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Abstract

This thesis presents the result of research conducted on the behaviour of col-

loidal particles in nematic liquid crystal flow for a wide range of parameters in

microfluidic channels and ducts. We study the change in structure of defects and

molecular orientation around a static particle, particle migration in microfluidic

channels, morphology of Saturn ring defects and director structure in ducts of

comparable size to the particle, and many particle migration and advection in

large scale systems of differing colloidal densities. We observe elongation of the de-

fect lines around a static colloidal partical, novel positional control of individual

colloidal particle and also colloidal densities in microchannels through tunable

driving pressure, and non monotonic dependence of the differential velocity of

particle and fluid in highly confined ducts on Ericksen number.
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Chapter 1

Introduction

1.1 Liquid crystal fluids

Fluids of all types are commonly present in every day life, with water being an exam-

ple of a fluid vital to all forms of life on Earth. Functionally, water is a simple fluid

which in classical terms is defined as a system of atoms or molecules whose microscopic

interactions with each other depend on their relative distances [3]. The question of

simplicity is an interesting one from a philosophical perspective - which meaningful

measures should be taken to define what is a simple fluid can vary[4] as initial as-

sumptions can lead to differing results. Simplicity in the macroscopic behaviour of a

liquid is usually described through its equation of state, viscosity, and diffusion con-

stant. Since Sir Isaac Newton originated the concept of viscosity, fluids that can be

categorised through the relationship between the shear stress and the rate of strain

are often called Newtonian and non-Newtonian [5]. For Newtonian (viscous) fluids the

stress is directly proportional to the rate of strain and for non-Newtonian fluids that is

not the case. Complex fluids that is, mixtures that coexist between two or more phases,

exhibit non-Newtonian behaviour through their nonlinear response to shear. They are

common with many biological compounds, food items, and personal care products ex-

hibiting non-Newtonian behaviour. The properties of a complex fluid also include high

disorder and clustering on multiple length scales. Complex fluid behaviour has its uses
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in engineering applications, for example small amounts of polymers in water can reduce

turbulent drag [6], reducing the power needed to be used. As a result of the geomet-

rical constraints, the mechanical response in complex fluids results in solid-like and

fluid-like behaviour at different times. Generally, at short time scales, solid properties

manifest more, while at long timescales (anywhere from seconds to days) the overall

flow behaviour is more visible. The differences in the time scales are a feature of this

non-linear mechanical response (i.e. deformation) of complex fluids under shear stress

leading them to be termed as ‘viscoelastic’ [7]. A viscoelastic material is one that has

both viscous and elastic responses when subjected to deformation resulting in time-

dependent strain, leading to the its defining properties of hysteresis on the stress-strain

curve, occurrence of stress relaxation and creep, and the strain rate influencing the

stiffness of the material.

Liquid crystals are an intermediate state of matter with characteristics between an

ordered solid phase (like a crystal) and a disordered liquid phase (isotropic). Standard

viscoelastic liquids are isotropic, while liquid crystals are anisotropic due to their spon-

taneously broken internal symmetry [8]. As such, liquid crystals have properties arising

from both their hydrodynamic properties as complex fluids, and their anisotropy due

to inherent order present in the geometry. This internal orientational order affects the

elasticity, viscosity, and other physical properties of the liquid crystals. Those proper-

ties are crucial for varied kinds of applications, the most well known being liquid crystal

displays [9]. For a long time this single application has dominated the international

research efforts of the field in academic and industrial research contexts. Due to the

commercial success of liquid crystal display technology and their development in the

1970s, modern day display research is mainly done in industrial settings. Academic

liquid crystal science has moved away from display to other uses in nano-/micro ma-

nipulation, novel composites, and biotechnology [10] creating emerging novel research

with new kinds of potential applications. Flow of such anisotropic fluids gives rise to in-

vestigations into spectacular phenomena resulting from the competing viscous, elastic,

and inertial effects.
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1.2 Microfluidics and rheology

As suggested by the title of this thesis, the research presented here falls into the category

of microfluidic rheology. Microfluidics is a science of systems that process small amounts

(10−9 − 10−18 liters) of fluids using small channels with sizes of tens to hundreds of

micrometers [11]. Such confinements can be capillaries, channels, ducts or networks

of such geometries. Microfluidics exploits its most obvious characteristic — small size

— to offer a fundamentally new control capability over concentrations of molecules

in space and time. Since its development in the 1990s [12] microfluidics has seen

increased interest in many fields of modern science and technology. This has resulted in

contributions to growing interdisciplinary research - joining together physics, chemistry,

biology, and engineering into a common platform of interest. The main advantage

of microfluidics is the ability of precise control and manipulation of flows. Through

a variety of methods [12] systems with high precision can be fabricated, including

morphological structures if required, that allow for flow manipulation. These systems

include micro-pumps, micro-valves, guiding paths etc. [13], which can subsequently

can be put together to created large scale networks with differing complexity to create

lab-on-a-chip devices [14].

Rheology is a branch of physics that deals with the deformation and flow of mate-

rials that have a complex microstructure, and whose viscosity changes with the strain

rate (the relative flow velocity) [5]. Hence, it focuses on the non-Newtonian fluids by

characterizing functions needed to relate the stresses with the rate of change of strain.

In functional terms, rheology aims to extend continuum mechanics to describe the flow

of materials combining elastic, viscous and plastic behaviour. As the response to stress

of such materials can be very different, this allows for abundant investigations into

novel phenomena exhibited by the complex non-Newtonian flow.
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1.3 Motivation and aims

Liquid crystals have fascinated generations of scientists from the time of their discovery

in the late 19th century[15]. This interest and focus has undergone many transforma-

tions over the last century, going from the initial investigations into fundamental prop-

erties through to the ubiquity of liquid crystal displays in the modern world. While

liquid crystals were synthesised for their commercially viable properties and behaviours

in the display fields, there is still more to be discovered about their characteristics in

other contexts.

Here, we focus on exploring the liquid crystalline behaviour when introducing col-

loidal particles to the region. The liquid crystal therefore acts as a unique, due to its

anisotropy and non-Newtonian properties, continuous phase that affects the dispersed

particles. Activity and interest in such combination of particles and liquid crystals has

been growing over the last 25 years [10] becoming a well-established and fast-growing

area of soft matter research [16]. Early research explored ways of creating new types of

dense soft materials based on liquid crystal and colloid composites [17] [18], with later

studies focusing on creating structures within a liquid crystal environment. In general,

one of the main goals of colloidal science is to imitate the diversity of atomic element

organisation to obtain structured composite materials through self-assembly (i.e. lo-

cal interactions of disordered states leading to organised structures without external

direction). Self-organization of colloidal nanometer- and micrometer-sized particles

dispersed in a liquid crystal is a promising approach [16]. To this end, there were a

number of experimental studies of different types of colloids looking at the possibilities

of self-assembly [19] [20] [21] and interactions between the colloidal particles in the liq-

uid crystal environment [22] [23] [24] [25] [26]. The emerging scientific understanding

shows promise for significant new discoveries and applications. Using the fundamental

knowledge of self-assembly in complex fluids could lead to applications such as meta-

material and photonic crystal fabrication, or energy conversion.

The field of nematic colloidal composites is well established with studies done

through experiments, simulations and theory. However, fully three dimensional sim-
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ulations of microfluidic flows including nematic liquid crystals and colloidal particles

are uncommon. What initially started as an investigation of large scale microfluidics

of colloid-liquid crystal composite materials by the thesis author lead to a focus on

individual particle behaviour. As the highly complex large scale flows have many inter-

connected phenomena happening at the same time, it is important to be able to focus

on individual effects before being able to accurately attribute the contributing factors

of bulk behaviour. Hence, the goal of the thesis is to achieve a fundamental level of

understanding of novel phenomena occurring in microfluidic flow of colloidal particles

in nematic liquid crystals. This will be achieved through contemporary simulations of

such systems. This leads to twofold project aims: to define the factors strongly influ-

encing particle migration and to better understand liquid crystal defect behaviour in

flow. The potential impacts of this work include the stimulation of further experimental

activity and developing mechanisms of particle migration control.

1.4 Thesis outline

This thesis is divided into eight chapters. Chapter 2 serves as an introduction to liquid

crystal theory, an introduction into fluid dynamics, and theoretical description of the

rheology of nematic liquid crystal colloids. Chapter 3 focuses on the lattice Boltzmann

simulation method and the inclusion of a particular solver (Ludwig) that includes the

fluid dynamics, liquid crystal properties and incorporates the colloidal particles into its

model. The Ludwig code is used in the thesis to investigate the complex behaviour of

nematic liquid crystals colloids.

Chapters 4, 5, 6, 7 present the main results of this thesis. Chapter 4 discusses the

behaviour of a liquid crystal with a fixed spherical particle subjected to flow. We will

focus on the defect behaviour and influence of the anchoring type on the system. The

novel findings include the elongation of defects and In Chapter 5 we shall examine the

behaviour of a dynamic particle placed in a channel resulting in controllable migration.

Order-flow interactions facilitated by the defect structure will be of particular interest.

This lead to the observation of novel positional control of a colloidal particle, and was
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subsequently published [1]. This poses future possibilities for tailored particle separa-

tion. Chapter 6 will present an investigation into the effects of confinement on a single

particle in a duct. We aim to investigate the effect of defects on the advection behaviour

of colloidal particles and address some knowledge gaps related to the combination of

the pressure driven flow and moderate to large confinement. Finally, Chapter 7 will

present early research on large scale systems of colloidal liquid crystal flows. The in-

vestigation into the large scale colloidal systems is rarely conducted. We aim to change

that by providing a foundation level of insight into the novel effects occurring in such

systems including particle migration and percolating clusters of colloidal particles.

Chapter 8 shall conclude the thesis with final remarks on the work done in the pre-

vious results chapters. We will summarise the individual chapter findings with original

contributions from the thesis author, suggest the different directions the research could

be expanded upon in future work, and highlight the potential applications.
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Chapter 2

Theory of liquid crystals

2.1 History of the mesophase

The three most commonly known states of matter are solid, liquid, and gas with sub-

stances able to transition between the different states by changes in temperature or

pressure. While useful, this classification is simplified and not generally accurate for

many substances. A liquid crystal (LC) phase is a state of matter with properties be-

tween that of a solid and a liquid. Liquid crystals are in fact examples of mesophases

(also: mesomorphic phases), as they are intermediate states of matter. Even though

they can flow, they still possess some kind of internal ordering and certain optical re-

sponses that makes them akin to crystals - the name liquid crystal is an expression

trying to tie those ideas together. In most basic terms it can be looked at as a phase

of a material made up of elongated rod-like or disk-like molecules that on average has

some preferred orientation. Not all materials have a mesophase and the occurrence of

the phases is dependant on the temperature or solvent concentration. The temperature

dependent phases, also called thermotropic LCs, are the ones focused on in this work.

When a solid is heated up until it melts into an isotropic liquid it may go through

the liquid crystal phase (or phases) with the transition temperatures depending on the

material used. When talking about an isotropic liquid in this context, it means that

there is no average orientation of the molecules, whereas an anisotropic liquid would
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be one where an average orientation can be defined. This change of internal ordering

is shown in Fig. 2.1, with the molecules being graphically represented as ellipsoids.

Figure 2.1: Phase transition from a solid to an isotropic liquid with increasing tem-
perature (left to right). Liquid crystal mesophase exists within a temperature range
dependent on material characteristics, with some materials going through different
types, for example smectic and nematic.

The discovery of liquid crystals is credited to a botanist Friedrich Reinitzer, who

reported his observations of two melting points of cholesteryl benzoate in 1888. While

heating up the solid at room temperature material, it turned into a cloudy liquid at

144.5° and at 178.5° became transparent [15]. The cloudy liquid was subsequently

called a cholesteric liquid crystal, and in later years alternatively described as a chiral

nematic liquid crystal. The higher melting point is now referred to as the clearing point.

Reintizer recognized some connection of his work to the work of Otto Lehmann, and

established correspondence to talk about his experiments. Lehman then constructed

an instrument with a polarising microscope with a precise temperature control stage,

allowing him to observe the similarities in properties of his samples and the ones received

from Reinitzer. Over time he was convinced that the opaque phase in his experiments

was a distinct and uniform phase of matter, with properties somewhere between liquids

and solids. Lehmann seems to be the first to use the term ‘flowing crystal’ to describe

this type of materials in 1889 and 1900, and also introduced the general term ‘liquid

crystal’ which is now commonplace. His work was influential in the field, and a French

research group continued to run their own experiments eventually culminating with

a classification scheme presented in 1922 by Georges Freidel. This scheme proposed
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categorisation into 3 different types: nematic, smectic, and cholesteric [27].

At the same time as German scientists were conducting research on this interesting

state of matter, the subject also became of interest to Friedel around 1907. In 1922,

he contributed a 200 page work on the ‘Mesomorphic States of Matter’ to ‘Annales des

Physiques’ which established in depth terminology for the description of what he called

the mesomorphic phases of matter. He was against using the oxymoronic colloquial

term ‘liquid crystal’, and instead favoured using the term ‘mesophase’, believing it

more sound and accurate. There have been further critiques of using the colloquial

name liquid crystal instead of the apt mesophase by Prost and de Gennes, in their ‘The

Physics of Liquid Crystals’ [8]. While in some fields of chemistry ‘mesophase’ became

the prevalent term, it seems that the ‘liquid crystal’ prevails in both academic and

popular science circles. During the 1930s and 1940s more work was done, focusing on

elastic properties, and effects of magnetic and electric fields [28]. In the post war years

liquid crystals became quite niche as there were no applications of them at the time

and the existing textbooks did not mention them.

Then, in the 1960s there was renewed interest in the materials in places like the

United Kingdom, the United States, and the Soviet Union, perhaps wanting to find

some application for these unusual materials. During that time, an American chemist

Glenn Brown founded the Liquid Crystal Institute at Kent State University and in the

same year organised the first International Liquid Crystal Conference which continues

biennially to this day attracting scientists from all over the world to discuss their

research [29]. A continent away, a British chemist George Gray published a full length

book on liquid crystals based on his reliable and systematic investigations relating the

structures of the liquid crystals with their behaviour and properties. It is said that no

other author in the history of the subject has published about more new liquid crystals

[30]. He and his team at Hull University were instrumental in developing novel liquid

crystals for flat-panel displays in the 1970s [31]. Igor G. Chistyakov was instrumental in

the revival and further development of the field in the USSR, establishing laboratories

and a research group first in Ivanovo and later in Moscow. Advancement of the field

was rapid and consequential, with the first demonstration of a liquid crystal display
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creating pressure to further develop the technology.

Further work by Vorländer in 1974 outlined the fundamental discovery of rod-like

molecules being a critical condition for observance of two melting points. Future studies

expand the vital condition to be that of molecular anisotropy, as disc-like and banana-

like molecules that have two melting points have been found since. The assumption

of rod-like molecules was instrumental for the theoretical description of liquid crystals,

as the resulting molecular structure approach became to mathematically describe the

materials as rod-like. This approach is still prevalent today, in conjunction with more

complex descriptions of molecular shapes.

2.1.1 Liquid crystal categories

There are various types of the LC phases and different ways of categorising them,

with the main three types distinguished by the main factors that have an effect on the

orientation of the molecules. Thermotropic liquid crystals go through phase changes

with variation in temperature, lyotropics exhibit phase transitions due to temperature

and concentration in a solvent, and metallotropic do so as a function of temperature

and the organic to inorganic ratio. In this work, we focus on thermotropic liquid

crystals. As mentioned before, they exhibit liquid crystalline behaviour as a function

of temperature, with each material having a specific range. If it is heated up above

it, the material will behave as an isotropic liquid, when cooled below the threshold

usually it will form a crystal. Different materials can go through a number of different

liquid crystal phases as temperature is increased before transitioning to a conventional

isotropic. The possible phases include nematic, smectic, cholesteric, blue and others.

The nematic phase is the simplest case, with the molecules having long-range ori-

entational order, but no positional order. Nematics are commonly uniaxial, with the

average direction of the main axis being called the ‘director’. As for their properties,

nematics are readily influenced by external electric and magnetic fields, and due to

their optical responses they are commonly used in liquid crystal displays.

Smectic phases, as well as possessing orientational order, are positionally ordered

in one direction, forming layers that can glide over each other. As usual, the different
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types of smectic phases are distinguished by the degrees of positional and orientational

order. The most well known smectics include smectic A and C, with molecules inside

the layers arranged parallel to the normal in the former, and tilted away from it in the

latter.

Cholesterics exhibit chirality, that is handedness, named after being initially ob-

served in cholesterol compounds. In this phase, the molecules twist in a direction

perpendicular to the director and possess long-range order. Alternatively, they are also

referred to as chiral nematics. In this phase, the distance over which the molecules go

through a full 360° is called the chiral pitch, p. As the molecules are modelled to be

uniaxial, the same pattern is repeated every half pitch. The length of the pitch changes

with, for example, temperature, making it tunable. Together with some unique optical

properties, cholesterics have been used for many applications such as light modulators,

UV detectors, dye lasers, and luminescent displays [32].

The differences in between the different phases can be observed under a microscope

and due to the birefringence of the materials visually stunning images can be obtained

as shown in Fig. 2.2.

a) Nematic phase b) Smectic A phase c) Cholesteric phase

Figure 2.2: Microscopic images of liquid crystal a) nematic, b) smectic A, and c)
cholesteric phases. Reproduced with permission from Vance Williams, Department of
Chemistry, Simon Fraser University [33]

2.2 Modelling of nematic phases

Molecular order is just one of the properties of liquid crystals. In this thesis we focus

on the nematic phase specifically, and now we will explore different ways of describing

it theoretically. Modelling liquid crystals in a mathematically rigorous way comes with
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challenges and there are different theoretical models of various accuracy that can be

used. In general, simpler models are advantageous as they are easier to understand

and implement but lose a lot of accuracy. More complex approaches can result in great

accuracy, but require more computational resources to fully resolve. At the most basic

level, fluids can either be treated as made up of individual molecules or as a continuum

medium giving rise to different ways of modelling depending on how the material is

described. As such, depending on the approach used, the models are referred to by

their approach giving rise to molecular models [34, 35] or continuum models [8, 36].

Following on the experimental work on the at the time recently discovered mesophases,

Oseen laid the groundwork for the theoretical underpinnings and description of what

is now accepted as the continuum theory of liquid crystals [37]. This static continuum

theory used a unit vector, called the director, to describe the average local direction

preferred by the nematic molecules. This was based on a common understanding that

the molecules of nematics have a degree of local ordering, which direction was called

the anisotropic axis [36]. The director formulation can account for properties such as

anisotropic elasticity, body forces, and surface effects. Through its simplicity and ease

of use, it is still commonly used today [36].

The work of Oseen on the static theory was then further expanded upon by Frank

in 1958 [38], into what is now called the Oseen-Frank theory. This theory can be

applied to many problems that involve nematic phases [36, 37], and has been par-

ticularly advantageous due to its ability to describe the Fréedericksz transition. The

Fréedericksz transition is a phase transition effect occurring for an undisturbed liquid

crystal subjected to a sufficiently strong electric or magnetic field. It is named in hon-

our of the Russian/Soviet physicist Vsevolod Fréedericksz (whose name is sometimes

also romanised as Frederiks). Well below the threshold, there is no observed change

in the orientation of the director, with the nematic sample orienting itself according

to its preferred alignment in the undisturbed state. As the magnitude of the field

is gradually increased from the critical value (called the Fréedericksz threshold), the

director attempts to twist until it aligns with the applied electric or magnetic field.

Through this transition three different configurations can occur, called the splay, twist,
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and bend.

While the static Oseen-Frank theory is very useful and widely applied, more work

needed to be done to develop a dynamic continuum theory of nematics. Such a theory

requires the inclusion of the viscoelastic properties of liquid crystals into the model,

maintaining the conservation laws and also general dynamics. In his 1961 publication

[39], Ericksen laid out the balance laws for the conservation of linear and angular

momentum. A couple of years later, Leslie formulated the constitutive equations first

for anisotropic fluids [40] and then for liquid crystals [41]. The resultant theory using

the descriptions of these balance laws was then named the Ericksen-Leslie theory, and

it uses the conservation of mass, linear and angular momentum to describe the pairing

of the director, the fluid velocity, and fluid pressure [36]. Early corroboration of this

theory was done by Atkin [42] in 1970 for flow of a nematic due to a pressure gradient

in both a stationary capillary tube and two coaxial stationary tubes. The scaling

accomplished in Atkin’s work was consistent with experimental observations of Fisher

and Frederickson [43] made a year earlier for nematic flow between coaxial cylinders.

The resulting Ericksen-Leslie theory has been in use for various problems involving

flow, electric and magnetic fields, and free surfaces [36].

A notable complication of both the Oseen-Frank static theory and the Ericksen-

Leslie dynamic theory is the challenge in describing the so-called defects (or disclina-

tions) that are present in liquid crystals. A disclination in a liquid crystal is a type of

topological defect where the rotational symmetry is violated, meaning that the direc-

tor is undefined in a particular position. It is important to keep in mind that these

defects are not flaws in a material that can be fixed, but rather an important feature of

nematics. These defects have a profound role to play and influence the behaviour and

properties of a system in which they occur. Ericksen proposed a continuum model that

includes disclinations [44] in 1991, that expanded the understanding of moving defects.

At the time the static theory of point defects was well developed as described in for

example the survey by Kinderlehrer [45]. The general static theory for the nematic

phase that includes the director and the resulting defects is based on the Q-tensor for-

mulation that is the foundation of the Landau de Gennes theory [8]. It considers the
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the behaviour of the director and the variable referred to as the scalar order param-

eter, the latter describing the propensity of the molecules to align with the director.

A comprehensive review of the background and development of the continuum model

can be found in [46], while the mathematical underpinnings are reviewed in detail in

[47]. An adaptation of the Landau de Gennes theory into a dynamic from is called the

Beris-Edwards theory, based on the equation of the same name [48].

For additional particulars of the history and development of mathematical models

used to describe liquid crystals, an interested reader is guided to a review by Carlsson

and Leslie [37]. The systems in this thesis are dynamic and fully three dimensional,

using the Beris-Edwards approach for the behaviour of the nematic phase. Nonetheless,

it is important to have a good understanding of the static theory as well as the dynamic

adaptation in order to recognise how the systems in this thesis are modelled.

2.3 Molecular order

As liquid crystals exhibit some amount of orientational order, a common way to

describe this is to define a unit vector n called a director which gives the direction

of the average molecular orientation. For rod-like molecules, this will be the average

orientation of the long axis. The director can vary over time. Therefore, the director is

both space and time dependent. To measure the level of orientation about the director

it is standard to use a scalar order parameter S, which is equal to 0 in a disordered

phase, and nonzero otherwise. It is defined as the weighted average of the molecular

orientation angle θ between the long axis and the director

S =
1

2
< 3 cos2 θ − 1 >=

1

2

∫
(3 cos2 θ − 1)f(θ)dV, (2.1)

where <> is the thermal average, and f(θ) is the statistical orientational distribution

function. As mentioned before when S = 0 the internal order is fully disordered and

indicates an isotropic phase. The maximum value of S is +1, which happens when

all molecules are perfectly aligned along the director. When all molecules are perfectly
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aligned perpendicularly to the director, S = −1
2 , meaning that the order parameter S is

bound by the interval [−1
2 , 1]. This measure of order is an appropriate approximation in

most cases, with Eq. (2.1) being a second order Legendre polynomial. In some cases, for

example where higher accuracy is required, a higher order polynomial should be used.

Connecting the S values to real-world scenarios, for a liquid crystal in equilibrium it is

more usual for the order parameter to be positive, and a typical S value in the middle

of the phase region might be S = 0.6 [47].

By using a rod-like model to describe the ordering, there are two possibilities for

how the material might behave - biaxially or uniaxially. In a biaxial system, there

is no axis of rotation that does not cause a change in the system, while a unaxial

system has a symmetry axis. Uniaxiality is common in liquid crystals, and usually for

modelling purposes it is assumed. The uniaxiality leads to birefringence, as there are

different refractive indices observed perpendicularly and in parallel to the optical axis.

For biaxial materials, this leads to trirefringence with three unique refractive indices

for the three orthogonal directions.

2.3.1 Notation

With vectors being ubiquitous in the mathematical description of liquid crystals, the

question of notation and commonly used convention needs exploring. In the literature

both direct vector and index notations are used. In many cases, for the purposes of

brevity, the Einstein summation convention is used. For a given vector a, it can be

expressed by its components and a set of basis vectors {e1, e2, e3} in R3, such that

a = a1e1 + a2e2 + a3e3 =
3∑

i=1

aiei. (2.2)

The terms ai, i = 1, 2, 3 are the Cartesian components of a. The sum in Eq. (2.2) can

be expressed as

a = aiei (2.3)
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with the underlying assumption that the repeated index i is summed over, and obeys

the following rule; when any index appears twice (and only twice) in the same term

summation is implied over all the contributions of that index using all of its possible

values. This is the Einstein summation convention, and can be used for vectors, ma-

trices, and tensors. We can further introduce a set of useful quantities written in the

summation convention - the Kronecker delta δij and the alternator ϵijk, with i, j, k each

being able to take values from 1 to 3. The Kronecker delta is defined by

δij =


1 if i = j,

0 if i ̸= j,

(2.4)

and the alternator is defined by the following

ϵijk =


1 if i, j and k are unequal and in cyclic order,

−1 if i, j and k are unequal and in non-cyclic order,

0 if any two of i, j or k are equal.

(2.5)

Some examples using the above definitions are: δ13 = 0, δ11 = 1, ϵ123 = ϵ231 = ϵ312 = 1,

ϵ132 = ϵ213 = ϵ321 = −1, ϵ221 = 0. A particularly effective result that ties the Kronecker

delta and the alternator is

ϵijkϵipq = δjpδkq − δjqδkp, (2.6)

and it is generally called the contraction rule for alternators. Another widely used

convention is: when including partial derivatives with respect to some variable, place a

comma before it. For example m,i means a partial derivative of some quantity m with

respect to the ith variable, and bi,j means the partial derivative of the ith component

of some vector b with respect to the jth variable.
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2.4 Q-tensor

An alternative approach used to describe the internal order of a liquid crystal is by

using a tensor order parameter, rather than a scalar. The advantage of using a tensor

over a scalar is that it has an additional dimension and can in this case be used to

describe collective ordering in space. To achieve this, let us consider a Cartesian system

of coordinates with a director n parallel to the z-axis. The orientation of individual

molecules, described by some vector s, that can be parameterised by

s1 = sin θ cosϕ, s2 = sin θ sinϕ, and s3 = cos θ (2.7)

where θ and ϕ are the angular deviations of the molecule along the polar and azimuthal

directions respectively. The probability dΨ of finding the molecule oriented within a

solid angle dΩ is given by

dΨ =
1

4π
f(θ, ϕ)dΩ (2.8)

where f(θ, ϕ) is the distribution function describing the general state of the molecular

orientation. For uniaxial nematics, that are axially symmetric about the director n,

f(θ, ϕ) = f(θ) holds true. In fact, the distribution function f(θ) can be expanded by

using the Legendre polynomials to form a sum

f(θ) =
∞∑
n=0

fnPn(cos(θ)). (2.9)

The term Pn(x) is the nth Legendre polynomial and

fn =
2n+ 1

2

∫ 1

−1
f(θ)Pn(cos(θ))d(cos θ). (2.10)

Operating under the assumption of uniaxiality, that is s = −s, it means that f(θ) =

f(π − θ). As such, the non-zero contributions will be due to even terms alone, with
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f0 = 1 Hence, the scalar order parameter S is defined by a quadrupolar term

S =
1

5
f2 =

1

2

∫ 1

−1
f(θ)P2(cos θ)d(cos θ) =< P2(cos θ) > . (2.11)

Through this definition, the scalar order parameter lies within the interval −1
2 ≤ S ≤ 1,

with S = 1 meaning all molecules being perfectly aligned along the director n, S = 0

indicating the case with an isotropic state with no order, and the lower bound S = −1
2

that all the molecules are aligned along a plane perpendicular to the director. This

information can be expressed by a single variable, by combining the director field n,

with the degree of local order S into a second-rank tensor. Following convention, it is

called the Q-tensor, and it describes both the degree of local order and the director. It

is obtained by looking at the orientational probability function, in terms of S, up the

second order

f(θ) = 1 + 5SP2(cos θ) = 1 +
5

2
S(3(n · s)2 − 1) (2.12)

= 1 +
5

2
S(3nαnβ − δαβ)sαsβ = 1 + 5Qαβsαsβ (2.13)

where Q-tensor is described as

Qαβ =
S

2
(3nαnβ − δαβ). (2.14)

with δαβ being the Kronecker delta. For the director n, the Cartesian components are

given by nα and α = 1, 2, 3. Einstein summation notation is used in Eq. (2.14), and

this is a traceless uniaxial tensor with the largest eigenvalue S going along the director.

When adding external electric or magnetic fields the local ordering may no longer be

unaxial and instead be in a biaxial form [49], which can be described by

Qαβ =
S

2
(3nαnβ − δαβ) +

P

2
(e(1)α e

(1)
β − e(2)α e

(2)
β ) (2.15)

as the two degenerate eigenvalues become different. In the expression above, e(1) is a

unit vector along the symmetry axis of the molecule, e(2) = n × e(1) is the secondary
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director, while P =< sin2 θ cos(2Φ) >. In a biaxial case, the order parameter is a real,

symmetric, and traceless tensor that has three distinct eigenvalues. The first is equal to

S, the same as in a uniaxial case, with the corresponding eigenvector along the director.

The director field specifies the direction of the largest tensor eigenvalue. The other two

eigenvalues are −1
2(S + P ) and − 1

2(S − P ), with the complementary eigenvectors

specifying the orientation and the biaxiality P of the order parameter tensor. The

biaxiality P describes the loss of uniaxiality and the discontinuity of the rotational

symmetry around the director. The possible values of P lie in the interval [−3
2 ,+

3
2 ],

with unique values of P = 0 reproducing the uniaxiality and |P | = 3
2 meaning the

complete ordering along the secondary director e(1). In bulk, the recognized nematic

phases are uniaxial however local biaxiality can and does develop in confined nematics

- especially in the cores of topological defects. This means that the tensorial ordering

field displays non-trivial behaviour.

2.5 Frank Oseen elastic energy

In a nematic with no external influences the uniform director orientation comes from

the global minimum of its free energy. The expression for the free energy can include

the director. This director, upon which the static theory of liquid crystals is based,

can be expressed by the unit director field n. Since it is a unit vector, n · n = 1. This

mean alignment has some amount of elasticity, and it is known that in the liquid crystal

tends to return to its initial uniform alignment after the removal of disturbances [36].

Therefore, the assumption is that there exists a free energy density associated with the

distortions of the anisotropy such that

ω = ω(n,∇n), (2.16)

where ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ), with a total elastic free energy being given by

F =

∫
V
ω(n,∇n)dV. (2.17)
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The additional assumptions include the incompressibility of the liquid crystal, that is

a constant mass density and the uniaxiality of the director implying that ω(n,∇n) =

ω(−n,−∇n). Following the approach adopted by Frank [38], a local system of Carte-

sian coordinates x, y, z is introduced, with z parallel to n0 = (0, 0, 1). Small changes

in any direction induce three possible types of changes in orientation that lead to six

components of curvature. These fundamental distortions about the equilibrium state

lead to

ω = kiai +
1

2
kijaiaj for i, j = 1, ..., 6. (2.18)

The distortions are usually referred to as splay, twist, and bend, with their components

given by

splay: a1 =
∂n1

∂x
, a6 =

∂n2

∂y
(2.19)

twist: a2 =
∂n1

∂y
, a4 =

∂n2

∂x
(2.20)

bend: a3 =
∂n1

∂z
, a5 =

∂n2

∂z
(2.21)

with ki and kij being the curvature constants [36]. Using further assumptions of in-

difference of frame under reflection or rotation, and also the invariance of the nematic

phase the elastic curvature constants most of them will be equal to zero [36]. The

remaining elastic constants are known as the Frank elastic constants k11, k22, k33, k24.

Commonly they are rewritten as

K1 = k11, K2 = k22,K3 = k33,K4 = k24. (2.22)

We can now join the Frank elastic curvature constants and the six fundamental distor-

tions ai to obtain the free energy density. This bulk free energy density is called the

Frank-Oseen elastic energy density and becomes

ω =
1

2
(K1 −K2 −K4)ni,jnj,j +

1

2
K2ni,jni,j +

1

2
K4ni,jnj,i +

1

2
(K3 −K2)njni,jnkni,k.

(2.23)
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It can be thus presented in vector form as [36]

ω =
1

2
K1(∇ · n)2 + 1

2
K2(n · ∇ × n)2 +

1

2
K3(n×∇× n)2 (2.24)

+
1

2
(K2 +K4)∇ · ((n · ∇)n− (∇ · n)).

The Frank elastic constants follow the convention of being named after the particular

deformation they have the effect on. Hence, K1 is the splay constant, K2 is the twist

constant, and K3 is the bend constant [8, 36]. The remaining combination of K2 +K4

from Eq. (2.24) is called the saddle-splay constant. It is usually omitted from the bulk

energy, as it can be modified into a surface term through the divergence theorem. These

Figure 2.3: Types of elastic deformations in liquid crystals. From left to right, they
include splay, twist, and bend. Reprinted from [10] with permission from Elsevier.

deformations of splay, twist, and bend are shown graphically in Fig. 2.3, together with

their related elastic constants. Those elastic constants obey the Ericksen inequalities

[50]

K1 ≥ 0, K2 ≥ 0, K3 ≥ 0, K2 ≥ |K4|, K1 ≥
1

2
(K2 +K4) ≥ 0. (2.25)

Typical values for the elastic constants are in the 10−11N range [51], however they

are temperature and material dependant. When working with the bulk elastic energy

density it is common to use the one constant approximation, which we elect to do as

well. This approximation assumes that the splay, twist, and bend elastic constants are

equal, i.e. K = K1 = K2 = K3, and that K4 = 0. This assumption simplifies the

material properties of a standard nematic, however the ratio of the elastic constants

is usually not significantly greater than unity and it is not expected that there would

21



be a large qualitative difference in behaviour under this approximation [52]. Exper-

imentally, it is difficult to measure all the elastic constants of a particular material

as they are temperature dependent but it has been done for many well known liquid

crystal compounds [53]. One of those compounds, easily the most commonly used in

many studies, is 4-Cyano-4’-pentylbiphenyl universally referred to as 5CB. The values

for 5CB at 24°C under one-constant approximation are K ≈ 6 pN [54]. Under the one

constant approximation Eq. (2.24) is transformed into

ω =
K

2

[
(∇ · n)2 + (∇× n)2 +∇ · ((n · ∇)n− (∇ · n))

]
(2.26)

which is the one constant approximation Frank-Oseen free energy.

2.6 Landau de Gennes theory

As previously mentioned, the molecular order within a nematic mesophase can be al-

tered by changing the temperature. For significant variations in temperature the phase

transition, that is the transformation from one state to another, changes the structure

and the symmetry of the mesophase. This change affects the physical properties such

as density or viscosity. In thermodynamics terms, this means that the entropy of the

system Se changes:

Se = −
(
∂F

∂T

)
V

(2.27)

where F is the free energy at a given temperature T and volume V. The order of the

phase transition is determined by Se, such that a discontinuous variation of Se with

temperature gives a first order transition and a continuous variation of Se is a second

order phase transition. The discontinuity in the first order transition leads to the

exchange of latent heat Ql = TNIδSe at some phase transition temperature TNI . Phase

transitions in thermotropic mesophases lie within the Landau de Gennes theory, which

is built around the order parameter of a specific phase transition [8]. In general terms,

the order parameter is a spatially inhomogeneous tensorial field with a free energy that

is a functional of that field [55]. Landau theory writes the bulk free energy as a power
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series in terms of the order parameter, which vanishes above a certain temperature.

Following this Landau formalism, the argument can be presented in terms of the bulk

energy density fb expanded by using the powers of the order parameter [8]:

fb =
1

2
A(T ) trQ2 +

1

3
B(T ) trQ3 +

1

4
C(T )(trQ2)2 (2.28)

=
1

2
A(T )QαβQβα +

1

3
B(T )QαβQβγQγα +

1

4
C(T )(QαβQαβQγδQγδ). (2.29)

with summation over repeated indices being implied, and where A,B,C are temper-

ature and pressure dependent material coefficients. Usually, A tends to be written in

the form A = a(T − T ∗), with T ∗ being the super-cooling temperature while B,C are

assumed to be constants such that B < 0 and C > 0. The lack of linear term ensures

that the state minimum occurs when Q is zero (for T > T ∗) i.e. the material is in

an isotropic phase. What is important to note is that there is no symmetry relation

between states Qβα and −Qβα. This means that there is a non-vanishing term of order

O(3). Because of this non zero term of third order the phase transition must be a first

order one. The nematic-isotropic transition is of first order, however it is in ‘weakly

first order’ [8] with the B coefficient being relatively small.

2.6.1 Nematic to isotropic phase transition

The nematic to isotropic transition is a first order transition, where the order parameter

S vanishes at the transition temperature TNI [56]. Following the bulk free energy in

Eq. (2.29), we can now relate this bulk free energy with the scalar order parameter

S [8]. Following the previous assumptions for the material constants A, B and C Eq.

(2.29) becomes

fb =
1

2
a(T − T ∗) trQ2 +

1

3
B trQ3 +

1

4
C(trQ2)2 (2.30)

where T ∗ is the super-cooling temperature. The nematic to isotropic transition is driven

by the factor 1
2a(T −T ∗). By considering the uniaxial order parameter, we can use the
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expression for the Q-tensor from Eq. (2.14) and the relations

trQ2 =
3

2
S2 and trQ3 =

3

4
S3

to rewrite the bulk free energy as

fb =
3

4
a(T − T ∗)S2 +

1

4
BS3 +

9

16
CS4. (2.31)

This equation then relates the bulk free energy functional with the scalar order pa-

rameter S. The first term is responsible for the transition, the second is a result of

S ̸= −S. The remaining term comes from a fourth order that is the lowest suitable

term for the description of a phase transition, as it allows the free-energy density to

have two distinct minima. The equilibrium of the system can therefore be found by

minimising the free energy for the entire volume at a given temperature. This is done

by finding relevant solutions to

3

2
AS +

3

4
BS2 +

9

4
CS3 = 0, (2.32)

where A = a(T − T ∗). The solutions are given by

SI = 0,

SN = − B

6C

(
1 +

√
B2 − 24AC

)
,

and they correspond to the values of the scalar order parameter in the isotropic and

the nematic phase respectively. From these solutions, we can make the following obser-

vations. Above the superheating temperature S+, the material is isotropic and there

is no nematic phase. Below the transition temperature TNI the nematic state is in

the global minimum energy state. The limit of the metastability for a nematic is some

temperature T+, such that

T+ = T ∗ +
B2

24AC
. (2.33)
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At the transition temperature, the free energies of the nematic and isotropic are equal.

