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Abstract 

 

Inadequate ship machinery maintenance can increase equipment failure posing a threat 

to the environment, affecting performance, having a great impact in terms of business 

losses by reducing ship availability, increasing downtime and moreover increasing the 

potential of major accidents occurring and endangering lives on-board. With high cost 

of ownership and overburdened crew, ship maintenance has become one of the major 

challenges in the marine industry. Though the industry is still predominantly reliant on 

a time-based, prescriptive approach to maintenance, technological advances, 

heightened expectation and competitive requirements as to ship availability and 

efficiency and the influence of the data revolution on vessel operations, have resulted 

in considerable interest in advanced maintenance techniques and favour a properly 

structured condition-based maintenance regime. In this respect, this thesis develops a 

hybrid framework oriented towards ship machinery condition monitoring utilising a 

combination of reliability tools (Fault Tree Analysis, Failure Modes & Effects 

Analysis, Reliability Block Diagrams) and data-driven approaches based on artificial 

neural networks (Self-Organising Maps, Nonlinear Autoregressive, Multilayer 

Perceptron). The above assist in identifying critical ship machinery systems and 

components and subsequently monitoring their condition through the employment of 

data clustering, time series forecasting, diagnostic and health assessment, leading to 

advisory generation of appropriate maintenance actions and recommendations. The 

above framework is applied to the case study of a Panamax container ship main engine 

for system, subsystem and component level and the results are validated with actual 

data recorded onboard. Sensitivity and cost benefit analysis are also presented. Key 

results include amongst others the identification of critical systems through a 

systematic approach, the ability of the Self-Organising Map to cluster data and monitor 

the status of the main engine and the forecasting capabilities of the Nonlinear 

Autoregressive time series neural networks to analyse available main engine data with 

high forecasting accuracy. 

 

Keywords: Artificial neural networks, data analysis, reliability tools, condition 

monitoring, predictive maintenance, maritime industry  
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1 Introduction 

 

1.1 Chapter outline 

 

In this chapter, background information related to the thesis is presented. Initially, a 

brief introduction into the maritime industry and maintenance is presented alongside 

key challenges in the shipping maintenance sector. An outline of the chapters 

encompassing the thesis is also described to introduce the reader to the core structure 

of the thesis. 

 

1.2 An introduction to maritime maintenance 

 

Shipping is the most important mode of transport for international merchandise trade. 

The marine industry is responsible for the transportation of the vast majority of the 

merchandise worldwide, as over 80% of global trade by volume is carried on board 

ships, emphasising the importance of maritime transport for trade and development 

(UNCTAD, 2017). The world fleet in terms of gross tonnage, consists of bulk carriers 

(34.6%), oil and chemical tankers (25.9%) and container ships (17.4%), with the 

remaining ship types consisting mostly of general cargo, Ro-Ro cargo, gas tankers, 

offshore vessels and passenger ships (Equasis, 2016). For the fifth year in a row, world 

fleet growth has been decelerating as the maritime transport sector continues to face 

the prolonged effects of the economic downturn of 2009. Nonetheless, the supply of 

ship-carrying capacity increased faster than demand, leading to a continued situation 

of global overcapacity and downward pressure on freight rates and earnings. Bearing 

in mind projected growth in world Gross Domestic Product (GDP) and merchandise 

trade and the downside risks to the global economy and trade policy, various estimates 

of future seaborne trade growth have been put forward and all appear to converge on 

continued growth in world seaborne trade in 2017.  

 

In 2016, demand for shipping services improved moderately with world seaborne 

trades expanding by 2.6%, up from 1.8% in 2015. Global shipping ton-miles reached 

55,057 estimated billions, indicating an increase of 3.2% over the previous year, as 
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observed in Figure 1.1 which represents the world seaborne trade in cargo ton-miles 

by type of cargo from 2000 until 2017 (UNCTAD, 2017). In its latest report, 

UNCTAD, forecasts world seaborne trade to increase by 2.8% in 2017, with total 

volumes reaching 10.6 billion tons. Furthermore, UNCTAD projects world seaborne 

trade volumes to expand at a compound annual growth rate of 3.2% between 2017 and 

2022. 

 

 

Figure 1.1 World seaborne trade in cargo ton-miles by cargo type 2000-2017 

(UNCTAD, 2017) 

 

All the above evidently indicate the continuing growth of the seaborne trade and the 

maritime industry’s significant role in transportation of goods and passengers 

worldwide. However, projected growth in world seaborne trade remains subject to 

uncertainty and several downside risks. In this context and considering the emerging 

trends currently shaping the outlook for seaborne cargo flows in combination with 

technological advancements, the safe, efficient and environmentally friendly operation 

of ships is extremely important. 

 

Shipowners and operators always seek the best performance from their ships, and this 

is most likely to occur when the ships are in good working condition. To keep any ship 

in good condition, maintenance must be considered. Inadequate maintenance can 
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increase equipment failure posing a threat to the environment, affecting performance, 

having a great impact in terms of business losses by reducing ship availability, 

increasing downtime and moreover increasing the potential of major accidents 

occurring and endangering lives onboard. Major marine accidents and incidents such 

as Piper Alpha in 1988, Erika in 1999 and Prestige in 2002 are attributed to lack of 

correct maintenance procedure and poor maintenance (Paté‐Cornell, 1993, Ringbom, 

2001, Wirtz et al., 2007). 

 

Poor maintenance can lead to situations such as dangerous work environments, lack of 

functional backup systems and crew fatigue from the need to carry out emergency 

repairs. In this respect, maintenance is an important contributor to reach the intended 

life-time of technical capital assets and is defined as a combination of all the technical 

and associated administrative activities required to keep equipment, installations and 

other physical assets in the desired operating condition or to restore them to this 

condition (BS, 1993). Maintenance deals with systems that are subject to deterioration 

and failure with usage and age. For systems such as aircrafts, submarines, nuclear, 

ships, it is extremely important to avoid failure during actual operation because it can 

be dangerous or disastrous. Therefore, maintenance on them is a necessity since it can 

improve system and asset reliability (Wang, 2002). 

 

Maintenance tasks affect the reliability and availability standards of the shipping 

industry as well and are important factors in the lifecycle of a ship that can minimise 

down-time and reduce operating costs (Lazakis and Olcer, 2015). Routine and periodic 

maintenance accounts for approximately 20% of a ship’s operational expenses 

(Stopford, 2009). According to the latest survey by Stephens (2017), vessel operating 

costs are expected to rise by 2.1% in 2017 and 2.4% in 2018, with repairs, maintenance 

and spare parts being the cost categories which are likely to increase most significantly 

in both years by 2%.  

 

The fact that repairs, maintenance and spares emerged as the items with the largest 

projected cost increases in both 2017 and 2018 was predictable in that they are two 

items of expenditure on which shipowners and operators might conceivably have 
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economised or delayed in previous years, and such economies cannot be sustained over 

longer periods without impacting safety. 

 

In the context of safety, the European Maritime Safety Agency (EMSA, 2017) 

indicated in its recent report that the main location of marine casualties and incidents 

was the engine room for cargo ships and passenger ships. Additionally, 71% of 

accidental events were linked to shipboard operations as a contributing factor over the 

examined period of 2011 to 2016. Furthermore, from a total of 1170 accidental events 

analysed, equipment failure is the second biggest contributing factor, with human 

erroneous action being the primary factor. Moreover, Figure 1.2 illustrates the 

contributing factor most quoted per category of accidental event. As illustrated, for the 

category of equipment failure, maintenance was quoted as the main contributing 

factor. 

 

 

Figure 1.2 Groups of contributing factors for accidental events (EMSA, 2017) 

 

Additionally, according to the latest report published by Allianz (2017) regarding the 

review of trends and developments in shipping losses and safety, foundered, 

wrecked/stranded, fire/explosion, collision and machinery damage were the most 

frequent causes of losses at sea over the past decade. In terms of all casualties including 

total losses, machinery damage is the main cause of shipping incidents globally (32%). 

This value can also be observed in the casualty and world fleet statistics report of the 

International Union of Marine Insurance (IUMI, 2015), for an examined period of 14 
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years (2000-2014), in which machinery represents over 35% the cause for all serious 

losses for all vessel types above 500 GT (Figure 1.3). 

 

 

Figure 1.3 Ship serious losses by cause for all vessel types above 500 GT (IUMI, 

2015) 

 

In the same report produced by Allianz, crew negligence and inadequate vessel 

maintenance are two increasing areas of risk in the current economic shipping 

environment, especially if shipowners select to recruit crew with less experience and 

fewer qualifications/training in order to increase savings or choose to stretch 

maintenance work to the longest possible interval. Negligence/poor maintenance is 

also mentioned as one of the top causes of liability loss in the marine sector, so 

vigorous inspection and maintenance regimes are crucial. 

 

The importance of maintenance is also demonstrated by the fact that it is the only 

shipboard activity to have one whole element assigned to it in the ISM code (IMO, 

1993). For systems onboard ships, it is extremely important to avoid failures during 

actual operation since it can be dangerous or disastrous in terms of performance, safety 

and economic losses. The performance of the vessel generally deteriorates with time 

as a result of fouling or degradation of machinery systems and components. Unwanted 

failures result in economic impact in the form of higher maintenance costs and lower 

machine reliability and availability. With reduced manning levels and the ever-

increasing competition, ship maintenance has become one of the major challenges in 
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the marine industry. Moreover, technological advances, overburdened crew and high 

cost of ownership have resulted in considerable interest in advanced maintenance 

techniques (INCASS, 2015c).  

 

Consequently, the maritime industry is seeking increased reliability, maximum uptime 

and optimal operational efficiency, as well as ensuring safe and sustainable 

environmental performance in harsh environments. It is only recently that new 

approaches investigating the enhancement of ship’s reliability, availability and 

profitability have been considered according to Lazakis and Olcer (2015). The 

outcome of this study indicated that preventive maintenance is still the preferred 

maintenance approach by ship operators, closely followed by predictive maintenance; 

hence avoiding the ship corrective maintenance framework and increasing overall ship 

reliability and availability.  

 

Though the industry is still predominantly reliant on a time-based, prescriptive 

approach to maintenance, there are several factors challenging the long-held norm. In 

most ships, the current machinery maintenance regime is in line with the original 

equipment machinery manufacturer’s recommendations. In this case, maintenance is 

based upon running hours or calendar time scheduling. This form of maintenance 

scheduling usually leads to the ‘over-maintenance’ of machinery. This increases direct 

and indirect maintenance costs by increasing voluntary production losses, speeding 

aging due to excess dismantling and re-assembly, and increasing the risks of damage 

through human error (Reason and Hobbs, 2003). 

 

The increasing complexity of shipboard systems, heightened expectation and 

competitive requirements as to ship availability and efficiency and the influence of the 

data revolution on vessel operations, favour a properly structured Condition Based 

Maintenance (CBM) regime (Tinsley, 2016). This may not replace all planned 

maintenance, but it can possibly reduce downtime, inspection and unnecessary 

servicing work. Moreover, shifting from scheduled, rule-based maintenance to a data-

driven, risk-based approach can lead to more accurate and timely maintenance, 

resulting in lower costs, greater availability of ship systems and increased safety. 
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Compared to other industrial sectors, the maritime sector lacks the element of applying 

and implementing technologically advanced tools with real-time monitoring. 

Classification Societies encourage condition monitoring techniques onboard ships, 

offer guidelines but do not oblige ship operators or owners to implement such 

techniques in their operation and maintenance strategy (Lloyd's Register, 2013). 

Maintenance decisions are often based on experience and the preventive maintenance 

activities of the Planned Maintenance System (PMS). For effective utilisation of data, 

skilled personnel are required to handle and analyse the data.  

 

In addition, the issue of availability of powerful tools and methods are required for 

analytics, data exploration and visualisation to support streams of sensor data and 

heterogeneous data. Shipping companies also lack the long-term vision of such 

maintenance strategies and expect a quick return of investment and avoid realising that 

maintenance is not a one-time activity for continuous improvement; but is a long-term 

and continuous improvement activity (Lazakis and Ölçer, 2015). 

 

Furthermore, compared to other industrial applications, data pooling in the shipping 

industry is not always possible as similar equipment operating in different conditions 

may have different failure patterns (Lazakis et al., 2018). Ships operate in different 

and changing environmental conditions, making it difficult to use failure data from 

one ship to another. Therefore, maintenance and degradation behaviour in marine 

systems also depends on the operational profile of the vessel and as a result, the use of 

similar data may be ineffective for sister ships. Another issue is the constant 

appearance of new equipment, which makes historical records obsolete.  

 

Moreover, data is not collected in a standardised way that could lead to more informed 

and effective decision making. The question of how much data, which data, and how 

often this should be collected and how has also emerged; as although companies adopt 

CBM schemes, there seems to be an issue in processing, analysing and utilising the 

recorded operational data (Raptodimos et al., 2016). Therefore, it is vital that ship 

managers/operators identify the essential information required and decide which 

maintenance approach is the most efficient to follow. 
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Bearing all the above in mind, an effective maintenance system should be capable of 

monitoring the operating conditions of ship machinery and equipment, predict their 

future state to prevent fatal breakdowns and issue advanced warnings of potential 

faults. In this respect, the proposed condition monitoring framework employs a hybrid 

approach to initially identify critical ship machinery systems and components through 

reliability modelling and tools and subsequently monitors and assesses their condition 

through the employment of artificial intelligence for data clustering, forecasting and 

diagnostic analysis, leading to appropriate maintenance actions and suggestions. 

 

1.3 Thesis layout 

 

The thesis layout introduces the reader to the flow and structure of each chapter of 

the thesis. The thesis is structured into 9 chapters, demonstrated in Figure 1.4 and 

summarised below.  

 

 

Figure 1.4 Thesis structure 

 

Chapter 1: Introduction 

 

This chapter sets out the wider context for the thesis. An initial introduction regarding 

the maritime industry is provided alongside some critical characteristics of 

maintenance in the shipping sector which deliver the incentive for the proposed 

research framework. 
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Chapter 2: Aim & Objectives 

 

This chapter consists of the research question, main aim and objectives of the thesis. 

The objectives provide a description of the key research challenges to be tackled in 

order to achieve the main aim of the thesis. 

 

Chapter 3: Literature and Critical Review  

 

The research background through an extensive literature and critical review is 

presented. This chapter provides an overview of topics related to maintenance, 

condition monitoring, reliability tools and artificial neural networks. The review aims 

to identify research gaps in order to understand and develop the main research concept. 

 

Chapter 4: Methodology & Modelling 

 

Considering the identified gaps in the existing literature, this chapter focuses on the 

description of the considered and developed tools and methods by presenting their 

modelling principles. The structure and functionality of the proposed methodology are 

also explained which includes stages related to identification of critical systems, data 

collection, data preparation, time series forecasting analysis, diagnostic and health 

assessment analysis and advisory generation of maintenance actions and activities. 

 

Chapter 5: Case Study 

 

The specifications of the examined case study by implementing the proposed and 

developed methodology are presented in this chapter. Initially, the developed Fault 

Tree and Failure Modes and Effects Analysis (FMEA) model for the ship main engine 

case study is presented in order to identify the main engine critical systems and their 

relevant parameters to be monitored. After identifying the input data, the analysis of 

the data is described for the developed Self-Organising Map (SOM), Nonlinear 

Autoregressive (NAR), Nonlinear Autoregressive with Exogenous Input (NARX), 
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ANN Multilayer Perceptron (MLP) neural network models, system Reliability Block 

Diagram (RBD) health assessment tool and Maintenance Assistant Tool (MAT). 

 

Chapter 6: Case Study Results 

 

This chapter presents the results of the above case study application. The outcomes of 

each part of the proposed methodology are assessed both as independent and integrated 

tools. The results and their assessment present and validate the applicability and 

accuracy of the methodology.  

 

Chapter 7: Sensitivity Analysis 

 

In this chapter, sensitivity analysis is performed in the case of the NARX model. A 

base case is established considering the initial results from the previous section and 

variations to the NARX inputs are implemented to examine the performance of the 

developed NARX model. Overall, the sensitivity analysis demonstrates that the 

suggested methodology performs efficiently under several variations in the input data. 

 

Chapter 8: Cost-Benefit Analysis 

 

A cost-benefit analysis is performed to demonstrate the costs and benefits associated 

with applying the proposed condition monitoring framework against a traditional ship 

machinery PMS scheme over a ship lifecycle of 25 years. 

 

Chapter 9: Discussion & Conclusions 

 

This chapter includes the discussion and conclusions section of the overall thesis, 

assessing and providing an in-depth summary of the key research findings and presents 

the novelty of the thesis. Furthermore, concluding statements are provided in this 

chapter summarising the key learning points of the conducted research. Finally, 

recommendations for future research are also presented. 
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1.4 Chapter summary 

 

In this chapter, a brief introduction into the maritime industry and maintenance was 

presented. Various challenges and issues that currently exist in maritime maintenance 

were described. Furthermore, an outline of the chapters comprising the thesis was also 

presented to introduce the reader into the core structure of the thesis. In the following 

chapter, the research question, main aim and objectives of the thesis are presented, 

reflecting the aspirations and expectations of the undertaken research. 
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2 Aim & Objectives 

 

2.1 Chapter overview 

 

This chapter focuses on the research question and the description of the main aim and 

objectives of the present thesis. 

 

2.2 Research question 

 

The research question of the present thesis is formulated as:  

 

How to develop and implement a hybrid condition monitoring strategy in the maritime 

industry based on reliability tools and data-driven artificial intelligence methods for 

assessing and predicting the present and future status of machinery systems? 

 

2.3 Aim & objectives 

 

The main aim of the thesis is to develop an efficient and robust predictive condition 

monitoring framework for application on ship machinery systems through the 

combination of reliability tools and data-driven models based on artificial neural 

networks. 

 

The objectives through which the main aim of the thesis will be achieved are listed 

below: 

 

1. Identify the gaps in the literature and issues in maritime maintenance and 

condition monitoring by conducting a detailed literature and critical review 

pertinent to the research topic. 

2. Focus on the identified research gaps to propose an innovative condition 

monitoring framework methodology for the maritime industry and demonstrate 

the various elements that it consists of in full depth. 
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3. Collect data for analysis through ship onboard measurement campaigns to 

demonstrate the proposed methodology. 

4. Demonstrate the applicability of the developed methodology for the main 

engine system of a container ship. 

5. Validate key aspects of the methodology and demonstrate the performance of 

the methodology under different circumstances through a sensitivity analysis. 

6. Perform a cost-benefit analysis to investigate and assess the value associated 

with implementing the developed condition monitoring framework. 

 

2.4 Chapter summary  

 

In this chapter, the research question of the present thesis has been formulated and the 

thesis main aim and objectives have been identified and described. The following 

chapter presents the literature and critical review undertaken to identify maritime 

maintenance practices and applications, research activities and existing gaps. 
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3 Literature and Critical Review 

 

3.1 Chapter overview 

 

In this chapter, the overall literature and critical review is demonstrated. The literature 

review starts by referring the reader to the background of maintenance, specifically its 

evolution from a “necessary evil” towards treating maintenance as a mature partner in 

business strategy development. Secondly, maintenance types such as corrective, 

preventive and predictive are analysed and compared, followed by a descriptive 

analysis of the various maintenance concepts including Condition Based Maintenance 

(CBM), Reliability Centred Maintenance (RCM) and Total Productive Maintenance 

(TPM) amongst others. Maintenance within the maritime sector is also examined with 

regards to existing regulatory elements, maintenance activities and research trends. 

Finally, Artificial Neural Networks (ANNs) are presented and a comprehensive review 

of multi-sectoral studies is also presented regarding their application within the context 

of CBM. The existing gaps are identified and lay the foundations for the introduction 

and development of the innovative methodology suggested in this thesis. 

 

3.2 Maintenance background 

 

Competition, cost effectiveness and safety have asked for better maintenance. 

According to British Standards (1993), maintenance can be defined as a combination 

of all the technical and associated administrative activities required to keep equipment, 

installations and other physical assets in the desired operating condition or to restore 

them to this condition. Most authors in maintenance management literature, one way 

or another, agree on defining maintenance as the “set of activities required to keep 

physical assets in the desired operating condition or to restore them to this condition” 

(Pintelon and Parodi-Herz, 2008). Maintenance management has undergone 

considerable change in the past few years. There is more awareness of the failure 

characteristics of components  and maintenance is now aimed at, based on the 

operating context, preserving the functions of assets rather than their condition 
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(Mokashi et al., 2002b). The history and evolution of maintenance in the form of 

important milestones is described below.  

 

Engineering has evolved since the industrial revolution, but it is safe to say that the 

most dramatic changes have occurred in the last fifty years (Garg and Deshmukh, 

2006). Prior to the Second World War, machinery was generally very rugged and 

relatively slow running with instrumentation and control systems developed at a basic 

level. Downtime was not usually a critical issue and it was adequate to maintain 

machinery and equipment on a breakdown basis. After the 1950’s with the rebuilding 

of industry, there was an increasing intolerance of downtime and the cost of labour 

became increasingly significant leading to a surge in mechanisation and automation. 

Furthermore, machinery manufactured was of lighter construction and operated at 

higher speeds, meaning that they wore out more rapidly and were seen as less reliable. 

It was recognised that some failures of mechanical components had a direct relation 

with the time or number of cycles in use, based on physical wear of components or 

age-related fatigue characteristics. The main concern was how to determine, based on 

historical data, the adequate period to perform preventive maintenance. Production 

demanded better maintenance actions which eventually led to the development of 

planned preventive maintenance involving overhauls based upon a time interval or 

hours of operation (Brown and Sondalini, 2014). 

 

In the 1960’s the aviation industry introduced the Boeing 747 and in its search for 

improved reliability, questioned the current maintenance strategies of that time and the 

established assumption that older equipment is more likely to fail. First operations 

research models for maintenance appeared in the 1960’s and in the 1970’s condition 

monitoring came forward, focusing on techniques which predict failures using 

information on the actual state of equipment which proved to be more effective than 

the large time-based preventive maintenance programs (Dekker, 1996). At this point, 

the effectiveness of applying preventive maintenance actions started to be questioned 

as a common concern about “over-maintaining” grew rapidly. Moreover, as the 

insidious belief on preventive maintenance benefits was put at risk, new precautionary, 

predictive maintenance techniques emerged. This meant a gradual, though not 
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complete switch to inspection and CBM actions. In the late 1970s and early 1980s, 

these techniques were only reserved to high-risk industry applications such as aviation 

or nuclear power plants (Pintelon and Parodi-Herz, 2008). 

 

In the beginning of the 1980’s minicomputers with dedicated programs were 

developed giving higher freedom for the maintenance department to systematise, plan 

and check-up maintenance activities. At this time, the backbone of Computerised 

Maintenance Management System (CMMS) was established, consisting of 

functionality for scheduling, plant inventory, stock control, cost and budgeting and 

maintenance history (Kans, 2009). In addition, plant and systems became increasingly 

complex, the demands of the competitive marketplace and intolerance of downtime 

increased, and maintenance costs continued to rise. Along with the demands for greater 

reliability at a lower cost came new awareness of failure processes, improved 

management techniques and new technologies to allow an understanding of machine 

and component health. Environmental and safety issues became paramount and the 

study of risk became very important. 

 

In the late 1980s and early 1990s a different footprint on maintenance development 

occurred with the emergence of life cycle engineering. Here maintenance requirements 

were already under consideration at earlier product stages such as design or 

commission. As a result, instead of having to deal with built-in characteristics, 

maintenance turned out to be active in setting design requirements for installations and 

became partly involved in equipment selection and development. All this led to a 

different type of precautionary, proactive maintenance (Fedele, 2011). According to 

Arunraj and Maiti (2007), maintenance policies can be categorised into four 

generations. The fourth generation is the most recent one, which focuses on failure 

eliminations and concentrates on reducing the proportion of equipment failures and 

overall levels of failure probability. Figure 3.1 illustrates the four generations and 

timeline evolution of maintenance. 
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Figure 3.1 Generations and evolution of maintenance 

 

It can be concluded from the timeline of maintenance evolution, that at first 

maintenance was nothing more than an inevitable part of production, consequently it 

was considered as a necessary evil. Repairs and replacement were tackled only when 

necessary with no optimisation taking place. Later, maintenance was considered as a 

technical matter. This included optimising technical maintenance solutions and 

attention was focused from the organisation to the maintenance work.  

 

Further on, maintenance management became a complex function, encompassing 

technical and management skills, recognising that implementing a well thought out 

maintenance strategy could have a significant risk, safety, environmental and financial 

impact. Nowadays, this has led to treating maintenance as a mature partner in business 

strategy development (Pintelon and Parodi-Herz, 2008). The various types of 

maintenance are analysed in the next section in order to identify and comprehend the 

different approaches available and the key features that characterise them. 
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3.3 Maintenance classification & types 

 

Various authors have investigated several maintenance concepts and classify 

maintenance differently. Wang (2002) classified maintenance policies into two major 

classes: corrective and preventive. Garg and Deshmukh (2006) classified the existing 

maintenance literature into six areas; maintenance optimisation models, maintenance 

techniques, maintenance scheduling, maintenance performance measurement, 

maintenance information systems and maintenance policies.  

 

Classification of maintenance can be achieved based on type of maintenance, degree 

of maintenance and type of system to be maintained as illustrated in Figure 3.2. As far 

as the degree of maintenance is concerned, perfect maintenance restores the system to 

its initial operating condition or renders it as good as new. Minimal repair returns the 

system to the condition it was in immediately prior to failing, or as bad as old. In 

between these degrees lies imperfect maintenance, which returns the system to a 

condition in between as good as new and as bad as old (Marais and Saleh, 2009). 

 

Degree of 

Maintenance

Maintenance 

Types

System Type

Imperfect

PerfectMinimal

Corrective Preventive Predictive

Multi UnitSingle Unit

Immediate

Deferred

Run-to-Failure

Classification 

of 

Maintenance

Clock-based Age-based

Condition-based

Reliability-centred

Risk-based

Criticality-centred
 

Figure 3.2 Classification of maintenance 
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Maintenance types can be classified into three main categories namely corrective, 

preventive and predictive maintenance. Corrective maintenance or unscheduled 

maintenance returns items/equipment to a defined state. Preventive maintenance is all 

actions carried out on a planned, periodic and specific schedule to keep an 

item/equipment in stated working condition through the process of checking and 

reconditioning. Predictive maintenance is the use of modern measurement and signal 

processing methods to accurately predict and diagnose items during operation (Sharma 

et al., 2011). The following sections explain and expand on these types of maintenance. 

 

3.3.1 Corrective maintenance 

 

Also known as breakdown, run-to-failure, reactive, unplanned maintenance, corrective 

maintenance is the maintenance that occurs when a system fails and means all actions 

performed as a result of failure, to restore an item to a specified condition (Wang, 

2002). It is the maintenance in which no actions or efforts are taken to maintain the 

equipment. Thus, corrective maintenance is reactive in nature, as the maintenance is 

triggered by the unscheduled event of an equipment failure and takes place only after 

failure occurs (Tsang, 1995). This type of maintenance is executed by firstly detecting 

the fault which can be achieved by a physical inspection of a system. It is important to 

determine the source of failure to select appropriate actions ensuring that further 

damage can be prevented. The next step is to isolate and eliminate the fault. The 

maintenance work could constitute repair, restoration or replacement of components 

in order to restore the system to its original state as it was in new condition (Prajapati 

et al., 2012). The final step is ensuring that the presented fault has been repaired and 

operation is running as normal. 

 

Corrective maintenance can offer some advantages compared to other maintenance 

types. If a maintenance program is purely reactive, then less manpower and capital 

cost is expended. Also, the main advantage is that machinery parts are used to their 

full life or until they break. However, this type of maintenance program shortens the 

life of the equipment resulting in more frequent replacement. The effects of corrective 

maintenance contribute to high costs (unexpected failure costs), hence preventive 



20 

 

maintenance strategy is preferable (Ahmad and Kamaruddin, 2012). Costs are usually 

high due to the penalty associated with the lost output and safety and health hazards 

inflicted by the failure. Moreover, efforts tend to be less efficient when people have to 

work under crisis situations (Tsang et al., 2006). Additionally, it is often more 

expensive since worn equipment or components can damage other parts and cause 

additional multiple damage. Corrective maintenance can in some cases be in fact the 

result of an insufficient and unsuccessfully designed preventive maintenance plan. In 

general, this type of maintenance is carried out when the consequences of failure or 

wearing out are not significant and for non-critical, inexpensive and easily replaced 

components whose replacement will not affect the efficiency of a plant’s operation 

(Fedele, 2011). 

 

3.3.2 Preventive maintenance 

 

A series of tasks performed at a frequency dictated by predefined time intervals or 

system operating running hours that either extend the life of an asset or detect that an 

asset had critical wear and is going to fail or break down constitute preventive 

maintenance (Garg and Deshmukh, 2006). This maintenance concept has been derived 

from a level of repair analysis to determine the maintenance allocation for a given 

system or subsystem (Prajapati et al., 2012). Preventive maintenance can be defined 

as the actions performed on a time or machine-run based schedule that detect, preclude 

or mitigate degradation of a system or component aiming at sustaining or extending 

its useful life through controlling degradation to an acceptable level. Preventive 

maintenance can be subdivided into clock-based and age-based maintenance. It 

includes all actions performed in an attempt to retain an item in specified condition by 

providing systematic inspections, overhauls, detection and prevention of incipient 

failures (Wang, 2002). Thus, by conducting maintenance activities intended by the 

equipment manufacturer, equipment lifetime is extended and reliability is increased.  

 

According to Ahmad and Kamaruddin (2012), from an industrial perspective, 

preventive maintenance is conducted through experience, Original Equipment 

Manufacturer (OEM) recommendations and based on scientific approach. Through 
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experience, preventive maintenance is typically performed at similar time intervals and 

there are no standard procedures to be followed. The knowledge of experienced 

technicians and engineers becomes a corporate valuable asset. Their experience 

provides the knowledge of understanding what types of machinery malfunctions occur, 

how to diagnose problems, and how to repair them.  

 

However, preventive maintenance through experience becomes problematic when the 

experienced person leaves the company. Moreover, these individuals are not available 

for 24 hours a day to solve maintenance problems. The application of preventive 

maintenance through OEM recommendation is also conducted at a fixed time interval. 

However this practice is not applicable usually in minimising operational costs and 

maximising machine performance; as according to Labib (2004), machinery 

equipment such as those operating onboard ships, differ as they work in different 

environments, and would therefore need a different preventive maintenance approach. 

The maintenance is carried out irrespective of the condition of the machinery and parts 

have to be replaced even if they can still be used. 

 

Moreover, machinery designers do not have the same experience in machines as those 

who operate and repair them. Also, OEM companies may have the hidden agenda of 

maximising spare parts replacements through frequent preventive maintenance. On the 

other hand, the application of this maintenance type through scientific approaches 

involves processes and principles that employ various analytical techniques such as 

statistics, mathematical programming and artificial intelligence. The main advantage 

is that decisions are based on facts through real data analysis. 

 

While preventive maintenance might not be the optimum maintenance program, it has 

several advantages over that of a purely corrective maintenance program. Preventive 

maintenance strategy has gradually replaced reactive strategy, giving way to the birth 

of maintenance research. Preventive maintenance is more effective than corrective 

maintenance because it always keeps a system in an available condition so that the 

large loss caused by unpredictable failures can be avoided (Tsai et al., 2004).  
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3.3.3 Predictive maintenance 

 

Predictive maintenance attempts to detect the onset of a degradation mechanism with 

the goal of correcting that degradation prior to significant deterioration in the 

component or equipment (Sullivan et al., 2010). It focuses on failure prediction, 

occurring through systematic follow-ups on parameters and equipment condition. This 

type of maintenance did not emerge as a replacement for corrective and preventive 

maintenance, but as an additional tool, which seeks to minimise, through the 

monitoring of specific parameters, maintenance costs and losses in equipment (de 

Faria Jr et al., 2015). The main function in predictive maintenance is to collect data 

which goes through a diagnosis and trend analysis, identifying potential problems 

through historical analysis of similar equipment and knowledge acquired over time.  

 

Predictive maintenance differs from preventive maintenance by concentrating 

maintenance on the actual condition of the machinery rather on some predefined 

schedule (Niu, 2017). It uses modern measurement and signal processing methods to 

accurately predict and diagnose system and component condition during operation 

(Sharma et al., 2011). Although predictive maintenance requires an investment in order 

to effectively implement, operate and maintain systems, the actual cost is substantially 

lower than the lost production resulting from failure.  

 

It does not normally involve an intrusion into the equipment, and the actual 

preventative action is taken only when it is believed that an incipient fault has been 

detected. Proper application and training is of critical importance in predictive 

maintenance technologies as they have become extremely sophisticated and 

technology driven. Moreover, diagnostic capabilities of predictive maintenance 

technologies have increased in recent years with advances made in sensor 

technologies. 
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3.3.4 Maintenance types summary  

 

Overall a maintenance strategy should be a mix of predictive, preventive and reactive 

methods, depending on the desired goal, operating aspects and business requirements. 

In applications such as ship machinery, where the criticality of the equipment and the 

impact of unplanned downtime and quality are high, a maintenance strategy 

characterised by preventive or predictive mechanisms offers numerous advantages. 

Independent studies indicate that preventive maintenance has a 5:1 cost advantage over 

reactive maintenance (Niu, 2017). Additionally, Niu (2017) states that the following 

industrial savings based on the initiation of a functional predictive maintenance 

program can be obtained: 10% Return on Investment (ROI), 25-30% reduction in 

maintenance costs, 70-75% eliminations of breakdown, 35-45% reduction in 

downtime and 20-25% increase in production.  

 

Table 3.1 summarises the advantages and disadvantages of the different maintenance 

types described in the previous sections. The next section focuses on the identification 

and description of the various developed maintenance concepts. 
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Table 3.1 Strengths and weaknesses of different maintenance types 

Maintenance 

Types 
Advantages Disadvantages 

Corrective 

“Run-to-failure 

maintenance” 

• Possibly suitable for non-critical, 

inexpensive and easily replaced 

components 

• Necessary parts, supplies, personnel, and 

tools required for maintenance may not 

be adequately placed 

• If a maintenance program is purely 

reactive, then less manpower and 

capital cost is expended. 

• Unexpected failure costs and high repair/ 

replacement costs due to sudden failure 

of equipment 

• Useful if system is reaching end of 

its life cycle 

• Possible extensive damage to other 

equipment 

• Machinery parts are used to their full 

life 

• Compromises safety, performance and 

reliability 

• Lower start-up cost (CapEx) • Reduced income and asset availability 

• No condition monitoring related 

costs 

• Increased cost due to downtime 

 • Increased labour cost in case of overtime 

Preventive 

“Fix it before it 

breaks” 

• Increased component lifecycle • Includes performance of unnecessary 

maintenance 

• Reduced equipment failure and 

breakdown 

• Maintenance actions prior to occurrence 

of a failure 

• Reduces costly downtime • Experience personnel not always 

available 

• Decreased cost of replacement • Reduction in operational capability 

• Flexibility can allow for adjustment 

of schedule to accommodate other 

work (opportunistic maintenance) 

• Maintenance performed in 

controlled manner 

• The useful remaining-life is based on the 

fleet’s statistical usage or manufacturers’ 

recommendations and not on an 

individual engine’s operational exposure 

or experience 

• Suitable for safe-life designed 

components 

• OEM recommendation not applicable in 

maximising machinery performance and 

minimising operational costs 

• Cost savings over reactive 

maintenance 

• Potential damage to components in 

performing unrequired maintenance 

Predictive 

“If it is not 

broke, do not fix 

it” 

• Increased component operational life 

and availability 

• Increased investment in condition 

monitoring equipment 

• Allows pre-emptive corrective 

actions on non-critical items 

• Initial costs of deployment can be 

expensive (CapEx) 

• Decrease in equipment downtime 

and unexpected breakdown 

• Additional skills and training required 

for analysing monitored data 

• Allows for money to be budgeted for 

repairs and spares 

• Technologies are extremely 

sophisticated and technology driven 

• Lowers need for expensive parts 

inventory 

• Savings not readily visible without a 

baseline/history 

• Reduction in unnecessary 

maintenance costs 

• Proper infrastructure required for 

functional predictive strategy 
• RCM can be effective to meet long-

term maintenance and supportability 

goals 

• Smaller companies do not have enough 

assets to make an impact with such 

maintenance efforts 
• CBM concentrates maintenance on 

actual condition of equipment 

 

• CBM does not usually involve 

intrusion into equipment and 

preventive action is only taken when 

a failure is thought to be detected 
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3.4 Maintenance concepts 

 

In this section, various maintenance concepts are analysed. A comparison of the 

different concepts is undertaken alongside their core advantages and disadvantages. In 

general, there are several maintenance concepts and they differentiate from each other 

in terms of their framework referring to a generic management and commercial 

approach or to a more technical oriented context. 

 

3.4.1 Condition Based Maintenance (CBM) 

 

The concept of Condition Based Maintenance (CBM) was first introduced by the Rio 

Grande Railway Company in the late 1940s and initially was called predictive 

maintenance (Prajapati et al., 2012). There are various definitions of the concept of 

CBM. Bengtsson (2004) described it as preventive maintenance based on performance 

and/or parameter monitoring and the subsequent actions. Butcher (2000) defined CBM 

as a set of maintenance actions based on real time or near real-time assessment of 

equipment condition, which is obtained from embedded sensors and/or external tests 

and measurements taken by portable equipment. The above are in line with the 

definition provided by British Standard (2012), defining CBM as the maintenance 

policy carried out in response to a significant deterioration in a machine as indicated 

by a change in a monitored parameter of the machine condition. Thus, CBM works on 

the basis that equipment failures are preceded by certain signs, conditions or 

indications (Ahmad and Kamaruddin, 2012).  

 

Hence, unlike breakdown maintenance and preventive maintenance, CBM focuses on 

not only fault detection and diagnostics of components but also degradation 

monitoring and failure prediction. The underlying maintenance process eventually 

triggers a business process (supply or maintenance action) to mitigate downtime at the 

optimal time. As a result, it provides the ability for the system to continue operating 

as long as it performs within predefined performance limits. However, not all 

subsystems are fit to be monitored in order to detect impending system failures. In 
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order to develop a CBM strategy it is essential to understand equipment failure 

behavior (Prajapati et al., 2012). 

 

The heart of CBM is condition monitoring which aims in collecting data regarding 

equipment conditions. Condition monitoring technologies are applied through various 

tools by recording and evaluating different measurable parameters. Data can include 

vibration, acoustic, temperature, oil and lubricant and current signal measurements. 

Such measurements are obtained through vibration monitoring, acoustic ultrasound, 

infrared thermography, oil analysis and tribology, combustion performance 

monitoring and electrical signature analysis. Sullivan et al. (2010) and Pascual (2015) 

describe such condition monitoring technologies and techniques in depth. 

 

Condition monitoring has a number of important benefits. Unexpected failures can be 

avoided through the possession of quality information relating to the online condition 

of the system and the consequent ability to identify faults or problems while still in the 

incipient phases of development. Maintenance programs can be condition-based rather 

than periodically-based and the plant may be utilised more optimally using information 

relating to its real-time condition and/or performance. Condition monitoring can be 

carried out either online or offline and can be performed continuously or periodically. 

Raptodimos et al. (2016) presented a framework for the acquisition of measurements 

pertinent to condition monitoring and ship maintenance, identifying key data 

collection sources. 

 

Jardine et al. (2006) identified two main limitations of continuous monitoring. 

Expensive and continuous data gathering increases amount of noise leading to possible 

inaccurate information. On the other hand, periodic monitoring is performed at regular 

or fixed intervals with the aid of manual practices or portable indicators such as hand-

held devices, acoustic emission units, and vibration pens. The main limitation of 

periodic monitoring is the possibility of missing some important information on 

equipment failure between monitoring intervals. 
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In some industries, CBM has proven to reduce overall maintenance costs by up to 30% 

and eliminate breakdowns by up to 70% (Logan, 2015). CBM applications have been 

reported in the literature. Oke (2011) discussed the common understanding of CBM 

research and explored its application in various novel engineering disciplines such as 

mechanical, electrical, highway, transportation, and industrial, among others. Jardine 

et al. (2006) summarised and reviewed CBM research and development up to 2005, 

with emphasis on models, algorithms, and technologies for data processing and 

maintenance decision-making. Kothamasu et al. (2006) provided an overview of the 

philosophies and techniques that focus on improving reliability and reducing 

unscheduled downtime by monitoring and predicting machine health. Heng et al. 

(2009) presented a broad overview of the challenges and opportunities of CBM by 

focusing on rotating machinery cases. 

 

3.4.2 Reliability Centred Maintenance (RCM) 

 

Reliability Centred Maintenance (RCM) was initially developed by the aviation 

industry delivering satisfying results in the 1970s from the US Department of Defence 

in order to improve the reliability of the Boeing 747 (ten Wolde and Ghobbar, 2013). 

This encouraged other industries to use it to improve their maintenance practices. The 

idea behind this approach is to make the maintenance program reliability centric. The 

maintenance program is focused on reliability of the system functions rather than the 

condition of components. This provides the option of ignoring failures that do not have 

any impact on the reliability of a system. Therefore, RCM focuses the maintenance 

resources only on those items that affect the system. It is a structured methodology for 

determining the maintenance requirement of any physical asset in its operating context 

and is a well-established analysis method for preventive maintenance planning 

(Manzini et al., 2009). Also, RCM allows maintenance programs to be evaluated and 

applied in a rational manner that provides the most value to an operator. 

 

The main objective of RCM is to reduce maintenance costs and simultaneously 

increase reliability and safety. According to Takata et al. (2004), a two-step procedure 

is adopted, which initially considers an analysis of the potential Failure Modes, Effects 
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and Criticality Analysis (FMECA) to determine critical components of the system. 

Then suitable preventive maintenance tasks are assigned to each of the maintenance 

significant items based on their reliability data. Secondly, logical decision diagrams 

are applied to specify suitable categories of maintenance. When the maintenance tasks 

are specified, the following procedure is to assess their intervals which can be tough, 

as some are complicated to apply in practice as they might require use of advanced 

mathematics or the input of data of limited availability and failure rate functions that 

are hard to determine (Selvik and Aven, 2011). 

 

Since RCM relies on statistical estimation of the total operation life expectation, it can 

reduce unscheduled or unnecessary maintenance if the system is static and the failure 

modes are well studied. However, RCM is still prone to large deviation of the system 

dynamic and it lacks significant insight into the actual system performance (Mokashi 

et al., 2002a). For example, the same pump working on a ship or in a system may have 

different functions, operating conditions or failure detection probabilities somewhere 

else. Hence, the RCM analysis has to be carried out individually for each ship and 

system. Also, ships operate in different and changing environments making it difficult 

to use failure data from one ship to another. 

 

The RCM framework combines various maintenance strategies including time-

directed preventive maintenance, CBM, run-to-failure, and proactive maintenance 

techniques in an integrated manner to increase the probability that a system or 

component will function in the required manner in its operating context over its design 

life-cycle. One should be careful that the initial simplistic appeal of the methodology 

should not make a user unsighted to the real application issues and challenges. 

Availability of experienced personnel and on-site plant staff with the present work load 

are some of the issues to handle for successful RCM implementation. Scheduling 

considerations also play a key role in RCM success and management’s direct support, 

commitment and involvement are always crucial. With a learning curve required to 

grasp fully the RCM philosophy, initial investments on training also serves well (Ben-

Daya and Knezevic, 2009). 
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3.4.3 Total Productive Maintenance (TPM) 

 

Total Productive Maintenance (TPM) is a unique Japanese philosophy, introduced by 

Toyota Motor Company in the 1970’s, defined by Nakajima (1988), which employs a 

strategy for maintaining plant and equipment to its optimum level of operational 

effectiveness; by eliminating the six big losses such as downtime, set-up and 

adjustment, speed, reduced speed, defect losses and reduced yield. TPM seeks to 

improve the Overall Equipment Effectiveness (OEE), which is an important indicator, 

used to measure success of TPM in an organisation (Ahuja and Khamba, 2008). Ahula 

and Khamba (2008) conduct a comprehensive review of the literature on TPM and 

present an overview of its implementation practices adopted by the manufacturing 

industry. TPM is used to modify the preventive maintenance on the basis of the results 

obtained in the field rather than from the manufacturer (Prabhakar and Jagathy, 2014). 

It relies upon the fact that the deterioration of machines is accelerated by abusive 

operation and lack of primary care, such as greasing, spannering and cleaning, all of 

which can be alleviated by the operator (Sherwin, 2000). 

 

Maintenance is divided into three levels. Independent maintenance is carried out by 

the operator, second level is carried out by the maintenance staff and the third level by 

the manufacturer. Lycke (2003) points out that TPM is a highly structured approach 

and careful, thorough planning and preparation are keys to successful company-wide 

implementation of TPM and so is senior management’s understanding and belief in 

the concept. Additionally, Total Quality Management (TQM), Just-in-Time (JIT) and 

Total Employee Involvement (TEI) programs have often been referred to as 

components of “World Class Manufacturing” (Ben-Daya and Knezevic, 2009). 

 

The TPM initiative is targeted to enhance competitiveness of organisations and it 

encompasses a powerful structured approach to change the mind-set of employees 

thereby making a visible change in the work culture of an organisation. Some of the 

issues regarding TPM implementation include partial implementation of TPM, overly 

optimistic expectations, lack of a well-defined routine for attaining the objectives of 

implementation, lack of training and organisational communication. 
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While RCM advocates the use of condition-based maintenance, TPM tries to expose 

abnormalities, clarify operating conditions, abolish environments causing accelerated 

deterioration, establish daily checks and introduce extensive visual control. Therefore, 

TPM can be a good facilitator for implementing RCM (Mokashi et al., 2002b). 

Additionally, RCM can be considered as a maintenance improvement strategy, while 

TPM is implemented holistically, without assessing technical aspects in terms of 

reliability improvement. 

 

3.4.4 Business Centered Maintenance (BCM) 

 

Business Centered Maintenance (BCM) is a concept and process of continuous 

improvement in maintenance and maintenance processes, equipment condition and 

performance to improve OEE, operations efficiency, output quality and worker safety. 

BCM roots from TPM and takes TPM one step further and actively ensures that the 

goal of focused improvement activities is to increase productivity by minimising input 

and maximising output (Fedele, 2011). BCM was initiated by Kelly (2006) and it can 

be categorised as an approach that includes maintenance optimisation as part of the 

outcomes of the overall business strategy. Thus, BCM can be described as the opposite 

of Integrated Logistics Support (ILS)/Logistic Support Analysis (LSA) (Ren et al., 

2017) and its main drawback is that it can easily become a complex and extensive 

procedure, especially in the case of complex systems. 

 

Additionally, Houghton and Lea (2009) suggest that BCM is best suited for an 

organisation with broader business objectives. Waeyenbergh and Pintelon (2002), 

describe BCM as a profitability contributor compared to RCM. Moreover, BCM can 

consider both the technical aspects of the system and additional factors such as 

operational profile and customer requirements. For example, this is the case for the 

UK Ministry of Defence (MoD) and Royal Navy projects, as naval warships require 

high levels of reliability and availability in order to have the capability to operate under 

different survivability scenarios.  
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3.4.5 Asset Management (AM) 

 

The Publicly Available Specification (PAS) standard 55 (BSI, 2008) defines Asset 

Management (AM) as “systematic and coordinated activities and practices through 

which an organisation optimally manages its physical assets and their associated 

performance, risks and expenditures over their lifecycles for the purpose of achieving 

its organisational strategic plan”. PAS 55 highlights the need for performance-

accountable asset/business focus, with enabler activities closely mapped onto the asset 

needs. AM is also defined as the process of maximising the ROI of equipment over its 

entire life cycle, by maximising performance and minimising CapEx (Capital 

Expenditures) and OpEx (Operational Expenditures) (Khuntia et al., 2016). It is a 

concept designed in order to examine assets over their full life cycle and aims through 

better awareness of the assets value, reviewing the assets in a more satisfactorily way 

and perform the best possible service and standards to increase profitability (Schneider 

et al., 2006). AM can, if broaden, be seen as asset care and asset exploitation. Hence, 

AM resembles BCM and must be seen in a time perspective and over the whole life 

cycle, thus including original investment, maintaining, disposal and modification 

(Woodhouse, 2006). 

 

3.4.6 Risk Based Maintenance (RBM) 

 

Risk Based Maintenance (RBM) is a maintenance strategy that attempts to meet the 

dual objectives of minimisation of hazards caused by unexpected failures of equipment 

and a cost-effective strategy. Risk Based Inspection (RBI) is commonly used in 

planning of inspections for static mechanical equipment and is commonly used within 

the chemical, petrochemical, oil and gas and refinery industries. The inspections are 

prioritised based on risk, expressed as expected values, integrating the likelihood and 

consequences of failures. The methodology for RBI is based on a mix of qualitative, 

semi-quantitative and quantitative tools and elements (Selvik et al., 2011). RBI is 

commonly used in the offshore industry and ship structures. While RCM selects the 

maintenance strategy based on qualitative evaluation of failures, RBI/RBM use risk 

for prioritising potential failures. Risk is defined as the product of a failure probability 



32 

 

for each item and its respective consequence (Takata et al., 2004). Hence, the basic 

concept of RBI/RBM is to focus inspection and/or maintenance efforts on items with 

higher risks. 

 

3.4.7 Terotechnology 

 

The concept of terotechnology was developed in the 1970’s from UK government 

work and is defined by its characteristic of calling for feedback of information at 

several points in the maintained system’s life cycle (Sherwin, 2000). However, all the 

feedback goes to the designers, and so, one does not immediately appreciate that any 

actual changes, to either the design or the maintenance policy, are contemplated 

between successive generations of machinery. Thus, practice of terotechnology is a 

continuous cycle that begins with the design and the selection of the required item, 

follows through with its installation, commissioning, operation and maintenance until 

the item’s removal and disposal and then restarts with its replacement.  

 

Although a very interesting concept, it has not been taken up on a large scale in 

industry. This lack of response was primarily due to the fact that there was no support 

from practical methods and techniques (Pintelon and Gelders, 1992). The development 

in terotechnology from Life Cycle Cost (LCC)-based to Life Cycle Planning (LCP)-

based may seem minor, but is in fact profound because it allows the maintenance 

function to be seen as contributing to profits, rather than just spending money 

(Sherwin, 2000). It can be concluded that terotechnology considers maintenance 

within the overall administrative framework of an organisation. Other management 

concepts that also contain maintenance activities as part of their framework are 

Integrated Logistic Support (ILS) and Logistic Support Analysis (LSA) (Shukla et al., 

2014, Waeyenbergh and Pintelon, 2002, Blanchard, 1981). 
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3.4.8 Summary of maintenance concepts 

 

The salient features on the key maintenance concepts are summarised and tabulated in 

Table 3.2. Based on the criteria stated in the table, a qualitative comparison of the 

strategies is executed alongside their core advantages and disadvantages. 

 

Table 3.2 Comparison table of maintenance concepts 

Criteria 
Maintenance Concepts 

CBM RCM TPM BCM 
Core Intent Failure detection Failure 

prevention 

Cultural change Continuous 

improvement 

Focus of 

implementation 

Monitoring Coverage of all 

possible failure 

modes 

Planning for 

different 

conditions 

Maintenance 

optimisation 

Initiation Selection of 

parameters 

Team assembly 

and training 

Top management 

announcement, 

training initiation 

Top management 

business 

objectives 

Correlation to 

maintenance 

activities 

Initiator of 

maintenance jobs 

Generation of 

maintenance plan 

based on RCM 

outcome 

Autonomous 

maintenance by 

operators 

Autonomous 

maintenance by 

operators 

Measure of 

effectiveness 

Number of 

failures 

MTBF OEE OEE 

Objective  Breakdown 

prevention 

Reliability 

improvement 

Complexity Maximise 

profitability 

Personnel 

participation 

Limited to 

personnel 

focusing on CBM 

core 

Core analyst 

group involved 

Organisation high 

participation 

Organisation high 

participation 

Skill 

requirements 

High skill for 

detection and 

analysis 

High skill for 

proper FMEA and 

RCM analysts 

Low skill 

implementers 

Low skill 

implementers 

Approach System driven System driven Individual driven Individual driven 

Technically 

detailed approach 

Technically 

detailed approach 

Managerial 

framework 

approach 

Business oriented 

approach 

Advantages Increased 

availability 

System reliability 

improvement 

Productivity and 

quality 

improvement 

Integrated 

auditing 

possibility 

Indication of 

system condition 

Rationalisation, 

description of 

system and 

components 

Powerful 

structured 

approach 

Accuracy, 

focused 

improvement 

activities 

Disadvantages Potential high 

capital cost 

Reliability-

centred, cost 

implications if too 

detailed 

Not really a 

maintenance 

concept 

Complexity and 

extensive 

procedure for 

complex systems 

Extensive need 

for data for 

analysis and 

correct 

diagnostics 

Extensive need 

for data and 

resources for 

analysis 

No decision rules 

for basic 

maintenance 

policies 

Extensive use of 

resources, time 

consuming 
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3.5 Maintenance in the maritime industry 

 

Effective maintenance planning of a ship aims at minimising failures, equipment 

downtime, spare parts inventory, maintenance costs and emergency maintenance 

simultaneously while satisfying regulations and meeting voyage scheduled with a 

limited crew capability and under budget constraints. The following sections provide 

an overview of the maintenance elements that shape and govern maintenance activities 

in the shipping sector. 

 

3.5.1 Ship maintenance regulatory & supervisory elements 

 

Examining Figure 3.1 and associating it with maintenance in the shipping industry, 

ship maintenance was initially treated as a procedure that could be accomplished in a 

random day by day operation based on crew knowledge of equipment. However, in 

the last years this attitude has changed as maintenance started to be regarded as a 

strategic issue in the organisation. Factors such as environmental concerns, safety 

issues, liability, regulatory matters and cost reduction factors have contributed towards 

this change. Furthermore, shipowners and operators are interested in promoting a good 

image outwards which is crucial in today’s world of competitiveness and public 

awareness (Lazakis et al., 2010).  

 

Additionally, optimisation of maintenance is challenging due to highly restrictive and 

harsh operating conditions of ships. The optimisation is even more complicated due to 

the high level of uncertainty accompanied by these operating conditions. In the 

meantime, there is a delicate trade-off between the cost of over maintenance and the 

cost of avoided maintenance. Therefore, maintenance in the marine industry has 

conflicting multiple objectives, such as maximisation of reliability and safety and 

minimising costs simultaneously (Inozu and Karabakal, 1992). 

 

With the progress of innovating technology and shipping, consulting bodies and 

international standards promote the safe operation of ships for environmental and 

safety issues. The importance of maintenance is demonstrated by the fact that it is the 
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only shipboard activity to have one whole element assigned to it in the ISM code (IMO, 

1997). ISM Code element 10 focuses on maintenance of ship and equipment stating 

that “The company should establish procedures in its SMS (Safety Management 

System) to identify equipment and technical systems the sudden operational failure of 

which may result in hazardous situations”. In chapter 10 of this code, the procedures, 

requirements and obligations that a shipping company must follow are mentioned so 

as to ensure the company’s compliance with the international regulations. 

Accordingly, shipping companies follow the international regulations and 

Classification Society’s rules in order to develop the safety management manual which 

organises inspections at defined intervals, takes appropriate corrective actions if 

necessary and keeps records with all necessary steps followed in the maintenance 

procedures. BS/ISO 13613 (2011) provides shipboard personnel and other parties 

information concerning maintenance and testing for critical ship propulsion systems. 

 

Moreover, IACS recommendation 74 (IACS, 2001), mentions that in order to conduct 

corrective maintenance tasks, certain steps have to be followed such as identification 

of the existing failure, establishment of the failure cause and finally suggestion and 

implementation of a corrective measure. Furthermore, Tanker Management Self-

Assessment (TMSA) has been introduced (OCIMF, 2008) since 2004 in the oil 

shipping market including in element 4, a maintenance parameter which demonstrates 

the best practices ship operators or owners should adopt by identifying critical ship 

components and arranging the procedures for controlling maintenance. In addition, 

TMSA2 was introduced in 2008 incorporating operators experience and industry 

feedback and adjustment of Key Performance Indicators (KPIs). The latest addition, 

TMSA3 (OCIMF, 2017) has been updated to make the self-assessment conduction 

easier and to promote continuous improvement and is fully integrated within OCIMF’s 

Ship Inspection Report Programme (SIRE), providing a single area to maintain data 

related to ship inspections, crew reports and incidents. 

 

In order to simplify and make the safety management manual more efficient, the 

Planned Maintenance System (PMS) was introduced, which keeps track of the 

maintenance actions and tasks (Lazakis and Ölçer, 2015). The PMS is a paper or 



36 

 

software-based system that allows ship operators to carry out maintenance in intervals 

suggested by machinery manufacturers based upon running hours or calendar time 

scheduling and the requirements of the Classification Society. The PMS is a type of 

preventive maintenance and the maintenance activities are carried out irrespective of 

the condition of the machinery and parts must be replaced if it is written in the PMS 

even if they can still be used. Moreover, the equipment is maintained before 

breakdown occurs in an attempt to avoid failures, which can also lead to over-

maintenance, speeding aging due to excess dismantling and re-assembly, and 

increasing the risks of damage through human error.  

 

Dhillon and Liu (2006) present the impact of human errors in maintenance and 

attempted to develop a systematic model for incorporating human error in optimisation 

of CBM system by integrating human reliability model into the cost optimisation of 

CBM. Computerised Maintenance Management System (CMMS) is also a type of 

maintenance software that performs functions in support of management and tracking 

of operations and maintenance activities. However, there are some common pitfalls of 

CMMS such as inadequate training of personnel, lack of commitment to properly 

implement the CMMS and lack of commitment to persist in CMMS use and 

integration. 

 

3.5.2 Application of reliability tools in ship maintenance 

 

An innovative ship maintenance strategy is presented by Turan et al. (2011) based on 

criticality and reliability assessment while utilising Fault Trees with time-dependent 

dynamic gates in order to accurately present the interrelation of the components for a 

diving support vessel. The above paper utilises the Fault Tree (FT) capabilities by 

using quantitative methods of analysis and data such as Failure Rates (FR) and Mean 

Time Between Failures (MTBF). Laskowski (2015) applied the Fault Tree Analysis 

(FTA) and Reliability Block Diagram (RBD) as tools for modelling the reliability 

structure of a marine main engine by conducting qualitative means of analysis using 

the minimal cut sets method. Moreover, Guan et al. (2016) presented a FT model 

considering fires and explosion in a dual fuel engine room as the top event. The 
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primary factors that affect these kinds of accidents are determined through minimum 

cut sets and based on the results; suggested measures are proposed to improve safety 

and reliability. Furthermore, Ananthraraman et al. (2014) created a FT for a two stroke 

main engine lubrication oil system in order to examine the reliability of the overall 

system and identify critical components and demonstrated that with the use of 

additional components in the system, component reliability could be increased which 

contributed to the overall reliability of the main engine lubrication system. 

 

The American Bureau of Shipping has released guidance notes (ABS, 2015a) related 

to FMEA requiring the development and submission of FMEAs as part of 

Classification requirements for certain systems such as dynamic positioning systems, 

drilling systems, dual fuel diesel engines etc. Moreover, the International Association 

of Classification Societies (IACS) (2014) published recommendations for the FMEA 

process for diesel engines and reporting the FMEA process. To contribute and improve 

the ongoing efforts of Classification Societies and operators, Cicek and Celik (2013) 

examined the application of FMEA in order to prevent and reduce the occurrence of 

crankcase explosion failure to improve machinery system reliability and enhance 

operational safety on board ships. 

