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Abstract

Modulational instability and instability induced dynamics of differ­

ent kinds of spatially localised solutions of nonlinear equations de­

scribing propagation of optical waves are studied using numerical and 

analytical methods. The main problems considered in the thesis are 

modulational instability of one dimensional spatial solitons due to 
group velocity dispersion and azimuthal modulational instability of 

two-dimensional ring-like structures. These phenomena are studied 

in media with cubic, quadratic and saturable types of nonlinearity.
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Chapter 1

What is this thesis about?

Nonlinear physics is one of the subfields of the classical physics which remains on 
the frontier of the modern science. It deals with such ubiquitous phenomena as 

pattern formation, chaos and solitary waves (solitons), which are possible only due 

to the nonlinear nature of the response of the medium to applied perturbations. 

This thesis is focused on the properties of the solitons arising in the context of 
nonlinear interaction between optical waves and matter.

One of the most fundamental models of nonlinear physics and nonlinear optics is 
the Nonlinear Schrodinger (NLS) equation which describes evolution of any quasi- 

monochromatic wave packet in a dispersive weakly nonlinear medium. The NLS 

equation describes for example propagation of optical beams in nonlinear media, 

optical pulses in waveguides, deep water waves, evolution of order-parameter in 

Bose condensate, Langmuir waves in plasma and so on. The name Schrodinger 

and possibility of the compensation of the dispersive spreading by the self-focusing 

action of the nonlinearity also call for analogy with de Broglie’s idea to represent 
elementary particles as wave packets.

To introduce very basic ideas which will underline the material presented in the­

sis, we 1 will briefly show how NLS equation can be obtained from elementary1 Throughout this thesis we = author + reader
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considerations. Let us take a complex wave field in the general form

E(t,z) = A(t,z)e^kz-^ (1-1)

and try to construct an equation describing propagation of the wave envelope A 

starting just from some general assumptions about dependence of wave number 

k on frequency w and wave intensity I = |A|2, i.e. we allow that k = k(w,r). 

Then expansion in the vicinity of some carrier frequency w0 and for I <C 1 gives

\ / x2 9k T . .

where k^ = k^Q^ 0). To transform this equation into the coordinate space we use 

substitutions
, . . d . d . .
(w - w0)->(k - k0) -> i—. (1.3)

Now we can easily construct an equation obeying the dispersion law (1.2). It has 

the form
,dk 1 dk? 2 dk. . l2 . . .idzA= —i—dtA —-—dtA+ — A A, (1.4)
da; 2ou2 di

where d^k and d^k are inversely proportional, respectively, to the group velocity 

and to the group velocity dispersion (GVD). Introducing retarted time r = t — 

d^kz and replacing A{z,f) by A(z, r), we can rewrite Eq. (1.4) in the form

idzA + 7d^A + /3\A^A = 0. (1-5)

The 7 and 0 are linked with d^k and djk and their absolute values can be scaled 
to any convenient constants via simple rescaling of t and |A|. GVD is normal if 
7 < 0 and anomalous if 7 > 0.

Eq. (1.5) has an important property: it is integrable equation, i.e. solutions 

of a certain class of the initial value problems formulated for Eq. (1.5) can be 

found analytically [1, 2]. This result puts NLS equation in line with other model 

nonlinear wave equations as for e.g. Korteveg-de-Vries (KdV) and Sine-Gordon 

(SG) equations which have the same integrability property, see e.g. [3]. Solitons 

are particular solutions of (1.5) which can be considered as nonlinear modes and 

building blocks for solving the initial value problem. Simplest of the solitary 
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solutions, and relevant in the context of the thesis, is the fundamental bright 

soliton. This solution exists if ^7 > 0 and it is

A(r, z) = r - ^vz + To)

here t0, w, |/î| are arbitrary constants and sgnK = sgwy = sgn[3.

The integrability property implicitly contains information that solution (1.6) is 

stable with respect to small perturbations and that bright solitons survive colli­

sions among themselves without any energy loss or exchange (’elastic’ collisions) 

[3]-

In spite of the great importance of integrable models, the property of integrability 

itself hardly can be identified as fundamental physical property, because it can be 
applied only to a certain very restricted set of models, and small deviations from 

these models generally destroy integrability and its consequences, as for example 

elasticity of interaction. However, presence of solitary solutions is not a feature 

of only integrable systems or even systems close to integrable. ’’Solitons” exist 

as solutions of a wide class of equations, which can be far from any integrable 

model. Thus solitons themselves can be considered as one of the fundamental 

manifestations of nonlinearity. We will use term ’’soliton” not only to describe 

solutions similar to (1-6), but also to describe more general exponentially localised 
states.

In this thesis we will consider stability properties and instability-induced dynam­

ics of localised solutions of nonlinear partial differential equations of the parabolic 

type describing propagation of optical waves in media cubic, quadratic and sat­

urable type of nonlinearities. These equations can be considered as generalisations 
of NLS equations to the cases of interaction of several waves in media with non­

linear and dispersion properties which are more complex then was assumed in 
Eq. (1.2).

General form of the model equations which we are going to consider below can
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be written as
.dEj id^E. d2EA d2Ei

where Ej (j = 1,2,... TV) are the complex functions describing multi-component 
field, Mj(E1,E* 1,...,EN,E* N) are linear and nonlinear terms arising due to inter­

action of the field components during propagation in the nonlinear medium, z 

is the propagation direction of the beams, x, y are the transverse coordinates, t 

is the time, aj and yj are constants characterising, respectively, diffraction and 
group velocity dispersion.

• Instability of two-dimensional ring-like solitons with respect to perturba­
tions along the rings (azimuthal modulational instability)

All equations considered below are hamiltonian, i.e., one can construct a func­
tional H{E^ E*,  dxEj, dyEj, dtEj, dxE*,  dyE*,  dtE$ such that

.dEj 8H dH
* dz ~ 8Ëj, ~di~0, t1,8)

where 8H/8E*  is the variational derivative. Localisation of the solutions is as­

sumed along one, several or all transverse coordinates. We will define the multi­

component soliton Es = ^...Sn) as stable if Eqs. (1.7) linearised near Es 

do not have solutions growing in z. More precisely throughout this thesis only 

situations with exponential growth in z will be analysed, which excludes from the 

scope such special situations when exponentially growing modes are absent but 

power growth can exist, as it happens, e.g., for solitons in two-dimensional NLS 
equation [4],

We will consider three following classes of soliton instability:

• Instability of solitons with respect to perturbations, which are localised in 
the same dimensions as soliton itself and which in case of instability do not 
break the symmetry of the soliton (longitudinal or internal instability).

• Instability of one-dimensional spatial solitons with respect to temporal mod­

ulations arising due to group velocity dispersion (modulational instability 
of a soliton stripe).
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The author’s main contribution to the knowledge about soliton stability is linked 

with the last two categories and this fact is reflected in the title of the thesis.

In talking about motivation for research in the field of optical solitons, the vast 

majority of authors refer to the potential applications for all-optical processing 
and transmission of information and I also share these hopes. However, up to 

now solitons remain fascinating physical phenomena, observed in numerous lab­

oratories around the globe, studied in a huge number of theoretical papers and 

exciting minds of physicists and mathematicians of all ranks. My primary mo­

tivation for the research presented in this volume was a desire to develop my 

own understanding of the problem of the soliton stability and instability-induced 

dynamics.

After these short introductory comments the reader will find four Chapters, which 

constitute the main scientific content of the thesis, a summary of main results, 

list of references, list of the author’s publications and several appendices. Each 

Chapter has its own introduction, which, together with references within the text 

itself, put the presented material in the context of the exesting knowledge.
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Chapter 2

Modulational instability of bright 
solitary waves in incoherently 
coupled NLS equations

2.1 Introduction

The phenomenon of modulational instability (MI) can be defined as self-induced 

break up of an initially homogeneous wave during its evolution in a nonlinear 

medium. Study of this phenomenon has been initiated in the 1960’s, when MI 

was predicted in plasma physics [5], nonlinear optics [6] and physics of fluids [7], 
and also observed experimentally in the form of filamentation of electromagnetic 
(e/m) waves in organic liquids [8]. Since that time MI has remained as one of the 

major topics of theoretical and experimental research in nonlinear physics and, 

in particularly, in nonlinear physics of conservative systems [9, 4, 10, 11, 12]. In 

this and following Chapters we will deal with several classic examples of such 
systems.

General formulation of the problem of nonlinear wave propagation via fimdamen- 

tal sets of equations, as for example, the Maxwell or Navier Stokes equations, is 
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a very demanding task even for modern computers. Therefore a number of sim­

plified models have been introduced which approximately describe either prop­

agation of the wave itself, e.g., KdV equation, or propagation of slowly varying 

wave envelope, e.g., the Nonlinear Schrodinger (NLS) equation [13].

The simplest solutions of the envelope equations are continuous wave (CW) so­

lutions homogeneous in space and time. Development of MI of CWs in one­

dimensional (ID) NLS equation leads to so-called Fermi-Pasta-Ulam (FPU) re­
currence which consists of periodic alternation between homogeneous and fila­

mentary profiles of wave envelope, see e.g. [11] and references therein. However, 

FPU recurrence is rather special, not a common property of nonlinear systems 

and perturbation of ID NLS usually destroys it [14, 15]. Single NLS equation 
exhibits MI in cases when nonlinearity and group velocity dispersion (GVD) or 
diffraction act in opposite ways, i.e. when nonlinearity is positive GVD must 

be anomalous and if nonlinearity is negative GVD must be normal. This rule 

changes when one, accounting for the polarization, for the different directions 
of wave vectors, or for the different carrier frequencies of the interacting waves, 

replaces single NLS by the set of incoherently coupled NLS equations. Then, if 

nonlinear coupling is strong enough, MI becomes possible for any signs of non­
linearity and GVD [16-24],

Another important class of solutions of nonlinear equations are solitary solutions 
(’solitons’). These also exhibit MI when they are localized in some dimensions but 

extended in one or more others. MI of solitons was first considered by Zakharov in 

the context of single NLS equation [25] and later by Kadomtsev and Petviashvily 

for wave solitons in 2D generalization of KdV equation [26]. Later the problem 

was addressed in number of theoretical and experimental works. For reviews on 
MI of bright and dark solitary waves see, respectively, [9, 4, 10, 11] and [12],

From formal point of view the problem of the solitary wave MI can be consid­

ered as continuation of all discrete eigenvalues of the soliton spectrum at zero 
modulational frequency Q into the region 0^0. Important class of the discrete 

eigenmodes at Q = 0 are the zero eigenvalue (or neutral) modes, which can be 
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identified analytically considering small corrections to the solution appearing due 

to variations of the free parameters of the solution. Presence of these parameters 

can be associated with certain symmetry properties of the model equations.