This occurs for a = B2

27C , resulting in

TNI = T ∗ +
B2

27AC
(2.34)

where T ∗ is the super cooling temperature that corresponds to the metastability limit

of the isotropic phase. Theoretically, it should be possible to be able to supercool an

isotropic fluid to this temperature. This temperature for A = 0, is where the isotropic

phase loses stability. Once the A coefficient changes sign, S = 0 is no longer the local

minimum of the free energy.

Following this analysis we can see that the Landau-de Gennes theory predicts a

discontinous phase transition [8]. This happens at the transition temperature TNI that

is slightly above T ∗, as a result of the odd-order powers of S in the expansion of the

bulk free energy. The bulk free energy f and its dependence on S is shown in Fig. 2.4

for the three different temperatures: the supercooling T ∗, nematic-isotropic transition

TNI , and metastability limit T+.

Figure 2.4: Free energy of 5CB nematic mesophase as a function of the scalar order
parameter for three different temperatures: T ∗, TNI , and T+. The inset shows the
change of order parameter with temperature. This figure is adapted (temperature
labels change only) from [57] licensed under CC BY 4.0.
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2.6.2 Landau de Gennes free energy

The Landau de Gennes model for nematic liquid crystals consists of a free energy

that incorporates the free energy contributions from the nematic order and from the

elasticity into one functional, expressed as an integral over a function of a tensor field

Q, which is also an integral over volume.

F(Q) =

∫
Ω
(ω + fb)dV, (2.35)

where F gives the free energy over some region of the material Ω, and in other words is

referred to as the Landau free energy density, ω is the elastic free energy density, and

fb is the bulk free energy density. As a consequence of using two contributing terms

in the Landau de Gennes theory, a characteristic length of the nematic order variation

is introduced. This length is known as the nematic correlation length ξN and it can

be found by minimising the F functional by using the Euler-Lagrange equation. The

correlation length increases when approaching the phase transition temperature TNI .

Usually the ξN is in the order of few nanometers, commonly also expressed in angstroms.

The Landau de Gennes model is one of the most general models for describing liquid

crystal phenomena, as it is relevant for different length-scales, boundary conditions,

and can be reasonably easily extended to include external fields.

2.7 Boundary conditions

Another facet of the system that needs to be considered is what happens at the solid-

fluid boundaries. In the case of colloidal particles placed in a channel with a nematic

fluid, those boundaries are between the colloid and the liquid crystal, and between the

liquid crystal and the channel walls.

2.7.1 Surface anchoring

The nematic director field is uniform and determined by the internal ordering of the

liquid crystal phase in the absence of any external fields or interacting surfaces. In a
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system with surface interaction, be it from a solid, liquid, or gas, the inherent ordering

is affected, modifying the equilibrium state. The liquid crystal molecules tend to locally

orient themselves in some direction at the interface between liquid and solid. The axis of

this orientation is called the easy axis. This phenomenon, i.e. the change in orientation

of liquid crystals by surfaces, is called surface anchoring [58]. In Q-tensor terms, we

can represent this surface induced ordering by using the tensor order parameter

Q0
αβ =

S0

2
(3n0

αn
0
β − δαβ) (2.36)

where n0
α is the direction of the easy axis and S0 is the surface induced order. The

two most common orientation types are homeotropic and planar anchoring, as shown

in Fig. 2.5. For planar anchoring, as in Fig. 2.5 a), the director is oriented parallel to

the surface, while in Fig. 2.5 b) the director is perpendicular to the surface, resulting

in homeotropic anchoring. The final part c) of Fig. 2.5 shows tilted anchoring, for

some orientation between parallel and perpendicular to the surface. These are the

Figure 2.5: Different anchoring types of a nematic liquid crystal, where a) is planar
achnoring, b) is homeotropic (normal) anchoring, and c) tilted anchoring.

most common uniform surface anchoring patterns. In experiments, surface anchoring

is obtained by fabricating cells with appropriate substrates using methods such as

surface rubbing, photo-alignment [59], or microtexturing [60]. The corrugations in the

substrate can be achieved with good control, meaning that there are many different

combinations of surface anchoring patterns that can be achieved. The modifications

to the basic uniform anchoring can be useful to tailor the substrate characteristics for

liquid crystal alignment, as the increase in the surface anchoring energy can lead to

a lowering of the elastic energy due to the spatial variations [60]. In our simulations

however, we maintain uniform anchoring conditions. The strength of the anchoring will

influence how much the director field will tend to align, with greater strength increasing
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the alignment, although the effect fades with distance away from the boundary.

To achieve a general boundary condition for a solid-fluid interface, we look at the

gradient terms in the free energy and at a surface free energy. The latter, which can

be thought of as an area density, is dependent on the particular type of anchoring to

be used. It is dependent on the order parameter, but not on its gradients, and can be

generally be written as

fs = fs(Qαβ, Q
0
αβ) (2.37)

with Q0
αβ being some decided upon configuration which we will expand upon later. For

the boundary conditions we use the Euler-Lagrange equations which will result in a

relation

nγ
∂f

∂Qαβ,γ
+

∂fs
∂Qαβ

= 0, (2.38)

where nγ is the unit normal at the surface that points into the fluid and the volume

contribution f = fb+ω. The first term in the derivative of that fluid free energy term,

with respect to Qαβ,γ , can be expanded into

κ0nβ∂γQαγ + κ1nγ(∂γQαβ − ∂αQγβ)− 2κ1q0nγϵαγσQσβ.

where K0 and K1 are elastic constant. The expression above can be rewritten into its

symmetric form as

1
2κ0(nα∂γQβγ + nβ∂γQαγ) + κ1nγ∂γQαβ − 1

2κ1nγ(∂αQγβ + ∂βQγα)

−κ1q0nγ(ϵαγσQσβ + ϵβγσQσα).

The full boundary condition will include the above term together with a surface anchor-

ing condition, from Eq. (2.38). Returning to the choices for the imposed anchoring,

we can use normal (homeotropic) and planar anchoring. For normal anchoring the

preferred orientation of the order at the surface is normal to it. The normal anchoring

is thus given by

fs =
1
2w(Qαβ −Q0

αβ)
2 (2.39)
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where w is the surface anchoring strength (not to be confused with the elastic free

energy density ω), with values of wwall and wpart at the wall and particle surfaces

respectively. By setting the director to be equal to the unit normal at the surface nγ ,

we find the preferred orientation Q0
αβ to be

Q0
αβ = 1

2A0(3nαnβ − δαβ), (2.40)

where the amplitude A0 is given by

A0 =
2

3

(
1

4
+

3

4

√
1− 8

3γ

)
. (2.41)

The γ parameter controls the temperature difference from the isotropic-nematic tran-

sition and is related to the reduced temperature τ by

τ =
27

γ

(
1− γ

3

)
. (2.42)

For γ > 3 or τ < 0 the ordered nematic state is the equilibrium phase. For 2.7 ≤ γ ≤ 3

or 0 ≤ τ ≤ 1 the nematic state is metastable, while for γ < 2.7 or τ > 1 we get the

isotropic state. Writing out the full expression for the boundary condition with normal

anchoring we obtain

1
2κ0(nα∂γQβγ + nβ∂γQαγ) + κ1nγ∂γQαβ − 1

2κ1nγ(∂αQγβ + ∂βQγα)

−κ1q0nγ(ϵαγσQσβ + ϵβγσQσα)− w(Qαβ −Q0
αβ) = 0. (2.43)

In planar anchoring, the preferred orientation is actually in the tangent plane to the

surface. Since it is energetically equivalent in any orientation, it is also referred to as a

degenerate case. The computation of this is more complex than the homeotropic case,

and following the examples in literature [61] we express the appropriate surface energy

density as

fs =
1
2w1(Q̃αβ − Q̃⊥

αβ)
2 + 1

2w2(Q̃
2
αβ −A2)2, (2.44)
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with the amplitude defined before by Eq. (2.41). The quantity Q̃⊥
αβ comes from the

appropriate combination of the local fluid order parameter Qαβ such that Q̃αβ = Qαβ+

1
2Aδαβ. It can now be related to the tangent plane via Q̃⊥

αβ = PαγQ̃γσPσβ with the local

surface normal being introduced through Pαβ = δαβ − nαnβ. We can again explicitly

write out the full boundary condition for planar anchoring

1
2κ0(nα∂γQβγ + nβ∂γQαγ) + κ1nγ∂γQαβ − 1

2κ1nγ(∂αQγβ + ∂βQγα)

−κ1q0nγ(ϵαγσQσβ + ϵβγσQσα)− w1(Q̃αβ − Q̃⊥
αβ)− 2w2(Q̃

2
αβ −A2)Q̃αβ = 0. (2.45)

2.8 Topological defects

Topological defects [62, 63] are ever present in materials with changing symmetries,

examples of which include ordered media like magnetic or crystalline materials [64, 65]

or quantum Hall fluids [66]. The underpinnings of modern dislocation theory come

from the early studies done by Lehmann, Friedel, and Grandjean [67]. In liquid crystal

theory terms, defects are regions where the director is ill-defined. Although the name

suggests irregularity in the material they are very common in phase systems and are

a natural consequence of symmetry breaking. In nematic liquid crystals topological

defects exhibit as point defects or as disclination lines. Due to the optical properties

of liquid crystals, including birefringence, these topological defects are easy to observe

under a microscope. While defects change the physical properties of liquid crystal

in their surrounding region, they also increase the overall free energy of the system.

As materials find their equilibrium, in a perfectly ordered medium there would be no

defects present. In reality, factors such as external fields, surfaces, phase transitions

can create and stabilise defects, spontaneously, in a controlled way or both.

When the liquid crystal is confined to two dimensions, the defects occur as points,

examples of which are shown in Fig. 2.6. Their classification is done by using the

winding number and topological rank. As seen in Fig. 2.6, we can focus on a defect

to calculate the individual winding numbers in each case as follows. In a clockwise

direction, we look at the orientation of the director as we go around the point until
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Figure 2.6: Topological defects in two dimensions. Black dots indicate the point defects,
with the lines showing a representation of the director field close to the core of the
defect. First row shows semi-integer defects of rank 1/2. Second row shows defects
with rank 1, and third row shows defect of rank 2. The black and white images are
examples of defects under a polarising microscope Reprinted from [10] with permission
from Elsevier.

we reach a full circle. Then the resulting total angle α of that director rotation is a

multiple of π, and can be used to find the winding number k through the relation:

k =
α

2π
, (2.46)

Depending on the rotation, the angle can be positive or negative thus giving the topo-

logical charge associated with the winding number. Many cases of such defects are of

topological rank 1/2 or a −1/2, a result of π and −π angles, as shown in the first row of

Fig. 2.6. A disclination line is commonly found in liquid crystals and it can be thought

of as an extension of the 0-dimensional point defect into a 1-dimensional line defect. It

is easily created by perturbation in the structure of the mesophase, including anything

from the isotropic to nematic transition, applying flow or simply mixing the liquid crys-

tal with a stirring rod. For k = 1 or −1, we get three configurations called the circular,

radial, and hyperbolic, shown in that order in the second row of Fig. 2.6. They are

also relatively common in nematics. While higher winding numbers are possible, the

larger elastic deformation increases the total free energy of the system which makes

31



them unfavourable and much less likely to be observed in the real world. Nonetheless,

an example of such a configuration is shown in the third row of Fig. 2.6. The cases

outlined above are standard in liquid crystals, mathematically for their simplicity and

experimentally in cells or confined channels. When there are several topological defects

in a sample, their combined charge is a sum of all the individual charges. For the

purposes of estimating their total energy, both the distance between the defects and

their charge are factors. The defects can be created and annihilated, but the sum of

total charges is conserved. The disclinations can be stable, however they normally do

not correspond to the lowest free energy state [68]. With the assumption of the one

constant approximation, the energy of a single disclination line per unit length is

E =

∫ D

rc

ω(2πr)dr = πKk2ln

(
D

rc

)
, (2.47)

withD being the sample size, rc being the core radius, K being the elastic constant, and

k being the winding number, and as before ω being the elastic free energy density. The

order parameter within the core reduces to zero [53]. From this equation, we can note

that the average energy of the disclination varies with the squared topological rank

k. Thus, higher rank integer defects tend to transform to lower energy semi-integer

defects [69]. Annihilation of defect pairs can happen as defects with opposite signs

attract each other, which can lead to states free of defects [70]. In the results chapters

we will observe how the flow, director field, and topological defects interact with one

another. The overall dynamics of the system is ultimately affected and linked to the

coupling between the director and the flow.

2.9 Viscosity

Nematic liquid crystals, as mentioned before, are non-Newtonian. They are chiefly

shear thinning, meaning that their viscosity is reduced under strain [7]. In general,

the behaviour of a fluid under flow is influenced by its viscosity with an average bulk

viscosity coefficient used to characterise such behaviour. In an anisotropic fluid, flow
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influences the orientation of the molecules. However, the viscosity coefficient depends

on the orientation of the molecules. Thus for anisotropic fluids, such as nematic liquid

crystals, the coefficient is a function of the velocity gradient [71]. A set of viscosity

coefficients is to be found with three principal values depending on three directions of

orientation. These three directions are:

η1 for n ∥ v, η2 for n ∥ ∇v, η3 for n ⊥ v and n ⊥ ∇v, (2.48)

meaning parallel to the direction of flow, parallel to the direction of the velocity gra-

dient, and perpendicular to both of them respectively. This was first observed exper-

imentally by Miesowicz [71] by stabilising the director field using a strong magnetic

field for the respective viscosity coefficients for two different liquid crystals: PAA (p-

Azoxyanisole) and PAP (p-Azoxyphenetole). Further experiments by other scientists

confirmed the observation of Miesowicz, now including the effects of temperature on

the anisotropy of viscosity [72] for another set of nematic liquid crystals: HBAB (P

-n-hexyloxybenzylidene-P ’-aminobenzonitrile) and MBBA (P’-methoxybenzylidene-P-

n-butylanaline). Together with the compounds used by Miesowicz, the inequality of

η1 < η3 < η2 was observed [73].

In a similar time frame, there was also formulations for the description of the dy-

namics of liquid crystal materials, which includes a mathematical perspective on the

viscosity factors. Theoretically, the stress tensor formulated by Ericksen [74] and Leslie

[40] was found to have six coefficients (αn with n = 1, ..., 6) usually referred to as Leslie

viscosity coefficients, or simply Leslie viscosities. Further work by Parodi [75] used

the Onsager relation to reduce the number of the Leslie coefficients through showing

that α2 + α3 = α6 − α5. Those five independent coefficients were able to be directly

evaluated experimentally by the work of Gähwiller [72].

Under rotational motion, there is also an effective viscosity coefficient that can be

found [36], the rotational viscosity γ1. In fact, the Miesowicz viscosities and rotational

viscosity γ1 are related to the Leslie coefficients, such that they can be found through
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the following relations:

η1 =
1

2
(α3 + α4 + α6), (2.49)

η2 =
1

2
(−α2 + α4 + α5), (2.50)

η3 =
1

2
α4, (2.51)

γ1 = α3 − α2. (2.52)

2.10 Fluid dynamics

2.10.1 Basic theory of fluid dynamics

Before introducing the chosen methods that will be used to obtain our results, it is

important to explain the background and give an overview of fluid dynamics. A fluid,

in physical terms, is a substance that continually deforms under shear stress. Fluid

dynamics, in most basic terms, is a discipline of science that describes the flow of liquids

and gases. Historically, it was synonymous with hydrodynamics, however the latter is

now a subset that specifically focuses on liquids in motion. The study of fluid mechanics

is divided into fluid dynamics and statics, with the former focused on the motion of

fluid and the latter, as the name suggests, fluid at rest. Fundamentally, all fluids are

assumed to obey the laws of conservation of mass, momentum, and energy. It is possible

to mathematically describe the behaviour of a fluid using various representations using

those assumptions. For example, a microscopic approach would be one where the focus

is on individual molecules and their interactions over some volume. However, that is

not the only way to describe a fluid, and this is where length scales are relevant. In most

cases the conservation laws are combined with the continuum approach - the fluid can be

thought of as a continuous volume of matter and the molecular nature of it is effectively

ignored as the particles making up the fluid are sufficiently small in comparison to the

system size. This is a very robust approximation for most applications. The fully

continuous assumption, with tangible qualities of velocity and density, can be thought

of as the macroscopic description.
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To introduce the continuity equation, we shall consider some small fluid element

with density ρ, occupying a volume V . As such, the mass is given by
∫
V ρdV . Mass

cannot be created or destroyed, so when change over time is considered, that can only

be achieved by flow into or out of the volume. This can be written as follows, after

using the divergence theorem,

∂

∂t

∫
V
ρdV = −

∮
∂V

ρu · dA, (2.53)

where ∂V is the surface and u is the fluid velocity. Taking everything to the left hand

side and knowing that the volume chosen is stationary, we get the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0 (2.54)

that reflects the conservation of mass. It is a partial differential equation (PDE), where

ρu is the momentum density, and can be written in various ways. For example, it is

common to express the continuity equation by using the material derivative

D

Dt
=

∂

∂t
+ u ·∇ (2.55)

such that Eq. (2.54) would be expressed as follows:

Dρ

Dt
+ ρ∇ · u = 0. (2.56)

The material derivative gives the rate of change of the fluid as it moves through space

rather than at a fixed point.

The same logic can be applied to consider what happens when looking at the change

of momentum of some small fluid element with density ρ and velocity u occupying a

volume V . For simplicity, in an ideal fluid the changes in the net momentum are due

to: the flow of momentum in or out, the differences in pressure p, and the external

body forces F . Writing all the possible contributions out on the right hand side, we
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get a momentum balance equation

d

dt

∫
V
ρudV = −

∮
∂V

ρuu · dA−
∮
∂V

pdA+

∫
V
FdV (2.57)

where uu is the outer product with components uαuβ. As before, using the divergence

theorem to transfer the surface integrals to volume integrals the previous equation now

becomes ∫
V

∂(ρu)

∂t
dV = −

∫
V
∇ · (ρuu)dV −

∫
V
∇pdV +

∫
V
FdV. (2.58)

This leads to a PDE describing the momentum conservation for an ideal fluid, called

the Euler equation:
∂(ρu)

∂t
+∇ · (ρuu) = −∇p+ F. (2.59)

More generally, this can be written in a universal from as the Cauchy momentum

equation,
∂(ρu)

∂t
+∇ ·Π = F, (2.60)

where the momentum flux density tensor is used such that

Παβ = ρuαuβ − σαβ

with the term σαβ being the stress tensor. For simple fluids described by the Euler

equation the stress tensor is isotropic, of the form σαβ = −pδαβ. This stress tensor

describes the non-direct transfer of momentum of the moving fluid. The momentum

flux transfer in Eq. (2.59) includes only reversible momentum transfer or conservative

pressure forces. In case of real fluids, additional terms of internal friction and viscosity

need to be included, which leads to irreversible transfer of momentum of neighbouring

fluid elements.

Now, to consider a viscous stress tensor σ′ we assume that the viscous contribution

is zero for uniform flow, regardless of rigid body rotation and translation. We also

assume that for small velocity gradients the momentum transfer due to viscosity is

proportional to the first derivative of the velocity [56]. In general, a tensor that fulfils
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both conditions can be described by

σ′
αβ = η

(
∂uα
∂xβ

+
∂uβ
∂xα

)
+ ζδαβ

∂uγ
∂xγ

(2.61)

where η and ζ are viscosity coefficients. These coefficients are usually assumed to be

uniform and isotropic.

Often-time, the above defined viscous stress tensor is divided into a traceless shear

stress and a normal stress

σ′
αβ = η

(
∂uα
∂xβ

+
∂uβ
∂xα

− 2

3
δαβ

∂uγ
∂xγ

)
+ ηBδαβ

∂uγ
∂xγ

(2.62)

with η being the shear viscosity and the ηB being the bulk viscosity, the latter also

described as ηB = 2η/3 + ζ.

The total stress tensor is hence given by the sum of viscosity and pressure contri-

butions

σαβ = σ′
αβ − pδαβ (2.63)

and can be used to obtain the full momentum equation, also called the Navier-Stokes

equation (NSE). Operating under the assumption that the viscosities are constant, it

is given by the following:

ρ
Duα
Dt

= − ∂p

∂xα
+ η

∂2uα
∂xβ∂xβ

+
(
ηB +

η

3

) ∂2uβ
∂xα∂xβ

+ Fα. (2.64)

For an incompressible flow the NSE can be greatly simplified using ρ =const, such that

the continuity equation, Eq. (2.54), reduces to ∇ · u. This gives the incompressible

Navier-Stokes equation

ρ
Du

Dt
= −∇p+ η∆u+ F (2.65)

where ∆ = ∇ · ∇ is the Laplace operator.

Continuing with the incompressible fluid description we can now introduce exam-

ples of some fundamental flows between two plates. The velocity profiles of those are

included in Fig. 2.7. The first example in Fig. 2.7 is that of Couette flow. It describes
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Figure 2.7: Couette and Poiseuille velocity flow profiles, where (a) shows Couette flow
and (b) shows the Poiseuille flow. Reprinted from [76], with permission from Elsevier.

a steady shear flow where an incompressible fluid is placed between two parallel plates.

The bottom wall is fixed, while the top plate moves with some velocity u in the x-

direction. The walls have no slip boundary conditions, which means that the fluid ve-

locity at the wall is equal to that of the wall. The second standard incompressible flow

is called the Poiseuille flow and its velocity profile is shown in Fig. 2.7 part (b). In this

case, the fluid moves in the x- direction between two fixed parallel plates. The flow is

driven by a constant pressure gradient or an external body force in the x- direction. It

is standard to assume no-slip boundary conditions.

Bringing the above descriptions together, the fluid behaviour can be described by

four equations. Namely conservation of mass through the continuity equation, and the

conservation of momentum described by the Navier-Stokes equation (which contains

a set of three equations, one for each spatial direction). What makes fluid dynamics

difficult is that this system of equations is not closed and therefore it is unsolvable.

This is because while there are four equations, the fluid actually has five unknowns:

density ρ, pressure p, and three velocity components ux, uy, uz. There are different ways

of closing the system. An easy one is to fix some variable, for example by assuming

constant density as in previously mentioned incompressible flows in Fig. 2.7. Another

way is to use the state principle of equilibrium dynamics, which states that any two

of the state variables can be related to another state variable through an equation of

state [77]. State variables for a local thermodynamic state include: density ρ, pressure

p, temperature T , internal energy e, and entropy s. Simply introducing an equation of

state does not close the system, as it introduces another variable, so the equation must

be such that the third state variable can also be derived from the energy equation.
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This method is rather cumbersome, and instead it is more prudent to introduce an

equation of state with the additional assumption that one of the introduced variables

has a suitable approximation. As an example of this, most of acoustics is based on the

approximation that the entropy s is constant [78]. A different way of approximation,

that can be used for small deviations, is to linearise the equation of state by using the

total differentials and evaluate the resulting derivatives around those small deviations.

2.10.2 Beris-Edwards model

Hydrodynamics of liquid crystals is distinct from that of simple liquids. The two impor-

tant differences between simple fluids and liquid crystals come from the characteristic

of symmetry and free energy. As mentioned above, the symmetry of liquid crystals is

such that the molecules comprising the mesophase are rotated by the gradients in the

velocity field. Additionally, the free energy of liquid crystals is intrinsically more com-

plicated than in a Newtonian fluid, meaning that the complexity of the stress tensor

in the Navier-Stokes equations is increased. Additionally, any good numerical method

used for modelling of the mesophase must be able to explore both the isotropic and

the nematic regions. The equations of motion for liquid crystal dynamics are complex

and there are several approaches developed to tackle the problem of dynamics. They

include but are not limited to continuum theory based Landau de Gennes [8] or Erick-

sen–Leslie [79],[41] models, Q-tensor based variational methods such as Beris–Edwards

[48] or Qian–Sheng methods[80], and the energetic variational approach of Liu et al.

[81],[82]. All the models are broadly in agreement with differences coming from their in-

dividual underlying assumptions. Here we shall follow the Beris-Edwards approach[48].

The advantage of using this method is that hydrodynamics of the isotropic, hydrody-

namics of the nematics and topological defects are included in the same formalism

through the tensor order parameter that can be connected to the second moment of

the orientational distribution function of the molecules.

With the Q-tensor formalism, the equations of motion of the mesophase can be
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described by using the Beris-Edwards equation [48]

∂

∂t
Qαβ + ∂γ(uγQαβ) + Sαβ(Wαβ, Qαβ) = −ΓHαβ. (2.66)

This equation relates the rate of change with respect to time of the order parameter

to the terms that involve advection, the response to shear Sαβ(Wαβ, Qαβ), and the

molecular field Hαβ. The advection term includes the fluid velocity uγ , while the shear

term includes the velocity gradient tensor Wαβ = ∂βuα. The full shear term can be

defined as

Sαβ(Wαβ, Qαβ) =(ξDαπ +Ωαπ)(Qπβ + 1
3δπβ) + (Qαπ + 1

3δαπ)(ξDπβ − Ωπβ) (2.67)

− 2ξ(Qαβ + 1
3δαβ)QπσWσπ,

with Dαβ = 1
2(Wαβ+Wβα) being the symmetric contribution and Ωαβ = 1

2(Wαβ−Wβα)

being the antisymmetric contribution to the velocity gradient tensor. The shear term

appears in the equation of motion because the order-parameter distribution can be

both rotated and stretched by flow gradients [83]. Additionally, ξ is the so-called flow-

alignment parameter, a material constant representing an effective molecular aspect

ratio which determines whether the liquid crystal molecules are in a flow-aligned state

at the Leslie angle or tumbling state.

The right hand side of Eq. (2.66) shows the relaxation of the order parameter

towards the minimum of the free energy. It includes the molecular field Hαβ and

the collective rotational diffusion constant Γ. The molecular field Hαβ is defined as a

functional derivative of the free energy functional with respect to the order parameter,

Hαβ = − δF

δQαβ
+

δαβ
3

Tr
δF

δQαβ
, (2.68)

where F is the Landau de Gennes free energy functional from Eq. (2.35). The sec-

ond term in Eq. (2.68), involving the trace, ensures tracelessness of the tensor order

parameter as it evolves while obeying the Beris-Edwards Eq. (2.66).This leads to the
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following molecular field:

Hαβ = −A0(1− γ/3)Qαβ +A0γ (QαµQµβ − 1
3Q

2
µνδαβ)

−A0γ Q
2
µνQαβ + κ0∂α∂µQµβ + κ1∂µ(∂µQαβ − ∂αQµβ)

(2.69)

The governing equations of hydrodynamic motion are the equation of mass con-

servation, also known as the continuity equation, and the Navier-Stokes equation that

describes the conservation of linear momentum, as discussed at the beginning of this

section. Now however, we have some differences in the form of those equations. In

tensor notation they read

∂tρ+ ∂α(ρuα) = 0 (2.70)

and

∂t(ρuα) + ∂β(ρuαuβ) = ∂βΠ
(LC)
αβ + ∂βΠ

(HD)
αβ (2.71)

+ η∂β(∂βuα + ∂αuβ) + ζ∂α(∂γuγ),

respectively. In Eq. (2.71), η is the dynamic viscosity and ζ is the bulk viscosity. In

incompressible fluids, Eq. (2.70) becomes ∂αuα = 0 as density is constant. Eq. (2.70)

relates the local rate of change of the density ρ to the advection of mass by the fluid

velocity uα, while Eq. (2.71) is Newton’s second law of momentum change for the fluid,

involving the stress tensor Παβ. The stress tensor is an important quantity and in its full

form combines the dissipative and thermodynamic fluctuations within a liquid crystal.

This comes from the Ericksen and Leslie formalism that extends the static equilibrium

theory into dynamics for nematic liquid crystals. It reflects the additional complexities

of liquid crystal hydrodynamics. It includes the thermotropic stress tensor Π
(LC)
αβ and

the hydrodynamic stress tensor Π
(HD)
αβ . This thermodynamic addition to the stress on

41



the fluid can be described by a sum of the following form:

Π
(LC)
αβ = σαβ + ταβ − ∂αQπν

δF

δ∂βQπν
(2.72)

where σαβ and ταβ are the symmetric and antisymmetric stress contributions respec-

tively. The symmetric contribution σαβ is given by

σαβ =− p0δαβ − ξHαπ

(
Qπβ + 1

3δπβ
)
− ξ

(
Qαπ + 1

3δαπ
)
Hπβ (2.73)

+ 2ξ
(
Qαβ + 1

3δαβ
)
QπνHπν , (2.74)

where p0 is the isotropic pressure taken to be

p0 = ρT − κ

2
(∂αQβγ)

2. (2.75)

The antisymmetric contribution to the stress tensor is

ταβ = QαπHπβ −HαπQπβ. (2.76)

The final term in Eq. (2.72) is expanded as

∂αQπν
δF

δ∂βQπν
=− κ0∂αQπβ∂νQπν

− κ1∂αQπν (∂βQπν − ∂πQνβ) .

(2.77)

The hydrodynamic stress tensor is defined as

Π
(HD)
αβ = −p δαβ − ρuαuβ + η(∂βuα + ∂αuβ) + ζ∂µuµδαβ. (2.78)

The pressure p is related to the density via an ideal gas equation of state as p = c2sρ

with cs as lattice speed of sound.

An early form of solving the hydrodynamic equations for the nematic phase was

formulated by Ericksen and Leslie [8],[50],[41], and used the Leslie coefficients as a

measure of the viscous properties of the liquid crystal. The Beris-Edwards equations

42



reduce to that of Ericksen-Leslie in the uniaxial nematic approximation with a constant

value of the magnitude of the order parameter. That is a limiting factor of the Ericksen-

Leslie model, as it is not able to include the hydrodynamics of the topological defects. It

is possible to map between the Beris-Edwards and the Ericksen-Leslie-Parodi equations

which leads to the relationship between the Leslie coefficients and parameters used

in the Beris-Edwards approach. Specifically, the Leslie coefficients can be implicitly

described through the isotropic dynamic shear viscosities η, the rotational diffusion

constant Γ, the flow alignment parameter ξ and the scalar order parameter S0. For

the explicit form of the coefficients and the details of that mapping, the reader is

guided to [83]. It is worth mentioning that while the Ericksen-Leslie viscosities can be

directly related to the Beris-Edwards viscosities, the latter parameterise only a subset

of possible values.

2.10.3 Dimensionless numbers

We shall now discuss some of the dimensionless quantities relevant in our simulations.

In fluid dynamics analysing the relationships between inertial, viscous, thermal, and

mass values gives rise to ratios between different types of diffusivity that lead to charac-

teristic dimensionless numbers. Those numbers are particularly useful when comparing

different systems, as their strength and characteristics vary across scales. Within trans-

port phenomena, they include the Reynolds and the Prandtl numbers. Since we want

to discuss compressible flow, the other dimensionless quantities that require mentioning

include the Knudsen and the Mach numbers. Finally, as we focus on nematics, we also

need to introduce the Ericksen number, which is a dimensionless number commonly

used when discussing liquid crystals.

The Ericksen number is common in the liquid crystal field. It is a dimensionless

quantity used to describe the effect of flow on the director field, defined as the ratio of

viscous and elastic forces:

Er =
viscous effects

elastic effects
=

η uΛ

κ
,
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where η is the dynamic viscosity, u is the characteristic flow velocity, Λ is the charac-

teristic length scale and κ is the elastic constant. For low Ericksen numbers, the elastic

forces are larger than the viscous forces, meaning that the flow will have a smaller effect

on the director field. At high Ericksen numbers the flow has much higher impact on

the overall characteristics.

The Knudsen number defines the ratio between mean free path length and a rep-

resentative physical length-scale. The latter can be any representative length, such as

the size of a channel or a radius of a particle in a fluid:

Kn =
mean free path

representative physical length-scale
=

λ

Λ
. (2.79)

This number is particularly relevant for choosing an appropriate modelling method.

For Knudsen number greater than one (or close to one), that means that the mean

free path is very close to the length-scale of the problem, meaning that a continuum

approach ceases to be a good approximation. For such systems, statistical methods are

a better approach.

The Mach number, sometimes called just Mach, is the ratio between the flow velocity

and the speed of sound. Velocities lower than the speed of sound are referred to as

subsonic, and velocities faster than the speed of sound are called supersonic:

Ma =
u

c
, (2.80)

where c is the medium dependent speed of sound and u is a local velocity, relative to

each other. In some cases the Mach number is used as a deciding factor in treating the

flow as incompressible (for Mach numbers < 0.2− 0.3) [84].

The Reynolds number is a dimensionless quantity relating the inertial to viscous

forces in a fluid. It is defined as

Re =
uLρ

η
,

where u is the flow speed, L is the characteristic length-scale, ρ is the fluid density,

and η is the dynamic viscosity. In general Reynolds numbers are commonly used in
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describing characteristics of fluid flows. The Reynolds number has been used to predict

the beginning of turbulent flow due to the chaotic nature of flow, which is a very

complicated topic. In liquid crystals, the behaviour usually differs at low and high

values of Reynolds numbers.

The Prandtl number is a dimensionless number, defined as the ratio between the

momentum diffusivity (in other words, kinematic viscosity) and thermal diffusivity:

Pr =
kinematic viscosity

thermal diffusivity
. (2.81)

In contrast to the Reynolds number, there is no length scale variable, with the Prandtl

number dependent on the fluid and its state only. To understand the interpretation

of this number; for values such that Pr ≪ 1, thermal diffusivity dominates and heat

diffuses quickly compared to the momentum, while for Pr ≫ 1, the kinematic viscosity

dominates meaning that heat diffuses slowly. For values close to 1, both momentum

and heat dissipate at about the same rate.

Nematic liquid crystals in flow usually have three different contributions coming

from inertial, viscous, and elastic effects. The flow stability of the dynamics of nematics

is for the most part governed by the elastic effects, with the Ericksen number used to

estimate the ratio between the viscous and elastic effects. However in isotropic fluids the

hydrodynamic instability can be evaluated through the Reynolds number, as isotropic

fluids are characterised by competing inertial and viscous effects. This instability occurs

when inertial effects dominate the viscous effects, that is at high Reynolds numbers that

typically occur at high flow speeds. While the Ericksen and Reynolds numbers are the

two most important numbers in relation to liquid crystal analysis, the Knudsen, Mach,

and Prandtl numbers are important for the simulation method which we will discuss

later on.
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2.11 Nematic liquid crystal colloids

A colloid is a general term for a mixture consisting of a dispersion medium and a dis-

persed phase, with the dispersed phase particles having a diameter of approximately 1

nanometre to 1 micrometre [85]. Depending on the type of phase and medium used,

these two-phase systems of matter can be classified further as seen in Table 2.1. Col-

Dispersed phase

M
ed

iu
m Gas Liquid Solid

Gas None Liquid aerosol Solid aerosol
Liquid Foam Emulsion or liquid crystal Sol
Solid Solid foam Gel Solid sol

Table 2.1: Classification of colloidal suspensions on the basis of the dispersed phase
and the dispersion medium.

loidal suspensions fall under the subject of interface and colloid science, a multidisci-

plinary field with interest from scientists working in the areas of physics, chemistry,

and nanoscience. As such, the definitions and nomenclature about what is, and is not,

a colloid or a colloidal suspension can vary [86]. In our research, we shall focus on

a new state of colloidal matter referred to as nematic liquid-crystal colloids, or ne-

matic colloids in short [87]. They are broadly defined as a dispersion of microparticles

(colloidal particles) in a nematic liquid crystal phase that acts as a solvent. These

colloidal particles deform the liquid crystal locally resulting in topological defects and

long-range orientational ordering. Contrary to the colloidal interactions in an isotropic

fluid (usually of van der Waals type), the forces in nematic colloids are much stronger,

around the order of 1000kbT per micrometer particle [19]. The differences in boundary

conditions at the colloid-nematic surface lead to different director orientations at the

surface, leading to a wide array of phenomena to be explored [88].

The work published by Brochard and de Gennes in 1970 showed the interaction

between particles and the mesophase through their calculations of the deformation of

the director orientation by the particles and defects bound to them [89]. Further inves-

tigations into the topological defects in a nematic were then done by Poulin et al. [90].

In their research they created a dispersion of micrometer diameter water droplets in
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a nematic liquid crystal (5CB). These droplets formed chains, their Brownian motion

ceased entirely, and they did not coalesce despite being a fluid [90]. The last behaviour,

that is the separation between water droplets, occurred due to spontaneously created

defects near each droplet. There are limitations in the experimental methods at that

time, however in the decades after the progress in the field was enabled by two impor-

tant techniques that were particularly useful for the investgations into nematic liquid

crystal colloids. Those include applications of laser tweezers [91] [92] [93] [94] [95] and

fluorescent confocal polarizing microscopy (FCPM) [96] [97] [98].

When describing topological defects, there is more to consider when introducing

shaped objects into the director field. Here, we focus on including spherical micro- and

nano-particles in the liquid crystal structures. Spherical particles have simple topology

which makes it easy to see what happens when they are inserted into a nematic liquid

crystal.

Figure 2.8: Different types of defects (here marked in blue) around a colloidal particle,
where: a) shows a point (k = −1) hedgehog defect, b) shows a Saturn ring defect, c)
shows a pair of boojum defects. Reprinted from [99] with permission from Taylor &
Francis.

Fig. 2.8 shows different types of defects around a colloidal particle. The defect type

is determined by factors including but not limited to: the anchoring strength, type

of anchoring orientation on the particle surface, and the diameter of the particle. For

very weak anchoring, there is no defect. For strong normal and normal anchoring, there

exists a hedgehog and Saturn ring defect respectively, as shown in Fig. 2.8a and Fig.

2.8b. For planar anchoring on the particle surface, there is a pair of boojum defects, as

seen in Fig. 2.8c. In all cases, the orientation of the director is uniform when far away
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from the particle. The configuration of the director is dipolar in a, and quadrupolar

in b and c. Small particles, i.e. with a strongly curved spherical surface, tend to have

Saturn rings around them while larger particles, i.e. with a lower Gaussian curvature,

tend to be accompanied by a hyperbolic point hedgehog. The dipolar or quadrupolar

characteristics are also dependent on external fields, confinement, and flow. For very

thin nematic layers, a quadrupolar structure with a Saturn ring is more likely to occur.

Expressing the inclusion of the particle in the Beris-Edwards model formalism,

the total force on the particle consists of a thermotropic contribution F (LC) and a

hydrodynamic contribution F (HD). The thermotropic contribution is the integral of

the gradient of the stress tensor Π(LC) in Eq. (2.72) over the surface S of the particle.

