluded that other weather conditions, rather than just wind speeds, can be closely 
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related to the turbine failures. Wilson et al. [147] used artificial neural networks to 

investigate if any relationship existed between maximum daily gust speed, average daily 

wind speed and temperature, and the turbine’s failure rates. The gearbox, generator and 

hub were shown to be more likely to fail in variable wind conditions, with a high potential 

impact on the failure rates of these subassemblies offshore. They additionally noticed that 

gust speed is a key parameter of the number of failures. This observation reaffirms what 

was shown already by [76], who observed that malfunctions occur more frequently in the 

winter months where average daily wind speeds can be lower but maximum daily gust 

speeds are higher. Regarding the data collected for offshore wind turbines, Carroll et al. [62] 

noted that offshore turbines sited in areas with higher wind speeds experienced higher 

failure rates. This observation is in line with what was shown by Wilson and McMillan in 

[148] for onshore systems. Nonetheless, while this correlation appears to be rather weak 

onshore (linear regression slope is 0.08), the higher offshore wind speeds seem to have a 

higher impact on the failure rates (with 1.77 slope). 

Finally, some studies on the possible effect of near-shore location were analysed. 

Examining the WMEP statistics, Faulstich et al. [78] observed that turbines located near the 

coast and in the highlands suffer higher failure rates. By analysing a more segregated 

population of turbines (type DImW, with sub-MW rating), Tavner et al. [75], [77], showed 

similarities between the results from the Krummhörn and Fehmarn wind farms, 

presumably because of their near sea locations, compared with Ormont farm, which is 

located inland. While the turbines from the first two locations are subject to humid 

conditions, Ormont failures cross-correlate with wind speed standard deviation, suggesting 

the influence of turbulence on failure rate. 

2.5 Discussion of the RAM figures for offshore wind 

systems 

The failure of offshore and near-shore deployments can differ in number and typology 

compared to those of onshore systems, due to the potential effect of certain environmental 

conditions (such as humidity, gust events and turbulence intensity). For this reason, in this 

final discussion, the influence of the studies’ specific parameters (i.e., reliability statistics 

and power ratings) is analysed by estimating the lifetime operational availability of 

hypothetical wind farms installed at a typical offshore location. The normalised reliability 

and maintainability figures of onshore and offshore studies are eventually compared, to 

identify the possible sources of the discrepancies in the results.   

2.5.1 Lifetime operational availability estimates and trends 

The derivation of the lifetime operational availability for a set of offshore wind farms 

establishes a common ground for integrating the offshore statistics into the analysis and 

consistently comparing them with the existing onshore ones. A similar analysis has been 

already carried out for the DOWEC project, where van Bussel et al. [93], [94] estimated the 

availability and costs associated with the installation of different turbine technologies 

(drivetrain and foundations) for a fictional 500 MW offshore wind farm, erected at 35 km 

from the Dutch coast. Their findings concluded that there is a reduction in the availability 

of advanced layouts, as opposed to the traditional ones. Despite the fact that this 

observation supports the conclusions of Faulstich et al. in [78], the reliability figures used 
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are extracted from a specific population of coastal wind turbines and adapted to several 

types of designs and the offshore application, based on the authors’ best knowledge. 

In contrast, the analysis presented here focuses only on the impact of the 

implementation of the several failure statistics collected from the literature. The reliability 

studies selected and adapted as required for the implementation on openO&M are reported 

in Section B.2 of the Appendices. The systems and subsystems considered in the availability 

calculations are based on the taxonomy shown in Table 2.5 and are additionally subdivided 

into failure classes (mr, Mr and MR) as suggested in Section 2.3.3. For simplicity of 

comparison, the wind farm layout, the repair information, and the weather data inputs are 

kept the same for all case studies. The wind turbine power curves for the estimation of the 

operational uptime are assumed, based on commercial models at the average power rating 

of the population. This information, together with the estimated time-based availability, is 

reported in Table 2.8. The results are presented in terms of averaged value and standard 

deviation, due to the random selection of the failure modes (as explained in Section 2.3.3).  

Table 2.8: Lifetime availability estimated for the selected surveys – see Section B.2 of the 
Appendices. In grey are the surveys from onshore failure statistics, with different shading 
according to the assumed wind turbine rating. 

Reliability study 
Mean 

rating* 
[MW] 

Assumed 
rating 
[MW] 

Turbine model 
for power curve 

Mean 
availability 

[%] 
Std [%] 

Range per 
rating class 

[%] 
LWK** 1 1 GEV HP 1000/62 99.0 +/- 0.05 3.01 
WMEP** 1 1 GEV HP 1000/62 96.6 +/- 0.13  
Muppandal** 0.225 1 GEV HP 1000/62 98.6 +/- 0.08  
CIRCE DD 1.3 1 EWT DW61 1MW 99.4 +/- 0.08  
CIRCE GD > 1 MW 2 2 V80 2MW 99.1 +/- 0.05 3.03 
Huadian** 2 2 V80 2MW 96.2 +/- 0.08  
Strath-Off 3 3 V90 3MW 84.1 +/- 0.10 4.04 
OWEZ 3 3 V90 3MW 80.2 +/- 0.04  
* average between the highest and the lowest power rating from synoptic tables 
** average reported by [106] 

Although the same characteristics and maintenance strategy for each of the offshore 

wind farms scenarios are selected, a spread in the estimation of the availability associated 

with the several reliability datasets can be noticed. This indicates that the frequency of the 

specific failure events largely affects the availability calculations and consequently the 

maintenance decision making. In contrast, the low standard deviation of the estimated 

availability (the highest of +/-0.13% for the WMEP survey), implies a small impact of the 

randomness in using these failure data when supporting decisions for the operation of wind 

farms.  

A generally higher availability is found for the onshore studies compared to offshore 

ones, independently from the turbine rating, supporting the hypothesis of a high correlation 

of the failures with environmental conditions (generally more unfavourable offshore). It is 

worth pointing out that the direct drive wind farm scenario achieves the highest lifetime 

availability, in line with the calculations of Carroll et al. in [146], [149], and supporting 

further the observation of Section 2.4.2 on the high potential of this technology. Among the 

onshore failure-based scenarios, the WMEP and the Huadian datasets resulted in the 

smallest estimated availability, as low as 96%. Nonetheless, these results seem reasonable 

when compared against the operational availabilities collected by [58], on average around 

95% for onshore turbines, with the exception of the sub-MW population, and around 93% 

for the offshore systems in the SPARTA and the WInD-Pool projects. Therefore, the 
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generally high predicted values for the onshore-based results could suggest a general 

underestimation of the repair and logistic times as inputs of the maintenance module. 

Independently from the sensitivity of availability to these parameters, some of the 

offshore-based results look surprising. On one side, the low availability, of about 80%, for 

the OWEZ wind farm can be related to the extraordinary maintenance activity during the 

time of the survey. This result agrees with the statistics for the UK offshore round I, affected 

as well by infant mortality events and the underdeveloped supply chain for O&M. On the 

other side, the 84% operational availability of the Strath-Off population is unexpected, 

considering that it is associated with the statistics for a population with similar 

characteristics (turbine configuration and power rating) to those of the recently published 

RAM database results [58]. The explanation of such behaviour can be associated with: 

• the effect of site-specific environmental conditions, which significantly affect the 

failure behaviour and enhance the statistical uncertainty of the reliability figures – 

considering that these data are built upon averages from various sites; 

• the effect of failure distribution on the estimated availability levels, which has been 

shown to have a potentially high impact [150], and it has been considered here as 

exponential only; 

• the potential impact of preventive maintenance activities and condition monitoring 

systems, implemented in the real application, which could potentially avoid or 

prevent the failure 

• the potential impact of maintenance activities performed vi either helicopter or 

other service operation vessels, which are not yet included in the tool, but they could 

increase the accessibility windows and reduce the downtime for mobilisation and 

logistics. 

Speculating on the uncertainty surrounding the recently published availability 

statistics, the WInD-Pool project only reported vague averaged results in [58], while the 

SPARTA data are provided for 14 months only of recording [91]. Another year of availability 

figures from the SPARTA project have recently been published [151]. However, their results 

are reported in terms of production-based availability, giving only an overview on the 

goodness of the performance of the turbines compared to their power curves.  

2.5.2 Influence of the offshore location on systems and 

subsystems 

With the intent of understanding which systems and subsystems could mainly be affected 

by the offshore location, the reliability statistics from CIRCE [60], Strath-Off [62] and OWEZ 

offshore WF [90] (cf. Table 2.4) are compared in the bubble plot of Figure 2.5. While their 

populations are consistent – being representative of geared turbines with an induction 

generator installed and of comparable power rating –, the definition of failure and 

downtime differs among these initiatives. Thus, normalised failure rates and downtimes (in 

terms of h/turbine/year) for each assembly (horizontal axis), are respectively represented 

on the vertical axis (indicated by the centre of the bubble) and by the bubble size. It is first 

worth stating that, although adding value to the analysis, the statistics of the OWEZ farm 

can be affected by early failure events and are skewed by their derivation  from the number 

of stops [152]. This is also the reason for the low share in frequency and repair time of 

“others” (12) unforeseen failures, while a higher ranking is in the Strath-Off and CIRCE 

statistics because of the use of a more detailed taxonomy for the collection and analysis of 

the data. 
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Figure 2.5: Comparison of offshore and onshore reliability statistics for geared turbines with 
an induction generator. In the x-axis are systems and subsystems, while on the y-axis are the 
normalised failure rates. The normalised downtime is represented by the bubble size. 

The highest share in the failure of the OWEZ farm is in the control system (5). 

Differently, the Strath-Off (and SPARTA [91]) surveys, recorded more frequent 

malfunctioning of the pitch (1d) and its hydraulic system (if present). These observations 

are in line with the results from the onshore surveys. Recently published statistics from the 

CREW data collection ranked the rotor as the assembly with the highest contribution to the 

turbine unavailability [110]. In the CIRCE survey, the rotor (mainly for the blade adjustment 

system and its hydraulics) and control system failures are second only to those of the 

drivetrain system. 

With respect to gearbox (2a), the two offshore studies show a similar percentage share 

of failure rates, even though the high failure rate of Strath-Off is mainly caused by the 

inclusion of minor malfunctions, while that of the OWEZ statistics is mainly affected by 

catastrophic infant mortality failures. It is interesting to observe that, independently of the 

class of maintenance performed, the gearbox’s overall share of the downtime for the 

offshore population is higher than for all the other components. Therefore, the observed 

potential high criticality of this component justifies the consistent research effort put into 

the direct drive designs [110] and advanced monitoring systems and techniques [153]–

[155].  

Regarding the power generation system (6), it is noticeable that its unplanned 

maintenance actions have a similar impact on the total corrective downtime of the several 

initiatives. Nonetheless, the Strath-Off induction generator has a considerably higher share 

of the frequency of the repair, compared to the CIRCE statistics, suggesting again a potential 

high influence of the offshore condition on this system. Furthermore, as already shown by 

[62], the repair rate of offshore generators is significantly higher than that of onshore ones, 

mainly due to the frequent minor maintenance actions required. Of minor impact for 

frequency and repair time required are the converters (7a). However, it is worth noticing 

that both offshore studies recorded a higher share of this subsystem to the failure frequency 

than in the onshore dataset. Similarly, the repair rate of the converters is ranked fourth by 

the SPARTA monthly averaged statistics, after issues related to the rotor system. The cause 
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of their failure lies in the offshore environment and can be either associated with low 

temperature and/or thermal cycling, as intuitively proposed by [59], or related to other 

environmental factors (such as humidity) as shown by [37]. Because of the relatively high 

cost of repair and replacement, and the relatively long repair time [62], components in the 

transmission system (including the transformer) have a potentially high criticality. 

With respect to the structural parts, the unpredicted failures of the rotor system (blades 

and hub) are shown (1) and known to be critical to the O&M cost of offshore wind projects. 

On the other hand, it is worth pointing out the potentially high criticality of the foundation 

systems failures (11b) [156], [157] as opposed to the onshore structure. Despite the little 

share of the failure frequency, maintenance activities for the inspection and repair of 

structures below the water level can be significant.  

2.6 Conclusions 

This chapter presented a comprehensive review and discussion of the identification of 

critical components of the currently installed and next generation of offshore wind turbines. 

A systematic review on the reliability, availability, and maintainability data of both offshore 

and onshore wind turbines is performed, by collecting the results from 24 initiatives, at 

system and subsystem level.  

Trends based on the deployment parameters for the influence of design characteristics 

and environmental conditions on the onshore wind turbines’ reliability and availability are 

investigated. The main findings from the literature on onshore systems are: 

• at a turbine level, an observed generally lower reliability for increasing turbines’ 

size, but a potentially inverse trend in the availability of the wind farms with the 

number of units installed, independently from their power rating; and 

• at a system level, a reduction in the shutdown events linked to the unforeseen failure 

of the rotor, the drivetrain and the power generator systems are observed as 

opposed to an intensification in the corrective maintenance of the control, 

transmission, and blade adjustment systems for an increase in the turbine size; and 

• at a turbine level, a higher number of failures is generally recorded for higher 

averaged wind speed, gust speed, and in presence of other environmental 

conditions (such as humidity and potentially high turbulence level), with a 

sensitivity of the drivetrain, power generation and transmission subsystems to 

these phenomena. 

The estimation of the operational availability for a set of offshore wind farm scenarios 

allowed a comparison with the recently published performance statistics and the discussion 

of the integrity of the data available to date. The failure statistics of the systems deployed 

offshore are then discussed and compared to the onshore ones, with regard to their 

normalised results. The availability calculations supported the hypothesis of the negative 

impact of the offshore environmental conditions on the reliability figures. Nonetheless, 

similarities in the reliability figures of the blade adjustment system and the maintainability 

of the power generation and the control systems are outlined. Thus, with respect to offshore 

wind turbines, it is noticed that: 

• Although generally higher failure frequencies are observed compared to the 

onshore projects, the recently collected statistics from the industry-led RAM 

databases show a significant improvement in the operational availability compared 

to the first generation of offshore turbines. 
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• A high share of the blade adjustment, drivetrain and transmission systems to the 

overall failure rate is common to all offshore studies, with the drivetrain and rotor 

systems being potentially the most critical due to being associated with longer 

downtime and cost of the repair.  

This analysis adds to the existing body of knowledge on the identification of the trends 

at the turbine, its system and subsystem level, based on the specific design parameters and 

the deployment conditions – either onshore or offshore, as well as site-specific parameters. 

This can subsequently allow the development of a better understanding of the sensitivity of 

certain components and technologies to key design and environmental parameters, 

facilitating technology qualification of new alternatives and the reliability analysis of the 

units in a farm.  
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Chapter 3 

3 Condition monitoring of drivetrains: 

case studies for model-based and 

data-driven approaches  

Constancy is a great way of de-risking offshore wind, but unfortunately some failures are 

inherent. To detect the failure of the components of the drivetrain, the mainstream approaches 

rely on the availability of either a high-fidelity model for the representation of the physics of failure 

(aka model-based approach), or a representative and big set of data (aka data-driven approach). 

The first approach requires a deep understanding of the physics of the failure, to reduce the order 

of the model and to allow improvements of its computational speed – for their application to real-

time monitoring task. As concerns the second approach, the limited accessibility to valuable 

databases of failure challenges the model’s diagnostics performances. These two aspects are 

investigated in this chapter, by considering two case studies for the failure of offshore wind 

gearboxes. A first study investigates the goodness of some model-order reduction methods in view 

of the development of a digital twin of an offshore wind farm 1. A second study is aimed at testing 

and comparing the effectiveness of a transfer learning model, as opposed to traditional deep 

learning model, when having a low availability of run-to-failure data 2. 

3.1 Background 

Offshore wind turbines are complex systems operating in a multi-phase environment, under 

various field conditions and loads. Their continuously improved and optimised designs can 

 

 

 
1 Z. Lin, D. Cevasco, and M. Collu, (2020) “A methodology to develop reduced-order models to 
support the operation and maintenance of offshore wind turbines,” Applied Energy, vol. 259, no. 
114228. https://doi.org/10.1016/j.apenergy.2019.114228 

2 I. M. Black, D. Cevasco, and A. Kolios, (2022) “Deep Neural Network Hard Parameter Multi-Task 
Learning for Condition Monitoring of an Offshore Wind Turbine,” IOP Conference Series: Journal of 
Physics, vol. 2265, no. 3, p. 032091. https://doi.org/10.1088/1742-6596/2265/3/032091 

https://doi.org/10.1016/j.apenergy.2019.114228
https://doi.org/10.1088/1742-6596/2265/3/032091
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fail suddenly for quality or stress related failures causing a potential great revenue loss. This 

is particularly true for the complex mechanical components of the drivetrain, which: 

• are subject to varying environmental excitations, while coupling and being subject 

to the aero-, electro- and thermal-dynamic phenomena, and 

• are undergoing remodelling and innovations to accommodate bigger power rating. 

Several research activities have focused their effort on the investigation of monitoring 

systems and frameworks for assessing the health status of the offshore wind turbines 

drivetrain [3]. The CMS in combination with high frequency SCADA data have been 

extensively used to train data-driven models to learn the normal behaviour, predict the 

incipiency of a failure, and/or detect the failed status of components, such as the gearbox, 

the generator, and the drivetrain bearings [40], [41]. In [41], Stetco et al. documented the 

state-of-the-art ML algorithms and processes for the condition monitoring of wind turbines. 

Tautz-Weinert and Watson examined and discussed, in [40], the effectiveness of the several 

diagnostics methods for the condition monitoring of the turbines’ mechanical and electrical 

components, based on the use of  SCADA data only. However, it is evident from these 

literatures that the training of these data-drive models strongly relies on the availability of 

relatively big sets of data – generally at least for more than 3 turbine years. 

In addition to their merely design purpose, the aero-hydro-servo-elastic (AHSE) codes, 

built to represent the multi-dynamics of the offshore wind systems, can be deployed for the 

diagnosis and prognosis of critical failure modes – e.g., [158]. The complexity of the 

dynamics of the different systems can be captured by several level of fidelity in these 

physics-based numerical models – cf. Paper 10. In the recent years, a considerable research 

effort has been directed toward the creation of the so-called “digital twin” models. As 

defined in Section 1.1.1, a digital twin model can build on a physical-based model of a large 

engineering system, by first applying model-order reduction methods. A digital twin of the 

torsional dynamic model for the monitoring of the drivetrain failures has been already 

suggested by Farid et al. [21]. 

3.2 Problem statement and aim 

The components of the speed conversion system (i.e., gearbox) are among the ones with, 

potentially, the highest impact to the offshore wind farms’ OPEX and availability [159], due 

to their generally low reliability, the high cost of their spare parts and their generally long  

time to rectify their functionality. The availability of their CMS data, and labelled data 

indicating their health status, is generally limited. If data are collected, these are generally 

collected in either short-term or localised (restricted to only few turbine positions) 

monitoring campaigns, to reduce the cost related to the hardware and the storage of data 

(aka “on-demand” monitoring). Therefore, the scope of this chapter is to investigate how to 

build models for the prognosis and diagnosis based on low run-to-failure availability of data.  

In the specific, the case studies of these chapter are the focused on developing and 

comparing model-based (reduced order model towards the creation of wind farm digital 

twin) and data-driven approaches to support the detection of the failure of offshore wind 

turbines’ gearboxes.  

The first study is aimed to apply model-order reduction techniques on a full-order 

nonlinear AHSE code, to capture the key degree-of-freedom (DOF) of an exemplificatory 

gearbox failure mode. The targeted signal simulated from the reduced-order models 

(ROMs) is compared against the one outputted from the nonlinear full-order model results. 
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The scope is to draw conclusions on which method is the most suitable to be applied in this 

case study, when searching for a good representation of the targeted DOF while reducing 

the simulations computational time.  

The second work is aimed to apply a data-driven multi-task learning (MTL) approach 

for the monitoring of the health status of an offshore wind turbine gearbox. The purpose is 

to demonstrate how such a MTL hard parameter sharing approach can achieve greater 

results than a conventional machine learning (ML) one, when applied to a limited amount 

of training data. Therefore, the scope of this paper is to make a step forward the 

understanding of the suitable setup for the training of a satisfactory monitoring algorithms 

for an offshore case study based on a small set of representative failure data. 

3.3 Model-order reduction of wind turbine’s dynamics 

targeting a gearbox failure mechanism 

This work is organised as follows. Section 3.3.1 briefly revise the literature on the topic. 

Section 3.3.2 introduces the methodology, including a description of the nonlinear AHSE 

model, and the linearisation and the modal truncation (MT) methods applied. In Section 

3.3.3, the wind turbine, the failure mode of its gearbox, and a representative set of load cases 

are selected for this case study. Section 3.3.4 reports the results on the goodness of the 

ROMs, either linear or nonlinear, to capture the rotor torque signal is compared full-order 

models. Finally, Section 3.3.5 discusses the computational time reduction achieved by the 

several ROMs. The conclusions of this comparative study are compiled in Section 3.3.5.  

3.3.1 Model-order reduction methods 

Model-order reduction methods are well established and widely applied in a variety of areas 

– e.g. [160]–[162]. These methods include static reduction (e.g., [163]), dynamic reduction 

(e.g., [164]), and balanced methods (e.g., [165]) techniques among a lot of others. The 

majority of the ROMs rely on a linearisation of the nonlinear system, and the accuracy of the 

linear system is limited to a small perturbation around the operating point (OP). 

The Guyan’s condensation is a static reduction method which focuses on the reduction 

of stiffness and mass matrix [166]. This method does not lose the information on the 

structural complexity, and it results in a non-preserved eigenvalue-eigenvector problem, by 

the coupling of mass and stiffness matrix. An improvement to Guyan’s approach is the 

Improved Reduced System (IRS) method, proposed by O’Callaghan in [167]. This method 

suggests introducing a correction to the static reduction transformation to account for some 

allowance of the inertia forces. In [161], Friswell et al. developed a dynamic and iterated 

version of the IRS method. This method was shown to have some challenges in capturing 

the low frequencies of the full model with a large centre frequency. Additionally, as for the 

other dynamic reduction method, the IRS method comes to the same additional 

computational cost.  

The reduction methods mentioned above focus on the reduction of the system’s mass 

and stiffness matrix, derived from the linearisation of the system equations of motion. Based 

on the linearisation method, the balanced truncation (BT) approach deals with the 

reduction of the state-space matrix. It transforms the state-space matrix into a ‘balanced’ 

form without losing the system’s stability and passivity [168]. Based on different numerical 
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methods, BT can be further divided into Lyapunov balancing, stochastic balancing, bounded 

real balancing, and others [169].  

Currently, the ROMs applied to offshore wind assets are mainly employed in the field of 

control theory, by focusing on the modelling of the electric and electronic dynamics aspects 

of the wind turbine. For instance, Ghosh and Senroy [165] applied the BT method to reduce 

the dynamics model of a farm, by obtaining a ROM that retains the dynamic relationships 

between the variation in wind speed and the power output variations, accurately over a 

wide range of frequencies. However, the wind turbine structural and mechanical dynamics 

are substantially simplified, as they are represented by only one degree of freedom (DOF):  

the drivetrain rotational speed. Therefore, such approaches do to include the impact of the 

stochastic nature of the wind speed and the effects of structural dynamics on the drivetrain, 

generator, and other electrical parts.  

3.3.2 Methodology 

This section introduces to the approach adopted for the comparison ROMs. It additionally 

summarises the main modules of dynamics of the AHSE code, and the model-order 

reduction techniques implemented to decrease the DOFs of the wind turbine system.  

Suggested approach 

The workflow of this first case study is shown in Figure 3.1, by giving an overview to the 

inputs, the methods and the processes adopted for this investigation. A nonlinear, full-order 

AHSE model, which accounts for the simplified dynamics of the modular drivetrain, is used 

as a basis for the linearisation and the derivation of the ROM (a).  

 

Figure 3.1: Workflow of the inputs, methods, and processes. 
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A potentially critical failure mechanism of an offshore wind turbine system is selected 

(b), by following identifying its representative load case(s) and the significant DOF(s) for its 

representation (c). A linearisation technique is then applied to the nonlinear model, at the 

operating point (OP) representative of the load case(s) identified (d). The time signals of all 

the system’s DOFs are generated with the nonlinear, full-order model, and they are post-

processed to derive and rank the peak frequencies of each DOF (e). A linear ROM is 

developed, to base on it the MT method (g). In addition to the linear MT ROMs, nonlinear 

MT ROMs is also investigated (f), to discuss the pros and cons of the linearization approach. 

The results are then compared by quantifying the deviation of the targeted DOF(s) from 

each ROM and from the signal(s) generated by the non-reduced model (h). 

AHSE code 

The FAST code (version 8) is implemented in this analysis for modelling the nonlinear AHSE 

dynamics of the offshore wind turbine systems, and this section briefly recaps on the 

modelling approaches for each of the module of dynamics [170]. 

The aerodynamic of the forces on the single wind turbine are evaluated through the 

blade element momentum (BEM) theory, widely used in calculating aerodynamics of wind 

turbines – refer to Paper 10. The BEM theory consists of two coupled sub-theories, the blade 

element theory, and the momentum theory. The main advantage of the BEM theory lies in 

transforming the 3D problem into a number of 2D problems, significantly reducing the 

numerical complexity, especially when compared with more advanced computational fluids 

methods. Further details on the BEM theory are summarised and reviewed in Paper 7. The 

influence of the tower on the flow local to the blade is based on the downstream tower 

shadow model. The wind load on the tower and the tower shadow influence are calculated 

separately and superimposed. 

Table 3.1: Definition of the DOFs for the FAST AHSE code of a 
bottom-fixed three-bladed offshore wind turbine. 

System DOF Number 

Drivetrain Rotational 1 

 Generator azimuth 1 

 Nacelle yaw 1 

Tower 1st fore-aft (FA) tower bending  1 

 1st side-side (SS) tower bending  1 

 2nd FA tower bending  1 

 2nd SS tower bending  1 

Blade 1st edgewise   3 

 1st flapwise 3 

 2nd flapwise 3 

Rotor furl 1 

Tail furl 1 

 

A combined multi-body and modal analysis method is applied to determine the 

structural dynamic responses. The flexible elements, such as tower or blade, are modelled 

by a linear modal representation. In this full-order model of a three-bladed bottom-fixed 

offshore wind turbine, there are 18 DOFs – cf. Table 3.1. For each blade, there is one 

edgewise model and two flapwise modes. Tower flexibility modes are realised through the 
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fore-aft (FA) modes and the side-side (SS) bending modes, up to the second order. The 

remaining three DOFs are the drivetrain rotational DOF, the generator azimuth and the 

nacelle yaw motion DOF. The last two DOFs are for rotor- and tail-furl. 

Incident wave kinematics is modelled using Airy wave theory, for both regular and 

random waves. For regular waves, the wave elevation is modelled by a sinusoid wave with 

a certain frequency and amplitude. For random waves, superposition theory is applied, for 

which the irregular wave elevation is represented by a linear summation of different 

sinusoid waves. Wave forces are calculated using potential flow theory. Considering non-

rotational, inviscid, and incompressible problems, the wave-structural interaction problem 

can be determined by solving the Laplace equation, subject to a series of boundary 

conditions. The above-mentioned equations are solved numerically via the boundary 

element method in the frequency domain, considering different wave periods. Based on the 

Bernoulli's equation, wave diffraction forces are calculated in the frequency domain by an 

integral over the body surface using another solver, e.g., WAMIT [171]. Based on Cummins’ 

impulse response function theory [172], the first and second-order wave transfer functions 

are transferred from frequency domain to time domain using the Fourier Transform. 

Model linearization 

A wind turbine multi-body system is highly nonlinear, and it includes over a dozen DOFs 

even for a single wind turbine – cf. Table 3.1. The linearisation is used to build a linear time 

invariant (LTI), input-output equivalent system. It is realised by applying a state-space 

representation of the nonlinear system at the OP [173]: 

{
ẋ = 𝐴x+ 𝐵u
y = 𝐶x+ 𝐷u

 Equation 3.1 

The first step for linearisation is to determine an OP. The finding of an OP is important 

for the linearisation, as the linear system is valid only around a small perturbation from an 

OP. For the purpose of this study, the OP is determined in the nonlinear time-marching 

process through each sub-module. Further details on the linearisation for each sub-module 

and the final matrix assembly can be found in  [173]. 

Modal truncation 

There are two types of MT approaches. In the first type, it is assumed that the transient 

phase of the response of the states characterised by high-frequency dynamics vanishes 

more quickly than the transient phases of the states characterised by a lower-frequency 

dynamics. The second type of MT assumes that the derivatives of the high-frequency states 

are the states to be truncated [174].  

As derived in [175], the state-space equation in a vector form can be written as: 

{
[
ẋ1
ẋ2
]= [

Λ1 0
0 Λ2

] [
x1
x2
] + [

Bx1
Bx2
] u

y=[Cx1 Cx2] [
x1
x2
]+Du

 Equation 3.2 

For a wind turbine system, it is difficult to justify, at a physical level, the truncation of 

only the derivative of a state. Therefore, the first type of MT is here adopted. Under this 

condition, the Equation 3.2 becomes: 
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{

ẋ1=Λ1x1+Bx1u

ẋ2 = Bx2u

y = Cx1x1 + 𝐷u

 Equation 3.3 

3.3.3 Case study 

This section reports the characteristics of the offshore wind turbine, taken as reference for 

this study. It additionally explains and justifies the selection of the failure mode, its related 

DOF, and the corresponding relevant environmental condition around which the proposed 

ROMs are developed. 