 

In addition, FMEA can favourably be combined with FTA as both tools complement 

each other. Specifically, Souza and Alvares (2008) applied FMEA in conjunction with 

FTA as a risk assessment tool for the application of RCM. The methodology was used 

to study and analyse the failure mode of a hydraulic Kaplan turbine and showed that 

these two tools can complement each other for the execution of an effective predictive 

maintenance plan, on the basis that the FMEA provided the information required for 

the FTA basic events. Moreover, Hidalgo et al. (2011) carried out the failure analysis 

of steering systems for LNG carriers. FTA was developed in order to identify the most 

critical components for the steering gear system and then the application of FMEA 

was conducted for each critical component in order to identify the failure modes and 

provide appropriate maintenance policies based on RCM philosophy. Furthermore, 

Gao and Kang (2016) applied the FMEA method for the reliability analysis of the main 
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failure events and their interrelations regarding the offloading systems of an FPSO. 

The main failure events were then demonstrated using a FT. 

 

Hence, a combined analysis can be performed as both tools can complement each other 

for the execution of an effective predictive maintenance plan, on the basis that the 

FMEA provides information required for the FTA basic event. They are two traditional 

safety analysis methods (BS, 2007, BS, 2006), both of which can provide a 

complementary way of identifying errors and tracking their possible influences. FTA 

will identify combinations of conditions and component failures which will lead to a 

single defined adverse effect. FMEA on the other hand considers all single component 

failures in turn and identifies the range of their effects on the system. Logical 

relationship between top events and basic events of the FT can also be verified based 

on FMEA and results. Whilst FTA focuses on a defined adverse effect, FMEA 

implicitly considers all adverse effects that may occur as a result of any single failure. 

 

3.5.3 Industrial marine maintenance software  

 

Maintenance software and products are available for the shipping industry, developed 

by regulatory bodies, manufacturers, ship operators and bodies from other industries. 

Most of these products focus on asset management, maintenance planning, data 

collection, prognosis and diagnosis for predictive maintenance purposes as presented 

in the following paragraphs. 

 

ABB Asset Health Center integrates existing monitoring infrastructure and systems 

with business intelligence that transforms operational data into actionable information 

such as strategic repair/replace decisions and tasks, managing parts inventory and 

scheduling maintenance activities (ABB, 2015). Kongsberg (2014) have developed a 

monitoring system, approved by major engine designers, for the bearings on an engine. 

It consists of bearing wear and bearing temperature monitoring of crank-train bearings, 

water in oil, cylinder liner temperature and shaft power monitoring, aiming at 

improved operations and optimised monitoring of engines.  
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Moreover, MAN (2012) have developed a service concept, named engine management 

concept for LNG ships in order to support their operation and maintenance. The tool 

aims in optimising plant operations and ensuring reliable operation of machinery using 

monitoring and diagnostic systems. Wartsila (2012) also provides a propulsion 

condition monitoring service for ship propulsion systems. In addition, Rolls-Royce 

(2016) approach SATAA (Sense, Acquire, Transfer, Analyse and Act) provides asset 

optimisation solutions in terms of health management, optimisation, decision support 

and remote and autonomous operation by utilising data analytics. 

 

Lloyds Register published a report (2013) regarding machinery planned maintenance 

and condition monitoring called ShipRight which was revised in order to add 

machinery condition based maintenance procedures and describe how a machinery 

planned maintenance scheme can be accepted as an integral part of the continuous 

survey machinery cycle. DNV-GL (2014) also published a report regarding condition 

monitoring in the shipping industry, reviewing existing condition monitoring 

technologies and methods for implementing such technologies.  

 

Class NK introduced the concept of PrimeShip-Total Ship Care (2013) which has been 

designed to prevent pollution of the marine environment and ensure safety of ships at 

every stage of a ship’s life including maintenance. The product contributes to 

improved reliability and increased efficiency of hull structure analysis, machinery 

shaft alignment and torsional vibrations and maintenance management amongst 

others. Furthermore, ABS (2015b) NS5 Entreprise aims to handle the primary 

functions of operational management and maintenance amongst other. 

 

DANAOS shipping company has developed for its own fleet a performance system 

WAVES (2016), utilising big data analytics for statistical processing of past 

observations, anomaly detection and forecasting applications assisting in CBM 

activities. LAROS (2013) by Prisma Electronics, is another platform that enables 

remote monitoring and analysis of vessel operational parameters by collecting, 

processing and transmitting real-time data through a wireless network of smart sensors 

in order to provide diagnosis and prognosis.  
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BASSnet Maintenance is another software which enables users to plan and execute the 

maintenance of their fleet and manage their global stock of spare parts more efficiently 

alongside reminders and alerts for key maintenance issues (BASSnet, 2013). 

Additionally, Teledata Marine Solutions have developed ShipManager 7.0 (Teledata 

Marine Solutions, 2009) which provides a platform for predictive analysis and decision 

support; and addresses the operational requirements of commercial, technical 

managers and ship staff. Other maintenance products related to the marine industry are 

available such as Consultas from AD TEK, a hull stress monitoring system from 

HULLMOS (2012), AMOS by SpecTec, Teromarine Maintenance (2005), Ulysses 

Systems Task Assistant and Vector Maintenance Manager (2007). 

 

3.5.4 Relevant research projects 

 

In the last few years the industry has collaborated with academic institutes to conduct 

research projects related to the topic of maritime maintenance. Some of the most 

important research projects are briefly described below. 

 

The EC MINOAS (Marine Inspection Robotic Assistant System) project focused on 

automated structural inspection by developing robotic platforms for inspection of 

difficult to access areas (Caccia et al., 2010). Image processing and pattern recognition 

techniques for defect detection in metallic surfaces were developed alongside 

toolboxes enabling online processing of harvested data and operating as a decision 

support system in the aid of the inspector. 

 

Additionally, Inspection Capabilities for Enhanced Ship Safety (INCASS) is an EU 

FP7 project related to the integration of monitoring, inspection, structural and 

machinery databases, risk analysis and decision support for ship structures and 

machinery equipment (INCASS, 2015d). In terms of the machinery and equipment 

condition monitoring, advanced reliability and criticality-based tools and 

methodologies utilising Bayesian Belief Networks (BBN) with Markov chains were 

exploited for CBM assessment in order to provide decision support actions.  
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The MUNIN (Maritime Unmanned Navigation through Intelligence in Networks) 

research project developed a technical concept for the operation of an unmanned 

merchant ship and assessed its technical, economic and legal feasibility (Burmeister et 

al., 2014). Specifically, one work package focused on an autonomous engine and 

monitoring control system, enriching the engine room and propulsion automation 

systems providing advanced condition monitoring functionalities for preventing 

breakdowns, planning maintenance and diagnostics. 

 

ISEMMS (Integrated Ship Energy & Maintenance Management System) project aims 

at the development of an integrated energy and maintenance management system to 

optimise the energy efficiency and minimise the maintenance cost of ship machinery 

systems by monitoring condition parameters (Gkerekos et al., 2017). A number of 

advanced technologies such as statistical and artificial intelligence algorithms are 

applied to provide decision support and advisory generation for optimal operation and 

the most effective maintenance scheduling.  

 

3.5.5 Remarks 

 

Classification Societies encourage condition monitoring techniques onboard ships, 

offer guidelines but do not oblige ship operators or owners to implement such 

techniques in their operation and maintenance. However, most shipping companies 

still follow the PMS based on ISM code (IMO, 1993). This can also be observed in a 

study by Lazakis and Olcer (2015) who introduced a reliability and criticality-based 

maintenance strategy by utilising a fuzzy multiple attributive group decision-making 

technique, which is further enhanced with the employment of Analytical Hierarchy 

Process (AHP). The outcome of this study indicated that preventive maintenance is 

still the preferred maintenance approach by ship operators, closely followed by 

predictive maintenance; hence, avoiding the ship corrective maintenance framework 

and increasing overall ship reliability and availability.  

 

Additionally, the slow advancements of maintenance in this sector are also illustrated 

by the fact that maintenance concepts such as RCM and CBM have not been 
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successfully implemented on ships due to reasons such as lack and portability of failure 

data, equipment condition cannot be taken for granted, training and overburden of 

shipboard personnel, lack of adequate redundancy and purview of regulatory bodies 

are some of the many reasons as discussed by Mokashi et al. (2002b).  

 

RCM has gained recognition by the armed navies. The UK MoD has published 

Defence Standard 02-45 (Ministry of Defence, 2000). However, it seems that this 

approach is too resource demanding as far as an unorganised industry, as the maritime 

industry is concerned. Also, Formal Safety Assessment (FSA) of ships has a very 

similar approach compared to RCM with the difference identified in that FSA looks at 

all kinds of hazards, while RCM is primarily concerned with those that relate to 

functional failures (IMO, 2006). 

 

Nowlan & Heap (1978) analysed failures of equipment onboard aircrafts and 

discovered that 89% of the proportion of failures were not age-related and could not 

be addressed therefore by the traditional preventive maintenance techniques. This 

proportion is similar for marine vessels, where according to the MSP study in 1982 by 

the US Navy the respective proportion was 77% while another study in 2001 from 

Submarine Maintenance Engineering, Planning and Procurement (SUBMEPP) 

showed that the proportion was equal to 71% on US Navy submarines (Allen, 2001).  

 

In support of this fact, Amari et al. (2006) highlighted that several independent studies 

across various industries reveal that only 15% to 20% of equipment failures are age-

related. The rest of equipment failures are based on the effects of random events that 

occur. The failure patterns where dominated by random failures which can be 

addressed by detecting them before they occur using a predictive maintenance strategy.  

 

Technological advances and high cost of ownership have resulted in considerable 

interest in advanced maintenance techniques. The most recent research projects 

between academia and industry indicate the current research trend and exploration of 

advanced maintenance techniques. These techniques focus on machinery condition 

monitoring applications onboard, through the utilisation of artificial intelligence, 
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reliability and data-driven methods to provide CBM functionalities and decision 

support. Moreover, Zaman et al (2017) presented the challenges and opportunities of 

big data analytics in the shipping sector and potential functionalities with regards to 

ship safety, energy management and performance monitoring amongst other. Raza and 

Liyanage (2009) also stated that there has been an increasing demand for testing and 

implementing intelligent techniques as a subsidiary to existing condition monitoring 

programs and that artificial neural networks have emerged as one of the most 

promising techniques in this regard, which are explained in the following section. 

 

3.6 Artificial Neural Networks (ANNs) 

 

According to Haykin (1998), a neural network can be defined as a massively parallel 

distributed processor made up of simple processing units that has a natural propensity 

for storing experiential knowledge and making it available for use. It resembles the 

brain within two respects; knowledge is acquired by the network from its environment 

through a learning process and interneuron connection strengths, known as synaptic 

weights are used to store the acquired knowledge. A more pragmatic definition that 

emphasises the key features of this technology can be given after Principe et al. (1999) 

as: “ANNs are distributed, adaptive, generally nonlinear learning machines built from 

many different processing elements that receive connections from other processing 

elements and/or itself.” Figure 3.3 displays a simple structure of a typical ANN with 

input, hidden and output layers.  

 

Input

layer

Hidden

layer

Output

layer

 

Figure 3.3 Artificial neural network 
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They are powerful tools for modelling, especially when the underlying data 

relationship is unknown. ANNs do not require a prerequisite establishment of rules 

and reasoning which govern relationships between a desired output and its significant 

effective variables. One desirable feature of ANNs is that they are readily updated as 

more historical data becomes available. Thus, they are referred as adaptive systems. 

The application fields of neural networks can be categorised with respect to different 

criteria, such as industrial application, type of reliability problem, life cycle phase in 

which the algorithms are predominantly applicable and the type of learning problem.  

 

ANNs have been shown to be robust and reliable tools in many industrial applications. 

Applications of ANN can be found in condition monitoring, fault diagnosis, sensor 

validation, modelling, simulation and control (Yang et al., 2002b). Furthermore, 

ANNs can solve a variety of problems in optimisation, pattern recognition, clustering, 

function approximation, time series analysis, prediction and validation (Asgari et al., 

2011). They learn from the data obtained from a system instead of learning from a 

specific program. 

 

3.6.1 Artificial Neuron 

 

ANNs attempt to simulate the functioning of the human brain. According to a 

simplified description, the latter consists of about ten billion neurons, each connected, 

on average, to several thousand others. By means of these connections, neurons both 

forward and get messages, in the form of varying quantities of energy. A substantial 

aspect to be underlined relies in that the neurons do not react immediately to the 

reception of a signal. Instead, they sum all received inputs and transmit their own 

messages only when this sum has reached a certain critical threshold. Globally, the 

brain learns by adjusting the number and the strength of the above-mentioned 

connections (Bevilacqua et al., 2005). 

 

The building block of a neural network is a neuron (Barad et al., 2012). From the 

biological description above, in a mathematical form, a neuron could be represented 

with a threshold logic unit. This consists of an object which accepts an array of 
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weighted quantities (incoming from a set of synapses), sums them and whether the 

sum overcomes a certain bound (usually called threshold), outputs a value, generally 

known as the activation level. A transfer function takes this value and produces the 

output of the current artificial neuron, outgoing towards the neighbouring neurons by 

means of an axon. 

 

 

Figure 3.4 Representation of biological neuron (Bocaniala et al., 2006) 

 

A neuron has several inputs an, each of these inputs are multiplied by weights wij and 

then added up. Weights are basically adaptive coefficients within the network that 

determine the intensity of the input signal (Nasr et al., 2012). Often a bias is added bj, 

which is the node’s internal threshold. The result is the neuron activation z as shown 

in Equation 1. 

 

𝑧 = ∑ 𝑎𝑖𝑤𝑖𝑗 + 𝑏𝑗

𝑛

𝑖=1

 (1) 

 

Once the neuron’s activation z is obtained, it is fed into the activation function f(z). 

Common activation functions are the sigmoid and linear functions as described later. 

The output of this activation is then the output Oj of the neuron as shown in Figure 3.5 

which displays a single node of a neural network. 
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Figure 3.5 Artificial neuron model (Fausett, 1994) 

 

3.6.2 ANN learning 

 

Neural networks can be classified according to the type of training. If the training 

algorithm uses different input and output patterns, then the network is trained using 

supervised learning. If the training algorithm has to extract information only from the 

input patterns, then the learning is named unsupervised (Ogaji et al., 2002). In 

supervised learning, the network is first trained using a set of actual data referred to as 

the training set. In supervised training, the data is divided into three categories: the 

training, validation and testing sets. A heuristic states that the number of the training 

set data should be at least a factor of ten times the number of network weights to 

adequately classify test data (Levin et al., 1991). The actual outputs for each input 

signal are made available to the network during the training. Processing of the input 

and result comparisons are then done by the network to get errors which are then back 

propagated, causing the system to adjust the weights which control the network (Hertz 

et al., 1991).  

 

On the other hand, in unsupervised learning, only the inputs are provided without any 

outputs, meaning that the results of the learning process cannot be determined. This 

training is considered complete when the neural network reaches a user defined 

performance level. Such networks internally monitor their performance by looking for 

regularities or trends in the input signals and make adaptations according to the 

function of the network. This information is built into the network topology and 

learning rules (Levin et al., 1991). 
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3.6.3 Neural network training 

 

ANN learn the relation between inputs and outputs of the system through an iterative 

process called training (Asgari et al., 2011). Neural networks are trained for input data 

and the output is computed. The error obtained by comparing outputs with a desired 

response is used to modify the weights with a specific training algorithm. This 

procedure is performed using the training dataset until a convergence criterion is met. 

ANNs are nonparametric as they automatically extract the parameters from input data 

and desired response by means of a training algorithm (Haykin, 1998). Moreover, 

neural networks have different learning algorithms to train these networks. The choice 

of a particular learning algorithm is influenced by the learning tasks a neural network 

has to perform.  

 

The objective of training is to establish weights that minimise errors as the output 

neurons first give a set of values that differ from the correct results, while the objective 

of the validation and testing is to learn from examples and capture subtle functional 

relationships among the data even if the underlying relationships are unknown or hard 

to learn. The training set is used for computing the gradient and updating the network 

weights and biases. The validation data are used to stop training early if further training 

on the primary data will hurt generalisation to the validation data. Test dataset can be 

used to measure how well the network generalises beyond training and validation data.  

 

During training, both the inputs and outputs are presented to the network for a number 

of iterations. At the end of each iteration, the network evaluates the error between the 

actual and desired output. The error is used to modify the weights accordingly. Figure 

3.6 illustrates the training structure of a neural network. 
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Figure 3.6 ANN training process 

 

A performance function is defined based on the difference between target and actual 

output in order to examine the performance of the trained network. Furthermore, the 

backpropagation algorithm is the workhorse of learning in neural networks (Rojas, 

2013) and is used to modify weights accordingly based on the error between actual 

and target output. The backpropagation algorithm is described in the following section. 

 

3.6.4 Backpropagation algorithm 

 

Backpropagation is a systematic method to train multi-layered feedforward neural 

networks. The backpropagation algorithm can be used to calculate the sensitivity of a 

cost function with respect to the internal states and weights of a network. The term 

backpropagation infers a backward pass of error to each internal node within the 

network, which is then used to calculate weight gradients for that node (Adjallah et al., 

2007). The greatest strength of backpropagation neural network is in the nonlinear 

solutions to ill-defined problems.  

 

The backpropagation algorithm is based on the gradient descent method to minimise 

the output error with respect to the connection weights in the network. The delta rule 

is based on continuously modifying the strengths of the input connections to reduce 

the difference between the desired output value and the actual output of a processing 

element. At the initial stages of the backpropagation process, a set of input factors are 

presented to the ANN as well as their desired outputs. Then a training stage starts by 

arbitrary selecting a set of connection weights for each layer.  
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Each neuron calculates its summation function value and accordingly computes its 

transfer function value which represents its output. This process is a feed-forward 

process. A set of computed outputs is delivered to the output layer. For each processing 

element in the output layer an error is calculated, each representing a deviation of the 

computed output from the desired output. Using a learning rule, the errors are back 

propagated through the hidden layer of the network and the connection weights are 

adjusted and updated accordingly. A feed-forward process starts all over again with 

the new adjusted weights and new output values are calculated until a desired set of 

requirements are achieved as shown in Figure 3.7 (Oduyemi et al., 2015). 

 

Compute output of each 

layer for training input

Compute error in output 

layer

Compute weight update 

for output layer

Compute weight update 

for hidden layers

Compute weight for all 

layers

Initialising weight to 

random value

Stop Trained?Yes

No
 

Figure 3.7 Backpropagation training algorithm 

 

The standard backpropagation training is a gradient descent algorithm, in which the 

weights are moved along the negative of the gradient of the performance function. The 

gradient of the performance function is updated and backpropagated to the previous 

layer(s) until the input layer is reached. Such traditional gradient-based training 

algorithms do not necessarily produce fast converges, although the performance 

function decreases most rapidly along the steepest descent direction. Modification of 

the traditional backpropagation algorithm are the Levenberg-Marquardt algorithm, 

Bayesian regularization, conjugate gradient algorithms and the BFGS quasi-Newton 

method (Wu et al., 2007). The mathematical description of the backpropagation 

algorithm is provided in Appendix A. 

 

 



50 

 

3.6.5 Neural network architecture 

 

An ANN consists of interconnections of neurons usually assembled in layers (Barad 

et al., 2012), as displayed in Figure 3.3. Each layer has a number of simple, neuron 

processing elements called nodes or neurons that interact with each other by using 

numerically weighted connections (Peng et al., 2010). Each layer consists of a number 

of neurons or nodes, and each node is connected to another node in another layer by 

weights (Fausett, 1994). Generally, a neural network consists of n layers of neurons of 

which two are input and output layers, respectively. The former is the first and the only 

layer which receives and transmits external signals while the latter is the last and the 

one that sends out the results of the computations. The remaining layers are called 

hidden layers which extract, in relays, relevant features or patterns from received 

signals. Those features considered important are then directed to the output layer. 

Sophisticated neural networks may have several hidden layers, feedback loops, and 

time-delay elements. Specific types of neural networks are described in Section 3.6.6. 

 

The interconnectivity defines the topology of the ANN (Raza and Liyanage, 2009). 

The network topology describes the arrangement of the neural network. There are 

feed-forward, back-propagation and feedback types of network depending on the 

manner of neuron connections. The first allows only neuron connections between two 

different layers; the second has not only feed-forward but also ‘error feedback’ 

connections from each of the neurons above it. The last one shares the same features 

as the first, but with feedback connections, that permit more training or learning 

iterations before results can be generated. 

 

A crucial step in the building of a neural network model is the determination of the 

number of processing elements and hidden layers in the network. A large number of 

processing elements can give the network the possibility of fitting very complex 

discriminating functions. However, it has been observed that too many weights 

produce poor generalisations. On the other hand, a very small number of processing 

elements reduces the discriminating power of a network. Since no theoretical basis 
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exists to guide the selection, in practice the number of hidden nodes is often chosen 

through experimentation or by trial-and-error. 

 

In determining the number of hidden layers to be used, there are two methods in the 

selection of network sizes: one can begin with a small network and then increase its 

size (growing method); the other method is to begin with a complex network and then 

reduce its size by removing not so important components (pruning method) (Oladokin 

et al., 2006). The determination of the number of hidden layers and nodes are crucial 

since if there are too many hidden layers, the neural network will not learn the 

underlying pattern, while with too few the neural network will not pick up the full 

details of the underlying patterns in the data (Oduyemi et al., 2015).  

 

Hence, the best structure is the one which can predict behaviour of the system as 

accurately as possible (Asgari et al., 2011). It is observed that there is no specific rule 

in determining the number of hidden layers and the number of neurons in each hidden 

layer. Shtub and Versano (1999) suggested a few rules than can assist in determining 

the optimum number of neurons in a network. These include that a network with n 

input and m output units requires a hidden layer with at most 2n+1 units. Moreover, 

the number of hidden nodes should be between the average and the sum of nodes on 

the input and output layers or should be 75% of the input nodes. Zhang et al. (1998) 

summarised unique characteristics of ANN, including network architecture, nodes and 

algorithms that affect the performance of ANNs. The performance of neural nets is 

affected by many factors, including the network structure, the training parameters and 

the nature of the data series (Barad et al., 2012).  

 

3.6.6 Types of neural networks 

 

There are several types of neural networks, showing different characteristics and 

performances. Based on the network topology, ANNs can be classified into 

feedforward and recurrent networks using supervised or unsupervised learning 

algorithms (Figure 3.8). Examples of feedforward nets are the Feed-Forward Neural 

Network (FFNN), Multilayer Perceptron (MLP) and Radial Basis Function (RBF) 
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network. Variants of Recurrent Neural Network (RNN) models are the Nonlinear 

Autoregressive (NAR), Nonlinear Autoregressive with Exogenous Input (NARX) and 

Long-Short Term Memory (LSTM), Adaptive Resonance Theory (ART) networks 

amongst others. 

 

Types of ANN

NAR NARX

LSTM

Hopfield

Feedforward Recurrent

Elman 

FFNN

MLP

RBF

Jordan 

SOM

Supervised

Unsupervised

ART

 

Figure 3.8 ANN classification 

 

While it is typical to consider the Self-Organising Map (SOM) structure as related to 

feedforward networks, their architecture is fundamentally different in arrangement and 

motivation as they use competitive learning as opposed to error-correction learning 

techniques (Kurd and Kelly, 2007). 

 

3.6.6.1 Feed-Forward Neural Network (FFNN) 

 

In a FFNN, the neurons are organised in the form of layers. The neurons in a layer get 

input from the previous layer and feed their output to the next layer. In this kind of 

network, connections to the neurons in the same or previous layers are not permitted. 

The last layer of neurons is called the output layer and the layers between the input 

and output layers are called the hidden layers. The input layer is made up of special 

input neurons, transmitting only the applied external input to their outputs. In a 

network if there is only the layer of input nodes and a single layer of neurons 

constituting the output layer then they are called single layer network. If there are one 

or more hidden layers, such networks are called multilayer networks. A feed-forward 

https://en.wikipedia.org/wiki/Feedforward_neural_networks
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neural net with a single hidden layer can serve as a universal approximator to any 

continuous function (Hornik et al., 1990, Funahashi, 1989). 

 

3.6.6.2 Multilayer Perceptron (MLP) 

 

Multilayer Perceptron (MLP) is the most popular type of ANN and belong to a general 

class of structures called feedforward neural networks. In the MLP structure, the 

neurons are grouped into layers. Typically, an MLP neural network consists of an input 

layer, one or more hidden layers and an output layer. An MLP usually is composed of 

several input, hidden and output nodes. The training data is fed forward from the input 

to the output through the hidden layers and use the backpropagation supervised 

learning algorithm. These networks have found their way into countless applications 

requiring pattern classification. Their main advantage is that they are easy to use, and 

that they can approximate any input/output map (Oladokin et al., 2006). The key 

disadvantages are that they train slowly, and require lots of training data, typically 

three times more training samples than network weights (Du and Swamy, 2014). 

 

3.6.6.3 Radial Basis Function(RBF) network 

 

Feedforward neural networks with a single hidden layer that use radial basis activation 

functions for hidden neurons are called Radial Basis Function (RBF) networks. It 

consists of an input layer, a radial basis hidden layer and an output layer and are usually 

used for pattern recognition (Heger, 2012).Common used radial basis functions are 

Gaussian and multiquadratic. RBF networks have the disadvantage of requiring good 

coverage of the input space by radial basis functions. RBF centres are determined with 

reference to the distribution of the input data, but without reference to the prediction 

task. As a result, representational resources may be wasted on areas of the input space 

that are irrelevant to the learning task.  

 

The hidden neuron activation functions in MLP and RBF behave differently. The 

activation function of each hidden neuron in an MLP processes the inner product of 

the input vector and the synaptic weight vector of that neuron. On the other hand, the 



54 

 

activation function of each hidden neuron in an RBF network processes the Euclidean 

norm between the input vector and the centre of that neuron. MLP networks construct 

global approximators to nonlinear input-output mapping, while RBF use exponentially 

decaying nonlinearities to construct local approximations. 

 

3.6.6.4 Recurrent Neural Network (RNN) 

 

Contrary to feedforward networks, Recurrent Neural Networks (RNNs) are models 

with bi-directional data flow. While a FFNN propagates data linearly from input to 

output, RNNs also propagate data from later processing stages to earlier stages. It 

allows time-domain behaviours of a dynamic system to be modelled. The outputs of a 

dynamic system depend not only on the present inputs, but also on the history of the 

system states and inputs (Hu et al., 2007).  

 

A FFNN having one or more hidden layers with at least one feedback loop is known 

as a recurrent network. The output of a neuron is fed back to its own input. Feedback 

loops involve the use of unit delay elements, which results in nonlinear dynamic 

behaviour assuming the network contains nonlinear units. RNNs may have multiple 

types of feedback loops. The two that can be employed are the input delays and the 

feedback delays. Each type of delay effectively increases the number of input nodes 

by providing the network with delayed information along with current information. 

 

In the case of input delays, multiple consecutive time steps of the input features are 

presented to the network simultaneously. For feedback delays, the output of the model 

is provided to input nodes, along with previous data. This can either be done with 

“open” loops, where the known output is provided as an input, or with “closed” loops, 

which connects the network output to the input directly. RNNs can store sequential 

information in the form of historical data and can be used in forecasting. Elman and 

Jordan networks are known as simple recurrent networks (Du and Swamy, 2014). 

Nonlinear Autoregressive (NAR) (Ahmed and Khalid, 2017), Nonlinear 

Autoregressive with Exogenous Input (NARX) (Asgari et al., 2016) and Long Short-

Term Memory (LSTM) networks (Wielgosz et al., 2017) are recurrent dynamic 

https://en.wikipedia.org/wiki/Recurrent_neural_network
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networks. A special type of recurrent neural network is the Hopfield network (Rojas, 

2013). It is a simple single layer recurrent network typically used for pattern 

recognition and is trained via an algorithm that teaches it to learn to recognise patterns, 

by indicating that the pattern is recognised by echoing it back.  

 

3.6.6.5 Self-Organising Map (SOM) 

 

Self-Organising Map (SOM) is a class of ANN with neurons arranged in a one or two 

dimensional structure and trained by an iterative unsupervised or self-organising 

procedure (Yan, 2015). They find clusters in the data by evaluating neighbourhood 

measures and employing competitive learning strategies. The output neurons of the 

network compete among themselves to be activated or fired, with the results that only 

one output neuron, or one neuron per group is on at any one time. An output neuron 

that wins the competition is called a winner-takes-all neuron or winning neuron. Every 

data item is mapped into one point (node) in the map and the distances of the items in 

the map reflect similarities between the items (Kohonen, 1998) . 

 

The SOM is a flexible, unsupervised neural network for data analysis and clustering 

(Hagenauer and Helbich, 2013). It maps input data to neurons in such a way that the 

distance relationships between input signals are mostly preserved (Kohonen, 2013). 

SOM projects input space on prototypes of a low-dimensional regular grid that can be 

effectively utilised to visualise and explore the properties of the data (Vesanto and 

Alhoniemi, 2000).  

 

3.6.7 Neural networks in the context of CBM  

 

According to Nasr et al. (2012) ANNs provide an effective analysing and diagnosing 

tool to understand and simulate the nonlinear behaviour of complex systems and can 

be used as a valuable performance assessment tool for operators and decision makers. 

As more data describing the system condition and its influencing parameters become 

available, data-based methods are being increasingly applied to predict system 

behaviour (An et al., 2015) and the reliability of a system (Yam et al., 2001). Several 
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distinguishing features of ANNs make them attractive for the development of 

intelligent techniques relative to condition monitoring programs (Peng et al., 2010, 

Zhang et al., 1998). 

 

First of all, opposed to the traditional model-based methods, ANNs are data-driven 

and self-adaptive methods, meaning that there are few a priori assumptions about the 

models under study. They learn from past examples and capture subtle functional 

relationships among the data even if the underlying relationships are hard to describe 

or unknown. ANNs do not rely on a priori principles or statistical models and can 

significantly simplify the model synthesised process. They can readily address 

modelling problems that are analytically difficult and for which conventional 

approaches are not practical, including complex physical processes having nonlinear, 

high-order and time-varying dynamics and those for which analytical models do not 

yet exist.  

 

Secondly, ANNs have good generalisation capabilities. After learning the data 

presented to them, ANNs can only correctly infer the unseen part of a population even 

if the sample data contain noisy information. Thirdly, ANNs are universal functional 

approximators and have more general and flexible functional forms than the traditional 

analytical and/or statistical methods can effectively deal with. Fourth, they are 

nonlinear. Real word failure models are generally non-linear. However, these models 

are still limited in that they are based on a little knowledge of underlying law.  

 

Moreover, they can increase fault tolerance through adaptation and can be self-

modifying over the lifecycle of a system. With the increased availability of monitoring 

data on the condition of a specific system, neural networks are also increasingly 

applied in the field of fault detection (Tan et al., 2012), fault diagnostics (Tamilselvan 

and Wang, 2013) and for predicting the residual useful life (Tian et al., 2010). They 

have been applied among others for applications in nuclear power plants (Molina et 

al., 2000, Reifman, 1997), mining (Sottile and Holloway, 1994), for different industrial 

applications of motor bearings (Li et al., 2000, Marichal et al., 2011, Yang et al., 
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2002a), electric machines (Tallam et al., 2002), cutting tools (Choudhury et al., 1999, 

Das et al., 1997) and gas turbines (Fast et al., 2008). 

 

Although ANNs have recently gained importance in time series applications 

(Aizenberg et al., 2016, Szoplik, 2015, Liu et al., 2015, Laboissiere et al., 2015) , some 

methodological shortcomings still continue to exist, such as proper network selection, 

architecture and learning algorithms. Aizenberg et al. (2016) performed time series 

analysis using multilayer neural network for forecasting oil production in the Gulf of 

Mexico. They concluded that the choice of embedding dimensions from time series 

data is a challenging and ongoing task requiring additional research effort. Adjallah et 

al. (2007) applied ANN for classifying bearing faults based on condition monitoring 

of bearing acceleration signals in order to ease the burden of decision making on 

system and equipment integrity.  

 

In addition, Zhu (2009) utilised ANN to diagnose faults of a six cylinder marine diesel 

engine, specifically variations in valve clearance and differences in engine cylinder 

loads. Their research indicated that ANN has a high degree of accuracy when 

predicting ship main engine faults and can improve the reliability of the engine overall. 

Furthermore, Zhou and Xu (2010) applied neural networks for the fault diagnosis of a 

marine engine cooling system by using failure modes as input to the network and 

failure causes as output based on simulated data. 

 

Oladokin et al (2006) demonstrated the usefulness of ANN in maintenance planning 

and management by creating an ANN for predicting the expected downtime resulting 

from a breakdown or maintenance activity. Naffisah et al. (2014) applied neural 

networks to estimate the duration of dry docking maintenance activities using volume 

and dry docking type of activity as input to their model. Their results indicated an 

average error value of under six days between the actual and forecasted duration 

results.  

 

Basurko and Uriondo (2015) applied ANNs for CBM of medium speed diesel engines 

in operation assessed for the case study of a fishing vessel. The developed ANN 

http://topics.sciencedirect.com/topics/page/Artificial_neural_network
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analyses actual monitored data to generate an engine performance model and 

determines four engine fault conditions. Moreover, Noor et al. (2016) applied ANN 

modelling on a marine diesel engine in order to predict its performance in terms of 

output torque, brake power, brake specific fuel consumption and exhaust gas 

temperature using as input data various engine speeds and loads. The network was 

based on a standard back-propagation Levenberg-Marquardt training algorithm and 

results were compared with those of a mathematical model. Results showed that the 

prediction error of the ANN model was lower than the mathematical model.  

 

Moreover, Cipollini et al. (2018) investigated data-driven models for performing CBM 

on a ship propulsion system. The results confirmed the possibility to implement 

regression techniques for CBM and that amongst the machine learning models tested, 

ANN models generally showed the best performance. Based on the aforementioned, 

Table 3.3 presents a summary of the advantages and disadvantages of neural networks. 

 

Table 3.3 Advantages and disadvantages of ANNs 

Strengths Weaknesses 

Can handle nonlinear relationships, which 

are characteristics of ship machinery 

parameter interrelationships 

Rules for selecting the amount and 

type of data for training as to improve 

quality of network are minimal 

Tolerant to measurement non-

repeatability problems or noise 

Criteria for the validation of a network 

is not well defined 

Can operate satisfactorily even in the 

presence of limited information 

Optimal network structure is generally 

unknown 

Learning capabilities, does not have to be 

re-programmed 

Convergence of training algorithms is 

not guaranteed 

Flexibility in classification, clustering and 

regression related applications 

Data representing faults can be 

difficult to obtain in some actual 

situations 
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3.6.8 Remarks 

 

By examining the literature, it can be observed that it is usually a tough problem for 

system designers to fit domain knowledge to ANN in practical applications. This is 

mainly due to lack of proper data for ANN training and testing. As observed, research 

articles applying ANN with actual monitored data are limited. CBM relies on data to 

determine the need for maintenance. Neural network models are fast and memory 

efficient, enabling them to be used for real-time condition monitoring onboard ships. 

They are tolerant of noisy or incomplete input data and are able to statistically quantify 

uncertainty and to learn classification tasks from sample training data. Furthermore, as 

companies are preparing the ground to adopt data-driven strategies to utilise their 

condition monitoring data for enhanced operation and maintenance, their approach 

must deploy a clear integrated strategy for how to select and analyse data with the 

desired business impact. The strategy should be driven by the business not by the 

technology that services the business. 

 

Although various authors suggest methods and recommendations in achieving an 

optimum neural network architecture, it is evident through the literature that there is 

no standard and accepted method to automatically select the optimum ANN 

architecture. There are some rules of thumb for the network size which often fail 

drastically since they ignore both the complexity of the task and the redundancy in the 

training data. The optimal network size is usually not known in advance. As ANN 

grows in size, training can become a complicated issue. For example, how many 

hidden layers should be included, and what is the number of processing nodes that 

should be used for each layer are vague questions for model developers (Brotherton et 

al., 2000). 

 

Due to the lack of manpower and information resources, the diagnosis and repair on 

failed equipment usually cannot be performed immediately, hence lead to long down 

time and unavailability. Advanced techniques such as artificial intelligence techniques 

have been applied for equipment degradation assessment, intelligent diagnosis and 

prognosis. The application of AI techniques can make the maintenance process 
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intelligent. Different types of neural networks can be designed and implemented for 

various applications such as clustering, classification, regression, time series 

forecasting and dynamic system modelling and control. In the context of condition 

monitoring and CBM, they can be applied for predictive maintenance strategies that 

can assist decision makers in selecting appropriate maintenance actions for critical ship 

machinery. 

 

3.7 Identified gaps 

 

The gaps identified through the literature and critical review are defined and described 

below: 

 

• Maintenance on ships is still seen as a cost item instead of a way to ensure safety 

and efficient vessel performance and operation. 

• Maintenance and technical managers need to investigate the selection of the most 

appropriate techniques to deal effectively with each type of failure, implement the 

maintenance measures in the most cost-effective way and enhance the efficient 

collaboration of all personnel involved, from the crew of the ship to top 

management. 

• Additionally, maintenance is not always fully understood or treated with the 

correct level of priority at board or senior management level. This is often the case 

until an incident occurs. Moreover, maintenance lacks a business culture as 

strategies can be highly technically focused with minimal business content or 

linkage to strategic goals. This illustrates that maintenance is isolated with little 

integration with other departments and is often only seen as an engineering 

function with little or no inputs from operators, supply chain or wider business. 

• Classification Societies encourage condition monitoring techniques onboard ships, 

offer guidelines but do not oblige ship operators or owners to implement such 

techniques in their operation and maintenance, despite the benefits proven by 

adopting such techniques in various industries. 

• Most shipping companies still follow the Planned Maintenance System (PMS) 

based on ISM code (IMO, 1993), comprising of preventive maintenance, either 
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calendar based or based on operating hours of equipment. This creates the problem 

of “over-maintaining” equipment since maintenance activities are carried out 

irrespective of the condition of the machinery and parts must be replaced if it is 

written in the PMS even if they can still be used. 

• Various studies have shown that a high percentage of failures are not age related 

and could not therefore be addressed by traditional preventive maintenance 

techniques. The failure patterns where dominated by random failures which can be 

addressed by detecting them before they occur using a predictive maintenance 

strategy. 

• Maintenance in the marine industry may have conflicting multiple objectives, such 

as maximisation of reliability and safety and minimising costs simultaneously in 

conjunction with the challenging operating conditions. In applications such as ship 

machinery, where the criticality of the equipment and the impact of unplanned 

downtime and quality are high, a maintenance strategy characterised by preventive 

and/or predictive mechanisms offers numerous advantages, including the 

regulatory and safety aspects. 

• Technological advances and high cost of ownership have resulted in considerable 

interest in advanced maintenance techniques. Latest research and commercial 

products are aligned with the most recently established predictive maintenance and 

data analytics strategies. The most recent research projects between academia and 

industry indicate the current research trend and exploration of advanced 

maintenance techniques. These techniques focus on machinery condition 

monitoring applications onboard, through the utilisation of artificial intelligence, 

reliability and data-driven methods to provide CBM functionalities and decision 

support. Moreover, recent marine maintenance products focus on predictive 

maintenance and asset management through condition monitoring and data 

analysis of real-time operational vessel data. 

• Neural networks can readily address modelling problems that are analytically 

difficult and for which conventional approaches are not practical, including 

complex physical processes having nonlinear, high-order and time-varying 

dynamics and those for which analytical models do not yet exist. Therefore, they 
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can be applied for predictive maintenance strategies that can assist decision makers 

in selecting appropriate maintenance actions for critical ship machinery. 

• In the existing literature, neural networks developed for fault diagnostics cover a 

relative small number of faults focusing on a specific component or system. Their 

value in diagnostics of larger systems and faults, such as those related to ship 

systems should be investigated. Moreover, in terms of time series analysis and 

forecasting, there is a gap in the literature regarding such ANN applications in the 

marine industry which could assist in reporting future health status of systems and 

components and provide users with the earliest warning of potential faults. 

• Data collection and processing problems exist and there is a gap between theory 

and practice. OEMs share limited information with operators, making it hard to 

develop data-driven models that can be trained using data representing faults and 

from which correct classification of different failure patterns can be achieved. 

• Furthermore, the availability of data to train and validate such models is generally 

problematic. Neural network models are fast and memory efficient, enabling them 

to be used for real-time condition monitoring onboard ships. By examining the 

literature, application of ANNs models with actual monitored data are limited. 

Most models are trained through simulated mock data, which although can prove 

the accuracy and performance of data-driven models, highly demonstrates the 

existing gaps between theory and practice.  

• Shipping companies also face challenges in analysing collected data from their 

vessels. The main problem in this case is how to use the collected data efficiently 

to maximise the benefit stemming from them. It is not unusual for shipping 

companies to possess large databases of stored operational data with no specific 

functionality or usefulness, with high percentages of data not usable in some cases. 

It is therefore important that the recorded data is utilised in an efficient and robust 

condition monitoring framework that can provide concise and clear information 

regarding the current and future condition of the various systems and components. 

• Data for ship systems is not collected in a standardised way so that it can lead to 

more informed and effective decision making. The question of how much data, 

which data, and how often this should be collected and how has also risen; as 
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shipowners and operators pursue to adopt an efficient and reliable condition 

monitoring scheme. 

• There is a need for an overall condition monitoring and predictive maintenance 

framework that will assist in creating a condition monitoring tool tailored to the 

requirements and needs of a shipping company/operator if they are unsure of which 

systems to monitor, or if the economics of the situation may limit the number of 

components that can be monitored. 

• A condition monitoring framework employing a hybrid approach to identify 

critical ship machinery systems and components and subsequently monitor their 

condition through the employment of data-driven methods such as ANNs should 

be investigated. This flexible and innovative framework should identify critical 

systems through a systematic organised method. This could be accomplished 

through a combination of reliability tools such as FTA and FMEA. Moreover, it 

should aim for forecasting accurate failure warnings (alarms/threshold) before an 

incipient fault occurs, detect potential failures and provide appropriate 

maintenance actions to repair/maintain systems and components only when 

required. This novel framework will be demonstrated in the next chapter. 

 

3.8 Chapter summary 

 

In this chapter, the review of the existing literature was presented. Initially, the 

evolution of maintenance was presented alongside the various maintenance types and 

concepts. Additionally, the current status of maintenance practices and research trends 

within the maritime industry was described, concluding towards an interest in 

advanced maintenance techniques. Following this conclusion, the background of ANN 

was provided followed by their application in maritime CBM, demonstrating their 

prospect to be used as valuable tools for ship condition monitoring. Finally, by 

summarising and identifying the gaps in the existing literature, the thesis methodology 

is proposed and presented in the following chapter. 
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4 Methodology and Modelling 

 

4.1 Chapter outline 

 

Following the gaps identified in the previous chapter through the literature and critical 

review, this chapter aims to present and describe analytically the development of the 

overall methodology framework oriented towards predictive ship machinery condition 

monitoring. Initially, an overview of the key elements encompassing the suggested 

methodology framework is presented in Section 4.2, followed by an analytical 

description of the tools and methods applied for the development of the methodology 

framework in Section 4.3. As a conclusion, the summary of this chapter is presented 

in Section 4.4. 

 

4.2 Overview of methodology framework 

 

This section presents the overall hybrid condition monitoring framework strategy 

applicable for the maritime sector. The framework is oriented towards ship machinery 

systems condition monitoring with predictive characteristics through the development 

of a hybrid approach, utilising both reliability tools and ANN data-driven methods. 

The methodology initially provides a systematic approach for identifying critical ship 

machinery systems and components and subsequently analyses and monitors their 

related key performance parameters. The critical system’s components and their 

relevant performance parameters are identified though the combination of Fault Tree 

Analysis (FTA) and Failure Mode and Effects Analysis (FMEA), therefore 

contributing to the development of a generic model capable of identifying critical 

subsystems and components of the main system under investigation. Subsequently, 

models based on dynamic ANNs are developed, using the performance parameters of 

the FTA-FMEA identified critical items as input for data clustering, time series 

forecasting and diagnostic analysis and health assessment using RBDs, leading to the 

recommendation of appropriate maintenance actions. Figure 4.1 presents the overall 

framework of the proposed methodology as applicable to the maritime sector. 
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Figure 4.1 Overall hybrid methodology framework 
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As illustrated in Figure 4.1, the overall methodology framework consists of six major 

segments. More specifically: 

 

1) Critical systems identification & data selection 

 

The first part of the hybrid condition monitoring framework refers to the identification 

of the critical systems and the selection of data that assist in assessing the condition of 

the identified critical systems and relevant components. The combination of the FTA 

and FMEA assists in identifying critical systems and components and moreover 

provides significant information regarding possible faults, symptoms, causes and their 

effects not only in component, but also in subsystem level, which affects the overall 

performance and reliability of the main system under investigation. Therefore, the 

FTA-FMEA approach assist in focusing monitoring activities and resources on the 

most critical systems. Furthermore, the referred combination also provides important 

information regarding potential parameters affecting the performance of components 

as fluctuations in these performance parameters could indicate the presence or 

occurrence of faults leading to system failure. Therefore, based on the FTA-FMEA 

results, parameters that can express the condition of the system are selected which can 

be monitored to evaluate the system status. In this stage, it is important to mention that 

selection of parameters also depends on the availability and practicality of data. 

 

Specifically, availability of data refers to the shipping company/operator possessing a 

database with available information and data from their ship systems or onboard 

sensors that can detect and transfer measurements related to the selected parameters. 

Additionally, the practicality of the data must be considered. For example, this could 

be the case in which the required parameters of the identified critical systems do not 

express the condition of the system to derive useful and practical conclusions regarding 

the system condition. Moreover, monitoring from the crew or technicians and if 

permanent sensors or portable equipment will be used alongside the associated costs 

of installing sensors for collecting the data should also be considered based on the 

requirements and demands of a ship operator or shipping company (Raptodimos et al., 

2016) 
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2) Data collection 

 

The second stage of the methodology is related to data collection based on the results 

and outcomes of stage 1. Data gathering from various sources such as historical data, 

machinery databases, internet cloud services, ship sensors, portable handheld devices 

and onboard measurement campaigns can be performed depending on the availability 

of resources. In this stage, the selected input data for the critical systems identified 

from the FTA-FMEA analysis is collected and is ready for further analysis in the 

following stage. 

 

3) Data preparation 

 

The data preparation stage consists of two parts. The first part consists of a developed 

data cleansing algorithm for detecting incorrect, inaccurate or irrelevant elements and 

values within a dataset. Once these have been detected, they can then be either 

replaced, modified or removed from the dataset. Inconsistencies detected or removed 

are assumed to originate from either error in the data acquisition system or human error 

during the data recording and collection process. The second part incorporates an 

innovative data clustering tool for processing the data and extracting useful 

information by grouping unlabeled data into clusters. The SOM clustering process is 

based upon unsupervised learning in order to model the underlying structure or 

distribution in the data in order to learn more about the data.  

 

Opposed to classification algorithms, clustering relies on unsupervised learning and 

does not require large amounts of data for training thus offers simplicity and flexibility 

for information extraction out of limited data sources. Additionally, obtaining clusters 

according to the format and characteristics of the input data at this early stage of the 

proposed methodology makes clustering a valuable tool to be employed. Unwanted 

clusters representing excessive values that could possibly have a bad effect in the 

performance of the next stages of the condition monitoring analysis can be removed. 

The output of the clustering tool is the processed data which is used as input in the 

dynamic neural networks in the forecasting analysis stage. 



68 

 

In addition to the application of the clustering tool in the data preparation stage, in the 

case where a shipping company/operator provides a dataset, the clustering tool can 

also act as an early diagnostic tool providing warning of potential present faults. This 

is achieved by identifying clusters in the dataset representing abnormal operation and 

detecting clusters exceeding OEM thresholds. Thus, in this early stage of the proposed 

methodology, an initial analysis and feedback to the shipping company/operator can 

be provided prior to any further analysis and evaluation in the condition monitoring of 

the examined system. 

 

4) Forecasting analysis 

 

The processed data from the previous stage is used as input in the NAR and NARX 

dynamic neural networks for time series analysis and forecasting, constructing a 

predictive element to the maintenance and condition monitoring process. The time 

series analysis predicts the upcoming future parameter values related to the identified 

critical systems based on past observations in order to assess the performance of the 

system. In addition, prediction intervals are calculated for the various parameter 

observations for the forecasting model to predict with confidence faults in the critical 

systems and issue warnings and actions when necessary in the later stages of the 

proposed framework. 

 

5) Present and predictive assessment 

 

The current status of the system and the outputs from the forecasting analysis are used 

as input in this stage in order to assess and evaluate the system condition. The 

assessment is conducted using two approaches. The first approach exploits an ANN-

MLP classifier for modelling and identifying faults and combination of faults. Alarm 

levels and thresholds are set as condition indicators. They are based on values that 

classify the input data as acceptable or abnormal in order to set acceptable operational 

levels. They can be based either on user-defined limits, OEM recommendations or 

parameter deviations from an established baseline. A table containing potential causes 

of listed faults related to all examined systems, subsystems and components is 
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constructed as a source of diagnostic intelligence, based on OEM resources, technical 

manuals, maintenance history logbooks and ship operators input and knowledge. 

Moreover, faults and their possible causes are also connected to the relevant FMEA 

table for providing additional information for each respective system. In this case, the 

FMEA functions as a knowledge acquisition system for fault-symptom association.  

 

The second approach employs a statistical model in combination with the Reliability 

Block Diagram (RBD) tool, used as a Machinery Condition Indicator (MCI) for 

component, subsystem and system level. This approach provides warning regarding 

reductions in the condition indicators during operation based on a continuous process 

of change. The predictive capabilities of the developed condition monitoring strategy 

enable the detection of possible failures and their causes prior to their occurrence, 

enabling the crew onboard the ship and the onshore personnel to prepare accordingly 

and proactively. 

 

6) Maintenance decision 

 

The last stage of the methodology develops an overall maintenance advisory 

generation model based on substantive and corroborated prognostic and diagnostic 

information. It receives as input the outputs of the previous stage and recommends 

predictive maintenance actions and suggestions based on the present and future status 

of the system. Outputs from the diagnostic and health assessment stage are presented 

alongside remedies assisting in rectifying identified faults. Moreover, the model 

produces the recommended maintenance actions based on an in-house developed code 

that considers user input, creating an interactive platform for maintenance decision-

making. In this aspect, managerial evaluation is also considered based on resource 

allocation, safety and economic factors. Furthermore, the model also contains 

maintenance history logs and inventory data such as pictures, videos, OEM guidelines, 

Classification Society guidance notes and rules and service manuals assisting the crew 

and technical staff of the company in preparing maintenance intervals and scheduling. 

The following section presents the development of the methodology framework 

through the description of the methods and tools applied in more detail. 
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4.3 Methodology framework development 

 

Each stage shown in Figure 4.1 is implemented through the deployment of various 

tools and methods presented in detail in the next sections. Critical systems are 

identified through the combination of FTA and FMEA tools. Their combination is 

initially demonstrated in Section 4.3.1 to show how these tools complement each other, 

followed by their individual detailed description. Data preparation consisting of a data 

cleansing algorithm and the SOM clustering tool for processing data is presented in 

Section 4.3.2. Section 4.3.3 describes the time series analysis and forecasting process 

for short-term and long-term predictions through the implementation of two dynamic 

neural networks, the NAR and NARX models. Moreover, Section 4.3.4 presents the 

development of the ANN-MLP classifier network for diagnostic assessment of the 

system. The Machinery Condition Indicator (MCI) method based on the analysis of a 

statistical model and RBD for obtaining MCIs of subsystem and system levels applied 

as a health monitoring tool is also described in this section. Finally, Section 4.3.5 

analyses the development of the Maintenance Assistant Tool (MAT) which is the final 

tool encompassing the overall condition monitoring strategy. 

 

4.3.1 Critical systems identification 

 

The combination of the FTA and FMEA tools is applied to identify critical systems 

and components and to assist in focusing monitoring activities and resources on the 

most critical systems. Therefore, based on the FTA-FMEA results, parameters that can 

express the condition of the system are selected, which can be monitored to evaluate 

the system condition. FMEA is an inductive “bottom-up” technique which examines 

the failure modes of the components within a system (i.e. the failure symptoms) and 

traces forward the potential effects of each component failure mode on system 

performance. Thus, it is a cause-effect model. On the other hand, FTA is the reverse 

of FMEA in that it is concerned with the identification and analysis of conditions, 

including component failures, that lead to the occurrence of a defined effect. In 

contrast with FMEA it is therefore a deductive “top-down” technique and is an effect-

cause model. 
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The connection and combination of these two tools is graphically demonstrated in 

Figure 4.2. 

 

 

Figure 4.2 Combination of FTA-FMEA tools 

 

In the FTA the main system (top event) is divided into its subsystems and they are 

consequently analysed to their components, which is the last level of the FT (basic 

events). As shown in Figure 4.2, the basic events of the FT are used as input in the 

FMEA. The FT basic events are the failed items of the FMEA worksheet while the 

subsystems of the FT system are included in the FMEA system column. The FMEA 

provides details on how to identify failures and their causes, mapping overall failure 

events of a system. For each failed item, all possible failure events and failure causes 

are considered alongside their effect in a local and global scale for the subsystems and 

top event respectively. Through this approach, the range of parameters which indicate 

the presence or occurrence of such conditions can be obtained. The FTA and FMEA 

methods are described in more detail in the next sections. 

 

4.3.1.1 Fault Tree Analysis (FTA) 

 

FTA is a systematic technique used for acquiring information on a system and finding 

out how the system or its components could contribute to a failure and can assist 

decision-making process developed by safety and maintenance engineers who plan 

and organise maintenance and monitoring activities (Manzini et al., 2009). It is a 

failure-oriented approach that considers an undesirable event associated with the 



72 

 

system as the top event. The various possible combinations of fault events leading to 

the top event are represented with logic gates. Therefore, the FT provides useful 

information on the various cases of undesired top events (Verma et al., 2010). The 

graphical representation is done through FT diagrams which are a graphical design 

technique following a top-down approach. It uses a graphic model of the pathways 

within a system that can lead to a projected undesirable event or failure (Rausand and 

Arnljot, 2004). The pathways interconnect contributory events and conditions, using 

standard logic symbols and the basic constructs in a FT diagram are gates and events. 

The FT analysis module is based on sets of rules and logic symbols from probability 

theory and Boolean algebra.  

 

Gates representing logic operators that link the various branches of the FT together, 

can be either static or dynamic and determine whether the top event can occur or not. 

The gates show the relationship of events needed for the occurrence of a higher event 

and serve to permit or inhibit the fault logic up the tree. Basic events can be defined as 

the lower level events in each FT branch. A static gate indicates that the order of the 

inputs of a gate do not matter, therefore are not sequence-dependent as in dynamic 

gates. On the other hand, in dynamic gates, the order of the occurrence of input events 

is vital for determining the output. If dynamic gates are used, then the FT becomes a 

dynamic FT. The most common static gates include the AND, OR and Voting gates 

(VOT) while dynamic gates include the Sequence Enforcing-gate (SEQ), Priority 

AND-gate (PAND), Spare-gate (SP) and Functional Dependency-gate (FD) amongst 

other (PTC, 2015). A thorough description of advanced FT symbols can be found in 

NASA (2002) and from the U.S. Nuclear Regulatory commission NUREG (1981). A 

summary description of them is provided in Appendix B.1. 

 

Additionally, the top gate should be clearly defined as if a top event is not concisely 

defined then the FT can possibly become too large and complex, resulting in an 

unfocused system analysis (Longhi et al., 2015). The following steps are performed 

for the construction of a FT (NASA, 2002): 1) definition of the FTA scope, 2) 

identification of the top event, 3) identification of the first level events, 4) connection 

of the first level events with the top event by means of gates, 5) identification of the 
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second level events, 6) connection of the second level events with first level by using 

gates, 7) repetition of the above steps for all subsequent event levels.  

 

The FTA can be conducted in a qualitative or quantitative manner, depending on the 

type of data available. FTA uses Failure Rates (FR), Mean Time Between Failures 

(MTBF) and minimal cut sets to evaluate the reliability and availability of the system. 

Ultimately, FR are derived from well-substantiated historical data, including MTBF 

of components, units and subsystems (Pascual, 2015). If no data is available, a FT can 

be analysed qualitatively by using the minimal cut sets method (Ruilin and Lowndes, 

2010). Finding minimum cut sets provides insight into weak points of complex 

systems. By using qualitative analysis, the combinations of events that cause the top 

event to occur can be identified. A cut set is a set of basic events, which if they all 

occur, will result in the top event of the FT occurring.  

 

A minimal cut set is a combination (intersection) of primary events sufficient for the 

top event occurring. The combination is a minimal combination in that all the failures 

are required for the top event to occur; if one of the failures in the cut set does not 

occur, then the top event will not occur. To determine the minimal cut sets of a FT, the 

tree is first translated to its equivalent Boolean equations. These equations can be used 

to determine the associated minimal cut sets. The minimal cut set expression for the 

top event can be written in the general form according to equation 2 as: 

 

1 2 ... kT M M M= + + +  (2) 

 

where T is the top event and Mi are the minimal cut sets, each of them consisting of a 

combination of specific component failures. The general n-component minimal cut 

can be expressed as: 

 

1 2 ...iM X X Xn= • • •  (3) 

 

where X1, X2, …, Xn are basic component failures. In the case where data suitable for 

FTA exists, then the FT can be analysed quantitatively by applying various calculation 
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methods such as the cut set summation, cross product, Esary Proschan and exact 

calculation method. These calculation methods are described in Appendix B.2. Once 

the FT has been analysed based on one of the calculation methods, reliability 

importance measures can be employed to identify which systems and components are 

the most critical for the function of the main system. The Birnbaum, Criticality and 

Fussell-Vesely reliability importance measures are described next (Relex, 2009). 

 

A Birnbaum importance measure is the rate of change in the top gate probability with 

respect to the change in the unavailability of a basic event. Therefore, the ranking of 

events obtained using the Birnbaum importance measures is helpful when selecting 

the event to improve when the actual efforts for improvement is the same for all events 

and is defined as: 

 

𝐼𝐵(𝐴) = 𝑃{𝑋|𝐴} − 𝑃{𝑋|~𝐴} (4) 

 

where A indicates the event whose importance is being measured, ~A indicates that 

this event did not occur, X indicates the top event. 

 

The Criticality importance measure of event A is the probability that component A is 

critical for the system and has occurred given that the top event has occurred. The 

Criticality importance measure modifies the Birnbaum importance measure by 

adjusting for the relative probability of basic event A to reflect how likely the event is 

to occur and how feasible it is to improve the event. The Criticality importance 

measure is defined as: 

 

𝐼𝑖
𝑐𝑟(𝐴) = (𝑃{𝑋|𝐴} − 𝑃{𝑋|~𝐴}) ∗

𝑃{𝐴}

𝑃{𝑋}
 (5) 

 

where 𝐼𝑖
𝑐𝑟(𝐴)is the criticality importance measure for event A, A is the event whose 

importance is being measured, ~A indicates the event did not occur, X is the top event. 
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In cases where event A contributes to the top event but is not necessarily critical, the 

Fussell-Vesely importance measure can be used. The Fussell-Vesely importance 

measure shows the ratio of the probability of occurrence of any cut set containing event 

A and the probability of the top event. The Fussell-Vesely importance measure is 

defined by the following equation: 

 

𝐼𝑖
𝐹𝑉(𝐴) =

1 − ⋂ [1 − 𝑃{𝑀𝑖𝑗(𝑡)}]𝑚
𝑗=1

1 − 𝑅𝑠[𝑟(𝑡)]
 (6) 

 

where 𝐼𝑖
𝐹𝑉(𝐴)is the Fussell-Vesely importance measure, Mi is the number of minimal 

cut sets containing I, ⋂ is𝑚
𝑗=1  the minimal cut set, 𝑀𝑖𝑗(𝑡)is the jth minimal cut set among 

those containing I verified at time t, Rs is the system reliability, r(t) is the end event 

occurring at time t. 