On qualitative level similarities and differences between MI of solitons and CW 

solutions can be understood on the basis of the comparison between the cor­

responding neutral modes. E.g. ID, bright spatial soliton of NLS equation is 
modulationally unstable in media with either anomalous or normal GVD. In the 

first case, neutral mode associated with the phase symmetry is excited (’neck’ 

MI) and in latter situation translational mode associated with the shift along the 

direction perpendicular to the wave propagation becomes unstable (’snake’ MI) 

[27]. Phase mode exists as well for CW solution and this leads to MI for anoma­

lous GVD. However, translational mode of CW solution is null and therefore CWs 
are stable for normal GVD.

Increasing the number of the free parameters can lead to more complex scenarios 

of MI, because coexistence and competition between different types of the insta­
bilities are likely to happen. In this Chapter we study MI of the bright solitary 

solutions in the incoherently coupled NLS equations. Incoherent nature of the 
coupling results in the presence of the two phase symmetries. These are respon­

sible for appearance of the two free phases and parameterization of the solitons 
with two parameters characterising nonlinear corrections to the wavenumbers. 

This extra phase symmetry makes the main difference in MI of solitons in cou­
pled NLS equations compare to single NLS. On the other hand major differences 

with previously mentioned case of CWs should be expected, due to presence of 
the translational neutral mode of the soliton spectrum.

The rest of this Chapter is organized as follows. In Section 2.2 we derive coupled 

NLS equations in the context of nonlinear optics. In Section 2.3 problem of 

MI of the solitary waves is formulated in general terms. MI of different kinds 

of the solitary solutions and physical interpretation in terms of the polarization 

dynamics are detailed in Sections 2.4 and 2.5. Discussion and summary of main 
results are given in Sections 2.6 and 2.7.
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2.2 Incoherently coupled NLS equations in op­

tics

2.2.1 Maxwell equations

Nonlinear dynamics of optical waves is the main subject of this work. Natural 

starting point to describe this dynamics is the fundamental set of Maxwell equa­
tions, which we consider for a particular case of a dielectric and nonmagnetic 
medium

V x E = (2.1)

V x H = €OdtE + dtP. (2.2)

Here V = ixdx + iydy + izdz, vectors ixPyPz constitute a Cartesian basis, E is 

the electric field, H is the magnetic field, P is the polarisation of the medium, 

Co and hq are, respectively, the electric and magnetic permittivities of the free 

space. Using standard manipulation and introducing velocity of light in free space 

c = (ffoAto)-1/2, Maxwell equations reduce to the equation linking the vectors of 

the electric field and of the polarisation

_ _ _ _ _ i i
~^E + V{y-E') + -d2tE = ——^d‘2tP. (2.3)

Now we are going to pass through a series of transformations, which reduce 

Maxwell equations to a set of simplified equations for slowly varying wave en­

velopes. Procedure which we apply is far from mathematically rigorous in the 

sense of the counting of all terms with the same order of magnitudes. It rather 

relies on physical intuition and is found to be in good agreement with many 
experiments.

Assuming that the electric field |^| is sufficiently weak compare to internal atomic 

fields, the polarisation can be presented as the power series of the components of 
E

P = pW + p(2) + p(3) + _, (2,4) 
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here \P^ | ~ |^|". Writing Eq. (2.4) we assumed absence of any static polari­

sation in the medium. Considering a medium with local response, and invoking 

the time-invariance principle and causality condition, the general form of terms 
in Eq. (2.4) appears to be [28]

Pi1\r,t)=e0[ drR^Xt-T^Ej^T), (2.5)
•/—oo

Pp\r,t)=Eof i dr^R^t-Tut-r^E^r,^ (2.6)
J—oo J —oo

(2.7) 
Z+oo r+oo r+oo , .

/ / dr^dr^^t - r^t - r2,t - r^E^f, r^E^f, r^E^f, r^.
-oo J—oo J— oo

Here R^ is the n + 1 order tensor, indices i, j, k, I can be x, y or z, r = (x, y, z) 

and summation of the repeated indices is assumed. Because of causality condition 

■ ■ -€n) = 0 if any & < 0. We will use below complex representation for 
field and polarisations, decomposing the real functions Ei and Pi into sum of two 

complex components
Ei^Ëi + È*. (2.8)

In its turn Èi is thought as superposition of quasimonochromatic waves:

Ei = £ E^ = £ A^x, y, z, (2.9)

A^i are complex functions which vary slowly compare to the fast oscillations in 

space and in time described by the exponential multipliers. To consider polar­
isation of the nonlinear medium which drives the field, we introduce complex 

polarization Pi in the following maner

Pi — Pi + P*, Pi^^P^i, (2.10)

where P^i is the polarization at frequency w.

2.2.2 Linear terms

First we simplify the linear part of Eqs. (2.3). Assuming that R^(t — r) is 

significantly different from zero only for small values of t — r, i.e. that linear 
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response of the medium is almost, but not exactly, instantaneous, we get

^(1) = e„ £d^(e)e"E (1 - £5, + h2^ + ...) Aju(x, y,z,t) = 
u \ Z J

(2.11)

(x«(w) + !“aTd‘ 2“a^‘+-J’

here
X«M= f+°° d^i^. 

J —oo

Considering spatial derivatives one has to remember that the Maxwell equations 

should be supplemented by the Gauss law, which in our case takes the form 

V • (eqE + P) = 0. Nonlinearity is assumed to be weak and fast, therefore, 

applying the Gauss law, we neglect the contribution of the terms V • P^ with 

n > 1 and the corrections due to the non-instantaneous response of the medium. 
Results of further derivations depend on the specific properties of the medium, 

which we will keep as simple as possible. Simplest example is, of course, an 

isotropic medium (x^ = Xyy = xlV)- this case

0 = V • (e0E + P) — • E,

here Ei = (1+x« ) and an implicit assumption was made that a coordinate system 
oriented along optical axis of the medium is used. Thus Eq. (2.3) becomes

-V2E + ^E =---- ~dfP. (2.12)
c2 £ e0c2 * v 7

To use an approximation of slowly varying amplitudes it is convenient to move 

from the crystal basis (x,y,z) into the coordinate system (x,y',z) related to 

the beam propagating along z axis. To make further simplifications of the linear 

operator acting on the electric field we assume that <C wlAJ and |9/AW| C 

where z is the propagation direction. Obviously without restriction of 

generality for the linearly isotropic medium we can choose (x , y , z ) = (x, y, z\ 

Then linear parts of the equations for A^ take the form

¿j2 1
-(i2kudz + d2 + d^A^ = —(id^x^dt - ^x^^A^ + hoi nt. (2.13)

c
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Here k^ obeys
. ,2

(2.14)

and ’holnt’ stands for ’higher order linear and nonlinear terms’. In the paraxial 

approximation Azu = 0, therefore i = x, y. In the leading order, derivatives of 

the first order susceptibility can be approximated as

a (1) ^k^C a _2 (1) 2/c^C2 q2 .
ar

for more see e.g. [11]. In its finally simplified, but not yet renormalised, form the 
linear parts of the equations are

(i2kudz + dx + dy^A^x^y = 2ku,(idaikb}dt + holnt. (2.15)
Zu

2.2.3 Nonlinear terms

For an isotropic medium replacing of E with — E should not lead to modification 

of governing equations therefore = 0 and lowest order nonlinearity is the 
cubic one. Remembering that nonlinearity is small and fast, we neglect all effects 

related with delay of the nonlinear response. Thus general form of the nonlinear 

response at frequency uq = + u>2 + uq is [29]

P^i = (2-16)
OJ

where

J—00 J —00 J— 00

Summation in (2.16) is assumed over all sets of (wx,^,^) which satisfy (^x + 

u?2 + kq = ^q)- In this Chapter we will consider the case when field propagating 

in the nonlinear medium has only one frequency component cu. Thereby we ne­
glect the third and other harmonics, which generally appear during propagation 

in nonlinear media. Terms responsible for harmonic generation are negligible pro­

viding that \(Nk(w) — k^Noj^A^ N = 2,3,.... Resulting expressions
for the nonlinear polarisation components are [28]

Px,y = £o(6XxxyyEXiy(\Ex\ + \Ey\ ) + ^XxyyxEXy(Ex + Ey\), (2-17) 
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where index a; was omitted. Thus equations describing propagation of single 

frequency electromagnetic field in isotropic media are in fact coupled nonlinear 

Schrodinger equations

(¿2^ + Ô2 + Ö2 - (2.18)

{^XxxyyAx{ + |AJ ) + 3XxyyXAx(Ax + A)) — 0;

(¿2/^ + d2 + d2 - k^d^k^d^AyA (2.19)
(jO2

^(6XxxyyAy(\Ax\ + |AI ) + 3xXyyxAy(Ax + A/)) = 0,

where t — t — {d^k^z. Below we consider the case of self-focusing nonlinearity, 
i e v^3) > 0Xijkl U-

Now we introduce dimensionless independent and dependent variables

~ 11 ~ T ~ t’ ~ k w2,Ax’y ~ c x^^yy^y

where w is the characteristical transverse size of the pulse, T is the pulse duration, 
k^w2 is the diffraction length. In new variables Eqs. (2.18),(2.19) become

(aa. + a* + a? - (2.20)

+|^[2) + ^A^ + A^ = 0,
Xxxyy

where we dropped all primes. Obviously, r can be rescaled again in such a way 

to make the absolute value of the coefficient in front of d2 by any convenient 

constant. However it is useful to first note that the closer our pulse is to a 

monochromatic wave (T —> oo) the less important the GVD term is. On the 

other hand, the closer the transverse profile of the pulse to infinitely extended 

plane wave (w —> oo) the less important the diffraction term compared to the 
GVD one.