Offshore NREL 5MW wind turbine on monopile substructure 

The model of the 5 MW reference wind turbine from the National Renewable Energy 

Laboratory (NREL) – refer to [176] – is use in this analysis to run the fully coupled AHSE 

simulations. The main characteristics of this offshore wind turbine installed on monopile 

foundation are summarised in Table 3.2. 

Table 3.2: Main characteristics of the NREL 5 MW wind turbine [176]. 

Parameters Value 

Rotor Orientation, Configuration Upwind, 3 Blades 

Control type Variable Speed, Collective Pitch 

Drivetrain type High Speed, Multiple-Stage Gearbox 

Rotor, Hub diameter 126 m, 3 m 

Hub height 90 m 

Cut-in, Rated, Cut-out speed 3 m/s, 11.4 m/s, 25 m/s 

Cut-In, Rated Rotor speed 6.9 rpm, 12.1 rpm 

Gearbox ratio 97:1 

 

Table 3.3: Natural frequencies of the full-order model. 

Mode Frequency [Hz] 

1st blade asymmetric flapwise yaw 0.6664 

1st blade asymmetric flapwise pitch 0.6675 

1st blade collective flap 0.6993 

1st blade asymmetric edgewise pitch 1.0793 

1st blade asymmetric edgewise yaw 1.0898 

2nd blade asymmetric flapwise yaw 1.9337 

2nd blade asymmetric flapwise pitch 1.9223 

1st FA tower bending  0.3240 

1st SS tower bending 0.3120 

2nd FA tower bending 2.9003 

2nd SS tower bending 2.9361 

1st drivetrain torsion 0.6205 

 

 



Chapter 3                                                              Condition monitoring of drivetrains: case studies 
 

47 

The soil profile is the one of the OC3 Phase II: a three-layered profile representing a 

medium-density sand. The soil-pile interaction is modelled with p–y curves, with an 

increasing stiffness proportionally with depth due to the effective stress increase from the 

weight of soil. To maximise power generation and regulate generator speed, the baseline 

collective blade-pitch control is deployed. Due to the linearisation approach implemented 

prior the model reduction, a simple variable-speed generator control is adopted. The 

generator has a rated speed of 1173.7 rpm and a rated torque of 43093.55 Nm. Further 

details on the baseline control for a 5 MW reference wind turbine can be found in [176]. 

For the validation and the comparison of the ROMs, the natural frequencies of the full 

system are provided in Table 3.3. The smallest and the biggest system frequencies are the 

one of the tower’s bending modes: the 1st SS mode has a value of around 0.3 Hz, while the 

2nd SS mode reaches about 3 Hz. 

Failure mode 

Previous studies showed that the components of the drivetrain have the longest downtime 

per failure [105]. In [177], Wang et al. claimed that the failures of the wind turbine gearbox 

are the main responsible of an increase in the downtime and a reduction of the reliability of 

the asset. This observation is supported by the analysis in Paper 8, which is based on the 

data collected by Carroll et al. in [62]. Therefore, the improvement of the gearbox reliability 

and identification of its failure inception have been among the main topics of research for 

the last 15 year. The Gearbox Reliability Collaborative (GRC) project [65], run by the NREL 

institute, states that “most gearbox failures do not begin as gear failures or gear-tooth design 

deficiencies”, but the failures “… appear to initiate at several specific bearing locations under 

certain applications, which may later advance into the gear teeth as bearing debris and excess 

clearances cause surface wear and misalignments”. By the combined use of full-scale 

dynamometer testing and high-fidelity simulations, the top bearing and gears failure are 

identified and ranked per criticality in [154]. 

The most severe failure identified and targeted in this work is the one related to the 

excessive tooth root bending stress deformation, which proportional to the transmitted 

contact force (Ft) [178]. The rationale behind this choice, over the possible failure of the 

rolling element of the bearing – as shown in [179] for the roller and ring cracks, and in [154] 

for their wear –, is: 

• the highest severity of the consequences of the failure. The gear wear and corrosion 

for contact stress, although more likely to happen [32], leads only to higher 

vibration and noise [35]. The high bending stress on the tooth from either high 

cycling fatigue or extreme loads, leads to tooth deformation and cracking, up to its 

final fracture. 

• the identification of the possible environmental causes and related DOFs is more 

straight-forward for gears than bearings.  

To support the latter observation, it must be noticed that, to identify the fundamental 

DOFs driving the failure, simplified physics considerations are preferred to more complex 

modelling. The high complexity models – from multibody to finite element models – are 

generally used for the bearings dynamics and loads calculation [180]. By contrast, in  [158], 

Nejad et al. showed that a simplified model can be sufficient to derive the main gear 

dynamics without the need for the multibody model. In these works, the simplified 

formulation for the transmitted contact force, expressed by assuming rigid bodies and 

contacts, zero damping gears, and neglecting their internal dynamics is: 
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𝐹𝑡 =
2

𝑑
𝑇 Equation 3.4 

The input torque (T) to the gearbox – here on referred to as “rotor torque” – is, thus, the 

DOF linked to the detection of the exceedance of the transmitted contact force, when 

considering the gear at the first stage of the gearbox  –  shown to be the one with higher 

criticality [158].  

Load cases 

A failure of the tooth root bending stress deformation in the gears of a wind turbine gearbox 

can be caused either by the high cycling fatigue or by the loads in extreme operating 

conditions. In [181], Nejad et al. observed that wind speeds near cut-out hold the highest 

contributions in extreme loads on gears in normal operations. Dabrowski et al. reached the 

same conclusion, while conducting a study on the implementation of a storm controller for 

the reduction of the probability of gear tooth failure in the first planetary stage of the NREL 

5 MW wind turbine [182]. Independently on the type of controller, they observed that 

already at operating conditions, the transmitted force at the tooth has higher averaged 

values in the case of extreme turbulence model (ETM) employment. Dealing with a bottom-

fixed structure, the influence of the wave excitation on the drivetrain load can be neglected 

[182]. Additionally, Nejad et al. showed that the load effect of the drivetrain components are 

mainly dependent on the axial force, the tower bending moment (a function of the thrust 

force), and the shaft torque (influenced by the power control system) [183]. 

For these reasons, a wind-only load cases with the wind turbine operating under ETM 

is selected for running 10-minute simulations. For the demonstrative purpose of this study, 

the set of possible wind speed is reduced to one load case only, for a wind speed at hub-

height of 24 m/s. For the linearisation, steady wind conditions are run. The stochastic inflow 

turbulent wind files are generated with the IEC Kaimal wind spectra model by running 

TurbSim tool, a computer-aided pre-processing software by NREL [184]. 

3.3.4 Results 

In this study, the full-order model of a three-bladed bottom-fixed offshore wind turbine, 

accounts for 16 DOFs, by excluding the rotor- and the tail-furl, generally used for modelling 

unusual bearing configurations – cf. Table 3.1. This section presents the models and the 

results of the simulations for deriving the drivetrain torque, by comparing the DOFs signals 

of the full-order nonlinear models to the one of the ROMs. 

Linear ROMs 

The first step for the linearisation is to determine an OP, which is a periodic steady-state 

condition of the system. At the OP, derivatives of the states are zero. It is important to set 

up the OP accurately as the linear representation of the nonlinear system is valid only for 

small perturbations around the OP. For setting up the OP, an initial rotor rotating speed 

equals 12.1 rpm is selected. As the steady horizontal speed is 24 m/s for ETM condition, the 

wind turbine operates in Region III [176]. By applying the baseline control, the 

corresponding blade pitch angle is 22.35 degree. After determining the OP for the full-order 

model, a single input single output (SISO) system with 32 states is set up; the input is the 

wind speed, and the output is rotor torque – cf. Figure 3.2. As the wind turbine blade was 
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rotating during operation condition, the linearisation is carried out every 36-azimuth angle, 

in a total number of 10 realisations. 

 

Figure 3.2: Linearised system input and output. 

For the validation of the linearised model, a mono-direction step wind profile is 

simulated in a 650 s long run: the wind speed of 24 m/s is stepped up to 25 m/s at 300 s. 

The linear model shows a good agreement with the nonlinear results at steady wind 

condition for either time histories of the rotor torque and tower top fore-after deflection – 

cf. Figure 3.3. However, the linear results are confirmed only around the OP; thus, a larger 

discrepancy between the nonlinear and linear results is evident a is at 25 m/s steady wind 

speed – e.g., Figure 3.3 (b). 

(a) Rotor torque (b) Tower top FA deflection 

  

Figure 3.3: Comparison of (a) rotor torque, and (b) tower top FA deflection for the full-
order nonlinear model and linear one, in response to a mono-direction step wind profile. 

 

(a) Rotor torque (b) Tower top FA deflection 

  

Figure 3.4: Spectra of (a) rotor torque, and (b) tower top FA deflection for the full-order 
nonlinear model at 24 m/s steady wind condition. 

To speculate on these results, the spectra of these two signals are reported in Figure 3.4. 

These signals are obtained by running the nonlinear model with steady wind inflow at 
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24 m/s, and by applying the Fast Fourier transform (FFT) to derive their power spectral 

densities. A possible reason for the higher oscillation of the signals of the nonlinear model, 

is the resonant response with the frequency of the blade passing in front of the tower (i.e., 

3P, 6P, 9P) – cf. Figure 3.4 (b). By contrast, this phenomenon cannot be well captured by the 

linear model. 

ROM based on MT method 

The workflow of the process to apply the MT method to the AHSE model to reduce its order 

is shown in Figure 3.5. The wind-only ETM load condition is used to run the full-order AHSE 

nonlinear model. The peak frequency of each of the output DOFs is identified through an 

FFT-spectral analysis. An example of how the peak frequency of 0.34 Hz is identified for the 

1st SS tower bending mode, is shown in Figure 3.6, together with the ordered ranking of the 

peak frequency for each of the mode considered in this analysis. 

 

Figure 3.5: Workflow of linear MT ROM. 

By applying the linear SISO model with 32 states, the MT ROMs are developed by 

excluding high-frequency states. Table 3.4 describes the corresponding DOFs enabled in 

MT1, MT2 and the full-order model. To comply with the aim of the study, and the need to 

model a variable speed generator and a drive train with a gearbox, the DOFs linked to the 

generator and the drivetrain are always included. Apart from the drivetrain rotational, the 

nacelle yaw, and the generator DOFs, the MT2 model includes the 2nd tower bending modes. 

On the other hand, the MT1 model includes all of the DOFs of the MT2 model and three blade 

modes. 

 

Figure 3.6: Definition on the peak frequency of each mode (explicit plot of the 
peak frequency picking for the 1st SS tower bending mode). 
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Table 3.4: List of DOFs considered in the models – i.e., full-order, and MT 
ROMs. 

System DOF 
Model 

Full-order MT1 MT2 MT3 

Drivetrain Rotational ✓ ✓ ✓ ✓ 

 Generator azimuth ✓ ✓ ✓ ✓ 

 Nacelle yaw ✓ ✓ ✓ ✓ 

Tower 1st FA bending  ✓    

 1st SS bending  ✓    

 2nd FA bending  ✓ ✓ ✓  

 2nd SS bending  ✓ ✓ ✓  

Blade 1st edgewise   ✓ ✓  ✓ 

 1st flapwise ✓ ✓  ✓ 

 2nd flapwise ✓ ✓  ✓ 

Comparison against full-order models 

Figure 3.7 visualise the results of the first two linear MT ROM (MT1 and MT2) against the 

linear and nonlinear full-order models. Due to the randomness in the numerical simulation 

of the turbulent wind time series, each load simulation includes five realisations. Each load 

case results are then reported by averaging the output across these five signals. The initial 

50 s of the rotor torque time series is excluded from the analysis, representing the transient 

part of the numerical simulations. The rotor torque signal, as simulated by the ROMs 

including 14 DOFs (MT1) and 5 DOFs (MT2), is compared against the one simulated by the 

full-order models, with 16 DOFs (i.e., full-order nonlinear and full-order linear). Due to the 

periodic steady linearisation process, it is difficult to include blade pitch control into the 

linearisation study. For this reason, the comparison is performed by additionally 

distinguishing between the full-order nonlinear model results carried out with and without 

blade pitch control. As it can be observed in Figure 3.7, the torque signals simulated by the 

full-order linear model and the linear MT ROMs have a generally good agreement with the 

nonlinear full-order model. 

 

Figure 3.7: Comparison of rotor torque time series (one realisation only) across nonlinear 
full-order and linear models. On the right, a close up for 5 s of simulation. 



Chapter 3                                                              Condition monitoring of drivetrains: case studies 
 

52 

To ease the comparison, the main statistics of the torque signal – i.e., minimum (Min), 

maximum (Max), standard deviation (StD), and mean value (Mean) – are plotted, in Figure 

3.8, in a bar plot across the several models. By excluding the pitch control, the rotor torque 

Mean is 10% larger than the one of the full-order nonlinear model. Compared to the full-

order nonlinear model with pitch control, the extreme values (Min and Max) of the linear 

MT1 model have only a little discrepancy. Furthermore, by comparing the linear MT2 model 

to the full-order linear and nonlinear models, it is evident that the removal of the 1st tower 

bending modes has no significant effects on rotor torque Max. In other words, when tackling 

the rotor torque Max, the 1st tower bending modes is not strongly coupled with other modes. 

 

Figure 3.8: Comparison of 
statistical data of the models, 
normalised against the ones of 
the full-order nonlinear model 
(with pitch control enabled). 

 
(a) Rotor torque (b) PSD rotor torque 

  

Figure 3.9: Comparison of rotor torque time series (one realisation only) across the 
nonlinear full-order and the linear models: (a) a close up for 5 s of simulation, (b) spectra 
of the signals. 

The spectrum of the torque signal obtained with the linear MT1 model shows a good 

agreement with the one of the full-order linear model, except for frequencies below 0.5 Hz 

– cf. Figure 3.9. This is due to the fact that the linear MT1 model does not consider the 1st 

tower bending modes. Although the linear MT2 model has a relatively good agreement with 

the full-order nonlinear model’s results in terms of Mean, its results are inaccurate for 

frequencies above 0.5 Hz. This discrepancies might be related to the inconsistency of the 
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wind input between linear and nonlinear approaches, and the fact that the MT2 model does 

not account for the blades DOFs. In the nonlinear models, the turbulent inflow wind is 

generated in TurbSim under ETM condition with the IEC Kaimal spectrum. Although the 

wind direction remains unchanged, the turbulence influences the blades motion, and 

eventually it influences the corresponding rotor torque signal. 

The mean squared error (MSE) – as defined in Section C.1 of the Appendices – is used to 

further compare of the spectra of the rotor torque signal simulated by the several models. 

The PSD MSE metric, together with all the other signal statistic are reported in Table 3.5. 

The smallest is the MSE, the closest is the rotor torque to the one of the full-order nonlinear 

model, which is taken as term of comparison. 

Table 3.5: Statistics of the rotor torque (kN) time series across the several models: nonlinear 
full-order models, linear full-order model, and linear MT ROMs. The MSE of the rotor torque 
spectrum is calculated by taking as reference the full-order nonlinear model’s output. 

 Nonlinear Linear 

 
Full-order with 

pitch control 
Full-order without 

pitch control 
Full-order MT1 MT2 MT3 

Min  1447.76 1992.60 1866.00 1928.39 2787.20 2428.94 

Max 6010.20 6140.00 6636.13 6554.89 5802.28 6033.15 

StD 671.52 529.95 650.44 621.77 407.73 471.38 

Mean 3726.29 4181.41 4182.77 4183.03 4222.30 4182.17 

MSE - 0.27 1.29 1.64 4.99 91.26 

Among the MT ROMs models, the MSE of the linear MT1 model is smallest one. The MSE 

then increased to 4.99 for the linear MT2 model. To verify the speculation on the link of this 

linear MT2 model underperformance to the exclusion of the blades’ DOF, a linear MT3 

model (another linear MT ROM) is built by excluding the tower DOFs, but by including the 

blades and the yaw DOFs – cf. Table 3.4. As it can be observed in  Figure 3.9, the difference 

between the torque spectra obtained with the linear MT3 model and the one of linear MT1 

model are relatively small. However, the output of linear MT3 model is characterised by a 

relatively higher MSE – cf. Table 3.5. This can be explained by the difference in response of 

the linear MT1 and MT3 models, for frequencies below 2.5 Hz, where the absolute value of 

the power is much higher than that the one of the other frequency ranges.  

This study shows that not only the coupling effects between DOFs but also the 

linearisation process contribute to the differences between the linear ROMs and the full-

order nonlinear models, as the linearisation is only valid for small perturbation of the OP. 

Because nonlinearities may influence the dynamics of wind turbine structures, especially in 

the low-frequency response, the next section investigates the nonlinear ROMs. 

Nonlinear ROMs 

As discussed previously, the advantage of a ROM based on the application of a MT method 

is its capability of selecting which state to include in, and/or exclude from, a state-space 

model. A state in the state-space equation corresponds to a DOF in the nonlinear motion 

equation. The MT approach followed excludes the high-frequency states from the nonlinear 

equation of motion, and thus the corresponding DOFs.  
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Figure 3.10: Workflow of nonlinear MT ROM. 

The workflow in Figure 3.10 shows the process to derive the nonlinear MT ROMs. The 

signal of the rotor torque is generated by running a full-order nonlinear model simulation 

in a wind-only with ETM. By using the same peak frequency ranking, as showed in Figure 

3.6, the nonlinear MT ROMs are developed. The DOFs enabled in each ROM are according 

Table 3.4. As opposed the linear model analysis, only the full-order nonlinear model 

enabling the pitch control is used as term of comparison. 

 

Figure 3.11: Comparison of 
statistical data of the models, 
normalised against the ones of 
the full-order nonlinear model 
(with pitch control enabled). 

 

(a) Rotor torque (b) PSD rotor torque 

  

Figure 3.12: Comparison of rotor torque time series (one realisation only) across the 
nonlinear models: (a) a close up for 5 s of simulation, (b) spectra of the signals. 

As it can be observed in Figure 3.11, the Mean of the rotor torque resulting from all the 

nonlinear MT ROMs are in very good agreement with the one of the full-order nonlinear 

model. The rotor torque time signal simulated with the nonlinear MT2 model, has the 
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highest discrepancy to the full-order nonlinear model – i.e., higher variation of the signal 

than any of the other nonlinear MT ROMs.  This behaviour has been already observed in the 

linear MT2 model – cf. Figure 3.8. Therefore, it can be inferred that the exclusion of the 

blades modes has a high impact to the rotor torque response, independently on the model 

linearisation. However, the use of a nonlinear model prior the application of the MT method 

seems to be slightly beneficial for this application. As concerns the nonlinear MT3 model, it 

can be noticed that its simulated rotor torque is in better agreement with the one simulated 

with the full-order nonlinear model, than by using the nonlinear MT1 model – which 

additionally includes the tower’s DOFs. 

By looking at the spectra, it can be observed that the nonlinear MT3 model has the best 

agreement with the full-order nonlinear model. This is confirmed by the MSE in Table 3.6, 

where it is evident that the output from the nonlinear MT1 and MT2 model has a much 

different energy content than the one of the full-order nonlinear model. It is evident, from 

Figure 3.12, that the discrepant peaks of the nonlinear MT1 and MT2 model, in the 

frequency range between 0.5 and 1.5 Hz, have a greater contribution to the absolute value 

of the power. The spectrum of the nonlinear MT3 model shows instead discrepancies for 

frequency values above 3 Hz, which however have a smaller contribution to the MSE due to 

the much smaller value of the power spectra. 

Table 3.6: Statistics of the rotor torque (kN) time series across the several models: 
nonlinear full-order models, and nonlinear MT ROMs. The MSE of the rotor torque spectrum 
is calculated by taking as reference the full-order nonlinear model’s output. 

 
Full-order with 

pitch control 
MT1 MT2 MT3 

Min  1447.76 1280.66 2040.00 1313.36 

Max 6010.20 6352.60 5503.80 6426.20 

StD 671.52 722.40 594.44 700.49 

Mean 3726.29 3726.34 3726.34 3727.57 

MSE - 217.27 188.99 2.03 

3.3.5 Discussion on reduction of computational time  

The computational-cost benefits of applying model-order reduction methods for this case 

study is presented in terms of simulation time in Figure 3.13. Without considering the time 

taken by the linearisation process – i.e., to generate the state-space matrix, which has to be 

done only once –, the simulation time required for the run of the linear models is only 

around 7% of the time required for the full-order nonlinear model. The simulations with 

the nonlinear MT ROMs take almost as long as the full-order AHSE code. The processing 

time for the nonlinear full-order model, on a Windows personal laptop (Intel ® Core i7-

3770 CPU @ 3.40 GHz, 8 GB RAM), is 8.06 min for a 10.83-min real-time simulation.  

The simulation time of the most performing among the MT ROMs – nonlinear MT3 

model – is around 0.32 min shorter than the full-order, non-linear model. Although this 

might not seem a substantial reduction of the computational time, it should be considered 

that this study is relative to a single wind turbine, and a single load case only. The currently 

planned and future offshore wind project consist of hundreds of offshore wind turbines. 

Furthermore, a predictive model for the diagnostics and prognostics of an offshore wind 

turbine drivetrain requires for several load cases and coupled dynamics. To move towards 
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the development of a digital twin for the detection of the drivetrain failure at the wind farm 

level, even small-time savings can have a great impact.  

 

Figure 3.13: Normalised simulation time against the one of the 
full-order nonlinear model. 

3.4 Data-driven detection of gearbox health status 

based on low availability of run-to-failure data 

This work is organised as follows. Section 3.4.1 provides a brief overview of the deep ML 

models and the theoretical basis of the MTL approach. Section 3.4.2 presents the case study 

of this alarm-identification task, by transferring the knowledge between two offshore wind 

turbines (of 1 MW rating) from the same homogeneous population. In Section 3.4.3, the 

approach followed for the comparison of the performance of a MTL model against the 

conventional ML model is introduced. This section additionally provides details on the 

methods applied for the data pre-processing and the model training. Section 3.4.4 reports 

the regression and classification results of the models. Finally, in Section 3.4.5, the benefits 

and limitations of the MTL approach are discussed. 

3.4.1 Multi-task learning 

The machine learning algorithms that adopt shallow structures generally struggle to 

acquire abstract features minimizing the probability distributions among varying domains. 

Mathematically, there is a neutral network (NN) architecture function f(x) = y that can map 

the attributes x = x1, x2, ..., xn to the output y.  The Universal Approximation Theorem states 

that there is an architecture, no matter what f(x), that can approximate y; however, the 

accuracy is dependent on the architecture and the dataset [185]. With the computers 

becoming more and more powerful, the large NN architectures – also called deep neural 

networks (DNN) –, and the convolutional neural networks (CNN) are showing significant 

promise as opposed to shallow networks. The main differences between shallow networks 
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and the DNN – or the CNN – is in the architectural shape and in an increased number of 

hidden layers.  

A conventional ML typically involves optimising for a particular task T = (y, f(x)), where 

y is the output feature domain and f(x) is the predicative function made up of X feature data. 

The model that is trained for a single task may achieve an acceptable performance for a 

single domain D = (x, p(x)) of marginal probability distribution p(x). However, by focusing 

on one signal task, it might be that other information – which may help the model to perform 

better on other metrics related to that task – goes overlooked. In a multi-task learning (MTL) 

approach for DNNs, a model seeks to learn shared hidden representations on different 

datasets and for the different tasks. The most widely used approach for MTL with neural 

networks is hard parameter sharing [186], in which the models learns a common space 

representation on a source dataset by completely sharing weights and/or parameters 

between the different tasks. Task-specific layers are then used to model the different tasks, 

by learning independently for each tasks based on the same source dataset or other specific 

target datasets [187]. 

The MTL models come in a plethora of forms: joint learning, learning to learn, and 

learning with an auxiliary task, are among some of the names that have been allocated to its 

predictive assignment. To generalise the need for its application, it can be stated that a MTL 

approach is worth being investigated as soon as the problem requires optimising for more 

than one task. The MTL approaches have been employed across many fields of application 

requiring a supervised prediction of one or more classes. For instance, they have been 

deployed for image quality assessment [188], facial recognition applications [189], and 

deep reinforcement learning [190]. 

3.4.2 Case study 

The analysis presented in this case study is built on time series data from 1 MW offshore 

wind turbines, in normal operation. The signals from the SCADA and CMS consist of 8 

monitoring channels, recording the 10-minute mean. These channels include 

meteorological information, the operational data of the wind turbine, and the vibrational 

data from the gearbox, with the associated warning raised in case of anomalies. This latter 

provides the (binary) label targeted in the training of the classification models. For 

practicality reasons, these channels – the features of the ML models – are following referred 

to according to the below numbering convention: 

(1) Power operating regime [-] 

(2) Gearbox gear oil temperature [°C] 

(3) Power [W] 

(4) Generator speed [RPM] 

(5) Wind speed [m/s] 

(6) Gearbox vibration root mean square (RMS) [-] 

(7) Gearbox vibration peak-to-peak (P2P) [-] 

(8) Gearbox alarm (0 or 1) [-] 

A dataset containing 31,804 time-steps (ca. 220 operational days) is collected from a 

turbine and it is referred to as source domain data. Another turbine from the same 

homogeneous population – whose distributions of the individual features are similar – is 

characterised by a smaller dataset of 8,141 time-steps (ca. 56 operational days), which is 

referred to as target domain data. The source domain data has alarm signatures for 19% of 
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the data in the set, and the target domain data has a similar a portion, with 18%. These two 

datasets are representative of an existing wind turbine and a newly installed turbine.  

3.4.3 Methodology 

The approach and the methods used for the training and the comparison of models 

predicting, in binary form, the status of an offshore wind turbine gearbox is presented in 

this section.  

Suggested approach 

Two different models and two sets of data are investigated in this study. Figure 3.14 reports 

the workflow of the data and their deployment for the training of the predictive models. On 

one side, a conventional model is trained and tested on the small set of monitoring data. On 

the other, a MTL approach is set up by merging a feature extractor – trained on the large set 

of monitoring data –, to a classifier which predicts, in binary form, the status of the gearbox. 

 

Figure 3.14: Workflow for the training of the conventional and the MTL models. 

The MTL model is built up in two training stages, and by using both datasets. The 

knowledge acquired from the source domain data is transferred to the learning from the 

target domain dataset, to leverage the prediction of the gearbox status. At first, a feature 

extractor (i.e., regression model) is trained on the larger set of monitoring data. This model 

uses the SCADA data and makes predictions on the vibrational data from the gearbox. A 

classifier is then merged to this first model, by using a hard parameter sharing and 

connecting the last neurons from the artificial NN to the first layer of a CNN (i.e., 

classification model). The weights of the neurons of the regression model are fixed, and the 

entire model is trained using the target domain dataset, to determine whether the gearbox 

is running into a problem.  

The conventional model takes the same architectural form as the artificial NN regressor 

and the convolutional neural network classifier together, but it is trained by using only the 
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data from the target domain dataset – i.e., the smaller dataset. This classification model 

receives the CMS and SCADA data in input, and it outputs the gearbox binary status. 

Data pre-processing 

The datasets used for the training and testing of a machine learning algorithm generally 

require some pre-processing to ensure good performances of the prediction model. For the 

application in this study, this consists of a two-step procedure.  

First, a data cleaning process is performed for removing the outliers and the missing 

values. For the treatment of the missing values, time instances of the database are removed 

from the analysis if over the 50% of the data is missing. The outlier removal, this is 

processed by removing vectoral instances where the values should be scalar. For the 

remainder of the data, a K-nearest neighbours imputation method was applied [191].  

The data, as pre-processed at the first step, are then split into training and testing sets. 

In the specific of this experiment, the 80% of the data is employed for the training of the 

models, of which the 40% of it to be used for the models’ validation (parameter tuning). The 

remaining 20% is used for the final testing. 

Machine learning algorithms and metrics 

Three models are trained for the purpose of this comparative analysis: a feature extraction 

model, the classification model used for the MTL procedure, and a conventional 

classification model.  

The feature extractor takes as input the meteorological data, the wind turbine 

operational data, and the gear oil temperature, and then outputs the gearbox vibration 

features. This model, having a DNN architecture, consists of 14 sequential layers, all 

implementing a rectified linear unit (RELu) activation function. The utilisation of a uniform 

variance scaling allows the NN to train extremely deep rectified models directly from 

scratch [192]. The optimiser used for the regression feature extraction is the so-called ‘

Adam’, which is effective for noisy, nonlinear data and it is derived from the adaptive 

moment estimation [193]. 

The MTL with hard parameter sharing is carried out by merging the classification model 

to the feature extractor model. This first one has a CNN architecture, featuring one 

convolutional layers of width 64 and utilising the RELu activation function. This is followed 

by a drop out of 0.5 to further four layers of a one-dimensional convolution, which 

implements the sigmoid function - commonly used in classification models. The kernel 

initialisation of the weights for the CNN uses uniform variance scaling. A standard gradient 

descent with Nesterov Momentum is employed to improve the accuracy while dealing with 

noisy data from the vibration signals, with a learning rate of 0.1 and a momentum of 0.9. 