 

4.3.1.2 Failure Mode and Effects Analysis (FMEA) 

 

FMEA provides a systematic method for organising the study of a particular system 

or process in terms of failure analysis. The aim of FMEA is to review the system in 

order to provide details on how to identify failures and their causes as well as determine 

the end results of the failures occurring. It involves reviewing as many components, 

assemblies and subsystems as possible. Thus, FMEA is a formalised method to 

consider all components, their functions, failure modes and system failures (Isermann, 

2006). FMEA can be applied in a bottom-up approach which assists in mapping the 

overall failure potential of the system. This technique is most suited for the risk 

assessment of mechanical and electrical systems and the approach can be either 

quantitative or qualitative. According to Ben-Daya and Knezevic (2009), FMEA 

performs three functions. These are initially the identification and recognition of 

potential failures including their causes and effects, the evaluation and prioritisation 

of identified failure modes and the identification and suggestion of actions to either 

eliminate or reduce the chance of the potential failures from occurring. The FMEA is 

constructed by integrating information and knowledge sourced from OEM manuals, 

Classification Societies, ship operators and marine consultancy companies. 
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Additionally, as mentioned in Chapter 3, guidelines from Classification Societies and 

IACS have also been utilised for the development of the FMEA.  

 

4.3.1.3 Data selection 

 

Once the critical systems of the main system have been identified through the FTA-

FMEA process, data related to the identified systems are selected that express the 

condition of these systems in order to proceed with the hybrid condition monitoring 

strategy. However, if no measurable parameters exist expressing the system condition 

or if the shipping company/operator do not have suitable resources (sensors, portable 

equipment etc.) for collecting such condition monitoring data, then alternative 

maintenance strategies may have to be applied (Figure 4.3). 
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Figure 4.3 FTA-FMEA and data selection process 

 

FTA results are obtained either qualitatively or quantitatively depending on the 

availability of reliability data (FR, MTBF) for the main system analysed. Once the 

FTA-FMEA results have been obtained then as previously mentioned, the economics 

of the situation may limit the number of components that can be monitored. In addition, 

there will also be a number of components and/or machinery for which condition 
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monitoring is not particularly appropriate. In such a case, maintenance actions for these 

systems can be proposed. If predicting failures relevant to these systems is applicable, 

then such an outcome may lead to updating the maintenance procedures and practices 

with the objective of bringing maintenance practices in line with possible monitoring 

options to proceed with the hybrid condition monitoring strategy. If this is not an 

option, then preventing failures through preventive-scheduled maintenance can be 

undertaken or else run-to-failure and corrective maintenance actions should be taken 

as the least preferable option. 

 

4.3.2 Data collection 

 

The second stage of the methodology is related to data collection based on the FTA-

FMEA results. Data gathering from various sources such as raw data from ship 

sensors, historical data, machinery databases, internet cloud services, onboard 

measurement campaigns can be performed depending on the availability of resources.  

 

4.3.3 Data preparation 

 

The data preparation stage consists of two parts. The first part consists of a developed 

data cleansing algorithm whilst the second part consists of a data clustering tool for 

clustering data and extracting useful information. Overall, the objective of this part of 

the methodology is to cleanse data and remove unwanted clusters so that the processed 

data can then be used for proper neural network training and results, as bad data 

observations in the ANN training set can affect network performance and invalidate 

the model.  

 

4.3.3.1 Data cleansing algorithm 

 

Data entry and acquisition is inherently prone to errors. Varieties of different reasons 

result in the introduction of incompleteness in datasets. Examples include manual data 

entry procedures, incorrect measurements, equipment errors, and many others. The 

existence of errors, and in particular missing values, makes it often difficult to generate 
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useful knowledge from investigated data (BS, 2015b). Data cleansing is regarded as a 

first step or a preprocessing step, however no precise definition and perspective over 

the data cleansing process is provided (Maimon and Rokach, 2005). Overall, there is 

no commonly agreed formal definition of data cleansing and various definitions exist. 

Maletic and Marcus (2000) define data cleansing as the process implementing 

computerised methods of examining databases, detecting missing and incorrect data 

and correcting errors. Galhardas et al. (2001) describe data cleansing as the process of 

eliminating errors and the inconsistencies in data and solving the object identity 

problem.  

 

Solid theoretical foundations to support different data cleansing approaches does not 

exist. Furthermore, it is an interactive approach, as different sets of data have different 

rules determining the validity of data. In addition to this, much of the real data 

cleansing work is done in a customised, in-house manner resulting in the use of 

undocumented and ad hoc methods. Thus, there is no best, universal method of 

handling missing attribute values. If there are missing attribute values within the 

dataset, sequential methods can be applied, which include techniques based on deleting 

cases with missing attribute values, replacing a missing value by the most common 

value of that attribute, assigning all possible values to the missing attribute value, 

replacing a missing value by the mean for numerical attributes or replacing it by a new 

value computed from a new dataset.  

 

The developed data cleansing algorithm aims at detecting errors in datasets, removing 

them and replacing them when required. Error in the data acquisition system or human 

error during the data recording and collection process are assumed to be the prime 

sources for dataset inconsistencies. The flowchart of the data cleansing algorithm is 

demonstrated in Figure 4.4. For every attribute in the dataset, each attribute value in 

the dataset is compared against the defined criteria. The criteria define if an attribute 

value is missing (empty cell), if a value is negative when it should be positive etc. The 

criteria are evaluated by creating Boolean variables that tests if the conditions are 

satisfied or not. 
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Figure 4.4 Data cleansing algorithm flowchart 

 

If the conditions are not met, then no data cleansing is required for the dataset. On the 

other hand, if the conditions are satisfied for the defined criteria, then the attribute 

values are marked as possible errors and are then populated with the decision values 

specified for replacing them. Data from ship transient phases are very irregular, hence 

data referred to these modes are excluded for the training of the neural networks used 

in time series analysis. As such, transient data are deleted from the dataset and a new 

dataset table is created as a result. As the datasets used in this thesis contain numerical 

attributes, replacing missing attribute values by the attribute mean is applied. In this 

method, every missing attribute value for a numerical attribute is replaced by the 

arithmetic mean of known attribute values. 

 

4.3.3.2 Self-Organising Map (SOM) clustering 

 

The goal of clustering is to identify structure in an unlabelled sample or unordered data 

by objectively organising data into homogeneous groups (Yan, 2015). Given a set of 

data objects, the objective of clustering is to partition them into a certain number of 

clusters to explore the underlying structure and provide useful insight for further 

analysis. However, there exists no universally agreed-upon and precise definition of 

the term cluster, partially due to the inherent subjectivity of clustering, which precludes 

an absolute judgment as to the relative efficacy of all clustering techniques. Data 

clustering definitions differ among researchers as these are dependent on the desired 

goal and the data properties.  

 

In this respect, Xu and Wunsch (2010) offer various interpretations of data clustering 

definitions such as: (1) A cluster is a set of data objects that are similar to each other, 
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while data objects in different clusters are different from one another; (2) a cluster is a 

set of data objects such that the distance between an object in a cluster and the centroid 

of the cluster is less than the distance between this object and the centroids of any other 

clusters; (3) a cluster is a set of data objects such that the distance between any two 

objects in the cluster is less than the distance between any object in the cluster and any 

object not in it; (4) a cluster is a continuous region of data objects with a relatively 

high density, which is separated from other such dense regions by low-density regions.  

 

Namratha and Prajwala (2012) provided an overview of clustering techniques and 

compared the disadvantages and advantages of each technique. They concluded that 

each clustering technique depends on the scope of its application and that to overcome 

the disadvantages, optimisation techniques can be used for better performance when 

required. One of the most popular and simple clustering algorithms, k-means is still 

widely used today although it was first published over 50 years ago. This illustrates 

the difficulty in designing a general purpose clustering algorithm and the ill-posed 

problem of clustering (Jain, 2010). Ultsch et al. (1995) demonstrated the capability of 

the SOM to classify a difficult artificially generated dataset using unsupervised 

learning, over other well-known statistical clustering methods such as k-means 

algorithm and hierarchical clustering requiring previous information on the dataset.  

 

The SOM is a flexible unsupervised neural network for data analysis and clustering 

and does not require previous information on the dataset or a predefined number of 

clusters compared to k-means (Hagenauer and Helbich, 2013). It consists of a grid of 

interconnected nodes, where each node is an N-dimensional vector of weights. In 

general, given a vector as input to the SOM, the node closest to it is found, and then 

its weights and weights of neighbouring nodes are updated so that they can approach 

that of the input vector. A SOM network identifies a winning neuron using the same 

procedure as employed by a competitive layer. However, instead of updating only the 

winning neuron, all neurons within a certain neighbourhood of the winning neuron are 

updated, using the Kohonen rule as described in Curry and Morgan (2004).  
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The neurons in the SOM are arranged in physical positions originally, according to a 

topology function, arranging the neurons either in a grid, hexagonal or random 

topology. The network is trained using the batch unsupervised weight/bias training 

algorithm (Du and Swamy, 2014). Batch training of a network proceeds by making 

weight and bias changes based on an entire set (batch) of input vectors. Incremental 

training changes are applied to the weights and biases of the network after presentation 

of each individual input vector. A key advantage of batch training is that it offers no 

dependence upon the order in which the input records are presented, hence eliminating 

concerns that input records encountered later in the training sequence may overly 

influence the final results (Gan et al., 2007). 

 

During training, the SOM forms an elastic net that folds towards the space formed by 

the input data. Data points lying near each other in the input space are mapped onto 

nearby map units. Thus, the SOM can be interpreted as a topology for preserving 

mapping from input space onto the two-dimensional grid of the map. The SOM is 

trained iteratively until no noticeable changes in the feature map are observed. At each 

training step, a sample vector x is randomly chosen from the input dataset. There are 

three basic steps involved in the application of the algorithm after the initialisation 

stage: sampling, similarity matching and updating Haykin (1998). These three steps 

are repeated until formation of the feature map has been completed based on the input 

dataset. The algorithm is summarised as follows: 

 

(1) Initialisation: Choose random values for the initial weights wj. 

 

(2) Sampling: Draw a sample x from the input space with a certain probability; the 

vector x represents the activation pattern that is applied to the lattice. The 

dimension of vector x is equal to m. 

 

(3) Similarity Matching: find the best matching (winning) neuron i(x) at time step n 

by using the minimum Euclidean distance criterion: 

 

i(x) = argmin‖x(n) − wj‖ , j = 1, 2, … , 𝑙 (7) 
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where, the operator argmin returns values of the winning neuron i(x) that minimises 

the Euclidean distance criterion, l is the total number of neurons and ‖∙‖ indicates the 

Euclidean norm. 

 

(4) Updating: adjust the synaptic weight vectors of all neurons by using the update 

formula: 

 

wj(n + 1) = wj(n) + ή(n)hj,i(x)(n)(x(n) − wj(n)) (8) 

 

where ή(n)is the learning rate parameter and hj,i(x)(n) is the neighborhoood function 

centered around the winning neuron i(x); both ή(n) and hj,i(x)(n) are varied 

dynamically during learning rate to obtain the best results. 

 

(5) Continuation: Continue step 2 until no noticeable changes in the feature map are 

observed. 

 

As in the case with other ANNs, the SOM operates in two modes. The first mode is 

the training phase in which the map is defined and shaped based on the input data, 

while the second phase automatically classifies new inputs into the clusters defined in 

the training stage (mapping). The SOM consists of an input and output layer. Inputs in 

the SOM are the input vector (one-dimensional data) or vectors (multidimensional 

data) containing vessel data measurements of performance parameters. The output of 

the algorithm is the number of neurons the input data has been assigned to.  

 

As shown in the methodology flowchart for the data clustering process in Figure 4.5, 

the data clustering phase comprises of a two-stage procedure. Initially, the input data 

is clustered in the SOM to produce the clusters. Subsequently, the clusters obtained 

from the SOM analysis are inspected for the existence of data similarities between 

them and can be further distinguished into groups by applying the Euclidean distance 

metric amongst the centres of the SOM clusters. Clusters can be categorised under the 

same group based on their “closeness”. 
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Figure 4.5 ANN-SOM clustering methodology flowchart 

 

Clustering strategies generally follow two fundamentally different strategies namely 

hierarchical or agglomerative clustering and point assignment clustering respectively. 

In hierarchical or agglomerative clustering, clusters can be combined based on their 

“closeness”, using a distance measure/metric (Vesanto and Alhoniemi, 2000). As such, 

after obtaining the initial clusters from the SOM, the SOM clusters are interclustered 

based on the Euclidean distance metric to divide them into groups providing useful 

insight and information regarding the initial clustered data. The centre of each SOM 

cluster is calculated, and based on the hierarchical clustering principle, can be used in 

a Euclidean space for finding similar clusters.  

 

A Euclidean space allows the representation of a cluster by its centroid or average of 

the points in the cluster. Interclustering distances are defined by calculating the 

Euclidean distance between the SOM cluster centres and selecting the clusters with the 

shortest distance. Cluster centres with small Euclidean distances between them could 

possibly contain similar data and thus can be contained under one cluster group. 

Stopping can be achieved by considering the number of clusters that should be in the 

data or when the best combination of existing clusters produces a cluster that is 

inadequate, pre-defined by the user or when the Euclidean distances exceed a threshold 

(Jung et al., 2003).  

 

The Euclidean distance between two points p and q is the length of the line segment 

connecting them. In Cartesian coordinates, if p=(p1,p2,…,pn) and q=(q1,q2,…,qn) are 

two points in Euclidean n-space, then the distance d from p to q or vice versa is given 
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by the Pythagorean formula (Pascual, 2015) as shown in Equation 9. Figure 4.6 

demonstrates the Euclidean distance dpq between two points p and q. 

 

𝑑(𝑝, 𝑞) = 𝑑(𝑞, 𝑝) = √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 + ⋯ + (𝑞𝑛 − 𝑝𝑛)2 = √∑(𝑞𝑖 − 𝑝𝑖)2

𝑛

𝑗=1

 (9) 

 

 

Figure 4.6 Euclidean distance dpq of two points p & q 

 

The Euclidean distances of the SOM cluster centres are imported into a developed 

algorithm utilising a combination of logical operators and conditional statements and 

expressions in order to compare cluster distances and search for clusters that have the 

shortest distance between them. The algorithm searches for clusters containing similar 

data, starting from cluster centres that have the closest distance towards larger ones, 

by increasing the initial distance criteria by 50% increments. The algorithm stops 

searching for nearby clusters if the distance is larger than 0.50, as in this case the 

cluster distances are large and usually no similarities exist in their contained data. 

However as previously mentioned, the maximum distance criteria can be defined by 

the user. Table 4.1 displays the criteria used for the interclustering purposes.  

 

Table 4.1 Criteria for interclustering of SOM clusters 

Neighbour cluster Criteria 

1st Possible neighbour cluster Distance smaller or equal to 0.10 

2nd Possible neighbour cluster Distance smaller or equal to 0.15 

3rd Possible neighbour cluster Distance smaller or equal to 0.20 

4th Possible neighbour cluster Distance smaller or equal to 0.25 

5th Possible neighbour cluster Distance smaller or equal to 0.30 
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As seen in Table 4.1, if the distance between two clusters in smaller or equal to 0.1, 

then these clusters are very close to each other, compared to clusters with larger 

distances. If no clusters have a Euclidean distance smaller or equal to 0.1, then the 

algorithm searches for clusters with Euclidean distances smaller or equal to 0.15 and 

forth.  

 

The unsupervised learning nature of the SOM provides a fast and efficient method to 

cluster data and model the underlying structure or distribution in the data. Moreover, 

through the Euclidean distance metric, clusters sharing data similarities can be 

identified and contained under the same group. The SOM provides a mechanism for 

processing ship data which is used in the following stage of the proposed condition 

monitoring strategy. Unwanted clusters that could have undesired effects in the 

performance of the next stages of the condition monitoring analysis can be removed. 

These are described as clusters containing irrational data values that are excessive. In 

addition to the application of the clustering tool in the data preparation stage, the SOM 

can identify clusters in the dataset representing abnormal operation and exceeding 

OEM thresholds. 

 

4.3.4 Forecasting analysis 

 

4.3.4.1 ANN time series analysis 

 

The processed data of the previous stage is used as input in the dynamic neural 

networks for time series analysis in the forecasting analysis stage. Time series 

forecasting permits to improve safety, schedule maintenance and reduce maintenance 

costs and downtime by predicting machinery condition. The main aim of time series 

modelling is to carefully collect and rigorously study the past observations of a time 

series to develop an appropriate model which describes the inherent structure of the 

series. This model is then used to generate future values for the series. The procedure 

of fitting a time series to a proper model is termed as time series analysis, while time 

series forecasting can be termed as the act of predicting the future by understanding 
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the past (Hipel and McLeod, 1994). The forecasting methodology includes the 

following steps: 

 

1) Selection of type of ANN for forecasting 

2) Data preparation for ANN forecasting  

3) Determination of ANN architecture  

4) Design of ANN training strategy 

5) Evaluation of ANN forecasting results 

 

1) Selection of type of ANN for forecasting 

 

A time series is a sequential set of data points, measured typically over successive 

points in time spaced at uniform time intervals. It is mathematically defined as a set of 

vectors y(t), t = 0 ,1, 2 ,...,d where t represents the time elapsed with a set of discrete 

values y1, y2, y3, …, etc. The variable y(t) is treated as a random variable and the 

measurements taken during an event in a time series are arranged in a proper 

chronological order. The developed forecasting analysis comprises of both short-term 

and long-term forecasting in order to provide information regarding the future system 

condition. This is achieved by developing two dynamic neural networks applicable for 

time series analysis and predictions. The NAR model is used for multiple-step-ahead 

predictions to provide the operator with the earliest possible warning for commencing 

corrective actions, while the NARX model is used for one-step-ahead predictions as it 

requires input data from the exogenous input for additional predictions.  

 

In the NAR model, the future values of a time series y(t) are predicted only from the 

past values of that series. This form of prediction is called nonlinear autoregressive 

and can be written as: 

 

( ) ( ( 1),..., ( ))y t f y t y t d= − −  (10) 

 

where y(t) is the observation at time t and d is the dimension of the input vector or 

number of past observations used to predict the future; and f is a non-linear function. 
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In the NARX model, future values of a time series y(t) are predicted from past values 

of y(t) and another external series x(t). Therefore, compared to the NAR model, NARX 

can consider external (exogenous) input for predicting the time series y(t) and detecting 

changes in model parameters due to external conditions. 

 

y(t)=f(x(t-1), …, x(t-d), y(t-1), …, y(t-d)) (11) 

 

where x(t) is the observation of the exogenous input at time t 

 

Although the NARX network is applied for short-term forecasting, multi-step-ahead 

predictions can be acquired if knowledge of the future exogenous inputs is known. 

This is done by using the output of a one-step ahead prediction as the input for the 

subsequent prediction in an iterative process as described below and presented in 

Figure 4.7. In order to predict a target time series d at moment t1, N−1 points before t1 

of the time series 𝑑𝑡1−𝑁+1, 𝑑𝑡1−𝑁+2,…, 𝑑𝑡1−1 are used as inputs of the prediction 

model and the output �̂�𝑡1
is the predicted indicator value. In step 2, the inputs are 

updated by removing the first value 𝑑𝑡1−𝑁+1 and adding the new value �̂�𝑡1
 as the last 

data. The output in this step is �̂�𝑡1+1. Then, following the same updating procedure, a 

series of multi-step-ahead predicted data can be obtained. 

 

Step 1

Step 2

Step k

...

...

...

Prediction value

Actual value

…
...

 

Figure 4.7 Procedure for multi-step-ahead NARX predictions 
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2) Data preparation for ANN forecasting 

 

Data are normalised for direct use in network training by transforming them to the 

network’s operating range, shaped to meet the requirements of the network input layer 

and are adapted to the nonlinearities of the neurons, so that their outputs should not 

cross the saturation limits (Maier and Dandy, 2000). The data is pre-processed in the 

ANN models by mapping data to a matrix row with minimum and maximum values 

from -1 to 1 for conducting proper analysis and improving efficiency of the network 

training. Additionally, the time series data is prepared by shifting time by the minimum 

amount to fill input states and layer states for network open loop and closed loop 

feedback modes. This allows the original time series data to remain unchanged, easily 

customising it for networks with different numbers of delays. Tapped delay lines are 

used to store previous values of the x(t) and y(t) sequences. Moreover, delays allow 

the network to model complex dynamic systems, such as the case in ship machinery 

systems. 

 

Finally, data is divided into two subsets in the network for training and testing. The 

training set is used for computing the gradient and updating the network weights and 

biases and the test data is used to measure the network generalisation capabilities. The 

training set is used to train the network while the test set is used to test its forecasting 

capability. Both datasets are built from the collected data, however no specific 

guidance is available in the literature so far for splitting the prepared data into the 

training and testing sets. Recommendations in the literature range from a 90% to 10% 

up to a 50% to 50% ratio. Thus experimental runs might be considered for splitting the 

data to obtain satisfactory network training and performance (Palit and Popovic, 2005). 

Regardless of the ratio selected, attention should be paid to ensure that the training 

dataset is large enough to cover all dominant characteristic features required for 

reliable network training as a forecaster. The remaining dataset can be used for testing 

the trained ANN on the data samples never used in the training. Moreover, the ANN 

architecture must be established to design a network capable of analysing and 

forecasting time series data. 
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3) ANN architecture 

 

A crucial step in the building of a neural network model is the determination of the 

number of processing elements in the network. Hidden nodes are used to capture the 

nonlinear structures in a time series. Since no theoretical basis exists to guide the 

selection, in practice the number of hidden nodes is often chosen through trial and error 

experimentation. The transfer function or activation function of a node defines the 

output of that node given an input or set of inputs. The transfer function for neural 

networks must be differential and therefore continuous to enable correcting error 

(Beale, 2011). The most commonly used transfer functions and their equations are 

presented in Table 4.2. 

 

Table 4.2 Description of ANN activation functions 

Sigmoid activation function:            𝑓(𝑥) =
1

1+𝑒−𝑥 (12) 

Hardlim activation function:            𝑓(𝑥) = 1 𝑖𝑓 𝑥 ≥ 0 𝑒𝑙𝑠𝑒 𝑓(𝑥) = 0 (13) 

Purelin activation function:              𝑓(𝑥) = 𝑥 (14) 

Hyberbolic tangent function:            𝑓(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 (15) 

 

A hyperbolic tangent transfer function in the hidden layer and linear transfer function 

in the output layer of the models are employed, capable of approximating any function 

with a finite number of discontinuities. The training algorithm is selected next for the 

NAR and NARX models in order to proceed with the prediction results. 

 

4) Design of ANN training strategy 

 

The NAR and NARX models are initially designed as feedforward backpropagation 

networks. During training, the network weights and biases are updated after all the 

inputs and target values have been presented to the network. The networks are 

autoregressive as the only inputs are lagged target values and lagged external input 

values in the case of the NARX model. The Bayesian regularisation backpropagation 

algorithm is primary used for training the NAR and NARX networks. This algorithm 
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can provide better solutions for smaller datasets compared to the Levenberg-

Marquardt training algorithm, which can also be applied depending on the amount of 

data available for training (Kayri, 2016).  

 

When the data set is small, Bayesian regularisation provides better generalisation 

performance than early stopping. This is because it does not require that a validation 

dataset be separate from the training dataset. However, the Bayesian regularisation 

method takes longer to converge than early stopping (Demuth and Beale, 2002). This 

algorithm updates the weight and bias values according to Levenberg-Marquardt 

optimisation. It minimises a combination of squared errors and weights and then 

determines the correct combination to produce a network which generalises well. 

Therefore, a slower iterative algorithm with a small learning rate is used to avoid 

overtraining. 

 

The performance of the network is evaluated using the Mean Square Error (MSE) 

average sum of square errors and Correlation Coefficient (R) given by the following 

equations respectively: 

 

( )
2

0 0

P N

ij ijj i
d y

MSE
NP

= =
−

=
 

 (16) 

 

where P is the number of output processing elements; N is the number of exemplars in 

the data set; yij is the network output for exemplars i at processing element j; and dij is 

the desired output for exemplars i at processing element j. 
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(17) 

 

where xi is the network output for exemplar i, di is the desired output for exemplar i 

and N is the number of exemplars in the dataset. 
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According to Shine et al. (2018), Correlation Coefficient R values greater that 0.90 

suggest the strength of agreement between actual and predicted values is excellent, 

values between 0.80 and 0.90 is considered substantial, while values between 0.65 and 

0.80 are considered moderate and poor if lower than 0.65. The ANN is then trained 

based on the above parameters in open loop, as a feedforward network. The trained 

ANN can then be converted to closed loop mode and the data is reformatted to simulate 

the network's closed loop response in order to carry out multi-step-ahead predictions. 

The output y(t) is fed back to the input of the network. The trained ANN is converted 

to closed loop by replacing the feedback input and creating a feedback connection from 

the network output to the network input, thus making the network a Recurrent Neural 

Network (RNN).  

 

RNNs can store sequential information in the form of historical data and can be used 

in forecasting. The input nodes of the RNN network are used as the value of the current 

condition Xt and values of the previous time series condition (Xt-1, Xt-2, Xt-3, …, Xt-d and 

Xn). The value of the output Xt+1 can provide a one-step-ahead prediction of a time-

series condition, which is a function of the current value Xt and time-lagged values of 

the previous condition (Xt-1, Xt-2, Xt-3, …, Xt-d and Xn). The predicted value Xt+1 of a 

time series, one-step-ahead in the future is given by the following equation: 

 

( )1 1 2, ,  ,  , , ,t t t t t l nX F X X X X X+ − − −=    (18) 

 

where, l is the time lag, Xt+1 is the predicted value, Xt is the current value or condition 

and Xt-d is the values of previous condition lagged by time d.  

 

5) Evaluation of ANN forecasting results 

 

The network architecture and training parameters are selected to minimise prediction 

errors. Furthermore, the forecasting results obtained are evaluated through defined 

performance measures (Aladag, 2017). The Absolute Percentage Error (APE) and 

Mean Absolute Percentage Error (MAPE) are used as the evaluation criteria. The 

accuracy of each forecast is expressed as the APE which is calculated as follows: 
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𝐴𝑃𝐸 = |
(𝑦(𝑡) − �̂�(𝑡))

𝑦(𝑡)
| × 100% (19) 

 

MAPE represents the percentage of average absolute error of forecasted values from 

original ones, showing the magnitude of overall error occurring due to forecasting and 

it is calculated as follows: 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ 𝐴𝑃𝐸

𝑁

𝑖=1

 (20) 

 

where y(t) is the actual observation, �̂�(𝑡) is the forecasted observation for the same 

time interval t and N in the number of data points. 

 

This part of the methodology develops an overall prediction model based on time 

series analysis. Two dynamic neural networks, the NAR and NARX networks are 

exploited for long-term and short-term horizon predictions. The prediction model 

contributes towards a predictive indication of system condition and potential failures. 

 

4.3.4.2 Measurement uncertainty-calculation of prediction intervals 

 

An important task when forecasting a value of y from one or more predictor variables 

is to obtain an estimate of the likely amount of error inherent in the forecast (Chatfield, 

1995). A prediction interval is an assessment of this forecast error and is a range that 

is probable to contain the response value of a single new observation and allows 

assessment of future uncertainty (Chatfield, 1993). The ability of the network to 

provide trustworthy results depends on the accuracy of measurements available. 

Sensor measurements are often distorted by noise and bias, thereby masking the true 

condition of the system which can lead to incorrect estimation results (Bocaniala et al., 

2006). The prediction intervals are defined as: 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 = 𝑦𝑝𝑟𝑒�̂� ± 𝑡
1−

𝑎
2

,𝑛−2
× 𝑆𝐸𝑦𝑝𝑟𝑒�̂�

 (21) 
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where 𝑦𝑝𝑟𝑒�̂� is the predicted point, t is the value of the two tailed “t” distribution for 

a probability equal to a, n is the number of samples in the data and 𝑆𝐸𝑦𝑝𝑟𝑒�̂�
 is the 

standard error of the prediction (standard deviation of the sampled population). Given 

a dataset x, the standard error of the prediction is calculated through equation 22: 

 

𝑆𝐸𝑦𝑝𝑟𝑒�̂�
= 𝑠√1 +

1

𝑛
+

(𝑥 − �̅�)2

𝑆𝑥
2(𝑛 − 1)

 (22) 

 

where s is the standard error, 𝑆𝑥 is the standard deviation of x and �̅� is the sample 

average of x. 

 

Therefore, a prediction interval forecast consists of an upper and lower limit between 

which a future value is expected to lie with a prescribed probability. Furthermore, it is 

important to mention that no generally accepted method of calculating prediction 

intervals exist (Chatfield, 2000). Moreover, it is significant to define that the term 

confidence intervals is usually applied to estimates of fixed but unknown parameter 

values while a prediction interval is an estimate of an unknown future value of a 

random variable, therefore estimates the outcome of future samples. The assessment 

of the system condition is described in the following section. 

 

4.3.5 Present and predictive assessment 

 

Unwanted failures result in economic impact in the form of higher maintenance costs 

and lower machinery reliability and availability. Input from the time series neural 

networks transform the ANN classifier into a predictive diagnostic tool, enabling the 

necessary precautions to be taken at an early stage to prevent the further development 

of faults leading to system failure. In addition to the developed ANN classifier, a 

second method is applied at this stage as a health monitoring tool combining the 

development of a statistical-based model with RBDs for acquiring Machinery 

Condition Indicators (MCIs). These approaches are described in the following 

sections. 
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4.3.5.1 ANN-MLP classifier 

 

A supervised MLP feedforward backpropagation neural network is developed for the 

detection and classification of system faults and their causes through monitoring 

system parameters at regular intervals. Compared to knowledge-based diagnostic 

approaches, data-driven methods have the advantage of not requiring in-depth 

knowledge of the system to be diagnosed (Vachtsevanos et al., 2006). However, they 

require training the algorithm using a large set of baseline and observed fault data. 

Baseline data are data measured when the machinery operation is known to be 

acceptable and stable. The ANN-MLP classifier is trained with a large dataset as its 

input, covering baseline data and data representing symptoms of possible faults. Such 

information may be obtained by expert opinion and historical legacy fault data. 

Through the optimal network architecture and training, the network provides accurate 

results for classifying different system faults and can predict faults in new sets of data 

not seen before by the network. Figure 4.8 displays the ANN diagnostic framework. 
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Figure 4.8 ANN-MLP diagnostic classifier framework 
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The system condition is determined in terms of depended or measurable parameters 

and faults are characterised by a shift in the measurable parameters under and/or over 

defined thresholds. The input variables are composed into a set of vectors and each 

possible feature pattern belongs to exactly one out of n output classes. Prior to training 

the network, the outputs of the ANN-MLP classifier have to be determined. The 

outputs are the number of fault classes which represent the various system faults. It is 

assumed that a system fault exists once the corresponding threshold limit has been 

exceeded. Once the network’s inputs and outputs have been defined, the ANN 

architecture can be developed as discussed in Section 4.3.4.  

 

For the ANN-MLP, the input data is separated into the training, testing and validation 

set. The validation set is applied to validate the performance of the network to correctly 

classify data not included in training. Network training is stopped when network output 

error has reached its minimal value, also known as early stopping. If training is 

continued beyond this point, then the result could be the network overtraining or 

overfitting the data. If the training of the network is deemed to provide inaccurate 

results, the network can be re-trained using a different number of layers, nodes or 

training function in order to provide improved results. After training, the developed 

network is ready for predictions on new datasets. 

 

As observed in Figure 4.8 ,for each fault class a table is created containing information 

regarding potential fault causes. In addition, the fault classes and causes are also 

connected with relevant FMEA information providing further insight into the 

diagnosis of the system. Furthermore, compared to unsupervised learning, the ANN-

MLP classifier enables through its supervised learning a structured method for 

classifying faults and adding new fault classes and causes if required. The existence of 

new fault data representing faults not covered by the network can form the basis to 

update the ANN-MLP classifier by training it with the inclusion of the new fault class 

as depicted in Figure 4.8.  

 

Finally, the identified causes of restored faults are stored in a database which prioritises 

them from highest to lowest based on their frequency over time. Repetitive faults can 
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reduce system reliability and increase operating cost. By identifying the root cause of 

the fault, the maintenance action can be reviewed and optimised to avoid or reduce the 

impact of the faults. Therefore, if the same fault occurs in the future, the database can 

assist the ship crew and onshore technical department to primarily concentrate their 

focus in the most frequent fault causes which have been historically reported for the 

vessel and fleet. 

 

4.3.5.2 Machinery Condition Indicator (MCI) 

 

The Machinery Condition Indicator (MCI) performs as a health assessment monitoring 

tool complementing the overall condition monitoring strategy, providing information 

regarding the current and future health of the machinery system. As stated in BS ISO 

13374-1 (2003) “It is important that the data be converted to a form that clearly 

represents the information necessary to make corrective-action decisions. This may be 

done in a written format, numerically in order to demonstrate magnitudes, graphically 

in order to show trends, or a combination of all three”. Moreover, management needs 

to be kept informed of abnormal equipment condition situations and should be 

provided with information clearly representing the overall status. Therefore, the MCI 

is applied as an effective indicator that is easy to understand from non-experts, 

assisting management’s understanding of potential impacts of no action, which is 

important for approval of recommended actions. 

 

The MCI approach is based on the development of a statistical model describing the 

condition of the system and its components at any instant of time as suggested and 

presented in Knezevic (1987), Saranga and Knezevic (2000) and (2001) and Saranga 

(2002) applicable to all engineering systems. A condition parameter is required that is 

directly or indirectly connected to an item and its performance and describes the 

condition of the item during operation. The numerical value of the condition parameter 

describes and quantifies the condition of the system at every instant of operating time. 

Such a parameter is called a Relevant Condition Parameter (RCP). RCP can be values 

of pressure, temperature of components/systems, level of vibration and oil levels 

amongst others. A key characteristic of this method is that it is based on the actual 
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condition of the item and on a continuous process of change rather than the time-to-

failure approach which is only based on the moments of transition to a state of failure. 

 

According to this method, changes in the condition parameter have a completely 

random nature which can be described in a probabilistic way. An item is in a 

functioning state as long as the RCP lies between limits at time t, which are defined 

by its initial value RCPin and limiting value RCPlim. As long as the value of the RCP 

lies within the tolerance range, it is assumed that the item can perform its intended 

function successfully or there is no functional degradation. When the MCI reaches a 

minimum required level, it is assumed that the item has reached a critical state and the 

required maintenance activities should be carried out. 

 

𝑅𝐶𝑃𝑖𝑛 < 𝑅𝐶𝑃(𝑡) < 𝑅𝐶𝑃𝑙𝑖𝑚 (23) 

 

At every instant of operating time the RCP is a random variable and can be expressed 

through its probability density function. The probability density function of the RCP 

at a stated time t is denoted by 𝑓𝑅𝐶𝑃(𝑐, 𝑡). For calculation purposes it is assumed that 

𝑓𝑅𝐶𝑃(𝑐, 𝑡) belongs to one family of probability distribution. According to this method, 

the probability of the value of the condition parameter being within the tolerance range 

for the stated time t is also the probability of the reliable operation of the whole item. 

 

𝑀𝐶𝐼(𝑡) = 𝑃(𝑅𝐶𝑃𝑖𝑛 < 𝑅𝐶𝑃, 𝑡 < 𝑅𝐶𝑃𝑙𝑖𝑚) (24) 

 

Thus, it is important to state that the approach applies probability theory to define 

system reliable operation as the ability of the system to perform required functions 

under stated conditions for a stated period of time. Moreover, the probability that RCP 

at an instant t will have a value not exceeding the limiting value is defined as: 

 

𝑃(𝑅𝐶𝑃𝑖𝑛 < 𝑅𝐶𝑃(𝑡) < 𝑅𝐶𝑃𝑙𝑖𝑚) = ∫ 𝑓𝑅𝐶𝑃(𝑐, 𝑡)𝑑𝑐
𝑅𝐶𝑃𝑙𝑖𝑚

𝑅𝐶𝑃𝑖𝑛

 (25) 
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Substituting equation 25 with equation 24 provides the calculation for the MCI 

function taking into account the mechanism of change in the condition of the system, 

as shown in equation 26. 

 

𝑀𝐶𝐼(𝑡) = ∫ 𝑓𝑅𝐶𝑃(𝑐, 𝑡)𝑑𝑐
𝑅𝐶𝑃𝑙𝑖𝑚

𝑅𝐶𝑃𝑖𝑛

 (26) 

 

The integral on the right of the equation represents the difference between cumulative 

distribution functions of RCP as shown in equation 27. 

 

𝑀𝐶𝐼(𝑡) = 𝐹(𝑐, 𝑡) |
𝑅𝐶𝑃𝑙𝑖𝑚

𝑅𝐶𝑃𝑖𝑛
= 𝐹(𝑅𝐶𝑃𝑙𝑖𝑚, 𝑡) (27) 

 

The cumulative probability function represents the probability that the random 

variable will be equal to or less than a particular value. The MCI methodology 

flowchart is presented in Figure 4.9. 
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Figure 4.9 Machinery Condition Indicator (MCI) methodology 

 

In order to proceed with the MCI calculations as previously presented, data are fitted 

into continuous probability distribution functions. In order to find the best fit for the 

data, an in-house algorithm is developed which fits the data to the most commonly 

used distribution functions and finds the best distribution that fits the data through a 

set of information criteria. Information criteria are likelihood-based measures of model 
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fit that include a penalty for complexity (the number of parameters) which penalise 

distributions with greater number of parameters and help to avoid the overfitting issues 

(Kuha, 2004). A likelihood function gives the probability of observing the data given 

a certain set of model parameters.  

 

These criteria include the Bayesian Information Criterion (BIC), the Akaike 

Information Criterion (AIC) and the Akaike Information Criterion with a Correction 

for finite sample sizes (AICc). BIC is a criterion for model selection among a finite set 

of models, based on the likelihood function and the distribution with the lowest BIC 

is preferred. The AIC is an estimator of the relative quality of statistical models for a 

given set of data. Given a collection of models for the data, AIC estimates the quality 

of each model, relative to each of the other models. Thus, AIC provides a means for 

model selection. If the sample size is small, AIC might overfit the data in the models 

and in order to address this issue AICc is applied. Remarks related to these criteria are 

provided in Burnham and Anderson (2002) and (2004). 

 

Notably, the MCI approach offers flexibility in defining and altering the system 

thresholds in the case where the ship operator wishes to endorse additional emphasis 

on system safety in addition to other thresholds, such as those specified by the OEM 

or other technical authorities. Therefore, the MCI thresholds can be customised by the 

operator for the system and various subsystems, or for any particular subsystem of 

specific interest. 

 

The MCI for each system item is calculated based on the existence of one or more 

relevant condition parameters. Based on the calculations performed for each individual 

MCI, a ‘bottom-up’ approach is suitable for obtaining MCIs for subsystem and system 

level. In order to analyse the MCI in system and subsystem level, the concept and 

principle of Reliability Block Diagram (RBD) is utilised. RBD is a pictorial 

representation of a system’s successful functioning, illustrating the logical connection 

of components (shown as blocks) required for successful system operation (BS, 2016). 

directly to calculate condition indicators of series and parallel configurations. 

Moreover, BBN was also considered for MCI analysis. However, the conditional 
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probabilities of such a network cannot be determined without historical data or expert 

knowledge to identify the node state (Kobbacy and Murthy, 2008) (Mkrtchyan et al., 

2016). Additionally, the principal numerical equations behind RBD configurations are 

well-suited for this application since individual MCIs range from 0 to 1 and can be 

used. The relationship between components is determined by the effect that the failure 

of each one has on the functionality of the entire system. If all blocks are required for 

the system function, then the blocks are connected in series and the system MCI can 

be calculated from the following equation: 

 

𝑀𝐶𝐼𝑠 = ∏ 𝑀𝐶𝐼𝑖

𝑛

𝑖=1

 (28) 

 

where MCIs is the system machinery condition indicator for a series configuration, n 

is the number of components in the system and MCIi is the machinery condition 

indicator of each block. If only one system component is required for the system 

success, then the MCI calculation equation based on the RBD principle for a parallel 

system configuration is: 

 

𝑀𝐶𝐼𝑝 = 1 − ∏(1 − 𝑀𝐶𝐼𝑖)

𝑛

𝑖=1

 (29) 

 

Additionally, if the system success definition is that k or more out of n identical items 

connected in parallel are required for mission success then the calculation equation for 

the system MCI is as shown in equation 30. 

 

𝑀𝐶𝐼𝑠𝑦𝑠𝑡𝑒𝑚(𝑘, 𝑛, 𝑀𝐶𝐼) = ∑ (
𝑛

𝑟
) 𝑀𝐶𝐼𝑟

𝑛

𝑟=𝑘

𝑛 − 𝑟 (30) 

 

where n is the total number of components in parallel, k is the minimum number of 

components required for system success and MCI is the condition indicator of each 

unit. For k out of n non-identical items the event space method can be used which 

considers all possible operational combinations to obtain the system’s MCI 



101 

 

(Handbook, 1998). In the event space method, all mutually exclusive events are 

determined, and those which result in system success are considered.  

 

Through a combination of series, parallel and k out of n configurations, the RBD for 

the main system under investigation can be developed in order to obtain the system 

MCI based on the MCIs calculated for every individual system component. Equations 

for the RBD calculations are coded in MATLAB and the obtained results are also 

assessed and verified by using a well-known commercial software Reliasoft BlockSim 

which provides a platform for RBD analysis. 

 

4.3.6 Maintenance Assistant Tool (MAT) 

 

The Maintenance Assistant Tool (MAT) is an overall maintenance advisory generation 

model, recommending predictive maintenance actions and suggestions based on 

substantive and corroborated prognostic and diagnostic information provided from the 

previous condition monitoring layers. The framework of MAT has been based on BS 

ISO 13374-4 (BS, 2015a) which provides the basic requirements for communicating 

and displaying condition monitoring and diagnostic information of machinery. The 

results of the NAR and NARX forecasting models in combination with the ANN 

diagnostic and MCI health assessment outputs are transformed into actionable 

information for the operator, resulting in advisory generation.  

 

Moreover, MAT produces the recommended maintenance actions based on an in-

house developed code that considers user input, creating a user-friendly interactive 

decision-making process, through which the user selects certain criteria for MAT to 

assemble maintenance options. The criteria-input are based on and include the 

criticality of the piece of equipment, maintenance costs, availability of spare parts and 

the PMS. The recommendations can range from “continue routine monitoring” to 

“corrective maintenance”. Figure 4.10 presents the maintenance decision flowchart 

through the criteria leading to the maintenance suggested actions. 

 



102 

 

Run-to-

failure

(RTF)

High Cost

Maintenance 

Action

Preventive

Action

FTA

Critical?

Maintenance 

Cost High?

PMS Interval 

Close?

Spare Part

Availabe?

Continue Routine 

Monitoring

Maintenance 

Actions
No

Yes

Non-critical

Critical

High

Low

Opportunistic

Action

Maintenance 

Cost High?

High

Low

No

Yes

Yes

No

Corrective

Action

 

Figure 4.10 Maintenance predictive action decision flowchart 

 

As observed, RTF, corrective, preventive and opportunistic maintenance actions are 

presented based on the item criticality, maintenance costs, availability of spare parts 

and the PMS. For equipment with low criticality and high maintenance cost, RTF 

action can be performed, otherwise MAT will inform the user of the non-critical items 

and provide opportunistic, preventive and corrective suggested actions for the non-

critical equipment with low maintenance costs for future reference, following the same 

procedure for critical and low maintenance cost items. In the case of critical and high 

maintenance cost items, MAT will provide high cost maintenance actions related to 

overall preventive and corrective actions and activities. In such a case, onshore 

personnel should liaise with the crew regarding the best maintenance action to follow. 

 

If no spare parts are available for the crew to proceed with repairs, preventive actions 

such as check, inspect and service the item are recommended. If spare parts are 

available then corrective actions such as replace, repair or overhaul can be achieved. 

In the case where spares are available and the PMS of the item is eminent, then 

opportunistic actions could be considered. These actions are in the form of preventive 

maintenance based upon replacement of components by taking advantage of the 
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shutdown of a system, based that suitable maintenance resources are on the vessel or 

in arrival ports. Thus, opportunistic actions can extend the PMS. Appendix C provides 

a list of the maintenance actions produced by MAT. In practice, a combination of the 

actions and activities exist but the provided list is an initial well-defined set of 

maintenance actions to guide ship operators and decision makers. 

 

Consequently, MAT provides the suggested maintenance actions alongside technical 

data related to the identified system faults. Possible faults and their causes obtained 

from the diagnostic assessment output are presented alongside their specified 

remedies, assisting in rectifying identified faults in combination with the diagnostic 

database which provides failure related data. The diagnostic database presents the most 

frequent fault causes historically reported. MCIs are also presented displaying the 

health status of system, subsystems and components. The MCIs can also act as a 

prioritisation mechanism for maintenance planning in the case of dealing with multiple 

faults. If confidence in the forecasting results is high, then maintenance or corrective 

actions can be initiated immediately upon declaration of a fault. 

 

Furthermore, MAT contains and provides to the user upon request, maintenance and 

repair logs and inventory data. MAT contains a maintenance and repair history log that 

provides a platform for forming historical records of maintenance actions assisting in 

future diagnosis and maintenance organisation. The date, time, staff and maintenance 

actions carried out alongside spare parts used is contained in this log. Moreover, 

inventory data such as documents related to safety, inspection and survey, technical 

descriptions of equipment and spare parts list and drawings including guidelines for 

specific repairs and maintenance procedures assisting and guiding the crew and 

technical staff are included in MAT. Furthermore, based on hardware capacity, 

pictures and videos of previous inspections can also be included in the MAT platform. 

 

IACS recommendations and guidelines, Classification Society guidance notes, rules 

and regulations, ship condition survey report and PMS, OEM guides related to system 

safety checks and tests, operation, maintenance and service manuals are amongst 

inventory data that can be extracted from MAT. Information related to available spare 
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parts and their associated cost are also provided. In the case where spare parts are not 

available but the item repeats in the maintenance history log or in the diagnostic 

database, then spare part planning can be executed accordingly from the operator. 

 

4.4 Chapter summary 

 

The novel hybrid condition monitoring framework oriented towards ship machinery 

was presented in this chapter. An overview of the novel condition monitoring strategy 

was presented introducing the major elements comprising the overall framework. The 

methods and tools applied for the various stages were analysed and demonstrated. FTA 

assists in identifying critical systems while the FMEA expands on these systems and 

provides an auditing platform for producing information for system faults, causes and 

effects establishing information regarding the range of parameters to be measured 

which indicate the presence or occurrence of such conditions. The data cleansing and 

SOM clustering algorithm process the data so that it can be further analysed, as bad 

data observations in the ANN training set can affect and invalidate the model. 

Moreover, the SOM can also act as an early diagnostic tool by identifying clusters 

containing potential system faults or abnormal operation. The dynamic NAR and 

NARX networks are exploited for long-term and short-term horizon predictions. The 

developed prediction model contributes towards a predictive indication of failures. 

Consequently, the forecasting results are used for assessing the future system 

condition. The assessment in conducted using two approaches. The first approach 

exploits an ANN-MLP classifier for modelling and identifying faults and combination 

of faults, further connected with relevant FMEA information providing further insight. 

The MCI approach is applied as a health assessment monitoring tool complementing 

the overall condition monitoring strategy. By applying RBD, MCIs for subsystem and 

top system level can be obtained. Finally, MAT acts as a portal for the outputs of the 

previous stages providing important technical information through presenting data and 

extracting files through its database for suggesting suitable maintenance actions to the 

user through its interactive decision-making process. In the following chapter, the case 

studies carried out for demonstrating the application of the hybrid condition 

monitoring strategy are presented.  
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5 Case Study  

 

5.1 Chapter outline 

 

This chapter presents the application of the hybrid condition monitoring strategy 

described in the previous chapter. The case study related to the main engine of a 

Panamax container ship is applied for the development and analysis of the 

methodology tools and models. A description of the case study followed by the 

acquisition and description of the input data is provided in Section 5.2. Subsequently, 

the development of the FTA-FMEA tool, data cleansing algorithm, ANN models, MCI 

tool and MAT are analytically described in Section 5.3. Finally, the chapter summary 

is provided at the end providing remarks on the work performed in this chapter. 

 

5.2 Case study description and input data acquisition 

 

The methodology is applied on a two-stroke, eight cylinder marine diesel engine of a 

Panamax container ship. The main particulars of the Panamax ship are demonstrated 

in Table 5.1 below. 

 

Table 5.1 Case study main characteristics 

Principal characteristics 

Year built 2009 

Ship type Cellular container 

DWT (summer) 50829 tons 

Length overall 260.00 m 

Beam 32.00 m 

Depth moulded 19.30 m 

Draft (summer) 12.60 m 

Engine Particulars 

Main engine HSD MAN B&W 8K90MC-C 

Maximum Continuous Rating (MCR) 49680 BHP @ 104 RPM 

Number of cylinders 8 

Bore 900 mm 

Stroke 2300 mm 
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The successful development of the case study requires input data to feed and test the 

suggested methodology. The accessibility of data in the marine industry is limited as 

issues such as confidentiality and reluctance of ship operators and OEM companies to 

share their data exist. Moreover, scarce current studies exist utilising raw data or data 

representing faulty conditions. In an effort to collect relevant input data for developing 

the condition monitoring strategy, a measurement campaign was conducted onboard 

the Panamax container ship. The onboard measurement campaign took place on the 

container ship sailing from Tarragona, Spain to the port of Livorno, Italy in November 

2015 (Figure 5.1). Data was collected by utilising existing sensors installed in the 

various systems and components of the main engine. The measurements for the various 

main engine performance parameters were manually recorded in Microsoft Excel 

spreadsheets per hourly intervals from the engine control room, which provides real 

time sensor readings for the system. Hence, input data observations are acquired in 

uniform time step intervals, ensuring consistency in the predictions of the developed 

neural network models described in the next sections of this chapter.  

 

 

Figure 5.1 First onboard measurement campaign departure: Tarragona, Spain arrival: 

Livorno, Italy 

 

Overall, the main engine rpm together with 39 performance parameters and 35 

corresponding hourly measurements for each parameter were collected related to the 

various main engine subsystems and components, presented in Table 5.2. The various 

parameter measurements are mostly related to temperature and pressure and are used 
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as input data in the various ANNs, establishing the foundations for the construction of 

the case study analysis and results. 

 

Table 5.2 Case study input data 

Main engine performance parameters Units 

Scavenging air temperature (per cylinder 1-8) °C 

Exhaust gas outlet temperature (per cylinder 1-8) °C 

Jacket cooling fresh water outlet temperature (per cylinder 1-8) °C 

Piston cooling lubrication oil inlet pressure kg/cm2 

Piston cooling oil outlet temperature (per cylinder1-8) °C 

Fuel oil inlet temperature °C 

Fuel oil inlet pressure kg/cm2 

Air cooler cooling water inlet pressure kg/cm2 

Main lubrication oil inlet pressure kg/cm2 

Main lubrication oil inlet temperature °C 

Thrust bearing lubrication oil outlet temperature °C 

 

It is imperative to mention that no faults or alarms occurred during the onboard 

measurement campaign. Furthermore, the main engine was in good running condition, 

upon discussions with the ship’s chief and second engineer and examining the up-to-

date voyage and repair reports. Additionally, the vessel was operating at speeds of 12-

14 knots with an engine speed of 60 rpm sailing in slow steaming conditions. These 

conditions further emphasise the importance of condition monitoring, as due to current 

fuel costs and reduced operational revenue, ship operators use slow steaming to reduce 

their fuel consumption levels, despite the negative impacts it has on engine operation 

and although manufacturers advise that extended periods of low-load operation should 

be avoided to ensure reliability and efficiency. Due to the potential slow steaming 

issues, conducting maintenance following the traditional time-based strategy may 

expose ship operators to higher risk of equipment failures and downtime. Thus, this 

risk can be mitigated by transitioning to condition monitoring. 

 

In addition to the first measurement campaign, another larger dataset compared to the 

measurement campaign was provided from the ship operator upon discussion for 

analysis purposes. Finally, a second onboard measurement campaign was undertaken 
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in March 2017 from Piraeus, Greece to Livorno, Italy. The data from this campaign is 

used as a dataset for simulation purposes in the trained ANN models in order to 

validate their performance. Table 5.3 presents the overview of the three datasets used 

for the case study development and analysis.  

 

Table 5.3 Overview of input data acquisition and purpose 

Dataset 

reference 
Input data Purpose 

Number of 

measurements 

per parameter 

1 1st measurement campaign ANN model training 35 

2 Data acquired from operator ANN model training 986 

3 2nd measurement campaign ANN model simulation 47 

 

Summarising the information presented in Table 5.3, the 1st measurement campaign 

and the acquired data from the vessel operator are used for developing and training the 

ANN models. Moreover, these datasets will be referred to in the following sections 

and chapters as dataset 1 and dataset 2. Finally, data from the 2nd measurement 

campaign are used for simulating the ANNs and is referred to as dataset 3. Dataset 1 

and 3 can be found in Appendix F.2.4 and I respectively. Due to confidentiality 

agreements with the shipping company, dataset 2 is not fully presented in this thesis. 

 

5.3 Development of case study models 

 

This section presents the development of all case study models, starting from the 

development of the main engine FT and FMEA to the various ANNs, through to the 

main engine MCIs and MAT.  

 

5.3.1 Development of FT and FMEA for the main engine system  

 

5.3.1.1 FTA for the main engine system 

 

Prior to constructing the FT for the ship main engine system, the boundaries of the 

system have to be defined. The main engine system is defined as the top event of the 

FT and is divided into six subsystems which form the boundary conditions of the 
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system as illustrated in Figure 5.2. It is noteworthy mentioning that the selected system 

set-up was derived after examining several varying structures and upon technical 

expertise feedback and suggestions. Also, due to unavailability of FR or MTBF data 

for the case study FT analysis, the minimal cut sets method is used for the identification 

of critical main engine systems and components. 

 

Main Engine
Engine Block & 

Components
Fuel System

Air Systems
Cylinder Block 

Assembly

Cooling Systems
Lubrication Oil 

Systems

Cylinder 

System

Piston 

System

Scavenge 

Air System
Air System

Bearings

Crankcase

Jacket Water 

Cooling System

Central Cooling 

System

 

Figure 5.2 Boundary conditions for main engine system 

 

As observed in Figure 5.2, the main engine system is divided into the cooling, 

lubrication oil, fuel, air, cylinder block assembly and engine block and components 

subsystem. Regarding the cooling system, it is divided into the jacket water cooling 

and central cooling system. The lubrication oil and fuel systems consist of their 

relevant components modelled as basic events in the FT. The air system is further 

separated into the main air system and scavenging air system. In the cylinder block 

assembly system, the system has been separated into the cylinder system and the piston 

assembly system. Finally, the engine block and components group contain components 

of the main engine such as the crankcase and various engine bearings. All these 

systems are explained in detail in the following pages. In total, 42 basic events were 

modelled in the main engine FT representing the components of the various main 

engine subsystems as demonstrated in Table 5.4. 



110 

 

Table 5.4 Basic events for main engine FT 

JFW Cooling Pump Fuel Pumps Air Filter Piston Rod Stuffing Box 

Jacket Water Cooler Fuel Valves Camshaft Bearing Piston Connecting Rod 

Sea Chest Strainer Fuel Injector Thrust Bearing Scavenge Air Port 

Seawater Pipes Main Air Compressor Main Bearings Scavenge Air Receiver 

Central Cooler Air Distributor Cylinder Head Crosshead Bearings 

Lube Oil Filter Air Starting Valves Cylinder Liner Crankshaft 

Main Lube Oil Pump Air Filter Cylinder Jacket Crankcase 

Lube System Valves Auxiliary Blower Piston Crown Camshaft 

Lube Oil Cooler Air Receiver Piston Ring Exhaust Manifold 

Fuel Piping System Air Cooler Piping Piston Skirt  

Fuel Oil Filter Air Cooler   Exhaust Valves   

 

A four level FT for the case study main engine is constructed including 14 gates and 

the 42 basic events defined in Table 5.4. Figure 5.3 displays the overall FT for the 

main engine top event. The FT is modelled with time-dependent dynamic gates in 

order to represent the interrelation of the main engine system and components in an 

accurate and realistic manner. Furthermore, dynamic logic gate is applied for 

improving veracity of the FT. 

 

 

Figure 5.3 Main engine Fault Tree diagram 

 

As shown in Figure 5.3, the main engine system is interconnected with its subsystems 

with an ‘OR’ gate, meaning that the failure of the main engine occurs if any one of the 

lower level systems occur, as all of the subsystems are important for the operation of 

the main engine. Moreover, ‘TRANSFER’ gates are applied for enhancing the 

graphical representation of the FT. All subsystems are modelled through the 

employment of static and dynamic gates. The FT structure of the cooling system is 

represented below in Figure 5.4. 



111 

 

 

Figure 5.4 FT structure of the cooling systems 

 

The cooling system is modelled using an ‘AND’ gate assuming both the jacket water 

cooling and central cooling system must fail in order for the cooling system to fail. 

The jacket water cooling system consists of the jacket fresh water cooling pump and 

jacket water cooling and has been modelled with a ‘SEQ’ gate. The basic events here 

are positioned from left to right based on the fact that failure of the jacket water cooler 

will influence the operation of the Jacket Fresh Water (JFW) cooling pump. Moreover, 

the central cooling system consists of the sea chest strainer, seawater pipes and central 

cooler and has been modelled with a Priority-AND (PAND) gate, prioritising 

components from left to right order. 

 

 

Figure 5.5 FT structure of the lubrication oil system 

 

The lubrication oil system FT structure as shown in Figure 5.5, has been modelled 

using a PAND gate assuming that the lube oil filter failure has to occur prior to the 

pump, valves and then lube oil cooler failing. This assumption is made on the basis 

that a failure in the lube oil filter will have a knock back effect on the lube oil pump, 

system valves and then on the cooler. Hence, the presented configuration consents 
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measuring the impact of a component failure on another system component, the so-

called domino effect.  

 

 

Figure 5.6 FT structure of the fuel oil system 

 

The fuel system consists of the piping system, fuel oil filter, fuel pumps, fuel valves 

and fuel injectors and has been modelled using a ‘Voting’ gate of 3 out of 5 systems 

assuming that any three of the five components of the fuel system have to fail in order 

for the fuel system to fail as presented in Figure 5.6.  

 

 

Figure 5.7 FT structure of the air systems 

 

The air system displayed in Figure 5.7 has been modelled as an AND gate assuming 

that both its subsystems, the main air system and scavenge air system respectively have 

to fail in order for the air system to fail. The scavenge air system gate consists of the 

air cooler piping, air cooler, air filter, scavenge air ports and scavenge air receiver. The 

scavenge air system has been modelled using a ‘Voting’ gate of 3 out of 5 systems 

assuming that any three of the five components of the scavenge air system have to fail 

in order for it to fail. Figure 5.8 displays the FT structure for the air subsystem. 
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Figure 5.8 FT structure of the air system 

 

The air system comprises of the main air compressor, air distributor, air starting valves, 

air filter, auxiliary blower and air receiver. The air subsystem is described using an 

‘AND’ gate meaning that all components in this subsystem must fail for the air system 

to fail.  

