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Abstract

Thin-film flows are ubiquitous in nature and industry, and this thesis considers

three different thin-film flow problems that are inspired by and relevant to a num-

ber of real-world situations.

Firstly, we consider the steady and unsteady coating flow of a thin film of

viscous fluid on the outside of a uniformly rotating horizontal circular cylinder in

the presence of an irrotational airflow with circulation. In particular, it is shown

that steady full-film solutions corresponding to a thin film of fluid that covers the

entire cylinder are possible only when the flux and mass of the fluid do not exceed

critical values, which are determined in terms of the speed of the far-field airflow

and the circulation of the airflow. Furthermore, a long-time analysis shows that

unsteady full-film solutions are unconditionally stable.

Secondly, we consider the squeeze-film flow of a thin film of fluid in the gap

between an impermeable disk and an open-base porous bed, subject to a constant

load. In particular, we determine the finite time required for the impermeable

disk and the porous bed to contact, and the behaviour of the particle paths and

penetration depths of the fluid within the porous bed. These are described in

terms of the permeability and porosity of the porous bed and the slip length at the

interface between the fluid and porous bed. In particular, in the asymptotic limits

of small and large permeability, the contact time, particle paths, and penetration

depths exhibit qualitatively different behaviour.

Finally, we consider the steady flow of a thin rivulet of evaporating fluid down

an inclined substrate. In particular, for three different models of evaporation, we

analyse the variation of the length, width and contact angle of the rivulet as the

parameters appearing in the problem vary, such as the input flux of the rivulet,

the angle of inclination of the substrate, and the parameters of the relevant model

of evaporation. In particular, it is shown that, rather surprisingly, the length of

the rivulet only depends weakly on the mode of evaporation.
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Chapter 1

Introduction

1.1 Thin-film flow

A film of fluid is said to be thin when the characteristic length L∗ and thickness

H∗ of the film are such that the aspect ratio

ϵ = H∗/L∗ ≪ 1 (1.1)

is small, where a star denotes a dimensional quantity. The mathematical analysis

involved in modelling fluid flows can be greatly simplified when the film of fluid is

thin. In particular, in the limit of small aspect ratio, one may neglect terms that

are asymptotically smaller than others, often allowing for significant analytical

progress to be made. This approximation is often referred to as the thin-film

approximation, and it will be used throughout this thesis.

Since it is the ratio (rather than the absolute values) of the thickness and the

length that determines whether a film is thin, the actual size of a thin-film flow

can be large or small and include, for example, large-scale flows of continental ice

sheets and small-scale flows of ink in inkjet printers. Indeed, thin-film flows are

ubiquitous in both nature and industry (see, for example, the reviews by Oron et

al. [124] and Craster and Matar [30]), and so are the subject of a large scientific

literature.

In human biology, thin films of fluid arise in many places inside the body, for

example, in the drainage of precorneal fluid in the eye [20], in the transport of

mucus within the lungs [56], and in the lubrication of the gap in the knee joint

with synovial fluid between the femoral condyle and the tibial plateau [86]. Figure

1
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Figure 1.1: An MRI scan of a human knee (Image courtesy of Prof. Stephen K.
Wilson).

1.1 shows an MRI scan of a human knee which shows the thin gap in the knee

joint that is filled with a thin layer of synovial fluid, between the femoral condyle

(above the gap) and the tibial plateau (below the gap).

Thin films of fluid also occur in geophysics. For example, the tidally modu-

lated flow of brackish water from sea lochs into the sea form thin gravity currents

that carry nutrients, sediments, fresh water and heat [165], the thermomechanical

behaviour of large, but thin, ice sheets in the ocean subject to variations in the

atmosphere over large time scales, which is an important area of study due to

the ongoing problem of climate change [12], and, as shown in Figure 1.2, after

volcanoes erupt, lava will begin to flow down the side of the volcano to its base,

spreading out into a large but thin layer of lava [52].

Many industrial contexts involve thin film flow, for example, in the aviation

industry, supercooled water droplets within clouds impact upon subzero aircraft

wings and form thin layers of ice, as shown in Figure 1.3. These layers of ice can

alter the aerodynamic properties of the wing and reduce lift, making ice accretion

a major factor in many aircraft crashes, and so understanding how to reduce this

phenomena is of great importance [114, 113, 151, 164]. Spray coating or painting,

in which fluid is sprayed onto a solid surface forming a thin film of fluid upon

it, is a process with many applications. Examples of the applications of spray

coating include, for example, the spray painting of vehicles and their parts in the

automobile industry [44], the spraying of thin layers (one atom thick) of graphine
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Figure 1.2: Volcano in Iceland expelling a large lava flow. Image courtesy of
Tetiana Grypachevska, sourced from [57].

onto electronic devices and machine parts [134], and, as shown in Figure 1.4, the

application of protective chemicals to the inner surfaces of metal cans in order

to protect them from the potentially corrosive and damaging fluids that they are

used to contain [29].

The heating and cooling of thin films of fluid is a well studied topic due to

its many applications such as in heat exchangers used, for example, in the food

and drink industry [36], in oil and gas production [146], in microheat pipes which

are used to dissipate heat in microelectronic devices [73, 88], and in the kitchen,

where thin layers of fluid are subjected to heating or cooling when either cooking

or refrigerating, respectively [97]. Figure 1.5 shows thin rivulets and droplets

of oil forming on a frying pan, whose surface can be heated to temperatures of

approximately 150◦–200◦.

It is clear that understanding the behaviour of thin-film flows is important for

many practical contexts. Figures 1.1–1.5 show a few examples of these; however,

there are, of course, many more. The research described in this thesis applies ana-

lytical and asymptotic methods to investigate a variety of thin-film flows, specifi-

cally steady and unsteady coating flow on a rotating cylinder in the presence of an

external airflow, porous squeeze-film flow, and the flow of an evaporating rivulet.

The remainder of this chapter will discuss the literature related to these problems,

in particular, the effect of an external airflow on a thin film of fluid on a solid

substrate, the flow of a thin film of fluid on the outside or inside of stationary and

rotating cylinders, fluid being squeezed through a porous medium, and finally the
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Figure 1.3: The accretion of ice on the wing of an aeroplane. Image courtesy of
Cory W. Watts, sourced from [174].

Figure 1.4: Spray coating of a thin protective coating onto the inside of a metal
can. Sourced from Cornwall [29], reprinted with permission from The American
Association for the Advancement of Science (AAAS).
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Figure 1.5: Rivulets of oil forming on a heated frying pan. Image courtesy of
Matthew Sparks, sourced from [153].

flow and evaporation of a thin rivulet of fluid.

1.1.1 Thin-film approximation

As mentioned previously, throughout this thesis the thin-film approximation will

be used to simplify the governing equations that describe the behaviour of the fluid

flow and hence to allow significant analytical progress to be made. In this subsec-

tion, we shall describe, by means of the simple example of a thin-film flow down

an inclined substrate, the typical mathematical analysis involved when applying

the thin-film approximation.

Consider the unsteady gravity-driven flow of a thin film of an incompressible

Newtonian fluid with constant density ρ∗, constant viscosity µ∗, and constant

surface tension σ∗ over a solid planar substrate inclined at an angle α to the

horizontal. We use two-dimensional Cartesian coordinates (x∗, y∗), with the x∗-axis

in the longitudinal direction, parallel to the substrate, and the y∗-axis normal to

the substrate which is at y∗ = 0. The free surface of the rivulet is at y∗ = h∗(x∗, t∗),

where t∗ denotes time.

The flow is governed by the well-known continuity equation

∇∗ · u∗ = 0, (1.2)
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and Navier–Stokes equation given by

ρ∗
∂u∗

∂t∗
+ ρ∗ (u∗ · ∇∗)u∗ = −∇∗p∗ + µ∗∇∗2u∗ + ρ∗g∗, (1.3)

where u∗ = (u∗(x∗, y∗, t∗), v∗(x∗, y∗, t∗)) is the velocity of the fluid, p∗ = p(x∗, y∗, t∗)

is the pressure in the fluid, and g∗ is the acceleration due to gravity (see, for

example, [15, 2]). At the substrate, the fluid satisfies the no-slip condition given

by

u∗ · t∗ −Ω∗ · t∗ = 0 (1.4)

on y∗ = 0, where Ω∗ is the velocity of the substrate, and t∗ is a unit tangent vector

to the substrate, and the no-penetration condition given by

u∗ · n∗ −Ω∗ · n∗ = 0 (1.5)

on y∗ = 0, where n∗ is a unit normal vector to the substrate. Note that from (1.4)

and (1.5) the no-slip and no-penetration conditions can be written

u∗ = Ω∗ (1.6)

on y∗ = 0. At the free surface the condition of continuity of normal stress is given

by

n∗ ·T∗ · n∗ − n∗ ·T∗
a · n∗ = σ∗Γ∗ (1.7)

on y∗ = h∗, where Γ∗ = ∇∗ · n∗ is the mean curvature of the free surface, and the

condition of continuity of tangential stress is given by

n∗ ·T∗ · t∗ − n∗ ·T∗
a · t∗ = 0 (1.8)

on y∗ = h∗, where n∗ and t∗ are now the outward unit normal and unit tangent

vectors to the free surface, T∗ = −p∗I+2µ∗τ ∗ andT∗
a = −p∗aI+2µ∗

aτ
∗
a are the stress

tensors, with rate-of-strain tensors τ ∗ and τ ∗
a of the fluid and air, respectively,

constant air pressure p∗a, and constant viscosity of the air µ∗
a (see, for example,

[15, 2]). The rate-of-strain tensor is given by

τ ∗ =
1

2

(
∇∗u∗ + (∇∗u∗)T

)
. (1.9)
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For future reference, the volume flux per unit width in the direction of increasing

x∗, across a station x∗ = constant, is given by

Q∗ =

∫ h∗

0

u∗ dy∗, (1.10)

and the well-known kinematic condition D(h∗ − y∗)/Dt∗ = 0, where D/Dt∗ =

∂/∂t∗ + u∗ · ∇∗ is the material derivative is given by

∂h∗

∂t∗
+ u∗

∂h∗

∂x∗
− v∗ = 0, (1.11)

which using (1.2) and (1.10) can be written

∂h∗

∂t∗
+
∂Q∗

∂x∗
= 0. (1.12)

In general, (1.2) and (1.3) may only be solved for the velocity u∗ and pressure

p∗ numerically. However, by applying the thin-film approximation, i.e. using (1.1),

analytical progress can be made, as will now be demonstrated. By writing (1.1)

as H∗ = ϵL∗, we introduce the thin film scalings

x∗ = L∗x, y∗ = ϵL∗y, h∗ = ϵL∗h, t∗ =
L∗

U∗ t, (1.13)

u∗ = U∗u, v∗ = ϵU∗v, p∗ − p∗a =
µ∗U∗

ϵ2L∗ p, Q
∗ = ϵL∗U∗Q,

where U∗ is a characteristic velocity scale. Equation (1.2) and the x and y com-

ponents of (1.3) become
∂u

∂x
+
∂v

∂y
= 0, (1.14)

ϵRe

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ sinα +

∂2u

∂y2
+ ϵ2

∂2u

∂x2
, (1.15)

ϵ3Re

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
− ϵ cosα + ϵ2

(
∂2v

∂y2
+ ϵ2

∂2v

∂x2

)
, (1.16)

respectively, where

Re =
ρ∗U∗H∗

µ∗ (1.17)
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is the Reynolds number, which is a non-dimensional measure of the relative effect

of inertia and viscosity, and

H∗ =

(
µ∗U∗

ρ∗g∗

) 1
2

≪ L∗ (1.18)

is the characteristic film thickness. We assume that the reduced Reynolds number

given by R̂e = ϵRe ≪ 1 is small. The scaling choice of p in (1.13) acts to promote

the pressure gradient in the y-direction to leading order in the thin-film limit. This

choice is made in order to be consistent with the work of Chapter 2 and Chapter 3

in which a free surface flow experiences a normal pressure. Note that by promoting

the pressure gradient to leading order in the y-direction, the effect of gravity in

the y-direction (represented by the cosα term in (1.15)) is reduced to first order

in ϵ.

At the free surface, the unit normal and tangent vectors are given by

n =

(
1 +

(
ϵ
∂h

∂x

)2
)− 1

2 (
−ϵ∂h

∂x
, 1

)
and t =

(
1 +

(
ϵ
∂h

∂x

)2
)− 1

2 (
1, ϵ

∂h

∂x

)
,

(1.19)

respectively. Assuming that µ∗
a ≪ µ∗, the conditions of continuity of normal and

tangential stress at the free surface then become

− p− ϵ2

((
∂h

∂x

)2

p+ 2
∂h

∂x

∂u

∂y
− 2

∂v

∂y

)
− ϵ4

(
2
∂h

∂x

∂v

∂x
− 2

(
∂h

∂x

)2
∂u

∂x

)

= −Ca−1∂
2h

∂x2

(
1 +

(
ϵ
∂h

∂x

)2
)− 1

2

, (1.20)

where

Ca =
µ∗U∗

ϵ3σ∗ (1.21)

is the capillary number, which is a non-dimensional measure of the relative effect

of viscosity and surface tension, and

∂u

∂y
+ ϵ2

(
∂v

∂x
− 2

∂h

∂x

∂u

∂x
+ 2

∂h

∂x

∂v

∂x
−
(
∂h

∂x

)2
∂u

∂y

)
− ϵ4

(
∂h

∂x

)2
∂v

∂x
= 0. (1.22)

Hence, at leading order in the limit ϵ → 0 (1.14) remains unchanged while (1.15)
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and (1.16) become

0 = −∂p
∂x

+ sinα +
∂2u

∂y2
(1.23)

and

0 = −∂p
∂y
, (1.24)

respectively. In the case of a stationary substrate, the no-slip and no-penetration

conditions become

u = v = 0 (1.25)

on y = 0. The conditions of continuity of normal and tangential stress at the free

surface (1.20) and (1.22) become

p = Ca−1∂
2h

∂x2
(1.26)

and
∂u

∂y
= 0 (1.27)

on y = h, respectively. Unlike the system of equations (1.3)–(1.8), the equations

(1.23) and (1.24) are easily solved subject to (1.25)–(1.27). Herein lies the useful-

ness of the thin-film approximation, which as we have shown, allows for analytical

progress to be made whilst retaining the leading order behaviour of the thin film.

1.2 Effect of an external airflow on a thin film of

fluid on a solid substrate

The interaction between an airflow and a thin film of fluid on a solid substrate is a

fundamental problem in fluid mechanics, not only because of its intrinsic scientific

interest, but also because of its relevance to a wide range of practical situations,

such as ice accretion on aircraft wings, the jet wiping (or air knife) galvanisation

process, and trickles of water on the windows of moving vehicles on rainy days.

The standard boundary conditions at the free surface of a fluid are those of

continuity of normal and tangential stress, and thus models of thin-film flows in

a passive atmosphere of a low-viscosity fluid (such as air) typically assume that

the pressure at the free surface is equal to the constant ambient pressure in the

atmosphere, and that the shear stress at the free surface is zero. However, for
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thin-film flow in the presence of an external airflow one or both of these conditions

needs to be generalised to model the effect(s) of the airflow on the film and/or vice

versa.

In Chapters 2 and 3 we will consider a thin film of fluid on a rotating horizontal

cylinder in the presence of an external airflow, and so in this section we give an

overview of previous work in which the pressure and/or the shear stress boundary

conditions have been generalised to model the effect of an airflow.

(a) Non-zero shear stress

A simple approach to model the effect of an airflow on a thin film of fluid is

to assume a condition of non-zero uniform shear stress and uniform ambient air

pressure at the free surface.

Black [19] and Villegas-Dı́az et al. [171] both independently investigated, using

analytical and asymptotic methods, the flow of a thin film of fluid on the outside

of a rotating cylinder subject to the effects of gravity and a uniform shear stress

at the free surface due to the presence of an external airflow. As will be discussed

in more detail in Section 1.3, both Black [19] and Villegas-Dı́az et al. [171] showed

that when the shear stress acts in the same direction as the rotation of the cylinder

(i.e. positive shear) then the film of fluid behaves qualitatively similarly to that of

the classical solution with no airflow effects obtained by Moffatt [108], however,

if the shear stress acts in opposition to the rotation of the cylinder (i.e. negative

shear), then the film of fluid behaves qualitatively differently to that of the clas-

sical solution with no airflow effects obtained by Moffatt [108]. In a follow-up

paper motivated by the interaction between the airflow within and the film of

oil on the inside of the outer shaft of the bearing chamber in a rapidly rotating

aeroengine, Villegas-Dı́az et al. [172] revisited this problem, with surface tension

effects included, and investigated the stability of their solutions. Kay et al. [76],

also motivated by the interaction between the airflow and a thin film of fluid within

aeroengines, extended the analysis of Villegas-Dı́az et al. [171] to include inertial

effects at leading order. They showed, among other results, that the inclusion of

inertial effects at leading order allowed for a greater range of thin-film solutions

than had previously been obtained in the literature

Sullivan et al. [157] investigated, using analytical and asymptotic methods, the

steady unidirectional flow of a thin rivulet of perfectly wetting fluid (that is, the
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Figure 1.6: Rivulets of rainwater on the side window of a moving car. Image
courtesy of Prof. Stephen K. Wilson.

contact angle, i.e. the angle that the free surface of the rivulet makes with the

substrate at their point of contact, is zero) down an inclined substrate, subject to

the effects of gravity and a longitudinal uniform shear stress due to the presence of

an external airflow. Interactions such as this can be found, for example, as shown

in Figure 1.6, on the windows of moving vehicles on rainy days. Sullivan et al.

[157] found, in accordance with physical intuition, that for weak negative shear

stress only fluid near the free surface is forced to flow back up the substrate against

gravity while the bulk of the rivulet still flows in the direction of gravity. As the

magnitude of the shear stress is increased more of the fluid within the rivulet is

forced back up the substrate against gravity, until eventually when the shear stress

dominates the effect of gravity the entire rivulet moves in the opposite direction

to gravity.

A non-uniform shear stress may also be used in order to model the effect of

an airflow on a thin film of fluid. For example, in the context of the spin coating

process, in which a small amount of fluid is applied to the centre of a disk which

is then rotated in its plane at high speed, which forces the fluid radially outwards

forming a thin layer over the entire disk, can induce a large outward radial airflow,

with shear stress proportional to the distance from the centre of the disk (see, for

example, [103, 125, 187, 93]). This process is used extensively in the manufacturing

of semiconductors, where very thin, uniform layers of photoresist are required.

Middleman [103] investigated, using analytical and asymptotic methods, the
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unsteady spin coating of a thin film of fluid on a rotating disk subject to the effects

of gravity and a non-uniform shear stress at the free surface due to the presence

of an external airflow of the form

µ∗∂v
∗
r

∂z∗
= A∗r∗, (1.28)

where A∗ = (ω∗3µ∗
aρ

∗
a)

1/2/2, ω∗ is the constant angular velocity of the disk, ρ∗a is

the constant density of the air, r∗ is the radial distance from the centre of the disk,

and v∗r is the radial fluid velocity. Middleman [103] found that the film evolves

according to the evolution equation

t = β

(
1

H
− 1

)
− β2 ln

(
βH + 1

H(1 + β)

)
→ 1−H2

2H
as β → ∞, (1.29)

where t (non-dimensionalised with 2ρ∗ω∗2h∗20 /(3µ
∗)) and H (non-dimensionalised

with h∗0) are non-dimensional measures of time and the film thickness, respectively,

and the non-dimensional parameter β is defined as

β =
2

3

h∗0ω
∗ 3
4ρ∗

A∗ , (1.30)

where h∗0 is the average film thickness. The parameter β is a non-dimensional

measure of the relative effect of the angular velocity and the shear stress of the

airflow. In particular, β → 0 corresponds to infinite shear stress and β → ∞
corresponds to zero shear stress. Figure 1.7, based on Figure 1 of Middleman

[103], shows the solution of (1.29) H as a function of t for various values of β. In

particular, Figure 1.7 shows that as the strength of the shear stress increases (i.e.

as β decreases), the film thickness decreases. Furthermore, Figure 1.7 shows that

the solution departs from the solution in the limit β → ∞ (shown with a dashed

line) at H ∼ 1/β. This shows that initially the film thickness reduces due to the

effect of rotation until the film reaches H ∼ 1/β, after which the film thickness

reduces due to the effect of the shear stress.

Wu [187] investigated, using numerical methods, the unsteady spin coating of

a thin film of fluid on a rotating disk subject to the effects of gravity, thermocapil-

larity, thermoviscosity, van der Waals attractions, and a non-uniform shear stress

due to the presence of an external airflow. In particular, Wu [187] derived an evo-

lution equation for the thin film and solved it numerically subject to a non-uniform
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t

H

β → ∞

β = 103

β = 10−1

Figure 1.7: Plot of the solution of (1.29) showing a plot of the film thickness H on
a spinning disk in the presence of an airflow as a function of non-dimensional time
t for β = 10−1, 1, 10, 101, 102, 103, and β → ∞ shown with a dashed line. Based
on Figure 1 of Middleman [103].

shear-stress condition at the free surface. Wu [187] analysed how the film behaves

subject to all of the physical effects they included and found, among other results,

that while the shear stress due to the airflow played a part in the thinning of the

film, the effects of thermocapillarity and thermoviscosity had a larger influence in

the thinning of the film.

(b) Non-uniform pressure distribution

Another approach used to model the effect of an airflow on a thin film of fluid is

to assume a condition of non-uniform pressure but zero shear stress at the free

surface.

King and Tuck [81] and Paterson et al. [130], for example, investigated the

effect of an external airflow on a thin ridge of fluid on a planar substrate inclined

at an angle α to the horizontal, for which the pressure at the free surface of

the ridge is strongly coupled with the non-uniform pressure of the airflow. In

particular, [81, 130] considered an airflow that consists of a uniform stream with

constant speed far from the ridge U∗
∞ (i.e. the far-field speed), plus a non-uniform

perturbation due to the presence of the ridge that was derived from classical thin-

aerofoil theory (see, for example, Van Dyke [168]). In particular, this non-uniform
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perturbation has a velocity potential given by

ϕ(x, y) = x+
ϵ

2π

∫ L

0

h′(ξ) log[(x− ξ)2 + y2] dξ, (1.31)

where x (non-dimensionalised by the characteristic transverse length scale L∗
0) is

the transverse axis parallel to the substrate, y (non-dimensionalised with L∗
0) is the

axis normal to the substrate, ϕ (non-dimensionalised with U∗
∞L

∗
0) is the velocity

potential, L (non-dimensionalised with L∗
0) is the transverse width of the ridge,

ϵ ≪ 1 is the small transverse non-dimensional aspect ratio of the film, and h(x)

(non-dimensionalised with ϵL∗
0 ≪ L∗

0) is the characteristic thickness of the ridge.

Combining (1.31) with Bernoulli’s equation, yields the pressure at the free surface

given by

pa = −Λ

∫ L

0

(x− ξ)h′(x)

(x− ξ)2 + y2
dξ, (1.32)

where the non-dimensional Weber number is given by

Λ =
ρ∗aL

∗
0U

∗2
∞

πσ∗ ≥ 0, (1.33)

which is a measure of the relative effect of the pressure forces and the surface

tension.

King and Tuck [81] investigated, using analytical and numerical methods, the

the flow of a thin ridge of fluid on a planar substrate inclined at an angle α to the

horizontal, subject to the effects of gravity and the non-uniform pressure (1.32)

due to the presence of an external airflow, but in the absence of surface tension

effects (so that Λ is given instead by Λ̄ = ρ∗aU
∗2
∞/πρ

∗g∗L∗
0 in (1.32)). Note that

King and Tuck [81] considered variation over the characteristic thickness scale of

the thin ridge (ϵL∗
0 ≪ L∗

0), and so neglected the y in (1.32). Using this non-uniform

expression for the air pressure, King and Tuck [81] derived a non-linear integro-

differential equation for the thickness h(x), which they solved numerically. Their

analysis showed that, for each value of α, there are zero, one or two values of the

strength of the external airflow for which a steady solution for the thickness h(x)

exists.

Paterson et al. [130] investigated, using analytical, asymptotic and numerical

methods, the flow of a thin ridge of fluid on a planar substrate inclined at an angle

α to the horizontal, subject to the effects of gravity, surface tension and the non-
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uniform pressure (1.32) due to the presence of an external airflow. In particular,

Paterson et al. [130] showed, among other results, that when the substrate is

nearly horizontal, i.e. near α = 0 or α = π, a very wide ridge can be supported

against gravity by capillarity and/or the non-uniform air pressure, however, when

the substrate is not nearly horizontal, i.e. α = O(1), only a narrower (but still

wide) rivulet can be supported.

Particularly relevant to the analysis of Chapter 2 and 3 is the investigation

of Newell and Viljoen [118], who considered the evolution of an initially uniform

thin film of fluid supported on the outside of a rotating horizontal cylinder against

gravity by a combination of the shear that is induced by the rotation of the cylinder

and the non-uniform pressure on the free surface of the film due to the presence

of an external irrotational airflow. The conditions for the external airflow to be

irrotational will be discussed in Chapter 2. Newell and Viljoen [118] assumed that

since the film is thin, the airflow (which is assumed to be inviscid) is unaffected

by the presence of the film on the cylinder. Therefore, unlike [81, 130], the airflow

does not depend on the shape of the film, and the pressure at the free surface

due to the external airflow is prescribed. In particular, the non-uniform pressure

at the free surface of the fluid due to the external airflow, derived from classical

inviscid flow theory (see, for example, Batchelor [15]), used by Newell and Viljoen

[118] is the same as that used in Chapters 2 and 3. Hence, we shall briefly discuss

the derivation and properties of this non-uniform pressure. The airflow considered

by Newell and Viljoen [118] is assumed to be incompressible, and so, the velocity

potential of the airflow ϕ∗ satisfies Laplace’s equation

∇∗2ϕ∗ = 0. (1.34)

Since (1.34) is linear, different solutions for the velocity potential ϕ∗ can be su-

perposed to form a new solution. In particular, it is well known [15] that the

velocity potential for the flow of an irrotational airflow with circulation around a

rotating cylinder is formed by the superposition of elementary irrotational flows.

In particular, considering polar coordinates (r∗, θ), with the azimuthal coordinate

θ measured from the horizontal, and a cylinder of radius a∗, by superposing the

velocity potentials of a uniform horizontal flow of the form

ϕ∗ = U∗
∞r

∗ cos θ, (1.35)
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a doublet (formed by bringing together a source and a sink flow) of the form

ϕ∗ =
U∗
∞a

∗2 cos θ

r∗
, (1.36)

and a free vortex with circulation κ∗ of the form

ϕ∗ =
κ∗θ

2π
, (1.37)

we find that the velocity potential for the flow of an irrotational airflow with

circulation around a rotating cylinder is given by

ϕ∗ = U∗
∞r

∗ cos θ

(
1 +

a∗2

r∗2

)
+
κ∗

2π
θ, (1.38)

and hence the streamfunction is given by

ψ∗ = U∗
∞r

∗ sin θ

(
1− a∗2

r∗2

)
− κ∗

2π
ln r∗. (1.39)

Figure 1.8 shows the streamlines given by (1.39) for various values of the parameter

λ = κ∗/(4πa∗U∗
∞), and, in particular, the positions of the stagnation points around

the cylinder. The positions of the stagnation points are found when the radial and

azimuthal components of the air velocity v∗r and v∗θ , given by

v∗r = U∗
∞

(
1− a∗2

r∗2

)
cos θ (1.40)

and

v∗θ = −U∗
∞

(
1 +

a∗2

r∗2

)
sin θ +

κ∗

2πr∗
, (1.41)

respectively, are zero. Hence, as can be seen from Figure 1.8, the airflow has

two stagnation points which lie on the cylinder at r∗ = a∗ and θ = sin−1 λ and

θ = π − sin−1 λ when 0 ≤ |λ| < 1, that coalesce into a single stagnation point

at either the top or the bottom of the cylinder at r∗ = a∗ and θ = sgn(λ)π/2

when |λ| = 1, and lie within the airflow either directly above or directly below

the cylinder at r∗ = a∗
[
|λ|+ (λ2 − 1)1/2

]
(> a∗) and θ = sgn(λ)π/2 when |λ| > 1.

Combining (1.41) with Bernoulli’s equation (in the absence of gravitational effects)
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given by

p∗a − p∗∞ =
1

2
ρ∗a
(
U∗2
∞ − v∗2θ

)
, (1.42)

where p∗∞ is the constant air pressure far from the cylinder (i.e. the far-field pres-

sure), the non-uniform pressure p∗a(θ) at the free surface is given by

p∗a = p∗∞ +
ρ∗a
2

[
U∗2
∞ −

(
2U∗

∞ sin θ − κ∗

2πa∗

)2
]
. (1.43)

It is clear from (1.43) that, without loss of generality, the velocity of the far field

airflow can be assumed to be non-negative, i.e. that U∗
∞ ≥ 0, while the circulation

κ∗ may be positive (i.e. anticlockwise), negative (i.e. clockwise) or zero (i.e. no

circulation). The results of Newell and Viljoen [118] will be described in further

detail in Section 1.3.

(c) A combination of non-zero shear stress and non-uniform pressure

Another approach used to model the effect of an airflow on a thin film of fluid is to

combine the approaches described in sections (a) and (b) above and assume both

a non-uniform pressure and a non-zero shear stress at the free surface.

King et al. [82], for example, investigated, using analytical and numerical meth-

ods, steady waves on a thin film of fluid on an inclined substrate subject to the

effects of gravity, surface tension, and a constant shear stress and non-uniform

pressure of the form (1.32) (again, with y neglected) due to the presence of an

external airflow. In particular, King et al. [82] showed, among other results, that

in the limit of weak gravitational effects, the waves approach a series of periodic

single solitary sharp spikes on a thin fluid layer of otherwise constant thickness.

As the shear stress becomes large, the spikes become widely separated and the

substrate between these spikes becomes asymptotically dry.

Shear stress and pressure distributions due to the airflow may also be obtained

from experimental studies or numerical simulations. For example, such techniques

have been employed to investigate the cause of potentially damaging vibrations

of the cables of cable-stayed bridges that occur on wet and windy days, known

as rain–wind-induced vibrations (RWIVs). Early research on this problem was

carried out by Hikami and Shiraishi [60] who reported upon the observation of

RWIV of Meikonishi bridge over Nagoya Harbour in Japan, and carried out an

experimental study to investigate their cause. By simulating conditions on rainy
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 1.8: Plots of typical streamlines ψ∗ = constant where ψ∗ is given by (1.39)
with, U∗

∞ = 1, a∗ = 2 (a) λ = −3/2, (b) λ = −1, (c) λ = −1/2, (d) λ = 0, (e)
λ = 1/2 (f) λ = 1 (g) λ = 3/2. The locations of the stagnation points of the
airflow are indicated with dots (•)

and windy days in a wind tunnel, they discovered that thin rivulets of rain water

formed on the upper half of the cylindrical cables causing aerodynamic instabilities

and leading to the observed potentially damaging vibrations.

Lemaitre et al. [90] modelled the flow of thin rivulets on a cable subject to the

effects of gravity, surface tension, airflow due to the wind and the motion of the

cable. They modelled the airflow using a pressure and shear stress (or friction)

coefficients Cp(θ) and Cf(θ), where again θ is the azimuthal coordinate around

the cylinder. Figure 1.9 shows the distributions Lemaitre et al. [90] used for the

two airflow coefficients Cp(θ) and Cf(θ), taken originally from the experiments
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of Achenbach [1], who measured the air pressure and shear stress distributions

around a dry cylinder placed within and orientated normal to a uniform airflow.

Lemaitre et al. [90] solved numerically an evolution equation they derived for the

film thickness H(θ, t) (non-dimensionalised with characteristic film thickness h∗0)

at time t (non-dimensionalised with µ∗/(R∗h∗0ρ
∗), where R∗ is the radius of the

cylinder). They found that for high wind speeds, two bulges in the film appear

in the neighbourhood of the points in which the airflow would separate from the

surface of a dry cylinder. This can be seen in Figure 1.10, which shows that the

film thickness H(θ, t) is a uniform film at t = 0 and a non-uniform film with two

bulges in the neighbourhood of the points at which the airflow separates from the

cylinder (i.e. cable) on the upper and lower halves of the cylinder (i.e. cable) at

t = 1.7× 10−5, in agreement with the observations of Hikami and Shiraishi [60].

A series of numerical studies on RWIVs by Robertson et al. [144], Taylor and

Robertson [162, 163] sought to further understand the interaction between the

airflow and the rivulets that form on the cables and cause RWIVs. Robertson

et al. [144] revisited the work of Lemaitre et al. [90], again using the pressure

and shear stress distributions of Achenbach [1] shown in Figure 1.9, and instead

they modelled rivulet formation and evolution on the cylinder using a self devel-

oped numerical model, which utilises a pseudo-spectral method, which they used

to confirm the results of Lemaitre et al. [90] and further analyse the effect of

the pressure and shear stress distributions on the evolution of the rivulets. The

investigations by Taylor and Robertson [162] and [163] both use more advanced

numerical models to analyse the effect of the airflow. The former, Taylor and

Robertson [162] applied an unsteady aerodynamic solver and the latter, Taylor

and Robertson [163] applied the Discrete Vortex method, whilst both employed

the pseudo-spectral method of [144] to model the rivulets. In particular, Taylor

and Robertson [163] investigated the effect of varying the film thickness on the

formation and evolution of the rivulets as well as the effect of varying the angle of

attack in the plane of the airflow, on the fluid, and hence obtained a highly detailed

description of the mechanisms that lead to RWIVs. One of the potential causes of

RWIVs, as described by Taylor and Robertson [163], is the formation of vortices

in the wake that forms in the downstream side of the cylinder when the boundary

layers in the airflow separate from the cylinder surface. Furthermore, Taylor and

Robertson [163] found that it is possible for the rivulet on the upper half of the

cylinder to deflect the corresponding separated boundary layer further from the
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Figure 1.9: The distributions of (a) the pressure coefficient Cp(θ) and (b) the
normalised shear stress (friction) coefficient Cf(θ)/max(Cf) as functions of the
azimuthal coordinate around the cylinder θ, where (◦) represents Re = 105 and
(×) represents Re = 3.6 × 106 used by Lemaitre et al. [90], obtained originally
from the experiments of Achenbach [1]. Reprinted from Lemaitre et al. [90] with
permission from Elsevier.
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Figure 1.10: Numerical solution for the film thickness H(θ, t) on a cylinder (i.e.
cable) subject to gravity, surface tension and an airflow obtained by Lemaitre et
al. [90]. The solution starts as a uniform film at t = 0 with a dotted line and
evolves to the non-uniform film with a solid line at t = 1.7 × 10−5. The circles
(◦) indicate the points at which the airflow separates from the cylinder. Reprinted
from Lemaitre et al. [90] with permission from Elsevier.

horizontal centre line of the cylinder. As a result, the wake in the downstream side

of the cylinder becomes wider. This wider wake reduces the interaction between

the boundary layers on either side of the cylinder, which affects the characteristics

of the wake, in particular, reduces the formation of vortices.

The jet-wiping (or jet-stripping) process, in which one or more impinging jets

of air are used to reduce the thickness of a film of fluid on a moving substrate, is

a process used, for example, in the galvanising industry to apply a thin layer of

molten zinc to steel. Figure 1.11, for example, shows a schematic of the jet-wiping

operation applied to the galvanisation process, in which a moving substrate, i.e. a

metallic strip is submerged in a coating bath of molten zinc, so that a liquid film

is carried upwards with the strip, and then passes between two jets of air supplied

from high-pressure nozzles. The dynamics of the interaction between the jet of

air and the thin film of fluid has been investigated extensively (see, for example,

[41, 167, 117, 51, 116, 193, 71, 102, 13]), mostly with numerical simulations.

Tuck and Vanden-Broeck [167], motivated by the jet-wiping process, investi-

gated, using analytical and numerical methods, the steady flow of a thin film of

fluid on a vertical substrate moving with constant speed subject to the effects of

gravity, surface tension, and a non-uniform shear stress and non-uniform pressure

due to an airflow directed at the film, normal to the substrate (see, for example,
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Figure 1.11). In particular, for an unknown tangential stress T ∗(y∗) and pressure

P ∗(y∗), where y∗ is the axis parallel to the substrate, Tuck and Vanden-Broeck

[167] showed that the flux per unit axial length of the fluid Q∗ is given by

Q∗ = V ∗h∗ +
T ∗

2µ∗h
∗2 − ρ∗g∗ + P ∗′ − σ∗h∗′′′

3µ∗ h∗3, (1.44)

where V ∗ is the constant speed of the moving substrate. If surface tension effects

are negligible (σ∗ = 0), and there is no shear stress (T ∗ = 0) or pressure gradient

(P ∗′ = 0) due to the airflow at the free surface, then (1.44) reduces to the classical

coating flow problem (see, for example, [108, 137]), which will be discussed in

further detail in Section 1.3. Tuck and Vanden-Broeck [167], in the absence of

shear stress at the free surface (T ∗ = 0), solved (1.44) numerically with both a

quadratic and an exponential pressure gradient P ∗′, and found that regardless

the shape of the pressure distribution, as surface tension is increased, a stronger

jet (i.e. a higher pressure) is required to reduce the film thickness (i.e. maintain

the same jet-stripping effect). This is due to the tendency of surface tension to

maintain the shape of the thin film.

More recently, Naphade et al. [117] investigated, using numerical methods, the

unsteady flow of a thin film of fluid on a vertical moving substrate subject to the

effects of gravity and a non-uniform shear stress and non-uniform pressure due to

an airflow directed at the film, normal to the substrate (see, for example, Figure

1.11). In particular, Naphade et al. [117] derived a mathematical model which

predicts the mass of fluid on the moving substrate and used Computational Fluid

Dynamics (CFD) to generate the pressure and shear stress profiles due to the

airflow on the free surface of the fluid. They then performed a sensitivity analysis

to determine the operating window that could help improve the galvanising line

operation. Naphade et al. [117] found that it is most favourable if the nozzle of

the jet (as seen in Figure 1.11) is as close to the moving substrate as possible, and

that the pressure of the air coming from the nozzle is as high as possible.

Mendez et al. [102] investigated, using analytical and numerical methods, the

unsteady flow of a thin film of fluid on a vertical moving substrate subject to

the effects of gravity and a non-uniform shear stress and non-uniform pressure

due to an airflow directed at the film, normal to the substrate (see, for exam-

ple, Figure 1.11). In particular, Mendez et al. [102] extended classical laminar

boundary layer models for falling films with integral boundary layer models and
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Figure 1.11: A schematic of the jet-wiping operation applied to the galvanisation
process. The schematic shows the metallic strip being submerged in the coating
bath of molten zinc, which then passes between two jets of air supplied from high
pressure nozzles. Reprinted from Gosset and Buchlin [51] with permission from
American Society of Mechanical Engineers (ASME), Copyright 2023.

used shear stress and pressure distributions due to the airflow derived from ex-

perimental studies and numerical simulations. Mendez et al. [102] compared their

model and results to previous long wave and numerical studies and found good

agreement. They concluded that the integral models that they derived allow for

the successful simulation of the complex air-jet and fluid interaction in industrially

relevant conditions.

1.3 Flow on stationary and rotating cylinders

The flow of a thin film of fluid on the outer (coating flow) or inner (rimming flow)

surface of a cylinder is a well-studied problem in fluid mechanics. This problem is

applicable to many practical situations, for example, the manufacturing of pipes

and coating their inner surfaces [70], the coating of cylindrical fluorescent tubes

[126], the flow of fluid on the outside of rollers in paper making machinery [190],

and the even coating of paint from the outside of paint-coated rollers is of great

importance within the printing industry [191]. This section will give an overview

of the literature concerning the coating and rimming flow of fluids on stationary
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and rotating cylinders.

1.3.1 Flow on stationary cylinders

Coating and rimming flow on the surfaces of stationary cylinders has been an

active area of research for many decades dating back to, for example, the classical

work of Nusselt [120, 121], who considered the steady flow of a thin film of fluid on

a stationary horizontal cylinder, subject to the effects of gravity. Nusselt [120, 121]

showed that for a prescribed supply flux incident on a stationary cylinder the film

thickness varies like | cos θ|−1/3, where again θ is the azimuthal angle measured

from the horizontal around the cylinder. This result shows that the film has left-

to-right and top-to-bottom symmetry and that the film becomes infinitely large

at the top (θ = π/2) and bottom (θ = −π/2) of the cylinder, which violates the

thin-film approximation, but can be interpreted as the film falling on to and off of

the cylinder at its top and bottom, respectively, as shown in Figure 1.12(a).

Duffy and Wilson [38] extended the analysis of Nusselt [120, 121] to consider

the steady non-symmetric flow of a thin film of fluid on a stationary horizontal

cylinder, subject to the effects of gravity, by considering a piecewise function for

the azimuthal volume flux Q∗ per unit axial length in the direction of increasing

θ given by

Q∗ =




(1− k)Q∗

S if cos θ > 0,

−kQ∗
S if cos θ < 0,

(1.45)

where Q∗
S > 0 is the prescribed supply flux at the top of the cylinder and 0 ≤ k ≤ 1

is an unknown constant which must be determined by additional information,

for example, the specification of the film thickness at a prescribed point around

the cylinder. Duffy and Wilson [38] obtained the solution for the film thickness

h(θ) (non-dimensionalised with (g∗/(ν∗Q∗
S))

1/3, where ν∗ denotes the kinematic

viscosity) given by

h(θ) =

(
3[k −H(− cos θ)]

cos θ

) 1
3

, (1.46)

where H(·) is the Heaviside function. Figure 1.12(b), which shows the solution for

the film thickness given by (1.46) in the case k = 1/9, shows that by considering

a flux of the form (1.45), unlike the classical solution of Nusselt [120, 121], the

film no longer in general exhibits left-to-right symmetry, except in the special case

k = 1/2, in which (1.46) returns the classical symmetric solution for the film
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(a) (b)

0 0θ = 0

h(θ)

θ = 0

h(θ)

Figure 1.12: The solution for the flow of a thin film of fluid, h(θ) given by (1.46),
with θ increasing anti-clockwise from θ = 0, on the outside of a stationary cylinder
drawn for the cases (a) k = 1/2 and (b) k = 1/9. Based on Figure 2 of Duffy and
Wilson [38].

thickness given by Nusselt [120, 121], as shown in Figure 1.12(a).

The unsteady flow of thin films of fluid on stationary cylinders has also been

well-studied. For example, Reisfeld and Bankoff [143] investigated, using analytical

and numerical methods, the unsteady isothermal and non-isothermal flow of a

fluid film on a horizontal stationary cylinder subject to the effects of gravity,

surface tension, thermocapillarity and van der Waals forces. In the isothermal

case, Reisfeld and Bankoff [143] found that when the Bond number, which is

a non-dimensional measure of the relative effect of gravity and surface tension,

given by

Bo =
ρ∗g∗a∗3

d∗0σ
∗
0

, (1.47)

where d∗0 denotes the mean film thickness and σ∗
0 denotes the mean surface tension,

is zero (Bo = 0), a steady solution for the film thickness is possible, however when

the Bond number is positive (Bo > 0) only an unsteady solution for the film thick-

ness is possible. In the absence of van der Waals effects, the unsteady isothermal

solution for the film thickness, forms a pendent-drop-like shape at the base of the

cylinder with two symmetric regions of local thinning. Reisfeld and Bankoff [143]

showed that as the Bond number increases, the two symmetric regions of local

thinning move up the cylinder until they eventually coalesce at the top. In the
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non-isothermal case, Reisfeld and Bankoff [143] found that the behaviour of the

film to be more complicated. They found, among other results, that for a heated

cylinder, thermocapillary effects augment the effects of gravity and increase the

rate of drainage from the bottom of the cylinder, whilst for a cooled cylinder they

found that thermocapillary effects oppose the effects of gravity and decrease the

rate of drainage from the bottom of the cylinder.

Takagi and Huppert [160] investigated, using analytical and experimental meth-

ods, the unsteady flow of a thin film of fluid on the outer surface of a stationary

cylinder and sphere subject to the effects of gravity, surface tension and viscosity.

In particular, they considered the problem of an instantaneous release of a con-

stant volume of fluid at the top of the cylinder/sphere, and hence the film has an

advancing front as it flows down the surface of the cylinder/sphere. Their analysis

showed that for large time t (non-dimensionalised with ν∗a∗/g∗A∗, where A∗ is the

total cross-sectional area of the fluid), near the top of the cylinder/sphere the fluid

front advances as t1/2 in the case of a cylinder and as t1/4 in the case of a sphere

and that the film thins according to t−1/2 for both a cylinder and sphere. Takagi

and Huppert [160] conducted experiments by pouring various fluids onto a perspex

cylinder and a vinyl beach ball and found good agreement with their theory near

the top of the cylinder/sphere. However, as the fluid front advanced further down

the cylinder/sphere, eventually the fluid front would split into individual rivulets,

which would then, once they reached the underside of the cylinder/sphere, detach

from the surface as viscous threads.

Cachile et al. [23] investigated, using analytical, numerical and experimental

methods the unsteady flow of a thin film of fluid on the outer surface of a stationary

cylinder subject to the effects of gravity, surface tension and viscosity. Cachile et

al. [23] derived an evolution equation for the film thickness and then used numerical

methods to analyse its solutions. Their analysis found, among other results, that as

the film flows from the top of the cylinder to the bottom, the film becomes thinner

monotonically in time until the flow reaches the bottom of the cylinder, at which

a linear stability analysis showed that Rayleigh–Taylor-like instability develops.

Cachile et al. [23] conducted experiments by fully coating a steel cylinder with

silicon oil and found good agreement with their theoretical predictions. They

observed that the film thickness first reaches a maximum on the upper half of the

cylinder, after which it decreases monotonically in time, except from near to the

bottom of the cylinder, where the film destabilises and forms drops along the axis
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of the cylinder, which eventually coalesce and detach from the surface.

McKinlay et al. [100] investigated, using analytical and numerical methods, the

unsteady flow of a thin film of fluid on the outer surface of a stationary cylinder

subject to the effects of gravity and surface tension. McKinlay et al. [100] derived

an evolution equation for the film thickness and described three regions that emerge

at large times within which the film exhibits qualitatively different behaviour. In

particular, McKinlay et al. [100] showed that near the top of the cylinder, the

effects of gravity dominate the effects of surface tension, resulting in the fluid

draining in the direction of gravity, which causes the film to thin. Near the bottom

of the cylinder, however, the effects of gravity balance with the effects of surface

tension, resulting in the formation of a quasistatic pendant drop. Connecting these

two regions, there exists a narrow intermediate region, in which the film exhibits

an infinite series of alternating maxima and minima.

Kay et al. [76] investigated, using analytical and numerical methods, the un-

steady flow of a thin film of fluid on the inner surface of a stationary cylinder

subject to the effects of gravity, surface tension, fluid inertia and a uniform shear

stress at the free surface due to an airflow (as discussed in Section 1.2). Kay et

al. [76] used a depth-averaging method to derive an evolution equation for the

film thickness and then used asymptotic and numerical methods to analyse its

solutions. They found, among other results, that the effect of fluid inertia and

surface tension act to smooth out the transition between a pool of fluid that forms

in the lower half of the cylinder and the thin film of fluid that coats the remainder

of the cylinder surface, and that the inclusion of fluid inertia allows for solutions

with a larger mass of fluid to be supported on the cylinder surface than had been

predicted by previous works in the absence of inertial effects. In a follow-up paper

Kay et al. [77] extended the work of Kay et al. [76] to also include thermal effects

due to a heated substrate. Kay et al. [77] derived a depth-averaged energy equation

for the temperature in the fluid and a depth-averaged evolution equation for the

film thickness and then used numerical methods to analyse the solutions for the

temperature in the fluid and film thickness, respectively. Their model predicted,

among other results, the heating of recirculation regions within the pool of fluid

that forms in the lower half of the cylinder, however as the effect of inertia is in-

creased, the pools of fluid at the bottom of the cylinder give way to smooth uniform

flow and the regions of backflow would begin to cool. Kay et al. [78] in a second

follow-up paper, extended the work of the two previous investigations [76, 77] to
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0 θ = 0r∗ = a∗

Ω∗

r∗ = a∗ + h∗(θ)

Figure 1.13: A full-film solution with film thickness at r∗ = a∗ + h∗(θ) on a
cylinder with radius r∗ = a∗ rotating anti-clockwise with uniform velocity Ω∗ in
the direction of increasing θ measured from the horizontal.

investigate the effect of an additional flux due to droplets of fluid impacting upon

the free surface and a slump outlet (hole) at the bottom of the cylinder which

allows for fluid to escape. They found that the additional flux due to the droplets

impacting upon the free surface of the rimming flow provides either a heating or

cooling effect depending on the relative temperatures of the droplets and film.

1.3.2 Flow on rotating cylinders

Coating and rimming flow on the surfaces of rotating cylinders has been studied

extensively due to its intrinsic theoretical interest and also its many practical

applications as previously mentioned. Early pioneering work on this problem was

carried out by Moffatt [108] and Pukhnachev [137]. Moffatt [108] investigated,

using analytical and experimental methods, the steady flow of a thin film of fluid

on the outside of a rotating cylinder, subject to the effects of gravity. In particular,

Moffatt [108] sought solutions for the film thickness which coat the entire surface

of the cylinder, known as full-film solutions. Figure 1.13, shows an example of a

full-film solution for coating flow on a cylinder with radius r∗ = a∗, where again r∗

is the radial polar coordinate, rotating with uniform angular speed Ω∗, with free

surface r∗ = a∗+h∗(θ). Note that for the corresponding rimming flow problem we

simply take r∗ = a∗ − h∗(θ), and at leading order in the thin-film limit (but not
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at higher orders) the two problems are mathematically identical. On the cylinder

surface, Moffatt [108] used the local Cartesian coordinates (x∗, y∗), with x∗ in the

direction of increasing θ (so that x∗ = a∗θ locally), y∗ normal to the cylinder,

so that r∗ = a∗ + y∗ (for rimming flow r∗ = a∗ − y∗). Locally, on the cylinder

surface, the problem then reduces to the problem of a thin film of fluid flowing

down an inclined plane, described in Section 1.1, with the angle of inclination

of the substrate α = θ − π/2. Using the thin-film approximation, Moffatt [108]

derived an equation for the azimuthal volume flux Q per unit axial length of the

fluid film in the direction of increasing θ given by

Q = h− h3

3
cos θ, (1.48)

where the film thickness and flux are non-dimensionalised by (µ∗a∗Ω∗/(ρ∗g∗))1/2

and (µ∗a∗3Ω∗3/(ρ∗g∗))1/2, respectively. Moffatt [108] showed, among other results,

that the full-film solution has a maximum at θ = 0 and a minimum at θ = π,

has top-to-bottom symmetry and that the full-film solution is possible if and only

if the fluid flux Q (or equivalently mass M) does not exceed a critical value, i.e.

0 ≤ Q ≤ Qc (or equivalently 0 ≤ M ≤ Mc), where the critical flux and mass are

given by Qc = 2/3 and Mc ≃ 4.4427 (the latter of which was incorrectly given by

Moffatt [108] asMc ≃ 4.428), respectively. They also showed that when the critical

maximum flux (or mass) is achieved, a sharp corner is present in the maximum

of the critical film thickness h = hc(θ) at θ = 0. Figure 1.14 shows a plot of the

film thickness in the θ−h plane for varying contours of the flux Q given by (1.48)

(which is by definition a curve in which Q is constant) for 0 ≤ Q ≤ Qc. As shown

in Figure 1.15, Moffatt [108] also conducted simple experiments in which a rotating

cylinder of perspex was lowered into and out of a trough of golden syrup, and the

behaviour was observed for a variety of rotation speeds. In these experiments

Moffatt [108] observed that as the rotation speed increased from zero, the film

evolved from uniform to containing small periodic rings of fluid, as the rotation

speed increased to larger rotation speeds, a non-axisymmetric lobe of fluid would

arise and rotate around the axis of rotation at a slightly lower angular speed than

that of the cylinder. The work of Pukhnachev [137], which inspired Moffatt [108],

considered the coating flow problem with the additional effect of surface tension

and proved the existence and uniqueness of the steady full-film solution for the

film thickness.
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θ/π

h

Q = Qc

Figure 1.14: Plot of the contours of Q given by (1.48) for 0 ≤ Q ≤ Qc = 2/3, with
each contour therefore representing the film thickness h(θ) for the corresponding
value of Q. The contour interval is Qc/10.

(i) (ii)

Figure 1.15: Coating flow experiments consisting of a film of golden syrup that
coats a perspex rotating cylinder conducted by Moffatt [108] showing (i) the evo-
lution from a uniform film of fluid at low rotation speeds, to a film of fluid with
periodic rings of fluid at higher rotation speeds and (ii) a side view showing the
lobe of fluid that forms in the film for higher rotation speeds which rotates around
with the cylinder at a slightly lower speed than the cylinder itself. Reprinted from
[108], with permission from Prof. H. K. Moffatt.
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The problem of rimming flow was investigated further by Johnson [70] who,

using analytical methods, considered steady solutions for thin films of both New-

tonian and power-law fluids which either partially or entirely coat the inner surface

of a rotating cylinder, subject to the effects of gravity. In the case of a Newtonian

fluid which entirely coats the inner surface of the cylinder, Johnson [70] showed

that, in addition to the smooth full-film solutions predicted by Moffatt [108], there

also exist infinitely many jump solutions with single or multiple shocks. The ex-

periments of Melo [101] further investigated the problem considered by Johnson

[70], and determined the number and location of shocks in the film thickness that

can occur in reality. The experimental results of Melo [101] are shown in Figure

1.16, which shows the shape of the film thickness h∗(θ) for various cross-sectional

free surface areas A∗ and rotation speeds ω∗, compared to the critical leading-order

analytical solution obtained by Moffatt [108]. As shown by Figure 1.16, Melo [101]

found that when the flux (or equivalently mass) exceeds its maximum value, only

one shock occurs in the region −π/2 ≤ θ ≤ 0. This corresponds physically to a

pool of fluid gathering in the bottom right (the rising side) of the inside of the ro-

tating cylinder, when the maximum flux (or equivalently mass) is exceeded. This

result was confirmed in the numerical analysis of Wilson and Williams [176], who

found the location of the shock to be approximately θs = −0.4π. In the corre-

sponding problem of coating flow, when the maximum flux (or equivalently mass)

is exceeded, as discussed by, for example, Wilson and Williams [176], the excess

fluid will most likely simply fall off the cylinder. Figure 1.17 shows an example of

such a jump solution with a shock at θ = θs. Figure 1.17 shows that, as described

by Johnson [70], in the case of a jump solution, the film thickness gradually in-

creases as it approaches θ = θs, and then at θ = θs the film thickness increases

rapidly, and after θ = θs the film begins to gradually thin. This region of rapid

variation in the film thickness near θ = θs allows for more mass to be supported

on the cylinder than the critical maximum mass predicted by Moffatt [108].