This can be separated into contributions from the bulk and gradient free energy:

F (LC)
α =

∫
S
∂βΠ

(LC)
αβ dS

=

∫
S
∂β

(
Π

(b)
αβ +Π

(g)
αβ

)
dS

= F (b)
α + F (g)

α . (2.82)

Splitting the molecular field H in Eq. (2.69) into terms that contain only bulk and

gradient contributions,

H
(b)
αβ = −A0(1− γ/3)Qαβ +A0γ (QαµQµβ − 1

3Q
2
µνδαβ),

−A0γ Q
2
µνQαβ (2.83)

H
(g)
αβ = κ0∂α∂µQµβ + κ1∂µ(∂µQαβ − ∂αQµβ), (2.84)

we obtain together with Eqs. 2.74, 2.76 and 2.77 for the bulk contribution

Π
(b)
αβ = fb − ξH(b)

αµ(Qµβ + 1
3δµβ)− ξ(Qαµ + 1

3δαµ)H
(b)
µβ

+2ξ(Qαβ + 1
3δαβ)QµνH

(b)
µν +QαµH

(b)
µβ −H(b)

αµQµβ

(2.85)
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and for the gradient contribution

Π
(g)
αβ = ω − ξH(g)

αµ (Qµβ + 1
3δµβ)− ξ(Qαµ + 1

3δαµ)H
(g)
µβ

+2ξ(Qαβ + 1
3δαβ)QµνH

(g)
µν +QαµH

(g)
µβ −H(g)

αµQµβ

+κ0∂αQµβ∂νQµν + κ1∂αQµν (∂βQµν − ∂µQνβ) . (2.86)

The hydrodynamic contribution to the force on the particle is also given through the

surface integral of the gradient of the hydrodynamic stress tensor Π(HD), seen in Eq.

(2.78) over the particle surface S as

F (HD)
α =

∫
S
∂βΠ

(HD)
αβ dS. (2.87)

2.12 Experimental background of liquid crystal microflu-

idics

Liquid crystal microfluidics, sometimes referred to as topological microfluidics [100],

involves the investigations of liquid crystals in microchannel environments. The con-

straints of such channels result in an interplay of surface anchoring conditions, confine-

ment and flow parameters leading to new phenomena. Some examples of experimental

research done that in the area of topological microfluidics are shown in Fig. 2.9. The

experimental investigations into nematic liquid crystals in microchannels developed

through advancements in photo-aligning techniques [105] [106]. This lead way into

answering some fundamental questions about the flow behaviour of anisotropic fluids,

although such research is still more of a novelty. We can expand more on the research

presented in Fig. 2.9. In the first instance, we note that the creation of a disclination

line in a microfluidic channel is possible through hybrid anchoring conditions such that

in the presence of the flow the line is stabilised in the center of the channel and in

the absence of flow it collapses towards one of the channel walls [67]. Additionally, by

using planar anchoring on the walls and varying the Ericksen numbers, further flow

and confinement induces the formation of disclination lines in the vertical direction,

49



Figure 2.9: Many phenomena can be observed by tuning the flow, anchoring, and con-
finement conditions in topological microfluidics. Some examples are shown here in the
polarisation optical micrographs. (a) Topological defect line generated at the air-NLC
meniscus during the filling up of a microchannel by 5CB [67]; (b) flow-induced loco-
motion of an integer defect leads to imprinted director pattern within a microchannel
[101] ;snapshots of a defect structure due to flow past at a micropillar undergoing (c)
topological transformation and (d) director field reorientation, respectively [102]; (e)
topological defect line used as a soft rail to transport colloidal microcargo [103]; and
(f) defect-mediated chaotic flow of nematic 5CB at very low Reynolds numbers [104].
Reprinted from [100] with permission from Taylor & Francis.

reorientation to a horizontal direction, pinning in a single direction and eventually

chaotic free flowing disclinations as the Ericksen numbers are increased [101]. The ob-

servations of those disclination lines were then used to show that guided transport of

microscopic cargo in microfluidic devices is possible experimentally through those lines

[103]. Confinement is also a potential avenue towards self-assembly and steering organ-

isation, however it presents unique challenges as the methods and techniques are often

system-specific and would require interdisciplinary collaboration as well as conceptual

and technological advancements [107].

The experimental results discussed above relied on the anchoring conditions, con-

finement or a combination of the two to create the topological defects, however in-

troducing colloids can also lead to the creation of such defects and changes in overall

system behaviours as a result. When thinking of the simplest case, that is introducing a

static fixed colloid subject to flow, it turns out it becomes more difficult. In simulations
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Figure 2.10: Colloidal particles in 5CB in a microfluidic channel with flow. The image
on the left shows extensive elongation of the defect, while the image on the right shows
shorter elongation of the defects. Image courtesy of Rok Stanc.

the particle can be fixed at a chosen position in a straightforward manner. Experimen-

tally however, that is not the case. The current methods used to keep particles in

place when in flow rely on optical tweezers. While it is an important technique with

many applications, it increases the temperature of the fluid enough that when applied

to a common liquid crystal material such as 5CB it locally changes the mesophase into

the isotropic region. The defect behaviour around a fixed particle can not be directly

compared to experiments due to the difficulty of creating such a set up without losing

either liquid crystal behaviour or fixing the position. As an alternative, an experimen-

tal study was done by Sengupta et al., where a cylindrical micro-pillar was introduced

that allowed to explore the morphology of the topological defect around a fixed obstacle

[102]. The observed elongation of the defect is a particularly relevant result to note

here. Additionally, it is possible to observe the defects around unfixed colloidal parti-

cles in flow. The elongation of the defect structure has been obtained experimentally

during a research collaboration with Prof Uroŝ Tkalec at the University of Ljubljana

in Slovenia. This is shown in Fig. 2.10. This was a promising result, as this defect

elongation has now been observed in simulations and in experiments. However, the

defect types are different in the two case scenarios. In simulation, in our static case

we use small particles that have Saturn ring defects around them which then elongate

with higher fluid velocities. As the particles are small, we do not have any hyperbolic

hedgehog defects. In the experimental case, the particles are much larger and highly

confined, with hyperbolic hedgehog defect. Those hyperbolic hedgehog defects can
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elongate in flow, and when the flow is switched off they return to the hedgehog defect.

In order to be able to directly compare the results of the simulations and the experi-

ments there are different options available. One option would be to obtain hedgehog

defects in simulations. To achieve that, one can either drastically increase the size of

the particle, and in turn the size of the system and computational resources, or increase

the anchoring strength on the particle. The needed increase in the anchoring strength

for our particles was too high to obtain stable simulations. The massive increase in

particle and system size was beyond the scope of the project in terms of computational

resources and time constraints. A second option would be to obtain Saturn ring defects

around the colloids in experiments. In order to do that, either the channel size needs

to be increased, or the particles size would need to be much smaller. There is a limit

of how small the particles can be to maintain resolution under cross-polarisers. The

manufacture of different channels was not feasible at the time of the collaboration due

to the experimental lab undergoing restructuring. As such, there is scope for further

research into the highly confined hyperbolic hedgehogs and Saturn rings in simulation

and in experiments respectively.

A lot of the work done in the field of liquid crystal colloids is focused on effective

particle dispersion techniques or on topological defect configurations around a small

number of particles that are explored through simulations [108]. A recent experimental

study [108] however has demonstrated how large-scale colloidal aggregation in liquid

crystal produces significantly different morphologies to aggregates formed in ordinary

isotropic solvents. The usual difficulties of achieving a well dispersed initial colloid dis-

tribution under good imaging conditions were overcome in this study. This is a promis-

ing result in terms of methods used for imaging. However so far we could not find

experimental research on flow induced nematic colloid aggregation within microfluid

channels. We hope that our investigation of individual particle migration and advec-

tion behaviours, which is then extended to large scale simulations with much higher

concentration of the colloids (many particle systems), can lead to further experimental

activity into this unexplored area of research. As we focus on simulations, we will

discuss the simulation methods used in depth in the next chapter.
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Chapter 3

Simulation methods

3.1 Fluid dynamics and simulation approaches

Fluid dynamics is a discipline that is infamous for its complexity, with only a few basic

examples of flow regimes that can be solved analytically. Those simple cases include

the Couette and Poiuseille flow explained before (see Fig. 2.7). Complex geometries

and non-trivial boundary conditions are therefore solved by using numerical methods,

which can be just as difficult to resolve requiring large computational resources, narrow

scope of application or a combination of both. A typical fluid flow problem will use a

simulation method that has a relevant length and timescale. The order of the length

and time scales is illustrated in Fig. 3.1, showing where particular models fit within

that scope. In the classical mechanics description, the following values are notable: la

which is the size of an atom or molecule of the fluid; lmfp the mean distance travelled

between two collisions; l which is the typical scale for gradients of some macroscopic

properties; and ls the system size. They are shown in Fig. 3.1, ordered by their size.

On the opposite axis is the timescale, which also contains notable times. At shortest

timescale the collision time tc is given by tc ≈ la/vT , where vT is the average thermal

velocity of the molecules. This thermal velocity vT is not the same as the macroscopic

fluid velocity u, and in fact u << vT . In the standard kinetic theory approach, it is

usually assumed that the collisions happen instantaneously, that is, tc → 0. The next
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slightly longer time of interest is the means flight time between two successive collisions

tmfp found by lmfp/vT . This timescale is where the bulk of the kinetic theory is applied

to, with the collision events moving the system into a local equilibrium.

Figure 3.1: Length and time scales of common fluid dynamics problems. Simulation
techniques can be chosen depending on the level of detail and computational cost. CFD
stands for computational fluid dynamics, LBM stands for lattice Boltzmann method
and MD stands for molecular dynamics. Figure from [109]. Reproduced with permis-
sion from Springer Nature.

It is common to refer to three particular descriptions: the microscopic, mesoscopic,

and macroscopic, in the context of fluid simulations. Here, the microscopic approach

means treating the fluid as one composed of individual molecules, whereas the macro-

scopic description is a fully continuous method in which the fluid has properties such

as density and momentum. Due to these differences, a microscopic system is governed

by Newton’s laws of motion while the the macroscopic system uses the Navier Stoke

equations. The mesoscopic method is nestled in between the aforementioned descrip-

tions - it does not follow individual atoms, but tracks the representative collections of

molecules. It is based on the kinetic theory and its particle distribution function, and

it forms the underlying theory behind the lattice Boltzmann method [109].
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3.1.1 Boltzmann equation

As a quick introduction about this underlying theory we will only briefly touch on

the Boltzmann equation and what it does, before moving to the explanation of the

lattice Boltzmann method. The Boltzmann equation describes the dynamics of a gas

on a mesoscopic scale. It uses the distribution function f(x, ξ, t) and its evolution in

time. For brevity, we drop the explicit notation of the dependence of the distribution

function on the position x, particle velocity ξ, and time t. Taking the total differential

with respect to time and using the Newton’s second law which gives the body force

such that
dξβ
dt =

Fβ

ρ , we get the Boltzmann equation:

df

dt
=

∂f

∂t
+ ξβ

∂f

∂xβ
+

Fβ

ρ

∂f

∂ξβ
. (3.1)

A different commonly used notation for the total differential is Ω(f) = df
dt . This equa-

tion, Eq. (3.1), can be thought of as an advection equation, with the first two terms on

the right-hand side exemplifying the distribution function being advected with the ve-

locity ξ of its particles. The remaining term illustrates the forces affecting that velocity.

On the left hand side the total differential represents the local redistribution of f due to

collisions. Because of that, the term Ω(f) is also referred to as the collision operator.

The Boltzmann equation leads into the fluid dynamic equations on the macroscopic

level from the mesoscale. By solving the Boltzmann equation, that solution can often

be used to find the solution of the Navier-Stokes equations for the same given case. Not

all solutions of the Boltzmann equation will result in a solution to the Navier-Stokes,

as the former equation is more general, however it is a sound method of solving the

problem at hand. However, analytically it is even more complex to attempt to solve

the Boltzmann equation, as it is a function of seven parameters: x, y, z, ξx, ξy, ξz, t that

is position in three dimensions, particle velocity in three dimensions, and time respec-

tively. This is two more than the Navier-Stokes, which include density ρ, pressure p,

and the three velocity components ux, uy, uz. Nonetheless, if we choose to solve it nu-

merically, then we may indirectly find the solution to the Navier Stokes. In fact, the

55



numerical approach to solving the Boltzmann equation is much simpler to implement

and parallelise. This is because the force-free Boltzmann equation in essence describes

the advection of the distribution function f with the particle velocity ξ, with the source

term Ω(f) depending only on the local values of f and not on gradients of it.

Conventional methods, such as finite difference or finite volume, directly discretise

the fluid dynamics equations. The complication with those finite difference or volume

methods is that to discretise the advection term (u · ∇)u complex iterative numerical

schemes with approximation errors have to be used. On the other hand, the discretised

Boltzmann equation results in an exact advection as it takes a differing approach. As

all models, it is not well suited for all conceivable applications. For example in its

simplest form it is only appropriate for low Mach numbers.

3.2 Lattice Boltzmann method: an outline

Before focusing on the more involved derivation of the lattice Boltzmann method, we

will first provide a brief outline of the method as an initial introduction that we will

then expand upon as appropriate in the later sections of the chapter.

The lattice Boltzmann method uses a fully discretised version of the Boltzmann

equation and focuses on the discrete-velocity distribution function fi(x, t), which is

also commonly referred to as the particle populations. This function represents the

density of particles with velocity ci = (cix, ciy, ciz) at a position x and some time t.

Thus the mass density ρ momentum density ρu can be obtained through weighted sums

known as the moments of fi:

ρ(x, t) =
∑

fi(x, t), ρu(x, t) =
∑

cifi(x, t). (3.2)

What distinguishes the discrete fi and continuous f distribution function, is that all

the argument variables of fi (i.e. position in three dimensions and time) are discrete,

as the name suggests. The fi is defined at certain times t, separated by a time step

∆t, at the points x in a square lattice with spacing ∆x. The subscript i in fi refers to
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ci, which is a discrete set of velocities ci.

The time step ∆t represents a time resolution and the lattice spacing ∆x represents

a space resolution, in any set of units. Hence, any system could be chosen, for example

metric or Imperial units, however the most common choice is the lattice units. This

is a simple set of artificially scaled units such that ∆t = 1 and ∆x = 1. It is done

that way as the numerical schemes work well with quantities close to 1. As with any

measurement system, the lattice units can be converted to the more standard SI unit

when needed. Another way to make sure that the underlying behaviour is realistic in

two different systems of measurement is to use the similarity argument. This comes from

the reasoning that fluid flows that share the same dimensionless numbers determine the

same physics when scaled by the typical length and velocity scales in the problem at

hand. The dimensionless numbers include for example Reynolds, Knudsen, and Mach

numbers.

The set of discrete velocities ci is joined together with a set of weighting coefficients

wi to create a velocity set {ci, wi}. These velocity sets are commonly denoted in the

format DdQq, where d is the number of spatial dimensions of the velocity set, and q is

the number of velocities within the set. Some standard sets used to solve the Navier-

Stokes equations are D1Q3, D2Q9, D3Q19, and D3Q27, with more detailed overview

shown in Section 3.3.1. The explicit form of the relevant velocity sets is included in Tab.

3.1. As is the case in many choices when it comes to simulations, there is a trade-off

between factors that minimise memory and computational resource requirements, such

as smaller velocity sets e.g. D315, and higher degree of accuracy, given by larger sets

such as D3Q27. In 3 dimensions the most common choice is the D3Q19 set, and it is

the set chosen for this work.

Through discretising the Boltzmann equation in velocity space (see Section 3.3),

and physical space and time (see Section 3.4) we obtain the lattice Boltzmann equation

fi(x+ ci∆t, t+∆t) = fi(x, t) + ∆tΩi(x, t). (3.3)

This expression shows that the particles fi(x, t) move with a velocity ci to an adjoining
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point x + ci∆t at the consequent time step t + ∆t. Simultaneously, the particles are

affected by a collision operator Ωi, which models particle collisions by redistributing

particles among the populations fi at every site. This is illustrated in Fig. 3.2. Gen-

Figure 3.2: Particles streaming from the center node to the adjoining nodes. The left
side shows the post-collision distributions f∗

i before streaming, and the right side shows
the pre-collision distributions fi after streaming. Figure from [109]. Reproduced with
permission from Springer Nature.

erally, the velocity sets {ci, wi} are selected such that any vector ci∆t points from a

lattice site to a neighbouring lattice site. This avoids a situation where the popula-

tions fi are trapped between lattice sites, guaranteeing that they will reach another

site during the time step ∆t.

Expanding on the collision operators, the collisions must conserve the quantities

of mass, momentum, and in a monoatomic case, translational energy. Those can be

expressed as moments of the collision operator, and are the mass conservation:

∫
Ω(f)d3ξ = 0, (3.4)

and momentum conservation, ∫
ξΩ(f)d3ξ = 0. (3.5)

The original collision operator considers all possible outcomes of two-particle collisions

for any choice of inter molecular forces, resulting in a cumbersome double integral over

velocity space. For a collision operator to be practical it needs to obey the conservation

laws, and it must ensure that the distribution function f locally evolves towards the

equilibrium feq. The BGK operator, named after its inventors Bhatangar, Gross, and

Krook, is the simplest operator that follows both rules, although it is not as exact as
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the original Boltzmann operator:

Ωi(f) = −
fi − feq

i

τ
. (3.6)

This is the simplest suitable operator for the Navier-Stokes simulations. It relaxes

the populations fi towards equilibrium feq
i at a rate given by the relaxation time τ .

The value of τ dictates the transport coefficients, such as heat diffusivity and viscos-

ity. There are however other options available. They include the two-relaxation time

(TRT) or multiple relaxation time (MRT). Those other possible collision operators use

additional relaxation times for increased accuracy (especially for large viscosities) and

stability (particularly for small viscosities). In many cases the BGK model is elegant

and efficient, despite its aforementioned limitations. The main difference between the

BGK and the original lattice Boltzmann operator is in the prediction of the Prandtl

number, introduced earlier, where the BGK operator anticipates Pr = 1, while the

Boltzmann’s original operator correctly predicts Pr ≈ 2/3 for monoatomic gases [110].

The code used in this thesis uses the MRT collision operator for increased stability and

accuracy [111].

The equilibrium in Eq. (3.6) expands to

feq
i (x, t) = wiρ

(
1 +

u · ci
c2s

+
(u · ci)2

2c4s
− u · u

2c2s

)
(3.7)

with the weights wi determined by the preferred velocity set. The equilibrium feq
i

depends on the local quantities of density and fluid velocity only, and is such that its

moments are equivalent to the moments of fi. The latter means that
∑

i f
eq
i =

∑
i fi =

ρ and
∑

i cif
eq
i =

∑
i cifi = ρu. Consequently, mass and momentum are conserved in

collisions. Mathematically, this means that
∑

iΩi = 0 and
∑

i ciΩi = 0. Additionally,

by using the fi moments, the fluid velocity is found to be u(x, t) = ρu(x, t)/ρ(x, t).

Comprehensively, the fully discretised lattice Boltzmann equation with the BGK
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collision operator is given by

fi(x+ ci∆t, t+∆t) = fi(x, t)−
∆t

τ
(fi(x, t)− feq

i (x, t)) . (3.8)

For clarity, we can separate this formula into two unique parts performed consecutively.

The initial step is collision (or relaxation)

f∗
i (x, t) = fi(x, t)−

∆t

τ
(fi(x, t)− feq

i (x, t)) , (3.9)

where f∗
i tracks the distribution function after collisions and feq

i is found from Eq.

(3.7). In terms of implementation of this collision step, it is more convenient to adjust

the form of the expression for higher efficiency like so:

f∗
i (x, t) = fi(x, t)

(
1− ∆t

τ

)
+ feq

i (x, t)
∆t

τ
, (3.10)

which simplifies particularly for τ/∆t = 1, resulting in f∗
i (x, t) = feq

i (x, t). The second

step is streaming (or propagation)

fi(x+ ci∆t, t+∆t) = f∗
i (x, t) (3.11)

shown and explained visually in Fig. 3.2, streaming the particles to adjoining nodes.

In summary, the lattice Boltzmann method is a two step process consisting of

collision and streaming. The collision is a local algebraic operation by using the density

ρ and macroscopic velocity u to find the equilibrium distributions feq
i and post-collision

distribution f∗
i . After that step is completed, the resulting distribution f∗

i is streamed

to neighbouring nodes. Those two operations correspond to a single time step that

elapses once they complete, and the cycle can start again. Having established the idea

behind the procedure, it is not necessarily immediately clear how it relates back to the

Navier-Stokes equations.
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3.2.1 Connecting the lattice Boltzmann equation to the Navier Stokes

equations

We have shown how the macroscopic behaviour of the undiscretised Boltzmann equation

behaves in accordance to the continuity equation and the general Cauchy momentum

equation with an unknown stress tensor, without specifically proving that they are in

fact linked. Here we use the classical multiscale tool of the Chapman-Enskog analysis.

However, there are alternative methods to show that the lattice Boltzmann equation is

connected to the macroscopic equations [112], such as asymptotic expansion developed

by Sone [113] or Maxwellian iteration described by Ikenberry and Truesdell [114].

As a historical note, this approach is named after two mathematical physicists,

Sydney Chapman and David Enskog, who both independently developed similar meth-

ods of finding macroscopic equations from the Boltzmann equation with the original

collision operator. Chapman later combined those two approaches in his book on the

mathematical theory of non uniform gases into what is now known as the Chapman-

Enskog analysis [112]. With more methods developed over the years, discussions about

the equivalence of them were inevitable [115]. As a general conclusion, the work by

Caiazzo et.al. [116] showed that the Chapman-Enskog analysis is a general expansion

procedure that encompasses many multi-scale methods. This study makes the case

that all expansions are equivalent, as long as the algorithm is stable, and the residues

are of the same order therefore meaning that two expansion methods can therefore only

differ in their range of applicability [116].

The details of the Chapman-Enskog analysis are given in Appendix A, showing how

the link between the Boltzmann equation and the Navier Stokes equations. We can now

be confident that the method is a sound approach for solving fluid dynamics problems

that follow certain assumptions. Through the Chapman-Enskog analysis, we get the

kinematic shear viscosity given by the relaxation time τ

ν = c2s

(
τ − ∆t

2

)
(3.12)

with the kinematic bulk viscosity being ν = 2ν/3. Further more, the viscous stress
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tensor can be obtained from fi as

σαβ ≈ −
(
1− ∆t

2τ

)∑
i

ciαciβf
neq
i (3.13)

where the non-equilibrium distribution fneq
i = fi − f eq

i gives the fi deviation from

equilibrium. It is usually not needed to explicitly state the from of this viscous stress

tensor while running the simulations.

3.2.2 A simple lattice Boltzmann algorithm

After introducing an outline of the theory, now we can now give an example of a lattice

Boltzmann algorithm one could use to use the method. Let us introduce a simple

algorithm with no imposed boundary conditions or forces. To initialise the populations

at the simulation start, we set the equilibrium such that feq
i (x, t = 0) = feq

i (ρ(x, t =

0),u(x, t = 0)). In many cases, ρ(x, t = 0) = 1 and u(x, t = 0) = 0 are used. On

Figure 3.3: A flowchart depicting one cycle of the lattice Boltzmann algorithm. The
dark grey boxes show the essential steps for the evolution of the solution. The output
step shown in the top right corner is optional, saving the output data. The reduced
opacity boxes show additional steps that can be included. Figure from [109]. Repro-
duced with permission from Springer Nature.

the whole, the essence of the LBM algorithm is a cyclical sequence of sub-steps, with

a singular cycle corresponding to one time step, as visualised in the flowchart in Fig.

3.3. Writing it out, we get the following procedure:

1. Compute the macroscopic moments ρ(x, t) and u(x, t) from fi(x, t) using Eq.
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(3.2).

2. Find the equilibrium distribution function f eq
i (x, t) from Eq. (3.7).

3. (Optional) Write the ρ(x, t), u(x, t), and σ(x, t) to the hard disk for post-processing.

The stress tensor can be found using Eq. (3.13).

4. Perform collision via Eq. (3.9).

5. Perform streaming using Eq. (3.11).

6. Increment the time step, by setting t to t+∆t, go back to step one, repeat until

the last time step is reached.

The order of the sub-steps is necessary, as further steps are dependent on the results of

earlier steps. This concludes the simplest example of a basic lattice Boltzmann method

algorithm implementation.

Now that we have an outline of the lattice Boltzmann method in its simplest form,

and what steps need to be taken, we can now focus on the derivations of the discreti-

sation in the next two sections.

3.3 Discretisation in velocity

Since introducing the outline of the lattice Boltzmann method, we can now focus on

some important derivations. Here, we will go from the Boltzmann equation to the lattice

Boltzmann equation. To do that we will begin by deriving the velocity discretisation

of the lattice Boltzmann equation. The complication of doing just that, is that the

particle distribution function f(x, ξ, t) has a seven-dimensional space. Solving such

a high-dimensional space is usually computationally expensive, requiring large-scale

computing. However, this is often not needed, as we have found that the moments of

the Boltzmann equation give the correct equations for mass, momentum and energy

conservation. As a result, the underlying physics is not fully relevant if we are only

interested in making sure we obtain the correct macroscopic behaviour.
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The moments are the weighted integrals of f in velocity space. In actuality, there

is a vast number of functions whose integrals are identical to that of f , and there

are approaches to simplify the continuous Boltzmann equation without getting rid of

the moment-based macroscopic behaviour. By discretising the continuous 3D velocity

space we reduce the number of velocities to a smaller number of discrete velocities in

a way that does not compromise the macroscopic equations. This can be performed

using either the Hermite series expansion [117] or the Mach number expansion [118].

Both of the approaches will result in the same equilibrium form on the Navier-Stokes

level. While the Mach number expansion is easier to follow, for a strong mathematical

foundation we shall adhere to the Hermite series method. The other advantage of using

the Hermite series is that in addition to obtaining suitable discrete velocity sets it can

also be used to go beyond the conventional Navier-Stokes-Fourier equations and their

limitations [117].

The Hermite approach relies on the observation that the equilibrium distribution

function feq has a known exponential form such that the feq can be defined by the

exponential weight function of Hermite polynomials, unlike the unknown distribution

function f . Furthermore mass and momentum moments may be described by integrals

of feq multiplied with Hermite polynomials. This is achieved by a two pronged ap-

proach, by firstly expressing feq in a reduced form through a truncated sum of Hermite

polynomials. The second part is to then evaluate the integrals of the moments exactly

as a discrete sum over the polynomial integrand evaluated at specific points ξi parallel

to the x-axis. Hence, the equilibrium distribution function is converted from continu-

ous to discrete in the velocity space. Having outlined our objective, we can now delve

into the details of how to achieve it. We begin by non-dimensionalising the governing

equations for simplicity reasons. Let’s evoke the Boltzmann equation in a continuous

velocity space
∂f

∂t
+ ξα

∂f

∂xα
+

fα
ρ

∂f

∂ξα
= Ω(f) (3.14)

where Ω(f) is the collision operator. As a reminder, the Boltzmann equation describes

the evolution of the density of particles with velocity ξ at a position x and time t. In
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a homogeneous, steady, and force free situation, the solution is purely the equilibrium

distribution function feq. It can be expressed by

f eq(ρ,u, T, ξ) =
ρ

(2πRT )d/2
e−(ξ−u)2/(2RT ) (3.15)

where ρ is the density, u is the fluid velocity, T is the temperature, d is the number of

spatial dimensions, and R = kB/m is gas constant given by the Boltzmann constant

kB and particle mass m.

In general terms, physical phenomena occur at relevant space and time scales. As

an example, the average velocity of an unladen swallow is in the order of tens of metres

per second [119]. It is useful to classify phenomena by their characteristic scales. To

achieve that for fluid properties we can use the characteristic length l, velocity V and

density ρ0, with a resulting characteristic time scale being given by t0 = l/V .

Following the convention of using stars to symbolise the non-dimensionalised vari-

ables, we can write the following non-dimensionalised derivatives

∂

∂t∗
=

l

V

∂

∂t
,

∂

∂x∗
= l

∂

∂x
,

∂

∂ξ∗
= V

∂

∂ξ
. (3.16)

We then use that to rewrite the continuous Boltzmann to its non-dimensionalised form

∂f∗

∂t∗
+ ξ∗α

∂f∗

∂x∗α
+

F∗
α

ρ∗
∂f∗

∂ξ∗α
= Ω∗(f∗) (3.17)

where f∗ = fV d/ρ0, F
∗ = Fl/(ρ0V

2), ρ∗ = ρ/ρ0, and Ω∗ = ΩlV 2/ρ0. Doing the same

for the equilibrium distribution function, we obtain

f eq∗ =
ρ∗

(2πθ∗)d/2
e−(ξ∗−u∗)2/(2θ∗) (3.18)

with the non-dimensionalised temperature θ∗ = RT/V 2. For notational brevity, we

omit the ∗ symbol, henceforth implying non-dimensionalised version of the lattice Boltz-

mann equations in this section unless specified otherwise. For simplicity, we follow an

example of the Hermite series expansion in the force-free (f = 0) instance.
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The conservation laws imply that the equilibrium distribution function and the

particle distribution function coincide like so:

∫
f(x, ξ, t) d3ξ =

∫
f eq(ρ,u, θ, ξ) d3ξ = ρ(x, t), (3.19)∫

f(x, ξ, t)ξ d3ξ =

∫
f eq(ρ,u, θ, ξ)ξ d3ξ = ρu(x, t), (3.20)∫

f(x, ξ, t)
|ξ|2

2
d3ξ =

∫
f eq(ρ,u, θ, ξ)

|ξ|2

2
d3ξ = ρE(x, t), (3.21)∫

f(x, ξ, t)
|ξ − u|2

2
d3ξ =

∫
f eq(ρ,u, θ, ξ)

|ξ − u|2

2
d3ξ = ρe(x, t). (3.22)

where ρ(x, t) is the mass density, ρu(x, t) is the momentum density, ρE(x, t) is the

total energy density, and ρe(x, t) is the internal energy density.

The space and time dependence in f eq only enters through ρ(x, t), u(x, t), and

θ(x, t). The conserved quantities on the right hand side of Eq. (3.22) may be expressed

as integrals of the distribution functions in velocity space.

In order to discretise the velocity space using the Hermite polynomials we need to

first introduce what they are, their properties, and how to apply them to the equations

of interest. The details of that are expanded upon in Appendix B. There, we show how

the coefficients in a Hermite series expansion of the equilibrium distribution function f eq

are related to the conserved moments of density, momentum, and energy. The Hermite

series expansion can also be applied to the particle distribution function f such that

the conserved quantities are given by the expansion coefficients. The approximation of

the equilibrium distribution function up to the third moment can be explicitly written

as

f eq(ρ,u, θ, ξ) ≈ ω(ξ)ρ [1 + ξαuα + (uαuβ + (θ − 1)δαβ) (ξαξβ − δαβ)]

= ω(ξ)ρQ(u, θ, ξ)
(3.23)

After the Hermite series expansion there are still some tasks remaining to com-

plete the discretisation of velocity. We begin by defining the n quantities f eq
i (x, t) =

wiρ(x, t)Q(u(x, t), θ(x, t), ξi) as the equilibrium distribution function that is related to

66



the velocity ξ. However rather than looking at a continuous function f eq(ξ), we shall

only focus on a finite set of quantities such that f eq
i = f eq(ξ)

f eq
i = wiρ

[
1 + ξiαuα +

1

2
(uαuβ + (θ − 1)δαβ)(ξiαξiβ − δαβ)

]
. (3.24)

This equation can be further simplified by using the isothermal assumption, which im-

plies θ = 1, thus removing the temperature from the equilibrium distribution function.

Finally, we have obtained the ultimate discrete equilibrium distribution

f eq
i = wiρ

(
1 +

ciαuα
c2s

+
uαuβ(ciαciβ − c2sδαβ)

2c4s

)
(3.25)

where cs is the speed of sound. It is one of the most important equations for the lattice

Boltzmann method. However we have to keep in mind that so far, only velocity has

been discretised, meaning that the space and time variables are still continuous and

enter the equilibrium distribution function as continuous moments of ρ(x, t), u(x, t),

and θ(x, t). The space and time discretisation will be discussed later on to obtain

the eventual form of the lattice Boltzmann equations satisfactory for computational

simulations.

Having discretised the equilibrium distribution function, we now do the same to the

particle distribution function. The Hermite series expansion of it is given by

f(x, ξ, t) ≈ ω(ξ)
N∑

n=0

1

n!
a(n)(x, t) ·H(n)(ξ). (3.26)

The first two of the coefficients of this expansion follow the conservation laws and as

such are the same as the equilibrium distribution ones (in the case of the isothermal

approximation, only density and momentum are considered). The discrete velocities

{ci} are created such that the moments are conserved, hence following the same method

to discretise the distribution function f will also ensure that the conservation laws are

obeyed. For brevity it is unnecessary to repeat all the calculations done before. Using
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the same approach as before, the discretised distribution function is

fi(x, t) =
wi

ω(ci)
f(x, ci, t), (3.27)

where w(ci) is added to comply with the Gauss-Hermite rule

a(n)(x, t) =

∫
f(x, c, t)H(n)(c)ddc =

∫
ω(c)

ω(c)
f(x, c, t)H(n)(c)ddc

≈
q∑

i=1

wi

ω(c)
f(x, ci, t)H

(n)(ci) =

q∑
i=1

fi(x, t)H
(n)(ci).

(3.28)

This means that there are now q functions fi(ci), each related to one discrete velocity

ci. As before, they remain continuous in space and time. Now we can compose the

discrete-velocity Boltzmann equation (not the lattice Boltzmann equation, as it is not

fully explicit)

∂tfi + ciα∂αfi = Ω(fi), i = 1, ..., q. (3.29)

The macroscopic moments, that is density and momentum, are then found using the

finite sums

ρ =
∑
i

fi =
∑
i

f eq
i ,

ρu =
∑

fici =
∑
i

f eq
i ci

(3.30)

instead of computing the integrals of the particle f(ξ) and equilibrium f eq(ξ) distribu-

tion functions. The final matter that is left to discuss to conclude the discretisation of

the velocity space is the details of the velocity sets and their properties.

3.3.1 Velocity Sets

The question about the choice of the velocity set is of import. As with many things

in life, it is a balancing act. The chosen set needs to be sufficiently well-resolved to

obtain consistent and accurate solutions to the Navier-Stokes or Navier-Stokes-Fourier

equations. Yet, with an increase in the number of velocities, so do the computational
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resources required to solve them. It is therefore crucial to choose a satisfactory set

of velocities that is able to capture the underlying physics at an optimal numerical

cost. For a comprehensive perspective of the historical choice of the velocity sets an

interested reader is referred to the Chapters 3 and 5 of [120].

The accepted general notation for velocity sets uses their number of spatial di-

mensions d and discrete velocities q in the from DdQq [121]. Some common examples

include D2Q9 and D319 meaning 9 discrete velocities in two dimensions and 19 discrete

velocities in three dimensions. A velocity set in the lattice Boltzmann algorithm is fully

described by two sets of quantities: the velocities {ci} and their corresponding weights

{wi}. A third quantity can be derived from those sets: the speed of sound cs.

It is relevant to note that the velocities in a set are not consistently numbered or

ordered in the same way in literature. In some cases the indices go from 0 to q − 1,

while others are counted from 1 to q, orders are seemingly random. For this reason the

most common velocity sets are usually included in an illustrated form with numbered

velocity vectors.

A velocity set generally will include one rest velocity with zero magnitude that

corresponds to stationary particles. If the set includes the rest velocity, we will assign

the index i = 0 : c0 = 0 to it using the numbering system going from 0 to q − 1. If a

set has no rest velocity, it will be counted from 1 to q.

There is more than one method of assembling the lattice Boltzmann velocity sets.

From the Gauss-Hermite quadrature rule from before, we obtain the following sets:

D1Q3, D2Q7, D2Q9, D3Q15, D3Q19, D3Q27. A different method would be to use

lattice projection to obtain a (d − 1)-dimensional velocity set from an already known

velocity set in d dimensions. Another possibility to consider is to find the general con-

ditions that need to be satisfied by the velocity set. As usual, they need to conserve

mass and momentum, but in addition to that they also need to conserve the rotational

isotropy of the lattice [122]. What sufficiently isotropic means depends on the under-

lying physics, here we can assume that means all lattice Boltzmann method moments

of the weight wi used to solve the Navier-Stokes equations are solved up to the fifth
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order. This suggests the subsequent conditions [123, 124]:

∑
i

wi = 1,

∑
i

wiciα = 0,

∑
i

wiciαciβ = c2sδαβ,∑
i

wiciαciβciγ = 0,

∑
i

wiciαciβciγciµ = c4s(δαβδγµ + δαγδβµ + δαµδβγ),∑
i

wiciαciβciγciµciν = 0,

(3.31)

where all the weights wi are non-negative. A velocity set that does not satisfy these

conditions is unsuitable for the lattice Boltzmann method as a Navier-Stokes solver.

As a straightforward approach, we can start with a brand new velocity set {ci}

and use Eq. (3.31) as a conditional factor to obtain the unknown weights wi and

the speed of sound cs. If only a few velocities are chosen not all conditions of Eq.

(3.31) will be satisfied at the same time, as is the case for the D2Q5 lattice (which

only satisfies the first four equations). Choosing more velocities however, will lead to

over-determination. This is the case for D3Q27, where the weights wi and the speed of

sound cs are not unique and can vary [125]. This actually results in more versatility, as

the free parameters can be used for optimisation of other properties, like for example

stability.

The lattice Boltzmann method may be used to simulate advection-diffusion prob-

lems that have a lower level of isotropy, meaning that simply solving the first four

equations of Eq. (3.31) is sufficient for this purpose. Larger velocity sets will be re-

quired for the solving of the Navier-Stokes-Fourier systems, as they include the energy

equation and hence having higher moments that will need to be solved. Thus, the so

self-styled extended lattices will need to be deployed to accommodate that.

A final note, before going over some common velocity sets for the hydrodynamics, is
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that it is extraordinarily advantageous to specifically choose certain velocity sets. They

should be constructed in such a way that all velocities directly connect the spatially and

temporary discretised lattice sites, without off-lattice positions somewhere in between.

This is achieved by using vectors ci such that all of their components are integer

multiples of ∆x/∆t. The prevailing choice in the literature is to set ∆x and ∆t to be

equal to 1, and so the velocity vector components ciα are integers. It is entirely possible

to not follow this condition in constructing the velocity sets [117, 126]. The velocity

Figure 3.4: Visual representation of the D1Q3 and D2Q9 velocity sets. The edge length
of the solid square is 2∇x. Rest velocity vectors |ci| = 1 and

√
2 are shown in black

and grey respectively. Figure from [109]. Reproduced with permission from Springer
Nature.

sets of D1Q3 and D2Q9 are shown in Fig. 3.4, commonly used in the one and two

dimensional simulations. For three dimensional simulations, the prevailing choices are

the D3Q15, D3Q19, and less used D3Q27. Each of these schemes has different benefits

and drawbacks. All recover the hydrodynamics to leading order, where most of the

commonalities end. The most efficient computationally set is D3Q15 followed by less

efficient D3Q19, that is consecutively less efficient than D3Q27. The truncation errors

differ for all three, with the numerical errors usually being less significant for larger

velocity sets. The larger velocity sets tend to have higher stability. The longstanding

agreement disregarded D3Q27 as a viable choice, as it requires 40 % more memory and

computing power than D3Q19. In more recent years, it was discovered [124] that a

few truncation terms and non-linear momentum advection corrections are not actually

rotationally invariant in D3Q15 and D3Q19, but they are isotropic in D3Q27. As a

result of this, the lack of the isotropy in the lower sets may lead to issues for non-
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linear phenomena questions. This becomes particularly important for simulations of,

for example, high Reynolds number flows [127, 128]. As such, the D3Q27 is the best

choice for modelling that includes turbulence, with D3Q19 continuing to be a good

choice for laminar flow.