Introducing circularly polarised basis

2 --- /^(Ax i iAy)
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and rescaling t, we find that A1)2 obey

^1,2+ I |^1>2|2 + 1 + Xxyyx

Xxxyy _
1^2,1 |j ^1,2 — 0, 

(2.21)

where for the sake of clarity we informally reintroduced x, y, z and t variables. 

Putting 7 = —sgn(d2E)/2 and (3 = 1 + Xxyyx/Xxxyy we obtain coupled NLS 
equations in the final form we are going to work with

idzEx + + (l^l2 + ß^E. = 0, (2.22)

idzE2 + ~V^jE2 + 7^t E2 + (l^)2 + ß I Ei 12 ) E2 = 0, 
z

here V± = idx + jdy. Longitudinal z and transverse x,y coordinates are re­
spectively measured in units of a suitable diffraction length ldif = kw2 and of a 

transverse pulse size w. Temporal coordinate t is the retarded time scaled to the 
parameter T^ldif/ldis, where ldis = T2/\d2k\ is the characteristic GVD length. 

Examples of practically relevant choices of (3 are: (3 = 2 for the nonresonant elec­

tronic nonlinearity and (3 = 7 for the nonlinearity due to molecular orientation 

[28].

Counterpropagation of scalar waves in nonlinear media also obeys Eqs. (2.22) 

with (3 describing the wavelength-scale refractive index gratings written by the 

interference pattern [21, 22], Value of /? in this situation is directly linked with 

diffusion which washes out the grating making 1 < ^ < 2 (/? = 2 for zero 

diffusion). Envelopes of incoherent copropagating waves in Kerr media also obey 
Eqs. (1) with (3 = 2 [19]. In these two situations the group velocity difference of 

the wave envelopes can be removed by a suitable phase shift [11].

2.3 Modulational instability of solitons. Gen­

eral formulation of the problem

The primary target of this Chapter is understanding of the instabilities of the 

ground-state, i.e. nodeless, spatially localised solutions of Eqs. (2.22) under 
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the action of the t-dependent perturbations. Here, we restrict ourselves to the 

situation when the solitary waves are stable for dt = 0. Therefore we assume that 

Vj. = idx, to avoid collapse [4, 10, 30]. General properties of these solitons for 
7 = 0 are known, see, e.g. [31, 32, 33, 34, 35] and refs, therein.

It is important for the following to summarize relevant symmetry properties of 

Eqs. (1) with suppressed time derivatives (dt = 0). Invariance with respect to 
the two-parameter gauge transformation

(E1}E2) -> (E^E^), (2.23)

leads to conservation of the energies Qi;2 = J dx\Ex;212 or their equivalent com­

binations. There are also invariances with respect to transverse translations and 
Galilean transformation,

E\^^) ~> ^1,2 (^ + £())) 

#1,2(0;) -> #i,2(o; -

(2.24)

(2.25)

0!, ^2, £0 and v are free parameters.

Symmetry property (2.23) indicates that the solitary solutions can be presented 

in the form

E^(x,z) = A1>2(x)eiK1-2Z. (2.26)

Aij2(x) are real functions obeying the system of ordinary differential equations

9^41,2 = «1,2-41,2 — (-412 + ^2,1)^1,2- (2.27)

Exponential localization of the solitons requires «i>2 > 0. Actually one of these 

parameters can always be scaled away, which means that fixing one of them 

and varying the other in the whole region of the solitary wave existence one will 

capture all possible situations. However, for convenience of analytical calculations 
it is better to keep them both.

To study MI we seek solutions of Eq. (2.22) in the form of spatial solitons weakly 

modulated in time at frequency Q > 0

#1,2(252) = (>4ij2(^) +

([/i,2(o;,z) +i!Ti,2(o;,z))cœ (2.28)
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Presenting solution of the linearized real system for the small perturbations 

Um,Wm in the form Um ~ um(x)eXz and Wm ~ wm{x)eXz we obtain following 
eigenvalue problem (EVP)

(4 + = —Aw,

(4 + 7il2/)w — Au,

(2.29)

where u = (ux,u2Y, w = (wi, w2Y and I is the unit operator. 4 and 4 are:

f -^dl +A\-Al 0
. 0 +

-2MM2
—2/5^41^2

(2.30)

(2.31)

By means of simple transformation one can reduce EVP (2.29) to the two follow­
ing EVPs for real and imaginary parts of the perturbations:

(4 + 7Q2/) (4 + 7Q2Z)u = -A2«, (2.32)

(4 + 7Q2/) (4 + 7Q2/)w = - A2w. (2.33)

EVPs (2.32), (2.33) are adjoint to each other. Therefore they have identical 

spectra and in case of instability the imaginary and real parts of perturbations 

grow with the same rates. To answer stability question it is thus enough to study 

only one of the EVPs, and we concentrate below on the EVP (2.33).

Let suppose that («7,2+ 7^2) > 0. Then, generally, A2 G (—oo, — A2) is a continu­

ous part of the spectrum with unbounded eigenfunctions, where Ag = min(£i, £2) 
and £1,2 = «1,2 + 7^2- For particular cases when 4 becomes a diagonal opera­

tor the continuum splits into two independent bands, (—00, —£22), corresponding 

to unboundness of and w2(x), respectively. Eigenvalues which do not be­

long to the continuum constitute the discrete part of the spectrum with bounded 
eigenfunctions. Stable eigenmodes of the discrete spectrum (’gap’ modes) can 
have eigenvalues only inside the gap of the negative part of the real axis in the 

(BeA2,/mA2)-plane from the edge of continuum up to A2 = 0. Presence of any 
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other mode of the discrete spectrum indicates instability of solitons. If < 0 
and/or £2 < 0, the gap is closed, As = 0.

Procedure which we mainly follow to study stability of different types of solitary 

solutions consists of three basic steps. First, using analytical and numerical 

analysis we identify the discrete spectrum of the EVP (2.33) for Q = 0. Second, we 

develop perturbation theory for the neutral eigenmodes in the low-frequency limit, 

Q 1. Third, we numerically build continuations of all discrete eigenvalues into 

the region of positive Q. We also allow for possible splitting of discrete eigenvalues 

from the edge of the continuum, but this was never actually observed.

2.4 Instabilities of circularly polarized and Man-

akov solitons

The single wave solitons of Eqs. (2.27) corresponding to the right and left circular 
polarized e/m waves are

Ax(a;) = y/2nisech\/2Kix, A2 = 0, (2-34)

Ai = 0, A2(x) = y/2K2sechy/2n2x. (2.35)

For these solutions, EVP (2.33), separates in two independent scalar problems.
Considering for example stability of solution with Ai 0 we get:

(A + 7Q2)(Aq + 7^2)^i = —A2Wi, 
/ 1 \ 2

( ~ x^2 + k2 + 7Q2 — ^Ai j w2 = — A2w2,

where Af0 = ~^ + Ki- Af, Ai = -^ + Ki - 3A^.

(2.36)

(2.37)

Operator on the left hand side of (2.37) has nonnegative spectrum therefore cor­

responding values of A^ (n = 0,1,2,3...) must be nonpositive, which means 

absence of unstable eigenmodes. In fact eigenvalue problem (2.37) can be solved 
analytically, see, e.g. [36]. The eigenvalues are

\2 _
p _____ 2'

k2 + 7Q2 - ^8/3 + 1 - 2n - 1
2

(2.38)
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For Q = 0 points A„ = 0 specify surfaces in the parameter space where single 

wave solitary solution (2.34) branches giving onset to the ground state (n = 0) 

and higher order (n > 1) coupled (j41>2 / 0) solitary solutions. Let us note, that 
soliton dynamics caused by an excitation of the gap modes within framework of 

the time independent Eqs. (1) is fascinating subject on its own [33].

Eq. (2.36) is exactly an EVP arising in theory of MI of solitons in single NLS 

equation [9, 10]. The discrete spectrum of operator AjAo consists of two neutral 

(A = 0) eigenmodes which can be readily identified by applying infinitesimal phase 
and Galilean transforms to solitary wave solution. These modes are wl4>1 = 

and wiv = xAi. Infinitesimal translations and variations of Ki generate two 
neutrally stable modes of the adjoint operator A'oA’i which are = dxA1 and 

Ulm — 9K1Ai. These modes obey the following identities: = 0, Afowlv =

, A^Wi® — 0.

Following [27] we assume Q2 < 1 and substitute the asymptotic expansions 

uq = (w^ + + ...), (2.39)

and
A2 = Q2(A(1)2 + Q2A(2)2 + ...) (2.40)

into Eq. (2.36). In the first two orders we have AfiJ\fow^ = 0 and =
-AW2«/0) — 7(Ao+Ar1)w(°\ Solution in leading order is +Cvwlv,

where C^, Cv are constants. Orthogonality properties (wi^,«^) = (wiv,uiK1) = 
0 (here and below (f,g) = f dxfmgm) result in the independence of the 

branches produced by the phase and Galilean neutral modes. Therefore 

and Cv are in fact independent constants. Solvability condition of the 1st order 

problem in the class of the spatially localised functions gives

V’2 = = 4?«!, (2.41)

Am2 = _27^i4 = -i7K1. (2.42)

Eqs. (2.41), (2.42) indicate onset of instability for either sign of 7. However, 
the character of the instability depends on the sign of 7. For anomalous GVD
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Figure 2.1: Instability growth rates of the circularly polarized soliton vs fl, Ki = 1. 
Full (dot-dashed) line is for neck (snake) MI, 7 = 0.5 (7 = — 0.5/

(7 > 0) the spatially symmetric eigenmode gets unstable leading to clustering 

of the soliton stripe into filaments which collapse during propagation (neck MI). 