The pioneering numerical investigation by Hansen and Kelmanson [58] inves-

tigated steady coating flow of a film of fluid on a rotating cylinder, subject to the

effects of gravity and surface tension. Without any restriction on the thickness of

the fluid film, Hansen and Kelmanson [58] employed numerical methods to solve

an integral equation formulation of the streamfunction for the film thickness of the

fluid on the cylinder surface, and then compared their numerical results with the

thin-film results of Moffatt [108]. Specifically, they found that, regardless of the
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Figure 1.16: Experimental results for the the film thickness h(θ)∗/h∗(π/2) as a
function of θ for (a) cross-sectional area of the film A∗ = 6.25 cm2 and rotation
speed ω∗ = 1.88 and 1.99 rad/s, and (b) cross-sectional area of the film A∗ =
10.2 cm2, and rotation speed ω∗ = 4.9, 5.4, 6.3, and 6.5 rad/s compared to the
critical analytical solution obtained by Moffatt [108] shown with a dotted line.
Reprinted from Melo [101] with permission from The American Physical Society
(APS), Copyright 2023.

thickness of the film, the free surface always has its maximum and minimum at

the same locations as predicted by the thin-film results and the critical maximum

mass is always close to, though slightly above, that predicted by Moffatt [108].

Hansen and Kelmanson also showed that the film thickness is only weakly depen-

dent on surface tension. In particular, considering the non-dimensional surface

tension parameter α0 = σ∗/(Ω∗µ∗a∗), they showed that when α0 = 100, there is

only a very small break from the top-to-bottom symmetry of the solution obtained

by Moffatt [108], for which α0 = 0.

Duffy and Wilson [38] investigated, using analytical and asymptotic methods,

the steady flow of a thin film of fluid on a rotating cylinder, subject to the effects

of gravity, and showed the existence of unbounded steady curtain solutions. Duffy

and Wilson [38] showed that in addition to the full-film solution branch of (1.48)

described by Moffatt [108], there are four more possible solution branches, each of

which are unbounded at θ = ±π/2, corresponding to fluid flowing on to and off
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Figure 1.17: Plot showing solutions of (1.48) for the film thickness h(θ) showing
an example of (a) a subcritical full-film solution with Q = 1/2, (b) the critical full-
film solution for Q = 2/3, (c) unbounded curtain solutions for Q = −2, Q = 1/2,
Q = 2/3 and Q = 3/2, (d) the partial-film curtain solution for Q = 0, and (e) a
jump solution with a shock at θs/π = −1/4 composed of a full-film solution and
curtain solution for Q = 2/3. The vertical dashed lines at θ/π = ±1/2 represent
the asymptotes of the curtain solutions.

of the cylinder at the top and bottom of the cylinder, respectively. In addition to

describing and classifying curtain solutions, Duffy and Wilson [38] also described

the possibility of partial-film curtain solutions with Q = 0, which do not coat

the entire surface of the cylinder and are also unbounded at θ = ±π/2. Jump

solutions, which as described previously were originally obtained by Johnson [70],

were also shown to exist by Duffy and Wilson [38], which are possible when there is

a shock which jumps from a full-film solution branch to a curtain solution branch.

Figure 1.17 shows an example of a sub-critical full-film solution, the critical full-

film solution, unbounded curtain solutions, a partial-film curtain solution, and a

jump solution with a shock at θ = θs.

Peterson et al. [133], using a finite element numerical scheme developed by

the authors, investigated the stability and long-time dynamics of unsteady coat-

ing flow of a film of fluid on a rotating cylinder, subject to the effects of gravity,



Chapter 1 34

surface tension and varying initial film thickness. They found agreement with the

results of Hansen and Kelmanson [58] in regard to the maximum mass that can

be supported on the cylinder, in addition they showed that the rate of conver-

gence of the solution for the film thickness to a stable steady state decreases as

the parameters representing the initial film thickness, surface tension and gravity

increase. They also presented simulations of load shedding that can occur once

the maximum mass of fluid that can be supported on the cylinder is exceeded,

as shown in Figure 1.18, which shows the development of a lobe of fluid which as

time t (non-dimensionalised with the cylinder rotation rate ω∗−1) increases, devel-

ops into a curtain which will eventually break off from the cylinder. O’Brien [122]

investigated, using analytical methods, the rimming flow of a thin film of fluid

on a rotating cylinder and investigated the stability of both smooth sub-critical

(Q < 2/3) and critical (Q = 2/3) with a shock (at θ = θs for −π/2 < θs ≤ 0)

solutions for the film thickness (as shown, for example, in Figure 1.17), subject to

the effects of gravity. O’Brien [122] carried out a linear stability analysis subject to

two-dimensional disturbances and showed that both the sub-critical and critical-

shock solutions are neutrally stable, and concluded that retaining higher order

terms in the thin-film approximation determine the stability of the rimming flow

solutions. In a follow-up paper, O’Brien [127] revisited the stability of sub-critical

rimming flow solutions subject to the effects of gravity and surface tension, using a

linear stability analysis whilst retaining higher order terms in the thin-film approx-

imation. They concluded that, a high cylinder rotation rate or sufficiently strong

surface tension both have a stabilising effect and the absence of either (without

any opposing stabilising effects) leads to unstable solutions.

Wilson et al. [180] investigated, using analytical and numerical methods, the

coating flow of a thin film of fluid on a rotating cylinder, subject to the effects of

gravity. In particular, Wilson et al. [180] investigated the critical solution at which

the maximum mass is supported on the outside of the cylinder. They showed by

considering higher-order corrections to the leading-order thin-film solution for the

film thickness, that the true critical mass is slightly higher than that predicted

by Moffatt [108], and that the corner in the full-film leading-order critical solution

predicted by Moffatt [108] is smoothed by higher-order effects, both of which agreed

with the results of their highly-accurate numerical calculations.

As described in Section 1.2, Black [19] and Villegas-Dı́az et al. [171] investi-

gated, using analytical methods, the steady coating and rimming flow of a thin
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Figure 1.18: The evolution of the film thickness of a layer of fluid covering the
entire surface of a cylinder, showing the development of a lobe of fluid that will
eventually lead to load shedding at non-dimensional time t intervals (a) 0, (b) 1.95,
(c) 3.95, (d) 7.94, (e) 10, (f) 12.8, (g) 14.46, (h) 14.74, (i) 14.85. Reprinted from
Peterson et al. [133] with permission from The Royal Society (United Kingdom),
Copyright 2023.
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film of fluid on a rotating cylinder, respectively, subject to the effects of gravity

and a uniform shear stress induced by the presence of an airflow. Both authors

independently derived the governing equation for the flow given by

Q = h+ τ
h2

2
− h3

3
cos θ, (1.49)

where τ (non-dimensionalised with (ρ∗g∗µ∗Ω∗)1/2) represents the strength of the

uniform shear stress and described the possible solutions for the film thickness.

Note that when τ = 0 equation (1.49) reduces to equation (1.48), i.e. classical

coating and/or rimming flow in the absence of an airflow, when τ > 0 the uniform

shear stress acts to aid the effect of the rotation of the cylinder and when τ < 0

the uniform shear stress acts against the effect of the rotation of the cylinder. As

shown in Figure 1.19, Black [19] and Villegas-Dı́az et al. [171] showed that full film

solutions can only exist within three regions of the τ −Q parameter plane, namely

region A given by

0 < Q < Q− for − 4√
3
< τ ≤ τ0 (1.50)

and

0 < Q ≤ Q+ for τ0 < τ ≤ ∞, (1.51)

region B given by

Q− ≤ Q < 0 for −∞ < τ ≤ − 4√
3
, (1.52)

and region C given by

0 < Q ≤ Q+ for −∞ < τ ≤ − 4√
3

(1.53)

and

Q− ≤ Q ≤ Q+ for − 4√
3
≤ τ ≤ τ0, (1.54)

where

Q+ =
τ 3

12
+
τ

2
+

(τ 2 + 4)
3
2

12
, (1.55)

Q− =
τ 3

12
− τ

2
− (τ 2 − 4)

3
2

12
(1.56)



Chapter 1 37

and the point (τ0, Q0) at which Q+ = Q− is given by

(τ0, Q0) =

(
−2

3
2

3
1
4

,
2

1
2

3
7
4

)
≃ (−2.1491, 0.2068). (1.57)

Black [19] and Villegas-Dı́az et al. [171] both found that in region A the film

of fluid has a maximum at θ = 0, a minimum at θ = π and displays top-to-

bottom symmetry, which is qualitatively similar to the behaviour of the full-film

solution obtained by Moffatt [108], and hence Black [19] describes these solutions

as “Moffatt modes”. In region B, they found that the film of fluid has a maximum

at θ = π, a minimum at θ = 0 and displays top-to-bottom symmetry, which is

qualitatively different behaviour to the behaviour of the full-film solution obtained

by Moffatt [108], and hence Black [19] describes these solutions as “shear modes”.

Finally, they both found that region C contain both Moffatt and shear modes,

i.e. at any point in region C there are two distinct possible modes of behaviour, a

Moffatt mode or a shear mode. Therefore, Villegas-Dı́az et al. [171] and Black [19]

both showed that for a sufficiently strong shear stress in opposition to the effect of

the rotation of the cylinder, qualitatively different behaviour to that in the absence

of a shear stress is possible. Figure 1.20 shows an example of a Moffatt mode and

a shear mode for τ = 1 and τ = −3, respectively. Villegas-Dı́az et al. [171] also

showed the existence and stability of jump solutions with a shock at θ = 0 and

θ = π. Villegas-Dı́az et al. [172] in a follow-up paper included higher-order effects

of surface tension and gravity in order to further investigate the mathematical and

physical relevance of the jump solutions described in Villegas-Dı́az et al. [171].

They found that such jump solutions with shocks at θ = 0 and/or θ = π are still

possible with the higher order physical effects included, and that the inclusion of

the uniform shear stress due to an airflow allows for a jump solution with a single

shock anywhere on the surface of the cylinder and a jump solution with a double

shock-structure located in the lower half of the cylinder on the descending side of

the flow (−π ≤ θ ≤ −π/2).
Ashmore et al. [11] investigated, using analytical and numerical methods, the

rimming flow of a thin film of fluid on a rotating cylinder, subject to the effects of

gravity, surface tension and viscosity. In particular, Ashmore et al. [11] investigated

how surface tension affects the behaviour and location of the pool of fluid that

gathers at the bottom of the cylinder in the rimming flow problem. They found,
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Figure 1.19: The τ −Q parameter plane obtained by Black [19] and Villegas-Dı́az
et al. [171] in which the curves Q = Q+ given by (1.55) and Q = Q− given by
(1.56) divide the plane into three distinct regions A, B and C. Region A contains
Moffatt mode full-film solutions, region B contains shear mode full film solutions,
and region C contains both Moffatt mode and shear mode full-film solutions and
out with these regions no full-film solutions exist. The point (τ0, Q0) is given by
(1.57).
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Figure 1.20: Plot of the contours of Q given by (1.49) for (a) τ = 1 and 0 ≤ Q ≤
Q+ ≃ 1.618 and contour interval Q+/10 and for (b) τ = −3 and 0.303 ≃ Q+ ≤
Q ≤ Q− ≃ 2.618 with contour interval Q−/10.
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among other results, that surface tension effects cause a dimple to appear in the

film of fluid as it re-enters the pool at the bottom of the cylinder, and that when the

effects of gravity and viscosity are of the same magnitude, discontinuities occur in

the solution for the film thickness. However, these discontinuities can be smoothed

out by including either surface tension or higher-order gravity effects.

Particularly relevant to the work of Chapter 3 is the investigation by Hinch

and Kelmanson [61]. In particular, Hinch and Kelmanson [61] investigated, using

analytical methods, the long-time dynamics of unsteady coating flow of a thin film

of fluid on a rotating cylinder, subject to the effects of gravity and surface tension.

In particular, Hinch and Kelmanson [61] used a two-timescale approach to derive

an evolution equation for a thin film of fluid on the outside of a rotating cylinder

and found an initially uniform asymptotic solution for the film thickness in the

limit of weak gravitational effects. Their analysis of their solution showed that

the initially uniform film thickness remains finite for all time and slowly decays

to a stable steady state and that the film experiences a gravity-induced phase lag

relative to the cylinder. In particular, Hinch and Kelmanson [61] showed that, at

very long times, the free surface is a cylinder whose radius is r = 1+ h and whose

centre is offset from the axis of the rotating cylinder by the Cartesian displacement

d = γ(1 + Â(t1) cos t0 − B̂(t1) sin t0, Â(t1) sin t1 + B̂(t1) cos t0), (1.58)

where d (non-dimensionalised with h∗0) is the displacement,

γ = ϵ2
ρ∗g∗a∗

Ω∗µ∗ ≥ 0 (1.59)

is a non-dimensional measure of the relative effect of gravity and viscosity, t0 = t

is an O(1) time scale and t1 = γ2t is a long time scale, and the functions Â and B̂

are given by

Â(t1) = − exp(s1t1) cos(s2t1) and B̂(t1) = exp(s1t1) sin(s2t1), (1.60)

where

s1 = − 81α̂

144α̂2 + 1
and s2 =

3(72α̂2 + 5)

2(144α̂2 + 1)
, (1.61)

and

α̂ = ϵ3
σ∗

µ∗Ω∗a∗
≥ 0 (1.62)
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is a non-dimensional measure of the relative effect of surface tension and viscosity,

such that

γ2 ≪ α̂ ≪ γ ≪ 1. (1.63)

Note that the growth rate s1 given by (1.61), for α̂ > 0, is clearly negative, showing

that the functions Â and B̂ in (1.60) always decay. Hence the asymptotic solution

derived by Hinch and Kelmanson given by

h(θ, t) = 1 + γ[cos(θ) + Â(t1) cos(θ − t0) + B̂(t1) sin(θ − t0)] +O(γ2), (1.64)

is stable in the sense that it decays to a steady state at very large times, and for

α̂ = 0 is clearly zero, showing that the solution is neutrally stable in the absence

of capillarity. As Hinch and Kelmanson [61] show, the asymptotic solution for the

film thickness (1.64) is only weakly dependent on α̂, in agreement with the results

of Hansen and Kelmanson [58], who as mentioned previously showed that the film

thickness varies only slightly as their surface tension parameter α0 is increased from

0 to 100. Hence whilst the results of Hinch and Kelmanson [61] are formally valid

for the regime (1.63), they are in practice valid up to α̂ = O(1). Chapter 3 will

describe in further detail the analysis of Hinch and Kelmanson [61]. In a follow-

up paper, Hinch, Kelmanson and Metcalfe [62] extended the work of Hinch and

Kelmanson [61] to investigate and describe shock-like solutions that are possible

when the surface tension becomes small.

Kelmanson [79] revisited the problem considered by Hinch and Kelmanson [61]

and investigated unsteady coating flow of a thin film of fluid on a rotating cylinder

subject to the effects of gravity, surface tension and fluid inertia. In particular,

Kelmanson [79] found a two-timescale asymptotic initially uniform solution for

the evolution of the film thickness in the regime of small surface tension effects, in

which the asymptotic solution found by Hinch and Kelmanson [61] breaks down

and is no longer valid. Then, using their asymptotic analysis and numerical sim-

ulations investigated the effect of fluid inertia on the film. Kelmanson [79] found,

among other results, that the inclusion of the effects of surface tension and fluid

inertia on the film act to move the position of the maximum film thickness down

the cylinder, in the direction of gravity from its original location at the right-hand

side of the cylinder at θ = 0 as predicted by Moffatt [108] in the absence of these

effects. Following the work of Kelmanson [79], a series of works then followed by

Groh and Kelmanson [53, 54, 55] which further investigated the long-time evolu-
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tion of the coating flow problem. Specifically, Groh and Kelmanson [53] proposed

an m-timescale thin-film asymptotic expansion (where m > 1 is an integer) of

the film thickness in order to find closer agreement to their numerically obtained

solutions for the evolution of the film thickness. Groh and Kelmanson [54] further

generalised them-timescale thin-film asymptotic expansion described by Groh and

Kelmanson [53] to allow for general initial conditions, and hence showed that their

multiple timescale asymptotic method can be used to find highly accurate solu-

tions for the film thickness in the coating flow problem, but also be applied to

more general free-surface thin-film problems as well. Groh and Kelmanson [55]

then used the multiple timescale thin-film asymptotic method described in Groh

and Kelmanson [53, 54] to describe the transition from stable to unstable solutions

for the film thickness in the coating flow problem with the additional effect of fluid

inertia. They found excellent agreement between their multiple timescale thin-film

asymptotic solution and their spectrally accurate numerical results.

As mentioned in Section 1.2, Newell and Viljoen [118], motivated by a proposed

method for applying pesticides to crops with minimal amounts of chemical and

with minimal drift, investigated unsteady coating flow of a thin film of fluid on

a rotating cylinder, subject to the effects of gravity, surface tension and a non-

uniform pressure on the free surface due to the presence of an external airflow.

Newell and Viljoen [118] followed closely the analysis of Hinch and Kelmanson

[61] and derived a two-timescale, initially uniform asymptotic expansion for the

film thickness in the limit of weak gravitational effects (i.e. in the regime (1.63)),

with the additional parameters included due to the effect of the airflow. Note that,

following Hinch and Kelmanson [61], Newell and Viljoen [118] assumed that the

film thickness is only weakly dependent on surface tension and hence allowed α̂

to be as large as O(1). They found that for certain values of the airspeed the

asymptotic solution for the film thickness would grow without bound, and hence

concluded that it would be conditionally unstable. In Chapter 3 we shall revisit the

unsteady coating flow problem subject to a non-uniform air pressure considered

by Newell and Viljoen [118] and show that in fact the asymptotic solution for the

film thickness is in reality always finite for all parameter values and is therefore

unconditionally stable.

Evans et al. [42, 43] investigated, using analytical and numerical methods,

two- and three-dimensional coating flow of a thin film of fluid on a rotating cylin-

der, respectively, subject to the effects of gravity, surface tension, viscosity, and
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centrifugation. In particular, in the two-dimensional case, Evans et al. [42] solved

numerically the thin-film governing equations for the film thickness with first-order

terms retained and then investigated the effect that the rotation rate has upon the

film of fluid on the cylinder. They found that, in the parametric region of low

rotation speed, as the rotation speed is increased from zero, a lobe forms near the

bottom of the cylinder and begins to rise up the right-hand side of the cylinder.

Once the rotation speed reaches a critical value, Evans et al. [42] found that the

solution for the film thickness reaches a steady state in which the bulge of fluid

remains at the right-hand side of the cylinder and the film thickness has top-to-

bottom symmetry. If the rotation speed is increased above this critical value, the

bulge of fluid begins to rotate around the cylinder. In the three-dimensional case,

Evans et al. [43] found that for small cylinders, when the rotation speed is low,

droplets of fluid form on the underside of the cylinder, then these droplets become

elongated and eventually become rings around the cylinder as the rotation speed

increases. For larger cylinders droplets form on the underside of the cylinder at

low speeds and then develop into “fingers” of fluid as the rotation speed increases.

Leslie et al. [91] investigated, using analytical and asymptotic methods, the

steady coating and rimming flow of a thin film of fluid on a rotating cylinder,

subject to the effects of gravity and thermoviscosity due to the fluid flowing over

a cylinder which is uniformly hotter or colder than the fluid. In particular, Leslie

et al. [91], investigated the effect of two non-dimensional parameters, the Biot

number, B and, the less standard parameter, V , representing heat transfer and

thermoviscosity, respectively. Leslie et al. [91] identified the region of the B − V

parameter space corresponding to full film solutions. They also showed that for a

small region of the B − V parameter plane, for small values of the mass of fluid,

a region of backflow within the film exists on the right-hand side of the cylinder,

i.e. in the region of θ = 0.

Leslie et al. [92] investigated, using analytcial and asymptotic methods, the

three-dimensional coating and rimming flow of a thin film of fluid on a rotating

cylinder, subject to the effects of gravity. In particular, Leslie et al. [92] found

“full-ring” solutions, corresponding to a ring of fluid which extends all the way

around the surface of the cylinder (analogous to the full-film solutions in the two-

dimensional case). They found that full-ring solutions can only exist below a

critical mass (if the rotation speed is prescribed) or above a critical speed (if the

mass is prescribed). Leslie et al. [92] described the behaviour of the critical and
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subcritical full-ring solutions in the limits of small and large rotation speed and

found that, while for most values of the rotation speed and mass, the azimuthal

velocity is in the same direction as the rotation of the cylinder, there does exist

a region of the parameter space close to the critical solution, in a small region on

the upwards-moving side of the cylinder, in which backflow occurs.

Lopes et al. [94] investigated, using analytical and numerical methods, both

coating and rimming flow of a thin film of fluid on a rotating cylinder, subject

to the effects of gravity and surface tension. Lopes et al. [94] compared their

numerically obtained full Stokes flow solution with three analytical lubrication

(thin-film) approximation models. The lubrication models considered were, the

“Standard Lubrication Model’” (SLM) (used by, for example, [137, 143, 61]) which

is the most commonly used model to describe the evolution of the coating or

rimming flow problem, the “Extended Lubrication Model” (ELM) (used by, for

example, [42, 43, 18]) which assumes that the Bond number is small, unlike the

SLM which assumes that it is of order one, and the “Variational Lubrication

Model” (VLM), derived by Lopes et al. [94] which retains the full expression for

the curvature, instead of neglecting small terms in the thin-film limit, unlike the

SLM and ELM which neglect these terms. In the case of coating flow, Lopes et al.

[94] found that generally the SLM and ELM lubrication models underpredict the

film thickness due to their leading-order approximations of the curvature, and that

their VLM model gave much better agreement with their numerically obtained full

Stokes solution for the film thickness. In the case of rimming flow they generally

found much better agreement with their numerically obtained full Stokes solution

for the film thickness for all three of the lubrication models considered.

Wray et al. [184] developed a novel reduced-order model in order to obtain

better agreement with the direct numerical simulation (DNS) of the behaviour

of thick films of fluid flowing over curved substrates than had previously been

achieved with thin-film models in the literature. A key distinction Wray et al.

[184] made was the difference between the long-wave and thin-film approximation,

which for a planar substrate are equivalent, but for a curved substrate are different.

They then used the long-wave approximation (while maintaining a film with order

one thickness) to obtain approximate solutions to a variety of examples of fluid

flow problems on curved substrates, in particular, the flow of a film of fluid on the

outside of a rotating cylinder, subject to the effects of gravity, surface tension and

viscosity. For this particular problem, Wray et al. [184] found very close agreement
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between their long-wave approximate solution and the DNS of the full Stokes

equations, finding a maximum error of 5%, whereas they found that the thin-film

approximate solution does not give such close agreement, with a maximum error

of 18%. Wray et al. [183] further investigated the coating flow of a film of fluid

on a rotating cylinder, subject to the effects of gravity, surface tension, viscosity

and fluid inertia, again comparing the long-wave theory, introduced in [184], to the

DNS of the full Stokes equations. They again found excellent agreement between

the long-wave approximate solutions and the DNS of the Stokes equations and were

also able to investigate regimes that were previously inaccessible to other thin-film

models, for example, solution branches for the film thickness that contain multiple

solutions, discussed in Lopes et al. [94].

1.4 Porous squeeze-film flow

The study of flow within porous media continues to be a very active area of re-

search, as it has been for many decades. This is exemplified by the review by

Gambaryan-Roisman in 2014 [45] which summarised the understanding at the time

of the problem of droplet imbibition into a partially-wetted porous substrates.

As will be discussed subsequently, many investigations employ the well-known

Darcy equation to model the fluid flow within porous media. Within this section we

shall describe the Darcy equation, followed by a discussion of appropriate choices

of boundary condition between a fluid and a porous medium (i.e. the fluid–porous

boundary) and finally a discussion of porous-squeeze film flow, which will be the

focus of the research in Chapter 4.

1.4.1 Darcy equation

The famous pioneering experimental work on modelling the flow of a fluid within

a porous medium (specifically, the flow of water through sand) was carried out by

Darcy [32], who derived empirically the now well-known and widely-used Darcy

equation, given by

U∗ = −k
∗

µ∗ (∇
∗P ∗ − ρ∗g∗) , (1.65)

where U∗ is the volume flux per unit area of the fluid in the porous medium, which

represents the velocity of the fluid through the porous medium and henceforth
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Porous medium Porosity 0 ≤ ϕ ≤ 1

Limestone 0.01− 0.1
Gravel 0.3− 0.4

Sand and gravel mix 0.3− 0.35
Fine sand 0.3− 0.5

Clay 0.45− 0.55

Table 1.1: Approximate ranges of values of the porosity of various common porous
media taken from Bear [16].

Porous medium Permeability k∗ cm2

Clay 10−12 − 10−15

Limestone 10−12 − 10−13

Fine sand 10−8 − 10−11

Sand and gravel mix 10−5 − 10−7

Gravel 10−3 − 10−4

Table 1.2: Approximate ranges of values of the permeability of various common
porous media taken from Bear [16].

referred to as the Darcy velocity, k∗ is the permeability of the porous medium,

µ∗ is the viscosity of the fluid, P ∗ is the pressure in the porous medium and

henceforth referred to as the Darcy pressure, ρ∗ is the density of the fluid, and g∗

is the acceleration due to gravity. Note that the true fluid velocity through the

pores within the porous medium is given by U∗/ϕ, where ϕ is the porosity of the

porous medium. The porosity ϕ is a dimensionless measure of the empty space

within the porous medium found by dividing the volume of the empty space within

a porous medium by the total volume of the porous medium, and hence 0 ≤ ϕ ≤ 1.

Table 1.1 shows approximate ranges of the porosity for various common porous

media. The permeability k∗ is a measure of how well connected the pores in a

material are, and hence, the ability of a fluid to pass through it. The permeability,

for most real-world materials is small, k∗ ≪ 1, however it can span many orders

of magnitude, as shown in Table 1.2, which shows approximate ranges of the

permeability for various common porous media. Later, Whittaker [175] derived

the Darcy equation theoretically, directly from the Navier–Stokes equations.

Brinkman [21] derived a modification to the Darcy equation (1.65) in the ab-

sence of gravitational effects which accounts for the viscous shear stress that be-

comes significant when the permeability k∗ of the porous medium is large, now
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known as the Brinkman equation and given by

∇∗P ∗ = −µ
∗

k∗
U∗ + µ∗′∇∗2U∗, (1.66)

where µ∗′(̸= µ∗) is an effective viscosity. An advantage of using the Brinkman

equation (1.66) rather than the Darcy equation (1.65) is that (1.66) is of a higher

order than (1.65) and so can satisfy all four of the standard boundary conditions at

the fluid–porous boundary, namely continuity of tangential and normal stress and

continuity of tangential and normal velocity, unlike (1.65) which can only satisfy

three of them. In a short note Nield [119] concludes that although this advantage is

useful mathematically, the Brinkman equation (1.66) remains semi-empirical (due

to the ad-hoc introduction of the effective viscosity parameter µ∗′), and states that

when modelling a multiphase fluid layer and porous medium problem, it is prefer-

able to employ the Darcy equation along with the Beavers–Joseph condition at

the fluid–porous boundary, which explicitly involves another empirical parameter

α, both of which will be described subsequently.

For an incompressible fluid, combining the Darcy equation (1.65) with the

continuity equation

∇∗ ·U∗ = 0, (1.67)

shows that the pressure in the porous medium satisfies Laplace’s equation, given

by

∇∗2P ∗ = 0. (1.68)

1.4.2 Fluid–porous boundary condition

When considering a problem with a fluid–porous boundary, the continuity of nor-

mal velocity boundary condition may be imposed, however, the boundary condition

for the velocity in the tangential direction is not as simple as there are multiple

valid choices, depending on the properties of the porous medium under consider-

ation. In this subsection, we will describe four possible choices, no-slip relative to

the solid which makes up the porous medium, no-slip relative to the fluid in the

porous medium, the Beavers–Joseph condition and the Saffman–condition.

A simple choice of a tangential velocity boundary condition between the fluid

layer and the porous medium is the choice of no-slip relative to the solid which

makes up the porous medium, i.e. at the boundary, the velocity of the fluid in the
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fluid layer is equal to the velocity of the solid which makes up the porous medium.

This choice of boundary condition is appropriate when the permeability of the

porous medium is small (compared to, for example, the macroscopic length scales

of the porous medium). Another simple choice of a tangential velocity boundary

condition between the fluid layer and the porous medium is no-slip relative to the

fluid in the porous medium, i.e. at the boundary the velocity of the fluid in the

fluid layer is equal to the velocity of the fluid in the porous medium. This choice

of boundary condition is appropriate when the permeability of the porous medium

is large (compared to, for example, the size of the porous medium).

Beavers and Joseph [17] investigated, using analytical and experimental meth-

ods, the rectilinear flow of a viscous fluid through a two-dimensional parallel chan-

nel formed by an impermeable layer above and a porous medium below. Beavers

and Joseph [17] postulated that there exists a thin boundary layer over which the

tangential velocity and shear stress in the fluid layer transition rapidly to the tan-

gential Darcy velocity and shear stress in the porous medium. Mikelić and Jäger

[104] later showed that the size of the boundary layer is of the same order as the

characteristic pore size, which is small compared to the characteristic length scale

of the porous medium. Figure 1.21 shows a sketch, using Cartesian coordinates

(x∗, z∗), of the two-dimensional flow of a viscous fluid between an impermeable

layer and a porous medium in which a parabolic velocity profile in the fluid layer

u∗(x∗) transitions rapidly in the boundary layer to a uniform velocity profile U∗(x∗)

in the porous medium. Beavers and Joseph [17] proposed that the rapid transition

in tangential velocity and shear stress in the boundary layer can be approximated

by a slip boundary condition at the fluid–porous boundary, and assumed that the

slip velocity is proportional to the shear stress at the boundary, leading to the now

well-known Beavers–Joseph condition given by

u∗ − U∗ =
k∗

1
2

α

∂u∗

∂z∗
(1.69)

on z∗ = 0+, where l∗s = k∗1/2/α is the slip length, and α is the dimensionless

Beavers–Joseph constant which, as described by Beavers and Joseph [17], depends

on the material properties of the porous medium at the fluid–porous boundary.

For example, the results of one of the experiments of Beavers and Joseph [17]

showed that the value of α increased as the average pore size increased.

Saffman [145] proposed that since the Darcy velocity is generally much smaller
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than the fluid layer velocity (as for most porous media k∗ ≪ 1), the second term

on the right-hand side of (1.69) could be dropped, and hence the Beavers–Joseph

condition reduces to the Saffman condition given by

u∗ =
k∗

1
2

α

∂u∗

∂z∗
(1.70)

on z∗ = 0+. In the limit of small slip length l∗s → 0, i.e. in the limit of no slip, the

Beavers–Joseph condition (1.69) reduces to the condition of no-slip relative to the

fluid in the porous medium given by

u∗ = U∗ (1.71)

on z∗ = 0, whilst the Saffman condition (1.70) reduces to the condition of no-slip

relative to the solid which makes up the porous medium given by

u∗ = 0 (1.72)

on z∗ = 0. In the limit of large slip length l∗s → ∞, i.e. in the limit of infinite slip,

the Beavers–Joseph condition (1.69) and Saffman condition (1.70) both reduce to

the condition of zero shear in the fluid layer given by

∂u∗

∂z∗
= 0 (1.73)

on z∗ = 0.

1.4.3 Porous squeeze-film flow literature

Newtonian squeeze-film flow, in which a thin film of Newtonian fluid is squeezed

between two impermeable layers of material (for example, metal, glass or plastic),

is a classical problem in fluid mechanics (see, for example, Acheson [2], Szeri [159]).

It is well known that, subject to a prescribed constant load, theoretically, it takes

infinite time to squeeze all the fluid out of the gap and achieve contact between

the layers (see, for example, Stone [156]). However, if instead we consider porous

squeeze-film flow, in which one or both of the layers is porous (for example, a

porous sponge, wood or rock) it has been shown theoretically that it instead takes

a finite time for the two plates to contact (see, for example, Goren [50]).
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Figure 1.21: Sketch of the two-dimensional flow of a viscous fluid between an im-
permeable layer and a porous medium in which Beavers and Joseph [17] proposed
that the parabolic velocity profile in the fluid layer u∗(x∗) transitions rapidly in a
boundary layer to the uniform velocity profile U∗(x∗) in the porous medium.

Porous squeeze-film flow is applicable in a variety of different practical appli-

cations. Early work on porous squeeze-film flow was concerned with modelling the

engagement of friction clutches used in automatic transmissions. Friction clutches,

often used in automobiles, squeeze a thin film of oil between a metal plate and a

sintered (porous) metal plate. In order to better understand the characteristics of

friction clutches, a number of investigations have been undertaken to model the

porous squeeze-film flow that takes place within these clutches and to describe

important aspects that affect their performance and wear such as the pressure

distribution, load capacity and time of approach of the plates. Porous-fluid bear-

ings are also well studied within the porous squeeze-film literature due to their

widespread use within industry. Typical porous-fluid bearings consist of a solid

metallic disk and an externally pressurised (with either gas or liquid) disk-shaped

porous pad and fluid layer in between. Porous-fluid bearings are used in heavy

machinery to support very large loads. Typical characteristics that are used to

measure the performance of a porous-fluid bearing are the load capacity and the

static stiffness, which is the rate of change of the load capacity with respect to the

height of the fluid layer. The static stiffness is often used to set the limits of the

useful range of operation for the bearing, and so is of particular importance. In
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human biology, the squeezing of synovial fluid between layers of cartilage knee and

hip joints has been modelled by considering porous squeeze-film flow, as shown,

for example, in Figure 1.1. Of particular relevance to the application of squeezing

synovial fluid between cartilage in the knee and hip joints is the length of time that

the layers remain lubricated for, i.e. the amount of time before all of the synovial

fluid is squeezed out of the fluid layer and the cartilage layers make contact. Also

of particular interest is understanding how nutrients within the synovial fluid are

carried to the cartilage layer, which are avascular (i.e. they do not have a blood

supply), and so synovial fluid squeezed into the porous cartilage is the only mech-

anism by which the cartilage receives nutrients. The squeezing of contaminated

fluid through porous filters is encountered in many practical situations, for exam-

ple, water purification, fuel filters and in the food industry in which they are used

to remove impurities from fluids like bacteria, debris, or other particulates. Of

particular relevance to the porous squeeze film problem are filters in which fluid

is squeezed through by a solid flat bearing, for example, syringe filters [47] and

hydraulic press filters [131]. Figure 1.22 shows an idealised version of a common

filtration process as described in Sparks and Chase [154], which describes a slurry

being forced through a “filter cloth” and saturated porous “filter cake”.

In what follows in this section, we will describe the literature associated with

each of the aforementioned practical applications of the porous squeeze film prob-

lem. However, in Chapter 4 we will analyse the porous squeeze film problem, with

no particular application in mind, with the knowledge that the general analysis

can be applied to practical situations.

(a) Friction clutches

Wu [186], motivated by friction clutches, using analytical methods, analysed porous

squeeze-film flow of a thin film of fluid between an impermeable annular disk and

a porous annular disk. The porous annular disk is bounded below by the thin fluid

layer and above by a flat impermeable annular disk, so that the face of the porous

annular disk opposite to the fluid layer is sealed and the inner and outer edges of

the porous annular disk are open to the atmosphere. Hence, fluid that is squeezed

into the porous annular disk cannot flow vertically out of the face but it may

flow radially out of the edges. In particular, Wu [186] investigated the pressure

distribution, load capacity, and time of approach of the plates. They found that
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Figure 1.22: An example of the filtration process in which fluid is squeezed through
a porous medium. Reprinted with permission from Sparks and Chase [154].
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the load capacity and pressure within the fluid layer decrease as the permeability

increases and that the time for the bearing to reach any prescribed final value also

decreases as the permeability increases.

Murti [111] extended the work of Wu [186] to investigate the porous squeeze-

film flow of a thin film of fluid between an impermeable circular disk and a porous

circular disk (as opposed to annular disks) with a sealed face and open edge.

Murti [111] noted that the solutions for the pressure in the thin fluid layer and

the porous annular disk derived by Wu [186] were not valid for circular disks as

the annular geometry considered by Wu [186] required a non-continuous pressure

gradient at the centre of the annulus. In order to overcome this, Murti [111]

prescribed a condition of zero pressure gradient at the centre of the circular disk

and derived a solution for the pressure in the thin fluid layer and porous disk,

and hence, using analytical and numerical methods, analysed the load capacity,

pressure distribution, and time of approach of the disks. Murti [111] found, in

agreement with Wu [186], that the load capacity and pressure within the fluid layer

decreases as the permeability increases, and that the time for the bearing to reach

any prescribed final value also decreases as the permeability increases. Murti [111]

also concluded that increasing the permeability creates a more uniform pressure

distribution within the fluid layer, and hence that a more permeable porous disk

reduces the overall wear of the clutch plates over time.

(b) Porous-gas bearings

Murti [112], motivated by porous-gas bearings, using analytical methods, analysed

porous squeeze-film flow of a thin film of fluid between an impermeable circular

disk and a thin porous circular disk bounded above by the fluid layer and below by

an ambient atmosphere, subject to the Saffman condition (1.70) at the fluid–porous

boundary. Murti [112] identified that in the limit of a thin porous circular disk,

the flow in the porous disk is predominantly axial, and hence Laplace’s equation

for the Darcy pressure (1.68) is satisfied by conditions at the upper and lower faces

of the porous disk only, and so there is no need to specify conditions at the origin

and edge of the porous disk as in, for example, Murti [111]. Murti [112], using

analytical methods, derived expressions for the pressure and velocity in the fluid

layer, and described the behaviour of the load capacity and static stiffness in terms
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of a dimensionless parameter called the bearing number defined as

Λ =
12k∗r∗20

H∗h∗3
(
1 + 3

1+ασ

) , (1.74)

where r∗0 is the radius of the bearing, H∗ is the thickness of the porous disk, h∗

is the thickness of the fluid layer, ασ is the dimensionless slip parameter, where

σ = h∗/k∗1/2. Murti [112] showed that the load capacity of the bearing increases

with the bearing number, or equivalently, the permeability of the porous disk,

and hence, as would be expected, in the limit of an impermeable layer the load

capacity goes to zero, and so no gas is able to enter the bearing. In the limit of

a very permeable layer, Murti [112] showed that the load capacity asymptotically

approaches a maximum value. The effect of velocity slip was also investigated

by Murti [112], who showed that increasing the velocity slip (i.e. decreasing ασ)

reduces the load capacity.

Verma [170] revisited the problem considered by Murti [112], but instead of

considering the Saffman condition (1.70) at the fluid–porous boundary, considered

the Beavers–Joseph condition (1.69). Verma [170] found that the form of the

expressions for the pressure and load capacity are the same as those found by Murti

[112] when the Beavers–Joseph condition is applied, with the main difference being

the definition of the bearing number, which Verma [170] defines as

Λ̄1 =
12k∗r∗20

H∗h∗3
(
1 + 3(2α+σ)

1+ασ

) , (1.75)

so that, by comparing (1.74) and (1.75), Verma [170] found that

Λ̄1 =
4 + ασ

4σ + 6α + ασ2
Λ. (1.76)

Unfortunately, there are a number of errors in the analysis of Verma [170]. The

most important error, which renders their analysis incorrect, is found in the bearing

number given by Verma [170], which instead of (1.75) should be

Λ̄2 =
12k∗r∗20

H∗h∗3
(
1 + 3(2α+σ)

σ(1+ασ)

) . (1.77)
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As a result of this, (1.76) is also incorrect, and should be

Λ̄2 =
(4 + ασ)σ

4σ + 6α + ασ2
Λ. (1.78)

There are also a number of presentational and typographical errors in Verma [170],

which do not carry through in their analysis, a sign error in the Beavers–Joseph

condition, and their equation for the velocity in the fluid layer (i.e. their equation

(10)) is bracketed incorrectly and should read

u =
h2

2η

(
−dp

dr

)[
z

h
− z2

h2
+
z(2α + σ)

h(1 + ασ)

]
, (1.79)

where, in their notation, p is the pressure in the fluid layer and η is the vis-

cosity of the fluid. Moreover, in the text below their equation (31) the non-

dimensionalisation of their load capacity W with W̄ is incorrect, and should be

W̄ =
W

πr20(ps − pa)
, (1.80)

and finally in the text below their equation (31), the constant value pe that appears

should in fact be ps. Hence, the work of Verma [170], which intended to extend

the work of Murti [112], falls short of this intention.

Recently, Venerus [169] investigated, using analytical and asymptotic methods,

the squeeze-film flow of a thin film of fluid between an impermeable circular disk

and a porous circular disk that has either (a) an open face and closed edge or

(b) a closed face and open edge. Venerus [169], using analytical, asymptotic and

numerical methods, analysed the flow in the porous disk and thin fluid layer using

the Beavers–Joseph condition (1.69) at the fluid–porous boundary. They derived

expressions for the velocity and pressure in the fluid layer and porous disk and the

force exerted by the fluid on the porous disk. In particular, Venerus [169] showed

that in the case of no-slip at the fluid–porous boundary, their expressions for the

pressure in the fluid layer and force exerted on the porous disk reduce to those of

Murti [111] for configuration (b), and that in the limit of a thin porous disk and

no-slip at the fluid–porous boundary their expression for the pressure in the fluid

layer reduces to that found by Murti [112] and Verma [170] for configuration (a).

In addition, they found that the force exerted on the porous disk decreases as the

permeability increases and that it decreases as the velocity slip decreases, and also
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that the time to squeeze all of the fluid out of the fluid layer (i.e. the contact time)

decreases as the permeability increases for both configurations (a) and (b).

(c) Human biology

Motivated by the squeezing of synovial fluid between two layers of cartilage in

the hip joint of a human body, the series of papers by Hlaváček and Hlaváček

and Novak [63, 64, 65] investigated, using analytical and numerical methods, the

porous squeeze-film flow of both a Newtonian fluid and a non-Newtonian power-law

fluid between either two porous circular disks or two porous spheres subject to the

condition of no-slip relative to the fluid in the porous disks/spheres at the fluid–

porous boundary. In particular, Hlaváček [63, 64, 65] considered the squeezing of

the synovial fluid subject to a step-load squeezing force, i.e. a force that increases

linearly up to a critical time after which the force is constant. Hlaváček [63, 64, 65]

found that in the case of squeezing fluid between two porous circular disks, the

axial Darcy velocity in the porous disks is uniform, and in the case of squeezing

fluid between two porous spheres, the axial Darcy velocity in the porous spheres

varies quadratically.

Knox et al. [86], motivated by the squeezing of synovial fluid between the

femoral condyle and the tibial plateau in the human knee, investigated, using

analytical and asymptotic methods, the porous squeeze-film flow of a fluid between

an impermeable circular disk and a thin porous circular bed with a sealed face,

subject to the Beavers–Joseph condition (1.69) at the fluid–porous boundary. In

particular, Knox et al. [86] investigated the finite time t (non-dimensionalised

with R∗/V ∗ where, R∗ is the radius of the porous bed and V ∗ is a characteristic

velocity scale) required for the disks to contact, i.e. the contact time t = tc, the

particle paths, and the penetration depths of the fluid within the porous bed. As

will be discussed in further detail in Chapter 4, Knox et al. [86] showed that the

contact time tc in the limit of a porous bed with small permeability, i.e. k →
0 (non-dimensionalised with H∗2

p where, H∗
p is the height of the porous bed) is

O(k−2/3) → ∞ and in the limit of large permeability, i.e. k → ∞ is O(k−1) → 0.

In relation to the application to synovial fluid squeezing within the human knee,

Knox et al. [86] noted that typical values of the permeability of cartilage in the

human knee are typically k∗ = O(10−18) m2, and so the limit k = k∗/H∗2
p → 0

is the most physically relevant. In this limit, Knox et al. [86] showed that for
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typical physical dimensional parameter values the contact time of the impermeable

layer and porous bed is approximately 10 s, and so concluded that their model

suggests that if a person is standing still for a short period of time their knees will

remain fluid lubricated, but if do so for a long period of time contact between the

cartilage coated surfaces may occur. Knox et al. [86] also found that the typical

penetration depths of the fluid in the porous bed was much less than the thickness

of the porous bed (based on the typical thickness of cartilage within the knee), and

hence concluded that nutrients within the fluid layer penetrate only a relatively

small distance into the porous cartilage layer.

Knox et al. [85] extended the work of Knox et al. [86] to consider the squeeze-

film flow of a curved impermeable layer and a flat porous circular bed. In par-

ticular, Knox et al. [85] considered an impermeable layer with a surface given by

H∗(r∗) = (R∗/2n)(r∗/R∗)2n, where n ≥ 1 is an integer and R∗ is the radius of

the axisymmetric layer. Knox et al. [85], using analytical, and asymptotic meth-

ods, subject to the Beavers–Joseph condition (1.69) at the fluid–porous boundary,

derived equations for the pressure and load exerted on the impermeable layer by

the fluid, the time t, and contact time tc of the curved impermeable layer and the

porous bed, as well as describing the particle paths and penetration depths of the

fluid in the porous bed. Among other results, Knox et al. [85] showed that in the

limit of small permeability (k → 0) the contact time is tc = O(ln(k−1)) → ∞ for

n = 1 and tc = O(ln(k−2(n−1)/3n)) → ∞ when n ≥ 2, and that in the limit of

large permeability (k → ∞) the contact time is tc = O(k−1/2 ln(k)) → 0 for n = 1

and tc = O(k−(2n−1)/2n) → 0 when n ≥ 2, hence that the contact time becomes

large in the limit of small permeability and small in the limit of large permeability,

consistent with Knox et al. [86].

Karmakar and Raja Sekhar [75] extended the work of Knox et al.[86] to include

the effect of an anisotropic permeability in the porous bed. In particular, Karmakar

and Raja Sekhar [75] considered a two-dimensional geometry and used analytical,

asymptotic and numerical methods to analyse the squeeze-film flow between a

flat impermeable layer and a flat porous bed with two permeabilities K1 and K2

along two principal axes within the porous bed, where the K2 axis is at angle

0 ≤ Φ ≤ π/2 to the horizontal. In particular, Karmakar and Raja Sekhar [75]

derived expressions for the pressure in the fluid layer and porous bed and the load

exerted by the fluid on the impermeable layer, and the contact time of the porous

bed and impermeable layer. Considering the parameter λ = K1/K2, Karmakar



Chapter 1 57

and Raja Sekhar [75] showed that the contact time decreases as λ increases and

that it increases as Φ increases.

(d) Filtration

Motivated by a further understanding of particle deposition within porous filter

membranes, which can lead to coagulation of unwanted material deposition within

filters, Goren [50] and the series of investigations by Ramon and Hoek [138], Ra-

mon et al. [139] and Ofner and Ramon [123] investigated the permeation-induced

hydrodynamic force that pulls particles suspended in fluid towards the porous

layer.

Goren [50] considered a spherical particle suspended in fluid approaching a

thin, flat porous layer at constant velocity, subject to no-slip at the fluid–porous

boundary. Goren [50], using analytical and numerical methods, derived an expres-

sion for the force exerted on the spherical particle. In particular, Goren [50] showed

that the force exerted on the spherical particle scales as (R∗ℓ∗m/k
∗)1/2, where ℓ∗m is

the thickness of the porous layer, and presented a table of numerically-calculated

values of the force exerted on the spherical particle for a large range of permeabil-

ities.

Ramon and Hoek [138] considered a spherical particle suspended in fluid ap-

proaching a flat porous layer at constant velocity, subject to no-slip at the fluid–

porous layer boundary. Ramon and Hoek [138], using analytical and asymptotic

methods, derived expressions for the pressure in the thin fluid layer between the

sphere and the porous layer, and force exerted on the particle upon close approach

to the porous layer in the limits of small and large permeability. Ramon and Hoek

[138] found excellent agreement with the numerical results of Goren [50].

Ramon et al. [139] considered a particle with general shape r∗ = δ∗ + R∗ −
(R∗n − r∗n)1/n, where δ∗ is the distance from the porous layer to the particle at

r∗ = 0 (in the centre of the particle) and n > 1 is an integer, suspended in fluid,

approaching a flat porous layer subject to no-slip at the fluid–porous boundary.

Ramon et al. [139], using analytical and asymptotic methods, derived asymptotic

solutions for the pressure in the thin fluid layer and the force exerted on the sphere

in the limit of small and large permeability. Ramon et al. [139] also found, among

other results, that upon close approach the velocity of the particle V ∗
par, in the

limit of small permeability, scales as V ∗
par ∝ k∗1/2, V ∗

par ∝ k∗3/4 and V ∗
par ∝ k∗ for a
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spherical (n = 2 in three dimensions), cylindrical (n = 2 in two dimensions) and

flat (n→ ∞) particle, respectively, and for a general particle shape that the force

f ∗
par exerted on the particle scales as f ∗

par ∝ ((R∗ℓ∗m/k
∗)(3n−4)/(3n−2)), and hence the

force becomes more sensitive to the permeability of the porous layer as the particle

becomes flatter (i.e. as n increases).

Ofner and Ramon [123] considered a spherical particle approaching a flat porous

layer coated with a polymer brush, which has been shown to reduce the deposition

of particles and reduce coagulation in filters. Ofner and Ramon [123], using analyt-

ical, asymptotic and numerical methods, analysed the equilibrium position of the

particle at which the repulsive force of the brush is balanced by the permeation-

induced force of the porous layer, and showed mathematically that the equilibrium

position is higher in the limit of a brush with a high density of fibres compared to

a brush with a low density of fibres, hence as would be expected, the more dense

the brush the better protected the porous filter is from particle deposition.

Khabthani et al. [80] extended the work of Ramon et al. [139] in the case of a

spherical particle suspended in fluid approaching a flat porous layer with constant

velocity by including the Saffman condition (1.70) at the porous–fluid boundary

in order to investigate the effect of velocity slip at the interface. Khabthani et

al. [80] using analytical, asymptotic and numerical methods, derived equations for

the pressure in the fluid layer and the force exerted on the particle by the fluid in

the limits of small and large permeability. They showed that the force exerted on

the particle decreases as the permeability of the porous layer increases and that it

increases as the velocity slip length increases.

Recently, a series of investigations by Reboucas and Loewenberg [141, 140, 142],

used analytical, asymptotic and numerical methods to investigate the motion of

two porous spheres suspended in fluid approaching each other. In particular,

Reboucas and Loewenberg [141] considered the near-contact approach of the two

porous spheres and allowed each sphere to have its own permeability denoted by k1

and k2, respectively. Considering the average permeability K = k1+ k2, Reboucas

and Loewenberg [141], among other results, showed that the contact time tc of

the two spheres in the limit K → 0 is tc = C∞ − log(C(α)K2/5), where C∞ is

constant which depends on the initial separation height of the two spheres and

C(α̂) = 0.7224 in the limit of no-slip and C(α̂) = 6α̂e−3/2 in the limit of large slip

(where α̂ = 1/α, and both spheres have the same value for the Beavers–Joseph

constant α).
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1.5 Rivulet flow and evaporation

Rivulet flow, in which a long slender film of fluid flows predominantly in the di-

rection of its longer length, is a common occurrence in many real-world situations.

For example, small-scale rivulets can occur within kitchen sinks and on car win-

dows on rainy days, and large-scale rivulets can occur in rivers and lava flows, as

shown in Figure 1.2. Chapter 5 of this thesis will investigate the flow of a thin

rivulet of fluid that is evaporating, and hence in this section we shall discuss the

literature related to rivulet flow followed by a discussion of the literature related

to modelling evaporation.

1.5.1 Rivulet Flow Literature

The early work of Towell and Rothfeld [166] investigated, using analytical, asymp-

totic, numerical and experimental methods, the steady flow of a rivulet of fluid

down an inclined plane subject to the effects of gravity and surface tension. In

particular, Towell and Rothfeld [166] derived expressions for the free surface and

velocity of the fluid in the asymptotic limits of a narrow and a wide rivulet, and

analysed numerically the general solution for the free surface of the rivulet, show-

ing that the width of the rivulet increases as the flow rate increases and that their

asymptotic solutions matched closely with their numerical solutions in the ap-

propriate limits. Furthermore, Towell and Rothfeld [166] carried out experiments

measuring the width and contact angle of rivulet flows down inclined planes with

various flow rates and found excellent agreement with their theoretical predictions.

Allen and Biggin [8] investigated, using analytical, asymptotic and numerical

methods, the steady flow of a thin rivulet of fluid down an inclined plane subject

to the effects of gravity and surface tension. In particular, Allen and Biggin [8]

derived leading and first order asymptotic solutions for the free surface of the

rivulet and the velocity in the limit of a thin rivulet, and found good agreement

with their numerical solutions.

Duffy and Moffatt [37] investigated, using analytical and asymptotic methods,

the locally-unidirectional steady flow of a thin rivulet of fluid down an inclined

plane subject to the effects of gravity and surface tension. As will be discussed

in more detail in Chapter 5, Duffy and Moffatt [37] derived solutions for the

free surface of the rivulet in the cases of rivulets which are a sessile (i.e. angle

of inclination of the plane less than π/2), vertical, and pendant (i.e. angle of
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inclination of the plane greater than π/2), and showed that this can be interpreted

as the rivulet flowing from the top to the bottom of a horizontal cylinder. Duffy

and Moffatt [37] showed that the width of the rivulet tends to infinity near the

top of the cylinder with finite thickness, and that the width of the rivulet becomes

finite and the thickness tends to infinity near the bottom of the cylinder. Wilson

and Duffy [178], using analytical and asymptotic methods, revisited the problem

investigated by [37] and considered the special case of a perfectly wetting rivulet.

They showed, in particular, that on the upper half of the cylinder no perfectly

wetting rivulets can exist, however on the lower half of the cylinder an array of

infinitely many solutions for the free surface of the rivulet can exist, each of which

is a rescaled copy of the single rivulet solution.

Holland et al. [66] investigated, using analytical and asymptotic methods, the

steady flow of a thin rivulet of fluid that flows from the top to the bottom of

a large cylinder, where the cylinder is either uniformly hotter or cooler than the

surrounding atmosphere, subject to the effects of gravity, surface tension and ther-

mocapillarity. In particular, Holland et al. [66] showed that a linear dependence of

the surface tension on temperature drives a transverse flow that causes the fluid

particles to spiral down the rivulet in helical vortices. Furthermore, Holland et

al. [66], showed that near the top of the cylinder the rivulet has finite depth and

infinite width, in agreement with [37], near the bottom of the cylinder the rivulet

has infinite depth and finite width if the substrate is heated or slightly cooled,

or finite depth and infinite width if the substrate is significantly cooled. They

concluded that these marked differences in the width and depth of the rivulet

could potentially dramatically affect the heat transfer between the cylinder and

the surrounding atmosphere.