 

 

Figure 5.9 FT structure of the cylinder block assembly 

 

The cylinder block assembly gate has been modelled with an ‘AND’ gate consisting of 

the cylinder system containing the cylinder head, liner and jacket as basic events and 

the piston system modelled with a ‘Voting’ gate of 2 out of 5 components as seen in 

Figure 5.9. The piston subsystem consists of the piston crown, piston rings, piston rod 

stuffing box, piston connecting rod and skirt. 

 

 

Figure 5.10 FT structure of the engine block and components system 
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Finally, the engine block and components gate is composed of a ‘Voting’ gate 

assuming that any three of the bearings, crankshaft, crankcase, camshaft, exhaust 

valves or exhaust manifold components have to occur as seen in Figure 5.10. The 

bearings consist of the camshaft bearings, thrust bearing, main bearings and crosshead 

bearings and are composed using an ‘AND’ gate as each one of the components must 

fail for the bearing system overall to fail. 

 

5.3.1.2 FMEA for the main engine system 

 

The FMEA for the case study was set up by using the basic events of the main engine 

FT as input in the ‘Failed Item’ column of the FMEA spreadsheet. The basic events of 

the FT correspond to various components of the main engine itself. Additionally, the 

‘System’ tab in the FMEA table corresponds to the various gates of the FT, which are 

essentially the subsystems of the main engine. Afterwards, for each failed item, a list 

of potential failure events and failure causes is developed alongside their respective 

local and global effect on the FT top gate which is the main engine. The main engine 

FMEA worksheet is developed by following the structure illustrated in Table 5.5.  

 

Table 5.5 FMEA worksheet structure 

System Failed Item Failure 

Mode 

Failure 

Cause 

Local 

Effect 

Global 

Effect 

Detection 

Method 
FT gates 

(Main engine 

subsystems) 

FT basic events 

(Main engine 

components) …. …. …. …. …. 

…
…

 

…
…

 

…
…

 

…
…

 

…
…

 

…
…

 

…
…

 

 

In the ‘Failure Event’ column, for each component all potential failure modes are 

identified and recorded. In the ‘Failure Cause’ column, the possible failure 

mechanisms (corrosion, erosion, fatigue, etc.) that may produce the identified failure 

events are recorded. The ‘Local Effect’ and ‘Global Effect’ columns consist of all the 

main effects the identified failure modes have on other components of the subsystem 

and top system respectively. Finally, in the ‘Detection method’ tab, the various 
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methods for detecting the identified failure modes are noted and may involve different 

high/low temperature or pressure alarms and visual inspection amongst other. 

 

Information collected for the formation of the main engine FMEA is based on Cicek 

and Celik (2013), Turan et al. (2011), Mokashi et al. (2002b), Emovon (2016), 

INCASS EU funded project deliverables (INCASS, 2014b, INCASS, 2014a) and 

experts opinion. As part of the FMEA process, various technical meetings were 

organised in order to collect useful information. In this respect, information was 

collected from three Classification Societies, two ship operators and two consultancy 

companies. Specifically, experts included IACS Classification Societies surveyors and 

researchers with many years of onsite experience. Moreover, experts from ship 

operators and marine consultancy companies included technical managers, 

superintended engineers, and chief engineers sailing onboard the mentioned vessel. 

 

5.3.2 Development of data preparation for main engine analysis 

 

5.3.2.1 Data cleansing 

 

As the initial stage of the data preparation, the data cleansing algorithm has been 

developed in MATLAB. Prior to any data cleansing actions, a back-up of the raw 

dataset is stored in the system in order to have a copy of the data intact. Data 

representing vessel speeds of 4 knots or less, or engine speeds of 15 rpm or less are 

removed from the dataset, as in such cases the ship operating profile contains 

parameter fluctuations that can affect ANN training. In the case of empty cells within 

the dataset, these are replaced with null values and then are replaced with the average 

value of the particular attribute. Additionally, measurements corresponding to zero 

values follow the same data cleansing process as in the case of empty cells. A table 

containing empty cell and zero value incidents is also created to keep records of such 

occurrences as this could assist in identifying faulty sensor instrument readings. 

Finally, through the data cleansing stages, the cleansed data is obtained which is used 

for analysis and training in the developed neural network models which include the 

SOM, NAR, NARX and ANN-MLP classifier. 
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5.3.2.2 SOM for the main engine 

 

The SOM developed for clustering the multidimensional input data consists of a 10-

by-10 two-dimensional map of 100 neurons. Several SOM topologies were analysed, 

however this configuration was adapted as it provided sufficient clusters for processing 

the data based on the training input data. The SOM topology prior to training the input 

data is shown in Figure 5.11.  

 

 

Figure 5.11 ANN SOM 10x10 topology 

 

The red dots represent the SOM neurons and the blue lines are the connections between 

the neurons. The SOM is trained for a maximum of 1000 epochs (iterations). As the 

input data is measured in different scales of temperatures and pressures, the collected 

monitored data are normalised according to equation 31 in order to standardise the 

range of independent variables of data in the range [0,1]. 

 

𝑧𝑖 =
𝑥𝑖 − min (𝑥)

max(𝑥) − min (𝑥)
 (31) 

 

where zi is the ith normalised data point, xi is the ith data point of vector x. 

 

The objectives of the SOM process it to cluster the data into healthy and faulty. Healthy 

data represents performance parameter measurements within the OEM thresholds for 
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the main engine. In the case of faulty data, these are distinguished between data 

exceeding the OEM thresholds and data representing excessive measurements 

typically 75% above the OEM defined values (e.g. cylinder exhaust gas outlet 

temperature of 700 °C). In order to successfully model the healthy and faulty data 

distinctions, in addition to the data from the onboard measurement campaign and ship 

operator, additional artificial data is used for training the SOM. The artificial data 

correspond to faulty data, as no faulty data exist in the datasets as previously 

mentioned in Section 5.2. Thus, real data in combination with artificial data is used in 

order to enhance the capabilities of the SOM and preserve the original dataset 

characteristics. The SOM is trained using 144 hourly measurements for each parameter 

presented in Table 5.2.  

 

The artificial data was produced by generating random values for the performance 

parameters within their normal operating conditions and above their thresholds. 

Therefore, the artificial data is developed to meet certain conditions that cannot be 

obtained from the original, real data. However, it provides realistic data for the 

development and achievement of the SOM scope. 

 

The SOM is modelled to cluster data for the main engine subsystem and component 

level. Specifically, the trained SOM is used for clustering data related to each cylinder 

of the main engine, as amongst the input data of Table 5.2, the only parameters that 

correspond individually to the cylinders are namely the cylinder scavenging air 

temperature, exhaust gas outlet temperature, jacket fresh water cooling outlet 

temperature and piston cooling oil outlet temperature. This reduces the total number 

of input dimensions for effective SOM training and the clustering process can be 

focused primarily on the main engine subsystems and components, and thus on the 

main engine system overall without increasing the dimensions in the data that would 

implicate the data analysis and interpretation process.  

 

During training, the SOM is defined and shaped based on the input data while the 

second phase automatically classifies new inputs into the clusters defined in the 

training stage. Once training is complete, the multidimensional input data vectors have 
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been assigned into clusters. By identifying the cluster centre positions, a distance 

metric between the clusters can be implemented in order to examine if any clusters can 

be interclustered based on the concept that clusters with the shortest distances between 

them share possible similarities in the data. The SOM clustering and interclustering 

process is highlighted in Figure 5.12.  

 

Engine parameter 

measurements
SOM clusters Interclustering

Abstraction 

level 1

Abstraction 

level 2

 

Figure 5.12 SOM clustering and interclustering process 

 

The engine data is clustered in the SOM as a first abstraction level. In the second 

abstraction level, by applying the Euclidean distance metric to the clusters created by 

the SOM training process, similar clusters can be allocated in the same group. In terms 

of interclustering the SOM clusters, the Euclidean distance metric is applied. 

Moreover, other metrics such as the Manhattan distance (Rohlf, 2013) were applied, 

providing the same results. This outcome is rational and reasonable since the values in 

the dataset have been normalised in order to avoid discrepancies in the dataset that can 

distort the calculations. Moreover, the Manhattan distance may be more appropriate if 

different dimensions are not comparable (Guttag, 2016).  

 

Furthermore, an additional case study is presented in Section 6.3.2 regarding the 

application of the SOM network to monitor the main engine condition by identifying 

clusters containing data which are diverse compared to data representing normal 

engine operating conditions. This SOM case study is applied for performance 

parameters of the most critical systems identified in the FTA-FMEA process. 
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5.3.3 Development of NAR and NARX models  

 

In this section the selected network structure and training parameters are presented for 

the NAR and NARX models for both input datasets 1 and 2 respectively. A network 

with enough elements can model dynamic systems with arbitrary accuracy and are well 

suited for addressing non-linear dynamic problems, comparable to those attained in a 

ship main engine system. Table 5.6 presents the training parameters applied for 

training the NAR and NARX models for all case study performance parameters. In 

total 39 NAR models are developed for the performance parameters of dataset 1, and 

a further 39 NAR and 39 NARX models are developed for dataset 2.  

 

Table 5.6 NAR & NARX training parameters 

Training conditions Value Description 

net.trainParam.epochs 1000 Maximum number of epochs  

net.trainParam.goal 0 Performance goal 

net.trainParam.lr 0.01 Learning rate 

net.trainParam.max_fail 6 Maximum validation failures 

net.trainParam.min_grad 1E-05 Minimum performance gradient 

net.trainParam.time inf Maximum time to train (seconds) 

net.trainFcn trainbr Training algorithm 

net.performFcn mse Performance function 

net.divideFcn divideblock Dataset division 

net.divideParam 70%-0%-30% Training, validation, test set ratio 

 

Training stops when any of the following conditions are met; The maximum number 

of epochs (iterations) for training is reached, performance is minimised to the goal, the 

maximum amount of time is exceeded, the validation performance has increased more 

than the maximum number of validation failures since the last time it decreased. In 

terms of the training algorithm, the Bayesian regularisation backpropagation algorithm 

(trainbr) was selected for network training that uses Jacobian derivatives as it updates 

the weight and bias values according to Levenberg-Marquardt optimisation.  

 

This algorithm minimises a combination of squared errors and weights in the network 

and then determines the correct combination to produce a network which generalises 

well (Okut, 2016). This algorithm was selected as it provided more accurate network 
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training and performance compared to training several other network models with 

training algorithms such as the Levenberg-Marquardt algorithm and scaled conjugate 

gradient algorithm. 

 

Moreover, this training algorithm includes the validation data in the training set, hence 

the dataset is split 70% for training and 30% for testing. Furthermore, as the aim is to 

develop models for time series analysis and forecasting, the data is divided into blocks 

in the training and testing set, meaning that the first 70% hourly measurements of the 

dataset is used for training while the next remaining 30% hourly measurements in the 

time series is used for the test set as a completely independent test of network 

generalisation. This is done compared to splitting the dataset randomly in order to 

preserve the correlation relationships of the time series data. 

 

As mentioned previously in Section 4.3.4, NAR and NARX neural networks use 

feedback delays in their topology in order to dynamically forecast one-step ahead or 

multi-step-ahead predictions of the time series data. The number of delays is set 

experimentally. Experimental runs with different number of network feedback delays 

were performed to obtain an accurate prediction model that performs well.  

 

5.3.3.1 NAR and NARX models for dataset 1 

 

Regarding dataset 1, from the 35 measurements, 30 are used for network training while 

the remaining 5 measurements are isolated for comparison purposes against the 

forecasting results obtained from the trained network. Figure 5.13 displays the selected 

topology for the NAR model in open loop mode. 

 

 

Figure 5.13 NAR model open loop mode 
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As presented in Figure 5.13, the NAR model has one hidden layer with 8 neurons, with 

a hyberbolic tangent function in the hidden layer and a linear transfer function in the 

output layer. Moreover, 2 feedback delays are used to store previous values of the 

univariate time series data. The network is trained in open loop form to match the input 

data with the target data, hence the targets are used as feedback. Once training is 

complete, the network is converted into closed loop form and as observed in Figure 

5.14 below, its own predictions in the output layer become the feedback inputs for 

carrying out multi-step-ahead predictions. 

 

 

Figure 5.14 NAR model closed loop mode 

 

NARX models for dataset 1 are not developed due to the fact that sufficient and proper 

training of a NARX model is not achievable since the dataset size is relatively small. 

Research concretely conducted in the early stages of the investigation of NARX 

models for this specific dataset indicated that the delays associated with each tapped 

delay line limited the selection of an optimal network structure and therefore 

satisfactory network training and performance could not be achieved. 

 

5.3.3.2 NAR and NARX models for dataset 2 

 

For the NAR models related to dataset 2, the same principle is followed as described 

in the previous section for dataset 1. However, due to the larger dataset applied here, 

the number of nodes in the hidden layer is increased to 18 and 40 feedback delays are 

used. In many real applications, there is an important correlation between the modelled 

time series and additional external data.  
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For the main engine, the performance parameters largely depend on the main engine 

rpm. Thus, the integration of knowledge or data related to the engine rpm speed is 

applied as exogenous input in the NARX models. Figure 5.15 displays the selected 

topology for the NARX model in open loop form  

 

 

Figure 5.15 NARX model open loop mode 

 

As demonstrated, the NARX model consists of 16 neurons in the hidden layer and uses 

a hyberbolic tangent function in the hidden layer and a linear transfer function in the 

output layer. Moreover, 15 feedback delays of the target time series y(t) and 20 input 

delays of the external input x(t) which is the main engine rpm are applied.  

 

Once training is complete, the network is converted into closed loop form and as 

observed in Figure 5.16 below, its own predictions y(t) in the output layer become the 

feedback inputs for carrying out one-step-ahead or multi-step-ahead predictions 

alongside the external input x(t) time series. 

 

 

Figure 5.16 NARX model closed loop mode 

 

The forecasted results for the main engine performance parameters can then be 

evaluated in the main engine diagnostic ANN-MLP classifier and MCI health 

assessment tool in order to provide the current and predictive evaluation of the 

condition of the main engine and its subsystems. 
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5.3.4 Development of main engine diagnostic ANN-MLP and MCI 

 

5.3.4.1 ANN-MLP engine diagnostic classifier 

 

Main engine faults are classified through the development of an ANN-MLP classifier 

network that takes as input the performance parameters of the engine and yields the 

corresponding fault class as its output. The classification neural network is trained with 

a large database consisting of actual data from the onboard campaigns and artificial 

data in order to simulate various engine faults. The artificial data is generated using 

the same process described in Section 5.3.2.2. The principles underlying the engine 

diagnostic analysis are illustrated in Figure 5.17. The data consisting the simulated 

engine faults are characterised by a shift in the measurable parameters below and/or 

above defined thresholds. Thus, the artificial data is generated for implanting engine 

faults in the input dataset. 

 

 

Figure 5.17 Engine diagnostic principle 

 

The defined thresholds established for the analysis of the engine diagnostics are based 

on the engine OEM guidelines and through recommendations of both the crew onboard 

the vessel and staff of the shipping company such as marine engineers and technical 

superintendents. The thresholds applied are presented in Table 5.7. 
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Table 5.7 Main engine case study thresholds 

Main engine performance parameter Value Unit 

Scavenging air temperature (cyl. 1-8) high 80 °C 

Exhaust gas outlet temperature (cyl. 1-8) low 200 °C 

Exhaust gas outlet temperature (cyl. 1-8) high 430 °C 

Jacket fresh water cooling outlet temperature (cyl. 1-8) high 90 °C 

Piston cooling lubrication oil inlet pressure low 1.4 kg/cm2 

Piston cooling oil outlet temperature (cyl. 1-8) high 70 °C 

Fuel oil inlet temperature low 115 °C 

Fuel oil inlet temperature high 165 °C 

Fuel oil inlet pressure low 6.5 kg/cm2 

Air cooler cooling water inlet pressure low 2 kg/cm2 

Main lubrication oil inlet pressure low 1.4 kg/cm2 

Main lubrication oil inlet temperature low 40 °C 

Main lubrication oil inlet temperature high 55 °C 

Thrust bearing lubrication oil outlet temperature high 70 °C 

 

The input dataset consists of 6016 measurements for all 39 engine performance 

parameters, while 16 network target vectors are created and indicate the fault classes 

to which the input vectors have been assigned to. Therefore, the network outputs 

correspond to the fault classes the input vectors are assigned to. The network is trained 

to classify engine faults and multi-faults.  

 

Faults owing to fluctuations in the performance parameters monitored are modelled in 

the network. Moreover, multi-faults such as increase of exhaust gas temperature in all 

cylinders, decrease of exhaust gas temperature in all cylinders and engine inlet air and 

exhaust temperature excessive are also modelled in the developed network, based on 

industry practice and OEM guidelines. The engine faults modelled in the network are 

presented in Table 5.8. 

 

Each possible input feature pattern belongs exactly to one of 16 output classes. The 

neural network has 16 outputs, corresponding to each of the 16 fault classes. During 

training, 1 is applied for the correct class designator while 0 is applied to the other 

output classes as demonstrated in Table 5.9. While testing the network when a new 

input is presented, an output of 1 or near 1 indicated the membership in that class. 
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Table 5.8 Main engine faults modelled in network 

Fault 

Number 

Fault 

Code 
Fault Description 

1 F0 No Fault 

2 F1 Exhaust gas temperature increase in one cylinder 

3 F2 Exhaust gas temperature increase in all cylinders 

4 F3 Exhaust gas temperature decrease in one cylinder 

5 F4 Exhaust gas temperature decrease in all cylinders 

6 F5 Fuel oil inlet temperature low or high 

7 F6 Fuel oil inlet pressure low 

8 F7 Main lubrication oil inlet pressure low 

9 F8 Main lubrication oil inlet temperature high 

10 F9 Thrust bearing lubrication oil outlet temperature high 

11 F10 Piston cooling lubrication oil inlet pressure low 

12 F11 Air cooler cooling water inlet pressure low 

13 F12 Cylinder scavenging air temperature high 

14 F13 Jacket fresh water cooling outlet temperature high  

15 F14 Piston cooling oil outlet temperature high 

16 F15 Inlet air temperature & exhaust temperature excessive 

 

Table 5.9 Defining inputs with corresponding outputs-ANN MLP classifier 

Input Data 
Fault Classes 

F0 F1 F2 F15 

1 1 0 0 0 

2 0 1 0 0 

3 0 0 1 0 

n 0 0 0 1 

 

As observed in Table 5.9, the input datasets contain all data used as input in the 

network. The faults are classified into various faults F0-F15 with the first fault class F0 

assigned as a no-fault condition representing healthy engine performance. If input set 

2 corresponds to fault F1 as seen in the table, then 1 is applied to the output vector for 

class F1 and 0 for all other fault classes for defining the designated class. 

 

The network training characteristics are shown in Table 5.10. As observed, data is split 

randomly with 70% of the data used as the network training set, while 15% is used for 

validation set and the other 15% for the testing set. The network is trained using a 

training function that updates weights and bias values according to the scaled 

conjugate gradient backpropagation method (trainscg). The network is trained for 1000 

epochs and the performance function used is the Cross-Entropy performance function. 

This performance function calculates network performance given targets, outputs, 
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performance weights and parameters with a measure that heavily penalises outputs 

which are extremely inaccurate and with very little penalty for fairly correct 

classifications (Bishop, 2006). Minimising cross-entropy leads to good classifiers. A 

hyberbolic tangent and softmax transfer function are applied in the hidden and output 

layer. 

 

Table 5.10 ANN-MLP training parameters 

Training conditions Value Description 

net.trainParam.epochs 1000 Maximum number of epochs  

net.trainParam.goal 0 Performance goal 

net.trainParam.lr 0.01 Learning rate 

net.trainParam.max_fail 6 Maximum validation failures 

net.trainParam.min_grad 1E-06 Minimum performance gradient 

net.trainParam.time inf Maximum time to train (seconds) 

net.trainFcn trainscg Training algorithm 

net.performFcn Cross entropy Performance function 

net.divideFcn dividerand Dataset division 

net.divideParam 70%-15%-15% Training, validation, test set ratio 

 

Another method that is used for improving generalisation of the network is the early 

stopping method. The validation data are used to stop training early if further training 

on the primary data will hurt generalisation to the validation data. Specifically, the 

error on the validation set is monitored during the training process. The validation error 

decreases during the initial phase of training alongside the training set error. If the 

network starts to overfit the data, then the error in the validation set begins to rise. 

When the validation error increases for the specified number of validation failures 

specified in Table 5.10, network training is stopped and the weights and biases at the 

minimum of the validation error are returned.  

 

The number of neurons in the hidden layers was found to be the optimal after testing 

a variety of network architectures under different initial training conditions. A network 

topology from 1 up to 50 hidden neurons in the hidden layer were examined in order 

to obtain a network with optimal classification accuracy. For the numerous iterations, 

the average percentage of classification error is plotted for each network topology as 

demonstrated in Figure 5.18. 
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Figure 5.18 ANN-MLP average classification error for different number of hidden 

neurons 

 

Figure 5.18 demonstrates that the lowest classification error was obtained for the 37 

hidden neurons network configuration. Based on the obtained analysis results, 37 

hidden neurons were selected for training the ANN-MLP classifier. Each time the 

ANN MLP classifier is trained with different initial weights and biases and with a 

different random split of the dataset into training, validation and test sets. Due to this, 

the selected network topology was trained several times to ensure that a network with 

good generalisation capabilities is obtained. Specifically, the selected network was 

trained for 1000 repetitions to sufficiently examine its overall accuracy due to the 

different initial weight, biases and dataset conditions each time the network is trained. 

Figure 5.19 displays the results obtained for the overall network classification 

accuracy, including training, validation and testing data accuracy. 

 

 

Figure 5.19 ANN MLP accuracy for different initial training conditions 
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As observed from Figure 5.19, the selected network topology has good generalisation 

capabilities and robust network performance can be verified. The minimum obtained 

network accuracy is equal to 85.1% while the maximum network accuracy is 99.64%. 

from the boxplot of the various network training iterations. Moreover, the 25th 

percentile is equal to 90.35% accuracy while the 75th percentile is equal to 95.95%. 

Furthermore, the median represented by the red horizontal line in the boxplot, is equal 

to 94.4% accuracy which verifies the selected network’s generalisation capabilities 

and robust performance. The number of iterations is chosen as it is statistically 

adequate for considering extreme values in the analysis (Yang, 2011). 

 

For each fault class modelled in the network, a table containing information regarding 

potential fault causes is developed. In addition, the fault classes are also connected 

with relevant FMEA information of the main engine, providing further insight into the 

diagnosis of the system. Table 5.11 presents a sample of the table created alongside 

potential remedies for fault codes ‘F2- Exhaust gas temperature increase in all 

cylinders’ and ‘F1-Exhaust gas temperature increase in one cylinder’.  

 

Reference points are created for ease of access and reference and for also updating the 

diagnostic database after a fault occurs. The remedies of the potential fault causes are 

presented in MAT to the user. In total, 87 potential fault causes and their respective 

remedies are constructed in the table for all the monitored performance parameters of 

the main engine. Information regarding the fault causes and remedies are obtained 

from engine guides and manuals, maritime industry personnel such as senior and 

technical engineers and ship operators, Classification Societies, plus maritime 

consultants and academia (INCASS, 2015b, INCASS, 2015a). The complete 

diagnostic table is presented in Appendix D.1. 
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Table 5.11 Diagnostic table and remedies (sample table) 

Fault Point Potential Causes Remedy 

Cylinder exhaust gas 

outlet temperature 

      

F2-Temperature 

increase in all engine 

cylinders 

1 Increased scavenge air 

temperature owing to 

inadequate air cooler 

function 

Inspect, overhaul and 

clean air side of air 

cooler 

  2 Fouled air and gas passages Clean turbine by 

means of dry 

cleaning/water 

washing 

Clean blowers and air 

coolers  

Check the back 

pressure in the exhaust 

gas system just after 

the T/C turbine side 

  3 Inadequate fuel oil cleaning 

and/or altered combustion 

characteristics of fuel 

Check fuel quality and 

fuel treatment  

  4 Wrong position of camshaft Check pmax 

Check camshaft with 

pin gauge 

Check chain tension 

F1-Temperature 

increase in one 

cylinder 

5 Defective fuel valves  Overhaul fuel valves 

and replace 

  6 Fuel valve leakage/dripping Replace or overhaul 

valve 

 

Therefore, through the optimal network architecture and training, the network provides 

accurate results for faults and multi-combination of faults as will be presented in 

Chapter 6. Moreover, the network is capable of predicting faults in new sets of data 

not seen before by the network. 

 

5.3.4.2 Main engine MCI 

 

The main engine MCI is obtained through the process described in Section 4.3.5.2, by 

calculating initially the MCI of each Relevant Condition Parameter (RCP) and 

subsequently obtaining the main engine subsystems and top system MCIs through the 

concept of RBD. The performance parameter measurements are fitted into continuous 
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probability distribution functions to obtain the distribution parameters in order to 

proceed with the MCI calculations. In order to select the best fit for the data of each 

performance parameter, an algorithm is developed which fits the data for the main 

engine performance parameters to various distribution functions in order to search for 

the most suitable distribution function that fits the data. The quality of the fits is ranked 

depending on the BIC, AIC and the AICc results. 

 

The developed algorithm attempts to fit the data into continuous distributions such as 

the Birnbaum-Saunders, gamma, exponential, logistic, lognormal, normal, t-location 

scale and Weibull distribution function amongst other. Overall, after analysing the 

measurements in dataset 1 for the performance parameters of the case study in order 

to obtain the best distribution fit to the various data, it was observed that the best fits 

for the data were primarily the Weibull distribution followed in some cases by the 

Normal distribution. Figure 5.20 presents a sample demonstration for the distribution 

fitting related to measurements from dataset 1 for the exhaust gas temperature outlet 

parameter. The top three best fits among all the distributions are shown in the figure 

alongside the representation of the empirical values for the data. As it can be observed, 

the best fit for the data is the Weibull distribution which is the green line in the figure, 

while extreme value and the normal distribution also provide good alternative fits to 

the data. 

 

 

Figure 5.20 Exhaust gas outlet temperature distributions 
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In the case of the Weibull distribution and based on equation 27, representing the 

cumulative distribution function, the following equation is applied for calculating the 

MCI based on the Weibull distribution parameters. 

 

𝑀𝐶𝐼(𝑡) = 1 − exp [− (
𝑅𝐶𝑃𝑙𝑖𝑚 − 𝐶

𝐴(𝑡) − 𝐶
)

𝐵(𝑡)

] (32) 

 

where RCPlim is the limit threshold of the relevant condition parameter, A is the 

Weibull scale parameter, B is the Weibull shape parameter and C is the Weibull 

location parameter.  

 

The Weibull parameters are obtained from fitting the performance parameter 

measurements to the distribution. The Weibull location parameter C is equal to the 

initial threshold RCPin of the relevant condition parameter. The scale parameter A 

defines the location of the distribution on the horizontal scale while the shape 

parameter B controls the shape of the distribution curves. Moreover, the Weibull 

parameters are computed using the maximum likelihood estimate method (Millar, 

2011). Overall, it is a versatile distribution that can take on the characteristics of other 

types of distributions (Rausand and Arnljot, 2004, Ebeling, 2004), based on the value 

of the shape parameter B and is used for the majority of the case study data. 

 

In the case of utilising the normal distribution, the following equation is applied for 

calculating the MCI: 

 

𝑀𝐶𝐼(𝑡) = 𝛷 [
𝑅𝐶𝑃𝑙𝑖𝑚 − 𝐴(𝑡)

𝐵(𝑡)
] (33) 

 

Where 𝛷 is the normal cumulative distribution function evaluated at the values 

obtained within the bracket, A is the scale parameter and B is the shape parameter of 

the normal distribution. 
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The RCP thresholds for cylinder 1 are defined in Table 5.12, while the remaining table 

for all other parameters is contained in Appendix D.2. The MCI thresholds are flexible 

and can be altered based on custom values defined by the ship operator or technical 

department. Moreover, the thresholds can be altered for various engine operational 

loads. This implies that the MCI can be a tailored made tool to fit any shipping 

company requirements per ship or fleet. 

 

Table 5.12 Main engine MCI thresholds for cylinder 1 

Main engine RCP RCPin RCPlim Unit 

Scavenging air temperature (cylinder 1)  30 48 °C 

Exhaust gas outlet temperature (cylinder 1)  100 263 °C 

JCFW cooling outlet temperature (cylinder 1)  50 84 °C 

Piston cooling lubrication oil inlet pressure  2.6 2.8 kg/cm2 

Piston cooling oil outlet temperature (cylinder 1)  30 49 °C 

Fuel oil inlet temperature  130 140 °C 

Fuel oil inlet pressure  8.05 8.4 kg/cm2 

Air cooler cooling water inlet pressure  2.9 3.12 kg/cm2 

Main lubrication oil inlet pressure  2.7 2.9 kg/cm2 

Main lubrication oil inlet temperature  40 50 °C 

Thrust bearing lubrication oil outlet temperature high 42 50 °C 

 

Through a combination of series, parallel and k out of n configurations, the RBD for 

the main engine system is developed to obtain the overall system MCI based on the 

MCIs calculated for every main engine subsystem and component. Following the 

structure developed for the main engine FT, the main engine RBD consists of the 

lubrication oil, fuel oil, air, cylinder block and engine block and components 

subsystems. The cooling system has not been modelled due to lack of parameters 

expressing the system condition. Additionally, the jacket cooling fresh water outlet 

temperature per cylinder has been incorporated into the cylinder block system RBD. 

 

Thus, the main engine RBD construction is based initially on the FT structure 

developed, expert judgement feedback and moreover on the performance parameters 

available to model each relevant RBD system. The air system and engine block and 

components system comprise of the air cooler cooling water inlet pressure MCI and 
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thrust bearing lubrication oil outlet temperature respectively. Figure 5.21 displays the 

overall RBD for the top system under consideration which is the ship main engine. 
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Figure 5.21 Main engine RBD and consisting subsystems 

 

The main engine RBD consists of the aforementioned subsystems and is modelled as 

a series configuration so that the degradation of any of the subsystem MCIs directly 

affects the main engine condition indicator. Figure 5.22 presents the RBD developed 

for the lubrication oil system and fuel oil system. The lubrication oil system is 

modelled as a parallel configuration consisting of the main lubrication oil inlet pressure 

and main lubrication oil inlet temperature MCIs. The fuel oil system is modelled in an 

analogous manner, based on expert judgment and available parameters for modelling. 
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Figure 5.22 Lubrication oil system RBD & fuel oil system RBD 

 

The cylinder block system level RBD is shown below in Figure 5.23 and comprises of 

a combination of series and parallel configuration. This system consists of the piston 

cooling lubrication oil inlet pressure MCI connected in series with the RBDs of the 

eight main engine cylinders. The eight cylinder RBDs are connected as a k out of n 

configuration and a 5 out of 8 configuration is selected, meaning that at least 5 

cylinders are required to function for the cylinder block system to function. This 



134 

 

configuration is selected assuming that a degradation of the MCIs in less than 5 

cylinders will not affect the performance of the main engine. 
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Figure 5.23 Cylinder block system RBD 

 

Moreover, each cylinder block shown in Figure 5.23 is further expanded into its 

subsystem level as shown in Figure 5.24 for cylinder 1. The blocks for all other 

cylinders are modelled in a similar manner. 
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Figure 5.24 Cylinder 1 RBD subsystem level 

 

The cylinder 1 RBD consists of a combined parallel and series configuration. The 

cylinder scavenging air temperature and exhaust gas outlet temperature MCIs are 

modelled in a series configuration. The practicality of this option is that these 

parameters affect immediately one another, as an increase in scavenging air 

temperature will also create an increase in the exhaust gas temperature. Moreover, the 

piston cooling oil outlet temperature and jacket cooling fresh water outlet temperature 
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MCIs are similarly modelled. Through the overall process presented, the calculation 

of the subsystem MCIs and overall engine system MCI through the application of the 

reliability block diagrams can be achieved. 

 

5.3.5 Development of MAT  

 

The framework of the Maintenance Assistant Tool (MAT) is developed and coded in 

MATLAB. The system utilises data originating from the outputs of the ANN-MLP 

diagnostic classifier of the main engine and the condition indicators (MCIs) of the 

main engine and its subsystems, based on the forecasting future results of the time 

series forecasting analysis tools. Therefore, the main aim of MAT is to display 

potential upcoming faults and the impending health status of the main engine and 

relevant systems, while providing the operator with additional information for 

producing relevant maintenance actions and activities as seen in Figure 5.25.  

 

Maintenance Assistant Tool

(MAT)

User Input

Spare Parts InventoryInventory Data

MAT Criteria

Maintenance Action

Maintenance Activity

Maintenance & Repair LogDiagnostic Database

 

Figure 5.25 MAT flowchart for main engine 

 

As seen in Figure 5.25, MAT provides to the operator (upon request), inventory data 

including the engine OEM manual, vessel PMS and IACS guidelines for managing 

maintenance in accordance with ISM code requirements amongst other. Furthermore, 

the spare parts inventory presents to the user spare part drawings, spare part costs that 
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assist the user in deciding if the costs associated with a maintenance action is high or 

low alongside the availability of the spare parts onboard. Figure 5.26, displays a 

sample of the spare parts inventory table extracted from MAT for display to the user.  

 

 

Figure 5.26 Sample of spare parts inventory table 

 

As observed, the program prompts the user to select to display the spare parts and their 

costs. The spare parts, their cost in USD ($) and their availability onboard are then 

displayed after the user has requested for MAT to display them. The spare part costs 

originate upon examination of provided quotation lists from marine suppliers and 

further discussion with marine engineers, technical managers, academia. The 

maintenance and repair log contain past maintenance actions carried out for the 

system.  

 

The diagnostic database with the prioritised fault causes for the system is also 

presented to the user once a potential upcoming fault has been identified. Additionally, 

the diagnostic database interacts with MAT and the operator by providing the 

prioritised fault causes sorted in the database and subsequently prompting the user to 

enter the fault code that rectified an occurring fault in the main engine system as 

demonstrated in Figure 5.27. Then, the diagnostic database is updated accordingly 

based on the new user input. In the case of a new fault cause not contained in the 

database, MAT will update the database accordingly based on the new information. 

 

 

Figure 5.27 Input dialog for entering rectified fault cause and description 
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The overall programming steps and structure for coding MAT are presented in the 

Table 5.13 below. 

 

Table 5.13 MAT coding structure and steps 

start 

load files 

run neural network diagnostics 

display faults identified 

prompt user to enter fault code for further info 

display fault causes and remedies  

prompt user for further info 

extract relevant system FMEA info 

display highest recorded fault causes 

run MAT criteria for maintenance decision making 

display spare parts cost and availability to user 

display vessel PMS 

produce suggested maintenance action/activity 

extract spare part drawings 

extract relevant inventory data upon user request 

prompt user to update diagnostic database 

update database and save 

end 

 

Once the data of MAT have been presented to the operator, the MAT criteria 

(presented in Section 4.3.6, Figure 4.10) are presented to the user to produce the 

corresponding appropriate maintenance action and activities such as replace, repair, 

check, service etc. of components amongst other. Figure 5.28 presents a sample output 

produced by MAT for a corrective maintenance action and activity. 

 

 

Figure 5.28 Maintenance action produced by MAT 
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5.4 Chapter summary 

 

This chapter presented the description of the case study related to the main engine of 

a Panamax container ship which is applied for the development and analysis of the 

specified methodology tools and models. The input data utilised for the case study 

analysis was also presented. Two datasets of different sizes are used for training and 

analysing the developed networks, while a third dataset is used for validating the ANN 

models based on real vessel data. The main engine FT consists of four levels, 14 static 

and dynamic gates and 42 basic events representing the components of the various 

main engine systems. The main engine FMEA was set up by using the basic events of 

the main engine FT as input in order to investigate potential failure modes, causes, 

effects and detection methods. Moreover, data representing vessel speeds of 4 knots 

or less, or engine speeds of 15 rpm or less are removed from the dataset, as in such 

cases the parameters contain fluctuations that can affect ANN training. The SOM 

developed for clustering the multidimensional input data consists of a 10-by-10 two-

dimensional map of 100 neurons. Afterwards, the selected network structure and 

training parameters were presented for the NAR and NARX models for both input 

datasets 1 and 2 respectively. In terms of the developed engine diagnostic ANN-MLP, 

the network is trained with a large database consisting of actual data from the onboard 

campaigns and artificial data in order to simulate various engine faults. Faults owing 

to fluctuations in the performance parameters monitored are modelled in the network. 

The input dataset consists of 6016 measurements for all 39 engine performance 

parameters, while 16 network target vectors are created and indicate the fault classes 

to which the input vectors have been assigned to. The main engine MCI was presented 

and the process of fitting the performance data to the most suitable distribution fitting 

was described. Additionally, the MCIs are obtained through the concept of RBD and 

the MCI thresholds are flexible and can be altered based on custom values or different 

engine operating loads to monitor the main engine health condition. Finally, the MAT 

flowchart for the main engine system alongside coding structure and steps of MAT 

were also demonstrated. Following the above, the next chapter presents the case study 

results based on the analysis of the developed tools and defined parameters presented 

in this chapter. 
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6 Case Study Results  

 

6.1 Chapter outline 

 

In this chapter, the results of the hybrid condition monitoring strategy for the described 

main engine case study are described. Initially, the results of the main engine FT are 

presented. Specifically, the main engine FT minimal cut sets are demonstrated 

followed by the presentation of the main engine FMEA, leading to the selection of the 

main engine performance parameters based on the results of the above. Subsequently, 

the data cleansing and SOM results comprising of the data preparation stage of the 

hybrid condition monitoring strategy are presented for the selected performance 

parameters. Furthermore, the results of the dynamic neural networks NAR and NARX 

respectively are presented for both dataset 1 and dataset 2. Subsequently, the ANN-

MLP classifier, engine MCIs and MAT results are demonstrated. Finally, Section 6.7 

contains the discussion of the obtained results followed by the chapter summary.  

 

6.2 FTA and FMEA results 

 

This section presents the results obtained for the main engine FTA and constructed 

FMEA worksheet. Firstly, the minimal cut sets of the FT results are presented followed 

by the main engine FMEA table containing components of the main engine, modelled 

as basic events in the FT. 

 

6.2.1 FTA results 

 

The cut set results assist in identifying the potential ways that a failure of the top event 

can occur. The top ranked cut sets lead to the identification of the minimal cut sets 

which are the combination of primary events sufficient for the fault occurrence of the 

top event. Thus, cut sets are employed in the developed main engine FT in order to 

obtain the most critical components and subsystems. Table 6.1 displays the top 10 

minimal cut sets obtained from the main engine FTA. 



140 

 

 

Table 6.1 Main engine FT top 10 minimal cut sets 

# Cut set events Order 

1 Cylinder head, piston crown, piston ring 3 

2 Cylinder head, piston crown, piston rod stuffing box 3 

3 Cylinder head, piston crown, piston connecting rod 3 

4 Cylinder head, piston crown, piston skirt 3 

5 Cylinder head, piston ring, piston rod stuffing box 3 

6 Cylinder head, piston ring, piston connecting rod 3 

7 Cylinder head, piston ring, piston skirt 3 

8 Cylinder head, piston rod stuffing box, piston connecting rod 3 

9 Cylinder head, piston rod stuffing box, piston skirt 3 

10 Cylinder head, piston connecting rod, piston skirt 3 

 

The minimal cut sets are thus obtained providing insight into the components of the 

complex main engine system. By examining Table 6.1, it can be observed that the first 

10 minimal cut sets are third order cut sets and that the most influential set of events 

are components related to the cylinder block assembly subsystem of the main engine 

FT top event. Specifically, the FT results indicate that components such as the cylinder 

head, piston rings, piston skirt and piston crown are the furthermost identified critical 

main engine components.  

 

The importance of the identified critical components of the FT results can also be 

confirmed from a practical viewpoint. The piston crown is subjected to tremendous 

forces and heat during normal engine operation and is thus subject to fatigue, wear and 

tear while the cylinder head secures the top of the combustion chamber and provides 

mechanical support for two other engine components, namely the exhaust valves and 

fuel injectors. Moreover, the piston rings prevent the compressed charge of fuel-air 

mixture from leaking to the other side of the piston as it creates a gas tight fit of the 

piston when moving from Top Dead Centre (TDC) to Bottom Dead Centre (BDC) in 

the cylinder. 

 

Due to the size of the complete main engine cut sets, a summarised table of various 

minimal cut sets, specifically 3rd order FT cut sets and 4th order for the main engine 

system are shown in Table 6.2. Overall, the FT results produce 72 cut sets for the main 
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engine system ranging from 3rd order to 10th order cut sets. Appendix E.1 contains the 

complete table for the main engine cut sets. It is worth mentioning that the top 30 

minimal cut sets are related to the cylinder and piston system components. 

 

Table 6.2 Summary of 3rd order and 4th order main engine FT cut sets 

Cut set events Order 

Cylinder head, piston crown, piston ring 3 

Cylinder liner, piston crown, piston skirt 3 

Piston crown, piston ring, cylinder jacket 3 

Piston connecting rod, piston skirt, cylinder jacket 3 

Crankcase, crankshaft, exhaust valves 3 

Crankcase, exhaust valves, exhaust manifold 3 

Crankshaft, camshaft, exhaust valves 3 

Fuel piping system, fuel oil filter, fuel pumps 3 

Fuel oil filter, fuel valves, fuel injector 3 

Main lube oil pump, lube system valves, lube oil filter, lube oil cooler 4 

 

Alongside the relative cylinder and piston items, other 3rd order cut sets involve 

components from the engine block and components subsystem such as the crankcase, 

crankshaft and camshaft. These are also important engine components as crankcase 

failures can lead to explosions due to the likelihood of cylinder liner and piston skirt 

wear allowing air into the crankcase, thus endangering lives onboard. In addition, the 

camshaft is one of the most critical engine parts as it ensures timing of exhaust valves 

opening/closure and fuel injection. Furthermore, the other 3rd order minimal cut sets 

involve components and items of the engine fuel system and include the fuel piping 

system, fuel oil filter, fuel valves, fuel pumps and fuel injectors. Finally, the 4th order 

engine minimal cut set is related to components of the lubrication oil system which are 

critical for correct engine operation as they assist in providing a slippery film between 

moving parts that reduces wear, dissipate and remove heat resulting from friction and 

also remove contaminants, debris and residues of combustion. 

 

Through the FT results, the engine critical items are identified which if properly 

monitored and maintained, enhance safety and engine condition and performance. 

Moreover, in combination with the FMEA results presented in the next section, the 

identified items are further analysed in terms of their specific failure modes and 
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associated causes, which collectively assist in identifying key performance parameters 

of the main engine critical items for monitoring the engine condition. 

 

6.2.2 FMEA results 

 

The FT minimal cut sets method was employed to obtain the critical components and 

subsystems of the top gate of the FT, which is the main engine system. Table 6.3 

presents a sample of the FMEA table created for the main engine. As observed from 

the FMEA failure events and causes and by examining the local and global effects and 

detection methods; the possible performance parameters to be monitored can be 

identified. The entire main engine FMEA table containing more than 50 failure modes 

for the main engine components is included in Appendix E.2.  

 

Table 6.3 FMEA sample for main engine FTA critical items 

Failed 

Item 

Failure 

Mode 

Failure 

Cause 

Local 

Effect 

Global 

Effect 

Detection 

Method 

Cylinder 

Head 

Cracked Overheating, 

fatigue 

Compression 

loss, cylinder 

damage  

Possible engine 

stop 

Temperature, 

pressure 

alarm 

Overheating Cracks, 

faulty 

exhaust 

valves 

High 

temperature 

alarm, smoke, 

cylinder 

damage 

Possible engine 

stop, engine 

damage 

High 

temperature 

alarm 

Cylinder 

Liner 

Wear  Fatigue, 

lubrication 

oil quality 

Compression 

loss, increased 

lubrication 

consumption 

Engine 

performance 

reduction 

Increment of 

exhaust 

temperature 

in cylinder 

Piston 

Rings 

Scuffing Insufficient 

lubrication 

Scuffing mark 

on liner 

surface, oil 

smoke from 

exhaust 

Engine 

performance 

reduction 

Visual 

inspection 

Fuel Pumps Low supply 

pressure 

Suction valve 

early or late 

operation 

Erratic engine 

operation 

Engine stop, 

engine 

performance 

reduction 

Low 

pressure 

alarm 

Lube Oil 

Cooler 

Temperature 

abnormal 

Fouling Insufficient 

lubrication oil 

cooling 

temperature 

Engine 

overheating, 

Engine stop 

High 

temperature 

alarm 

Jacket Fresh 

Water 

Cooling 

Pump 

Higher 

temperature of 

fresh water  

Clogged, 

faulty 

impeller, 

thermostat 

not operating 

fully 

Cylinder 

overheating 

Engine damage, 

engine slow 

down 

High 

temperature 

alarm 
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The sample table presents the FMEA conducted for the identified critical FTA 

components related to the cylinder and piston, fuel and lubrication system. As 

observed and described in Section 4.3.1, the basic events of the identified minimal cut 

sets of the FT are used as the failed item in the FMEA spreadsheet column. The main 

engine FMEA table indicates that failure modes related to the cylinder head such as 

cracked and overheating can be detected through high temperature and pressure alarms 

and that the effects of such failures would relate to cylinder damage and engine 

damage, locally and globally respectively. In the case of the cylinder liner wear or 

piston ring scuffing, insufficient lubrication could be a possible failure cause. Low 

supply pressure of the fuel pumps can be caused by early or late operation of a suction 

valve and can trigger erratic engine operation. An appropriate relevant performance 

parameter for such a case would be the fuel oil inlet pressure.  

 

In terms of the lube oil cooler, abnormal temperature caused by fouling will have a 

local effect of insufficient lubrication oil cooling temperature, a global effect of engine 

overheating which can be detected from high engine temperature alarms. Monitoring 

parameters such as the main lubrication oil inlet temperature can assist in monitoring 

the system condition and detecting potential failures. Furthermore, high temperature 

of fresh water of the jacket fresh water cooling pump can result in cylinder overheating 

and engine damage. Cracking of cylinder liners and cylinder heads can occur due to 

poor cooling causing thermal fatigue if cooling water is not heated sufficiently prior 

to circulation around the combustion space. All these provide an indication in terms of 

which parameters to monitor. Thus, an engine overheating can be identified by the 

cylinder jacket cooling fresh water outlet temperature and also the cylinder exhaust 

gas outlet temperature. 

 

6.2.3 Selection of main engine performance parameters 

 

Through the FTA-FMEA process, parameters applicable for monitoring the engine 

condition and assisting in detection of the described failure modes for each system and 

component can be identified. Therefore, as described in the previous section, 

performance parameters related to the FT cylinder block assembly system, specifically 
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related to the cylinder subsystem such as the exhaust gas outlet temperature is selected. 

Specifically, the exhaust gas temperature is directly emitted from the engine cylinders 

and therefore will indicate the operation and condition of the engine and its combustion 

process. Additionally, the jacket cooling fresh water outlet temperature per cylinder 

parameter of the jacket water cooling subsystem can also assist in monitoring the status 

of the cylinders and main engine overall. Referring to the piston subsystem, relevant 

performance parameters are the piston cooling lubrication oil outlet temperature per 

engine cylinder and the piston cooling lubrication oil inlet pressure. Monitoring of the 

fuel pumps and FT fuel system overall based on the FMEA failure modes can be 

achieved through examining the fuel oil inlet pressure. Finally, in terms of the FT 

lubrication oil system, the main lubrication oil inlet temperature can assist in 

monitoring the system condition and detecting potential failures. 

 

These parameters can be selected as a first step for the presentation of the novel 

condition monitoring strategy of this research. However, to further enhance the 

research analysis of the thesis, additional parameters available from the data collection 

process during the onboard measurement campaign are also included as presented in 

Table 5.2 of Section 5.2. These include the scavenging air temperature of each cylinder 

for the cylinder system, the fuel oil inlet temperature for the fuel system, the main 

lubrication oil inlet pressure for the lubrication oil system, the air cooler cooling water 

inlet pressure for the air system and the thrust bearing lubrication oil outlet temperature 

for the engine block and components system, based on the main engine FT structure. 

The following section presents the data preparation results regarding the collected case 

study datasets. 

 

6.3 Data preparation results 

 

This section presents the results obtained regarding the application of the data 

cleansing algorithm on the case study datasets and the results obtained from the SOM 

clustering tool. Also, an additional case study applying the SOM for main engine 

condition monitoring applications is also presented. 
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6.3.1 Data cleansing 

 

In terms of the datasets utilised for analysis as described in Table 5.3, dataset 2 required 

cleaning for further data processing in the next steps. Initially, prior to data cleansing 

taking place, a duplication of the original intact dataset is created for back-up purposes. 

Secondly, the main engine rpm is used for cleansing the data. Thus, data related to an 

engine speed of 15 rpm or lower are removed from the dataset as such data 

measurements were invalid and could not be used for further analysis. Furthermore, in 

most of these cases, no data was recorded for any of the main engine parameters. In 

the next step, the data cleansing algorithm searches for empty cells within the dataset. 

Null values are initially assigned to the empty cells and then are replaced with the 

average value of the corresponding attribute. Overall 66 such conditions were 

identified in the dataset. Prior to cleansing, the original size of the dataset consists of 

986 hourly measurements for each parameter; while the dataset size was reduced to 

920 hourly measurements after cleansing. Figure 6.1 illustrates a sample of the data 

cleansing process for a missing attribute value in the exhaust gas temperature outlet of 

main engine cylinder no.3 (units are in degrees Celsius oC).  

 

Raw dataset

Boolean table

Cleansed dataset

 

Figure 6.1 Data cleansing sample for missing attribute in cylinder 3  

 

Figure 6.1 presents a sample of the dataset for the hourly exhaust gas temperature 

outlet (Texh) measurements of cylinders 1-4. The attributes in the raw dataset are 
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compared against the criteria defined in the cleansing algorithm. The Boolean table 

presents the results from the criteria evaluation showing if the conditions are satisfied 

and identifies the location of an empty value attribute. A value of 0 represents that the 

criteria is not met while a result of 1 means that the criteria have been satisfied. Finally, 

the empty cell is replaced by the arithmetic mean of the known attribute values for the 

attributes where the criteria have been satisfied. Through the data cleansing process, 

the cleansed data is obtained ready for analysis in the next stages. 

 

6.3.2 SOM results 

 

This section presents the results obtained from training the developed SOM after the 

data cleansing process. Once training of the SOM is complete, the multidimensional 

input data vectors representing the main engine performance parameters have been 

assigned into clusters. The initialisation of the SOM training spreads the initial SOM 

weights across the input space. The SOM topology after training is presented in Figure 

6.2, in which the green dots represent the input training data vectors for the cylinder 

main engine parameters and the red dots represent the SOM neurons-clusters assigned 

to the data points, while the blue lines connect each node of the map. 

 

 

Figure 6.2 Main engine SOM topology after training 
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The final SOM topology is presented after training has occurred with all input data 

according to the batch unsupervised weight/bias training algorithm. For visualisation 

purposes, the SOM is plotted in three-dimensions illustrating in each dimensional axis 

the normalised measurement values of 3 out the 11 main engine cylinder parameters. 

The SOM clusters obtained alongside the data they contain are presented in Table 6.4. 

 

Table 6.4 Main engine SOM clusters and description 

Description SOM Cluster 

All monitored parameters in normal operating conditions 49, 77, 87, 99 

Cylinder Scavenging Air Temperature above OEM threshold 51, 62, 92 

Cylinder Scavenging Air Temperature excessive 61, 71, 81, 91 

Cylinder Exhaust Gas Outlet Temperature above OEM threshold 80, 89 

Cylinder Exhaust Gas Outlet Temperature excessive 79, 100 

Cylinder Jacket Cooling Fresh Water Outlet Temperature above OEM 

threshold 

26, 27, 86, 95 

Cylinder Jacket Cooling Fresh Water Outlet Temperature excessive 5, 6, 16 

Piston Cooling Lubrication Oil Inlet Pressure above OEM threshold 34, 35, 45 

Piston Cooling Lubrication Oil Inlet Pressure excessive 28, 67, 96 

Piston Cooling Oil Outlet Temperature above OEM threshold 59, 66, 75, 76 

Piston Cooling Oil Outlet Temperature excessive 50, 55, 60, 65 

Fuel Oil Inlet Temperature above OEM threshold 74, 82 

Fuel Oil Inlet Temperature excessive 30, 40, 72, 73 

Fuel Oil Inlet Pressure above OEM threshold 68, 69, 78 

Fuel Oil Inlet Pressure excessive 10, 93, 94 

Air Cooler Cooling Water Inlet Pressure above OEM threshold 29, 84, 97 

Air Cooler Cooling Water Inlet Pressure excessive 20, 36, 37, 47 

Main Lubrication Oil Inlet Pressure above OEM threshold 8, 9, 18 

Main Lubrication Oil Inlet Pressure excessive 58, 85 

Main Lubrication Oil Inlet Temperature above OEM threshold 19, 25, 52, 53 

Main Lubrication Oil Inlet Temperature excessive 32, 33, 43 

Thrust Bearing Lubrication Oil Outlet Temperature above OEM 

threshold 

39, 88, 98 

Thrust Bearing Lubrication Oil Outlet Temperature excessive 21, 31, 38, 41 

All data excessive 1, 2, 3, 12, 13 
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In more detail, data representing normal engine operating conditions are assigned into 

the SOM clusters 49, 77, 87 and 99 respectively. Moreover, if all parameters in the 

dataset are excessive, then they are represented by clusters 1, 2, 3. 12 and 13. Data 

corresponding to the fuel oil inlet temperature being above the OEM threshold is 

clustered into cluster 74 and 82 while clusters 30, 40, 72 and 73 indicate that in the 

dataset the fuel oil inlet temperature is excessive. Thus, as presented in Table 6.4, the 

SOM network has successfully clustered the main engine cylinder data into various 

clusters representing particular characteristics within the dataset. Moreover, it can be 

noticed from Table 6.4 and Figure 6.2 that not all 100 neurons of the SOM have been 

assigned to the input data, thus remaining inactive, meaning that no input vectors from 

the training dataset has been assigned to such clusters. However, the SOM algorithm 

treats all the neurons on the map as active and does learning accordingly.  

 

The main reason of occurrence of inactive clusters is due to the nature of the data used 

for the SOM training and the competitive training process, as data with similar 

characteristics will be assigned to the same cluster or neighbouring clusters of the map. 

Also, during the competitive training process, clusters and neighbouring clusters are 

shifted towards areas of the map with higher data density. Therefore, if input vectors 

occur with varying frequency throughout the input space, the feature map layer tends 

to allocate neurons to an area in proportion to the frequency of input vectors there. 

Neurons close to the winning neuron for each input vector are updated along with the 

winning neuron.  

 

After the network training phase, the trained SOM network is saved in order to carry 

out additional simulations using new data as input. To validate the network 

performance in clustering data successfully, new input data is used to simulate the 

SOM model. The input dataset represents actual engine data operating under normal 

operating conditions extracted from dataset 3 for cylinder 1. 

 

The data consisting of raw performance parameters measurements are normalised prior 

to input in the trained SOM network. After simulating the data in the trained SOM, the 

SOM has clustered the actual engine data for all eight cylinders into clusters 49, 77 
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and 57. As observed, the data have been clustered successfully in cluster 49 and 77 

which represent parameters operating in normal conditions as represented in Table 6.4. 

Moreover, it can be noticed that a fraction of the dataset has been clustered in the SOM 

cluster 57, which has previously remained inactive in reference to the SOM training 

results. By using the Euclidean distance metric and the custom developed algorithm 

for identifying similar clusters, the clusters with the shortest distance related to cluster 

57 can be identified and are displayed in Table 6.5 in order to identify potential 

neighbouring clusters containing similar data. 

 

Table 6.5 Similar clusters to cluster 57 based on Euclidean distance criteria 

Euclidean 

Distance  
<0.1 <0.15 <0.2 <0.25 <0.3 <0.35 

Similar 

Clusters 
No No 48, 56 No No 42, 46, 77 

 

The results of Table 6.5 indicate that the identified neighbouring clusters to cluster 57 

are inactive apart from cluster 77 which represents healthy engine performance data. 

Therefore, it can be concluded that cluster 57 also represents healthy engine data based 

on the fact that the Euclidean distance criteria between these clusters is satisfied. Thus, 

the input monitored data representing healthy data has been successfully clustered in 

the SOM in combination with the custom algorithm identifying clusters that have the 

shortest distance between them containing similar data. Table 6.6 presents the 

Euclidean distances for cluster 57 with respect to the identified neighbouring clusters. 

 

Table 6.6 Euclidean distances of identified clusters to cluster 57 

Cluster  Status Distance 

48 Inactive 0.157 

56 Inactive 0.158 

77 Healthy data 0.336 

42 Inactive 0.342 

46 Inactive 0.349 
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6.3.2.1 SOM case study for condition monitoring applications 

 

This case study demonstrates the capability of the SOM to monitor the main engine 

condition by identifying clusters containing data which are diverse compared to data 

representing normal engine operating conditions. The SOM is applied for performance 

parameters of the most critical systems identified in the FTA-FMEA process. These 

parameters refer to the exhaust gas temperature outlet of cylinder 8, piston cooling oil 

temperature outlet of cylinder 8 and piston cooling oil inlet pressure of the main 

engine. 

 

Data related to these parameters are extracted from dataset 1 and correspond to a 

constant vessel speed of 14 knots as the main engine operates at 60 rpm. Specifically, 

57 measurements per parameter were used as input for the training of the SOM. With 

the main engine operating at 60 rpm, the cylinder exhaust gas temperature ranged from 

250 to 260 °C, the piston cooling oil outlet temperature between 48 and 51 °C and the 

piston cooling oil inlet pressure readings were constant at 2.7-2.8 kg/cm2. However, 

additional artificial data is used for the analysis which correspond to unusual 

measurements of the monitored parameters, representing abnormal engine behaviour 

affecting the performance of the main engine. These measurements are compared to 

those related to the engine speed and rpm which represent the normal engine operating 

condition. As an additional functionality, data exceeding OEM alarm threshold levels 

are also used for the analysis as these thresholds fulfil the requirements of the engine 

manufacturer and ensure the safe operation of the main engine.  

 

Table 6.7 displays the thresholds utilised to determine abnormal engine operation both 

for the scenario of the apparently vague parameter measurements and measurements 

exceeding the engine guide recommended thresholds. The abnormal state thresholds 

for the monitored parameters were defined based on discussions with experts such as 

senior and technical marine engineers, two ship operators and three Classification 

Societies senior personnel with ship systems experience and expertise, interviewed as 

part of the INCASS project. 
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Table 6.7 Alarm thresholds for the main engine monitored parameters 

Measurable engine 

parameter 

Normal 

range 

Abnormal 

state 

OEM alarm 

threshold 

Cylinder exhaust gas 

temperature outlet oC 

250-260 Lower than 200, 

Greater than 300 

Greater than 450 

Cylinder piston cooling oil 

temperature outlet oC 
48-51 Greater than 65 Greater than 70 

Piston cooling oil pressure inlet 

kg/cm2 
2.7-2.8 Lower than 1.8 Lower than 1.4 

 

The SOM created for clustering the multidimensional input vectors consists of a 4-by-

4 two-dimensional map of 16 neurons. Once training is complete, the 

multidimensional input data vectors have been assigned into clusters. The SOM 

topology after training is shown in Figure 6.3. 

 

 

Figure 6.3 SOM main engine clusters after training 

 

As observed in Figure 6.3, cluster 15 represents data in which the cylinder piston 

cooling oil outlet temperature operates in an abnormal state while the piston cooling 

oil inlet pressure and cylinder exhaust gas temperature are operating normally. The 

data has been clustered into twelve clusters as observed in Table 6.8. Each cluster the 
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data has been assigned to has been labelled to provide informative insight regarding 

the condition of the monitored parameters and the main engine. 