Lastly, the cross-binary entropy loss function is implemented to distinguish the gearbox 

status class. 

For a consistent comparison, the conventional classification model has the same 

architecture of the feature extractor and the classification model together. However, the 

main differences to the hard parameter sharing model lies in: 

• the binary cross entropy optimiser is applied to the whole model, 

• the entire model is trained in one process and one dataset, and 

• the model only has one output stream of information representing the gearbox 

status class. 
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3.4.4 Results 

The correlation plot in Figure 3.15 reports the Pearson’s correlation of the dataset signals. 

In machine learning applications, it is generally the case that, the higher is the correlation 

between the data, the better is the chances of the predicative character of the model on the 

targeted task. It can be observed that the first five features have no relation to the gearbox 

alarm (8). On the other hand, the correlation between the vibration data – features (6) and 

(7) – and the gearbox status is higher. 

 

Figure 3.15: Linear correlation for 
all the features, the first five 
features are the inputs for both the 
regression model and the 
traditional model. The vibration 
signals are the outputs of the 
regression aspect hard parameter 
transfer model, and the Error is 
the output of the full hard 
parameter transfer model and the 
conventional model. 

 

  

 

Figure 3.16: Visualisation of the regression 
model performance on the test set. The 
model is trained on the source domain data, 
to predict the P2P value of the gearbox 
vibration signal (7) from the other input 
features (1-5). 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(1) (2) (3) (4) (5) (6) (7) (8)

0.6

1.0

0.4

0.2

0.0

0.8



Chapter 3                                                              Condition monitoring of drivetrains: case studies 
 

61 

The regression model makes use of the SCADA data from the larger, source domain data 

set to predict on the CMS gearbox vibration – targeting channel (6) and (7). The training 

stage is carried out over 1,000 epochs having a total of 388,803 trainable parameters. To 

validate the prediction of the model new, unseen data from the wind turbine is fed into the 

model. In the validation phase the best performing model scores a MAPE of 27.00% and a 

R2 of 68.61% – see Section C.1 of the Appendices, for the definition and explanation of these 

regression metrics. These scores are deemed sufficient for the purpose of this process: fix 

and merge the weights for the MTL hard parameter sharing. The optimisation of the models, 

and of the model for the prediction of the gearbox vibration, is not the scope of this 

comparative study. A visualisation of the predictions of the model on the test set is reported 

in Figure 3.16, for the targeted channel (7). 

Table 3.7: Performance metrics of the MTL and conventional 
classifiers on the test set of the target domain data. 

 acc F1-score 

Conventional classification  83.76% 57.56% 

MTL hard parameter sharing  91.29% 69.54% 

 

The performances of the two classification models are reported in Table 3.7 – see 

Section C.2 of the Appendices, for the definition and explanation of these classification 

metrics. The MTL classification model trains 83,329 parameters over 1,000 epochs. 

Compared to the feature extractor, this model uses significantly less data points for its 

training phase, and it scores an accuracy (acc) of 91.29%, and an F1-score of 69.54% on the 

test set of the target domain data. The conventional classification model undertakes the 

same training process as the MTL one, and it scores an acc of 83.76%, and an F1-score of 

57.56%, on the test set of the target domain data.  

3.4.5 Discussion and comparison of predictive models 

It is evident, from Table 3.8, that the MTL model scores a better accuracy and F1-score than 

the conventional one on the test set of target domain data, despite being trained on the same 

dataset for the classification task.  

The comparison continues, in Table 3.8, on the results related to the set of test data of 

the source domain dataset. This table additionally reports the false positive rate (fa) – see 

Section C.2 of the Appendices for the definition and explanation of the classification metrics. 

In this case, it can be observed that, overall – in terms of accuracy and false alarms rate –, 

the MTL model still performs better that the conventional one in the classification task. 

However, on the set of unforeseen but homogeneous data the MTL model forecast has a 

lower detection rate – cf. the F1-score – than the one of a conventional model. 

Table 3.8: Performance metrics of the MTL and conventional classifiers 
on the test set of the source domain data. 

 acc F1-score fo 

Conventional classification  80.87% 46.17% 13.17% 

MTL hard parameter sharing  86.68% 36.46% 9.93% 

 

An important aspect worth mentioning, and that has not been investigated in this study, 

is the effect of the varying the sample size of the failure data in these unbalance datasets. 
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Furthermore, there might be a crossover point where a conventional model might 

outperform the model built with a MTL approach. The current understanding of a 

conventional machine learning model is that the larger are the data and the network, the 

greater is its accuracy. 

3.5 Conclusions 

To deal with two case studies related to the offshore wind turbine gearbox failures and the 

lack of a sufficient set of run-to-failure data, two approaches are suggested and tested in this 

chapter. The first analysis sets a framework for the reduction of the offshore wind turbine 

model for developing a digital twin model able to capture possible drivetrain anomalies. 

The second analysis investigates data-driven approaches. A multi-task hard parameter 

sharing approach is compared to a conventional neural network classifier, to outline the 

benefits of the transfer learning for small database of run-to-failure data. 

The first study developed and compared modal truncated reduced-order models (MT 

ROMs), for a single offshore wind turbine, with the purpose of capturing a key DOF – the 

rotor torque – that can be linked to the presence of a critical failure mode – extreme load 

crack of a gear tooth in the first stage of the gearbox. The aim is to build a model able to 

reproduce the significant dynamics of the full-order, nonlinear AHSE model, at a reduced 

computational cost. Both linear and nonlinear MT ROMs are investigated, and their 

resulting torque signals are compared to the one of the full-order models. Based on the case 

study selected, the main findings are: 

• The linear MT ROMs are recommended for evaluating the rotor torque mean value 

only, while they cannot represent well the extreme values of this signal. 

• The rotor torque is more sensitive to blade modes than tower modes. The MT ROMs 

including all the blade modes, while excluding all the tower modes, show better 

results than the MT ROMs with only a selected number of tower and blade modes. 

• The spectral analysis demonstrates that the nonlinear effects have an essential 

contribution to the rotor torque signal for frequencies below 0.5 Hz. If the failure is 

expected to be captured at a frequency below 0.5 Hz, then the nonlinear MT ROMs 

should be deployed, as the linear ones fail to accurately capture the torque signal. 

• Linear ROMs provide an easier and faster way to study the coupling effects between 

DOFs, as it can save up to 93% of the simulation time. 

• The implementation of the model-order reduction approach (i.e., modal truncation) 

on the nonlinear AHSE model results in the best representation of the rotor torque. 

However, this comes with only limited savings on the computational time (about 

2.2% for the most promising model). 

• Even this slight reduction of the computational time that might seem not significant 

for a single wind turbine, can save the simulation time for the order of months when 

applied to the simulations of a typical offshore wind farm – consisting of about 100 

wind turbines and covering about 1,000 load cases. 

The second study demonstrated the successful deployment of multi-task learning (MTL) 

approach for a neural network (NN) model with hard parameter sharing. This work has 

highlighted how the MTL accelerates the accuracy of data-driven condition monitoring for 

a limited amount of failure data. This is achieved by implementing the two different cost 

functions, so that the model is better suited at extracting the features correlated to the 

alarm, and at classifying with a reduced noise and overfitting phenomenon. The power of 



Chapter 3                                                              Condition monitoring of drivetrains: case studies 
 

63 

the MTL learning lies on the maximisation of the usable information from the data: a 

(regression) model learns the relationships across the signals, which are then passed as 

features of the (classification) model for the failure detection.  By contrast, a classical NN 

(classification) model learns only based on one task, for which, however, the amount and 

quality of data play a fundamental role. Based on the case study selected, the main findings 

are: 

• The MTL hard parameter sharing approach, which underwent a training on ca. 220 

days to learn the hidden patterns among the features for the classification task, 

outperforms a conventional classification model on the detection of failure events 

on a smaller dataset of ca. 56 days. 

• There is a trade-off in the benefit of MTL, and future works should include the 

investigation of the impact of varying database size and ratios of representative run-

to-failure data. 
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Chapter 4 

4 Numerical models for the structural 

health monitoring and sensitivity to 

structural failure mechanisms 

Structural failures of offshore wind substructures might be less likely than failures of other 

equipment’s of the offshore wind turbines, but they pose a high risk due to the possibility of 

catastrophic consequences. The availability of numerical models, able to replicate the structural 

dynamics of turbine, unlocks new opportunities to investigate scenario for which no, or only a 

limited amount of, data are available. The combination of the knowledge from the data with the 

power of a simulation tool builds the digital twin technology. This chapter introduce to data 

collected, the virtual prototypes, and the digital twin of an offshore wind turbine on jacket 

substructure – case study of the remainder of this thesis. It additionally presents the methods 

deployed to support the damage detection frameworks developed in following chapters. Finally, 

several damage scenarios are implemented, analysed, and discussed for their impact to the global 

structural response and fatigue accumulation on critical areas of the jacket substructure. The 

results have been generated to support some of the analysis performed for the ROMEO project 1, by 

publishing a summary of the main findings in an open-access report 2. 

4.1 Background 

Although most of structural damage events are not likely to reach a safety-critical level, their 

late detection can lead to critical consequences which will result to high cost of mitigation 

 

 

 
1 C. S. Wendelborn, D. Cevasco, et al., (2020), “D4.4 Implementation of low-cost monitoring 
algorithms”, ROMEO deliverable. 

2 A. Kolios, D. Cevasco, C. S. Wendelborn, and C. Y. Baonza, (2022), “D4.6 Final report on best practice 
guidelines for future wind farm structural condition monitoring using low-cost monitoring”, ROMEO 
deliverable. 
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actions [47]. Furthermore, the technical assessment and knowledge of the status of the 

turbine’s structures are necessary to prove that operating assets can maintain the required 

safety levels during lifetime extensions [156]. To address these issues, the digital twin 

technology – as introduced in Chapter 1, Section 1.1.1 – can be applied to continuously 

monitoring the condition of the offshore wind turbine structures.  

4.1.1 True digital twin technology 

In [17], Augustyn extended the research on the “True Digital Twin” (TDT) to estimate the 

fatigue damage accumulation for joints and other fatigue-driven structural components of 

offshore wind jacket substructures. Firstly, he investigated a two-step calibration approach 

to tune the parameters of the virtual prototype – Finite Element Model (FEM) –, available 

from design phase, to the measurements from the vibration based SHM sensors installed on 

the WT structure [194], [195]. Then he suggested a probabilistic framework for updating 

the structural reliability of wind turbine substructures based on the digital twin, in view of 

the decision-making process for performing inspections [196]. 

 

Figure 4.1: Digital twin framework for improved decision models in an offshore oil 
and gas application, from [15], [16]. 

The first model calibration is a data-driven process performing a FEM model updating  

(FEMU), to find a match between the model eigenfrequencies and measured modal 

properties [194]. This calibration procedure consists of the following steps, 

1. An engineering-, and expert-, based updated of the virtual prototype is performed 

to integrate the offline information on the structural health status of the offshore 

wind turbine. 

2. The acquired SHMS data are processed: (i) by extracting the global modal properties 

from the vibrational signal via system identification techniques, (ii) by clustering 

(manually or with data-driven techniques) these modal properties based on the 

environmental and operating conditions from the SCADA system data. 

3. A data-driven model updating of the wind turbine support structure is performed 

by tuning a selection of the FEM parameters according to the pre-set confidence 

levels. 

The updated numerical model to the modal properties can be then used to 

deterministically reassess the fatigue life of the assets. This procedure has been shown to 

have the potential to increase the lifetime of the offshore wind asset installed on jacket 

substructures [197].  

To further reduce the modelling uncertainties for the estimation of the fatigue damage 

cumulated in the structural elements of the substructure, a FEMU to the wave loading can 
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be implemented  – as demonstrated in the ROMEO’s deliverable D4.5 [198]. The scope is to 

calibrate the wave load model such that the predicted stress distribution corresponds to the 

measured distribution from the modal decomposition and expansion (MDE) algorithm. For 

this purpose, the MDE algorithm utilises vibration and strain sensor data, as well as the FEM 

model updated to the modal parameters [194]. The reader is referred to [195] for more 

information on the MDE process. 

4.1.2 Calibration based on modal parameters 

In [194], Augustyn deploys the reference wind turbine of the ROMEO project, from the 

Wikinger wind farm – following illustrated in Figure 4.3 and described in Section 4.3 – as 

demonstrator to the first data-driven model updating procedure. This approach which is 

used to find a match between the model eigenfrequencies and measured modal properties, 

is briefly summarised in Section 4.4.1. Due to the characteristics of the wind turbine support 

structure in his analysis, no distinction is made between the fore-aft (FA) and side-side (SS) 

vibrational motion. Furthermore, by neglecting the measurements associated to the 

misaligned wind and wave excitation, the 1st torsional mode – potentially in the same 

frequency range – is not extracted and thus unused in the calibration process. More 

information on the models and the naming adopted in the Table 4.1 is given in Section 4.4.1. 

Table 4.1: Global modal frequencies as extracted from the measurements and as 
numerically represented in the FEMs, and comparison of the modelled.  

 Frequency [Hz] MAC 

 1st FA 1st SS 2nd FA 2nd SS 1st FA 1st SS 2nd FA 2nd SS 

Measured/Extracted 0.32 0.32 1.96 1.99 - - - - 

As-designed FEM 0.30 0.30 1.37 1.40 0.96 0.98 0.85 0.93 

As-built FEM 0.31 0.31 1.57 1.63 0.97 0.99 0.98 0.99 

As-installed FEM 
(digital twin) 

0.32 0.32 1.94 2.00 0.96 0.98 0.99 0.99 

 

The discrepancy between the measured (as installed) and the numerically modelled (as 

built) global frequencies is reduced from 3.1% to 0.3% for the 1st tower bending modes, and 

from a maximum of 20% to 1.0% for the 2nd tower modes – cf. Table 4.1. Furthermore, the 

consistency of the model shape to the measured one (i.e., MAC values) generally improved 

after the update, reaching a value of 0.99 for the 2nd FA tower mode from the initial 0.85 of 

the design. To visualise the status of the WT after the calibrating procedure, a sketch of the 

Campbell diagram of the WT numerical models is presented in Figure 4.2. The diagram is 

drafted by employing the maximum rotor speed of the Adwen AD-5MW turbine [199], and 

by assuming for the minimum and rated rotor speed – by using NREL 5MW turbine [176] 

as reference.  

It is evident that the turbine has a soft-stiff design, with the 1st natural frequencies of 

the tower bending modes falling between the 1P and the 3P. These frequencies are only 

slightly affected by the calibrating procedure – note that these lines overlap in Figure 4.2 –, 

by reaching a maximum difference of 3.2% between the as-built and the as-installed models. 

By contrast, as a consequence of the model updating procedure, the 2nd tower bending mode 

– in the FA direction more than in the SS – is about 23% stiffer than in the as-build model. It 

additionally gains some reserved on the 6P and 9P resonant response, which can lead to 

some saving on the structures’ fatigue damage accumulation. 
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Figure 4.2: Sketch of the 
Campbell diagram of the 
WK64 turbine FEMs – cf. 
Section 4.4.1 – with the 1st 
tower bending frequency 
(overlapping for FA and 
SS, and for all numerical 
models), and 2nd tower 
bending frequencies (only 
in the FA direction). 

4.2 Problem statement and aim 

The margin between the 2nd tower bending modes – cf. Figure 4.2 – of the as-designed and 

the as-built models, is due to the implementation of environmental phenomena and 

structural changes – e.g., corrosion, scour, marine growth – up to the design allowances. It 

is usually the case that such phenomena, and critical structural failure events, make the 

structure “softer”, decreasing the frequencies of the global modes and potentially varying 

their mode shapes. This change in the dynamic behaviour rarely cause catastrophic failure, 

but it can have a considerable impact of the expected life. 

The decisions taken in the design phase – i.e., design safety factors –, together with the 

planned of scheduled maintenance activities, are generally sufficient to cope with these 

degradation events. As a consequence of the current increase of the investment in bigger (in 

size and in number) offshore wind projects and of the relatively small global supply chain, 

the future offshore wind assets are more likely to be characterised by inherent 

manufacturing defects and loadings miscalculations caused by human-error. Therefore, the 

scope of this chapter is to investigate what and how the failure scenarios can affect the 

response of the WK64, and if their impact can be critical for the turbine’s operability and 

fatigue life. 

4.3 Case study 

An Adwen AD-5MW wind turbine generator installed on a 4-legged jacket substructure 

structure is taken as a reference for the studies conducted in this chapter, and in Chapter 5 

and 6. This structure sits in the 350 MW Wikinger wind farm, which is in the German 

exclusive economic zone of the Baltic Sea, and it consists of other 70 offshore wind turbines 

of the same type. The water depth at the reference turbine location (referred to with the 

acronym of WK64) is approximately 38 m at the mean sea level. The pile penetration depth 

is approximately 30 m beneath the seabed, which mainly consists of cohesive clay. This 

wind turbine belongs to the 10% of the structures with a SHM system installed. The setup 

of the monitoring systems, and the naming convention for the sensors and the structural 

elements’ levels are illustrated in Figure 4.3.  
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As is generally recommended for offshore turbine structures [200], the accelerometers 

are installed at 3-4 levels, including the tower-top (section A-A), around the mid-tower 

(section B-B), the tower base (section C-C), and jacket base (section D-D). These consist of 

a set of four triaxial accelerometers, at each leg of the transition piece, and three biaxial 

accelerometers, along the tower sections. This sensor configuration aims to extract the first 

five global dynamic modes of the structures, consisting of the 1st and 2nd global bending 

modes of the tower, both in FA and SS directions, and the 1st torsional mode of the support 

structure. Other installed high-resolution monitoring systems comprise: an inclinometer at 

the tower base, and a set of temperature sensors and strain gauges on the jacket legs.  

 

Figure 4.3: Wind turbine geometry and SHM system. The x and y axes are 
oriented along north and west directions, respectively. 

4.4 Methods 

This section introduces to the models, the methods and the metrics deployed for the 

analysis of this chapter, and for the generation of the simulation data for Chapter 5 and 6.  

The numerical models of the virtual prototype and the digital twin of the WK64 offshore 

wind turbine are described in Section 4.4.1. A simplified representation of the WK64 turbine 

and the beam model of the jacket substructure are modelled by using the Ramboll’s in-house 

software namely ROSAP (Ramboll Offshore Structural Analysis Package) [201]. This section 

summarises the assumption for the modelling of the as-designed and the as-built 

representation of the WK64 asset, and for the calibration of the model to represent the as-

installed condition.  

Sets failure scenario, which are deemed worth being investigated due to their potential 

criticality to the system dynamics and fatigue life, are integrated in the as-built virtual 

prototype, as explained in Section 4.4.2. These are differentiated, based on their failure 

mechanisms, into the extreme (abnormal) site conditions and the structural damage events. 

Finally, Section 4.4.3 introduces to the numerical analysis run to generate the results of 

the sensitivity, of the modal properties and the structural components’ fatigue life, on the 
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failure scenarios. The general-purpose finite element software of ROSAP, version 53, is used 

to perform static and dynamic analysis of offshore structures. The AHSE code of LACFlex is 

deployed to run, in a semi-coupled manner, the dynamic analysis of a representation of the 

Adwen AD-5MW offshore wind turbine. Thus, these numerical simulations capture the 

operating states and aerodynamic responses of the WK64 turbine.  

4.4.1 Modelling of WK64 wind turbine 

Two numerical representations of the wind turbine structure are used in this thesis:  

• the as-built model, which represent the structural systems according to the design 

specifications, excluding the maximum allowances of the extreme site conditions, 

and 

• the digital twin (also referred to as-installed) model, which is obtained by modifying 

a set of parameters of the as-designed model to better represent the as-installed 

physical twin dynamics. 

In the following subsections, a brief recap on the assumptions taken for the 

representation of the turbine WK64 in the Ramboll’s in-house finite element software 

(ROSAP) is provided, together with a summary of the FE-updating modifications 

implemented for the calibration of the virtual prototype with the one of its physical twin. 

As-designed FEM 

The FEM of the as-designed structure is built on the information available from the design 

reports. The soil-structure interaction is modelled by the use of a Winkler model [202], and 

the springs, which represent the interface to the surrounding, are linearized according to 

the API method [203].  The jacket substructure is modelled with 3D Bernoulli-Euler beam 

elements, with a joint stiffness modified according to Buitrago et al. approach [204]. The 

complex structure of the transition piece (TP) connecting the foundation and the turbine 

tower (TOW) bottom, is modelled in a simplistic manner by a representative 3D Bernoulli-

Euler beam system. Similarly, the representation of the rotor-nacelle-assembly (RNA) – 

comprising the nacelle, hub, and blades – is simplified into a two-point mass system, by 

including a mass moment of inertia tensor. 

As-built FEM 

The as-built FEM is the results of a first “manual” updating based on the as-built reports. 

These reports include some information on the as-built weight of the structure and 

information from pile driving (e.g., pile stick-up). The as-design FEM is thus modified by 

assuming that at this stage no scour, corrosion, or marine growth phenomena are 

developed. As reported in Table 4.1, these modifications lead to a reduction of the 

discrepancies to the real system measurements – about 3% and 20% for the frequency of 

the 1st and 2nd tower bending modes frequencies and with an improvement to their MAC 

values to 0.97 and 0.98, respectively. 

As-installed FEM 

Finally, the as-installed FEM model, or digital twin of the real system, is obtained by applying 

the data-driven updating procedure presented in [194]. In particular, the FEM parameters 

are updated as reported in Table 4.2. 
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Table 4.2: Updated values (in terms of normalised 
variation) of the FEM parameters after model-
updating to the modal properties. 

Parameter Normalised variation 
Parameter 0.99 

Jacket stiffness 1.83 

TOW stiffness 0.36 

TP stiffness 1.02 

Pile stiffness 0.84 

Added mass 1.01 

Hub mass 1.02 

Joint stiffness 0.13 

Lateral soil stiffness 0.07 

Axial soil stiffness 0.66 

Pile tip stiffness 0.99 

4.4.2 Modelling of failure scenarios 

This section explains the way of modelling and implementing a set of potentially critical 

failure modes in the ROSAP FEM of an offshore wind turbine. These failure scenarios are 

selected based on Failure Mode Effects and Criticality Analysis (FMECA) reported in [47], 

by following the recommendations of Scheu et al. and integrating their findings with the 

conclusions from the feasibility analysis of Richmond et al. [53].  

Extreme site conditions 

As regards the exceedance of the site conditions, the impact of extreme scour, global 

corrosion, and marine growth phenomena is assessed. The following subsections describe, 

for each of these phenomena, their modelling assumptions, and the design allowances for 

the WK64 turbine. 

Scour phenomena 

The scour phenomenon is the process of the removal of sediment from around the turbine 

foundations. The seabed being carried away by the hydrodynamic action can either result 

in the reduction of the soil around the whole area of the foundation (global scour) or of the 

solely area at the structure piles (local scour).  

The finite element model includes details of multiple soil layers and so when a scour 

depth is introduced, the topsoil layers are removed. The removal of the weight of the top 

layers is associated to a variation of the soil stiffness. However, by updating the force-

displacements curve, it was noticed that this variation has only minor effect on the structure 

dynamics, affecting mainly the loading in z direction. Thus, it is considered a good 

assumption for this analysis to refer to the force-displacement curves used for design. The 

global scour phenomenon, which would impact the most the soil stiffness, is generally 

considered in case of non-cohesive soil. The cohesive clay soil of the Wikinger wind farm, is 

primarily affected by a local scour phenomenon. A design limit of 2.2 m scour erosion is 

given for the turbine in position WK64. 
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Figure 4.4: Definition of scour. 

Global corrosion profile 

The design of offshore steel jackets must allow for global corrosion phenomena, both 

internal and external to the jacket members. It must be modelled in the jacket splash zone 

and can optionally have a profile at other water levels. It is implemented in ROSAP as the 

reduction of the cross-sectional area of the jacket beam elements by controlling the 

reduction of their wall thickness, leading to twice the reduction of the outside and the inside 

diameter. The program then updates the stiffness and stress calculations. The mass matrix 

can be updated by removing the mass of the corroded material; however, it was tested that 

greatest global mode frequency and shape discrepancies are obtained by leaving the mass 

matrix unaltered.  

Marine growth profile 

A profile for the modelling of the growth marine vegetation on the submerged elements of 

the jacket structure can be included in ROSAP similarly to profile for the global corrosion 

phenomena. The additional mass and the increased surface roughness are modelled via a 

thickness and a roughness height parameter. For the analysis here presented both 

parameters are scaled by a multiplicative factor. A factor of 1 represents the design 

allowance and it is chosen as reference scenario to normalise the results. 

Structural integrity loss 

With respect to the simulation of the loss of integrity of the structural elements of the jacket 

substructure, the focus is on the analysis of the influence of local weakening phenomena. 

While the global corrosion – as described above – is controlled by varying the thickness of 

the substructure element with the purpose of modifying the stiffness matrix, the localised 

structural damage is implemented by varying the Young’s modulus (E) of elements and sub-

elements. The damage types that could reduce the stiffness of the WTG jacket structural 

member are corrosion, material softening due to cyclic loading, and loosening of the 

connection between elements. 

This way of implementing the damage is realistic for leg and braces elements. On the 

contrary, it does not apply for the realistic modelling of the grout failure and the bolt 

loosening. In the given design FEM, the only possible implementation of grout failure is by 

varying the E of the elements in its proximity of the grout. As concerns the simulation of bolt 

loosening, the E of the node at the location of the bolted joint is reduced. Richmond et al. 
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[53] observed that neither of these damage implementations lead to significant variation of 

the global mode shapes and/or their frequency. However, it could be worth to investigate 

further the phenomenon of the bolt loosening at the TP and tower connection. This type of 

failure, indeed, would not appear as a gradual change but rather as a sudden loss of 

connection as soon as the load exceeds the clamping strength. 

4.4.3 Numerical analyses and metrics 

The ROSAP software is deployed for the natural frequency analysis of the WK64 with a 

simplified representation of the Adwen AD-5MW turbine – refer to Section 4.4.1 for more 

details on the modelling assumptions. The ROSAP FEM is also used for performing the 

dynamic analysis of the WK64 turbine by accounting for the wave loading on the 

substructure.  

The AHSE code of LACFlex employs a modal-based representation of the turbine 

(including the tower, rotor, and blades), while the substructure is imported as a Craig-

Bampton superelement – extracted by the ROSAP software. This setup allows capturing the 

aero-servo dynamics of the turbine by performing the numerical simulations in a 

sequentially coupled manner – cf. Figure 4.6. The key steps of these analysis and the 

extracted metrics are briefly summarized in the following subsections. 

Natural frequency analysis 

The study of the dynamics of the turbine in its healthy conditions, and in response to the 

system’s failure mechanism, is obtained via NFA run of the ROSAP FEMs. This 

implementation does not allow the integration of moving and/or rotating parts, and thus 

represents only the turbine dynamics in idling condition. The eigenfrequencies and their 

mode shape vectors are derived for several integrity scenarios of the jacket substructure 

and for varying environmental conditions.  

(a) 

 

(b) 

 

(c)  

 

   

Figure 4.5: Visualisation of WT global modes, (a) 1st tower bending either in fore-aft (FA) or 
side-side (SS) direction (b) 2nd tower bending either FA or SS direction, and (c) torsional. 

Although the 1st torsional mode of the jacket was not used for this model calibration, it 

will be included in the following analysis to investigate whether its monitoring is beneficial 
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for detection purposes. The following metrics can be calculated with respect reference 

(health status) scenario. 

Frequency relative difference 

The percentage change between the frequency of the system in analysis (Σ) and the 
reference system (Σref) is defined as in Equation 4.1, for each global mode of vibration: 

freqdiff = 100 
freq Σ − freq Σref

freq Σref
 Equation 4.1 

Modal assurance criterion 

The modal assurance criterion (MAC) provides a comparative value between two vectors, 

giving a measure of their level of consistency. A value closer to 1 means that the vectors are 

consistent and a value at or close to 0 means that the vectors are inconsistent. The MAC 

between two real-value modal vectors (e.g. {φr} and {φs}), is calculated according to the 

following equation [205]: 

MAC({φr} , {φs} )= 
|{φr}

T
{φs} |

2

({φr}
T
{φr}) ({φs}

T
{φs})

 Equation 4.2 

Modal flexibility variation 

The modal flexibility matrix ([F]) is derived according to Equation 4.3, with 𝑛 being the 

number of measured modes. In the calculation of the [F], the mode shape matrix [Φ], with 

{φi} being the mode shape vector of the i-th mode, is weighted by the diagonal matrix of 

rigidity [Ω], corresponding to [ωi
2] where ωi is the i-th frequency. Each column of [F] 

represents the displacement pattern of the structure associated with a unit force applied to 

each degree of freedom (DOF) of the structure.  

[F]=[Φ] [Ω]-1[Φ]T=∑
1

ωi
2 {φi} {φi}

T
n

i=1

 Equation 4.3 

The residual matrix of the modal flexibility ([ΔF]) is measured by calculating the 

flexibility matrices before and after the damage ([F*]) and by subtracting them, as reported 

in Equation 4.4.  