Perazzo and Graton [132] investigated, using analytical and numerical meth-

ods, the unidirectional steady flow of a rivulet of fluid down an inclined plane

subject to the effects of gravity and surface tension. In particular, Perazzo and

Graton [132] derived an analytical solution for the free surface of the rivulet and

analysed the velocity of the rivulet numerically and, in addition, derived an analyt-

ical solution for the velocity of the rivulet in the special case of a vertical substrate.

Perazzo and Graton [132] compared their exact and numerical solutions with so-

lutions obtained using the thin-film approximation and found that the thin-film

approximation predicted global properties such as cross-sectional area, volumetric

flow and average velocity reasonably well. Tanasijczuk et al. [161], using analyt-
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ical and numerical methods, extended the work of Perazzo and Graton [132] to

include arbitrary variation in the shape of the substrate transverse to the direction

of the flow. In particular, Tanasijczuk et al. [161] derived analytical solutions for

the free surface of the rivulet and analysed the velocity of the rivulet numerically.

Tanasijczuk et al. [161] compared their results with various previous experimental

investigations and found good agreement with their theory.

Paterson et al. [129] investigated, using analytical and asymptotic methods,

the steady flow of a rivulet over a large horizontal cylinder with fixed constant

contact angle (allowing the width to vary) and a rivulet with fixed width (allowing

the contact angle to vary). Paterson et al. [129], among other results, showed that

unlike in the case of a rivulet with fixed contact angle and varying width considered

by Duffy and Moffatt [37], in which the rivulet may flow continuously from the

top to the bottom of the cylinder, in the case of a rivulet with varying contact

angle and fixed width, the rivulet may flow from the top to the bottom if the

rivulet is sufficiently narrow, however if the rivulet is not sufficiently narrow, then

the rivulet can only flow from the top of the cylinder down to a critical azimuthal

angle on the lower half cylinder. In particular, considering the azimuthal angle α,

measured from α = 0 at the top of the cylinder, and the fixed semi-width of the

rivulet ā, the critical azimuthal angle is given by

αcrit = cos−1

(
−π

2

ā2

)
(1.81)

for ā > π. Paterson et al. [129] explained that the critical angle at which the

rivulet with constant width ā > π could no longer flow with fixed (i.e. pinned)

contact lines can be considered to be the point at which the contact lines de-pin

and the rivulet flows from αcrit to the bottom of the cylinder according to the

perfectly wetting solution with varying width and zero contact angle described by

Wilson and Duffy [178].

Howell et al. [68], inspired by the example of rain water flowing over a leaf,

investigated, using analytical and numerical methods, the steady flow of a rivulet

of fluid over an elastic beam subject to the effect of gravity. In particular, Howell

et al. [68] considered two cases, one in which the beam deflection is small (small-

deflection regime), and one in which the beam deflection is large (large-deflection

regime). In the small-deflection regime, Howell et al. [68] showed that for both

regimes, the film thickness first increases to a maximum value and then decreases as
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the length of the beam increases. This phenomenon is due to the greater deflection

experienced by a longer beam, which in turn enhances the gravitational forcing

experienced by the fluid, and therefore promotes flow away from the applied source

at the beginning of the beam. Hence, the analysis of Howell et al. [68] confirmed

that the deflection of a leaf in the rain facilitates the removal of water from its

surface. Howell et al. [67] further investigated the problem considered by Howell

et al. [68], using analytical and experimental methods. In particular, Howell et al.

[67] performed experiments for the small-deflection and large-deflection regimes, as

shown in Figure 1.23(a) and (b), respectively. The experiments in Figure 1.23(a)

show that in the small-deflection regime, the beam is initially nearly horizontal,

and over time the rivulet front advances further down the beam, which in turn

increases the deflection of the beam. The experiments in Figure 1.23(b), show that

in the large-deflection regime, the beam is initially deflected much further than in

Figure 1.23(a), and over time the rivulet advances further down the beam, which

drastically increases the deflection of the beam, until it is nearly vertical. Howell

et al. [67] predicted analytically, in the small-deflection regime, that in the limit of

small time, the position of the rivulet front is O(t4/5) and in the limit of large time

is O(t4). In the large-deflection regime, in the limit of small time, the position of

the rivulet front is O(t4) and in the limit of large time is O(t). The analytical

predictions for the position of the rivulet front agreed well with the corresponding

experimental results.

Ghillani et al. [48] investigated, using analytical, numerical and experimental

methods, the unsteady flow of a rivulet of fluid along the inside of a corner formed

by a cylinder and a flat heated solid substrate subject to the effects of surface

tension, viscosity and evaporation. In particular, Ghillani et al. [48] investigated

the capillary rise of the rivulet subject to evaporation with constant evaporative

flux at the free surface of the fluid. Ghillani et al. [48] derived an evolution equation

for the film thickness and solved it numerically. They compared their solutions

with experiments that they carried out in which droplets of fluid were placed

on a fibrous mat (the individual fibres acting as the cylinder in the model) laid

over a flat solid substrate and the droplet spreading was observed. Ghillani et

al. [48] found good agreement with their numerical and experimental results in

the case of a rivulet with zero contact angle with the cylinder, however in general

their numerical results did not match as closely with their experimental results.

Ghillani et al. [48] concluded that this shows that capillary rise of a rivulet within
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Figure 1.23: Side and top views of fluid flow over an elastic beam, where (a) shows a
beam with small deflection and (b) shows a beam with large deflection. Reprinted
from Howell et al. [67] with permission from Cambridge University Press.

the corner between a solid substrate and a cylinder can explain the imbibition of

the fluid into the porous fibres of the fibre mat in the first layer of fibres closest to

the solid substrate, however for subsequent fibre layers other physical effects not

considered in their model, such as Marangoni effects, may become more significant.

Alshaikhi et al. [9] investigated, using analytical and asymptotic methods, the

steady locally-unidirectional flow a thin rivulet of fluid down an inclined slippery

substrate (for example, a porous substrate) subject to the effect of gravity. In

particular, Alshaikhi et al. [9], instead of the commonly applied no-slip condition

at the substrate, considered a Navier slip condition. Alshaikhi et al. [9] showed

that while much of the qualitative behaviour of the rivulet remained the same as

that of a rivulet with no slip at the substrate, described by, for example, Duffy and

Moffatt [37], the shape, size and velocity within the rivulet all depend strongly on

the slip length. For example, they showed that increasing the slip length decreases

the viscous resistance at the substrate, and so increases the velocity within the

rivulet, and hence a smaller rivulet is required than would be in the case of no slip

to achieve the same prescribed flux.
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1.5.2 Rivulet breakup

A commonly observed phenomenon is the breakup of the rivulet into smaller sub-

rivulets or droplets (see, for example, Figure 1.5). The break up of rivulets may

occur due to many factors [152, 87, 10], for example, the viscosity, surface tension,

inertia, contact angle, width, and the evaporation of the rivulet, or the angle of

inclination, roughness, and permeability of the substrate. In this subsection we

shall first discuss examples of literature which include theoretical investigations,

followed by examples of literature which carried out experiments and numerical

simulations, of rivulet breakup.

(a) Theoretical investigations

Myers et al. [115] investigated, using analytical, asymptotic and numerical meth-

ods, the locally unidirectional steady flow of a rivulet of fluid flowing down an

inclined plane subject to the effects of gravity, surface tension and a constant

shear stress at the free surface due to the presence of an external airflow. In par-

ticular, Myers et al. [115] derived an analytical solution for the velocity and free

surface shape in the limit of a thin rivulet and also computed numerically the ve-

locity and free surface shape for a non-thin rivulet, and compared these results to

experimental data from previous investigations, finding excellent agreement with

their numerical solutions and less agreement with their analytical solution, due

to the high contact angle in the experiments. Myers et al. [115] also investigated

the stability of the rivulet flow, and used energy arguments to calculate if it was

energetically favourable for the rivulet to split into two or more subrivulets. They

found that for a rivulet driven by a shear stress at the free surface it is not en-

ergetically favourable for the rivulet to split, but for a rivulet that is driven by

gravity it is energetically favourable for it to split.

Wilson and Duffy [179] investigated, using analytical, asymptotic and numeri-

cal methods, the unidirectional steady flow of a thin rivulet of fluid down a vertical

plane subject to the effects of gravity and a constant shear stress at the free surface

due to the presence of an external airflow. Among other results, Wilson and Duffy

revisited the problem considered by Myers et al. [115] of when it is energetically

favourable for the rivulet to split into two rivulets. In the case of a rivulet that

is driven by gravity only they agreed with Myers et al. [115] that it is always en-

ergetically favourable for the rivulet to split into two subrivulets, however in the
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case of a rivulet driven by a shear stress at the free surface only they showed that

Myers et al. [115] was mistaken and in fact it is always energetically favourable

for the rivulet to split into two subrivulets in this case as well. Wilson and Duffy

[179] then numerically calculated when it was energetically favourable for rivulets

in which gravity and surface shear stress effects are both significant and presented

their results in parameter planes of the semi-width of the rivulet vs the shear stress

and the fluid flux vs the shear stress showing regions of the parameter space in

which it is and is not energetically favourable for the rivulet to split. Wilson et

al. [181] revisited the problem investigated by Wilson and Duffy [179] to describe

energetics of the breakup of both a sheet and a rivulet of fluid on a vertical sub-

strate subject to the effects of gravity and a shear stress at the free surface due

to an airflow. Wilson et al. [181] identified and analysed the regions within the

parameter space in which it is energetically favourable for a thin sheet of fluid with

uniform thickness to break up into an array of infinitely many thin subrivulets and

when it is energetically favourable for a thin rivulet to break up into one or more

identical subrivulets.

Gambaryan-Roisman and Stephan [46] investigated, using analytical and asymp-

totic methods the unsteady flow of a rivulet of fluid flowing over a heated inclined

substrate with a concave triangular groove shape subject to the effects of grav-

ity, surface tension and thermocapillarity. In particular, Gambaryan-Roisman and

Stephan [46] investigated the stability of the rivulet flow subject to the physical

effects included in their model and showed that long-wave thermocapillary insta-

bilities can lead to splitting of the rivulet into droplets or slender rivulets, and

kinematic-wave instabilities can be suppressed entirely as the groove angle of the

substrate decreases.

Alshaikhi et al. [10] investigated, using analytical and asymptotic methods,

the steady flow of a thin rivulet of fluid over and through an inclined porous

substrate subject to the effect of gravity. In particular, Alshaikhi et al. [10] derived

a differential equation for the semi-width a∗ and contact angle β∗ by considering

a statement of global conservation of mass of the form

Q∗(a∗, β∗) = Q̄∗ +Q∗
p(a

∗, β∗), (1.82)

where Q∗ is the flux along the rivulet in the longitudinal direction, Q̄∗ is the flux

of the rivulet at the start of the porous substrate, and Q∗
p < 0 is the volume flux
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through the base of the rivulet into the porous substrate. In Chapter 5 we shall

adopt a similar strategy to derive a differential equation for the semi-width and

contact angle of the rivulet by considering a statement of global conservation of

mass of the form (1.82), with mass lost due to evaporation rather than flow into

a porous substrate. Alshaikhi et al. [10] analysed the length, area of the base,

volume and shape of the rivulet in both the case of a rivulet with fixed contact

angle and a rivulet with fixed semi-width for sessile, vertical and pendant rivulets.

The results of Alshaikhi et al. [10] will be revisited in Chapter 5.

(a) Experiments and numerical simulations

Singh et al. [152] investigated, using numerical and experimental methods, the flow

and subsequent breakup of a rivulet over an inclined plane subject to the effects of

gravity and surface tension. In particular, Singh et al. [152] investigated regimes

of a stable rivulet flow and an unstable rivulet flow which leads to rivulet breakup

in terms of a critical value of the Weber number, which, in the notation of Singh

et al. [152] is given by

We =
ρ∗U∗2D∗

σ∗ , (1.83)

where U∗ and D∗ are the velocity of the fluid at, and diameter of, the supply inlet

(i.e. a small hole through which the fluid is initially introduced to the substrate),

respectively. Figure 1.24 shows the numerical simulations of Singh et al. [152],

which show the shape of a water rivulet, and subsequent break up of the rivulet,

as the Weber number is reduced. It is also clear from Figure 1.24, that as We

is decreased, at first, the rivulet width decreases (We = 2.82 to We = 0.53). As

We is reduced further, the rivulet breaks up into smaller rivulets and droplets

(We = 0.37 to We = 0.13). Therefore, rivulet breakup occurs between the values

We = 0.53 to We = 0.37. This breakup is due to the reduction in the velocity of

the rivulet, which allows surface tension effects to dominate over inertial effects,

which acts to destabilise the film and cause the rivulet to break up. Singh et al.

[152] also carried out experiments and found good agreement with their numerical

simulations.

Kochkin et al. [87] investigated, using experimental methods, the flow and

subsequent breakup of a rivulet over a vertical heated plane. In particular, Kochkin

et al. [87] investigated the effect of a uniformly heated substrate on the flow of

the rivulet and the heat transfer from the substrate to the rivulet. Figure 1.25
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We = 2.28 We = 0.82 We = 0.53

We = 0.37
We = 0.13

Figure 1.24: Shape of a water rivulet and subsequent rivulet breakup as the Weber
number (1.83) is decreased. Reprinted from Singh et al. [152], with the permission
of AIP Publishing.

shows Schlieren images of the flow of a rivulet on a vertical heated substrate

for increasing uniform substrate temperatures. Kochkin et al. [87] showed, as

shown in Figure 1.25, that as the substrate temperature is increased, the heat flux

Q∗
H from the heated substrate into the rivulet, measured in watts per centimetre

squared (W/cm2), increases, and five distinct regimes of behaviour of the rivulet

are observed. The first of these regimes, which occurs when there is no heat flux

(Q∗
H = 0 W/cm2), is the stable-rivulet regime, characterised by a thin, stable

rivulet, as shown in Figure 1.25(a). The second is the meandering-rivulet regime,

which occurs when the substrate is slightly heated, so that Q∗
H = 1.77 W/cm2, is

characterised by the rivulet bending, as shown in Figure 1.25(b). As the substrate

is further heated, so that Q∗
H = 2.28 W/cm2, the rivulet enters the ribbed-rivulet

regime, characterised by the appearance of periodic constrictions along the rivulet,

as shown in Figure 1.25(c). The rivulet eventually breaks up as the heating of the
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Figure 1.25: Schlieren images of the rivulet flow on a vertical heated substrate
at a low fluid flow rate of 0.5 ml/min. From left to right, (a)–(e) show the
characteristic regimes of behaviour of the rivulet as the temperature of the sub-
strate is increased, where (a) shows the stable-rivulet regime (Q∗

H = 0 W/cm2),
(b) shows the meandering-rivulet regime (Q∗

H = 1.77 W/cm2), (c) shows the
ribbed-rivulet regime (Q∗

H = 2.28 W/cm2), (d) shows the rivulet-drop regime
(Q∗

H = 2.44 W/cm2), and (e) shows the drop regime (Q∗
H = 2.61 W/cm2). Repro-

duced from Kochkin et al. [87] with permission from Springer Nature.

substrate is increased further, so that Q∗
H = 2.44 W/cm2 and Q∗

H = 2.61 W/cm2,

and the rivulet enters the rivulet-drop regime and the drop regime, as shown in

Figures 1.25(d) and (e), respectively. The rivulet-drop regime is characterised by

the rivulet eventually breaking up into droplets further down stream, and the drop

regime is characterised by the stream immediately breaking up into drops. It is

also observed that as the heat flux increases, the width of the rivulet decreases, as

can be seen most significantly, by comparing Figure 1.25(a) with (b).

1.5.3 Modelling evaporation

In order to theoretically model evaporation from the free surface of a fluid, it is

necessary to describe the evaporative flux, i.e. the mass of fluid escaping into the

atmosphere per unit area per unit time. The evaporative flux depends on both

the rate of transfer of fluid molecules across the free surface and the transport

of vapour molecules (by, for example, diffusion or advection) away from the free

surface into the surrounding atmosphere (see, for example, Ajaev [4]).

In Chapter 5 we will consider the evaporation of a rivulet subject to three differ-

ent mathematical models for the evaporative flux, namely, a uniform evaporative

flux, an evaporative flux derived from the diffusion-limited evaporation model, and
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an evaporative flux derived from the one-sided evaporation model. In the remain-

der of this section, we will summarise the literature associated with two of the most

popular evaporation models, namely the diffusion-limited and one-sided models.

1.5.4 Diffusion-limited model of evaporation

The mathematical model which accounts for the diffusion of the vapour away from

the free surface of a fluid and neglects the rate of transfer of fluid across the free

surface boundary is known as the diffusion-limited model of evaporation (see, for

example, [35, 4]). Considering a fluid in a quiescent atmosphere, the transfer of

molecules across the free surface boundary can be much faster than the transfer

of vapour away from the free surface into the atmosphere [89]. In this scenario,

the rate of diffusion of the vapour away from the free surface into the atmosphere

is the rate-limiting mechanism of the evaporation, and hence the diffusion-limited

model is appropriate [110]. This model is often used to model situations in which

the fluid is not being heated and the atmosphere consists of both fluid vapour and

passive gas [110, 4].

Many investigations of evaporating films and droplets of fluid have used the

diffusion-limited model to analyse the evaporation of the fluid, for example, the

pioneering work of Picknett and Bexon [135] who derived expressions for the evolu-

tion and lifetime of a droplet subject to diffusion-limited evaporation. The seminal

work of Deegan et al. [34], who first described the now well-known coffee-stain ef-

fect in which the diffusion-limited evaporation of colloid-containing fluids leaves

deposits of particles on the substrate as it evaporates, followed by many subse-

quent investigations considering various different aspects of droplet evaporation

governed by the diffusion-limited model (see, for example, the review by Wilson

and D’Ambrosio [177] and the investigations of Deegan [33, 35], Sultan et al. [158],

Dunn et al. [39, 40], McHale et al. [99, 98], Popov [136], Larson [89], Schofield et

al. [148, 149, 147], D’Ambriosio et al. [31], and Wray et al. [185]).

1.5.5 One-sided model of evaporation

A mathematical model which accounts for the rate of transfer of fluid across the

free surface boundary and neglects the diffusion of the vapour is the one-sided

model of evaporation [22]. Unlike the diffusion-limited model, the one-sided model

assumes that the rate of transfer of molecules across the free surface boundary is
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the rate-limiting mechanism [110]. In particular, the one-sided model assumes

that the density, viscosity and thermal conductivity of the atmosphere are small

compared to that of the fluid [22, 4]. This model is most commonly used to model

situations in which the fluid is being heated and the atmosphere consists entirely

of fluid vapour [22, 110, 4].

Many investigations of evaporating films of fluid have applied the one-sided

model to analyse the evaporation of the fluid. For example, the pioneering work of

Burelbach et al. [22] derived the one-sided model for the evaporation of a film of

fluid on a horizontal heated substrate and analysed the effect of the evaporation,

Marangoni forces, vapour recoil and van der Waals forces on the shape and evo-

lution of the film, followed by many subsequent investigations considering many

different aspects of evaporation governed by the one-sided model (see, for example,

Warner et al. [173], Ajaev [3], Ajaev et al. [5], Murisic and Kondic [110], Ajaev

and Kabov [6], Charitatos et al. [26], and Charitatos and Kumar [25]).

1.6 Outline of Thesis

In this thesis we shall use a range of different analytical and asymptotic methods

to investigate three different but related problems in thin-film flow.

In Chapter 2 we shall consider the steady flow of a thin film of fluid on the

outside of a rotating horizontal cylinder subject to the effects of gravity and a non-

uniform air pressure due to the presence of an external airflow. In particular, we

shall derive the equations for the pressure, velocity and film thickness of the fluid

and categorise the behaviour of the film thickness into different regions depending

on the air speed and circulation of the airflow. A linear stability analysis will also

show that the sub-critical full-film solution for the film thickness is neutrally stable

to small two-dimensional disturbances.

In Chapter 3 we shall consider the unsteady flow of a thin film of fluid on the

outside of a rotating horizontal cylinder subject to the effects of gravity, surface

tension and a non-uniform air pressure due to the presence of an external airflow.

In particular, we shall derive an evolution equation for the initially uniform film

thickness and solve it in the limit in which the effects of gravity and surface tension

are weak compared to surface shear. We shall investigate the stability of the flow

and describe the evolution of the film for different values of the air speed and

circulation of the airflow.
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In Chapter 4 we shall consider the axisymmetric and two-dimensional squeezing

of a thin film of fluid between an impermeable flat bearing and a flat porous bed

with either a sealed face or open face subject to a constant load. In particular, we

shall briefly summarize the results of Knox et al. [86], who solved the closed-face

porous bed problem, and then go on to analyse the open-face porous bed problem.

For both the closed face and open face problems we shall determine the finite time

required for all of the fluid to be squeezed out of the gap between the impermeable

bearing and porous bed, i.e. the finite time required for the impermeable bearing

and the porous bed to contact, and then derive asymptotic solutions for the contact

time in the limits of a porous bed with small and large permeability. We shall then

describe the behaviour of the particle paths, and penetration depths of the fluid

into the porous bed.

In Chapter 5 we shall consider the steady flow of a thin rivulet of evaporating

fluid flowing down an inclined substrate subject to the effect of gravity. In par-

ticular, we shall consider three evaporation models, namely, constant evaporation,

diffusion-limited evaporation and one-sided model evaporation, and in each case

determine the length, area and volume of the rivulet as the contact angle varies

(when the semi-width of the rivulet is fixed) and as the semi-width varies (when

the contact angle is fixed).

In Chapter 6 we shall summarise the main results obtained in the thesis, and

discuss possible further work for each problem.

1.7 Publications and Presentations

The work in Chapters 2 and 3 of this thesis has been published in the Journal of

Fluid Mechanics (Mitchell et al. [105]) and Physics of Fluids (Mitchell et al. [106]),

respectively.

The work in Chapter 2 has been presented at the British Applied Mathematics

Colloquium at the University of Bath in 2019, and the Continuum Mechanics and

Industrial Mathematics research group meeting in the Department of Mathematics

and Statistics in the University of Strathclyde in 2019. The work in Chapters 2

and 3 has been presented together at the UK Fluids Conference virtually in 2021,

the Scottish Fluid Mechanics Meeting at The Scottish Association for Marine

Science in Oban in 2022, and the First Spanish Fluid Mechanics Conference at the

Universidad de Cádiz in 2022.
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The work in Chapter 4 has been presented at the Annual Meeting of the Ameri-

can Physical Society Division of Fluid Dynamics virtually in 2020, British Applied

Mathematics Colloquium virtually in 2021, the International Micro and Nano

Flows Conference virtually in 2021, and the UK Fluids Conference virtually in

2021.



Chapter 2

Coating flow of a thin film

subject to an irrotational airflow

with circulation

2.1 Introduction

As discussed in Section 1.3, since the publication of the works of Moffatt [108]

and Pukhnachev [137] there have been many investigations extending the classical

coating flow problem. However, there has been very little work on the problem

investigated in this and the next chapter, namely the effect of an airflow with

circulation external to a thin film of fluid on the outside of a rotating horizontal

cylinder. In Section 1.2 we discussed investigations that use conditions of non-zero

shear stress and/or non-uniform pressure due to the effect of an external airflow

at the free surface of a thin film of viscous fluid. In particular, we described the

non-uniform pressure p∗ = p∗a(θ) given by (1.43) considered by Newell and Viljoen

[118] to model the effects of an external irrotational airflow on the evolution of an

initially uniform thin film of fluid on a rotating horizontal cylinder. In this chapter,

we combine the classical work of Moffatt [108] and Pukhnachev [137] with the non-

uniform air pressure considered by Newell and Viljoen [118] to undertake the first

detailed analysis of steady two-dimensional coating flow of a thin film of fluid

on the outside of a rotating horizontal cylinder in the absence of surface-tension

effects but in the presence of a non-uniform pressure, given by (1.43), due to the

presence of an external irrotational airflow with circulation. This problem is not

73
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only of interest in its own right, both as a rare example of an analytically tractable

problem involving the interaction between an airflow and a fluid film and as a novel

extension to the classical coating-flow problem, but also as a paradigm for the wide

range of practical situations, including those mentioned in Sections 1.2 and 1.3,

in which a thin film of fluid on a moving solid substrate is subject to an external

airflow.

2.2 Governing equations

Figure 2.1 shows the set up of the current problem of a thin film of fluid coating

the entire outer surface of a rotating cylinder in the presence of an external airflow.

In particular, following Moffatt [108] (as described in Section 1.3), with respect to

cylindrical polar coordinates (r∗, θ), with azimuthal angle θ measured increasing

anticlockwise from the horizontal and radial distance r∗ measured from the origin,

consider the two-dimensional unsteady coating flow of a thin film of incompressible

viscous Newtonian fluid with constant density ρ∗ and viscosity µ∗ on a horizontal

circular cylinder of radius a∗ rotating anticlockwise with uniform angular speed

Ω∗ (> 0). Furthermore, as described in Section 1.3, locally, on the surface of

the cylinder, we recover the problem of flow down an inclined plane described

in Section 1.1.1. Specifically, we use local Cartesian coordinates (x∗, y∗) with x∗

in the direction of increasing θ (so that x∗ = a∗θ locally) and y∗ normal to the

cylinder, so that r∗ = a∗ + y∗ (for rimming flow r∗ = a∗ − y∗). The free surface is

located at y∗ = h∗(θ, t∗).

As in Section 1.1.1, the flow is governed by the continuity equation (1.2) and

Navier–Stokes equation (1.3) (with α = θ − π/2), which are solved subject to the

no-slip and no-penetration conditions (1.6), with Ω∗ = (a∗Ω∗, 0), where a∗Ω∗ is the

angular speed of the cylinder surface, and the continuity of normal and tangential

stress conditions (1.7) and (1.8), where now T∗
a = −p∗a(θ)I+2µ∗

aτ
∗
a . The azimuthal

volume flux per unit axial length in the direction of increasing θ is given by (1.10)

and the constant mass per unit axial length on the cylinder is given by

M∗ = ρ∗
∫ π

−π

h∗(θ, t∗) dθ. (2.1)

In addition, the stream function for the flow of the film, ψ∗ = ψ∗(θ, y∗, t∗), is
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defined by
∂ψ∗

∂y∗
= u∗ and

1

a∗
∂ψ∗

∂θ
= −v∗ (2.2)

subject to ψ∗ = 0 at y∗ = 0.

Following Newell and Viljoen [118] (as described in Section 1.2), the air above

the film is taken to be incompressible and inviscid, so that there is a non-uniform

pressure p∗a(θ) (but no shear stress) of the form (1.43) on the free surface of the

film due to the presence of the external airflow, where the film is supported on

the cylinder against gravity by a combination of the shear that is induced by the

rotation of the cylinder and the air pressure on the free surface of the film. We

assume that the thickness of the film is much less than the radius of the cylinder,

and hence that the airflow round the cylinder is unaffected by the presence of the

film.

We non-dimensionalise the problem according to

x∗ = a∗θ, y∗ = H∗y, h∗ = H∗h, p∗ = p∗∞ +
σ∗

a∗
+
µ∗U∗a∗

H∗2 p,

p∗a = p∗∞ +
µ∗U∗a∗

H∗2 pa, t∗ =
a∗

U∗ t, u∗ = U∗u, v∗ = ϵU∗v, ψ∗ = U∗H∗ψ,

Q∗ = U∗H∗Q, M∗ = H∗ρ∗M, (2.3)

where U∗ = a∗Ω∗, the characteristic film thickness H∗ is given again by (1.18) and

H∗/a∗ = ϵ≪ 1. The mean curvature of the free surface, to first order in the limit

ϵ→ 0 is now

Γ = 1− ϵ (h(θ) + h′′(θ)) . (2.4)

At leading order in the limit ϵ → 0, the governing equations become (1.14),

(1.23), and (1.24) (again, with α = θ − π/2). These are solved subject to the

no-slip and no-penetration conditions

u = 1 and v = 0 (2.5)

on y = 0, the conditions of continuity of normal stress

p = pa(θ)− Ca−1

(
∂2h

∂θ2
+
∂h

∂θ

)
, (2.6)
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κ∗

g∗

a∗
θ

Ω∗

x∗ y∗

U∗
∞, p

∗
∞

Free surface
y∗ = h∗(θ, t∗)

Irrotational airflow

Rotating
cylinder

Viscous film

Figure 2.1: Sketch of coating flow of a thin film of viscous fluid of thickness h∗(θ, t∗)
on a horizontal circular cylinder of radius a∗ rotating anticlockwise with uniform
angular speed Ω∗ in the presence of an irrotational airflow with uniform horizontal
velocity U∗

∞ (≥ 0) from left to right and pressure p∗∞ in the far field and a circulation
κ∗ shown in the case when λ = κ∗/(4πa∗U∗

∞) = K/(2F ) satisfies 0 < λ < 1. The
locations of the stagnation points of the airflow are indicated with dots (•).

and continuity of tangential stress (1.27) on y = h. The streamfunction (2.2)

becomes
∂ψ

∂y
= u and

∂ψ

∂θ
= −v, (2.7)

the azimuthal volume flux per unit axial length of the fluid in the film in the

direction of increasing θ becomes

Q =

∫ h

0

u(θ, y, t) dy, (2.8)

and the constant mass of fluid per unit axial length on the cylinder (2.1) becomes

M =

∫ π

−π

h(θ, t) dθ. (2.9)
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2.3 Steady coating flow in the presence of an ex-

ternal airflow

In the remainder of this chapter we will consider steady two-dimensional coating

flow, so that now h = h(θ), u = u(θ, y), v = v(θ, y), and ψ = ψ(θ, y), in the pres-

ence of gravity and a non-uniform air pressure pa(θ) due to an external horizontal

irrotational airflow, but in the absence of surface tension effects, so that Ca−1 ≪ 1,

and hence (2.6) reduces to

p = pa(θ) (2.10)

on y = h.

Solving (1.24) subject to (2.10), implies immediately that the pressure in the

film is independent of y, and hence p = pa(θ) throughout the film. Therefore, the

expression for the pressure within the film given by (1.43) subject to the scalings

(2.3), becomes

p = pa =
1

2

[
F 2 − (2F sin θ −K)2

]
, (2.11)

where F (≥ 0) and K, defined by

F =

(
ρ∗aU

∗2
∞

ρ∗g∗a∗

)1/2

, K =
κ∗

2πa∗

(
ρ∗a

ρ∗g∗a∗

)1/2

, (2.12)

are nondimensional measures of the speed of the far-field airflow and the circulation

of the airflow, respectively.

Solving (1.23) with respect to (2.5) and (1.27) gives the velocity

u = 1− 1

2
f
(
2hy − y2

)
. (2.13)

From (2.7) the streamfunction is given by

ψ = y − 1

6
f
(
3hy2 − y3

)
, (2.14)

and from (2.8) the flux is given by

Q = h− h3

3
f, (2.15)
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where we have introduced the function f = f(θ) defined by f(θ) = cos θ + p ′
a, i.e.

f(θ) =
(
1 + 2FK − 4F 2 sin θ

)
cos θ. (2.16)

The mass M (2.9) is now given by

M =

∫ π

−π

h(θ) dθ, (2.17)

In the present work we restrict our attention to the full-film solutions discussed

in Section 1.3 (i.e. to solutions for h that are continuous and strictly positive for

all −π < θ ≤ π, corresponding to a film of fluid covering the entire cylinder). For

such a solution, the flux Q given by (2.15) is a constant (i.e. it is independent of θ),

but its value is unknown a priori and has to be determined as part of the solution

from either the condition of prescribed mass M given by (2.17) or an appropriate

criticality condition.

As discussed in Section 1.2, the external airflow is assumed to be irrotational.

For this assumption to be true, the Reynolds number of the airflow must be large

and the boundary layer that forms in the air at the cylinder surface must remain

attached to the cylinder. The classical analysis of Glauert [49] and Moore [109],

supported by numerical studies by Kang et al. [74], Stojkovic et al. [155], Mittal

and Kumar [107] and Aljure et al. [7], shows that, at least for the case of a cylinder

without a thin film of viscous fluid, the rotation of the cylinder acts to suppress

the tendency of the boundary layer in the airflow to separate on the downstream

side of the cylinder. In particular, Glauert [49] and Moore [109] showed that when

the Reynolds number of the airflow based on the circumferential speed of the

cylinder, ρ∗aa
∗2Ω∗/µ∗

a ≫ 1, is large, and the circumferential speed of the cylinder

is large compared with that of the far-field airflow, a∗Ω∗ ≫ U∗
∞, where Ω∗ is

the constant angular speed of the rotation of the cylinder, the boundary layer

remains attached all the way around the cylinder, and the circulation takes the

value κ∗ = 2πa∗2Ω∗. Expressed in terms of F and K this corresponds to the regime

F/K = U∗
∞/(a

∗Ω∗) ≪ 1. Moreover, Mittal and Kumar [107] showed numerically

that when the value of the Reynolds number of the airflow based on the far-field

airflow and the diameter (rather than the radius) of the cylinder, 2ρ∗aa
∗U∗

∞/µ
∗
a, is

200, the pressure distribution on the cylinder is qualitatively similar to that of

the inviscid airflow (1.43) in the case κ∗ = 2πa∗2Ω∗ when F/K = 1/4. However,
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what (if any) effect the presence of a non-uniform thin film of viscous fluid on a

rotating cylinder has on the suppression of boundary-layer separation remains an

open question, and so in Chapters 2 and 3 we describe the behaviour of the film

for all values of F and K, while bearing in mind that the regime F/|K| ≲ 1 is

likely to be the most physically relevant. This approach is in the same spirit as

that of Newell & Viljoen [118], who (in our notation) took κ = 2πa2Ω and then

considered all values of U∞/(aΩ) in the range |U∞/(aΩ)| ≤ 1. As well as being of

interest in their own right, the results of the present analysis for all values of F

and K also provide an analytical benchmark for future studies of regimes in which

boundary-layer separation occurs.

Equations (2.13)–(2.15) show that the flow of the film is a combination of

flows due to four different competing physical effects, namely a uniform velocity

u ≡ 1 with flux h due to the rotation of the cylinder and semi-parabolic (in y)

velocities with fluxes −(h3/3) cos θ, −(2FKh3/3) cos θ, and (2F 2h3/3) sin 2θ due

to the azimuthal component of gravity, the gradient of the air pressure due to the

circulation of the airflow in combination with the far-field airflow, and the gradient

of the air pressure due to the far-field airflow, respectively.

In the special case of no far-field airflow, F = 0, the pressure p = pa = −K2/2

is constant, f = cos θ, and hence (2.15) reduces to the familiar expression for the

flux in classical coating flow given by equation (1.48) showing that the behaviour

of the film is entirely unaffected by a purely circulatory airflow. On the other

hand, in the special case FK = −1/2 the fluxes due to gravity and circulation

cancel each other out exactly, and so the behaviour of the film is due only to the

rotation of the cylinder and the far-field airflow. The behaviour of the film for all

values of F and K will be described in detail in this chapter.

For future reference, as described in Section 1.2, and illustrated in Figure 1.8, it

is useful to recall that the position of the stagnation points in the airflow depends

on the value of λ = κ∗/(4πa∗U∗
∞) = K/(2F ). Specifically, the airflow has two

stagnation points on the cylinder when 0 ≤ |K|/(2F ) < 1, one stagnation point

on either the top or the bottom of the cylinder when |K|/(2F ) = 1, and one

stagnation point within the airflow either directly above or directly below the

cylinder when |K|/(2F ) > 1 (see Figure 1.8).

For completeness, in Appendix A we provide the corresponding equations for

the more general situation in which the far-field airflow, rather than being hori-

zontal, is inclined at some prescribed angle α to the horizontal, but in the present
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work we restrict our attention to the case in which the far-field airflow is horizontal,

as shown in Figure 2.1.

2.4 Full-film solutions

Equation (2.15) is a cubic polynomial equation for h as a function of θ, parame-

terised by Q, whose full-film solution may be written in the explicit real form

h(θ) =





2

f(θ)1/2
sin

(
1

3
sin−1 3Qf(θ)

1/2

2

)
if f > 0,

Q if f = 0,

2

[−f(θ)]1/2
sinh

(
1

3
sinh−1 3Q [−f(θ)]1/2

2

)
if f < 0.

(2.18)

In order to understand the qualitative features of the full-film solution (2.18) it

is easiest to consider equation (2.15) graphically in the θ–h plane, regarding Q as a

function of θ and h, and exploiting the fact that, since ψ = Q on y = h, any contour

of Q (which is, by definition, a curve on which Q is constant) potentially provides

a solution for the free surface y = h. In particular, we can use this approach to

show that, just as for classical coating flow, equation (2.15) has full-film solutions

only when the flux Q and mass M of fluid do not exceed certain critical values,

which we denote by Qc and Mc, respectively, and will subsequently determine in

terms of F and K. The critical film thickness (i.e. the solution for h with Q = Qc)

is denoted by hc = hc(θ).

Figure 2.2 shows plots of contours of Q when K = 0 for 0 ≤ Q ≤ Qc, with each

contour therefore representing the film thickness h for the corresponding value of

Q, for a range of values of F . In particular, Figure 2.2 shows that, as in classical

coating flow, critical solutions with Q = Qc always have a corner in their free

surface y = hc but subcritical solutions with 0 < Q < Qc always have a smooth

free surface y = h. The position of the corner in the critical free surface is denoted

by θ = θc.

Despite a superficial resemblance, it should be noted that (except for the critical

free surface y = hc and the substrate y = 0) the contours of Q shown in Figure

2.2 do not correspond to streamlines of the critical solution. This is confirmed

by Figure 2.3, which shows plots of typical streamlines ψ = constant, where ψ
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(a)
θ/π

h

(b)
θ/π

h

(c)
θ/π

h

(d)
θ/π

h

Figure 2.2: Plots of contours of Q when K = 0 for 0 ≤ Q ≤ Qc, with each contour
therefore representing the film thickness h for the corresponding value of Q, for (a)
F = 0 (i.e. classical coating flow) (θc = 0, Qc = 2/3, Mc ≃ 4.443), (b) F = 3/10
(θc = −0.096π, Qc ≃ 0.648, Mc = 4.299), (c) F = 1/2 (θc = −π/6, Qc ≃ 0.585,
Mc ≃ 3.838), and (d) F = 1 (θc = −0.224π, Qc ≃ 0.403, Mc ≃ 2.628). In each
case the contour interval is Qc/10.

is given by (2.14), for a critical and a subcritical solution. In particular, Figure

2.3(a) shows that all of the streamlines of the critical solution (except, of course,

for the substrate y = 0), and not just the critical free surface y = hc, have a corner

at the same position θ = θc.

2.5 Properties of the full-film solutions

In this section we describe some of the properties of the full-film solutions obtained

in Section 2.4 and illustrated when K = 0 in Figures 2.2 and 2.3. Then in Sections

2.6 and 2.7 we describe the behaviour of the solutions in the special case when the

airflow has no circulation (K = 0) and in the general case when the airflow has

non-zero circulation (K ̸= 0), respectively, and finally in Section 2.8 we consider

the mass of fluid on the cylinder.
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(a)
θ/π

h

(b)
θ/π

h

Figure 2.3: Plots of typical streamlines ψ = constant, where ψ is given by (2.14),
for (a) the critical solution with Q = Qc ≃ 0.403 and (b) the subcritical solution
with Q = 9Qc/10 ≃ 0.363 (< Qc), when F = 1 and K = 0.

2.5.1 General properties

In this subsection we describe some of the general properties of the full-film solu-

tions.

At any fixed position θ, differentiating (2.15) with respect to Q gives (1 −
h2f)(∂h/∂Q) = 1, and since, as shown in Appendix B, for full-film solutions it is

necessary that h2f ≤ 1, we deduce immediately that ∂h/∂Q > 0, and hence that

h increases monotonically with Q.

On the other hand, for any fixed value of Q, differentiating (2.15) with respect

to θ gives (1−h2f)h′ = h3f ′/3, showing that h′ has the same sign as f ′ everywhere,

and hence that the positions of the stationary points of h are determined by the

equation f ′ = 0, which may be written in the form

8F 2 sin2 θ − (1 + 2FK) sin θ − 4F 2 = 0, (2.19)

whose solutions for θ satisfy

sin θ =
1 + 2FK ± [(1 + 2FK)2 + 128F 4]

1/2

16F 2
. (2.20)

As these solutions are independent of Q, the stationary points of h occur at

the same positions θ for all values of Q. Moreover, at all of the stationary

points of h we have 3(1 − h2f)h′′ = h3f ′′ and also, from (2.16) and (2.20),

f ′′ = ± [(1 + 2FK)2 + 128F 4]
1/2

cos θ, which, taken together, show that the nature

of each stationary point is given by the sign of ± cos θ there. In classical coating

flow, h has two stationary points, namely a maximum at θ = 0 (i.e. on the right-
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hand side of the cylinder) and a minimum at θ = π (i.e. on the left-hand side of the

cylinder); however, the presence of the airflow can result in qualitatively different

behaviour of the fluid film. In particular, as will be described subsequently, in

the present problem h can have as many as four stationary points. Moreover, as

mentioned in Section 1.3, in classical coating flow h has top-to-bottom, but not

right-to-left, symmetry; however, the presence of the airflow means that, in general,

in the present problem h has neither top-to-bottom nor right-to-left symmetry.

The function f given by (2.16) has zeros at θ = ±π/2 and at θ = sin−1((1 +

2FK)/(4F 2)) when |1 + 2FK|/(4F 2) ≤ 1. From either (2.13)–(2.15) or (2.18) it

is immediately apparent that at any zero of f the film has thickness h = Q, and

that the fluid there moves locally with uniform velocity u ≡ 1 (i.e. as a plug).

Moreover, the fact that Q = h > 0 for such values of θ means that the constant

flux Q is always positive, i.e. for full-film solutions the flux is always everywhere in

the direction of the rotation of the cylinder (i.e. anticlockwise). In fact, as shown

in Appendix C, we can obtain the stronger result that the velocity u (and not just

the flux Q) is always positive, i.e. the flow of the film is always everywhere in the

direction of the rotation of the cylinder.

2.5.2 Critical solutions

In this subsection we describe the behaviour of the critical full-film solutions, i.e.

solutions for which the flux and mass of fluid take the critical values Q = Qc and

M = Mc, respectively, above which no full-film solution exists, so that Mc is the

maximum mass of fluid that can be supported on the cylinder for given values of F

and K. As mentioned in Section 2.4, all of the streamlines of the critical solution

(except for the substrate y = 0), and, in particular, the critical free surface y = hc,

have a corner at θ = θc.

As in classical coating flow, the critical solution corresponds to a saddle of the

function Q given by (2.15), at which Q satisfies the criticality conditions

∂Q

∂h
= 0,

∂Q

∂θ
= 0, (2.21)

leading to

h2f(θ) = 1, f ′(θ) = 0, (2.22)

and any saddle of Q corresponds to a corner in the critical free surface y = hc. As
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hc

θ/π

F = 3

F = 0

Figure 2.4: Plots of the critical film thickness hc when K = 0 as a function of θ/π
for F = 0, 1/4, 1/2, . . . , 3.

shown in Appendix D, the function Q has no maximum or minimum stationary

points, and, depending on the values of F and K, has either one or two saddle

points; in the latter case it is the saddle associated with the smaller value of Q

(and hence the smaller value of M) that corresponds to the critical solution.

The first of the criticality conditions (2.22) gives the thickness of the critical

film at the corner, namely

hc(θc) =
1

f(θc)1/2
(2.23)

(which, in particular, shows that a corner may occur only where f(θc) > 0), while

the second of the criticality conditions (2.22) shows that solutions for θc satisfy

(2.20). Physically, the critical maximum height (2.23) occurs due to gravity pulling

vertically down on the fluid on the right hand side of the cylinder and the shear

induced by the rotation of the cylinder pulling up, similar to the critical maximum

that occurs in the classical problem in the absence of airflow effects. As the airflow

effects become stronger, a second maximum occurs on the upper left quadrant of

the cylinder. This maximum is due to the competing effects of the pressure gradient

which forces the fluid up the cylinder from θ = π to θ = π/2 in competition with

gravity and the shear induced by the rotation of the cylinder pulling the fluid

vertically down.

Figure 2.4 shows plots of the critical film thickness hc whenK = 0 as a function

of θ/π for a range of values of F . As Figure 2.4 illustrates, the global maximum

thickness of the critical film (and hence the maximum possible thickness of any

film for given values of F and K) always occurs at the corner, and expanding
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(2.15) about θ = θc shows that near the corner the critical free surface y = hc has

the local form

hc = hc(θc) + h1|θ − θc|+O(θ − θc)
2, (2.24)

where

h1 = −h
2
c[−f ′′(θc)]

1/2

√
6

(< 0). (2.25)

Evaluating (2.15) at θ = θc gives the critical flux,

Qc =
2hc(θc)

3
=

2

3f(θc)1/2
, (2.26)

and (2.17) gives the critical mass,

Mc =

∫ π

−π

hc(θ) dθ. (2.27)

Note that critical free surfaces with two corners may also occur, but only at

leading order in the limit of a fast far-field airflow, F → ∞, and in the special

case FK = −1/2; these exceptional situations will be described in Sections 2.6

and 2.7, respectively.

2.5.3 Subcritical solutions

In this subsection we describe the behaviour of the subcritical full-film solutions,

i.e. solutions for which the flux Q and mass M of fluid satisfy 0 < Q < Qc

and 0 < M < Mc. As mentioned in Section 2.4, unlike for the critical solutions

described in Section 2.5.2, all of the streamlines of the subcritical solutions, and,

in particular, the subcritical free surface y = h, are smooth. However, as described

in Section 2.5.1, the global maximum of the subcritical film thickness still always

occurs at θ = θc (i.e. at the same position as the corner in the critical free surface

y = hc), and expanding (2.15) about θ = θc shows that near the maximum the

subcritical free surface y = h has the locally parabolic form

h = h0 +
h30f

′′(θc)

6[1− h20f(θc)]
(θ − θc)

2 +O(θ − θc)
3, (2.28)

where h0 = h(θc) (0 < h0 < hc(θc)) is the value of h at θ = θc obtained from

(2.15).
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In the regime of small flux, Q≪ 1, the subcritical film thickness h is given by

h = Q+
f

3
Q3 +

f 2

3
Q5 +O(Q7), (2.29)

and hence from (2.17) the mass M is given by

M = 2πQ+
π

3

[
(1 + 2FK)2 + 4F 4

]
Q5 +O(Q9). (2.30)

Eliminating Q between (2.29) and (2.30) we obtain the expression for h in the

regime of small mass, M ≪ 1, namely

h =
M

2π
+

f

24π3
M3 − (1 + 2FK)2 + 4F 4 − 2f 2

192π5
M5 +O(M7), (2.31)

showing that the film is very thin with uniform thickness M/2π ≪ 1 at leading

order in this limit.

2.6 Solutions when the airflow has no circulation

(K = 0)

In this section we use the results obtained thus far to describe the behaviour of

the full-film solutions when the airflow has no circulation, corresponding to K = 0

and illustrated in Figures 2.2–2.4.

In this case the pressure gradient within the film is entirely due to the far-field

airflow, and the flux it induces, namely (2F 2h3/3) sin 2θ, drives flow away from the

left-hand and right-hand sides of the cylinder and towards the top and bottom of

the cylinder (i.e. away from θ = 0 and θ = π and towards θ = π/2 and θ = −π/2).
The behaviour of the film is therefore a consequence of the competition between

this flux and those due to the rotation of the cylinder and gravity, which, as in

classical coating flow, drive flow in the direction of the rotation of the cylinder (i.e.

anticlockwise) and away from the top and towards the bottom of the cylinder (i.e.

away from θ = π/2 and towards θ = −π/2), respectively.
As described in Section 2.5.1, the positions of the stationary points of h are

given by (2.20), which reduces to

sin θ =
1± (1 + 128F 4)1/2

16F 2
(2.32)
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Figure 2.5: Plot of the scaled positions θ/π of the stationary points of h when
K = 0 given by (2.32) as functions of F . The positions corresponding to a local
maximum and a local minimum of h are plotted with solid lines and dashed lines,
respectively.

when K = 0, and the nature of each stationary point is given by the sign of

± cos θ. We denote the solutions of (2.32) in the interval −π/2 ≤ θ ≤ π/2 by

θ = θ+ (π/4 ≤ θ+ ≤ π/2) and θ = θ− (−π/4 ≤ θ− ≤ 0), respectively, where the

subscript ± corresponds to the ± in (2.32), and in terms of which the solutions of

(2.32) are given by θ = θ+ and θ = π−θ+ for F ≥ 1/2 and θ = θ− and θ = −π−θ−
for F ≥ 0.

Figure 2.5 shows a plot of the scaled positions θ/π of the stationary points of

h when K = 0 given by (2.32) as functions of F . The positions corresponding to a

local maximum and a local minimum of h are plotted with solid lines and dashed

lines, respectively. In particular, Figure 2.5 shows that when K = 0 the film

thickness h has two stationary points when 0 ≤ F < 1/2, three stationary points

when F = 1/2, and four stationary points when F > 1/2, and that the positions

of these stationary points on the cylinder are symmetrical about the vertical line

θ = ±π/2.
The plots of the film thickness h for a range of values of Q and F shown in

Figure 2.2 illustrate the qualitative changes in the behaviour of h as the speed of

the far-field airflow is increased from zero (i.e. as F is increased from zero).

As mentioned in Section 2.5.1, in classical coating flow h has a maximum at

θ = θ− = 0 and a minimum at θ = −π − θ− = −π (i.e. at θ = π) (see Figure

2.2(a)). As F is increased from F = 0 to F = 1/2 both the maximum at θ = θ−
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(−π/6 < θ− < 0) and the minimum at θ = −π−θ− (−π < −π−θ− < −5π/6) (see,

for example, the case F = 3/10 shown in Figure 2.2(b)) move towards the bottom

of the cylinder (i.e. towards θ = −π/2), reaching θ = −π/6 and θ = −5π/6,

respectively, when F = 1/2. When F = 1/2 a point of inflection in h appears at

the top of the cylinder (i.e. at θ = θ+ = π − θ+ = π/2) (see Figure 2.2(c)). As

F is increased from F = 1/2 both the maximum at θ = θ− (−π/4 < θ− < −π/6)
and the minimum at θ = −π − θ− (−5π/6 < −π − θ− < −3π/4) continue to

move towards the bottom of the cylinder, approaching θ = −π/4 and θ = −3π/4,

respectively, in the limit of a fast far-field airflow, F → ∞. Meanwhile, the point

of inflection splits into a minimum at θ = θ+ (π/4 < θ+ < π/2) and a maximum

at θ = π − θ+ (π/2 < π − θ+ < 3π/4), both of which move away from the top

of the cylinder (i.e. away from θ = π/2), approaching θ = π/4 and θ = 3π/4,

respectively, in the limit of a fast far-field airflow, F → ∞ (see, for example, the

case F = 1 shown in Figure 2.2(d)). Moreover, as Figures 2.2–2.4 illustrate, when

K = 0 the largest maximum and the smallest minimum of h are always located

on the lower half of the cylinder. In particular, except in the exceptional situation

mentioned in Section 2.5.2 in which it has two corners, the corner in the critical

free surface y = hc always occurs at θ = θc = θ−.

From (2.23) and (2.32) the thickness of the critical film at the corner, hc(θc),

(i.e. the maximum possible thickness of any film for a given value of F ) is given

explicitly in terms of F by

hc(θc) =

(
32
[
1 + (1 + 128F 4)1/2

]

[3 + (1 + 128F 4)1/2]
3

)1/4

, (2.33)

and hence from (2.26) the critical flux is given explicitly in terms of F by

Qc =

(
512

[
1 + (1 + 128F 4)1/2

]

81 [3 + (1 + 128F 4)1/2]
3

)1/4

. (2.34)

Figure 2.6 shows a plot of hc(θc) given by (2.33) as a function of F . In particular,

Figure 2.6 shows that hc(θc) is a monotonically decreasing function of F satisfying

hc(θc) = 1− 4F 4 +O(F 8) → 1− as F → 0+ (2.35)



Chapter 2 89

hc(θc)

F

Figure 2.6: Plot of the thickness of the critical film at the corner, hc(θc), when
K = 0 given by (2.33) as a function of F . The asymptotic behaviours of hc(θc) in
the limits F → 0+ given by (2.35) and F → ∞ given by (2.36) are plotted with
dashed and dotted lines, respectively.

and

hc(θc) ∼
1√
2F

→ 0+ as F → ∞. (2.36)

At leading order in the limit of a fast far-field airflow, F → ∞, the behaviour of

the film is due only to the rotation of the cylinder and the far-field airflow. In this

limit the film is very thin, h = O(1/F ) ≪ 1, and both the flux Q = O(1/F ) ≪ 1

and the mass M = O(1/F ) ≪ 1 are correspondingly very small. Thus if we write

the leading-order solution as h(θ) = ĥ(θ)/F , Q = Q̂/F and M = M̂/F , where

hatted quantities are O(1) in the limit F → ∞, then the rescaled film thickness ĥ

has the form of the solution for h given in (2.18) with f = −2 sin 2θ, while from

(2.15) and (2.17) the rescaled flux Q̂ and the rescaled mass M̂ are given by

Q̂ = ĥ+
2ĥ3

3
sin 2θ and M̂ =

∫ π

−π

ĥ(θ) dθ, (2.37)

respectively. Figure 2.7 shows plots of contours of Q̂ for 0 ≤ Q̂ ≤ Q̂c, with each

contour therefore representing the rescaled film thickness ĥ for the corresponding

value of Q̂. As Figure 2.7 shows, the rescaled film thickness ĥ has period π, with

two identical maxima at θ = 3π/4 and θ = −π/4, and two identical minima at

θ = π/4 and θ = −3π/4. In particular, as mentioned in Section 2.5.2, the rescaled

critical free surface y = ĥc(θ) corresponding to Q̂ = Q̂c =
√
2/3 ≃ 0.471 and
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ĥ

θ/π

Figure 2.7: Plots of contours of Q̂ for 0 ≤ Q̂ ≤ Q̂c =
√
2/3 ≃ 0.471, with each

contour therefore representing the rescaled film thickness ĥ for the corresponding
value of Q̂. The contour interval is Q̂c/10.

M̂ = M̂c ≃ 3.141 has two identical corners at θ = θc = 3π/4 and θ = θc = −π/4
at both of which ĥc(θc) = 1/

√
2 ≃ 0.707.

2.7 Solutions when the airflow has non-zero cir-

culation (K ̸= 0)

In this section we use the results obtained thus far to describe the behaviour of

the full-film solutions when the airflow has non-zero circulation, corresponding to

K ̸= 0.