 

Table 6.8 Description of clusters 

Cluster  Cluster Description 

12 No faults- normal operating parameter values 

16 Cylinder exhaust gas temperature outlet abnormal state, lower than 200 oC 

7 Cylinder exhaust gas temperature outlet abnormal state, greater than 300 oC 

4 Cylinder exhaust gas temperature outlet exceeding OEM alarm level 

15 Piston cooling oil outlet temperature abnormal state 

11 & 14 Piston cooling oil outlet temperature exceeding OEM alarm level 

2 Piston cooling oil inlet pressure abnormal state 

1 Piston cooling oil inlet pressure OEM alarm level 

6 & 10 All monitored parameters operating in abnormal state 

9 All monitored parameters exceeding OEM alarm levels 

 

As observed in Table 6.8, the clusters produced by the SOM have clustered the 

multidimensional data related to the cylinder of the main engine and have been 

interpreted accordingly to provide useful data insight. Specifically, the data have been 

classified into 10 categories. Cluster 12 represents no faults, in which the monitored 

parameters are operating under normal conditions. On the other hand, clusters 16 and 

7 represent abnormal data indicating decreased or increased cylinder exhaust gas 

temperature respectively compared to the normal engine operating values at 60 rpm, 

while the cylinder piston cooling oil outlet temperature and inlet pressure are operating 

normally. Cluster 4 contains data related to the exhaust gas temperature exceeding the 

OEM alarm level.  

 

Additionally, data representing all parameters operating simultaneously in abnormal 

state have been clustered into cluster 6 and 10 and have been assigned under one group 

based on the interclustering approach. During the SOM training process no data has 

been assigned to cluster 5 and 13. This is due to the reasons mentioned in the previous 

section. After the network training phase, the network is saved to carry out additional 

simulations using new data as input. In order to validate the network performance in 

clustering data successfully, new input data is used to simulate the SOM model. The 

parameters are normalised for the simulation and the input data and the resulting 

cluster numbers are shown in Table 6.9. 
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Table 6.9 New input data and assigned clusters 

Parameters Healthy state 

Exhaust gas 

increased 

(abnormal state) 

All parameters 

abnormal state 

Exhaust gas 

temperature outlet 
251 253 255 304 310 312 301 305 310 

Piston cooling oil 

outlet temperature 
49 48.5 50 50 48 49 65 66 67 

Piston cooling oil 

inlet pressure 
2.7 2.8 2.7 2.7 2.7 2.7 1.8 1.7 1.7 

ANN-SOM cluster 

results 
12 12 12 7 7 7 10 10 10 

 

The results of the clustering process in the table above successfully demonstrate the 

ability of the trained SOM to cluster the input data with abnormal parameter values. 

As observed, the first three sets of data represent actual data extracted from dataset 3 

and are assigned to the SOM cluster 12 which represents healthy data. The next three 

input vectors represent data for abnormal increased exhaust gas outlet temperature and 

this has been clustered accordingly in cluster 7. The data representing the abnormal 

engine operating conditions have been created using artificial data. Finally, the last 

three input data display data in abnormal state compared to the normal engine 

operating condition for all three monitored parameters and the SOM has classified this 

data in cluster 10 effectively.  

 

6.4 NAR and NARX results 

 

This section presents the results regarding the developed NAR and NARX network 

models for the main engine performance parameters. The results are presented for the 

modelled main engine systems for both dataset 1 and dataset 2. 

 

6.4.1 NAR results for dataset 1 

 

This section presents the results obtained for the main engine performance parameters 

related to dataset 1. A set of 39 parallel neural networks are created in order to forecast 

the upcoming 5 hourly values of each parameter. Due to the large number of networks 
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developed, for ease of reading, this section presents and describes the results obtained 

for the exhaust gas temperature outlet of cylinder 8 based on the developed NAR 

network training results. A summary table of results for parameters related to the main 

engine FT subsystems is also provided. Appendix F.1 contains the results of all trained 

NAR networks for the remaining 38 main engine parameters. The regression plots of 

the correlation coefficient R for the training and testing data set as shown in Figure 

6.4. 

 

 

Figure 6.4 NAR regression results for cylinder 8 exhaust gas outlet temperature 

 

The regression plot showing the correlation coefficient R is a good measure of how 

well the NAR network has fitted the data and displays the network outputs with respect 

to targets for training and test sets. The regression plot shows the actual network 

outputs on the y axis plotted in terms of the associated target values presented in the x 

axis of the plot. Regression values measure the correlation between outputs and targets. 

A correlation coefficient R value of 1 implies a perfect fit of outputs exactly equal to 

targets. It should be reminded at this point, that the Bayesian regularisation training 

algorithm does not use a validation set but includes this in the training set. The plot 

results indicate a good network fit to the input data for the exhaust gas temperature 

outlet of cylinder 8. Specifically, the training data indicate a good fit as does the test 

data results, showing values of R equal to 90% in both sets. 
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Besides the correlation coefficient, the error autocorrelation function is used to validate 

the NAR network performance. This function describes how the prediction errors are 

related in time. For a faultless prediction network model, there should be only one non-

zero value of the autocorrelation function occurring at zero lag implying that the 

forecast errors are entirely uncorrelated with each other. Figure 6.5 presents the error 

autocorrelation function results for exhaust gas outlet temperature of cylinder no.8. 

The remaining are shown in Appendix F.1.3. 

 

 

Figure 6.5 Autocorrelation of error for cylinder 8 exhaust gas outlet temperature 

 

Satisfactory network training has been achieved as the forecast errors are completely 

uncorrelated with each other and fall within the 95% confidence limits around zero 

which are calculated based on the sample size of the time series data generated from 

the MATLAB autocorrelation function. This implies that the prediction errors are 

completely uncorrelated with each other. Figure 6.6 presents the forecasted results 

with their 95% prediction intervals for cylinder 8 exhaust gas outlet temperature. 

 

 

Figure 6.6 NAR forecast results for exhaust gas outlet temperature of cylinder 8 
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The first 30 hourly measurements are the recorded values from the dataset, while the 

last 5 hourly data points, from 31 hours until 35 hours are the ones forecasted from the 

NAR model, which lie within the expected prediction intervals. The recorded 

temperatures for the cylinder are within the range of 245 oC to 260 oC and such 

variations could be the result of the specific state and condition of the individual 

cylinder. Specifically, an increase of approximately 10 oC after 17-18 hours of 

operation is observed which is negligible but can be tracked due to an increase in the 

engine fuel load. This is due to the engine governor regulating the engine speed, as the 

vessel was sailing at a constant speed of 10 knots. Moreover, localised weather 

conditions such as current, waves and wind direction could be contributing factors. 

Similar patterns are observed in all other cylinders as shown in Appendix F.1.4. 

 

For ease of reading, Table 6.10 presents a sample of the various NAR models 

developed for performance parameters of the main engine modelled systems. The 

remaining results are contained in Appendix F.1.2. The forecasted results are 

compared with the actual onboard measurements using the APE and MAPE criteria 

for validation purposes.  

 

Table 6.10 NAR multi-step-ahead forecast results for dataset 1 (sample) 

Parameter Results t+1 t+2 t+3 t+4 t+5 MAPE 
Cylinder Exhaust 

Gas Outlet 

Temperature no.1 

Actual 263 260 262 262 263 
 

ANN Prediction 262.2 262.4 262.4 262.4 262.4 
 

APE 0.30% 0.92% 0.15% 0.15% 0.23% 0.35% 

Thrust Bearing 

LO Outlet 

Temperature 

Actual 46.8 46.8 46.7 46.8 46.8 
 

ANN Prediction 46.8 46.8 46.8 46.8 46.8 
 

APE 0.01% 0.01% 0.20% 0.02% 0.02% 0.05% 

Fuel Oil Inlet 

Temperature 

Actual 136 137 137 137 137 
 

ANN Prediction 137.2 137.2 137.3 137.3 137.3 
 

APE 0.88% 0.18% 0.22% 0.24% 0.25% 0.35% 

Main Lubrication 

Oil Inlet Pressure 

Actual 2.8 2.8 2.8 2.8 2.8 
 

ANN Prediction 2.8 2.8 2.8 2.8 2.8 
 

APE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Cylinder JCFW 

Outlet 

Temperature no.1 

Actual 83 83 83 83 83 
 

ANN Prediction 83.4 83.3 83 83.1 83 
 

APE 0.48% 0.36% 0.00% 0.12% 0.00% 0.19% 

Air Cooler 

Cooling Water 

Inlet Pressure 

Actual 3.1 3.2 3.1 3.1 3.1 
 

ANN Prediction 3.1 3.1 3.1 3.1 3.1 
 

APE 0.00% 2.82% 0.00% 0.00% 0.00% 0.56% 
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As observed from Table 6.10, the actual and NAR network forecasted results for the 

engine parameters are provided for five step-ahead predictions from the present 

timestep t. The maximum APE between the actual and predicted values is 2.82% for 

the air cooler cooling water inlet pressure. Moreover, by examining the overall table 

of results (provided in Appendix F.1.2), the maximum MAPE model is equal to 1.02% 

for the exhaust gas outlet temperature of main engine cylinder 7. As such, the 

performance and accuracy of the 39 trained NAR neural networks are verified, 

indicating satisfactory predictive time series capabilities. 

 

6.4.2 NAR and NARX results for dataset 2 

 

6.4.2.1 NAR results 

 

This section presents the results obtained for the NAR models related to each main 

engine performance parameter regarding dataset 2. In total, 39 NAR dynamic neural 

network models are developed to forecast the upcoming 20 hourly measurements of 

each parameter. As mentioned in Section 6.3.1 for dataset 2, the original dataset size 

of 986 hourly measurements per parameter was reduced to 920 after the data cleansing 

and preparation process.  

 

In terms of training the networks, 900 measurements are used while the last 20 hourly 

measurements of the dataset are used in order to compare the forecasted network 

results with the actual recorded results. Relevant results for all developed NAR models 

are contained in Appendix F.2. 

 

The regression plots of the correlation coefficient R for the training, test and all data 

regarding the piston cooling oil outlet temperature of cylinder 5 is presented in Figure 

6.7 below. Regression results for all models can be found in Appendix F.2.1. 
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Figure 6.7 NAR regression results for cylinder 5 piston cooling oil outlet temperature  

 

The regression plot displays a good network fit to the input data. Specifically, for the 

training data the results indicate a correlation coefficient value of 99.39% while 

93.05% is achieved for the test data. Figure 6.8 presents the forecasted results with the 

95% calculated prediction intervals for the piston cooling oil outlet temperature of 

cylinder 5. 

 

 

Figure 6.8 NAR forecast results for cylinder 5 piston cooling oil outlet temperature  

 

For ease of reading and presenting, the last 10 hourly measurements of the actual 

dataset are plotted in blue, while the 20 forecasted measurements, from timestep 11 to 
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30, are plotted in green and the corresponding red dots represent the actual monitored 

values. The piston cooling oil outlet temperature ranges from 51 oC to 56 oC. Overall, 

the NAR model is capable of predicting the future values of the time series as all values 

lie within the prediction intervals. The model has a MAPE value of 1.07% for the total 

20 forecasted points, demonstrating satisfactory forecasting capabilities overall. 

Moreover, the APE for each forecasted value is small but there are however some 

instances where particular APE values are significantly larger than other observations. 

Due to its large size, the table of APE and MAPE results for each NAR model is 

presented in Appendix F.2.2. Specifically, at timestep 17 and 18 it can be observed 

that the oil temperature decreased approximately by 4 oC from 56 oC to 52 oC and the 

APE values are equal to 1.56% and 1.97% respectively. A similar situation can be 

observed in timesteps 23 and 30 where the actual values are smaller than the forecasted 

ones and their APE values are equal to 2.93% and 3.11% respectively.  

 

Nevertheless, the NAR model is able to successfully forecast the majority of the future 

piston cooling oil temperature values, with all values falling within the 95% prediction 

intervals and maintain a low overall MAPE value which is due to the its capability of 

capturing the general parameter trendline as observed in Figure 6.8. However, this is 

not the case for all parameters modelled with the NAR models, as observed in Figure 

6.9 presenting the results for the exhaust gas outlet temperature of cylinder 5.  

 

 

Figure 6.9 NAR forecast results for exhaust gas outlet temperature of cylinder 5 
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As observed, although the NAR model for the cylinder exhaust gas forecasts most 

values successfully, the results obtained have significant errors in timesteps 17, 18 and 

23 specifically, owing mostly in the alteration of the main engine’s rpm. Specifically, 

from timestep 1-15 the engine speed is equal to 61-63 rpm while at timestep 17 it is 

reduced to 40 rpm and is then increased to 51 rpm, thus explaining the shift in the 

parameters and the reasonable hiatus of the NAR model to capture this change. 

Moreover, the next section presents the results for the NARX models which aims to 

resolve this issue by introducing the main engine’s rpm as exogenous input to the time 

series models. 

 

For ease of reading, Table 6.11 presents a sample of the various NAR forecast results 

related to the various the main engine performance parameters. The remaining results 

are contained in Appendix F.2.2 and F.2.4. As observed in Table 6.11, the actual and 

NAR network forecasted results for the engine parameters are provided for the twenty 

step-ahead predictions from the present timestep t.  

 

Overall, the trained models can predict the future values of the time series as all future 

values lie within the prediction intervals and are close to the actual recorded values, 

hence verifying good network accuracy and performance. However, high APE results 

are observed in the main engine cylinder exhaust gas outlet temperature models, in the 

timesteps in which alteration in the main engine rpm occurs. Moreover, the maximum 

MAPE model is equal to 5.88% for the total 20 forecasted points of cylinder 4 exhaust 

gas outlet temperature model. The next section presents the results obtained for the 

developed main engine NARX models, which consider the main engine rpm as 

exogenous input in the time series analysis and forecasting process. 
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Table 6.11 NAR multi-step-ahead forecast results for dataset 2 (sample) 

 

 

 

 

Parameter Results t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 t+13 t+14 t+15 t+16 t+17 t+18 t+19 t+20 MAPE

Actual 317.10 316.90 314.50 314.10 315.50 319.30 248.80 234.10 276.60 274.20 271.10 270.70 188.50 278.50 273.40 272.60 271.60 271.50 272.20 242.20

ANN Prediction 316.89 315.01 316.41 312.94 314.92 317.61 294.80 284.13 281.76 271.90 273.86 267.23 252.50 293.67 286.24 283.91 283.80 281.00 281.50 268.20

APE 0.07% 0.60% 0.61% 0.37% 0.18% 0.53% 18.49% 21.37% 1.87% 0.84% 1.02% 1.28% 33.95% 5.45% 4.70% 4.15% 4.49% 3.50% 3.42% 10.73% 5.88%

Actual 308.10 308.30 307.50 308.40 307.80 308.30 221.60 238.10 279.80 276.20 275.00 274.10 196.70 282.10 281.00 278.70 276.00 277.20 274.20 249.20

ANN Prediction 307.50 308.30 307.50 308.40 307.80 307.30 282.00 278.50 279.00 275.10 275.20 273.90 271.65 282.00 282.30 280.13 279.13 279.04 278.41 261.32

APE 0.19% 0.00% 0.00% 0.00% 0.00% 0.32% 27.26% 16.97% 0.29% 0.40% 0.07% 0.07% 38.10% 0.04% 0.46% 0.51% 1.13% 0.66% 1.54% 4.86% 4.64%

Actual 50.30 50.50 50.70 50.70 50.60 50.90 48.40 47.40 49.00 48.80 48.70 48.70 47.50 49.40 49.20 49.20 49.10 49.10 49.10 48.30

ANN Prediction 50.10 50.35 50.60 50.70 50.60 50.60 48.00 47.30 48.91 48.70 48.60 48.69 47.39 49.00 49.20 49.10 49.20 49.11 49.10 49.00

APE 0.40% 0.30% 0.20% 0.00% 0.00% 0.59% 0.83% 0.21% 0.18% 0.20% 0.21% 0.02% 0.23% 0.81% 0.00% 0.20% 0.20% 0.02% 0.00% 1.45% 0.30%

Actual 7.45 7.43 7.40 7.41 7.42 7.37 7.70 7.74 7.66 7.72 7.71 7.65 7.72 7.61 7.62 7.61 7.60 7.59 7.59 7.70

ANN Prediction 7.45 7.50 7.52 7.52 7.52 7.46 7.59 7.61 7.57 7.56 7.57 7.57 7.61 7.55 7.57 7.55 7.56 7.56 7.56 7.59

APE 0.12% 0.94% 1.69% 1.56% 1.43% 1.16% 1.44% 1.65% 1.19% 2.03% 1.80% 1.05% 1.44% 0.78% 0.66% 0.74% 0.58% 0.42% 0.38% 1.44% 1.12%

Actual 45.20 45.30 45.30 45.30 45.40 45.30 45.30 45.10 45.20 45.30 45.10 45.30 45.20 45.30 45.30 45.30 45.10 45.10 45.20 45.20

ANN Prediction 45.25 45.27 45.27 45.28 45.26 45.25 45.27 45.26 45.27 45.25 45.25 45.25 45.24 45.25 45.23 45.25 45.25 45.25 45.25 45.25

APE 0.10% 0.07% 0.06% 0.04% 0.30% 0.11% 0.07% 0.35% 0.16% 0.10% 0.33% 0.11% 0.08% 0.12% 0.14% 0.12% 0.33% 0.34% 0.10% 0.11% 0.16%

Actual 3.89 4.04 4.22 4.24 4.24 4.25 4.19 3.87 4.24 3.86 3.80 3.86 3.86 3.81 3.83 3.74 3.75 3.74 3.73 3.75

ANN Prediction 3.93 3.95 4.18 4.18 4.20 4.24 4.20 4.15 4.16 3.81 3.79 3.84 3.84 3.70 3.71 3.64 3.66 3.71 3.71 3.71

APE 1.06% 2.21% 1.01% 1.49% 1.02% 0.32% 0.19% 7.35% 1.96% 1.18% 0.38% 0.40% 0.40% 2.95% 2.90% 2.76% 2.49% 0.89% 0.73% 1.16% 1.64%

Actual 84.80 85.00 85.40 85.30 85.40 86.20 86.20 86.10 85.80 85.50 85.50 85.40 84.70 85.70 85.50 85.70 85.40 85.70 85.40 85.40

ANN Prediction 85.24 85.38 85.31 85.20 85.45 85.51 85.52 85.55 85.44 85.68 85.82 85.68 85.67 85.76 85.78 85.97 85.90 85.74 85.64 85.86

APE 0.52% 0.44% 0.11% 0.12% 0.06% 0.80% 0.78% 0.63% 0.42% 0.21% 0.38% 0.33% 1.15% 0.06% 0.33% 0.31% 0.59% 0.05% 0.28% 0.54% 0.41%

Actual 54.90 55.40 55.80 55.80 55.60 55.90 51.30 50.80 53.00 52.80 52.70 52.70 51.20 53.20 53.00 52.90 52.80 52.70 52.70 51.50

ANN Prediction 54.10 55.00 55.80 55.40 55.50 55.70 52.10 51.80 52.90 52.10 52.60 52.70 52.70 52.80 52.10 52.14 53.60 53.10 53.00 53.10

APE 1.46% 0.72% 0.00% 0.72% 0.18% 0.36% 1.56% 1.97% 0.19% 1.33% 0.19% 0.00% 2.93% 0.75% 1.70% 1.44% 1.52% 0.76% 0.57% 3.11% 1.07%
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6.4.2.2 NARX results 

 

This section presents the results obtained for the NARX models related to the main 

engine performance parameters. In total, 39 NARX dynamic neural network models 

are developed which utilise the main engine rpm as the exogenous input time series. 

For multi-step-ahead predictions in the NARX model, data for the exogenous input is 

required. The NARX models are developed to forecast a one-step-ahead prediction 

which requires past values of both the exogenous input and target time series.  

 

Moreover, by following the steps presented in Figure 4.7, the trained NARX models 

can be utilised to simulate further forecast predictions based on the obtained one-step-

ahead prediction results. The results are presented in the next pages for the main engine 

subsystems. All relevant results for all developed NARX models are contained in 

Appendix F.3. 

 

The upcoming 20 hourly measurements of cylinder 5 exhaust gas outlet temperature 

are presented in Figure 6.10 below to demonstrate and compare the results obtained 

against the results of the respective NAR case study presented in Figure 6.9.  

 

 

Figure 6.10 NARX forecast results for exhaust gas outlet temperature of cylinder 5 

and comparison with NAR results 
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The forecasted NARX results are plotted in green for timesteps 11-30 hours while the 

actual values are plotted as red dots on the graph. Moreover, the magenta triangles 

represent the associated NAR results of Figure 6.9 for cylinder 5. As observed by 

examining the graph, compared to the NAR model, the trained NARX model is 

capable of identifying the fluctuations in the modelled parameter through the addition 

of the main engine rpm as the exogenous input to the time series model and analysis. 

Specifically, in the 17th, 18th and 23rd hour mark the exhaust gas temperature forecasted 

values fall close to the actual monitored values compared to the NAR results. 

 

In the 17th hour interval, for the NAR model the APE value between the forecasted and 

actual exhaust gas outlet temperature value is equal to 27.26%, while the results for 

the NARX model indicate a major reduction in the APE of 23.12% magnitude, 

resulting in an APE value for the NARX model of 4.14%. Furthermore, in the 18th 

hourly mark the APE is reduced from 16.97% to 1.20% and at 23 hours it is reduced 

from 38.10% obtained in the NAR model to 4.52% by applying the NARX model. 

Moreover, the overall model MAPE value is reduced from 4.64% down to 1.02%.  

 

Table 6.12 presents a summary of the NARX APE and MAPE results for the main 

engine parameters in which the most significant changes in APE results were obtained 

compared to the corresponding NAR results. Specifically, significant changes were 

observed in the exhaust gas outlet temperature and scavenging air temperature, 

particularly related to the 17th, 18th and 23rd hourly timesteps, in which significant 

shifts in the monitored parameters exist due to the alteration of the main engine’s rpm. 

By examining Table 6.12, it can be noticed that for the specific timesteps presented, 

the APE values have been significantly reduced by comparing the NARX and NAR 

results for the main engine parameters. Moreover, this results in an important reduction 

in the overall MAPE of the models for the total 20 hourly forecasted values of each 

parameter, thus improving the forecasting accuracy by introducing the main engine 

rpm as the exogenous input in the NARX models. Appendix F.3.2 contains the 

complete NARX APE and MAPE results for the main engine parameters and 

Appendix F.3.3 includes all graphs and 95% prediction intervals. 
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Table 6.12 Comparison of APE-MAPE for NAR and NARX models 

Main Engine Parameter ANN 

Model 

Timestep & APE Model 

MAPE 17 18 23 

Cylinder exhaust gas outlet 

temperature no.1 

NAR 5.63% 24.71% 25.48% 3.25% 

NARX 2.64% 2.58% 2.49% 0.61% 

Cylinder exhaust gas outlet 

temperature no.2 

NAR 6.87% 19.78% 26.04% 4.65% 

NARX 1.46% 2.13% 4.62% 0.84% 

Cylinder exhaust gas outlet 

temperature no.3 

NAR 14.02% 8.93% 29.66% 3.72% 

NARX 3.10% 2.26% 5.19% 0.83% 

Cylinder exhaust gas outlet 

temperature no.4 

NAR 18.49% 21.37% 33.95% 5.88% 

NARX 2.87% 4.00% 7.92% 1.19% 

Cylinder exhaust gas outlet 

temperature no.5 

NAR 27.26% 16.97% 38.10% 4.64% 

NARX 4.14% 1.20% 4.52% 1.02% 

Cylinder exhaust gas outlet 

temperature no.6 

NAR 0.94% 13.75% 33.45% 3.65% 

NARX 0.54% 1.76% 8.43% 0.87% 

Cylinder exhaust gas outlet 

temperature no.7 

NAR 11.45% 26.03% 42.13% 4.80% 

NARX 1.48% 4.30% 7.56% 0.93% 

Cylinder exhaust gas outlet 

temperature no.8 

NAR 8.48% 24.84% 43.41% 4.86% 

NARX 2.28% 0.91% 5.35% 1.63% 

Cylinder scavenging air 

temperature no.1 

NAR 12.92% 8.03% 0.97% 2.10% 

NARX 2.15% 1.61% 0.97% 0.52% 

Cylinder scavenging air 

temperature no.2 

NAR 12.29% 10.68% 2.00% 2.30% 

NARX 2.51% 1.23% 1.00% 0.64% 

Cylinder scavenging air 

temperature no.3 

NAR 15.52% 11.80% 1.14% 3.73% 

NARX 2.11% 0.98% 0.76% 0.55% 

Cylinder scavenging air 

temperature no.4 

NAR 13.52% 15.49% 0.78% 3.23% 

NARX 1.59% 0.20% 0.19% 0.41% 

Cylinder scavenging air 

temperature no.5 

NAR 13.76% 15.51% 5.77% 3.61% 

NARX 0.19% 0.60% 0.96% 0.52% 

Cylinder scavenging air 

temperature no.6 

NAR 13.79% 10.61% 2.09% 3.10% 

NARX 0.57% 0.39% 0.19% 0.51% 

Cylinder scavenging air 

temperature no.7 

NAR 13.48% 13.22% 0.82% 3.55% 

NARX 2.21% 0.83% 0.10% 0.69% 

Cylinder scavenging air 

temperature no.8 

NAR 16.35% 11.24% 4.58% 4.07% 

NARX 1.58% 0.59% 0.23% 0.71% 
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6.5 Present and predictive assessment results  

 

6.5.1 ANN-MLP results 

 

The overall results of the trained ANN-MLP classifier, described in Section 5.3.4, are 

presented in Table 6.13, showing the total percentage of correctly classified and 

misclassified cases for the training, validation, test dataset and all three sets combined. 

 

Table 6.13 ANN MLP response results 

Data Accuracy % Error % 

Training set 100.00% 0.00% 

Validation set 98.70% 1.30% 

Test set 98.70% 1.30% 

All data 99.60% 0.40% 

 

The results for all three datasets show excellent network response and classification 

accuracy by checking the high percentage of correct responses and the low percentage 

of incorrect responses. Furthermore, another measure of the quality of the network is 

examining how well the neural network has fitted data is the Receiver Operating 

Characteristic (ROC) plot shown in Figure 6.11 for all datasets.  

 

 

Figure 6.11 Receiver Operating Characteristics for all network 16 fault classes 
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This shows how the false positive and true positive rates relate as the thresholding of 

outputs is varied from 0 to 1. The farther left and up the line is, the fewer false positives 

need to be accepted in order to get a high true positive rate. The best classifiers will 

have a line going from the bottom left corner, to the top left corner, to the top right 

corner, or close to that. As observed, the network performs almost perfectly as most 

points and fault classes are in the upper left corner of the ROC plots. Figure 6.12 

presents the detailed confusion matrix for the network test dataset for all 16 main 

engine fault classes. The rows correspond to the output classes of the network and the 

columns show the true class (target class). Appendix G.1 contains the detailed 

confusion matrices for the training, validation and complete dataset. 

 

 

Figure 6.12 Test dataset confusion matrix for all 16 main engine fault classes 



167 

 

The diagonal green cells show for how many and what percentage of the data the 

trained network has correctly estimated the classes of the observations, while the red 

cells show the misclassified cases. Thus, it shows which percentage of the true and 

predicted classes match. Overall the results for all the modelled main engine fault 

classes show excellent network response and 98.7% classification accuracy overall has 

been achieved. As a reminder, network output classes are connected and referenced 

with engine fault codes (F0-F15) as defined in Table 5.8 in Chapter 5. Specifically, most 

of the fault classes have been perfectly classified while some other fault classes, class 

1 (F0) and 5 (F4), have high classification accuracies and minor misclassifications. 

Specifically, the first class of the network representing healthy engine data (F0) has an 

overall accuracy of 86.2% while the fifth class representing exhaust gas temperature 

decrease in all cylinders (F4) has an overall 95.7% classification accuracy. It is 

unfeasible to obtain a perfect classifier model with several faults and multi-faults as 

besides overfitting issues that would occur, the nature of the input data may contain 

some features that do not have sufficient differences to provide a clear line for 

classification. 

 

6.5.2 MCI results 

 

This section presents the results for the main engine MCI, subsystem and individual 

MCIs based on the data contained in dataset 1 alongside the forecasted multi-step-

ahead results. Although the data represents normal operating conditions, this particular 

case study and defined thresholds presented in Table 5.12 and Appendix D.2 are 

selected in order to demonstrate the capabilities of the developed MCI tool. Therefore, 

the MCIs of various Relevant Condition Parameters (RCPs) are presented initially 

followed by the MCIs obtained for the main engine and its subsystems through the 

RBD calculations. Figure 6.13 presents the monitored measurements and calculated 

individual MCI for cylinder 6 piston cooling oil outlet temperature parameter. 
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Figure 6.13 MCI for cylinder 6 piston cooling oil outlet temperature 

 

As observed, the upper graph presents the piston cooling oil outlet temperature 

measurements represented with a blue continuous line while the red dashed line 

represents the defined RCPlim equal to 50oC for this particular parameter. The lower 

graph presents the corresponding hourly MCI. During the first 25 hours, the parameter 

measurements are within the defined thresholds and therefore the associated MCI is 

equal to 100%. However, from the 26th until the 35th hour, the piston cooling oil 

temperature is increased from 49 oC to 50oC reaching the defined RCPlim. Therefore, 

the MCI identifies this condition and starts to degrade accordingly to a final 92.89% 

condition indicator. 

 

 

Figure 6.14 MCI for main lubrication oil inlet pressure 
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In Figure 6.14, the RCPin and RCPlim for the main lubrication oil inlet pressure are 

equal to 2.7 and 2.9 kg/cm2 respectively, while the parameter measurements are 

constantly equal to 2.8 kg/cm2. Therefore, the MCI in this case is equal to 100% 

throughout the data. Figure 6.15 presents the MCI for cylinder 3 JCFW outlet 

temperature. 

 

 

Figure 6.15 MCI for cylinder 3 jacket cooling fresh water outlet temperature 

 

In this case, the RCPin and RCPlim are equal to 83 oC and 85 oC respectively, while the 

parameter measurements are equal to 84 oC with some particular timesteps moving to 

the RCPin limit. Specifically, at timestep 6 and 7 the MCI is equal to 98.01% as the 

parameter temperature is equal to RCPin. Then after the 7th hourly interval, the MCI 

trendline increases as the parameter is restored within the defined limits and is 

progressively restored to 100%. Finally, there is a single point in the 27th hour mark 

reaching RCPin, causing a relatively small change in the MCI equal to 99.75% which 

is immediately restored as the following measurements are contained within the limits. 

The remaining MCI graphs for all other main engine RCPs are contained in Appendix 

G.2.  

 

Once all the individual MCIs have been obtained for the main engine RCPs, the MCIs 

related to the main engine and subsystems are calculated through the RBD model 

described in Section 5.3.4. Figure 6.16 presents the MCIs obtained for all eight main 

engine cylinders. 
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Figure 6.16 MCIs for cylinders no.1-8 

 

The graph demonstrates the obtained condition indicators for all eight individual 

cylinders of the main engine. For illustration purposes, the graph starts at the 25th hour 

mark as at this point it can be observed that most cylinders have decreased MCIs 

because the individual MCIs regarding the RCPs in each cylinder have exceeded their 

defined thresholds. It is observed that cylinder 8 has the lowest MCI reaching a value 

of 85%. This is because the individual MCIs of the RCPs comprising the cylinder 8 

RBD consisting of the exhaust gas outlet, scavenging air, PCO outlet and JCFW outlet 

temperature have lower condition indicator values that the other cylinders. Figure 6.17 

displays the results for all modelled main engine subsystems. 

 

 

 

Figure 6.17 MCIs for main engine subsystems 
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The MCIs for the engine subsystems are presented and include the MCI for the 

lubrication oil, fuel oil, air, engine block and cylinder system, compiling the overall 

main engine RBD model. As observed from the graphs, the lubrication oil, fuel oil and 

engine block and components system maintain 100% MCI throughout, thus the 

parameters lie within the defined thresholds. Moreover, the air system MCI decreases 

to a value of 97.74% at the 20 hour mark and is then gradually restored. On the other 

hand, the cylinder system MCI starts degrading at 30 hours reaching 95.98% MCI at 

the 35 hour mark. Figure 6.18 presents the calculated system MCI for the overall main 

engine system. 

 

 

Figure 6.18 Main engine MCI 

 

The main engine RBD consists of its subsystems connected in series. Thus, any 

degradation in the condition indicators for the subsystems directly have an effect on 

the main engine MCI. As presented in Figure 6.18 the main engine MCI is equal to 

100% and after 20 hours is decreased to just below 98% owing solely to the 

degradation of the air system MCI as presented in Figure 6.17. Furthermore, the MCI 

is increased as at 21 hours and 22 hours it is equal to 99.36% and 99.94% respectively 

and is then decreased again at 30 hours until the 35th hour due to the decrease observed 

in the cylinder system, reaching 95.98% overall. 

 

Alternatively, the MCIs for the engine and its various systems can be represented in 

MAT as bar plots to the user for each time interval. Figure 6.19 presents the main 
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engine, cylinder 8 and respective piston cooling oil outlet temperature MCI for 

timestep 32. 

 

Figure 6.19 Main engine, subsystem and component MCI at hourly timestep 32 

 

6.6 MAT results 

 

Based on the results obtained from both datasets in the case study, the datasets are used 

as input in MAT to provide the suggested maintenance action, in the event of any faults 

present. As the data represent healthy operating engine operation with no faults 

occurring based on the results of the ANN-MLP, ‘F0-No Fault: Continue Routine 

Monitoring’ was the suggested maintenance action produced by MAT as also 

demonstrated in Figure 6.20. 

 

 

Figure 6.20 Produced maintenance action by MAT 

 

Therefore, the action is valid based on the input data and the assessment output of the 

ANN-MLP classifier for the main engine diagnostics. However, as demonstrated in 

the second line of the MAT output, upon user input additional information can be 

displayed such as the health status of the main engine system, in the format presented 

in Figure 6.19 or other historical records. Moreover, it should be mentioned that the 

MATLAB code of MAT has been fully developed to provide information and 

maintenance actions for all main engine faults and inputs prompted by the user. The 

following page demonstrates fundamental aspects of MAT for a simulated fault 

regarding exhaust gas temperature increase in one cylinder. 
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Figure 6.21 Fault causes and remedies for simulated main engine fault 

 

As displayed in Figure 6.21, MAT presents the identified symptom which is the 

exhaust gas temperature outlet increase in one main engine cylinder. Subsequently, the 

developed tool presents the full list of potential fault causes and associated remedies. 

Moreover, the user is asked if additional information is required regarding the 

identified fault. This is achieved by providing the relevant FMEA table information to 

the user regarding the potentially affected system and components. A sample of this is 

presented in Figure 6.22. 

 

 

Figure 6.22 Sample of FMEA table presented by MAT 

 

Thus, MAT provides initial diagnostic information extracted from the developed 

diagnostic fault causes and FMEA table alongside remedies. Moreover, through the 

diagnostic database, the highest fault causes prioritised based on their historically 

recorded frequency are presented to assist the crew and operator as shown in Figure 

6.23 

 

 

Figure 6.23 Presentation of most recorded fault causes 
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After this point, MAT provides to the user additional information regarding the MCI 

for system, subsystem and component level, followed by the defined criteria and 

relevant information, in order to provide the most appropriate maintenance action and 

activity based on the user’s input decision.  

 

 

Figure 6.24 Presentation of MAT criteria and user input 

 

As seen in Figure 6.24, MAT initiates the progress of the appropriate maintenance 

action and activity by prompting the user to define if the component is critical. 

Afterwards, availability of spare parts onboard and costs are displayed to decide if the 

maintenance cost is high and if spare parts are available. After this, the vessel’s PMS 

is also displayed to investigate if the PMS interval for the component/system is 

imminent, which could lead to opportunistic maintenance activities. Based on the input 

fed to MAT, the component has been deemed critical, while maintenance cost has been 

selected to be low and no spare parts exists onboard. Moreover, the PMS interval is 

not imminent. Hence, preventive maintenance action with activities such as check 

regularly and replace when possible are suggested as seen in Figure 6.25. 

 

 

Figure 6.25 Suggested maintenance action and activity by MAT 

 

Finally, as also described in Section 5.3.5, additional information such as spare part 

drawings, OEM and IACS guidelines, maintenance and repair logs are also provided 

to assist the maintenance process. Moreover, at the end of the process, the user is 

prompted to enter the root cause of the fault alongside any additional information 

which is used to update the diagnostic database and update historical records. 
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6.7 Discussion of case study results 

 

This section aims to summarise and discuss the main outcomes of the case study 

presented in this chapter. The case study examined the overall suggested hybrid 

condition monitoring methodology strategy by utilising collected actual input data 

regarding the main engine of the Panamax container ship. The case study results are 

presented for various subsystems of the main engine such as the fuel, lubrication, air, 

engine block and components, and cylinder block assembly system. 

 

The FTA of the main engine provided invaluable information on prioritisation of 

components for monitoring activities, while the FMEA provides a platform audit for 

producing information and selecting performance parameters for commencing 

monitoring. Through the FT results, the engine critical items are identified which if 

properly monitored and maintained, enhance safety and engine condition and 

performance. Overall, the FT results produce 72 cut sets for the main engine system 

ranging from 3rd order to 9th order cut sets. The minimum cut sets of the FT provided 

good insight into the systems critical systems and components. The results obtained 

were realistic, in the sense that the identified components are important components 

for normal engine operation which are subject to various failure modes and their failure 

can lead to costly ship downtime and unavailability and even more to potential 

hazardous situations such as explosions, endangering lives onboard. 

 

In addition, through the FMEA results, the FTA cut sets were further analysed in terms 

of their specific failure modes and associated causes. Therefore, through the FTA-

FMEA process, parameters applicable for monitoring the engine condition and 

assisting in detection of the described failure modes for each system and component 

can be identified. In the case where data is not available for a component in the minimal 

cut sets such as the fuel oil filter, then actions such as overhauling, checking that the 

filtering material is intact and that no foreign bodies are found can be suggested. 

 

The identification of the parameters acts as a first step regarding the development and 

analysis of the novel condition monitoring strategy for monitoring the overall main 
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engine condition. Key parameters in performance observations of the main engine are 

selected based on the FTA-FMEA analysis and include the exhaust gas outlet and 

jacket fresh water cooling outlet temperature per engine cylinder, the piston cooling 

lubrication oil outlet temperature per engine cylinder, the piston cooling lubrication oil 

inlet, fuel oil inlet pressure and the main lubrication oil inlet temperature. However, 

the availability of additional parameters accessible from the case study datasets were 

also included for developing the ANN models, further enhancing the research 

investigation and outcome of the thesis. 

 

The addition of bad data points in a neural network training set can invalidate a model. 

The data cleansing algorithm was applied to cleanse the datasets from invalid 

measurements (irrational measurement readings, negative values etc.). Overall 

regarding dataset 2, 66 conditions were found containing invalid data or no data at all, 

demonstrating the faults that can occur in the data acquisition system. Moreover, the 

arithmetic mean was selected for replacing empty cell attributes. The arithmetic mean 

provided satisfactory data cleansing properties which did not affect the training or 

performance of the neural networks. Moreover, using the arithmetic mean was 

adequate since there was a small number of missing data elements. In other cases, the 

arithmetic median or regression techniques could also be selected for replacing empty 

cells. 

 

The two SOM case studies illustrated the capability and flexibility of the SOM 

algorithm both for clustering main engine data as a processing tool in the overall 

condition monitoring framework and as a tool for monitoring the engine condition. In 

the first case study, the developed SOM successfully clusters the main engine data into 

clusters representing normal engine operating conditions and clusters containing data 

exceeding OEM thresholds and excessive data. The SOM results were validated 

through using actual main engine operational data from dataset 3 as input, which 

contains data not seen before by the SOM. The second case study indicated that the 

SOM is also capable of identifying the engine condition through abnormal state 

thresholds in addition to the OEM thresholds. The unsupervised learning nature of the 

SOM provides a fast and efficient method to cluster data and model the underlying 
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structure or distribution in the data. Moreover, through the Euclidean distance metric, 

data assigned in previously inactive SOM clusters, can be identified and labelled with 

near clusters sharing data similarities. 

 

The NAR and NARX models were developed for both datasets, demonstrating the 

impact of data size on the training accuracy. In total, 39 NAR models were developed 

for dataset 1 and an additional 39 NAR and 39 NARX models were developed for 

dataset 2, representing the selected performance parameters of the main engine case 

study. The forecasted results are demonstrated in two segments of time including the 

actual data and the forecasted future data. Overall, good network fits to the input data 

was achieved. Moreover, the results obtained for the error autocorrelation function 

demonstrate the uncorrelation of errors with each other, thus ensuring satisfactory 

network performance and confidence in the forecasting analysis. In terms of dataset 1, 

the MAPE for all models is very low, indicating good forecasting capabilities, as the 

highest MAPE is equal to 1.02% for the exhaust gas outlet temperature of main engine 

cylinder 7. Moreover, the forecasted results fall within the expected 95% prediction 

intervals, further enhancing the confidence in the network results and is important in 

testing whether or not a specification has been met (alarm/threshold) as there could be 

situations where a result may fall clearly inside or outside a specified limit, but the 

uncertainty may overlap the limit. 

 

The increased amount of data in dataset 2 provided better results regarding the 

regression plots of the correlation coefficient R for the training and testing data set for 

all main engine parameters. The NAR models were capable of forecasting with relative 

small APE values most of the multi-step ahead predictions. In most instances, the APE 

error is increased towards the end of the 20 multi-step-ahead predictions and thus 

further forecasting beyond this point increased the error in forecasting. This is due to 

the accumulation of network errors during the multi-step-ahead analysis of the NAR 

network in the closed loop mode. Furthermore, in parameters such as the cylinder 

exhaust gas outlet temperature, the NAR models were unable to detect the shift in 

parameter measurements due to the alteration in the main engine rpm. In order to 

resolve this issue, NARX models were also developed by introducing the main 



178 

 

engine’s rpm as exogenous input to the time series models. The introduction of the 

main engine rpm as the external time series data indicated that the NARX models are 

capable of identifying the fluctuations in the modelled parameters and thus reduced 

significantly the APE and MAPE of the models compared to the results obtained from 

the respective NAR models. 

 

The ANN-MLP diagnostic classifier results demonstrate excellent classification 

accuracy for the trained network regarding the 16 modelled main engine fault classes, 

including the modelling of several faults and multi-faults. Most of the fault classes 

have been perfectly classified while some other fault classes, class 1 (F0) and 5 (F4), 

have high classification accuracies and minor misclassifications. The collected and 

forecasted data from dataset 1 and 2 are within the acceptable operating limits as 

predefined by the OEM thresholds. 

 

The main engine MCI case study successfully demonstrates the capabilities of the 

method for parameters exceeding upper and lower thresholds, which are custom and 

can be defined accordingly in a tailored-made fashion according to ship operators. 

Furthermore, the individual condition indicator results for the main engine parameters 

are obtained through the statistical parameters of the selected probability distribution 

family. Therefore, based on the distribution of data and the statistical parameters of 

the selected distribution, the condition indicator results are calculated for each RCP.  

 

The machinery condition indicators are presented on system, subsystem and 

component level for the main engine. The results obtained for the main engine and 

subsystem MCIs are based on the selected RBD architecture. The constructed RBD is 

a combination of series, parallel and k-out-of-n configurations in an attempt to model 

a complex system such as the ship’s main engine. The case study illustrated that a 

series configuration directly affects the top system in contrast to a parallel or k-out-of-

n configuration which provide a level of redundancy to the system. Thus, different 

configurations would provide different results. Regardless, the scope of this case study 

was to provide a health assessment mechanism for the system by demonstrating that 
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the main engine MCI and subsystem MCIs can be obtained and start to degrade as a 

result of the individual MCIs exceeding their defined thresholds.  

 

Finally, MAT has been developed mainly as a fundamental platform for collecting the 

information outputs from the forecasted NAR and NARX results which are assessed 

in the ANN-MLP diagnostic classifier and main engine MCI in order to present these 

data to the user and suggest appropriate predictive maintenance actions. MAT 

successfully suggests the user to continue routine monitoring and presents the fault 

code F0 as the case study data from datasets 1 and 2 represent normal (healthy) engine 

operation. In addition, a simulated case study was presented representing increase of 

exhaust gas temperature outlet in one cylinder. This case study demonstrated the 

capabilities of the developed tool. 

 

6.8 Chapter summary 

 

In this chapter, the results of the hybrid condition monitoring strategy for the described 

main engine case study were described in Sections 6.2-6.6. Initially, the FTA-FMEA 

results were presented followed by the selection of the main engine parameters. 

Furthermore, the data preparation consisting of the data cleansing algorithm and SOM 

clustering tool were presented. Moreover, a case study demonstrating the ability of the 

SOM for monitoring the condition of the main engine for some of the identified critical 

FTA components was conducted. The NAR and NARX models were developed for all 

39 main engine performance parameters for both dataset 1 and dataset 2. Also, the 

results of the ANN-MLP classifier and main engine MCI were displayed followed by 

the recommended maintenance action produced by MAT based on the assessment of 

the forecasted data for both dataset 1 and 2. Finally, the discussion of the attained case 

study results was presented in Section 6.7. Supplementary information and data 

regarding the results obtained in this chapter are attached in Appendices E to G. These 

appendices incorporate information related to the FTA minimal cut sets, the developed 

main engine FMEA and the results for all 39 main engine performance parameters for 

the NAR, NARX, ANN-MLP networks and MCIs. 
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7 Sensitivity Analysis 

 

7.1 Chapter outline 

 

In the previous chapters, the Panamax container ship case study and results were 

presented in order to demonstrate the overall hybrid condition monitoring 

methodology. In this chapter, a partition of the ANN models of the case study is 

selected and tested through the utilisation of a sensitivity analysis to examine the 

robustness of the trained models and the level of change in the one-step-ahead 

forecasted predictions by altering the input data. Section 7.2 provides the description 

of the sensitivity analysis carried out while Section 7.3 presents the results of the 

sensitivity analysis for the different scenarios conducted, followed by the chapter 

summary in Section 7.4. 

 

7.2 Sensitivity analysis description 

 

In this section, sensitivity analysis scenarios are conducted in order to assess the 

forecasted results obtained from the NARX neural network models developed for the 

main engine performance parameters regarding the case study presented in the 

previous chapter. Saltelli et al. (2008) defines sensitivity analysis as the field 

examining how uncertainty in model outputs can be apportioned, qualitatively or 

quantitatively, to different sources of uncertainty in the model input. Therefore, 

sensitivity generally refers to the variation in output of a model with respect to changes 

in the values of the model’s input (Chu-Agor et al., 2011). Moreover, a sensitivity 

analysis attempts to provide a ranking of the model’s input assumptions with respect 

to their contribution to mode output variability or uncertainty (Uusitalo et al., 2015). 

In a broader sense, sensitivity can refer to how conclusions may change if models, 

data, or assessment assumptions are altered.  

 

The implementation of the sensitivity analysis on the NARX neural network model 

was selected as it is part of the time series analysis and forecasting stage of the overall 

hybrid condition monitoring strategy, from which the predicted main engine system 
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diagnostic and health assessment can be obtained alongside predictive maintenance 

actions. Moreover, compared to the NAR networks, the NARX model output is 

dependent on both the input time series data and the exogenous input data. The input 

parameters of the NARX neural network are examined individually and also in a 

combinatorial approach as parameter combinations may include nonlinear 

interactions, hence performing both local and global sensitivity analysis (Baroni and 

Tarantola, 2014). The objectives of the sensitivity analysis are listed below: 

 

• Examine the ability of the NARX model to simulate data and perform 

predictions that differ from the original data. 

• Investigate and determine the contribution of the uncertainty of the input 

parameters on the NARX model output results for the one-step-ahead 

prediction forecast. 

• Investigate unreliable data states by simulating unhealthy input data in the 

model. 

 

The Monte Carlo method is used as a comprehensive approach for accomplishing the 

sensitivity analysis (Wei et al., 2013). In the context of Monte Carlo simulation, this 

is described as the process of approximating the model output through repetitive 

random application of the model’s algorithm. Monte Carlo sensitivity analysis is 

performed with Latin hypercube sampling which is a sampling scheme designed to 

ensure that the upper and lower ends of the data used in the sensitivity analysis are 

well included in the analysis (Firestone et al., 1997). Furthermore, this sampling 

method is generally recommended over simple random sampling and is one of the most 

widely used random sampling methods for Monte Carlo based analysis (Shields and 

Zhang, 2016). 

 

As 39 NARX models were developed for the components and subsystems of the main 

engine, the implementation of the sensitivity analysis is performed on a particular 

developed NARX model for one of the main engine subsystems and components. 

Hence, the analysis is presented for the NARX network related to the main engine 

cylinder system, specifically for the cylinder 5 exhaust gas outlet temperature 
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parameter. This parameter was selected as the results of the NARX models developed 

for the cylinder exhaust gas outlet temperature parameters vary significantly for 

different main engine rpm speeds compared to the other main engine modelled 

parameters. Moreover, the exhaust gas temperature is directly emitted from the engine 

cylinders and therefore will indicate the operation and condition of the engine and its 

combustion process and is a valuable source of diagnostic information regarding the 

technical condition of elements such as the cylinder and piston, scavenging air, fuel 

supply system amongst other (Taylor, 1996); as also presented in the main engine 

FMEA and diagnostic table developed for the case study. Figure 7.1 provides a 

graphical outline of the sensitivity analysis regarding the inputs and output for the one-

step-ahead prediction of the NARX model. 
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Figure 7.1 Graphical outline of NARX model inputs and output for sensitivity 

analysis 

 

As presented in Figure 7.1, the sensitivity analysis is conducted through Monte Carlo 

simulation by varying the inputs of the NARX model, the main engine rpm and/or 

cylinder exhaust gas outlet temperature at timestep t representing the present time, 

used for producing the subsequent one-step-ahead prediction t+1 output. Based on the 

above, three sensitivity scenarios are created to examine the output of the NARX 

neural network model and are presented in the following section. Sensitivity scenario 

1 investigates the effects on the model output by varying the exogenous input data-

main engine rpm at present time t while the exhaust gas outlet temperature parameter 
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remains constant. On the other hand, in the second scenario, the main engine rpm 

parameter at time t remains the same while the exhaust gas outlet temperature is 

altered. Finally, in sensitivity scenario 3, both the main engine rpm and exhaust gas 

outlet temperature parameters are varied to examine the output of the NARX model.  

 

7.3 Sensitivity analysis results 

 

7.3.1 Sensitivity scenario 1  

 

In this sensitivity scenario, the main engine rpm is shifted progressively in ranges from 

its original baseline value of 61.9 rpm at current time t to examine the NARX output 

regarding the one-step-ahead forecast. The investigated rpm parameter ranges are 

presented in Table 7.1. In total, 14 test cases are conducted to systematically examine 

the NARX outputs. These are referenced as Test-1 to Test-7 for decreasing the rpm 

from the baseline, initially by increments of 2% until Test-5 and then by 10% in Test-

6 and Test-7 cases until a percentage difference of 30% from the baseline point is 

obtained for including extreme values in the analysis. The same procedure is followed 

for increasing the main engine rpm from the baseline for test cases Test+1 to Test+7. 

 

Table 7.1 Main engine rpm parameter range from baseline (rpm=61.9) 

Test Case % difference from baseline Engine rpm values 

Test -1                 [0% -2%] 61.9-60.6 

Test -2 [-2% -4%] 60.6-59.4 

Test -3 [-4% -6%] 59.4-58.2 

Test -4 [-6% -8%] 58.2-56.9 

Test -5   [-8% -10%] 56.9-55.7 

Test -6     [-10% -20%] 55.7-49.5 

Test -7     [-20% -30%] 49.5-43.3 

Test +1                 [0% +2%] 61.9-63.1 

Test +2   [+2% +4%] 63.1-64.4 

Test +3   [+4% +6%] 64.4-65.6 

Test +4   [+6% +8%] 65.6-66.8 

Test +5     [+8% +10%] 66.8-68.0 

Test +6       [+10% +20%] 68-74.3 

Test +7       [+20% +30%] 74.3-80.5 
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Figure 7.2 NARX sensitivity analysis results for test cases (Scenario 1)
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Figure 7.2 presents the results for the described 14 test cases. A Monte Carlo 

simulation of 1000 iterations is applied for each test case. The number of iterations is 

chosen as it is statistically adequate for considering extreme values in the analysis 

(Yang, 2011). Moreover, the simulation time of the NARX model is also taken into 

account, as larger number of iterations are profoundly time consuming. 

 

The results of the Monte Carlo analysis for each test case are presented and the 

forecasting result for the one-step-ahead prediction (308oC), obtained from the NARX 

model as presented in Section 6.4.2, is used as the baseline reference for comparing 

the sensitivity analysis results. By initially examining the cases for Test-1 to Test-7, it 

is observed that the obtained results for the one-step-ahead prediction move further 

away from the baseline as the percentage difference from the baseline is increased. For 

Test-1, the obtained results are within close range of the baseline, demonstrating that 

a decrease of main engine rpm parameter values of up to 2% from the baseline 

marginally changes the NARX output and provides satisfactory outputs.  

 

Furthermore, the exhaust gas outlet temperature output in Test-2 to Test-5 is gradually 

shifted further away from the baseline due to the additional alteration in the main 

engine rpm ranges. However, this is a reasonable and expected outcome demonstrating 

that the NARX model effectively simulates the change in the exogenous input data. 

Moreover, for the additional extreme cases of Test-6 and Test-7 it is noticed that the 

variance of the Monte Carlo results increases due to the larger parameter range 

modelled, illustrating that the NARX produces outputs that are further away from the 

median and each other. 

 

For the cases of Test+1 to Test+7 where the main engine rpm parameter is gradually 

increased, the same pattern as the other test cases can be observed. In Test+1, the 

obtained results are within close range of the baseline, demonstrating that a reasonable 

increase of main engine rpm parameter values up to 2% from the baseline slightly 

changes the NARX output, providing satisfactory outputs. Reasonable results are also 

obtained for Test+2 and Test+3. The exhaust gas outlet temperature outputs are 

increased in the other case tests and an increase in the variance of the Monte Carlo 
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results and instability in the NARX model is noticed when the rpm parameter ranges 

are significantly different from the baseline. The sensitivity analysis overall 

demonstrates the good performance and generalisation of the NARX model as it 

successfully takes into account the different values of the exogenous input data for 

conducting the one-step-ahead output for lower and higher main engine rpm values 

from the baseline. On that note, it is essential to mention that the sensitivity analysis 

results are based on the input dataset used to train the neural network.  

 

Thus, the analysis is conducted on the trained model which produces forecasts based 

on what is has learned in the past from the dataset. For example, although the network 

has not been trained with data containing main engine rpm values in the range of 70-

80 rpm, the proper training of the model demonstrates its generalisation capabilities 

especially in the input data of Test+6 and Test+7 where the ANN NARX model 

provides appropriate reasonable outputs for data it has not seen before. Hence, the 

results obtained are based on the input dataset applied for training of the NARX model 

representing certain engine operational profiles and should not be compared with 

results acquired in shop trials or sea trials. Figure 7.3 presents the error results from 

the baseline for the average forecasted results t+1 of Monte Carlo analysis for each 

test case. 

 

 

Figure 7.3 Error results from baseline for each test case (Scenario 1) 

18.83%
-30.52%

13.51%
-24.09%

7.14%
-13.25%

4.68%
-9.84%

3.25%
-6.66%

2.82%

-3.83%
1.04%

-1.20%

-40.00% -30.00% -20.00% -10.00% 0.00% 10.00% 20.00% 30.00%

Test +7
Test -7
Test +6
Test -6
Test +5
Test -5
Test +4
Test -4
Test +3
Test -3
Test +2
Test -2
Test +1
Test -1

Percentage error from baseline for test cases



187 

 

From Figure 7.2 and Figure 7.3 it can be concluded that for the test cases 1-3 (both 

decreasing and increasing rpm), where there are small differences in the rpm values 

from the baseline, the NARX t+1 output value does not change significantly and thus 

the output is robust to reasonable changes in parameter values within the model. 

Moreover, the main engine is fitted with various sensors that could malfunction or 

provide inaccurate data due to factors such as vibration, high temperature, humidity 

and dust. Therefore, the sensitivity analysis also demonstrates the practical implication 

aspect of the results.  

 

Hence the uncertainty about the value is relatively small since the differences in values 

in these test cases do not cause large differences in the outcome. For the remaining test 

cases where the main engine rpm range and increment from baseline is significant, the 

output of the variable and error from baseline changes markedly. However, these test 

cases are not within the reasonable range required to obtain an accurate output and as 

previously mentioned, these test cases demonstrate the correct training of the NARX 

model. The next section presents the results for the second sensitivity scenario. 

 

7.3.2 Sensitivity scenario 2 

 

In this sensitivity scenario, the exhaust gas temperature outlet parameter is shifted 

progressively in ranges from its original baseline value of 310.3 oC at present time t in 

order to examine the output of the NARX model regarding the one-step-ahead forecast 

result at time t+1. The investigated exhaust gas parameter ranges are presented in  

Table 7.2 and follow the same procedure introduced in sensitivity scenario 1. Hence, 

14 test cases are conducted in total and are referenced as Test-1 to Test-7 for decreasing 

the exhaust gas from the baseline, initially by increments of 2% for Test-1 until Test-

5 and then by 10% in Test-6 and Test-7 cases until a percentage difference of 30% 

from the baseline point in order to include extreme values in the analysis. Accordingly, 

the same procedure is undertaken for increasing the exhaust gas from the baseline for 

test cases Test+1 to Test+7.  
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No additional analysis is necessary beyond the 30% mark as the objectives of the 

sensitivity analysis are achieved within the presented test cases. Moreover, it should 

be highlighted that test cases were also carried out by smaller increments which 

provided small variations of the results and for this reason are considered insignificant 

and are not presented. 

 

Table 7.2 Main engine exhaust gas parameter range from baseline (=310.3 oC) 

Reference % difference from baseline Exhaust gas values oC 

Test -1                  [0% -2%] 310.3-304.1 

Test -2   [-2% -4%] 304.1-297.9 

Test -3   [-4% -6%] 297.9-291.7 

Test -4   [-6% -8%] 291.7-285.5 

Test -5     [-8% -10%] 285.5-279.3 

Test -6       [-10% -20%] 279.3-248.2 

Test -7       [-20% -30%] 248.2-217.2 

Test +1  [0% +2%] 310.3-316.5 

Test +2    [+2% +4%] 316.5-322.7 

Test +3    [+4% +6%] 322.7-328.9 

Test +4    [+6% +8%] 328.9-335.1 

Test +5      [+8% +10%] 335.1-341.3 

Test +6        [+10% +20%] 341.3-372.4 

Test +7        [+20% +30%] 372.4-403.4 

 

As observed, reasonable exhaust gas temperature parameter values close to the 

baseline are examined in the first test cases and the ranges are then further expanded 

in test cases Test+6, Test+7, Test-6 and Test-7 respectively. The minimum value 

examined in Test-7 is equal to 217.2 oC while the maximum value modelled is 403.4 

oC in Test+7. Thus, large deviations from the baseline are also taken into account in 

the sensitivity analysis. 