The velocity sets described in the sections above are written out in Tab. 3.1,

including their properties of length and weight, with the speed of sounds for all given

by cs = 1/
√
3.

Notation Velocities ci Number Length |ci| Weight wi

D1Q3
(0) 1 0 2/3

( ± 1) 2 1 1/6

D2Q9
(0,0) 1 0 4/9

(± 1,0), (0, ± 1) 4 1 1/9

( ± 1, ± 1) 4
√
2 1/36

D3Q15
(0,0,0) 1 0 2/9

( ± 1,0,0), (0, ± 1,0), (0,0, ± 1) 6 1 1/9

( ± 1, ± 1, ± 1) 8
√
3 1/72

D3Q19
(0,0,0) 1 0 1/3

( ± 1,0,0), (0, ± 1,0), (0,0, ± 1) 6 1 1/18

( ± 1, ± 1,0), ( ± 1,0, ± 1), (0, ± 1, ±1) 12
√
2 1/36

D3Q27

(0,0,0) 1 0 8/27

( ± 1,0,0), (0, ± 1,0), (0,0, ± 1) 6 1 2/27

( ± 1, ± 1,0), ( ± 1,0, ± 1), (0, ± 1, ±1) 12
√
2 1/54

( ± 1, ± 1, ± 1) 8
√
3 1/216

Table 3.1: Most commonly used velocity sets appropriate for the Navier-Stokes simu-
lation. Reproduced from [109].

3.4 Discretisation in space and time

Up to this point, the velocity is the only quantity that has been discretised. To finalise

the formulation of the fully discretised lattice Boltzmann equation, the space and time
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remain to be discretised.

In conventional computational fluid dynamics methods, such as finite volume or

finite elements, the space disretisation is somewhat arbitrary. This is because each

volume or element has many possible shapes that can be chosen, including options such

as triangles, pyramids, tetrahedra or hexagons. The classical lattice Boltzmann method

is in comparison less flexible, built on uniform and structured grids. In modern day,

new approaches are achievable, relying on either discretisation on unstructured grids

[129, 130] or by local grid refinement on structured grids, where [131] gives an overview

of it. While the other methods are possible, it is standard to use a structured grid that

also implies a strong coupling between the spatial and temporal discretisation in the

lattice Boltzmann method.

Historically, the original lattice Boltzmann algorithm assumes that the populations

fi move with a velocity ci from one lattice site to another. After a single time step

∆t, each population should completely reach a neighbouring site. For that to be the

case, two conditions must be met. Firstly, the underlying spatial lattice is uniform and

regular with some lattice constant ∇x, and secondly, the velocity components must be

integer multiples of ∇x/∆t, that is ciα = n∆x/∆t. Due to the appropriate formulation

of the velocity sets mentioned before, we ensure that these conditions are met, meaning

that no populations should ‘get stuck’ in between lattice sites.

Let’s reestablish the non-dimensional force-free discrete-velocity Boltzmann equa-

tion with a general collision operator Ωi, that conserves density and momentum

∂tfi + ciα∂αfi = Ωi, (3.32)

where fi(x, t) = f(x, ci, t) is the particle distribution function discretised in velocity

space. We will refer to fi as the population of particles moving in the direction ci, but

at this point the form of the collision operator is not specified. We will operate under

the assumption that this collision operator depends on the discretised populations {fi}

and the equilibrium populations {f eq
i }. Those equilibrium populations depend on the

macroscopic quantities (such as density and velocity) that can be found through the
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moments of the populations explicitly. Hence, it is safe to assume that the collision

operator Ωi can be completely expressed through the discretised populations. Eq.

(3.32) is a first-order partial differential equation (PDE), where each velocity ci is a

known constant. There are a number of techniques that can be used to solve such PDEs

including analytical solutions through separation of variables, method of characteristics

or integral transforms and numerical ways such as finite element, finite difference or

finite volume methods.

Here, we shall use the method of characteristics, also known as the method of

trajectories, to simplify Eq(3.32), by finding characteristic curves along which the first-

order PDE becomes an ordinary differential equation (ODE). Thus, we could write the

solution to Eq. (3.32) as fi = fi(x(ζ), t(ζ)), where ζ parameterises a trajectory in

space. Then, we covert the left-hand side of Eq. (3.32) into a total derivative with

respect to ζ so that the PDE is now an ODE:

dfi
dζ

=

(
∂fi
∂t

)
dt

dζ
+

(
∂fi
∂xα

)
dxα
dζ

= Ωi(x(ζ), t(ζ)). (3.33)

For Eq. (3.33) to be consistent with Eq. (3.32), the following must be true:

dt

dζ
= 1,

dxα
dζ

= ciα. (3.34)

Now to solve Eq. (3.33), we start with some initial conditions. Let’s choose a trajectory

that goes through some point (x0, t0) such that t(ζ = 0) = t0 and x(ζ = 0) = x0.

Integrating Eq. (3.33) from ζ = 0 to ζ = δt results in

fi(x0 + ci∆t, t0 +∆t)− fi(x0, t0) =

∫ ∆t

0
Ωi(x0 + ciζ, t0 + ζ)dζ. (3.35)

Through the fundamental theorem of calculus, the integration of the left-hand side is

exact. Since the chosen point (x0, t0) is arbitrary, we can more broadly write

fi(x+ ci∆t, t+∆t)− fi(x, t) =

∫ ∆t

0
Ωi(x+ ciζ, t+ ζ)dζ. (3.36)
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The right-hand side of Eq. (3.36) is not as simple to determine in comparison with

the left-hand side. The integral on the right-hand side can indeed be approximated

by a number of suitable methods, such as the Crank-Nicolson [132] or the Runge-

Kutta [133] schemes. These methods tend to obtain a more accurate result of the

integration, yet the classical lattice Boltzmann equation uses a comparatively simpler

forward Euler scheme. The reasons for this are practical, with the Runge-Kutta type

of scheme requiring tracking the populations fi at various points in time. This turns

out to be memory intensive, especially for high discrete velocity set D3Q27. The

Crank-Nicolson time-space discretisation of the lattice Boltzmann equation [132, 134]

introduces new variables while leading back to the original lattice Boltzmann equation.

Implicit discretisation of Eq. (3.36) lead to a linear systems of equations to be solved,

which is computationally very demanding. For example for D3Q27 has 27 populations

per each node, while the incompressible Navier-Stokes equation has four variables that

can be found by using a finite volume solver in a less resource intensive way. The biggest

strength of the lattice Boltzmann method is also its biggest weakness, it its explicitness

with a uniform grid. The advantage of the explicit discretisation of the velocities, space,

and time means that it is easy to set up complex boundary conditions, for example

for multiphase flows in porous media, while the use of uniform grid allows effective

parallelisation [135]. The drawback of that is that there are stability restrictions on the

lattice constant ∆x and the timestep ∆t.

We can now expand upon the first and second order discretisation of the right-

hand side of Eq. (3.36). The first order discretisation, also called the rectangular

discretisation, approximates the integral of the collision operator by a single point:

fi(x+ ci∆t, t+∆t)− fi(x, t) = ∆tΩi(x, t). (3.37)

It is a fully explicit scheme, although Ωi has not yet been specified in the right form.

A general expectation is that it would be of first order accuracy in time, as we used a

first-order approximation. Nonetheless, we will investigate what happens while using

the second-order discretisation. We again approximate the right-hand side of Eq. (3.36)
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this time by using the trapezoidal rule

fi(x+ ci∆t, t+∆t)− fi(x, t) = ∆t
Ωi(x, t) + Ωi(x+ ci∆t, t+∆t)

2
(3.38)

which is a second-order approximation. This equation is implicit, as Ωi(x+ci∆t, t+∆t)

depends on fi at t+∆t. It is possible to transform this equation into an explicit form,

with the transformation inlcuding a change of variables from fi to f̄i

f̄i(x+ ci∆t, t+∆t) = f̄i(x, t) + ∆tΩi(x, t) (3.39)

with a redefined collision operator. It would be useful to eliminate the untransformed

variable fi from Eq. (3.39), in order to be able to solve the equation for f̄i without

determining fi. Most common collision operators can be re-expressed with f̄i instead

of fi This showed an unusual result where the second order discretisation and the first

order discretisation are of the same form, demonstrating that both are second-order

accurate [136] [137]. This second order accuracy of the lattice Boltzmannn equation

can be proven by other methods [132].

The methods above did not use a rigorously defined collision operator, which we

will now rectify by examining the details of using the BKG operator. As mentioned

before, the original collision operator in the Boltzmann equation considers all outcomes

of binary collisions and as such is described in a complicated mathematical form. The

BGK is usually normally only suitable for gas simulations, due to only accounting for

binary collisions of molecules. As liquids have higher density, more complicated three

or more particle interactions occur more frequently. It is reasonable to assume that the

integrals used to describe the latter case would be more complicated, however that is

fortunately not a limitation. This is because we do not focus on the intricate underlying

microscopic interactions to recover the macroscopic approach, allowing to significantly

simplify the collision operator. To that effect, we begin by approximating the collision

operator and rework it in terms of the known variables - the populations fi and the

equilibrium populations f eq
i . The most straightforward functional form is simply a
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linear relation, which gives the assumption that Ωi ∝ (fi − f eq
i ). This assumption in

its linear form does lead to the conservation of mass and momentum, which is required

for the Navier-Stokes description

∑
i

Ωi ∝
∑
i

(fi − f eq
i ) = 0

∑
i

Ωici ∝
∑
i

(fici − f eq
i ci) = 0

(3.40)

which is the most vital property of any collision operator. The BGK operator intro-

duced earlier in Eq. (3.6) is now modified [138] as

Ωi = −
fi − f eq

i

τ
. (3.41)

Physically, this can be thought of as the tendency of the populations fi to approach

the equilibrium state f eq
i after a time τ . Another way to describe this process is

the relaxation towards the equilibrium, and so τ is generally called the relaxation time.

Having presented a general way of using the method of characteristics for an unspecified

collision operator, it is appropriate to have a closer look at doing so for a particular

operator, for example, the BGK operator. Once again, we aim to solve the continuous

Boltzmann equation of the form

∂tfi
∂t

+ ciα
∂fi
∂xα

= −
fi − f eq

i

τ
. (3.42)

By the method of characteristics, we introduce a new variable ζ, rewriting the equation

to be solved to be

∂fi
∂ζ

=
∂fi
∂t

dt

dζ
+

∂fi
∂xα

dxα
dζ

= −
fi(ζ)− f eq

i (ζ)

τ
(3.43)

where
dt

dζ
= 1,

dxα
dζ

= ciα. (3.44)

The parametrisations ρ(ζ) = ρ(x(ζ), t(ζ)) and u(ζ) = u(x(ζ), t(ζ)) lead to the depen-
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dence of f eq
i on ζ through f eq

i (ρ(ζ),u(ζ)). By integrating Eq. (3.44) it is trivial to

retrieve the characteristic equation

t = ζ + t0, x = ciζ + x0 (3.45)

with t0 = t(ζ = 0) and x0 = x(ζ = 0). Now to integrate Eq. (3.43), we consider an

ODE
dy(ζ)

dζ
= g(ζ)y(ζ) + h(ζ) (3.46)

of y(ζ) with some given coefficient functions g(ζ) and h(ζ). To get the solution to this,

we can use the recognisable variation of constants:

y(ζ) = eG(ζ)

[
C +

∫ ζ

ζ0

e−G(ζ′)h(ζ ′)dζ ′
]

(3.47)

where

G(ζ) =

∫ ζ

ζ0

g(ζ ′)dζ ′ (3.48)

with integration constants C and ζ0. We can rework the original equation we are

looking to solve (Eq. (3.43)) into the expression of the ordinary differential Eq. (3.46)

such that
dfi(ζ)

dζ
= −1

τ
fi(ζ) +

f eq
i

τ
. (3.49)

Therefore we can match fi(ζ) with y(ζ), −1/τ with g(ζ), and f eq
i /τ with h(ζ), leading

to G(ζ) = −(ζ − ζ0)/τ . Integrating over one time step, that is using our integration

limits ζ0 and ζ = ζ0 +∆t, we initially obtain

fi(ζ0 +∆t) = e−∆t/τ

[
C +

1

τ

∫ ζ0+∆t

ζ0

eζ
′/τf eq

i (ζ ′)dζ ′
]
. (3.50)

From here the constant C can be equated to fi(ζ0), and we drop the dependence on ζ

by reintroducing x and t. Also, as the integration constant can be chosen arbitrarily,
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we can drop the 0 index from x and t0. Putting it all together we get

fi(x+ ci∆t, t+∆t) = e−∆t/τ

[
fi(x, t) +

1

τ

∫ t+∆t

t
e(t

′−t)/τf eq
i (ζ ′)dζ ′

]
, (3.51)

which is the integral form solution of the lattice BGK equation. To make this equation

usable for computer simulations we want to discretise it. Some of the ways of achieving

that include first-order accurate forward Euler or second-order accurate trapezoidal

rule methods.

For the first-order approximation in ∆t, the integral of the form
∫ t+∆t
t g(t′)dt′ is

replaced by g(t)∆t, resulting in

fi(x+ ci∆t, t+∆t) = e−∆t/τfi(x, t) +
e−∆t/τ

τ
f eq
i (x, t)∆t. (3.52)

Then, we expand the exponentials and keep first order terms only,

fi(x+ ci∆t, t+∆t) =

(
1− ∆t

τ

)
fi(x, t) +

∆t/τ

τ
f eq
i (x, t) + O(∆t2), (3.53)

obtaining the standard discretised lattice BGK equation, bearing in mind it is first-

order accurate only.

A second order approximation using the trapezoid rule of
∫ t+∆t
t g(t′)dt′ ≈ [g(t) +

g(t+∆t)]∆t/2 gives

fi(x+ ci∆t, t+∆t) = e−∆t/τfi(x, t)

+
e−∆t/τ∆t

2τ

(
e−∆t/τf eq

i (x+ ci∆t, t+∆t) + f eq
i (x, t)

)
.

(3.54)

As before, we expand the exponentials, this time up to the second order in ∆t

fi(x+ ci∆t, t+∆t) =

(
1− ∆t

τ
+

∆t2

2τ2

)
fi(x, t)

+
∆t

2τ

[
f eq
i (x+ ci∆t, t+∆t) +

(
1− ∆t

τ

)
f eq
i (x, t)

]
+ O(∆t3).

(3.55)
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The aim now is to look for a transformation fi → f̄i to convert Eq. (3.55) so that is

resembles Eq. (3.39), with the BGK collision operator Ωi = −(fi − f eq
i /τ). This can

be done by establishing a new population

f̄i = fi −
Ωi∆t

2
= fi +

(fi − f eq
i )∆t

2τ
. (3.56)

The collision operator Ωi conserves mass and momentum, and hence the new population

f̄i has the same mass and momentum as fi

∑
i

f̄i =
∑
i

fi −
∑
i

Ωi∆t

2
=
∑
i

fi = ρ,

∑
i

f̄ici =
∑
i

fi −
∑
i

Ωici∆t

2
=
∑
i

fici = ρu.

(3.57)

Following some algebraic manipulation [132], we finally obtain

f̄i(x+ ci∆t, t+∆t) = f̄i(x, t) +
(f̄i(x, t)− f eq

i (x, t))

τ̄
+ O(∆t3) (3.58)

with a modified relaxation time of

τ̄ = τ +
∆t

2
. (3.59)

Hence both the first and second order approximations of the collision integrals give

a result that is virtually the same. This is a specific feature of the lattice Boltz-

mann method, and simultaneously one of the ways of proving the second-order time

accuracy of this method [132]. The rudimentary approximation of the original Boltz-

mann operator by the BGK operator works well in most cases, with the BGK operator

combined with the lattice Boltzmann equation reproducing the continuity and Navier-

Stokes equations. It is one of the reasons for the popularity of this approach, however

there are also two-relaxation-times (TRT) and multi-relaxation- times (MRT) utilis-

ing, as their name suggest, more than one relaxation times. The extended collision

operators mitigate some of the stability and accuracy limitations of the BGK operator.
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f̄i(x+ ci∆t, t+∆t) = f̄i(x, t)−
∆t

τ̄
(f̄i(x, t)− f eq

i (x, t)). (3.60)

The discretised in time and space lattice BGK equation is different from the con-

tinuous BGK in a major way; it can evolve fi towards, immediately or past f eq
i , while

the latter always evolves fi towards f
eq
i . In order to see why, we focus on the discrete

analogue of the spatially homogenous continuous BGK equation in the form

fi(t+∆t) =

(
1− ∆t

τ

)
fi(t) +

∆t

τ
f eq
i . (3.61)

The choice of τ/∆t influences the way that the populations fi relax. Those ways are

Figure 3.5: Relaxation of the BGK operator, including under, full, and over relaxation
with an initial condition of fi(0)/f

eq
i = 1.1 and constant f eq

i . Figure from [109].
Reproduced with permission from Springer Nature.

• Under relaxation, for τ/∆t > 1, where fi decays exponentially towards f eq
i , the

same as in the continuous-time BGK equation,

• Full relaxation for τ/∆t = 1, where fi decays directly to f eq
i ,

• Over relaxation for 1/2 < τ/∆t < 1, where fi oscillates around f eq
i with an

exponentially decreasing amplitude,

• Instability for τ/∆t < 1/2, where fi oscillates around f eq
i with an exponentially

increasing amplitude. This makes τ/∆t ≥ 1/2 a necessary stability condition,

as shown in Fig. 3.5. This ultimately means that we have fully discretised the Boltz-

mann equation in the velocity space, physical space, and time. The intricate collision
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operator was replace with a simpler BGK collision operator. Before fully getting into

the written lattice Boltzmann code, another concept that bears repeating is the sep-

aration of Eq. (3.60) into the streaming and collision sub steps. Looking closely at

the equation, there are two distinct parts, one coming from the integration along the

characteristics fi(x + ci∆t, t + ∆t) − fi(x, t), and the other from the local collision

operator −∆t[fi(x, t)− f eq
i (x, t)]/τ . As a reminder, each lattice site at a point x and

a time t stores q populations fi. In the collision step, each population fi(x, t) receives

a contribution from the collision to become

f∗
i = fi(x, t)−

∆t

τ
[fi(x, t)− f eq

i (x, t)]. (3.62)

The collision is a purely local algebraic operation, where f∗
i is the state of the population

after the collision. In the streaming step, the post-collision populations f∗
i (x, t) stream

along their associated direction ci until they reach the neighbouring lattice site, where

they become:

fi(x+ ci∆t, t+∆t) = f∗
i (x, t). (3.63)

This operation is non-local, where the memory content of f∗
i (x, t) has to be copied

to the lattice site occupying x + ci∆t and overwrite the old information. Vigilance is

required to not overwrite the populations that are still needed. A common method of

avoiding this pitfall is to use two sets of populations, one for reading data and one for

writing data.

As a summary, the lattice BGK equation has two sub steps of collision Eq. (3.62)

and streaming Eq. (3.63). We have derived all that is needed for writing a simple

lattice Boltzmann code, currently with no boundary conditions or forces. Hence, we

will now move to the discussion of the boundary and initial conditions.

3.5 Boundary conditions

In conventional hydrodynamics, the conservation of mass and momentum is described

using a set of partial differential equations[139], which fundamentally cannot be uniquely
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determined without proper initial and boundary conditions. Those conditions allow us

to find the specific solution to the fluid flow problem that is being considered, making it

both a mathematical and physical necessity. As the theoretical framework of modelling

fluid flows is reliant on the same set of equations, namely Navier-Stokes equations, this

additional information is required and contained in the boundary and initial condi-

tions, remaining incomplete without them. In a way, the most important assignment

in simulating a fluid flow problem is to specify the right starting point and boundaries.

Let’s focus on straight boundaries that align with the lattice nodes, which is a

non-complex geometry. In the lattice Boltzmann method, the boundary conditions

apply at boundary nodes xb which are sites that have at least one link to a solid and

a fluid node. The boundary conditions apply to the mesoscopic populations fi rather

than specifying the macroscopic variables such as ρ and u, typically resulting in a non-

trivial task. This is a result of the populations having more degrees of freedom, giving

rise to a non-uniqueness problem that manifests in a ‘zoo’ of different lattice Boltzmann

boundary schemes available. In contrast to conventional numerical methods, the lattice

Boltzmann boundary schemes possess a distinguishing feature: the order of accuracy

and exactness does not match. As an example of this, a second-order accurate scheme

does not exactly accommodate a parabolic solution. In general, these schemes can be

divided into two main categories, the link-wise and the wet-node. In our research we

use and focus on the former.

An example of this approach, as presented by Ladd [140] [141], is also referred to

as the bounce-back on links method. The solid objects are defined by some boundary

surface which intersects some of the velocity vectors ci joining lattice nodes. The sites

inside are designated to be solid, while the sites outside are the fluid. Hence, the

correct boundary condition is taken by identifying the links between the fluid and solid

sites such that if a particle meets a rigid boundary during propagation, it will reflect

back to its original location with its velocity being reversed. In our research we use a

later approach introduced by Nguyen and Ladd [142], that improves the original Ladd

approach (where the fluid occupied nodes both inside and outside the particle for short

timescales) to fully solid particles.
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Let us assume that the colloidal particles are spherical with a geometrical centre,

functioning also as the center of mass, of rc. This center can move continuously across

the lattice with a velocity U, where the angular velocity of the particle is Ω. The

surface of the colloid will be given by a chosen radius which determines which lattice

nodes are inside or outside the colloid, with a lattice node exactly at the solid-fluid

interface chosen to be defined as outside of the colloid.. The boundary links are then

the set of vectors joining lattice nodes which intersect the spherical surface {cb}.

A boundary link is hence defined as joining a node r inside the particle to one

outside at r + cb∆t. If the post-collision distributions are denoted by f∗, then the

distributions must be reflected at the solid surface so that

fb′(r; t+∆t) = f∗
b (r; t)−

2wcbρ0ub.cb
c2s

(3.64)

where the boundary link is such that cb′ = −cb. For clarity, the terms in Eq. (3.64)

are outlined as follows. The wcb are the weights of cb appearing in the distribution

function, ρ0 is the mean fluid density, and ub is the velocity at the boundary. The cs

corresponds to the speed of sound, and as before, is given by cs =
1√
3
. Importantly, the

local density at the fluid site ρ(r; t) in Eq. (3.64) is replaced by the mean fluid density

ρ0 in the second term on the right-hand side. And finally, the velocity at the boundary

is

ub = U+Ω× rb. (3.65)

The force exerted on a single link is given by

Fb(r+ 1
2
cb∆t; t+ 1

2
∆t) =

∆x3

∆t

[
2f∗

b (r; t)−
2wcbρ0ub.cb

c2s

]
cb, (3.66)

with corresponding torque Tb = rb×Fb. The total hydrodynamic force on the particle

is then found by taking the sum of Fb over all the boundary links defining the particle.

There is an associated torque on each link of rb × Fb, which again is summed over all

links to give the total torque on the colloid. By combining Eq. (3.64) and Eq. (3.65)

we can eliminate the velocity at the boundary, ub, and hence split the total force and
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torque on the colloid into a velocity dependent and a velocity independent part, which

then can be used to update the position of the particle for the next time step.

3.6 Liquid crystal inclusion

We have discussed the background of the lattice Boltzmann method itself and given con-

text into a number of standard choices available such as collision operators, boundary

setting or spatial dimensions. As what we are interested in investigating goes beyond

isotropic fluids into the mesophase territory, we use a free energy lattice Boltzmann

model. This is realized by adding a free energy to the problem at hand, defined in

terms of an appropriate order parameter. The particular coupling of the thermo- and

hydro- dynamics is abstracted so that the core of the hydrodynamics does not require

alteration regardless of the choice of additional free energy that is introduced. This is

implemented by a series of call back functions in the free energy at the beginning of the

simulation. Various bulk fluid free energy choices are complemented by an appropriate

surface free energy contributions that alter the order parameter gradients at a solid

surface. In our case, we include the Landau-de-Gennes liquid crystal free energy with

tensor orientational order parameter Qαβ, that can be extended to active fluids and is

related to the Beris-Edwards equation.

3.6.1 Landau de Gennes

Having contextualised the liquid crystal theory in depth earlier, we will now discuss

the way it is incorporated into our specific lattice Boltzmann code. The free energy

functional whose density f(Qαβ, ∂γQαβ) has bulk contributions depending on the sym-

metric traceless tensor Qαβ and elastic (distortion) contributions that depend on the

gradients of the order parameter ∂γQαβ. The bulk contributions are included through

f(Qαβ) =
1
2A0(1− γ/3)Q2

αβ − 1
3A0γQαβQβπQπα + 1

4A0γ(Q
2
αβ)

2, (3.67)
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where A0 is a constant which sets the overall energy scale and γ is a temperature-like

parameter controlling the position in the phase diagram in relation to the isotropic-

nematic transition. The gradient or elastic free energy comes from the combination of

the bend, splay, and twist, that can be described using two elastic constants κ0 and κ1.

f(∂γQαβ) =
1
2κ0(∂αQαβ)

2 + 1
2κ1(ϵαµν∂µQνβ)

2, (3.68)

with ϵαµν being the permutation tensor. The one-constant approximation can be used

here by assuming that κ0 = κ1 = κ. The difference between κ0 and κ1 can be kept for

better understanding, although ultimately we do use the one constant approximation

in the results section.

3.7 Ludwig code

For some background into how the fluid dynamics equations are implemented in the

code for now we focus on the three different aspects of how the liquid crystal modelling

is implemented: fluid, solid, and boundary conditions. For the fluid, the hybrid ap-

proach is used to find the time evolution of the order parameter. It is called a hybrid

approach, as the lattice Boltzman method is used for the general hydrodynamics, while

the Beris-Edwards equation is solved with a finite difference approach. The hydrody-

namic quantities and the order parameter are both solved on the same shared regular

lattice. The velocity field found by using the lattice Boltzmann method contributes

the advection terms and the velocity gradient tensor through a finite difference stencil.

Additionally a body force is computed locally at each lattice site by the divergence

of the stress in Eq. (2.72), that is then coupled to the Navier-Stokes equations. The

distinction between the way a solid and a fluid is assigned on a fluid lattice node for the

order parameter is done by assigning an inside and an outside. This is done by using

the radius of the colloid a0 and its position. Additionally, one can think of a series of

control volumes around each lattice node (see Fig. 3.6) such that the faces are aligned

with the lattice nodes. A set of these establish the solid-fluid boundary in the hybrid
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model. For advective fluxes of the order parameter they are computed at the faces of

the control volumes with the zero normal flux at the solid-fluid interface. Assigning of

the fluxes is done under the assumption of a stationary colloid. The net hydrodynamic

Figure 3.6: The hybrid model. For the lattice Boltzmann part, a surface is defined by
using a set of links fb that involve discrete vectors cb∆t which connect the fluid and
solid sites. For the order parameter the colloid is given by the set of faces. An example
of one is that between the sites i, j and i + 1, j with a unit normal n̂x. Reproduced
from [143].

force is computed by using the bounce back on links. The force on the fluid coming

from the order parameter is done through the discrete divergence of the stress Παβ. For

a fluid, this is achieved by interpolating Παβ to the control volume faces and taking the

difference of them in each direction. The advantage of doing it through the control solid

faces the solid-fluid boundary can be extrapolated, allowing to compute the divergence

of the stress at fluid nodes adjacent to the colloid in the usual way. By summing Παβ

over the relevant solid-fluid control volume faces, the discrete equivalent

F coll
α =

∫
Παβn̂βdS (3.69)

is found. This design ensures that the momentum lost by the fluid is gained by the

colloid, maintaining the global momentum. At this point we can come back to the

motion of such a colloid, that results in changes in its discrete shape. When a fluid

site is destroyed, the order parameter information on it is also lost. For new fluid sites,

the new order parameter information can be added locally either through interpolation

from nearby fluid sites, or from geometrical information from local surface anchoring.

A final note on the boundary conditions implementation in three dimension coming
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Qxx,x Qxy,x Qxz,x Qyy,x Qyz,x Qzz,x

Qxx κ0nx −κ1ny −κ1nz

Qxy κ0ny κ′nx −κ1ny −κ1nz

Qxz κ0nz κ′nx −κ1ny −κ1nz

Qyy κ0ny κ1nx

Qyz κ0nz κ0ny 2κ1nx

Qzz κ0nz κ1nx

Qxx,y Qxy,y Qxz,y Qyy,y Qyz,y Qzz,y

Qxx κ1ny κ0nx

Qxy −κ1nx κ′ny −κ1nz κ0nx

Qxz κ0nz 2κ1ny κ0nx

Qyy −κ1nx κ0ny −κ1nz

Qyz −κ1nx κ0nz κ′ny −κ1nz

Qzz κ0nz κ1ny

Qxx,z Qxy,z Qxz,z Qyy,z Qyz,z Qzz,z

Qxx κ1nz κ0nx

Qxy 2κ1nz κ0ny κ0nx

Qxz −κ1nx −κ1ny κ′nz κ0nx

Qyy κ1nz κ0ny

Qyz −κ1nx −κ1ny κ′nz κ0ny

Qzz −κ1nx −κ1ny κ0nz

Table 3.2: Coefficients of the various derivatives of the order parameter tensor appearing
in six equations for the elements of the order parameter (including Qzz). Note κ0+κ1 =
κ′ and all the coefficients have been multiplied by a factor of 2 in the off-diagonal
equations. Reproduced from [143].

from Eq. (2.38) gives six equations with potentially 18 unknown derivatives of ∂γQαβ,

that in turn correspond to the six elements of the order parameter tensor Qxx, Qxy,

Qxz, Qyy, Qyz, Qzz. The equation corresponding to Qzz must be present to maintain

isotropy, the Qzz itself (and its derivatives) can be replaced by a restriction on the

trace of Qαβ. As such, either solvving a fully determined system including Qzz, and

then imposing tracelessness on the result, or replacing Qzz and solving six equations for

five unknowns, with the sixth equation acting as the constraint will result in the same

answer. Due to the sheer number of the equations and the various coefficients of the

derivatives the Eq. (2.38) is rather cumbersome. Those coefficients are portrayed in

Tab. 3.2. As an example of this, let us consider a flat surface with normal anchoring.

For this surface n = (1, 0, 0), and the six unknowns are the gradients ∂xQαβ at the
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boundary. We can also assume that the tangential gradients ∂yQαβ and ∂zQαβ can be

approximated using a standard method involving only fluid values of Qαβ. We thus

proceed by computing the constant terms that are relevant for normal anchoring

−κ1q0nγ(ϵαγσQσβ + ϵβγσQσα)− w(Qαβ −Q0
αβ)

by using Qαβ from an adjacent fluid site. Then, we can add the tangential gradients to

these constant terms. Finally, the gradients at the surface are found by solving a 6x6

linear algebra problem for ∂xQαβ, allowing the full gradient at the adjacent fluid site

to be constructed.

For concave edges or corners a different approach is required, as it is not possible

to compute the tangential gradients from the usual stencil. Here, either a 12×12 or

18×18 system of equations is solved containing the relevant unknown coefficients from

Tab. 3.2 and the relevant constant terms computed as before.

3.7.1 Parameter Mapping to Physical Units

In order to map our simulation units to physical units we need to calibrate the units of

length, time and pressure. To this end, we relate the lattice spacing ∆x, the algorithmic

time step ∆t and the reference pressure p∗, which are all unity in lattice Boltzmann

units (LBU), to their values in SI units.

The calibration of the length scale relies on choosing an appropriate length to con-

sider. In some cases it is better to consider the diameter D of the colloidal particle,

while in others the dimensions of the microfluidic channel are the better choice. As-

suming the largest radius particle that we consider corresponds to a relatively small

diameter of D = 0.2µm in SI units, then a LBU of length ∆x =̂ 10−8 m becomes = 10

nm SI units. This length scale allows for an accurate resolution of the liquid-crystalline

order structure and flow field around the particle, while keeping the necessary com-

putational resource relatively low. A different characteristic length scale can be set

by considering the dimensions of the microfluidic duct. If, for example, a gap size of

Lx = 24 in LBU corresponds to Lx =̂ 1.2×10−6 m in SI units, we obtain an LBU length
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of ∆x =̂ 5× 10−8 m = 50 nm in SI units.

To obtain a pressure scale, we use the measurements of the Landau-de Gennes

parameters [144] (see Appendix D therein), which suggest

27

2A0 γ
≃ 5× 10−6 J−1m3 = 5× 10−6 Pa−1

for some liquid crystals. Using an example from one of the results sections, choosing

A0 = 0.01 and γ = 3.1 in our simulations leads to a reference pressure of p∗ = 1 LBU

=̂ 108 Pa in SI units.

For the timescale calibration we use the following formula, which relates the rota-

tional viscosity γ1 of the director, to the equilibrium scalar order parameter q and the

order parameter mobility Γ:

γ1 =
2q2

Γ

For example, if we use Γ = 0.5 and bulk energy density parameters that give q ≈ 0.5

since it is assumed that the system is well within the nematic phase. Therefore, the

rotational viscosity γ1 = 1 LBU. Typical values for liquid crystals in SI units are

γ1 = 0.1 Pa s [8]. Together with 1 Pa equating to a pressure of 10−8 in LBU, we obtain

for the algorithmic time step ∆t =̂ 10−9 s = 1 ns.

3.7.2 Using Ludwig

Having introduced the lattice Boltzmann method and the hybrid model, we can now

make a mention of the existing code that is used to obtain our results. The code is

called Ludwig [143] and is largely developed at the University of Edinburgh. It is named

after the Austrian physicist Ludwig Boltzmann, given that it solves the Navier Stokes

hydrodynamic equations using the lattice Boltzmann method. While this parallel code

can be used to solve simple Newtonian fluids, it is broadly used for complex fluids such

as liquid crystals, colloidal suspensions or mixtures. The free energy approach is used

in a framework such that the distinct compositional or orientational order parameters

are evolved with the appropriate coarse-grained dynamics that are fully coupled with
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the fluid interaction. The code is written in standard C and can be used in serial or

in parallel, using the Message Passing Interface (MPI) to achieve distributed memory

parallelism.

To use the code an appropriately chosen serial or parallel configuration is picked and

compiled, which will build the executable, some unit tests, and a handful of utilities.

An input file in the same directory as the executable is needed to successfully run

to code. It is a simple ASCII text file where all the required parameters need to be

specified. After choosing relevant parameters to model and running the executable on

an appropriate computational resource the code will output various data that can be

then post-processed, visualised by using relevant software, and analyzed. The specific

details, including the Ludwig version and an example of a standard input file needed to

reproduce the results, are given in Appendix C. For further information relevant to the

numerical description the reader is referred to the Ludwig code repository and related

literature [145, 146].

3.7.3 Technical limitations

Some technical limitations of the model used in Ludwig should be noted. While the

centre of mass of a particle is integrated off-grid according to Newton’s equation, the

particle in itself is discretised using a stair-case geometry. This requires continuous

remapping of the particle onto the lattice as the particle moves with time. This can

lead to spikes in the force at iteration steps, although these average out over a few

iteration steps with no detrimental effect on the trajectories. The pressure obeys an

ideal gas equation of state and is directly related to the density via p = c2sρ, while the

effect of the constant pressure gradient is modelled through an additional body force

density on the fluid. Both assumptions are not uncommon in the lattice Boltzmann

methodology. While this allows for an accurate modelling of a weakly compressible

fluids, the constant pressure gradient assumption is simplified over the real situation.

Thermal fluctuation have not been included. This is because the simulations were

carried out at a point in the phase diagram that is in the ordered state well away from

the isotropic-nematic transition, meaning that the elastic forces from the anchoring of
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the liquid crystal dominate over thermal forces by orders of magnitude.
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Chapter 4

Static particle in liquid crystal

flow

4.1 Simulation set up

In this chapter we investigate a single fixed particle placed in a channel filled with

a nematic liquid crystal and subject to flow. This is achieved by using the lattice

Boltzmann scheme explained in Chapter 3 to model the liquid crystal through the

dynamics of the Q-tensor using a finite difference scheme and applying the lattice

Boltzmann method to the hydrodynamics. The system consists of a three dimensional

rectangular channel of size Lx×Ly×Lz = 64×32×128 lattice sites, with solid walls at

the top and bottom in the x plane and no slip boundary conditions and the remaining

walls in the the y- and z being periodic. The boundaries in the z-direction will act as

the inlet and outlet of the channel. A pressure gradient Ψ = ∆p/Lz is applied in the z-

direction as a body force density acting on all fluid sites. The sketch of the geometry

is shown in Fig. 4.1.

A single solid particle is discretised with a radius of R = 4.8 lattice sites. The

boundary conditions on the walls and particle surfaces are no-slip and no-penetration,

introduced with the bounce-back on links scheme [109, 140] as explained in Chapter 3.

The surface free energy on the particle that we investigate will have weak homeotropic
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No-slip, no-penetration

No-slip, no-penetration

fluid
velocity u

radius R
Lx

z

y

x

Figure 4.1: Sketch of the computational geometry: We apply no-slip boundary con-
ditions at the walls in x-direction and periodic boundary conditions at the y- and
z-boundaries. Not to scale.

anchoring, with the director having a preferred orientation perpendicular to the surface

of the particle. The particle is fixed in its position, at the center of x- and y-directions

and at a position about 3 radii away from the inlet in the z-direction. The system

is initialised and left to equilibrate for 200,000 timesteps reaching a stable position.

We explore the effect of changing the elastic constant K, viscosity η, order parameter

mobility Γ, and pressure gradient Ψ. In the first instance we look at simulations with

homeotropic wall anchoring, and separately repeated for planar wall anchoring.

Investigations into inertial flows around three dimensional rigid bodies have been

conducted for decades. There has been a lot of focus on the hydrodynamic forces acting

on fixed bodies, such as solid particles or liquid drops, subjected to some prescribed flow

[147]. Simple Newtonian flows around a rigid body in general are ubiquitous in nature

and human activities with one example of many being aerodynamics around buff or

streamlined bodies [148]. Such flows have many applications in engineering, for example

in optimisation of drag coefficient and aerodynamics of cars, planes, submarines or space

shuttles. Returning to the viscous flow past a fixed sphere, it can be considered as a

simplified case of solutions for general immersed bluff-body flows [149]. The behaviour

of the flow past a sphere at varying Reynolds numbers has been studied by a number

of researchers [150–153]. Such studies focused on finding critical values of Reynolds

numbers beyond which the wake of a solid bluff body becomes unstable and develops
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vortex shedding, dramatically dependent on whether the body is free to move or not

[147]. Our Reynolds numbers are small enough that turbulent flow is not a concern.