In this case, in addition to the pressure gradient due to the far-field airflow

described in Section 2.6, the pressure gradient within the film has an additional

contribution due to the circulation of the airflow in combination with the far-

field airflow, and the additional flux it induces, namely −(2FKh3/3) cos θ, either

cooperates (when K > 0) or competes (when K < 0) with the flux due to gravity

by driving flow either away from the top and towards the bottom of the cylinder

(i.e. away from θ = π/2 and towards θ = −π/2) when K > 0 or vice versa when

K < 0. As might have been anticipated, the presence of non-zero circulation leads

to somewhat more complicated behaviour of the film than that in the absence of

circulation described in Section 2.6.
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Figure 2.8: Plot of the scaled positions θ/π of the stationary points of h given by
(2.39) as functions of F for K = −5, −4, . . . , 3. The positions corresponding to a
local maximum and a local minimum of h are plotted with solid lines and dashed
lines, respectively.

When K ̸= 0 it is convenient to introduce the parameter β defined by

β =
1 + 2FK

4F 2
, (2.38)

which may be regarded as a reduced measure of K, in terms of which it is useful to

note that the solution for h is invariant under the simultaneous changes θ → θ±π

and β → −β (that is, K → −K − (1/F )), which provides a simple check on the

results in what follows.

As described in Section 2.5.1, the positions of the stationary points of h are

given by (2.20), which, in terms of the parameter β defined by (2.38), takes the

form

sin θ =
β ± (β2 + 8)1/2

4
, (2.39)

and the nature of each stationary point is again given by the sign of ± cos θ. As

for equation (2.32) in Section 2.6, we denote the solutions of (2.39) in the interval

−π/2 ≤ θ ≤ π/2 by θ = θ+ (0 ≤ θ+ ≤ π/2) and θ = θ− (−π/2 ≤ θ− ≤ 0),

respectively, where the subscript ± corresponds to the ± in (2.39), and in terms

of which the solutions of (2.39) are given by θ = θ+ and θ = π− θ+ for β ≤ 1 and

θ = θ− and θ = −π − θ− for β ≥ −1.

Figure 2.8 shows a plot of the scaled positions θ/π of the stationary points of
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h given by (2.39) plotted as functions of F for a range of values of K (including

the case K = 0 shown in Figure 2.5). The positions corresponding to a local

maximum and a local minimum of h are again plotted with solid lines and dashed

lines, respectively. In particular, Figure 2.8 shows that the film thickness h has

two stationary points when K < K1 and K > K3, three stationary points when

K = K1 and K = K3, and four stationary points when K1 < K < K3, where the

critical values K = K1, K = K2 = (K1 + K3)/2 and K = K3, corresponding to

β = −1, β = 0 and β = 1, respectively, and satisfying K1 < K2 < 0 and K3 > K2,

are defined by

K1 = −2F − 1

2F
, K2 = − 1

2F
and K3 = 2F − 1

2F
, (2.40)

and the positions of these stationary points on the cylinder are again symmetrical

about the vertical line θ = ±π/2.
Figure 2.9 shows plots of contours of Q for 0 ≤ Q ≤ Qc, with each contour

therefore representing the film thickness h for the corresponding value of Q, for a

range of values of F andK. The plots shown in Figure 2.9 illustrate the qualitative

changes in the behaviour of h as the speed of the far-field airflow and the circulation

are varied (i.e. as F and K are varied).

As Figures 2.9(e)–(g) illustrate, different qualitative changes in the behaviour

of h occur on the upper and lower halves of the cylinder as K is increased from

K = K2. On the lower half of the cylinder as K is increased from K = K2, the

maximum at θ = θ− (−π/4 < θ− < 0) and the minimum at θ = −π − θ− (−π <
−π − θ− < −3π/4) move away from the bottom of the cylinder (i.e. away from

θ = −π/2), approaching the right-hand and left-hand sides of the cylinder (i.e.

approaching θ = 0 and θ = π), respectively, in the limit of a strong anticlockwise

circulation K → ∞. Simultaneously, on the upper half of the cylinder as K is

increased from K = K2 towards K = K3, the minimum at θ = θ+ (π/4 < θ+ <

π/2) and the maximum at θ = π − θ+ (π/2 < π − θ+ < 3π/4) move towards the

top of the cylinder (i.e. towards θ = π/2) (see, for example, the case F = 3/2 and

K = 5/6 shown in Figure 2.9(e)), before merging into a point of inflection at the

top of the cylinder when K = K3 (see, for example, the case F = 1 and K = 3/2

shown in Figure 2.9(f)), and then disappearing (see, for example, the case F = 1/2

and K = 1 shown in Figure 2.9(g)). Moreover, as Figures 2.9(e)–(g) illustrate,

when K > K2 the largest maximum and the smallest minimum of h always occur
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Figure 2.9: Plots of contours of Q for 0 ≤ Q ≤ Qc, with each contour therefore
representing the film thickness h for the corresponding value of Q, for (a) F = 1/2 and
K = −3 (β = −2, θc = 0.881π, Qc ≃ 0.449, Mc ≃ 2.970), (b) F = 1 and K = −5/2
(β = −1, θc = 0.833π, Qc ≃ 0.292, Mc ≃ 1.919), (c) F = 3/2 and K = −3/2 (β =
−7/18, θc = 0.789π, Qc ≃ 0.250, Mc ≃ 1.628), (d) F = 1, and K = −1/2 (β = 0,
θc = 3π/4 and −π/4, Qc ≃ 0.471, Mc ≃ 3.141), (e) F = 3/2 and K = 5/6 (β = 7/18,
θc = −0.211π, Qc ≃ 0.250, Mc ≃ 1.628), (f) F = 1 and K = 3/2 (β = 1, θc = −π/6,
Qc ≃ 0.292, Mc ≃ 1.919), and (g) F = 1/2 andK = 1 (β = 2, θc = −0.119π, Qc ≃ 0.449,
Mc ≃ 2.970). In each case the contour interval is Qc/10.
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on the lower half of the cylinder, and the corner in the critical free surface always

occurs at θ = θc = θ−.

As Figures 2.9(a)–(c) illustrate, analogous qualitative changes in the behaviour

of h occur as K is decreased from K = K2. In particular, when K < K2 the largest

maximum and the smallest minimum of h always occur on the upper half of the

cylinder, and the corner in the critical free surface always occurs at θ = θc = π−θ+.

The qualitative changes in the behaviour of the film thickness h as F and K

are varied are summarised in Figure 2.10, which represents one of the key results

of the present chapter. Specifically, Figure 2.10 is a plot of the F–K parameter

plane showing how the three curves K = K1, K = K2 and K = K3 given by (2.40)

divide the plane into the four regions K < K1, K1 < K < K2, K2 < K < K3 and

K > K3 in which the behaviour of the film thickness h (typical examples of which

are sketched in the insets) is qualitatively different. In addition, the asymptotes of

K = K1 and K = K3 as F → ∞, namely K = ∓2F , are plotted with dashed lines.

Note that these two straight lines correspond to λ = κ/(4πaU∞) = K/(2F ) = ∓1

and so, as described in Section 2.3, they also separate the F–K parameter plane

into the three regions K < −2F , −2F < K < 2F and K > 2F in which the

stagnation points of the airflow are directly below the cylinder, on the cylinder,

and directly above the cylinder, respectively.

From (2.23) and (2.39) the thickness of the critical film at the corner, hc(θc),

(i.e. the maximum possible thickness of any film for given values of F and K) is

given explicitly in terms of F and β by

hc(θc) =
1

F

(
2

8 + 20β2 − β4 + |β|(β2 + 8)3/2

)1/4

, (2.41)

and hence from (2.26) the critical flux is given explicitly in terms of F and β by

Qc =
2

3F

(
2

8 + 20β2 − β4 + |β|(β2 + 8)3/2

)1/4

. (2.42)

Note that θ±, θc, Fhc(θc) and FQc depend on F and K only via β, and that, in

particular, Fhc(θc) and FQc are even functions of β. Figure 2.11 shows a plot of

Fhc(θc) given by (2.41) as a function of β. In particular, Figure 2.11 shows that
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Figure 2.10: Plot of the F–K parameter plane showing how the three curves
K = K1, K = K2 and K = K3 given by (2.40) divide the plane into the four
regions K < K1, K1 < K < K2, K2 < K < K3 and K > K3 in which the
behaviour of the film thickness h (typical examples of which are sketched in the
insets) is qualitatively different. In addition, the asymptotes of K = K1 and
K = K3 as F → ∞, namely K = ∓2F , are plotted with dotted lines.
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Fhc(θc)

β

Figure 2.11: Plot of the scaled thickness of the critical film at the corner, Fhc(θc),
given by (2.41) as a function of β. The asymptotic behaviours of Fhc(θc) in the
limits β → 0+ given by (2.43) and β → ±∞ given by (2.44) are plotted with
dashed and dotted lines, respectively.

Fhc(θc) is a monotonically decreasing function of |β| satisfying

Fhc(θc) =
1√
2
− 1

2
|β|+O(β2) → 1√

2

−
as β → 0 (2.43)

and

Fhc(θc) ∼
1

2
√

|β|
→ 0+ as β → ∞. (2.44)

As mentioned in Section 2.3, in the special case FK = −1/2, corresponding

to K = K2 (i.e. β = 0) the behaviour of the film is due only to the rotation of

the cylinder and the far-field airflow. Clearly this situation is closely analogous

to that at leading order in the limit of a fast far-field airflow, F → ∞, when

K = 0 described in Section 2.6. The parameter F (which may now take any non-

negative value) may again be scaled out of the problem by writing the solution as

h(θ) = ĥ(θ)/F , Q = Q̂/F and M = M̂/F , where the solutions for ĥ(θ), Q̂ and

M̂ are given in Section 2.6. In particular, the film thickness h has period π, with

two identical maxima at θ = 3π/4 and θ = −π/4, and two identical minima at

θ = π/4 and θ = −3π/4, and the critical free surface y = hc(θ) has two identical

corners at θ = θc = 3π/4 and θ = θc = −π/4 (see, for example, the case F = 1

and K = −1/2 shown in Figure 2.9(d)).

At leading order in the limit of a strong circulation, K → ±∞, the behaviour

of the film is due only to the rotation of the cylinder and the circulation of the
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airflow. In this limit the film is very thin, h = O(|K|−1/2) ≪ 1, and both the

flux Q = O(|K|−1/2) ≪ 1 and the mass M = O(|K|1/2) ≪ 1 are correspondingly

very small. Thus if we write the leading-order solution as h(θ) = h̄(θ)/(2F |K|)1/2,
Q = Q̄/(2F |K|)1/2 and M = M̄/(2F |K|)1/2, where barred quantities are O(1) in

the limit K → ±∞, then the rescaled film thickness h̄ has the form of the solution

for h given in (2.18) with f = ± cos θ, while from (2.15) and (2.17) the rescaled

flux Q̄ and the rescaled mass M̄ are given by

Q̄ = h̄∓ h̄3

3
cos θ and M̄ =

∫ π

−π

h̄(θ) dθ, (2.45)

respectively. Thus h̄(θ), Q̄ and M̄ are the solutions of the classical coating-flow

problem when K → ∞, and the solutions of the mirror image of the classical

coating-flow problem in the vertical line θ = ±π/2 (i.e. the solutions of the classical
coating-flow problem with the direction of the rotation of the cylinder reversed)

when K → −∞. In particular, the rescaled film thickness h̄ has a local maximum

at θ = 0 and a local minimum at θ = π, and the rescaled critical free surface

y = h̄c(θ) corresponding to Q̄ = Q̄c = 2/3 and M̄ = M̄c ≃ 4.443 has a corner

at θ = θc = 0 at which h̄c(θc) = 1 when K → ∞, and the mirror image of this

behaviour when K → −∞.

2.8 The mass of fluid on the cylinder

Figure 2.12(a) shows a plot of the mass M of fluid on the cylinder when K = 0

given by (2.17) as a function of Q for 0 ≤ Q ≤ Qc for a range of values of

F , showing that M increases monotonically (almost linearly) with Q. Since, as

Figure 2.12(a) shows, M depends only rather weakly on F , Figure 2.12(b) shows

a plot of the difference M −M0 between M when K = 0 and the mass of fluid in

the absence of an airflow (i.e. in the corresponding classical coating-flow problem),

denoted by M0, also as a function of Q for a range of values of F . In both parts of

Figure 2.12, the dots denote the values of the critical mass M =Mc at the critical

flux Q = Qc above which there is no full-film solution. In particular, note that the

asymptotic solution for M in the regime Q≪ 1 given in (2.30) provides excellent

approximations to both M and M −M0, namely

M ∼ 2πQ and M −M0 ∼
4π

3

[
(1 + 2FK)2 + 4F 4 − 1

]
Q5, (2.46)
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Figure 2.12: (a) Plot of the mass M of fluid on the cylinder when K = 0 given by
(2.17) as a function of Q for 0 ≤ Q ≤ Qc for F = 0, 1/2, 1, 3/2, 2. (b) Plot of the
difference M −M0 between M when K = 0 and the mass of fluid in the absence
of an airflow, M0, as a function of Q for F = 0, 1/4, 1/2, . . . , 3. In both parts of
the figure, the dots denote the values of M =Mc at Q = Qc above which there is
no full-film solution.
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Figure 2.13: Plot of the critical mass of fluid on the cylinder, Mc, given by (2.27)
as a function of F for (a) K = 0, 5, 10 and (b) K = −5, −4, . . . , −1.

over the entire range of values of Q (i.e. for 0 ≤ Q ≤ Qc).

Figures 2.13 and 2.14 show plots of the critical mass of fluid on the cylinder,

Mc, given by (2.27) as a function of F for a range of values of K and as a function

of K for a range of values of F , respectively. Figures 2.13 and 2.14 show that when

K ≥ 0,Mc decreases monotonically with F and K (i.e. the maximum mass of fluid

that can be supported on the cylinder is always less than that in classical coating

flow), but that whenK < 0,Mc increases monotonically to a corner at FK = −1/2

at whichMc ≃ 3.141/F ≃ 6.282(−K), before decreasing monotonically to zero (i.e.

the maximum mass of fluid that can be supported on the cylinder can be greater

than that in classical coating flow).
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Mc

K

F = 1/10

F = 3/5

Figure 2.14: Plot of the critical mass of fluid on the cylinder, Mc, given by (2.27)
as a function of K for F = 1/10, 1/5, . . . , 3/5.

2.9 Stability

The stability of the steady two-dimensional full-film solutions obtained in the

present work to both two-dimensional and three-dimensional (i.e. axial) distur-

bances is of considerable interest. As discussed in Section 1.2 and 1.3, the study

by Newell and Viljoen [118] concluded that for long times, the film can grow

without bound for certain values of their non-dimensional airflow parameters. In

Chapter 3 we shall revisit the analysis of Newell and Viljoen [118] and show that

their analysis is largely incorrect due to a number of errors in their calculations.

A full stability analysis of the present steady solutions is outside the scope of

the present work, but, as we shall now show, the analysis of O’Brien [122] can

be generalised to show that the present subcritical full-film solutions are neutrally

stable to two-dimensional disturbances.

Considering the kinematic condition given by (1.12) and perturbing around

any of the present steady full-film solutions with a small perturbation with growth

rate s of the form ϕ(θ) exp(st) and linearising yields the equation

(1− h2f)ϕ′ + [s− (h2f)′]ϕ = 0. (2.47)

Solving (2.47) by using an integrating factor given by

η = exp

(∫
s− (h2f)

′

1− h2f
dθ

)
(2.48)
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yields the solution

ϕ ∝ 1

1− h2f
exp

(
−s
∫

1

1− h2f
dθ

)
. (2.49)

Since, as previously remarked, the present subcritical full-film solutions satisfy

h2f < 1, the integrand in (2.49) is positive, and so, since ϕ must be 2π-periodic

in θ, we deduce that the growth rate s must be purely imaginary, i.e. the present

subcritical full-film solutions are neutrally stable to two-dimensional disturbances.

This is, of course, only a rather limited result, but it at least provides a starting

point for future work on the stability of the present steady solutions for coating

flow in the presence of an airflow.

2.10 Conclusions

In Chapter 2 we undertook a detailed analysis of steady coating flow in the presence

of an irrotational airflow with circulation and showed that the presence of the

airflow can result in qualitatively different behaviour of the fluid film from that in

classical coating flow. We found that, as in classical coating flow, full-film solutions

are possible only when the flux Q and massM of fluid do not exceed critical values

Qc andMc, which we determined in terms of the parameters F and K representing

the speed of the far-field airflow and the circulation of the airflow, respectively. In

particular, equations (2.34) and (2.42) are explicit expressions for Qc in the special

case of no circulation K = 0 and in the general case of non-zero circulation K ̸= 0,

respectively.

The qualitative changes in the behaviour of the film thickness as F and K are

varied are summarised in Figure 2.10 and illustrated in Figure 2.15. Specifically,

Figure 2.10 shows how the three curves K = K1, K = K2 and K = K3 given

by (2.40) divide the F–K parameter plane into the four regions K < K1, K1 <

K < K2, K2 < K < K3 and K > K3 in which the behaviour of the film thickness

is qualitatively different. In particular, the film thickness can have as many as

four stationary points and, in general, has neither top-to-bottom nor right-to-left

symmetry (in contrast to two stationary points and top-to-bottom symmetry in

classical coating flow). It should be noted that the behaviour summarised in Figure

2.10 is qualitatively different from that in the corresponding problem of coating

flow in the presence of a uniform shear stress on the free surface of the film, in
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which the film thickness only ever has two stationary points. In addition, when the

circulation of the airflow is anticlockwise (i.e. in the same direction as the rotation

of the cylinder) the maximum mass of fluid that can be supported on the cylinder

is always less than that in classical coating flow, whereas when the circulation is

clockwise the maximum mass of fluid can be greater than that in classical coating

flow. However, whatever the speed of the far-field airflow and the circulation of

the airflow (i.e. whatever the values of F and K), the azimuthal velocity of the

film is always in the direction of the rotation of the cylinder.

Figure 2.15 shows examples of both critical and subcritical free surfaces on

the rotating cylinder, including three examples with one corner in the critical free

surface (Figures 2.15(a)–(c)) and one example in the special case FK = −1/2

with two corners in the critical free surface (Figures 2.15(d)), and examples for

which the critical flux Qc and the critical mass Mc are larger (Figures 2.15(b, d))

and smaller (Figure 2.15(c)) than the critical flux Qc = 2/3 and the critical mass

Mc = 4.443 for classical coating flow (Figure 2.15(a)).

In the present work we assumed that, since the film is thin, the airflow is

unaffected by the presence of the film. In reality, this will not always be the case.

For example, as discussed in Section 1.2, the numerical investigation of a thin

rivulet of viscous fluid on a stationary cylinder in the presence of an airflow by

Taylor and Robertson [163] showed that the presence of the rivulet on the upper

half of the cylinder can deflect the corresponding boundary layer further from

the horizontal centre line of the cylinder, which reduces the interaction between

the boundary layers in the wake in the downstream side of the cylinder, and in

particular, reduces the formation of vortices. However, this is beyond the scope

of the current work and determining the influence of the shape of the film on the

airflow remains an open problem.
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(a) (b)

(c) (d)

Figure 2.15: Examples of both critical and subcritical free surfaces on the rotating
cylinder, for (a) F = 0 and K = 0 (i.e. classical coating flow) (θc = 0, Qc = 2/3,
Mc ≃ 4.443), (b) F = 1/2 and K = −7/5 (θc ≃ 0.790π, Qc ≃ 0.745, Mc ≃ 4.859),
(c) F = 1/2 and K = 1/4 (θc ≃ −0.152π, Qc ≃ 0.541, Mc ≃ 3.559), and (d)
F = 1/2 and K = −1 (θc = 3π/4 and −π/4, Qc ≃ 0.943, Mc ≃ 6.283), with
Q = Qc and Q = 0.85Qc in each case. All of the parts of the figure are drawn on
the same scale, but, for clarity the thicknesses of the fluid films are exaggerated.
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Unsteady coating flow of a thin

film subject to an irrotational

airflow

3.1 Introduction

In this chapter we investigate the unsteady two-dimensional coating flow of an

initially uniform thin film of fluid on the outside of a rotating horizontal cylinder

in the presence of surface-tension effects and a non-uniform pressure, given by

(1.43), due to an external irrotational airflow with circulation.

As discussed in Section 1.3, Hinch and Kelmanson [61] analysed the corre-

sponding problem in the absence of an external airflow in the case in which the

effects of gravity and surface tension are weak compared with those of viscous

shear. In particular, they showed that at very large times the asymptotic solu-

tion (1.64) decays to a steady state in which the thickness of the film exhibits a

gravity-induced phase lag relative to the solid cylinder of the form (1.58). Also

discussed in Section 1.2 and 1.3, was the investigation by Newell and Viljoen [118]

who, motivated by the application of the operation of a novel rotary pesticide ap-

plicator for crops, extended the analysis of Hinch and Kelmanson [61] to include

the effects of an irrotational airflow passing over the cylinder. Newell and Viljoen

[118] incorrectly concluded that the film is conditionally unstable. In this chapter

we begin by correcting the analysis of Newell and Viljoen [118] to show that the

film is in fact unconditionally stable, followed by a description of the evolution of

103
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the initially uniform film.

3.2 Problem Formulation

We return to the problem described in Section 2.2 and sketched in Figure 2.1. In

particular, solving (1.24) subject to (2.6) implies that the pressure is independent

of y so that p = p(θ, t) is given by (2.6) throughout the film. We begin by rewriting

the pressure in the film (2.6) and the flux Q = Q(θ, t) given by (2.8) in dimensional

variables, so that

p∗ = p∗∞ +
σ∗

a∗
− σ∗

a∗2

(
∂2h∗

∂θ2
+ h∗

)
+
ρ∗a
2

[
U∗2
∞ −

(
2U∗

∞ sin θ − κ∗

2πa∗

)2
]

(3.1)

and

Q∗ = a∗Ω∗h∗ − h∗3

3µ∗

(
ρ∗g∗ cos θ +

1

a∗
∂p∗

∂θ

)
, (3.2)

respectively. In this chapter, we will again non-dimensionalise (3.1) and (3.2)

with (2.3), however, in order to be consistent with Hinch and Kelmanson [61] and

Newell and Viljoen [118], so that we may easily compare equations and results, we

redefine the characteristic film thickness H to be given by the (constant) average

film thickness so that now

H∗ =
1

2π

∫ 2π

0

h∗(θ, t∗)dθ (3.3)

and, in addition to the parameters F and K defined by (2.12), we also use the

parameters γ given by (1.59) and α̂ given by (1.62), which satisfy the regime (1.63).

Hence, the pressure (3.1) becomes

p = − α̂
γ

(
∂2h

∂θ2
+ h

)
+
F 2

2
− 1

2
(2F sin θ −K)2 , (3.4)

and the flux (3.2) becomes

Q = h− γh3
(
cos θ +

∂p

∂θ

)
, (3.5)
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that is,

Q = h− γh3 cos θ + α̂h3
∂

∂θ

(
∂2h

∂θ2
+ h

)
− 2γFh3 (K cos θ − F sin 2θ) , (3.6)

and hence from the kinematic condition given by (1.12), the governing evolution

equation takes the form

∂h

∂t
+

∂

∂θ

[
h− γh3 cos θ + α̂h3

∂

∂θ

(
∂2h

∂θ2
+ h

)
− 2γFh3(K cos θ − F sin 2θ)

]
= 0.

(3.7)

The evolution equation (3.7) is to be solved subject to periodicity conditions on h

and its derivatives, and an initial condition specifying h(θ, 0).

In the special case of no far-field airflow, F = 0, the parameter K appears in

(3.4) only in a constant contribution −K2/2 to p, and does not appear in (3.6) or

(3.7), showing that the evolution of the film is unaffected by a purely circulatory

airflow.

Equation (3.7) is invariant under the transformation

θ → θ + π, K → −
(
K +

1

F

)
(F > 0), (3.8)

showing that if a free-surface profile h(θ, t) is a solution of (3.7) corresponding

to a given value of the circulation K then the phase-shifted profile h(θ + π, t) is

a solution corresponding to the circulation −[K + (1/F )]. Moreover, although

equation (3.7) involves all four of the parameters α̂, F , K, and γ, for F ̸= 0 it

may be reduced to the form

∂h

∂t
+

∂

∂θ

[
h− γ̂βh3 cos θ + α̂h3

∂

∂θ

(
∂2h

∂θ2
+ h

)
+

1

2
γ̂h3 sin 2θ

]
= 0, (3.9)

involving only α̂, β defined by (2.38) and γ̂ defined by

γ̂ = 4F 2γ, (3.10)

which may be regarded as a reduced measure of γ, (and we note that, as mentioned

in Section 2.7, the transformation of K in (3.8) corresponds simply to β → −β).
Despite this reduction in the number of parameters, it is usually more convenient

to use the evolution equation in its original form (3.7), because (3.9) obscures
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somewhat the dependence of the film flow on the original parameters F and K of

the airflow; in particular, (3.7) makes the comparison between our analysis and

that of Hinch and Kelmanson [61] in the case F = K = 0 more transparent.

However, the reduced form (3.9) is useful when the dependence of results on α̂ is

being discussed.

In the absence of the airflow, F = K = 0, equation (3.7) reduces to equation

(3.14) of Pukhnachev [137], whose parameters µ and χ are related to α̂ and γ by

µ = 3γ and χ = 3α̂. Moreover, equations (3.4)–(3.7) reduce to the leading-order

versions of equations (35), (52), and (54), respectively, of Evans, Schwartz, and

Roy [42], whose parameters Bo and UΩ are related to α̂ and γ by Bo = γh̄/(α̂a)

and UΩ = 1/(3γ), and to equation (2.13) of Lopes, Thiele, and Hazel [94], whose

parameters Ωλ and Boλ are related to α̂ and γ by Ωλ = 1/(3γ) and Boλ = γ/α̂.

Note that the terms in the pressure p in equations (2.2) and (2.3) of Hinch and

Kelmanson [61] have the opposite signs from those in (3.2) and (3.1), but this is

of no consequence because these differences in sign cancel out in their evolution

equation (2.4) (which is identical to the present (3.7) with F = K = 0) on which

all of their subsequent analysis is based. All of the results in the present work

obtained from (3.7) agree with those of Hinch and Kelmanson [61] in the absence

of the airflow.

For flow in the presence of the airflow, F ̸= 0, equations (3.4) and (3.6) reduce

to equations (2.11) and (2.15), respectively in the case of steady flow in the absence

of capillarity, α̂ = 0, with γ = 1/3.

Newell and Viljoen [118] investigated the particular case κ∗ = 2πa∗2Ω∗, while

allowing U∗
∞ to take values in the range −a∗Ω∗ ≤ U∗

∞ ≤ a∗Ω∗. Note, however,

that, irrespective of whether or not a particular choice of κ∗ is made, there are

two free parameters associated with the airflow, namely F and K in the present

notation, or correspondingly the parameters w and φ in the notation of Newell

and Viljoen [118], which are related to F and K by w = F/K and φ = 2K2; in

the case κ∗ = 2πa∗2Ω∗, i.e.

w =
F

K
=

U∗
∞

a∗Ω∗ , φ = 2K2 =
2ρ∗aa

∗Ω∗2

ρ∗g∗
(≥ 0) (3.11)

in the present notation. Note that Newell and Viljoen [118] omitted the factor 2

from the definition of their parameter φ, but this appears to be simply a typo-

graphical error.
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As mentioned in Section 2.9 the work of Newell and Viljoen [118] contains a

number of errors. Primarily, Newell and Viljoen [118] (evidently following Hinch

and Kelmanson [61]) have the opposite signs on p in their equations (5) and (6)

from those in the present (3.2) and (3.1), but unfortunately, unlike for Hinch

and Kelmanson [61], these differences in sign do not cancel out in their evolution

equation (7) (i.e. their version of the present equation (3.7)), leading to their (7)

having the incorrect sign on the term due to the airflow, i.e. the term involving

their parameter φ. However, as we shall show in what follows, obtaining the correct

description of the behaviour of the film is not simply a matter of reversing the sign

of the term due to the airflow in the analysis of Newell and Viljoen [118].

3.3 Evolution of the film thickness

In this section we correct the asymptotic analysis of Newell and Viljoen [118],

who, as we have already described, sought to extend the analysis of Hinch and

Kelmanson [61] to include the effect of the airflow.

Hinch and Kelmanson [61] considered the case γ ≪ 1 and α̂ ≪ 1 (in the absence

of the airflow, F = K = 0), and showed that the film evolves on four different

timescales, and they posited a two-timescale expansion of the film thickness to

reveal the structure of this evolution. Specifically, as discussed in Section 1.3,

Hinch and Kelmanson [61] analysed the evolution of an initially uniform film (so

that h(θ, 0) = 1) in the regime (1.63) by seeking a solution of (3.7) with F = 0 for

h as an expansion in powers of γ:

h = 1 + γψ1 + γ2ψ2 + γ3ψ3 +O(γ4), (3.12)

where the ψi = ψi(θ, t0, t1) depend on the two timescales t0 = t and t1 = γ2t,

so that ∂ψi/∂t = ∂ψi/∂t0 + γ2∂ψi/∂t1, and the asymptotic solution (3.12) is

uniformly valid only for t < O(γ−2). Note that the ψi satisfy the initial conditions

ψi(θ, 0, 0) = 0.

Based on the observation that the film thickness h in the absence of the airflow

is only weakly dependent on α̂, Hinch and Kelmanson [61] make the point that,

despite the formal restrictions on α̂ in (1.63), in practice their analysis is valid

for α̂ as large as O(1). For the present purposes, the main result of Hinch and

Kelmanson [61] is that the growth rate of the film thickness s1 given by (1.61)
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which again, for α̂ > 0, is clearly negative, showing that the solution (1.64) is

stable in the sense that it decays to a steady state at very large times, and for

α̂ = 0 is clearly zero, showing that the solution (1.64) is neutrally stable in the

absence of capillarity. We adopt the same approach to the problem in the presence

of the airflow by analysing the evolution equation (3.7) for the film with F ̸= 0,

and, in particular, we obtain the corresponding expression for the growth rate s1,

to understand how the presence of the airflow affects the evolution of the film. On

the assumption that in the presence of the airflow the film thickness h is again

only weakly dependent on α̂, we follow Hinch and Kelmanson [61] and Newell and

Viljoen [118] and allow α̂ to be as large as O(1).

Some of the algebraic manipulations involved in obtaining the analytical results

presented in the next three subsections are rather lengthy, and so as a check on the

accuracy of our results we implemented the entire calculation in two independent

ways using the symbolic computational systems Maple [95] and Mathematica [182].

Two simple but important checks on the validity of the present analysis are that

in the absence of the airflow, F = K = 0, the results obtained reduce to those of

Hinch and Kelmanson [61], and that under the transformation (3.8) the free-surface

profile h(θ, t) becomes the phase-shifted profile h(θ + π, t).

3.3.1 Solution for ψ1

Substituting (3.12) into (3.7) yields

Lψ1 = −(1 + 2KF )s1,0 − 4F 2c2,0 (3.13)

at O(γ), where the linear operator L, introduced by Hinch and Kelmanson [61], is

defined by

L =
∂

∂t0
+

∂

∂θ
+ α̂

(
∂4

∂θ4
+

∂2

∂θ2

)
, (3.14)

and ci,j and si,j are defined by ci,j = cos(iθ − jt0) and si,j = sin(iθ − jt0). As

Hinch and Kelmanson [61] describe, 2π-periodic solutions Ψ(θ, t0, t1) of the equa-

tion LΨ = 0 are of the form

Ψ(θ, t0, t1) =
∞∑

n=1

[An(t1)cn,n +Bn(t1)sn,n] exp
[
−n2(n2 − 1)α̂t0

]
, (3.15)
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where An(t1) and Bn(t1) are arbitrary functions of t1, showing that the nth har-

monics cn,n and sn,n (n = 2, 3, 4, . . . ) decay exponentially quickly on the fast

timescale α̂t0, but that the fundamental (n = 1) modes c1,1 and s1,1 can decay

only slowly via the functions A1(t1) and B1(t1) on the timescale t1 = γ2t0.

The solution of (3.13) is of the form

ψ1 =
∞∑

n=1

[A1n(t1)cn,n +B1n(t1)sn,n] exp
[
−n2(n2 − 1)α̂t0

]

+ (1 + 2KF )c1,0 −
2F 2

1 + 36α̂2
(s2,0 + 6α̂c2,0), (3.16)

where the A1n(t1) and B1n(t1) are required by the initial condition ψ1(θ, 0, 0) = 0

to satisfy

A11(0) = −(1 + 2KF ), B11(0) = 0,

A12(0) =
12F 2α̂

1 + 36α̂2
, B12(0) =

2F 2

1 + 36α̂2
, (3.17)

A1n(0) = 0, B1n(0) = 0 for n = 3, 4, 5, . . . .

Since the contributions from the higher modes (n ≥ 2) are non-negligible only for

small times, we may replace A1n(t1) and B1n(t1) with A1n(0) and B1n(0) for n ≥ 2

(but not for n = 1). Thus (3.16) becomes, with the subscripts omitted from A11

and B11 for clarity,

ψ1 = A(t1)c1,1 +B(t1)s1,1 + (1 + 2KF )c1,0

− 2F 2

1 + 36α̂2

[
(s2,0 + 6α̂c2,0)− (s2,2 + 6α̂c2,2) exp(−12α̂t0)

]
, (3.18)

where, from (3.17), A(t1) and B(t1) satisfy A(0) = −(1 + 2KF ) and B(0) = 0. In

Section 3.3.3 we shall determine A and B by considering secular terms at O(γ3).

Note that the solution for ψ1 given by (3.18) is in agreement with the solution

for ψ1 given by equations (9) and (10) of Newell and Viljoen [118]; also in the

absence of the airflow, F = K = 0, it reduces to the solution for ψ1 in Hinch and

Kelmanson [61] given by the O(γ) term in (1.64).

Since modes with n ≥ 2 decay exponentially quickly on the timescale t0, hence-

forth we follow Hinch and Kelmanson [61] and Newell and Viljoen [118] in dropping

them when we consider higher-order terms in γ.
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3.3.2 Solution for ψ2

At O(γ2) equation (3.7) gives

Lψ2 =− 3F 2
{[
A(t1)− 6α̂B(t1)

]
c1,−1 −

[
6α̂A(t1) +B(t1)

]
s1,−1

}

1 + 36α̂2

− 6F 2
(
1 + 2KF

)(
c1,0 − 6α̂s1,0

)

1 + 36α̂2
− 3
(
1 + 2KF

)2
s2,0

+ 3
(
1 + 2KF

)[
B(t1)c2,1 − A(t1)s2,1

]
− 18F 2

(
1 + 2KF

)[
c3,0 − 6α̂s3,0

]

1 + 36α̂2

− 9F 2
{[
A(t1) + 6α̂B(t1)

]
c3,1 −

[
6α̂A(t1)−B(t1)

]
s3,1
}

1 + 36α̂2

+
24F 4

[
12α̂c4,0 +

(
1− 36α̂2

)
s4,0
]

(
1 + 36α̂2

)2 . (3.19)

The solution of (3.19) may be written as a sum ψ2 = ψ2s + ψ2u of a steady part

ψ2s and an unsteady part ψ2u, where

ψ2s =− 6F 2
(
1 + 2KF

)(
6α̂c1,0 + s1,0

)

1 + 36α̂2
+

3
(
1 + 2KF

)2(
c2,0 − 6α̂s2,0

)

2
(
1 + 36α̂2

)

− 6F 2
(
1 + 2KF

)[
30α̂c3,0 + (1− 144α̂2)s3,0

]
(
1 + 36α̂2

)(
1 + 576α̂2

)

− 6F 4
[(
1− 756α̂2

)
c4,0 − 72α̂

(
1− 30α̂2

)
s4,0
]

(
1 + 36α̂2

)2(
1 + 3600α̂2

) (3.20)

and

ψ2u =− 3F 2
{[

6α̂A(t1) +B(t1)
]
c1,−1 +

[
A(t1)− 6α̂B(t1)

]
s1,−1

}

2
(
1 + 36α̂2

)

+
3
(
1 + 2KF

){[
A(t1) + 12α̂B(t1)

]
c2,1 −

[
12α̂A(t1)−B(t1)

]
s2,1
}

1 + 144α̂2

− 9F 2
{[

42α̂A(t1)−
(
1− 216α̂2

)
B(t1)

]
c3,1 +

[(
1− 216α̂2

)
A(t1) + 42α̂B(t1)

]
s3,1
}

2
(
1 + 36α̂2

)(
1 + 1296α̂2

) .

(3.21)

Note that the solution for ψ2 given by equations (3.20) and (3.21) does not agree

with that given by equations (11) and (12) of Newell and Viljoen [118], and more-

over that, as previously pointed out, obtaining the correct solution for ψ2 is not

simply a matter of reversing the sign of the term due to the airflow in their solution.



Chapter 3 111

However, in the absence of the airflow, F = K = 0, both of these solutions reduce

to that given by equation (3.5) of Hinch and Kelmanson [61], as they should.

3.3.3 Solution for s1

At O(γ3) equation (3.7) gives

Lψ3 =− 3
∂

∂θ

{(
ψ2
1 + ψ2

) [
α̂
∂ψ1

∂θ
+ α̂

∂3ψ1

∂θ3
+ 2F 2 sin 2θ − (1 + 2FK) cos θ

]}

− 3α̂
∂

∂θ

[
ψ1

(
∂ψ2

∂θ
+
∂3ψ2

∂θ3

)]
− ∂ψ1

∂t1
, (3.22)

with ψ1 and ψ2 given by (3.18), (3.20) and (3.21).

The expanded form of (3.22), omitted for brevity, involves secular terms s1,1

and c1,1; setting the coefficients of these terms to zero leads to a pair of ordinary

differential equations for A(t1) and B(t1), namely

dA

dt1
= s1A+ s2B, (3.23)

dB

dt1
= −s2A+ s1B, (3.24)

where the real constants s1 and s2 are given by

s1 = −81α̂

(
10F 4

(1 + 36α̂2)(1 + 1296α̂2)
+

(1 + 2KF )2

1 + 144α̂2

)
≤ 0 (3.25)

and

s2 =
30(1 + 324α̂2)F 4

(1 + 36α̂2)(1 + 1296α̂2)
+

3(5 + 72α̂2)(1 + 2KF )2

2(1 + 144α̂2)
≥ 0. (3.26)

Note that these expressions for s1 and s2 are invariant under the transformation of

K given in (3.8), which provides a check on their validity. The solution of (3.23)

and (3.24) subject to the initial conditions A(0) = −(1 + 2KF ) and B(0) = 0 is

simply

A(t1) = −(1 + 2KF ) exp(s1t1) cos(s2t1), (3.27)

B(t1) = (1 + 2KF ) exp(s1t1) sin(s2t1). (3.28)
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equation (3.25) shows that for α̂ > 0 the growth rate of the solution, s1, is always

negative, and so we arrive at our main result, namely that the solution (3.12) for

h to O(γ3) is unconditionally stable, decaying exponentially quickly like exp(s1t1)

to a steady state at very large times. In particular, in the limit of a slow airflow,

F → 0,

s1 = − 81α̂

1 + 144α̂2
− 324Kα̂F

1 + 144α̂2
+O(F 2) → − 81α̂

1 + 144α̂2
≤ 0, (3.29)

in the regime of a fast airflow, F ≫ 1,

s1 = − 810α̂F 4

(1 + 36α̂2)(1 + 1296α̂2)
+O(F 2) → −∞, (3.30)

in the case of no circulation, K = 0,

s1 = −81α̂

(
10F 4

(1 + 36α̂2)(1 + 1296α̂2)
+

1

1 + 144α̂2

)
≤ 0, (3.31)

and in the regime of strong circulation, |K| ≫ 1,

s1 = − 324α̂F 2

1 + 144α̂2
K2 +O(K) → −∞. (3.32)

Furthermore, in the regime of weak capillarity, α̂ ≪ 1,

s1 = −81
[
(1 + 2KF )2 + 10F 4

]
α̂ +O(α̂3) → 0−, (3.33)

which is consistent with the conclusion of the limited stability analysis in Section

2.9 that in the absence of capillarity, α̂ = 0, the solution is neutrally stable (i.e.

s1 = 0).

Figure 3.1 shows plots of s1 as a function of F for several values of K for

the values of α̂ considered by Hinch and Kelmanson [61] and Newell and Viljoen

[118], namely α̂ = 0.0048 and α̂ = 0.058. As Figure 3.1 illustrates, s1 decreases

monotonically with F when K ≥ 0, but first increases to a negative maximum

before decreasing monotonically when K < 0; in particular, the behaviour of s1 is

consistent with the asymptotic results (3.29)–(3.33). The dashed curves in Figure

3.1 show the locus of the maximum of s1 as K varies from −∞, corresponding to
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(a)

F

s1

K = −5

K = 0

K = 5

(b)

F

s1

K = −5

K = 0

K = 5

Figure 3.1: Plot of the growth rate s1 given by (3.25) as a function of F forK = −5,
−4, −3, . . . , 5 for the values of α̂ considered by Hinch and Kelmanson [61] and
Newell and Viljoen [118], namely (a) α̂ = 0.0048 and (b) α̂ = 0.058. The dashed
curves show the locus of the maximum of s1 asK varies from−∞ [corresponding to
the point (F, s1) = (0, 0)] to 0 [corresponding to the point (F, s1) =

(
0,−81α̂/(1+

144α̂2)
)
].

the point (F, s1) = (0, 0), to 0, corresponding to the point

(F, s1) =

(
0,− 81α̂

1 + 144α̂2

)
, (3.34)

confirming that s1 ≤ 0, and hence that the solution is unconditionally stable, for

all values of F (≥ 0) and K.

Equations (3.25) and (3.26) show that s1 and s2 depend on all three of the

parameters α̂, F , and K; however, the behaviour of s1 and s2 can be seen more

clearly if (3.25) and (3.26) are instead written as equations for the scaled quantities
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α̂

s1/F
4

β = 1
3/4

1/2
1/4

0

Figure 3.2: Plot of the scaled growth rate s1/F
4 given by (3.35) as a function of

α̂ for β = 0, 1/4, 1/2, 3/4 and 1, where β = (1 + 2KF )/(4F 2).

s1/F
4 and s2/F

4, which depend on just the two parameters α̂ and β:

s1
F 4

= −162α̂

(
5

(1 + 36α̂2)(1 + 1296α̂2)
+

8β2

1 + 144α̂2

)
≤ 0 (3.35)

and
s2
F 4

=
30(1 + 324α̂2)

(1 + 36α̂2)(1 + 1296α̂2)
+

24(5 + 72α̂2)β2

1 + 144α̂2
≥ 0. (3.36)

Figure 3.2 shows the scaled growth rate s1/F
4 as a function of α̂ for a range of

values of β, the collapse of the results onto curves of constant β being a consequence

of the reduction from three parameters to two. In all cases s1/F
4 decreases with

α̂ from 0 to a minimum value before increasing monotonically to 0.

Note that the expression for s1 given by equation (3.25) does not agree with

that given by equation (13) of Newell and Viljoen [118], and moreover that, as

previously pointed out, obtaining the correct solution for s1 is not simply a matter

of reversing the sign of the term due to the airflow in their solution. However, in the

absence of the airflow, F = K = 0, it reduces to (1.61), that is, to equation (3.10)

of Hinch and Kelmanson [61], as it should. Confirmation that the result of Newell

and Viljoen [118] is erroneous comes from the fact that their expression for s1 does

not agree with the equation (3.10) of Hinch and Kelmanson [61] when φ = 0 (due,

we believe, to a double-counting of terms of the types c1,1c
2
n,0 + c1,1s

2
n,0 = c1,1 and

s1,1c
2
n,0 + s1,1s

2
n,0 = s1,1), and so is in error even in the absence of the airflow.



Chapter 3 115

3.3.4 Evolution of the free surface of the film

To O(γ) we have h = 1 + γψ1, and so to O(ϵγ), where again ϵ = H/a ≪ 1, the

free surface has the form r = 1 + ϵ(1 + γψ1), that is,

r = 1 + ϵ+ ϵγ

{
(1 + 2KF )

(
c1,0 − [c1,1 cos(s2t1)− s1,1 sin(s2t1)] exp(s1t1)

)

− 2F 2

1 + 36α̂2
[(s2,0 + 6α̂c2,0)− (s2,2 + 6α̂c2,2) exp(−12α̂t0)]

}
, (3.37)

where r has been scaled with a. The free surface (3.37) oscillates temporally; for

α̂ = 0 the amplitude of the oscillation is finite for all t, whereas for α̂ > 0 the

amplitude decays to zero in the limit t→ ∞, and the free surface approaches the

steady profile

r = 1 + ϵ+ ϵγ
[
(1 + 2KF )c1,0 −

2F 2

1 + 36α̂2
(s2,0 + 6α̂c2,0)

]
. (3.38)

As Figure 3.2 shows, for each β there is a unique value of α̂ corresponding to

the minimum of s1 (i.e. a special value of the surface tension) such that (3.37)

approaches (3.38) quickest: if α̂ is larger or smaller than this (i.e. if surface tension

is stronger or weaker than this special value) then the approach is slower.

As Hinch and Kelmanson [61] pointed out, in the absence of the airflow, F =

K = 0, the free surface (3.37) is a circular cylinder of radius 1 + ϵ whose centre is

offset from the axis of the solid cylinder by ϵd at any instant, where d is given by

(1.58) and Â = Â(t1) and B̂ = B̂(t1) correspond to A and B in (3.27) and (3.28)

with F = 0; thus for α̂ > 0 the centre of the circular free surface spirals around

the point (ϵγ, 0), approaching it in the limit t→ ∞. Moreover, rewriting the term

c1,1 cos(s2t1) − s1,1 sin(s2t1) in (3.37) with F = 0 in the form cos[θ − (t0 − s2t1)]

shows that the free surface lags the solid cylinder by the amount s2t1.

In the presence of the airflow the occurrence of the terms involving c2,0 and s2,0

(i.e. cos 2θ and sin 2θ) in (3.37) and (3.38) means that the free surface, while still,

of course, a cylinder, is no longer simply circular, and that it is no longer possible

to identify a uniquely defined lag of the free surface relative to the solid cylinder.

Figure 3.3 shows examples of snapshots of free surfaces given by (3.37) at

various times, comparing a case in the absence of the airflow, F = K = 0, with

cases with far-field airflow F = 1 and positive, negative or zero air circulation K,

all plotted for α̂ = 0 and γ = 1/15 (the latter value being chosen for illustrative
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Snapshots of free surfaces to O(ϵγ) in the cases (a) F = K = 0, (b)
F = 1, K = −2, (c) F = 1, K = −1, (d) F = 1, K = 0, (e) F = 1, K = 1, (f)
F = 1, K = 2, with α̂ = 0 and γ = 1/15 in each case, at times t0 = 0 (dotted
curves), t0 = 2.5 (dashed curves), and t0 = 5 (full curves). The film thickness is
exaggerated for clarity.

purposes). Figure 3.3 illustrates the effect of the airflow in both distorting the

film and modifying its offset from the centre of the solid cylinder. Figure 3.4

shows corresponding plots for α̂ = 1/15 (and again with γ = 1/15), illustrating

the tendency of capillarity to suppress the distortion of the film. The largest time

shown in Figures 3.3 and 3.4, namely t0 = 5, was chosen simply because the free

surfaces in Figure 3.4 (but not those in Figure 3.3) are close to their large-time

asymptotic state (3.38) by this time, and change little thereafter.

The successive parts of both Figure 3.3 and Figure 3.4 correspond to the values

β = ∞, −3/4, −1/4, 1/4, 3/4, and 5/4, respectively, and therefore parts (b) and

(e) and parts (c) and (d) provide examples of the phase shift of π under the

transformation (3.8), mentioned in Section 3.2; for example, the value of r given

by (3.37) at any position θ at time t in Figure 3.3(b) is the same as the value of r

at position θ + π at time t in Figure 3.3(e).
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Snapshots of free surfaces to O(ϵγ) in the cases (a) F = K = 0, (b)
F = 1, K = −2, (c) F = 1, K = −1, (d) F = 1, K = 0, (e) F = 1, K = 1, (f)
F = 1, K = 2, with α̂ = 1/15 and γ = 1/15 in each case, at times t0 = 0 (dotted
curves), t0 = 2.5 (dashed curves), and t0 = 5 (full curves). The film thickness is
exaggerated for clarity.

3.4 Conclusions

In this chapter we corrected the analysis of Newell and Viljoen [118] of unsteady

two-dimensional coating flow of a thin film of a viscous fluid on the outside of a

uniformly rotating solid horizontal circular cylinder in the presence of a steady two-

dimensional irrotational airflow with circulation, in the case in which the effects

of gravity and of capillarity are weak compared with those of viscous shear. In

contrast with the claim of Newell and Viljoen [118] that the solution is unstable for

certain values of the physical parameters, we found that the growth rate s1, given

by (3.25) in terms of the parameters F , K, and α̂ representing the speed of the

far-field airflow, the circulation of the airflow, and surface tension, respectively, is

always non-positive, and so the solution for h to O(γ3) is unconditionally stable.

From their study Newell and Viljoen [118] drew five conclusions concerning the

operation of the novel rotary pesticide applicator for crops described in Section 1.2.

These conclusions, quoted directly from Newell and Viljoen [118], with additional

text added for clarity written inside square brackets [·], are
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1. “A stability condition was derived, [namely equation] (13) [of Newell and

Viljoen [118]], which can be used to find stable operating conditions for our

pesticide applicator. The stability condition depends explicitly on system pa-

rameters; therefore, one can explore how constitutive modifications of the

pesticide solution to adjust the viscosity or surface tension will affect the

stability.”

2. “An analytical solution [namely equation] (19) [of Newell and Viljoen [118]],

is derived for the nonsteady state model derived from O(ϵ) lubrication theory,

[given by equation] (14) [of Newell and Viljoen [118]] for the initial data

h(θ, 0) = 1. The series solution, for the special case α̂ = φ = 0, matches the

analytical solution very well.”

3. “The film is more stable to negative air velocity. To satisfy this condition, the

roller must approach the weed, while the roller rotates from below up toward

the plant, thus contacting the leaves from below.”

4. “A practical consequence of conclusion 3 is that the pesticide will mostly be

applied to the abaxial (underneath) leaf surface; thence, the fluid must be

modified to adhere to the leaf and minimise dripping.”

5. “Since systemic pesticides are transported in the plant’s phloem, uptake thro-

ugh the epidermis is important. Although not experimentally confirmed, there

is strong evidence that uptake rates from the abaxial side are higher than

from the adaxial surface. Knoche and Bukovac [83] measured uptake rates

of gibberellic acid by sour cherry leaves and found that uptake rates were

significantly higher on the abaxial side (see their Table III). Therefore, it

may be a more effective practice to apply the active ingredient to the abaxial

leaf surface.”

Unfortunately their erroneous prediction of instability renders their first conclusion

incorrect and their third, fourth and fifth conclusions moot; their second conclu-

sion is correct but concerns only the case of no airflow, and so provides no new

information about the use of the applicator. On a more positive note, however,

the successful use of the pesticide applicator depends on the film being stable —

and our results show that this is always the case in the regime considered.
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Porous squeeze-film flow

In this chapter we describe the behaviour of the axisymmetric squeeze-film flow

of a thin layer of fluid in a gap between a flat impermeable bearing moving under

a prescribed constant load and a flat thin porous bed, the base of which is open

to the atmosphere. In particular, we derive an implicit expression for the fluid

gap thickness, an explicit expression for the contact time of the bearing and the

porous bed, calculate the particle paths and penetration depths of fluid particles

in the porous bed, and analyse their behaviour in the limits of small and large

permeability.

As discussed in Section 1.4, the porous squeeze film problem has been well

studied due to its applicability to many practical situations. For example, the

analysis of the present problem, in which the base of the porous bed is open to the

atmosphere, is particularly relevant to the understanding of fluid flow in porous gas

bearings and filters. However, in this chapter we describe the porous squeeze-film

problem as generally as possible, with no particular application in mind, with the

knowledge that the general analysis can be applied to these practical situations.

4.1 Problem formulation

With respect to the axisymmetric cylindrical polar coordinates (r∗, z∗), we con-

sider the pressure-driven porous squeeze-film problem as shown in Figure 4.1. In

particular, we consider the unsteady flow of a thin film of Newtonian fluid with

constant viscosity µ∗ and density ρ∗ in the thin gap between a flat impermeable

bearing and a flat porous bed. The thickness of the fluid gap at time t∗ with initial

119
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z∗

O

z∗ = −H∗
p

z∗ = 0

z∗ = h∗ (t∗)

R∗

L∗ (t∗)

Impermeable layer

z∗

O
Porous bed

Fluid gap

Impermeable bearing

R∗

L∗ (t∗)
(a) (b)

Figure 4.1: The setup of the axisymmetric porous squeeze-film problem where
either (a) there is an impermeable layer below the porous bed (the “closed-base
configuration”) or (b) the base of the porous bed is open to the atmosphere (the
“open-base configuration”).

bearing height h∗(0) = H∗
f is denoted by h∗ = h∗(t∗). The thickness of the porous

bed is H∗
p and the bearing and porous bed both have radius R∗. The porous bed

is fully saturated in fluid at t∗ = 0 and has constant permeability k∗ and porosity

0 ≤ ϕ ≤ 1, where, as discussed in Section 1.4, ϕ = V ∗
p /V

∗
bed, where V

∗
p is the total

volume of empty space within the pores of the porous bed and V ∗
bed is the total vol-

ume of the bed. A prescribed load L∗(t∗) > 0 which acts vertically downwards is

applied to the bearing, pushing the bearing towards the porous bed. As discussed

in Section 1.4, in the case of an impermeable bed, a theoretically infinite time is

required to squeeze all of the fluid out of the gap into the region beyond r∗ = R∗

(see, for example, [50]). However, if the bed is porous, then all of the fluid is

squeezed out of the gap into either the porous bed through the interface z∗ = 0 or

the region beyond r∗ = R∗ in a finite time, and hence a finite contact time t∗ = t∗c

between the bearing and porous bed is achieved. At the base of the porous bed

z∗ = −H∗
p, there may be either an impermeable layer stopping fluid flowing out of

the base of the porous bed or the base of the porous bed is open to the atmosphere

as shown in Figure 4.1(a) and 4.1(b), respectively. We shall henceforth refer to

the problem described in Figure 4.1(a) as the “closed-base configuration” and the

problem described in Figure 4.1(b) as the “open-base configuration”.