For normal GVD (7 < 0) an excitation of the antisymmetric eigenmode leads 
to the spatial symmetry breaking and bending of the solitary stripe along the 

temporal coordinate (snake MI). Period of the modulations is approximately equal 
to 27r/flmax, where flmax can be defined by the condition dX/dfl = 0.

Typical dependencies of the MI growth rates vs Q are presented at Fig. 2.1. Neck 
instability disappears at fl^ = ^3^1/7 having wi = 0 and iq = sedF^nyx. For 

fl > fl^ corresponding eigenmode becomes the gap one. Note, that for 7 > 0 the 

gap becomes wider with increasing of fl. Scenario of the snake instability disap­

pearance is very difficult to track numerically because corresponding eigenmode 

develops oscillating tails and becomes weakly localized therefore a larger number 

of the grid points is required. However, our numerical analysis clearly indicates 
that the branch of the snake MI does not disappear stepwise at the point where 

the gap is closed, flg = «1/7, as was suggested in Ref. [9], but continues

beyond this point and probably approaches A2 = 0 with further increasing of fl.

Nonlinear stage of MI is also perfectly analogous to MI in single NLS. Most 
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intense among the filaments, formed as the result of the neck MI development, 
collapse to singularity during further propagation [4, 10]. The snake MI leads 

to soliton spreading due to unbalanced action of the self-focusing nonlinearity 

and normal GVD [10]. The second field E2 is not affected by the discussed 

instabilities. Obviously, this is the consequence of the incoherent nature of the 
coupling between Ei and E2.

In special case ¡3 = 1 Eqs.(l),(2) are invariant under the arbitrary rotations in 
{Ei, E^ plane, Eij2 —> cos "dEi2 ±sin,0E2^, it leads to a new parameterization of 

the ground state solitons. These usually called Manakov solitons [37] and they 
are given by the solutions of Eqs. (2.27) with /t1>2 = k:

Ai = cos0A(ir), A2 = sin0A(ir), (2-43)

here the angle 0 is a new free parameter characterizing the polarization angle and 
A(x) = V^sech\A2nx.

Because of the rotational invariance, Manakov solitons with different polariza­

tions are equivalent and analysis of their MI always leads to the same results, 

independent of polarization angle. Therefore one can always fix 0 = 0, then the 
corresponding EVP coincides with Eqs. (2.36), (2.37). Stress, that this equiva­

lence holds only if Eqs. (1) with dt = 0 and with dt 0 are both invariant on 

the above mentioned rotations, which is the case for oq = a2, 7i = 72-

2.5 Instabilities of linearly and elliptically po­

larized solitons

2.5.1 Soliton family and associated neutral modes

To study solitons of an arbitrarily polarization for (3 1, i.e. A 0 and

A2 0, it is more convenient to introduce total, 92 = |(^i + ^2)> and relative, 

— 2(^1 — ^2), phases. Then corresponding integrals of motion are the total 
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energy Q = Qi + Q2 and energy unbalance Qu = Qi — Q2. Associated soliton 
parameters are k = + k2) and 5 = - /i2).

Obviously for 6 = 0 there is an analytical solution of Eqs. (2.27)

Ai^z) = A(a;) sechV^KX, (2.44)

corresponding to the linearly polarized soliton. It is important for the following 

study of MI to understand the question about continuation of this solution into 

the region of finite 5, i.e. its link with the family of the elliptically polarized 

solitons. Expanding A1j2 in a Taylor series around 5 = 0, A1j2(x) = A ± dsAi6 + 

O(52), and substituting into Eqs. (2.27) we get the equation for the unknown 

value of dgAi at 5 = 0:

i^-«+(3-^)A2)Mi=A
Zu / (2-45)

Using numerical solution of either Eq. (2.45) or Eq. (2.27) one can verify that 

for ¡3 7^ 1 the exact solution (2.44) belongs to the family of the solitary solutions 

parameterized by k and 6. For (3=1 the homogeneous problem associated with 

Eq. (2.45) has solution a/2A, which is obviously not orthogonal to the right-hand 

side of Eq. (2.45). Thus spatially bounded solution of Eq. (2.45) does not exist 

and therefore different parameterization of the solitons must be considered, see 
Eqs. (2.43).

Using Eq. (2.38) for n = 0 and its analog for the solution (2.35) we conclude 

that for the fixed values of k and (3, a family of the ground state coupled solitary 
solutions of Eqs. (3) exists for 5 G (—5C, 5C), where

i - 4/?+yrrw
5c — k 3 + 4/3 - v/1 + 8,3

(2-46)

5C = 0 for (3 = 1 and the coupled solitons parameterized by k and 5 values do not 
exist in accord with the asymptotical analysis for small |5|. Obviously Eq. (2.46) 
can be equally reformulated to find critical values of either k or (3 for other two 

parameters fixed. Expression under the modulus in eq. (2.46) changes its sign 

from plus to minus once /? changes from (3 < 1 to (3 > 1. It follows that for (3 < 1 

the family of elliptically polarized solitons splits from the family A2 = 0 (Ai = 0)
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Figure 2.2: Energy unbalancing Qu vs 8, k = 1.

of the circularly polarized ones at 6 = 5C (3 = — 8C) and this is vice versa for (3 > 1. 

Continuous variation of 8 from — 8C to 8C for fixed k and (3 < 1 [¡3 > 1) results 
in monotonic decay of Q2 (Qi) from its maximal value Q+ (Q_) down to zero 
and in growth of Qi (Q2) from zero up to Q+ (Q_), where Q± = 2^2{k, ± 8^). 

Therefore, we can make another conclusion important for us, that for (3 < 1 

dsQu > 0 and for (3 > 1 dgQu < 0. Numerically build dependencies of Qu vs 8 
for different values of ¡3 are presented in Fig. 2.2.

Consider now main spectral properties of this soliton family for Q = 0 and (3 

0. Phase and Galilean symmetries generate three neutral eigenmodes of the 

EVP (2.33), they are = (Ai,A2)t, — (Ai,—A2)T, and wv = x(A1,A2)'r.
Infinitesimal variations of k, and 8, and translational symmetry generate neutral 

modes of the adjoint problem (2.32): uK = dK{Ax, A2')T, us = di(Ab-A2)T> and 

ux = ^(Ai,A2)t. These six modes obey the following identities = 0, 

0, Eyu% — 0.

For (3 = 0 our problem separates in two independent NLS equations. The inde­

pendence of the two fields results in additional translational and Galilean sym­
metries characterizing freedom of the relative transverse translation and motion 
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of the two waves. Therefore EVPs (2.32) and (2.33) have additional neutral 

modes ugx = dx(Ai, — A2)T, wSv = x(Ax, —A2)T. As shows numerical solution for 

0 < /? < 1 the corresponding eigenvalue produces stable branch of the discrete 

spectrum. For \/3\ 1 approximate expression for this eigenvalue can be readily

found [33], Agv = —64/3/15. Excitation of the corresponding eigenmode results in 
the anti-phase snaking of the soliton upon its propagation along z direction [33]. 

When /3 —> 1 this eigenmode disappears into the continuum [33].

Numerical investigation shows that, for the coupled solitons discussed here, EVP 

(2.33) for Q = 0 has only the four above mentioned eigenmodes in its discrete 

spectrum.

2.5.2 Asymptotical stability analysis

Now assuming that /3 » Q2 we can use the asymptotic techniques described in 

the previous section to continue zero-eigenvalue modes into the region of Q2 <C 1. 

Making substitutions
w = (w^ + Q2w(1) + ...) (2.47)

and of Eq. (2.40) into (2.33) we get in the first two orders: £i£ow^ = 0 and

= —X^w^ — 7(2% + Solution in the leading order is =

+ Cgws + Cvwv. In analogy with previous subsection one can show that the 

branches produced by the two phase modes on the one hand and by the Galilean 

mode on the other are independent. The solvability condition of the first order 
problem for the Galilean mode gives

A<»2 = -27^>, (2.48)

which implies snake instability for 7 < 0. When 5 = 0, A^)2 = —47^/3, cf. Eq. 

(2.42).

For the two phase modes solvability condition results in a quadratic equation for
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aA^4 + &AW2 + c = 0, (2.49)

A«2 

where 

4a = dKQud5Q - dKQdsQu, 

2b = + dsQu) - 'yQu^Qu + dsQ\

c = -472Q1Q2-

Corresponding values of and are linked through the equality

Cv _ 27Q - X^2dsQu 
X^dgQ^Qj

where A^)2 is the corresponding root of Eq. (2.49). In the general case expressions 

for the roots of Eq. (2.49) can not be analyzed analytically, but it is already 

clear that four symmetric neck type eigenmodes exist and two of them can be 

potentially responsible for instability.

If 3 = 0 then {w^ug) = (w^,uK') = 0 and therefore and eigenmodes pro­

duce independent branches of the discrete spectrum. It results in the indepen­

dence between and and simplifies formulas for the associated eigenvalues: 

A<,1)2 = 27^- = 47k, (2.50)

A?' = 27;-^- = 27k/(/3). (2.51)

Here f(/3) = (J sechx g(x, (3) dx)-1 and function g obeys (d2 — l+2Y^sech2x')g = 

sechx, cf. Eq. (2.45). changes its sign from plus to minus when (3 passes 

through unity, see Fig. 2.3. Alternatively, Eq. (2.51) can be rewritten as A^; = 

27QiMQi.