 

Figure 7.4 in the following page presents the results for the described 14 test cases 

regarding the NARX t+1 Monte Carlo results. As in sensitivity scenario 1, the Monte 

Carlo simulation is performed for 1000 iterations in each test case. The results of the 

Monte Carlo analysis for each test case is presented and the forecasting result for the 

one-step-ahead prediction (308oC) is presented as the baseline reference for comparing 

the sensitivity analysis results.  
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Figure 7.4 NARX sensitivity analysis results for test cases (Scenario 2)
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In Figure 7.4 it is observed that the obtained results for Test-1 and Test-2 for the one-

step-ahead prediction t+1 are close to the baseline and decrease in a reasonable 

manner. Moreover, these test cases demonstrate reliable performance of the NARX 

model for the reasonable changes in the exhaust gas outlet temperature parameter as 

the error from the baseline is small. Moreover, the Monte Carlo results demonstrate 

good network output stability for the 1000 simulations, as the outputs are spread near 

the median and the variance is minor. Therefore, decreasing the exhaust gas outlet 

temperature up to 4% from the baseline provides satisfactory outputs. 

 

Furthermore, from Test-3 to Test-7 the exhaust gas outlet temperature output is 

gradually shifted further away from the baseline and the error increases due to the 

increase in exhaust gas parameter ranges from the baseline. In Test-3 to Test-5 the 

model provides sensible reduced results due to the decrease in exhaust gas parameter 

values and as such the error from the baseline is increased. Specifically, in Test-5 the 

variance of the outputs starts to increase indicating that an 8% to 10% deviation from 

the baseline starts to have an effect on the NARX outputs. This is further extended in 

Test-6 and Test-7 where the error is significantly increased compared to the previous 

test cases. As observed, in Test-7 the average output of the simulations is larger than 

Test-6 as is the variance of the results; concluding that the model produces unsteady 

results in these test cases. 

 

The sensitivity analysis provides satisfactory results regarding Test+1 and Test+2 

demonstrating that the NARX responds well to input alterations in the range of +4% 

for the exhaust gas outlet temperature. Moreover, reasonable results are obtained for 

Test+3, in which the increase in input parameter results in a reasonable increase in the 

outputs. Furthermore, for Test+4 and Test+5 it is observed that although the outputs 

are expectedly increased from the baseline, the median for both test cases remains 

constant, thus providing equivalent results.  

 

It is reminded that the NARX model predicts the step-ahead-prediction from the past, 

thus based on the training dataset and the exogenous input correlated values it has seen 

in the past for the corresponding exhaust gas temperature time series data. Moreover, 
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the larger deviation of the input parameters in Test+6 and Test+7 produce unsteady 

outputs as in some cases the outputs are closer to the baseline; concluding that the 

exogenous input strongly influences the output in this sensitivity scenario. Figure 7.5 

presents the error results from the baseline for the average forecasted results t+1 of 

Monte Carlo analysis for each test case. 

 

 

Figure 7.5 Error results from baseline for each test case (Scenario 2) 

 

It can be observed that the errors are relatively small for Test-1, Test-2, Test-3, Test+1, 

Test+2 and Test+3 where reasonable changes in the input parameters are executed. 

Hence the model is considered robust and the differences in values in these test cases 

do not cause large changes in the outcome. On the other hand, for the remaining test 

cases the output of the variable and error from baseline increases. The differences in 

error magnitudes in Test cases -5 to -7 and +5 to +7 are caused by the extent of data 

the network has seen during its training phase. Specifically, the training dataset did not 

contain data covering the parameter ranges presented in Test+4 and forward. 

 

This sensitivity analysis demonstrated satisfactory outputs of the NARX model for the 

various values of the exhaust gas time series input data for conducting the one-step-

ahead output while keeping the exogenous input constant. Moreover, by comparing 

the results with those of scenario 1, it can be observed that the exogenous input 
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strongly influences the output in this sensitivity scenario. The next section presents the 

results for the third sensitivity scenario. 

 

7.3.3 Sensitivity scenario 3 

 

In this sensitivity scenario, both the main engine rpm and the exhaust gas temperature 

input values are altered progressively from their original value at present time t in order 

to examine the output of the NARX model regarding the one-step-ahead forecast result 

at time t+1. Table 7.3 presents the different tests conducted for the various input 

values. 

 

Table 7.3 Input parameter ranges from their baseline (rpm=61.9, exhaust gas=310.3 
oC) 

Reference 
% difference 

from baseline 

Engine rpm 

values 

Exhaust gas 

values oC 

Test -1 [0% -2%] 61.9-60.6 310.3-304.1 

Test -2  [-2% -4%] 60.6-59.4 304.1-297.9 

Test -3  [-4% -6%] 59.4-58.2 297.9-291.7 

Test -4  [-6% -8%] 58.2-56.9 291.7-285.5 

Test -5    [-8% -10%] 56.9-55.7 285.5-279.3 

Test -6      [-10% -20%] 55.7-49.5 279.3-248.2 

Test -7      [-20% -30%] 49.5-43.3 248.2-217.2 

Test +1 [0% +2%] 61.9-63.1 310.3-316.5 

Test +2   [+2% +4%] 63.1-64.4 316.5-322.7 

Test +3   [+4% +6%] 64.4-65.6 322.7-328.9 

Test +4   [+6% +8%] 65.6-66.8 328.9-335.1 

Test +5     [+8% +10%] 66.8-68.0 335.1-341.3 

Test +6       [+10% +20%] 68-74.3 341.3-372.4 

Test +7       [+20% +30%] 74.3-80.5 372.4-403.4 

 

Figure 7.6 in the following page presents the results for the described 14 test cases 

regarding the NARX t+1 Monte Carlo results. The results of the Monte Carlo analysis 

for each test case is presented and the forecasting result for the exhaust gas temperature 

one-step-ahead prediction (308oC) is presented as the baseline reference for comparing 

the sensitivity analysis outputs.  
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Figure 7.6 NARX sensitivity analysis results for test cases (Scenario 3)
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As observed in Figure 7.6, the results obtained in this sensitivity analysis are in line 

with the previous two sensitivity scenarios presented. For Test-2 to Test+2 the results 

indicate satisfactory network output for rational reductions and increments of the input 

parameters around the baseline value. Moreover, in the remaining test cases the error 

is increased from the baseline as both the exogenous NARX input and exhaust gas 

input time series data are reduced and increased respectively to protracted ranges. 

Concurrently, the response of the NARX model to these input parameters also 

demonstrates its generalisation capabilities and that overfitting manifestations have 

been avoided. Figure 7.7 presents the error results obtained from the baseline for the 

average forecasted results t+1 of Monte Carlo analysis for each test case. 

 

 

Figure 7.7 Error results from baseline for each test case (Scenario 3) 

 

It can be observed that the errors are insignificant for the test cases Test-1, Test+1, 

Test-2 and Test+2 where reasonable changes in the input parameters were executed. 

Hence the model is considered robust and the differences in values in these test cases 

do not cause any significant effects in the outcome. On the other hand, for the 

remaining test cases the output of the variable and error from baseline increases as the 

input parameters take on acute values.  
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7.3.4 Remarks 

 

The sensitivity analysis was carried out for three scenarios. These scenarios examined 

the sensitivity of the NARX model output to changes in the input parameters. Initially, 

scenario 1 examined the analysis by changing only the main engine rpm, which 

represents the exogenous input data of the model. Secondly, the second scenario 

followed the same procedure as the first and results were examined for changing the 

exhaust gas temperature values while the exogenous input data remained constant. 

Finally, scenario 3 studied the change in model output for shifts in both input data.  

 

Overall, the sensitivity analysis demonstrated reliable performance of the NARX 

model output and that it is tolerable to reasonable changes in the input parameters in 

all three scenarios. Therefore, the output is robust to reasonable changes in parameter 

values within the model. For the extreme test case scenarios, the error from the baseline 

is increased as expected for the exhaust gas outlet temperature. Moreover, these test 

cases also illustrated the satisfactory response of the NARX neural network model to 

variations in the input values of the main engine rpm and exhaust gas outlet 

temperature, implicating that network generalisation has also been achieved.  

 

7.4 Chapter summary  

 

This chapter presented a detailed sensitivity analysis for the developed NARX model 

of the condition monitoring strategy for different sensitivity scenarios and 

configurations. A description of the overall sensitivity analysis was provided followed 

by the presentation of the results and concluding remarks. The next chapter presents 

the cost benefit analysis performed for the condition monitoring strategy. 
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8 Cost-Benefit Analysis 

 

8.1 Chapter outline 

 

This chapter describes and presents the Cost-Benefit Analysis (CBA) conducted to 

assess the value of the developed hybrid condition monitoring framework compared 

to a traditional preventive maintenance scheme for a variety of scenarios and charter 

rates. The analysis is executed for the ship main engine and is described in Section 8.2 

and the obtained results and concluding remarks are presented in Section 8.3. The final 

section provides a recap of the work performed in this chapter. 

 

8.2 Cost-Benefit Analysis (CBA) description 

 

8.2.1 Description 

 

Cost-Benefit Analysis (CBA) is a decision-making procedure for comparing costs and 

benefits of activities such as projects and policies (Stenström et al., 2016). The 

objective of CBA is to support decision-making and make it more rational providing 

more efficient allocation of resources (Boardman et al., 2013). Common decision rules 

for assessing case studies of CBA include calculation of net benefits, benefit-cost 

(B/C) ratios and Return on Investment (ROI).  

 

The CBA is performed for the developed condition monitoring framework. The main 

aim of the analysis is to examine and demonstrate the benefits associated with applying 

the developed condition monitoring tools compared to an existing preventive 

maintenance scheme for the case study of a main engine. The parameters examined 

are related to costs included in a traditional PMS scheme against the costs and both 

direct and indirect savings associated with employing the developed condition 

monitoring methodology. The following assumptions have been considered in order 

to carry out the cost-benefit analysis: 
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• The CBA is carried out over a vessel life cycle span equivalent to 25 years. 

• Overhauling of the main engine occurs approximately every 3750 operating 

hours by the vessel crew and 7500 hours by technicians, carrying out 

preventive maintenance tasks. The selected hours are based upon examination 

of several ship machinery PMS and discussion with industry and academia 

experts. 

• Vessel drydocking occurs every 15000 hours corresponding to 2.5 years which 

is the typical interval according to Classification Societies. In such instances 

the spare part and labour costs are adjusted accordingly compared to the costs 

used in the 3750 and 7500-hour maintenance intervals. 

• The ship main engine operates approximately 6000 hours yearly which is 

equivalent to 250 days (Christensen, 2010, Corbett and Koehler, 2003). 

• There is a loss of income due to preventive maintenance activities and 

downtime every 7500 hours intervals. 

• Escalation rates of 8% for labour cost, 4% for loss of income, 3% for 

drydocking costs and 2% for oil renewal, spare parts and condition monitoring 

operating costs are applied in the analysis. 

• The Net Present Value (NPV) is calculated based on a 5% discount rate 

(INCASS, 2017). 

 

As a CBM policy would reduce the number of required shutdowns for conducting 

maintenance activities, four scenarios have been developed to analyse and calculate 

the financial benefits of the developed monitoring framework, starting from the least 

optimal to most optimal scenarios. By applying the condition monitoring tools 

onboard, mean time between intervals for the main engine inspection and maintenance 

tasks could be extended up to: 

 

1. Scenario 1: PMS+25% 

2. Scenario 2: PMS+50% 

3. Scenario 3: PMS+75% 

4. Scenario 4: PMS+100% 
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Calculations for the CBA are executed by applying the Net Present Value (NPV) 

formula for expressing all benefits and costs in discounted present values as defined 

in equation 34 below: 

 

𝑁𝑃𝑉 = ∑
𝐶𝑖

(1 + 𝑟)𝑖

𝑁

𝑖=0

 (34) 

 

where i is the time of the cash flow, Ci is the net cash flow at time i, r is the applied 

discount rate and N is the total years 

 

Moreover, the formula for calculating the escalated cost with the relevant escalation 

rate is defined as: 

 

𝐶𝑒 = 𝐶𝑡 (1 + 𝑒)𝑛 (35) 

 

where Ct is the present cost and e is the escalation rate  

 

8.2.2 Determination and calculation of preventive maintenance costs 

 

Every aforementioned scenario is considered separately in the analysis and then a 

comparison between them is made. In terms of the preventive maintenance costs, these 

include spare parts costs per cylinder (e.g. oil rings, piston rings, bolts, sealing rings 

etc.), labour costs (superintendent, technicians etc.) and oil renewal costs upon 

discussion with experts from shipping companies and Class surveyors. The vessel 

drydock costs have also been included in the preventive maintenance costs which 

include amongst others, drydock cost per day and dock services charge. Moreover, the 

cost values for the preventive maintenance activities are based on cost evaluation from 

reports, marine supplier quotations for engine repair kits, ship operators and 

manufacturers. The values used for the calculations are contained in Appendix H.1. 

The overall equation for calculating the total preventive maintenance cost is presented 

below: 
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𝐶𝑜𝑠𝑡𝑃𝑀 = 𝐶𝑜𝑠𝑡𝑆𝑝 + 𝐶𝑜𝑠𝑡𝐿𝑎 + 𝐶𝑜𝑠𝑡𝑜𝑖𝑙 + 𝐶𝑜𝑠𝑡𝑑𝑟𝑦𝑑𝑜𝑐𝑘 + 𝐶𝑜𝑠𝑡𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 (36) 

 

where CostSp is the total cost of the spare parts for the main engine, CostLa is the total 

labour costs for undertaking the various inspection and overhauling activities, Costoil 

is the cost associated with the main engine oil renewal, Costdrydock is the costs 

associated with vessel drydocking activities and 𝐶𝑜𝑠𝑡𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 is the monetary cost 

associated with loss of income due to downtime owing to preventive maintenance 

shutdown. 

 

The equation from which the total cost of the spare parts 𝐶𝑜𝑠𝑡𝑆𝑝 is calculated is 

provided below: 

 

𝐶𝑜𝑠𝑡𝑆𝑝 = ∑(𝑛𝑐𝑦𝑙𝐶𝑆𝑝𝑐𝑦𝑙
+ 𝐶𝑆𝑝𝑚𝑖𝑠𝑐

+ 𝑛𝑐𝑦𝑙𝐶𝑆𝑝𝑐𝑦𝑙∗ + 𝐶𝑆𝑝𝑚𝑖𝑠𝑐∗ )

𝑚

𝑖=0

 (37) 

 

Where i is the number of intervals for inspection, m is the total number of inspections, 

𝑛𝑐𝑦𝑙 is the number of main engine cylinders, 𝐶𝑆𝑝𝑐𝑦𝑙
 is the spare parts cost for each 

cylinder, 𝐶𝑆𝑝𝑚𝑖𝑠𝑐
 is the spare parts cost relevant to miscellaneous engine parts (filters, 

bearings etc.), 𝐶𝑆𝑝𝑐𝑦𝑙∗ is the spare part cost associated with the overhauling of the main 

engine from the vessel crew and 𝐶𝑆𝑝𝑚𝑖𝑠𝑐∗ is the spare parts cost for miscellaneous 

engine parts regarding engine overhauling from the crew. 

 

The total labour cost 𝐶𝑜𝑠𝑡𝐿𝑎is equal to the number of persons, days, hours and cost 

rate required for conducting the main engine inspection and repairs every 7500 hours 

from technicians as stated in the assumptions and is equal to: 

 

𝐶𝑜𝑠𝑡𝐿𝑎 = ∑ 𝑛𝑑𝑛ℎ𝑛𝑝𝐿ℎ

𝑚

𝑖=0

 (38) 

 

where 𝑛𝑑 is the number of days, 𝑛ℎ is the number of hours, 𝑛𝑝 is the number of 

technicians and 𝐿ℎ is the hourly charge rate for each technician  
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In terms of drydocking, the cost of labour also includes the number and hourly rates 

of superintendent engineers, senior service engineers and technicians as defined 

below: 

 

𝐶𝑜𝑠𝑡𝐿𝑎𝑑𝑟𝑦𝑑𝑜𝑐𝑘
= ∑ 𝑛𝑑𝑛ℎ(𝑛𝑆𝑆𝐿𝑆𝑆 +

𝑚

𝑖=0

𝑛𝑆𝐸𝐿𝑆𝐸 + 𝑛𝑇𝐿𝑇) (39) 

 

where 𝑛𝑑 is the number of days, 𝑛ℎ is the number of hours, 𝑛𝑆𝑆 is the number of 

superintendent engineers, 𝐿𝑆𝑆 is the superintendent’s hourly rate in USD, 𝑛𝑆𝐸  is the 

number of senior service engineers, 𝐿𝑆𝐸  is the senior service engineer’s hourly rate, 𝑛𝑇 

is the number of technicians and 𝐿𝑇 is the technician’s hourly rate. 

 

The oil renewal cost 𝐶𝑜𝑠𝑡𝑜𝑖𝑙 is calculated by the amount of oil renewal obtained from 

the engine guide and the cost per litre of oil. 

 

𝐶𝑜𝑠𝑡𝑜𝑖𝑙 = ∑ 𝑙𝐶𝑙

𝑚

𝑖=0

 (40) 

 

where l is the amount of oil renewal in litres and 𝐶𝑙 is the cost per litre of oil. 

 

Finally, the drydocking costs Costdrydock are calculated by obtaining the days the vessel 

is in drydock, the drydock charge per day, provided drydock services and associated 

spare parts and labour costs. 

 

𝐶𝑜𝑠𝑡𝑑𝑟𝑦𝑑𝑜𝑐𝑘𝑖𝑛𝑔 = ∑ 𝑛𝑑𝑐𝑑𝑐𝑠

𝑚

𝑖=0

+ 𝐶𝑜𝑠𝑡𝑆𝑝𝑑𝑟𝑦𝑑𝑜𝑐𝑘
+ 𝐶𝑜𝑠𝑡𝐿𝑎𝑑𝑟𝑦𝑑𝑜𝑐𝑘

+ 𝐶𝑜𝑠𝑡𝑜𝑖𝑙 (41) 

 

Where 𝑛𝑑 is the number of days the vessel is in drydock, 𝑐𝑑 is the drydocking cost per 

day and 𝑐𝑠 is the cost of drydocking services. An average price for drydocking services 

𝑐𝑠 is used which is based on quotations for general drydocking services such as 
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mooring/unmooring, fire watchman, fire line, shore power, earth connection, cooling 

water, compressed air garbage, gangway, ballast water, cranes, tailshaft withdrawal 

etc. Also, 𝐶𝑜𝑠𝑡𝑆𝑝𝑑𝑟𝑦𝑑𝑜𝑐𝑘
 follows the same calculation process as equation 37. 

 

8.2.3 Determination of condition monitoring costs and benefits 

 

The costs considered for condition monitoring are related to capital costs, analysis 

costs and software maintenance costs amongst other, as presented in Table 8.1. Capital 

costs include a certain amount of tailoring of the monitoring strategy to fit the business 

objectives. This includes the purchase and installation cost of the condition monitoring 

application and the cost of implementing a data acquisition system for collecting data 

on a regular basis and required sensors that might not be installed onboard. The 

installation can be done by an existing offshore team or by external personnel. 

Moreover, a monetary cost associated with a Classification certificate for the condition 

monitoring tools is considered. Analysis costs are related to associated cost for 

trained/certified personnel to provide reports regarding the data analysis and hence the 

machinery condition on regular intervals. The software will have to be updated from 

time to time to consider new input data or vessel operating profiles and as such an 

annual software maintenance cost is assigned and considered in the analysis.  

 

Table 8.1 Capital and operating costs for applying the condition monitoring strategy 

Cost description Cost ($) 

Capital costs 

Installation cost 10,000 

Data acquisition system 10,000 

Sensors 4,800 

Class certificate 10,000 

Total cost 34,800 

Operating costs  

Data analysis and reporting 4,000 

Software maintenance 1,000 

Calibration for sensors 800 

Miscellaneous cost 1,000 

Total cost 6,800 
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The above provides a summary table of the cost for implementing the condition 

monitoring approach. The sensor costs are calculated considering an average of 8 

sensors are required priced at an individual monetary cost equal to $600. Moreover, 

the data analysis and reporting value is calculated considering that two trained 

personnel are required for two days at an hourly rate of $125. Additionally, 

miscellaneous cost considers costs such as transportation, accommodation etc. of the 

personnel involved. The values are selected after discussion with INCASS project 

partners, operating in the field of installing and utilising sensors for monitoring in 

engineering applications and ship operations. 

 

Benefits from the application of the condition monitoring strategy include higher 

charter rates. A vessel equipped with condition monitoring tools has a much better 

probability of reliability of main engine that a vessel that does not. As such, there will 

be a reduction of risk of the vessel failing whilst on voyage and hence can reduce the 

possibility of intervention by a coastal state for example on the progress of a voyage. 

Therefore, the cost-benefit procedure considers various charter rates and increased 

premium rates for the analysis. 

 

If the vessel has an approved condition monitoring strategy onboard, then indirect 

savings such as discount rates on Classification Society annual surveys are considered 

in the CBA. For analysis purposes, the cost of a Classification Society annual survey 

is considered to be equal to $114,000 and a 20% discount rate is applied. These values 

are selected upon discussion and advise from Classification Societies surveyors and 

vessel technical fleet managers.  

 

In addition, the enhanced monitoring of machinery that can be achieved through the 

employment of the condition monitoring framework results in a mitigation of risk that 

the plant will fail and as such can attract a reduction in premium for insurance. The 

CBA focuses on hull and machinery insurance premium and as the premium depends 

on many factors, an average value of $100,000 is used in the analysis of the cost-

benefit based on information provided by a shipping company.  
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Figure 8.1 provides an overview of the various elements utilised for the completion of 

the cost-benefit analysis regarding the condition monitoring strategy. 

 

Cost-Benefit Analysis 

(CBA)

PMS+

Scenarios

Charter 

Rates

Increase in 

Charter Rate 

Premium

PMS+25%

PMS+50%

PMS+75%

PMS+100%

$5,000

$10,000

$15,000

$20,000

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

 

Figure 8.1 CBA overview 

 

For each of the four extended PMS scenarios, various charter rates are considered in 

the analysis. The charter rates are selected based on the latest recorded charter rates 

regarding the container ship charter market according to BRS group (2018). In 

addition, for each PMS scenario and charter rate, the financial benefits related to 

potential increases of charter rate premiums are modelled from a minimum of 5% to a 

maximum of 50%, in 5% increments. 

 

The results regarding the CBA for the aforementioned four scenarios in which mean 

time between intervals for the engine inspection and maintenance are extended up to 

25%, 50%, 75% and 100% respectively are presented in the following section. 
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8.3 CBA results 

 

This section presents the CBA results obtained for the aforementioned four scenarios 

in which mean time between intervals for the engine inspection and maintenance are 

extended up to 25%, 50%, 75% and 100% respectively. Appendices H.2-H.5 contain 

the CBA results for all four scenarios. 

 

8.3.1 Scenario 1 PMS+25%  

 

This section presents the results for the various charter rates and return of charter rate 

premium for the PMS+25% scenario. Figure 8.2 displays the cost analysis for a charter 

rate of $5,000 with a 5% increase in premium, based on a worst-case scenario of poor 

business environment. 

 

 

Figure 8.2 Cost analysis PMS+25% for $5000 charter rate-5% premium increase 

 

As it can be seen from the graph, the negative costs correspond to the calculated 

maintenance costs. Specifically, the blue line is the cost associated with the existing 

ship preventive maintenance scheme for the main engine for the life cycle analysis of 

25 years. It can be seen from the graph that the condition monitoring cost (red line) is 

less than the total cost of the preventive maintenance plan for the PMS+25% scenario. 

Moreover, the purple line displays the total calculated benefits obtained for the 

condition monitoring application, while the financial benefits (green dashed line) of 

the application of the condition monitoring framework are increased through the 
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lifecycle of the ship and is equal to the difference between the condition monitoring 

costs and associated cost-benefits. Furthermore, Figure 8.3 presents the results 

obtained regarding the sensitivity analysis carried out for the financial benefits related 

to the potential increase of charter rate premium from 5% to 50% in 5% increments. 

 

 

Figure 8.3 Financial benefits for 5%-50% premium increase-$5000 charter rate  

 

By examining Figure 8.3, it can be noticed that for the selected $5,000 charter rate, the 

financial benefits by utilising the condition monitoring approach increase throughout 

the lifecycle of the vessel and for increased premium rates. Specifically, the minimum 

financial benefit is equal to approximately half a million USD for a 5% increase in 

charter premium while for 10% increase it is equal to approximately 2 million USD 

for the 25 year period. The maximum financial benefit is equal to 11 million USD for 

50% at the end of the vessel’s lifespan. Appendix H.2 contains the results for the 

remaining charter rates. The following section presents the CBA for the PMS+50% 

scenario. 

 

8.3.2 Scenario 2 PMS+50% 

 

This section presents the cost-benefit results for the PMS+50% scenario for the 

different charter rates and premium returned. Figure 8.4 presents the obtained financial 

benefits for considering various increased premiums in the $5,000 charter rate region. 

As observed from the figure, the financial benefits reach a total amount of $560,000 

for a small charter rate of just $5,000 with the minimum 5% increase in charter rate 

premium due to implementing the condition monitoring framework.  
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Figure 8.4 Financial benefits for 5%-50% premium increase-$5000 charter rate 

 

The financial benefits significantly increase when considering increased vessel charter 

rate premiums for the specified charter rate ranging from a minimum financial benefit 

of $560,000 for the 5% increased premium to a maximum 11.2 million USD for 50% 

increased premium. Hence, the financial benefits can be clearly interpreted. Appendix 

H.3 contains the results for the remaining charter rates. The following section presents 

the CBA for the PMS+75% scenario. 

 

8.3.3 Scenario 3 PMS+75% 

 

This section presents the cost-benefit results for the PMS+75% scenario for the 

different charter rates and premium returned. Figure 8.5 displays the obtained financial 

benefits for considering various increased premiums in the $5,000 charter rate region 

for the PMS+75% scenario. 

 

The financial benefits significantly increase when considering increased vessel charter 

rate premiums and vary from a minimum financial benefit of $570,000 for the 5% 

increased premium to a maximum 11.4 million USD for 50% increased premium. 
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Figure 8.5 Financial benefits for 5%-50% premium increase-$5000 charter rate 

 

Appendix H.4 contains the results for the remaining charter rates. The following 

section presents the CBA for the PMS+100% scenario. 

 

8.3.4 Scenario 4 PMS+100% 

 

This section presents the cost-benefit results for the PMS+100% scenario for the 

different charter rates and premium returned. Figure 8.6 displays the obtained financial 

benefits for considering various increased premiums in the $5,000 charter rate region. 

 

 

Figure 8.6 Financial benefits for 5%-50% premium increase-$5000 charter rate 

 

The financial benefits significantly increase when considering increased vessel charter 

rate premiums for the specified charter rate ranging from a minimum financial benefit 

of $771,000 for the 5% increased premium to a maximum 11.6 million USD for 50% 

increased premium. In addition, for the most optimistic scenario analysed 
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(PMS+100%, $20,000 charter rate, 50% increased premium), the financial benefits are 

equal to 47 million USD, as presented in Appendix H.5. 

 

8.3.5 Remarks 

 

The CBA investigated the benefits obtained from capitalising the condition monitoring 

framework over a traditional vessel PMS scheme by considering both direct and 

indirect savings. Moreover, the CBA was executed considering various market 

fluctuations and augmented levels of charter premium, with all case studies 

demonstrating a solid realisation of the potential financial benefits obtained from 

implementing the condition monitoring framework. Figure 8.7 presents the B/C ratio 

for all four scenarios for the $5,000 charter rate, 5%-20% increased premium studies. 

 

 

 

Figure 8.7 B/C ratio for $5000 charter rate, 5%-20% premium increase 

 

As observed from Figure 8.7, there is a zero B/C ratio in year 0, due to the capital costs 

and start of the ship’s lifecycle and the benefits exceed the condition monitoring costs 

before 2.5 years for all scenarios and premiums. It is also observed that by comparing 

the B/C ratios for the four scenarios, the B/C increases as the mean time between 

inspections are increased for the main engine from the PMS+25% to the PMS+100% 

scenario. In particular, it can be noticed that the B/C ratio is reasonably the highest 

between the four scenarios for the PMS+100% scenario. Furthermore, at the end of the 
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vessel lifecycle for the PMS+25% scenario, the B/C ratio is equal to 1.34 for the 5% 

increased premium while for the 10% it is 2.23, 3.12 for the 15% and 4.0 for the 20% 

premium increase; highlighting the impact the increased charter rate premium can have 

on the investment and benefits of the condition monitoring framework.  

 

Therefore, by considering the lowest case study conducted (PMS+25%, $5000 charter 

rate, 5% increased premium), the ROI is equal to 2.2 years, while for 10% increase in 

premium the ROI is dropped down to roughly 6 months and for 15% and 20% increase 

in charter rate premium, the ROI occurs below 3 months. As the lowest case study has 

been described and presented, the ROI and overall benefits can be perspicuously 

realised for all other PMS+ scenarios, higher charter rates and higher premiums where 

the financial benefits are further increased. Moreover, Table 8.2 presents the summary 

of the CBA results, obtained for all PMS scenarios and various charter rates related to 

the 5% increase in charter rate premium study. 

 

Table 8.2 Summary of CBA results ($) for 5% charter rate premium increase 

PMS 

Scenario 

Charter 

Rate ($) 

Ship Lifecycle (Years) 

5 10 15 20 25 

PMS+25% 5,000 60,320 154,965 239,849 314,550 457,058 
 10,000 337,220 692,782 1,014,662 1,304,633 1,642,675 
 15,000 614,120 1,230,599 1,789,476 2,294,715 2,828,291 
 20,000 891,020 1,768,416 2,564,289 3,284,798 4,013,907 

PMS+50% 5,000 78,673 189,434 288,052 374,634 527,685 
 10,000 355,572 727,251 1,062,865 1,364,717 1,713,301 
 15,000 632,472 1,265,068 1,837,679 2,354,800 2,898,917 
 20,000 909,372 1,802,885 2,612,493 3,344,882 4,084,534 

PMS+75% 5,000 86,177 197,186 296,248 410,364 566,686 
 10,000 363,077 735,002 1,071,062 1,400,446 1,752,302 
 15,000 639,976 1,272,819 1,845,875 2,390,529 2,937,918 
 20,000 916,876 1,810,636 2,620,689 3,380,612 4,123,534 

PMS+100% 5,000 128,368 287,730 433,632 567,151 770,969 
 10,000 405,268 825,547 1,208,445 1,557,234 1,956,585 
 15,000 682,168 1,363,364 1,983,259 2,547,316 3,142,202 
 20,000 959,068 1,901,181 2,758,072 3,537,399 4,327,818 
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The CBA focused on direct and indirect savings subject to reasonable comparison 

between the costs of preventive maintenance and the costs and benefits of the condition 

monitoring strategy. However, there are other intangible benefits that can be 

considered by utilising the condition monitoring strategy such as value of avoiding 

loss of reputation, value of avoiding environmental damage and value of avoiding 

death or injury. A vessel capitalising on the described condition monitoring framework 

can also consider the possibility of an increased life span by proven records of good 

maintenance practices and machinery condition. Overall, the CBA demonstrated the 

financial benefits that can be obtained considering one ship. Hence, the financial 

benefits can be immensely prolonged when considering a vessel fleet. 

 

8.4 Chapter summary  

 

This chapter presented the cost-benefit analysis conducted for implementing the 

developed condition monitoring framework compared to an existing preventive 

maintenance scheme regarding a ship main engine. The CBA investigates both direct 

and indirect savings and considers various charter rates and increase in charter rate 

premium due to utilising condition monitoring. The results were presented for 4 

scenarios in which mean time between intervals for maintenance and inspection 

activities for the main engine were extended up to 25%, 50%, 75% and 100% 

respectively. Moreover, the longest ROI was equal to 2.2 years for the least beneficial 

case study, while the shortest were below 3 months for other case studies. The 

following chapter presents the overall discussion topics of the thesis.  
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9 Discussion and Conclusions 

 

9.1 Chapter outline 

 

This chapter presents the discussion and concluding remarks related to the developed 

hybrid condition monitoring framework. The accomplishment of the research aim and 

objectives are analysed, followed by the novelty of the presented research. Moreover, 

concluding statements regarding the performed research study are presented followed 

by recommendations for future research. 

 

9.2 Accomplishment of research aim and objectives 

 

The purpose of this research is to contribute theoretically and empirically to ship 

machinery condition monitoring in the maritime maintenance field. This was achieved 

by tackling the defined main aim regarding the development of a predictive condition 

monitoring framework for application on ship machinery systems through the 

proposed innovative hybrid condition monitoring framework. In this regard, the main 

aim was realised through the thesis objectives defined in Chapter 2 and are individually 

addressed and discussed in this section. 

 

Objective 1:  Identify the gaps in the literature and issues in maritime maintenance 

and condition monitoring by conducting a detailed literature and 

critical review pertinent to the research topic. 

 

This objective has been achieved by identifying and examining generic maintenance 

types and concepts, maritime maintenance and condition monitoring features and 

ANN applications in Chapter 3. Salient features, advantages and drawbacks have been 

investigated setting the foundation for further research and development towards the 

establishment of a novel and adaptive maintenance strategy for the maritime industry. 

Maintenance practices within the maritime sector and recent state-of-the-art 

commercial software and academic projects highlighted the rigidity of the maritime 

industry on preventive maintenance tasks and demonstrated the emergent of advanced 
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maintenance frameworks based on CBM functionalities. In this respect, the application 

of ANNs in the context of CBM was investigated revealing the literature paucity 

regarding their application in the maritime sector despite their recognised advantages 

and applications in other fields.  

 

Objective 2:  Focus the identified research gaps to propose an innovative condition 

monitoring framework methodology for the maritime industry and 

demonstrate the various elements that is consists of in full depth. 

 

This has been achieved by the establishment and analytical description of the proposed 

hybrid condition monitoring framework in Chapter 4. The developed framework 

consists of reliability tools such as FTA, FMEA and RBD, a data cleansing algorithm 

and clustering, ANN time series analysis and forecasting, ANN diagnostics, health 

assessment and maintenance advisory generation stages. The developed framework 

can be utilised to identify critical items, improve the data selection and collection 

process and monitor the present and future condition of the system, leading to 

fundamental recommended maintenance actions and activities. All these stages are 

combined to create the comprehensive hybrid condition monitoring strategy which 

have never been examined under a single framework in the maritime maintenance 

sector before. The flexibility and adaptability of the methods and tools in the 

framework enable further research and application in the maritime and other industries. 

 

Objective 3:  Collect data for analysis through ship onboard measurement 

campaigns to demonstrate the proposed methodology. 

 

This objective was achieved by acquiring three datasets for analysis upon discussion 

with one of the INCASS project partner’s vessel fleet manager and personnel. The first 

dataset was collected through an onboard measurement campaign in the Mediterranean 

Sea while the second dataset was provided by a shipping company. These two datasets 

were utilised for training the ANN models. Finally, a third dataset was obtained from 

another onboard measurement campaign in the Mediterranean Sea on the same vessel 

and was applied for simulating and verifying the ANN models. In terms of reliability 
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data (FR, MTBF) for the Fault Tree analysis, this was not feasible and thus the minimal 

cut-set method was employed to identify critical systems and components. Moreover, 

the inspection intervals of a vessel’s PMS were attempted to quantitatively analyse the 

Fault Tree. Unrealistic results were obtained due to mostly assuming the intervals as 

MTBF, and thus were excluded from the study. 

 

Objective 4:  Demonstrate the applicability of the developed methodology for the 

main engine system of a container ship. 

 

This objective was achieved by employing the proposed methodology for the case 

study of a Panamax container ship main engine described in Chapter 5 and presenting 

the results in Chapter 6. The FTA and FMEA was conducted for various main engine 

subsystems such as the cylinder, piston, air, cooling, fuel, lubrication and engine block 

systems. The minimal cut sets of the FT main engine were calculated identifying the 

cylinder, piston, engine block and fuel system as the most critical main engine 

components and subsystems. The combination with the FMEA provided insight for 

the selection of important monitoring parameters. Hence, in combination with the 

acquired datasets, 40 main engine performance parameters were utilised such as main 

engine rpm, temperatures and pressures for the multiple main engine systems.  

 

Input data were pre-processed through data cleansing, while the SOM clustering tool 

was developed using real and simulated data for identifying parameters exceeding 

OEM thresholds or representing abnormal engine operation. The work performed 

regarding the SOM networks is considered original and novel since its application for 

monitoring the condition of machinery systems has not been investigated before. 

Moreover, the SOM case studies demonstrated its flexibility in addressing the issue of 

finding the correct number of clusters which does not have a finite solution. 

 

The processed data from both input datasets are used in the dynamic NAR and NARX 

neural network models for multi-step-ahead forecasting. The larger size of dataset 2 

provided more accurate network training for both models. Moreover, all models 

presented accurate forecasting capabilities with NAR MAPE values ranging from 



214 

 

0.05% to 1% for dataset 1 and 0.12% to 5.88% for dataset 2 respectively. Furthermore, 

the introduction of the exogenous input in the NARX models reduced APE values by 

up to 35% compared to the NAR results especially when significant shifts in the main 

engine rpm occurred; thus, improving the overall forecasting accuracy. These dynamic 

time series neural network models have not been addressed before in the context of 

the maritime industry for forecasting data of performance parameters. 

 

The ANN-MLP classifier achieved overall 98.7% classification accuracy in the testing 

dataset for simulating various main engine faults. The health assessment method 

utilised custom thresholds to calculate MCIs and illustrated system degradation when 

parameters exceeded the thresholds. Based on the acquired present and forecasted 

diagnostic and health assessment results, maintenance suggestions are generated 

through MAT while also providing additional information to the user. 

 

Objective 5:  Validate key aspects of the methodology and demonstrate the 

performance of the methodology under different circumstances through 

a sensitivity analysis 

 

This objective has been addressed in Chapter 7 by defining three sensitivity scenarios 

for examining and testing the level of change in the NARX model output for various 

input data alterations. The sensitivity analysis was performed by utilising Monte Carlo 

analysis with the Latin hypercube sampling method. For all three sensitivity scenarios, 

satisfactory model performance was achieved for different alterations in the input data. 

Moreover, the results of the sensitivity analyses also ensured and demonstrated correct 

network training and generalisation capabilities. 

 

Objective 6:  Perform a cost-benefit analysis to investigate and assess the value 

associated with implementing the developed condition monitoring 

framework 

 

This objective was achieved by conducting a Cost-Benefit Analysis (CBA) in Chapter 

8 by investigating the benefits obtained from capitalising the condition monitoring 
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framework over a traditional vessel PMS scheme. The CBA considered both direct 

and indirect savings and was presented for 4 scenarios in which mean time between 

intervals for main engine maintenance and inspection were extended. In addition, the 

CBA was executed considering various charter rates and augmented levels of charter 

rate premium. All case studies demonstrated a solid realisation of the potential 

financial benefits obtained from implementing the condition monitoring framework. 

Moreover, the longest ROI was equal to 2.2 years for the least beneficial case study, 

while the shortest were below 3 months for other case studies. The CBA results were 

validated by executing and presenting a similar CBA in the EU FP7 INCASS project, 

for a bulk carrier, tanker and container vessel. 

 

9.3 Novelty of presented research 

 

The novelty of the undertaken research is derived from the combination of reliability 

tools with data-driven AI methods incorporated within a hybrid framework and the 

application of the various artificial neural network models to monitor the condition of 

a system. Due to their data-driven nature, these methods and tools can be applied to a 

plethora of industrial systems. The developed hybrid condition monitoring framework 

introduces novelties in the context of condition-based maintenance and condition 

monitoring in the maritime industry. The main benefits stem from utilising available 

onboard sensors to collect real-time data which can be stored and adopted for 

developing AI data-driven models for condition monitoring applications, without 

requiring any a priori knowledge of the underlining physical phenomena. 

 

One of the novel features of the research, is the application of the SOM algorithm for 

clustering data and simultaneously identifying data exceeding thresholds or 

representing abnormal engine behaviour, thus being implemented as a tool for directly 

monitoring system condition and performance. Additionally, the NAR and NARX 

models have been introduced for dynamic time series analysis and forecasting, 

utilising performance parameter data for predicting the future system state, thus 

enhancing the monitoring framework with predictive capabilities. This leads to the 

present and future diagnostic and health assessment on system, subsystem and 
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component level. Moreover, all the stages of the hybrid approach can be utilised both 

independently and dependently of each other and are adaptable and flexible in 

considering new input data representing new ship operating profiles or previously 

unmodelled faults and failures. 

 

In terms of the research practicality of the developed innovative framework, it can 

assist shipping industry stakeholders such as ship owners, operators, crew and 

regulatory bodies. The overall framework methodology and modular nature allows the 

tools to be updated with new input data and can be applied to different ship types and 

is suitable for real-life implementation onboard. Decision makers frequently face 

questions such as which maintenance strategy should be introduced for specific 

machinery and equipment and how to justify their decision. Furthermore, some 

shipping companies have started to collect vast amounts of data without having a 

strategy on exploring and analysing the data effectively. The FTA-FMEA combination 

can assist practitioners in producing tailor-made CBM strategies, starting from a pilot 

project on the identified critical items, failures and causes; while simultaneously 

assisting on targeting and harvesting the correct data to reduce costs and enhance 

operation and maintenance.  

 

The AI tools can provide ship operators with early warnings of upcoming faults to 

mitigate potential issues in advance through the NAR and NARX models, which helps 

reduce unplanned downtime and increased availability by enabling the crew onboard 

the ship and the onshore personnel to prepare accordingly and proactively. The 

unsupervised learning nature of the SOM provides a fast and efficient method to 

cluster data and model the underlying structure or distribution in the data providing an 

initial analysis and feedback to the shipping company/operator. Moreover, the 

interclustering approach can assist in grouping similar data or distinguishing data that 

could represent possible fault conditions or abnormal system operation. 

 

The ANN-MLP classifier enables an adaptive structured method for updating the 

model with the inclusion of new fault classes without requiring in-depth knowledge of 

the system to be diagnosed, enhancing future fault detection and diagnosis. Moreover, 
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the diagnostic database can assist ship operators to concentrate efforts in the most 

frequently reported fault causes in the long term, compare defects per sister vessel, 

correlate this to maintenance performance and forecast maintenance costs. The MCI 

method offers flexibility in defining custom thresholds for monitoring the health of 

various systems and can act as a prioritisation mechanism for maintenance planning in 

the case of dealing with multiple faults. Moreover, assuming the same thresholds are 

defined, a regulatory body can investigate the appointment of a tolerable health index 

value and correlate historical health index trends and values to specific faults and 

conditions.  

 

Through its interactive process, MAT can assist operators select appropriate 

maintenance actions based on available data and their own judgment of specified 

criteria. Moreover, appropriate information can be reported to different users 

according to their needs under one platform, assisting in the decision-making process. 

As such, onboard personnel require key conditions or constraints, imminent system 

problems alongside short-term prognosis, current operation characteristics, diagnostics 

with enhanced details while the onshore personnel could require additional 

information such as historical records and costs.  

 

9.4 Conclusions 

 

The concluding remarks of this research study are presented in the following 

statements: 

 

• The presentation of the hybrid condition monitoring framework has been 

enabled through examining the current literature, industry practices and 

research trends regarding maintenance in a generic and specific context 

targeting the maritime sector. The need for an overall CBM strategy and 

investigation of data-driven methods such as ANN for condition monitoring 

has facilitated the introduction of the hybrid condition monitoring framework. 

• In this respect, the proposed hybrid framework has addressed condition 

monitoring and assessment of ship machinery systems by extracting the 



218 

 

benefits of reliability tools and AI in a combinatory strategy. This creates a 

dynamic framework consisting of robust tools and stages that can operate as a 

unified entity under the framework or be self-sufficient. 

• The hybrid framework is initially implemented through the application of 

FTA-FMEA. These tools complement each other and assist in identifying 

critical items and suitable parameters for initiating a pilot condition monitoring 

project.  

• The case studies demonstrated the capabilities of the various neural networks 

with respect to condition monitoring applications. The SOM and 

interclustering approach addressed the issue of finding the correct number of 

clusters. Moreover, the SOM can be used for directly monitoring the system 

condition by applying unsupervised learning algorithms. 

• Furthermore, high forecasting accuracy was achieved by employing the NAR 

and NARX models. These ANN models predict the future by learning from 

past data. Hence, adequate datasets should be provided to accurately forecast 

different conditions and take seasonality factors into account. The case studies 

demonstrated that up to 35% increased forecasting accuracy can be achieved 

by introducing the main engine rpm as the exogenous input in the NARX 

models compared to the accuracy of the NAR models. For example, in the 

NAR model of cylinder 5 exhaust gas outlet temperature related to dataset 2, 

the APE value between the 23rd hour forecasted and actual exhaust gas outlet 

temperature value is equal to 38.10%, while the results for the NARX model 

indicate a major reduction in the APE of 33.58% magnitude, resulting in an 

APE value for the NARX model of 4.52%. Moreover, the overall model MAPE 

value is reduced from 4.64% down to 1.02%. 

• The ANN-MLP classifier can be trained to predict system faults subject to 

sufficient training data, without requiring any a priori knowledge. An overall 

accuracy of 99.6% was achieved for the 16 modelled main engine faults F0-

F15. Most of the fault classes have been perfectly classified while some other 

fault classes, F0, F1, F3 and F4, have high classification accuracies and minor 

misclassifications over the training, validation and test sets. The diagnostic 

assessment is further enhanced by introducing the FMEA as an additional 
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source of diagnostic intellect, connecting system faults with failure modes, 

causes and effects locally and globally. 

• The lack of systematic approaches to ANN modelling is the primary cause of 

inconsistency findings in reports. ANN modelling depends strongly on the 

characteristics of input data and application scope. 

• The cost-benefit analysis demonstrated direct and indirect saving obtained 

from implementing the proposed framework. These include extension of PMS 

maintenance intervals, increased reliability and charter rate premium, 

Classification Society annual survey discounts and reduced insurance 

premiums. Financial benefits range from $560,000 for the worst-case scenario 

modelled to 47 million USD for the most optimistic scenario over the ship’s 

lifecycle, while ROI is equal to 2.2 years for the least beneficial case study, 6 

months for a $5,000 charter rate with 10% increase in charter premium and 

below 3 months for the other cost-benefit scenarios. 

• The proposed methodology can be applied to other machinery systems such as 

diesel generators, boilers, turbochargers etc. and can also be extended beyond 

machinery systems, as it has the flexibility and capability factors to adapt 

accordingly due to its data-driven nature. 

• The hybrid condition monitoring framework can be further enhanced by using 

MAT as the platform to connect the overall framework with in-depth decision-

making attributes. Benefits can be further enhanced by combining the overall 

framework with automatic data acquisition from sensors, cloud-based services, 

enabling real-time monitoring and decision support actions. This will also 

enable further validation of the framework performance and investigate any 

required calibration of network models to capture new information. 

• ‘Absolute and lasting optimisation of the maintenance of any working system 

is not possible, the optimum is never achieved because it is a moving target 

and because the data for its estimation are never quite complete or up to date 

and seldom sufficient in number’, Sherwin (2000). The importance of data 

quality and availability must be highlighted once more, for researching, 

developing and improving the constituents of maintenance in the maritime 

industry. 
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9.5 Recommendations for future research  

 

Through the research and development of the hybrid condition monitoring framework, 

future research areas were identified that can extent the research scope and thesis 

impact. The following statements summarise these areas: 

 

• The employment of additional data points and measurements should be considered. 

As observed in the case study, the dataset population size affects the training 

accuracy of the trained neural networks. Larger datasets could require alteration in 

the network training algorithms such as the Levenberg-Marquardt optimisation 

algorithm. Moreover, the impact of measurement time intervals between 

measurements can affect outputs and the overall model uncertainty. 

• Data availability is limited as data is not easily accessible, especially data 

representing fault conditions. Moreover, even in the existence of data, they might 

not represent faults and/or no history log accompanies them in order to know if the 

data is healthy or if alarms or system shutdowns occurred. Thus, these factors make 

it hard to interpret the data and understand it. Hence, future studies should 

elaborate on the importance of reliable data and data quality. In addition, it is 

important to consider the legal implications and how the new technology fits within 

the existing contractual and legal framework. 

• In addition, depending on the level of data available for analysis, ANN models can 

be trained and correlated for different engine performance profiles, developing an 

in-depth condition monitoring tool. Moreover, if data such as engine load, fuel 

consumption and weather conditions are available, performance monitoring can be 

achieved by developing AI and machine learning regression models to predict the 

performance of the main engine and ship overall. 

• In addition, further examination of the condition monitoring framework should be 

researched by applying other data-driven state-of-the-art models such as support 

vector machines. Integration of various data-driven methods can potentially lead 

to enhanced accuracy and performance. 

• The development of autonomous and unmanned vessels will create a necessity for 

improved maintenance, supported by intelligent, autonomous and predictive 
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characteristics. The developed framework can contribute towards this by 

investigating automated means of creating a fully adaptable and self-updated 

mechanism for the AI methods. 

• AI and machine learning techniques are considered as black box techniques. A key 

challenge for shipowners is measuring a baseline level of performance against 

which the output from any newly introduced system can be assessed and evaluated. 

Benchmarking of AI and machine learning techniques could be researched to 

validate their performance and increase their confidence level in the shipping 

industry. 

• The identification of critical systems was achieved through the FTA and FMEA 

tools. The selection of critical systems can be further enhanced by adding other 

factors such as spare part and repair costs and Failure Reporting, Analysis, and 

Corrective Action System (FRACAS). Additionally, the FMEA can be converted 

to a quantitative FMECA although the subjective evaluation of it should be 

carefully considered. 

• The impact of data cleansing methods on the training process of the neural 

networks could be investigated to ensure adequate network training and 

performance. 

• As more data becomes available, the NAR and NARX models should be trained 

again to fully take advantage of the new information so that the models can capture 

the developing trend of the monitored system more accurately. When and how to 

implement such an update should be further examined. 

• The Maintenance Assistant Tool (MAT) was developed to provide a fundamental 

advisory generation model regarding maintenance actions and to demonstrate the 

potential of such a platform for recording and extracting maintenance data. 

Another recommendation would be to further develop this model with 

sophisticated decision-making tools and optimisation models (AHP, analytic 

network process, fuzzy set theory, genetic algorithms) in order to calculate optimal 

maintenance intervals and costs. Additionally, a decision support mechanism that 

considers costs, reliability, risk and safety factors in a multi attribute environment 

could be considered and be beneficial for the industry. 
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9.6 Chapter summary 

 

In this chapter key discussion topics and conclusions regarding the hybrid condition 

monitoring framework were presented. A description of the accomplishment of the 

research aim and objectives was provided followed by the presentation of the research 

novelty. Moreover, concluding remarks regarding the research study were described 

and recommendations for future research were presented. List of references and 

appendices are provided next supplementing the presented thesis work. 
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Appendix A: Backpropagation algorithm mathematical description 

 

Figure 1 demonstrates a multilayer feedforward network with all inputs, outputs and 

hidden elements. The following pages explain and illustrate mathematically the 

concept of the backpropagation algorithm. 

 

 

Figure 1-Signal flow through a multilayer feedforward network 

 

MLP has besides an input and output layer also one or more hidden layers. The neurons 

in the hidden layer(s) of the multi-layer FFNN possess activation functions. The figure 

displays how an arbitrarily input signal xi propagates through the MLFNN (Zhang and 

Yi, 2011). The input Sj(n) is expressed by Equation 1: 

 

𝑠𝑗(𝑛) = ∑ 𝑤𝑗𝑖(𝑛)𝑥𝑖(𝑛)

𝑚

𝑖=0

 (1) 

 

The input is then entered into the activation function in order to provide the output of 

the neuron yj(n): 

 

𝑦𝑗(𝑛) = 𝐹(𝑠𝑗(𝑛)) (2) 

 

The output of the neuron of this layer together with the output from the other neurons 

is then the input to the next layer. Thus, all outputs are summed up to produce the 

effective output sk(n) of the neuron in the next layer. 
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𝑠𝑘(𝑛) = ∑ 𝑤𝑘𝑗(𝑛)𝑦𝑗(𝑛)

ℎ

𝑖=0

 (3) 

 

Similarly, the input is fed into an activation function to produce the output of the 

neuron yk(n) 

 

𝑦𝑘(𝑛) = 𝐹(𝑠𝑘(𝑛)) (4) 

 

An arbitrary output yk can then be calculated from equation 5: 

 

𝑦𝑘 = 𝐹0 {∑[𝑤𝑘𝑗(𝑛)𝐹ℎ(∑ 𝑤𝑗𝑖(𝑛)𝑥𝑖(𝑛))]

𝑚

𝑖=0

ℎ

𝑗=0

} 

 

(5) 

 

Once the output of the final layer has been calculated, it is then compared with the 

desired output, dk(n) in order to find the error between the calculated and the measured 

value as seen in equation 6: 

 

𝑒𝑘(𝑛) = 𝑑𝑘(𝑛) − 𝑦(𝑛) (6) 

 

This error is minimised by updating the weights through a learning algorithm, the 

backpropagation algorithm. When using backpropagation for training the network, the 

activation functions have to be differentiable due to the fact that the backpropagation 

algorithm utilises the delta rule. 

 

The error is propagated back through the entire network, utilising the gradient descent 

method. The instantaneous value of the cost/error function based on the error signal is 

shown in equation 7 and describes the value that has to be minimised. N equals to the 

number of patterns used for training the network: 
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𝐸𝑎𝑣 =  
1

2𝑁
∑ ∑ 𝑒𝑘

2(𝑛)

𝑘

𝑁

𝑛=1

 (7) 

 

The updating of the weights are assumed to be proportional to the gradient descent of 

the error function, which are used in the backpropagation, is defined in the following 

two equations. The learning rate is defined by n. 

 

𝛥𝑤𝑘𝑗 = −𝑛
𝑑𝐸

𝑑𝑤𝑘𝑗
 (8) 

 

𝛥𝑤𝑗𝑖 = −𝑛
𝑑𝐸

𝑑𝑤𝑗𝑖
 (9) 

 

The differentiation of the cost function becomes: 

 

𝑑𝐸

𝑑𝑤𝑘𝑗
=

𝑑

𝑑𝑤𝑘𝑗
{

1

2𝑁
∑ ∑(𝑑𝑘(𝑛) − 𝐹𝑘(𝑠𝑘(𝑛)))2

𝑘

𝑁

𝑛=1

} (10) 

 

When calculating the weight update of the connections between the input and hidden 

layers, the chain rule has to be applied to equation 9 giving the following equation: 

 

𝑑𝐸

𝑑𝑤𝑗𝑖
=

𝑑𝐸

𝑑𝑦𝑘

𝑑𝑦𝑘

𝑑𝑦𝑗

𝑑𝑦𝑗

𝑑𝑤𝑗𝑖
 (11) 

 

Once these derivatives have been calculated, the local gradients, δ, are stated in 

equation z for the matrix between the output and the hidden layer and in equation f for 

the matrix between the hidden and the input layer. 

 

Weight correction of the weight matrix between the output and the hidden layers 

 

𝛥𝑤𝑘𝑗 = 𝑛
1

𝑁
∑ 𝛿𝑘(𝑛)𝑦𝑗(𝑛)

𝑛

 (12) 
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𝛿𝑘(𝑛) = 𝑒𝑘(𝑛)𝐹′
𝑘(𝑠𝑘(𝑛)) (13) 

 

Weight correction of the weight matrix between the hidden and the input layers 

 

𝛥𝑤𝑗𝑖 = 𝑛
1

𝑁
∑ 𝛿𝑗(𝑛)𝑥𝑖(𝑛)

𝑛

 (14) 

 

𝛿𝑗(𝑛) = 𝐹′
𝑗(𝑠𝑗(𝑛)) ∑ 𝛿𝑘(𝑛)𝑤𝑘𝑗(𝑛)

𝑘

 (15) 

 

The above updating equations are valid for batch training, meaning that all patterns 

(input-output) are introduced to the network prior to any weight updating taking place. 

This introduction of all patterns is also called one epoch or one iteration. If sequential 

updating is selected, the weights are updated after each pattern is introduced to the 

network, the equations then become: 

 

𝛥𝑤𝑘𝑗(𝑛) = 𝑛𝛿𝑘(𝑛)𝑦𝑗(𝑛) (16) 

 

𝛥𝑤𝑗𝑖(𝑛) = 𝑛𝛿𝑗(𝑛)𝑥𝑖(𝑛) (17) 

 

Once the weight updates have been calculated, the connections are updated according 

to equations: 

 

𝑤𝑘𝑗(𝑛 + 1) = 𝑤𝑘𝑗(𝑛) + 𝛥𝑤𝑘𝑗(𝑛) (18) 

 

𝑤𝑗𝑖(𝑛 + 1) = 𝑤𝑗𝑖(𝑛) + 𝛥𝑤𝑗𝑖(𝑛) (19) 
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Appendix B: Fault tree gates and calculation methods 

 

B.1 Fault tree gates 

 

The following pages provide a brief explanation of the gates (static & dynamic) and 

events usually used in the modeling of a Fault Tree. 

 

Static Gates 

 

A static gate indicates a gate where the order of the inputs does not matter. This means 

that the underlying occurrence of events is not sequence-dependent and only the 

occurrence of the input event is considered. For all static gates, the output can be the 

top event or any intermediate event. The input events can be basic events, intermediate 

events (outputs of other gates), or combinations of both. A brief explanation of all 

static gates used in this project is provided below. 

 

• OR 

The OR gate is used to indicate that the output occurs if and only 

if at least one of the input events occur. In order to use an OR gate 

there must be at least two inputs. 

 

• AND 

The AND gate is used to indicate that the output will occur if and 

only if all the input events occur. 

 

• TRANSFER 

This type of gate is basically used to simplify the view of the fault 

tree in order to represent its logic more reasonably. 

 

• VOT 

The Voting (VOT) gate points out that the output occurs if and 

only if at least m out of the n input events occurs. For example, if 



243 

 

a gate is compiled from 5 events, then the user can define a failure of 3 out of 

5 events in order to obtain an output from the gate. 

 

Dynamic Gates 

 

A dynamic gate considers the temporal order of the occurrence of input events. This 

means that the order of the occurrence of input events is important to determining the 

output. Thus, a fault tree becomes a dynamic fault tree whenever a dynamic gate is 

present. There are four types of dynamic gates that can be inserted in a fault tree to 

make it a dynamic fault tree.  

 

• SEQ 

Sequence Enforcing (SEQ) is a dynamic gate that forces events 

to occur in a particular order from left-to-right. Thus for an input 

event to occur, the event next to it on the left has to occur first. 

SEQ gate follows a sequential order as an event connected to this 

gate will be initiated immediately after occurrence of its immediate left event. 

 

• PAND 

The Priority AND (PAND) gate is another dynamic gate which is 

similar to the SEQ gate but the events are examined in a particular 

order whereas the SEQ gate allows events to occur only in the 

specified order. 

 

• SPARE 

Spare gates are used to indicate that the output occurs if and only 

if all spare events occur. Spare events are a special event type 

used to model spare usage. A spare gate consists of the 

combination of a primary event (left-most event) and spare events (next to 

primary event). 
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Events 

• Basic Event 

Basic event are the lowest level of the fault tree structure or 

branch and define the end of the analytical structure. Their input 

can include failure rates or MTBF in order to carry out the 

reliability calculations of the fault tree. 

 

• Spare Event 

Spare events are only used with spare gates and are characterized 

by a dormancy factor. The primary event is initially active while 

the spare events are on stand-by mode and are only activated 

when the primary input is subjected to failure. Thus the reliability 

of the system can be increased by using spare events. 