As discussed in Section 1.4, the closed-base configuration has been considered

previously by, for example, Wu [186], Murti [111], Knox et al. [86], Karmakar

and Raja Sekhar [75] and Venerus [169], whilst open-base configuration has been

considered previously by, for example, Murti [112], Verma [170] and Venerus [169].
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Many previous works on these problems derive equations for the fluid gap thickness,

velocity and pressure in the fluid gap, and Darcy velocity and Darcy pressure in the

porous bed, and then analyse their behaviour as the permeability or slip length

are varied. There has been less work analysing the finite contact time t∗c, the

particles paths, and the penetration depths of fluid particles initially situated in

either the fluid gap or porous bed. As discussed in Section 1.4, for the closed-

base configuration, Knox et al. [86] derived expressions for the finite contact time

and investigated the particle paths of fluid particles initially situated in either the

fluid gap or porous bed, and investigated their behaviour in the limits of small

and large permeability. For the purpose of comparison, a brief outline of the

results for the closed-base configuration is presented in Section 4.5. In Section

4.6 we will investigate the finite contact time and particle paths for the open-base

configuration, and the corresponding two-dimensional problem is treated briefly in

Appendix E.

4.2 Governing equations

The governing equations in the fluid gap (0 ≤ z∗ ≤ h∗) are the continuity equation

(1.2) and Navier–Stokes equation (1.3), where u∗ = (u∗, w∗) is the fluid velocity

in the fluid gap with radial component u∗ = u∗(r∗, z∗, t∗) and vertical component

w∗ = w∗(r∗, z∗, t∗), the fluid pressure is denoted by p∗ = p(r∗, z∗, t∗) and g∗ =

(0,−g∗) is the constant acceleration due to gravity.

The governing equations in the porous bed (−H∗
p ≤ z∗ ≤ 0), with Darcy veloc-

ity U∗ = (U∗,W ∗) with radial component U∗ = U∗(r∗, z∗, t∗) and vertical compo-

nentW ∗ = W ∗(r∗, z∗, t∗) and Darcy pressure P ∗ = P ∗(r∗, z∗, t∗), are the continuity

equation given by

∇∗ ·U∗ = 0 (4.1)

and Darcy’s law given by (1.65). As we will see in what follows, qualitatively

different behaviour occurs for small and large values of the permeability k∗.

The averaging process employed by Whitaker [175] to derive Darcy’s law as-

sumes that macroscopic length scales of the porous medium, e.g. which are of the

order of O(H∗
p), are much larger than the microscopic length scales associated with

the pore length scales, which are of the order of O(k∗1/2) (this is also the case in

most practical applications of flow through a porous medium). Therefore Darcy’s
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law is valid only for k∗/H∗2
p ≪ 1. Despite this limitation, in order to obtain a full

description of the problem mathematically, we shall investigate both the limits of

small and large dimensionless permeability k∗/H∗2
p → 0 and k∗/H∗2

p → ∞, respec-

tively, throughout this chapter, whilst bearing in mind that k∗/H∗2
p → 0 is the

most physically relevant limit. This is also the case for the slip length l∗s = k∗1/2/α

which is of the same size as the microscopic length scales associated with the pore

length scales (O(k∗1/2)). Hence the limit l∗s/H
∗
p → 0 is again the most physically

relevant limit, however in order to obtain a full description of the problem math-

ematically, we shall again investigate both limits of small and large dimensionless

slip length.

4.2.1 Equation of motion of the bearing

From Newton’s second law of motion, we derive the equation of motion for the

bearing, given by

L∗ = F ∗
z −M∗d

2h∗

dt∗2
, (4.2)

where the net force F ∗
z exerted on the bearing by the fluid in the z∗-direction is

given by

F ∗
z = 2π

∫ R∗

0

(
p∗ − 2µ∗∂w

∗

∂z∗

)
r∗

∣∣∣∣∣
z∗=h∗

dr∗, (4.3)

and M∗ is the mass of bearing.

4.2.2 Boundary conditions

The no-slip and no-penetration conditions at the bearing are

u∗ = 0, w∗ =
dh∗

dt∗
(4.4)

on z∗ = h∗. Continuity of mass at the interface between the fluid gap and porous

bed requires

w∗ = W ∗ (4.5)

on z∗ = 0, and continuity of normal stress requires

−p∗ + 2µ∗∂u
∗

∂z∗
= −P ∗ (4.6)
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on z∗ = 0. As described in Section 1.4, the interface between the fluid gap and

porous bed we also impose the Beavers–Joseph condition (1.69).

Below the porous bed at z∗ = −H∗
p in the closed-base configuration we impose

the no-penetration condition, i.e.

W ∗ = 0 (4.7)

on z∗ = −H∗
p. On the other hand, in the open-base configuration we impose a

condition of ambient pressure, and so, without loss of generality, we impose

P ∗ = 0 (4.8)

on z∗ = −H∗
p. At the outer edge of the fluid located at r∗ = R∗ the pressure in

the fluid gap takes the ambient value, and hence, without loss of generality, we

impose

p∗ = 0 (4.9)

at r∗ = R∗, and since the fluid pressure is axisymmetric and smooth we require

∂p∗

∂r∗
= 0 (4.10)

at r∗ = 0. Note that to solve the current problem we would, in general, require an

additional boundary condition, for example a specification of the Darcy pressure

at r∗ = R∗. However, as we shall show subsequently, since the porous bed and

fluid gap are thin, we do not need to specify another boundary condition in order

to close the problem.

4.3 Thin-film approximation

Henceforth we will consider the fluid gap and porous bed to be thin, i.e. the fluid

gap and porous bed both have aspect ratio ϵ = H∗
p/R

∗ ≪ 1. As we shall see,

making this approximation leads to significant simplifications in the governing

equations at leading order in the limit ϵ→ 0.
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4.3.1 Non-dimensionalisation

We now non-dimensionalise the variables according to

r∗ = R∗r, z∗ = H∗
pz, t∗ =

R∗

V ∗ t, h∗ = H∗
ph, k∗ = H∗2

p k̂, l∗s = H∗
pls,

u∗ = V u, w∗ =
H∗

pV
∗

R∗ w, U∗ = V ∗U, W ∗ =
H∗

pV

R∗ W,

p∗ =
µ∗V ∗R∗

H∗2
p

p, P ∗ =
µ∗V ∗R∗

H∗2
p

P, L∗ = L∗
0L, d = H∗

f /H
∗
p, (4.11)

where h(0) = d is the initial thickness of the fluid gap, V ∗, µ∗V ∗R∗/H∗2
p and L∗

0

are appropriate characteristic scales for the velocity, pressure and load where

V ∗ =
H∗2

p L
∗
0

µ∗R∗3 . (4.12)

4.3.2 Leading-order governing equations

Subject to the scalings (4.11), in the fluid gap 0 ≤ z ≤ h, the governing equations

(1.2) and (1.3) at leading order in the limit ϵ→ 0, neglecting body forces, become

1

r

∂

∂r
(ru) +

∂w

∂z
= 0, (4.13)

∂p

∂r
=
∂2u

∂z2
, (4.14)

∂p

∂z
= 0, (4.15)

and hence

p = p(r, t). (4.16)

In the porous bed −1 ≤ z ≤ 0, the Darcy equation (1.65) becomes

U = (U,W ) = −k̂
(
∂P

∂r
,
1

ϵ2
∂P

∂z

)
, (4.17)

where the Darcy pressure P satisfies Laplace’s equation

1

r

∂

∂r

(
r
∂P

∂r

)
+

1

ϵ2
∂2P

∂z2
= 0, (4.18)
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which at leading order in the limit ϵ→ 0 reduces to

∂2P

∂z2
= 0. (4.19)

Since the fluid layer is thin, at leading order in the limit ϵ → 0 the equation of

motion (4.2) becomes the load condition L = Fz, where

L = 2π

∫ 1

0

pr dr. (4.20)

We may either consider a time dependent or constant load L. In the case of a

constant load, for simplicity we will choose the value of the constant (dimensional)

load to be L∗ = L∗
0 > 0, corresponding to taking the constant (dimensionless) load

to be equal to unity, i.e. L0 = 1, without loss of generality. We shall, however,

retain the constant (dimensionless) load L0 explicitly in what follows for clarity of

presentation. The boundary conditions (4.4)–(4.6) become

u = 0, w =
dh

dt
(4.21)

on z = h,

w = W (4.22)

on z = 0,

P = p (4.23)

on z = 0. On the boundary between the porous bed and the fluid gap the Beavers–

Joseph condition (1.69) becomes

u− δU =
k̂

1
2

α

∂u

∂z
(4.24)

on z = 0, where we have introduced the non-dimensional parameter δ which may

either take the value δ = 1 corresponding to the Beavers–Joseph condition or δ = 0

corresponding to the Saffman condition (1.70), with slip length

ls =
k̂

1
2

α
. (4.25)
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In the limit ls → 0 with δ = 1 (4.24) reduces to the no-slip condition relative to

the fluid in the porous bed given by

u = U (4.26)

on z = 0, and when δ = 0 (4.24) reduces to the no-slip condition relative to the

solid which makes up the porous bed given by

u = 0 (4.27)

on z = 0. In the limit ls → ∞ both the Beavers–Joseph condition (4.24) and

Saffman condition (i.e. irrespective of the value of δ) become the zero-shear con-

dition given by
∂u

∂z
= 0 (4.28)

on z = 0. If there is an impermeable layer below the porous bed, as in the closed-

base configuration, then (4.7) becomes

W = 0 (4.29)

on z = −1, while if the base of the porous bed is open to the atmosphere, as in

the open-base configuration, then (4.8) becomes

P = 0 (4.30)

on z = −1. Finally (4.9) and (4.10) become

p = 0 (4.31)

at r = 1, and
∂p

∂r
= 0 (4.32)

at r = 0, respectively.
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4.4 Particle paths

Integrating the velocity u = (u,w) with respect to t yields the position of a particle

of fluid r = (r(t), z(t)). Therefore, the path (r, z) = (r(t), z(t)) taken by a fluid

particle initially situated at a point (r0, z0) within either the fluid gap or porous

bed (such that 0 ≤ r0 ≤ 1 and −1 ≤ z0 ≤ d) is determined by the ordinary

differential equations
dr

dt
= u,

dz

dt
= w (4.33)

in the fluid gap and by
dr

dt
=
U

ϕ
,

dz

dt
=
W

ϕ
(4.34)

in the porous bed, where, as mentioned in Section 1.4, 0 ≤ ϕ ≤ 1 is the porosity of

the porous bed and U/ϕ is the true fluid velocity within the pores of the porous

bed. Equations (4.33)–(4.34) are solved subject to the initial conditions

r(0) = r0 z(0) = z0 (4.35)

when h(0) = d.

4.5 Closed-base configuration

In this section, for the purpose of comparison with the open-base configuration

described in Section 4.6, we shall briefly describe the work of Knox et al. [86]

which considered the axisymmetric porous squeeze-film problem for the closed-

base configuration, as shown in Figure 4.1(a). In particular, we shall describe the

derivation of the equations that govern the fluid velocity, fluid pressure, Darcy

velocity, Darcy pressure, fluid gap thickness, contact time and particle paths. We

shall also describe the behaviour of the contact time and particle paths in the limit

of small and large permeability k̂ → 0 and k̂ → ∞, respectively.

4.5.1 Darcy pressure and velocity

We begin by solving Laplace’s equation at leading order (4.19) subject to (4.23)

and (4.29) yielding the leading-order Darcy pressure to be

P = p(r, t). (4.36)
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The Darcy pressure is therefore independent of z at leading order and dependence

on z first appears at O(ϵ2). We seek a solution of (4.18) of the form

P = p(r, t) + ϵ2P1(r, z, t) +O(ϵ4) (4.37)

to find the dependence of P on z. Substituting (4.37) into (4.18) and applying the

no-penetration condition (4.29) we find that

∂P1

∂z
= −(1 + z)

r

∂

∂r

(
r
∂p

∂r

)
. (4.38)

Substituting (4.37) and (4.38) into the (4.17) we find that the Darcy velocity at

leading order in ϵ is given by

U = −k̂
(
∂p

∂r
,−(1 + z)

r

∂

∂r

(
r
∂p

∂r

))
. (4.39)

4.5.2 Fluid pressure and velocity

For the closed-base configuration, with constant load L0, the fluid pressure is given

by

p =
2L0

π
(1− r2). (4.40)

Substituting (4.40) into (4.39) gives the Darcy velocity

U = (U,W ) =
4L0k̂

π
(r,−2(1 + z)), (4.41)

which is independent of both α and δ, and so remains unchanged regardless of the

choice of boundary condition at the interface z = 0. The radial fluid velocity is

given by

u =
2L0(h− z)[(k̂

1
2 + αh)z + k̂

1
2 (h+ 2δαk̂

1
2 )]r

π(k̂
1
2 + αh)

(4.42)

and the vertical fluid velocity is given by

w = −2L0[2(k̂
1
2 + αh)(6k̂ − z3) + 3α(h2 − 2δk̂)z2 + 6k̂

1
2h(h+ 2δαk̂

1
2 )z]

3π(k̂
1
2 + αh)

. (4.43)

Hence, for the closed-base configuration, both U and u are linear in r, however,

W and w are independent of r.
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4.5.3 Fluid gap thickness and contact time

In this subsection, we present the equations for the fluid gap thickness and finite

contact time in the case of the closed-base configuration as shown in Figure 4.1(a).

We also present the leading-order finite contact times in the limits of small and

large permeability k̂.

The solution for the bearing height h(t) is given implicitly by

t = − 3π

2L0

∫ h

d

αs+ k̂
1
2

s2(αs2 + 4k̂
1
2 s+ 6δαk̂) + 12k̂(αs+ k̂

1
2 )

ds. (4.44)

In the case of an impermeable bed for which k̂ = 0, the fluid gap thickness is given

explicitly by

h(t) =

(
3πd2

3π + 4d2L0t

) 1
2

, (4.45)

which in the limit of large time becomes

h(t) ∼
(

3π

4L0t

) 1
2

→ 0 (4.46)

as t → ∞, confirming that, as mentioned previously, infinite time is required for

the bearing to squeeze all of the fluid from the gap.

Putting h = 0 in (4.44) gives the expression for the finite contact time tc given

by

tc =
3π

2L0

∫ d

0

αs+ k̂
1
2

s2(αs2 + 4k̂
1
2 s+ 6αk̂) + 12k̂(αs+ k̂

1
2 )

ds. (4.47)

Figure 4.2 shows a plot of tc as a function of k̂ and Figure 4.3 shows a more

detailed view of tc as a function of k̂ for both small and large k̂, where tc given by

(4.47) was calculated numerically (using the default numerical integration tool int

of the symbolic and numerical mathematics package MAPLE [95]). In particular,

Figure 4.2 shows that tc decreases as k̂ increases and Figure 4.3(a) and 4.3(b) show

that tc increases as α increases for small values of k̂, but that it decreases as α

increases for large values of k̂. Knox et al. [86] explains this change in behaviour

of tc as α increases for small and large values of k̂ by showing that, for small

values of k̂, the radial fluid velocity u decreases as α increases (i.e. as ls decreases),

which decreases the fluid volume flux out of the gap into the region beyond r = 1,

denoted by Qout. The fluid volume flux into the porous bed, through the interface
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tc = O(k̂−
2
3 )

tc = O(k̂−1)

α = 10−2

α = 102

α = 10−2

α = 102

k̂

tc

Figure 4.2: Log-log plot of the contact time tc (solid lines) in the closed-base
configuration given by (4.47) as a function of k̂ with α = 10−2, 10−1, 1, 10, d = 1,
the contact time in the limit of small k̂ given by (4.49) (dashed line) in the case
α = O(1) and (4.52) in the case α → 0 (dotted line) and in the limit of large k̂
given by (4.54) (dashed line) in the case α = O(1) and (4.56) in the case α → ∞
(dash-dot line) for d = 1. Based on Figure 2 of Knox et al. [86].

z = 0, denoted by Qbed = −8L0k̂ is constant and independent of α. Therefore a

decrease in Qout causes the time taken for the fluid gap to reduce to a thickness h to

increase, consistent with Figure 4.3(a). For large values of k̂, however, Knox et al.

[86] showed that the radial fluid velocity increases as α increases, hence increasing

Qout and causing the time taken for the fluid gap to reduce to a thickness h to

decrease, consistent with Figure 4.3(b).

(a) Contact time in the limit k̂ → 0

In the limit of small permeability k̂ → 0, the contact time (4.47) is given by

tc =
π2

√
3L0(12k̂)

2
3

− π

8L0αk̂
1
2

+O(k̂−
1
3 ), (4.48)
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k̂

tc

α = 10−2

α = 102

(a) k̂

tc

α = 102

α = 10−2

(b)

Figure 4.3: Detailed view of Figure 4.2 for (a) small values of k̂ and (b) large
values of k̂.

and so, in particular, the leading-order contact time in the limit k̂ → 0 is

tc ∼
π2

√
3L0(12k̂)

2
3

≫ 1. (4.49)

The Beavers–Joseph constant α appears at first order in (4.48) and shows that

increasing the slip length ls (i.e. decreasing α) decreases the contact time. Fur-

thermore, by comparing the leading and first order terms in (4.48) we can see that

the expansion only remains uniformly valid provided that

α ≫ k̂
1
6 . (4.50)

In the case α ≤ O(k1/6) we can find a different asymptotic expansion.

By inspection of (4.49) we find that, in order to obtain a finite, leading-order

contact time, we must go to long times, i.e. t = O(k̂−2/3). Hence, we rescale t and

h with

t = (12k̂)−
2
3T, h = (12k̂)

1
3H, (4.51)

where T and H are O(1) in the limit k̂ → 0, and expand (4.47) in the limit k̂ → 0

in the case α = 0. Reintroducing the scalings given by (4.51) yields at leading

order

tc ∼
π2

4
√
3
(
3k̂
) 2

3
L0

≫ 1 (4.52)

as k̂ → 0. The contact time (4.52) was not reported by Knox et al. [86] and so is

given here for the first time. Furthermore, comparing (4.52) with the contact time
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given by (4.49) we see that the latter is larger by a factor 22/3 (> 1), and hence

in the limit k̂ → 0, the effect of increasing the slip length is to increase Qout, and

hence to decrease tc.

Figure 4.2 shows that the asymptotic expansions (4.49) and (4.52) agree well

with the exact expression (4.47), and Figure 4.3(a) shows that (4.49) agrees well

with (4.47) for α = O(1) and α → ∞ and (4.52) agrees well with (4.47) in the

limit ls → ∞ (i.e. in the limit α → 0).

(b) Contact time in the limit k̂ → ∞

In the limit of large permeability k̂ → ∞, the contact time given by (4.47) is given

by

tc =
πd

8L0k̂
− πδαd3

48k̂
3
2

+O(k̂−2), (4.53)

and so, in particular, the leading-order contact time in the limit k̂ → ∞ is given

by

tc ∼
πd

8L0k̂
≪ 1. (4.54)

The Beavers–Joseph constant α appears at first order in (4.53) and shows that

increasing the slip length ls (i.e. decreasing α) increases the contact time. Fur-

thermore, by comparing the leading and first order terms in (4.53) we see that the

expansion only remains uniformly valid provided that

α ≪ k̂
1
2 . (4.55)

In the case α ≥ O(k1/2), Knox [84] showed that

tc ∼
π

4k̂L0

ln

(
d+ 2

2

)
≪ 1. (4.56)

Furthermore, comparing (4.56) with the contact time given by (4.54) we see that

the latter is larger by a factor d/2 ln ((d+ 2)/2) (> 1), and hence in the limit

k̂ → ∞, the effect of increasing the slip length from ls = 0 decreases Qout, and

hence increases the contact time tc.

Figure 4.2 shows that the leading-order asymptotic solutions (4.54) and (4.56)

agree well with the exact expression (4.47), and Figure 4.3(b) shows that (4.54)

agrees well with (4.47) for α = O(1) and α → 0 and (4.56) agrees well with (4.47)
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in the limit ls → 0 (i.e. in the limit α → ∞).

4.5.4 Particle paths

In this section we briefly describe the behaviour of the particle paths for the closed-

base configuration.

Figures 4.4(a)–(c) show the particle paths (r, z) taken by fluid particles with

initial positions (r0, z0) at t = 0 for three different values of the permeability k̂. In

particular, Figure 4.4 shows the particle paths in the case of an impermeable bed

for which k̂ = 0, showing that, in this case no particles are able to flow within or

into the impermeable bed and eventually all particles flow out of the gap into the

region beyond r = 1. Figure 4.4(b) and 4.4(c) show the behaviour of the particle

paths for small and large values of the permeability k̂, respectively. In particular,

Figure 4.4(b) and 4.4(c) show that fluid particles initially situated in the fluid gap

can either flow out of the gap into the region beyond r = 1 or into the porous bed,

after which they may either remain in the porous bed or flow out of the porous

bed, into the region beyond r = 1. Additionally, Figure 4.4(b) and 4.4(c) also show

that as k̂ increases more particles initially situated in the fluid gap flow into the

porous bed. This is quantified by the “watershed curve”, plotted in a dashed line

in Figure 4.4(b) and 4.4(c), which divides the fluid gap into two distinct regions

such that fluid particles initially situated to the left of the watershed curve will

flow out of the gap into the porous bed, and fluid particles initially situated to

the right of the watershed curve will flow out of the gap into the region beyond

r = 1. If a particle is squeezed from the fluid gap into the porous bed, then it

will cross the interface z = 0 at some point (r, 0) = (r̂, 0), where r̂ = r̂(r0, z0) at

t = t̂ (h = ĥ), and hence the watershed curve, which divides the fluid gap into two

regions for which particles are either squeezed into the porous bed (r̂ < 1) or out

into the region beyond r = 1, is given by the curve r̂ = 1. The watershed curve is

therefore found by solving (4.33) and (4.34) numerically backwards in time from

h = ĥ to h = d and then evaluating the solution when h = d yields the initial

position of the fluid particle (r0, z0). This process is repeated for 0 ≤ ĥ ≤ d,

resulting in the watershed curve r̂ = 1.
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Figure 4.4: Plot of fluid particle paths (r, z) in solid lines given by (4.33)–(4.34)
with initial positions (r0, z0) = (0, 0.75), (0.1, 0.75), (0.2, 0.75),. . . , (1, 0.75) in the
fluid gap and (r0, z0) = (0,−0.5), (0.1,−0.5), (0.2,−0.5),. . . , (1,−0.5). The per-
meability in (a) is k̂ = 0, (b) is k̂ = 0.01 and (c) is k̂ = 5. In all plots, ϕ = 0.75
α = 1 and d = 1. The watershed curve in (b, c) is plotted with dashed line.

4.6 Open-base configuration

In this section, we consider the porous squeeze-film problem for which the base of

the porous bed is open to the atmosphere, as shown in Figure 4.1(b), so that now

instead of the no-penetration condition (4.29), we impose the condition of ambient

pressure (4.30) at the base of the porous bed.

Solving Laplace’s equation (4.19) at leading order, subject to (4.23) and (4.30)

yields the Darcy pressure

P = p(r, t)(z + 1). (4.57)

This solution for the Darcy pressure (4.57) leads to the Darcy velocity given by

U = −k̂
(
∂p

∂r
(z + 1),

p

ϵ2

)
. (4.58)
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Hence by continuity of vertical velocity (4.22), at leading order in ϵ, the vertical

velocity in the fluid gap is given by

w = − k̂p
ϵ2
. (4.59)

Therefore in both the fluid gap and porous bed, the radial velocities are u = O(1)

and U = O(1), however, the vertical velocities are w = O(ϵ−2) ≫ 1 and W =

O(ϵ−2) ≫ 1. Physically, the leading-order problem corresponds to the flow in both

the fluid gap and porous bed being entirely in the vertical direction. Using (4.21)

and the load condition (4.20) subject to a constant load L0, yields a leading-order

expression for the contact time given by

tc =
dπ

k̂L0

ϵ2 ≪ 1, (4.60)

i.e. all of the fluid is squeezed out of the fluid gap extremely quickly. Hence,

if the permeability is of the same order as that considered in the closed-base

configuration, at leading order in ϵ, there is no flow in the radial direction in the

fluid gap or porous bed, and the bearing and porous bed come into contact very

quickly (tc = O(ϵ2)). However, when the permeability is much smaller than this,

the vertical velocity in the porous bed is greatly reduced and contact occurs on a

much longer timescale. Specifically, we consider the scaling

k∗ =
H∗4

p

R∗2 k = ϵ2H2
pk, (4.61)

so that k̂ = ϵ2k, i.e. the porous bed has been made a factor of ϵ2 less permeable

than that considered for the closed-base configuration in Section 4.5.

An immediate effect of the rescaling (4.61) is to make the radial Darcy velocity

negligible at leading order in ϵ, i.e.

(U,W ) = −k
(
ϵ2
∂P

∂r
,
∂P

∂z

)
, (4.62)

which at leading order in ϵ→ 0 gives the radial and vertical Darcy velocities

U = 0 and W = −k∂P
∂z

= −kp. (4.63)
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The rescaling of the permeability (4.61) also has the immediate consequence

of promoting the slip length to higher order, i.e. l∗s = O(ϵ) ≪ 1, and hence the

Beavers–Joseph condition (4.24) reduces to the no-slip condition at leading order.

In order to retain the effect of velocity slip at leading order, we must rescale the

Beavers–Joseph constant such that α = ϵᾱ, so that now the slip length is given

by l∗s = H∗
pk

1/2/ᾱ, which we non-dimensionalise with l∗s = H∗
p l̄s, so that the non-

dimensional slip length is now given by

l̄s =
k

1
2

ᾱ
. (4.64)

Therefore, with U = 0 and the slip length given by (4.64), at leading order in ϵ,

the Beavers–Joseph condition (4.24) reduces to the Saffman condition given by

u =
k

1
2

ᾱ

∂u

∂z
(4.65)

on z = 0.

4.6.1 Unsteady Reynolds equation

Integrating (4.14) twice with respect to z, subject to the no-slip condition at the

bearing (4.21) and the Saffman condition (4.65) gives the radial fluid velocity

u =
(z − h)(z(k

1
2 + ᾱh) + k

1
2h)

2(k
1
2 + ᾱh)

∂p

∂r
. (4.66)

Integrating (4.13) with respect to z, subject to (4.22) gives the vertical fluid ve-

locity

w = −z(2k
1
2 (z2 − 3h2) + ᾱh(2z2 − 3zh))

12r(k
1
2 + ᾱh)

∂

∂r

(
r
∂p

∂r

)
− kp. (4.67)

Using (4.21) and (4.67) we derive the unsteady Reynolds equation given by

dh

dt
=
h3(4k

1
2 + ᾱh)

12r(k
1
2 + ᾱh)

∂

∂r

(
r
∂p

∂r

)
− kp. (4.68)
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4.6.2 Fluid pressure and load condition

Equation (4.68) is a partial differential equation for the fluid pressure p which we

can solve subject to (4.31) and (4.32) to obtain the solution

p =
1

k

dh

dt

[
I0 (ηr)

I0 (η)
− 1

]
, (4.69)

where Iν is the modified Bessel function of order ν and we have defined η = η(h)

according to

η =

(
12k(k

1
2 + ᾱh)

h3(4k
1
2 + ᾱh)

) 1
2

. (4.70)

Note that η depends on t via h(t). The equation for the pressure (4.69) coincides

with, for example, equation (14) of Murti [112], equation (24) of Verma [170]

and equation (3.1) of Venerus [169], in their own notation and subject to their

own (different) scalings, all of whom considered the open-base porous squeeze film

problem.

The function η can be conveniently re-written in the form

η =

(
12k(l̄s + h)

h3(4l̄s + h)

) 1
2

, (4.71)

which, in the limit of no slip l̄s → 0 (i.e. in the limit ᾱ → ∞) yields

η →
(
12k

h3

) 1
2

, (4.72)

and in the limit of large slip, i.e. l̄s → ∞ (i.e. in the limit ᾱ → 0) yields

η →
(
3k

h3

) 1
2

. (4.73)

By substituting (4.69) into the load condition (4.20) we have

L = −π
k

dh

dt

I0(η)

I2(η)
. (4.74)

For simplicity in the remainder of this chapter, we concentrate on the case of
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constant load L = L0, Hence rearranging (4.74) yields

dh

dt
= −kL0

π

I0(η)

I2(η)
. (4.75)

If we substitute (4.75) into (4.69) we obtain the fluid pressure given by

p =
L0

π

[
I0(η)− I0(ηr)

I2(η)

]
, (4.76)

showing that, unlike the pressure for the closed-base configuration (4.40), the

pressure (4.76) now depends on k as well as r and t. Note that in the limit η → 0,

the fluid pressure p in (4.76) is exactly as in (4.40). This limit corresponds to

either k → 0 for fixed h or h→ ∞ for fixed k in η. In this limit, the porous bed is

effectively impermeable, and so as the bearing closes, the fluid near r = 0 cannot

flow out of the gap easily, so the maximum pressure occurs in this region. The

fluid near r = 1, however, can flow out of the gap easily into the region beyond

r = 1, so the minimum pressure occurs in this region, as it tends to its ambient

value p = 0, resulting in the parabolic profile for the pressure of the form (4.40).

Furthermore, in the limit η → ∞

p→ L0

π

(
1− 1√

r
exp(−η(1− r))

)
∼ L0

π
, (4.77)

which corresponds to k → ∞ for fixed h or h → 0 for fixed k in η. In this limit,

the porous bed is extremely permeable, and so as the bearing closes, there is little

resistance across the entire gap from r = 0 to r = 1. The pressure is therefore

uniform throughout the gap, except from in an exponentially small region near

r = 1. In this small region, the fluid can flow out of the gap easily into the region

beyond r = 1 and the pressure tends to its ambient value p = 0. Figure 4.5

shows a plot of the scaled fluid pressure for various values of η, as well as the

asymptotic behaviour of the pressure in the limits η → 0 and η → ∞ given by

(4.40) and (4.77), respectively. In particular, Figure 4.5 shows that the pressure is

always highest at r = 0 and reduces monotonically to its ambient value p = 0 as

r approaches r = 1. Substituting the fluid pressure (4.76) into the equations for
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r

πp

L0

Figure 4.5: The scaled fluid pressure πp/L0 given by (4.76) where η = 2, 4, . . . , 20
are plotted with solid lines, the limit η → 0, given by (4.40) is plotted with a
dashed line and the limit η → ∞, given by (4.77) is plotted with a dash-dot line
for η = 1000.

the radial and vertical fluid velocities (4.66) and (4.67) yields

u =
L0(h− z)[(k

1
2 + ᾱh)z + hk

1
2η2I1(ηr)]

2π(k
1
2 + ᾱh)I2(η)

(4.78)

and

w = − L0η

πI2(η)



zη2I0(ηr)

(
3h2(2k

1
2 + ᾱ)− 2z2(k

1
2 + ᾱh)

)

12(k
1
2 + ᾱh)

− k + kI0(η)


 . (4.79)

The vertical Darcy velocity (4.63) is now given by

W = −kL0

π

[
I0(η)− I0(ηr)

I2(η)

]
. (4.80)

4.6.3 Fluid gap thickness and contact time

In this subsection, we derive equations for the fluid gap thickness and contact

time in the case of the open-base configuration as shown in Figure 4.1(b). We

then derive asymptotic expansions for the finite contact times in the limits of

small and large permeability.

Integration of (4.75) with respect to t shows that the solution for h(t) is given
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implicitly by

t = − π

L0k

∫ h

d

I2(η(s))

I0(η(s))
ds, (4.81)

where s is a dummy variable of integration for h in η. In the case of an impermeable

layer, for which k = 0, the solution for the fluid gap thickness is given explicitly

by (4.45). Figure 4.6 shows the fluid gap thickness h as a function of t given by

equation (4.81), for various values of k and ᾱ, calculated numerically (using the

default numerical integration tool int of the symbolic and numerical mathematics

package MAPLE [95]). In particular, Figure 4.6(a) shows that as k increases, the

time taken for the fluid gap to reduce to a thickness h decreases, and that when

k ̸= 0, i.e. the porous bed is permeable, all of the fluid is squeezed out of the gap

in a finite time tc. Figure 4.6(b) and 4.6(c) show that for both small and large

values of k, the time taken for the fluid gap to reduce to a thickness h increases.

Putting h = 0 in (4.81) gives an expression for the contact time tc given by

tc =
π

L0k

∫ d

0

I2(η(s))

I0(η(s))
ds. (4.82)

Figure 4.7 shows a plot of tc as a function of k and Figure 4.8 shows a more detailed

view of tc as a function of k for both small and large k. In particular, Figure 4.7

shows that the contact time tc decreases as k increases, in agreement with Figure

4.6(a). Figure 4.8(a) and 4.8(b) show that tc increases as ᾱ increases, in agreement

with Figure 4.6(a) and 4.6(b) for both small and large values of k, respectively.

The behaviour of the fluid gap thickness h(t) and contact time tc as k increases

is in accord with physical intuition, as increasing the permeability allows fluid to

flow through the porous bed quicker, and as a result allows the fluid gap to drain

quicker.

The behaviour of the fluid gap thickness h(t) and the contact time tc as ᾱ

varies is not as simple and requires a more detailed explanation. To explain this

behaviour, we shall examine the radial fluid velocity u. Figure 4.9 shows plots of

the radial fluid gap velocity u as a function of z for 0 ≤ z ≤ h at r = 1/4 when

h = 1/2 for small and large values of the permeability k, and increasing values

of the Beavers–Joseph constant ᾱ. Figure 4.9 shows that the fastest flow in the

fluid gap occurs for small values of the permeability and that increasing ᾱ (i.e.

decreasing l̄s) decreases the radial velocity u for both small and large values of the

permeability. This decrease in the radial velocity u as ᾱ increases, decreases the
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Figure 4.6: Plots of the fluid gap thickness h(t) as a function of t for (a) k =
0, 10−4, 10−3, . . ., 102 with the asymptotic solutions in the limits k → 0 and k → ∞
plotted in dash and dash-dot lines given by (4.111) and (4.119), respectively, ᾱ = 1,
(b) k = 10−2, ᾱ = 10−2, 10−3/2, . . ., 102 with the asymptotic solutions in the limit
k → 0 in the case ᾱ = O(1) and ᾱ = 0 plotted in dash and dotted lines given by
(4.111) and (4.118), respectively and (c) k = 102, ᾱ = 10−2, 10−3/2, . . . , 102 with
the asymptotic solutions in the limit k → ∞ in the case ᾱ = O(1) and ᾱ → ∞
plotted in dash and dash-dot lines given by (4.119) and (4.122), respectively.

volume flux out of the gap into the region beyond r = 1, denoted by Qout and

given by

Qout = 2π

[∫ h

0

urdz

]

r=1

=
L0h

3η2I1(η)(4k
1
2 + ᾱh)

6I2(η)(k
1
2 + ᾱh)

. (4.83)

The volume flux out of the fluid gap into the porous bed, denoted by Qbed, is given

by

Qbed = 2π

[∫ 1

0

wrdr

]

z=0

= −L0kη = −
(
12L2

0k
3(k

1
2 + ᾱh)

h3(4k
1
2 + ᾱh)

) 1
2

, (4.84)
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tc = O(k−
2
3 )

tc = O(k−1)
ᾱ = 10−2

ᾱ = 102

k

tc

Figure 4.7: Log-log plots of the contact time tc as a function of k (solid lines)
for the open-base configuration given by (4.82) with α = 10−2, 10−1, 1, 10, d = 1,
the contact time in the limit of small k given by (4.110) (dashed line) in the case
α = O(1) and (4.117) in the case α → 0 (dotted line) and in the limit of large k
given by (4.120) (dashed line) in the case α = O(1) and (4.123) in the case α → ∞
(dash-dotted line) for d = 1.

k

tc

ᾱ = 10−2

ᾱ = 102

(a) k

tc

ᾱ = 10−2

ᾱ = 102

(b)

Figure 4.8: Detailed view of Figure 4.7 for (a) small values of k and (b) large
values of k.
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Figure 4.9: Plots of the radial fluid velocity u given by (4.78) as a function of z
for 0 ≤ z ≤ h at r = 1/4 when h = 1/2 for ᾱ = 1, 2 and 10 with (a) k = 10−1 and
(b) k = 10.

such that
∂Qbed

∂ᾱ
= −

(
27L2

0k
4

h(4k
1
2 + ᾱh)3(k

1
2 + ᾱh)

)
< 0, (4.85)

showing that Qbed is also a decreasing function of ᾱ. Since, as ᾱ increases, both

Qout andQbed decrease, the time required for the fluid gap to decrease to a thickness

h must increase (i.e. the reduction in fluid gap thickness must be slower), as ᾱ

increases. This is confirmed by Figure 4.6(b) and 4.6(c) which show that for both

small and large values of k, the time taken for the fluid gap to reduce to a thickness

h increases as ᾱ increases. This is qualitatively different behaviour from that in

the closed-base configuration, which, as discussed in Section 4.5, the time taken

for the fluid gap to reduce to a thickness h decreases for small k̂ but increases for

large k̂ as α increases.

(a) Contact time in the limit k → 0

This subsection contains the derivation of the contact times in the limit of small

permeability k → 0.

In the limit k → 0 we seek a perturbation solution to (4.75) of the form

h = h0 + k
1
2h1 + kh2 +O(k

3
2 ) (4.86)

and expand (4.75) up to order k to find at O(1)

dh0
dt

= −2L0h
3
0

3π
, (4.87)
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at O(k1/2)
dh1
dh0

=
3(1 + ᾱh1)

h0ᾱ
(4.88)

and at O(k)
dh2
dh0

=
ᾱ2(3h20h2 + 3h0h

2
1 + 2) + 6ᾱh0h1 − 3h0
h30ᾱ

. (4.89)

We can solve (4.87)–(4.89) subject to the boundary conditions

h0(0) = d, h1(0) = h2(0) = 0 (4.90)

to obtain

h0(t) =

√
3πd

(4L0d2t+ 3π)
1
2

, (4.91)

h1(t) =
h30 − d3

d3ᾱ
, (4.92)

h2(t) =
3h50
2d6ᾱ2

− 2

5h20
+

3

2h0ᾱ2
− h30
d3

(
3

dᾱ2
− 2

5d2

)
. (4.93)

The asymptotic behaviour of (4.91)–(4.93) as t→ ∞, namely

h0(t) ∼
(

3π

4L0t

) 1
2

→ 0, h1(t) ∼ − 1

ᾱ
, h2(t) ∼ − 2

5h20
∼ −8L0t

15π
→ −∞ (4.94)

shows that the expansion (4.86) is not uniformly valid for all t. Comparing leading-

and first-order terms suggests that the expansion remains uniformly valid provided

that

t≪ ᾱ2

L0k
, i.e. t = O(k−1). (4.95)

However, comparing the first and second order terms we can see that the expansion

actually only remains uniformly valid provided that

t≪ 1

L0ᾱk
1
2

i.e. t = O(k−
1
2 ). (4.96)

Therefore, in order to obtain a uniformly-valid expansion for intermediate times

t = O(k−1/2), for which h = O(k1/4), we re-scale t and h according to

t = k−
1
2 t̄, h = k

1
4 h̄, (4.97)
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where t̄ and h̄ are O(1) in the limit k → 0. Substituting these scalings into (4.75)

and seeking a solution of the form

h̄ = h̄0 + k1/4h̄1 +O(k1/2) (4.98)

we find at leading- and first-order

dh̄0
dt̄

= −2L0h̄
3
0

3π
, (4.99)

dh̄1
dh̄0

=
3h̄1
h̄0

+
3

h̄0ᾱ
+

2

h̄30
. (4.100)

Solving (4.99) and (4.100) subject to the appropriate matching conditions h̄0 → ∞
and h̄1 → −1/ᾱ as t̄→ 0 gives

h̄0 =

√
3πd

(4L0d2t̄+ 3π)
1
2

(4.101)

and

h̄1 = −(8L0ᾱt̄+ 15π)

15ᾱπ
. (4.102)

The asymptotic behaviour of (4.101) and (4.102) as t→ ∞, namely

h̄0 ∼
(

3π

4L0t̄

) 1
2

→ 0, h̄1 ∼ −8L0t̄

15π
→ −∞ (4.103)

as t̄→ ∞ shows that the expansion (4.98) is not uniformly valid for all t. Compar-

ing leading- and first-order terms suggests that the expansion remains uniformly

valid provided that

t̄≪ 1

L0k
1
6

, i.e. t≪ 1

L0k
2
3

. (4.104)

Therefore, in order to obtain a uniformly-valid expansion for long times t =

O(k−2/3), for which h = O(k1/3), we re-scale t and h subject to

t = k−
2
3T, h = k

1
3H, (4.105)

where T and H are O(1) in the limit k → 0. Hence seeking a solution to (4.75)

subject to the long-time scalings given by (4.105) of the form H = H0 + O(k1/6)
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yields

dH0

dT
= −

L0I0

(
2
√
3H

− 3
2

0

)

πI2

(
2
√
3H

− 3
2

0

) , (4.106)

which is separable and leads to

T =
π

L0

∫ ∞

H0(T )

I2

(
2
√
3s−

3
2

)

I0

(
2
√
3s−

3
2

) ds+O(k
1
6 ). (4.107)

Hence the contact time Tc, when H0 = 0, is given by

Tc =
π

L0

∫ ∞

0

I2

(
2
√
3s−

3
2

)

I0

(
2
√
3s−

3
2

) ds+O(k
1
6 ). (4.108)

Evaluating (4.108) numerically and reintroducing the scaling from (4.105) gives

tc =
1.26139π

L0k
2
3

− π

ᾱL0k
1
2

+O(k−
1
3 ), (4.109)

to 5 decimal places. Hence the leading-order contact time in the limit k → 0 given

by

tc ∼
1.26139π

k
2
3L0

≫ 1 (4.110)

remains uniformly valid up to the contact time tc = Tck
−2/3 where Tc ≃ 1.26139

satisfies H0 = (Tc) = 0.

A uniformly-valid leading-order composite solution for the time t in the limit

k → 0 can be obtained using (4.107) and the leading-order solution (4.91), subject

to the long time scalings (4.105). This uniformly-valid leading-order composite

solution for the time t is given by

t(h) = − 3π

4L0d2
+

π

k
2
3L0

∫ ∞

h/k
1
3

I2

(
2
√
3s−

3
2

)

I0

(
2
√
3s−

3
2

) ds. (4.111)

The Beavers–Joseph constant ᾱ appears at first order in (4.109) and shows

that increasing the slip length l̄s (i.e. decreasing ᾱ) decreases the contact time.

Furthermore, comparing the leading and first order terms in (4.109) we can see
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that the expansion only remains uniformly valid provided that

ᾱ ≫ k
1
6 . (4.112)

In the case in which ᾱ ≤ O(k1/6) we can find another asymptotic expansion.

Setting ᾱ = 0 in (4.82) we carry out the same asymptotic analysis as before

and find that (4.75) at leading order in the limit of small k becomes

dh0
dt

= −8L0h
3
0

3π
. (4.113)

Now, again for long times we must rescale t and h with (4.105). Hence seeking a

solution to (4.75) with the scalings given by (4.105) of the form H = H0+O(k1/6)

yields at leading order

dH0

dT
= −

L0I0

(√
3H

− 3
2

0

)

πI2

(√
3H

− 3
2

0

) , (4.114)

which is separable and leads to

T =
π

L0

∫ ∞

H0

I2

(√
3s−

3
2

)

I0

(√
3s−

3
2

) ds, (4.115)

which when H0 = 0 gives the contact time

Tc =
π

L0

∫ ∞

0

I2

(√
3s−

3
2

)

I0

(√
3s−

3
2

) ds. (4.116)

Evaluating (4.116) numerically and reintroducing the scaling from (4.105), gives

the small k leading-order asymptotic solution for the contact time in the case

ᾱ ≤ O(k1/6) given by

tc ∼
0.79463π

k
2
3L0

≫ 1 (4.117)

to 5 decimal places. Hence for k → 0 in the case ᾱ ≤ O(k1/6), the leading-order

solution (4.117) remains uniformly valid up to the contact time tc = Tck
−2/3 where

Tc ≃ 0.79463 satisfies H0(Tc) = 0. A uniformly-valid leading-order asymptotic

solution for the time t in the limit k → 0 in the case ᾱ ≤ O(k1/6) can again

be obtained from (4.115) and (4.113) subject to (4.105). This uniformly-valid
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leading-order asymptotic solution for the time t is given by

t(h) = − 3π

16L0d2
+

π

k
2
3L0

∫ ∞

h

k
1
3

I2

(√
3s−

3
2

)

I0

(√
3s−

3
2

) ds. (4.118)

Comparing (4.117) with the contact time given by (4.110), we see that the

latter is larger than the former by a factor of 1.5874 (> 1), and hence in the limit

k → 0, the effect of increasing the slip length is to decrease Qout, and hence to

decrease tc.

Figure 4.7 shows that the leading-order asymptotic solutions for the contact

time (4.110) and (4.117) agree well with the the exact expression (4.82) in the limit

k → 0 and Figure 4.8(a) shows that (4.110) agrees well with (4.82) for ᾱ = O(1)

and ᾱ ≫ 1 and (4.117) agrees well with (4.82) in the limit l̄s → ∞ (i.e. in the limit

α → 0).

(b) Contact time in the limit k → ∞

This subsection contains the derivation of the contact times in the limit of large

permeability k → ∞.

Expanding (4.81) in the limit k → ∞ with ᾱ = O(1) yields

t =
π

L0k
(d− h)− 4π(d

5
2 − h

5
2 )

5
√
3L0k

3
2

+
π
[
6
√
3ᾱ(d

7
2 − h

7
2 )− 7 (d4 − h4)

]

84L0k2
+O

(
k−

5
2

)
,

(4.119)

which, when h = 0, gives a contact time of

tc =
πd

L0k
− 4πd

5
2

5
√
3L0k

3
2

+
π
(
6
√
3d

7
2 ᾱ + 7d4

)

84L0k2
+O(k−

5
2 ). (4.120)

The Beavers–Joseph constant appears at second order in the limit of large k in

asymptotic expansions for the film thickness and contact time (4.119) and (4.120),

respectively, showing that, as the slip length l̄s increases (i.e. as ᾱ decreases),

the contact time decreases. Furthermore, comparing the first order and second

order terms in (4.120) we can see that the expansion only remains uniformly valid

provided that

ᾱ ≪ k
1
2 . (4.121)
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In the case in which ᾱ ≥ O(k1/2) we can find another asymptotic expansion.

In this case we take the limit ᾱ → ∞ in η (given by (4.72)) in (4.119) and

(4.120) and seek an asymptotic expansion in the limit k → ∞ giving, to second

order, the implicit asymptotic expansion for the fluid gap thickness

t(h) =
π(d− h)

L0k
−

2π
(
d

5
2 − h

5
2

)

5
√
3L0k

3
2

+
π (d4 − h4)

48L0k2
+O

(
k−

5
2

)
(4.122)

and contact time

tc =
πd

L0k
− 2πd

5
2

5
√
3L0k

3
2

+
πd4

48L0k2
+O(k−

5
2 ), (4.123)

in the limit k → ∞. In this limit, the leading-order contact time

tc ∼
πd

L0k
, (4.124)

is therefore valid for all ᾱ, however, the first order term in (4.120) is valid only

in the case ᾱ ≪ O(k) and in (4.123) is valid only in the case ᾱ ≥ O(k). Figure

4.7 shows that the leading-order asymptotic solution (4.124) agrees well with the

solution (4.82) in the limit k → ∞ for all ᾱ and Figure 4.8(b) shows that the

asymptotic expansion (4.120) to first order agrees well with the solution (4.82) for

ᾱ = O(1) and ᾱ → 0 and the asymptotic expansion (4.123) to first order agrees

well with the solution (4.82) in the limit l̄s → 0 (i.e. in the limit ᾱ → ∞).

4.6.4 Particle paths and penetration depths

In this section we consider the particle paths and penetration depths of fluid par-

ticles situated in the fluid and porous bed as the fluid gap thickness reduces from

h(0) = d to h(tc) = 0. In particular, we investigate the behaviour of the particle

paths in the limit of small and large k and determine the corresponding water-

shed curves (as defined in Section 4.5.4) and “escape curves”, the latter of which

divides the fluid gap and/or porous bed into two distinct regions. In particular,

fluid particles initially situated below the escape curve will flow out of the base of

the porous bed into the region beyond z = −1 by the time t = tc, whereas fluid

particles initially situated above the escape curve will not flow out of the base of

the porous bed into the region beyond z = −1 by the time t = tc.
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We can eliminate t from (4.33) and (4.34) using (4.75) so that the particle

paths are determined by the following ordinary differential equations:

dr

dh
=

6(h− z)(z(k
1
2 + ᾱh) + k

1
2h)I1(ηr)

h3(4k
1
2 + ᾱh)ηI0(η)

, (4.125)

dz

dh
= 1− (h− z)2(2z(k

1
2 + ᾱh) + h(4k

1
2 + ᾱh))I0(ηr)

h3(4k
1
2 + ᾱh)I0(η)

(4.126)

in the fluid gap for 0 ≤ z ≤ h and

dr

dh
= 0, (4.127)

dz

dh
=

1

ϕ

[
1− I0(ηr)

I0(η)

]
(4.128)

in the porous bed for −1 ≤ z ≤ 0. Equations (4.125)–(4.128) are solved subject

to the initial conditions (4.35). In particular, if a fluid particle is initially situated

in the fluid gap (0 ≤ z0 ≤ d) then (4.125) and (4.126) are solved subject to (4.35)

and (4.127) and (4.128) are solved subject to (r, z) = (r̂, 0) at some bearing height

h = ĥ at which the fluid particle crosses the interface z = 0. Hence, for a fluid

particle initially situated in the fluid gap, (4.127) and (4.128) have solutions

r = r̂, (4.129)

z = −1

ϕ

[
ĥ− h−

∫ h∗

h

I0(η(s)r̂)

I0(η(s))
ds

]
. (4.130)

For a fluid particle initially situated in the porous bed (−1 ≤ z0 < 0) then (4.127)

and (4.128) are solved subject to (4.35). In particular, for a fluid particle initially

situated in the porous bed, (4.127) and (4.128) have solutions

r = r0, (4.131)

z − z0 = −1

ϕ

[
d− h−

∫ d

h

I0(η(s)r0)

I0(η(s))
ds

]
. (4.132)

For k ̸= 0 the differential equations (4.125)–(4.128) are solved numerically

subject to the initial conditions (4.35). Figures 4.10(a)–(d) show the particle

paths as the fluid gap thickness reduces from h(0) = d to h(tc) = 0. In particular,
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Figure 4.10: Plot of fluid particle paths (r, z) in solid lines given by (4.125)–
(4.128) with initial positions in (a, b) (r0, z0) = (0, 0.75), (0.1, 0.75), (0.2, 0.75),
. . . , (1, 0.75) in the fluid gap and (r0, z0) = (0,−0.5), (0.1,−0.5), (0.2,−0.5), . . . ,
(1,−0.5) in the porous bed and in (c, d) (r0, z0) = (0, 0.2), (0.1, 0.2), (0.2, 0.2),
. . . , (1, 0.2) in the fluid gap. The permeability in (a, c) is k = 0.01 and in (b, d)
is k = 5. The porosity in (a, b) is ϕ = 0.75 and in (c, d) is ϕ = 0.2. In all plots,
ᾱ = 1 and d = 1 and the watershed and escape curves are plotted with dashed
and dash-dot lines, respectively.

Figures 4.10(a)–(d) show that particles initially situated in the fluid gap are either

squeezed into the porous bed, or out of the gap, into the region beyond r = 1.

Since the leading-order radial velocity in the porous bed is zero, i.e. U = 0, the

particle paths in the porous bed are always vertical, and hence as Figures 4.10(a)–

(d) show, fluid particles initially situated in either the fluid gap or the porous bed

can only either remain the porous bed or escape into the region beyond z = −1.

Since the vertical Darcy velocity W = −kp is always less than or equal to zero

(p is always non-negative as can be seen from Figure 4.5), fluid particles that are

initially situated in the fluid gap that are squeezed into the porous bed can never

re-enter the fluid gap, and similarly, fluid particles that are initially situated in the

porous bed can never enter the fluid gap. Figures 4.10(a)–(d) also show that as the
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Figure 4.11: Plot of fluid particle paths (r, z) in solid lines given by (4.125)–(4.128)
with initial positions (a) (r0, z0) = (0, 0.98), (0.1, 0.98), (0.2, 0.98), . . . , (1, 0.98)
and in (b) (r0, z0) = (0, 1), (0.1, 1), (0.2, 1), . . . , (1, 1). The permeability and
porosity in both (a) and (b) are k = 0.01 and ϕ = 0.2, respectively. In all plots
ᾱ = 1 and d = 1. The watershed and escape curves are plotted with dashed and
dash-dot lines, respectively.

permeability becomes large, the vertical fluid velocity w dominates the radial fluid

velocity u and the particle paths in the fluid gap follow an increasingly vertical

and less curved path from the fluid gap into the porous bed.

As described previously, the watershed curves, found by solving (4.125) and

(4.126) numerically backwards in time, to find the curve r̂ = 1, are plotted with

dashed lines in Figures 4.10(a)–(d), divide the fluid gap into two distinct regions,

namely, fluid particles initially situated to the left of the watershed curve will be

squeezed down into the porous bed, whilst fluid particles initially situated to the

right of the watershed curve will be squeezed out of the gap into the region beyond

r = 1. Figure 4.12(a) shows a series of watershed curves for various values of k.

In particular, Figure 4.12 shows that as the permeability k increases, the region

to the right of the watershed curve becomes smaller indicating that more fluid

enters the porous bed and less out of the gap into the region beyond r = 1. This

behaviour is qualitatively similar to the behaviour of the watershed curves plotted

in Figure 4.4 for the closed-base configuration.

The escape curves plotted with dash-dot lines in Figures 4.10(a)–(d) divide

the fluid gap and/or porous bed into two regions, namely, fluid particles initially

situated above escape curve will remain in the porous bed after squeezing has

ended whilst fluid particles initially situated below the escape curve will escape

out of the base of the porous bed into the region beyond z = −1. If a particle
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Figure 4.12: Plots of (a) a series of watershed curves in solid lines with the leading-
order asymptotic solution in the limit k → 0 in a dashed line given by (4.147)
with k = 10−4 and the leading-order asymptotic solution in the limit k → ∞
in a dash-dot line given by r = 1 and (b) a series of escape curves plotted with
the leading-order asymptotic solution in the limit k → 0 in a dashed line given
by (4.158) with k = 10−4 and the leading-order asymptotic solution in the limit
k → ∞ in a dash-dot line given by (4.164) for ϕ = 0.75. Both figures are plotted
for k = 10−4, 10−3, . . . , 102, d = 1 and ᾱ = 1.

is squeezed out of the porous bed then it will cross the interface z = −1 at some

point (r,−1) = (r̃,−1), where r̃ = r̃(r0, z0) at t = t̃ (h = h̃(t̃)), and hence the

escape curve can be calculated by solving (4.125)–(4.128) numerically backwards

in time from h = 0 to h = d and evaluating the solution at z = −1 and h = d

yields the initial position of the fluid particle (r0, z0). Figure 4.12(b) shows a series

of escape curves for various values of k. In particular, Figure 4.12(b) shows that

as the permeability k increases, the region below the escape curve becomes larger,

indicating that more fluid is able to escape out of the base of the porous bed into

the region beyond z = −1 and less fluid remains trapped.