[ΔF]=[F*]-[F] Equation 4.4 

The absolute maximum of each j-th column of the [ΔF] – as defined in Equation 4.5 – is 

the modal flexibility variation in each DOF (δj̅), with n being the total number of monitored 

DOFs. It indicates where the maximum variation in flexibility is produced. This quantity has 

been historically used to estimate changes in the static behaviour of the structure from the 

dynamically measured modal properties of the system [206].  

δj̅=max|δij|            for i,j= [1, n] Equation 4.5 

Fatigue loads simulations 

The generation of time series of the turbine loading conditions, and the calculation the 

fatigue cumulated into the several structural elements, is achieved by running, in a semi-
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coupled manner, the ROSAP model of the foundation with an aero-servo-elastic software of 

the wind turbine – cf. Figure 4.6. This latter calculates the wind turbine response in time 

domain, by modelling of the tower and the rotor-nacelle assembly, together with the control 

strategies in response to the stochastic turbulent wind loads. The aero-servo-elastic code 

used for the analyses of this thesis is the LACFlex (based on Flex5) software [207]. Not 

having access to details from the manufacturer, the simulations are run by using a generic 

representation of a 5 MW turbine. 

The Jonswap spectrum for normal sea state conditions is used for the estimation of the 

wave parameters. Additionally, wind-generated sea current is derived according to the 

normal current model and considered aligned with the wave. A package of the ROSAP 

software is used to reduce the model of the substructure into Craig-Bempton superelements 

[208], by approximating its dynamics to include only a limited number of deformation 

modes – 30 modes are considered into the analyses of this thesis. It is worth mentioning 

that the coupling of the foundation via the superelement innerly holds some small 

discrepancies with the full model of dynamics, for frequencies above 10 Hz [208]. 

Furthermore, the damping of the tower needs to be calibrated – in the aero-servo-elastic 

code –, to match the system damping specified and/or targeted in the design phase.  

It should be noticed that the implementation of the failure scenarios – of Section 4.4.2, 

in the FLS simulations of Section 4.5.2) – is created by neglecting their possible effect of the 

structural damping. This assumption is judged acceptable since the aim of the following 

investigations (in Chapter 5and 6) is to demonstrate only the feasibility of the detection. 

(a) Fully coupled aero-elastic model (b) Semi-coupled aero-elastic model 

  

Figure 4.6: Visualisation of (a) fully coupled aero-elastic model, and (b) sub-structured 
model with interface reaction forces (λ), from [208]. 

The superelement files derived in ROSAP are coupled into the wind turbine model in 

LACFlex, and the time simulations are run for each combination of wind and wave loadings. 

Several short-term stochastic time histories of turbulent wind inflow and irregular wave 

(i.e., realisations) are realised. The load combination and the number of simulations run per 

wind turbine status are different for the feasibility and the applicability studies, and thus 

reported in the respective sections. 

The damage equivalent loads (DEL) and the fatigue accumulated in the structures of the 

turbine can be derived by postprocessing the obtained time series of loadings in LACFlex. A 

force-controlled recovery run is performed in ROSAP based on the load calculated at the 

interface – between the substructure and the turbine tower –, to derive the fatigue and 

consumption rates of the elements of the foundation.  
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4.5 Results and discussion of structural response 

sensitivity on failure scenarios 

This section assesses the impact of the extreme site conditions and the structural failures 

on the turbine dynamics in terms of variation of the modal properties, and reduction of the 

lifetime of the structural components, for the jacket support structure of the WK64 turbine.  

4.5.1 Impact to modal properties 

The ROSAP parameters representative of the failure mechanism – e.g., the meters of soil to 

remove for the local scour phenomenon –, are varied around their expected value, to an 

extreme value falling out of the design allowance. The results are presented in terms of 

frequency percentage error, modes consistency (i.e., MAC), and modal flexibility variations 

(i.e., δj̅) with respect to a reference scenario, as defined in Section 4.4.3. The reader is 

referred to the coloured version of the following plots for accessing the full set of 

information. 

Extreme site conditions 

In Figure 4.7, the scour parameter is ranged from 0 to a critical value of 3.2 m – i.e., 1 m more 

than the 2.2 m scour design allowance –, by keeping a constant angle of 18 degree. The 

results are normalised with respect to the design scour allowance. It is evident that the 

tower 2nd bending modes are the one mainly affected by the scour depth variation. In the 

event of extreme scour phenomena, at 3.2 m scour depth, their mode shapes seem 

unaffected by the change (within a MAC of 0.9 for the torsional mode). On contrary, the 

frequency of the 2nd modes drops by a further 3% with respect to the design allowance. A 

total reduction of ca. 7% of the 2nd tower FA frequencies is measured with respect to the no 

scour scenario. In addition, it is worth pointing out that the tower top sensors are the one 

recording most of the variation. 

In Figure 4.8, the design global corrosion profile allowance is varied with a 

multiplicative factor from 0.25 to 1.25, including in the calculation the mass of the corroded 

material. The results are normalised with respect to the 0.5 scenario. The multiplicative 

factor 1 refers to the design allowance profile. Quickly after this extreme value, the dynamic 

properties of the structure change drastically, due to the presence of a through-thickness 

corrosion for some of the jacket elements. Once again, the 2nd tower modes and the jacket 

torsional mode are the one mainly affected by the phenomena. 

Although the 1st torsional mode shape seems to be quite affected by the global corrosion 

phenomena, its extraction is rather seldom due to the lack of loads exciting this mode. The 

2nd FA mode frequency is characterised by a 10% reduction with respect to the no corrosion 

scenario. The tower top accelerometers have the potential to record most of the variation 

in the WT structure dynamics as before, but with a modal flexibility variation four times 

larger than for the scour phenomenon. 



Chapter 4                                                            Structural health monitoring: numerical models and sensitivity analyses 
 

76 

  

 

Figure 4.7: Dynamic properties 
variation for developing scour 
depth. 

 

  

 

Figure 4.8: Dynamic properties 
variation for changes in the 
global corrosion profile. 
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Figure 4.9: Dynamic properties 
variation for changes in the 
marine growth profile. 

In Figure 4.9, it is evident that the marine growth phenomenon has a very little impact 

on the global modal properties of the structure. The biggest variation is in the frequency of 

the torsional mode, which is reduced by only 0.1% by doubling the thickness and roughness 

of the marine formation. 

Structural integrity loss 

The simulation of the full loss of the WTG leg would not lead to representative results, since 

either the full or the partial integrity of the WTG leg is required for the substructure’s 

survivability. On the contrary, it was observed that the substructure might survive the 

presence of a disconnection damage to braces. Thus, the E of the brace elements is reduced 

to 99% of its value to simulate a single and localised disconnection. Figure 4.11 shows the 

results for brace member losses along the structure from level 13 to level 55, representing 

bottom to top of the jacket – cf. Figure 4.3. 

It is observable that, once again, the 2nd tower modes and the torsional mode are the one 

mainly affected by the presence of the structural damage. For loss of integrity at low water 

levels (from 13 to 15), the frequency of the 2nd SS mode can drop by more than 4%. In 

addition, the shape of the 2nd tower bending modes is almost not consistent anymore with 

the one of the healthy structure – the MAC values reach a value of 0.6. With regards to the 

modal flexibility variation, it is observed that, although the deviation is relatively small, it is 

recorded at most by the sensors on TP section. 
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Figure 4.10: Dynamic properties 
variation for progressive and 
partial integrity loss of a sub-
element of a leg at level 13. 

The simulation of a progressive and partial loss of a leg member at level 13 is presented 

Figure 4.10. The E of the material of one of the leg’s sub-elements is reduced up to 90% of 

its value. It is noticed that the impact of a leg partial damage to the global modes is it 

generally very little. For instance, the frequency of the 1st and 2nd fore-aft tower modes is 

unaffected (i.e., see the overlapping lines in the plot) by the integrity loss, due to the 

directionality of the damaged element with these modes of vibration. However, it is 

interesting to observe that the frequency of both 1st and 2nd side-side tower modes are the 

one mainly affected, varying to 0.4% and 0.7% respectively. As regards the modal flexibility 

variation, the tower sensors (TOW-6 and TOW-7) record most of the deviation.  

(a) Frequency relative difference (%) 

 level 15 level 30level 13 level 20 level 50 level 55level 25
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(b) MAC 

 
(c) Modal flexibility variation 

 

Figure 4.11: Dynamic properties variation for the full integrity loss of single brace members. 

4.5.2 Impact to fatigue life 

To assess the impact of these failure mechanism on the fatigue life of the elements of the 

WK64 jacket substructure, FLS loads simulations are run as explained in Section 4.4.3. The 

normal production load cases – i.e., DLC1.2 of IEC 61400-3:2009 [209]– for the WK64 are 

setup as in [20], by reducing the load case set to exclude the load combinations with low 

probability of occurrence. More details on this fatigue damage calculations are reported in 

the ROMEO deliverable D4.3 [19]. 

The results of this sensitivity study are assessed by analysing the variation of the fatigue 

damage cumulated in a year by the legs, the braces, and the joints at the several levels of the 

jacket structure. The yearly fatigue damage of the (undamaged) as-built model is taken as 

reference. This yearly damage is normalised based on the foundation design lifetime (i.e., 

25 years) and it is reported in percentage in Figure 4.12. The 100% represents the 

structural failure of the element, and thus a 4% yearly damage is the limit to achieve the 25 

years expected lifetime. The results are visualised for the several details of the substructure, 

at several levels. 

In Figure 4.12, and as a convention for the following results, the element with the lowest 

fatigue life for the whole substructure is crossed in “red”, while in “black” is the element 

level 15 level 30level 13 level 20 level 50 level 55level 25

level 15 level 30level 13 level 20 level 50 level 55level 25
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with the lowest fatigue life with respect to its class of details (i.e., leg, joints, and braces). It 

is evident that a join at level 30 is the most critical element, being associated with the 4% 

yearly damage threshold. In comparison, the braces and the legs elements are associated to 

a higher fatigue life – of the order of hundreds of years –, and they are critical at level 15 and 

13, respectively. 

 

 

Figure 4.12: Baseline yearly 
damage for the design model, 
and a reduced set of load 
cases. 

Extreme site conditions 

Among the phenomena introduced in Section 4.4.2, only the case for exceedance of the scour 

and the global corrosion allowances are further discussed. The marine growth phenomenon 

was shown to have too small of an impact on the global modes and, thus, intuitively on the 

fatigue life.  

The exceedance of the scour design-allowance does not seem to have a big impact on 

the fatigue life of the WTG structure. In this case study, the presence of scour leads to a slight 

decrease of the fatigue damage of the components at the higher levels. The critical yearly 

damage of the joint at level 30 decreases of 0.9% (corresponding to ca. +7 years fatigue life). 

However, a small increase of the yearly damage of joints and braces at lower level is 

observable. It should be noted that this phenomenon cannot be generalised but is a result 

of the specific combination of assumptions and structural dynamics in this study. In general, 

scouring might reduce fatigue life and poses a risk for the overall integrity. 
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Figure 4.13: Yearly damage 
for an extreme scour depth 
(3.2 m). 

As regards the global corrosion phenomenon, an overall increase in the yearly damage 

can be observed in Figure 4.14. The failure of the critical joint of level 30 shortens the critical 

fatigue life to 10 years. In addition, the yearly fatigue damage increases for the elements 

(legs and braces) of the higher levels (50 and 55, respectively). Consequently, the 

exceedance of the global corrosion allowance has the potential to be tracked and/or 

detected by the fatigue prediction models – further discussed in Chapter 6. 
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Figure 4.14: Yearly damage for 
maximum global corrosion 
allowance. 

Structural integrity loss 

As a consequence of the full loss of integrity of a brace member, the deviation of the expected 

lifetime of the structural element of the WK64 jacket substructure can be observed in 

Figure 4.16, for the joints and the braces, and in Figure 4.15, for the legs.  

The yearly cumulated fatigue damages are reported in Figure 4.16. The structural 

failure of a brace at level 13 initiates the failure of another brace element at the same level, 

which in turns fails in less than a year of operation. Similar effects are obtained by the full 

integrity loss of a brace at level 20; the critical fatigue life of the joint at level 30 decrease to 

1 year, followed by the catastrophic failure of another brace element at level 20. It can be 

additionally observed that these localised damages cause an overall reduction of the fatigue 

lives of the WK64 substructure for the several details. 

(a) at level 13 (b) at level 20 I at level 55 

   

Figure 4.15: Yearly damage of the legs for the full loss (disconnection) of a single brace 
member at varying levels. 

Although these structural damages are likely to lead to a catastrophic sequence of 

structural collapses – which should be further investigated in survivability analyses –, it 

seems that they have only a minor impact on the fatigue damage which is measured at the 

higher levels, making the monitoring of these events complex. On the contrary, the 

structural failure of a brace at level 55 induces bigger fatigue damage at the higher levels, 
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potentially allowing to track this damage via indirect monitoring – see Section 1.1.2. 

However, the full integrity loss of a brace at level 55 might not be as critical as the one of 

level 13 and 20, as it causes the failure of other structural element only after further 10 

years of operation. 

(a) at level 13 

 

(b) at level 20 

 

(c) at level 55 

 

Figure 4.16: Yearly damage of joints and braces for the full loss 
(disconnection) of a single brace member at varying levels. 
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4.6 Conclusions 

Potential failure mechanism, like the loss of structural integrity of an element of a jacket 

substructure, or an excessive scour phenomenon, call for the establishment of continuous 

condition monitoring scheme to ensure the structural health of the asset and the meeting of 

its expected lifetime. As such extreme events rarely occur, the feasibility and applicability 

studies had to rely on the data from the simulations, generated by various representation 

of the real turbine – i.e., level of model calibration.  

This chapter describes the models built for the WK64 turbine, and the numerical 

analysis executed to support the structural health monitoring studies of the remainder of 

this thesis. Sensitivity studies are conducted to investigate the impact of the failure 

scenarios on the turbine dynamics. It has been shown that jacket brace member losses, 

scour and corrosion mainly affect the 2nd tower bending modes, while having little impact 

on the displacements, rotations, and accelerations at the interface between transition piece 

and tower. The fatigue cumulated in the foundation can be affected by these failure 

mechanisms; however, their impact might be local only, and thus difficult to be monitored 

if not relying on direct sensing. Accordingly, the indirect detection of a structural damages 

through the fatigue monitoring might not be successful, while the failure mechanisms still 

pose a risk to the structural integrity.  
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Chapter 5 

5 Vibration-based diagnostics in an 

offshore wind jacket substructure 

This chapter investigates the feasibility of a level II detection scheme – in terms of damage 

identification and location of the damage –, for a set of failure mechanism of a jacket support 

structure. The WK64 turbine is used for this analysis – see Chapter 4 – and the prediction of its 

structural health status is based on the deployment of true digital twin technology. This 

as-installed model is used to simulate the local scour phenomenon and the loss of integrity of some 

of the jacket’s brace members.  The detection model is trained to identify the correct failure 

mechanism based on three types of modal indicators, namely, natural frequency, the modal 

assurance criterion between mode shapes, and the modal flexibility variation. The soft and hard 

classification results prove that it is feasible to detect and locate the simulated scenarios via the 

global monitoring of an offshore wind jacket structure. The material of this chapter has been peer 

reviewed and published in a journal publication 1. 

5.1 Background 

Global monitoring and parametric-based detection methods have been already extensively 

applied to some offshore wind full-scale case studies – cf. Section 1.1.2. Prior reviewing the 

literature is however important to define and clarify on the possible level of the detection. 

A structural damage can be detected according to several levels, as defined in [210], and this 

terminology and ranking is adopted for the remainder of the thesis: 

• the “detection” (level I) provides the qualitative indication that a damage might be 

present in the system and potentially identify the damage type, 

• the “localisation” (level II) is to identify the probable location of the damage, 

 

 

 
1 D. Cevasco, J. Tautz-Weinert, M. Richmond, A. Sobey, A.J. Kolios, (2022), “A damage detection and 
location scheme for offshore wind turbine jacket structures based on global modal properties”, ASCE-
ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, vol. 259, 
no. 2. https://doi.org/10.1115/1.4053659  

https://doi.org/10.1115/1.4053659
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• the “assessment” (level III) quantifies the severity (i.e., the size) of the damage, and 

• the “consequence” (level IV) informs on its progression and degradation process, to 

advise on the safety of the system. 

Weijtjens et al. proposed a data-driven SHM framework in [26], [49]. Their approach 

consists of tracking the system modal properties according to the different operational 

conditions (i.e., parked, and operating case). These are then sub-grouped according to shaft 

rotations per minute and pitch ranges, and the variability of each mode of vibration is 

normalised by using a non-linear regression model. In [30], they observed that some of the 

modes correlate to environmental effects such as the sea water temperature – especially for 

low order modes –, the tidal level, and the water height, besides being dependent on the 

yaw angle for asymmetry of the structure. In [26] they additionally recognised changes in 

the vibration levels of the tower top accelerometer depending on the wind farm wake effect, 

for two of the turbines in the C-Power wind farm. Finally, by detrending the OMA results 

based on the environmental fluctuations, they managed to recognise the stiffening of the 

response of a turbine installed on a monopile foundation [49]. A similar approach was 

followed by Oliveira [211], and validated for an onshore wind turbine case study [32], to 

identify the presence of numerically simulated damage in the foundations (crack and scour), 

and blades (uniform deterioration due to operation). These monitoring methods, based on 

the use of the control chart theory [212], allow for the damage detection only (level I). If 

interested in identifying the location of the damage and assessing it (levels II and III, 

respectively), more advanced machine and/or deep learning approaches might be 

preferred [25]. 

However, data-driven methods are conditioned by the significance of historical data. 

These methods can be applied only if the set of data contains information on the variation 

of the physical properties as a consequence of the damage. For this reason, several authors 

have made use of models to simulate representative datasets for the healthy and damaged 

system dynamics. In [51], Nguyen et al. numerically investigated the feasibility of vibration-

based damage assessment for an offshore wind turbine with gravity-based foundation, 

excited by various waves loads. In [53], Richmond et al. conducted a sensitivity study on the 

changes in the dynamic response of an offshore wind jacket structure, for several classes of 

anomalies and by ranging their severity. In [52], Nguyen et al. then proposed the use of a 

vibration-based artificial neural network for the estimation of location and severity of 

simulated structural damage in onshore wind towers. The main findings outlined that a 

detection algorithm trained on frequencies only performed better for the assessment of the 

severity. 

Extensive research was also conducted for the detection of structural failures in 

offshore (oil and gas) jacket platforms. Liu et al. [213] suggested a modal flexibility-based 

method using a FEM updating technique. Modal flexibility detection approaches belong to a 

family of traditional vibration-based methods, together with frequency-based and mode 

shape (and its derivatives) approaches [214]. In [213], Liu et al. applied a gradient-based 

method for the minimisation of the Frobenius norm of the matrix representing the residual 

of the flexibility between the damage condition and a healthy reference (cf. [25] and 

Section 4.4.3). Another model updating approach applied to an offshore truss structure was 

proposed by Malekzehtab and Golafshani in [215]. For their updating procedure they 

applied a genetic algorithm to optimise a cost function defined as the sum of the distances 

between the frequencies (relative difference) and of the mode shapes (level of consistency, 

i.e., MAC values) between the reference and the damaged conditions. In both [213] and 
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[215], the algorithms successfully identified the damages’ location and severity, additionally 

accommodating measurements uncertainties and several noise levels. As regards the 

application of machine learning methods, Xu et al. [216] used a residual strain energy 

method and employed principal component analysis to remove the influence of the 

environmental temperature variation. Concerning the non-parametric vibration-based 

methods, it is worth mentioning the work of Diao et al. [217] and Cheng and Wang [218] as 

applied to offshore platform structures. 

5.2 Problem statement and aim 

Despite the extensive research effort, to the knowledge of the author, no thorough 

investigation on the vibration-based monitoring of offshore wind turbine jacket 

substructures has been performed yet to distinguish between several failure mechanism.  

Therefore, this works is aimed to study the feasibility of a health monitoring scheme for a 

wind jacket substructure, to detect and locate the damage. A monitoring scheme is deemed 

suitable for industrial needs if the following criteria are achieved: (i) detecting and 

distinguishing anomalies of different causes, (ii) use of low-cost measurement technologies, 

(iii) transparency of reasoning process – versus black-box models –, (iv) use of a 

probabilistic approach for decision making, (v) enabling real-time monitoring.  

The workflow of this monitoring strategy is presented in Section 5.3.1. The core concept 

of the suggested approach is to employ (modal) simulated data from the as-installed FEM 

of the WK64 turbine – described in Section 4.4.1 and briefly summarised in Section 5.4 – to 

train the machine learning algorithm to detect and locate the damage cause by 

environmental and structural failures. Starting from the findings of [53], six types of 

localised structural damage and several levels of scour are simulated – as presented in 

Section 5.5. The feasibility of the detection is discussed in Section 5.6, together with a 

consideration of the set of features to derive and track. Finally, in Section 5.7, the challenges 

and limitations of the current approach, prior a field application, are outlined. 

5.3 Methodology 

The flow of data and processes for the field application of this monitoring approach is given 

in Section 5.3.1. In Section 5.3.2, details are provided on the simulation setup, to extract the 

modal properties of the structure and calculate their deviations. The machine learning 

algorithms and the processes for their training, testing and validation are presented in 

Section 5.3.3. 

5.3.1 Suggested approach 

An overview of the workflow for the suggested health monitoring of the WTG structure and 

damage detection is given in Figure 5.1. The pillar of this strategy is the “true digital twin” 

technology – refer to Section 4.1.1. Passing through the screening and diagnostics of the 

structure (level 1), the FEM updating procedures (level 2 and 3), and the quantification of 

the uncertainties (level 4), the digital twin can be employed to continuously monitor the 

accumulated fatigue damage in the hot spots of the structure (level 5).  

For this feasibility study, a level 2 digital twin is deemed sufficient. Augustyn’s data-

driven FEM updating – summarised in Section 4.1.2 –, is used for this scope (highlighted in 
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blue in Figure 5.1). The calibrated FEM matches the structure’s measured global modal 

properties (in green) as close as possible. The modal properties of the system in its normal 

behaviour – depending on the environmental and operational conditions (EOC) – and in its 

damaged status, are then retrieved from natural frequency analyses – cf. Section 4.4.3. By 

comparing the derived modal properties with those of a reference healthy scenario, modal 

indicators such as the modal assurance criteria (MAC) and the modal flexibility variation 

(δj̅) are calculated and employed to track the system’s dynamics evolution and deviation – 

cf. Section 4.4.3. This set of information, stored into a database, is used for instructing 

detection models to identify and locate (detection levels I and II) the system’s anomalies (in 

pink). The instructed algorithms can then be used on the modal data calculated from the 

field vibrational data, to raise alarms if the pattern of one of the simulated damage scenarios 

is recognised (in orange).  

 

Figure 5.1: Processes and data flow for the suggested monitoring strategy. 

In contrast to the approaches of [213] and  [215] – where a further model updating is 

used to detect location and severity (level III) of the damage –, a classification-based 

detection is here suggested. The reason for this decision is related to the fact that, for 

offshore wind applications, several types of damage are potentially critical for the structure. 

The approach proposed can easily be extended to set up the detection of anomalies of every 

type, while the studies in [213], [215] find their application for the detection of damage 

controlled by a single model parameter – e.g. elements’ and joints’ stiffness. Additionally, 

the uncertainty of the simulated data is introduced by a slight variation of the 

environmental parameters (e.g., scour and tidal phenomena), rather that adding several 

levels of white noise to the signals. 

5.3.2 Data generation 

The study of the dynamics of the WK64 support structure, in its healthy conditions and in 

response to anomalies in the system, is obtained via batch run of the NFA in the Ramboll’s 

in-house ROSAP software – cf. Section 4.4.3. This implementation does not allow the 

integration of moving and/or rotating parts, and thus represents only the turbine dynamics 

in idling condition. The rotor-nacelle-assembly is, however, integrated for its contribution 

in terms of mass and inertia. It should be noted that the methodology suggested can be 

applied independently of the type of software used for the analysis. It is worth mentioning 

that, if the modes extraction is carried out via an AHSE tool, it would be possible to extend 
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the analyses to account for the interference of the rotor dynamics and the effect of the 

different turbine operating regimes. 

The eigenfrequencies and their corresponding mode shape vectors are derived for 

several integrity scenarios of the jacket substructure and for varying environmental 

conditions. After selecting a healthy reference scenario, the indicators in Section 4.4.3 can 

be calculated.  

5.3.3 Machine learning processes and algorithms 

This section introduces to the selected machine learning algorithms and features, by 

explaining the criteria and the decision-making process behind their selection. Finally, the 

processes for the training and testing of the detection models and their validation is 

detailed.  

Features 

For the investigation of this paper, three sets of features are analysed: a set of frequencies 

only, a set consisting of frequencies and MAC values, and a set including frequencies and δj̅. 

Frequencies, rather than relative difference of frequencies, are selected and normalised, 

together with other possible features, during the pre-processing phase. By adding the MAC 

values, the algorithm is also informed on the deviation of the shapes of vibration. However, 

being used as a mode-goodness indicator during the post-processing of the OMA results, it 

can happen that modes with a low MAC value get filtered out of the analysis, although 

potentially signalling the presence of damage. An alternative measure of the modes’ 

deviation can be given by the δj̅, which additionally provides a higher level of information 

because of being not only sensitive to the mode, but also to the sensor location.  

Algorithms 

Allowing data samples to belong to two or more class types, with different levels of 

membership, is the main criterion for the selection of the detection algorithms to be tested 

in this feasibility analysis. This requirement reduces the choice to soft-classification models, 

to explicitly estimate the class conditional probabilities, and discard the more complex-to-

interpret deep learning and tree-based models. Either fuzzy- or Bayesian-based models 

inform on the degree of membership of each data sample to the given classes. Targeting a 

multi-class classification, a predictive model based on the linear discriminant analysis 

(LDA) theory is deemed more suitable than setting-up multi-class logistic regression 

models. However, the particular set of data in analysis violates the LDA assumptions of 

normally distributed data and identical covariance matrices for every class [219]. For this 

reason, fuzzy-based models only are investigated further. 

Fuzzy logic is an organised and mathematical approach, able to handle inherently 

imprecise concepts by using membership functions. In their simplest application, then, 

these functions are manually defined setting the truth values and a set of fuzzy rules is given 

to describe how one or more fuzzy variables relate to another. Although such a transparent 

approach would be preferred, the mapping by hand of variables and rules is not 

straightforward for this detection application. Therefore, the fuzzy logic principles are 

automatically applied to cluster the multidimensional data, according to the so-called fuzzy 

c-means (FCM) method [220]. The algorithm works by assigning membership to each data 

point corresponding to each cluster centre on the basis of distance between the cluster and 
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the data point. This unsupervised method is controlled by specifying the number of clusters 

to identify, the fuzzy exponent and a termination tolerance [221]. Specifically, the Python 

open-source version of [222] is used for the purpose of this work. 

Training, testing and validation processes 

A sketch of the flow of data and processes for the training, testing and validation of the FCM 

model is given in Figure 5.2. The cross-validation procedure [223] is employed to verify the 

independency of the prediction on the WTG operating condition (yaw angle rotation). 

Although the supervised LDA was not considered suitable for the application, Fisher’s LDA 

reduction technique is applied, transforming the set of features while maximising the 

separability of the classes. As investigated by Li et al. [219], LDA for dimensionality 

reduction can also work reasonably well if those assumptions are violated. Based on the 

optimal rotation and the reduced features found in the training set, the datasets for testing 

and validation are consequently transformed. Multiple FCM models are then trained during 

the cross-validation process, assigning each data sample a membership to each cluster 

centre. Only the best performing models – one for each set of feature combinations – are 

tested on the validation dataset. To discuss the detection capability of the algorithms, hard-

threshold metrics are used – as explained in Section 5.6 –, by allocating to each data sample 

the label according to the highest membership predicted.  

 

Figure 5.2: Processes and data flow for training, 
testing, and validating the detection algorithms. 

5.4 Case study 

The WK64 turbine and its numerical representation in the as-installed condition – 

cf. Section 4.4.1 –, is deployed to generate the databased of healthy and damaged scenarios 

– refer to Section 5.5. The selection of the damage scenarios to be implemented and 

simulated is based on the findings of Section 4.5, and on the following considerations.  

As the design of this jacket sub-structure is fatigue-driven, the extreme scour events is 

generally of concern for the fatigue damage [224]. This does not seem the case of the WK64 

turbine, by looking at the FLS results of Section 4.5.2. However, an undetected scour 

phenomenon still holds a risk for the ultimate and the serviceability limit states. On the 

contrary, the full integrity loss of the brace members has been seen to bring the utilisation 

of the jacket structure outside the design assumptions in the FLS setup.  
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Therefore, in this case study, on the detectability and discernability of different 

mechanism of failure – all potentially leading to the presence of subsea cracks in the 

elements of the jacket substructure – the local scour phenomenon, and the loss of integrity 

of the jacket’s brace members are simulated. 

5.5 Database and preliminary analysis 

The database for this feasibility study is built by collecting the metrics of the variation of the 

first five global modes, with respect to the healthy reference scenario, for varying 

environmental conditions and structural health status. The detectability of these failure 

mechanisms is discussed for the as-installed structure, as it has been already done in the 

sensitivity analysis of Section 4.5, for the as-built representation of the WK64 turbine. 