A^2 eigenvalue and associated neutral mode are linked to the symmetry 

in the total phase and have their analogies in the spectral problem for the 
single wave solitons described in the previous section, see Eq. (2.41). The A^ 

eigenvalue and the neutral mode are novel. They can be directly attributed 

to the symmetry in the differential phase ip. This branch of the discrete spectrum 
generates instability for normal GVD (7 < 0) if /? > 1 and for anomalous GVD
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Figure 2.3: Function f(j3), see Eq. (2.51).

if (3 < 1, see Figs. 2.2, 2.3. Thus, the asymptotical analysis indicates that for 

/3 > 1, 7 < 0 neck and snake instabilities coexist, and for /3 < 1, 7 > 0 two 

different types of neck instability coexist. Numerical evaluation of the roots of 

Eq. (2.49) shows that the same conclusions hold also for 6 =4 0, throughout the 

whole existence region of the family of elliptically polarized solitons. Solving the 

EVP (2.33) numerically, we find that in the low-frequency limit the instability 
growth rates match those predicted by our perturbation theory within a few 

percent up to Q ~ 0.5. Numerical investigation, for more details see below, also 

shows that apart from the three instabilities discussed in previous subsection, a 

fourth MI associated with continuation of wgv into the region of 7^ 0, Q 7^ 0 

also exists. Analytical treatment of this instability is also possible, but it belongs 
to the rather wide class of problems involving development of the second order 

perturbation theory and it will not be persued here.

Let us first, discuss in general terms physical meaning of all the different types of 
the instabilities in simple situation with zero imbalancing (5 = 0), and only then 

we will proceed with the details of numerical analysis.
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2.5.3 Instability induced polarization dynamics

All eigenmodes of the EVPs (2.32), (2.33) are two component vectors, where first 
and second components are responsible for the spatial form of modulations of the 

fields Ei and E2, respectively. The eigenmodes wv and wv corresponding to the 

variations of the absolute phase <p and of the absolute velocity v of the coupled 

solitons have first and second components which are in phase for any value of x. 
This property holds in fact through out the whole region of the existence of the 

associated branches of the discrete spectrum. Therefore an excitation of these 
eigenmodes is not accompanied by the breaking of the polarization of the initial 

state. In contrast, the eigenmodes linked with and wgv neutral modes, or in 

other words with variations of the relative phase ip and of the relative velocity 

Sv, have anti-phased first and second components. Therefore their excitation 

does lead to polarization symmetry breaking. In particular, one should expect 

that destabilization of the eigenmode associated with the relative phase ip will 

result in breaking of the linearly polarized soliton stripe into a chain of circularly 

polarized clusters, where neighboring clusters have opposite (left and right, if 

5 = 0) polarizations.

Note here, that by the direct substitution of the linearly polarized solution Eq. 

(2.44) into the EVPs (2.32), (2.33) one can easily show independence from /3 of 

the eigenvalues of the eigenmodes with in-phase first and second components.

2.5.4 Numerical results for normal GVD

We start description of our numerical results from the discussion of the normal 

GVD case. We found two snake instabilities for /? < 1. One of them corresponds 

to the in-phase snaking of both fields, see Fig. 4(c), and its growth rate in the 

low frequency limit is given by the Eq. (2.48). The other one corresponds to the 
anti-phase snaking, see Figs. 4(d). Examples of the growth rate dependencies vs 

Q and details of the anti-phase snaking appearance are presented in Fig. 4(a) 
and Fig. 5, respectively. Dependencies of the maximal instability growth rate vs 
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ft are presented in Fig. 2.4(b). We found that the in-phase snaking dominates 

the anti-phase one for any values of 6. A typical example is shown in Fig. 4(b). 

Dominating role of the in-phase snake instability means that breaking of the 

polarization state imposed by the initial conditions is unlikely to happen upon 

propagation. Introducing nonzero imbalancing for a fixed total energy also leads 

to the growth of the in-phase snake MI and to the suppression of the anti-phase 

one, see Fig. 4(a). Thus, when ft < 1, the linearly polarized solitons are more 

stable compare to any other state of polarization.

For ft = 1 the anti-phase snake mode disappears inside the continuum and does 

not appear again for ft > 1. However, the anti-phase neck MI associated with the 

relative phase appears for ft > 1, see Eq. (2.51) and Figs. 6(b). The in-phase 

snake instability obviously also exists, see Eq. (2.48) and Figs. 6(c),(d). The 

in-phase snake MI dominates the anti-phase neck for 1 < ft < ftsn and vice versa 

for ft > /3sn, see Fig. 7. This fact can also be seen from the comparison of the 

perturbative results for 5 = 0. Accordingly to the Eqs. (2.50), (2.51) and Fig. 

(2.7) the neck instability dominates the snake in the low frequency limit starting 

from ft ~ 3.55. Numerical stability analysis gives that ftsn ~ 3.47 at Q = Qmax 

for 5 = 0. Introducing imbalancing always leads to the suppression of the both 
instabilities, see Figs. 6(a),(c) and Fig. 7. Therefore the circular polarized soliton 

is most stable for a given energy.

In analogy with MI of circularly polarized solitons for normal GVD, the neck and 
snake unstable eigenmodes become weakly confined and develop oscillating tails 

as Q increases beyond the point where the gap is closed, Xg = 0.

To test our linear stability analysis and study the nonlinear evolution we per­

formed a series of computer simulations of the Eqs. (1) with initial conditions in 
the form of a soliton stripe perturbed by spatio-temporal white noise of order of 

few percent. Typical simulation results are presented in Figs. 2.8,2.9,2.10. For 

ft < /3sn we observed in-phase snaking of the stripe along the temporal dimension, 

see Fig. 2.8. For ft > /3sn the soliton stripe breaks in such a way as to form the 

interleaved intensity peaks of and E'2, 2.9(aii2),(blj2), as expected when the
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Figure 2.4: Instability growth rates, spatial profiles of the solitary solutions and 
of the unstable eigenmodes for [3 < 1, 7 = —0.5. Dash-dot (dash-dot-dot-dot) 
lines correspond to the in-phase (anti-phase) snake MI. (a) Growth rates vs D, 
¡3 = 0.3. Thin (thick) lines correspond to k = 1, 6 = 0, Q ~ 4.04, Qu = 0 
(k = 1.155, 5 = 0.5, Q ~ 4.04, Qu ~ 2.18/ (b) Maximal growth rate vs (3. Thin 
(thick) lines correspond to 6 = 0 (6 = 0.5). (c) Components of the eigenmode 
corresponding to the in-phase snake MI, (3 — 0.3, 6 = 0, Q = 1. (d) Componets 
of the eigenmode corresponding to the anti-phase snake MI, ¡3 = 0.3, 6 = 0, 
Q = 0.92.
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Figure 2.5: Eigenvalues corresponding to the anti-phase snake MI vs Q for several 
choices of (3: /c = 1, 5 = 0, 7 = —0.5.

out of phase neck MI is dominant. The spatio-temporal patterns formed at the 

initial stage of MI finally spread because of the unbalanced action of the normal 

GVD and self-focusing nonlinearity. For ~ [3sn we observed competition be­

tween the neck and snake Mis, see Fig. 2.10. Looking at Figs. 2.10 (bi), (b2) one 

can clearly see that at the intermediate stage of MI the typical in-phase snake 

pattern is superimposed on the anti-phase neck pattern.

Thus, we conclude, that in the media with normal GVD spatial soliton stripes 
develop snake MI without polarization symmetry breaking if (3 e (0, /3sn) and 

neck MI with polarization symmetry breaking if /3 G (J3sn, +00).

2.5.5 Numerical results for anomalous GVD

There are two neck Mis in this case for /3 < 1, see Fig. 2.11. One of them is 
associated with the total phase 99 and corresponds to the in-phase neck MI. The 

other one is associated with the relative phase and corresponds to the anti­

phase neck MI. The in-phase MI dominates the anti-phase one for any value of 5 
and (3, which means conservation of the polarization state imposed by the initial
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Figure 2.6: Instability growth rates, spatial profiles of the solitary solutions and 
of the unstable eigenfunctions for (3 > 1, 7 = —0.5. Dash-dot (dash) lines 
correspond to in-phase snake (anti-phase neck) Mis. (a) Growth rates vs Q, 
(3 = 2. Thin (thick) lines correspond to k = 1, 5 = 0, Q = 1.75, Qu = 0 
(k = 0.93, 6 = 0.2, Q = 1.75, Qu = -0.91). (b) Components of the eigenmode 
corresponding to in-phase snake MI, (3 = 2, 6 = 0.2, Q — 0.8. (c) Growth rates 
vs Q, (3 = 7. Thin (thick) lines correspond to k = 1, <5 = 0, Q ~ 0.68, Qu = 0 
(k = 0.97, 6 = 0.2, Q ~ 0.68, Qu ~ -0.16). (d) Componets of the eigenmode 
corresponding to anti-phase neck MI, (3 = 7,8 = 0.2, Q = 1.
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Figure 2.7: Maximal growth rates of the in-phase snake (dash-dot line) and the 
anti-phase neck (dash line) Mis vs fl for fl > 1, 7 = —0.5. Thin (thick) lines 
correspond to 3 = 0 (3 = 0.5). flsn ~ 3.47 for 3 = 0 and flsn ~ 4.04 for 3 = 0.5.

Figure 2.8: Development of the in-phase snake MI for fl = 2, k — 1, 3 — 0, 
7 = —0.5. (ai^) 1^1,21 for z = 12; (bi^) 1^1,21 for z = 14.7.
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Figure 2.9: Development of the anti-phase neck MI for ¡3 = 7, k = 1, 6 = 0, 
7 = —0.5. (an) |Ei2I for z = 8.4; (b^) for z = 10.2; (cli2) ¡^1,2! for 
z = 12.6.