Figure 4.11(a) shows the particle paths of particles initially situated close to the

impermeable bearing at z0 = 0.98 and Figure 4.11(b) shows the particle paths of

particles initially situated at the impermeable bearing z0 = d = 1. In particular,

Figure 4.11(a) shows that particles initially situated above the watershed curve

will still make it to the porous bed when t = tc, whilst particles situated in the

region to the right of the watershed curve will flow out into the region beyond

r = 1. Furthermore, Figure 4.11 (b) shows that, due to the no-slip condition,

particles initially situated on the impermeable bearing at h(0) = d will remain on

the bearing and travel vertically downwards to h(tc) = 0.

The effect of the porosity ϕ can be seen by comparing Figure 4.10(a) and
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4.10(b) plotted for ϕ = 0.75 with Figure 4.10(c) and 4.10(d) plotted for ϕ = 0.2.

In particular, the region below the escape curve in Figure 4.10(a) is smaller than

the region below the escape curve in Figure 4.10(c) (both plotted for k = 0.01) and

the same for Figures 4.10(b) and 4.10(d) (both plotted for k = 5), respectively.

This shows that if k remains unchanged and ϕ is decreased more fluid has escaped

out of the base of the porous bed when h(tc) = 0. As mentioned in Section 1.4, the

porosity ϕ is the proportion of volume of empty space within the porous bed to

the total volume of the porous bed, and hence is a measure only of how much fluid

the porous bed can retain rather than how easily the fluid can flow through the

porous bed, the latter of which is measured by the permeability k only. Therefore,

as the porosity ϕ increases, more fluid is retained in the porous bed, and hence less

escapes out of the base into the region beyond z = −1, which in turn decreases

the size of the region below the escape curve, as seen by comparing Figures 4.10(a)

and 4.10(b) with Figures 4.10(c) and 4.10(d).

The penetration depth zpen = z(tc) < 0 of a fluid particle either initially

situated in the fluid gap or porous bed is also considered. For a particle initially

situated in the fluid gap 0 < z0 < d, we evaluate (4.130) at h = 0 to find

zpen = −1

ϕ

[
ĥ−

∫ ĥ

0

I0(η(s)r̂)

I0(η(s))
ds

]
, (4.133)

and similarly for a fluid particle initially situated in the porous bed −1 ≤ z0 < 0

we find

zpen − z0 = −1

ϕ

[
d−

∫ d

0

I0(η(s)r0)

I0(η(s))
ds

]
. (4.134)

Figure 4.13(a) and 4.13(b) show zpen for fluid particles initially situated in the

fluid gap 0 < z0 < d as a function of k for small and large values of k, respectively.

In particular, Figure 4.13(a) shows that for small values of the permeability the

absolute value of the penetration depth |zpen| decreases as k decreases and as z0

increases, however, the effect of z0 becomes less pronounced as k decreases. Figure

4.13(b) shows that for large values of the permeability, the absolute value of the

penetration depth |zpen| decreases as k decreases and as z0 increases. Unlike for

small values, for large values of the permeability, Figure 4.13(b) also shows that

the effect of the permeability becomes less pronounced as k increases.

Figure 4.14(a) and 4.14(b) show zpen − z0 as a function of k for small and

large values of k, respectively for fluid particles initially situated in the porous
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Figure 4.13: (a) A log-log plot of |zpen| as a function of k given by (4.125)–(4.128)
subject to (r0, z0) = (0.5k1/4, 0.25), (0.5k1/4, 0.5) and (0.5k1/4, 0.75) in solid lines
and the leading-order solution in the limit k → 0 given by (4.151) in a dashed line,
(b) a log-log plot of |zpen| as a function of k given by (4.125)–(4.128) subject to
(r0, z0) = (0.5, 0.25), (0.5, 0.5) and (0.5, 0.75) in solid lines and the leading-order
solution in the limit k → ∞ given by (4.163) in a dashed line. In all plots ϕ = 0.75
and d = 1

bed −1 < z0 < 0. In particular, Figure 4.14(a) shows that for small values of

the permeability, |zpen − z0| decreases as k decreases and increases as the initial

radial position r0 decreases, however, the effect of r0 becomes less pronounced

as k decreases. For large values of the permeability, Figure 4.14(b) shows that

|zpen − z0| decreases as k decreases and increases as the initial radial position r0

decreases, however, the effect of r0 becomes less pronounced as k increases. Figure

4.14(b) also shows that the effect of the permeability becomes less pronounced as

k increases.

(a) Asymptotic limit k → 0

(i) Particles initially situated in the fluid gap 0 < z0 ≤ d

In the case k = 0, for which the porous bed is impermeable, equations (4.125) and

(4.126) reduce to
dr

dh
= −3rz(h− z)

h3
(4.135)

and
dz

dh
= −z

2(2z − 3h)

h3
, (4.136)
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Figure 4.14: Plots of (a) showing a log-log plot of |zpen−z0| as a function of k given
by (4.125)–(4.128) subject to r0 = 0.25, 0.5, 0.75 in solid lines and the leading-order
solution in the limit k → 0 given by (4.157) in a dashed line, (b) |zpen − z0| as a
function of k given by (4.125)–(4.128) subject to r0 = 0.25, 0.5, 0.75 in solid lines
and the leading-order solution in the limit k → ∞ given by (4.166) in a dashed
line. In all plots ᾱ = 1, ϕ = 0.75 and d = 1

which when solved subject to (4.35) give the solutions for an impermeable bed

given by

r = r0

(
4dz0(d− z0) + (d− 2z0)

2h

d2h

) 3
4

, (4.137)

z =
h

2

[
1− (d− 2z0)

(
h

4dz0(d− z0) + h(d− 2z0)2

) 1
2

]
(4.138)

for z0 ≥ 0. As shown in Section 4.6.3, in the limit k → 0, the porous bed

remains impermeable for short and intermediate times and only for long times

t = O(k−2/3) does the effect of the permeability appear at leading order. Knox

et al. [86] showed that for long times, when t = O(k−2/3) and h = O(k1/3), the

solution for an impermeable bed behaves like

r ∼ r0

(
4(d− z0)z0

hd

) 3
4

= O
(
r0((d− z0)z0)

3
4

k
1
4

)
(4.139)

and

z ∼ h

2
= O(k

1
3 ), (4.140)

which shows that particles with initial positions near the axis r = 0 (with r0 =

O(k1/4)) or near the porous bed or bearing (with z0 = O(k1/3) or d−z0 = O(k1/3))

have not flowed out of the gap beyond r = 1 at long times. In order to determine
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the behaviour of the particle paths in the limit k → 0 for long times we rescale r0,

z, h and t according to

r0 = R0k
1
4 , z = Zk

1
3 , h = Hk

1
3 , t = Tk−

2
3 , (4.141)

where R0, Z, H, and T are O(1) in the limit k → 0. Using these scalings the

particle path equations in the fluid gap (4.125) and (4.126) become at leading

order
dr

dH
= −

√
3Z(H − Z)I1(

√
12H−3r)√

H3I0(
√
12H−3)

, (4.142)

dZ

dH
= 1− (H − z)2(H + 2Z)I0(

√
12H−3r)

H3I0(
√
12H−3)

. (4.143)

The solutions of (4.142) and (4.143) must match with the h→ 0 limits of (4.137)

and (4.138) as H → ∞ given by

r ∼ R0

(
4(d− z0)z0

Hd

) 3
4

→ 0 (4.144)

as H → ∞ and

Z ∼ H

2
→ ∞ (4.145)

as H → ∞, respectively. To find the vertical position of the fluid particle Z(T ),

which is independent of the initial position z0, we solve (4.143) numerically as an

initial value problem, shooting from Z = 0 at the unknown value of the fluid gap

thickness H = Ĥ at which the particle crosses the interface Z = 0 to Z = H∞/2,

where H∞ ≫ 1 is some large value which we use to approximate the matching

condition (4.145). This procedure leads to the approximate value H∗ ≃ 0.7856

(to 4 decimal places) calculated with H∞ = 108. In the case of the closed-base

configuration (with permeability k̂), Knox et al. [86] found the corresponding value

to be Ĥ ≃ 0.4958. The leading-order radial position of the fluid particle is found

by solving (4.142) numerically from H = 0 to H = Ĥ, at r = r̂, where again, r̂

is the radial position at which the fluid particle crosses the interface Z = 0. If

we follow this procedure with r̂ = 1, we can derive a leading-order asymptotic

solution for the watershed curve in the limit k → 0. This numerically calculated

solution is plotted in Figure 4.15 along with its asymptotic behaviour for large H
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ln r
lnH

Figure 4.15: Plot of ln r, where r is the numerically calculated solution of (4.142)
for r̂ = 1, as a function of lnH. The large H asymptotic behaviour given by
(4.146) is plotted in a dashed line.

given by

r ∼ 1.3111H− 3
4 , (4.146)

to 4 decimal places. In the case of the closed-base configuration (with permeabil-

ity k̂), Knox et al. [86] found that the corresponding coefficient of H−3/4 in the

corresponding version of equation (4.146) to be 1.0708. Therefore, imposing the

matching condition (4.144) yields the leading-order asymptotic solution for the

watershed curve in the limit k → 0 given by

r0 = 1.3111k
1
4

(
d

4(d− z0)z0

) 3
4

. (4.147)

This leading-order asymptotic solution for the watershed curve in the limit k → 0

is plotted in Figure 4.12(a). In particular, Figure 4.12(a) shows that the leading-

order asymptotic watershed curve compares well with the numerical solution for

z0 = O(1), but does not perform well for z0 = O(k1/3) ≪ 1 or d−z0 = O(k1/3) ≪ 1,

i.e. for particles initially situated near the porous bed or the bearing. It also shows

that in this limit, particles situated near the axis will never be squeezed out of the

gap into the region beyond r = 1 and can only be squeezed into the porous bed

through the interface z = 0.

In the limit k → 0, we may rescale (4.127) and (4.128) subject to the long-time

scalings (4.105) to obtain the leading-order equations of a particle path after it
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has entered the porous bed (0 ≤ H ≤ Ĥ) given by

dR

dH
= 0, (4.148)

dZ

dH
=

1

ϕ

[
1− I0(r̂

√
12H−3)

I0(
√
12H−3)

]
, (4.149)

where we have defined r = r̂+k1/3R. Solving (4.148) and (4.149) subject to R = 0

and Z = 0 at H = Ĥ gives the solution

r = r̂ and z = −k
1
3

ϕ

[
(Ĥ −H)−

∫ Ĥ

H

I0(r̂
√

12ξ−3)

I0(
√
12ξ−3)

dξ

]
, (4.150)

which, setting H = 0, gives the leading-order solution for the penetration depth

in the limit k → 0, namely

zpen = −k
1
3

ϕ

[
Ĥ −

∫ Ĥ

0

I0(r̂
√

12ξ−3)

I0(
√
12ξ−3)

dξ

]
. (4.151)

Equation (4.151) shows that |zpen| = O(k1/3) ≪ 1, and so in particular, shows that

in the limit k → 0, particles initially situated in the fluid gap will never escape

out of the base of the porous bed into the region beyond z = −1. Figure 4.13(a)

shows plots of the numerically-calculated solution |zpen| and its leading-order small

k asymptotic solution given by (4.151). (using the default numerical differential

equation solver dsolve and numerical integration tool int of the symbolic and

numerical mathematics software MAPLE [95]). In particular, as previously men-

tioned, Figure 4.13 shows |zpen| becomes less dependent on z0 as k decreases, in

agreement with the leading-order asymptotic solution (4.151) which is dependent

on k but independent of z0.

(ii) Particles initially situated in the porous bed −1 ≤ z0 < 0

At leading order for short and intermediate times the particle paths initially situ-

ated in the porous bed (z0 < 0) follow the path (r, z), where

r = r0 (4.152)
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and

z − z0 = −3k(1− r20)(h
2 − d2)

2ϕd2h2
. (4.153)

The particle path solutions given by (4.152) and (4.153) show that the radial

positions of the particles do not change while the vertical positions of the fluid

particles remain very close to their initial positions z0 in the limit k → 0 for these

times.

For long times, we rescale the variables in (4.127) and (4.128) subject to (4.105)

and solve subject to r = r0 and Z = Z0 as H → ∞ leading again to r = r0

throughout the porous bed and

dZ

dH
=

1

ϕ

[
1− 1

I0(
√
12H−3)

]
, (4.154)

which has solution

Z − Z0 = −1

ϕ

∫ ∞

H

1− 1

I0(
√
12s−3)

ds. (4.155)

Hence when H = 0, the penetration depth is given by

Zpen − Z0 = −1.86203

ϕ
, (4.156)

which with (4.105) reintroduced gives

zpen − z0 ∼ −1.86203k
1
3

ϕ
. (4.157)

Equation (4.157) shows that |zpen − z0| = O(k1/3) ≪ 1, and so, in particular,

shows that in the limit k → 0, fluid particles initially situated in the porous

bed will stay very close to their initial positions. Figure 4.14 shows plots of the

numerically-calculated solution |zpen−z0| and its leading-order small k asymptotic

solution given by (4.157). In particular, Figure 4.14 shows that for small values of

k, the distance between the initial position z0 of a fluid particle and its penetration

depth zpen increases as r0 decreases, i.e. as the initial position of the fluid particle

approaches the origin. Physically, this behaviour is due to less fluid in the fluid gap

leaving the gap into the region beyond r = 1 as the initial position r0 approaches

the origin, and so more fluid is forced into the porous bed near the origin, which
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pushes fluid particles initially situated in the porous bed in this region, further

down than those initially situated closer to r0 = 1. Figure 4.14 also shows that

the small k asymptotic solution given by (4.157) agrees well with the numerically-

calculated solution |zpen|, but becomes less accurate as r0 increases.

Since equation (4.151) shows that fluid particles initially situated in the fluid

gap never escape out of the base of the porous bed into the region beyond z = −1,

the escape curve is calculated by setting z = −1 in (4.157) which gives the leading-

order asymptotic solution for the escape curve in the limit k → 0

z0 =
1.86203k

1
3

ϕ
− 1. (4.158)

Figure 4.12(b) shows the leading-order asymptotic solution (4.158) compared to

the numerically-calculated escape curve for k = 10−4. In particular, Figure 4.12(b)

shows that in the limit k → 0 only particles initially situated close to the base of the

porous bed at z = −1 are able to escape for long times and that the leading-order

asymptotic solution (4.158) agrees well with the numerically-calculated escape

curve near r = 0 and is less accurate near r = 1. Equation (4.158) also shows that

if k = 0, i.e. the bed is impermeable then the escape curve is z0 = −1 indicating

that no particles within the bed can escape out of the base of the bed, as expected.

(b) Asymptotic limit k → ∞

(i) Particles initially situated in the fluid gap 0 < z0 ≤ d

In this subsection, we describe the leading-order behaviour of the paths of fluid

particles initially situated in the fluid gap (0 ≤ z0 ≤ d) in the limit of large

permeability k → ∞.

In the limit k → ∞, the ordinary differential equations (4.125)–(4.128) become

dr

dh
=

6(h− z)z + h

4h3
√
3kh−3r

e−
√
3kh−3(1−r) → 0, (4.159)

dz

dh
= 1− (h− z)2(z + 2h)

2h3
√
r

e−
√
3kh−3(1−r) → 1 (4.160)

for 0 ≤ z ≤ h and

dr

dh
= 0,

dz

dh
=

1

ϕ

[
1− 1√

r
e
−
√

3k
h3

(1−r)

]
→ 1

ϕ
(4.161)
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for −1 ≤ z < 0 at leading order, except for an exponentially small region near

r = 1.

Solving (4.159)–(4.161) subject to (4.35) and z = 0 on h = ĥ, the solutions for

the particle paths in the limit k → ∞ are given by

r = r0 and z =





h− ĥ for 0 ≤ z ≤ h
1

ϕ
(h− ĥ) for − 1 ≤ z ≤ 0,

(4.162)

where ĥ = d − z0 is the bearing height at which the particle path reaches the

interface z = 0. The vertical fluid velocity w = O(k) ≪ 1 is much larger than the

radial fluid velocity u = O(e−(1−r)
√
k) ≪ 1 at leading order in the limit k → ∞,

and hence the particle paths are directed vertically from their initial positions

(r, z) = (r0, z0) to the interface (r, z) = (r0, 0) when h = ĥ. This in turn means

that the watershed curve in the limit k → ∞ is simply the vertical line r0 = 1, as

shown in Figure 4.12. In particular, Figure 4.12 shows that as k becomes large the

watershed curves become closer to completely vertical, approaching the asymptotic

watershed curve r0 = 1 in the limit k → ∞.

Evaluating the solution for z given by (4.162) at h = 0, gives the leading-order

penetration depth in the limit k → ∞,

zpen = − ĥ
ϕ
= O(1). (4.163)

Figure 4.13(b) shows plots of the numerically-calculated solution and leading-order

large k asymptotic solution zpen given by (4.163). In particular, Figure 4.13(b)

shows that the dependence of zpen on k decreases as k increases, in agreement with

the leading-order asymptotic solution (4.163) which is O(1) in the limit k → ∞.

Since r = r̂ = r0 throughout for −1 ≤ z ≤ h, evaluating (4.163) at zpen = −1

yields the leading-order expression for the escape curve in the limit k → ∞ to be

z0 = d− ϕ. (4.164)

Since 0 ≤ z0 ≤ 1, the expression for the escape curve (4.164) is valid when d ≥
ϕ. If we reintroduce dimensional variables to this condition relating the initial

bearing height and porosity, then we obtain H∗
f /H

∗
p ≥ V ∗

p /V
∗
bed which, by writing

V ∗
bed = πR∗2H∗

p, becomes V ∗
f = πR∗2H∗

f ≥ V ∗
p , where we have defined Vf to be the
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initial volume of the fluid gap. Therefore, in the limit k → ∞, if the initial volume

of the fluid gap V ∗
f is greater than or equal to the volume of fluid in the porous

bed V ∗
p , then the escape curve given by (4.164) resides in the region 0 ≤ z0 ≤ 1,

and all of the fluid initially situated in the porous bed will be squeezed out of the

base of the porous bed into the region beyond z = −1 when t = tc.

Figure 4.12(b) shows the leading-order escape curve in the limit k → ∞, and in

particular, shows that in this limit, any particles that are initially situated above

the line d−ϕ remain in the porous bed and do not escape out of the base into the

region beyond z = −1 after all of the fluid has been squeezed out of the gap.

(ii) Particles initially situated in the porous bed −1 ≤ z0 < 0

Solving (4.161) subject to the conditions (4.35) yields the solutions for the particle

paths for particles initially situated in porous bed to be

r = r0 and z − z0 = −1

ϕ
(d− h). (4.165)

Evaluating the solution for z given by (4.165) at h = 0, gives the leading-order

penetration depth in the limit k → ∞,

zpen = z0 −
d

ϕ
= O(1). (4.166)

Figure 4.14(b) shows plots of the numerically-calculated solution and the leading-

order large k asymptotic solution |zpen−z0| given by (4.166). In particular, Figure

4.14(b) shows that the dependence of |zpen − z0| on k decreases as k increases, in

agreement with the leading-order asymptotic solution (4.166), which is O(1) in

the limit k → ∞.

Evaluating (4.166) at zpen = −1 yields the leading-order expression for the

escape curve in the limit k → ∞ to be

z0 = −
(
1− d

ϕ

)
. (4.167)

Since −1 ≤ z0 < 0, the expression for the escape curve (4.167) is valid when

d < ϕ. Again, if we reintroduce dimensional variables to this condition relating

the initial bearing height and porosity, we obtain H∗
f /H

∗
p < V ∗

p /V
∗
bed which, by

writing V ∗
bed = πR∗2H∗

p, becomes V ∗
f = πR∗2H∗

f < V ∗
p . Therefore, in the limit
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k → ∞, if the initial volume of the fluid gap V ∗
f is less than the volume of fluid

in the porous bed V ∗
p , then there is an insufficient volume of fluid in the fluid gap

to be able to squeeze all of the fluid out of the base of the porous bed into the

region beyond z = −1, and so the escape curve given by (4.167) resides in the

region −1 ≤ z0 ≤ 0, and particles initially situated above the escape curve given

by (4.167) remain in the porous bed when t = tc. From (4.167), the fraction of

particles initially situated in the porous bed that remain in the porous bed when

t = tc is equal to 1− d/ϕ.

4.7 Conclusions

In this chapter we considered the open-base configuration of the axisymmetric

porous squeeze-film problem (as shown in Figure 4.1(b)) in which a thin layer of

Newtonian fluid within the gap between a flat impermeable bearing moving under

a prescribed constant load and a flat porous bed, is forced to either flow out of the

side of the gap or into the porous bed. Consequently, the fluid in the porous bed

is forced to either flow out of the base of the porous bed or remains in the porous

bed when the bearing and porous bed contact, which occurs in a finite time.

The related problem of the closed-base configuration, as shown in Figure 4.1(a),

previously described by Knox et al. [86], was briefly described in Section 4.5 for the

purpose of comparison with the results of the open-base configuration described

in Section 4.6.

In Section 4.6, we derived equations for the Darcy pressure P given by (4.57)

and Darcy velocity U = (U,W ) given by (4.63), fluid pressure p given by (4.76),

fluid velocity u = (u,w) given by (4.78)–(4.79), bearing height h at time t given

by (4.81), and contact time tc when h = 0 given by (4.82). In addition, we showed

that if the permeability of the porous bed in the open-base configuration is the

same size as the permeability of the closed-base configuration, then at leading

order in the limit ϵ → 0, the velocity in the fluid gap is entirely vertical, i.e.

w = O(ϵ−2) ≫ u = O(1), and the contact time tc = O(ϵ2), i.e. all of the fluid is

squeezed out of the fluid gap extremely quickly. However, when the permeability

is much smaller than this, the vertical velocity in the porous bed is greatly reduced

and contact occurs on a much longer timescale. Specifically, by introducing the

scaling (4.61), the porous bed was made a factor of ϵ2 less permeable than that

considered for the closed-base configuration. This slowed down the vertical Darcy
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velocity W in the porous bed, and hence the vertical fluid velocity w in the fluid

gap, which made the radial fluid velocity and vertical fluid velocity both O(1),

and led to an O(1) contact time.

The effect of reducing the size of the permeability for the open-base configura-

tion can be seen by comparing the leading-order finite contact times in the limits

of small and large permeability for both configurations in dimensional variables.

Table 4.1 and Table 4.2 show these dimensional contact times for the closed-base

and open-base configurations, respectively, and Table 4.3 shows the dimensional

contact time for the open-base configuration divided by the dimensional contact

time for the closed-base configuration in the limits of small and large permeability

and of O(1), small, and large slip length. Table 4.3 shows that despite the porous

bed for the open-base configuration being less permeable than for the closed-base

configuration, the contact time for the open-base configuration is always smaller

than the contact time for the closed-base configuration. This may not at first seem

in accord with physical intuition, however, by comparing the particle paths shown

in Figure 4.4 for the closed-base configuration with those shown in Figure 4.10 for

the open-base configuration, it is clear that the fluid in the porous bed, especially

near r = 0, has much less distance to travel before it is able to leave the porous

bed in the open-base configuration compared with the closed-base configuration.

Hence, despite the porous bed being less permeable for the open-base configuration

than the closed-base configuration, the fluid can flow vertically through and out of

the base of the porous bed in the open-base configuration, rather than being redi-

rected by the impermeable layer below the porous bed towards the region beyond

r = 1 in the closed-base configuration, and so the contact time for the open-base

configuration is much less than for the closed-base configuration.

The behaviour of the contact time tc, for the open-base configuration, as the

permeability of the porous bed k and slip-length l̄s varied was analysed in Section

4.6.3. We note here that, as discussed in Section 4.2, the limits k → 0 and l̄s → 0

correspond to the limit in which the length scale associated with the pores in

the porous bed O(k∗1/2) is much smaller than the length scale associated with

porous bed H∗
p, and hence are the most physically relevant. Therefore, in reality,

the amount of velocity slip at the interface between the fluid gap and porous bed

will always be small. Meanwhile, the limits k → ∞ and l̄s → ∞ correspond to

the non-physical limit in which k∗1/2/H∗
p ≫ 1 and the mathematical analysis of

this limit is included in this chapter for completeness only. Figure 4.7 shows that
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Slip length Small permeability Large permeability

O(1)
π2R∗4µ∗

√
3(12k∗H∗

p)
2
3L∗

0

πµ∗R∗4H∗
f

8H∗
pk

∗L∗
0

Small
π2R∗4µ∗

√
3(12k∗H∗

p)
2
3L∗

0

πµ∗R∗4

4k∗L∗
0

ln

(
H∗

f + 2H∗
p

2H∗
p

)

Large
π2R∗4µ∗

4
√
3(3k∗H∗

p)
2
3L∗

0

πµ∗R∗4H∗
f

8H∗
pk

∗L∗
0

Table 4.1: The leading-order asymptotic expressions for the dimensional contact
time for the closed-base configuration t∗c in the limits of small and large perme-
ability and for O(1), small, and large slip length.

Slip length Small permeability Large permeability

O(1)
1.26139πµ∗

L∗
0

(
R∗4H∗

p

k∗

) 2
3 πµ∗R∗2H∗

f H
∗
p

L∗
0k

∗

Small
1.26139πµ∗

L∗
0

(
R∗4H∗

p

k∗

) 2
3 πµ∗R∗2H∗

f H
∗
p

L∗
0k

∗

Large
0.79463πµ∗

L∗
0

(
R∗4H∗

p

k∗

) 2
3 πµ∗R∗2H∗

f H
∗
p

L∗
0k

∗

Table 4.2: The leading-order asymptotic expressions for the dimensional contact
time for the open-base configuration t∗c in the limits of small and large permeability
and for O(1), small, and large slip length.

Slip length Small permeability Large permeability

O(1)
1.26139

√
3

π
(
√
12ϵ)

4
3 ≪ 1 8ϵ2 ≪ 1

Small
1.26139

√
3

π
(
√
12ϵ)

4
3 ≪ 1

4d

ln
(
d+2
2

)ϵ2 ≪ 1

Large
3.17852

√
3

π
ϵ
4
3 ≪ 1 8ϵ2 ≪ 1

Table 4.3: The leading-order expressions for the dimensional contact time for the
open-base configuration given by Table 4.2, divided by the corresponding leading-
order asymptotic expressions for the dimensional contact time for the closed-base
configuration given by Table 4.1, in the limits of small and large permeability and
for O(1), small, and large slip length.
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the contact time tc decreases as the permeability of the porous bed k increases.

Furthermore, it was shown that tc = O(k−2/3) ≫ 1 in the limit k → 0 and

tc = O(k−1) ≪ 1 in the limit k → ∞. At first order in the limit k → 0 we found

that the expansion for tc given by (4.109) is not uniformly valid in the limit of

large slip length l̄s → ∞ (i.e. in the limit ᾱ → 0), and so a different leading-order

contact time was found in this case given by (4.117). Similarly, at second order

in the limit k → ∞ we found that the expansion for tc given by (4.120) is not

uniformly valid in the case of no slip l̄s → 0 (i.e. in the limit ᾱ → ∞), and so

a different expression for the contact time with the same leading-order behaviour

but different first-order behaviour was found in this case given by (4.123). Figure

4.8 shows a more detailed view of tc as a function of k. In particular, Figure 4.8(a)

shows tc for small values of the permeability which shows that the contact time

increases as ᾱ increases and matches closely with the asymptotic solutions given

by (4.109) and (4.117). Figure 4.8(b) shows tc for large values of the permeability

which shows that the contact time increases as ᾱ increases and matches closely

with the asymptotic solutions given by (4.120) and (4.123). This behaviour is

qualitatively different from that in the closed-base configuration, for which, the

contact time tc increases as the Beavers–Joseph constant α increases for small

values of k̂ but decreases as α increases for large values of k̂, as shown in Figure

4.2. In the case of the two-dimensional porous squeeze-film problem, treated briefly

in Appendix E, the expression for the finite contact time is given by equation (E.7).

In particular, the results obtained in Appendix E show that the contact times in

the limit of small and large permeability are of the same order of magnitude of

those calculated for the corresponding axisymmetric porous squeeze-film problem,

i.e. tc = O(k−2/3) ≫ 1 in the limit k → 0 and k = O(k−1) ≪ 1 in the limit k → ∞.

The particle paths of fluid particles initially situated in either the fluid gap or

the porous bed were also analysed in Chapter 4. Figure 4.4 shows that for the

closed-base configuration particles initially situated in the fluid gap may either

flow out of the gap into the region beyond r = 1 or down into the porous bed,

through the interface z = 0, whilst fluid particles initially situated in the porous

bed can only flow out of the porous bed, into the region beyond r = 1. Figure 4.10

shows that for the open-base configuration particles initially situated in the fluid

gap may either flow out of the gap into the region beyond r = 1 or down into the

porous bed, through the interface z = 0, whilst particles initially situated in the

porous bed can only flow out of the base of the porous bed, into the region beyond



Chapter 4 168

z = −1. This is due to the fact that the radial Darcy velocity for the open-base

configuration is simply U = 0, and so there is no flow in the radial direction within

the porous bed in this case.

The watershed curve that divides the fluid gap into a region of fluid particles

which flow into the porous bed and a region of fluid particles which flow into the

region beyond r = 1 was also calculated. The watershed curves in Figure 4.12

show that as k increases more fluid particles initially situated in the fluid gap are

able to enter the porous bed and less flow out into the region beyond r = 1. In

particular, in the limit k → 0 the leading-order solution for the watershed curve

shows that only fluid particles initially situated in the fluid gap near the origin

will never flow out of the fluid gap into the region beyond r = 1, while in the limit

k → ∞ the leading-order solution for the watershed curve shows that all of the

fluid particles initially situated in the fluid gap flow down into the porous bed.

The penetration depths for the open-base configuration were also analysed. In

particular, it was shown that in the limit k → 0, fluid particles initially situated

in the fluid gap near r = 0, have penetration depths |zpen| = O(k1/3) ≪ 1, and

so are never able to escape out of the base of the porous bed. Additionally, for

fluid particles initially situated in the porous bed, it was shown that the relative

penetration depth |zpen−z0| = O(k1/3) ≪ 1, and so only particles very close to the

base of the porous bed are able to escape out of the base into the region beyond

z = −1. It was also shown that in the limit k → ∞, fluid particles initially situated

in the fluid gap, have relative penetration depths |zpen − z0| = O(1), and so are

able to penetrate deep into the porous bed and potentially escape out of the base

of the porous bed into the region beyond z = −1. Additionally, for fluid particles

initially situated in the porous bed, it was shown that the relative penetration

depth |zpen − z0| = O(1), and so again are able to penetrate deep into the porous

bed and potentially escape out of the base of the porous bed into the region beyond

z = −1.

The escape curves that divide the fluid gap and porous bed into a region of

fluid particles which flow out of the base of the porous bed into the region beyond

z = −1 and those that remain in the porous bed when t = tc was also calculated.

The escape curves in Figure 4.12 show that as k increases more fluid particles

initially situated in either the fluid gap or porous bed are able to escape out of

the base of the porous bed and less remain in the porous bed when t = tc. In

particular, in the limit k → 0 the leading-order solution for the escape curve
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shows that only particles initially situated close to the base of the porous bed will

escape into the region beyond z = −1. In the limit k → ∞, there are two possible

solutions for the leading-order escape curve. If the initial bearing height satisfies

d ≥ ϕ (or equivalently V ∗
f ≥ V ∗

p ), i.e. when the initial volume of the fluid gap is

greater than or equal to the volume of fluid in the porous bed, then all of the fluid

initially situated in the porous bed will be squeezed out of the base of the porous

bed into the region beyond z = −1 when t = tc. If, however, the initial bearing

height satisfies d < ϕ (or equivalently V ∗
f < V ∗

p ), i.e. when the initial volume of

the fluid gap is less than the volume of fluid in the porous bed, then a fraction of

the fluid initially situated in the porous bed, equal to 1− d/ϕ, will remain in the

porous bed when t = tc.

In summary, in this chapter we first compared the behaviour of the fluid gap

thickness, contact time and particle paths of the closed-base and open-base con-

figurations. In particular, in the limits of small and large permeability and of

small and large slip length, the two configurations exhibit qualitatively different

behaviour. For example, in the limit of small permeability, the contact time in

the closed-base configuration increases as the slip length decreases, however, in the

limit of large permeability, the opposite is true. Conversely, in the limit of small

and large permeability, the contact time in the open-base configuration increases

as the slip length decreases for all k. We also described in detail the behaviour of

the finite contact time, particle paths and penetration depths of the open-base con-

figuration of the porous squeeze-film problem, and showed that it is qualitatively

different in the limits of small and large permeability. In particular, in the limit of

small permeability, the finite contact time of the bearing and porous bed is large.

When the bearing and porous bed contact, most of the fluid particles initially

situated in the fluid gap will flow out of the side of the fluid gap. Furthermore,

only fluid particles initially situated very close to the base of the porous bed are

able to flow out of the base. On the other hand, in the limit of large permeability,

the finite contact time of the bearing and porous bed is small. When the bearing

and porous bed contact, fluid particles initially situated in the fluid gap will all

flow into the porous bed, and none out of the side of the gap. Furthermore, if the

initial volume of the fluid gap is greater than or equal to the volume of fluid in the

porous bed, fluid particles initially situated in the porous bed will all flow out of

the base. If, however, the initial volume of the fluid gap is less than or equal to the

volume of fluid in the porous bed, some of the fluid initially situated in the porous
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bed will remain in the porous bed. Finally, we showed that the contact time in the

open-base configuration is always smaller than the contact time in the closed-base

configuration, even when the porous bed in the open-base configuration is much

less permeable.



Chapter 5

An evaporating rivulet

In this chapter we analyse the flow of an evaporating rivulet using three different

models of evaporation. As discussed in Section 1.5, evaporating rivulets occur in

practical applications such as heat exchangers, cooling of electronic devices and

cooking (for example, rivulets of oil in a frying pan, as shown in Figure 1.5). We

will therefore formulate and describe the behaviour of the evaporating rivulet in

this chapter without reference to any specific application, but with the knowledge

that further understanding of this problem is applicable to practical situations. In

particular, we shall describe how the length, semi-width and contact angle of the

rivulet vary as the parameters appearing in the problem vary, such as the input

flux, the angle of inclination of the substrate, and the parameters of the relevant

model of evaporation.

5.1 Problem formulation

As shown in Figure 5.1, consider the steady gravity-driven flow of an evaporating,

symmetric, thin rivulet of an incompressible Newtonian fluid with constant density

ρ∗, viscosity µ∗ and surface tension σ∗ over a solid planar substrate inclined at an

angle α to the horizontal. In particular, we consider sessile (i.e. with 0 ≤ α < π/2),

vertical (i.e. with α = π/2) and pendant (i.e. with π/2 < α ≤ π) rivulets. We use

Cartesian coordinates (x∗, y∗, z∗), with the x∗-axis down the line of greatest slope,

the y∗-axis horizontal and the z∗-axis normal to the substrate at z∗ = 0. The free

surface of the rivulet is at z∗ = h∗(x∗, y∗). The rivulet evaporates from its free

surface for x∗ > 0 with an evaporative mass flux denoted by J∗(x∗, y∗). At x∗ = 0

171
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β∗(x∗)

β∗(x∗) y∗ = a∗(x∗)

y∗ = −a∗(x∗)

β̄∗

β̄∗

−ā∗

ā∗

L∗

J∗(x∗, y∗)

z∗

y∗

x∗

O

g∗

α

z∗ = h∗(x∗, y∗)

Q̄∗(ā∗, β̄∗)

Free surface

Solid substrate

Atmosphere

Figure 5.1: Sketch of a thin gravity-driven evaporating rivulet with free surface
z∗ = h∗(x∗, y∗), contact angle 0 ≤ β∗ ≤ β̄∗ and semi-width 0 ≤ a∗ ≤ ā∗, length L∗

and evaporative flux at the free surface J∗(x∗, y∗). The substrate is inclined at an
angle 0 ≤ α ≤ π to the horizontal and gravity g∗ acts vertically downwards.

there is a prescribed inlet flux Q̄∗. For x∗ > 0 the non-constant volume flux is

Q∗(x∗) (0 ≤ Q∗ ≤ Q̄∗), the non-constant semi-width is a∗(x∗) (0 ≤ a∗ ≤ ā∗) such

that −a∗ ≤ y∗ ≤ a∗, and the non-constant contact angle is β∗(x∗) (0 ≤ β∗ ≤ β̄∗),

and Q∗, a∗ and β∗ take the initial values Q∗(0) = Q̄∗, a∗(0) = ā∗ and β∗(0) = β̄∗,

respectively, at x∗ = 0. In the present work, for each evaporation model, we will

consider both rivulets with a fixed semi-width a∗ = ā∗ and decreasing contact

angle β∗(x∗) (≤ β̄∗) in x∗ > 0 and rivulets with a fixed contact angle β∗ = β̄∗ and

decreasing semi-width a∗(x∗) (≤ ā∗) in x∗ > 0 (see, for example, Paterson et al.

[129]). Eventually, at the “nose” (i.e. the downstream end) of the rivulet, at which

x∗ = L∗, the fluid has evaporated completely. At the nose of the rivulet, Q∗ = 0,

and so, we have the following end conditions, β∗(L∗) = 0 (in the case of a rivulet

with fixed semi-width) or a∗(L∗) = 0 (in the case of a rivulet with fixed contact

angle).
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The atmosphere above the rivulet may consist entirely of vapour or be com-

posed of a mixture of both vapour and passive gas (for example, air) [110]. In

this chapter, we will only describe in detail the full derivation for the one-sided

model, as it is the most complicated, and for the other two evaporation models,

we shall simply assert the form of the evaporative flux. In particular, we shall

derive the one-sided model following, for example, Burelbach et al. [22], Ajaev et

al. [3, 5, 6], and in the simplest possible case in which Marangoni effects, van der

Waals attractions and the effects of vapour recoil are all neglected. In this simplest

possible case, the leading order lubrication equations that govern the flow in the

rivulet remain the same for all three evaporation models considered in this chap-

ter. We shall therefore subsequently derive the governing equations for the flow

in the rivulet with a general evaporative flux J∗, and then consider three possible

models for evaporation, and hence choices for J∗. Specifically, we shall consider

a constant rate of evaporation, a model inspired by the diffusion-limited model

which we term the “pseudo” diffusion-limited model, and the one-sided model.

5.1.1 Governing equations

The continuity equation and steady Navier–Stokes equation for the rivulet are

again (1.2) and (1.3), where u∗ = (u∗(x∗, y∗, z∗), v∗(x∗, y∗, z∗), w∗(x∗, y∗, z∗)) is the

fluid velocity, p∗(x∗, y∗, z∗) is the pressure in the fluid and g∗ = g∗(sinα, 0,− cosα)

is the gravity vector, with magnitude g∗.

5.1.2 Boundary conditions

At the substrate we impose the no-slip and no-penetration conditions

u∗ = 0 (5.1)

on z∗ = 0. We also assume no-slip between the fluid and the vapour at the interface

(u∗ − u(V)∗) · t∗i = 0 (5.2)

on z∗ = h∗. The normal-stress condition is given by

J∗(u∗ − u(V)∗) · n∗ − (T∗ −T(V)∗) · n∗ · n∗ = σ∗∇ · n∗ (5.3)
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on z∗ = h∗. and the tangential-stress condition is given by

J∗(u∗ − u(V)∗) · t∗i − (T∗ −T(V)∗) · n∗ · t∗i = 0 (5.4)

on z∗ = h∗, where i = 1, 2, T∗ = −p∗I + 2µ∗τ ∗ is the stress tensor of the fluid,

T(V)∗ = −p(V)∗I+ 2µ(V)∗τ (V)∗ is the stress tensor of the vapour, with the identity

matrix I and rate-of-strain tensors τ ∗ and τ (V)∗ in the fluid and atmosphere, re-

spectively, p(V)∗ is the constant pressure in the vapour and µ(V)∗ is the constant

viscosity of the vapour. The outward unit normal and tangent vectors to the free

surface are

n∗ =
(−h∗x∗ ,−h∗y∗ , 1)√
1 + h∗x∗

2 + h∗y∗
2
, t∗1 =

(1, 0, h∗x∗)√
1 + h∗x∗

2
, t∗2 =

(0, 1, h∗y∗)√
1 + h∗y∗

2
, (5.5)

respectively. The mass balance condition at the free surface is given by

J∗ = ρ∗(u∗ − u(I)∗) · n∗ = ρ(V)∗(u(V)∗ − u(I)∗) · n∗ (5.6)

on z∗ = h∗, where u(I)∗ is the velocity of the interface, u(V)∗ is the vapour velocity

and ρ(V)∗ is the constant vapour density. Following Burelbach et al. [22], using

(5.2) and (5.6) and considering µ(V )∗ ≪ µ∗ and ρ(V )∗ ≪ ρ∗ (with ρ(V )∗ retained in

(5.6) as it multiplies the vapour velocity, which may be large), the normal stress

(5.3) and tangential stress (5.4) conditions reduce to

− J∗2

ρ(V)∗ − (p(V)∗I+T∗) · n∗ · n∗ = σ∗∇∗ · n∗ (5.7)

on z∗ = h∗ and

T∗ · n∗ · t∗i = 0 (5.8)

on z∗ = h∗ respectively.

Consider a control volume of the rivulet occupying x∗ to x∗+∆x∗. Over a small

interval of time ∆t∗, a mass ρ∗Q∗∆t∗ flows in at x∗, a mass ρ∗(Q∗+∆Q∗)∆t∗ flows

out at x∗ +∆x∗ and a mass

∫ x∗+∆x∗

x∗

∫ a∗

−a∗
J∗ dy∗dx∗ ∆t∗ (5.9)

is lost by evaporation at the free surface. For steady flow of a fluid the mass
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occupying the control volume is constant and therefore

ρ∗Q∗∆t∗ = ρ∗(Q∗ +∆Q∗)∆t∗ +

∫ x∗+∆x∗

x∗

∫ a∗(x̃∗)

−a∗(x̃∗)

J∗(x̃∗, y∗) dy∗ dx̃∗ ∆t∗, (5.10)

and hence the global mass-balance equation is given by

ρ∗
dQ∗

dx∗
= −

∫ a∗(x∗)

−a∗(x∗)

J∗(x∗, y∗) dy∗. (5.11)

5.2 Thin-film approximation

We consider the rivulet to be thin and slowly varying, such that the length scale

in the z∗ direction, δℓ∗, is much smaller than the length scale in the y∗ direction,

ℓ∗, which in turn is much smaller than the length scale in the x∗ direction, ℓ∗/ϵ,

so that δℓ∗ ≪ ℓ∗ ≪ ℓ∗/ϵ, where δ ≪ 1 is the transverse aspect ratio of the rivulet

and ϵ≪ 1 is the longitudinal aspect ratio of the rivulet.

5.2.1 Non-dimensionalisation

We non-dimensionalise according to

x∗ =
ℓ∗

ϵ
x, L∗ =

ℓ∗

ϵ
L, y∗ = ℓ∗y, a∗ = ℓ∗a, z∗ = δℓ∗z, h∗ = δℓ∗h, β∗ = δβ,

Q∗ =
δ3ρ∗g∗ℓ∗4

µ∗ Q, u∗ =
δ2ρ∗g∗ℓ∗2

µ∗ u, v∗ =
ϵδ2ρ∗g∗ℓ∗2

µ∗ v, w∗ =
ϵδ3ρ∗g∗ℓ∗2

µ∗ w,

p∗ = p(V )∗ + δρ∗g∗ℓ∗p, J∗ = Ĵ∗J, (5.12)

where ℓ∗ = (σ∗/ρ∗g∗)1/2 is the capillary length and Ĵ∗ is a characteristic evapo-

rative flux, whose value depends on the characteristics of the evaporation model

considered. We may choose

δ = β̄∗ and ϵ =
Ĵ∗µ∗

ρ∗2g∗β̄∗3ℓ∗2
. (5.13)

The choice of δ in (5.13) means that, without loss of generality, we may take

β̄ = 1, we shall however retain β̄ in what follows for clarity of presentation. The

assumption that the rivulet is thin requires that the dimensional contact angle

β∗ ≪ 1 is small, however, the scaled contact angle β > 0 defined in (5.12) may
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take any positive value.

5.2.2 Leading-order governing equations

At leading order in δ → 0 and ϵ → 0 the governing equations (1.2) and (1.3)

become the thin-film equations given by

ux + vy + wz = 0, (5.14)

uzz = − sinα, (5.15)

−py = 0, (5.16)

pz = − cosα. (5.17)

The global mass balance equation (5.11) is given by

dQ

dx
= −

∫ +a(x)

−a(x)

J(x, y) dy, (5.18)

or, equivalently, by integrating (5.18) with respect to x,

Q− Q̄ = −
∫ x

0

∫ +a(x̃)

−a(x̃)

J(x̃, y) dy dx̃. (5.19)

Equation (5.18) (or equivalently (5.19)) is the governing equation that describes

the behaviour of the contact angle β(x) and the semi-width a(x). However, the

problem as stated thus far is not sufficient to determine both β(x) and a(x), and

hence an additional assumption is required. Therefore, as mentioned previously,

for each evaporation model, we shall consider the rivulet to have either a fixed

semi-width a = ā and decreasing contact angle β(x) (≤ β̄) or a fixed contact angle

β = β̄ and decreasing semi-width a(x) (≤ ā).

5.2.3 Boundary conditions

At leading order in δ → 0 and ϵ → 0, the no-slip and no-penetration conditions

(5.1) are given by

u = v = w = 0 (5.20)
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on z = 0. On the free surface of the rivulet the normal stress condition (5.7)

becomes

p = −hyy (5.21)

on z = h, while the tangential stress condition (5.8) leads to

uz = 0 (5.22)

on z = h.

5.2.4 Velocity, pressure and film thickness

Solving (5.15) subject to (5.20) and (5.22) gives

u =
sinα

2
(2hz − z2). (5.23)

Solving (5.17) subject to (5.21) we find

p = (h− z) cosα− hyy. (5.24)

Now using (5.16) we find the following differential equation for h

(h cosα− hyy)y = 0, (5.25)

which we solve subject to

h = 0, hy = ∓β (5.26)

at y = ±a. This leads to the solution for the free surface shape, obtained by Duffy

and Moffatt [37], given by

h = β ×





coshma− coshmy

m sinhma
0 ≤ α <

π

2
,

a2 − y2

2a
α =

π

2
,

cosmy − cosma

m sinma

π

2
< α ≤ π,

(5.27)
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where m =
√

| cosα|. The maximum height of the rivulet which occurs at y = 0

is given by

hm = β ×





1

m
tanh

(ma
2

)
0 ≤ α <

π

2
,

a

2
α =

π

2
,

1

m
tan
(ma

2

) π

2
< α ≤ π.

(5.28)

For sessile and vertical rivulets (i.e. with 0 ≤ α ≤ π/2) there is always a physically

sensible solution for the free surface (5.27) such that h ≥ 0. However, for a pendant

rivulet (i.e. with π/2 < α ≤ π), as ma → π the rivulet becomes infinitely deep

(h → ∞) and for ma > π the solution (5.27) becomes negative such that h < 0

for some values of y in the range −a < y < a, both of which are not physically

sensible, and so we restrict our attention to 0 ≤ ma < π only.

Now considering the volume flux along the rivulet given by

Q =

∫ h

0

∫ a

−a

u dy dz, (5.29)

which becomes

Q =
β3 sinα

9m4
f(ma), (5.30)

where the function f(ma), first described by Duffy and Moffatt [37], is given by

f(ma) =





15ma coth3ma− 15 coth2ma− 9ma cothma+ 4 0 ≤ α <
π

2
,

12
35
(ma)4 α =

π

2
,

−15ma cot3ma+ 15 cot2ma− 9ma cotma+ 4
π

2
< α ≤ π.

(5.31)

As described by Duffy and Moffatt [37], equation (5.31) satisfies f(ma) ∼
12(ma)4/35 → 0 as ma → 0, f(ma) ∼ 6ma − 11 → ∞ as ma → ∞ for

0 ≤ α ≤ π/2, and f(ma) ∼ 15π(π −ma)−3 → ∞ as ma→ π for π/2 < α ≤ π.

5.2.5 Inlet flux Q̄

At the inlet of the rivulet, at x = 0, the flux (5.30) takes the initial value

Q̄ =
β̄3 sinα

9m4
f(mā). (5.32)
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Considering the inlet flux to be a function of α, i.e. Q̄ = Q̄(α), if the initial

semi-width of the rivulet satisfies ā < π, then the inlet flux Q̄ is finite for sessile,

vertical, and pendant rivulets, i.e. for 0 ≤ α ≤ π. We henceforth refer to rivulets

with initial semi-width ā < π as “narrow” rivulets. In particular, the inlet flux

Q̄(α) of a narrow rivulet satisfies

Q̄ ∼ β̄3f(ā)

9
α → 0+ (5.33)

in the regime α ≪ 1, and

Q̄ ∼ β̄3f(ā)

9
(π − α) → 0+ (5.34)

as α → π−. If the initial semi-width of the rivulet satisfies ā ≥ π, then the inlet

flux is finite for sessile and vertical rivulets, i.e. 0 ≤ α ≤ π/2, however for pendant

rivulets, the inlet flux remains finite only for π/2 < α < αcrit. We henceforth refer

to rivulets with initial semi-width ā ≥ π as “wide” rivulets. The value of αcrit is

calculated by solving the equation mā = π (corresponding to f(mā) → ∞) for α,

which, as described in Section 1.5, is given by (1.81). Beyond α = αcrit, the inlet

flux becomes negative, i.e. Q̄ < 0, and since in the present work we consider only

0 ≤ Q ≤ Q̄, for wide rivulets, we restrict the range of α to be 0 ≤ α < αcrit. In

particular, the inlet flux Q̄ of a wide rivulet satisfies (5.33) as α → 0+, and

Q̄ ∼ 40β̄3ā2

3(ā4 − π4)
(αcrit − α)−3 → ∞ (5.35)

as α → α−
crit for ā > π and

Q̄ ∼ 320β̄3

3π2
(π − α)−5 → ∞ (5.36)

as α → α−
crit = π− for ā = π.

On the other hand, considering the inlet flux to be a function of the initial

semi-width ā, i.e. Q̄ = Q̄(ā), for sessile and vertical rivulets the inlet flux is finite

for all 0 ≤ ā < ∞, however for pendant rivulets, the inlet flux remains finite only

for 0 ≤ ā < ācrit. The value of ācrit is calculated by solving the equation mā = π
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(corresponding to f(mā) → ∞) for ā, which yields

ācrit =
π

m
. (5.37)

For ā > ācrit, the inlet flux becomes negative, i.e. Q̄ < 0, and since in the present

work we consider only 0 ≤ Q ≤ Q̄, for pendant rivulets, we restrict the range of

ā to be 0 ≤ ā < ācrit. In particular, for sessile, vertical and pendant rivulets the

inlet flux Q̄ satisfies

Q̄ ∼ 4β̄3 sinα

105
ā4 → 0+ (5.38)

in the regime ā≪ 1. For sessile and vertical rivulets the inlet flux Q̄ satisfies

Q̄ ∼ 2β3 sinα

3m3
ā→ ∞ (5.39)

and

Q̄ ∼ 4β̄3

105
ā4 → ∞ (5.40)

in the regime ā≫ 1, respectively. For pendant rivulets the inlet flux Q̄ satisfies

Q̄ ∼ 5πβ̄3 sinα

3m7
(ācrit − ā)−3 → ∞ (5.41)

as ā→ ā−crit.

5.2.6 Area and volume

The area of the base A and volume V of the rivulet are given by

A = 2

∫ L

0

a dx and V =

∫ L

0

∫ a

−a

∫ h

0

dz dy dx. (5.42)

The volume can be written

V =
2

cosα

∫ L

0

β[g(ma)− 1] dx, (5.43)
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where

g(ma) =





ma cothma 0 ≤ α <
π

2
,

1 α =
π

2
,

ma cotma
π

2
< α ≤ π.

(5.44)

Equations (5.42) and (5.43) coincide with equations (25) and (26) of Alshaikhi et

al. [10], who considered the flow of a rivulet over and through a porous substrate,

as described in Section 1.5. It is useful to note here that the function g(ma)

satisfies g(ma) = 1 + sgn(cosα)(ma)2/3 + O(ma)4 as ma → 0 i.e. as α → π/2.

Therefore in the case of a vertical rivulet the expression for the volume (5.43) is

given by

V =
2

3

∫ L

0

βa2 dx. (5.45)

5.3 Evaporation models

In this section we will describe in further detail the three models of evaporation

first introduced in Section 1.5 that will be used to model the evaporation of the

rivulet, namely, uniform evaporation, the pseudo diffusion-limited model, and the

one-sided model.

5.3.1 Uniform evaporation

A simple model for the evaporation of the fluid is to assume the fluid evaporates

with a constant and spatially uniform evaporative flux J∗. In this case we may

choose J∗ = Ĵ∗ in (5.12) so that J = Ĵ = 1, with Ĵ retained for clarity of

presentation.

5.3.2 Pseudo diffusion-limited model

As discussed in Section 1.5, the evaporation of a fluid in a thermally equilibrated

state can be governed by the diffusion of vapour in a passive atmosphere (for

example, air). This model of evaporation, named the diffusion-limited model, in

which the diffusion of vapour in the atmosphere determines the evaporative flux,

is often used to model situations in which the fluid is not being heated (see, for

example, [34, 69, 96, 24, 89, 149]).
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As we will show subsequently, because the rivulet is slowly varying, at lead-

ing order the vapour concentration in the atmosphere is governed by the two-

dimensional Laplace equation. As we will show, the solution of the two-dimensional

Laplace equation cannot satisfy the far-field condition of ambient concentration.

Previous works (such as, for example, Yarin et al. [188], Schofield et al. [149], and

Haynes and Pradas [59]) overcame this problem by introducing a large (but finite)

outer boundary to the atmosphere, at which the concentration takes its ambient

value.

In this section (and in Section 5.5), we shall simply assert an evaporative flux

with the same functional dependence on y as in Schofield et al. [149]. In doing

so, we avoid complications associated with including a large but finite boundary,

whilst also retaining the properties of the evaporative flux of the full diffusion-

limited model, for example, as will be shown subsequently, the same integrable

singularity at the contact line of the rivulet.