5.5.1 Scenario simulation 

Based on the design specification, the site accounts for only a few centimetres of variation 

in the water level for tidal phenomena, the measurements’ uncertainty is introduced in the 

simulated dataset solely by varying the local scour depth within the design limit.  

Regarding the operating regimes, the idling-only conditions are mimicked, by 

accounting for the impact of the rotor-nacelle-assembly yawing on this asymmetric system 

inertia, and thus on its modal properties. Furthermore, although the 1st torsional mode of 

the jacket was not used for this model calibration, it is included in the following analysis to 

investigate whether its monitoring is beneficial for detection purposes.  

Local scour phenomenon 

As for the sensitivity in Section 4.5.1, the local scour depth is ranged from 0 to a critical value 

of 3.2 m, uniformly for all the legs, and by keeping the scour angle constant at 18 degrees – 

as assumed from the design. The design limit value is reported in Figure 5.3 with a cross 

symbol; this rightly identifies the maximum fluctuation of the estimated metrics in the 

normal state of the structure for a fixed nacelle angle. The reference for estimating the 

metrics of Figure 5.3 is taken with respect to the no-scour scenario. 

It is evident that the tower’s 2nd bending modes are the ones mainly affected by the scour 

depth increase. However, the variation mainly affects their frequencies – with a drop of 

about 4% for the 2nd FA mode at 3.2 m scour –, while their mode shapes are almost 

unchanged – with a MAC value higher than 0.99. In addition, it is worth pointing out that, in 

the case of the presence of local scour, a higher δj̅ is recorded by the tower’s top sensors. 

Loss of structural integrity 

In Figure 5.4, the E of each of the brace elements of the jacket structure connecting to a leg 

element is reduced to 1% of the design value. The results are reported with respect to the 

several levels of Figure 4.3, and in terms of the relative difference in frequency, the MAC 

values, and the δj̅. For each brace level, eight values are reported, corresponding to the eight 

brace-to-leg connections, two per leg, of this 4-legged jacket structure. Because of this, and 

due to the fact that the results in Figure 5.4 are relative only to a single rotor-nacelle-

assembly position, it is possible to observe some analogies in the results at each level, with 

slight differences that are caused by the damage locations and system’s asymmetry between 

the legs. By reporting the thresholds identified in Figure 5.3 to Figure 5.4 (light grey shaded  
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Figure 5.3: Dynamic properties 
variation for developing local 
scour. 

 

areas), it is evident that the ranges of variability due to the EOC overlap with the deviations 

caused by the structural failures, emphasizing how this poses a challenge on damage 

detection and location. 

In general, it can be observed in Figure 5.4 (a), that the frequencies of the 1st torsional 

mode and the 2nd tower modes are mainly affected by the presence of the disconnection. 

These modes grow in difference with respect to the reference healthy scenario – almost up 

to 2.5% for the 1st torsional mode – if the damage is closer to the splash-zone, and thus to 

the sensorized area of the WTG jacket – cf. Figure 5.4 (b). The changes in the mode shapes, 

shown in Figure 5.4 (b), concern mainly the 2nd SS mode for the lower brace level. The 1st 

torsional mode consistency declines in the case of damage to the higher brace levels, scoring 

a MAC value as low as 0.88 at level 55. Concerning the δj̅ of Figure 5.4 (c), it can be noticed 

that the sensors located in the transition piece are the ones recording the highest variation, 

with alternating direction and sensors positioning, depending on the leg where the damage 

is implemented. Only a few damage locations, and for heights above level 20, impact the 

flexibility recorded by the sensor located at the tower top. It is finally interesting to observe 

that the presence of structural damage in the horizontal elements of the jacket (level 30) 

cannot be detected by any of the modal global modes. For this reason, the detection of these 

damage locations will be excluded from the following analysis. Instead, the detection of 

disconnections at one location per level (13-15-20-25-50-55) is investigated, implementing 

for simplicity all damages on the same leg and on the same leg-side. 
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(a) Frequency relative difference 

 

(b) MAC 

 

(c) Modal flexibility variation 

 

Figure 5.4: Dynamic properties variation for the full integrity loss of single brace members.  

5.5.2 Training, testing, and validation datasets 

The data samples for training, testing, and validating the detection algorithms are simulated 

by introducing the anomalies described in Section 5.5.1. The detection algorithms then try 
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to cluster the data into as many clusters as the number of simulated WTG status, 

corresponding to the following labels: 

• eoc, reproducing the structure behaviour for local scour depth up to the design 

threshold, 

• scour, modelling the local scour phenomenon over the design allowance, 

• D55, D50, D25, D20, D15, and D13, mimicking the integrity loss of brace members at 

the leg K or Y joints, for the levels from 55 to 13, as explained in Section 4.4.1. 

The training and testing phases are used to verify the effectiveness of the clustering of 

the WTG status for variation in the nacelle position. The training set contains data samples 

at every yaw angle from 0 to 359 degrees, with a 1-degree step, for each of the simulated 

labels. A ten-fold cross-validation – as presented in Section 5.3.3 – is implemented to split 

in training and testing. The testing results are used to select the best set-up of the 

hyperparameters, in terms of LDA components, and to verify the goodness of the clustering 

via the fuzzy partition coefficient [222].  

The validation of the algorithms on data samples for variation of the scour level is used 

to validate the algorithm’s performance for unseen data and recommend the best set of 

modal indicators to be used for the detection task. The validation set contains all simulated 

labels at every yaw angle from 0 to 359 degrees, as for training and testing. However, for 

each of the simulated labels, the environmental conditions - implemented via the scour 

depth parameter - are varied. Two different validation sets are investigated, one for a slight 

variation of the scour depths and one for scour depths approaching the design allowance, 

respectively. 

5.6 Results and discussion 

This section presents and discusses the results from the LDA transformation and the fuzzy 

clustering model which are used to investigate the detectability of anomalies in the system. 

Although the fuzzy clustering belongs to the so-called soft-clustering methods, the results 

are mainly reported in terms of threshold metrics [225]. Therefore, a label is assigned to 

each data sample based on the highest membership predicted by the fuzzy clustering model. 

5.6.1 Training and testing on datasets of operational variations 

The focus of this preliminary analysis is on the identification of the optimal number of the 

LDA transformed component, for the reduction and rotation of the modal indicators into 

features separating at best the eight classes. The cross-validated estimates are reported in 

terms of macro averages of the accuracy and of the F1-score – defined and explained in 

Section C.2 of the Appendices. For multiclass classification, the macro average (arithmetic) 

of these metrics can be calculated by aggregating the contributions of all classes [225], with 

c being the number of classes, as indicated in Equation 5.1. 

metricmacro= 
1

c
∑metrici

c

i=1

  Equation 5.1 

The fuzzy clustering models are trained to identify all eight centres on uniform, but 

randomly selected, subsets of the training set – according to the cross-validation process 

explained in Section 5.3.3. In Figure 5.5, the box plots of the fuzzy clustering results, for the 

three feature combinations, are presented for varying numbers of the LDA components. The 
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random selection of the subsets for this training and testing phase is the reason for the 

predictions’ variance. 

It can be observed, in Figure 5.5 (a), that the detection based on the tracking of 

frequency only has already quite satisfactory performances. The macro accuracy and 

F1-score reach median values above 93% and 74%, respectively, by selecting the first two 

LDA components. Slight improvements – with a median macro accuracy of about 94% and 

a median macro F1-score of 76% – are achieved by including the features relative to the 

MAC values of the modes. As shown in Figure 5.5 (b), this is achieved by additionally 

extending the number of LDA components (from three to five). It is finally evident, in Figure 

5.5 (c), that the fuzzy clustering models correctly classify the majority of the WTG status, by 

including the information on the modal flexibility variations.  

(a) Frequencies only 

  

(b) Frequencies and MAC values 

  

(c) Frequencies and δj̅ 

  

Figure 5.5: Macro average of the metrics from the hard-threshold clustering results for a 
varying number of LDA components. The titles report the features deployed. 

The generally low variability of the prediction indicates the independency of the models 

of the nacelle position. By accessing the first two LDA components only, macro accuracies 

and macro F1-scores close to 100% are obtained. For each of the features’ combinations in 

analysis, the identified best hyperparameter, the corresponding estimated metrics, and 

their 95% confidence intervals, are reported in Table 5.1. 
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Table 5.1: Summary of the optimal number of LDA-transformed features and estimated 
metrics on the test set. 

Input Number of 
features 

Optimal no. of 
LDA features 

Accuracy macro 

(95% CI) 
F1-score macro 

(95% CI) 
Frequencies 5 2 93.6% +/- 0.3% 74.4% +/- 1.4% 
Frequencies + MAC values 10 5 94.1% +/- 0.5% 76.4% +/- 1.8% 
Frequencies +  δj̅ 23 2 99.8% +/- 0.1% 99.5% +/- 0.5% 

The goodness of the detection, based on the features’ combination including the 

frequencies and the δj̅, can also be observed in the generally high values of the fuzzy 

partition coefficient of Figure 5.6 (b). The coefficient represents how cleanly the data are 

separated into the selected number of clusters [222]: it ranges from 0 to 1, with 1 being the 

best separation. The scatter in the results is again given by the training and testing of several 

models on subsets of the dataset. Although the models do not reach their best performances 

by clustering into eight groups of behaviour – but into six –, it is observable that the 

detection achieved by using the δj̅ generally outperforms the one by using the MAC values, 

in Figure 5.6 (a). 
(a) Frequencies and MAC values 

 

(b) Frequencies and the δj̅ 

 

Figure 5.6: Plotting of the fuzzy partition coefficient for a varying 
number of cluster centres, training the model on either (a) or (b). 
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5.6.2 Validation for variation of environmental conditions 

Figure 5.7 shows the performances of the tuned fuzzy clustering models of Section 5.6.1 on 

the first validation datasets with slightly increased scour depths. The results are presented 

in the form of a confusion matrix. A grey colour scale is used to indicate the density of the 

data sample for each pair of true-predicted labels, with dark grey being 1 (or 100% data 

samples) and white being 0. The diagonal of the confusion matrix, in dashed lines, 

represents the correctly labelled predictions, which is supposed to be populated by 

density 1 (thus in a dark grey colour). To ease the interpretability of the results, the 

validation outcomes are presented here only for the best performing models on the training 

and testing sets – cf. Figure 5.5. 

  

 

Figure 5.7: Confusion matrix of the fuzzy 
clustering prediction on the first validation 
dataset. Results are reported for the 
detection models trained on, (a) frequencies 
only, (b) frequencies and MAC values, (c) 
frequencies and δj̅. 

In Figure 5.8, the algorithms trained on MAC values and δj̅ are further validated on the 

second validation dataset replicating the brace disconnections, together with higher depths 

of local scour, yet within the scour allowance. In Figure 5.8 (a), it can be observed that the 

algorithm relying on frequencies and MAC values transfers all its predictions to the extreme 

scour scenario. In contrast, the algorithm trained on frequencies and δj̅ correctly identified 

the disconnection damages as such. Nonetheless, as shown in Figure 5.8 (b), the addition of 

extra scour caused the mislocation of the damage for levels 55, 20, 13 and 15. 
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Figure 5.8: Confusion matrix of the fuzzy clustering prediction of the dataset for the 
combination of single brace damage and scour depth approaching the design allowance. 
Results are reported for the detection models trained on, (a) frequencies and MAC values, 
(b) frequencies and δj̅. 

To show the benefit of the probabilistic monitoring approach, the membership 

predictions of the fuzzy clustering are reported in Figure 5.9 as histograms of probabilities 

for case D50 of Figure 5.8. It is evident, in Figure 5.9 (a), that the misclassification into 

extreme scour scenario for the algorithm trained on frequencies and MAC values, is 

associated to generally low membership to any of the simulated labels. Even if the assigned 

label – i.e., “scour” – has clearly the highest predicted probability, its value is below 0.3. 

Concerning the detection via frequencies and δj̅, it can be observed, in Figure 5.9 (b), that 

although the damage scenario D50 has the highest probability, the true scenario label D55 

shows a probability higher than the remaining scenarios. 

 

Figure 5.9: Histogram of soft 
clustering membership predictions 
on the dataset for the combination 
of D50 and scour depth approaching 
the design allowance. Results are 
reported for the detection models 
trained on, (a) frequencies and MAC 
values, (b) frequencies and δj̅. 
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5.7 Discussion of the challenges and limitations 

towards field applicability 

The results, shown and discussed in Section 5.6, prove of the feasibility of the suggested 

approach for the detection and location of failure events in the jacket sub-structure of the 

offshore wind turbine in analysis. The monitoring strategy outlined in Figure 1 is achieved 

to the extent of the “Detection Model Training” – based on the simulated data. This detection 

algorithm fulfils the criteria of (i) diagnostic capability, (ii) low-cost – as opposed to any 

other ad-hoc monitoring system and field inspections –, and (iii) transparency of reasoning 

process, as required for the industrial needs delineated in Section 5.3.1. As concerns the 

eventual use of this probabilistic models for decision making (iv) of maintenance actions, 

the fuzzy clustering method allows to judge the prediction for the membership of the data 

to all the possible classes. However, this will be not as easy to interpret for the real-time 

data and the raising of alarms. Instead, it should be considered to make some engineering 

judgment on the evolution of the predictions in time. The implementation for real-time field 

monitoring (v) requires, as a next step, to verify the accuracy of its predictions to a set of 

data from the real structure. 

Some of the challenges of dealing with modal data extracted from field measurements – 

especially in the case of offshore wind structures – come from their scatter and fluctuation 

in time caused by complex loads and rotating mass. As a first step one could apply the 

detection algorithm on only the data from the idling turbine – as here suggested –, when the 

excitations and the inoperability of the turbine have less of an impact on the methods for 

the extraction of the modal properties. Alternatively, the extracted modal properties can be 

pre-processed, by filtering mode shapes that do not satisfactorily match with the analytical 

modes of the FE-updated. By setting a suitable threshold on the distance – either in terms 

of MAC value or as combination of frequency difference and MAC value – between the 

extracted and the analytical modes, some of the scatter in the data would be removed 

without losing important information for the detection algorithm. 

However, it must be noted that this filtering procedure, as well the lack of excitation and 

thus poor OMA performance, can quite often lead to a lack of some required modes. In this 

respect, multiple detection models should be setup for adapting the prediction to the 

varying number of features available. This approach and the likely drop in accuracy caused 

by the removal of modes in the training phase must be yet investigated. 

5.8 Conclusions 

This study demonstrated the feasibility of the identification of damage scenarios and their 

location based on the tracking of the modal properties for an offshore wind jacket structure. 

The approach suggested is based on the training of an unsupervised fuzzy clustering 

algorithm, after having applied a supervised features transformation technique (i.e., LDA), 

on a reduced set of data, for obtaining the maximum separability of the clusters.  The 

detection scheme fulfils the identified needs in low-cost equipment, transparency, 

probabilistic output and low computational effort for real-time monitoring and decision 

support. 
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Figure 5.10: Illustration of the 
detection algorithm capability – 
trained on frequencies and the δj̅ –, 

to locate (a) each anomaly scenarios 
for slight variations of scour depth, 
and (b) the integrity loss of brace 
members for local scour depths 
close to the design allowance. 

The results from applying the trained algorithm on the validation datasets showed the 

correct detection of all anomalies with promising capabilities to identify the location of the 

brace integrity loss. The healthy status and extreme scour scenarios were always classified 

correctly. Additionally, the brace disconnection-damage was always classified as such.  Best 

damage location capabilities were seen by combining frequencies and δj̅ as training 

features, followed by the combination of MAC and frequencies. The frequencies-only 

detection showed the most mistaken results as concerns the location of the anomalies. A 

summary of the damage location capability of the best feature combination is further 

visualised in Figure 5.10. Each anomaly is indicated with a circular sign, coloured in green 

if the location is correctly identified, and in red otherwise. The arrows are used to point to 

the mistaken location of the damage. A good identification of the location of the brace 

integrity loss is possible for small variations of scour depth – Figure 5.10 (a). Mistaken 

identification of the damage location is likely for higher scour depth variations – Figure 5.10 

(b). Yet, it is worth noticing that the algorithm correctly distinguishes the damage locations 

between above and below the water level. 
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Chapter 6 

6 Detection of structural damage in 

offshore wind jacket substructures 

based on low-resolution data 

This chapter discusses the feasibility and applicability of machine learning techniques to the 

detection of structural damage in the jacket substructure of an offshore wind turbine, by employing 

standard 10-minute SCADA data. Two frameworks are possible, depending on whether the damage 

equivalent load (DEL) varies, or not, with the presence of a damage in the structure. If the DEL is a 

good indicator of the presence of a failure mechanism, the scientific literature has shown that the 

SCADA data have the potential to quantify it and its deviation. If not, the signals of the SCADA data 

and of any other low-resolution measurements should be investigated for the detection purpose. 

The feasibility of this detection approach is proven by using well-known binary classifiers for the 

detection of the damaged status of the turbine 1. However, these supervised models strongly rely 

on the quality and type of simulated data, and thus on the virtual prototype deployed for the 

generation of the data. This limitation, and the potential solutions offered by the unsupervised 

models, is discussed in an applicability study 2. 

6.1 Background 

The accuracy of the fatigue loads estimated from direct monitoring is generally affected by 

missing data and noise in the acquired signals [24]. Data-driven approaches have been 

 

 

 
1 D. Cevasco, J. Tautz-Weinert, U. Smolka, A.J. Kolios, (2020), “Feasibility of machine learning 
algorithms for classifying damaged offshore jacket structures using SCADA data”, IOP Conference 
Series: Journal of Physics. https://doi.org/10.1088/1742-6596/1669/1/012021  

2 D. Cevasco, J. Tautz-Weinert, A.J. Kolios, U. Smolka, (2020), “Applicability of machine learning 
approaches for structural damage detection of offshore wind jacket structures based on low 
resolution data”, IOP Conference Series: Journal of Physics. https://doi.org/10.1088/1742-
6596/1618/2/022063  

https://doi.org/10.1088/1742-6596/1669/1/012021
https://doi.org/10.1088/1742-6596/1618/2/022063
https://doi.org/10.1088/1742-6596/1618/2/022063
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shown capable of predicting fatigue damage equivalent loads (DELs) at several locations of 

an offshore wind turbine (bladed and substructure) by using low resolution SCADA data 

only [226]. Therefore, to avoid relying on the installation of strain gauges and dealing with 

data management issues, several authors proposed and validated the use of ten-minute 

statistics of available operational SCADA signals for the prediction of structural fatigue loads 

from trained neural network models  [56], [227]–[229]. In [226], Cosack tackled for the first 

time the estimation of fatigue loads from standard signals from the operating turbine and 

proved its feasibility. Neural networks algorithms were used for predicting the main fatigue 

loads on the blades and the tower of a 5 MW prototype (Multibrid M5000) and a 2.5 MW 

commercial (Nordex N80) onshore wind turbine, excluding wake operation. Additionally, 

he studied in detail the impact of environmental and operational disturbances on the input 

and targeted signals.  

Based on these findings, Smolka et al. [55], [56] extended the analysis to offshore wind 

structures. In [55], they investigated, on simulated data, the sensor layout necessary to 

replace the need for sea state measurements for predicting the fatigue loads on the tower 

and the support structure. By training and testing neural networks on two operational 

conditions (idling and power production condition), they deduced that, for a 4-legged jacket 

structure, the employment of a either a tower top or tower base accelerometer can improve 

the accuracy of the estimation. The main findings of [56], for the estimation of the tower 

base bending fatigue loads of a 5 MW wind turbine on a tripod foundation (AREVA M5000), 

can be summarised as follow: 

• The results from the correlation analysis showed that total set of 64 inputs, among 

standard SCADA data and their statistics, can be potentially reduced to 28 inputs for 

power production conditions. A configuration with only four standard data signals 

– namely the generator speed, the blades pitching angle, and two-dimensional 

acceleration of the tower top – to be measured and the computation their statistics, 

for a total of 10 inputs to the neural network, achieves a mean estimation error of 

0.5% on the test set, only slightly higher than the full set one. 

• It is necessary to capture a broad range of operational conditions and turbulence 

intensity level for achieving low estimation error during training and testing. For 

this reason, although around 50 and 100 samples per wind are shown to be optimal 

– for a total of half a month of data for 24 wind speeds –, the site-specific probability 

distributions of the environmental conditions dictate the length of the measurement 

campaign for the training of the neural network for fatigue monitoring. 

Finally, they concluded that the combination of several specialised neural networks 

should be used to track the loading history of the turbine. The prediction on the validation 

dataset is just slightly underestimated (mean error -0.3%) for loading conditions like the 

one experienced by the algorithm training. However, they observed that the cumulated 

error tendency is to drift away towards a persistent underestimation. 

Vera-Tuleda et al. [228], [229] focused their analysis on the prediction of blades fatigue 

loads of the turbine in the EnBW Baltic 1 offshore wind farm. Their predictions were 

accurate throughout all WTG operating cases, with an average overprediction error below 

1.5%. In wake flow conditions only slightly deteriorated the estimation of the DEL of the 

blade root bending moment. Therefore, they concluded that a reasonable monitoring 

system can be based on the training of a neural network model without the need to 

distinguish between inflow conditions. 
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6.2 Problem statement and aim 

The literatures’ findings, summarised in Section 6.1, have shown that the SCADA system 

data holds the information and the relationships for the prediction of the fatigue of the 

structures of offshore wind turbine. Therefore, if a failure mechanism has an impact on the 

fatigue cumulated in the wind turbine’s structure, it can be that the SCADA signals are good 

at predicting the presence of the damage. The aim of this work is to propose an alternative 

to the current practice for the identification of a damage in an offshore wind turbine 

substructure – to-date mainly based on either on-site practical assessments, or data-driven 

vibration-based methods [230].  

The focus of the analysis is on the feasibility of the detection of a structural damage by 

capturing abnormal variations of the ten-minute statistics of the SCADA system data. As 

opposed to the SHMS – installed on no more than 10% of the turbines across a farm –, the 

SCADA system collects operating and environmental signals the throughout the service life 

of all assets. Therefore, the proposed approach has the potential to be applied to all units 

across a farm. Furthermore, the requirement for low-frequency statistics of the SCADA data 

is less of a burden from a data storage and handling point of view.  

6.3 Methodology 

Section 6.3.1 introduces to the approaches adopted for proving the feasibility and 

discussing the applicability of a SHM scheme based on low-resolution data and non-

parametric approaches. In Section 6.3.2, the setup of the EOC for the FLS semi-coupled 

simulations – with the FEM in healthy and damaged status – is described. Finally, Section 

6.3.3 briefly introduces to the main concepts of the traditional machine learning models 

used for the classification and the normal behaviour task. 

6.3.1 Suggested approach 

For the feasibility study, the data are generated from the as-designed numerical 

representation of the WK64 turbine. Simulated data is used to train and test classifiers for 

damage detection in a binary form (damaged/healthy). The tests with unseen conditions for 

stochasticity of the loading conditions and variability of wind inflow parameters are 

conducted. The detection capability of logistic regression, support vector machine, k-

nearest neighbour, random forest, and Gaussian naïve Bayes based classifiers is tested in 

this feasibility study. Each algorithm’s best performance is obtained through an iterative 

process across the dataset for variation of EOC. 

Once the best classifier is identified to perform the binary-classification on the integrity 

status of the turbine’s foundations, the capability of the classifiers to accommodate the 

uncertainties associated with the model used for the training of the algorithm is 

investigated into an applicability study. The concept behind this process is illustrated in 

Figure 6.1. The model of the structure used for the design purpose is thought to give a good 

representation of the behaviour of the real structure. However, this model is aimed to meet 

required safety levels. In contrast, the real structure differs from the designed structure 

(described with system uncertainty ∆3) due to manufacturing tolerances, deviation in 

environmental parameters and changes during lifetime as e.g., corrosion and scouring. For 

this reason, the FEM of the structure is updated to mimic the behaviour of the real structure 
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based on measurements [194]. The FEMU can be described with an uncertainty ∆1 with 

respect to the virgin model. Representing the as-installed status of the turbine, the system 

uncertainty to the real structure (∆2) should be small compared to the one from the virgin 

model (∆2≪ ∆1). The objective of this study is to verify if the algorithms trained on the data 

from the as-designed model of the jacket are successful in classifying the status of the 

turbine when tested on the datasets from the FEMU. If this is achieved, then it will prove 

that the virgin model, and the algorithms trained on it, have the potential of being directly 

employed for the damage detection task of the real structure (since ∆3~∆1). 

 

Figure 6.1: Relationship between the modelled as-design, as-
installed and real systems (∑), and the uncertainties (∆) among 
these. 

6.3.2 Data generation 

It is very unlikely to have access to real run-to-failure data of the wind turbine substructure, 

as these events rarely happens, and such data would be unlikely to be shared for research 

purposes due to confidentiality reasons. Therefore, the collection of data representing the 

dynamics of the wind turbine structure in its healthy conditions, and in response to 

anomalies, is obtained via FLS simulations run in the LACFlex software, as explained in 

Section 4.4.3. A set of representative FLS load combinations is investigated – refer to Section 

6.5.1 and 6.6.1. 

  

Figure 6.2: Visualisation of the uncertainties considered (upper 
and lower bounds) in the wind farm flow condition of the fatigue 
design simulations: wind shear (left), and TI (right). 

To account for the uncertainty associated to the real operational conditions of the 

turbine, the healthy and damaged structural responses are derived for changes in the wind 

farm flow conditions as illustrated in Figure 6.2. The wind shear exponent (WS) – which is 

potentially correlated to multiple factors [231] – is varied from the design base specification 

to a minimum of 0.08 (WSL) and a maximum of 0.3 (WSU), changing the distribution of the 

normal wind profile. The 90th percentile of the effective turbulence intensity (TI) is used as 

reference, a value considered representative for the fatigue design calculations [232]. Based 

on the experience from a similar farm, an upper (TIU) bound curve is defined to represent 

the missing extreme cases. Similarly, a lower (TIL) bound curve is drawn corresponding to 
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the 10th percentile of the effective turbulence intensity. These are then implemented in a 

Mann turbulence model to represent the fluctuating wind field. 

6.3.3 Machine learning algorithms 

Several detection algorithms are experimented to identify the possible best predictors of 

the damage. These algorithms range from supervised to unsupervised approaches, and they 

are implemented via the Python machine learning package (skikit) [233]. 

For the training of the supervised algorithms the “grid search” method is followed 

[223]. This implies that various combinations of configurations of the hyperparameters are 

tried during the training phase. The combination giving the overall best performance on the 

folds of the training set is selected – following the so called “cross-validation” method. These 

folds, i.e. subsets, are selected by applying a stratified k-fold approach [223], which divides 

the training set in homogeneous splits of healthy and damaged data samples. The 

algorithms tuned with the optimal set of hyperparameters, are then fitted to the full set of 

training data. As concerns the unsupervised algorithm, the hyperparameters selection is 

done manually because of the targeting satisfactory results of multiple performance metrics 

– i.e., precision, recall and false alarm rate (refer to Section C.2 of the Appendices) – on both 

the training and the test sets.  

The classifiers are trained on balanced datasets containing both the healthy and damage 

samples. Each dataset for varying environmental loadings of the structure has a 50:50 ratio 

of healthy and damaged conditions. In contrast, the anomaly detection algorithm is 

instructed to build a decision function for recognizing the healthy data only and considering 

all data samples do not experience during the training phase as damaged. 

6.4 Case study 

As damage case study, the full loss of a cross-member of the jacket structure is simulated. 

The stiffness of a brace close to the seabed which connects diagonally two of the legs of the 

jacket is reduced to a value close to zero. This failure location is selected because, as shown 

in Section 4.5, it is associated to a high deviation of the global natural frequencies and a 

potentially high impact on the jacket structure fatigue life. 

6.5 Feasibility study 

Figure 6.3 shows the workflow for the demonstration of the feasibility of the detection 

approach. The dynamics analysis – cf. Section 4.4.3 – of the as-designed structure is setup, 

to record its response to the EOC and as a consequence of a structural failure mechanism. 

The time histories of loading conditions, and the relative structural responses, are post-

processed into ten-minute statistics, similarly to SCADA data. The data are collected into a 

database, which is sequentially accessed to construct the datasets for the training and 

testing of machine learning algorithms. The features, i.e., the set of independent variables 

used for the prediction, of each dataset are standardised before being used in the models. 

The dataset in analysis is then divided into subsets, named “Tr” for the tuning/training 

subsets and “Te” for testing subsets. 
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Figure 6.3: Workflow for the data generation, the datasets processing and the algorithms 
training and testing. In “dotted lines” are the iterative processes for the re-training of an 
algorithm. 

The tuning, training, and testing methods are applied in the same manner for all datasets 

considered and all algorithms investigated. If a classifier performs in an unsatisfactory way 

on the test set for stochastic variation of the loadings, feature and dimension reduction 

techniques are applied (see Figure 6.3, in green). The most promising algorithms are then 

tested on the subsets for variations of the environmental parameters (see Figure 6.3, with 

“dashed” lines in the block for “synthetic data generation” and “data processing”). If 

insufficient detection performance is exhibited at this stage, the subset for the training of 

the classifier is extended to include additional features and/or the data from the 

misclassified cases. Tuning, fitting, and testing are then repeated (see Figure 6.3, in blue). 

Eventually, a recommendation of the best training set and algorithm for the damage 

detection task is given. 