In this chapter we focus our investigation on the defect structure around the col-

loidal particle and the influence of changing the values of the elastic constant κ (we

operate under the one constant approximation where κ0 = κ1 = κ), mobility param-

eter Γ, dynamic η and bulk ζ viscosities, and the pressure gradient Ψ. We will focus

on a system with homeotropic wall anchoring at the top and bottom walls in the x-

direction. Relevant simulation parameters are outlined in Tab. 4.1. Simulations ran

Variable

Elastic constants κ 0.01, 0.005
Dynamic viscosity η 0.416666, 0.8333333
Bulk viscosity ζ 0.416666, 0.8333333
Mobility parameter Γ 0.25, 0.5

Invariable

Bulk energy scale A0 0.01
Inverse temperature γ 3.1
Wall anchoring strength wwall 0.02
Particle anchoring strength wpart 0.02
Flow alignment parameter ξ 0.7
Density ρ 1.0
Particle radius R 4.8

Table 4.1: Overview of simulation parameters

for 2× 105 iteration steps at various pressure gradients. An individual simulation took

approximately 10 hours to complete using a hybrid Message Passing Interface/OpenMP

parallelisation with 8 MPI- tasks each running on 20 OpenMP threads.

4.2 Homeotropic wall anchoring

For a nematic liquid crystal with homeotropic anchoring at the walls the director is

forced to be oriented parallel to the wall normals. It is known that the degree of

alignment is dependent on anchoring strength and also on the velocity gradient. The

latter means that the alignment is dependent on the pressure gradient.
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As noted earlier, for a colloidal particle in a static liquid crystal with weak homeotropic

anchoring on its surface, we expect either a Saturn ring or a hyperbolic hedgehog. For

small particles Saturn rings are more commonly expected. As an example case with

Γ = 0.5, κ = 0.01,η = ζ = 0.833333 and at a very low pressure gradient of Ψ = 1 · 10−6,

we observe the Saturn ring defect, as shown in Fig. 4.2. This is expected as the pres-

sure gradient is low, leading to a small fluid velocity that does not affect the defect

around the particle. For a state with no flow, the homeotropic wall anchoring induces

Figure 4.2: Saturn ring defect around a colloidal particle at low pressure gradient
Ψ = 1 · 10−6, such that the fluid velocity is v = 2 · 10−4 LBU. Other simulation
parameters include: Γ = 0.5, κ = 0.01, η = ζ = 0.833333.

a nematic order with a director orientation parallel to the wall normals (z-direction in

Fig. 4.1. When the flow is applied, the director flow-aligns to the appropriate Leslie

angle. The nematic mesophase adopts one of the possible conformations, bend or splay.

In both splay and bend the director flow-aligns to a positive Leslie angle in the lower

part of the channel (where there is positive shear) and to a negative Leslie angle in

the upper part of the channel (where there is negative shear). The difference between

the bend state (sometimes called the H-state) and splay state (sometimes called the

V-state) at the centre of the channel comes from the way the director rotates between

the Leslie angles in the lower and upper halves of the channel. In the bend state the

director at the centre is perpendicular to the walls while in the splay state the director

at the centre is parallel to the walls.

When comparing the results for the different simulation variables used, we can use

the Ericksen and Reynolds numbers and the fluid velocity. Here, we take the diameter

of the particle as the characteristic length-scale, and we keep the values of bulk and
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dynamic viscosity to be equal for all combinations of parameters such that

Er =
η · v · 2R

κ
and Re =

ρ · v · 2R
η

(4.1)

are the Ericksen and Reynolds numbers, with η = ζ. Note that the mobility parameter

Γ is not present in either of these dimensionless qualities. The applied pressure gradient

leads to a Poiseuille flow profile in the z− direction, as shown in Fig. 4.1. The fluid

velocity is measured at a position of half the channel length in the direction of flow

away from the particle, meaning the furthest point away from the particle, at the

center of the channel in the x- direction. The size of the system is kept constant,

Lx × Ly × Lz = 64× 32× 128.

4.2.1 Defect structure

Ψ = 1 · 10−5 Ψ = 1.5 · 10−5 Ψ = 2 · 10−5 Ψ = 2.5 · 10−5

Table 4.2: Evolution of the defect around a colloidal particle at increasing pressure
gradients, where Γ = 0.5, κ = 0.01, η = ζ = 0.833333.

Tab. 4.2 shows the defect structure around the particle at increasing pressure

gradients. The perspective is the same as shown in Fig. 4.2, with flow going to the

right, as the z-direction is the direction of flow. This viewing perspective is common

in experiments when looking at flow in channels. The bright green region corresponds

to the defect where liquid crystalline order is reduced. The parameters used in Fig.

4.2 are Γ = 0.5, κ = 0.01 η = ζ = 0.833333. At low fluid velocity, the Saturn ring

remains undistorted, as seen in Fig. 4.2. With increased pressure gradient, the Saturn

ring defect becomes elongated in the wake of the stationary particle and thinner on the

opposite side, starting at 1·10−5. Higher fluid velocities lead to further elongation of the

defect that remains unchanging over time for the constant applied pressure gradient.

The elongation of the Saturn ring defect around a static obstacle has been observed
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experimentally [102]. Eventually after a critical value is reached, the defect is no longer

a Saturn ring defect. It now more closely resembles a cap, upstream from the particle.

The transition between the elongated Saturn ring defect and the ‘cap’ defect occurs

at a pressure gradient roughly between 2.35 · 10−5 and 2.4 · 10−5, which results in a

velocity between v = 0.00802 and v = 0.00905. This transition occurs together with

the reorientation of the director field such that the director goes from bend to splay.

We shall refer to this behaviour as the bend-to-splay transition.

Ψ = 1 · 10−5

Ψ = 1.35 · 10−5

Ψ = 1.4 · 10−5

Ψ = 1.5 · 10−5

Table 4.3: Evolution of the defect around a static colloidal particle at increasing pres-
sure gradients, where: Γ = 0.25, κ = 0.01, η = ζ = 0.833333.

Tab. 4.3 shows the defect structures at increasing pressure gradient for the param-

eters Γ = 0.25, κ = 0.01, η = ζ = 0.833333, with the same perspective as Fig. 4.2.

The change between this table and Tab. 4.2 is that the mobility parameter Γ is half

of what it was in the previous case. As shown, the Saturn ring defect is elongated in

the wake of the particle at a pressure gradient of Ψ = 1.5 · 10−5 and thinned upstream

of the particle. With increasing flow velocity, the elongated shape now has a section

in furthest away from the particle that is changes from an elongated ring into a cap.

Increasing the applied pressure even further, leading to a fluid velocity of v = 0.00403
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LBU leads to a stable defect that resembles a safety pin with a further flat elongation of

the defect the most far away from the particle. Again, there is a critical value of applied

pressure gradient, between Ψ = 1.4 · 10−5 and Ψ = 1.5 · 10−5 and as such the velocity

(0.00403 − 0.00507 LBU) after which a bend to splay transition occurs. The bend to

splay transition again occurs while the defect undergoes the transition from an elon-

gated Saturn ring to an upstream cap. The critical value of the transition here (Tab.

4.3) occurs at roughly half the fluid velocity of the previous case shown in Tab. 4.2.

Since the velocity is halved while the elastic and viscosity parameters remain constant,

the Ericksen and Reynolds are also halved as shown in Tab. 4.4. As the only variable

changed is the mobility parameter Γ, we can conclude that this parameter effects the

critical value at which the bend to splay transition occurs. Detailed information about

the applied pressure gradients, fluid velocities and dimensionless numbers is complied

in Tab. 4.4.

Table 4.4: Ericksen and Reynolds numbers at different pressure gradients Ψ and fluid
velocity v for simulations with the elastic constant κ = 0.01. Part a) shows results
for Γ = 0.25, η = ζ = 0.833333, while part b) shows the results for Γ = 0.5, η = ζ =
0.833333. The grey line marks the transition point.

(a) Γ = 0.25, η = ζ = 0.833333

Ψ v Er Re

1 · 10−5 0.00257 2.06 0.0296
1.35 · 10−5 0.00378 3.03 0.0436
1.4 · 10−5 0.00403 3.22 0.0464

1.5 · 10−5 0.00507 4.06 0.0584
2 · 10−5 0.00701 5.61 0.0808
2.5 · 10−5 0.00899 7.19 0.104

(b) Γ = 0.5, η = ζ = 0.833333

Ψ v Er Re

1 · 10−7 0.00002 0.0158 0.000228
1 · 10−6 0.0002 0.160 0.00230
1 · 10−5 0.00290 2.32 0.0334
1.5 · 10−5 0.00477 3.81 0.0549
2 · 10−5 0.00672 5.38 0.0774
2.3 · 10−5 0.00784 6.28 0.0904
2.35 · 10−5 0.00802 6.41 0.0924

2.4 · 10−5 0.00905 7.24 0.104
2.5 · 10−5 0.00946 7.56 0.109
5 · 10−5 0.0199 15.89 0.229
1 · 10−4 0.0413 33.04 0.476

We now focus on the defect behaviour for varying pressure gradient with the pa-

rameters Γ = 0.5, κ = 0.005, η = ζ = 0.833333. This is shown in Fig. 4.5. As

in the previous cases, the Saturn ring is elongated at lower pressure gradient, here

Ψ = 1.35 · 10−5. This elongated defect with higher fluid velocity reaches a state where
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Ψ = 1.35 · 10−5

Ψ = 2 · 10−5

Ψ = 2.35 · 10−5

Ψ = 2.5 · 10−5

Table 4.5: Evolution of the defect around a static colloidal particle at increasing pres-
sure gradients, where: Γ = 0.5, κ = 0.005, η = ζ = 0.833333.

the ring elongation extends to its maximum stretch, with a cap like defect presenting at

the furthest point away from the particle in its wake. Following that, the bend to splay

transition and reorientation of the defect, from resembling a safety pin to an upstream

cap, occurs for a fluid velocity between v = 0.00894 LBU and v = 0.00915 LBU. This

critical value is at occurs at the same applied pressure gradient as in the case with

Γ = 0.5, κ = 0.01, η = ζ = 0.833333 (shown in Tab. 4.2), where the only parameter

difference between those two scenarios is in the elastic constant, here κ = 0.005. As

the critical value occurs for the same fluid velocity and there is no changes in the vis-

cosity parameters, the Reynolds numbers are the same. However, the Ericksen number

is halved, as the elastic constant value was halved. The elastic constant changes the

stretch of the elongated defect, such that the distance between the particle position

and the beginning of the cap in the wake of the particle is 1.8 times greater (45 lattice

units) than the same distance when the elastic constant is twice as large (25 lattice

units).

Moving on to the last case for the dynamic and bulk viscosities equal to η = ζ =
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Ψ = 1 · 10−5

Ψ = 1.15 · 10−5

Ψ = 1.3 · 10−5

Ψ = 1.5 · 10−5

Table 4.6: Evolution of the defect around a static colloidal particle at increasing pres-
sure gradients, where: Γ = 0.25, κ = 0.005, η = ζ = 0.833333.

0.833333, we look at the defect behaviour for the increasing pressure gradients with

parameters Γ = 0.25 and κ = 0.005. The resulting defect structures for some chosen

pressure gradients are shown in Tab. 4.6. The Saturn ring defect is elongated at the

lower pressure gradients for a system in the bend state, until reaching a critical value

of velocity between v = 0.00484 to v = 0.0053 where the director is in the splay state.

As before, the director goes from an elongated ring to a cap in the upstream of the

particle. The elongation of the defect is consistent as in the case with the same value of

the elastic parameter κ in Tab. 4.5. The values for the critical velocity are in the same

range as in the case with the same mobility parameter Γ, which is half of the velocity

for the cases where Γ is twice as large. An extended overview for the applied pressure

gradient, fluid velocity, Ericksen and Reynolds numbers is given in Tab. 4.7

We have now discovered that the mobility parameter Γ influences the values of

fluid velocity at which the director reorients, while the elastic constant κ affects the

size and shape of the defect. The exploration of the defect structures for the different

parameters lead us to 3 types of defect orientations: the expected Saturn ring defect

at very low fluid velocities, the elongated Saturn ring in the wake of the particle, and
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Table 4.7: Ericksen and Reynolds numbers at different pressure gradients Ψ and re-
sulting fluid velocity v for simulations with the elastic constant κ = 0.005. Part
a) gives the results for Γ = 0.25, η = ζ = 0.833333, while part b) gives results for
Γ = 0.5, η = ζ = 0.833333. The grey line marks the transition point.

(a) Γ = 0.25, η = ζ = 0.833333

Ψ v Er Re

1 · 10−5 0.00301 4.81 0.0346
1.15 · 10−5 0.00354 5.66 0.0408
1.3 · 10−5 0.00409 6.55 0.0472
1.35 · 10−5 0.00450 7.21 0.0519

1.4 · 10−5 0.00484 7.74 0.0557
1.5 · 10−5 0.0053 8.48 0.0611
2 · 10−5 0.00726 11.62 0.0837
2.5 · 10−5 0.00926 14.81 0.107

(b) Γ = 0.5, η = ζ = 0.833333

Ψ v Er Re

1.35 · 10−5 0.00464 7.431 0.0535
2 · 10−5 0.00724 11.58 0.0834
2.35 · 10−5 0.00894 14.30 0.103
2.38 · 10−5 0.00910 14.56 0.105
2.39 · 10−5 0.00915 14.63 0.105

2.4 · 10−5 0.00915 14.63 0.105
2.5 · 10−5 0.00970 15.52 0.111

a cap like defect upstream of the particle. The elongated Saturn ring can vary in its

presentation, through the length of the elongation, the cap like end at the rightmost

point in the wake of the particle, or a safety pin like appearance.

The same investigation into the critical values for the transition from splay to bend

and the defect structure effects can be repeated for the previously used parameters of Γ

and κ, but this time for halved values of the dynamic η and bulk ζ viscosities, i.e. η =

ζ = 0.416666. The results of those simulations are presented in Tab. 4.8. Comparing

the results between simulations with η = ζ = 0.416666 and η = ζ = 0.833333 we

can see that for like to like values of Γ and κ, the critical transition velocity is in the

same range of values regardless of the dynamic and bulk viscosity changes. There are

differences in the values of pressure gradients that need to be applied to result in the

same fluid velocity. Higher viscosity relies on higher values of pressure to obtain the

same fluid velocity, while lower pressure is necessary for lower viscosity. This matches

the expectations of real world behaviour.

Both the Ericksen and Reynolds numbers are directly proportional to the fluid

velocity. Additionally, the Ericksen number is directly proportional to the bulk and

dynamic viscosities, while the Reynolds number is inversely proportional to those vis-

cosities. Hence, as the viscosity is halved, for the corresponding values of Γ and κ the

Ericksen number is halved, while the Reynolds number is doubled. In all of the consid-
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Table 4.8: Appplied pressure gradient Ψ, fluid velocity v, Ericksen and Reynolds num-
bers for simulations with η = ζ = 0.416666. The elastic constant κ and the mobility
parameter Γ values are given separately for each sub-table. The grey line marks the
transition point.

(a) Γ = 0.25, κ = 0.01

Ψ v Er Re

6.5 · 10−6 0.00233 0.932 0.0537
8.5 · 10−6 0.00353 1.41 0.0813
8.8 · 10−6 0.00366 1.47 0.0844
8.9 · 10−6 0.00378 1.51 0.0870

9 · 10−6 0.00484 1.94 0.112
1 · 10−5 0.00576 2.30 0.133

(b) Γ = 0.5, κ = 0.01

Ψ v Er Re

1 · 10−5 0.00509 2.04 0.117
1.15 · 10−5 0.00614 2.46 0.141
1.35 · 10−5 0.00750 3.00 0.173
1.40 · 10−5 0.00791 3.16 0.182

1.50 · 10−5 0.0100 4.01 0.231

(c) Γ = 0.25, κ = 0.005

Ψ v Er Re

6.5 · 10−6 0.00303 2.43 0.0699
7.9 · 10−6 0.00391 3.13 0.0901
8 · 10−6 0.00401 3.21 0.0924
8.1 · 10−6 0.00413 3.30 0.0951

8.5 · 10−6 0.00483 3.86 0.111
1 · 10−5 0.00618 4.94 0.142

(d) Γ = 0.5, κ = 0.005

Ψ v Er Re

1 · 10−5 0.00596 4.76 0.137
1.15 · 10−5 0.00702 5.61 0.162
1.35 · 10−5 0.00893 7.14 0.206
1.36 · 10−5 0.00905 7.24 0.209

1.40 · 10−5 0.00973 7.78 0.224
1.50 · 10−5 0.0105 8.39 0.242

ered cases the Ericksen and Reynolds numbers are small, with 0.0158 < Er < 33.04

and 0.000228 < Re < 0.476.

4.2.2 Director field

The defects shown earlier are defined through the underlying director around the par-

ticle and in the channel. This director can be thought of and presented as a field

of uniaxial lines that give the local preferred orientation of the liquid crystal. The

orientation of those lines varies at different flow velocities. As an example of the differ-

ences in the director field we look at three different pressure gradients of Ψ = 1 · 10−6,

Ψ = 1 · 10−5, and Ψ = 2.5 · 10−5 obtained for simulations with parameters Γ = 0.5,

κ = 0.01, η = ζ = 0.833333, as shown in Fig. 4.3. The perspective is such that the x-

walls are at the top and bottom, while the direction of flow is to the right. The director

is color coded with respect to the z-component. That is, in the direction of flow, such

that values of 1 (red) are parallel to the direction of flow and values of 0 (blue) are
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fully perpendicular to the direction of flow. Homeotropic anchoring conditions on the

x- walls can be seen through the dark blue director orientation on the top and bottom

of director fields in Fig. 4.3. At a relatively low pressure gradient of Ψ = 1 · 10−6 the

Ψ = 1 · 10−6 Ψ = 1 · 10−5 Ψ = 2.5 · 10−5

Figure 4.3: Director structure for metastable states at different pressure gradients Ψ
for a simulation with parameters of Γ = 0.5, κ = 0.01, η = ζ = 0.833333. The x- walls
are on the top and bottom with imposed homeotropic anchoring. The flow goes to the
right, in the z- direction.

system is the bend state with some flow alignment, with a Saturn ring defect around

the particle, as seem in the leftmost image of Fig. 4.3. At ten times the pressure

gradient, the flow alignment is greater, with some minor elongation of the defect in the

wake of the particle, shown in the middle of Fig. 4.3. We can see that the region in the

wake of the particle between the particle and the elongated ring now has the director

aligned parallel to the direction of flow. In the last case, for a higher still flow velocity,

the director everywhere but at the walls is fully parallel to the direction of flow. This

is after a bend to splay transition has occurred.

As mentioned earlier, we found three different stable defect shapes. The standard

Saturn ring, the elongated ring and a cap like defect. The elongated ring is of most

interest, which we shall explore it through the director field, in two configurations:

elongated ring and a safety pin like defect.

Fig. 4.4 shows a particle with an elongated defect ring for parameters Ψ = 2 · 10−5,

κ = 0.01, Γ = 0.5, η = ζ = 0.833333, including three slices through the xy- plane

showing the director field. The slices are shown in more detail in Fig. 4.5. The director

104



a
b c

Figure 4.4: Director field structure of a particle and its defect (light grey) in a steady
state with Ψ = 2 · 10−5. The slices showcase the differences in the director field. The
inset shows the yz-viewing angle.

a b c

Figure 4.5: Director field in the xy- plane at points as shown in Fig. 4.4. Slice a is
before the ‘bulk’ of the defect, slice b is through the bulk and slice c is just after the
defect.

orientation in the xy- plane is shown in Fig. 4.5 at three different positions. The x-

walls here are on the right and left hand-sides of the slice, showing only the central

region. In part a, the director field is at half distance between the particle position

and the end of the defect. There is a region of orientation parallel to the direction of

flow, that is in the center shown in red. This region starts from the defect, shown in

shaded grey and is locally stable. Eventually with a higher fluid velocity this region

will expand until the defect extends so far out that it meets its image resulting in the

entire channel being in that splay orientation. The second slice, b, goes through the
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defect at a further away point, and it can be seen that there is no region with the

director parallel to the flow. Around the defect there is a slight reorientation so that

at the very center of the channel through the x- and y- directions the director is not

fully perpendicular to the flow. Finally, the last slice c is at a point beyond the defect.

It shows that the orientation through the middle of the y− direction is perpendicular

to the flow direction.

Figure 4.6: Director field in the xz-plane through the middle of the channel for Ψ =
2 · 10−5. The particle and defect are represented by the gray shadow on the left and
right side of the image respectively.

Fig. 4.6 shows the vital director information around the particle and its defect in

the middle of the channel in the xz- plane. The shaded region on the left is the particle,

while the one on the right is the defect. We can see that the director is oriented parallel

to the direction of flow in between the particle and its defect at the center of the channel.

The overall field is stable, as the defect does not change any further with time under

constant pressure gradient. The director flow aligns to the Leslie angle in the top and

bottom of the channel, which can be clearly seen far away from the particle. This state

is in the bend configuration in the region that does not include the particle and its

defect. The presence of both creates a local change in the director orientation where

the perpendicularly oriented directors would be in the middle of the channel but is now

pushed closer to the top and bottom x- walls.

Another defect worth describing is the ‘safety pin’ like defect, that exists for a very

narrow range of fluid velocities. This region is so narrow in fact, that it is unlikely to
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be able to be observed in experiments with currently available methods. An example

of this for a system with parameters Γ = 0.5, κ = 0.1, η = ζ = 0.833333 at a pressure

gradient of Ψ = 2.35 · 10−5 shown in Fig. 4.7. The inlet of the figure shows the safety

pin defect in the yz- plane with the flow going towards the right. We look at six slices

in the xy- plane at different positions marked a-f, going from different positions near

through or near the defect. Those slices are shown separately in more detail in Fig.

4.8. Each slice shows a defect region focused nearby the defect, not across the entire

channel in the xy- plane, with the x walls being to the right and left hand-side of the

slices. Part a of Fig. 4.8 shows a slice at a position between the particle and the

a b c
d e f

Figure 4.7: Director field structure of a particle and its defect at a metastable state
with constant applied pressure gradient of Ψ = 2.35 · 10−5. The slices showcase the
differences in the director field at different positions. The inlet shows that particle and
defect in the yz- plane.

sleeve section, roughly equidistant from each. The grey outline shows the defect. It

can be seen that the region between the defect is oriented in parallel to the direction

of flow, and perpendicularly to the flow direction between the defect and the wall.

This perpendicular orientation (marked in dark blue) continues in a loop around the

differently oriented molecular region bounded by the defect. In part b of the same

figure, the slice is taken at a position closer to the sleeve defect but not yet through

it. The region of the liquid crystal aligned with the direction of flow is now smaller, as

before, present in between the defect marked as the grey region. The loop of molecules
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a b c

d e f

Figure 4.8: These are slices in the xy-plane through the director field at different points
as seen in Fig. 4.7. Sections a) and b) are before the ‘sleeve’, c) is through the sleeve,
d) in between the sleeve and the tip of the defect, e) through the tip, and f) away from
the tip of the defect.

pointing in the direction perpendicular to the flow direction is now smaller. Outside of

that the liquid crystal molecules are pointing in the direction in between parallel and

perpendicular to the flow. Slice c goes through the sleeve defect, showing a circular

region in dark grey that corresponds to the defect. Within the sleeve, as before, the

region can be described by a director that is parallel to the direction of flow. This

time however, there is no region of dark blue colour coded molecules, corresponding to

orientation that is perpendicular to the flow direction, around the defect. Part d shows

a section of molecular arrangement between the sleeve and the tip of the defect. The

two gray regions show the defect as expected, with the molecules located between them

being oriented parallel to the direction of flow. This region is small, with small changes

in the orientation of the molecules around it. The remaining two sections e and f show

slices through the tip and through a position after the defect respectively. In part e

we see a small change in the defect structure such that the liquid crystal molecules

orientation resembles an hourglass shape, with the narrowest point being at the defect.

In the final slice f without a defect, we can see an expected standard orientation of

the liquid crystal within this region of the channel. This f slice shows the bend state
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orientation of the region, as the director at the centre is perpendicular to the walls.

Figure 4.9: Director orientation in a xz- plane around the particle and its defect for an
applied pressure gradient of Ψ = 2.35 · 10−5.

Fig. 4.9 shows the director orientation in the channel with an applied pressure

gradient of Ψ = 2.35 · 10−5, the same as in Fig. 4.7, with a viewing perspective in the

xz− plane. The director field is shown as a slice near the particle and the defect around

it through the middle of the channel with the direction of flow being to the right. The

light grey shaded region on the left represents the particle, while the dark grey regions

on the right correspond to the defect within this plane. The system reached a locally

stable equilibrium as it does not change any further with the constant pressure gradient.

What is easily noticed is the region exisiting between the particle and its defect where

the director is parallel to the direction of the flow (shown in red). Otherwise, in the

center position the preferred orientation of the liquid crystal molecules is perpendicular

to the direction of flow, consistent with the bend orientation before the transition of

splay. This transition occurs at higher pressure gradient, causing a reorientation of the

defect and changes in the director field. This locally stable elongation of the defect

is of note in our simulations. In contrast to experimental methods it is much simpler

to observe and analyse the director field viewed in between the top and bottom walls,

rather than through them as it is done under cross - polarises.
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4.3 Summary

In this chapter (Chapter 4) we focus on a fixed particle in a channel undergoing flow

of a nematic liquid crystal. Through studying the behaviour of the Saturn ring de-

fect under varying fluid velocities several key findings were unveiled. At low fluid

velocities, the elongation of the Saturn ring was observed leading to a bend to splay

transition. This transition was found to be linked to the reorientation of the director

field within the area between the colloid and the ring. Moreover, the mobility param-

eter Γ was identified as a significant factor influencing the critical value of the bend to

splay transition, indicating its crucial role in the defect behavior under different con-

ditions. Furthermore, our investigation highlighted the impact of the elastic constant

κ on the size and shape of the elongated Saturn ring defect. Specifically, variations

in κ were shown to affect the length of the elongation as well as the shape, including

the distinctive safety pin like defect. This suggests that the elastic properties play a

crucial role in determining the structural characteristics of the defects observed. The

elongation observed here is similar to previous experimental result [102], which focused

on microfluidic flow of a nematic around a fixed cylinder. Interestingly, the simulations

revealed that the dynamic η and bulk ζ viscosity did not have a significant impact

on the critical transition values between bend and splay configurations. This finding

suggests that while certain parameters such as Γ and κ play crucial roles in the defect

behavior, others like viscosity have a lesser influence. These insights provide valuable

information for understanding the complex dynamics of the Saturn ring defects under

varying fluid conditions. A such, the key results of defect elongation and influences of

the κ and Γ parameters align with the project aim of defining factors of enhancing our

understanding of nematic liquid crystal defect behaviour in flow.

Thanks to a collaboration with Professor Uroš Tkalec, we found that the defect

elongation was observed both experimentally and in simulation, however due to the

differences between the defect types around the colloid those effects are not the same.

This creates a clear scope for further research into the highly confined hyperbolic hedge-

hogs and Saturn rings in simulation and in experiments respectively. This is to match
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the simulations to experiments, and experiments to simulations as mentioned in section

2.12.

After focusing on a fixed particle and finding the appropriate simulation parameters

we can now move to the investigation into dynamic particles presented in the next

chapter, Chapter 5, and published [1]. There we we simulate the behaviour of a free

flowing particle in a microfluidic channel, focusing on the changes due to increasing

pressure gradient and also on the influence of particle size.
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Chapter 5

Particle migration in liquid

crystal flow

5.1 Simulation set up

In this chapter we expand on the dynamics of a single colloidal particle in a nematic

liquid crystal environment, as presented in [1]. Through the interplay of the viscous,

elastic and inertial effects we observe novel behaviour and positional control of a col-

loidal particle in a microchannel nematic liquid crystal flow. We explore the presence of

multi-stability of particle position and show that its equilibrium is tunable through the

applied pressure gradient. Fig. 5.1 shows a sketch of the three dimensional computa-

tional geometry, which consists of a channel of dimensions Lx×Ly×Lz = 128×64×256

lattice sites. We used a hybrid lattice Boltzmann scheme [154] that treats the dynamics

of the Q-tensor order parameter with a finite-difference scheme and applies the lattice

Boltzmann method to the hydrodynamic variables, as explained in Chapter 3. Parallel,

solid walls are positioned at x = 0 and x = Lx, whereas periodic boundary conditions

are applied in y- and z-direction with the z-boundaries acting as inlet and outlet of the

microchannel. No-slip and no-penetration boundary conditions are imposed through

the bounce-back on links scheme [109], [140] on the walls and particle surfaces. The

surface free energy (both at the walls and the particle) leads to weak anchoring condi-
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Figure 5.1: Sketch of the computational geometry: We apply no-slip boundary con-
ditions and homeotropic anchoring conditions at the walls in x-direction and periodic
boundary conditions at the y- and z-boundaries.

tions with a preferred orientation of the director normal to the surfaces. The pressure

gradient Ψ = ∆p/Lz is applied in z-direction as body force density that acts on all fluid

sites besides the forces that arise from the thermotropic and hydrodynamic stresses.

The thermotropic force on the particle F (LC) is integrated using a finite-difference

scheme in Q and its gradients. The hydrodynamic force F (HD) is integrated in a

similar way using the hydrodynamic stress tensor Π(HD), which is directly accessible in

the lattice Boltzmann method through second order moments of the non-equilibrium

distributions. The total force F = F (LC) + F (HD) is fed into a molecular dynamics

algorithm to integrate the motion of the particles.

The values of parameters used in the simulations in this chapter are given in Tab.

5.1. Typical simulations ran for 8 × 105 iteration steps at various pressure gradients.

An individual simulation took approximately 16 hours to complete using a hybrid

Message Passing Interface/OpenMP parallelisation with 4 MPI- tasks each running on

20 OpenMP threads.
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Table 5.1: Overview of simulation parameters

Variable

Particle radius R 7.2, 9.6
Dynamic viscosity η 0.166667, 0.8333333
Bulk viscosity ζ 0.166667, 0.8333333

Invariable

Bulk energy scale A0 0.01
Inverse temperature γ 3.1
Elastic constants κ 0.01
Mobility parameter Γ 0.5
Wall anchoring strength wwall 0.02
Particle anchoring strength wpart 0.01
Flow alignment parameter ξ 0.7
Density ρ 1.0

5.2 Particle migration

5.2.1 Segré Silberberg effect

Before presenting the results for particle migration in a nematic liquid crystal, we will

first introduce additional information for future reference. For a state with no flow, the

homeotropic wall anchoring induces a nematic order with a director orientation parallel

to the wall normals (x-direction in Fig. 5.1). When the flow is applied, the director

flow-aligns to the appropriate Leslie angle. The nematic mesophase adopts one of the

possible conformations, bend or splay, as shown in Fig. 5.2.

Figure 5.2: Bend or H-state (left) and splay or V-state (right) at the centre of the
channel.
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In both splay and bend the director flow-aligns to a positive Leslie angle in the

lower part of the channel (where there is positive shear) and to a negative Leslie angle

in the upper part of the channel (where there is negative shear). The difference between

the bend state (sometimes called the H-state) and splay state (sometimes called the

V-state) at the centre of the channel comes from the way the director rotates between

the Leslie angles in the lower and upper halves of the channel. In the bend state the

director at the centre is perpendicular to the walls while in the splay state the director

at the centre is parallel to the walls.
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Figure 5.3: Particle migration in an isotropic fluid due to the Segré-Silberberg effect.
Shown are particle position x, across the channel gap, versus the particle position
z, along the channel, for a variety of starting positions (color coded) and pressure
gradients in the range 1.25 × 10−6 ≤ Ψ ≤ 1.75 × 10−5. The size of the channel is
Lx × Ly × Lz = 128× 64× 256. All quantities are given in LBU.

For a classical Newtonian fluid, or in a liquid crystal above the isotropic-nematic

transition point, there is a preferential migration of colloidal particles to an x-position

between the centre and wall of the channel. This is referred to as the Segré-Silberberg

effect, first observed by Segré and Silberberg [155]. It is shown in Fig. 5.3 through

particle trajectories for all starting positions xs at all applied pressure gradients Ψ.

The starting positions are all in the bottom half of the channel, as the other part of the
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channel would result in symmetrical behaviour. Two aspects of the Segré-Silberberg

effect are important to note for comparison to our results. Firstly, except for particles

that start exactly at the centre of the channel, migration occurs to a single equilibrium

x-position over time. Secondly, the value of that equilibrium position x does not vary

significantly at low Reynolds numbers. As seen in Fig. 5.3, our simulations of an

isotropic fluid show these aspects of the Segré-Silberberg effect: all particles migrate to

an equilibrium at x-position of approximately 38 regardless of their starting position

or applied pressure.

It should be noted that the Segré-Silberberg equilibrium position seen in Fig. 5.3 is

not at the well-known 0.6 tube radii (or channel half-widths in the planar case) from the

centre line, but at approximately 0.4 channel half-widths. This shift of the equilibrium

position towards the channel centre has been observed before in simulations [156, 157].

This can be attributed to our particle confinement ratio of 2R/Lx = 19.2/128 = 0.15. In

contrast, the analytical results [158, 159] were obtained for particles that are negligibly

small compared to the tube diameter or gap width, corresponding closer to a zero

confinement ratio. Our study uses Reynolds numbers that are around two orders of

magnitude smaller than those in previous simulation studies [156, 157], which is known

to result in equilibrium positions that are closer to the channel centre.

5.2.2 Migration in a nematic

Having given additional context to the expected particle behaviour in an isotropic

liquid, we can now explore what happens in a nematic liquid crystal. We focus on the

migration behaviour of a single particle at different pressure gradients Ψ(= ∆p/Lz)

and start positions xs in the mesophase.

Fig. 5.4 shows particle trajectories x(z) for starting positions in the lower portion of

the channel (the channel centre is at x = 64). For low pressure gradients Ψ = 7.5×10−6

(red lines in Fig. 5.4) the particle migrates either to the channel walls (for starting

position xs ≤ 40) or towards the centre of the channel (for xs ≥ 44). Particles that

start at the centre stay in that position, while those further away from the centre show

a tendency to overshoot and remain in an off-centre position. At slightly larger pressure
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Figure 5.4: Particle trajectories for particle radius R = 9.6 at sub-critical pressure
gradients Ψ = 7.5×10−6, 8.125×10−6, 8.75×10−6, showing particle x-positions across
the channel gap versus the z-distance travelled in the flow direction for various initial
positions xs. The particle Ericksen numbers Er (particle Reynolds numbers Re) are
from front to back Er= 25.62 (Re= 0.37), Er= 27.91 (Re= 0.40), Er= 30.20 (Re= 0.43).
All quantities are given in LBU.

gradients Ψ = 8.125×10−6, 8.75×10−6 (blue and green lines in Fig. 5.4, respectively),

this bi-stability remains, but with the division between migration towards the wall

or centre now at around xs ≃ 38. Some trajectories exhibit the onset of a pull-back

behaviour from overshot off-centre positions towards the centre, in particular for the

larger pressure gradient of Ψ = 8.75 × 10−6. Additionally for low pressure gradients,

Ψ ≤ 5 × 10−6, we also observe off-centre equilibrium positions in the form of a weak

attractor that moves to the channel centre with increasing pressure gradient.

A further increase in the pressure gradient leads to a new type of preferential migra-

tion behaviour [1]. In Fig. 5.5 we see that for Ψ = 9.125×10−6 a pronounced trajectory

kink emerges at x ≃ 50− 53. A precursor of this effect is visible for lower pressure gra-

dients in Fig. 5.4. For the pressure gradients Ψ = 9.6×10−6 (blue lines in Fig. 5.5 this

kink transitions into an emergent particle attractor, representing a third preferential

position in addition to the channel centre and the wall. At Ψ = 9.6× 10−6 this emer-

gent attractor is located at x ≃ 48 and trajectories with initial positions 40 < xs < 50

migrate towards the attractor. Increasing the pressure gradient further leads to a move-

ment of the emergent attractor towards the wall, and for Ψ = 1.125×10−5 the attractor

position is x ≃ 40.
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Figure 5.5: Particle trajectories for particle radius R = 9.6 at pressure gradients Ψ =
9.125× 10−6, 9.6× 10−6, 1.125× 10−5, showing particle x-positions across the channel
gap vs. the distance travelled in the flow direction for some initial positions xs. The
emergence of the particle attractor is shown for Ψ = 9.6 × 10−6, 1.125 × 10−5. The
particle Ericksen numbers Er (particle Reynolds numbers Re) are from front to back
Er= 31.58 (Re= 0.45), Er= 33.33 (Re= 0.48), Er= 39.57 (Re= 0.57). All quantities
are given in LBU.

Fig. 5.6 shows the complete set of trajectories for a particle with radius R = 9.6 and

pressure gradients ranging from Ψ = 1.25×10−6 to 1.75×10−5. The first row of Fig. 5.6

shows results for low pressure gradients Ψ = 1.25×10−6, 2.5×10−6, 5×10−6, indicating

typical behaviour at low pressure gradients of migration toward the wall or toward the

weak attractor region that moves closer to the channel centre with increasing pressure

gradient. In all cases the director remains in the bend state, as indicated by blue

lines. The second row of Fig. 5.6 shows trajectories for intermediate pressure gradients

Ψ = 7.5× 10−6, 8.75× 10−6, 9.125× 10−6, for which we can observe trajectories with

overshooting and pull-back behaviour as well as a transition from the bend (blue lines)

to the splay (red lines) state, through an intermediate state (black lines). For the lowest

of these intermediate pressure gradients, Ψ = 7.5× 10−6, overshooting can be seen.

Overshooting followed by pull-back to the centre is seen for Ψ = 8.75× 10−6. This

overshoot behaviour has disappeared at the higher pressure gradient of Ψ = 9.125 ×

10−6. In all cases of overshoot and pull-back there is a bend to splay transition. The

precursor of the emergent attractor can be seen in the trajectories for the 9.125× 10−6
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Figure 5.6: Particle trajectories in a nematic liquid crystal host phase for particle
size of R = 9.6 and applied pressure gradients ranging from Ψ = 1.25 × 10−6 to
1.75× 10−5. Blue lines indicate that the director structure is in a bend state, whereas
red lines indicate that the director has transitioned to the splay state. Black lines
mark a transition state between bend and splay. The particle Ericksen numbers Er and
particle Reynolds numbers Re are given in each sub-plot. All quantities are given in
LBU.
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case, the right most image of the second row of Fig. 5.6. For the highest intermediate

pressure gradient, Ψ = 9.6 × 10−6, the third attractor state emerges. The last two

rows of Fig. 5.6 cover the higher range of pressure gradients, for which the emergent

attractor state is possible, albeit for sufficiently high pressure gradients. It is clear that

the position of the emergent attractor state moves towards the wall with increasing

pressure gradient. To further check the consistency of our findings, we also ran a

number of additional simulations with R = 9.6 at a lower shear and bulk viscosity

η = ζ = 1/6, which led to the same equilibrium position and confirmed these results.
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Figure 5.7: Phase diagram of the preferential migration of the colloidal particle in a
nematic host phase. Coloured regions show the equilibrium particle position (wall,
weak attractor, emergent attractor, centre) as a function of the initial x-position of
the particle and the applied pressure gradient Ψ. Equilibrium director bend states are
marked with dots, whereas equilibrium splay states are shown with crosses. Subplots
(a)-(e) show the scalar order parameter (green isosurface showing the low order region)
and director field (short coloured lines) around the particle for typical equilibrium
states: (a) bend state, centre position; (b) bend state, wall position; (c) bend state,
emergent attractor position; (d) splay state, centre position; (e) splay state, weak
attractor position. The centre of the channel is marked by the horizontal blue line.