5.3.2.1 Diffusion-limited model

To first describe the diffusion-limited model, we consider a rivulet as described in

Section 5.1 that evaporates into a surrounding passive atmosphere. The vapour

transport into the atmosphere is considered to be quasi steady, and so the vapour

concentration in the atmosphere is denoted by c∗ = c∗(x∗, y∗, z∗). Following, for

example, [34, 69, 96, 24, 89, 149, 147, 59, 189], the concentration in the atmosphere

above the rivulet is governed by Laplace’s equation given by

∇∗2c∗ = 0. (5.46)

Since the rivulet is slowly varying, i.e. the length scale in the x∗ direction is ℓ∗/ϵ,

(5.46) reduces to the two-dimensional Laplace equation given by

∂2c∗

∂y∗2
+
∂2c∗

∂z∗a
2
= 0, (5.47)

where z∗a is the z∗-coordinate in the atmosphere. At the free surface of the rivulet,

the concentration takes the value of the constant saturation concentration c∗sat.

Whilst far from the free surface of the rivulet, the concentration takes the value

of the constant ambient concentration c∞. At substrate, outside the rivulet for

y∗ > |a∗|, there is no evaporation, and hence the evaporative flux is zero. We
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non-dimensionalise according to (5.12) and

z∗a = ℓ∗za and c∗ = c∗∞ + (c∗sat − c∗∞)c. (5.48)

Hence, at leading order in δ → 0 and ϵ→ 0, (5.47) becomes

∂2c

∂y2
+

∂2c

∂za2
= 0. (5.49)

At the free surface (which we evaluate at za = 0 due to the thinness of the rivulet)

the concentration takes the value of the constant saturation concentration, and

hence

c = 1 (5.50)

on za = 0. Far from the rivulet, the concentration takes the value of the constant

ambient concentration, and hence

c→ 0 as
√
y2 + z2a → ∞. (5.51)

At the substrate, outside the rivulet, there is no evaporation, and hence

∂c

∂za
= 0 (5.52)

on za = 0 for |y| > ā. The solution of (5.49) clearly satisfies

c = O
(
ln
(√

y2 + z2a

))
→ ∞ (5.53)

as
√
y2 + z2a → ∞. Therefore, the solution of the two-dimensional problem cannot

satisfy the far-field condition (5.51). To overcome this problem, the works of, for

example, Yarin et al. [188], Schofield et al. [149], and Haynes and Pradas [59],

instead of evaluating the condition (5.51) at infinity, they evaluated it at a large

(but finite) outer boundary to the atmosphere. For example, Schofield et al. [149]

considered the semi-circular outer boundary condition

c = 0 for y2 + z2 = γ2, (5.54)

where γ is a large (but finite) distance from the origin y = za = 0. However,

note that introducing a large (but finite) outer boundary in this way introduces
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an additional parameter into the problem, i.e. the solution for c depends on the

size and shape of outer boundary. Schofield et al. [149], for example, showed that

the evaporative flux is of the form

J = −∂c
∂z

(y, 0) =
1

arcsinh(Ψ/a)

1√
a2 − y2

for |y| < ā, (5.55)

where the parameter Ψ is a non-dimensional constant which depends on the size

of the large (but finite) outer boundary. The evaporative flux given by (5.55)

therefore not only depends on y and a, but also the parameter Ψ, and also has

the same (integrable) square-root singularity at |y| = a as in the corresponding

axisymmetric problem [136]. Note that in the axisymmetric problem, the concen-

tration satisfies Laplace’s equation and the far-field condition (5.51), and so there

is no need to introduce a large (but finite) outer boundary.

5.3.2.2 Pseudo diffusion-limited model

Motivated by the successful description of the evaporation of ridges (i.e. two-

dimensional droplets) of fluid just described in Section 5.3.2.1, in the present work

we investigate a rivulet which evaporates according to an evaporative flux of the

same (integrable) form as (5.55). Specifically, in order to avoid the complications

of the dependence on the size of the domain, we assume that the evaporative flux

is given simply by

J =
ȷ̂√

a2 − y2
, (5.56)

where ȷ̂ is a non-dimensional constant. We shall henceforth refer to (5.56) as the

evaporative flux of the pseudo diffusion-limited model, in order to distinguish it

from the correct form of the evaporative flux given by (5.55). We can, without

loss of generality, take ȷ̂ = 1, but retain ȷ̂ in what follows for clarity.

5.3.3 One-sided model

As discussed in Section 1.5, the evaporation of a fluid can also be modelled by

the non-equilibrated thermal effects at the free surface of the fluid. This model of

evaporation, named the one-sided model, was originally proposed by Burelbach et

al. [22], and is often used to model situations in which the substrate, and hence

the fluid, is heated (see, for example, [128, 22, 173, 3, 5, 6, 26, 25]).
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Following Burelbach et al. [22], we derive the evaporative flux J∗ and tempera-

ture in the fluid T ∗ according to the one-sided model in the simplest case in which

we neglect Marangoni effects, van der Waals attraction and vapour recoil.

The energy equation for steady flow is given by

u∗ · ∇T ∗ = κ∗∇2T ∗, (5.57)

where T ∗(x∗, y∗, z∗) is the temperature of the fluid and κ∗ is the constant thermal

diffusivity. On the substrate we assume constant temperature

T ∗ = T ∗
H (5.58)

on z∗ = 0, where T ∗
H > 0 is the constant temperature of the substrate.

The energy balance condition at the fluid–vapour interface (see, for example,

Burelbach et al. [22] and Ajaev [4]) is given by

0 = J∗
[
L̂∗ +

1

2

[
u(V)∗ − u(I)∗) · n∗]2 − 1

2

[
(u∗ − u(I)∗) · n∗]2

]
+ k∗∇T ∗ · n∗

− k(V )∗∇T ∗ · n∗ + 2µ∗(τ ∗ · n∗) · (u∗ − u(I)∗)− 2µ(V )∗(τ (V )∗ · n∗) · (u(V)∗ − u(I)∗)

(5.59)

on z∗ = h∗, where L̂∗ is the latent heat of vaporisation, k∗ and k(V )∗ are the

constant thermal conductivities of the fluid and vapour, respectively.

We now consider the limiting case in which the thermal conductivity of the

vapour is much smaller than that of the fluid [22], i.e.

k(V )∗

k∗
→ 0. (5.60)

This limit together with the limits ρ(V)∗/ρ∗ → 0 and µ(V)∗/µ∗ → 0 applied in

Section 5.1 form the “one-sided model” and decouple the dynamics of the fluid

from the dynamics of the vapour [22].

Substituting from (5.6) and taking the limit (5.60), the energy balance condi-

tion (5.59) becomes

J∗

[
L̂∗ +

1

2

(
J∗

ρ(V )∗

)2
]
= −k∗∇T ∗ · n∗. (5.61)

Considering the Hertz-Knudsen-Schrage equation, derived from classical kinetic
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theory (see, for example, [150, 128, 14, 4, 192]), linearised around the equilibrium

temperature at which T (I)∗ = T ∗
S , given by

J∗ = α̂

√
M∗

W

2πRgT ∗
S

(p(V)∗ − p(S)∗), (5.62)

where p(S)∗ = p(V)∗(T ∗
S ) is the saturation vapour pressure, T ∗

S is the saturation

temperature, T (I)∗ is the temperature at the free surface, MW
∗ is the molecular

weight of the vapour, and Rg is the universal gas constant. Combining (5.62)

with the classical Clausius-Clapeyron equation (see, for example, [27, 28, 6, 192]),

linearised around the equilibrium temperature, given by

p(V)∗ − p(S)∗ =
ρ(V)∗L̂∗

T ∗
S

(T (I)∗ − T ∗
S ), (5.63)

yields the linearised constitutive equation given by Burelbach et al. [22], namely

J∗ =

(
α̂ρ(V)∗L̂∗

T
∗ 3
2

S

)(
MW

∗

2πRg

) 1
2

(T (I)∗ − T ∗
S ), (5.64)

where α̂ is the accommodation coefficient. The accommodation coefficient is de-

fined as the probability of molecules in the vapour either diffusing into the fluid

surface (α̂) or being reflected away from the fluid surface (1 − α̂), hence the ac-

commodation coefficient lies in the interval 0 ≤ α̂ ≤ 1, where α̂ = 0 corresponds

to no energy being transferred from the vapour to the fluid and α̂ = 1 corresponds

to the vapour achieving equilibrium with the fluid surface. The value of the ac-

commodation coefficient can depend on many factors including the smoothness of

the fluid surface and the composition and pressure in the vapour [72].

Subject to the scalings (5.12) and

T ∗ = ∆TT + T ∗
S , (5.65)

where

∆T ∗ = T ∗
H − T ∗

S , (5.66)
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and the characteristic evaporative flux given by

Ĵ∗ =
k∗∆T ∗

L̂∗ℓ∗δ
(5.67)

at leading order in δ → 0 and ϵ→ 0, the energy equation (5.57) becomes

∂2T

∂z2
= 0. (5.68)

The energy balance condition (5.61) becomes

J = −∂T
∂z

(5.69)

on z = h. The linearised constitutive equation (5.64) becomes

T = KJ (5.70)

on z = h, where the non-dimensional parameter K, defined by

K =

(
k∗T

∗ 3
2

S

α̂ρ(V)∗L̂∗2ℓ∗β̄

)(
2πRg

M∗
W

) 1
2

, (5.71)

measures the degree of non-equilibrium at the free surface of the rivulet. On the

substrate the temperature takes the constant value

T = 1 (5.72)

on z = 0. Solving (5.68) subject to (5.69) and (5.72) yields

T = 1− Jz. (5.73)

Substituting (5.70) into (5.73) yields the evaporative flux given by

J =
1

h+K
, (5.74)

and hence the temperature (5.73) in the fluid is given by

T = 1− z

K + h
. (5.75)
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In particular, K → 0+ corresponds to the limit in which the free surface temper-

ature is constant and equal to the saturation temperature and so T = 0 on z = h.

In this limit the evaporative flux becomes large, J → ∞, and so L → 0+, i.e.

the rivulet evaporates immediately. On the other hand, in the limit K → ∞, the

evaporative flux becomes small, J → 0+, and so L → ∞, i.e. the rivulet does not

evaporate and is therefore infinitely long.

5.4 Evaporating rivulet: Uniform evaporation

In this section we consider the evaporation rate at the free surface of the fluid to

be uniform. Hence, as discussed in Section 5.3.1, we choose J∗ = Ĵ∗ in (5.12) so

that J ≡ Ĵ = 1, with Ĵ retained for clarity of presentation. Hence, (5.18) gives

the following differential equation

dQ

dx
= −2Ĵa(x) (5.76)

and equation (5.19) becomes

Q− Q̄ = −2Ĵ

∫ x

0

a(x̃) dx̃. (5.77)

Substituting (5.30) into (5.76) we obtain the ordinary differential equation for β(x)

and/or a(x), namely
sinα

9m4

d

dx

[
β3f(ma)

]
= −2Ĵa. (5.78)

5.4.1 Fixed semi-width a = ā

In this subsection we will consider an evaporating rivulet whose semi-width is fixed

with constant value a = ā. In particular, we will describe the behaviour of the

contact angle and the variation of the length of narrow, wide, sessile, vertical and

pendant rivulets, with respect to the angle of inclination α and initial semi-width

ā. We will also derive expressions for the area of the base and volume of the

rivulet.

For a rivulet with fixed semi-width, the ordinary differential equation (5.78)

becomes
sinαf(mā)

9m4

d

dx

(
β3
)
= −2Ĵ ā. (5.79)
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(a) x

β

ā = 5

ā = 4

(b) x

β

ā = 2

ā = 1.8

Figure 5.2: Plots of the contact angle β given by (5.81) as a function of x for (a)
α = π/4, ā = 1, 2, . . ., 5 and (b) α = 3π/4, ā = 1, 1.2, . . ., 2, in the case of a
rivulet with fixed semi-width and uniform evaporative flux.

Solving (5.79) subject to the initial condition β(0) = β̄ gives

β = β̄

(
1− 18m4Ĵ āx

f(mā)β̄3 sinα

) 1
3

. (5.80)

Using the end condition β(L) = 0, (5.80) becomes

β = β̄
(
1− x

L

) 1
3
= β̄

(
1− 2Ĵ āx

Q̄

) 1
3

, (5.81)

where the length of the rivulet L is given by

L =
β̄3 sinα

18m4Ĵ ā
f(mā) =

Q̄

2Ĵ ā
. (5.82)

In the case of a vertical rivulet (5.82) is given by

L =
2β̄3ā3

105Ĵ
. (5.83)

Figure 5.2 shows the contact angle given by (5.81) as a function of x for different

values of ā for both a sessile and a pendant rivulet. In particular, Figure 5.2 shows

that β decreases from β = β̄ at x = 0 to β = 0 at x = L. Furthermore, Figure 5.2

shows that the contact angle β increases as the initial semi-width ā increases.
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5.4.1.1 Rivulet shape

An example of the three-dimensional shape of the rivulet in the case of a vertical

rivulet with fixed semi-width is shown in Figure 5.3. Figure 5.3 illustrates that

the rivulet has a “square” nose at which its slope in the x-direction becomes large

according to dhm/dx = O((L− x)−2/3) → −∞ as x→ L−. Hence the assumption

that the rivulet is slowly varying in x breaks down locally near the nose. In

particular, the contact angle near the nose behaves like

β ∼ β̄
(
1− x

L

) 1
3 → 0+ (5.84)

as x→ L−.

Near x = 0 the contact angle behaves like

β ∼ β̄
(
1− x

3L

)
→ β̄−, (5.85)

the free surface behaves like

h ∼ h̄

(
1− 1

3L
x

)
→ h̄−, (5.86)

where h̄ = h(0, y), and the maximum height of the rivulet behaves like

hm ∼ h̄m

(
1− 1

3L
x

)
→ h̄−m, (5.87)

where h̄m = hm(0), as x→ 0+.

5.4.1.2 The length of a narrow rivulet

In the case of a narrow rivulet (i.e. a rivulet with 0 ≤ ā < π) with fixed semi-width,

Figure 5.4 shows the length L given by (5.82) as a function of α/π for various values

of ā. In particular, Figure 5.4 shows that the rivulet length increases from zero

at α = 0 to a maximum L = Lmax at some value α = αmax and then decreases

towards zero at α = π. In particular, the length of a sessile narrow rivulet behaves

like

L ∼ β̄3f(ā)

18Ĵ ā
α → 0+ (5.88)
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x

y
z

Figure 5.3: Three-dimensional plot of the shape of the rivulet z = h(x, y) given
by (5.27), (5.81) and (5.83) in the case of a vertical rivulet with fixed semi-width
for ā = 12, L = 2ā3/105 ≃ 32.91 and Q̄ = 4ā4/105 ≃ 789.94.

in the regime α ≪ 1. The length of a pendant narrow rivulet behaves like

L ∼ β̄3f(ā)

18Ĵ ā
(π − α) → 0+ (5.89)

as α → π−.

Plots of αmax and Lmax as functions of ā are shown in Figure 5.5. In particular,

Figure 5.5 shows that the maximum length of a narrow rivulet with fixed semi-

width increases monotonically from Lmax → 0+ and αmax = π/2 as ā → 0+ to

Lmax → ∞ and αmax → π− as ā→ π−.
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α/π

L

ā = 2

ā = 1.8

Figure 5.4: Plot of the length L given by (5.82) as a function of α/π and the
asymptotic solutions (5.88) and (5.89) in the limits α → 0+ and α → π− shown
with dash-dotted and dashed lines, respectively, for ā = 1, 1.2, 1.4, . . ., 2 in the
case of a narrow rivulet with fixed semi-width and uniform evaporative flux.

(a) ā/π

Lmax

(b) ā/π

αmax/π
(1, 1)

(0, 1/2)

Figure 5.5: Plots of (a) Lmax as a function of ā/π and the vertical asymptote at
ā/π = 1, and (b) αmax/π as a function of ā/π in the case of a narrow rivulet with
fixed semi-width and uniform evaporative flux.
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α/π

L

ā = πā = 7

Figure 5.6: Plot of the length L given by (5.82) as a function of α/π and the
vertical asymptotes at α = αcrit shown with dashed lines for ā = π, 4, 5, 6, 7 in
the case of a wide rivulet with fixed semi-width and uniform evaporative flux.

5.4.1.3 The length of a wide rivulet

In the case of a wide rivulet (i.e. a rivulet with ā ≥ π) with fixed semi-width,

Figure 5.6 shows the length L given by (5.82) as a function of α/π for various

values of ā. In particular, Figure 5.6 shows that the rivulet length increases from

L → 0+ as α → 0+ to L → ∞ as α → α−
crit, where a rivulet with finite length

exists only for 0 ≤ α < αcrit ≤ π. In particular, the length of the rivulet behaves

like (5.88) as α → 0+ and becomes infinitely long according to

L ∼ 20β̄3ā

3Ĵ(ā4 − π4)
(αcrit − α)−3 → ∞ (5.90)

as α → α−
crit for ā > π and

L ∼ 160β̄3

3π3Ĵ
(π − α)−5 → ∞ (5.91)

as α → α−
crit = π− for ā = π.

5.4.1.4 The rivulet length as ā varies

The variation of L as a function of ā for a sessile, vertical and pendant rivulet is

shown in Figures 5.7 and 5.8.

In the case of a sessile rivulet, Figure 5.7 shows that the length increases from
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ā

L

α =
5π

12

α =
π

3

Figure 5.7: Plot of the length L given by (5.82) as a function of ā and the asymp-
totic solutions (5.92) and (5.93) in the limits ā → 0+ and ā → ∞ shown with
dash-dotted and dashed lines, respectively, for α = π/12, π/6, . . ., 5π/12, in the
case of a sessile rivulet with fixed semi-width and uniform evaporative flux.

L → 0+ as ā → 0+ to a constant value as ā → ∞. In particular, the length of a

sessile rivulet with fixed semi-width behaves like

L ∼ 2β̄3 sinα

105Ĵ
ā3 → 0+ (5.92)

in the regime ā≪ 1 and approaches the finite value

L ∼ β̄3 sinα

3Ĵm3
= O(1) (5.93)

as ā → ∞. Note that the length of the rivulet in the limit ā → ∞ for a sessile

rivulet given by (5.93) corresponds to the length of a two-dimensional (i.e. an

infinitely wide) sessile evaporating sheet.

In the case of a vertical rivulet, Figure 5.8 shows that the length increases from

L → 0+ as ā → 0+ to L → ∞ as ā → ∞. In particular, the length of a vertical

rivulet with fixed semi-width behaves like (5.92) as ā→ 0+ and

L ∼ 2β̄3

105Ĵ
ā3 → ∞ (5.94)

in the regime ā≫ 1.

In the case of a pendant rivulet, Figure 5.8 shows that the length increases
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ā

L

α =
π

2

α =
11π

12

Figure 5.8: Plot of the length L given by (5.82) as a function of ā and the vertical
asymptotes at ā = ācrit = π/m shown with dashed lines for α = π/2, 7π/12,
. . ., 11π/12, in the case of a pendant rivulet with fixed semi-width and uniform
evaporative flux.

from L → 0+ as ā → 0+ to L → ∞ as ā → ā−crit. In particular, the length of a

pendant rivulet with fixed semi-width behaves like (5.92) as ā→ 0+ and becomes

infinitely long according to

L ∼ 5β̄3 sinα

6m6Ĵ
(ācrit − ā)−3 → ∞ (5.95)

as ā→ ā−crit.

5.4.1.5 Area and volume

From (5.42) the area of the base of a rivulet with fixed semi-width is given by

A = 2Lā =
β̄3 sinα

9m4Ĵ
f(mā) =

Q̄

Ĵ
. (5.96)

From (5.42) the volume of a rivulet with fixed semi-width is given by

V =
3β̄L

2 cosα
[g(mā)− 1] =

β̄4 tanα

12m4Ĵ ā
f(mā)(g(mā)− 1) =

3β̄Q̄

4 cosαĴā
(g(mā)− 1).

(5.97)
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In the case of a vertical rivulet (5.96) and (5.97) reduce to

A = 2Lā =
4β̄3ā4

105Ĵ
=
Q̄

Ĵ
, V =

β̄ā2L

2
=
β̄4ā5

105Ĵ
=
β̄āQ̄

4Ĵ
. (5.98)

5.4.2 Fixed contact angle β = β̄

In this subsection we will consider an evaporating rivulet whose contact angle is

fixed with constant value β = β̄. In particular, we will describe the behaviour of

the semi-width and the variation of the length of narrow, wide, sessile, vertical

and pendant rivulets, with respect to the angle of inclination α and initial semi-

width ā. We will also derive expressions for the area of the base and volume of

the rivulet.

For a rivulet with fixed contact angle, the ordinary differential equation (5.78)

becomes
β̄3 sinα

9m4

d

dx
(f(ma)) = −2Ĵa. (5.99)

Solving (5.99) subject to the initial condition a(0) = ā gives the implicit solution

for the semi-width

F (ma) = F (mā)− 18Ĵm3

β̄3 sinα
x, (5.100)

where

F (ma) =

∫ ma

0

f ′(M)

M
dM, (5.101)

where M = mã. Using the end condition a(L) = 0, (5.100) becomes

F (ma) =
18Ĵm3

β̄3 sinα
(L− x), (5.102)

where the length of the rivulet is given by

L =
β̄3F (mā) sinα

18m3Ĵ
. (5.103)

It can be shown that

F (ma) ∼ 16

35
(ma)3 → 0+ (5.104)

in the regime ma≪ 1 for 0 ≤ α ≤ π,

F (ma) ∼ 6 ln(ma) → ∞ (5.105)
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(a) (b)

a

x

a

x

ā = 5

ā = 4

ā = 2

ā = 1.8

Figure 5.9: Plots of the semi-width a given by (5.102) as a function of x for (a)
α = π/4, ā = 1, 2, . . ., 5 and (b) α = 3π/4, ā = 1, 1.2, . . ., 2 in the case of a
rivulet with fixed contact angle and uniform evaporative flux.

in the regime ma≫ 1 for 0 ≤ α < π/2, and

F (ma) ∼ 15(π −ma)−3 → ∞ (5.106)

as ma→ π− for π/2 < α ≤ π.

The solution for the semi-width in the case of a vertical rivulet is given explicitly

by

a = ā
(
1− x

L

) 1
3
, (5.107)

with

L =
8β̄3ā3

315Ĵ
=

2Q̄

3Ĵ ā
. (5.108)

Note that the length of a vertical rivulet with fixed contact angle given by (5.108)

is 4/3 the length of the vertical rivulet with fixed semi-width given by (5.83).

Figure 5.9 shows the semi-width given implicitly by (5.102) as a function of

x for different values of ā for both a sessile and a pendant rivulet. In particular,

Figure 5.9 shows that a decreases from a = ā at x = 0 to a = 0 at x = L.

Furthermore, Figure 5.9 shows that the semi-width a increases as the initial semi-

width ā increases.

5.4.2.1 Rivulet shape

An example of the three-dimensional shape of the rivulet in the case of a vertical

rivulet with fixed contact angle is shown in Figure 5.10. In particular, Figure 5.10
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illustrates that the rivulet has a rounded nose with shape

a ∼
[

315Ĵ

8β̄3 sinα
(L− x)

] 1
3

→ 0+ (5.109)

as x → L−. Near the nose the slope in the x-direction becomes large according

to dhm/dx = O((L− x)−2/3) → −∞ as x → L−. Hence the assumption that the

rivulet is slowly varying in x breaks down locally near the nose.

Near x = 0 the semi-width behaves like

a ∼ ā

(
1− 18Ĵm3

β̄3 sinαf ′(mā)
x

)
→ ā−, (5.110)

the free surface behaves like

h ∼ h̄− 18Ĵm3ā

β̄3 sinαf ′(mā)

∂h

∂a

∣∣∣
a=ā

x→ h̄−, (5.111)

and the maximum height behaves like

hm ∼ h̄m − 18Ĵm3ā

β̄3 sinαf ′(mā)

dhm
da

∣∣∣
a=ā

x→ h̄−m (5.112)

as x→ 0+.

5.4.2.2 The length of a narrow rivulet

In the case of a narrow rivulet (i.e. a rivulet with 0 ≤ ā < π) with fixed con-

tact angle, Figure 5.11 shows the length L given by (5.103) as a function of α/π

for various values of ā. In particular, Figure 5.11 shows that the rivulet length

increases from zero at α = 0 to a maximum Lmax at some value α = αmax and

then decreases towards zero at α = π. In particular, the length of a sessile narrow

rivulet behaves like

L ∼ β̄3F (ā)

18Ĵ
α → 0+ (5.113)

in the regime α ≪ 1. The length of a pendant narrow rivulet behaves like

L ∼ β̄3F (ā)

18Ĵ
(π − α) → 0+ (5.114)
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x

y
z

Figure 5.10: Three-dimensional plot of the shape of the rivulet z = h(x, y) given
by (5.27), (5.107), and (5.108) in the case of a vertical rivulet with fixed contact
angle for ā = 12, L = 8ā3/315 ≃ 43.89 and Q̄ = 4ā4/105 ≃ 789.94.

as α → π−.

Plots of Lmax and αmax are shown in Figure 5.12. In particular, Figure 5.12

shows that the maximum length of a narrow rivulet with fixed contact angle in-

creases monotonically from Lmax → 0+ and αmax = π/2 as ā → 0+ to Lmax → ∞
and αmax → π− as ā→ π−.

5.4.2.3 The length of a wide rivulet

In the case of a wide rivulet (i.e. a rivulet with ā ≥ π) with fixed contact angle,

Figure 5.13 shows the length L given by (5.103) as a function of α/π for various

values of ā. In particular, Figure 5.13 shows that the rivulet length increases from

L → 0+ as α → 0+ to L → ∞ as α → α−
crit, where a rivulet with finite length

exists only for 0 ≤ α < αcrit ≤ π. In particular, the length of the rivulet behaves
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α/π

L

ā = 2

ā = 1.8

Figure 5.11: Plot of the length L given by (5.103) as a function of α/π and the
asymptotic solutions (5.113) and (5.114) in the limits α → 0+ and α → π− shown
with dash-dotted and dashed lines, respectively, for ā = 1, 1.2, 1.4, . . ., 2 in the
case of a narrow rivulet with fixed contact angle and uniform evaporative flux.

like (5.113) as α → 0+ and becomes infinitely long according to

L ∼ 20β̄3ā

3Ĵ(ā4 − π4)
(αcrit − α)−3 → ∞ (5.115)

as α → α−
crit for ā > π and

L ∼ 160β̄3

3π3Ĵ
(π − α)−5 → ∞ (5.116)

as α → α−
crit = π− for ā = π. Note that (5.115) and (5.116) coincide with (5.90)

and (5.91), respectively. This shows that in the limit α → α−
crit, but not otherwise,

the length of a rivulet with fixed contact angle is the same as for a rivulet with

fixed semi-width.

5.4.2.4 The rivulet length as ā varies

The variation of L as a function of ā for a sessile, vertical and pendant rivulet is

shown in Figure 5.14 and 5.15.

In the case of a sessile rivulet, Figure 5.14 shows that the length increases from

L → 0+ as ā → 0+ to L → ∞ as ā → ∞. In particular, the length of a sessile
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(a) ā/π

Lmax

(b) ā/π

αmax/π
(1, 1)

(0, 1/2)

Figure 5.12: Plots of (a) Lmax as a function of ā/π and the vertical asymptote at
ā/π = 1, and (b) αmax/π as a function of ā/π in the case of a narrow rivulet with
fixed contact angle and uniform evaporative flux.

rivulet with fixed contact angle behaves like

L ∼ 8β̄3 sinα

315Ĵ
ā3 → 0+ (5.117)

in the regime ā≪ 1 and

L ∼ β̄3 sinα

3m3Ĵ
ln(mā) → ∞ (5.118)

in the regime ā ≫ 1. Therefore, (5.118) shows that, unlike the length of a rivulet

with fixed semi-width which attains an O(1) value in the limit ā → ∞ given by

(5.93), the length of a rivulet with fixed contact angle becomes infinite in the limit

ā→ ∞.

In the case of a vertical rivulet, Figure 5.15 shows that the length increases

from L → 0+ as ā → 0+ to L → ∞ as ā → ∞. In particular, the length of a

vertical rivulet with fixed contact angle behaves like (5.117) as ā→ 0+ and

L ∼ 8β̄3

315Ĵ
ā3 → ∞ (5.119)

in the regime ā≫ 1.

In the case of a pendant rivulet, Figure 5.15 shows that the length increases

from L → 0+ as ā → 0+ to L → ∞ as ā → ā−crit. In particular, the length of a
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α/π

L

ā = πā = 7

Figure 5.13: Plot of the length L given by (5.103) as a function of α/π and the
vertical asymptotes at α = αcrit shown with dashed lines for ā = π, 4, 5, 6, 7 in
the case of a wide rivulet with fixed contact angle and a uniform evaporative flux.

ā

L α =
5π

12
α =

π

3

Figure 5.14: Plot of the length L given by (5.103) as a function of ā and the
asymptotic solutions (5.117) and (5.118) in the limits ā → 0+ and ā → ∞ shown
with dash-dotted and dashed lines, respectively, for α = π/12, π/6, . . ., 5π/12 in
the case of a sessile rivulet with fixed contact angle and uniform evaporative flux.
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ā

L

α =
π

2

α =
11π

12

Figure 5.15: Plot of the length L given by (5.103) as a function of ā and the
vertical asymptotes at ā = ācrit = π/m shown with dashed lines for α = 7π/12,
2π/3, . . ., 11π/12 in the case of a pendant rivulet with fixed contact angle and
uniform evaporative flux.

pendant rivulet behaves like (5.117) as ā→ 0+ and

L ∼ 5β̄3 sinα

6m6Ĵ
(ācrit − ā)−3 → ∞ (5.120)

as ā→ ā−crit.

5.4.2.5 Area and volume

From (5.42) the area of the base of a rivulet with fixed contact angle is given by

A =
β̄3 sinα

9m4Ĵ
f(mā) =

Q̄

Ĵ
. (5.121)

From (5.42) the volume of a rivulet with fixed contact angle is given by

V =
β̄4 tanα

9m3Ĵ

[∫ mā

0

g(s)f ′(s)

s
ds− F (mā)

]

=
β̄mQ̄

f(mā)Ĵ cosα

[∫ mā

0

g(s)f ′(s)

s
ds− F (mā)

]
.

(5.122)
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In the case of a vertical rivulet equations (5.121) and (5.122) reduce to

A =
4β̄3ā4

105Ĵ
=
Q̄

Ĵ
, V =

16β̄4ā5

1575Ĵ
=

4β̄āQ̄

15Ĵ
. (5.123)

The base area of a vertical rivulet with fixed contact angle given by (5.123) is

identical to the base area of a vertical rivulet with fixed semi-width given by

(5.98). The volume of a vertical rivulet with fixed contact angle given by (5.123)

is 16/15 the volume of a vertical rivulet with fixed semi-width given by (5.98).

5.5 Evaporating Rivulet: Pseudo diffusion-lim-

ited model

In this section we consider the evaporation of the rivulet to be governed by the

pseudo diffusion-limited model described in Section 5.3.2. In particular, in this

section the evaporative flux therefore takes the form (5.56). Hence (5.18) gives the

following differential equation

dQ

dx
= −ȷ̂

[
sin−1

(y
a

)]a
−a

= −πȷ̂, (5.124)

and equation (5.19) becomes

Q = Q̄− πȷ̂x, (5.125)

which since Q = 0 at x = L implies immediately that the length of the rivulet L

is given by

L =
Q̄

πȷ̂
=
β̄3 sinαf(mā)

9πȷ̂m4
. (5.126)

In the case of a vertical rivulet (5.126) is given by

L =
4β̄3ā4

105πȷ̂
. (5.127)

Equation (5.126) shows that, unlike for the case of uniform evaporation described

in Section 5.4, the length is the same for a rivulet with fixed semi-width or fixed

contact angle. Substituting (5.30) into (5.124) we obtain the ordinary differential
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equation for β(x) and/or a(x) given by

sinα

9m4

d

dx

[
β3f(ma)

]
= −πȷ̂. (5.128)

5.5.1 Fixed semi-width a = ā

In this subsection we will consider an evaporating rivulet whose semi-width is fixed

with constant value a = ā. In particular, we will describe the behaviour of the

contact angle and derive expressions for the area of the base and volume of the

rivulet.

For a rivulet with fixed semi-width, the ordinary differential equation (5.128)

becomes
dβ

dx
= − 3πȷ̂m4

β2 sinαf(mā)
. (5.129)

Solving (5.129) subject to the initial condition β(0) = β̄ gives

β = β̄

(
1− 105πȷ̂x

4β̄3ā4

) 1
3

. (5.130)

Using the end condition β(L) = 0, (5.130) becomes

β = β̄
(
1− x

L

) 1
3
= β̄

(
1− πȷ̂x

Q̄

) 1
3

, (5.131)

where the length of the rivulet L is given by (5.126). Figure 5.16 shows the contact

angle given by (5.131) as a function of x for different values of ā for both a sessile

and a pendant rivulet. In particular, Figure 5.16 shows that β decreases from

β = β̄ at x = 0 to β = 0 at x = L. Furthermore, Figure 5.16 shows that the

contact angle β increases as the initial semi-width ā increases.

5.5.1.1 Rivulet shape

The three-dimensional shape of an evaporating rivulet with fixed semi-width and

evaporative flux given by (5.56) is qualitatively similar to that shown in Figure

5.3, and so is not plotted here for brevity. In particular, the rivulet has a “square”

nose at which its slope in the x-direction becomes large according to dhm/dx =

O((L−x)−2/3) → −∞ as x→ L−. Hence the assumption that the rivulet is slowly

varying in x breaks down locally near the nose. In particular, the contact angle
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(a) (b)

β

x

β

x

ā = 5

ā = 4

ā = 2

ā = 1.8

Figure 5.16: Plots of the contact angle β given by (5.131) as a function of x for
(a) α = π/4, ā = 1, 2, . . ., 5 and (b) α = 3π/4, ā = 1, 1.2, . . ., 2 in the case of a
rivulet with fixed semi-width and evaporative flux given by (5.56).

near the nose behaves like (5.84) as x→ L−, with L given by (5.126).

Near x = 0 the contact angle behaves like (5.85), the free surface behaves like

(5.86), and the maximum height behaves like (5.87), as x→ 0+.

5.5.1.2 Area and volume

From (5.42) area of the base of a rivulet with fixed semi-width is given by

A = 2āL =
2āβ̄3 sinαf(mā)

9πȷ̂m4
=

2āQ̄

πȷ̂
. (5.132)

From (5.42) the volume of a rivulet with fixed semi-width is given by

V =
β̄4 tanα

6πȷ̂m4
f(mā)(g(mā)− 1) =

3β̄(g(mā)− 1)Q̄

2πȷ̂ cosα
. (5.133)

In the case of a vertical rivulet equations (5.132) and (5.133) reduce to

A = 2āL =
8β̄3ā5

105πȷ̂
=

2āQ̄

πȷ̂
, V =

β̄ā2L

2
=

2β̄4ā6

105πȷ̂
=
β̄ā2Q̄

2πȷ̂
, (5.134)

respectively.

5.5.2 Fixed contact angle β = β̄

In this subsection we will consider an evaporating rivulet whose contact angle is

fixed with constant value β = β̄. In particular, we will describe the behaviour of
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(a) (b)

a

x

a

x

ā = 5

ā = 4

ā = 2

ā = 1.8

Figure 5.17: Plots of the semi-width a given by (5.136) as a function of x for (a)
α = π/4, ā = 1, 2, . . ., 5 and (b) α = 3π/4, ā = 1, 1.2, . . ., 2 in the case of a
rivulet with fixed contact angle and evaporative flux given by (5.56)

the semi-width and derive expressions for the area of the base and volume of the

rivulet.

For a rivulet with fixed contact angle, the ordinary differential equation (5.128)

becomes
d(ma)

dx
= − 9πȷ̂m4

β̄3 sinαf ′(ma)
. (5.135)

Solving (5.135) subject to the initial condition a(0) = ā gives the implicit solution

for the semi-width

f(ma) = f(mā)
(
1− x

L

)
= f(mā)

(
1− πȷ̂x

Q̄

)
, (5.136)

such that L is again given by (5.126).

The solution for the semi-width in the case of a vertical rivulet is given explicitly

by

a = ā
(
1− x

L

) 1
4
. (5.137)

Figure 5.17 shows the semi-width given implicitly by (5.136) as a function of

x for different values of ā for both a sessile and a pendant rivulet. In particular,

Figure 5.17 shows that a decreases from a = ā at x = 0 to a = 0 at x = L.

Furthermore, Figure 5.17 shows that the semi-width a increases as the initial

semi-width ā increases.
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5.5.2.1 Rivulet shape

The three-dimensional shape of an evaporating rivulet with fixed contact angle and

evaporative flux given by (5.56) is qualitatively similar to that shown in Figure

5.10, and so again is not plotted here for brevity. In particular, the rivulet has a

rounded nose with shape

a ∼ 35f(mā)

12m4

(
1− x

L

) 1
4 → 0+ (5.138)

as x → L−. Near the nose the slope in the x-direction becomes large according

to dhm/dx = O((L− x)−3/4) → −∞ as x → L−. Hence the assumption that the

rivulet is slowly varying in x breaks down locally near the nose.

Near x = 0 the semi-width is given implicitly by

a ∼ ā− f(mā)

mLf ′(mā)
x→ ā−, (5.139)

the free surface behaves like

h ∼ h̄− 9πȷ̂m3

β̄3 sinαf ′(mā)

∂h

∂a

∣∣∣
a=ā

x→ h̄−, (5.140)

and the maximum height behaves like

hm ∼ h̄m − 9πȷ̂m3

β̄3 sinαf ′(mā)

dhm
da

∣∣∣
a=ā

x→ h̄−m, (5.141)

as x→ 0+.

5.5.2.2 Area and volume

From (5.42) the base area of a rivulet with fixed contact angle is given by

A =
2β̄3 sinα

9πȷ̂m5

∫ mā

0

Mf ′(M) dM =
2Q̄

πȷ̂mf(mā)

∫ mā

0

Mf ′(M) dM. (5.142)
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From (5.42) the volume of a rivulet with fixed contact angle is given by

V =
2β̄4 tanα

9πȷ̂m4

∫ mā

0

[g(M)− 1]f ′(M) dM

=
2β̄Q̄

πȷ̂ cosαf(mā)

∫ mā

0

[g(M)− 1]f ′(M) dM.

(5.143)

In the case of a vertical rivulet equations (5.142) and (5.143) reduce to

A =
32β̄3ā5

525πȷ̂
=

8Lā

5
=

8Q̄a

5πȷ̂
, V =

16β̄4ā6

945πȷ̂
=

4β̄ā2L

9
=

4β̄ā2Q̄

9πȷ̂
, (5.144)

respectively. The base area of a vertical rivulet with fixed contact angle given by

(5.144) is 4/5 the base area of a vertical rivulet with fixed semi-width given by

(5.134). The volume of a vertical rivulet with fixed contact angle given by (5.144)

is 8/9 the volume of a vertical rivulet with fixed semi-width given by (5.134).

5.5.3 The rivulet length

In this subsection we will discuss the behaviour of the length of the rivulet, which,

as we have already described, in the case of the pseudo diffusion-limited model, is

the same regardless of whether the rivulet has a fixed semi-width or fixed contact

angle. In particular, we will describe the behaviour of the length of narrow, wide,

sessile, vertical and pendant rivulets, with respect to the angle of inclination α

and initial semi-width ā.

5.5.3.1 The length of a narrow rivulet

In the case of a narrow rivulet with either fixed semi-width or contact angle, Figure

5.18 shows the length L given by (5.126) as a function of α/π for various values

of ā. In particular, Figure 5.18 shows that the rivulet length increases from zero

at α = 0 to a maximum L = Lmax at some value α = αmax and then decreases

towards zero at α = π. In particular, the length of a sessile narrow rivulet behaves

like

L ∼ β̄3f(ā)

9πȷ̂
α → 0+ (5.145)
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α/π

L

ā = 2

ā = 1.8

Figure 5.18: Plot of the length L given by (5.126) as a function of α/π and the
asymptotic solutions (5.145) and (5.146) in the limits α → 0+ and α → π− shown
with dash-dotted and dashed lines, respectively, for ā = 1, 1.2, 1.4, . . ., 2 in the case
of a narrow rivulet with either fixed semi-width or contact angle and evaporative
flux given by (5.56).

in the regime α ≪ 1. The length of a pendant narrow rivulet behaves like

L ∼ β̄3f(ā)

9πȷ̂
(π − α) → 0+ (5.146)

as α → π−.

Plots of Lmax and αmax are shown in Figure 5.19. In particular, Figure 5.19

shows that the maximum length of a narrow rivulet with fixed contact angle in-

creases monotonically from Lmax → 0+ and αmax = π/2 as ā → 0+ to Lmax → ∞
and αmax → π− as ā→ π−.

5.5.3.2 The length of a wide rivulet

In the case of a wide rivulet with either fixed semi-width or contact angle, Figure

5.20 shows the length L given by (5.126) as a function of α/π for various values of

ā. In particular, Figure 5.20 shows that the rivulet length increases from L→ 0+

as α → 0+ to L → ∞ as α → α−
crit, where a rivulet with finite length exists only

for 0 ≤ α < αcrit ≤ π. In particular, the length of the rivulet behaves like (5.145)
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(a) ā/π

Lmax

(b) ā/π

αmax/π
(1, 1)

(0, 1/2)

Figure 5.19: Plots of (a) Lmax as a function of ā/π and the vertical asymptote at
ā/π = 1, and (b) αmax/π as a function of ā/π in the case of a rivulet with either
fixed semi-width or contact angle and evaporative flux given by (5.56).

as α → 0+ and becomes infinitely long according to

L ∼ 40β̄3ā2

3πȷ̂(ā4 − π4)
(αcrit − α)−3 → ∞ (5.147)

as α → α−
crit for ā > π and

L ∼ 320β̄3

3π3ȷ̂
(π − α)−5 → ∞ (5.148)

as α → α−
crit = π− for ā = π.

5.5.3.3 The rivulet length as ā varies

The variation of L as a function of ā for a sessile, vertical and pendant rivulet is

shown in Figures 5.21 and 5.22.

In the case of a sessile rivulet, Figure 5.21 shows that the length increases from

L → 0+ as ā → 0+ to L → ∞ as ā → ∞. In particular, the length of a sessile

rivulet with either fixed semi-width or fixed contact angle behaves like

L ∼ 4β̄3 sinα

105πȷ̂
ā4 → 0+ (5.149)

in the regime ā≪ 1 and

L ∼ 2β̄3 sinα

3πȷ̂m3
ā→ ∞ (5.150)
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α/π

L

ā = πā = 7

Figure 5.20: Plot of the length L given by (5.126) as a function of α/π and the
vertical asymptotes at α = αcrit shown with dashed lines for ā = π, 4, 5, 6, 7 in the
case of a wide rivulet with either fixed semi-width or contact angle and evaporative
flux given by (5.56).

in the regime ā ≫ 1. The O(1) distance between L and the asymptotic solution

(5.150), clearly visible in Figure 5.21, is found at next order in the large ā expansion

of (5.126) and is given by −11β̄3 sinα/(9πȷ̂m4).

In the case of a vertical rivulet, Figure 5.22 shows that the length increases

from L → 0+ as ā → 0+ to L → ∞ as ā → ∞. In particular, the length of

a vertical rivulet with either fixed semi-width or fixed contact angle behaves like

(5.149) as ā→ 0+ and

L ∼ 4β̄3

105πȷ̂
ā4 → ∞ (5.151)

in the regime ā≫ 1.

In the case of a pendant rivulet Figure 5.22 shows that the length increases

from L → 0+ as ā → 0+ to L → ∞ as ā → ā−crit. In particular, the length of a

pendant rivulet behaves like (5.149) as ā→ 0+ and

L ∼ 5β̄3 sinα

3ȷ̂m7
(ācrit − ā)−3 → ∞ (5.152)

as ā→ ā−crit.
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ā

L α =
5π

12 α =
π

3

Figure 5.21: Plot of the length L given by (5.126) as a function of ā and the
asymptotic solutions (5.149) and (5.150) in the limits ā → 0+ and ā → ∞ shown
with dash-dotted and dashed lines, respectively, for α = π/12, π/6, . . . , 5π/12 in
the case of a sessile rivulet with either fixed semi-width or contact angle and
evaporative flux given by (5.56).

ā

L

α =
π

2

α =
11π

12

Figure 5.22: Plot of the length of a pendant rivulet with either fixed semi-width or
contact angle, L, given by (5.126) as a function of ā and the vertical asymptotes
at ā = ācrit = π/m shown with dashed lines for α = 7π/12, 2π/3, . . ., 11π/12.



Chapter 5 214

5.6 Evaporating rivulet: One-sided model

In this section we consider the evaporation of the rivulet to be governed by the

one-sided model described in Section 5.3.3. In this section the evaporative flux

therefore takes the form (5.74).

Hence, (5.18) gives the following differential equation

dQ

dx
= −4a

K
R(b,ma), (5.153)

where

b =
β

Km
and b̄ =

β̄

Km
, (5.154)

and the function R = R(b,ma) is defined by

R(b,ma) =





tanh−1

√
tanh( 1

2
ma)+b

coth( 1
2
ma)+b

ma
√(

tanh
(
1
2
ma
)
+ b
) (

coth
(
1
2
ma
)
+ b
) 0 ≤ α <

π

2
,

1√
bma(bma+ 2)

tanh−1

√
bma

bma+ 2
α =

π

2
,

tan−1

√
tan( 1

2
ma)−b

cot( 1
2
ma)+b

ma
√(

tan
(
1
2
ma
)
− b
) (

cot
(
1
2
ma
)
+ b
)

π

2
< α ≤ π.

(5.155)

For future reference, we note here that in the case of a sessile rivulet (i.e. with

0 ≤ α < π/2) and pendant rivulet (i.e. π/2 < α ≤ π) the function R given by

(5.155) behaves like

R → 1− η2

2η
tanh−1 η (5.156)

as α → π/2, where the function η = η(a, β,K) is defined by

η =
1√

1 + 2K
aβ

, (5.157)

which recovers R in the case of a vertical rivulet (i.e. α = π/2) with b replaced by

β/Km as in (5.154). For future reference, we define η̄ = η(ā, β̄, K).
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In the limit b→ ∞ the function R given by (5.155) behaves like

R(b,ma) ∼ ln(bc(ma))

2bma
, (5.158)

where

c(ma) =





2 sinh(ma) 0 ≤ α <
π

2
,

2ma α =
π

2
,

2 sin(ma)
π

2
< α ≤ π.

(5.159)

Note that for sessile, vertical and pendant rivulets, c(ma) ∼ 2ma as ma → 0+

(i.e. with α → π/2). In both the limit b → 0+ and in the limit ma → 0+,

R(b,ma) → 1/2. In the limit ma → ∞ for a sessile rivulet the function R given

by (5.155) behaves like

R(b,ma) → 1

2(1 + b)
= O(1) (5.160)

and for a vertical rivulet

R(b,ma) ∼ ln (2bma)

2bma
→ ∞ (5.161)

in the regime ma≫ 1. In the limit ma→ ma−crit, the function R given by (5.155)

behaves like

R ∼
√
macrit −ma

8b
→ 0. (5.162)

In the limit α → α−
crit we have that b→ b−crit = βa/(πK) and the function R given

by (5.155) behaves like

R ∼ (a4 − π4)
1
4

4
√
πbcrit

(αcrit − α)
1
2 → 0 (5.163)

as α → α−
crit for ā > π and

R ∼
√

π

8bcrit

∣∣∣
a=π

(π − α) → 0 (5.164)

as α → α−
crit = π− for ā = π.
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Substituting (5.30) into (5.153) we obtain the ordinary differential equation for

b(x) and/or a(x) given by

sinα

9m

d

dx

[
b3f(ma)

]
= − 4a

K4
R(b,ma). (5.165)

5.6.1 Fixed semi-width a = ā

In this subsection we will consider an evaporating rivulet whose semi-width is fixed

with constant value a = ā. In particular, we will describe the behaviour of the

contact angle and the variation of the length of narrow, wide, sessile, vertical and

pendant rivulets, with respect to the angle of inclination α, the initial semi-width ā,

and K which, as discussed in Section 5.3.3, measures the degree of non-equilibrium

at the free surface of the rivulet.

For a rivulet with fixed semi-width, the ordinary differential equation (5.165)

becomes
K4 sinαf(mā)

12mā
b2
db

dx
= −R(b,mā), (5.166)

so that b = b(x) is given implicitly by

x =
K4 sinαf(mā)

12mā

∫ b̄

b

b̃2

R(b̃, mā)
db̃. (5.167)

Using the end condition β(L) = b(L) = 0, from (5.167), the length of the rivulet

L is given by

L =
K4f(mā)Iā sinα

12mā
, (5.168)

where

Iā(b̄, mā) =

∫ b̄

0

b̃2

R(b̃, mā)
db̃. (5.169)

In the case of a vertical rivulet by substituting b̃ = (2/mā) sinh2 ξ into (5.168), the

length (5.168) becomes

L =
32K4

35

∫ tanh−1 η̄

0

sinh6 ξ cosh2 ξ

ξ
dξ =

K4

140
Λ
(
tanh−1 η̄

)
, (5.170)
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(a) (b)

β

x

β

x

ā = 5

ā = 4

ā = 2

ā = 1.8

Figure 5.23: Plots of the contact angle β given by (5.167) as a function of x for
(a) α = π/4, ā = 1, 2, . . ., 5, K = 1 and (b) α = 3π/4, ā = 1, 1.2, . . ., 2, K = 1 in
the case of a rivulet with fixed semi-width and evaporative flux given by (5.74).

where the function Λ = Λ(ξ) is defined by

Λ(ξ) = Chi(8ξ)−4Chi(6ξ)+4Chi(4ξ)+4Chi(2ξ)−5 ln(ξ)−5γ−11 ln(2)+4 ln(3),

(5.171)

in which γ ≃ 0.577 is Euler’s constant and Chi denotes the hyperbolic cosine

integral defined by

Chi(ξ) = γ + ln(ξ) +

∫ ξ

0

cosh(s)− 1

s
ds. (5.172)

Figures 5.23 and 5.24 show that the contact angle given implicitly by (5.167) as a

function of x for different values of ā and K, respectively, for both a sessile and a

pendant rivulet. In particular, Figures 5.23 and 5.24 show that β decreases from

β = β̄ at x = 0 to β = 0 at x = L. Furthermore, Figures 5.23 and 5.24 show that

the contact angle increases as the initial semi-width ā and K increases.

5.6.1.1 Rivulet shape

The three-dimensional shape of an evaporating rivulet with fixed semi-width and

evaporative flux given by (5.74) is qualitatively similar to that shown in Figure

5.3, and so is not plotted here for brevity. In particular, the rivulet has a “square”

nose at which its slope in the x-direction becomes large according to dhm/dx =

O((L−x)−2/3) → −∞ as x→ L−. Hence the assumption that the rivulet is slowly

varying in x breaks down locally near the nose. In particular, the contact angle
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(a) (b)

β

x

β

x

K = 5

K = 1
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Figure 5.24: Plots of the contact angle β given by (5.167) as a function of x for
(a) α = π/4, ā = 1, K = 1, 2, . . ., 5 and (b) α = 3π/4, ā = 1, K = 1, 2, . . ., 5 in
the case of a rivulet with fixed semi-width and evaporative flux given by (5.74).

near the nose behaves like

β ∼ mK

[
3Iā
2

(
1− x

L

)] 1
3

→ 0+ (5.173)

as x→ L+.

Near x = 0 the scaled contact angle b behaves like

b ∼ b̄

(
1− 12māR(b̄, mā)

b̄K4 sinαf(mā)
x

)
→ b̄−, (5.174)

the free surface behaves like

h ∼ h̄

(
1− 12māR(b̄, mā)

b̄K4 sinαf(mā)
x

)
→ h̄−, (5.175)

and the maximum height behaves like

hm ∼ h̄m

(
1− 12māR(b̄, mā)

b̄K4 sinαf(mā)
x

)
→ h̄−m, (5.176)

as x→ 0+.

5.6.1.2 The length of a narrow rivulet

In the case of a narrow rivulet with fixed semi-width, Figures 5.25 and 5.26 show

the length L, given by (5.168), as a function of α/π for various values of K and

ā, respectively. In particular, Figures 5.25 and 5.26 show that the rivulet length
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(a) (b)

L

α/π

L

α/π

K = 6

K = 1

K = 6

K = 1

Figure 5.25: Plots of the length L given by (5.168) as a function of α/π and the
asymptotic solutions (5.177) and (5.178) in the limits α → 0+ and α → π− shown
with dash-dotted and dashed lines, respectively, for K = 1, 2, . . ., 6, and (a) ā = 1,
(b) ā = 2 in the case of a narrow rivulet with fixed semi-width and evaporative
flux given by (5.74).

increases from zero at α = 0 to a maximum L = Lmax at some value α = αmax

and then decreases towards zero at α = π. In particular, the length of a sessile

narrow rivulet behaves like

L ∼ K4f(ā)Iā(b̄0, ā)

12ā
α → 0 (5.177)

in the regime α ≪ 1. The length of a pendant narrow rivulet behaves like

L ∼ K4f(ā)Iā(b̄0, ā)

12ā
(π − α) → 0 (5.178)

as α → π−.

Plots of Lmax and αmax are shown in Figure 5.27. In particular, Figure 5.27

shows that the maximum length of a narrow rivulet with fixed semi-width increases

monotonically from Lmax → 0+ and αmax = π/2 as ā → 0+ to Lmax → ∞ and

αmax → π− as ā → π−. By comparing Figure 5.25(a) with Figure 5.25(b) it is

clear that as αmax increases towards αmax = π as ā increases. This is confirmed

by Figure 5.27(b) which shows αmax/π as a function of ā/π. Figure 5.27(b) also

shows that αmax is very weakly dependent on K and decreases only slightly as K

increases. This is confirmed by Figure 5.27(c) which shows that αmax increases

from αmax/π ≃ 0.570 to a maximum close to K = 0 and thereafter decreases

asymptotically towards αmax ≃ 0.570 again as K → ∞.
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α/π

L

ā = 2

ā = 1.8

Figure 5.26: Plot of the length L given by (5.168) as a function of α/π and the
asymptotic solutions (5.177) and (5.178) in the limits α → 0+ and α → π− shown
with dash-dotted and dashed lines, respectively, for K = 1, ā = 1, 1.2, 1.4, . . ., 2
in the case of a narrow rivulet with fixed semi-width and evaporative flux given
by (5.74).