6.5.1 Databases and preliminary analysis 

Due to the symmetries of the jacket substructure, and the location chosen for the 

implementation of the structural damage, a combination of four wind directions and twelve 

wave directions is deemed sufficient. The average wind speed at the hub height is simulated 

for six values, to represent three below and three above rated conditions. Nine realizations 

of the wind and wave time histories are processed for each loading combination, to 

guarantee the capability of the detection algorithms to distinguish the response due to load 

stochasticity from one of the damaged status. Therefore, a total of 2,592 simulations per 

turbine status, and TI value are performed. The load case settings are reported in Table 6.1.  

Table 6.1. Load combinations simulated per jacket status (healthy/damaged) and jacket 
model (as-designed/as-installed). 

Load case Wind speed Wind direction Wave direction Seeds Total 

Settings (a) 14, 18, 22 m/s  
(b) 4, 6, 8 m/s 

 

0°, 90°,  
180°, 270° 

0°, 30°, 60°, 90°, 
120°, 150°, 180°, 210°, 
240°, 270°, 300°, 330° 

9 – 

Number 6 4 12 9 2,592 
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As outlined in [22], any structural health monitoring method employed in the detection 

task must be able to distinguish between signal variations related to EOC, as opposed to the 

ones corresponding to a structural anomaly. The damage implemented was observed to 

lead to significant changes of the second modes and their natural frequencies with respect 

to the healthy status. It is then reasonable to expect that this has an impact on the loads at 

the tower base, building the interface between the turbine and the jacket structure. 

However, variations of the environmental conditions could affect the global response in a 

similar manner. Therefore, a pre-analysis for a reduced number of simulations is performed 

to investigate the influence of wind flow parameters (upper- and lower-bound values) on 

the structural response. 

The time histories, output from the AHSE code with 50 Hz frequency, are post processed 

into ten-minute minimum (min), maximum (max), average (mean), and standard deviation 

(std) values. At first, all the measurable signals are collected into the database of operational 

conditions, potentially being meaningful indicators of the structural failure. The potential 

predictors of the damage are then investigated by quantifying the deviation of the statistics, 

given the scatter for the stochastic variation of the loading, for the healthy and damaged 

status data. 

Effect of environmental parameters variations  

The sensitivity of the loads at the tower interface on the WS and the TI parameters is 

presented in Figure 6.4 and Figure 6.5, respectively, with respect to a design load case at a 

below rated condition.  

 

 

Figure 6.4: Box plots of the interface load of the as-designed WK64 
turbine, for lower-, design-, and upper-bound of the wind shear 
parameter, at a below rated condition. 
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The box plots of the time histories of the interface forces and moments, in the fore-aft 

(y) and the side-side (x) direction, are reported for the nine stochastic variations of wind 

and wave loadings. 

In Figure 6.4, it can be noticed that the wind shear exponent does not seem to 

significantly affect any of the loads. By contrast, a high level of turbulence intensity is 

associated to higher load ranges and standard deviations compared to the design base 

scenario – cf. Figure 6.5. Opposite behaviour is then observed for the low-turbulence level. 

Consequently, it is deemed necessary to feed the datasets for the varying TI parameter into 

the machine learning training phase. On the other hand, it is assumed that the variation of 

the wind shear that can be fully captured in the structural dynamics of the design load case. 

 

 

Figure 6.5: Box plots of the interface load of the as-designed WK64 
turbine, for lower-, design-, and upper-bound of the wind shear 
parameter, at a below rated condition. 

Detectability and signals deviation 

A visual representation of a preliminary analysis of some of the channel’s statistics is given 
in Figure 6.6. This plot reports the mean of the tower top accelerations and the DEL of tower 
bending moments at the interface. It can be observed that, with respect to the DEL of the 
bending moments, only the MyF0, relative to the side-side motion, deviates slightly from the 
healthy status for some of the angles of the wind-wave misalignment. By contrast, it has 
been noticed that the DEL of the MxF0 of the tower base, in the fore-aft direction, as well as 
the DELs of the moments at the foundation base, and at the blade roots remained mainly 
unaffected. On the other hand, it has been observed that the tower top acceleration channels 
(AxTT and AyTT), the power output range (for the extreme turbulence case), the tower 
bottom acceleration, the rotations, and some of the forces and moments in the drivetrain 
(mainly at the main bearing) captures the discrepancies between the healthy and the 
structural damaged-status, throughout the load combinations considered. 
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Figure 6.6: Box plots of the ten-minute mean tower top acceleration (A•TT) and interface 
bending moments DEL (M•F0) against wind-wave misalignments for an above rated case load 
combination. 

Sets of data for training and testing 

The datasets built for training and testing of the classifiers are reported in Table 6.2, while 

the details on the several sets of sensors tested are reported in Table 6.4. Table 6.3 records 

the characteristics of the subsets for used for the training, the testing, and the validation of 

the classifiers.  

A detection through standard SCADA signals (sensor setup S0) is preferred and 

attempted at first. Initially, the investigation of the feasibility of the status classification is 

performed on the dataset of the design load combinations (dataset D0). Then the data 

derived for the different TI levels are added to this base scenario, expecting significant 

variations in the loadings and response of the structure (datasets D1, D2 and D3).  

Table 6.2: Datasets for the feasibility analysis. 

Datasets Effective TI No. simulations 
D0 design 5,184 
D1 design + TIU 10,368 
D2 design + TIL 10,368 
D3 design + TIU + TIL 15,552 

 

Each of the training subsets (Tr#) consists of 67% of the data of the current set, by 

randomly selecting six out of the nine realizations for each load case. The remaining set of 

three realizations per load case, consisting of the 33% of the data in the set, is collected in 

the subset Te33 and used for testing. Additionally, the mid -upper and -lower TI curves 

(Figure 6.2) are derived, and the statistics associated to these loadings are collected into the 

Te3 and Te4 test sets, over that the one for upper and lower bound values (in the test sets 

Te1 and Te2). 

 

 

 

Figure 1. Box plots of the ten-minute mean tower top acceleration (A●TT) and interface bending 

moments DEL (M●F0) against wind-wave misalignments for an above rated case load combination. 
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Table 6.3: Subset of data for training, testing and validation. 

Set Acronym Effective TI No. simulations 
Training Tr# – 67% D# 
Testing Te – 33% D# 
Validation Va1 TIU 5,184 

Va2 TIL 5,184 
Va3 TIMU* 5,184 
Va4 TIML* 5,184 

* mid-upper and -lower TI curves selected as shown in Figure 6.2 

While pursuing the best classification results, the sensor setup is redefined during the 

iterative process of the classifiers’ training and testing – cf. Table 6.4. With respect to the 

preferred baseline scenario – deploying the sensor setup S0 –, the benefits of the installation 

of an inclinometer and a set of strain gauges, at the tower base, is tested in the setup S1 and 

S2, respectively. The reason for the selection of these sensors’ signals, and location, is: 1) in 

avoiding installing monitoring devices below the water level and, 2) to maintain the analysis 

as independent as possible from measurement from the drivetrain, which are highly related 

to the specific control strategies and optimization. These sensors allow for the indirect and 

direct measurement of strain at the tower interface. While the inclinometers’ channels are 

added to the datasets (i.e., any of the D#) in terms of min, max and std, the channels of tower 

bending moments are additionally represented by their DEL. 

Table 6.4: Sets of sensors and signals considered for the detection purpose. 

Monitoring 
System 

Measurement 
Signal 
acronym 

Unit 
Sensor set up 

S0 S1 S2 S3 S4 

SCADA 

Nacelle direction YawPos [deg] x x x x  
Wind direction WDir [deg] x x x x  
Yaw angle (misalign. error) YawErr [deg] x x x x  
Wind speed Whub [m/s] x x x x  
Power Pow [kW] x x x x  
Rotor speed RotSpd [rpm] x x x x  
(Collective) Pitch angle PiPos1 [deg] x x x x  

 Tower top acceleration AxTT, AyTT [m/s2] x x x   
Inclinometer Tower bottom rotation UrxF, UryF [deg]  x x x x 
Strain gauge Tower bending moment * MxF0, MyF0 [kNm]   x   

* at the (turbine) tower bottom, at interface between the foundation and the turbine 

6.5.2 Results 

These section reports the results of the binary classification performed by the different 

models on the several datasets of Table 6.2 and the subsets of Table 6.3. The classification 

metrics used are the one defined in Section C.2. of the Appendices. 

Algorithms’ selection 

A preliminary selection of the most promising models is done on the data from D0 and the 

sensor setup S0, already at the tuning and training stage.  

Unsatisfactory performances are shown by the following classifiers: 

• Gaussian naïve Bayes 

Based on the strong (naïve) independence assumptions between the features, it is 

here implemented by selecting the first 9 principal components (eigenvalues) 
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corresponding already to more than the 90% of all the variance (as explained in 

[234]). Yet, inacceptable performance is given, probably because of violation of the 

normal distribution assumption for the numerical predictors. 

• K-Nearest Neighbour 

Despite of the broad and small stepped range of K given during the cross-validation 

tuning and fitting, this algorithm, given its implementation in [233], fails in finding 

boundaries separating the two classes.  

By contrast, as it can be observed in Figure 6.7, the results obtained by deploying the 

following classifiers are worthy of further investigation: 

• Logistic Regression 

Logistic regression (LR) is a linear method that models a binary dependent variable, 

where the predictions are transformed using the logistic (sigmoid) function. As for 

linear regression, the model can overfit if there are multiple correlated inputs [235]. 

Here, it does not seem to happen, despite the high dependency of some of the 

features.  

• Support Vector Machine 

The support vector machine (SVM) approach aims to find a line, surface or 

hypersurface for the separation of the classes. When applied to the data, it fails in 

finding a linear hyperplane for a correct classification. On the other hand, by 

projecting the data into a higher-dimensional space defined by polynomials (poly) 

and Gaussian (radial) basis functions (rbf), the models manage to capture the 

nonlinearity of the classification problem yet requiring a higher computational time.  

• Random Forest 

The random forest (RF) method fits a number of decision tree classifiers on various 

subsamples of the learning datasets, providing as output the average among the 

single trees’ predictions. This ‘trick’, together with the limitation in the number of 

features for the trees and their depth, aims to control the over-fitting.  

(a) Above rated (b) Below rated 

  

Figure 6.7: Accuracy of the most promising classifiers on the dataset D0 (thus, trained on 
Tr0), with the sensor setup S0, for the (a) above rated, and (b) below rated conditions. On 
the right, the colour legend – the targeted performances are in green. 

By further testing the LR, the SVM and the RF classifiers on the test set for stochastic 

variations of the environmental conditions (Te), it can be observed that generally 

satisfactory performances are obtained for the below rated conditions; the models 

successfully distinguish the normal operating conditions from the damage status – cf. Figure 
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6.6 (b). Slightly more substandard performances are obtained, for all models, in the above 

rated conditions – cf. Figure 6.6 (a). This could be explained by the higher fluctuation of the 

tower top acceleration in above rated operating conditions.  

The algorithms are then tested on the subsets of data corresponding to the response of 

the structure to variation of the TI, according to the curves in Figure 6.2 – i.e., test subsets 

Va1 to Va4. It is evident, from the radar plots in Figure 6.6, that none of the models can 

perform such generalization. Consequently, a re-training iteration is carried out by updating 

the training subset by either increasing the amount of data samples considered (varying the 

D# datasets) or changing the amount and/or type of sensors employed (varying the S# 

sensor set up per dataset). For brevity, the results are following reported only for the RF 

classifier. The complete results of the LR and the SVM models are given in a tabular format 

in Section D.2 of the Appendices, together with the tabular metrics for the RF classifier in 

the several D#-S# combinations.  

Varying training datasets 

First, the classification models are re-trained by adding the data samples corresponding to 

the varying turbulence levels to the dataset of the design load case (datasets D1, D2 and D3). 

Acceptable results are achieved for the RF classifier only, while the LR and the SVM do not 

exceed 60% accuracy – cf. Section D.2 of the Appendices. The classification results of the RF 

model are reported in Figure 6.8, in terms of accuracy (acc), recall (re), and specificity (sp), 

and by differentiating the results for the above and the below rated conditions. 

As it can be noticed by looking at Figure 6.8, the targeted acc and re are generally 

achieved for the predictions on the test set (Te) and the set of mid-low TI conditions (Va4), 

when adding either the low-TI or both the extreme-TI data samples to the training set (D2 

and D3, respectively). The performances are yet slightly better for the below rated case than 

for the above rated one. However, the improvement obtained by adding only further data 

sample is associated to a high false positive rate (defined as 1–sp), which is shown to reach 

a value up to 45% for above rated conditions. 

                (a) Above rated (b) Below rated 

   
   

   
 a

cc
 

  

   
   

   
  r

e 

  

0
10
20
30
40
50
60
70
80
90

100

Te Va1:
highest TI

level

Va2:
lowest TI

level

Va3:
mid-high TI

level

Va4:
mid-low TI

level

0
10
20
30
40
50
60
70
80
90

100

Te Va1:
highest TI

level

Va2:
lowest TI

level

Va3:
mid-high TI

level

Va4:
mid-low TI

level

0
10
20
30
40
50
60
70
80
90

100

Te Va1:
highest TI

level

Va2:
lowest TI

level

Va3:
mid-high TI

level

Va4:
mid-low TI

level

0
10
20
30
40
50
60
70
80
90

100

Te Va1:
highest TI

level

Va2:
lowest TI

level

Va3:
mid-high TI

level

Va4:
mid-low TI

level



Chapter 6                                                                                 Detection of structural damage based on low-resolution data 

113 

                (a) Above rated (b) Below rated 
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Figure 6.8: Classification performance of the RF on the test and validation sets, for varying 
size and characteristics of the training dataset (i.e., D1, D2, and D3 of Table 6.2), considering  
the (a) above rated, and (b) below rated conditions. 

Varying sensor type 

Figure 6.9 reports the RF classifier performances when trained on D0, but with varying type 

and number of sensors deployed for the detection. By adding the ten-minute statistics of the 

time signals from the tower base inclinometer to the SCADA data (sensor set up S1), 

significant improvements are achieved by the RF classifier. Due to the yet high number of 

false alarms (fo), for TI level above the 90th percentile curve (test sets Va1 and Va2), the 

classifier is re-trained by adding the statistics of tower base strain gauge signals (sensor set 

up S2), which includes the DELs as additional features. 
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Figure 6.9: Classification performance of the RF on the test and validation sets, for varying 
sensors setup of the training dataset D0 (i.e., S1, S2, and S3 of Table 6.4, considering the (a) 
above rated, and (b) below rated conditions. 

While only a slight improvement is recorded again for RF at below rated condition 

mainly – cf. Figure 6.9(b) in terms of re –, it is interesting to observe that LR and linear SVM 

accomplish exceptionally good results – cf. tables in Section D.2 of the Appendices. This is 

identified as symptom of the instability of the models due to the addition of collinearity into 

the analysis. The rotation and bending moment signals are, indeed, strongly correlated. The 

effect of this phenomenon is somewhat reduced in the RF classification thanks to random 

selection of a reduced number of features at each node.  
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 (a) Above rated (b) Below rated 
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Figure 6.10: Accuracy of the most promising classifiers on the dataset D0 (thus, trained on 
Tr0), with the sensor setup S0, for the (a) above rated, and (b) below rated conditions. On 
the right, the colour legend – the targeted performances are in green. 

In line with this logic, and by recognizing a generally high correlation of the acceleration 

signals with the power, the shaft rotational speed, and the wind speed – with R2 values 

above 0.9 –, a re-training based on the use of the inclinometer statistics instead of the tower 

top accelerometer is attempted (sensor setup S3). The results, in the tables of Section D.2 

and D.3 of the Appendices, confirm the hypothesis, by showing improved performance for 

the RF classifier, and unsatisfactory results for the LR and SVM classifiers. 

Finally, by considering this sensor setup (S3) and by extending the training subset with 

data from the lowest TI level (D2), it can be observed, in Figure 6.10, that the targeted 

performance is achieved on all the test and the validation sets (Te, Va1, Va3 and Va4) for 

the RF classifier, at both below and above rated conditions. Furthermore, it is worth noting 

that also the SVM classifier achieves generally satisfactory performance for this dataset-

sensors combination (D2-S3). Acceptable re and low number of false alarms are achieved 

on the test set Te and the validation set Va4, at below rated conditions, by employing a rbf 

kernel transformation. 

6.5.3 Discussion on predictions’ confidence 

The confidence of the RF models in their prediction is discussed based on the reliability 

curve of Figure 6.11. The predicted probabilities for the damaged class are divided into bins 

– along the x-axis. The number of predicted damaged-status events are then counted for 

each bin and normalized on the y axis (observed relative frequency).  

A well calibrated binary classifier should classify the samples such that, for instance, 

among the samples to which is associated a probability of 0.9, approximately 90% of the 

cases are classified as damaged. Therefore, the more reliable a forecast is, the closer the 

points will appear along the main diagonal (“perfectly calibrated”). For points of the curve 

below the diagonal, the model has over-forecasted the probability, while above the diagonal 

the probability forecasted is too small. 

The reliability curves of the RF classifiers present their typical sigmoid shape [236]. This 

means that the algorithm is overconfident on small, predicted probability and 

underconfident for big, predicted probabilities. This behaviour is common for the RF 

classifier because the average predictions from the base-level trees can have high variance 
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due to feature sub-setting. A slightly better confidence of the RF prediction is given when 

trained on D3-S0 and tested on medium-high TI levels (Va3) – cf. Figure 6.11 (left). 

  

Figure 6.11: Reliability plots of the predictions from SVM (orange) and RF (blue) models, for 
below rated conditions. On the left, the RF model is trained and tested on the D3-S0 
combination. On the right, the models are trained and tested on the D2-S3 combination. 

When trained and tested on the D2-S3 combination, it can be noticed – cf. Figure 6.11 

(right) – that the RF model is able to extend their prediction to all operating conditions, even 

for significant variation of the TI levels. Although the SVM model does not exhibits as good 

performance as the ones of the RF classifiers on this database-sensor combination, it can be 

observed that the rbf-SVM classifier is very confident in its predictions. The 

under-confidence of the RF model predictions is shown by the histogram peaks moving 

further away from 0 and 1 – cf. Figure 6.11 (right). To improve the performance of the RF 

classifier, a re-calibration activity is suggested for the predictions associated to high-TI 

levels [236]. However, the derivation of the optimal model is not in the scope of this work. 

6.6 Applicability study  

At first, the best performing model that, is built by using the as-designed data, is tested on 

the set of data from the FEMU simulations (as-installed status). Then, a hybrid training is 

attempted by including the dataset of healthy status condition from the as-installed 

structure dynamics into the training.  

Finally, the potential implementation of anomaly detection algorithms is briefly studied. 

The unsupervised algorithms are used based on healthy data only from the as-installed 

system. The algorithm is instructed to recognize the normal behaviour of the structure and 

to spot anomalies when fed with simulated data associated to the damaged structure. A 

flowchart of the approach is presented in Figure 6.12. 
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Figure 6.12: Workflow for the applicability of machine learning for the 
structural damage detection by using simulated data. The dashed lines are 
used to indicate the data flow for the testing of the algorithms. 

6.6.1 Databases and preliminary analysis 

The investigation of the applicability of this low-resolution, non-parametric approach, for 

the detection of the turbine’s damaged status, continues with the setup and the findings of 

Section 6.5. The load combination and the number of simulations run per wind turbine 

status are reported in Table 6.5. The setup of the sensors’ is varied according to Table 6.4. 

As for the previous analysis, the features for the training of the algorithms are the minimum, 

mean, maximum, and standard deviation statistics – usually collected in the SCADA data –, 

and the DEL of the tower bottom bending channels. 

Table 6.5: Load combinations simulated per jacket status (healthy/damaged) and jacket 
model (as-designed/as-installed).  

Load case Wind speed Wind direction 
Wind-wave 

misalignment 
Effective 

TI S
e

e
d

s 

Total 

Settings (a) 14, 18, 22 m/s  
(b) 4, 6, 8 m/s 

 

0°, 60°, 120°, 
180°, 260°, 320° 

-60°, 0°, 60° TIU, 
TIdesign 

TIL 

6 – 

Number 6 6 3 3 6 1,944 

 

Of the total amount of simulation run, the dataset splits and the samples number are, 

hierarchically: 

• 3,888 for each structural health condition (healthy and damaged), of which 

• 1,944 for each represented status (as-designed and as-installed), of which 

• 648 for each of the three TI levels, of which 

• 108 for each of the six seedings. 

 The deployment of each dataset for the training and testing of the detection algorithms, 

is reported in Table 6.6. Details are given on the use of each dataset for the supervised and 

the unsupervised training approaches, according to the varying TI levels. 
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Table 6.6: Overview of the data type and their utilisation for the training and testing of the 
supervised and unsupervised algorithms. 

Status→ Healthy Damaged 

Model↓ TIL TIdesign TIU TIL TIdesign TIU 
As-designed S: train/test 

SH: train/test 

 

S: test 

SH: test 

 

S: train/test 

SH: train/test 

 

S: train/test 
SH: train/test 

U: test 

S: test 
SH: test 
U: test 

S: train/test 
SH: train/test 

U: test 

As-installed S: train/test 
SH: train/test 
U: train/test 

S: test 
SH: test 

U: train/test 

S: train/test 
SH: train/test 
U: train/test 

S: test 
U: test 

S: test 
SH: test 
U: test 

S: test 
U: test 

U: unsupervised algorithms 

“train/test” refer to a training vs testing seed ratio of 4:2 

6.6.2 Results 

The algorithms to be trained on the each of the datasets of Table 6.6 are: 

• the SVM and the RF, for supervised approach, based on the most promising 

classifiers identified in Section 6.5, 

• a one-class support vector machine (OCSVM), for the unsupervised approach; the 

selection of this algorithm is guided by considerations on characteristics of the 

datasets generated by the as-installed FEM, and the typology of the detection 

wanted – explained more in details in Section 6.6.3. 

For the training of these algorithms a “grid search” method is followed [223]. This 

implies that various combinations of configurations of the hyperparameters are tried 

during the training phase. For the supervised approaches, the best set is then selected as 

the one giving the best accuracy on sub-sets of the training dataset, so-called cross-

validation (CV). On the other hand, the hyperparameters selection is done manually for the 

unsupervised algorithm, targeting satisfactory results of pr, recall and fo on both the 

training and the test sets – refer to Section C.2. of the Appendices for the definition of these 

metrics.  

The hyperparameters are varied as follows [233]: 

• SVM: kernel = {linear, polynomial, radial-based function (rbf)}, C = {0.01:1000}, 

gamma = {0.01:1000} 

• RF: number of estimators = {10:100}, node split criterium = {“gini”, “entropy”}, 

maximum number of features = {“sqrt”, “log2”, “dataset features”}, maximum depth 

= {5:30} 

• OCSVM: kernel = {sigmoid, polynomial, rbf}, nu = {0.01:1}, gamma = {0.01:1000} 

The classifiers are trained on balanced datasets containing both the healthy and damage 

samples. In contrast, the anomaly detection algorithm is instructed to build a decision 

function for recognizing the healthy data only and considering all data samples do not 

experience during the training phase as damaged. 

The work of Section 6.5 addressed the training, testing and validation of supervised 

detection algorithms on the as-designed model. The SVM and the RF model showed 

satisfactory performances in predicting the correct label, healthy or damaged, on unseen 

sets of data associated to: 

• the variation of the level of TI: upper bound (TU), 90th percentile (Td), lower bound 

(TL),  
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• the stochasticity (seedings) of the wind and wave loadings, and 

• the presence of a damage in the jacket structure.  

The best set of data for the generalization of the prediction over a broad set of inflow 

wind conditions has been found by including the extreme (upper and lower bound) 

turbulence intensity levels per wind speed. The optimal sensor setup for the detection task 

has been identified by substituting the tower top accelerometer with a 2D inclinometer 

installed at the bottom of the turbine tower (set S1). 

Testing on the as installed structure 

The applicability of these classification models – trained on the as-designed model –, to 

datasets of the as-installed structure is verified in this section. Table 6.7 reports the training 

and testing performances for the below rated operating condition, by having obtained 

similar but slightly worse results for the above rated condition. It can be observed that both 

classifiers have a random guess on test sets derived from the as-installed model, for all 

levels of turbulence intensity. The inclusion of the DEL from the tower bottom strain gauge 

– having the potential to a good predictor of this type of failure mechanism [237] –,  to the 

training set (set S2) leads only to minor improvements. 

Table 6.7: Performances of the classification models – trained on the datasets generated by 
the as-designed FEM – on the variation of the EOC for the as-designed FEM, and on the dataset 
generated by the as-installed FEM. 

Models and tuned 
hyperparameters Set 

 As-designed As-installed 

CV Seedings TId TId TIU TIL 

acc acc pr re fo acc pr re fo acc acc acc 

S
V

M
 kernel: rbf 

C = 1000 
gamma: scale  

S1 93.3 100 100 100 0 84.0 81.3 88.3 20.4 51.9 50.0 53.7 

S2 91.4 100 100 100 0 83.8 83.5 84.3 16.7 50.9 50.5 54.6 

R
F

 

criterion: entropy 
max depth = 15 
estimators = 80 

S1 95.6 100 100 100 0 91.7 94.1 88.9 5.6 52.8 55.6 49.5 

criterion: entropy 
max depth = 20 
estimators = 100 

S2 95.4 100 100 100 0 89.8 93.9 85.2 5.6 53.2 54.6 49.5 

Hybrid training on as-designed and as-installed 

Consequently, a hybrid training approach is pursued, providing the classifiers with the 

datasets of the loadings and responses of the as-installed structure in its healthy status. This 

approach could close the gap for the real application of the detection algorithms, by 

screening at first the potential detectability of the structural damages on the as-designed 

model of the structure, to then extend the training set with the data collected from the real 

structure. The results are reported in Table 6.8, for below rated cases only.  

It can be noticed that overall unsatisfactory performances on the as-installed dataset 

are obtained for both investigated supervised algorithms. Nonetheless, it seems that some 

improvements could be further obtained for the SVM, when trained on the sensor setup S1. 

Despite of the low acc associated to the low re (only about 10%), this classification model 

raises a low percentage of false alarm – see fo of about 6% –, while detecting a promising 

number of damaged cases per number of alarms – see pr of about 65%. 
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Table 6.8: Performances of the classification models when trained on the datasets 
generated by the as-designed FEM, and the healthy-status data generated by the as-installed 
FEM, by including the TL and TU conditions. 

Models and tuned 
hyperparameters Set 

CV Seed. As-designed at Td As-installed at Td 

acc acc acc pr re fo acc pr re fo 

S
V

M
 kernel: rbf 

C = 1000 
gamma: 0.1  

S1 70.7 100 70.8 80.0 55.6 13.9 52.3 64.7 10.2 5.6 

S2 71.5 100 86.1 89.0 82.4 10.2 50.0 0 0 0 

R
F

 

criterion: gini 
max depth = 20 
estimators = 90 

S1 67.1 100 67.6 88.0 40.7 5.6 50.0 0 0 0 

criterion: gini 
max depth = 15 
estimators = 100 

S2 63.7 100 82.4 85.0 78.7 13.9 50.0 0 0 0 

6.6.3 Discussion of alternative approach for anomaly detection 

The classification approach trained on the as-designed data failed to identify healthy and 

damaged status on datasets from the as-installed condition. An adapted training set 

including the variety in dynamics from the as-installed healthy condition seems to have the 

potential to overcome this issue. For what concerns the SVM classification, some dataset 

balancing techniques should be applied during the training phase to improve the damage 

detection performances. In addition, it should be noted that the difference of the as-

designed and as-installed systems (∆1) is likely to be greater than the uncertainty that the 

detection approach will face if applied to reality, cp. Figure 6.1 (∆2≪ ∆1) when the 

algorithms are trained on the simulated data from the FE-updated model. Nonetheless, 

questions towards the capability of this approach to sufficiently accommodate uncertainty 

remain.  

As further study for demonstration of its applicability, the number of samples for the 

training of these algorithms should be extended with filtering for the conditions leading to 

misclassification.  

Unsupervised alternatives 

Although the applicability of a supervised method has not been fully disproved yet, an 

anomaly detection approach on the as-installed datasets is attempted as an alternative 

solution for the detection task. Several algorithms can be applied for this purpose, from a 

simple principal component analysis (PCA) applied in a semi-supervised manner to more 

complex normal behaviour models based on deep learning methods.  

To guide the selection of a suitable approach, a normal PCA is conducted to understand 

and visualize the distribution of the healthy and damaged datasets for the as-installed 

structure. In Figure 6.13 a low separability of the healthy and damaged data from the PCA 

can be observed. This indicates the need for a method which does not apply linear 

separation techniques (e.g., linear SVM, PCA, etc.), but that either can map the data to a 

higher dimensional space (i.e., via the use of kernel transformations) or can handle non-

linearities (e.g., tree-based algorithms and neural networks). 

For the attempt presented, the OCSVM algorithm is selected, due to its advantage in 

learning a decision function. Thus, as opposed to other normal behaviour models, either 

semi-supervised PCA or neural network models, it does not require an arbitrary selection 
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of a threshold. In addition, preliminary tests showed superior results of OCSVM when 

compared to other algorithms which aim to isolate the anomalies (such as isolation forest 

and local outlier factor). This behaviour was excepted because of the good compatibility of 

the datasets to the SVC and the observed low separability between the two classes. 