Figure 2.10: Competition between the in-phase snake and anti-phase neck Mis: 
0 = 3.47, k = 1, 6 = 0, 7 = -0.5. (ai,2) |Ei>2| for z = 9; (bli2) |£?i)2| for z = 12
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conditions. Nonzero imbalancing for fixed total energy leads to the growth of the 

in-phase MI and to the suppression of the anti-phase one, see Fig. 10(a). For ¡3 > 

1 only in-phase instability exists, but now imbalancing leads to the suppression 

of the instability, see Fig. 11. Presence of these instabilities agrees with the 

predictions of low-frequency analysis, see Eqs. (2.50), (2.51) and Figs. 2.2,2.3. A 

typical result of the numerical simulation of the neck instability development is 

shown in Fig. 2.13. Note, that the attainable propagation distance was limited 

by the distance at which the most intense of the filaments formed at the initial 

stage of MI collapse to singularities.

Cut-off frequencies, where the neck Mis disappear can be found analytically for 
5 = 0. Growth rate of the in-phase MI becomes zero at Q = ^3^/7 in full 

analogy with single NLS equation, see section IV. The anti-phase MI disappears 
at Q2 = k(D - B)/(27) having w = 0 and Ui>2 = (sechy/^KX^B^2, here D = 

(11 - 5/J)/(l + [T), B = ^(25 — 7/?)/(l +/?).

Thus, in the media with anomalous GVD spatial soliton stripe always devel­

ops neck MI without polarization symmetry breaking and filamentary structure 

formed during this process collapses upon propagation. Detailed study of collapse 

in coupled NLS equations is outwith the scope of this thesis. Some details on this 

issue can be found in [30].

2.6 Discussion

It is interesting to compare MI of solitons with results on MI of CWs [16], 

which can be easily recovered from Eqs. (2.27), (2.32), (2.33) putting 32 = 0. 

For simplicity we again consider the case of the linear polarization, B1j2 = 
k/(1 + Then corresponding eigenvalues are A2 = 7Q2(2k — 7Q2) and

X^ = 7Q2(2k(1-/3)/(1+^)-7Q2). For normal GVD, A^, can be positive only for 

¡3 > 1. For anomalous GVD, A2 generates instability for any (3 and A J only for 

¡3 < 1. Thus, as one could expect neck instabilities of solitons related to the phase
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P

Figure 2.11: Instability growth rates, spatial profiles of the solitary solutions and 
of the unstable eigenfunctions for (3 < 1, 7 = 0.5. Full (dash) lines correspond 
to in-phase (anti-phase) neck Mis. (a) Growth rates vs Fl, = 0.3. Thin (thick) 
lines correspond to k — 1, <5 = 0, Q — 4.04, Qu = 0 (k = 1.155, 6 = 0.5, Q ~ 4.04, 
Qu ~ 2.18/ (b) Maximal growth rate vs (3. Thin (thick) lines correspond too = 0 
(5 = 0.5). (c) Components of the eigenmode corresponding to in-phase snake MI, 
0 = 0.3, 5 = 0, Q = 1.5. (d) Componets of the eigenmode corresponding to 
anti-phase snake MI, (3 = 0.3, ô = 0, Q = 0.9.

X
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Figure 2.12: In-phase MI growth rates for (3 > 1, 7 = 0.5. (a) Growth rates vs 
Q ¡3 = 2. Thin (thick) lines correspond to k = 1, S = 0, Q 4.04, Qu = 0 
(k = 1.155, 6 = 0.5, Q ~ 4.04, Qu ~ 2.18/ (b) Maximal growth rate vs (3. Thin 
(thick) lines correspond to 6 = 0 (5 = 0.5).

Figure 2.13: Development of the in-phase neck MI for (3 — 2, k — 1, 6 — 0, 
7 = 0.5. (a1>2) |£i>2| for z = 4.6. With further increasing of z most intense 
filaments develop collapse.
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symmetries have their analogies for CWs. Snake instabilities are obviously absent 

for CWs, which is the main difference between the dynamics of spatially confined 

solitons and infinitely extended CWs. Namely, in the case of normal GVD, CWs 

are modulationally stable for (3 < 1 and unstable for (3 > 1 demonstrating polar­

ization symmetry breaking. Solitons are snake unstable in this situation for any 

(3 and this instability does not involve changes in the polarization state. However, 

starting from a critical value of /? = f3sn the snake instability becomes suppressed 
by the neck one, which is analogous to instability of CW. This instability does 
lead to polarization symmetry breaking. In particularly, linearly polarized soli­

ton breaks, due to this instability, into the chain of circularly polarized clusters. 

Because, snake instability leads to spatial symmetry breaking and neck MI does 

not, the change in MI of solitons at ¡3 = /3sn can be interpreted as a transition 

from spatial symmetry breaking to polarization symmetry breaking.

In limiting situation (3 » 1 self-phase effects are negligible compare to cross-phase 

ones and development of the in-phase and anti-phase neck Mis can be qualita­

tively explained using Fermat’s principle. Due to MI development the effective 

refractive index for E\ and E2 fields gets modulated through the XPM mecha­

nism with period 27r/Qmoa;. It results in temporal cross-defocusing of filaments 

in media with normal GVD and in cross-focusing for anomalous GVD. Thus, in 

the case of normal GVD, interleaved pattern of the intensity peaks of Er and E2 

fields should be preferable because it enables each field to see a refractive index 

that increases to its peak, i.e. one that is in accord with Fermat’s principle. This 
is clearly verified in Fig. 9. The same arguments lead to the conclusion that a 

pattern with all intensity peaks coincident is preferable for anomalous GVD.

Phenomena and theoretical approaches presented above can be developed and 

generalized in number of ways which can be subjects of future investigation. One 

of them, for example, can be the study of MI in the more realistic situation 
with two spatial dimensions and with inclusion of saturation effects which are 

often relevant in experiments. Applications of coupled NLS equations to describe 
propagation of spatio-temporal envelopes in planar waveguides is another exam­

ple. However, here effects of the breaking of the symmetry in differential phase, 
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due to linear and/or nonlinear anisotropy, will come into play.

Considering possibility of experimental observations of predicted phenomena, we 

have to say that diffraction induced MI of soliton-like stripe, which is formally 

equivalent to the case of anomalous GVD, is probably easiest to observe. How­

ever, it is less interesting at the same time because it is perfectly analogous to 

MI of CWs and it is not accompanied by any polarization effects. More inter­

esting dynamics is expected in media with normal GVD. In fact, experimental 

observation of temporal splitting induced by normal GVD of spatially confined 

pulses in a self-focusing medium was recently reported in [38, 39]. However, 

transverse and polarization effects, which, accordingly to our results, should play 

an important role, were not studied during this experiment. Numerical studies 
[38, 39] presented to support the experimental results were restricted by scalar 

approximation and radial geometry.

Rescaled instability growth rate A as function of the modulational frequency Q 

can be recalculated back into physical units using formulae:

x _ A q2 = 7^

ph “ Mw2* ph 2kk"w2K

Here Xph and Qpft are the instability growth rate and modulational frequency in 
physical units, k is the wave vector, w is the beam width, k" = d^k. k and 7 are 

the same parameters which have been used throughout the text. For example 
for radiation at 1/zm propagating in AlGaAs planar waveguide k" ~ -10“23s2/m 

[40] and for typical soliton transverse size w ~ 50/zm [41] we get Xph ~ A/(ft-5cm) 

and ~ Q2/(k • 10-25s2).

2.7 Summary

We have analysed and described dispersive MI of families of nodeless spatial soli­

tons in the system of the two incoherently coupled NLS equations. Considering 

coupled soliton states, we have established the existence of the four branches of 

instabilities, which are linked to the symmetries in the total and relative phases 
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and in the absolute and relative motions of solitons. We gave a physical interpre­

tation of our results in terms of the applications of the coupled NLS equations to 

the interaction of the circularly polarized waves. In particularly, we found that in 

media with normal GVD the MI induced spatial symmetry breaking changes to 
the polarization symmetry breaking when the relative strength of the cross-phase 

modulation exceeds certain threshold value. In media with anomalous GVD, MI 

results in breaking of spatial solitons into spatio-temporal clusters which collapse 

upon further propagation. This is not followed by either spatial or polarization 

symmetry breaking.
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Chapter 3

Bright solitary waves due to 
three-wave mixing

3.1 Introduction

Phenomenon of soliton formation due to the balance between diffraction and/or 

group velocity dispersion (GVD) from one side and nonlinearity from the other 
is not restricted to the frames of the centrosymmetric media where the lowest 

order nonlinearity is the cubic one. It is also possible in noncentrosymmetric me­

dia where quadratic nonlinearity is dominant. Of course the case of an isotropic 
medium considered in the previous Chapter is a particular case of centrosymmet­

ric media. The pioneering papers on soliton formation due to quadratic nonlin­

earity [42, 43] appeared ten years after the well known work of Chiao, Garmire, 

and Townes [44] on solitary waves in cubic medium. Solitons due to cubic nonlin­
earity has been a subject of intense experimental and theoretical research since 
60s. In contrast, the problem of self-trapping in quadratic media had remained 

practically forgotten till the beginning of 90s, when it suddenly exploded. Start­
ing from 1993-94 [45, 46, 47, 48] and especially after experimental work [49], 

quadratic solitons have been an issue of large amount of theoretical and experi­

mental publications.
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The interest to quadratic solitons can be easily understood because this phe­

nomenon is in fact a new conception of light self-trapping. Conventional solitons 

are formed due to the selfaction of the optical beam propagating in nonlinear 

material. Quadratic solitons are intrinsically multicomponent. In simplest case 

they require two fields with frequencies w and 2u. Interaction between both har­

monics leads to the mutual trapping and to formation of ’two-colour’ solitary 

wave.