5.6.1.3 The length of a wide rivulet

In the case of a wide rivulet with fixed semi-width, Figures 5.28 and 5.29 show

the length L, given by (5.168), as a function of α/π for various values of K and ā,

respectively. In particular, both Figures 5.28 and 5.29 show that the rivulet length

increases from L → 0+ as α → 0+ to L → ∞ as α → α−
crit, where a rivulet with

finite length exists only for 0 ≤ α < αcrit ≤ π, where αcrit is given by (1.81). In

particular, the length of the rivulet behaves like (5.177) as α → 0+ and becomes

infinitely long according to

L ∼ 80
√
ā3β̄7K

7 (ā4 − π4)
5
4

(αcrit − α)−
7
2 → ∞ (5.179)

as α → α−
crit for ā > π and

L ∼ 640
√

2β̄7K

7π
7
2

(π − α)−6 → ∞ (5.180)

as α → α−
crit = π− for ā = π.
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(a) ā/π

Lmax

103 K = 102

(b) ā/π

αmax/π

K = 107

K = 10−7

(1, 1)

(c) K

αmax/π

Figure 5.27: Plots of (a) Lmax as a function of ā/π for K = 10−3, 10−2, . . . , 103

and the vertical asymptote at ā/π = 1 shown with a dashed line, (b) αmax/π as a
function of ā/π for K = 10−7, 1, 107, and (c) αmax/π as a function of K for ā = 1
and the horizontal asymptote at αmax/π ≃ 0.570 shown with a dashed line in the
case of a rivulet with fixed semi-width and evaporative flux given by (5.74).
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α/π

L

K = 1K = 5

Figure 5.28: Plot of the length L given by (5.168) as a function of α/π for ā =
4 (> π), K = 1, 2, . . ., 5 and the vertical asymptote at α/π = αcrit/π ≃ 0.712
shown with a dashed line in the case of a wide rivulet with fixed semi-width and
evaporative flux given by (5.74).

α/π

L

ā = πā = 7

Figure 5.29: Plot of the length L given by (5.168) as a function of α/π and the
vertical asymptotes at α = αcrit shown with dashed lines for K = 1, ā = π, 4, 5,
6, 7 in the case of a wide rivulet with fixed semi-width and evaporative flux given
by (5.74).
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ā

L

K = 5

K = 1

Figure 5.30: Plot of the length L given by (5.168) as a function of ā and the
asymptotic solutions (5.181) and (5.187) in the limits ā → 0+ and ā → ∞ shown
with dash-dotted and dashed lines, respectively, for K = 1, 2, . . ., 5, α = π/4 in
the case of a sessile rivulet with fixed semi-width and evaporative flux given by
(5.74).

5.6.1.4 The rivulet length as ā varies

The variation of L as a function of ā for a sessile, vertical and pendant rivulet with

fixed semi-width is shown in Figures 5.30–5.33, respectively.

In the case of a sessile rivulet, Figures 5.30 and 5.32 show that the length

increases from L → 0+ as ā → 0+ to a constant value as ā → ∞. In particular,

the length of a sessile rivulet with fixed semi-width behaves like

L ∼ 2Kβ̄3 sinα

105
ā3 → 0+ (5.181)

in the regime ā≪ 1.

In the limit ā → ∞, similar to the constant evaporative flux case in Section

5.4, this limit corresponds to the case of a two-dimensional (i.e. an infinitely wide)

sessile evaporating sheet. The two-dimensional sheet (away from the thin boundary

layers near y = ±ā) has height
h ∼ β

m
. (5.182)

Using (5.182), the evaporative flux (5.74) (away from the thin boundary layers

near y = ±ā) is given by

J ∼ 1

β(x)/m+K
. (5.183)
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ā

L

K = 5

K = 1

Figure 5.31: Plot of the length L given by (5.168) as a function of ā for K = 1, 2,
. . ., 5, α = 3π/4 and the vertical asymptote ācrit ≃ 3.736 shown with a dashed line
in the case of a pendant rivulet with fixed semi-width and evaporative flux given
by (5.74).

ā

L

α =
5π

12

α =
π

3

Figure 5.32: Plot of the length L given by (5.168) as a function of ā and the
asymptotic solutions (5.181) and (5.187) in the limits ā → 0+ and ā → ∞ shown
with dash-dotted and dashed lines, respectively, for α = π/12, π/6, . . ., 5π/12 in
the case of a sessile rivulet with fixed semi-width and evaporative flux given by
(5.74).
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ā

L

α =
π

2α =
11π

12

Figure 5.33: Plot of the length L given by (5.168) as a function of ā and the vertical
asymptotes at ā = ācrit = π/m shown with dashed lines for α = π/2, 7π/12, . . .,
11π/12 in the case of a pendant rivulet with fixed semi-width and evaporative flux
given by (5.74).

The volume flux in the regime ā≫ 1 is

Q ∼ 2β3 sinα

3m3
ā→ ∞. (5.184)

The global mass balance (5.18) with Q given by (5.184) and J given by (5.183)

then becomes
dβ

dx
= − m4

β2(β +Km) sinα
. (5.185)

Solving (5.185) subject to the initial condition β(0) = β̄, gives the implicit solution

for the contact angle in this limit given by

3
(
β4 − β̄4

)
+ 4Km

(
β3 − β̄3

)
= −12m2

tanα
x. (5.186)

Applying the end condition β(L) = 0 to (5.186) shows that the length of the rivulet

L behaves like

L ∼ β̄3 tanα

12m2

(
3β̄ + 4Km

)
= O(1) (5.187)

as ā → ∞. Hence L = O(1) given by (5.187) again gives the length of a two-

dimensional (i.e. an infinitely wide) sessile evaporating sheet.

In the case of a vertical rivulet, Figure 5.33 shows that the length increases

from L → 0+ as ā → 0+ to L → ∞ as ā → ∞. In particular, the length of a
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vertical rivulet with fixed semi-width behaves like (5.181) in the regime ā≪ 1 and

L ∼ (β̄ā)4

70 ln
(

2āβ̄
K

) → ∞ (5.188)

in the regime ā≫ 1.

In the case of a pendant rivulet, Figures 5.31 and 5.33 show that the length

increases from L→ 0+ as ā→ 0+ to L→ ∞ as ā→ ā−crit. In particular, the length

of a pendant rivulet with fixed semi-width behaves like (5.181) in the regime ā≪ 1

and becomes infinitely long according to

L ∼ 5
√

2β̄7K sinα

7m7
(ācrit − ā)−

7
2 → ∞ (5.189)

as ā→ ā−crit.

5.6.1.5 The rivulet length as K varies

The variation of L as a function of K for a sessile, vertical and pendant rivulet

is shown in Figures 5.34–5.37. As discussed in Section 5.3.3, the limit K → 0+

corresponds to the limit in which the evaporative flux becomes large, J → ∞,

and so L → 0, i.e. the rivulet evaporates immediately. On the other hand, the

limit K → ∞ corresponds to the limit in which the evaporative flux becomes

small, J → 0+, and so L→ ∞, i.e. the rivulet does not evaporate and is therefore

infinitely long. This is confirmed by Figures 5.34–5.37 which show that the length

always increases from L→ 0+ as K → 0+ to L→ ∞ as K → ∞.

In particular, the length of a sessile, vertical and pendant rivulet with fixed

semi-width behaves like

L ∼ β̄4 sinαf(mā)

24m4 ln
(

β̄c(mā)
Km

) → 0+ (5.190)

in the regime K ≪ 1, where c(mā) is again given by (5.159). In particular, in the

case of a vertical rivulet we have

L ∼ (β̄ā)4

70 ln
(

2β̄ā
K

) → 0+ (5.191)
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in the regime K ≪ 1.

In the cases of a sessile and a pendant rivulet with fixed semi-width, the rivulet

becomes infinitely long according to

L ∼ β̄3 sinαf(mā)

18m4ā
K → ∞ (5.192)

in the regime K ≫ 1. In this limit, the evaporative flux given by (5.74) behaves

like J ∼ 1/K, i.e. it is uniform as considered in Section 5.4, in which case the

length given by (5.192) coincides with (5.82) with Ĵ = 1/K for all cases of α. In

particular, in the case of a vertical rivulet

L ∼ 2β̄3ā3

105
K → ∞ (5.193)

in the regime K ≫ 1. The behaviour of L as a function of K for 0 ≤ α ≤ π/2

is shown in Figure 5.36 and for π/2 ≤ α ≤ π is shown in Figure 5.37. As shown

in Figure 5.36, the longest rivulet in this range is achieved when α = π/2, shown

with a red line for clarity. As shown in Figure 5.37, the longest rivulet in this

range is achieved, rather surprisingly, when α = 9π/16 and not α = π/2, the

latter of which is shown with a red line for clarity. However, inspection of Figure

5.27 explains this behaviour. In particular, Figure 5.27(b) shows that αmax > π/2

when ā > 0. This is confirmed by Figure 5.27(c) which shows that αmax > π/2 for

all K ≥ 0.

5.6.1.6 Area and volume

From (5.42) and (5.43), the area of the base of the rivulet is given by

A = 2āL =
K4f(mā)Iā sinα

6m
(5.194)

and the volume of the rivulet is given by

V =
K5f(mā)(g(mā)− 1) tanα

6ā

∫ b̄

0

b̃3

R(b̃, mā)
db̃. (5.195)

In the case of a vertical rivulet, by substituting b̃ = (2/mā) sinh2(ξ) into (5.194)

and (5.195), the area of the base (5.194) and the volume of the rivulet (5.195)
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K

L

ā = 5

ā = 1

Figure 5.34: Plot of the length L given by (5.168) as a function of K and the
asymptotic solutions (5.190) and (5.192) in the limits K → 0+ and K → ∞ shown
with dash-dotted and dashed lines, respectively, for ā = 1, 2, . . ., 5, α = π/4 in
the case of a sessile rivulet with fixed semi-width and evaporative flux given by
(5.74).

K

L

ā = 3

ā = 2.5

Figure 5.35: Plot of the length L given by (5.168) as a function of K and the
asymptotic solutions (5.190) and (5.192) in the limits K → 0+ and K → ∞ shown
with dash-dotted and dashed lines, respectively, for ā = 2.5, 2.75, 3, α = 3π/4 in
the case of a pendant rivulet with fixed semi-width and evaporative flux given by
(5.74).
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K

L

α =
π

2

α = 0

Figure 5.36: Plot of the length L given by (5.168) as a function of K and the
asymptotic solutions (5.190) and (5.192) in the limits K → 0+ and K → ∞ shown
with dash-dotted and dashed lines, respectively, for α = 0, π/16, π/8, . . ., 7π/16,
π/2 (shown with a red line for clarity), ā = 1 in the case of a rivulet with fixed
semi-width and evaporative flux given by (5.74).

K

L

α =
9π

16

α =
π

2

α = π

Figure 5.37: Plot of the length L given by (5.168) as a function of K and the
asymptotic solutions (5.190) and (5.192) in the limits K → 0+ and K → ∞ shown
with dash-dotted and dashed lines, respectively, for α = π/2 (shown with a red
line for clarity), 9π/16, 5π/8, 11π/16,. . .,15π/16, π and ā = 1 in the case of a
rivulet with fixed semi-width and evaporative flux given by (5.74).
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become

A =
64āK4

35

∫ tanh−1 η̄

0

sinh6 ξ cosh2 ξ

ξ
dξ (5.196)

and

V =
128K5ā

105

∫ tanh−1 η̄

0

sinh8 ξ cosh2 ξ

ξ
dξ, (5.197)

respectively.

5.6.2 Fixed contact angle β = β̄

In this subsection we will consider an evaporating rivulet whose contact angle is

fixed with constant value β = β̄. In particular, we will describe the behaviour of

the semi-width and the variation of the length of narrow, wide, sessile, vertical and

pendant rivulets, with respect to the angle of inclination α, the initial semi-width ā

and K which, as discussed in Section 5.3.3, measures the degree of non-equilibrium

at the free surface of the rivulet.

For a rivulet with fixed contact angle, the ordinary differential equation (5.165)

becomes
Kβ̄3 sinα

36m4a

df(ma)

dx
= −R(b̄, ma), (5.198)

so that a = a(x) is given implicitly by

x =
Kβ̄3 sinα

36m3

∫ mā

ma

f ′(M)

MR(b̄,M)
dM. (5.199)

Using the end condition a(L) = 0, (5.199) the length of the rivulet L is given by

L =
Kβ̄3Iβ̄ sinα

36m3
, (5.200)

where

Iβ̄(b̄, mā) =

∫ mā

0

f ′(M)

MR(b̄,M)
dM. (5.201)

In the case of a vertical rivulet, by substituting M = mã = (2/b̄) sinh2 ξ into

(5.201), the length (5.200) becomes

L =
128K4

105

∫ tanh−1 η̄

0

sinh6 ξ cosh2 ξ

ξ
dξ =

K4

105
Λ
(
tanh−1 (η̄)

)
. (5.202)
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(a) (b)

a

x

a

x
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ā = 4

ā = 2

ā = 1.8

Figure 5.38: Plots of the semi-width a given by (5.199) as a function of x for
K = 1, (a) α = π/4, ā = 1, 2, . . ., 5, and (b) α = 3π/4, ā = 1, 1.2, . . ., 2 in the
case of a rivulet with fixed contact angle and evaporative flux given by (5.74).

(a) (b)

a

x
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x

K = 5

K = 1

K = 5

K = 1

Figure 5.39: Plots of the semi-width a given by (5.199) as a function of x for ā = 1,
(a) α = π/4, K = 1, 2, . . ., 5 and (b) α = 3π/4, K = 1, 2, . . ., 5 in the case of a
rivulet with fixed contact angle and evaporative flux (5.74).

Note that the length of a vertical rivulet with fixed contact angle given by (5.202)

is 4/3 the length of a vertical rivulet with fixed semi-width given by (5.170).

Figures 5.38 and 5.39 shows the semi-width given implicitly by (5.199) as a

function of x for different values of ā and K, respectively, for both a sessile and a

pendant rivulet. In particular, Figures 5.38 and 5.39 show that β decreases from

β = β̄ at x = 0 to β = 0 at x = L. Furthermore, Figures 5.38 and 5.39 show that

the semi-width increases as the initial semi-width ā and K increase.

5.6.2.1 Rivulet shape

The three-dimensional shape of an evaporating rivulet with fixed contact angle and

evaporative flux given by (5.74) is qualitatively similar to that shown in Figure

5.10, and so again is not plotted here for brevity. In particular, the rivulet has a
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rounded nose with shape

a ∼ 1

m

[
35Iβ̄
32

(
1− x

L

)] 1
3

→ 0+ (5.203)

as x → L−. Near the nose the slope in the x-direction becomes large according

to dhm/dx = O((L− x)−2/3) → −∞ as x → L−. Hence the assumption that the

rivulet is slowly varying in x breaks down locally near the nose.

Near x = 0 the semi-width behaves like

a ∼ ā− 36āR(b̄, mā)

K4b̄3f ′(mā) sinα
x→ ā−, (5.204)

the free surface behaves like

h ∼ h̄− 36āR(b̄, mā)

K4b̄3f ′(mā) sinα

∂h

∂a

∣∣∣
a=ā

x→ h̄−, (5.205)

and the maximum height behaves like

hm ∼ h̄m − 36āR(b̄, mā)

K4b̄3f ′(mā) sinα

dhm
da

∣∣∣
a=ā

x→ h̄−m (5.206)

as x→ 0+.

5.6.2.2 The length of a narrow rivulet

In the case of a narrow rivulet with fixed contact angle, Figures 5.40 and 5.41 show

the length L, given by (5.200), as a function of α/π for various values of K and

ā, respectively. In particular, Figures 5.40 and 5.41 show that the rivulet length

increases from zero at α = 0 to a maximum L = Lmax at some value α = αmax and

then decreases towards zero at α = π. In particular, the length of a sessile narrow

rivulet behaves like

L ∼ Kβ̄3Iβ̄(b̄0, ā)

36
α → 0+ (5.207)

in the regime α ≪ 1. The length of a pendant narrow rivulet behaves like

L ∼ Kβ̄3Iβ̄(b̄0, ā)

36
(π − α) → 0+ (5.208)

as α → π−.
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(a) (b)

L

α/π
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α/π

K = 6

K = 1

K = 6

K = 1

Figure 5.40: Plots of the length L given by (5.200) as a function of α/π and the
asymptotic solutions (5.207) and (5.208) in the limits α → 0+ and α → π− shown
with dash-dotted and dashed lines, respectively, for K = 1, 2, . . ., 6 and (a) ā = 1,
(b) ā = 2 in the case of a narrow rivulet with fixed contact angle and evaporative
flux given by (5.74).

α/π

L

ā = 2

ā = 1.8

Figure 5.41: Plot of the length L given by (5.200) as a function of α/π and the
asymptotic solutions (5.207) and (5.208) in the limits α → 0+ and α → π− shown
with dash-dotted and dashed lines, respectively, for K = 1, ā = 1, 1.2, . . ., 2 in
the case of a narrow rivulet with fixed contact angle and evaporative flux given by
(5.74).
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(a) ā/π

Lmax

103 K = 102

(b) ā/π

αmax/π

K = 107

K = 10−7

(1, 1)

(c) K

αmax/π

Figure 5.42: Plots of (a) Lmax as a function of ā/π for K = 10−3, 10−2, . . . , 103

and the vertical asymptote at ā/π = 1 shown with a dashed line, (b) αmax/π as a
function of ā/π for K = 10−7, 1, 107, and (c) αmax/π as a function of K for ā = 1
and the horizontal asymptote at αmax/π ≃ 0.563 shown with a dashed line in the
case of a rivulet with fixed contact angle and evaporative flux given by (5.74).
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Plots of Lmax and αmax are shown in Figure 5.42. In particular, Figure 5.42

shows that the maximum length of a narrow rivulet with fixed contact angle in-

creases monotonically from Lmax → 0+ and αmax = π/2 as ā → 0+ to Lmax → ∞
and αmax → π− as ā → π−. By comparing Figure 5.42(a) with Figure 5.42(b)

it is clear that as αmax increases towards αmax = π as ā increases. This is con-

firmed by Figure 5.42(b) which shows αmax/π as a function of ā/π. Figure 5.42(b)

also shows that αmax is very weakly dependent on K and decreases only slightly

as K increases. This is confirmed by Figure 5.42(c) which shows that αmax in-

creases from αmax ≃ 0.578 to a maximum close to K = 0 and thereafter decreases

asymptotically towards αmax ≃ 0.563 as K → ∞.

5.6.2.3 The length of a wide rivulet

In the case of a wide rivulet with fixed contact angle, Figures 5.43 and 5.44 show

the length L, given by (5.200), as a function of α/π for various values of K and ā,

respectively. In particular, both Figures 5.43 and 5.44 show that the rivulet length

increases from L → 0+ as α → 0+ to L → ∞ as α → α−
crit, where a rivulet with

finite length exists only for 0 ≤ α < αcrit ≤ π, where αcrit is given by (1.81). In

particular, the length of the rivulet behaves like (5.207) as α → 0+ and becomes

infinitely long according to

L ∼ 80
√
ā3β̄7K

7 (ā4 − π4)
5
4

(αcrit − α)−
7
2 → ∞ (5.209)

as α → α−
crit for ā > π and

L ∼ 640
√

2β̄7K

7π
7
2

(π − α)−6 → ∞ (5.210)

as α → α−
crit = π− for ā = π. Note that (5.209) and (5.210) coincide with (5.179)

and (5.180), respectively. This shows that in the limit α → α−
crit, but not otherwise,

the length of a rivulet with fixed contact angle is the same as for a rivulet with

fixed semi-width.

5.6.2.4 The rivulet length as ā varies

The variation of L as a function of ā for a sessile, vertical and pendant rivulet with

fixed contact angle is shown in Figures 5.45–5.48.
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α/π

L

K = 1K = 5

Figure 5.43: Plot of the length L given by (5.200) as a function of α/π for ā =
4 (> π), K = 1, 2, . . ., 5 and the vertical asymptote at α/π = αcrit/π ≃ 0.712
shown with a dashed line in the case of a wide rivulet with fixed contact angle and
evaporative flux given by (5.74).

α/π

L

ā = πā = 7

Figure 5.44: Plot of the length L given by (5.200) as a function of α/π and the
vertical asymptotes shown with dashed lines at α = αcrit for K = 1, ā = π, 4, 5, 6,
7 in the case of a wide rivulet with fixed contact angle and evaporative flux given
by (5.74).
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ā

L K = 5

K = 1

Figure 5.45: Plot of the length L given by (5.200) as a function of ā and the
asymptotic solutions (5.211) and (5.212) in the limits ā → 0+ and ā → ∞ shown
with dash-dotted and dashed lines, respectively, for K = 1, 2, . . ., 5, α = π/4 in
the case of a sessile rivulet with fixed contact angle and evaporative flux given by
(5.74).

In the case of a sessile rivulet, Figures 5.45 and 5.46 show that the length

increases from L→ 0+ as ā→ 0+ to L→ ∞ as ā→ ∞. In particular, the length

of a sessile rivulet with fixed contact angle behaves like

L ∼ 8Kβ̄3 sinα

315
ā3 → 0+ (5.211)

in the regime ā≪ 1 and

L ∼ (Km+ β̄)β̄3 sinα

3m4
ln(mā) → ∞ (5.212)

in the regime ā ≫ 1. Therefore, (5.212) shows that, unlike the length of a rivulet

with fixed semi-width which attains an O(1) value in the limit ā → ∞ given by

(5.187), the length of a rivulet with fixed contact angle becomes infinite in the

limit ā→ ∞.

In the case of a vertical rivulet, Figure 5.48 shows that the length increases

from L → 0+ as ā → 0+ to L → ∞ as ā → ∞. In particular, the length of a

vertical rivulet with fixed contact angle behaves like (5.211) in the regime ā ≪ 1

and

L ∼ 2(β̄ā)4

105 ln
(

2āβ̄
K

) → ∞ (5.213)
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ā

L
α =

5π

12
α =

π

3

Figure 5.46: Plot of the length L given by (5.200) as a function of ā and the
asymptotic solutions (5.211) and (5.212) in the limits ā → 0+ and ā → ∞ shown
with dash-dotted and dashed lines, respectively, for α = π/12, π/6, . . ., 5π/12 in
the case of a sessile rivulet with fixed contact angle and evaporative flux given by
(5.74).

ā

L

K = 5

K = 1

Figure 5.47: Plot of the length L given by (5.200) as a function of ā for K = 1,
2, . . ., 5, α = 3π/4 and the vertical asymptote ācrit ≃ 3.736 shown with a dashed
line in the case of a pendant rivulet with fixed contact angle and evaporative flux
given by (5.74).
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ā

L
α =

π

2
α =

11π

12

Figure 5.48: Plot of the length L given by (5.200) as a function of ā and the vertical
asymptotes at ā = ācrit = π/m shown with dashed lines for α = π/2, 7π/12, . . .,
11π/12 in the case of a pendant rivulet with fixed contact angle and evaporative
flux given by (5.74).

in the regime ā≫ 1.

In the case of a pendant rivulet, Figure 5.48 shows that the length increases

from L → 0+ as ā → 0+ to L → ∞ as ā → ā−crit. In particular, the length of

a pendant rivulet with fixed contact angle behaves like (5.211) as ā → 0+ and

becomes infinitely long according to

L ∼ 5
√

2β̄7K sinα

7m7
(ācrit − ā)−

7
2 → ∞ (5.214)

as ā→ ā−crit.

5.6.2.5 The rivulet length as K varies

The variation of L as a function of K for a sessile, vertical and pendant rivulet

is shown in Figures 5.49–5.52. As discussed in Section 5.3.3, the limit K → 0+

corresponds to the limit in which the evaporative flux becomes large, J → ∞,

and so L → 0+, i.e. the rivulet evaporates immediately. On the other hand, the

limit K → ∞ corresponds to the limit in which the evaporative flux becomes

small, J → 0+, and so L→ ∞, i.e. the rivulet does not evaporate and is therefore

infinitely long. This is confirmed by Figures 5.49–5.52 which show that the length

always increases from L→ 0+ as K → 0+ to L→ ∞ as K → ∞.
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K

L

ā = 5

ā = 1

Figure 5.49: Plot of the length L given by (5.200) as a function of K and the
asymptotic solutions (5.215) and (5.218) in the limits K → 0+ and K → ∞ shown
with dash-dotted and dashed lines, respectively, for ā = 1, 2, . . ., 5, α = π/4 in
the case of a sessile rivulet with fixed contact angle and evaporative flux given by
(5.74).

K

L

ā = 3

ā = 2.5

Figure 5.50: Plot of the length L given by (5.200) as a function of K and the
asymptotic solutions (5.215) and (5.218) in the limits K → 0+ and K → ∞ shown
with dash-dotted and dashed lines, respectively, for ā = 2.5, 2.75, 3, α = 3π/4 in
the case of a pendant rivulet with fixed contact angle and evaporative flux given
by (5.74).
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K

L

α =
π

2

α = 0

Figure 5.51: Plot of the length L given by (5.200) as a function of K and the
asymptotic solutions (5.215) and (5.218) in the limits K → 0+ and K → ∞ shown
with dash-dotted and dashed lines, respectively, for α = 0, π/16, π/8, . . ., 7π/16,
π/2 (with a red line for clarity), and ā = 1 in the case of a rivulet with fixed
contact angle and evaporative flux given by (5.74).

K

L

α =
9π

16

α =
π

2

α = π

Figure 5.52: Plot of the length L given by (5.200) as a function of K and the
asymptotic solutions (5.215) and (5.218) in the limits K → 0+ and K → ∞ shown
with dash-dotted and dashed lines, respectively, for α = π/2 (with a red line for
clarity), 9π/16, 5π/8, 11π/16, . . ., 15π/16, π and ā = 1 in the case of a rivulet
with fixed contact angle and evaporative flux given by (5.74).
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In particular, the length of a sessile, vertical and pendant rivulet with fixed

contact angle behaves like

L ∼ β̄4 sinαf(mā)

18m4 ln
(

β̄c(mā)
Km

) → 0+ (5.215)

in the regime K ≪ 1, where c(mā) is given by (5.159). In particular, in the case

of a vertical rivulet we have

L ∼ 2(β̄ā)4

105 ln
(

2β̄ā
K

) → 0+ (5.216)

in the regime K ≪ 1.

In the limit K → ∞ we have b̄ → 0+ and the function R given by (5.155)

behaves like R → 1/2. Taking the limit K → ∞ in (5.199) and using the end

condition a(L) = 0 we have

F (ma) ∼ 18m3(L− x)

Kβ̄3 sinα
, (5.217)

where F (mā) is given by (5.101). Hence in the cases of a sessile and a pendant

rivulet with fixed contact angle, the rivulet becomes infinitely long according to

L ∼ β̄3 sinαF (mā)

18m3
K → ∞ (5.218)

in the regimeK ≫ 1. As mentioned in Section 5.6.1.5, in this limit, the evaporative

flux given by (5.74) behaves like J ∼ 1/K, i.e. it is uniform as considered in Section

5.4, in which case the length given by (5.218) coincides with (5.103) with Ĵ = 1/K

for all cases of α. In particular, in the case of a vertical rivulet

L ∼ 8ā3β̄3

315
K → ∞ (5.219)

in the regime K ≫ 1.

Similarly to the behaviour described in Section 5.6.1.5, the behaviour of L as

a function of K for 0 ≤ α ≤ π/2 is shown in Figure 5.51 and for π/2 ≤ α ≤ π is

shown in Figure 5.52. As shown in Figure 5.51, the longest rivulet in this range is

achieved when α = π/2, shown with a red line for clarity. As shown in Figure 5.52,
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the longest rivulet in this range is achieved, when α = 9π/16 and not α = π/2, the

latter of which is shown with a red line for clarity. However, inspection of Figure

5.42 explains this behaviour. In particular, Figure 5.42(b) shows that αmax > π/2

when ā > 0. This is confirmed by Figure 5.42(c) which shows that αmax > π/2 for

all K ≥ 0.

5.6.2.6 Area and volume

From (5.42) and (5.43) the area of the base of the rivulet is given by

A =
Kβ̄3 sinα

18m4

∫ mā

0

f ′(M)

R(b̄,M)
dM (5.220)

and the volume of the rivulet is given by

V =
Kβ̄4 tanα

18m3

∫ mā

0

(g(M)− 1)f ′(M)

MR(b̄,M)
dM. (5.221)

In the case of a vertical rivulet, by substituting M = mã = (2/b̄) sinh2(ξ) into

(5.220) and (5.221), the area of the base (5.220) and volume of the rivulet (5.221)

become

A =
512K5

105β̄

∫ tanh−1 η̄

0

sinh8 ξ cosh2 ξ

ξ
dξ (5.222)

and

V =
1024K6

315β̄

∫ tanh−1 η̄

0

sinh10 ξ cosh2 ξ

ξ
dξ, (5.223)

respectively.

5.7 Conclusions

In this chapter we considered the flow of a rivulet on an inclined substrate subject

to three different models of evaporation. In Section 5.3 we described these models,

namely a uniform evaporation model, the pseudo diffusion-limited model, and the

one-sided model, and derived each of their corresponding evaporative fluxes J .

Using global conservation of mass we derived governing ordinary differential equa-

tions for the semi-width and/or the contact angle of the rivulet. These ordinary

differential equations were solved in the cases of fixed semi-width and fixed contact

angle and the variation of the length of the rivulet L was analysed as a function
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of the initial semi-width at the inlet of the rivulet ā, the angle of inclination of

the substrate α and, in the case of the one-sided model, the parameter K, which

as described in Section 5.3.3, measures the degree of non-equilibrium at the free

surface of the rivulet. In particular, in Sections 5.4–5.6 we described the flow of

the rivulet with three different evaporative fluxes given by J = Ĵ , equation (5.56)

and equation (5.74), respectively, with either a fixed semi-width and decreasing

contact angle, or fixed contact angle and decreasing semi-width, and in each case

derived explicit solutions for the length of the rivulet.

In the case of a rivulet with fixed semi-width or fixed contact angle, we showed

that for all three of the evaporation models considered the behaviour of the length

of both narrow and wide rivulets (i.e. rivulets with ā < π and ā ≥ π, respectively)

is qualitatively the same. In particular, the length of a narrow rivulet always

increases from zero at α = 0 to a maximum Lmax at some value α = αmax and then

decreases towards zero at α = π. This behaviour is in accordance with physical

intuition as it agrees with the behaviour of the inlet flux Q̄ given by (5.32) as

described in Section 5.2.5 which shows that Q̄ → 0+ as α → 0+ and Q̄ → 0 as

α → π−, i.e. as the inlet flux becomes small, so too does the length of the rivulet.

The maximum length Lmax and angle αmax always increase monotonically from

Lmax → 0+ and αmax = π/2 as ā → 0+ to Lmax → ∞ and αmax → π− as ā → π−.

The length of a wide rivulet always increases from L → 0+ as α → 0+ to L → ∞
as α → α−

crit, where a rivulet with finite length exists only for 0 ≤ α < αcrit ≤ π

and αcrit is given by (1.81). Furthermore, for each evaporation model, the lengths

of a wide rivulet with either fixed semi-width or fixed contact angle are the same

in the limit α → α−
crit. This behaviour is in accordance with physical intuition as

it agrees with the behaviour of the inlet flux as described in Section 5.2.5 which

shows that Q̄ → ∞ as α → α−
crit, i.e. an infinite inlet flux leads to an infinitely

large rivulet.

Considering L as a function of ā we showed that for a sessile rivulet with

fixed semi-width the length of the rivulet increases from L → 0+ as ā → 0+ to

either a constant O(1) value for the uniform and one-sided models of evaporation

or L → ∞ as ā → ∞ for the pseudo diffusion-limited model. When the length

attains a constant O(1) value in the limit ā → ∞ this corresponds to the finite

length of an infinitely-wide two-dimensional sheet. For a sessile rivulet with fixed

contact angle however, the length always increases from L → 0+ as ā → 0+ to

L → ∞ as ā → ∞ for all of the evaporation models considered. In the case of a
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vertical rivulet with fixed semi-width or fixed contact angle we showed that the

length increases from L → 0+ as ā → 0+ to L → ∞ as ā → ∞ for all of the

evaporation models considered. In the case of a pendant rivulet with fixed semi-

width or fixed contact angle we showed that the length increases from L → 0+

as ā → 0+ to L → ∞ as ā → ā−crit for all of the evaporation models considered.

Again, this behaviour is in accordance with physical intuition as it agrees with the

behaviour of the inlet flux as described in Section 5.2.5 which shows that Q̄→ 0+

as ā → 0+ and Q̄ → ∞ as ā → ∞ (for sessile or vertical rivulets) or ā → ā−crit
(for pendant rivulets), i.e. again, as the inlet flux becomes small, so too does the

length of the rivulet, and an infinite inlet flux leads to an infinitely large rivulet.

As described in Section 5.6, unlike for the uniform and pseudo diffusion-limited

models, for the one-sided model, the substrate is heated with a constant temper-

ature. The evaporative flux was shown to be of the form J = 1/(h + K), where

K measures the degree of non-equilibrium at the free surface. In particular, the

limit K → 0+, corresponds to the limit in which the free surface temperature is

constant and equal to the saturation temperature, the evaporative flux becomes

large, J → ∞, and so the rivulet evaporates immediately. On the other hand, in

the limit K → ∞, the evaporative flux becomes small, J → 0+, and so the rivulet

does not evaporate and is therefore infinitely long. This behaviour is confirmed

by the analysis in Sections 5.6.1.5 and 5.6.2.5, which shows that in the case of an

evaporating rivulet with fixed semi-width and/or fixed contact angle, the length

of the rivulet always increases from L→ 0+ as K → 0+ to L→ ∞ as K → ∞.

Finally, for each evaporation model and each case of either a rivulet with fixed

semi-width or fixed contact angle, we derived expressions for the area of the base

of the rivulet and the volume of the rivulet. For the uniform evaporation model we

showed that a vertical rivulet with fixed contact angle is longer, has the same base

area, and has a larger volume than a vertical rivulet with fixed semi-width. For the

pseudo diffusion-limited model we showed that a vertical rivulet with fixed contact

angle has the same length, has a smaller base area, and has a smaller volume than

a vertical rivulet with fixed semi-width. For the one-sided model we showed that a

vertical rivulet with fixed contact angle is longer than a vertical rivulet with fixed

semi-width, however there was no simple relationship between the base area and

volume.

In conclusion, in this chapter we considered three different evaporation models

and showed that the behaviour of the length of the rivulet is often qualitatively
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similar for each evaporation model, with only a small number of exceptions, which

have been outlined above. The behaviour of the length of the rivulet is therefore,

rather surprisingly, largely insensitive to the choice of evaporation model. In par-

ticular, for a rivulet with either fixed semi-width or fixed contact angle, for all of

the evaporation models considered, the length always becomes small when the in-

let flux is small and becomes large when the inlet flux is large. The only exception

to this behaviour is in the case of a sessile rivulet with fixed semi-width, in which

case the rivulet becomes a two dimensional (i.e. infinitely wide) sheet with finite

length when the inlet flux is large, for the uniform and one-sided models only.
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Conclusions and future work

6.1 Conclusions

In this thesis we considered three different thin-film flow problems. For each

problem we showed that by applying the thin-film approximation, we were able to

simplify the mathematical analysis involved in order to make significant analytical

progress in describing the behaviour of the fluid flow.

In Chapter 2 we considered the steady coating flow of a thin film of Newtonian

fluid on the outside of a uniformly rotating solid horizontal circular cylinder subject

to the effects of gravity and a non-uniform air pressure due to a steady two-

dimensional horizontal irrotational airflow with circulation, and showed that the

presence of the airflow can result in qualitatively different behaviour of the fluid

film from that in classical coating flow in the absence of an airflow.

It was shown that, depending on the speed of the far-field airflow and circula-

tion of the airflow, the film thickness can exhibit two (maximum and minimum),

three (maximum, minimum and point of inflexion) or four (two maxima and two

minima) stationary points and, in general, has neither top-to-bottom nor right-to-

left symmetry (in contrast to two stationary points and top-to-bottom symmetry

in classical coating flow). When the maximum possible mass is supported on the

cylinder surface we showed that the film thickness can have one or two corners on

the top or bottom of the cylinder (in contrast to one corner at the right-hand side

of the cylinder in classical coating flow). In addition, when the circulation of the

airflow is anticlockwise (i.e. in the same direction as the rotation of the cylinder)

the maximum mass of fluid that can be supported on the cylinder is always less

247
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than that in classical coating flow, whereas when the circulation is clockwise (i.e.

in the opposite direction to the rotation of the cylinder) the maximum mass of

fluid that can be supported on the cylinder can be greater than that in classical

coating flow. However, whatever the speed of the far-field airflow and the circula-

tion of the airflow the azimuthal velocity of the film is always in the direction of

the rotation of the cylinder.

In addition, we carried out a simple linear stability analysis, and showed that,

the film thickness is neutrally stable to two-dimensional disturbances, and hence

that a more detailed non-linear stability analysis is required.

In Chapter 3 we considered the long-time behaviour of unsteady two-

dimensional coating flow of an initially uniform thin film of Newtonian fluid on

the outside of a uniformly rotating solid horizontal circular cylinder subject to

the effects of gravity, surface tension and a non-uniform air pressure due to a

steady two-dimensional horizontal irrotational airflow with circulation, in the case

in which the effects of gravity and of capillarity are weak compared with those of

viscous shear.

It was shown, in contrast to the conclusion of Newell and Viljoen [118], that

regardless of the speed of the far-field airflow or the circulation of the airflow, when

the surface tension effects are non-negligible, the film thickness remains finite for

all time, and hence we concluded that the film is unconditionally stable. In the

case in which surface tension effects are negligible, it was shown that the film is

neutrally stable, in agreement with the work in Chapter 2 in the absence of surface

tension effects. We showed that as the film evolves the effect of the airflow is to

distort the shape of the free surface (so that it is no longer simply circular). Due

to this distortion of the free surface, we were unable to identify a uniquely defined

lag of the free surface relative to the solid cylinder. This is in contrast to the

evolution of the film in the absence of an airflow, previously described by Hinch

and Kelmanson [61], who showed that the free surface remains circular for all time

and has a uniquely defined offset from the centre of the solid cylinder. It was also

shown that increasing surface tension effects suppress the distortion from circular.

In Chapter 4 we considered the open-base configuration of the axisymmetric

porous squeeze-film problem in which a thin layer of Newtonian fluid occupying

the gap between a flat impermeable bearing moving under a prescribed constant

load and a flat porous bed is forced to either flow out of the side of the gap or into

the porous bed. Consequently, the fluid in the porous bed is either forced to flow
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out of the base of the porous bed or remains in the porous bed, when the bearing

and porous bed come into contact, which occurs in a finite time.

It was shown that, when the permeability of the porous bed is small, the finite

contact time of the bearing and porous bed is large, i.e. tc = O(k−2/3) ≫ 1.

Furthermore, when the bearing and porous bed come into contact, most of the

fluid particles initially situated in the fluid gap will flow out of the side of the

gap. In addition, only fluid particles initially situated very close to the base of

the porous bed are able to flow out of the base. On the other hand, when the

permeability of the porous bed is large, the finite contact time of the bearing and

porous bed is small, i.e. tc = O(k−1) ≪ 1. Furthermore, when the bearing and

porous bed come into contact, fluid particles initially situated in the fluid gap will

all flow into the porous bed, and none out of the side of the gap. In addition, if

the initial volume of the fluid gap is greater than or equal to the volume of fluid in

the porous bed, fluid particles initially situated in the porous bed will all flow out

of the base. If, however, the initial volume of the fluid gap is less than or equal

to the volume of fluid in the porous bed, some of the fluid initially situated in the

porous bed will remain in the porous bed.

In Chapter 5 we considered the flow of a thin and slowly-varying rivulet of

Newtonian fluid on an inclined substrate subject to the effects of gravity and

evaporation. Specifically, we considered three different models of evaporation,

namely, evaporation with a uniform evaporative flux at the free surface, a pseudo

diffusion-limited model of evaporation and the one-sided model of evaporation.

It was shown that, regardless of the choice of evaporation model, the behaviour

of the length of the rivulet is rather surprisingly, largely insensitive to the choice

of evaporation model. In particular, for a rivulet with either fixed semi-width or

fixed contact angle, for all of the evaporation models considered, the length always

becomes small when the inlet flux is small and becomes large when the inlet flux is

large. The only exception to this behaviour is in the case of a sessile rivulet with

fixed semi-width, in which the rivulet becomes a two-dimensional (i.e. infinitely

wide) sheet with finite length when the inlet flux is large, for the uniform and one-

sided models only. For the one-sided model, in which the substrate is heated, the

behaviour of the length as the temperature-dependent evaporative flux varied was

also determined. In particular, in the limit in which the free surface temperature

is constant and equal to the saturation temperature, the evaporative flux becomes

large, and so the rivulet evaporates immediately. On the other hand, in the limit
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in which the evaporative flux becomes small, the rivulet does not evaporate and

is therefore infinitely long.

6.2 Future work

The work in this thesis has described three thin-film flow problems, and in this

section we will briefly discuss possible future work related to each problem.

Firstly, we discuss possible future work for the related problems described in

Chapters 2 and 3. In Appendix A we provided the corresponding equations for

the fluid pressure, velocity and flux per unit axial length, for the more general

situation in which the far-field airflow, rather than being horizontal, is inclined at

some prescribed angle α to the horizontal. It would be of interest to investigate

how α ̸= 0 would change the results presented in Chapters 2 and 3. This problem

is a possible topic for a future, partly numerical, study. As discussed in Section

1.2, other studies of the effect of an airflow on a thin film of fluid combine a non-

uniform air pressure with a non-zero shear stress at the free surface. This would

be a natural next step of the analysis in Chapters 2 and 3, which would lead to a

more complete description of coating flow subject to an airflow.

Secondly, we consider possible future work for the problem described in Chapter

4. As described in Section 1.4, there are multiple previous works on porous squeeze-

film flow that consider a non-flat porous bed and/or bearing shape. In particular,

it would be of interest to generalise the shape of the bearing H∗ = H∗(r∗) to be,

for example, H∗ = (R∗/2n)(r∗/R∗)2n, where r∗ is the radial polar coordinate, R∗

is a radial distance associated with bearing and n is an integer (see, for example,

[156, 139, 85]), and obtain an expression for the contact time and analyse its

behaviour in the limits of small and large permeability.

Finally, we consider possible future work for the problem described in Chapter

5. As discussed in Section 1.5, the work of Ghillani et al. [48] investigated the

capillary rise of a rivulet within a groove between a solid substrate and a fibre

within a porous bed with uniform evaporation at the free surface, and Alshaikhi

et al. [10] investigated the gravity-driven flow, in the absence of evaporation, of a

thin, slowly-varying rivulet of fluid over and through a porous substrate. Inspired

by this work, a potential extension of the work in Chapter 5 could be to allow

the substrate below the evaporating rivulet to be porous. In this case the rivulet

would lose mass through the free surface with an evaporative flux J = J(x, y) as
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well as through the porous substrate with mass flux Qbed = Qbed(x, y), so that the

mass balance equation, expressed in notation introduced in Chapter 5, would take

the form
dQ

dx
= −

∫ +a(x)

−a(x)

J(x, y) +Qbed(x, y) dy. (6.1)

It would then be of interest to solve (6.1) to describe the behaviour of the semi-

width or contact angle and the finite length of a rivulet with either a fixed contact

angle or fixed semi-width, respectively, as the properties of the evaporation and

the porous substrate are varied. Additionally, a natural next step in the analysis of

the evaporating rivulet problem considered in Chapter 5 would be to consider more

complicated models of evaporation and include some (or all) of the physical effects

that were neglected to simplify the problem, for example, the effect of vapour

recoil, thermocapillary effects and van der Waals forces.

To conclude, in this thesis we have described new aspects of three different

thin-film flow problems, however, as discussed in this section, there remain many

interesting and unknown aspects of these problems to be investigated in future

works.



Appendix A

Airflow inclined at angle α

In this appendix we provide the equations for the more general situation in which

the far-field airflow, rather than being horizontal, is inclined at some prescribed

angle α (measured anti-clockwise from θ = 0 to the horizontal).

In this case, the air pressure on the free surface of the film, p∗a = p∗a(θ), previ-

ously given by (1.43), becomes

p∗a = p∗∞ +
1

2
ρ∗a

[
U∗2
∞ −

(
2U∗

∞ sin(θ − α)− κ∗

2πa∗

)2
]
, (A.1)

and hence the volume flux, Q∗, previously given by (3.2), becomes

Q∗ = a∗Ω∗h∗ − h∗3

3µ∗a∗

[
ρ∗g∗a∗ cos θ − 2ρ∗aU

∗2
∞ sin 2(θ − α) +

ρ∗aκ
∗U∗

∞
πa∗

cos(θ − α)

]
.

(A.2)

Non-dimensionalising and scaling according to (2.3), the pressure p = pa, pre-

viously given by (2.11), is now given by

p = pa =
1

2

[
F 2 − {2F sin(θ − α)−K}2

]
, (A.3)

while the azimuthal velocity, the stream function and the flux are again given

by (2.13)–(2.15), respectively, where the function f = f(θ), previously given by

(2.16), is now given by

f(θ) = cos θ − 2F 2 sin 2(θ − α) + 2FK cos(θ − α), (A.4)
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where F (≥ 0) and K are again defined by (2.12). In particular, the equation for

the positions of the stationary points of h, previously given by (2.19), is now given

by

sin θ + 4F 2 cos 2(θ − α) + 2FK sin(θ − α) = 0. (A.5)



Appendix B

Proof that h2f ≤ 1

h

φ

(Q, 0)

(
3Q

2
,

4

9Q2

)

Figure B.1: Sketch of ϕ(h) = 3(h − Q)/h3 in the physically relevant case Q > 0 as a
function of h.

In this appendix we show that for full-film solutions it is necessary that h2f ≤ 1.

Equation (2.15) may be written in the form f = ϕ(h), where ϕ(h) = 3(h −
Q)/h3. Figure B.1 shows a sketch of ϕ(h) in the physically relevant case Q > 0 as

a function of h. For full-film solutions (i.e. for solutions for h that are continuous

and strictly positive for all −π < θ ≤ π) it is clear that only the branch of ϕ

to the left of its maximum at h = 3Q/2, ϕ = 4/(9Q2) is relevant. Thus h must

satisfy h ≤ 3Q/2, and so 3Q− 2h ≥ 0. But (2.15) may also be written in the form

3Q− 2h = h(1− h2f), and so we deduce that for full-film solutions it is necessary

that h2f ≤ 1.
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Proof that u > 0

In this appendix we show that the velocity u (and not just the flux Q) is always

positive, i.e. the flow of the film is always everywhere in the direction of the rotation

of the cylinder.

Equation (2.13) shows that u ≤ 1 wherever f > 0, that u ≡ 1 wherever f = 0,

that u ≥ 1 wherever f < 0, and that u satisfies u − us = (h − y)2f/2, where

us = us(θ) = u(θ, h) denotes the velocity at the free surface, given by

us = 1− h2

2
f. (C.1)

Therefore us ≤ u ≤ 1 wherever f > 0 and 1 ≤ u ≤ us wherever f < 0, showing

that us is the minimum velocity at positions where f > 0 and the maximum

velocity at positions where f < 0. In particular, it is immediately apparent that

u > 0 wherever f ≤ 0. We may also prove that u > 0 wherever f > 0 as follows.

From (2.18) and (C.1) we have

us = cos

(
2

3
sin−1 3Qf

1/2

2

)
if f > 0. (C.2)

Writing (2.15) in the form (h+3Q)(2h−3Q)2 = (4−9Q2f)h3 shows that f satisfies

f ≤ 4/(9Q2) for all θ, and so if f > 0 then 0 < 3Qf 1/2/2 ≤ 1. Thus (C.2) gives

1/2 ≤ us < 1, which, together with the above result that us ≤ u ≤ 1 wherever

f > 0, gives 1/2 ≤ us ≤ u ≤ 1, and so, in particular, u > 0 wherever f > 0.

255



Appendix D

Saddle points of Q

In this appendix we show that the flux Q, regarded as a function of θ and h, has

no minimum or maximum stationary points, and, depending on the values of F

and K, has either one or two saddle points.

The flux Q is given by equation (2.15), where the function f = f(θ) is given by

(2.16) and can be conveniently expressed in terms of the parameter β introduced

in (2.38) as

f(θ) = 4F 2 (β − sin θ) cos θ. (D.1)

Stationary points of Q are determined by the criticality conditions (2.22) which

require, in particular, that f > 0. The derivative ∂2Q/∂h2 and the Hessian deter-

minant H, given by

H =
∂2Q

∂h2
∂2Q

∂θ2
−
(
∂2Q

∂h∂θ

)2

=
h4

3

(
2ff ′′ − 3f ′2) , (D.2)

take the values ∂2Q/∂h2 = −2/h (< 0) and H = 2h2f ′′/3 at a stationary point,

showing that if f ′′ > 0 then the stationary point is a maximum and if f ′′ < 0 then

it is a saddle. In particular, we conclude that Q has no minimum stationary point.

Moreover, from (D.1) the condition f ′ = 0 gives

β sin θ = − cos 2θ, (D.3)

using which one may show readily that the conditions f > 0 and f ′′ > 0 for a

maximum stationary point cannot be satisfied simultaneously. Hence we deduce

that Q has no maximum stationary point, and therefore any stationary point of
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Figure D.1: Plot of θ/π given by (D.3) as a function of β for −π/2 ≤ θ < 0 and
π/2 ≤ θ < 1.

Q can only be a saddle.

The conditions for a saddle, namely f > 0, f ′ = 0 and f ′′ < 0, require that

sin 2θ ≤ 0, in addition to (D.3). Figure D.1 shows the solutions for θ as a function

of β. In particular, Figure D.1 shows that for β < −1 the function Q has one

saddle point, in 5π/6 < θ < π, for −1 ≤ β ≤ 1 it has two saddle points, one in

−π/2 ≤ θ ≤ −π/6 and the other in π/2 ≤ θ ≤ 5π/6, and for β > 1 it has one

saddle point, in −π/6 < θ < 0.



Appendix E

Two-dimensional porous

squeeze-film problem

The analysis in this appendix follows from the axisymmetric porous squeeze-film

problem described in Chapter 4. The two-dimensional problem is also of interest

and the analysis is very similar throughout. In this appendix we summarise some of

the key results for the finite contact times of the two-dimensional porous squeeze-

film problem which can then be compared with the corresponding axisymmetric

results in Chapter 4.

Consider with respect to the two-dimensional Cartesian coordinates (x∗, z∗),

the two-dimensional porous squeeze-film flow of a layer of fluid in a thin gap

between a flat impermeable layer with semi-width L∗ moving subject to the di-

mensional load L∗(t∗) per unit width. The problem is non-dimensionalised in

the same manner as in the axisymmetric problem with R∗ replaced with L∗ and

V ∗ = L∗
0H

∗
p/(µ

∗L∗2) in replace of V ∗ = L∗
0H

∗
p/(µ

∗R∗3). The two-dimensional ver-

sion of the closed-base configuration has been described by Knox et al. [86], and

hence here we shall describe only the equations for the two-dimensional version of

the open-base configuration.

Following a similar analysis to that described in Chapter 4, we find the hori-

zontal and vertical velocities in the fluid layer to be

u =
(z − h)(z(k

1
2 + ᾱh) + k

1
2h)

2(k
1
2 + ᾱh)

∂p

∂x
(E.1)
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Impermeable bearing

Fluid gap

Porous bed

Impermeable layer

(a)

z∗ = h∗(t∗)

z∗ = 0

z∗ = −H∗
p

(b)

L∗

L∗
0

z∗

x∗O

L∗

L∗
0

z∗

x∗O

Figure E.1: The set up of the two-dimensional porous squeeze-film problem where
either (a) there is an impermeable layer below the porous bed or (b) the base of
the porous bed is open to the atmosphere.

and

w = −z(2k
1
2 (z2 − 3h2) + ᾱhz(2z − 3h))

12(k
1
2 + ᾱh)

∂2p

∂x2
− kp. (E.2)

The horizontal and vertical velocities in the porous bed are given by

U = 0, and W = −kp. (E.3)

The unsteady Reynolds equation is given by

dh

dt
=
h3(4k

1
2 + ᾱh)

12(k
1
2 + ᾱh)

∂2p

∂x2
− kp. (E.4)

Solving for p(x, t) using the two-dimensional equivalents of (4.31) and (4.32),

along with the load condition now given by

L = 2

∫ 1

0

p dx, (E.5)

we find that, in the case L = L0, the fluid pressure is given by

p(x, t) =
L0

2

[
η (cosh(ηx)− cosh(η))

sinh(η)− η cosh(η)

]
, (E.6)

where η is given by (4.70).

Again following the same analysis as in Chapter 4, we can find an implicit

solution for the bearing height h(t), and hence, when h = 0 we can find an implicit
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solution for the contact time, which is given by

tc =
2

kL0

∫ d

0

1− sinh(η(s))

η cosh(η(s))
ds. (E.7)

Performing a similar asymptotic analysis in the limits of small and large k

as in Chapter 4 we find that the leading-order contact time in the limit of small

permeability is given by

tc ∼
3.59338

L0k
2
3

≫ 1 (E.8)

as k → 0 and in the limit of large permeability the leading-order contact time is

given by

tc ∼
2d

L0k
≪ 1 (E.9)

as k → ∞. Considering the case ᾱ → 0, we can again derive a different asymptotic

solution for the contact time in the limit k → 0 which is more accurate when

l̄s → ∞ (i.e. in the limit ᾱ → 0). In this case, the leading-order contact time is

given by

tc ∼
2.26369

L0k
2
3

≫ 1 (E.10)

as k → 0.

For completeness, the two-dimensional asymptotic solutions for the contact

time in the limit of small and large k̂ for the closed-base configuration can be

obtained by rescaling t with 3π/16, except in the case k̂ → ∞ when ls → 0 (i.e. in

the limit α → ∞). This particular case was not reported in Knox et al. [84] and,

by following similar steps as were used to derive (4.56), we find it to be

tc ∼
1

9k̂L0

ln

(
d+ 2

2

)
≪ 1 (E.11)

as k̂ → ∞.
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[104] A. Mikelić and W. Jäger. On the interface boundary condition of Beavers,

Joseph, and Saffman. SIAM Journal on Applied Mathematics, 60(4):1111–

1127, 2000.

[105] A. J. Mitchell, B. R. Duffy, and S. K. Wilson. Coating flow on a rotating

cylinder in the presence of an irrotational airflow with circulation. Journal

of Fluid Mechanics, 932:A33, 2022.

[106] A. J. Mitchell, B. R. Duffy, and S. K. Wilson. Unsteady coating flow on a

rotating cylinder in the presence of an irrotational airflow with circulation.

Physics of Fluids, 34(4):043105, 2022.

[107] S. Mittal and B. Kumar. Flow past a rotating cylinder. Journal of Fluid

Mechanics, 476:303–334, 2003.



Bibliography 271

[108] H. K. Moffatt. Behaviour of a viscous film on the outer surface of a rotating
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