 

 

Figure 6.13: Number of principal 
components (PC) for 80% of the 
cumulative explained variance (at 
the top), and representation of the 
missing separability of the classes 
for the first three PC (on the right), 
for a dataset of the as-installed 
structure (TId). 

OCSVM detection 

The results from the unsupervised detection are shown in Table 6.9 for the 

hyperparameters combination leading to the best performances on the dataset of the as-

installed structure in the healthy status. It is observed that the trained algorithm makes 

correct decisions only on the data for stochastic variations of the environmental conditions, 

with a relatively small deviation from the data experienced in the training phase. Thus, it is 

unable to generalize the prediction for different levels of turbulence intensity. For this 

reason, all the datasets from the healthy as-installed condition (cf. Table 6.6) had to be fed 

in during the training. Nonetheless, this approach shows potentially satisfactory results 

even when the algorithm is instructed on the information the tower bottom inclinometer 

only (set S3). Though, the more complete dataset - with additional statistics from the other 

SCADA signals - leads to improvements in the learned decision function. Task of a future 

analysis is the identification of the best set of signals, dependent on their reliability and 

availability.  

Applicability of anomaly detection 

The main criterion for the selection of the best tuning parameters is the successful fitting of 

the model to the healthy conditions in the training set, by targeting thus a low number of 

false alarms. Yet, the testing on the unseen damaged cases is necessary for the selection of 

a model with satisfactory detection performances. Therefore, even if the data from the 

normal operating turbine are available for the training task, the FE-updated model of the 

jacket structure should be setup for the collection of the reference damage state database. 

Future studies could investigate whether damage data statistics from the virgin model are 
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sufficient for this purpose, or if the variation of the modal properties between as-installed 

and as-designed systems is too big for this assumption. 

Additionally, the high value of the kernel function parameter (gamma) and of the 

finetuning parameter (nu) are indicators of potential overfitting of the model to the dataset. 

Thus, the ability of the model to accommodate other slight variations in the environmental 

conditions should be tested as well. 

Table 6.9: Performances of the OCSVM model – trained on the healthy-status data generated 
by the as-installed FEM – on the training dataset (Tr), on the testing dataset (Te) to identify 
the damaged-status, and on the variation of the EOC conditions (seeds). Finally, verification 
of its prediction on the datasets generated by the as-designed model. 

Set Hyperparameter 
As-installed  

As-designed  Tr Te Seedings 

 nu kernel gamma fa re acc pr re fo acc pr re fo 

S1 0.04 rbf 
100-
1000 

7 100 96-95 92-93 100 8-9 50 50 100 100 

S3 0.06 rbf 1000 16 100 91 85 100 17 50 50 100 100 

6.7 Conclusions 

The analysis carried out in this chapter investigated the feasibility and applicability of 

supervised and unsupervised learning techniques for the detection of a damage in an 

offshore wind jacket structure. Differently from the approaches that utilise the high-

frequency vibrational data, the methodology suggested employs only low-frequency 

aggregates from the standard collected SCADA data and, if necessary, few additional SHM 

sensors. A brace full-integrity loss is the test case for this experiment. However, it should be 

noticed that the analysis proposed is extendable to any other type of failure mechanism, 

once the set of environmental and operating condition, and the main indicators (i.e., 

predictors) for its detection are identified. 

The supervised models are showed to be successful on the prediction of the brace 

integrity based on data simulated from the model of the as-designed structure. The trained 

classifiers are tested on the datasets derived from to the model of the as-installed structure, 

to verify their ability to cope with uncertainties related to the updated model dynamics. 

While the random forest-based model shows overall unsatisfactory results, the support 

vector model has room for improvements. For instance, a pre-processing data filtering could 

be put in place to perform the detection task only on the set of environmental and operating 

conditions with the smallest number of misclassified cases.   

To give an alternative to these supervised methods, the feasibility of a novelty detection 

approach, based on only healthy status data, is verified on the database of simulated data 

from the as-installed structure. Among the algorithms of common use for this task, a one 

class support vector-based model is selected for its suitability to the characteristics of the 

as-installed datasets – i.e., having little separability between healthy and damaged status. 

Although the number of damage case detected and false alarm raised are acceptable, this 

algorithm can only perform the detection for small variations of the training set, being 

unable to correctly generalise the prediction on several levels on turbulence intensity. 

Nonetheless, its ability to cope with a good prediction based on the minimum set of signals 

– consisting of the inclinometer statistics only –, make it interesting for a real application 

where a high availability and reliability of the data is not always possible. 
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Chapter 7 

7 Discussions 

 

The goal of this thesis is to investigate the feasibility and applicability of several diagnostics 

methods for the condition monitoring of offshore wind turbines when only a limited amount 

of run-to-failure data is available. The scope is related to the study of data-driven and 

model-based approaches for the development and use of the digital twin technology.  

This investigation is inherently a multidisciplinary task, as multidisciplinary is the 

dynamics of the offshore wind turbine systems. To include the different aspects of the 

monitoring of the health status of the drivetrain components and the structural elements of 

the foundations, the research has been divided into topics relative to the condition 

monitoring of offshore wind drivetrains, or the structural health monitoring of offshore 

wind jacket substructures SHMS studies. This separation in reflected in the sections of this 

discussion chapter. 

7.1 Literature review 

Chapter 2 analyses the RAM statistics from the scientific literature, collected from single 

initiatives and summary reports. As the type of data collected is heterogeneous, a 

terminology is introduced for describing and classifying the findings from the several 

databases. Standardised definitions of reliability, maintainability, availability, and 

performance indicators are summarised and are used to describe the data repositories 

throughout the analysis. The RDS-PP® designation is adopted to establish a uniform and 

easy comparison of the results among the several datasets. The quality of the collected 

statistics is discussed based on the type of records used for assessing failure of the turbine. 

Trends are identified from the comparison of the RAM statistics, based on the design and 

deployment parameters of the wind turbines. Finally, the RAM figures of offshore wind 

assets are discussed, by additionally simulating the operational availability for a set of 

reference offshore wind farms. This helped to quantify the impact of statistical uncertainties 

and unveil the challenges for the offshore wind industry in the collection of representative 

databases. 

From these analyses it is possible to speculate on the potentially high criticality 

components for the next generation of offshore wind turbines. Moving towards larger 

systems and/or direct drive designs, there could be a reduction, or at least a steady trend, 

in the failure of the drivetrain and rotor systems, and of power generation systems, when 
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switching to a synchronous (permanent magnet) generator type. On the other hand, higher 

costs for corrective maintenance should be expected for the failures of the transmission 

systems and the tower structures. This should push research in looking for improvements 

at the design stage and/or for the implementation of monitoring systems on these assets. 

7.2 Condition monitoring case studies 

Chapter 3 introduced to case studies for employment of a model-based and a data-driven 

approaches for the condition monitoring of offshore wind turbines’ gearboxes. More in 

general, these works perform some experiments and comparative studies in the attempt to 

address some of the challenges of a damage detection framework for offshore wind 

drivetrains: 

• The excessive computational effort required for the holistic representation of the 

dynamics of a wind turbine, or even the whole wind farm, for the purpose of 

applying the digital twin technology to the drivetrain components, to support their 

condition monitoring. 

• The limited access to a set of representative failure data for the new drivetrain 

technologies, and for most of the turbines in the offshore wind farm. 

7.2.1 Investigation of model-order reduction: towards a digital 

twin targeting the monitoring of a gearbox failure mode 

The development of a digital twin model of a wind farm by simply using and linking several 

advanced, single wind turbine models of dynamics can be computationally prohibitive. To 

this end, the first case study developed in Section 3.3 aimed at creating a reduced-order 

model (ROM). This model has the requirement to be able to capture the relevant dynamics 

of the offshore wind turbine system for a specific failure, having a lower computational cost 

and therefore more easily scalable up to a wind farm level. First, an aero-hydro-servo-elastic 

(AHSE) model is setup to derive the time domain response of the wind turbine in all its 

degrees of freedom (DOFs). One of the most critical failure modes of the wind turbine 

gearbox is then selected, and its relevant DOF – i.e., the rotor torque signal - is identified. 

The set of load cases for which the gearbox failure is likely to occur is recognised.  

A linearisation of the AHSE model is then carried out, to subsequently derive a number 

of ROMs of the full-order system. The high-frequency states are excluded by using the modal 

truncation (MT) method. The load cases are simulated, and the torque signal is monitored. 

The results from the linear ROMs showed that the blade modes are important to capture 

not only extreme values of the DOF, but also its high-frequency responses (above 1.5 Hz). 

The results from nonlinear ROMs showed that when eliminating all the tower modes (rigid 

tower) the DOF is satisfactorily captured at low-frequency response (below 0.5 Hz), having 

almost the same spectral responses of the full-order nonlinear model. 

7.2.2 Data-driven digital twin for the detection of gearbox 

anomalies on small datasets 

Breaking the curse of small data is yet one of the major challenges of the machine learning 

models deployed for prognosis and diagnosis. When aiming to build detection models for 

the health monitoring of the offshore wind system, this issue emerges: (i) for the monitoring 
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newly installed assets, and (ii) when reducing the number of sensors installed for limiting 

the investment on the CMS.  

To provide a possible solution to these applications, the aim of the case study in Section 

3.4 is to discuss how the size of a dataset impacts the conventional machine learning 

methods, and to mitigate this issue by applying a multi-task learning approach with hard 

parameter sharing. Two datasets, consisting of SCADA and CMS data, are used for this 

experiment. The data come from two operating, homogeneous offshore wind turbine; the 

dataset relative to one of the two turbines contains about 220 days of operation, while the 

other (from the other wind turbine) accessed to only ca. 55 days of operation.  Both datasets 

contain the same share of failure data (about 19%). 

Considering that the accuracy of conventional machine learning methods suffers from 

the availability of a limited amount of data, the use of a hard-parameter multi-task learning 

(MTL) is tested and demonstrated to be an advantageous alternative. The study compares 

the results from the MTL approach – based on a hard parameter sharing of the deep neural 

network (DNN) for the prediction of the features to the CNN for the identification of the 

gearbox status – to the ones from a conventional deep neural network model – which 

instead only focuses on the classification task. The results are discussed outlining the 

benefits of the MTL approach, but also recognising the necessary future works to prove its 

validity to future field applications. 

7.3 Structural health monitoring case studies 

Based on the tools, analyses, findings, and discussions reported in Chapter 4, the Chapter 5 

and 6 investigated low-cost monitoring and diagnostic approaches. The solutions suggested 

make use of the data that is already required for operational purposes (i.e., SCADA), and/or 

data generally collected for the purpose of the fatigue monitoring (e.g., accelerations). These 

are following described, by grouping them according to the data type and the nature of the 

approach deployed (parametric based versus non-parametric detection):  

• Vibration-based diagnostics 

The monitoring of the modal properties showed good capabilities to not only detect 

the presence of a failure, but also identify the mechanism and the location of the 

failure if combined with a database of damage scenarios – simulated via the digital 

twin technology –, and when supported by data-driven clustering algorithms. 

• Non-parametric diagnostics based low-resolution data 

Detecting damages based on 10-minute SCADA statistics with machine learning 

approaches showed to be generally feasible. However, deviations of the system used 

for training from the system used for monitoring, i.e., simulation model and real 

structure, respectively, can significantly reduce the reliability of the detection. 

Normal behaviour modelling approaches showed to be slightly more robust to 

uncertainties than classification approaches.  

7.3.1 Vibration-based diagnostics of failure scenarios 

This work investigates the feasibility of a two-level detection, in terms of damage 

identification and location, in the jacket support structure of an offshore wind turbine. A 

two-level detection scheme is suggested in this chapter by basing the detection on the digital 

twin technology on a database of simulated modal properties of the structure for different 



Chapter 7                                                                                   Discussions 

126 

failure scenarios. The detection model identifies the correct anomaly based on three types 

of modal indicators, namely, natural frequency, the modal assurance criterion between 

mode shapes, and the modal flexibility variation. The supervised Fisher's linear 

discriminant analysis is applied to transform the modal indicators to maximize the 

separability of several scenarios. A fuzzy clustering algorithm is then trained to predict the 

membership of new data to each of the scenarios in the database. In a case study, extreme 

scour phenomena and jacket members' integrity loss are simulated, together with 

variations of the structural dynamics for environmental and operating conditions. Cross-

validation is used to select the best hyperparameters, and the effectiveness of the clustering 

is validated with slight variations of the environmental conditions. The results prove that it 

is feasible to detect and locate the simulated scenarios via the global monitoring of an 

offshore wind jacket structure.  

The results have proved the feasibility of the suggested approach for the detection and 

location of failure events in the jacket sub-structure of the offshore wind turbine in analysis. 

The monitoring strategy outlined in Figure 1 is achieved to the extent of the “Detection 

Model Training – based on the simulated data. This detection algorithm fulfils the criteria of 

(i) diagnostic capability, (ii) low-cost – as opposed to any other ad-hoc monitoring system 

and field inspections –, and (iii) transparency of reasoning process, as required for the 

industrial needs. As concerns the eventual use of this probabilistic models for decision 

making (iv) of maintenance actions, the fuzzy clustering method allows to judge the 

prediction for the membership of the data to all the possible classes. However, this will be 

not as easy to interpret for the real-time data and the raising of alarms. Instead, it should be 

considered to make some engineering judgment on the evolution of the predictions in time. 

The implementation for real-time field monitoring (v) requires, as a next step, to verify the 

accuracy of its predictions to a set of data from the real structure.  

7.3.2 Detection of a structural damage based on a non-

parametric approach on standard, low-resolution data 

The analysis carried out in Chapter 6 prove the feasibility of an approach for the indirect 

monitoring of a structural failure through the low-frequency statistics of the operational 

data from the offshore wind turbine. The supervised algorithms are trained on ten-minute 

SCADA data, which are derived from simulating the turbine dynamics. Databases associated 

to the healthy-status jacket structure, and a full-integrity-loss of one of jacket substructure 

brace members are thus generated. The overfitting of the algorithms is controlled by 

applying a cross-validation approach and by extensively testing their performances on 

subsets of the data, for unforeseen variation of the channels’ statistics due to the stochastic 

representation of wind and wave loadings, and the effective turbulence intensity at the 

turbine.  

It is observed that, although the tower top accelerometer can give indications on the 

presence of the structural damage, its signals are highly affected by variations in the 

environmental conditions, making the classification task harder. Acceptable performance in 

the accuracy and detection rate of tree-based classifiers are obtained mainly for below rated 

conditions. However, the dataset used for the training of the models must be extended with 

additional data samples for correctly classifying the structural integrity status through a 

wide range of turbulence intensity levels. Furthermore, the high number of false alarms 

recorded can be reduced either by prior information on the turbulence intensity level 

(installing a specific sensor for this purpose) or better, by replacing the information from 
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the tower top accelerometer with the one from an inclinometer, positioned at the tower 

base. In this manner, the random forest model significantly improves its detection skills 

throughout at all the operating conditions. Similarly, also a support vector model shows 

satisfactory results at below rated conditions.  

It should be noted that the training of the supervised and the unsupervised models, for 

the damage detection, depends on either the availability of data associated to the damaged 

structure, or their simulation through a true digital twin model of the structure. 

Furthermore, a broad set of isolated ten-minute SCADA data is required for the off-line 

training and testing of the algorithms, to ensure satisfactory detection performances among 

the several operating and environmental conditions. The practical value of this approach 

for the detection of the status of an operational system can be achieved by extending 

analysis to multiple damaged conditions, either by increasing the number of labels 

classified, or the number of classifiers.  
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Chapter 8 

8 Conclusions 

 

8.1 Summary and key findings 

Besides the monitoring of the fatigue, for the assessment of the remaining useful life 

(prognostics), the structural integrity management of an offshore wind turbine structure, 

and its component should account for a framework to detect the presence of potentially 

critical failures (diagnostics). The catastrophic consequences related to these failures are 

almost always avoided by the decisions taken in the design phase.  For instance, the in-situ 

monitoring of critical welds and joints can be expected to be planned in the list of the 

scheduled maintenance tasks, for the preventive detection of cracks. However, these 

inspections might not be the more cost-effective solution to the problem, and their cost can 

considerably increase when special procedures are required, such as non-destructive 

testing, visual examination at height, rope access and subsea inspections. 

Therefore, the scope of this thesis has been to propose, to prove the feasibility, and to 

discuss the field applicability, of low-cost monitoring frameworks, which deploy model-

based and data-driven approaches for the detection of systems’ failures and the 

identification of the presence of evolving failure mechanisms. Due to the lack of 

representative sets of run-to-failure data from the field measurements, the digital twin 

technology is extensively deployed to support the creation of the databases on the failure 

scenarios. These scenarios have not only been limited to the modelling of structural 

damages, like cracks in the steel structures, but they also represented any significant 

deviation of the system due to extreme site conditions, such as scour, corrosion, and marine 

growth phenomena. 

The key takeaway of this research is that due to the combination of continuously 

evolving technologies – the bigger sizes and ratings –, together with the lack of extensive 

investments for the collection of valuable field data, the digital twin technology and 

innovative data-driven solutions must be investigated for the strategic planning of the 

offshore wind asset management.  

8.2 Recommendations for future work 

To the knowledge of the author, this thesis is the first of its kind. This research project has 

been dedicated to the development of frameworks for the monitoring and the diagnostics 
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of the offshore wind turbines’ systems, when state-of-the-art approaches cannot be applied 

due to the lack of a sufficient set of run-to-failure data. Several issues have been investigated 

and presented throughout the chapters and as summarised in Chapter 7.  However, much 

research is left to be done. Among the recommendations for future work are: 

 

1. Tackle the issue of statistical uncertainty of offshore wind failure statistics: 

As far as the availability estimation of offshore wind farms is concerned, the 

discrepancy between the predicted results and reference values from the literature 

suggests that a higher level of detail is needed and should be fed into the tool for 

obtaining conclusive results. This analysis, complemented with a cost analysis, is 

fundamental to a wide range of stakeholders in the offshore wind industry to 

achieve improvements of the profitability targets of current and future projects. To 

tackle the statistical uncertainty associated with the input failure statistics, 

information on the variation in time and among the turbines in the array (subjected 

to varying environmental conditions) should be provided. Finally, reference 

availability statistics for a longer period should be collected and made available for 

validation. 

2. Validate the vibration-based detection model for measurement and 

parametrization uncertainty: 

The challenges for the field application of the vibration-based detection approach 

for SHM will come from the statistical uncertainty of the measured data, associated 

with the OMA and the violation of the method’s assumptions for the extraction of 

modal parameters [33], [34], [194]. When the aim is to track the evolution and 

deviation of the modal properties, it is necessary to verify whether the deviation due 

to the presence of an anomaly is bigger than scatter in the data. Some of the 

challenges of dealing with modal data extracted from field measurements – 

especially in the case of offshore wind structures – come from their scatter and 

fluctuation in time caused by complex loads and rotating masses. 

As a first step one could apply the detection algorithm on only the data from the 

idling turbine – as done in Chapter 5 –, when the excitations and the inoperability of 

the turbine have less of an impact on the methods for the extraction of the modal 

properties. Alternatively, the extracted modal properties can be pre-processed, by 

filtering mode shapes that do not satisfactorily match with the analytical modes of 

the FEMU. By setting a suitable threshold on the distance – either in terms of MAC 

value or as combination of frequency difference and MAC value – between the 

extracted and the analytical modes, some of the scatter in the data would be 

removed without losing important information for the detection algorithm. 

However, it must be noted that this filtering procedure, as well the lack of excitation, 

and thus poor OMA performance, can often lead to a lack of some of the required 

modes. In this respect, multiple detection models should be setup for adapting the 

prediction to the varying number of features available. This approach and the likely 

drop in accuracy caused by the removal of modes in the training phase must be yet 

investigated. 

3. Cope with the natural uncertainty of the offshore wind diagnostic approaches: 

The natural uncertainty is an inherent property of the underlying system and is the 

result of both spatial and temporal heterogeneity. The model calibration procedures 

are aimed at closing this gap. However, when deploying the digital twin technology 
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for the modelling of the failure of mechanisms, and their detection, the following 

considerations should be regarded: 

- the detection approach based on low-resolution data, which is based on data 

simulated from the AHSE code semi-coupled to the FEMU of the wind 

turbine foundations, carries some uncertainties: the coupling of the 

foundation dynamics via the superelement (reduced order model) innerly 

holds some small discrepancies with the substructure dynamics (until 10 

Hz), with respect to the full-order model [208].  

- the global damping of the structure is assumed to be the same as the one 

defined at the design phase, neglecting thus the possible effect of the 

structural failure simulated.  

These modelling uncertainties are here acknowledged but are not tackled in this 

thesis. The analysis is here harmonized by the fact that the first assumption is 

extended to the healthy model as well. The assumption on the structural damping is 

judged acceptable, since the aim is to demonstrate the detection feasibility and to 

discuss towards its applicability at most, without targeting the setup of a test filed 

demonstrator. 

Furthermore, the diagnostic problems (at any of the detection levels) have been set 

to detect mutually exclusive failure events, by applying a multi-class classification 

approach. This decision is justified by the relatively young age of the test case 

structure (WK64). In the first years of life of the offshore structure, such failures can 

be caused either by the misjudgement of the field conditions or by unexpected 

events. This method could be replaced by a multi-label setup in the long run, when 

the structure would be more likely to be affected by multiple failure events (e.g., by 

reaching the scour allowance, while corrosion progressively develops on the jacket 

braces). 

4. Investigate the potential and the limitations of data-driven transfer learning: 

By experimenting with a data-driven approach for failure events detection in the 

gearbox of an offshore wind turbine, the multi-task learning concept has been tested 

on a case study making use of the data from two operating wind turbines. Although 

out of the scope of the analysis, whose main objective was to learn on multiple tasks 

to improve the prediction of the neural network model, this study has showed the 

potential of a transfer of the knowledge between the two homogenous assets.  

The transfer learning theory, which is fundamentally different from the multi-task 

learning, should be the focus of further research on offshore wind application with 

limited availability of representative data. 

8.3 Contribution to knowledge 

This research contributed to scientific knowledge in a way which is novel and scientifically 

sound, and by providing value to one or more groups of stakeholders. In Table 8.1, it is 

reported and demonstrated how the initial objectives are met, what is the novelty of the 

research conducted on their matter, and who are the potential stakeholders and how they 

could benefit from the findings of this thesis. 
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Table 8.1: Contribution to the knowledge of this thesis’ research 

Objective Novelty Scientific soundness  Value / Stakeholders 

(1.a) Review and classify, in a 
comprehensive study, the 
reliability, availability, and 
maintainability (RAM) data from 
onshore and offshore wind 
turbines, to identify the systems 
holding the highest criticalities and 
trends based on deployment 
parameters and environmental 
conditions of offshore wind 
turbines. 

 

- Comprehensive review of existing 
published data related to reliability, 
availability, and maintenance of the 
state-of-the-art turbine with a view 
to critically discuss commonalities 
and distinguish correlation aspects 
between offshore and onshore 
assets. 

- Investigation of the sensitivity of 
certain components and 
technologies to key environmental 
and design parameters, facilitating 
technology qualification of new 
alternatives. 

- Highly informative for the 
qualification of new alternatives in 
the next generation of wind 
turbines. 

- Systematic literature review 
based on exhaustive review 
of the literature and 
comparison with similar 
studies. 

- Transparent review process 
and presentation of the data. 

- High level of disclosed 
information. 

- Relevant to the community of 
researchers and scientists 
approaching at first the issue 
reliability and availability 
increase for offshore wind 
structures. 

- Valuable for practitioners 
and operators to facilitate the 
technology qualification 
and/or maintenance 
strategies of new 
alternatives/generation wind 
turbines. 

(1.b) Provide a comprehensive 
review on the numerical models 
for offshore wind turbines in an 
array. 

- One of the first comprehensive 
review of this kind, for wind 
turbine and wind array models. 

- Classification of the numerical 
models for offshore wind turbines 
into the several areas of 
competency. 

- Analysis of the integration of these 
models for the array and review of 
the to date application. 

- Case based guidance for the model 
selection. 

- Extensive literature review 
study showing the state-of-
the-art of the models and 
their application. 

- Critical comparison of the 
numerical models for their 
area of competency. 

Relevant to the community of 
researchers and scientists for 
guiding them in a critical 
selection of the most suitable 
numerical model of dynamics, 
suiting the different application. 
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Table 8.1: Contribution to the knowledge of this thesis’ research 

Objective Novelty Scientific soundness  Value / Stakeholders 

(2) Investigate model-reduction 
techniques for a numerical model 
of wind turbine dynamics by 
targeting a drivetrain failure mode, 
to support the future development 
of digital twin technology for its 
remote monitoring. 

- Investigation of the framework for 
model-order reduction for the 
purpose of damage detection. 

- Comparative analysis of the impact 
of different full-order model 
representation (linearised and non-
linear) on the modal truncation 
effect on the targeted signal 
timeseries (rotor torque). 

- Use of a well-know, and 
open-access, tool for the 
representation of the wind 
turbine dynamics (FAST v.8). 

- Systematic comparison and 
documentation of the effect 
of the modelling and 
reduction techniques on the 
rotor torque representation. 

First step towards the 
developing digital twin models 
of the offshore wind farms with 
the purpose and focus on 
systems’ monitoring and 
diagnostics. 

(3) Experiment a data-driven 
approach for the detection of 
anomalies in a component of the 
drivetrain system with low 
availability of run-to-failure data. 

- Testing of a multi-task learning 
model on the operating and the 
condition monitoring data from 
two wind turbine, one of which 
with limited data availability. 

- Comparative study of the 
prediction from this model against 
the one of a conventional neural 
network model. 

- Use of state-of-the-art 
supervised learning 
algorithms for detection 
problem. 

- Transparent process in the 
preparation/analysis of the 
data. 

 

Relevant to researchers and 
operators to make most of the 
use with the data currently 
collected and thus booster the 
information contained in the 
generally small run-to-failure 
databases. 

(4) Demonstrate the feasibility of 
vibration-based detection of 
several damage scenarios in the 
substructure of an offshore wind 
turbine, with the support of the 
digital twin technology, and 
develop a framework for the future 
field application. 

- Definition of the framework for the 
diagnostics of failure events in the 
substructure of an offshore wind 
turbine. 

- Use of the digital twin technology 
to generate a representative 
dataset of failure data on which 
train the detection algorithms. 

- Setup of an unsupervised model for 
the identification of the presence of 
the damage and the of the most 
likely location and failure 
mechanism of involved.  

- Use of state-of-the-art 
supervised learning 
algorithms for detection 
problem. 

- Use of state-of-the-art 
unsupervised learning 
algorithms for extraction 
modal properties from real 
data. 

- Transparent process in the 
preparation/analysis of the 
data. 

- Guidance for researchers and 
operators on level and type 
of damage possible to detect 
with current set up of SHMS. 

- First step towards guiding 
operators to the decision-
making process for the best 
sensor placement for 
detection purpose. 
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Table 8.1: Contribution to the knowledge of this thesis’ research 

Objective Novelty Scientific soundness  Value / Stakeholders 

(5.a) Investigate the feasibility of 
the detection of a structural failure 
via low-resolution data, … 

 

- Feasibility of damage identification 
based on low-frequency statistics of 
standard collected data (SCADA). 

- Novel application of classification-
based algorithm for detection of the 
structural status of the offshore 
wind turbine. 

- Feasibility of detection for 
environmental uncertainties. 

- Use of state-of-the-art 
learning supervised 
algorithms for a classification 
problem. 

- Transparent process in the 
preparation of the data and 
training/testing of the 
algorithms. 

- Ranking of the optimal 
models based on known 
performance indicators. 

- Validation of the models and 
their performances for a 
representative and broad 
selection of loadings on the 
structure. 

- Guidance for researchers and 
operators on the application 
of a non-parametric 
approach based on low-
resolution data for the 
detection of specific 
damages, by making the most 
of the currently collected 
information from the 
operating turbine. 

- Potential reduction of the 
number of sensors deployed, 
while improving quality of 
the data collected (making 
the data collection more 
informative on the targeted 
failure mechanism), as 
opposed to the current best 
practise techniques for 
damage detection. 

(5.b) … and develop a framework 
for the future field application with 
the support of the digital twin 
technology. 

 

- Applicability of the damage 
identification based on low-
frequency statistics of standard 
collected data (SCADA). 

- Feasibility of detection for system 
uncertainties: verification of the 
applicability of algorithms trained 
on simulated data for the detection 
of damages on the real structure. 

- Suggestion of anomaly detection 
approach for real application to 
damage identification. 

- Verification of detection task 
on a model of the structure 
having the modal properties 
validated against the real 
structure. 

- Use of state-of-the-art 
supervised and unsupervised 
learning algorithms for 
detection problem. 