 

B.2 Fault tree calculation methods 

 

• Cut-Set Summation 

 

Cut sets are a series of events that can possibly lead to the failure of the top or 

intermediate gate/system under consideration. When the Cut Set Summation method 

is selected, the gate probability is calculated as the summation of cut set probabilities 

(of the cut sets of that gate). This approximation is acceptable for small failure 

probabilities. However, it may give gross results for fault trees with higher cut set 

probabilities. (Cut set probabilities may result in a sum greater than 1.0.) The 

probability of each cut set is calculated as the product of event probabilities. The 

frequency of occurrence is calculated by assuming the frequency of occurrences of the 

cut sets of that gate. 

 

𝑃{𝑇𝐸} = 𝑃{𝐶1𝑈𝐶2 … 𝑈𝐶𝑚} = 𝑃{⋃ 𝐶𝑖
𝑚
𝑖=1 }      (1) 

 

Where P{TE} is the probability of occurrence of the top event, (Ci…i=1, 2,…, m) the 

cumulative summation of the minimal cut-sets.  
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• Cross Product 

 

When the Cross Product method is chosen, probabilities and frequencies are calculated 

using the summation and product terms of the cut set probabilities and frequencies 

using Poincare’s formula. It is equivalent to the product of all basic events that are 

present in those cut sets. Each basic event is considered only once (Relex, 2009). The 

unavailability at a gate is calculated by using: 

 

𝑄(𝑡) = ∑ Pr(𝐶𝑖1)

𝑛

𝑖1=1

− ∑ ∑ Pr (

𝑛

𝑖2=2

𝑛

𝑖1=1

𝐶𝑖1 ⋂ 𝐶𝑖2) + ⋯ + (−1)𝑟−1

• ∑ Pr (⋂ 𝐶𝑖𝑗)

𝑟

𝑗=11≤𝑖1<𝑖2<⋯<𝑖𝑟≤𝑛

+ ⋯ + (−1)𝑛−1 • 𝐶𝑖1
∗ ⋂ 𝐶𝑖2

∗     (2) 

 

Where n is the order of product terms and its maximum value is equivalent to the total 

number of cut sets of the gate. When n=1 this is the same as the cut set summation 

method. 

 

• Esary Proschan 

 

With the Esary Proschan method the upper bound of the gate probability is calculated 

as: 

 

𝑄(𝑡) = 𝑄𝑐(𝑡){1 − ∏ (1 −𝑖 𝑄𝑖(𝑡)∗)}       (3) 

 

Where 𝑄𝑐(𝑡) is the product of the probabilities of events that are common to cut sets 

of that gate. 

 

• Exact Calculation 

 

The exact calculation method uses the gate logic and not cut set information in order 

to calculate the unreliability/unavailability of the top/intermediate gate. 
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Appendix C: MAT Maintenance actions and activities  

 

Activity Description Maintenance action 

Replace Replacement of the item by a new or 

refurbished item  

Corrective, Preventive 

Repair Manual maintenance action performed 

to restore an item to its original state 

Corrective  

Modify Replace, renew or change the item or 

part of it with an item/part of different 

type, make, material, design 

Corrective, Preventive 

Adjust Bringing any out of tolerance condition 

into tolerance e.g align or calibrate 

Corrective, Preventive 

Refit Minot repair/servicing activity to bring 

back an item to an acceptable 

appearance e.g clean, lube oil change 

Corrective, Preventive 

Check Investigate cause of failure e.g noise, 

smoke, leakage etc. 

Corrective, Preventive 

Service Periodic service tasks: usually no 

dismantling of the item e.g cleaning 

Preventive 

Test Periodic test of function or 

performance 

Preventive 

Inspection Periodic inspection/check: careful 

scrutiny of an item carried out with or 

without dismantling 

Preventive 

Overhaul Major overhaul Corrective, Preventive 

Shut down Shut down of equipment due to major 

fault 

Corrective emergency 

Combination Several of the above activities included 

together 

Corrective, Preventive 

Other Maintenance activity other than 

specified above 

Corrective, Preventive 
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Appendix D: Main engine diagnostic table and MCI thresholds 

 

D.1 Main engine diagnostic table and remedies 

 

Fault Point Potential Causes Remedy 

Cylinder exhaust gas outlet 

temperature 

    

  

a) F2-Temperature 

increase in all engine 

cylinders 

1 Increased scavenge air 

temperature owing to 

inadequate air cooler 

function 

Inspect, overhaul and clean 

air side of air cooler 

  2 Fouled air and gas 

passages 

Clean turbine by means of 

dry cleaning/water washing 

Clean blowers and air 

coolers  

Check the back pressure in 

the exhaust gas system just 

after the T/C turbine side 

  3 Inadequate fuel oil 

cleaning and/or altered 

combustion 

characteristics of fuel 

Check fuel quality and fuel 

treatment  

  4 Wrong position of 

camshaft 

Check pmax 

Check camshaft with pin 

gauge 

Check chain tension 

b) F1-Temperature 

increase in one cylinder 

5 Defective fuel valves  Overhaul fuel valves and 

replace 

  6 Fuel valve 

leakage/dripping 

Replace or overhaul valve 

  

7 Fuel injection nozzles 

worn 

Replace nozzles 

  

8 Wrongly 

adjusted/slipped fuel cam 

Check fuel pump lead 

  

9 Blow-by in combustion 

chamber Reduce engine speed 

Inspect and if required 

replace piston rings and 

cylinder liner surface 

  

10 Exhaust valve 

burned/leakage 

Replace or overhaul valve 

Grind the valve seat and 

head 

  

11 Improper scavenging 
Clean and overhaul 

scavenging air receiver air 

flaps 

  12 Scavenge air port fouling Clean scavenge air ports 
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Fault Point Potential Causes Remedy 

  

13 Cylinder liner wear 

Check cylinder liner surface 

  

14 Exhaust thermometer 

defective 
Replace the exhaust 

thermometer 

c) F4-Temperature 

decreases in all cylinders 

15 Falling scavenge air 

temperature 

Check seawater system 

thermostat valve is 

functioning correctly 

  16 Air/gas/steam in fuel 

system 

Check the fuel oil supply 

and circulating pump 

pressures 

Check the function of the 

de-aerating valve 

Check the suction side of the 

supply pumps for air 

leakages 

Check the fuel oil preheater 

for steam leakages 

d) F3-Temperature 

decreases in one cylinder 

17 Defective fuel pump 

suction valve 

Repair the suction valve 

  18 Fuel pump plunger or 

puncture valve 

sticking/leaking 

Replace the fuel pump or the 

puncture valve 

  19 The injection nozzles are 

in unsatisfactory 

condition, nozzle tip 

broken, the flow limiter 

valve cannot move 

Replace nozzle tip or flow 

limiter valve 

  20 Reversible roller guide in 

wrong position 

Check roller guide 

mechanism for seized 

bearing, roller guide, 

roughened rollers or cam 

In case of seizure being 

observed, check cam shaft 

lubrication oil filter and by-

pass filter for possible 

damage 

  21 Exhaust valve sticking in 

open position 

Replace exhaust valve 

F10-Piston cooling 

lubrication oil inlet pressure 

low 
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Fault Point Potential Causes Remedy 

  

22 Inadequate circulation of 

cooling media 

Check all parts of cooling 

system 

  

23 L.O filter chocked Clean and/or change L.O 

filter 

  

24 L.O pump operating at 

degraded head 

Check L.O pump discharge 

& suction pressure 

  

25 L.O pump defective Repair or replace L.O pump 

  

26 Pressure lines leakage Check tubing and 

connections 

Repair or replace as required 

  

27 Low oil level Adjust oil level 

  

28 Defect in oil pressure 

gauge 

Install new gauge 

F14-Piston cooling oil outlet 

temperature high 

  

    

  

29 Insufficient piston 

cooling 

Check piston condition 

Check lubrication oil quality 

  

30 Gas flows through 

defective or worn piston 

rings 

Cut out injection of related 

cylinder for short time 

  

31 Cylinder liner surface 

scratches due to cylinder 

lubricating oil decrease  

Increase feed rate of cylinder 

lubricating oil 

Replace piston, piston skirt 

and cylinder liner 

  

32 Faulty temperature 

sensor 

Replace sensor 

F5-Fuel oil inlet temperature 

low or high 

  

    

  

33 Unsatisfactory fuel oil 

treatment 

Adjust fuel oil treatment 

accordingly and check HFO 

separators and HFO heat 

exhanger 

  

34 Fuel oil heater defective Inspect and overhaul fuel oil 

heater 

  

35 Viscosity regulator 

incorrect 

Adjust viscosity regulator or 

replace 

  

36 Faulty instrumentation 

reading 

Install new sensor 
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Fault Point Potential Causes Remedy 

F6-Fuel oil inlet pressure low 

  

37 F.O filter blocked or 

dirty 
Remove, clean and/or 

change F.O filter 

  

38 F.O booster pump 

pressure insufficient or 

faulty 

Repair or replace F.O pump 

  

39 Fuel pump plunger 

leakage or worn 

Unscrew the limit screw of 

the fuel pump control rack 

Increase the fuel capacity 

Replace a new plunger and 

barrel assembly 

  

40 Air/Water in fuel system 

Check fuel system at fuel 

prefilter 

Drain fuel prefilter 

Check and carry out air 

bleeding 

Check and carry out water 

drainage 

  

41 Suction valve early or 

late operation Adjust valve spring 

Replace suction valve 

  

42 Fuel pressure regulating 

valve defective Check and clean 

Adjust and replace 

  

43 Fuel viscosity is low 
Check HFO properties 

Check viscosity regulator 

settings 

  

44 Fuel pipe is blocked 
Check and clean or blow 

free the fuel pipe 

  

45 Faulty instrumentation 

reading 

Install new sensor 

F8-Main Lubrication oil inlet 

temperature high 

  

    

  

46 Lubrication oil cooler 

fouling Clean tube and shell side of 

cooler 

  

47 Thermostat malfunction 
Repair thermostast or 

replace 

F7-Main Lubrication oil inlet 

pressure low 

  

    

  

48 Pressure adjusting valve 

spring fractured 

Replace spring 

  

49 Loose pipe joints and oil 

leakage in oil line 

Check and tighten 
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Fault Point Potential Causes Remedy 

  

50 Air in oil pipeline Check oil pipeline and bleed 

lubricating system 

  

51 Poor lubrication oil 

quality 

Select proper lubrication oil 

according to relevant 

specifications 

  

52 Oil pressure in oil sump 

tank too low or oil pump 

suction height excessive 

Add oil or reinstall the oil 

pump and oil tank 

  

53 Clearance between 

connecting rod bearing 

and main bearing too 

large 

Check and replace 

  

54 Lubrication oil pump 

failure 

Operates at degraded 

head 

Repair pump or replace 

  

55 Filter dirty or clogged Remove, clean and/or 

change L.O filter 

  

56 Lubrication oil cooler 

leakage 

Inspect for leakages and 

overhaul to repair 

  

57 Fuel leakage into 

lubrication oil 

Repair leaks and/or install 

new parts where needed 

  

58 Faulty instrumentation 

reading 

Install new sensor 

F13-Jacket fresh water 

cooling outlet temperature 

high 

  

    

  

59 Water temperature 

regulator  

Check water temperature 

regulator for correct 

operation 

Install new parts when 

necessary 

  

60 Water inlet temperature 

too high 

Reduce the water inlet 

temperature 

  

61 Shut-off valves in pipes 

of related cylinder 

defective 

Replace shut-off valves 

  

62 Pressure in cooling 

spaces not sufficiently 

released 

Release the pressure 

  

63 The piston is too hot Stop engine and let piston 

temperature decrease 

  

64 Cooling water piping 

system blocked 

Insufficient water flow 

Treatment of cooling system 

for removal of grease and 

sediments 
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Fault Point Potential Causes Remedy 

  

65 Exhaust gases in cooling 

water due to crack in 

cylinder liner, cylinder 

cover, valve cage 

Replace defective cylinder 

cover or cylinder liner 

Close valves to the cooling 

water inlet and outlet of 

related cylinder and lock 

exhaust valve in open 

position 

  

66 Heat exchanger 

malfunction 

Insufficient cooling 

Check all cylinder cooling 

water temperatures  

  

67 JCFW pump 

failure/defect 

Overhaul or replace 

  

68 Temperature gauge 

defect 

Check temperature gauge 

operation 

Install new sensor 

F12-Cylinder scavenging air 

temperature high 

  

    

  69 Air filter clogged Remove and clean 

  

70 Air supply insufficient 

due to air cooler 

contaminated or 

defective 

Reduce engine speed 

Clean and overhaul air 

cooler 

  71 Scavenge air port fouling Clean scavenge ports 

  

72 Scavenge air receiver 

contamination Clean, overhaul or replace 

scavenging air receiver air 

flaps 

  

73 Faulty temperature 

sensor Replace with new sensor 

F11-Air cooler cooling water 

inlet pressure low 

  

    

  74 Air cooler fouling Overhaul and clean  

  

75 Cooling water piping 

system blocked 

Insufficient water flow 

Check and repair 

  

76 Cooling water piping 

system leakage 

Insufficient water flow 

Inspect piping system for 

leakages 

  

77 Cooling water pump 

defective 

Overhaul or replace 

  78 Defective gauge Replace with new gauge 

F9-Thrust bearing 

lubrication oil outlet 

temperature high 

  

    

  

79 Improper bearing 

lubrication 

Overhaul lubrication system 

and clean it 
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Fault Point Potential Causes Remedy 

  

80 Thrust bearing too hot Overhaul lubrication system 

and clean it 

  

81 Excessive thrust bearing 

lubrication 

Check lubrication oil flow 

rate 

  

82 Lubrication oil cooler 

outlet temperature too 

high 

Inspect and repair 

lubrication oil cooling 

system 

  

83 Lubricant is being lost 

through the seal 

Replace seal 

  

84 Bearing has inadequate 

internal clearance for 

conditions where 

external heat is 

conducted through the 

shaft.  

Check bearing clearance 

according to original design 

specification 

  

85 Contact seals are dried 

out or have excessive 

spring tension. 

Replace contact seals with 

seals having correct spring 

tension  

  

86 Rotating seals or flingers 

are rubbing against 

stationary parts 

Check the running clearance 

of the rotating seal or flinger 

to eliminate rubbing 

Correct the alignment.  

  87 Defective gauge Replace with new gauge 

 

  

http://www.skf.com/binary/31-5712/mhf07_tcm_12-5712.gif
http://www.skf.com/binary/31-5712/mhf07_tcm_12-5712.gif
http://www.skf.com/binary/31-5712/mhf07_tcm_12-5712.gif
http://www.skf.com/binary/31-5712/mhf07_tcm_12-5712.gif
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D.2 Main engine MCI thresholds 

 

Main engine RCP RCPin RCPlim Unit 

Exhaust gas outlet temperature cylinder 1  100 263 °C 

Exhaust gas outlet temperature cylinder 2 100 240 °C 

Exhaust gas outlet temperature cylinder 3 100 263 °C 

Exhaust gas outlet temperature cylinder 4 100 260 °C 

Exhaust gas outlet temperature cylinder 5 100 250 °C 

Exhaust gas outlet temperature cylinder 6 100 250 °C 

Exhaust gas outlet temperature cylinder 7 100 270 °C 

Exhaust gas outlet temperature cylinder 8 100 252 °C 

Fuel oil inlet temperature  130 140 °C 

Fuel oil inlet pressure  8.05 8.4 kg/cm2 

Main lubrication oil inlet pressure  2.7 2 kg/cm2 

Main lubrication oil inlet temperature  40 50 °C 

Thrust bearing lubrication oil outlet temperature 42 50 °C 

Piston cooling lubrication oil inlet pressure  2.6 2.8 kg/cm2 

Air cooler cooling water inlet pressure  2.9 3.12 kg/cm2 

Scavenging air temperature cylinder 1 30 48 °C 

Scavenging air temperature cylinder 2 30 49 °C 

Scavenging air temperature cylinder 3 30 47 °C 

Scavenging air temperature cylinder 4 30 49 °C 

Scavenging air temperature cylinder 5 30 53 °C 

Scavenging air temperature cylinder 6 30 52 °C 

Scavenging air temperature cylinder 7 30 53 °C 

Scavenging air temperature cylinder 8 30 54 °C 

JCFW cooling outlet temperature cylinder 1 50 84 °C 

JCFW cooling outlet temperature cylinder 2 50 84 °C 

JCFW cooling outlet temperature cylinder 3 83 85 °C 

JCFW cooling outlet temperature cylinder 4 50 87 °C 

JCFW cooling outlet temperature cylinder 5 50 85 °C 

JCFW cooling outlet temperature cylinder 6 50 84 °C 

JCFW cooling outlet temperature cylinder 7 50 86 °C 

JCFW cooling outlet temperature cylinder 8 50 77 °C 

Piston cooling oil outlet temperature cylinder 1  0 49 °C 

Piston cooling oil outlet temperature cylinder 2 0 50 °C 

Piston cooling oil outlet temperature cylinder 3 0 49 °C 

Piston cooling oil outlet temperature cylinder 4 0 49 °C 

Piston cooling oil outlet temperature cylinder 5 0 50 °C 

Piston cooling oil outlet temperature cylinder 6 0 50 °C 

Piston cooling oil outlet temperature cylinder 7 0 51 °C 

Piston cooling oil outlet temperature cylinder 8 0 50 °C 
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Appendix E: Main engine FTA and FMEA results 

 

E.1 Main engine FTA minimal cut sets results 

 

# Cut set events  Order 

1 Cylinder 

Head 

Piston 

Crown 

Piston Ring 
       

3 

2 Cylinder 

Head 

Piston 

Crown 

Piston Rod 

Stuffing Box 

       
3 

3 Cylinder 

Head 

Piston 

Crown 

Piston 

Connecting 

Rod 

       
3 

4 Cylinder 

Head 

Piston 

Crown 

Piston Skirt 
       

3 

5 Cylinder 

Head 

Piston Ring Piston Rod 

Stuffing Box 

       
3 

6 Cylinder 

Head 

Piston Ring Piston 

Connecting 

Rod 

       
3 

7 Cylinder 

Head 

Piston Ring Piston Skirt 
       

3 

8 Cylinder 

Head 

Piston Rod 

Stuffing 

Box 

Piston 

Connecting 

Rod 

       
3 
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# Cut set events  Order 

9 Cylinder 

Head 

Piston Rod 

Stuffing 

Box 

Piston Skirt 
       

3 

10 Cylinder 

Head 

Piston 

Connecting 

Rod 

Piston Skirt 
       

3 

11 Cylinder 

Liner 

Piston 

Crown 

Piston Ring 
       

3 

12 Cylinder 

Liner 

Piston 

Crown 

Piston Rod 

Stuffing Box 

       
3 

13 Cylinder 

Liner 

Piston 

Crown 

Piston 

Connecting 

Rod 

       
3 

14 Cylinder 

Liner 

Piston 

Crown 

Piston Skirt 
       

3 

15 Cylinder 

Liner 

Piston Ring Piston Rod 

Stuffing Box 

       
3 

16 Cylinder 

Liner 

Piston Ring Piston 

Connecting 

Rod 

       
3 

17 Cylinder 

Liner 

Piston Ring Piston Skirt 
       

3 

18 Cylinder 

Liner 

Piston Rod 

Stuffing 

Box 

Piston 

Connecting 

Rod 

       
3 
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# Cut set events  Order 

19 Cylinder 

Liner 

Piston Rod 

Stuffing 

Box 

Piston Skirt 
       

3 

20 Cylinder 

Liner 

Piston 

Connecting 

Rod 

Piston Skirt 
       

3 

21 Piston Crown Piston Ring Cylinder 

Jacket 

       
3 

22 Piston Crown Piston Rod 

Stuffing 

Box 

Cylinder 

Jacket 

       
3 

23 Piston Crown Piston 

Connecting 

Rod 

Cylinder 

Jacket 

       
3 

24 Piston Crown Piston Skirt Cylinder 

Jacket 

       
3 

25 Piston Ring Piston Rod 

Stuffing 

Box 

Cylinder 

Jacket 

       
3 

26 Piston Ring Piston 

Connecting 

Rod 

Cylinder 

Jacket 

       
3 

27 Piston Ring Piston Skirt Cylinder 

Jacket 

       
3 
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# Cut set events  Order 

28 Piston Rod 

Stuffing Box 

Piston 

Connecting 

Rod 

Cylinder 

Jacket 

       
3 

29 Piston Rod 

Stuffing Box 

Piston Skirt Cylinder 

Jacket 

       
3 

30 Piston 

Connect. Rod 

Piston Skirt Cylinder 

Jacket 

       
3 

31 Crankcase Crankshaft Camshaft 
       

3 

32 Crankcase Crankshaft Exhaust 

Valves 

       
3 

33 Crankcase Crankshaft Exhaust 

Manifold 

       
3 

34 Crankcase Camshaft Exhaust 

Valves 

       
3 

35 Crankcase Camshaft Exhaust 

Manifold 

       
3 

36 Crankcase Exhaust 

Valves 

Exhaust 

Manifold 

       
3 

37 Crankshaft Camshaft Exhaust 

Valves 

       
3 

38 Crankshaft Camshaft Exhaust 

Manifold 

       
3 

39 Crankshaft Exhaust 

Valves 

Exhaust 

Manifold 

       
3 
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# Cut set events  Order 

40 Camshaft Exhaust 

Valves 

Exhaust 

Manifold 

       
3 

41 Piping 

System 

Fuel Oil 

Filter 

Fuel Pumps 
       

3 

42 Piping 

System 

Fuel Oil 

Filter 

Fuel Valves 
       

3 

43 Piping 

System 

Fuel Oil 

Filter 

Fuel Injector 
       

3 

44 Piping 

System 

Fuel Pumps Fuel Valves 
       

3 

45 Piping 

System 

Fuel Pumps Fuel Injector 
       

3 

46 Piping 

System 

Fuel Valves Fuel Injector 
       

3 

47 Fuel Oil 

Filter 

Fuel Pumps Fuel Valves 
       

3 

48 Fuel Oil 

Filter 

Fuel Pumps Fuel Injector 
       

3 

49 Fuel Oil 

Filter 

Fuel Valves Fuel Injector 
       

3 

50 Fuel Pumps Fuel Valves Fuel Injector 
       

3 

51 Main Lube 

Oil Pump 

Lube 

System 

Valves 

Lube Oil 

Filter 

Lube Oil 

Cooler 

      
4 
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# Cut set events  Order 

52 Sea Water 

Pipes 

Central 

Cooler 

Sea Chest 

Strainer 

JCFW 

Cooling 

Pump 

Jacket 

Water 

Cooler 

     
5 

53 Crankcase Crankshaft Camshaft 

Bearing 

Thrust 

Bearing 

Main 

Bearings 

Crosshead 

Bearings 

    
6 

54 Crankcase Camshaft 

Bearing 

Thrust 

Bearing 

Main 

Bearings 

Camshaft Crosshead 

Bearings 

    
6 

55 Crankcase Camshaft 

Bearing 

Thrust 

Bearing 

Main 

Bearings 

Exhaust 

Valves 

Crosshead 

Bearings 

    
6 

56 Crankcase Camshaft 

Bearing 

Thrust 

Bearing 

Main 

Bearings 

Exhaust 

Manifold 

Crosshead 

Bearings 

    
6 

57 Crankshaft Camshaft 

Bearing 

Thrust 

Bearing 

Main 

Bearings 

Camshaft Crosshead 

Bearings 

    
6 

58 Crankshaft Camshaft 

Bearing 

Thrust 

Bearing 

Main 

Bearings 

Exhaust 

Valves 

Crosshead 

Bearings 

    
6 

59 Crankshaft Camshaft 

Bearing 

Thrust 

Bearing 

Main 

Bearings 

Exhaust 

Manifold 

Crosshead 

Bearings 

    
6 

60 Camshaft 

Bearing 

Thrust 

Bearing 

Main 

Bearings 

Camshaft Exhaust 

Valves 

Crosshead 

Bearings 

    
6 

61 Camshaft 

Bearing 

Thrust 

Bearing 

Main 

Bearings 

Camshaft Exhaust 

Manifold 

Crosshead 

Bearings 

    
6 

62 Camshaft 

Bearing 

Thrust 

Bearing 

Main 

Bearings 

Exhaust 

Valves 

Exhaust 

Manifold 

Crosshead 

Bearings 

    
6 
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# Cut set events  Order 

63 Air Cooler, 

Piping 

Air Cooler Air Filter Air 

Receiver 

Main Air 

Compressor 

Air 

Distributor 

Air 

Starting 

Valves 

Air Filter. Auxiliary 

Blower 

 9 

64 Air Cooler, 

Piping 

Air Cooler Scavenge 

Air Receiver 

Air 

Receiver 

Main Air 

Compressor 

Air 

Distributor 

Air 

Starting 

Valves 

Air Filter. Auxiliary 

Blower 

 9 

65 Air Cooler, 

Piping 

Air Cooler Scavenge 

Air 

Manifold 

Air 

Receiver 

Main Air 

Compressor 

Air 

Distributor 

Air 

Starting 

Valves 

Air Filter. Auxiliary 

Blower 

 9 

66 Air Cooler, 

Piping 

Scavenge 

Air Port 

Scavenge 

Air Receiver 

Air 

Receiver 

Main Air 

Compressor 

Air 

Distributor 

Air 

Starting 

Valves 

Air Filter. Auxiliary 

Blower 

 9 

67 Air Cooler, 

Piping 

Air Filter Scavenge 

Air Port 

Air 

Receiver 

Main Air 

Compressor 

Air 

Distributor 

Air 

Starting 

Valves 

Air Filter. Auxiliary 

Blower 

 9 

68 Air Cooler, 

Piping 

Scavenge 

Air Port 

Scavenge 

Air Receiver 

Air 

Receiver 

Main Air 

Compressor 

Air 

Distributor 

Air 

Starting 

Valves 

Air Filter. Auxiliary 

Blower 

 9 

69 Air Cooler Air Filter Scavenge 

Air Port 

Air 

Receiver 

Main Air 

Compressor 

Air 

Distributor 

Air 

Starting 

Valves 

Air Filter. Auxiliary 

Blower 

 9 

70 Air Cooler Air Filter Scavenge 

Air Port 

Air 

Receiver 

Main Air 

Compressor 

Air 

Distributor 

Air 

Starting 

Valves 

Air Filter. Auxiliary 

Blower 

 9 
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# Cut set events  Order 

71 Air Cooler Air Filter Scavenge 

Air Receiver 

Air 

Receiver 

Main Air 

Compressor 

Air 

Distributor 

Air 

Starting 

Valves 

Air Filter. Auxiliary 

Blower 

 9 

72 Air Filter Scavenge 

Air Port 

Scavenge 

Air Receiver 

Air 

Receiver 

Main Air 

Compressor 

Air 

Distributor 

Air 

Starting 

Valves 

Air Filter. Auxiliary 

Blower 

 9 
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E.2 Main engine FMEA 

 

System Failed Item Failure Mode Failure Cause Local Effect Global Effect Detection Method 

Cylinder 

Cylinder Head 

Cracked Overheating, fatigue Compression loss, 

cylinder damage, 

engine misfire 

Possible engine stop Temperature, Pressure 

alarm 

Overheating Cracks, faulty exhaust 

valves 

High temperature 

alarm, smoke, cylinder 

damage 

Possible engine stop, 

engine damage 

High temperature 

alarm 

Cylinder Liner 

Leakage Overheating  Compression loss, 

cooling water in 

cylinder 

Engine performance 

reduction, engine 

damage 

Pressure fluctuation 

cooling water 

Wear  Fatigue, lubrication oil 

quality 

Compression loss, 

increased lubrication 

consumption 

Engine performance 

reduction 

Increment of exhaust 

temperature in cylinder 

Cylinder Jacket 

Cracked Stress corrosion 

cracking, excessive 

rust and scale 

development, use of 

wrong bolts to secure 

jacket 

Cylinder damage, loss 

of engine cooling water 

Engine slow down, 

propulsion reduction 

High temperature 

alarm 

Piston 

Piston Crown 

Hole in piston crown Dripping of fuel valve, 

erosion due to poor 

fuel injection 

Escape of combustion 

gas into the crankcase 

Engine performance 

reduction, possible 

engine stop, possible 

engine explosion 

Alarm, visual 

inspection 

Cracked Thermal stressing due 

to carbon build up 

Leakage to combustion 

space 

Possible engine 

explosion 

Alarm 

Piston Rings 

Scuffing Insufficient lubrication Scuffing mark on liner 

surface, oil smoke from 

exhaust 

Engine performance 

reduction 

Visual inspection 

Cracked Excessive gap 

pressure, ring groove 

worn-out  

Power loss, oil smoke 

from exhaust 

Engine performance 

reduction 

Visual inspection 
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System Failed Item Failure Mode Failure Cause Local Effect Global Effect Detection Method 

Wear  Insufficient lubrication, 

solid residue, 

Insufficient clearance 

Power loss Engine performance 

reduction 

Visual inspection 

Blow-by Piston ring stuck, 

piston ring worn, 

piston rings broken, 

worn cylinder liner, 

incorrect operation of a 

lubricating quill, 

running surface of 

cylinder liners 

damaged 

Power loss Engine performance 

reduction 

Visual inspection 

Piston Rod Stuffing 

Box 

Rings wear out Sealing lose Spark Engine performance 

reduction, engine 

damage, possibility of 

explosion 

Visual inspection 

Malfunction Faulty oil scraper rings Combustion gas in 

crankcase 

Engine stop, possibility 

of explosion 

Visual inspection 

Piston Connecting Rod 

Damage, break Fatigue, incorrect 

tightening of bolts, 

snap of piston pin 

Power loss, damaged 

crankshaft 

Engine stop, possibility 

of explosion, engine 

damage 

Alarm 

Piston 

Stuck Connecting rod nut 

loose, insufficient 

lubrication 

Cylinder power loss, 

connecting rod 

damage, piston pin 

cracked 

Engine stop, possibility 

of explosion 

Alarm, Visual 

inspection 

Engine 

Block & 

Components 

Camshaft Bearing 
Overheating Wear and tear, nuts 

slackness 

Camshaft damage Engine damage, engine 

failure 

Alarm 

Thrust bearing 

Improper Lubrication Leakage  Thrust bearing damage Unexpected stop of 

engine 

Engine damage 

Alarm 

Shaft rotation 

malfunctioning 

Wear Thrust bearing damage Engine slow down Visual inspection 



265 

 

System Failed Item Failure Mode Failure Cause Local Effect Global Effect Detection Method 

Main Bearing 

Lubrication failure Low oil pressure Excessive heat, friction Engine performance 

reduction, engine 

damage 

Alarm 

Crankshaft 

Cracked Insufficient lubrication, 

bearing misalignment, 

lack of maintenance 

Connecting rod 

damage, engine block 

damage 

Engine damage, 

reduced engine output, 

possible engine stop 

Visual inspection 

Journal damage Insufficient lubrication, 

bearing misalignment, 

propeller fouling 

Connecting rod 

damage 

Engine damage, 

reduced engine output, 

possible engine stop 

Visual inspection 

Crankcase 

Relief valve not 

operating 

Not seated properly Air escape into 

crankcase 

Engine performance 

reduction, possibility 

of explosion 

Visual inspection 

Camshaft 
Break Connecting rod loose, 

insufficient lubrication 

Failure of inlet and 

exhaust valve 

Engine damage, 

possible engine stop 

Visual inspection 

Exhaust Valve 

Valve burned Valve spring weak Leakage Engine power 

reduction, misfire in 

cylinder 

Differential 

Temperature of exhaust 

gas 

Scavenge 

Air System 

Air Cooler, Piping 

Blinded Sea water 

contamination 

Excessive air 

temperature and 

exhaust temperature 

Fuel consumption high, 

engine output low 

High temperature 

alarm 

Air Cooler 

Water content in air Deterioration of casing, 

leakage of tubes 

Improper cooling, 

insufficient cooling 

Engine damage, engine 

failure, engine derating 

Visual inspection 

No flow of water No flow inlet/outlet 

valve 

Air cooler not 

operating 

Engine stop, engine 

damage 

High temperature 

alarm 

Air Filter 

Clogged Contamination Reduced airflow, 

compressor not 

efficient 

Increased fuel 

consumption, engine 

power reduction 

Visual inspection 

Scavenge Air Port 

Fouling Contamination from 

exhaust gases 

Insufficient air supply, 

smoke, improper 

combustion 

Engine output 

reduction 

High exhaust 

temperature alarm 
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System Failed Item Failure Mode Failure Cause Local Effect Global Effect Detection Method 

Scavenge Air Receiver 

Improper scavenging Faulty timing, 

unburned fuel and 

carbon 

Improper combustion Result loss of engine 

power and high 

exhaust temperature at 

affected cylinders 

High exhaust 

temperature alarm 

Scavenge Air Manifold 

Pressure of inlet air 

lower than expected 

Leakage, flow 

interruption 

Improper combustion Derating engine, 

engine damage, turbo 

damaged 

Low pressure alarm 

Air System 

Main Air Compressor 

Operates at degraded 

head/flow performance 

Fatigue Reduction in air 

pressure and air flow 

Loss of service air, 

engine performance 

reduction 

Alarm 

Fails to start Control system and 

valves faulty 

Loss of engine start Loss of engine start, no 

other significant effect 

Low pressure shown 

on gauge 

Air Receivers 

Oil and water mixture 

in receiver 

Unsuccessful drainage 

of mixture 

Air supply pipe 

contaminated by oil 

coating 

Possibility of explosion Service 

Air Distributor 

Leakage, stuck Fatigue, malfunction, 

insufficient 

maintenance 

Loss of start air, 

starting air valves do 

not open 

Loss of engine start  Pressure alarm, visual 

inspection 

Air Starting Valves 

Position stuck Faulty valves, control 

system, faulty air 

distributor 

Loss of engine start Loss of engine start, no 

other significant effect 

Alarm 

Air Filter 

Plug Contamination, lack of 

maintenance 

Air flow reduced Inefficient compressor 

operation, low flow of 

air to engine 

Alarm 

Auxiliary Blower 
Motor windings burnt 

out 

Zero motor insulation Loss of minimum 

scavenge pressure 

Insufficient 

combustion 

Alarm 

Fuel Oil 

System 

Piping System 
Leakage, sludge Fuel oil quality poor, 

deposits 

Fuel oil spill, hot spot 

creation 

Engine stop, possibility 

of fire 

Visual inspection 

Fuel Oil Filter 

Clogged Contaminants, lack of 

maintenance 

Fuel flow and pressure 

low 

Engine speed drop, 

engine stop, engine 

performance reduction 

Differential pressure 

alarm 

Low supply pressure Suction valve early or 

late operation 

Erratic engine 

operation 

Engine stop, engine 

performance reduction 

Low pressure alarm 
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System Failed Item Failure Mode Failure Cause Local Effect Global Effect Detection Method 

Fuel Pumps 

(Circulating, Transfer, 

Supply, Booster) 

Abnormal sound Vibrations, bearing 

defective, shaft 

displacement 

Electric motor 

overloading 

Engine output 

reduction 

Noise 

Fuel Valves 

Leakage Deposits, erosion Excessive temperature Engine output 

reduction 

High exhaust 

temperature alarm 

Dripping Oversized injection 

mechanisms 

Sticking of piston rings Engine performance 

reduction, engine 

damage 

High exhaust 

temperature alarm 

Fuel Injectors 

Nozzle obstructed Inadequate 

maintenance, 

contaminants, poor fuel 

quality 

Poor combustion Engine performance 

reduction, engine 

failure 

High exhaust 

temperature alarm 

Incorrect atomization 

of fuel 

Spraying disabled, 

back flow interruption 

disabled, fuel 

temperature not correct 

Fuel loss Derating engine, 

differential exhaust gas 

temperature  

Differential 

Temperature of exhaust 

gas 

Valve spindle seizure Control system failure High exhaust 

temperature, smoke, 

excessive fuel injection 

Engine performance 

reduction, 

environmental damage 

High exhaust 

temperature alarm 

Lubrication 

Oil System 

Main Lube Oil Pump 

Rupture, Leakage Erosion, pump housing 

failure 

Stan-by pump starts No other significant 

effect 

Standby pump starts 

functioning 

Operation failure Motor failure, motor 

coupling failure, motor 

seizing 

Interruption of lube oil 

supply to engine, 

stand-by pump starts 

No other significant 

effect 

n/a 

Operates at degraded 

head  

Pump gears worn, 

housing leak 

Lube oil pressure low, 

pump stand-by starts 

No other significant 

effect 

Pressure alarm 

Lubrication System 

Valves and Piping 

Leakage Contaminants, lack of 

maintenance 

Oil leakage, oil 

pressure low, engine 

components wear 

Engine stop, possibility 

of fire 

Visual inspection 

Lube Oil Filter 

Clogged Contaminants, 

accumulation of carbon 

matter 

Improper cleaning, oil 

pressure low 

Engine stop, engine 

performance reduction 

Differential pressure 

alarm 
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System Failed Item Failure Mode Failure Cause Local Effect Global Effect Detection Method 

Lube Oil Cooler 
Temperature abnormal Fouling Insufficient lubrication 

oil cooling temperature 

Engine overheating, 

Engine stop 

High temperature 

alarm 

Central 

Cooling 

System 

Sea Water Pipes 
Leakage Fatigue, corrosion Flow reduction, loss of 

cooling 

Engine room flooding,  Bilge alarm 

Central Cooler 
Leakage Corrosion  Insufficient cooling High engine 

temperature 

High temperature 

alarm  

Sea Chest Strainer 
Obstruction Debris None None High temperature of 

cooler 

Jacket 

Water 

Cooling 

System 

Jacket Fresh Water 

Cooling Pump 

No flow Seized bearing, shaft 

wear, sleeve wear, 

impeller clogged, 

leakage 

Loss of redundancy Engine damage, engine 

stop 

High temperature 

alarm 

Higher temperature of 

fresh water  

Clogged, operation 

disabled, obstruction 

Cylinder overheating Engine damage, engine 

slow down 

High temperature 

alarm 

Jacket Water Cooler 

Leakage Corrosion, seal ring 

leakage at cylinder 

liner 

Insufficient cylinder 

cooling 

Containment of fresh 

water, engine 

performance reduction 

Alarm 

Insufficient Cooling Restricted passage, 

particles/dirt in cooling 

medium 

Cylinder overheating, 

cylinder liner cracking 

Engine performance 

reduction 

Increment of cooling 

water temperature 
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Appendix F: NAR and NARX results 

 

F.1 NAR results dataset 1 

 

F.1.1 NAR regression results 

 

Parameter Training Test All 

Cylinder Exhaust Gas Temperature no.1 88.25% 89.38% 87.97% 

Cylinder Exhaust Gas Temperature no.2 83.13% 97.43% 86.69% 

Cylinder Exhaust Gas Temperature no.3 84.29% 85.22% 84.94% 

Cylinder Exhaust Gas Temperature no.4 74.18% 93.82% 78.45% 

Cylinder Exhaust Gas Temperature no.5 84.99% 96.13% 88.01% 

Cylinder Exhaust Gas Temperature no.6 84.25% 97.19% 86.95% 

Cylinder Exhaust Gas Temperature no.7 89.01% 92.26% 87.96% 

Cylinder Exhaust Gas Temperature no.8 90.45% 90.52% 90.32% 

Fuel Oil Inlet Temperature 87.61% 84.39% 85.12% 

Fuel Oil Inlet Pressure 96.98% 97.03% 97.13% 

Main Lube Oil Pressure 93.23% 95.57% 94.41% 

Main Lube Oil Temperature 99.14% 86.67% 90.32% 

Thrust Bearing Temperature 96.18% 86.63% 89.10% 

Piston Cooling Oil Inlet Pressure 94.18% 98.93% 97.15% 

Air Cooler Cooling Water Inlet Pressure 83.13% 79.19% 80.78% 

Cylinder Scavenging Air Temperature Inlet no.1 83.19% 88.44% 86.78% 

Cylinder Scavenging Air Temperature Inlet no.2 85.15% 94.35% 87.31% 

Cylinder Scavenging Air Temperature Inlet no.3 82.91% 84.12% 83.62% 

Cylinder Scavenging Air Temperature Inlet no.4 77.21% 86.12% 79.75% 

Cylinder Scavenging Air Temperature Inlet no.5 82.82% 94.23% 88.01% 

Cylinder Scavenging Air Temperature Inlet no.6 84.25% 97.19% 85.45% 

Cylinder Scavenging Air Temperature Inlet no.7 91.23% 93.56% 91.42% 

Cylinder Scavenging Air Temperature Inlet no.8 89.13% 92.71% 88.79% 

Cylinder CFW Outlet Temperature no.1 95.95% 93.25% 91.14% 

Cylinder CFW Outlet Temperature no.2 91.16% 89.57% 90.89% 

Cylinder CFW Outlet Temperature no.3 91.89% 95.55% 93.63% 

Cylinder CFW Outlet Temperature no.4 94.07% 93.13% 93.89% 

Cylinder CFW Outlet Temperature no.5 94.32% 96.24% 95.87% 

Cylinder CFW Outlet Temperature no.6 94.46% 90.06% 92.32% 

Cylinder CFW Outlet Temperature no.7 93.83% 91.18% 92.79% 

Cylinder CFW Outlet Temperature no.8 97.32% 91.57% 95.07% 

Cylinder PCO Outlet Temperature no.1 94.29% 85.73% 88.66% 

Cylinder PCO Outlet Temperature no.2 92.45% 90.91% 92.14% 

Cylinder PCO Outlet Temperature no.3 92.94% 99.12% 94.23% 
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Parameter Training Test All 

Cylinder PCO Outlet Temperature no.4 98.84% 85.56% 94.24% 

Cylinder PCO Outlet Temperature no.5 97.29% 89.78% 94.88% 

Cylinder PCO Outlet Temperature no.6 99.02% 89.87% 94.84% 

Cylinder PCO Outlet Temperature no.7 88.69% 89.60% 88.88% 

Cylinder PCO Outlet Temperature no.8 94.72% 85.02% 91.56% 

 

F.1.2 APE and MAPE forecast results for main engine parameters 

 

Parameter Results t+1 t+2 t+3 t+4 t+5 MAPE 
Cylinder Exhaust Gas 

Temperature no.1 

Actual 263 260 262 262 263  

ANN Prediction 262.2 262.4 262.4 262.4 262.4  

APE 0.30% 0.92% 0.15% 0.15% 0.23% 0.35% 

Cylinder Exhaust Gas 

Temperature no.2 

Actual 232 232 232 233 232  

ANN Prediction 232.1 231.9 231.8 231.8 231.7  

APE 0.04% 0.04% 0.09% 0.52% 0.13% 0.16% 

Cylinder Exhaust Gas 

Temperature no.3 

Actual 265 264 264 265 262  

ANN Prediction 264.4 264.7 264.5 264.5 264.5  

APE 0.23% 0.27% 0.19% 0.19% 0.95% 0.36% 

Cylinder Exhaust Gas 

Temperature no.4 

Actual 246 245 246 246 247  

ANN Prediction 245.6 245.3 245.1 244.9 244.8  

APE 0.16% 0.12% 0.37% 0.45% 0.89% 0.40% 

Cylinder Exhaust Gas 

Temperature no.5 

Actual 237 237 235 236 238  

ANN Prediction 238.3 238 237.8 237.7 237.7  

APE 0.55% 0.42% 1.19% 0.72% 0.13% 0.60% 

Cylinder Exhaust Gas 

Temperature no.6 

Actual 250 249 251 250 251  

ANN Prediction 251.2 250.7 250.5 250.4 250.4  

APE 0.48% 0.68% 0.20% 0.16% 0.24% 0.35% 

Main Lube Oil 

Pressure 

Actual 2.8 2.8 2.8 2.8 2.8  

ANN Prediction 2.8 2.8 2.8 2.8 2.8  

APE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Main Lube Oil 

Temperature 

Actual 45 45 45 45 45 
 

ANN Prediction 45 45 45 45 45 
 

APE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Thrust Bearing 

Temperature 

Actual 46.8 46.8 46.7 46.8 46.8 
 

ANN Prediction 46.8 46.8 46.8 46.8 46.8 
 

APE 0.01% 0.01% 0.20% 0.02% 0.02% 0.05% 

Piston Cooling Oil 

Inlet Pressure 

Actual 2.7 2.7 2.7 2.7 2.7 
 

ANN Prediction 2.7 2.7 2.7 2.7 2.7 
 

APE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Air Cooler Cooling 

Water Inlet Pressure 

Actual 3.1 3.2 3.1 3.1 3.1 
 

ANN Prediction 3.1 3.1 3.1 3.1 3.1 
 

APE 0.00% 2.82% 0.00% 0.00% 0.00% 0.56% 

Cylinder Scavenging 

Air Temperature Inlet 

no.1 

Actual 47 47 48 48 47 
 

ANN Prediction 47.4 47.2 47.5 47.5 47.5 
 

APE 0.77% 0.43% 1.11% 1.08% 1.02% 0.88% 

Cylinder Scavenging 

Air Temperature Inlet 

no.2 

Actual 48 48 48 48 48 
 

ANN Prediction 48.0 48.0 48.0 48.0 48.0 
 

APE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Cylinder Scavenging 

Air Temperature Inlet 

no.3 

Actual 46 46 46 46 46 
 

ANN Prediction 45.4 45.7 46 45.1 45.5 
 

APE 1.30% 0.65% 0.00% 1.96% 1.09% 1.00% 

Cylinder Scavenging 

Air Temperature Inlet 

no.4 

Actual 48 48 48 48 48 
 

ANN Prediction 48.2 48.2 48 48.1 48 
 

APE 0.42% 0.42% 0.00% 0.21% 0.00% 0.21% 

Cylinder Scavenging 

Air Temperature Inlet 

no.5 

Actual 52 52 53 52 52 
 

ANN Prediction 52.1 52.1 52.1 52.1 52.1 
 

APE 0.26% 0.26% 1.64% 0.25% 0.25% 0.53% 



271 

 

Parameter Results t+1 t+2 t+3 t+4 t+5 MAPE 
Cylinder Scavenging 

Air Temperature Inlet 

no.6 

Actual 51 51 51 52 51 
 

ANN Prediction 51.1 51.1 51.1 51.7 51.4 
 

APE 0.28% 0.28% 0.28% 0.58% 0.78% 0.44% 

Cylinder Scavenging 

Air Temperature Inlet 

no.7 

Actual 52 52 52 52 52 
 

ANN Prediction 52 51.7 52 52.1 52 
 

APE 0.00% 0.58% 0.00% 0.19% 0.00% 0.15% 

Cylinder Scavenging 

Air Temperature Inlet 

no.8 

Actual 53 53 53 53 53 
 

ANN Prediction 52.5 52.9 53 52.9 53 
 

APE 0.94% 0.19% 0.00% 0.19% 0.00% 0.26% 

Cylinder CFW Outlet 

Temperature no.1 

Actual 83 83 83 83 83 
 

ANN Prediction 83.4 83.3 83 83.1 83 
 

APE 0.48% 0.36% 0.00% 0.12% 0.00% 0.19% 

Cylinder CFW Outlet 

Temperature no.2 

Actual 84 83 83 84 83 
 

ANN Prediction 83.4 83.3 83 83.7 83.2 
 

APE 0.71% 0.36% 0.00% 0.40% 0.24% 0.34% 

Cylinder CFW Outlet 

Temperature no.3 

Actual 84 84 83 84 84 
 

ANN Prediction 83.9 83.9 83.6 83.8 83.9 
 

APE 0.17% 0.17% 0.72% 0.24% 0.17% 0.29% 

Cylinder CFW Outlet 

Temperature no.4 

Actual 83 83 83 83 83 
 

ANN Prediction 83.1 83.2 83.3 83.2 83.0 
 

APE 0.17% 0.28% 0.32% 0.24% 0.00% 0.20% 

Cylinder CFW Outlet 

Temperature no.5 

Actual 83 83 83 83 83 
 

ANN Prediction 83 83 83.2 83 82.9 
 

APE 0.00% 0.00% 0.24% 0.00% 0.12% 0.07% 

Cylinder CFW Outlet 

Temperature no.6 

Actual 83 83 83 83 83 
 

ANN Prediction 83.1 83.2 83.2 83.1 83.1 
 

APE 0.16% 0.19% 0.18% 0.18% 0.18% 0.18% 

Cylinder CFW Outlet 

Temperature no.7 

Actual 84 84 84 84 84 
 

ANN Prediction 83.7 84.2 84 84.1 84.1 
 

APE 0.36% 0.24% 0.00% 0.12% 0.12% 0.17% 

Cylinder CFW Outlet 

Temperature no.8 

Actual 75 75 75 75 75 
 

ANN Prediction 75 75 75.1 74.8 75 
 

APE 0.00% 0.00% 0.13% 0.27% 0.00% 0.08% 

Cylinder PCO Outlet 

Temperature no.1 

Actual 50 49 49 49 49 
 

ANN Prediction 49.7 49.2 49.2 49.0 49.1 
 

APE 0.60% 0.34% 0.37% 0.00% 0.20% 0.30% 

Cylinder PCO Outlet 

Temperature no.2 

Actual 50 50 50 49 50 
 

ANN Prediction 50.3 50.1 49.8 49.2 49.9 
 

APE 0.60% 0.20% 0.40% 0.41% 0.20% 0.36% 

Cylinder PCO Outlet 

Temperature no.3 

Actual 49 49 49 49 49 
 

ANN Prediction 49.00 48.99 48.99 48.99 48.98 
 

APE 0.01% 0.01% 0.02% 0.03% 0.04% 0.02% 

Cylinder PCO Outlet 

Temperature no.4 

Actual 49 49 49 49 49 
 

ANN Prediction 49.0 49.0 49.0 49.0 49.0 
 

APE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Cylinder PCO Outlet 

Temperature no.5 

Actual 51 51 51 51 51 
 

ANN Prediction 51.0 51.0 51.0 51.0 51.0 
 

APE 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 

Cylinder PCO Outlet 

Temperature no.6 

Actual 50 50 50 50 50 
 

ANN Prediction 50 50 50 50 50 
 

APE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Cylinder PCO Outlet 

Temperature no.7 

Actual 51 51 51 51 51 
 

ANN Prediction 51.04 51.04 51.04 51.04 51.04 
 

APE 0.07% 0.07% 0.08% 0.08% 0.08% 0.08% 

Cylinder PCO Outlet 

Temperature no.8 

Actual 51 51 50 50 51 
 

ANN Prediction 50.95 50.56 50.06 50.39 50.85 
 

APE 0.10% 0.86% 0.12% 0.78% 0.29% 0.43% 
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F.1.3 Main engine performance parameters autocorrelation graphs  
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F.1.4: Forecasting results with 95% prediction intervals 
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F.2 NAR results dataset 2  

 

F.2.1 NAR regression results 

 

Parameter Training Test All 

Cylinder Exhaust Gas Temperature no.1 99.34% 98.43% 99.13% 

Cylinder Exhaust Gas Temperature no.2 99.22% 98.30% 99.02% 

Cylinder Exhaust Gas Temperature no.3 99.34% 98.49% 99.16% 

Cylinder Exhaust Gas Temperature no.4 99.69% 99.45% 99.63% 

Cylinder Exhaust Gas Temperature no.5 97.71% 95.93% 97.31% 

Cylinder Exhaust Gas Temperature no.6 99.78% 99.53% 99.67% 

Cylinder Exhaust Gas Temperature no.7 98.93% 97.88% 98.69% 

Cylinder Exhaust Gas Temperature no.8 99.01% 97.89% 98.75% 

Fuel Oil Inlet Temperature 99.56% 99.00% 99.46% 

Fuel Oil Inlet Pressure 98.02% 96.54% 97.69% 

Main Lube Oil Pressure 98.89% 98.45% 98.77% 

Main Lube Oil Temperature 97.19% 94.13% 96.41% 

Thrust Bearing Temperature 95.79% 92.55% 95.18% 

Piston Cooling Oil Inlet Pressure 90.79% 89.72% 90.74% 

Air Cooler Cooling Water Inlet Pressure 96.40% 92.29% 95.37% 

Cylinder Scavenging Air Temperature Inlet no.1 96.91% 92.13% 94.24% 

Cylinder Scavenging Air Temperature Inlet no.2 98.42% 91.98% 96.92% 

Cylinder Scavenging Air Temperature Inlet no.3 98.80% 92.14% 97.20% 

Cylinder Scavenging Air Temperature Inlet no.4 97.81% 89.98% 95.11% 

Cylinder Scavenging Air Temperature Inlet no.5 98.43% 94.32% 96.78% 

Cylinder Scavenging Air Temperature Inlet no.6 95.87% 89.44% 93.38% 

Cylinder Scavenging Air Temperature Inlet no.7 96.46% 93.17% 95.92% 

Cylinder Scavenging Air Temperature Inlet no.8 98.16% 92.04% 96.97% 

Cylinder CFW Outlet Temperature no.1 99.05% 98.93% 98.97% 

Cylinder CFW Outlet Temperature no.2 98.10% 93.91% 97.67% 

Cylinder CFW Outlet Temperature no.3 99.29% 96.67% 99.03% 

Cylinder CFW Outlet Temperature no.4 88.17% 87.00% 87.94% 

Cylinder CFW Outlet Temperature no.5 89.38% 86.72% 87.65% 

Cylinder CFW Outlet Temperature no.6 98.85% 97.50% 98.31% 

Cylinder CFW Outlet Temperature no.7 89.67% 87.40% 89.04% 

Cylinder CFW Outlet Temperature no.8 98.38% 92.71% 97.90% 

Cylinder PCO Outlet Temperature no.1 99.45% 99.28% 99.39% 

Cylinder PCO Outlet Temperature no.2 97.65% 95.33% 97.20% 

Cylinder PCO Outlet Temperature no.3 98.81% 98.45% 98.74% 

Cylinder PCO Outlet Temperature no.4 98.78% 96.83% 98.38% 

Cylinder PCO Outlet Temperature no.5 99.39% 93.05% 98.11% 

Cylinder PCO Outlet Temperature no.6 97.63% 94.73% 96.98% 

Cylinder PCO Outlet Temperature no.7 98.22% 94.47% 97.46% 

Cylinder PCO Outlet Temperature no.8 98.91% 95.27% 98.18% 
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F.2.2 APE and MAPE forecast results for main engine parameters 

 

 

Parameter Results t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 t+13 t+14 t+15 t+16 t+17 t+18 t+19 t+20 MAPE

Actual 300.70 300.00 296.60 295.60 297.80 298.90 263.60 217.90 261.00 256.30 256.10 253.30 187.90 266.10 263.00 259.50 261.10 258.70 258.00 229.90

ANN Prediction 299.00 300.00 296.59 295.00 297.00 298.83 278.44 271.74 260.50 255.85 256.00 253.69 235.77 267.00 264.82 263.94 264.60 261.00 260.00 234.00

APE 0.57% 0.00% 0.00% 0.20% 0.27% 0.02% 5.63% 24.71% 0.19% 0.18% 0.04% 0.15% 25.48% 0.34% 0.69% 1.71% 1.34% 0.89% 0.78% 1.78% 3.25%

Actual 290.10 290.60 293.90 293.00 292.00 294.40 247.50 216.40 261.90 257.70 255.80 255.40 190.00 260.80 259.70 256.50 258.20 255.00 254.60 224.80

ANN Prediction 289.82 290.00 292.00 292.10 292.10 293.00 264.50 259.20 256.92 257.20 256.00 255.00 239.47 249.17 266.58 266.29 265.00 263.41 263.17 260.55

APE 0.10% 0.21% 0.65% 0.31% 0.03% 0.48% 6.87% 19.78% 1.90% 0.19% 0.08% 0.16% 26.04% 4.46% 2.65% 3.82% 2.63% 3.30% 3.37% 15.90% 4.65%

Actual 318.30 317.10 318.80 316.90 315.20 317.60 289.90 225.20 272.80 269.50 264.40 265.40 192.80 269.10 268.20 264.30 264.00 265.80 263.90 238.10

ANN Prediction 318.00 317.00 317.00 316.00 315.30 317.79 249.26 245.30 272.89 269.29 264.16 265.98 249.98 266.95 265.99 258.08 256.91 252.15 254.43 249.75

APE 0.09% 0.03% 0.56% 0.28% 0.03% 0.06% 14.02% 8.93% 0.03% 0.08% 0.09% 0.22% 29.66% 0.80% 0.82% 2.36% 2.69% 5.14% 3.59% 4.89% 3.72%

Actual 317.10 316.90 314.50 314.10 315.50 319.30 248.80 234.10 276.60 274.20 271.10 270.70 188.50 278.50 273.40 272.60 271.60 271.50 272.20 242.20

ANN Prediction 316.89 315.01 316.41 312.94 314.92 317.61 294.80 284.13 281.76 271.90 273.86 267.23 252.50 293.67 286.24 283.91 283.80 281.00 281.50 268.20

APE 0.07% 0.60% 0.61% 0.37% 0.18% 0.53% 18.49% 21.37% 1.87% 0.84% 1.02% 1.28% 33.95% 5.45% 4.70% 4.15% 4.49% 3.50% 3.42% 10.73% 5.88%

Actual 308.10 308.30 307.50 308.40 307.80 308.30 221.60 238.10 279.80 276.20 275.00 274.10 196.70 282.10 281.00 278.70 276.00 277.20 274.20 249.20

ANN Prediction 307.50 308.30 307.50 308.40 307.80 307.30 282.00 278.50 279.00 275.10 275.20 273.90 271.65 282.00 282.30 280.13 279.13 279.04 278.41 261.32

APE 0.19% 0.00% 0.00% 0.00% 0.00% 0.32% 27.26% 16.97% 0.29% 0.40% 0.07% 0.07% 38.10% 0.04% 0.46% 0.51% 1.13% 0.66% 1.54% 4.86% 4.64%

Actual 269.80 271.00 268.80 268.90 271.20 271.80 256.50 214.20 251.80 246.60 246.00 245.40 177.60 251.00 251.00 248.80 248.60 247.80 247.10 222.80

ANN Prediction 270.27 268.35 268.41 268.00 270.32 269.94 258.91 243.65 249.94 246.20 244.55 244.80 237.01 239.00 241.14 249.24 242.57 243.25 244.28 236.52

APE 0.17% 0.98% 0.15% 0.33% 0.32% 0.68% 0.94% 13.75% 0.74% 0.16% 0.59% 0.24% 33.45% 4.78% 3.93% 0.18% 2.43% 1.84% 1.14% 6.16% 3.65%

Actual 317.20 320.60 308.80 306.00 313.30 311.70 264.70 227.10 277.30 271.70 269.10 268.50 188.10 277.10 274.20 271.50 274.30 274.60 273.50 237.70

ANN Prediction 316.78 320.10 308.60 306.00 313.00 310.00 295.00 286.22 276.00 270.30 267.10 268.10 267.34 272.87 271.13 271.00 272.13 276.04 274.96 258.74

APE 0.13% 0.16% 0.06% 0.00% 0.10% 0.55% 11.45% 26.03% 0.47% 0.52% 0.74% 0.15% 42.13% 1.53% 1.12% 0.18% 0.79% 0.52% 0.53% 8.85% 4.80%

Actual 301.10 304.70 299.90 299.00 300.60 301.10 271.30 225.50 273.30 271.30 271.80 274.10 187.10 273.50 272.20 266.60 270.20 268.50 266.90 243.50

ANN Prediction 300.00 304.60 299.50 299.00 300.00 301.00 294.30 281.51 276.10 273.00 272.34 272.50 268.13 267.52 270.22 271.69 270.53 269.99 270.95 268.59

APE 0.37% 0.03% 0.13% 0.00% 0.20% 0.03% 8.48% 24.84% 1.02% 0.63% 0.20% 0.58% 43.31% 2.19% 0.73% 1.91% 0.12% 0.56% 1.52% 10.30% 4.86%