The main plot in Fig. 5.7 summaries the results, showing a phase diagram of the
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equilibrium position as a function of the starting position xs and the applied pressure

gradient Ψ. This presents an overview of novel migration behaviour observed within

the system under investigation [1]. For particles initially close to the walls, migration

towards the walls occurs for all pressure gradients. Similarly, particles initially close to

the centre of the channel migrate to the centre of the channel. Initial particle positions

that are around one or two particle radii away from the centre give rise to significantly

more complicated behaviour. At low pressure gradients the particle migrates to an

off-centre weak attractor position. For a narrow range of pressure gradients around

Ψ ≃ 9 × 10−6 centre positions are preferred, and above a critical pressure gradient

Ψ ≃ 9.5× 10−6 the phase diagram is increasingly dominated by the emergent attractor

states.

Also shown in Fig. 5.7, through the subplots (a)-(e), are the director and scalar

order parameter structures within the channel. Previous theoretical and experimen-

tal work has shown that the director structure within channel flow of a nematic can

exhibit either predominately bend or splay deformation [160, 161] for low and high

flow speeds respectively. Both states are observed in our simulations, and both exhibit

flow alignment at the appropriate Leslie angle. That is positive (negative) angles in

the lower (upper) half of the channel where the shear gradient is positive (negative).

As mentioned above, the states differ in their transition between positive and negative

Leslie angle at the centre of the channel, with the bend state exhibiting director align-

ment along x at the centre of the channel (for example in Fig. 5.7(a), and the splay

state exhibiting director alignment along z at the centre (Fig. 5.7(d)). For the pressure

gradients that are considered, the bend state would normally be maintained. However,

we observe a novel particle-induced mechanism for switching from the bend to splay

state (see Fig. 5.2) with the migration of the particle to the centre being the initiating

event for a range of pressure gradients (see Fig. 5.7), indicated by crosses.

For wall equilibrium positions a bend state occurs with a tilted, but otherwise

regular, Saturn ring defect around the particle (see Fig. 5.7(b)). For centre equilibrium

positions a bend state occurs for Ψ < 1.2× 10−5 and a splay state for Ψ > 1.2× 10−5.

For an initial particle position away from the centre, the bend state occurs for the
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weak attractor, centre and emergent attractor equilibrium positions, for both low and

high pressure gradients. However, at intermediate pressure gradients 6 × 10−6 ≤ Ψ ≤

8.5 × 10−6 we observe a transition to the splay state (Fig. 5.7(d),(e)). The transition

from the bend to the splay state does not have a determining effect on whether the

particles migrate to centre or off-centre positions as we see the same behaviour for initial

positions close by and/or at lower pressure gradients. However, it does affect the nature

of the Saturn ring defect around the particle: for bend equilibrium states the Saturn

ring defect is approximately horizontal see Fig. 5.7(a),(c), and for splay equilibrium

states the Saturn ring defect is approximately vertical, see Fig. 5.7(d),(e). For bend

equilibrium states, the defect structure also develops a pronounced cap-shaped region

of low liquid-crystalline order at the bow of the particle (Fig. 5.7(a),(c)).

In comparison to the Segré-Silberberg effect in isotropic fluids, as seen in Fig. 5.3,

we notice several fundamental differences. Firstly, in isotropic fluids, particles migrate

to a single equilibrium position. In nematic host phases migration to one of multiple

equilibrium positions can happen, depending on particle starting positions and the

applied pressure gradient. Secondly, while for the Segré-Silberberg effect the location

of the attractor state between the wall and centre depends only weakly on the flow

velocity [159, 162]. In fact our simulations with an isotropic host phase, see Fig. 5.3,

show no appreciable change in equilibrium position over the entire range of applied

pressure gradients. The position of the emergent attractor state in the nematic system

depends much more sensitively on the imposed pressure gradient, and in turn, on the

Reynolds number. For instance, the Reynolds numbers for which there are emergent

attractor states in Fig. 5.5 are Re≃ 0.48 and Re≃ 0.57 and, even with this small

increase in Re, the attractor position moves by almost one particle radius. Finally,

the preferential migration in a nematic host phase happens more than an order of

magnitude faster than in isotropic fluids. Let us illustrate this with an example. For a

pressure gradient Ψ = 1.125× 10−5 (Fig. 5.5, green lines) the position of the emergent

attractor in the nematic host phase and the Segré-Silberberg equilibrium position in

the isotropic host phase almost coincide. The particles in a nematic host reach their

equilibrium positions by the time they have travelled around z ≃ 5 × 103 along the
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channel, and in an isotropic host phase (see Fig. 5.3), depending on the start positions

xs, the particles take at least an order of magnitude longer (in time or distance along

the channel).

With regard to Ericksen numbers Er, our results indicate that the observed pattern

of preferential migration occurs in a regime where viscous forces are larger than elastic

forces [1]. Consequently, the director field is strongly affected by the flow field. At

the lower end of this regime, for 3.43 ≤ Er ≤ 16.55, the weak attractor state exists,

as shown in the top row of the Fig. 5.6. The emergent attractor state occurs for

Er≃ 30 and above. With increasing Er, viscous forces begin to dominate over elastic

forces. This means the flow behaviour at higher Ericksen numbers is more similar to

that of an isotropic fluid, which shows the classical Segré-Silberberg effect. However,

the fact that a strongly flow-aligned liquid crystal forms the host phase leads always to

certain qualitative differences. For instance, the trajectories shown in the two bottom

rows of Fig. 5.6 featuring the emergent attractor state at 33.33 ≤ Er ≤ 62.12, do

show some similarities to the classic Segré-Silberberg effect. However, the movement

of the emergent attractor region towards the walls with increasing Ericksen number,

the attraction to the walls, or the existence of stable trajectories at the channel centre

are all features that occur due to the anisotropic nature of the host phase and the

interaction of flow-aligned director field with the defect structure around the particle.

This is visible in the snapshots shown in Fig. 5.7(a)-(e).

5.2.3 Force effects

In order to investigate the presence of this emergent attractor, we consider the total

force and the contributions to the total force on the particle in the steady state for

particles that have equilibrated, see Fig. 5.8, as presented in [1]. An analysis of the

individual force contributions shows that for a centre equilibrium position, as in Fig.

5.7(d), all three force components vanish. This is expected from symmetry. For a wall

equilibrium position as seen in Fig. 5.7(b), all three force components are negative,

forcing the particle to remain at the wall. For particle migration to an emergent

attractor state as in Fig. 5.7(c), our simulation show that the particle feels a force
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Figure 5.8: Total force and the contributions to the total force on the particle in the
steady state for particles that have equilibrated to lie at (a) the centre with asymmetric
defect, (b) at the wall, (c) at the emergent attractor, (d) at the centre with symmetric
defect, and (e) at the weak off-centre attractor, for particle radius R = 9.6. The error
bars indicate one standard deviation of the force data during a run over 104 algorithmic
steps. All quantities are given in LBU.

towards the channel centre from the gradient, i.e. elastic, terms and forces towards the

wall from both the bulk term and the hydrodynamic force component. This is also the

case for particle migration to the centre with an asymmetric defect as in Fig. 5.7(a) and

for particle migration to the weak attractor as in Fig. 5.7(e), although the individual

force contributions are significantly smaller. A delicate force balance exists between

these relatively large contributions leading to a zero total force at equilibrium.

Fig. 5.9 shows the time evolution of the different contributions to the force on

the particle during its approach to an emergent attractor state, for pressure gradient

Ψ = 1.125 × 10−5 and particle radius R = 9.6. For these values of Ψ and R the

attractor state is located at approximately the Segré-Silberberg equilibrium x-position

(that is, one seen in Fig. 5.3). Trajectories for three starting positions are shown,

for x = 34.5 (light grey), x = 39.5 (medium grey) and x = 59.5 (dark grey), which

cover a range of migration patterns to the attractor from below and above. Also

shown are the contributions to the total force on the particle which arise from gradient

(red), bulk (purple) and hydrodynamic (blue) terms with the hue (light, medium, dark)
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Figure 5.9: Time evolution of force contributions in the emergent attractor state with
pressure gradient Ψ = 1.125×10−5. Trajectories for three starting positions are shown,
for x = 34.5 (light grey), x = 39.5 (medium grey) and x = 59.5 (dark grey). Also
shown are the contributions to the total force on the particle which arise from gradient
(red), bulk (purple) and hydrodynamic (blue) terms with the hue (light, medium, dark)
corresponding to the equivalent starting position (light grey, medium grey, dark grey).
All quantities are given in LBU.

corresponding to the equivalent starting position (light grey, medium grey, dark grey).

From Fig. 5.9 we observe initial transient behaviour before the particle reaches the

same equilibrium position for all three starting positions. For all starting positions and

for all time, the gradient contribution is positive, so that the elastic forces always act to

move the particle towards the channel centre. For both bulk and hydrodynamic force

contributions are negative for all starting positions and (almost all) time, so that they

act to move the particle towards the wall. The exception is that for starting position

x = 34.5 the bulk force contribution is positive for a very short initial period, that is,

for very small z-displacements of the particle from the initial position. Interestingly,

all three force contributions are almost balanced, with a total force of zero, for all time.

Variations in the total force are indiscernible on the same force scale used in Fig. 5.9.

This situation is in contrast to the Segré-Silberberg effect, in which the inertial

component of the hydrodynamic force acts to move the particle across the shear gradient

towards the wall, while the increased pressure caused by the particle moving towards

the wall leads to a force acting to move the particle towards the centre of the channel.
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Figure 5.10: Particle trajectories in a nematic liquid crystal host phase for particle
size R = 7.2 and various applied pressure gradients from. Blue lines indicate that
the director structure is in a bend state, red lines indicate the splay state and black
sections denote the transition. The particle Ericksen numbers Er and particle Reynolds
numbers Re are given in each sub-plot. All quantities are given in LBU.

At the Segré-Silberberg equilibrium position, the total hydrodynamic force vanishes. In

a nematic host material, the gradient terms act with the inertial hydrodynamic forces

to move the particle towards the wall, allowing much faster migration of the particle

and the appearance of an attractor state at a much smaller Reynolds number.

The presence of a particle also leads to a distorted director structure, rather than a

uniform director at the Leslie angle and so increased pressure gradients (equivalent to

an increased Reynolds number) can align the director around the particle more closely

to the Leslie angle, thus adapting the elastic force on the particle, and therefore control

of the attractor equilibrium x-position through changes in pressure gradient is possible

[1].

Additional results for smaller particles with R = 7.2 show a similar pattern of
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preferential migration, and are depicted Fig. 5.10 as trajectories. There are quanti-

tative differences, for instance overshooting off-centre trajectories or trajectories with

overshooting and pull-back to the channel centre are much less pronounced compared

to larger particles with R = 9.6. This can be attributed to smaller inertia and re-

duced anchoring forces, which scale down with the surface area of the particle. For

smaller particles the attractor state emerges at slightly larger pressure gradient around

Ψ = 1.125× 10−5, but shows the same characteristics, in particular the fast migration

of the particle to the equilibrium regions, as well as the movement of the emergent

attractor position towards the walls and its prominence in the phase diagram with

increasing pressure gradient. These results suggest that this new effect depends to a

certain extent also on particle size, and therefore on inertia. For higher inertia we

expect the emergent attractor region in the phase diagram Fig. 5.7 and states as in

Fig. 5.7(c) to extend towards lower pressure gradients. The middle regions with states

as in Fig. 5.7(d),(e) are also likely to appear at lower pressure gradients and to grow

in size. This would occur at the cost of the region with wall attraction and states as in

Fig. 5.7(b), which is likely to have a smaller extent.

5.3 Summary

Through the investigation of single colloid behaviour this chapter investigated the parti-

cle migration patterns under flow conditions. The novel results in this nematic channel

showed that particles could exhibit off-center, weak attractor, emergent attractor, and

wall positions. Additionally, it was found that the emergent attractor region moves

towards the walls with increasing Ericksen numbers, and there was a bend to splay

transition at relatively narrow critical values. Importantly, shear and bulk viscosity

changes did not affect equilibrium positions, as expected from the results presented in

the previous chapter. We also observed particle-induced switching from bend to splay,

and the regular Saturn ring defect was tilted due to particle position, changing shape

and including a cap-like region in the bend state. Furthermore, fast migration of parti-

cles to equilibrium regions was noted, with the effect dependent on particle size, being
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less pronounced for smaller particles and more pronounced for larger ones. In compar-

ison to isotropic material the migration of the particle is much faster in the nematic.

These findings provide valuable insights into factors influencing particle migration and

liquid crystal defect behavior in flow, aligning with the stated project aims of defining

factors strongly influencing particle migration and having a better understanding of

the liquid crystal defect behaviour in flow.

Moving forward, controlling particle position through pressure gradients and con-

ducting more experimental work in wider channels could yield further insights into the

complex dynamics of particles in liquid crystals under flow conditions. The work pre-

sented in this chapter, which was also published in a peer-reviewed journal [1], could

have future applications in flow sensing systems or in self assembly.

In the next chapter we also focus on the dynamics of a single particle in a nematic,

as published in [2]. We bring focus to a much narrower microfluidic set up such that

we can investigate the effects of confinement. Additionally, we will explore the effects

of the particle anchoring strength, particularly focusing on the defect behaviour.
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Chapter 6

Particle advection in confined

liquid crystal flow

6.1 Simulation set up

Here we further investigate the dynamics of a single colloidal particle in a nematic liquid

crystal environment. The simulation results we present show the scalar order parameter

and director field at various confinement ratios and flow velocities and compare them

to those obtained for simple Newtonian fluids, as published in [2].

Fig. 6.1 shows a diagram of the three-dimensional computational geometry, which

consists of a duct of Lx = 24, 32 or 48 and Ly × Lz = 256 × 384 lattice sites. Solid

walls are positioned at x = 0 and x = Lx, y = 0 and y = Ly hence we refer to

this geometry as a duct, in comparison to previous chapters where the solid walls

were in the x- plane only creating a channel. We define the measure of confinement

as the ratio of the particle diameter to the height of the duct, which here leads to

confinement ratios 2R/Lx = 0.8, 0.6, and 0.4. The value of Ly means that, with the

particle at the centre of the duct, the system is effectively unconfined in y-direction

since 2R/Ly = 0.075. Periodic boundary conditions are applied in the z-direction with

the z-boundaries acting as inlet and outlet of the duct. A pressure gradient Ψ = ∆p/Lz

is applied in z-direction, leading to a body force density acting on all sites.

129



Ly

Lx

radius R

No slip, no-penetration,
homeotropic anchoring

flow

Figure 6.1: Overview of the computational geometry: We apply no-slip boundary condi-
tions and homeotropic anchoring conditions at the walls in x-direction and y-direction,
with periodic boundary conditions at the z-boundaries. The top part shows the top
view, and the bottom part shows the side view.

The colloidal particle is discretised as a solid, mobile particle with a radius of R=9.6

lattice sites. The longitudinal and angular momenta of the particle are evolved following

the Newton’s second law of motion. We use a mixed explicit-implicit velocity update,

which minimises the number of linear equations that must be solved, while maintaining

absolute stability [142]. Both the walls and the particle surface have no-slip and no-

penetration boundary conditions which are applied by using a bounce-back on links

scheme [109, 140, 141]. Lubrication corrections are applied normal to the walls within

a distance of 0.1 lattice sites [142]. The chosen surface free energy creates a homeotropic

anchoring condition with a preferred orientation of the director normal to the surfaces.

An overview of the simulation parameters used in this chapter is given in Tab. 6.1.

A typical simulation is first initialised with no applied pressure gradient for 5 × 104

iteration steps for each anchoring strength. After this initial equilibration phase, the

simulations are restarted with various pressure gradients that are kept constant for

4 × 105 iteration steps. Typical runtimes are approximately 26 hours using a hybrid

MPI/OpenMP parallelisation with 2 MPI tasks each running on 20 OpenMP threads.

Before delving into our results, we shall first present some information relevant for
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Table 6.1: Overview of simulation parameters

Variable

Particle anchoring strength wpart 0, 0.001, 0.01, 0.05

Invariable

Bulk energy scale A0 0.01
Inverse temperature γ 3.1
Elastic constants κ 0.01
Wall anchoring strength wwall 0.02
Flow alignment parameter ξ 0.7
Mobility parameter Γ 0.5
Density ρ 1.0
Dynamic viscosity η 5/6
Bulk viscosity ζ 5/6
Particle radius R 9.6

further context. As a reminder, the Ericksen number characterises the ratio of viscous

to elastic forces and is defined as

Er =
η uΛ

κ
, (6.1)

where u is a characteristic flow velocity, (here we use the velocity at the centre of the

duct Uc), η is the dynamic viscosity, Λ is a characteristic length scale, which we set here

as the narrowest gap size Lx (see Tab. 6.2 for Λ = 2R, which allows direct comparison

with Chapter 5), and κ is the bulk elastic constant of the liquid crystal.

The dynamic viscosity η is calculated as an apparent viscosity, defined as the ratio,

η = µΦ0/Φ of the volumetric flux Φ0 of a simple Newtonian fluid and the volumetric

flux of the liquid crystalline system Φ, through a plane perpendicular to the flow in the

z-direction, namely

Φ =

∫ Lx

0

∫ Ly

0
uz(x) dx dy, (6.2)

with the flow being driven through the pressure gradient Ψ = ∆p/Lz with ∆p being

the pressure difference between inlet and outlet. The volumetric flow rate Φ0 of a

Newtonian fluid with a dynamic viscosity µ through a gap Lx driven by a pressure
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gradient Ψ in plane Poiseuille flow can be calculated as

Φ0 =

∫ Lx

0

∫ Ly

0

L2
x

2µ
Ψ

(
x

Lx
−
(

x

Lx

)2
)
dx dy (6.3)

=
L3
x Ly Ψ

12µ
. (6.4)

Fig. 6.2 shows fluid velocity profiles for a representative confinement ratio of

2R/Lx = 0.6 that have been normalised to the peak flow velocity of a simple Newtonian

fluid in Poiseuille flow at the same pressure gradient and scaled using the x-dimension

of the duct. The apparent viscosity η is the ratio of the areas under the Poiseuille curve

and the curves at finite Ericksen numbers.
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Figure 6.2: Scaled magnitude of the fluid velocity u(x) = |u(x)|, normalised against
the peak flow velocity uc,Poiseuille, of a simple Newtonian fluid in Poiseuille flow at the
centre line of the duct at x = Lx/2. The image shows representative results for the
confinement ratio 2R/Lx = 0.6. The black line is the parabolic flow profile of Poiseuille
flow. Away from the walls the velocity profiles of the flowing nematic are parabolic.
Deviations from the parabolic profile occur only close to the walls. The inset shows the
dependence of the centre line fluid velocity uc on the Ericksen number Er.

More specifically, in Fig. 6.2 the flow velocities have been normalised against the

maximum flow velocity of the Poiseuille flow uc,Poiseuille(x = Lx/2) = L2
x∆p/8µLz at

the centre line of the duct with µ as dynamic viscosity and ∆p as pressure difference
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between inlet and outlet, respectively. Away from the walls at x/Lx = 0 and x/Lx =

1 the velocity profiles of the flowing nematic are parabolic and deviations form the

parabolic profile occur only near the walls. This is a result of shear thinning as the

director field flow-aligns further away from the walls, which is prevented by the normal

wall anchoring in the vicinity of the walls. In all simulations that contain a colloidal

particle the fluid flow velocity uc at the centre line was taken at x = Lx/2, at a point

in a distance Lz/2 upstream/downstream from the particle. This is the point farthest

away from the particle in the z-direction due to the periodic boundary conditions.

However, owing to this large distance the values we obtained for uc in this manner are

virtually identical to those of a pure liquid crystal without particle. Profiles for other

confinement ratios are not shown as they look very similar.

2R/Lx = 0.4 2R/Lx = 0.6 2R/Lx = 0.8

Er (Lx) Er (2R) Er (Lx) Er (2R) Er (Lx) Er (2R)

1.65 0.658 4.38 2.63 6.15 4.92

8.30 3.32 9.84 5.90 10.37 8.30

18.10 7.24 21.25 12.75 17.95 14.36

35.55 14.22 39.18 23.51 22.32 17.86

52.72 21.09 51.86 31.11 64.85 52.16

69.77 27.91 102.12 61.27 86.06 69.10

Table 6.2: Conversion of Ericksen numbers for different confinement ratios using dif-
ferent characteristic length scales, namely the size of the channel (odd columns) or, as
in Chapter 5, the diameter of the particle (even columns).

6.2 Defect structure influenced by the director and fluid

velocity fields

We study the advection behaviour of a single particle moving in a nematic host phase

in highly confining ducts and investigate the effects of varying the pressure gradient Ψ,

confinement ratio 2R/Lx and homeotropic anchoring strength [2]. In a simple Newto-

nian fluid, or in a liquid crystal at temperatures above the isotropic-nematic transition

point, the motion of a freely suspended spherical particle between two parallel plane

walls has been studied previously theoretically [163, 164], with simulations [165] and
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experimentally [166]. The main effect is that the retardation of the particle motion to

the fluid motion is primarily independent of the applied pressure gradient. It is however

greater for particles closer to either of the walls, and for highly confined particles due

to the proximity to the walls. Therefore, it depends on the confinement ratio.

In a nematic liquid crystal with homeotropic anchoring conditions at the walls

the director orientation is forced to be parallel to the wall normals. The degree of

alignment depends on the strength of the anchoring, but also on the velocity gradient,

and therefore the pressure gradient. At low pressure gradients, the nematic order will

be enforced throughout the duct. But for higher pressure gradients the director field

flow-aligns at the Leslie angle. As a reminder, the two conformations are persistent

in flowing nematics, namely the so-called bend state or H-state and the splay state or

V-state. For both H- and V-state the director flow-aligns to a positive (negative) Leslie

angle in the lower (upper) half of the channel. The difference between the two states

is determined by the way the director rotates between the positive and negative Leslie

angles at the centre: in the bend state, the director at the centre is perpendicular to

the walls, whereas in the splay state the director is almost parallel to the walls at the

centre. The bend state is generally adopted at low flow velocities, whereas the nematic

transitions to the splay state at higher flow velocities.
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Er=4.38 Er=51.86

Er=4.38 Er=51.86

Figure 6.3: Director field, defect structure and fluid velocity profiles for confinement
ratio 2R/Lx = 0.6 and anchoring parameter ω = 48 before and after the bend-to-splay
transition. The left column shows the bend state, while the right column shows the
splay state. The first and third row show the director field d with the magnitude dz of
its z-component. The second and fourth row show the magnitude of the fluid velocity
u(x, z) and u(y, z) through the centre of the particle, normalised to the maximum
velocity uc at the centre line of the duct. The two top rows represent slices through
the middle of the channel in the xz-plane (narrowest duct and flow direction). The two
bottom rows show slices in the yz-plane. The flow direction is from left to right. The
opacity of the defect rings is reduced to for better visibility of the local director field.
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Fig. 6.3 shows the director field, defect structure and magnitude of the fluid velocity

at a medium confinement ratio 2R/Lx = 0.6 and different Ericksen numbers. The left

column displays the bend state at Er=4.38 prior to the transition to the splay state,

whereas the right column shows the splay state at Er=51.86 after transitioning from the

bend state. The two top rows contain slices in the xz-plane (narrowest duct dimension

and flow direction) at y = Ly/2 with walls at the x-boundaries at the top and bottom,

whereas the two bottom rows show slices in the yz-plane (widest duct dimension and

flow direction) at x = Lx/2 in the vicinity of the colloidal particle.

The director field in the first and third row is colour-coded with red indicating

an orientation parallel to the flow or z-direction and blue indicating an orientation

perpendicular to the flow direction or in xy-plane. The bend state at low Ericksen

number shows the Saturn ring defect oriented parallel to the walls with only very minor

deformations, while the splay state has the Saturn ring defect oriented approximately

perpendicular to the walls and displaced slightly downstream from the meridian of the

particle in positive z-direction.

The second and fourth row show the magnitude of the fluid velocity u(x, z) =

|u(x, z)| in the xz-plane and u(y, z) = |u(y, z)| in the yz-plane normalised to the

maximum velocity uc at the centre line of the duct. It is interesting to see that despite

the striking differences in the director field structure and defect ring orientation at the

two different Ericksen numbers both flow profiles are very similar. A minor exception

is that at the lower Ericksen number the peak velocity is attained very close to the

particle, whereas at the higher Ericksen number the relative fluid velocity is slightly

reduced around the particle. This is a consequence of the different differential velocities

between the colloidal particle and the fluid in both cases (see Fig. 6.8).

As a quantitative overview of our findings, we include in Fig. 6.4, snapshots of the

particle and its defect in the steady state for varying confinement ratios and Ericksen

numbers [2]. In each cell the left images show the side view looking in the negative

y-direction with walls at the top and bottom. The images on the right show the view

from the top looking in the positive x-direction. The confinement increases from left

to right from confinement ratios 2R/Lx = 0.4 to 2R/Lx = 0.6 to 2R/Lx = 0.8, and
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2R/Lx = 0.4 2R/Lx = 0.6 2R/Lx = 0.8

Er= 1.65 Er= 4.38 Er= 6.15

Er= 8.30 Er= 9.84 Er= 10.37

Er= 18.10 Er= 21.25 Er= 22.32

Er= 52.72 Er= 51.86 Er= 64.85

Er= 69.77 Er= 102.12 Er= 86.06

Figure 6.4: Snapshots of the director field and defect structure in the steady state at
various Ericksen numbers and strongest particle anchoring parameter ω = 48. The
bright green region corresponds to the defect where liquid crystalline order is reduced.
In each cell the left images in each cell show the side view looking in the negative y-
direction with walls at the top and bottom. The images on the right in each cell show
the view from the top looking in the positive x-direction. The confinement increases
from left to right, and Ericksen numbers increase from top to bottom. While in most
cases the particle stays at the centre of the duct throughout the simulation, there are
a small number of cases where they migrate away from it. Specifically, there are two
cases where the particle migrates fully to a wall (for the two highest Ericksen number
and confinement ratio 2R/Lx = 0.8), and three cases where the particle migrates to a
stable position between the wall and the centre (for Er= 18.10 and 2R/Lx = 0.4, for
Er= 9.84 and 2R/Lx = 0.8, and for Er= 10.37 and 2R/Lx = 0.8).

137



Ericksen numbers increase from top to bottom. The defect is shown as a green isosurface

defined by a local order parameter q ≤ 0.188 and the particle anchoring strength and

dimensionless anchoring parameter are wpart = 0.05 and ω = 48, respectively, as lower

anchoring strengths do not result in defects that could be distinctively visualised.

At low Ericksen numbers, below the bend-to-splay transition, the particle has a

Saturn ring defect such that the ring plane remains parallel to the walls. This is the

case for all confinement ratios and Ericksen numbers below Er= 10.37, as shown in

the first and second row of Fig. 6.4. Two aspects are noteworthy. Firstly, there is

a slight increase of the defect isosurface radius downstream of the particle, for which

both Ericksen number (see images for 2R/Lx = 0.4 with Er= 1.65 and Er= 8.30) and

confinement ratio (see image for 2R/Lx = 0.6, Er= 4.38 and 2R/Lx = 0.8, Er= 6.15)

seem responsible. However, confinement appears to play a more important role in this

context.

Secondly, at slightly increased Ericksen numbers (see images for 2R/Lx = 0.6,

Er= 9.84 and 2R/Lx = 0.8, Er= 10.37), the Saturn ring becomes angled such that

the part downstream of the particle is closer to the bottom wall, while the other part

upstream of the particle remains virtually unchanged. These two particular cases reach

steady state positions that are offset somewhere between the centre of the duct and

the walls in the x-direction, which contributes to this asymmetric appearance. This

can be explained with the migration to the weak attractor region that we observed in

the previous chapter for low confinement conditions using a much wider microchannel

and lower confinement ratio of 2R/Lx = 0.15. For direct comparison, Tab. 6.2 gives

an approximate conversion between particle Ericksen numbers, as used in the previous

chapter, and Ericksen numbers based on the smallest duct dimension presented here.

Fig. 6.5 shows a direct comparison of the defect rings around the particle for the

lowest and highest simulated Ericksen numbers below the bend-to-splay transition, at

confinement ratios (a) 2R/Lx = 0.4 (b) 0.6 and (c) 0.8. The defects at the lowest Er-

icksen numbers, depicted in grey, are distinctive Saturn rings that are oriented parallel

to the walls in the x−direction. As previously mentioned, increasing confinement leads

to a defect ring that is thicker at the downstream side of the particle, while it remains
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oriented parallel to the wall at the x-boundary. Increasing the Ericksen number alone

does not change the orientation of the defect ring, but leads to a very slight shift in

position upstream (see grey and yellow defect rings in Fig. 6.5a)). However, increasing

the Ericksen number and confinement ratio induces a noticeable tilt of the defect ring,

shown in Fig. 6.5b) and c), as the particle migrates into the off-centre steady state

position somewhere between the centre of the duct and one of the walls. Despite the

difference in confinement ratio and Ericksen number (2R/Lx = 0.6 and 0.8, Er= 9.84

and 10.37, respectively) the shape of the defect rings is almost the same [2].

a) b) c)

Er=1.65 Er=8.30 Er=4.38 Er=9.84 Er=6.15 Er=10.37

Figure 6.5: Disclination lines around the particle for the lowest — and highest —
simulated Ericksen numbers below the bend-to-splay transition at confinement ratios
a) 2R/Lx = 0.4, b) 2R/Lx = 0.6 and c) 2R/Lx = 0.8, respectively. The top row
has the view in negative y-direction, the widest duct dimension, with the walls in the
narrowest duct dimension at the x-boundaries situated closely above and below the
particle. The bottom row shows the view in positive x-direction. The flow is in the
horizontal positive z-direction from left to right.

Upon increasing the Ericksen number, a bend-to-splay transition takes place some-

where between 8.30 <Er< 18.10 (for 2R/Lx = 0.4), 9.84 <Er< 21.25 (for 2R/Lx = 0.6)

and 10.37 <Er< 17.95 (for 2R/Lx = 0.8). The defect ring is now reoriented with its

ring plane approximately perpendicular to the walls and flow direction, as shown in

Fig. 6.4, for instance in the third row, and retains a similar shape at higher Erick-
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sen numbers (see images for 2R/Lx = 0.4, Er= 18.10, 2R/Lx = 0.6, Er= 21.25, and

2R/Lx = 0.8, Er= 22.32). The case for 2R/Lx = 0.4, Er= 18.10 forms an exception in

that the particle moves very slightly away from the centre into a stable off-centre posi-

tion, while in the other cases the particle remains at the centre of the duct, which can

be also understood with the migration to the previously observed weak attractor region

at similar Ericksen numbers [1] (see Tab. 6.2 for conversion of Ericksen numbers). A

noticeable difference is that with increasing confinement the defect ring appears com-

pressed in the smallest duct dimension due to the relative proximity of the walls (see

image for 2R/Lx = 0.8, Er= 22.32) [2].

With increasing Ericksen numbers the shape of the vertically oriented defect ring

remains largely unchanged for low and medium confinement, as shown in the first and

second column, forth and fifth row, of Fig. 6.4 (2R/Lx = 0.4 and 0.6) for Ericksen

numbers Er= 52.72, 69.77 and Er= 51.86, 102.12, respectively. At Er= 102.12 a slight

change occurs such that the defect close to the mid-plane of the duct in the x-direction

are distorted and pulled in the upstream direction, i.e. against the flow. This effect is

a precursor of the more dramatic elongation of the Saturn ring that will become even

more evident as the confinement ratio increases.

At even higher Ericksen numbers Er= 64.85 and Er= 86.06 and confinement 2R/Lx =

0.8, shown in the third column forth and fifth row of Fig. 6.4, we observe defects that

differ substantially from those discussed before. In these cases the particle migrates

fully to one of the walls. This has also been previously observed for similar Ericksen

numbers in much lower confinement [1], as shown in the previous chapter. There it

occurred when the particle was within a distance of one and a half to two diameters

from the walls, depending on the Ericksen number (see Tab. 6.2 for a conversion of Er).

Given the proximity of the walls with increased confinement, this means that attraction

to the walls should occur in practically all situations. This, however, is not the case as

we observe attraction to the walls only for the highest Ericksen numbers and the largest

confinement. Hence, the increased confinement prevents particle migration to the walls

and stabilises trajectories around the centre of the duct. The migration to one of the

walls results in a different defect shape such that there is a pronounced elongation of
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the Saturn ring defect in the upstream direction. There is also the indication of a small

satellite region of low order, upstream of the particle that never merges up with the

rest of the defect (see image for 2R/Lx = 0.8 and Er= 86.06) [2].

a) b) c)

Er=18.10 Er=35.55 Er=21.25 Er=39.18 Er=17.95 Er=22.32

Er=52.72 Er=69.77 Er=51.86 Er=102.12 Er=64.85 Er=86.06

Figure 6.6: Saturn ring disclination lines around the particle for various Ericksen num-
bers after the bend-to-spay transition has taken place. The confinement ratios are a)
2R/Lx = 0.4, b) 2R/Lx = 0.6 and c) 2R/Lx = 0.8. In the top row the view is along the
negative y-direction, the widest duct dimension, with the walls in the narrowest duct
dimension at the x-boundaries situated above and below the particle. The bottom row
is the view in the positive x-direction. The flow is in the horizontal z-direction from
left to right.

Before focusing on the director structure at high Ericksen numbers and large con-

finement in more detail (see Fig. 6.7), we show the differences in the defect rings at

different confinement ratios and Ericksen numbers. Fig. 6.6 shows superimposed, ver-

tically oriented defect rings as they occur after the bend-to-splay transition has taken

place. At the lowest confinement ratio 2R/Lx = 0.4, shown in Fig. 6.6a), the defect

ring remains relatively undistorted across a range of medium to high Ericksen numbers.

However, comparing the images at the top with the view along the y-direction across

the narrowest gap to those at the bottom with the view along the x-direction across
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the widest gap gives evidence that the shape of the Saturn ring defects is sensitive to

confinement. When confined, the defect rings are located slightly downstream from

the particle’s equator, whereas they remain situated along the equator in the dimen-

sion of no or very small confinement (2R/Ly = 0.075). This feature becomes more

pronounced as the confinement increases, discernible through the green defect rings at

ratios 2R/Lx = 0.6 in Fig. 6.6b), and more so at 2R/Lx = 0.8 in Fig. 6.6c) where it

results in the compressed appearance (Fig. 6.6c) top row). This applies to lower (green

isosurfaces) and medium (orange isosurfaces) Ericksen numbers. Increasing both con-

finement and Ericksen numbers leads to the aforementioned different appearance of the

defect rings (purple and magenta isosurfaces).

It is worth mentioning that the confinement ratios here are larger than those in

similar studies [167, 168] (2R/Lx = 0.25 and 2R/Lx = 0.19, respectively), where the

lower confinement has been chosen to eliminate possible effects on the results. However,

our case [2] of 2R/Lx = 0.4 is low enough to feature defect rings that appear undeformed

and occur at unaltered relative positions to the particle.

The director field, defect structure and magnitude of the fluid velocity at high

Ericksen numbers and the largest confinement ratio 2R/Lx = 0.8 are shown in Fig.

6.7. At this confinement ratio the walls at the x-boundaries are close to the colloidal

particle. The two top rows contain slices in the xz-plane (narrowest duct dimension

and flow direction) at y = Ly/2 with walls at the x-boundaries at the top and bottom,

whereas the two bottom rows show slices in the yz-plane (widest duct dimension and

flow direction) at x = Lx/2 cropped to the vicinity of the colloidal particle. The director

field in the first and third row is colour-coded with red indicating an orientation parallel

to the flow or z-direction and blue indicating an orientation perpendicular to the flow

direction or in xy-plane. The left column shows the situation at moderately high

Ericksen numbers Er= 22.32.

The defect ring is vertically oriented, noticeably displaced downstream close to the

walls at the boundary in x-direction (see Fig. 6.7 first row first column), and situated at

the equatorial region of the particle in the non-confined y-dimension (see Fig. 6.7 third

row first column). The director field structure in yz-plane shows that flow alignment
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Er= 22.32 Er= 64.85 Er= 86.06

Er= 22.32 Er= 64.85 Er= 86.06

Figure 6.7: Director field, defect structure and fluid velocity profiles for confinement
ratio 2R/Lx = 0.8 and anchoring parameter ω = 48 after the bend-to-splay transition
for increasing Ericksen numbers Er= 22.32, 64.85 and 86.06, respectively. The first
and third row show the director field d with the magnitude dz of its z-component
indicated through the colour code. The second and fourth row show the magnitude of
the fluid velocity u(x, z) and u(y, z) through the centre of the particle, normalised to
the maximum velocity uc at the centre line of the duct, where arrows give a sense of the
vectorial dependence of the fluid velocity field. The images in the two top rows represent
slices through the middle of the channel in the xz-plane (narrowest duct dimension and
flow direction) and have the view along the negative y-dimension. Those in the two
bottom rows show slices in the yz-plane (widest and narrowest duct dimension) and
have the view in positive x-direction. The flow direction is from left to right in positive
z-direction. The opacity of the defect rings (green isosurfaces) has been slightly reduced
to enhance the visibility of the local director field.
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occurs in a short distance from the particle and entails a defect in the equatorial region.

Focusing again on the director field in xz-plane reveals that the situation is different

in the confined x-dimension. Here, the homeotropic anchoring conditions at the wall

and particle surfaces prevent any kind of flow alignment in the narrow gap between

the particle and the walls. Considering the left-hand upstream side of the particle it

becomes evident that both the normal anchoring conditions on the surface and the flow-

alignment close to the surface work in the same sense and promote the same director

orientation. This is different on the right-hand downstream side. While downstream

directly right from the particle’s centre flow-alignment and anchoring are also working

in the same sense, this is not the case downstream above right and below right from the

centre where flow-alignment invokes a northwest-southeast orientation of the director

field, while surface anchoring promotes a northeast-southwest orientation. This leads

to the slight downstream displacement of the defect ring.

At higher Ericksen numbers Er= 64.85 and Er= 86.06 the particle migrates readily

to one of the walls [1] and the shape of the defect changes (see Fig. 6.7) first and third

row, second and third column). The asymmetric positioning of the particle in the duct

is only partly responsible for this. In fact, we observe large differential velocity between

the particle and the fluid, which means the particle acts now increasingly as obstacle.

Therefore, it is instructive to look again at fluid velocity profiles.