- Validation of the models and 
their performances for a 
representative and broad 
selection of loadings on the 
structure. 
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Series, presented at Wind Summit: WindEurope 2018, 2018, vol. 1102, no. 1. 

https://doi.org/10.1088/1742-6596/1102/1/012030  

Paper 14 M. Richmond et al., “Multi-criteria decision analysis for benchmarking 

human-free lifting solutions in the offshore wind energy environment,” 

Energies, vol. 11, no. 5, 2018. https://doi.org/10.3390/en11051175  

Paper 15 D. Cevasco, M. Collu, C. M. Rizzo, and M. Hall, “On mooring line tension and 

fatigue prediction for offshore vertical axis wind turbines: A comparison of 

lumped mass and quasi-static approaches,” Wind Engineering, vol. 42, no. 2, 

2018. https://doi.org/10.1177/0309524X18756962 

 

A.2    Oral and poster presentations 

Presentation 1 Oral presentation of Paper 15 at the OWEMES 2018 (Bari, Italy). 

Poster 1 Poster presentation of  Paper 13 at the Wind Summit (WindEurope) 

2018 (Hamburg, Germany). 

Poster 2 Poster presentation of  Paper 8 at the Wind Summit (WindEurope) 

2018 (Hamburg, Germany). 

Presentation 2 Oral presentation of Paper 3 at the DeepWind 2020 (Trondheim, 

Norway). 

Poster 3 Poster and oral presentation of  Paper 4Paper 13 at the Torque 2021 

(Delft, Netherlands). 

 

A.3    Authors' contribution matrices 

The scientific papers, which have been published on journals and conferences, for the 

partial fulfilment of the requirements for the degree of Doctor of Engineering, were co-

authored by several academic and industrial colleagues. As some chapters of this thesis are 
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https://doi.org/10.1177/0309524X18756962
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based on these papers, this section is meant to clarify the authors contributions and roles, 

according to the CRediT standards. This standard characterises the authors’ contributions 

according to the following classes – numbered to ease their referencing: 

1. Conceptualization Ideas, formulation, or evolution of overarching research goals 

and aims. 

2. Methodology Development or design of methodology, creation of models. 

3. Software Programming, software development, designing computer 

programs, implementation of the computer code and 

supporting algorithms, testing of existing code components. 

4. Validation Verification, whether as a part of the activity or separate, of the 

overall replication/reproducibility of results/experiments 

and other research outputs. 

5. Formal Analysis Application of statistical, mathematical, computational, or 

other formal techniques to analyse or synthesize study data. 

6. Investigation Conducting a research and investigation process, specifically 

performing the experiments, or data/evidence collection. 

7. Resources Provision of study materials, reagents, materials, patients, 

laboratory samples, animals, instrumentation, computing 

resources, or other analysis tools. 

8. Data Curation Management activities to annotate (produce metadata), scrub 

data, and maintain research data (including software code, 

where it is necessary for interpreting the data itself) for initial 

use and later reuse. 

9. Original Draft  

Preparation 

(Writing) 

Creation and/or presentation of the published work, 

specifically writing the initial draft (including substantive 

translation). 

10. Review and Editing 

(Writing) 

Preparation, creation and/or presentation of the published 

work by those from the original research group, specifically 

critical review, commentary, or revision – including 

prepublication or post publication stages. 

11. Visualization Preparation, creation and/or presentation of the published 

work, specifically visualization/data presentation. 

12. Supervision Oversight and leadership responsibility for the research 

activity planning and execution, including mentorship 

external to the core team. 

13. Project 

Administration 

Management and coordination responsibility for the research 

activity planning and execution. 

14. Funding Acquisition Acquisition of the financial support for the project leading to 

this publication. 

 

The following tables make use of these classes to define the roles and contributions of 

the (first) author and the co-authors to the scientific publications (Paper 1-7) which are 

used for the preparation of some of the chapters of this thesis manuscript (Chapter 1, 2, 3, 

5 and 6) – please refer to the chapters description in Section 1.4. A grey-scale coding is used 

to indicate the level of contribution of the authors: dark grey indicates a leading role, while 

light grey is for authors acting as support to the lead. When the authors share the same 

colour code for the same role, it indicates an equal contribution and distribution of the tasks. 
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Table A.1: Authors’ contribution matrix to Paper 1. 
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Table A.6: Authors’ contribution matrix to Paper 6. 
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Appendix B 
Appendix B  

 

RAM and performance metrics and failure 

statistics for availability calculations 

B.1    RAM definitions and performance metrics 

As the data collected in Chapter 2 is heterogeneous, a terminology is introduced for 

describing and classifying the results in the several databases. Standardised definitions of 

reliability, maintainability, and key performance indicators (KPIs) are summarised in the 

following section. 

B.1.1    Reliability and maintainability terminology 

In the reliability analysis, an indication of the frequency of the failure and/or the time 

elapsing until the system is restored is generally given. The frequency parameter is usually 

represented by the failure rate (λ), which is the likelihood of a system to fail within a specific 

period. Unlike a probability, however, it can reach values greater than 1. Focusing on the 

constant failure rate region of an asset, the indicator λ of a WT, consisting of K components, 

is averaged over the i-th recording periods according to [19], [122]. The I is the number of 

intervals for surveys of length Ti and ni failures per interval. This Power Law Process is 

commonly used in the reliability analysis of repairable systems [18]. As the data collected 

are from many turbines, the data are generally normalised by the number of units in the 

population Ni, as well as providing, for instance, information on the number of failures per 

turbine, per year (i.e. [failure/turbine/year]). 

λ=
∑ ∑ ni,k Ni⁄K

k=1
I
i=0

∑ Ti 8760⁄I
i=0

 Equation B-1 

According to the relevant ISO standards [238], [239], a distinction between a repairable 

and a non-repairable system is required, as well as distinguishing whether the maintenance 

action consists of a repair or a replacement measure. Having only had access to limited 

information, this quantity is considered in this paper as a general failure, or maintenance 

event rate. Furthermore, λ depends on the definition of failure itself. A “failure” is the loss of 

ability to perform as required; however, the qualitative judgement of the authors can vary 

when interpreting the term “loss of ability”. 

With respect to the quantity characterising the “failure time” several definitions are 

relevant, and the most recurring statistics analysed are reported in Table A.1. These 

measures are used as representative of the maintainability characteristics of the failure. 

They have the dimension of time, with varying resolution, and they can be normalised by 

either the number of turbines or the failures in the time interval considered. More 
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specifically, the definition of “downtime” varies from the minimum time to perform the 

repair (MART), to the total time expected from when the system fails to its restoration 

(MTTR or MTTRes). The more commonly collected mean downtime (MDT) differs from the 

MTTR in reporting shutdown events due to grid restrictions, weather conditions, and other 

causes (for more information refer to table 4 of reference [239]). 

Table B.1: Acronyms and definition for the “downtime” terminology. 

Acronym Definition (cp. [238], [239]) Comments and Notes 

MART 

Mean Active Repair Time 
“Expected active repair time” 
or “expected effective time to 
repair.” 

With “active”, the ISOs define the effective time 
to achieve repair of an item. This accounts for: 
fault localization, correction, and checkout time. 
This definition is in agreement with the one of 
the International Electrotechnical Commission 
(IEC) [240] defined, and commonly called, 
“repair time”. 
(Refer to Figure 4 of [239], and Figures 5 and 6 of 
[238]). 

MTTR 
(MTTRes) 

Mean Time to 
Repair/Restoration 
“Expected time to achieve the 
following actions: 
- time to detect the failure; 
- time spent before starting the 

repair (with administrative, 
logistics and technical 
delays); 

- effective repair time (MART); 
- time before the component is 

available to be put back into 
operation (possible other 
administrative delays).” 

The ISOs defined MTTRes (mean time to 
restoration) wants to be an elucidation to the 
MTTR (mean time to repair) from IEC [241]. In 
the latter, the fault detection time is not 
considered. Thus, MTTRes is defined as 

MTTRes = MRT + MFDT 
where MRT and MFDT are, respectively: 
- the time elapsing from the actual occurrence 

of the failure of an item to its detection, and 
- time elapsing from the detection of the failure 

of an item to the restoration of its function. 
(Refer to Figure 5 of [238]). 

MDT 

Mean Downtime 
“Expectation of the downtime.” 
The downtime is the time 
interval during which an item 
is in a down state, and thus 
“unavailable”. 
(Refer to Figures 3 and 4 of 
[239]) 

• It can be either for planned or unplanned 
maintenance actions. However, only the latter 
(corrective O&M actions) is considered in this 
work. 

• The downtime includes all the delays 
between the item failure and the restoration 
of its service.  

• It differs from MTTR accounting also for 
“other unplanned outages”; among these are: 
operational problems, restrictions, and 
machinery shutdown (trip* and manual). 

* Defined as the shutdown of a piece of machinery (activated automatically by the control/monitoring system) from normal 
operating conditions to full stop. It can either be “real”, if the result of exceedance (monitored or calculated) of a pre-set 
limit, or “spurious” when an unexpected shutdown caused by a failure. 

B.1.2    Performance indicators 

Production factors are used by several authors as an indication of the averaged performance 

of wind turbines and farms (e.g. [59], [88]). The KPIs used in these papers are explained and 

reported in and are in line with those adopted by [58], [242].  

Among them, the technical availability (AT) is the most meaningful one for the 

understanding of unexpected failures. It is defined as the ratio between uptime and 

downtime of the turbine, and, by considering for the latter only the downtime for corrective 
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maintenance (excluding scheduled actions), it gives combined information on the frequency 

of and restoring time for the failure. The time-based, or operational (AO), and energetic (AE) 

availability are employed as a measure of the actual performance of turbines and/or farms. 

The AO is the availability derived by the lifecycle assessment tool of Section 2.3.3. As regards 

the AE, being the estimation of the potential power output of a complex process, and subject 

to high uncertainties, the capacity factor (CF) is often encountered instead. 

Table B.2: Symbols and definitions of the KPIs. 

Symbol 
Expansion, Reference, and 
Description  

Formulae Formulae terms  

AT 
 

Technical Availability [240] 
Fraction of a given period in 
which a turbine is operating 
according to its design 
specifications 

tavailable
tavailable + tunavailable

 

tavailable  
- time of full and partial 

performance 
- technical standby and 

requested shutdown 
- downtime due to 

environment and grid 
tunavailable 
time of corrective actions 
and force outage 
(excluding missing data 
and scheduled 
maintenance) 

AO Operational Availability 
[240] 
(or Time-based Availability) 
Share of the time when the 
system is operating and/or 
able to operate, compared to 
the total time 

tavailable  
time of full and partial 
performance (considering 
low wind as well) 
tunavailable 
time of all the other cases 
(excluding missing data) 

AE Energetic Availability [58] 
Amount of energy produced by 
the system compared to its 
potential energy production 

P̅actual

P̅potential
 

P̅actual: Average actual 
power output  
P̅potential: Average potential 

power output 
(excluding missing data)  

CF Capacity Factor [240] 
Ratio between the amount of 
energy actually produced by 
the system and what it can 
theoretically produce   

P̅actual
P

 P: Rated power output 

B.2    Failure statistics for availability calculations 

In Table B.3, the failure rate statistics used as an input for the availability calculation in the 

openO&M tool are reported. The Strath-Off and onshore data are integrated by making 

assumptions on the time required for performing offshore maintenance. The OWEZ 

statistics are used for comparison, being the only other offshore survey reporting sufficient 

information on its reliability and maintainability figures. Additionally, with respect to the 

onshore studies, only the most complete and consistent studies identified from Section 2.3.1 

are considered, further subdividing the surveys depending on turbine configuration and/or 

power rating where possible. 
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Table B.3: Repositories for the calculation of offshore wind farms’ availability. 

 CIRCE DD CIRCE C > 1MW Huadian LWK 
 mr Mr MR mr Mr MR mr Mr MR mr Mr MR 
  1. Rotor System     0.012   0.084     0.141   0.321     
      1a. Rotor Blades   0.005   0.019   0.026 0.194   

      1b. Rotor Hub Unit   0.005  0.011        

      1c. Rotor Brake System          0.040   

      1d. Pitch System   0.003  0.051   0.115  0.088   

  2. Drive Train System 0.003       0.081     0.088     0.226   
      2a. Speed Conversion System     0.065   0.062   0.142  

      2b. Brake System Drivetrain    0.003     0.018 0.053   

  3. Yaw System   0.014     0.021       0.026 0.115     
  4. Central Hydraulic System       0.021           0.134     
  5. Control System 0.052     0.058       0.106   0.222     
  6. Power Generation System     0.011     0.025     0.150   0.140   
  7. Transmission 0.026       0.044     0.291   0.323     
      7a. Converter System 0.003    0.007   0.229  0.005   

      7b. Generator Transformer System  0.008    0.006   0.018    

  8. Nacelle                              
  9. Common Cooling System 0.005     0.041                 
  10. Meteorological Measurement 0.019     0.012           0.061     
  11. Tower System 0.003     0.006                 
      11a. Tower    0.003         

      11b. Foundation System 0.003    0.003        

  12. Others 0.045     0.126     0.044     0.312     

 

 



Appendices 
 

157 

 

 

Table B.3: Repositories for the calculation of offshore wind farms’ availability (cont.). 

 Muppandal Strath Off WMEP OWEZ 
 mr Mr MR mr Mr MR mr Mr MR mr Mr mr 
  1. Rotor System 0.027 0.133 0.027 1.462 0.227 0.003   0.522     0.704   
      1a. Rotor Blades 0.027 0.133 0.027 0.456 0.010 0.001  0.113    0.054 
      1b. Rotor Hub Unit    0.182 0.038 0.001  0.171     

      1c. Rotor Brake System             

      1d. Pitch System    0.824 0.179 0.001 0.238    0.649  

  2. Drive Train System 0.280     0.395 0.038 0.154   0.291       0.498 
      2a. Speed Conversion System 0.173   0.395 0.038 0.154  0.106    0.486 
      2b. Brake System Drivetrain 0.107      0.130     0.012 
  3. Yaw System 0.160     0.162 0.006 0.001 0.177     1.456     
  4. Central Hydraulic System 0.173           0.225           
  5. Control System   0.080   0.355 0.054 0.001 0.403     2.659     
  6. Power Generation System 0.067     0.485 0.321 0.095     0.100     0.206 
  7. Transmission 0.040     0.812 0.154 0.010 0.548         0.381 
      7a. Converter System 0.040   0.076 0.081 0.005      0.195 
      7b. Generator Transformer System    0.052 0.003 0.001       

  8. Nacelle                    0.094         
  9. Common Cooling System       0.190 0.007               
  10. Meteorological Measurement 0.027                       
  11. Tower System       0.092 0.089           0.052   
      11a. Tower           0.052  

      11b. Foundation System    0.092 0.089        

  12. Others       2.225 0.166 0.001 0.245     0.385     
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Appendix C 
Appendix C  

 

Prediction metrics 

C.1    Time series and regression metrics 

Time series can be compared by the means of the mean squared error (MSE). As defined in 

Equation C-1 , the MSE measures the average of the squares of the errors – defined as the 

difference between the estimated and the actual value. – with Y being the vector of values 

and n being number of points in the sample. The smallest is the MSE, the closest is the rotor 

torque to the one of the full-order nonlinear model, which is taken as term of comparison. 

MSE = 
1

n
∑(Yactual − Yestimated)

2

n

i=1

 Equation C-1 

The performance of a regression model is generally evaluated by using the mean 

absolute percentage error (MAPE), and the coefficient of determination (referred to "R 

squared" and denoted as R2). The MAPE represents the average absolute percentage across 

the time periods. It is thus defined as in Equation C-2  where �̂�𝑖  is the predicted value, 𝑦𝑖  is 

the actual value, and n is the number of time period samples [243].  

MAPE = 
1

n
∑|

ŷi-yi
yi
|

n

i=1

 Equation C-2 

Another common metric, so called R2, measures of how well the observed outcomes are 

replicated by the model, based on the proportion of total variation of outcomes explained 

by the model [244]. This metric can be more intuitive and informative than the MAPE for 

the purpose of the regression analysis evaluation, as the former can be expressed as a 

percentage, whereas the latter measures have arbitrary ranges. 

C.2    Classification metrics 

The confusion matrix indicators, visualised in the confusion matrix of Table C.1, allow 

defying the hard threshold metrics of binary-class classification problem. The tn and tp refer 

to the correct prediction of healthy and damaged cases, respectively, while fp and fn give 

the false alarms and miss, respectively, as common in the confusion matrix.  

The classification models presented in this thesis aim to identify the damage status of 

the assets. Therefore, the “positive” class it is here referred to as “damaged”. The hard-

threshold metrics, that are used to quantify the performance of supervised or unsupervised 

machine learning approaches, are defined as in [225], by adapting the terminology to fit the 

damage-detection purpose: 
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Table C.1: Confusion matrix for hard-threshold metrics. 

  Predicted 

  negative 

(0 or healthy) 

positive 

(1 or damaged) 
A

ct
u

a
l 

negative 

(0 or healthy) 

true negative 

(tn) 

false positive 

(fp) 

positive 

(1 or damaged) 

false negative 

(fn) 

true positive 

(tp) 

 

• Accuracy (acc) gives an indication of the total amount of correct predictions over 

the total amount of samples in the dataset tested. 

acc =  
tp + tn

Total samples
 Equation C-3 

• Precision (pr) is defined as the percentage of correctly detected damaged case with 

respect to the total amount of cases predicted damaged.  

pr = 
tp

fp + tp
 Equation C-4 

• Recall (re) is defined as the percentage of correctly detected damaged case with 

respect to the total amount of damaged cases in the dataset tested. 

re = 
tp

fn + tp
 Equation C-5 

• False positive rate, or fall-out (fo), gives an indication of the percentage of false 

alarm raised (the classifier predicts damaged status although the structure is 

healthy) with respect to the total amount of healthy cases in the dataset. 

fo =  
fp

tn +  fp
 Equation C-6 

• F1-score is the harmonic mean of the precision and recall. 

F1 − score =  2
pr ∙  re

pr +  re
 Equation C-7 

• Specificity (sp), defined as 1 – fo, and thus refers to the probability of a positive test, 

conditioned on truly being positive. 

 

While the acc gives an overall indication on the goodness of the classifier, the re refers 

to the models’ ability to detect the damage. Satisfactory acc, pr and re are generally assumed 

for values above 70%. The fa, instead, gives an indication of the percentage of false alarms 

raised by the classifier. A satisfactory fo is generally considered if below 30%.  

Receiver operating characteristic (ROC) curves [245], and feature ranking plots are 

employed during the tuning and training phases to track the performance and validity of 

the prediction. Additionally, when performing classification, it is advised to investigate the 

probability corresponding to the predicted category. This probability gives a measure of the 

confidence on the prediction and is presented in the so-called reliability curve [246]. 
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Appendix D 
Appendix D  

 

Tabular results of damage detection in an 

offshore wind jacket structure based on low-

resolution 

D.1    Training and testing 

The complete classification results of the training and testing of the data-driven models, 

built for the purpose of the non-parametric detection of a brace full-integrity loss in the 

jacket substructure of the WK64 turbine, are presented in Table D.1. The metrics, and the 

test sets are as the ones of Section C.2 and Section 6.5, respectively, however the reader is 

referred to Paper 3 for their naming convention.  

Table D.1: At the top, the performance of the best classifiers for the 
dataset D0 (trained on Tr0), sensor set up S0. At the bottom, the 
colour legend (targeted performances in green). 

 

 

D.2    LR and SVM    

The results of the models based on the logistic regression (LR) and the support vector 

machine (SVM) algorithms are presented in Table D.2 and in Table D.3. For brevity, the 

performances on the test sets are reported in terms of accuracy (acc) only. However, the 

confusion matrix (CM) of each classification test is given to allow deriving the other 

performance indicators. The test sets are as the ones of Section 6.5, however the reader is 

referred to Paper 3 for their naming convention. 

Overfitting is identified when a strong collinearity is introduced among the 

classification predictors, thus by implementing both the inclinometer and strain gauge 

measurements (sensor setup S2). Indicators of this phenomenon are: 

Te1 Te2 Te3 Te4

acc TDR FDR acc TDR FDR acc acc acc acc

LR 69% 67% 28% 70% 67% 27% 50% 50% 52% 52%

SVM (poly) 91% 92% 9% 71% 72% 30% 50% 50% 53% 54%

RF 100% 100% 0% 86% 86% 14% 55% 68% 66% 72%

LR 61% 60% 39% 59% 59% 41% 50% 50% 52% 50%

SVM (rbf) 89% 86% 9% 64% 66% 37% 50% 50% 52% 50%

RF 100% 100% 0% 69% 66% 28% 56% 56% 60% 59%

Below 

rated

Above 

rated 

Classifier
Te33Tr0

acc/TDR FDR

below 60 above 40

[60;75) (30;40]

[75;90) (10;30]

[90;100] [0;10]

TDR represents the damage detection rate

FDR  represents the false alarm rate
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• the improvement of the accuracy for both LR and SVM classifiers, 

• the switch to a linear separation function for the SVM classifier, while more complex 

kernel transformations are employed for the all the other sensor combinations. 

Table D.2: LR classifiers performance on the dataset D0, sensor set up S0, S1, S2 and S3. 

 
 

Table D.3: SVM classifiers performance on the dataset D0, sensor set up S0, S1, S2 and S3. 

 

Finally, the performance of the SVM-based classifiers on the combination D2-S3 are 

reported in Table D.4. The metrics, and the test sets are as the ones of Section C.2 and Section 

6.5, respectively, however the reader is referred to Paper 3 for their naming convention. At 

below rated conditions, the SVM model implementing a rfb kernel scores satisfactory 

accuracy (above 90%), detection rate (of about 90%) and alarm rate (below 10%) on the 

Te33 and Te4 tests set. 

Table D.4: SVM classifiers performance on the dataset D2, sensor set up S3. 

 

 

CM acc CM acc CM acc CM acc CM acc CM acc

S0
[[622, 242], 

[288, 576]]
69%

[[314, 118], 

[143, 289]]
70%

[[8, 1288], 

[2, 1294]]
50%

[[1296, 0], 

[1293, 3]]
50%

[[54, 1242], 

[15, 1281]]
52%

[[1267, 29], 

[1206, 90]]
52%

S1
[[630, 234], 

[245, 619]]
72%

[[308, 124], 

[136, 296]]
70%

[[12, 1284], 

[6, 1290]]
50%

[[1294, 2], 

[1290, 6]]
50%

[[87, 1209], 

[16, 1280]]
53%

[[1247, 49], 

[1184, 112]]
52%

S2
[[864, 0], 

[0, 864]]
100%

[[432, 0], 

[0, 432]]
100%

[[1273, 23], 

[2, 1294]]
99%

[[1255, 41], 

[122, 1174]]
94%

[[1294, 2], 

[0, 1296]]
100%

[[1293, 3], 

[18, 1278]]
99%

S3
[[538, 326], 

[332, 532]]
62%

[[266, 166], 

[175, 257]]
61%

[[327, 969], 

[163, 1133]]
56%

[[1269, 27], 

[1192, 104]]
53%

[[435, 861], 

[227, 1069]]
58%

[[1144, 152], 

[902, 394]]
59%

S0
[[529, 335], 

[342, 522]]
61%

[[256, 176], 

[175, 257]]
59%

[[7, 1289], 

[5, 1291]]
50%

[[1296, 0], 

[1296, 0]]
50%

[[107, 1189], 

[48, 1248]]
52%

[[1296, 0], 

[1296, 0]]
50%

S1
[[549, 315], 

[310, 554]]
64%

[[261, 171], 

[138, 294]]
64%

[[539, 757], 

[276, 1020]]
60%

[[1295, 1], 

[1294, 2]]
50%

[[622, 674], 

[325, 971]]
61%

[[1261, 35], 

[1120, 176]]
55%

S2
[[864, 0], 

[0, 864]]
100%

[[431, 1], 

[0, 432]]
100%

[[1277, 19], 

[0, 1296]]
99%

[[1296, 0], 

[882, 414]]
66%

[[1292, 4], 

[0, 1296]]
100%

[[1295, 1], 

[184, 1112]]
93%

S3
[[538, 326], 

[334, 530]]
62%

[[262, 170], 

[146, 286]]
63%

[[18, 1278], 

[10, 1286]]
50%

[[1296, 0], 

[1296, 0]]
50%

[[90, 1206], 

[33, 1263]]
52%

[[1296, 0], 

[1296, 0]]
50%

Te1 Te2 Te3 Te4
Sensor
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d

Tr0 Te33

CM acc CM acc CM acc CM acc CM acc CM acc

poly (4) S0
[[787, 77], 

[73, 791]]
91%

[[303, 129], 

[121, 311]]
71%

[[916, 380], 

[922, 374]]
50%

[[358, 938], 

[346, 950]]
50%

[[707, 589], 

[632, 664]]
53%

[[683, 613], 

[574, 722]]
54%

poly (2) S1
[[815, 49], 

[67, 797]]
93%

[[378, 54], 

[84, 348]]
84%

[[1191, 105], 

[1140, 156]]
52%

[[1285, 11], 

[1074, 222]]
58%

[[1107, 189], 

[995, 301]]
54%

[[1169, 127], 

[574, 722]]
73%

linear S2
[[864, 0], 

[0, 864]]
100%

[[431, 1], 

[1, 431]]
100%

[[1266, 30], 

[3, 1293]]
99%

[[1294, 2], 

[122, 1174]]
95%

[[1287, 9], 

[1, 1295]]
100%

[[1296, 0], 

[25, 1271]]
99%

rbf S3
[[860, 4], 

[6, 858]]
99%

[[374, 58], 

[49, 383]]
88%

[[0, 1296], 

[0, 1296]]
50%

[[0, 1296], 

[0, 1296]]
50%

[[130, 1166], 

[84, 1212]]
52%

[[503, 793], 

[181, 1115]]
62%

rbf S0
[[789, 75], 

[123, 741]]
89%

[[272, 160], 

[149, 283]]
64%

[[0, 1296], 

[0, 1296]]
50%

[[0, 1296], 

[0, 1296]]
50%

[[119, 1177], 

[61, 1235]]
52%

[[0, 1296], 

[0, 1296]]
50%

poly (2) S1
[[740, 124], 

[126, 738]]
86%

[[328, 104], 

[117, 315]]
74%

[[1287, 9], 

[1271, 25]]
51%

[[1296, 0], 

[1296, 0]]
50%

[[1200, 96], 

[1030, 266]]
57%

[[1293, 3], 

[1293, 3]]
50%

linear S2
[[862, 2], 

[0, 864]]
100%

[[431, 1], 

[0, 432]]
100%

[[1294, 2], 

[2, 1294]]
100%

[[1228, 68], 

[177, 1119]]
91%

[[1294, 2], 

[0, 1296]]
100%

[[1285, 11], 

[16, 1280]]
99%

rbf S3
[[864, 0], 

[0, 864]]
100%

[[252, 180], 

[126, 306]]
65%

[[0, 1296], 

[0, 1296]]
50%

[[0, 1296], 

[0, 1296]]
50%

[[76, 1220], 

[33, 1263]]
52%

[[0, 1296], 

[0, 1296]]
50%

Te33 Te1 Te2
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te
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Kernel Sensor
Tr0 Te3 Te4

acc TDR FDR acc TDR FDR acc TDR FDR acc TDR FDR acc TDR FDR

Below 

rated
94% 93% 6% 53% 42% 36% - - - 64% 65% 37% 91% 87% 4%

Above 

rated
78% 77% 22% 53% 86% 79% - - - 60% 86% 67% 52% 43% 39%

Te4Te33 Te1 Te2 Te3
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D.3    Random forest 

The results of the random forest (RF) classifier are reported in Table D.5. The metrics, and 

the test sets are as the ones of Section C.2 and Section 6.5, respectively, however the reader 

is referred to Paper 3 for their naming convention. 

Table D.5: RF classifier performance for the datasets D1, D2 and D3, in combination with the 
sensor S0, S1, S2 and S3. 

 
 

acc TDR FDR acc TDR FDR acc TDR FDR acc TDR FDR acc TDR FDR

D1 S0 85% 86% 14% - - - 63% 50% 40% 69% 62% 26% 72% 67% 36%

D2 S0 91% 96% 4% 57% 73% 41% - - - 68% 69% 8% 80% 90% 38%

D3 S0 88% 96% 3% - - - - - - 73% 67% 37% 82% 73% 20%

S1 96% 96% 4% 66% 73% 41% 80% 69% 8% 76% 90% 38% 84% 71% 3%

S2 96% 96% 3% 68% 73% 38% 81% 71% 9% 78% 92% 36% 85% 72% 1%

S3 95% 94% 3% 82% 76% 13% 86% 77% 5% 90% 89% 9% 91% 84% 1%

D2 S3 97% 96% 2% 82% 85% 21% - - - 91% 92% 11% 96% 93% 2%

D1 S0 85% 67% 32% - - - 63% 34% 20% 69% 75% 40% 72% 29% 12%

D2 S0 91% 73% 19% 57% 94% 84% - - - 68% 92% 68% 80% 79% 38%

D3 S0 88% 70% 25% - - - - - - 73% 70% 35% 82% 84% 45%

S1 96% 90% 9% 66% 99% 51% 80% 41% 0% 76% 100% 33% 84% 44% 0%

S2 96% 91% 8% 68% 98% 51% 81% 34% 0% 78% 99% 26% 85% 39% 0%

S3 95% 91% 10% 82% 96% 36% 86% 42% 3% 90% 98% 25% 91% 60% 0%

D2 S3 97% 92% 6% 82% 97% 29% - - - 91% 98% 23% 96% 88% 5%
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te
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Te1 Te2 Te3 Te4
Dataset Sensor
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