Actual 136.50 137.60 138.00 138.20 136.90 138.80 137.60 137.30 137.20 137.50 137.50 137.80 137.60 139.40 139.10 138.90 138.00 137.70 136.70 137.60

ANN Prediction 137.31 137.25 137.34 137.02 137.24 137.62 137.32 137.31 137.42 137.72 137.76 137.76 137.60 137.43 137.61 137.67 137.74 137.74 137.63 137.60

APE 0.59% 0.26% 0.48% 0.85% 0.25% 0.85% 0.21% 0.01% 0.16% 0.16% 0.19% 0.03% 0.00% 1.41% 1.07% 0.88% 0.19% 0.03% 0.68% 0.00% 0.41%

Actual 7.45 7.43 7.40 7.41 7.42 7.37 7.70 7.74 7.66 7.72 7.71 7.65 7.72 7.61 7.62 7.61 7.60 7.59 7.59 7.70

ANN Prediction 7.45 7.50 7.52 7.52 7.52 7.46 7.59 7.61 7.57 7.56 7.57 7.57 7.61 7.55 7.57 7.55 7.56 7.56 7.56 7.59

APE 0.12% 0.94% 1.69% 1.56% 1.43% 1.16% 1.44% 1.65% 1.19% 2.03% 1.80% 1.05% 1.44% 0.78% 0.66% 0.74% 0.58% 0.42% 0.38% 1.44% 1.12%

Actual 2.51 2.50 2.49 2.49 2.50 2.48 2.52 2.56 2.52 2.55 2.56 2.56 2.59 2.54 2.56 2.60 2.59 2.59 2.60 2.60

ANN Prediction 2.51 2.50 2.49 2.49 2.50 2.48 2.52 2.56 2.52 2.55 2.55 2.56 2.59 2.53 2.55 2.59 2.58 2.60 2.59 2.60

APE 0.10% 0.09% 0.14% 0.11% 0.17% 0.07% 0.00% 0.16% 0.07% 0.11% 0.29% 0.06% 0.00% 0.23% 0.40% 0.42% 0.42% 0.36% 0.42% 0.14% 0.19%

Main Lube Oil 

Pressure

Cylinder Exhaust Gas 

Temperature no.7

Cylinder Exhaust Gas 

Temperature no.8

Fuel Oil Inlet 

Temperature

Fuel Oil Inlet Pressure

Cylinder Exhaust Gas 

Temperature no.1

Cylinder Exhaust Gas 

Temperature no.2

Cylinder Exhaust Gas 

Temperature no.3

Cylinder Exhaust Gas 

Temperature no.4

Cylinder Exhaust Gas 

Temperature no.5

Cylinder Exhaust Gas 

Temperature no.6
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Parameter Results t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 t+13 t+14 t+15 t+16 t+17 t+18 t+19 t+20 MAPE

Actual 45.20 45.30 45.30 45.30 45.40 45.30 45.30 45.10 45.20 45.30 45.10 45.30 45.20 45.30 45.30 45.30 45.10 45.10 45.20 45.20

ANN Prediction 45.25 45.27 45.27 45.28 45.26 45.25 45.27 45.26 45.27 45.25 45.25 45.25 45.24 45.25 45.23 45.25 45.25 45.25 45.25 45.25

APE 0.10% 0.07% 0.06% 0.04% 0.30% 0.11% 0.07% 0.35% 0.16% 0.10% 0.33% 0.11% 0.08% 0.12% 0.14% 0.12% 0.33% 0.34% 0.10% 0.11% 0.16%

Actual 50.30 50.50 50.70 50.70 50.60 50.90 48.40 47.40 49.00 48.80 48.70 48.70 47.50 49.40 49.20 49.20 49.10 49.10 49.10 48.30

ANN Prediction 50.10 50.35 50.60 50.70 50.60 50.60 48.00 47.30 48.91 48.70 48.60 48.69 47.39 49.00 49.20 49.10 49.20 49.11 49.10 49.00

APE 0.40% 0.30% 0.20% 0.00% 0.00% 0.59% 0.83% 0.21% 0.18% 0.20% 0.21% 0.02% 0.23% 0.81% 0.00% 0.20% 0.20% 0.02% 0.00% 1.45% 0.30%

Actual 2.48 2.47 2.46 2.46 2.46 2.45 2.49 2.54 2.48 2.52 2.53 2.52 2.55 2.51 2.52 2.56 2.55 2.58 2.58 2.57

ANN Prediction 2.46 2.46 2.46 2.45 2.45 2.44 2.48 2.54 2.48 2.51 2.53 2.52 2.55 2.51 2.51 2.56 2.55 2.58 2.59 2.58

APE 0.75% 0.34% 0.07% 0.33% 0.33% 0.33% 0.35% 0.01% 0.06% 0.37% 0.02% 0.02% 0.00% 0.03% 0.37% 0.01% 0.00% 0.00% 0.36% 0.37% 0.21%

Actual 3.89 4.04 4.22 4.24 4.24 4.25 4.19 3.87 4.24 3.86 3.80 3.86 3.86 3.81 3.83 3.74 3.75 3.74 3.73 3.75

ANN Prediction 3.93 3.95 4.18 4.18 4.20 4.24 4.20 4.15 4.16 3.81 3.79 3.84 3.84 3.70 3.71 3.64 3.66 3.71 3.71 3.71

APE 1.06% 2.21% 1.01% 1.49% 1.02% 0.32% 0.19% 7.35% 1.96% 1.18% 0.38% 0.40% 0.40% 2.95% 2.90% 2.76% 2.49% 0.89% 0.73% 1.16% 1.64%

Actual 42.10 42.40 42.60 42.80 42.30 43.50 51.10 49.80 51.00 51.50 52.00 52.00 51.50 50.30 51.00 50.30 49.90 50.10 50.10 51.40

ANN Prediction 42.10 42.40 42.60 42.80 42.50 43.10 44.50 45.80 48.80 50.20 50.00 51.00 51.00 51.00 51.00 51.10 50.10 50.10 50.10 50.05

APE 0.00% 0.00% 0.00% 0.00% 0.47% 0.92% 12.92% 8.03% 4.31% 2.52% 3.85% 1.92% 0.97% 1.39% 0.00% 1.59% 0.40% 0.00% 0.00% 2.63% 2.10%

Actual 41.00 41.50 41.70 41.80 41.00 42.40 49.00 48.70 50.00 50.00 51.00 51.00 50.00 49.60 51.00 49.50 49.00 49.10 49.50 50.10

ANN Prediction 41.10 41.30 41.70 41.50 41.50 42.40 42.98 43.50 47.80 50.10 49.00 50.00 51.00 50.00 50.00 49.50 50.00 50.00 50.10 50.10

APE 0.24% 0.48% 0.00% 0.72% 1.22% 0.00% 12.29% 10.68% 4.40% 0.20% 3.92% 1.96% 2.00% 0.81% 1.96% 0.00% 2.04% 1.83% 1.21% 0.00% 2.30%

Actual 43.22 43.50 43.74 43.92 43.00 44.10 52.50 51.00 52.12 52.61 53.00 53.50 52.60 51.50 52.12 51.30 51.02 51.16 52.00 52.50

ANN Prediction 43.20 43.50 43.70 43.50 42.90 44.00 44.35 44.98 44.90 48.00 48.00 51.24 52.00 51.00 51.00 50.70 50.94 51.10 51.00 51.59

APE 0.05% 0.00% 0.09% 0.96% 0.23% 0.23% 15.52% 11.80% 13.85% 8.76% 9.43% 4.22% 1.14% 0.97% 2.15% 1.17% 0.16% 0.12% 1.92% 1.73% 3.73%

Actual 43.00 42.50 42.70 42.90 42.00 43.50 50.30 49.90 51.10 51.60 51.90 52.30 51.60 50.10 51.00 50.50 50.00 50.60 51.00 51.50

ANN Prediction 43.00 43.00 43.10 43.01 42.00 43.00 43.50 42.17 45.65 51.50 46.76 49.50 52.00 50.60 51.00 51.00 50.50 50.50 51.00 50.50

APE 0.00% 1.18% 0.94% 0.26% 0.00% 1.15% 13.52% 15.49% 10.67% 0.19% 9.90% 5.35% 0.78% 1.00% 0.00% 0.99% 1.00% 0.20% 0.00% 1.94% 3.23%

Actual 42.60 42.90 43.10 43.30 42.80 44.00 51.60 50.30 51.50 52.00 52.50 52.50 52.00 50.80 51.50 50.80 50.40 50.60 50.60 51.90

ANN Prediction 42.30 42.50 43.00 43.10 42.50 44.00 44.50 42.50 46.50 49.90 51.50 49.45 49.00 51.00 51.00 51.00 50.90 49.00 49.00 50.00

APE 0.70% 0.93% 0.23% 0.46% 0.70% 0.00% 13.76% 15.51% 9.71% 4.04% 1.90% 5.81% 5.77% 0.39% 0.97% 0.39% 0.99% 3.16% 3.16% 3.66% 3.61%

Actual 43.20 43.50 43.70 43.90 43.40 44.60 52.20 50.90 52.10 52.60 53.10 53.10 52.60 51.40 52.10 51.40 51.00 51.20 51.20 52.50

ANN Prediction 43.00 43.50 43.60 44.00 44.10 44.60 45.00 45.50 50.00 47.50 49.15 51.00 51.50 52.00 52.40 52.00 51.50 52.00 51.50 51.50

APE 0.46% 0.00% 0.23% 0.23% 1.61% 0.00% 13.79% 10.61% 4.03% 9.70% 7.44% 3.95% 2.09% 1.17% 0.58% 1.17% 0.98% 1.56% 0.59% 1.90% 3.10%

Actual 40.70 41.00 41.20 41.40 40.90 42.10 49.70 48.40 49.60 50.10 50.60 50.60 50.10 48.90 49.60 48.90 48.50 48.70 48.70 50.00

ANN Prediction 40.23 40.99 41.60 41.44 40.92 42.60 43.00 42.00 44.90 50.50 51.00 50.82 50.51 51.00 52.00 52.25 51.00 51.00 50.00 50.00

APE 1.15% 0.02% 0.97% 0.10% 0.05% 1.19% 13.48% 13.22% 9.48% 0.80% 0.79% 0.43% 0.82% 4.29% 4.84% 6.85% 5.15% 4.72% 2.67% 0.00% 3.55%

Actual 43.00 43.30 43.50 43.70 43.20 44.40 52.00 50.70 51.90 52.40 52.90 52.90 52.40 51.20 51.90 51.20 50.80 51.00 51.00 52.30

ANN Prediction 42.89 43.00 43.50 43.69 43.15 44.00 43.50 45.00 44.50 46.00 49.60 52.00 50.00 50.50 50.00 50.00 50.00 50.00 50.76 51.50

APE 0.26% 0.69% 0.00% 0.02% 0.12% 0.90% 16.35% 11.24% 14.26% 12.21% 6.24% 1.70% 4.58% 1.37% 3.66% 2.34% 1.57% 1.96% 0.47% 1.53% 4.07%

Cylinder Scavenging 

Air Temperature Inlet 

n0.8

Cylinder Scavenging 

Air Temperature Inlet 

n0.7

Main Lube Oil 

Temperature

Thrust Bearing 

Temperature

Piston Cooling Oil 

Inlet Pressure

Air Cooler Cooling 

Water Inlet Pressure

Cylinder Scavenging 

Air Temperature Inlet 

n0.1

Cylinder Scavenging 

Air Temperature Inlet 

n0.2

Cylinder Scavenging 

Air Temperature Inlet 

n0.3

Cylinder Scavenging 

Air Temperature Inlet 

n0.4

Cylinder Scavenging 

Air Temperature Inlet 

n0.5

Cylinder Scavenging 

Air Temperature Inlet 

n0.6
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Parameter Results t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 t+13 t+14 t+15 t+16 t+17 t+18 t+19 t+20 MAPE

Actual 86.00 86.10 86.00 85.90 86.10 86.70 86.60 86.40 86.30 85.90 85.90 85.80 85.40 86.10 85.90 86.10 85.80 86.10 85.90 85.60

ANN Prediction 86.02 85.96 85.97 86.00 86.10 86.52 86.56 86.32 86.19 85.92 85.99 85.95 85.55 86.07 85.70 86.00 86.04 86.10 85.60 85.50

APE 0.02% 0.16% 0.04% 0.11% 0.00% 0.21% 0.04% 0.09% 0.12% 0.03% 0.11% 0.18% 0.18% 0.04% 0.23% 0.12% 0.28% 0.00% 0.35% 0.12% 0.12%

Actual 86.30 86.40 86.40 86.40 86.50 87.00 87.00 86.80 86.60 86.30 86.30 86.30 86.00 86.50 86.40 86.50 86.20 86.40 86.20 86.00

ANN Prediction 86.38 86.50 86.44 86.46 86.38 86.73 86.60 86.52 86.57 86.33 86.27 86.52 86.33 86.31 86.46 86.46 86.43 86.46 86.32 86.32

APE 0.10% 0.11% 0.05% 0.07% 0.14% 0.31% 0.46% 0.32% 0.03% 0.04% 0.03% 0.25% 0.39% 0.22% 0.07% 0.04% 0.26% 0.07% 0.14% 0.37% 0.17%

Actual 85.80 85.90 85.90 85.90 86.10 86.50 86.30 86.30 86.10 85.70 85.70 85.70 85.40 85.80 85.60 85.80 85.50 85.80 85.60 85.40

ANN Prediction 85.90 85.99 85.95 85.92 86.00 86.30 86.20 86.14 86.07 85.98 86.01 86.12 85.98 86.07 86.00 85.81 86.04 85.91 85.80 85.90

APE 0.12% 0.11% 0.05% 0.03% 0.11% 0.23% 0.11% 0.19% 0.04% 0.33% 0.37% 0.49% 0.67% 0.31% 0.47% 0.01% 0.63% 0.13% 0.24% 0.58% 0.26%

Actual 84.80 85.00 85.40 85.30 85.40 86.20 86.20 86.10 85.80 85.50 85.50 85.40 84.70 85.70 85.50 85.70 85.40 85.70 85.40 85.40

ANN Prediction 85.24 85.38 85.31 85.20 85.45 85.51 85.52 85.55 85.44 85.68 85.82 85.68 85.67 85.76 85.78 85.97 85.90 85.74 85.64 85.86

APE 0.52% 0.44% 0.11% 0.12% 0.06% 0.80% 0.78% 0.63% 0.42% 0.21% 0.38% 0.33% 1.15% 0.06% 0.33% 0.31% 0.59% 0.05% 0.28% 0.54% 0.41%

Actual 86.50 86.60 86.60 86.50 86.70 87.20 87.30 87.20 86.90 86.60 86.50 86.50 86.00 86.70 86.50 86.60 86.40 86.70 86.40 86.40

ANN Prediction 86.56 86.56 86.59 86.55 86.57 86.58 86.51 86.54 86.56 86.55 86.57 86.60 86.54 86.54 86.57 86.54 86.52 86.56 86.52 86.53

APE 0.07% 0.05% 0.01% 0.06% 0.15% 0.71% 0.90% 0.75% 0.40% 0.05% 0.08% 0.11% 0.63% 0.19% 0.08% 0.07% 0.14% 0.16% 0.14% 0.15% 0.25%

Actual 87.50 87.50 87.50 87.40 87.60 88.10 88.30 88.30 88.00 87.60 87.60 87.60 87.10 87.70 87.50 87.70 87.40 87.60 87.40 87.40

ANN Prediction 87.57 87.58 87.61 87.56 87.56 87.67 87.61 87.60 87.59 87.59 87.65 87.66 87.58 87.58 87.62 87.63 87.59 87.64 87.60 87.61

APE 0.08% 0.09% 0.13% 0.19% 0.04% 0.48% 0.78% 0.79% 0.46% 0.02% 0.06% 0.06% 0.56% 0.14% 0.14% 0.08% 0.21% 0.04% 0.22% 0.25% 0.24%

Actual 88.30 88.30 88.30 88.30 88.40 88.50 88.70 88.60 88.50 88.10 88.10 88.00 87.60 88.20 88.10 88.20 88.00 88.30 88.00 87.70

ANN Prediction 88.27 88.27 88.20 88.11 88.16 88.21 88.18 88.20 88.17 88.16 88.18 88.20 88.17 88.13 88.18 88.13 88.16 88.15 88.07 88.07

APE 0.03% 0.04% 0.11% 0.21% 0.27% 0.33% 0.59% 0.46% 0.37% 0.07% 0.09% 0.23% 0.65% 0.08% 0.09% 0.08% 0.18% 0.17% 0.08% 0.43% 0.23%

Actual 86.10 86.20 86.10 86.00 86.30 86.70 86.80 86.50 86.30 86.00 85.90 86.00 85.40 86.00 85.90 86.00 85.80 86.20 85.90 85.70

ANN Prediction 86.11 86.11 86.17 86.00 86.31 86.35 86.36 86.35 86.36 86.17 86.33 86.41 86.10 85.95 86.10 85.92 85.83 85.98 85.71 85.98

APE 0.01% 0.10% 0.08% 0.01% 0.02% 0.40% 0.51% 0.17% 0.07% 0.20% 0.50% 0.48% 0.82% 0.06% 0.24% 0.09% 0.04% 0.26% 0.22% 0.33% 0.23%

Cylinder CFW Outlet 

Temperature no.1

Cylinder CFW Outlet 

Temperature no.2

Cylinder CFW Outlet 

Temperature no.3

Cylinder CFW Outlet 

Temperature no.4

Cylinder CFW Outlet 

Temperature no.5

Cylinder CFW Outlet 

Temperature no.6

Cylinder CFW Outlet 

Temperature no.7

Cylinder CFW Outlet 

Temperature no.8
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Parameter Results t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 t+13 t+14 t+15 t+16 t+17 t+18 t+19 t+20 MAPE

Actual 54.50 54.80 55.10 55.20 54.90 55.30 52.00 50.40 52.70 52.30 52.20 52.20 49.80 52.90 52.80 52.60 52.50 52.50 52.50 51.10

ANN Prediction 54.50 54.82 55.12 55.25 54.96 55.37 53.40 51.15 52.73 52.56 52.39 52.42 50.95 52.79 52.50 52.02 52.33 51.67 51.99 51.00

APE 0.00% 0.04% 0.04% 0.10% 0.12% 0.14% 2.69% 1.49% 0.06% 0.49% 0.37% 0.42% 2.31% 0.22% 0.56% 1.10% 0.33% 1.58% 0.97% 0.20% 0.66%

Actual 54.60 54.90 55.30 55.30 55.10 55.40 52.20 50.60 52.80 52.40 52.30 52.30 49.10 52.90 52.80 52.70 52.50 52.60 52.50 51.20

ANN Prediction 54.25 54.40 55.00 55.10 54.50 55.00 53.10 51.30 51.90 52.20 52.10 52.30 51.10 52.14 52.10 51.90 52.00 52.30 52.00 51.58

APE 0.65% 0.91% 0.54% 0.36% 1.09% 0.72% 1.72% 1.38% 1.70% 0.38% 0.38% 0.00% 4.07% 1.44% 1.33% 1.52% 0.95% 0.57% 0.95% 0.74% 1.07%

Actual 54.40 54.80 55.20 55.20 54.90 55.30 51.60 50.00 52.30 52.00 51.90 51.90 48.70 52.60 52.30 52.30 52.20 52.10 52.10 50.80

ANN Prediction 54.10 54.80 55.00 55.10 54.50 55.20 53.25 51.24 52.75 51.90 51.90 51.89 49.70 51.18 51.10 51.50 52.00 52.00 52.10 52.00

APE 0.55% 0.00% 0.36% 0.18% 0.73% 0.18% 3.20% 2.48% 0.86% 0.19% 0.00% 0.02% 2.05% 2.70% 2.29% 1.53% 0.38% 0.19% 0.00% 2.36% 1.01%

Actual 54.40 54.80 55.30 55.20 54.90 55.30 52.00 50.90 52.60 52.40 52.20 52.20 49.60 52.80 52.60 52.60 52.40 52.40 52.30 51.10

ANN Prediction 54.12 53.93 54.50 55.00 55.10 55.30 51.10 51.30 52.10 52.10 52.20 52.20 50.10 52.38 51.58 52.15 52.26 52.30 52.80 50.21

APE 0.51% 1.60% 1.45% 0.36% 0.36% 0.00% 1.73% 0.79% 0.95% 0.57% 0.00% 0.00% 1.01% 0.80% 1.94% 0.86% 0.26% 0.19% 0.96% 1.74% 0.80%

Actual 54.90 55.40 55.80 55.80 55.60 55.90 51.30 50.80 53.00 52.80 52.70 52.70 51.20 53.20 53.00 52.90 52.80 52.70 52.70 51.50

ANN Prediction 54.10 55.00 55.80 55.40 55.50 55.70 52.10 51.80 52.90 52.10 52.60 52.70 52.70 52.80 52.10 52.14 53.60 53.10 53.00 53.10

APE 1.46% 0.72% 0.00% 0.72% 0.18% 0.36% 1.56% 1.97% 0.19% 1.33% 0.19% 0.00% 2.93% 0.75% 1.70% 1.44% 1.52% 0.76% 0.57% 3.11% 1.07%

Actual 54.40 54.70 55.00 55.20 54.90 55.20 52.10 51.40 52.70 52.30 52.10 52.20 51.00 52.90 52.70 52.60 52.60 52.50 52.40 51.20

ANN Prediction 54.46 54.70 54.98 54.90 54.90 55.00 53.90 53.50 52.64 52.60 52.30 52.30 51.90 53.36 52.26 52.35 52.00 52.15 52.69 52.34

APE 0.11% 0.00% 0.04% 0.54% 0.00% 0.36% 3.45% 4.09% 0.11% 0.57% 0.38% 0.19% 1.76% 0.88% 0.83% 0.48% 1.14% 0.67% 0.55% 2.23% 0.92%

Actual 55.00 55.40 56.00 56.10 55.70 56.10 52.40 50.80 53.00 52.70 52.60 52.40 50.10 53.40 53.00 53.00 53.00 52.90 52.70 51.30

ANN Prediction 55.31 55.30 55.70 56.40 55.84 56.05 53.00 52.10 52.90 52.50 52.60 52.40 51.15 52.98 53.00 53.00 53.00 53.00 53.00 52.76

APE 0.56% 0.18% 0.54% 0.53% 0.25% 0.08% 1.15% 2.56% 0.19% 0.38% 0.00% 0.00% 2.10% 0.79% 0.00% 0.00% 0.00% 0.19% 0.57% 2.85% 0.65%

Actual 55.10 55.30 55.90 55.90 55.60 56.10 52.40 50.80 52.90 52.60 52.50 52.40 50.30 53.20 53.00 53.00 52.80 52.70 52.70 51.40

ANN Prediction 54.63 55.56 56.26 56.15 55.97 57.01 53.12 52.94 52.96 52.28 52.40 52.40 52.60 53.00 53.00 52.00 52.50 52.50 53.00 52.45

APE 0.85% 0.46% 0.64% 0.44% 0.66% 1.63% 1.37% 4.21% 0.11% 0.61% 0.19% 0.00% 4.57% 0.38% 0.00% 1.89% 0.57% 0.38% 0.57% 2.04% 1.08%

Cylinder PCO Outlet 

Temperature no.4

Cylinder PCO Outlet 

Temperature no.5

Cylinder PCO Outlet 

Temperature no.6

Cylinder PCO Outlet 

Temperature no.7

Cylinder PCO Outlet 

Temperature no.8

Cylinder PCO Outlet 

Temperature no.3

Cylinder PCO Outlet 

Temperature no.1

Cylinder PCO Outlet 

Temperature no.2
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F.2.3 Main engine performance parameters autocorrelation graphs 
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F.2.4 Forecasting results with 95% prediction intervals 
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F.3 NARX results dataset 2 

 

F.3.1 NARX regression results 

 

Parameter Training Test All 

Cylinder Exhaust Gas Temperature no.1 99.38% 98.24% 99.13% 

Cylinder Exhaust Gas Temperature no.2 99.43% 99.19% 99.45% 

Cylinder Exhaust Gas Temperature no.3 99.40% 99.13% 99.35% 

Cylinder Exhaust Gas Temperature no.4 99.21% 98.83% 99.13% 

Cylinder Exhaust Gas Temperature no.5 98.16% 98.04% 98.13% 

Cylinder Exhaust Gas Temperature no.6 98.86% 98.73% 98.83% 

Cylinder Exhaust Gas Temperature no.7 99.42% 99.11% 99.35% 

Cylinder Exhaust Gas Temperature no.8 99.66% 99.15% 99.61% 

Fuel Oil Inlet Temperature 99.78% 99.44% 99.76% 

Fuel Oil Inlet Pressure 98.15% 97.59% 98.03% 

Main Lube Oil Pressure 98.87% 97.99% 98.14% 

Main Lube Oil Temperature 89.14% 88.62% 88.87% 

Thrust Bearing Temperature 98.79% 97.76% 98.60% 

Piston Cooling Oil Inlet Pressure 95.35% 93.67% 95.06% 

Air Cooler Cooling Water Inlet Pressure 98.13% 97.55% 98.04% 

Cylinder Scavenging Air Temperature Inlet no.1 98.24% 94.36% 95.11% 

Cylinder Scavenging Air Temperature Inlet no.2 98.35% 92.24% 97.07% 

Cylinder Scavenging Air Temperature Inlet no.3 98.85% 94.56% 96.89% 

Cylinder Scavenging Air Temperature Inlet no.4 98.10% 94.78% 96.95% 

Cylinder Scavenging Air Temperature Inlet no.5 97.34% 93.45% 95.66% 

Cylinder Scavenging Air Temperature Inlet no.6 96.53% 92.88% 93.83% 

Cylinder Scavenging Air Temperature Inlet no.7 97.24% 94.05% 96.13% 

Cylinder Scavenging Air Temperature Inlet no.8 98.45% 92.13% 97.11% 

Cylinder CFW Outlet Temperature no.1 99.48% 97.36% 99.28% 

Cylinder CFW Outlet Temperature no.2 99.63% 98.95% 99.34% 

Cylinder CFW Outlet Temperature no.3 98.40% 93.36% 97.91% 

Cylinder CFW Outlet Temperature no.4 96.76% 95.29% 96.38% 

Cylinder CFW Outlet Temperature no.5 92.95% 88.65% 90.99% 

Cylinder CFW Outlet Temperature no.6 99.14% 96.90% 98.81% 

Cylinder CFW Outlet Temperature no.7 96.84% 93.55% 95.84% 

Cylinder CFW Outlet Temperature no.8 98.29% 92.28% 97.78% 

Cylinder PCO Outlet Temperature no.1 99.32% 98.84% 99.22% 

Cylinder PCO Outlet Temperature no.2 99.27% 98.52% 99.13% 

Cylinder PCO Outlet Temperature no.3 98.89% 98.09% 98.74% 

Cylinder PCO Outlet Temperature no.4 98.63% 96.35% 98.18% 

Cylinder PCO Outlet Temperature no.5 99.25% 97.08% 98.78% 

Cylinder PCO Outlet Temperature no.6 98.85% 96.03% 98.25% 

Cylinder PCO Outlet Temperature no.7 98.61% 94.69% 97.76% 

Cylinder PCO Outlet Temperature no.8 99.08% 95.86% 98.36% 
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F.3.2 APE and MAPE forecast results for main engine parameters 

 

 

 

Parameter Results t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 t+13 t+14 t+15 t+16 t+17 t+18 t+19 t+20 MAPE

Actual 300.70 300.00 296.60 295.60 297.80 298.90 263.60 217.90 261.00 256.30 256.10 253.30 187.90 266.10 263.00 259.50 261.10 258.70 258.00 229.90

ANN Prediction 300.00 300.00 297.00 296.00 297.50 299.00 270.55 223.53 259.97 256.00 256.16 253.00 183.23 265.00 263.00 261.00 260.87 259.15 258.50 234.15

APE 0.23% 0.00% 0.13% 0.14% 0.10% 0.03% 2.64% 2.58% 0.39% 0.12% 0.02% 0.12% 2.49% 0.41% 0.00% 0.58% 0.09% 0.17% 0.19% 1.85% 0.61%

Actual 290.10 290.60 293.90 293.00 292.00 294.40 247.50 216.40 261.90 257.70 255.80 255.40 190.00 260.80 259.70 256.50 258.20 255.00 254.60 224.80

ANN Prediction 291.39 289.92 293.84 294.10 291.57 292.33 251.12 221.00 259.93 257.66 255.86 256.46 198.78 262.79 260.00 261.23 258.28 256.03 255.62 229.00

APE 0.45% 0.23% 0.02% 0.38% 0.15% 0.70% 1.46% 2.13% 0.75% 0.02% 0.02% 0.42% 4.62% 0.76% 0.12% 1.84% 0.03% 0.40% 0.40% 1.87% 0.84%

Actual 318.30 317.10 318.80 316.90 315.20 317.60 289.90 225.20 272.80 269.50 264.40 265.40 192.80 269.10 268.20 264.30 264.00 265.80 263.90 238.10

ANN Prediction 318.35 317.00 318.99 316.99 315.15 318.00 298.89 230.28 269.82 269.00 265.45 265.39 202.80 271.09 270.16 265.00 264.00 266.84 263.95 233.23

APE 0.02% 0.03% 0.06% 0.03% 0.02% 0.13% 3.10% 2.26% 1.09% 0.19% 0.40% 0.00% 5.19% 0.74% 0.73% 0.26% 0.00% 0.39% 0.02% 2.05% 0.83%

Actual 317.10 316.90 314.50 314.10 315.50 319.30 248.80 234.10 276.60 274.20 271.10 270.70 188.50 278.50 273.40 272.60 271.60 271.50 272.20 242.20

ANN Prediction 317.00 316.42 314.06 314.94 315.49 319.00 255.93 243.47 271.50 273.24 271.00 272.64 203.42 270.49 273.00 272.00 271.50 271.50 272.00 247.12

APE 0.03% 0.15% 0.14% 0.27% 0.00% 0.09% 2.87% 4.00% 1.84% 0.35% 0.04% 0.72% 7.92% 2.88% 0.15% 0.22% 0.04% 0.00% 0.07% 2.03% 1.19%

Actual 308.10 308.30 307.50 308.40 307.80 308.30 221.60 238.10 279.80 276.20 275.00 274.10 196.70 282.10 281.00 278.70 276.00 277.20 274.20 249.20

ANN Prediction 308.00 308.30 307.13 308.35 307.86 308.42 230.78 235.25 272.75 275.84 275.20 274.90 205.60 279.05 280.02 280.67 279.06 279.04 276.65 255.32

APE 0.03% 0.00% 0.12% 0.02% 0.02% 0.04% 4.14% 1.20% 2.52% 0.13% 0.07% 0.29% 4.52% 1.08% 0.35% 0.71% 1.11% 0.66% 0.89% 2.46% 1.02%

Actual 269.80 271.00 268.80 268.90 271.20 271.80 256.50 214.20 251.80 246.60 246.00 245.40 177.60 251.00 251.00 248.80 248.60 247.80 247.10 222.80

ANN Prediction 268.30 270.27 266.91 270.39 271.78 270.22 255.11 210.44 250.95 247.44 245.92 245.00 192.58 250.00 251.09 249.33 248.50 248.00 248.12 226.82

APE 0.56% 0.27% 0.70% 0.56% 0.21% 0.58% 0.54% 1.76% 0.34% 0.34% 0.03% 0.16% 8.43% 0.40% 0.04% 0.21% 0.04% 0.08% 0.41% 1.80% 0.87%

Actual 317.20 320.60 308.80 306.00 313.30 311.70 264.70 227.10 277.30 271.70 269.10 268.50 188.10 277.10 274.20 271.50 274.30 274.60 273.50 237.70

ANN Prediction 317.47 319.92 309.09 306.26 313.00 310.58 260.77 236.87 275.42 271.55 269.00 269.00 202.32 275.84 275.00 272.03 274.50 274.55 273.13 242.83

APE 0.09% 0.21% 0.09% 0.08% 0.10% 0.36% 1.48% 4.30% 0.68% 0.05% 0.04% 0.19% 7.56% 0.45% 0.29% 0.20% 0.07% 0.02% 0.14% 2.16% 0.93%

Actual 301.10 304.70 299.90 299.00 300.60 301.10 271.30 225.50 273.30 271.30 271.80 274.10 187.10 273.50 272.20 266.60 270.20 268.50 266.90 243.50

ANN Prediction 301.00 303.38 300.64 299.00 299.82 301.00 277.49 223.44 273.48 270.80 271.83 273.91 197.11 270.35 272.20 266.13 270.42 268.50 266.85 239.53

APE 0.03% 0.43% 0.25% 0.00% 0.26% 0.03% 2.28% 0.91% 0.06% 0.19% 0.01% 0.07% 5.35% 1.15% 0.00% 0.18% 0.08% 0.00% 0.02% 1.63% 0.65%

Actual 136.50 137.60 138.00 138.20 136.90 138.80 137.60 137.30 137.20 137.50 137.50 137.80 137.60 139.40 139.10 138.90 138.00 137.70 136.70 137.60

ANN Prediction 136.50 137.65 137.49 138.00 137.83 138.47 138.09 137.20 137.20 138.36 137.79 137.77 137.50 138.41 140.06 138.60 138.19 137.38 136.45 137.68

APE 0.00% 0.04% 0.37% 0.14% 0.68% 0.24% 0.36% 0.07% 0.00% 0.63% 0.21% 0.02% 0.07% 0.71% 0.69% 0.21% 0.14% 0.23% 0.18% 0.06% 0.25%

Actual 7.45 7.43 7.40 7.41 7.42 7.37 7.70 7.74 7.66 7.72 7.71 7.65 7.72 7.61 7.62 7.61 7.60 7.59 7.59 7.70

ANN Prediction 7.45 7.47 7.40 7.43 7.43 7.34 7.70 7.61 7.71 7.65 7.68 7.69 7.72 7.65 7.61 7.64 7.64 7.50 7.55 7.62

APE 0.05% 0.65% 0.07% 0.30% 0.23% 0.47% 0.01% 1.70% 0.63% 0.97% 0.46% 0.50% 0.02% 0.54% 0.06% 0.39% 0.58% 1.23% 0.50% 1.05% 0.52%

Actual 2.51 2.50 2.49 2.49 2.50 2.48 2.52 2.56 2.52 2.55 2.56 2.56 2.59 2.54 2.56 2.60 2.59 2.59 2.60 2.60

ANN Prediction 2.51 2.50 2.49 2.49 2.49 2.48 2.52 2.55 2.53 2.55 2.55 2.56 2.60 2.55 2.56 2.60 2.58 2.59 2.61 2.60

APE 0.03% 0.07% 0.05% 0.05% 0.36% 0.06% 0.02% 0.40% 0.37% 0.00% 0.41% 0.07% 0.23% 0.40% 0.12% 0.12% 0.29% 0.09% 0.21% 0.03% 0.17%

Main Lube Oil 

Pressure

Cylinder Exhaust Gas 

Temperature no.7

Cylinder Exhaust Gas 

Temperature no.8

Fuel Oil Inlet 

Temperature

Fuel Oil Inlet 

Pressure

Cylinder Exhaust Gas 

Temperature no.1

Cylinder Exhaust Gas 

Temperature no.2

Cylinder Exhaust Gas 

Temperature no.3

Cylinder Exhaust Gas 

Temperature no.4

Cylinder Exhaust Gas 

Temperature no.5

Cylinder Exhaust Gas 

Temperature no.6
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Parameter Results t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 t+13 t+14 t+15 t+16 t+17 t+18 t+19 t+20 MAPE

Actual 45.20 45.30 45.30 45.30 45.40 45.30 45.30 45.10 45.20 45.30 45.10 45.30 45.20 45.30 45.30 45.30 45.10 45.10 45.20 45.20

ANN Prediction 45.23 45.24 45.26 45.28 45.26 45.29 45.30 45.28 45.25 45.22 45.24 45.20 45.24 45.29 45.24 45.27 45.26 45.18 45.20 45.19

APE 0.08% 0.14% 0.09% 0.03% 0.30% 0.03% 0.00% 0.41% 0.11% 0.17% 0.30% 0.22% 0.09% 0.03% 0.13% 0.06% 0.36% 0.18% 0.01% 0.03% 0.14%

Actual 50.30 50.50 50.70 50.70 50.60 50.90 48.40 47.40 49.00 48.80 48.70 48.70 47.50 49.40 49.20 49.20 49.10 49.10 49.10 48.30

ANN Prediction 50.30 50.50 50.50 50.60 50.40 50.80 48.00 47.40 48.99 49.00 48.70 48.61 47.44 49.00 49.00 49.11 49.11 48.95 49.12 48.38

APE 0.00% 0.00% 0.39% 0.20% 0.40% 0.20% 0.83% 0.00% 0.02% 0.41% 0.00% 0.18% 0.12% 0.81% 0.41% 0.18% 0.02% 0.30% 0.04% 0.16% 0.23%

Actual 2.48 2.47 2.46 2.46 2.46 2.45 2.49 2.54 2.48 2.52 2.53 2.52 2.55 2.51 2.52 2.56 2.55 2.58 2.58 2.57

ANN Prediction 2.48 2.48 2.46 2.46 2.47 2.45 2.49 2.54 2.50 2.52 2.53 2.52 2.53 2.51 2.52 2.55 2.55 2.58 2.58 2.57

APE 0.01% 0.47% 0.08% 0.05% 0.48% 0.04% 0.13% 0.00% 0.86% 0.03% 0.02% 0.03% 0.78% 0.01% 0.00% 0.40% 0.01% 0.05% 0.05% 0.01% 0.18%

Actual 3.89 4.04 4.22 4.24 4.24 4.25 4.19 3.87 4.24 3.86 3.80 3.86 3.86 3.81 3.83 3.74 3.75 3.74 3.73 3.75

ANN Prediction 3.90 4.00 4.20 4.22 4.24 4.24 4.18 3.89 4.17 3.88 3.83 3.85 3.86 3.79 3.84 3.75 3.75 3.75 3.71 3.72

APE 0.36% 0.97% 0.54% 0.56% 0.02% 0.33% 0.24% 0.56% 1.82% 0.60% 0.79% 0.19% 0.17% 0.54% 0.26% 0.16% 0.16% 0.12% 0.60% 0.87% 0.49%

Actual 42.10 42.40 42.60 42.80 42.30 43.50 51.10 49.80 51.00 51.50 52.00 52.00 51.50 50.30 51.00 50.30 49.90 50.10 50.10 51.40

ANN Prediction 42.10 42.50 42.60 43.00 42.10 43.19 50.00 49.00 51.05 51.50 52.00 52.00 51.00 50.00 50.50 50.00 50.00 50.10 50.50 51.10

APE 0.00% 0.24% 0.00% 0.47% 0.47% 0.71% 2.15% 1.61% 0.10% 0.00% 0.00% 0.00% 0.97% 0.60% 0.98% 0.60% 0.20% 0.00% 0.80% 0.58% 0.52%

Actual 41.00 41.50 41.70 41.80 41.00 42.40 49.00 48.70 50.00 50.00 51.00 51.00 50.00 49.60 51.00 49.50 49.00 49.10 49.50 50.10

ANN Prediction 41.00 41.50 41.50 41.80 41.50 42.00 47.77 48.10 49.50 50.00 51.00 51.25 50.50 50.00 51.00 50.50 49.00 49.50 49.50 50.00

APE 0.00% 0.00% 0.48% 0.00% 1.22% 0.94% 2.51% 1.23% 1.00% 0.00% 0.00% 0.49% 1.00% 0.81% 0.00% 2.02% 0.00% 0.81% 0.00% 0.20% 0.64%

Actual 43.22 43.50 43.74 43.92 43.00 44.10 52.50 51.00 52.12 52.61 53.00 53.50 52.60 51.50 52.12 51.30 51.02 51.16 52.00 52.50

ANN Prediction 43.20 43.50 43.65 44.00 43.00 44.00 51.39 51.50 52.00 52.25 52.50 53.00 53.00 51.00 52.00 51.50 51.00 51.10 51.50 52.00

APE 0.05% 0.00% 0.21% 0.18% 0.00% 0.23% 2.11% 0.98% 0.23% 0.68% 0.94% 0.93% 0.76% 0.97% 0.23% 0.39% 0.04% 0.12% 0.96% 0.95% 0.55%

Actual 43.00 42.50 42.70 42.90 42.00 43.50 50.30 49.90 51.10 51.60 51.90 52.30 51.60 50.10 51.00 50.50 50.00 50.60 51.00 51.50

ANN Prediction 43.10 42.50 42.55 43.00 42.15 43.47 49.50 50.00 51.00 51.50 52.00 52.00 51.50 50.00 51.00 50.34 49.96 50.00 50.45 51.00

APE 0.23% 0.00% 0.35% 0.23% 0.36% 0.07% 1.59% 0.20% 0.20% 0.19% 0.19% 0.57% 0.19% 0.20% 0.00% 0.32% 0.08% 1.19% 1.08% 0.97% 0.41%

Actual 42.60 42.90 43.10 43.30 42.80 44.00 51.60 50.30 51.50 52.00 52.50 52.50 52.00 50.80 51.50 50.80 50.40 50.60 50.60 51.90

ANN Prediction 42.60 43.00 43.11 43.10 43.00 43.98 51.50 50.00 50.67 51.50 52.50 52.50 52.50 51.00 51.50 51.00 51.00 50.50 50.50 50.60

APE 0.00% 0.23% 0.02% 0.46% 0.47% 0.05% 0.19% 0.60% 1.61% 0.96% 0.00% 0.00% 0.96% 0.39% 0.00% 0.39% 1.19% 0.20% 0.20% 2.50% 0.52%

Actual 43.20 43.50 43.70 43.90 43.40 44.60 52.20 50.90 52.10 52.60 53.10 53.10 52.60 51.40 52.10 51.40 51.00 51.20 51.20 52.50

ANN Prediction 43.00 43.20 44.00 44.00 43.40 44.50 51.90 51.10 51.90 52.00 52.50 53.00 52.50 51.50 52.40 51.50 51.50 51.00 51.50 52.00

APE 0.46% 0.69% 0.69% 0.23% 0.00% 0.22% 0.57% 0.39% 0.38% 1.14% 1.13% 0.19% 0.19% 0.19% 0.58% 0.19% 0.98% 0.39% 0.59% 0.95% 0.51%

Actual 40.70 41.00 41.20 41.40 40.90 42.10 49.70 48.40 49.60 50.10 50.60 50.60 50.10 48.90 49.60 48.90 48.50 48.70 48.70 50.00

ANN Prediction 40.70 41.00 41.50 41.50 40.85 42.10 48.60 48.00 49.10 50.50 50.50 51.00 50.15 49.00 49.50 49.25 49.00 50.00 49.50 49.80

APE 0.00% 0.00% 0.73% 0.24% 0.12% 0.00% 2.21% 0.83% 1.01% 0.80% 0.20% 0.79% 0.10% 0.20% 0.20% 0.72% 1.03% 2.67% 1.64% 0.40% 0.69%

Actual 43.00 43.30 43.50 43.70 43.20 44.40 52.00 50.70 51.90 52.40 52.90 52.90 52.40 51.20 51.90 51.20 50.80 51.00 51.00 52.30

ANN Prediction 43.00 43.10 43.50 43.52 43.10 44.00 51.18 51.00 51.50 51.95 52.00 52.50 52.52 50.99 51.40 51.40 51.00 51.00 50.50 51.00

APE 0.00% 0.46% 0.00% 0.41% 0.23% 0.90% 1.58% 0.59% 0.77% 0.86% 1.70% 0.76% 0.23% 0.41% 0.96% 0.39% 0.39% 0.00% 0.98% 2.49% 0.71%

Cylinder Scavenging 

Air Temperature Inlet 

no.8

Cylinder Scavenging 

Air Temperature Inlet 

no.7

Main Lube Oil 

Temperature

Thrust Bearing 

Temperature

Piston Cooling Oil 

Inlet Pressure

Air Cooler Cooling 

Water Inlet Pressure

Cylinder Scavenging 

Air Temperature Inlet 

no.1

Cylinder Scavenging 

Air Temperature Inlet 

no.2

Cylinder Scavenging 

Air Temperature Inlet 

no.3

Cylinder Scavenging 

Air Temperature Inlet 

no.4

Cylinder Scavenging 

Air Temperature Inlet 

no.5

Cylinder Scavenging 

Air Temperature Inlet 

no.6
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Parameter Results t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 t+13 t+14 t+15 t+16 t+17 t+18 t+19 t+20 MAPE

Actual 86.00 86.10 86.00 85.90 86.10 86.70 86.60 86.40 86.30 85.90 85.90 85.80 85.40 86.10 85.90 86.10 85.80 86.10 85.90 85.60

ANN Prediction 85.98 86.04 86.06 86.04 85.98 86.11 86.34 86.24 86.12 85.94 85.87 85.73 85.60 86.02 85.97 86.08 85.85 86.06 85.89 85.77

APE 0.03% 0.08% 0.06% 0.16% 0.14% 0.69% 0.30% 0.19% 0.21% 0.04% 0.04% 0.08% 0.24% 0.09% 0.08% 0.02% 0.06% 0.05% 0.02% 0.20% 0.14%

Actual 86.30 86.40 86.40 86.40 86.50 87.00 87.00 86.80 86.60 86.30 86.30 86.30 86.00 86.50 86.40 86.50 86.20 86.40 86.20 86.00

ANN Prediction 86.31 86.30 86.43 86.42 86.33 86.44 86.61 86.73 86.55 86.33 86.30 86.28 86.10 86.47 86.44 86.45 86.27 86.32 86.23 86.18

APE 0.01% 0.12% 0.04% 0.02% 0.19% 0.64% 0.44% 0.08% 0.05% 0.03% 0.00% 0.02% 0.11% 0.03% 0.05% 0.06% 0.08% 0.09% 0.03% 0.21% 0.12%

Actual 85.80 85.90 85.90 85.90 86.10 86.50 86.30 86.30 86.10 85.70 85.70 85.70 85.40 85.80 85.60 85.80 85.50 85.80 85.60 85.40

ANN Prediction 85.85 85.86 85.95 85.90 85.94 86.08 86.19 86.29 86.02 85.73 85.64 85.67 85.49 85.85 85.71 85.77 85.61 85.69 85.72 85.48

APE 0.06% 0.04% 0.06% 0.00% 0.19% 0.49% 0.13% 0.01% 0.09% 0.03% 0.07% 0.03% 0.11% 0.05% 0.13% 0.03% 0.13% 0.13% 0.14% 0.09% 0.10%

Actual 84.80 85.00 85.40 85.30 85.40 86.20 86.20 86.10 85.80 85.50 85.50 85.40 84.70 85.70 85.50 85.70 85.40 85.70 85.40 85.40

ANN Prediction 84.76 84.98 85.29 85.34 85.36 86.15 86.29 86.06 85.90 85.61 85.74 85.33 84.83 85.59 85.41 85.50 85.10 85.50 85.52 85.61

APE 0.04% 0.03% 0.13% 0.04% 0.05% 0.06% 0.11% 0.04% 0.11% 0.12% 0.28% 0.09% 0.15% 0.12% 0.10% 0.23% 0.35% 0.23% 0.14% 0.25% 0.13%

Actual 86.50 86.60 86.60 86.50 86.70 87.20 87.30 87.20 86.90 86.60 86.50 86.50 86.00 86.70 86.50 86.60 86.40 86.70 86.40 86.40

ANN Prediction 86.50 86.56 86.50 86.51 86.53 86.54 86.91 86.67 86.84 86.50 86.54 86.00 85.99 86.73 86.46 86.47 86.50 86.73 86.70 86.50

APE 0.00% 0.05% 0.12% 0.02% 0.19% 0.76% 0.45% 0.61% 0.07% 0.12% 0.05% 0.58% 0.01% 0.03% 0.04% 0.15% 0.12% 0.03% 0.35% 0.12% 0.19%

Actual 87.50 87.50 87.50 87.40 87.60 88.10 88.30 88.30 88.00 87.60 87.60 87.60 87.10 87.70 87.50 87.70 87.40 87.60 87.40 87.40

ANN Prediction 87.51 87.52 87.67 87.57 87.44 87.60 87.88 88.10 88.12 87.97 87.70 87.43 87.42 87.84 87.55 87.46 87.42 87.47 87.40 87.39

APE 0.02% 0.03% 0.20% 0.20% 0.19% 0.56% 0.48% 0.23% 0.13% 0.42% 0.12% 0.19% 0.37% 0.16% 0.06% 0.28% 0.02% 0.15% 0.00% 0.01% 0.19%

Actual 88.30 88.30 88.30 88.30 88.40 88.50 88.70 88.60 88.50 88.10 88.10 88.00 87.60 88.20 88.10 88.20 88.00 88.30 88.00 87.70

ANN Prediction 88.31 88.40 88.38 88.35 88.31 88.34 88.47 88.52 88.39 88.23 88.02 87.88 87.67 88.10 88.19 88.16 88.13 88.27 88.08 87.95

APE 0.01% 0.11% 0.09% 0.06% 0.11% 0.18% 0.26% 0.09% 0.13% 0.14% 0.09% 0.14% 0.08% 0.12% 0.10% 0.05% 0.15% 0.04% 0.09% 0.29% 0.12%

Actual 86.10 86.20 86.10 86.00 86.30 86.70 86.80 86.50 86.30 86.00 85.90 86.00 85.40 86.00 85.90 86.00 85.80 86.20 85.90 85.70

ANN Prediction 86.16 86.08 86.22 86.09 86.11 86.23 86.35 86.35 86.24 86.07 86.06 85.89 85.89 86.25 86.10 85.95 85.93 86.00 85.93 86.05

APE 0.07% 0.13% 0.14% 0.11% 0.22% 0.54% 0.51% 0.18% 0.07% 0.08% 0.19% 0.13% 0.58% 0.30% 0.24% 0.06% 0.15% 0.23% 0.04% 0.41% 0.22%

Cylinder CFW Outlet 

Temperature no.1

Cylinder CFW Outlet 

Temperature no.2

Cylinder CFW Outlet 

Temperature no.3

Cylinder CFW Outlet 

Temperature no.4

Cylinder CFW Outlet 

Temperature no.5

Cylinder CFW Outlet 

Temperature no.6

Cylinder CFW Outlet 

Temperature no.7

Cylinder CFW Outlet 

Temperature no.8
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Parameter Results t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 t+13 t+14 t+15 t+16 t+17 t+18 t+19 t+20 MAPE

Actual 54.50 54.80 55.10 55.20 54.90 55.30 52.00 50.40 52.70 52.30 52.20 52.20 49.80 52.90 52.80 52.60 52.50 52.50 52.50 51.10

ANN Prediction 54.15 54.19 54.60 54.89 54.70 54.64 52.86 50.06 52.49 52.35 52.29 52.00 49.50 52.48 52.31 52.45 52.54 52.29 52.35 51.18

APE 0.64% 1.11% 0.91% 0.55% 0.36% 1.20% 1.65% 0.67% 0.40% 0.10% 0.18% 0.39% 0.60% 0.80% 0.92% 0.29% 0.08% 0.40% 0.29% 0.16% 0.59%

Actual 54.60 54.90 55.30 55.30 55.10 55.40 52.20 50.60 52.80 52.40 52.30 52.30 49.10 52.90 52.80 52.70 52.50 52.60 52.50 51.20

ANN Prediction 54.31 54.38 54.76 55.21 55.24 54.98 52.74 50.57 53.07 52.18 52.15 52.39 49.10 53.04 52.72 52.53 52.62 52.63 52.62 51.21

APE 0.53% 0.95% 0.97% 0.17% 0.26% 0.76% 1.03% 0.06% 0.51% 0.43% 0.29% 0.18% 0.00% 0.27% 0.16% 0.33% 0.22% 0.07% 0.23% 0.01% 0.37%

Actual 54.40 54.80 55.20 55.20 54.90 55.30 51.60 50.00 52.30 52.00 51.90 51.90 48.70 52.60 52.30 52.30 52.20 52.10 52.10 50.80

ANN Prediction 54.50 54.44 54.70 54.95 54.56 54.51 52.21 49.98 52.23 51.68 51.72 52.49 48.68 52.65 52.34 52.14 52.13 52.19 52.16 51.03

APE 0.19% 0.66% 0.91% 0.45% 0.61% 1.43% 1.18% 0.04% 0.13% 0.62% 0.35% 1.13% 0.03% 0.09% 0.08% 0.32% 0.13% 0.18% 0.12% 0.46% 0.46%

Actual 54.40 54.80 55.30 55.20 54.90 55.30 52.00 50.90 52.60 52.40 52.20 52.20 49.60 52.80 52.60 52.60 52.40 52.40 52.30 51.10

ANN Prediction 54.33 54.36 54.58 54.62 54.57 54.59 52.49 50.47 52.22 51.91 52.41 52.39 49.55 52.66 52.51 52.37 52.35 52.49 52.42 50.92

APE 0.13% 0.80% 1.30% 1.06% 0.61% 1.28% 0.94% 0.84% 0.72% 0.94% 0.40% 0.36% 0.10% 0.26% 0.17% 0.43% 0.09% 0.17% 0.22% 0.35% 0.56%

Actual 54.90 55.40 55.80 55.80 55.60 55.90 51.30 50.80 53.00 52.80 52.70 52.70 51.20 53.20 53.00 52.90 52.80 52.70 52.70 51.50

ANN Prediction 54.68 55.40 55.73 55.17 55.50 55.80 52.97 50.36 52.51 52.38 51.97 52.21 51.50 52.73 52.64 52.82 52.81 52.70 52.80 51.56

APE 0.40% 0.00% 0.13% 1.13% 0.18% 0.18% 3.26% 0.87% 0.92% 0.79% 1.39% 0.93% 0.59% 0.89% 0.68% 0.15% 0.02% 0.01% 0.19% 0.12% 0.64%

Actual 54.40 54.70 55.00 55.20 54.90 55.20 52.10 51.40 52.70 52.30 52.10 52.20 51.00 52.90 52.70 52.60 52.60 52.50 52.40 51.20

ANN Prediction 54.45 54.48 54.81 55.06 54.69 54.67 52.04 50.92 52.67 52.11 52.45 52.04 51.50 52.86 52.75 52.31 52.57 52.46 52.37 51.28

APE 0.09% 0.40% 0.34% 0.25% 0.38% 0.96% 0.11% 0.93% 0.06% 0.37% 0.67% 0.30% 0.98% 0.08% 0.10% 0.56% 0.06% 0.08% 0.06% 0.16% 0.35%

Actual 55.00 55.40 56.00 56.10 55.70 56.10 52.40 50.80 53.00 52.70 52.60 52.40 50.10 53.40 53.00 53.00 53.00 52.90 52.70 51.30

ANN Prediction 55.10 55.27 55.60 55.23 55.70 56.45 51.84 51.30 52.85 52.58 52.59 52.50 50.93 53.54 52.69 52.96 53.13 52.84 52.78 51.33

APE 0.18% 0.23% 0.71% 1.55% 0.00% 0.62% 1.07% 0.99% 0.29% 0.24% 0.02% 0.19% 1.66% 0.26% 0.58% 0.08% 0.25% 0.11% 0.14% 0.07% 0.46%

Actual 55.10 55.30 55.90 55.90 55.60 56.10 52.40 50.80 52.90 52.60 52.50 52.40 50.30 53.20 53.00 53.00 52.80 52.70 52.70 51.40

ANN Prediction 55.31 55.22 56.01 56.00 55.66 56.50 52.76 51.51 52.32 52.96 52.83 52.19 51.74 52.73 53.34 53.02 52.86 52.65 52.68 51.38

APE 0.38% 0.14% 0.20% 0.18% 0.11% 0.71% 0.69% 1.40% 1.10% 0.69% 0.63% 0.40% 2.86% 0.88% 0.65% 0.04% 0.11% 0.10% 0.04% 0.05% 0.57%

Cylinder PCO Outlet 

Temperature no.4

Cylinder PCO Outlet 

Temperature no.5

Cylinder PCO Outlet 

Temperature no.6

Cylinder PCO Outlet 

Temperature no.7

Cylinder PCO Outlet 

Temperature no.8

Cylinder PCO Outlet 

Temperature no.3

Cylinder PCO Outlet 

Temperature no.1

Cylinder PCO Outlet 

Temperature no.2
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F.3.3 Forecasting results with 95% prediction intervals 
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Appendix G: Main engine ANN-MLP and MCI results 

 

G.1 ANN-MLP results (training, validation, all data) 

 

 

Figure 2 Training dataset confusion matrix for all 16 main engine fault classes 
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Figure 3 Validation dataset confusion matrix for all 16 main engine fault classes 
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Figure 4 Complete dataset confusion matrix for all 16 main engine fault classes 
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G.2 MCI results for main engine parameters 
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Appendix H: Cost-benefit analysis  

 

H.1 CBA parameters 

 

Table 1 Preventive maintenance cost table 

Description of costs Value 

Spare part costs (crew inspection)  
Spare parts per cylinder  $        350.00  

Number of cylinders 8 

Spare parts costs (Total)  $     2,800.00  

Inspections by technicians (Labour cost)  
Persons 3 

Days 2 

Hours 8 

Cost per hour  $        150.00  

Labour costs (Total)  $     7,200.00  

Loss of income  
Loss per day  $   10,000.00  

Days 4 

Loss of income (Total) 40000 

Oil renewal costs  
Oil (Litres) 3000 

Oil cost per litre  $            2.50  

Oil renewal cost (Total)  $     7,500.00  

Spare part costs (Technician inspection)  
Spare parts per cylinder  $        950.00  

Number of cylinders 8 

Misceallaneous engine parts  $     4,000.00  

Spare parts costs (Total)  $   11,600.00  

Drydocking cost per 2.5 years  $ 126,660.00  
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Table 2 Drydocking cost table 

Description of costs Value 

Spare Parts per Cylinder  $          1,400  

Number of Cylinders 8 

Misc. Engine Parts  $          7,000  

1)Spare Parts Costs (Total)  $        18,200  

Personnel (Total) 6 

Superintendent Engineer (S.E) 1 

Senior Service Engineer 1 

Service Engineer 1 

Technicians 3 

Days 8 

S.E Hourly Rate   $             150  

Hours/Day 8 

S.E Costs  $          9,600  

Senior Service Engineer Hourly Rate   $             125  

Hours/Day 8 

Senior Service Engineer Costs  $          8,000  

Service Engineer Hourly Rate   $             110  

Hours/Day 8 

Service Engineer Costs  $          7,040  

Technicians Hourly Rate   $               85  

Hours/Day 8 

Technicians Costs  $        16,320  

2)Labour Costs (Total)  $        40,960  

Oil (Litres) 3000 

Oil Cost per Litre  $            2.50  

3)Oil Renewal Cost (Total)  $     7,500.00  

Drydock Charge per day  $          4,000  

Days 12 

Services Misc. per day  $          1,000  

Services Costs  $        12,000  

4)Drydock Costs    $        60,000  

  

TOTAL DRYDOCK COST (1+2+3+4)  $      126,660  
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H.2 PMS+25% results 
 

• $10,000 Charter Rate 

 

 
 

• $15,000 Charter Rate 

 

 
 

• $20,000 Charter Rate 
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H.3 PMS+50% results 
 

• $10,000 Charter Rate 

 

 
 

• $15,000 Charter Rate 

 

 
 

• $20,000 Charter Rate 
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H.4 PMS+75% results 
 

• $10,000 Charter Rate 

 

 
 

• $15,000 Charter Rate 

 

 
 

• $20,000 Charter Rate 
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H.5 PMS+100% results 
 

• $10,000 Charter Rate 

 

 
 

• $15,000 Charter Rate 

 

 
 

• $20,000 Charter Rate 
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Appendix I: Dataset 3 measurements  
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