The second and fourth row in Fig. 6.7 show the magnitude of the fluid velocity

u(x, z) = |u(x, z)| in the xz-plane and u(y, z) = |u(y, z)| in the yz-plane normalised to

the maximum velocity uc at the centre line of the duct. The profiles in xz-plane (second

row) show that compared to Fig. 6.3 where the confinement ratio is 2R/Lx = 0.6, the

now larger confinement ratio of 2R/Lx = 0.8 leads to much lower relative fluid velocities

upstream and downstream on the left and right of the particle. With increasing Ericksen

number a region with enhanced flow velocities emerges immediately above the particle

where the fluid is forced upwards (see Fig. 6.7 second row third column). The fluid

velocity profiles in yz-plane (see Fig. 6.7 fourth row) demonstrate even further how

the relative fluid velocity drops around the particle with increasing Ericksen number.

However, what the colour code and normalisation to the peak flow velocity uc hide is
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that the velocity gradients in absolute terms are even larger for larger pressure gradient,

a direct consequence of higher absolute values of the peak velocity uc. In view of the

director field and defect structure, it becomes evident that the regions with large fluid

velocity gradients are also the regions where the director structure becomes noticeably

distorted. This effect in combination with local flow-alignment and surface anchoring

leads to local regions of low order, for instance the satellite region of very low order

slightly upstream on the left of the particle (see Fig. 6.7 second and third column), and

causes the defect ring to become extended further upstream, albeit never completely

engulfing the particle [2].

Figure 6.8: Comparison of retardation ratios v/uc of particle velocity v to fluid velocity
uc at the centre of the rectangular duct for confinement ratios 2R/Lx = 0.4 (blue
squares), 0.6 (green triangles) and 0.8 (red circles) and different particle anchoring
strengths. Horizontal lines show results in a Newtonian fluid from Staben et al. [164]
(dashed-dotted lines) and with our approach (in the isotropic phase (stars)). Open
symbols indicate cases where the colloidal particle has been fixed in x-direction for
comparison as it would normally migrate away from the centre of the duct to either an
off-centre position or to the walls. The vertical lines indicate the approximate position
of the bend-to-splay transition.
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6.3 Advection behaviour

We now move on to the analysis of the advection behaviour of the colloidal particle at

different Ericksen numbers and confinement ratios and compare it to that in a simple

Newtonian fluid. For this purpose we draw on the theoretical results obtained by Staben

et al. [164], which have been reproduced in a number of studies. While our Reynolds

numbers are typically between O(10−2) and O(10−1) and therefore larger than those in

Ref. [164], it is worth emphasising that the latter results form still a suitable reference

as both regimes can be classed as low-Reynolds number ones.

A suitable measure to characterise the advection behaviour is the retardation ratio

v/uc of particle velocity v to fluid velocity uc at the centre line of the duct. In an

isotropic Newtonian fluid under Poiseuille flow this ratio is constant and depends only

on the distance of the particle from the walls of the duct and the confinement ratio.

In particular, v/uc is independent of the Reynolds number. Without confinement the

retardation ratio v/uc is unity as the particle acts as a tracer and is simply advected

with the fluid. At finite confinement ratios below 2R/Lx = 1 the movement of the

particle is slowed down in the parabolic Poiseuille flow due to the no-slip boundary

conditions on the walls of the duct. In our simulations the absolute value of uc was

taken as the flow velocity at the centre line x = Lx/2 at the point farthest away from

the colloidal particle in a distance Lz/2 upstream/downstream in flow direction.

Fig. 6.8 shows the retardation ratio v/uc for different confinement ratios 2R/Lx,

particle anchoring strengths and Ericksen numbers Er. Using the Ericksen number as

abscissa has the advantage that the bend-to-splay transition occurs at similar values

aiding the comparison across different confinement ratios. The straight, horizontal

lines represent the results for a particle in a simple Newtonian fluid. Dashed-dotted

lines give the results from Staben et al. [164] for particles at the centre of the duct.

We measure retardation ratios of v/uc = 0.946, 0.876 and 0.759 for confinement ratios

2R/Lx = 0.4, 0.6 and 0.8, respectively, shown in Fig. 6.8 with solid lines. These results

compare well with those of Staben et al., which are v/uc = 0.945, 0.871 and 0.746 for the

same confinement ratios and particles positioned at the centre of the duct. It is worth
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emphasising that in our setup the largest confinement ratio 2R/Lx = 0.8 has less than

3 lattice sites between the particle surface and the walls on either side. Nevertheless,

the relative deviation between ours and Staben’s results for Newtonian host phases

is less than 1.8% in the worst case, which means our method is remarkably accurate

given the relatively sparse discretisation. However, it should be borne in mind that

when modelling a liquid crystalline host phases the sparse discretisation affects also the

tensor order parameter Q in addition to the fluid-solid interaction in a Newtonian host

phase. While these limitations affect the results in Fig. 6.8 to a certain extent, there

are nevertheless clear and robust trends that we will examine.

At low Ericksen numbers we observe retardation ratios v/uc that are close or iden-

tical to their corresponding values in Newtonian fluids. Interestingly, and primarily

for no or low particle anchoring strength and low confinement ratios 2R/Lx = 0.4 and

0.6, the retardation ratio can be slightly larger in the nematic host phase than in the

Newtonian host phase (see light and medium grey and blue data points in Fig. 6.8).

This could occur because for a particular pressure gradient the peak flow velocity is

lower in the flowing nematic than in the Newtonian fluid. But as the same pressure

gradients acts across the particle, the latter does not slow down to the same degree

in the flowing nematic, leading to comparably higher retardation ratios. For larger

anchoring strengths or in higher confinement both additional elastic forces are exerted

on the particle and the effective viscosity in the vicinity of the particle increases, both

to the effect of slowing down the particle, resulting in smaller retardation ratios.

As the Ericksen number increases, the nematic host phase undergoes a transi-

tion from the bend to the splay phase. This occurs at Ericksen numbers 8.30 <Er<

18.10 (2R/Lx = 0.4), 9.84 <Er< 21.25 (2R/Lx = 0.6) and 10.37 <Er< 17.95 (2R/Lx =

0.8), respectively and is indicated by the vertical green dashed lines in Fig. 6.8. The

transition is accompanied by a noticeable drop in the retardation ratio, which reaches

a minimum around Ericksen numbers Er≃ 20, so just beyond the bend-to-splay tran-

sition. The minimum is smaller the larger the particle anchoring strength is, but only

for medium and large confinement (see medium grey and green curves as well as black

and red curves in Fig. 6.8) and not so for small confinement (see light grey and blue
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curves in Fig. 6.8).

Beyond Ericksen numbers in the range of Er≃ 20 the retardation ratio v/uc begins

to increase again, giving rise to an overall non-monotonic dependence on the Ericksen

number. This is the case across all confinement ratios, and the retardation ratios begin

to flatten out towards higher Ericksen numbers, approaching or reaching the values of

Newtonian fluids again. This non-monotonic behaviour is therefore a consequence of

the decreasing importance of liquid crystalline elasticity and consistent with the idea

that with higher the Ericksen numbers the liquid crystal behaves rheologically more

like a simple fluid.

Regarding how the retardation ratio v/uc depends on the particle anchoring strength

the same tends as for the minima prevail. Higher anchoring strengths entail smaller

retardation ratios unless the confinement is small. For our largest confinement ratio

2R/Lx = 0.8 and strongest particle anchoring strength wpart = 0.05 we observe a very

strong decrease. This, however, originates also from the migration of the particles to

the walls. The two empty circles in Fig. 6.8 (and similar empty symbols at the two

other confinement ratios) permit us to estimate how the trend would continue if the

particles had been prevented from leaving the region of maximum flow velocity at the

centre of the duct.

In order to explain these findings, we have to look at several separate mechanisms:

First of all, there is the transition from the bend to the splay state, which all particles

regardless of their anchoring conditions are subject to. The data points for vanishing

particle anchoring strength wpart = 0 (light, medium and dark grey in Fig. 6.8) are

indicative of this. The transition causes the general reduction of the retardation ratios

from their initially approximately Newtonian values at low Ericksen numbers to their

minima around Er≃ 20. The reason for this decrease is the drop in apparent viscosity

and increase in flow velocity uc around the centre of the duct, whereas the regions of

the particle closer to the walls act as anchor and do not allow the particle to pick up

velocity v at the same proportion [2].

The second mechanism at work is the reorientation of the defect ring at the bend-to-

splay transition, provided the particle anchoring strength is large enough for a defect to
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emerge. The vertical orientation of the defect ring with its ring plane perpendicular to

the flow direction and walls increases the effective particle radius in the narrowest duct

dimension and therefore the effective confinement ratio. This leads to lower retardation

ratio v/uc the larger the anchoring strength is. However, our results suggest this is

only the case provided the confinement is not too large. For instance, at 2R/Lx = 0.4

there is very little difference between vanishing and very strong particle anchoring up

to Ericksen numbers Er≃ 60, while at 2R/Lx = 0.6 and 0.8 differences are clearly

visible at all Ericksen numbers. This subtlety can be understood by realising that at

the different confinement ratios and flow velocities both velocity and order parameter

gradients differ across the particle diameter. At a given flow velocity the gradients are

largest in large confinement and vice versa. At a given confinement ratio the velocity

gradient is largest at large flow velocities and Ericksen numbers. It is precisely this

nonlinear order-flow coupling and the interactions between flow and order structure in

the vicinity of the particle that cause the observed minor variations in the retardation

ratio.

Finally, there is also the possibility of a direct interaction with the wall anchoring

when Ericksen numbers and confinement ratios are large. In these situations the col-

loidal particle shows a tendency to leave the centre of the duct and migrate quickly to

the wall regions. There, the advection velocity and therefore the retardation ratio are

reduced as a result of the no-slip boundary conditions at the walls [2].

6.4 Summary

In this chapter we found that low anchoring strengths at the particle surface do not lead

to visually distinct defects in the system under investigation, but we do obtain them for

appropriately higher values. Once again, a transition from bend to splay occurs within

the more confined set ups than in Chapter 5. The critical value for the transition

was observed to be dependent on the pressure gradient. During this transition, the

Saturn ring remains parallel to the x-direction walls and an increase in velocity results

in an expansion of the isosurface radius downstream of the particle. Additionally, a
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tilt of the defect ring was noted after the transition, indicating a reorientation of the

Saturn ring defect. Furthermore, as confinement increased in the system, the defect

ring appeared compressed in the smallest duct dimension due to the walls’ relative

proximity and attraction. This compression was particularly evident for high Ericksen

numbers and significant confinement levels. The increased confinement also played a

role in preventing particle migration to the walls, instead stabilizing trajectories around

the center of the duct. This transition caused a general reduction in retardation ratios

at low Ericksen numbers, with the vertical orientation of the defect ring leading to

lower retardation ratios ( v
uc
). Our findings indicated that the larger the anchoring

strength, the more pronounced the effects observed, with the confinement playing a

crucial role in determining the system’s behavior. Overall, these novel results shed

light on the intricate dynamics of the system under varying conditions of anchoring

strength, pressure gradients, and confinement levels, providing valuable insights into

the behavior of the Saturn ring defect and particle migration within the system, fully

aligning with our stated project aims.

As our simulation of ducts resemble modern microfluidic experimental set ups in

the liquid crystal field, in terms of narrow channels, there is possibility of doing further

future experiments. Especially focusing on the Saturn ring defect types, as currently

more work is done on hyperbolic hedgehog defects as we found through our collaboration

with Prof Uroš Tkalec. Additionally, there are potential applications in using colloids

and nematic mixtures in safety shut offs using narrow ducts - if particles drop to the

walls the flow is to high.

Having presented our research results focused on single particles within microfluidic

simulation set ups, we can now apply what we have found to large scale simulations

with many particles. This is what we will explore in the next chapter of this thesis

where our observations of single particle migration and changes in the defect shape,

size, and tilt under different fluid velocity conditions can be used to comment on the

behaviour of many particles that are able to interact with each other.
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Chapter 7

Many particle liquid crystal flow

7.1 Simulation set up

In this chapter we investigate a large scale system with many colloidal particles in a

microfluidic channel with a nematic liquid crystal subjected to flow. As in our previous

results we use the lattice Boltzmann scheme from Chapter 3. This is done using the

Ludwig code that applies the lattice Boltzmann method to the hydrodynamics and

models the liquid crystal using the Q-tensor approach with a finite difference scheme.

We now include many particles of the same size placed in the system before any flow is

applied. An additional step is needed to handle the inclusion of many particles. In most

cases this is done through random allocation of particle positions until all particles are

placed within the system with no overlap between the walls or each other. In geometry,

the close packing of identical spheres can be described through the packing fraction (or

packing density) pf that relates the volume occupied by the spheres with the volume

of the system size. As this can take a very long time for tightly packed systems, at

packing fractions above 0.35 the Ludwig code places the chosen number of colloids on a

3D lattice and then performs a number of Monte Carlo moves, consisting of independent

displacements, looping over all colloids. The lattice is of a body centered cubic type

(one point in the center, and eight points on the corners). The investigated system is

a three dimensional rectangular channel of size Lx × Ly × Lz = 66× 128× 256 lattice

151



sites. Solid walls exist at the top and bottom in the x- plane with no slip boundary

conditions and the walls in the the y- and z- directions are periodic. The anchoring

on the walls and the particles is homeotropic. The boundaries in the z-direction act

as the inlet and outlet of the channel. A pressure gradient Ψ = ∆p/Lz is applied

in the z- direction as a body force density acting on all fluid sites. A sketch of the

geometry is shown in Fig. 7.1. All particles are discretised to be of the same size, with

Lx

z

y

x

Figure 7.1: Sketch of the computational geometry: We apply no-slip boundary con-
ditions and homeotropic anchoring conditions at the walls in x-direction and periodic
boundary conditions at the y- and z-boundaries. The direction of flow is to the right,
as shown by the parabolic flow profile at the inlet. Not to scale.

a radius of R = 5 lattice sites and are free to move. The volume packing fraction pf

determines the percentage of the system volume taken up by the initialised colloidal

particles. The surface free energy has weak homeotropic anchoring both on the walls

and particle surfaces. The initial set up is left to relax for 100,000 timesteps without

flow, after which a pressure gradient is applied. For high values of the pressure gradient

the simulations are ran for approximately 2.5 million timesteps to reach a steady state,

while for the low values they are extended to around 8-9 million timesteps. We explore

the effect of low, medium, and high fluid velocity on different packing fractions. The

results are also further compared with the behaviour of the same packing density and

applied pressure gradient combination in an isotropic fluid instead of a nematic. The

simulation parameters are given in Tab. 7.1. We apply three different values of pressure

gradient to each simulation resulting in low, medium, and high fluid velocity.
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Variable

Packing fraction pf 0.01, 0.03, 0.05, 0.07,
0.10, 0.20, 0.30, 0.40

Pressure gradient Ψ 10−5, 10−6, 10−7

Invariable

Elastic constants κ 0.01
Dynamic viscosity η 0.8333333
Bulk viscosity ζ 0.8333333
Mobility parameter Γ 0.3
Bulk energy scale A0 0.084
Inverse temperature γ 3.085
Wall anchoring strength wwall 0.006
Particle anchoring strength wpart 0.006
Flow alignment parameter ξ 0.7
Density ρ 1.0
Particle radius R 5

Table 7.1: Overview of simulation parameters

7.2 Particle Migration

We can now investigate the particle behaviour for different flow velocities at increasing

packing fractions. The flow profile is parabolic, and as such we expect particles near

the center of the channel to move faster than one that are near the walls. The observed

particle migration shows distinction between low and high colloidal densities. At the

highest packing fractions of pf = 0.3 and pf = 0.4 the system is very tightly packed

with limited migration ability, especially for the pf = 0.4 case. To explore the migration

effects in depth we create and use 3D histograms. Each histogram shows the number

of colloids in equal numerical ranges across the channel width with an additional axis

of time. This gives a visual representation of the particle position distribution and its

change over time. The numerical range is called a bin, and here the chosen bin size is 6

LBU. It is just above the particle radius of R = 5 LBU and divides the channel width

into 11 equal sections with the central bin including the center-line of the channel in

the middle of it.
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7.2.1 Low colloidal density

Initially we shall explore the particle migration at low packing fractions, that is for

pf = 0.01, 0.03, 0.05, 0.07 in a nematic. For comparison, we include the results for the

same number of particles in an isotropic material. For a packing fraction of 0.01, the

number of initialised particles in the system is 41. The resulting histograms are shown

in Fig. 7.2.
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Figure 7.2: Evolution of particle position in the channel over time. Left column shows
the particles in a nematic, while the right column shows particles in an isotropic fluid.
The first row has the lowest fluid velocity, the second has medium with the highest
shown in the last row. The packing fraction is pf = 0.01.

At the lowest applied pressure gradient with a random distribution of a small num-

ber of particles in a nematic, as shown in the top left graph of Fig. 7.2, we can see that

the particles tend to migrate towards the top and bottom walls in the x- direction if

they start away from the center of the channel. For particles that start at the center,

they remain in a central position, not near the walls over time. This behaviour, meaning

migration to the walls or staying in a stable position at the center, was also observed

for a single particle at low fluid flows in Chapter 5 [1]. In an isotropic fluid with the
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same pressure gradient and packing fraction, we can see that the particles remain in

the same positions over time. This is shown in top right graph in Fig. 7.2 with slight

deviations being the result of the particles moving slightly near the boundary of the

bins. The fluid flow is low, and in an isotropic fluid there are no liquid crystal effects

that would affect the particles.

For a medium applied pressure gradient and a packing fraction of 0.01 in a nematic

liquid crystal, shown in the second row of the first column of Fig. 7.2 we observe the

same migration pattern as for the lowest pressure gradient. Meaning that over time the

particles that began near the walls migrate towards them, while the particles that begun

near the center of the channel stay in the center position. With the slightly higher fluid

velocity the particles in the center are now also tending to stay at that central position

more than for the lower fluid velocity case. Comparing with an isotropic fluid case

of the same pressure gradient and colloid concentration shown in the second row of

the second column of Fig. 7.2 the contrast between the behaviour can be immediately

seen. Without liquid crystal, none of the particles end up near walls and instead tend

to remain near their starting positions in the x- direction.

The biggest difference in particle migration between a nematic and isotropic fluid

occurs for the highest fluid velocity, as shown in the last row of Fig. 7.2. Under

high flow particles in a nematic completely move towards the walls with no particles

anywhere in the middle of the channel. That does not happen in an isotropic fluid.

Instead, similarly to lower fluid velocities the particles remain in the middle of the

channel at various position and not near the walls. There is some variation in final

particle position, however most particles remain close to their starting position.

The migration behaviour at the remaining low packing fractions of pf = 0.03, 0.05,

0.07 follows the same trends, and as such we can choose a representative case that

applies to them all. To that effect, we show the change in time of the distribution of

the particle position of pf = 0.07 in Fig. 7.3. Additionally, the number of particles

in the system for pf = 0.03, 0.05, 0.07 is 123, 206, and 289 respectively. The main

difference between the case for pf = 0.01 shown in Fig. 7.2 and the other low colloidal

densities is that at low flow velocities for pf = 0.01 there is an attraction to the central
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position in the channel, while for the other low packing fractions that is no longer

present in the position distribution. There are some particles that are in the middle of

the channel, but that is a result of particle entanglement/clustering facilitated through

the disclination lines.
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Figure 7.3: Evolution of particle position between the top and bottom walls of the
channel over time. Left column shows the particles in a nematic, while the right column
shows particles in an isotropic fluid. The first row has the lowest fluid velocity, the
second is of medium fluid velocity with the highest shown in the last row. The packing
fraction is pf = 0.07.

Fig. 7.3 shows the particle migration for a packing density of pf = 0.07 at three

different flow velocities for a nematic and an isotropic fluid. At the low and medium

flow velocity the particle migration is very similar in that most particles end up very

close to the top and bottom walls, with some particles in between. This is shown in

the first and second row of the left column. The few colloids that are in the middle

are either close to the walls, or they form clusters with other particles that are at the

walls. In comparison, in an isotropic case very few particles are close to the walls

with the majority located inside the channel at the lowest fluid velocity. In fact, the

position distribution is bimodal, with particles preferring a position at 0.25 channel
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length from either walls. This is consistent with the expected Segré -Silberberg effect

we discussed in previous a chapter. For an isotropic fluid with a medium flow velocity,

the particles do tend to go to the Segré -Silberberg distance, but a significant number

also is located at the center of the channel and at the top and bottom walls. This is a

result of increased velocity.

Finally, there are also differences at the highest flow velocity imposed through the

pressure gradient of Ψ = 10−5 show in the bottom row of Fig. 7.3. In a liquid crystal,

the flow is so large, that all particles end up either near the top or the bottom wall

with no colloids in the middle. That is not the case for the comparable scenario in

an isotropic fluid, where most particles are exactly in the center of the channel. In

this case some particles that start close to the walls do end up near them over time.

Additionally, many are as close to the middle of the channel as it is possible showing a

symmetric unimodal distribution.

The distribution of particle positions and the colloid migration over time is one

of many effects that occurs within this system, especially for liquid crystal. Before

looking into those, we shall focus on what happens at higher colloidal densities. With

increasing particle numbers, clustering effects have a large influence.

7.2.2 High colloidal density

With increasing numbers of particles introduced to the system, the interactions between

them affect the evolution of the position migration. For our purposes, we consider the

packing fractions of pf = 0.1, 0.2, 0.3, 0.4 to be of high colloidal density. While the case

of pf = 0.1 could be considered to be one of medium density, due to the clustering and

the propensity for the particles to form a connected network it is more appropriate to

consider it together with the high colloidal density cases. At a packing fraction higher

than approximately pf = 0.12 it is not possible for all particles to occupy spaces fully

on the top and bottom walls due to geometrical constraints. At highly packed cases of

pf = 0.3 and pf = 0.4, and especially for pf = 0.4 the colloids are packed so closely

together that little migration can occur. We will focus our analysis on the migration

behaviour in the pf = 0.1 and pf = 0.2 cases.
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Figure 7.4: Evolution of particle position in the channel over time. Left column shows
the particles in a nematic, while the right column shows particles in an isotropic fluid.
The first row has the lowest, the second has medium, and the last low has the highest
flow velocity. The packing fraction is pf = 0.1.

Fig. 7.4 shows the histogram of time evolution of the particle distribution for a

packing density of pf = 0.1. The number of colloids inside the system is 413. At

the lowest applied pressure gradient in a nematic liquid crystal the particles tend to

aggregate at the top and bottom walls, with some present throughout the channel

width. The attraction to the wall is as expected, similarly to what happens at lower

packing fractions. At the low fluid velocity the particles also become entangled through

the defect structure around them leading to clusters of colloids that join together. In

this case, as there is a larger number of particles, they are able to create a network that

spans the width of the channel. The elastic forces of the defects are larger than the

viscous forces, with the fluid velocity not being large enough to prevent the particles

from creating percolating networks that form a bridge between the top and bottom

walls. At the same applied pressure gradient in an isotropic fluid the velocity is low

and the particle migration is different than in the nematic. Very few particles are close

to the walls, and not many end up at those positions. Most particles are near their
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original starting positions with a random distribution over all bins that are not directly

next to the top and bottom walls.

Medium flow velocity for a packing fraction of pf = 0.1 in a nematic and isotropic

phase is shown in the second row of Fig. 7.4. For a nematic, the particles as usual

migrate towards the top and bottom walls of the channel over time. Another interesting

effect that can be seen is that colloids that started close together in the middle of the

channel form a cluster that over time moves from the top part of the channel towards the

bottom. This is a result of particle interaction and entanglement combined with flow

effects. Particles that are close together end up pulling each other into an energetically

favourable position that minimises the defect loops around them, while the fluid velocity

is still not high enough to completely force the particles to move to their preferred

positions near the walls. In an isotropic fluid the histogram shows a fully symmetric

unimodal pattern for colloid position distribution. The most favoured position of the

particles is at the center of the channel. In contrast to the lower fluid velocity in an

isotropic fluid, the increase in fluid flow velocity now makes a portion of the colloids to

be pushed towards the walls. There is no particle entanglement as there is no director

or disclination lines, but the particles do aggregate in the middle of the channel.

At the highest applied pressure gradient of Ψ = 10−5 the migration behaviour

follows the same patterns that were initially observed for lower colloidal densities in

the comparable nematic and isotropic fluid cases. For the nematic case, nearly all

particles end at the walls, with a small proportion in the middle of the channel. In

the isotropic case, once again we can observe a very symmetric unimodal pattern with

the center of the channel being the most preferred position for the colloids. With this

higher fluid velocity more particles than before tend to be directed to that central

position, while the ones that are not in the middle represent a smaller proportion of

all the colloids and are located either near the wall or at evenly distributed near in the

middle around the most central location.

The final evolution of particle distribution across the channel width we will discuss

is shown in Fig. 7.5. Here, the packing density is pf = 0.2, and the number of particles

introduced to the channel is 826. It is no longer physically possible for all particles to
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Figure 7.5: Particle position in the channel over time. Left column shows the particles
in a nematic phase, while the right column shows particles in an isotropic one. The
first row has the lowest pressure gradient, the second has medium, and the last low has
the highest. The packing fraction is pf = 0.2.

only occupy positions at the walls due to the high colloid density. Particle movement is

heavily impacted by interactions between the particles, however there are still emerging

trends that are present. In a liquid crystal at low pressure gradient the particles have a

roughly symmetrical distribution over the width of the channel, with the center of the

channel and the walls being the preferred positions. The particles are fully entangled

forming a interconnected cluster through the disclination lines. At the same applied

pressure gradient and fluid velocity in an isotropic fluid the colloids are distributed very

symmetrically across the channel, and mostly away from the walls. The most likely

position for an individual particle after the system is in a steady state is at the very

center of the channel, with the second most likely positions a diameter away from the

center line in either direction.

At a medium pressure gradient and a packing fraction of 0.2, the colloidal migration

in a nematic liquid crystal and in an isotropic fluid is very similar, which has not

occurred for other packing fractions. In both cases, the resulting histogram showing the
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distribution of the particles over the width of the channel is unimodal and symmetric,

with the most likely particle positions being either at the center of the channel or at

the walls. The colloids in the isotropic fluid show a higher degree of uniformity and

symmetry in their position distribution.

While at medium pressure the particle behaviour is similar in both a liquid crys-

tal and an isotropic fluid, the differences are very stark at a higher applied pressure

gradient. In a nematic, the high fluid velocity leads to most particles ending up at

the top and bottom walls. As there are more particles than the available space at the

walls, a proportion of the particles migrates to positions creating a second layer over

the particles at the wall. The remaining particles are in the middle of the channel. For

an isotropic fluid however, the majority of colloids migrate towards the middle of the

channel as shown in the histogram in the bottom right column of Fig. 7.5. Those stark

differences in migration of the particles allow to easily differentiate between a liquid

crystal and an isotropic state, which could have potential future applications.

For higher packing fractions of 0.3 and 0.4 the migration behaviour is limited due

to the high number of particles occupying the space. The tightly packed particles

bump into each other and are restricted in their movements resulting in reduced colloid

velocities and a certain proportion of particles with negative velocity, that is, moving

in the direction opposite to the direction of the flow.

7.3 Colloid velocity and defects

Colloidal velocity is another facet of many particle liquid crystal flow. There are dif-

ferences related to the changes in the colloidal density together with varying behaviour

present for high and low applied pressure gradients. We will discuss the colloidal ve-

locity, observed changes in the Saturn ring defects and the phenomenon of negative

colloid velocity. To achieve this we will look at two examples with low colloid density

(with packing fractions of 0.03 and 0.07) and two examples with high colloid density

(with packing fractions of 0.1 and 0.3 respectively).

In the first instance, Fig. 7.6 shows a still from the simulation at a steady state for
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Figure 7.6: Colloid velocity for a packing fraction of 0.03. In both cases the colloidal
particles are color coded by their velocity and shown together with the defect structure
(green) around them. The left image shows the system subjected to a low pressure
gradient of Ψ = 10−7, while on the right a high pressure gradient of Ψ = 10−5 is used.

a colloidal density of 0.03. The left image shows the a low applied pressure gradient of

Ψ = 10−7 while the right shows a high pressure gradient of Ψ = 10−5. The green lines

show the defect lines, with the colour of the colloids showing positive velocity for shades

of red and negative velocity for the shades of blue. At the lower pressure gradient,

and consequently lower fluid and colloid velocities, the Saturn ring defects around the

colloids are oriented parallel to the top and bottom walls in the x- direction, and in line

with the direction of the flow. They are flow aligned, as expected from the previously

studied single particle systems. The Ericksen number is lower here than for the higher

pressure gradient, meaning that the viscous effects have lower impact here. This leads

to the observed clustering that is mediated through the joint defect structure around

the colloids, a result of the tendency of the system to minimise its internal elastic

energy. Another effect that can be noted here, is the negative colloid velocity noted for

some of the colloids that migrated to the the top and bottom walls. In essence, some

of the particles get ‘stuck’ on the wall for short periods of time, while others are pulled

back due to the entangled defect structure within the clusters. Additionally, even at

this low colloid velocity, some percolation occurs - with a joined structure of colloids

joining from top to bottom. Moving on to what happens at the same colloidal density,

but for a larger pressure gradient, we observe significant differences, as shown in the

right image of Fig. 7.6. The Saturn ring defects are now oriented at an angle to the

direction of flow and the top and bottom walls. This is a result of the flow aligning at

this high velocity. Additionally, as the viscous effects dominate over the elastic effects
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there is no colloid clusters created by the entanglement of the defects, rather individual

colloids have Saturn ring defects present around them at the appropriate flow aligned

angle. There are no more cases of particles having negative velocities in any significant

way. As discussed in the previous section, all the colloids migrate to either the top or

the bottom wall of the channel.

Figure 7.7: Colloid velocity for a packing fraction of 0.07. The colloidal particles are
marked with their velocity and shown together with the defect structure (green). The
left image shows the colloids subjected to a low pressure gradient of Ψ = 10−7, while
the image on the right shows a high pressure gradient of Ψ = 10−5.

Fig. 7.7, similarly to Fig. 7.6, shows a snapshot of a system of colloidal particles in

a liquid crystal in a steady state with a packing fraction of 0.07 for a constant applied

pressure gradient of Ψ = 10−7 on the left and Ψ = 10−5 on the right. As before, the

green lines correspond to the defects and the colour scheme of the particles is red for

positive velocity and blue for negative velocity. For the left hand side, which represent

the lower applied pressure gradient, we see more clusters of particles present than for a

lower packing fractions. The Saturn ring defects are oriented parallel to the direction of

flow and the x- walls around particles and form networks around the colloids creating

clusters. This is because the elastic and viscous forces are competing here, with the

elastic forces favouring energetically to join together to minimise their total elastic

energy and creating clusters that over time resemble percolating networks. There is

a small proprtion of the particles with negative velocity, marked with light blue. In

contrast within the same figure the higher velocity shows markedly different behaviour.

With the higher applied pressure gradient, the viscous effects dominate, resulting in the

reorientation of the Saturn ring defect to a flow aligning angle. There is no entanglement

of the defects around multiple particles, and as expected all particles are either at the
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top or bottom boundary walls. At this high velocity there is very limited occurrences

of negative colloid velocity, none of which can be seen in this figure.

Focusing on higher colloidal densities, we will now investigate the behaviour and

defect structures for the cases with 0.1 and 0.3 packing fractions, as show in Fig. 7.8

and Fig. 7.9. Starting with a packing fraction of 0.1 shown in Fig. 7.8, we once again

Figure 7.8: Images showing the colloid velocity for a packing fraction of 0.1. The
colour of the colloids shows their velocity in the direction of flow, with the green regions
representing the defect structure. On the left, we show the lower pressure gradient of
Ψ = 10−7, while on the right the applied pressure gradient is Ψ = 10−5.

observe the colloidal behaviour at two different applied pressure gradients, Ψ = 10−7

and Ψ = 10−5 on the left and right side respectively. For the lower velocity example, the

defects around the individual particles are Saturn rings around individual colloids that

have entangled and created clusters. Those clusters are mostly interconnected creating

a percolating network such that the orientation of the Saturn ring like defects is now

more significantly influenced by the cluster network than orienting exactly parallel to

the flow. There are colloids with negative velocity, resulting from the tight clusters

of particles where individual colloids are unable to move in a different direction. The

degree of interconnectedness is higher than in the low density cases as colloids are

more likely to get within a close distance and join together with their defects than at

lower density cases. The biggest difference in migration behaviour at high flow velocities

between the low and high packing fractions, as seen on the right of Fig. 7.7 and Fig. 7.8

is that the particles no longer only migrate towards the top and bottom walls. The right

side of Fig. 7.8 shows the colloid velocities and the director structure for this higher

packing fraction and higher velocity scenario. As it can be seen, the defects around

the particles are Saturn rings around individual colloidal particles with no overarching

connected networks. These Saturn ring defects are reoriented completely. At the walls
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they align to the angle of flow, with some reorientation adjusted through the closeness

to the wall. In the middle of the channel, the defects are now perpendicular to the

direction of flow - a result of the dominating viscous effects of the flow over the elastic

effects. The clustering effects are minimal, and very few particles have negative velocity.

Figure 7.9: Colloid velocity for a packing fraction of 0.3. The colloidal particles are
color coded with their velocity and shown together with the defect structure (green).
The left image shows the colloids subjected to a low pressure gradient of Ψ = 10−7,
while the image on the right shows a high pressure gradient of Ψ = 10−5.

The final example we will examine is for a high packing fraction of 0.3, as shown

in Fig. 7.9. The left hand side of the figure shows the lower applied pressure gradient

Ψ = 10−7, with the right hand side showing the much larger pressure gradient of

Ψ = 10−5. At this colloidal density the system is tightly packed with many particles

with not a lot of space for all of them to move around. As such the instances of negative

colloid velocity are much higher. For the lower fluid velocity, shown on the left of the

figure, the particles form a large cluster of defect bound particles. The Saturn ring

like defects on the top and bottom walls remain oriented parallel to the flow, while the

defect network in the middle of the channel does not have a clear preferred orientation

in the flow direction but rather aims to minimise the total elastic energy of the system

in the most favourable way. For the higher flow velocity on the left, some differences

can be immediately seen. The colloids are still pushed towards the top and bottom

walls due to the high applied pressure gradient, with the particles that are not able to

fill the space on the wall being about evenly distributed across the center of the channel.

Even though the channel is tightly packed, the flow velocity is very high and not many

particles end up having negative velocity. As before, the Saturn ring like defects on

particles that are on the top and bottom walls are reoriented such that they are no

longer parallel to the direction of flow. Additionally, a major difference is observed
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at this high packing fractions as the defect structure consists of a connected network

around the cluster of particles, rather than individual defects. This has not occurred

at any of the lower colloidal densities, and is only present in the middle of the channel -

the colloids at the top and bottom walls still tend to be individual Saturn ring defects

flow aligned to the appropriate angle.
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Figure 7.10: Mean colloid velocity in the direction of flow for various packing fractions
with an applied pressure gradient of Ψ = 10−6. Error bars shown are one standard
deviation of the mean. Left graph shows results for the low colloidal densities and right
hand side shows the result for high colloidal densities.

The final figure to be presented includes the graphs of the mean colloid velocity for

different colloidal densities shown in Fig. 7.10. The left gaph shows the results for the

low packing fractions, while the graph on the right shows the results for high packing

fractions. The main trend that can be observed is that the mean colloid velocity is

reduced over time for all cases. This is a result of some proportion of particles migrating

towards the walls. As the flow profile is parabolic, more particles at the top and bottom

walls will mean lower velocity for those particles in comparison to the ones that are

in the center of the channel. This also explains the trend of higher average colloidal

velocity for higher packing fractions, as with more particles present more of them end

up at central locations that will experience higher flow velocity. This is especially true

for the higher colloid densities, as there is a geometrical limit of positions close to

the walls, with each subsequent additional particle being closer to the middle of the

channel.
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7.4 Summary

In summary, the behavior of colloidal particles in a liquid crystal under different flow

velocities is complex and influenced by the inherent anisotropy of liquid crystals as

compared to isotropic fluids. This can lead to unique and interesting phenomena such as

wall or center migration, percolating networks of colloids bound by defects and changes

in Saturn ring tilt angles. The observed migration behaviour differed for low and high

colloidal densities. For low colloidal density, the particles showed a tendency to migrate

towards the walls or remain stable at the center for low and medium flow rates, while

isotropic fluid particles exhibited minimal migration at low and medium velocities and

preference towards the center at high velocities. However, for higher colloidal density,

differences in migration behavior between liquid crystal and isotropic particles were

more pronounced. The particles in a nematic tended to migrate towards the walls,

while isotropic particles migrated towards the center, with this trend becoming more

pronounced at higher flow velocities. Additionally, at low and medium flow velocities,

percolating networks of colloidal particles were observed in the liquid crystal, leading to

some instances of negative velocity due to clustering. However, no clusters were formed

at the highest velocity as the viscous forces are much larger than the elastic forces. We

also found that the Saturn ring defect near walls tilted at an increasing angle as the

fluid velocity increased to the appropriate Leslie angle. Furthermore, higher packing

fractions were associated with higher average colloidal velocity, indicating a relationship

between particle density and velocity. Overall, the novel results of the study shed light

on the migration behavior of colloidal particles in different flow conditions and the

unique characteristics related to the nematic environment. The key observed novel

results that include the migration patterns and clustering effects summarised earlier

align with our stated project aims of having a better understanding of defect behaviour

in flow as well as defining the factors strongly influencing particle migration. Our

previously obtained results in Chapters 5 and 6 (published in [1] and [2] respectively)

contributed greatly to our analysis of the large scale systems discussed in this chapter.

We hope that through our observation of the large scale nematic colloids more
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experimental work will be done in this area. Especially when it comes to dynamic and

flow driven systems, as a lot of the current work is focused equilibrium conditions [169].

In general, there is scope for applications in self-assembly driven by the understanding

of the novel types of behavior and emergent effects.
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Chapter 8

Conclusions and Future work

8.1 Conclusions

In conclusion, in chapter 4 we investigate the appropriate simulation parameters to

obtain a well defined colloidal particle with appropriate anchoring conditions on the

walls and particle surface fixed in place in a microchannel with a flowing nematic

liquid crystal. This allows us to observe the elongation of the ring defects around the

static particle and the bend to splay transition dependent on the simulation parameters

including fluid velocity and viscosity.