There are generally infinite number of possible wave processes in quadratically 

nonlinear media leading to generation not only second but also all higher harmon­

ics and it is very likely that each of these processes can support solitary waves 

in both spatial and temporal domains. Most important from practical point of 

view and simplest for theoretical consideration are degenerate and non-degenerate 

three-wave mixings. Degenerate three-wave mixing is a process of resonant inter­

action between two waves at frequencies w and 2w and non-degenerate three-wave 

mixing is a mixing of three physically distinct waves with frequencies obeying
+ w2 = w3. In the context of second-harmonic generation (SHG) degenerate 

case is referred as type I SHG and non-degenerate case as type II SHG. In the 

last case Wi = ^2 but corresponding waves are orthogonally polarised. Formation 
of spatial quadratic solitons was observed due to type I and type II SHG in both 

bulk media [49, 50, 51] and planar waveguides [52, 53]. More recently temporal 

localisation due to type I SHG was also observed [54].

Theoretical understanding of the quadratic solitons goes back to already men­

tioned papers by Karamzin and Sukhorukov. In these papers first numerical ev­
idence of spatial trapping due to quadratic nonlinearity has been presented and 

simplest analytical solution of the problem has been found. Theoretical develop­
ment of last years was started from understanding of the fact that the analytical 
solution of Karamzin and Sukhorukov belongs to the whole soliton family, which 
was approximated variationally and numerically [48, 55, 56, 57, 58, 59]. Sta­

bility issue was probably most intriguing issue of the quadratic soliton theory 
[60, 57, 61, 62, 63, 64]. However, now, when understanding of this problem is 

nearly finished, it is clear that the stability properties are mainly underlined not 
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by the particular choice of nonlinearity, but by the symmetry properties of the 

model equations.

In this Chapter we start consideration of several theoretical problems related to 

quadratic solitons. First we derive model equations describing propagation of 

electromagnetic beams in noncentrosymmetric media. Then we review results 

on numerical and analytical studies of existence and stability of ground state 

solitary solutions in one-, two-, and three-dimensional geometries. In the last 
section existence and stability of two-dimensional higher order solitary solutions 

is studied.

3.2 Equations for wave propagation in noncen-

trosymmetric media

3.2.1 Linear terms

For the linearly isotropic media or in the case when all frequency components 
propagate along any of the optical axes of the crystal, the linear parts of the 

equations for wave envelopes are obviously the same as were derived in previous 
Chapter, see Eqs. (2.15). An important example of the linearly isotropic, i.e. 

non-birefring  ent, and, at the same time, noncentrosymmetric medium is GaAs 
crystal, which belong to the wide class of the cubic crystals (Xxx = X$ ~ 

with nonzero second-order susceptibility tensor. The simplest example of linearly 
anisotropic, i.e. biréfringent, medium is the uniaxial crystal (%^ = Xyy / X^Y 

Using Gauss law for uniaxial crystal one can show [65] that in the crystal basis

0 = —V • (eqE + P) ~ sæV • E + (ez — ex)dzEz. 
So

Therefore spatial part of the linear operator acting on the electric field, see Eq. 

(2.3), becomes
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-W + (i--)va2^.
&x

Now transformation to the basis related with direction of the beam propagation 

is not trivial and it gives so-called spatial walk-off terms. Suppose that crystal 

and beam systems are related through the transformation

— cos 0 sin 0
— cos 9 sin — cos 9 cos 0 sin 9

sin 9 sin <$ sin 9 cos cos 9

x

y ■
z

Taking into account that in paraxial approximation Ez> ~ 0, after some calcula­

tions one finds following spatial parts of the operators acting on the components 

of the field envelope [65]

2ik^^d, + aj + [cos2 9 + sin2 <) (3.1)

- ^wea;(l----^) sin 29dy'Auyi + olnt = 0,

(2 \
+ a2. + * + olnt = 0, (3.2)

1 “wex /

where ’olnt’ means ’other linear and nonlinear terms’. The temporal derivatives 
are analogous to what was obtained in the previous Chapter, see (2.15). Writing

Eq. (3.1),(3.2) we introduced following constants

Tl^ex
cos2 9 sin2 9 -1/2

o 9 9 2 2
2 _ W n^ex 2 _ W n^g 2 _ nwe

^wex — c2 ’ Kuo — c2 ’ we c2 

n2̂  = 1 + Xxx^j n2ue = l + Xzz^)

The extraordinary beam polarised along y' axis (i.e. the polarization vector lies 

in the zz plane) experiences spatial walk-off and it sees refractive index n^x de­
pending from the direction of propagation. The ordinary beam is x polarised and 

obeys the same equation as beam propagating in the linearly isotropic medium 

with refractive index n0.
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3.2.2 Nonlinear terms

Generally in noncentrosymmetric media lowest order nonzero susceptibility is 

the second order one, therefore in leading approximation nonlinear polarisation 

at frequency w3 = uq + w2 is

^2 = £o E ¿3 ’ ^2) Ejw E^, (3.3)

where

J J +oo J—oo

summation is assumed over all sets of (wi,w2) which satisfy aq + w2 = w3 aud 

E.^ _ Throughout this and next two Chapters we will consider

degenerate and nondegenerate three wave mixing. In degenerate case two waves 
at frequencies uq = are identical. In the nondegenerate case either uq w2 or 

UH = ^2 but corresponding waves are orthogonally polarised.

Taking into account Kleinman symmetry which holds for nonresonant nonlineari­

ties [29] the 27 elements of xijk can be reduced to 18 and polarisation at frequency 

cj3 can be written as

¿11 • • • ¿16

¿2i ■ ■ • d26

¿31 ■ • • d36

p

P — 2^0

p1 ZW3

Eym Eylj}2

EZU1 EZW2

Ey(_O t Ezu2 + Ey^ Ezan 
EXwiEZU2 4“ ExbJ2EZUJ1 

EXW EyijJ2 + EXU2 Ey^

(3.4)

For particular crystal classes the number of nonzero elements can be very small. 

For example, for such practically important crystals as KDP and GaAs only

nonzero elements are
¿14 = ¿25 = ¿36 — d, (3-5)

for more details see [29]. Polarization response at frequencies uq,2 can be recovered 

from Eq. (3.4) taking into account that = E^.

For the sake of simplification of the derivation procedure I will consider situation 
when uq>2 = w, w3 = 2w. However, final equations will be presented for the 
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general case when all three frequencies are different. Waves with frequencies uq 

and w2 are assumed to be, respectively, extraordinary and ordinary waves. Due 

to quadratic nonlinearity these two waves are coupled with ordinary and extraor­

dinary waves at frequencies Nw, where N = 0,2,3,4.... But we will keep only 

terms which describe their coupling with one extraordinary wave at frequency 2w. 

This will allow us to get general form of equations which are relevant to describe 

both type I and type II SHGs. We neglect all other resonant contributions into 

nonlinear polarisation assuming that corresponding conditions of the matching 

of the wave vector are not satisfied. More general equations describing coupling 
of two ordinary and two extraordinary waves have been derived in Ref. [66]. 

Note, that frequency resonances is something that is imposed by the nature of 

the x^ nonlinearity. In contrast wave vector resonances between ordinary and 

extraordinary waves can be controlled in biréfringent media by choosing direction 

of propagation. Other methods of the controlling of the wave vector resonances 

will be briefly discussed below. After a series of calculations for the simplest 

biréfringent crystal, see Eq. (3.5), one can get the following set of equations

„2
9,7 &
¿^WZX n I

wex

„2

cos2 6 + sin2 6 A 
^y (3-6)

/ n2 \
-ik^ex 1 - “F sin20aÿAWÿ = 

k nloJ
2 (2)

idMA - 58’^9?) A^ + 
Z J L

idukuodt — n^u^^ï^ Aux 
Z /

(3.7)

2 (2) , ,2 J2)

C C

2

^2u)ex

Q -1 ^2(^6
ZZ/v2a;eæ 2 

^2ijex
COS2 $ + ^sin20 a2) A‘¿uy (3.8)

Sm 20 A^y — ^k^e A<iwy■L 9
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here

A. ,2^.(2) _ n, .2v(2)
, ^2,e/y 4 4 Jftz I W 42 jßiz

+ „2 I" 2 ’

ßl — 2kwo ^ojeæ; ß% — kuex T ^wo k2aJex,

X^ff — 2d sin 0 sin 2^, X^eff — ~^d sin 20 cos 2<£.

A^x, Auy, A2iJy are the slowly varying wave envelopes, see (3.63). If |3z| IAI 

one can neglect terms proportional to e-^2^ and this is the case of Type I SHG. 
Similarly, if |3i| » |32| we can neglect terms proportional to e~^1Z and this is 

the case of Type II SHG.

/Q\

In linearly isotropic media, as cubic crystal, angular dependence of xi,eff and 

X^lff can be omitted. In the following we actually never study influence of 

birefringence, assuming either nonbirefringent medium = n^e) or noncritical 

matching of wave vectors, 0 < 1. Note also, that the problem of the influence of 

the non-zero walk-off on formation and internal stability of solitary waves have 

been addressed in several papers [67, 63, 64, 68]. The question of its influence 

on modulational instability of solitons still remain to be analysed and will not be 

considered in this thesis.

Taking into account all the just mentioned simplifying assumptions one can adopt 

Eqs. (3.6),(3.7),(3.8) for the cases of degenerate and non-degenerate three-wave 
mixing in general situation, when specific details of chosen geometry are irrele­

vant.

Degenerate three-wave mixing: 
2 (2)

- (2ikA + ^ + $) A, = 2k, (ik’A - A + (3.9)

— ^2ik2dz + dz + X) A? — 2k2 ^ik2dt — ^k2dt) A2 + 
9, ,2v(2)
---- *1*11 A2^, (3.10)

c2
where ki and k2 are the wave vectors of the fields with frequencies w and 2w, kl - 

dki/dw, k'2 = dk2/d(2w\ k[ = d2kx/dw\ = d2k2/d(2w)2, and ft = 2ki - k2. 