The summary of chapter 5 is that we observe multiple equilibrium particle positions

and a new pressure-controllable particle attractor state for a colloidal particle with

nematic liquid crystalline host phase. At low pressure gradients particles migrate either

to the channel centre or the walls but at higher pressure gradients a third attractor

state emerges spontaneously, whose position in the channel depends sensitively on the

pressure gradient. These results are in contrast to the classical Segré-Silberberg effect

in isotropic fluids, where the equilibrium position is reached more slowly. The discovery

of these controllable attractor positions creates interesting routes for tailored particle

separation. While our results were obtained in pressure-driven flow, we expect them to

hold as well in flux-driven flow as long as there is no significant drag between particle

and fluid.
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In chapter 6 we explore how defects influence the advection behaviour of colloidal

particles in moderate and large confinement. The interaction between nematic order

and flow together with the fluid-solid interaction results in a non-monotonic depen-

dence of the retardation ratio, that is the ratio of particle advection velocity to the

maximum velocity at the centre of the duct, on the Ericksen number. When the Er-

icksen number is low, the retardation ratio is close to values observed in a Newtonian

host phase in all confinement ratios and particle anchoring conditions. This is also

the case for vanishing or low anchoring strength and at high Ericksen numbers, where

the nematic liquid crystal behaves increasingly like a simple Newtonian fluid. This is

because the relative importance of elastic effects decreases. At intermediate Ericksen

numbers there is a pronounced minimum in the retardation ratio. We attribute this

to a combination of two effects. The first is the bend-to-splay transition, to which

particles in all anchoring conditions are subject. The second effect is the defect ring

undergoing a reorientation from horizontal alignment with the ring plane parallel to

the walls to a vertical orientation, which has the ring plane perpendicular to the flow

direction and the walls. This increases the effective particle radius and therefore the

confinement. The second effect is only present when the defect ring is properly formed,

i.e. for stronger particle anchoring strengths, and when the confinement is lower. This

is because the increased retardation that the particle experiences is a consequence of

the interaction of the defect with the gradients of the flow velocity and liquid crystalline

order. We do not observe migration to the walls for all but the highest Ericksen num-

bers and confinement ratios that we tested in contrast to the much lower confinement

in chapter 5. Hence the increased confinement leads to the stabilisation of trajectories

at the centre of the duct.

Finally, chapter 7 presents the results of many particle liquid crystal flow. The

observed behaviour includes advanced particle migration behaviour that is highly de-

pendent on both the packing fraction and the velocity of the fluid, the reorientation

of the Saturn ring defect, formation of percolating clusters of colloids bound by their

entangled defect, and cases of negative colloidal velocity.

We can now reflect on how the work that we did aligns with the project aims. As
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a reminder, the stated goals of our work are to define the factors strongly influencing

particle migration and to better understand liquid crystal defect behaviour in flow.

When it comes to the particle migration, our results in chapters 5 and 7 provide the

most insight. In the former we find that the particle migration is influenced by its

starting position in the system, the bend to splay transition, and increasing Ericksen

numbers. Those are factors affecting an individual particle, and in the case of many

particle systems presented in Chapter 7 we additionally note that the packing fraction

and clustering effects affect particle migration. The second aim of our research, focusing

on defect behaviour in flow, has been met in all of the results chapters. Specifically, we

observed the elongation and changes in defect shapes in Chapter 4, the tilting of the

Saturn ring defect and reorientation during the bend to splay transition in Chapters 5

and 7, changes in shape due to the combination of high confinement and large Ericksen

numbers in 6, and defect structures around clusters of particles in 7. In summary, the

original contribution of the work done by the thesis author is in the running of fully

three-dimensional simulations of nematic colloids in microfluidic flow and analysing the

key results which relate and add to the current understanding of nematic colloids. The

implications of this research is in potential for further experimental research that can

be done to further explore the novel mechanisms of particle control through the found

factors strongly influencing their migration.

8.2 Future Work

There is scope for further investigation based on the work presented in this thesis. The

simulations of a single small fixed particle can be explored for larger sizes that would

lead to differences in the defect type. This would allow to simulate the behaviour of

hyperbolic hedgehog defects and compare it to experimental results. Additionally, the

type of ordering at the particle can be changed to planar, leading to obtaining bojuum

defects and an exploration of the changes in the system behaviour. It is not clear

how these topological differences would affect the advection and migration behaviour.

The same changes can be introduced to the motile particle explored in Chapter 5, the
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confined colloid in Chapter 6 and the many particle systems in Chapter 7.

As another example, there is scope to explore how planar or hybrid anchoring

conditions affects the defect morphology, migration, and advection behaviour of the

particles in the differing systems presented in the different results chapters of this

thesis. Planar wall anchoring is fully compatible with the flow alignment that takes

place at higher Ericksen numbers. This means that there is no bend-to-splay transition,

rather a more gradual transition to a state where the director field is flow-aligned at

the Leslie angle.

There is also a lot of possibilities for investigating particle effects for large scale

systems of many colloids placed in a liquid crystal and subjected to flow. The thesis

has set up the groundwork to explain single particle behaviour in flow which can then

be used to analyse more effects that occur as a result of particle interactions, clustering

effects, and entanglement. This is beyond the scope of this project, nonetheless there

is unique opportunities for discovering novel behaviour.
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Appendix A

Chapman-Enskog analysis

A.1 Connecting the lattice-Boltzmann and Navier Stokes

equations

Assuming that the distribution function f is such that f ≃ feq, the general momentum

and the internal energy conservation equations lead to the Euler and energy equations

∂(ρuα)

∂t
+

∂(ρuαuβ)

∂xβ
= − ∂p

∂xα
+ Fα,

∂(ρe)

∂t
+

∂(ρuβe)

∂xβ
= −p

∂uβ
∂xβ

. (A.1)

These equations do not contain the viscous stress tensor σ′ and the heat flux q found

in the Navier-Stokes-Fourier momentum and energy equations. Having found the Euler

equations for f at equilibrium without the viscous dissipation and the heat diffusivity,

implies that these phenomena occur out of equilibrium. Those contributions in that

case will occur at some non-equilibrium deviation fneq = f − feq. This also applies in

a discretised velocity space, as we have established that the moments of f are equal to

the corresponding moments of fi.

Now is the time to use the Chapman-Enskog analysis, which finds the non-equilibrium

contributions to fi to connect the kinetic and continuum methods together. The un-

derlying thought is to represent f as a perturbation expansion about feq
i , using the
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Knudsen number Kn as the expansion parameter like so:

fi = feq
i + ϵf

(1)
i + ϵ2f

(2)
i + ... , (A.2)

where ϵn is used as a smallness label to indicate the terms of order of Knn. It is

common to write feq
i as f

(0)
i , resulting in a fully consistent notation. By using ϵ it is

easy to group the terms according to their Knudsen number order. This is important,

as within the framework of the perturbed equation each order of Kn is treated itself

as a semi-independent equation. The lowest order terms give the Euler momentum

equation, with the higher order terms marked as correction terms, similarly to how the

viscous stress tensor in the NSE can be seen as a correction term to the Euler equation.

The perturbation is completed in such a way that the equations of different Kn orders

still retain a link to each other with higher-order terms connecting to the lower-order

equations. A sufficiently accurate description can be often obtained by using the lowest

two orders. As follows, we can assume an ansatz consisting of feq
i and f

(1)
i only. The

Chapman-Enskog analysis approach be used for any collision operators, and as we use

the BGK operator we will use the derivation that includes it.

The BGK operator must conserve mass and momentum, we express that using

∑
i

f neq
i = 0,

∑
i

cif
neq

i = 0. (A.3)

Once again, we assume that those conditions hold true individually, such that

∑
i

f
(n)

i = 0,
∑
i

cif
(n)

i = 0 for all n ≥ 1. (A.4)

These assumptions are often called the solvability conditions in the literature.

We now use the Taylor expansion of the discrete-velocity Boltzmann equation to

obtain

∆t(∂t + ciα∂α)fi +
∆t2

2
(∂t + ciα∂α)

2fi + O
(
∆t3

)
= −∆t

τ
fneq
i (A.5)

which is an expression continuous in space and time while maintaining the discretisation
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error of the original equation. In this analysis, the terms with third-order derivatives

or higher are omitted, as they tend to be very small and their effect on the macroscopic

behaviour is largely insignificant. It also follows our previously assumed ansatz of only

using the two lowest orders in the Knudsen number to find the Navier-Stokes equations

solutions.

This presumption operates under the condition that changes in fi are slow and

occur on the macroscale. For rapidly changing fi, as a result of numerical errors or

otherwise, the Champan-Enskog analysis is no longer appropriate and the resulting

macroscopic equations are invalid for the purposes of connecting the lattice-Boltzmann

and Navier Stokes equations.

As we focus on second-order terms only, we neglect the O(∆t3) terms, and then we

get rid of the second-order derivative terms by subtracting (∆t/2)(∂t + ciα∂α) in the

Eq.(A.5). Hence we get the following

∆t(∂t + ciα∂α)fi = −∆t

τ
fneq
i +∆t(∂t + ciα∂α)

∆t

2τ
fneq
i (A.6)

where fneq derivative on the right hand side are the only remnants of the discretisation

error. Another assumption that is made here is that the time derivative is expanded

into terms spanning several orders in Kn. Using that to relabel the spatial derivative

without expanding it, the time and space derivatives will end up as

∆t∂tfi = ∆t
(
ϵ∂

(1)
t fi + ϵ2∂

(2)
t fi + ...

)
, ∆tciα∂αfi = ∆

(
ϵciα∂

(1)
t

)
fi. (A.7)

The different components of ∂t at different orders in Kn are not considered to be time

derivatives by themselves [112], rather they are terms at various orders in Kn that when

summed together will equal the time derivative. The approach to the expansions of

derivatives is commonly used in the general perturbation theory and is referred to as

the multiple-scale expansion. It is used to prevent from creating terms that grow with

no bounds at one order but are cancelled by similar terms at higher orders [170].

To tie in these expansions together, we use the fi form from Eq. A.2 and the multi-
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scale expansion from Eq. A.7 applied to Eq. A.6. Separating the equation by their Kn

order, the two lowest orders in Kn are

O(ϵ) :
(
∂
(1)
t + ciα∂

(1)
α

)
f eq
i = −1

τ
f
(1)
i , (A.8a)

O(ϵ2) : ∂
(2)
t f eq

i +
(
∂
(1)
t + ciα∂

(1)
α

)(
1− ∆t

2τ

)
f
(1)
i = −1

τ
f
(2)
i . (A.8b)

From here, we can find the moment equations in O(ϵ) by taking the zeroth to second

moments of Eq. A.8a. To do that, we multiply by 1, ciα and ciαciβ and then sum over

i resulting in:

∂
(1)
t ρ+ ∂(1)

γ (ρuγ) = 0, (A.9a)

∂
(1)
t (ρuα) + ∂

(1)
β Πeq

αβ = 0, (A.9b)

∂
(1)
t Πeq

αβ + ∂(1)
γ Πeq

αβγ = −1

τ
Π

(1)
αβ . (A.9c)

These equations contain the moments

Πeq
αβ =

∑
i

ciαciβf
eq
i = ρuαuβ + ρc2sδαβ, (A.10a)

Πeq
αβγ =

∑
i

ciαciβciγf
eq
i = ρc2s(uαδβγ + uβδαγ + uγδαβ), (A.10b)

Π
(1)
αβ =

∑
i

ciαciβf
(1)
i , (A.10c)

where the first two are explicit equilibrium moments in discretised velocity space, with

the third one explained later. Note that the Πeq
αβγ lacks a term ρuαuβuγ as we only

include f eq
i containing terms up to O(u2). Taking the moment equations in Eq. A.8

and reverse the Eq. A.7 expansions while neglecting the higher-order Kn contributions

such that ∂tfi ≈ ϵ∂
(1)
t fi, we get the first equation to be the continuity equation, and

the second equation being the Euler equation, with the third one currently to be kept

in mind to get back to.

Using the same method to take the zeroth and first moments of Eq. A.8b, we find
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the moments equations in O(Kn2):

∂
(2)
t ρ = 0, (A.11a)

∂
(2)
t (ρuα) + ∂

(1)
β

(
1− ∆t

2τ

)
Π

(1)
αβ = 0. (A.11b)

Both of these equations can be thought of as the O(ϵ2) corrections to the earlier O(ϵ)

equations. The continuation equation is exact at O(ϵ), which is now confirmed with the

O(ϵ2) being equal to 0. The O(ϵ2) correction to the Euler equation is non-zero, given

by the currently unexplored moment Π
(1)
αβ .

Aggregating the O(ϵ) and O(ϵ2) component equations from the equations detailed

above in the equation sets Eq. A.9 and Eq. A.11 respectively to construct the mass

and momentum equations, we obtain

(
ϵ∂

(1)
t + ϵ2∂

(2)
t

)
ρ+ ϵ∂(1)

γ (ρuγ) = 0, (A.12a)(
ϵ∂

(1)
t + ϵ2∂

(2)
t

)
(ρuα) + ϵ∂

(1)
β Πeq

αβ = −ϵ2∂
(1)
β

(
1− ∆t

2τ

)
Π

(1)
αβ . (A.12b)

Using the reverse of the derivative expansion from Eq. A.7, the above equations emerge

as the continuity equation and a momentum conservation equation with thus far uniden-

tified viscous stress tensor

σ′
αβ = −

(
1− ∆t

2τ

)
Π

(1)
αβ . (A.13)

It is important to note that we use the expanded time derivative to recombine the two

different orders of ϵ. Were it not done in this way Eq. A.11b would omit the ∂
(2)
1 (ρuα)

term and as a result incorrectly concluding ∂
(1)
β Π

(1)
αβ = 0.

We now get back to the Π
(1)
αβ moment, looking for an explicit expression. We can

call it a perturbation moment and it can be directly found from the derivatives of the

equilibrium moments by using Eq. A.9c. To this end, a tedious amount of algebra is

required, the details of which can be found in the Appendix A.2.2 of reference [109].
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The final result using the equilibrium distribution function fieq expanded to O(u2)

Π
(1)
αβ = −ρc2sτ

(
∂
(1)
β uα + ∂(1)

α uβ

)
+ τ∂(1)

γ (ρuαuβuγ). (A.14)

This derivation does not assume that ∂tτ = 0 or ∂ατ = 0 which means that the

expression found holds for τ being a function of space and time. The first term on

the right hand side is the corresponding Navier-Stokes viscous stress tensor and the

second is an error term emerging from the absence of an appropriate 0(u3) term in the

equilibrium f eq
i . In most cases, this error term is negligible. In fact, when looking

at magnitudes of the two terms the error term can be neglected for u2 << c2s. The

last part is actually equivalent to Ma2 << 1 for a Mach number Ma = u/cs [171].

As a result, the commonly held view is that the lattice-Boltzmann method is valid

for weakly compressible phenomena only (subsonic) [172], [173], and not suitable for

strongly compressible phenomena of flows with Ma at unity or above (supersonic) [77].

Having done all of the above it is now the time to put it together to determine the

macroscopic equations outlined by the lattice Boltzmann method. To achieve this we

use the perturbation moment in Eq. A.14, omitting the O(u3) term, in Eq. A.11 , as

well as reversing the expansion of derivatives in Eq. A.7. Subsequently, it is found that

the lattice-Boltzmann equation solves the continuity and the Navier-Stokes equation

like so:

∂tρ+ ∂γ(ρuγ) = 0, (A.15a)

∂t(ρuα) + ∂β(ρuαuβ) = −∂αp+ ∂β [η (∂βuα + ∂αuβ)] (A.15b)

where

p = ρc2s, η = ρc2s

(
τ − ∆t

2

)
, ηB =

2

3
η. (A.16)

The bulk viscosity ηB is of the same order as the shear viscosity η here, where as in

monoatomic kinetic theory it is usually found to be zero. The discrepancy comes from

using the isothermal equation of state [134] such that p/p0 = (ρ/ρ0)
γ resulting in the

expression for bulk viscosity being ηB = η(5/3 − γ) [123]. At the monoatomic limit
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γ = 5/3, resulting in ηB, while at the isothermal limit γ = 1 leading to ηB = 2η/3. As

a result of Eq. A.16 we find a stability condition such that τ/∆t ≥ 1/2, as otherwise

for τ/∆ < 1/2 the viscosity would be negative, which is macroscopically unstable.

As a final note on the Chapman-Enskog analysis, the same method of deriving the

macroscopic Navier-Stokes equations from the mesoscopic lattice-Boltzmann equations

set that uses the BGK operator could be used for more general collision operators.

The τ exclusively appears as the relaxation time of the moment Παβ in Eq. A.9c.

While using the commonplace multiple-relaxation-time (MRT) collision operators each

moment relaxes to equilibrium at a different rate, with good choices for the relaxation

times increasing the stability and accuracy of the lattice-Boltzmann simulations. There

is also potential to modify the shear and bulk viscosities separately through a more

involved relaxation of the Παβ moment.
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Appendix B

Hermite Polynomials

B.1 Expansion of the equilibrium and particle distribu-

tion functions

The Hermite polynomials are commonly used in quantum mechanics for the wave func-

tions of harmonic potentials and use tensor notation. In one-dimension, the weight

function (also known as the generating function)

ω(x) =
1√
2π

e−x2/2, (B.1)

can be used to describe the Hermite polynomial of the n-th order as

H(n)(x) = (−1)n
1

ω(x)

dn

dxn
ω(x) (B.2)

where n ≥ 0 is an integer. Writing them out explicitly, the first four of these polynomials

are

H(0)(x) = 1, H(1)(x) = x,

H(2)(x) = x2 − 1, H(3)(x) = x3 − 3x. (B.3)
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This definition can be extended to multiple dimensions d [117, 174], resulting in

H(n)(x) = (−1)n
1

ω(x)
∇(n)ω(x), ω(x) =

1

(2π)d/2
e−x2/2. (B.4)

In this notation, both H(n) and ∇(n) are tensors with rank n. That is, they can be

represented by their dn components H
(n)
α1...αn and ∇(n)

α1...αn , where n are indices running

from 1 to d each. ∇(n)
α1...αn term is a short notation indicative of n consecutive spatial

derivatives

∇(n)
α1...αn

=
∂

∂xα1

...
∂

∂xαn

. (B.5)

For sufficiently smooth functions the derivatives commute such that, for example,

∇(3)
xyy = ∇(3)

yxy = ∇(3)
yyx. Under that assumption, the derivatives are symmetric upon

permutation of the indices. For our purposes the cases that are of interest are for d = 2

or d = 3, where the α1, · · · , αn ∈ {x, y} or {x, y, z}, respectively. For additional clarity,

we can explicitly write down the two-dimensional (d = 2) Hermite polynomials for the

first two orders (n = 0, 1), such that for n = 0:

H(0) = 1, (B.6)

and for n=1:

H(1)
x = − 1

e−(x2+y2)/2
∂xe

−(x2+y2)/2 = x,

H(1)
y = − 1

e−(x2+y2)/2
∂ye

−(x2+y2)/2 = y.

(B.7)

Another mathematical property of the Hermite polynomials is that they are orthog-

onal. Considering the one dimensional case, the following holds true

∫ ∫
−∞

ω(x)H(n)(x)H(m)(x) dx = n!δ(2)nm (B.8)

with δ
(2)
nm being the Kronecker delta. Extending the orthogonality to many dimensions
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d, the following is obtained:

∫
ω(x)H

(n)
α (x)H

(m)
β (x) ddx =

d∏
i=1

ni!δ
(2)
nmδ

(n+m)
αβ . (B.9)

The generalised Kronecker delta δ
(n+m)
αβ is equal to 1 only if α = (α1, ..., αn) is a per-

mutation of β = (β1, ..., βn), and 0 otherwise. As an example (x, y, z) is a permutation

of (z, x, y), but not of (x, x, z). Additionally, nx, ny, nz are the numbers of occurrences

of x, y, and z in α. Giving an example again, for α = (y, y, z) nx = 0, ny = 2, nz = 1.

For the 3D case, the orthogonality expressed in Eq. B.9 is given by

∫
ω(x)H

(n)
α (x)H

(n)
β (x) d3x = nx!ny!nz!δ

(2)
nmδ

(n+m)
αβ . (B.10)

Having introduced orthogonality, we can now also talk about orthonormality. To

do that, we can remind ourselves of some aspects of linear algebra. A basis is a set

of vectors in a vector space such that every element of the space can be written as a

linear combination of the elements of the set of vectors. The elements of a basis are

also referred to as basis vectors. An orthonormal basis is one where all the vectors are

orthonormal, i.e. the vectors are linearly independent unit vectors that are orthogonal

to each other. A basis is complete for a vector space H {x ∈ H : ∀i ∈ I < xi, x >=

0} = {0}. Bringing that back to the Hermite polynomials, in one dimension they form

a complete basis in R, meaning that any sufficiently well behaved continuous function

f(x) ∈ R can be obtained through a series of Hermite polynomials:

f(x) = ω(x)
∞∑
n=0

1

n!
a(n)H(n)(x), a(n) =

∫
f(x)H(n)(x) dx. (B.11)

As before, we can extend this representation to d dimensions:

f(x) = ω(x)
∞∑
n=0

1

n!
a(n) ·H(n)(x), a(n) =

∫
f(x)H(n)(x) ddx. (B.12)

The expansion coefficients a(n) are tensors of rank n. The scalar product a(n) ·H(n) is
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given by the summation over all possible indices of a
(n)
α1...αnH

(n)
α1...αn .

We now have all the tools to apply the Hermite series expansion to the equilibrium

function that will ultimately lead to the velocity discretisation. Implementing this

Hermite series expansion from Eq. B.12 to f eq in ξ-space we obtain

f eq(ρ,u, θ, ξ) = ω(ξ)
∞∑
n=0

1

n!
a(n),eq(ρ,u, θ) ·H(n)(ξ),

a(n),eq(ρ,u, θ) =

∫
f eq(ρ,u, θ, ξ)H(n)(ξ) ddξ.

(B.13)

An important realisation is that the equilibrium distribution function is of the same

form as the weight function in Eq. B.1 :

f eq(ρ,u, θ, ξ) =
ρ

(2πθ)d/2
e−(ξ−u)2/(2θ) =

ρ

θd/2
ω

(
ξ − u√

θ

)
. (B.14)

Through this relation, we can calculate the series coefficients

a(n),eq =
ρ

θd/2

∫
ω

(
ξ − u√

θ

)
H(n)(ξ) ddξ, (B.15)

where the substitution η = (ξ − u)/
√
θ results in

a(n),eq = ρ

∫
ω(η)H(n)(

√
θη + u) ddη. (B.16)

These integrals can be directly found, with the help of mathematical software package

of choice, to give

a(0),eq = ρ,

a(1),eqα = ρuα,

a
(2),eq
αβ = ρ(uαuβ + (θ − 1)δαβ),

a
(3),eq
αβγ = ρ[uαuβuγ + (θ − 1)(δαβuγ + δβγuα + δγαuβ)].

(B.17)

By having a closer look at the equations above, it can be noted that the coefficients in

this Hermite series expansion of the equilibrium distribution function f eq are related to
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the conserved moments. The three outlined coefficients are connected to the density,

momentum, and energy. Simultaneously, the Hermite series expansion can also be

applied to the particle distribution function f such that the conserved quantities are

given by the expansion coefficients.

a(0),eq =

∫
f eq ddξ = ρ =

∫
f ddξ = a(0),

a(1),eqα =

∫
f eqξα d

dξ = ρuα =

∫
fξα d

dξ = a(1)α ,

a
(2),eq
αα + ρd

2
=

∫
f eq |ξ|2

2
ddξ = ρE =

∫
f
|ξ|2

2
ddξ =

a
(2)
αα + ρd

2
.

(B.18)

For this reason the Hermite series expansion is so useful for the Boltzmann equation

approach. The series coefficients are directly connected to the conserved moments,

with the first three n = 0, 1, 2 being enough to satisfy the conservation laws and hence

represent the macroscopic equations for the hydrodynamics of the system. It’s also

possible to include higher order expansion terms, which has been argued to improve

the numerical stability and accuracy. For our purposes it is enough to consider the first

three terms which results in significant reduction in the numerical resources needed in

comparison to focusing on the full mesoscopic equilibrium. Using what we have outlined

above, we can now explicitly write the approximation of the equilibrium distribution

function up to the third moment (that corresponds to the second order in ξ(N = 2)):

f eq(ρ,u, θ, ξ) ≈ ω(ξ)ρ [1 + ξαuα + (uαuβ + (θ − 1)δαβ) (ξαξβ − δαβ)]

= ω(ξ)ρQ(u, θ, ξ).
(B.19)

As an aside, we can briefly mention the Mach number expansion. By expanding the

equilibrium distribution function from Eq. 3.18 up to the second order in u we get the

same equation as Eq. B.19. Nevertheless for the next order expansion, corresponding

to energy conservation, the Mach number expansion differs from the Hermite series.

Thanks to the orthogonality of the Hermite polynomials, the Hermite series expansion

does not mix the lower order moments (related to the Navier-Stokes equations) with the

higher order moments related to the energy equation and beyond. The Mach number
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expansion does [175], making the Hermite series expansion largely preferable.

Another reason for the preference of using the Hermite polynomials is that we can

obtain discrete velocity sets by taking integral function values at a small number of

discrete points, called the abscissae. First, lets assume we have a one dimensional

polynomial P (N)(x) of order N . Then, we look for the exact solution of the integral∫
ω(x)P (N)(x)dx. Through considering integral function values in certain points xi we

can achieve just that by using what is called the Gauss-Hermite quadrature rule

∫ +∞

−∞
ω(x)P (N)(x)dx =

n∑
i=1

wiP
(N)(xi). (B.20)

Here, the n values of xi are the roots of the Hermite polynomials H(n)(x), that is

H(n)(xi) = 0, and N ≤ 2n − 1. This implies that in order to exactly integrate a

polynomial of order N, the minimum number of xi abscissae with associated weights

wi required is n = (N + 1)/2. Higher order polynomials will require more abscissae

and subsequently higher-order Hermite polynomials. We can generalise Eq. B.20 to d

dimensions ∫
ω(x)P (N)(x)ddx =

n∑
i=1

wiP
(N)(xi). (B.21)

where each component of the multidimensional point xi (that is, xiα with α = 1, ..., d)

is a root of one-dimensional Hermite polynomial H(n)(xiα) = 0.

The Gauss-Hermite rule can be used to calculate moments and coefficients of the

Hermite expansions. By examining the definition of the coefficients for the equilibrium

function in more detail we find that

a(n),eq = ρ

∫
ω(η)H(n)(

√
θη + u) ddη = ρ

∫
ω(η)P (n)(η) ddη. (B.22)

The tensor-valued Hermite polynomial H(n)(η) is actually a polynomial of order n,

and as a result it can be rewritten as P (n)(η). We can apply the Gauss-Hermite

quadrature rule to the integral on the right-hand side. Unfortunately, it is somewhat

of an endeavour to calculate the P (n)(η) from the Hermite polynomial H(n)(
√
θη+u).
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Alternatively, we choose a different method and use the truncated series expansion of

the equilibrium distribution function f eq that gives the same macroscopic moments.

Using Eq. B.13 and Eq. B.19 we get the relation

a(n),eq =

∫
f eq(ξ)H(n)(ξ)ddξ = ρ

∫
ω(ξ)Q(ξ)H(n)(ξ)ddξ (B.23)

that once again only notes down the ξ -dependence. Next, we take the composed

polynomial R = Q(ξ)H(n)(ξ) and implement the Gauss- Hermite quadrature rule

a(n),eq = ρ

∫
ω(ξ)R(ξ)ddξ = ρ

n∑
i=1

wiR(ξi) = ρ
n∑

i=1

wiQ(ξi)H
(n)(ξi). (B.24)

We have now obtained the discretised Hermite series expansion with n being the essen-

tial number of abscissae.

A remark on the abscissae would not go amiss here. In order to make sure that all

the relevant conservation laws are obeyed, the polynomial of the highest degree needs to

be correctly integrated. In our example, this is the last polynomial in Eq. B.18, which

is related to the energy and also connected to the second-order Hermite polynomial

H(2)(ξ). Making an assumption that the polynomial Q(ξ) is also of second order, the

composed polynomial R = Q(ξ)H(2)(ξ) is then of fourth order, N = 4. Following the

conditions of the Gauss-Hermite quadrature rule, n ≥ (N + 1)/2, meaning that at the

minimum we need n = 3 for the exact calculation of moments. Therefore we are looking

for the roots of H3(ξiα) that will give us the abscissae. The details of the proper choice

and the complex mathematical background of the Gauss-Hermite rule is available in

the Appendix A.4 of [109]. The exact abscissae outlined there contain unwieldy factors

of
√
3. This can be simplified by introducing a new particle velocity

ci =
xii√
3

(B.25)

meaning that the velocity sets will consist of integer abscissae.
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Appendix C

Input options

To reproduce the data a parallel configuration of Ludwig v0.19.1 should be complied

on the machine used for the simulations. The resulting executable (Ludwig.exe) should

be placed in a directory together with an input file. The results were obtained using

Open MPI, by loading module version openmpi/gcc-8.5.0/4.1.1 . Here we present an

example of an input script, annotated with appropriate comments, used to run a single

simulation. This illustrates the process to follow to reproduce the simulations ran to

obtain the data presented in this thesis. For more details on how to use Ludwig, de-

tailed information can be found in the Ludwig code repository [143]. The input script

is given below.

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

#

# Ludwig input file

# Reference

#

# Lines introduced with # and blank lines are ignored.

#

# The file is made up of a series of (case-sensitive) keyword value

# pairs which should be separated by a space:

#
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# keyword value

#

# Components of vector values are separated by an underscore, e.g.,

# force 0.01 0.00 0.00

#

# If a given keyword does not appear, or is commented out, a default

# value will be used.

#

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

#

# Run duration

#

# N start If N start > 0, this is a restart from previous output

#

# N cycles number of lattice Boltzmann time steps to run

# (if it’s a restart, this is still the number of steps

# to run, not the final step)

#

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

N start 0

N cycles 800000

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

#

# System and MPI

#

# size NX NY NZ is the size of the system in lattice units
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# grid PX PY PZ is the processor decomposition

# If PX*PY*PZ is not equal to the number of processors,

# MPI will choose a default (may be implementation-dependent).

#

# periodicity Periodicity of MPI Cartesian communicator

#

# reduced halo [yes|no] use reduced or full halos. Using reduced halos

# is *only* appropriate for fluid only problems.

# Default is no.

#

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

size 128 64 256

grid 1 1 4

periodicity 0 1 1

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

#

# Fluid parameters

#

# viscosity shear viscosity [default is 1/6, ie., relaxation time 1]

# viscosity bulk bulk viscosity [default = shear viscosity]

#

# isothermal fluctuations [on—off] Default is off.

# temperature isothermal fluctuation ’temperature’

#

# ghost modes [on—off] Default is on.

# force FX FY FZ Uniform body force on fluid (default zero)

#

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #
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viscosity 0.833333

viscosity bulk 0.833333

isothermal fluctuations off

temperature 0.000000002133333

force 0.0 0.0 0.00001125

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

#

# Free energy parameters

#

# free energy none single fluid only [the default]

#

# Otherwise

#

# free energy symmetric

# brazovskii

# surfactant

# polar active

# lc blue phase

#

# fd advection scheme order 1-7

# sets order of finite difference

# advection scheme

#

# fd gradient calcualtion Scheme to yse for gradient calculations

# 2d 5pt fluid

# 3d 7pt fluid
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# 3d 27pt fluid

# 3d 27pt solid

#

# Note: only parameters for the currently selected free energy at

# run time are meaningful; you don’t have to comment out all the others.

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

free energy lc blue phase

fd advection scheme order 2

fd gradient calculation 3d 7pt solid

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

#

# Blue Phase free energy

#

# lc a0

# lc gamma

# lc q0

# lc kappa0

# lc kappa1

# lc xi

# lc active zeta

#

# lc q initialisation nematic, twist

# o8m

# o2

#

# lc q init amplitude scalar order parameter amplitude for initialisation

#
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# Typically BPI o8m amplitude -0.2

# BPII o2 amplitude +0.3

# simple cholesteric twist (z-axis) amplitude +1/3

#

# lc anchoring method [none—one—two] (default is none) one: Juho’s method

# two: explicit surface free energy

# lc anchoring [normal—planar—fixed] anchoring boundary conditions

# for solid (if present; defualt is normal)

#

# lc anchoring strength the parameter w in the surface free energy

# [Default is zero = ’free’ anchoring]

#

# lc init redshift Initial value of redshift.

#

#

# lc redshift update [0—1] Allow dynamic cubic redshift adjustment

# (default is none).

#

# lc init nematic Initial director vector [default 1.0 0.0 0.0] when

# nematic initialisation used (doesn’t need to be

# unit vector)

#

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

lc a0 0.01

lc gamma 3.1

lc q0 0.0

lc kappa0 0.01

lc kappa1 0.01

lc xi 0.7
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lc Gamma 0.5

lc q init amplitude 0.3

lc q initialisation nematic

lc init redshift 1.0

lc redshift update 0

lc init nematic 1.0 0.0 0.0

lc anchoring method two

lc wall anchoring normal

lc coll anchoring normal

lc anchoring strength wall 0.02

lc anchoring strength colloid 0.01

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

#

# Colloid parameters

#

# colloid init: no colloids [default]

# from file

# random (see below)

# colloid type: inactive bbl [default]

# active Include active terms in BBL

# subgrid No bbl (”unresolved particles”)

#

# colloid cell min:

# This MUST be set if colloids are present: it specifies

# the minimum cell list width, and must be at least 2ah

# + delta, where delta catches any colloid-colloid

# interactions.
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#

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

#colloid init from file

colloid init input one

colloid type inactive

colloid rho0 1.0

colloid one a0 9.6

colloid one ah 9.6

colloid one r 44.499999 32.5 128.5

colloid one isfixedr 0

colloid one isfixedv 0

colloid cell list interactions yes

colloid cell min 12.0

# Colloid-colloid lubrication corrections

lubrication on 0

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

#

# Colloid-colloid soft-sphere potential parameters

# The soft sphere is always needed

#

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

soft sphere on 1

soft sphere epsilon 0.0004
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soft sphere sigma 0.1

soft sphere nu 1.0

soft sphere cutoff 0.25

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

#

# Walls / boundaries

#

# boundary walls X Y Z [0 for no wall; 1 for wall]

# Must be consistent with periodicity above

# boundary speed top For use with built-in walls

# boundary speed bottom For use with built-in walls

# boundary shear init Initialise shear flow (z direction only).

#

# boundary lubrication rcnormal Normal lubrication correction cut off

#

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

boundary walls 1 0 0

boundary speed bottom 0.0

boundary speed top 0.0

boundary lubrication rcnormal 0.1

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

#

# Output frequency and type

#

# freq statistics N Output diagnostics every N steps

# freq output N Output field state every N steps

# freq config N Output full configuration (for restart) every
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# N steps (can be large!)

# freq phi N phi data output frequency

# freq vel N velocity data output frequency

# freq shear measurement stress profile accumulator

# freq shear output stress profile output

# config at end [yes—no] write full configuration at end of run

# [default is yes]

#

# io grid NX NY NZ Cartesian processor I/O grid. Default is 1 1 1

#

# phi format Override default format for particular quantities

# etc... (both input and output)

#

# distribution io grid decomposition for parallel input/output

# distribution io input format BINARY or BINARY SERIAL for single serial

# input files. Output always parallel.

#

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

freq statistics 100

freq measure 1000000000

freq config 100000

freq phi 5000

freq vel 5000

freq shear measurement 1000000000

freq shear output 1000000000

config at end yes

default io grid 1 1 1

distribution io grid 1 1 1
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vel format BINARY

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

#

# colloid i/o

#

# colloid io freq currently set to freq measure internally

# colloid io grid currently set to 1 1 1 internally

# colloid io format input ASCII ASCII SERIAL BINARY BINARY SERIAL

# colloid io format output ASCII BINARY

#

# Note that the output is always parallel. A SERIAL input file must

# be a single serial file.

#

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

colloid io freq 5000

colloid io grid 1 1 1

colloid io format input ASCII

colloid io format output ASCII

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

#

# Miscellaneous

#

# random seed +ve integer is the random number generator seed

#

# # # # # # # # # # # # # # # # # # # # # # # # # # # # #

random seed 8361435
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22. Škarabot, M. et al. Interactions of quadrupolar nematic colloids. Phys. Rev. E

77, 031705 (3 2008).

23. Škarabot, M. et al. Hierarchical self-assembly of nematic colloidal superstruc-

tures. Phys. Rev. E 77, 061706 (6 2008).

199



24. Hung, F. R. Quadrupolar particles in a nematic liquid crystal: Effects of particle

size and shape. Phys. Rev. E 79, 021705 (2 2009).

25. Fukuda, J.-i. Liquid Crystal Colloids: A Novel Composite Material Based on

Liquid Crystals. Journal of the Physical Society of Japan 78, 041003 (2009).
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72. Gähwiller, C. Temperature Dependence of Flow Alignment in Nematic Liquid

Crystals. Phys. Rev. Lett. 28, 1554–1556 (24 1972).

73. Miesowicz, M. Liquid crystals in my memories and now—the role of anisotropic

viscosity in liquid crystals research. Molecular Crystals and Liquid Crystals 97,

1–11 (1983).

74. Ericksen, J. L. Anisotropic fluids. Archive for Rational Mechanics and Analysis

4, 231–237 (1959).

203



75. Parodi, O. Stress tensor for a nematic liquid crystal. Journal de Physique 31,

581–584 (1970).

76. Yu, H. & Zhang, P. A Kinetic–hydrodynamic simulation of microstructure of

liquid crystal polymers in plane shear flow. Journal of Non-Newtonian Fluid

Mechanics 141, 116–127 (2007).

77. Thompson, P. D. Compressible-fluid dynamics (McGraw-Hill, 1972).

78. Kinsler, L. E., Frey, A. R., Coppens, A. B. & Sanders, J. V. Fundamentals of

Acoustics (Wiley, 2000).

79. Ericksen, J. L. Hydrostatic theory of liquid crystals. Archive for Rational Me-

chanics and Analysis 9, 371–378 (1962).

80. Qian, T. & Sheng, P. Generalized hydrodynamic equations for nematic liquid

crystals. Physical Review E 58, 7475 (1998).

81. Wu, H., Xu, X. & Liu, C. On the general Ericksen–Leslie system: Parodi’s rela-

tion, well-posedness and stability. Archive for Rational Mechanics and Analysis

208, 59–107 (2013).

82. Liu, C. & Sun, H. On energetic variational approaches in modeling the nematic

liquid crystal flows. Discrete and Continuous Dynamical Systems 23, 455–475

(2008).

83. Denniston, C., Orlandini, E. & Yeomans, J. M. Lattice Boltzmann simulations

of liquid crystal hydrodynamics. Phys. Rev. E 63, 056702 (5 2001).

84. Elger, D. F., LeBret, B. A., Crowe, C. T. & Roberson, J. A. Engineering fluid

mechanics (John Wiley & Sons, Inc., 2022).

85. Compendium of polymer terminology and nomenclature: IUPAC recommenda-

tions, 2008 (RSC Pub., 2008).

86. Dukhin, A. S. & Goetz, P. J. in Characterization of Liquids, Nano- and Micropar-

ticulates, and Porous Bodies Using Ultrasound (eds Dukhin, A. S. & Goetz, P. J.)

21–89 (Elsevier, 2010).

204
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92. Mu ševi č, I. et al. Laser Trapping of Small Colloidal Particles in a Nematic

Liquid Crystal: Clouds and Ghosts. Phys. Rev. Lett. 93, 187801 (18 2004).
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