Ai and A2 are the amplitudes, respectively, of the first and second harmonics.
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Nondegenerate three-wave mixing:

- (uk^ + ^ + a?) A, = 2k, (ik',8, - At+ (3.11)
\ * w \ 2 / C

- (2ik28z + 8} + a’) A2 = 2k, (ik'2d, - A2+^^iAiA3e-‘^, (3.12)

- (2ik38, + % + %)A,= 2k, (ik',8, - A, + ^U-ArA^, (3.13)

where kn (n = 1,2,3) are the wave vectors of the fields with frequencies wn,

= dkn/dwn, k'^ = d2kn/d^ and & = kv + k2 - k3. An are the amplitudes of 

the fields with frequencies ain

Introducing dimensionless parameters and variables we obtain normalised model 

equations for degenerate and nondegenerate three-wave mixings.

Degenerate case:

id^Ei + idydTEy + QiiV^S! + 7i^£'i + E*E2 = 0, (3.14)

id^E2 + i52dTE2 + 0'2^5.15'2 + ^2d^E2 + -E2 = (3E2, (3.15)

where
z A x y t-kz

Idif w w T
/3 = (2&i - k^ldif, V± = df + d^,

, 2, , „T2 h + k2
"dif — ^5 ''dis j^r/ J 2 ’

k' = r =
2

k _ l<nf kn kn
2

i» = - k")

E‘=A‘^ikTr’ 2 i 2^k,

n = 1,2; T is a characteristic pulse duration, w is a characteristic beam size.

Nondegenerate case:

idzEi + ididTEi + o'lV^.i'i + ji9^.Ei + E^E^ = 0, 

idzE2 + id2dTE2 + a^^E-i + 72^5^2 + E*E3 = 0, 

idzE3 + iS3dTE3 + a^^Es -I- ^3d^.E3 + EiE2 = ^E3,

(3.16)

(3-17)

(3.18)
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where
3 = (ki + k2 — ks^ldif, k —

k' = k, + kn + ko . a—----- -------, k =
3

^dif kn kn 
^U^kE7

3
r ^dif 
Un — "jT"

Ei — Ai 2c2y/k2k3
, E2 — a2

UJjU^kx^eff

2c2y/kiks

+ ^3

3

k

un^kx^ff iK
Es -Ai

n = 1,2,3.

All temporal derivatives in Eqs. (3.14),(3.15),(3.16),(3.17),(3.18) can be ignored 

if one is interested only in spatial effects, i.e. duration of the pulse tends to 

infinity, T -4 00. Generally, the group velocity mismatches 6n are all different 

and play very important role in the process of pulse propagation in quadratic 

media. However, below, studying temporal effects, I will consider only simplified 

model situation with
6n = 0. (3-19)

The primary reason for this simplification comes from the fact that size of the 

matrices which are needed for numerical stability analysis presented in the next 
Chapter would be doubled in case of 5n 7^ 0. That basically made impossible 

numerical work on the computers which were available for me at the time when 

this work was done. A couple of more scientific reasons for this simplification also 

can be presented. First, group velocity difference can be compensated by some 
special techniques [54]. Second, considering degenerate three-wave mixing m dou­

bly periodic Bragg grating embedded in the quadratically nonlinear medium He 

and Drummond [69], and Conti with coworkers [70] showed that for frequencies 

close to the center of the forbidden gap the model equations governing propa­
gation dynamics can be reduced to a form which formally coincides with Eqs. 
(3.14),(3.15) when 6n = 0. The only difference is that temporal and longitudinal 

coordinates should be interchanged as well as the wave numbers (k) and frequen­
cies (w). The reason for this is that in the Bragg gratings dominating dispersive 
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effects originate from the delayed spatial, not temporal, response of the medium. 

One can expect that the same analogy can be valid in nondegenerate case.

3.2.3 Phase matching

Most important practical application of quadratically nonlinear materials is the 

frequency conversion. The mismatch of the wave vectors, which is often called 

phase mismatch, is a crucial parameter to control efficiency of the frequency 
conversion. Details on this issue can be found in any text book on nonlinear 

optics, see e.g. [29, 28]. Obviously with increasing phase mismatch nonlinear 
terms becomes less and less significant and this generally results in a decreasing of 

the conversion efficiency. Maximal conversion is normally achieved for zero phase 

mismatch. The classical way to tune phase mismatch is by the adjusting of the 

propagation direction in biréfringent crystal in such a way that refractive indices 

for ordinary and extraordinary waves at different frequencies become equal.

Another way to achieve phase matching is so-called quasi-phase matching (QPM). 

The idea of QPM was proposed in 60s in one of the pioneering works on frequency 
conversion [71], but it has begun to be widely used for fabrication of practical 

devices only during the last decade [72]. The idea consists in making second- 

order susceptibility a periodic function of propagation direction, i.e.
Any periodic function can be of course represented as a Fourier series: 

= £+~_œ dneinZz. If, for some n = nq, nqZ is equal or approximately 

equal to phase mismatch than effective quadratic nonlinearity will be proportional 

to dnq and influence of other nonlinear terms can be neglected because they are 
far from the phase matching condition. It is straightforward to show that in the 

leading order equations (3.14),(3.15),(3.16), (3.17),(3.18) are also valid for QPM 

structures, see [72, 73, 74]. Only difference is that phase mismatch parameters 
have to be replaced by /3 — nqZ. QPM techniques has some advantages and 

disadvantages, which of course depend from experimental configuration. One of 

the advantages, for example, is that QPM can be used in nonbirefringent media. 
On the other hand, in biréfringent crystal, QPM gives flexibility to choose the 
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propagation direction with maximal x^ without suffering from spatial walk-off. 

One of the disadvantages is scattering losses on inhomogeneities appearing due 

to the writing of the grating.

Another techniques, which remained practically unknown until recently [75], is 

Van der Ziel method [76]. This method allows the creation of artificial birefrin­

gence in linearly isotropic materials as, for example, GaAs, by growing thin layers 

of other material along proposed direction of propagation. These layers destroy 

linear isotropy and create possibility for phase matching. We stress that here 

modification of the crystal occurs along the planes parallel to the propagation 

direction, not perpendicular to it as in QPM structures, therefore one can expect 

fewer energy losses.

3.3 Ground-state two-wave solitons

3.3.1 Stationary problem.

Throughout this section the problems of existence and stability of ground-state, 

i.e. nodeless, solitary solutions of Eqs. (3.14),(3.15) will be considered. Taking 

into account Eq. (3.19), model system is

iS.Et + + E{E2 = 0, (3.20)

idzE? + -(c^ + dy)E2 + 72^^ + — ^2, (3-21)
4 A

here practically relevant choice £2/^1 = 2 was made and spatial variables were 
rescaled in an obvious way. Possibility of the existence of the solitary solution of 

Eqs. (3.20),(3.21) become clear from the consideration of the limit /? » 1 {cas­

cading limit). In a very rough approximation derivatives of the second field can 

be neglected, i.e. E2 ~ ^Ef and the system (3.20),(3.21) can be approximated 

by the NLS equation for fundamental harmonic

id.E, + ha’ + + 713^! + = 0-
z ¿p
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This equation has well known bright solitary solutions in one, two and three 
dimensions. The last is true, providing that 71 > 0. More accurate derivation 

of approximate equation in cascading limit can be found in Refs. [77, 78]. The 

solitons of NLS equations are stable only in one dimensional geometry and develop 

collapse in higher dimensions [9, 4, 10]. However, as it is already well known 

[10, 59, 60, 57, 61, 62, 63, 64] and will be shown in some details below, quadratic 

nonlinearity can support stable solitons in all physically relevant dimensions.

Eqs. (3.20),(3.21) can be reduced to a set of stationary equations for the soliton 

profile using substitution

= A^y,^, E2 = A2(x,y,T')e‘^, (3.22)

where « is the soliton parameter characterising correction to the wave number, 

and A ,2 are real functions obeying

(52 + 9^A + 71d2A = 2«A - 2AA,

(92 + A + 272^A = 4(2« + (3) A - 2Al

(3.23)

Existence of bright solitary solutions with tails decaying in both space and time 

require « > maæ(0, -(3/2) and 7i)2 > 0. Eqs. (3.23) are still partial differential 

equations which are difficult to solve numerically. Therefore we will suppose that 

7x = 272 and rescale time, r = y/^t, then for spherically symmetric solutions 

(optical bullets) Eqs. (3.23) become

cPAr D — ldAi 
dp2 p dp 

d?A2 D-ldA2 
dp2 p dp

= 2 k Ai — 2AAj

= 4(2« + (3)A ~ 2A2.

(3-24)

Here D is the dimension of the problem: for D = 3 (optical bullet) p = ^A2 + y2 + ¿2 » 

while D = 2, with p — y/x2 + y2, corresponds to the spatial soliton in bulk media 

or to the spatio-temporal soliton propagating in planar waveguide, D = 1. p = x 

corresponds to one dimensional soliton. For given D and Eqs. (3.25) have a 
family of solitons with different energies, each with different k. In fact one of the 

parameters (3 or « can be scaled away. However, it is more convenient to keep 
them both. (3 is not very natural for scaling because it can be zero or negative.
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Figure 3.1: Profiles of the one-, two- and three- dimensional solitons are marked, 
respectively, by the full, dotted and dashed lines. ¡3 0, n 1.

Although k is always positive, it is natural parameter for stability analysis and 

scaling k away would seriously complicate derivation of stability criteria and adi­

abatic theory described below. Typical examples of such useless complications 

can be found in [60, 79].

Exact analytical solution of Eqs. (3.25) can be found in special case D = 1 and 

/3 = -^k, when Eqs. (3.25) reduce to

=2(« - m.

This equation has following localised solution

/(a;) = ^sech2 J^x = A1j2(z) (3-25)
2 i 2

Eqs. (3.25) can be easily solved numerically using shooting or relaxation tech­

niques [80]. Fig. 3.1 shows numerically built transverse profiles of the solitons in 

all three physically relevant dimensions. There is also possibility of approximat­
ing transverse profiles analytically by using variational approach and it was done 

by many authors [55, 61, 58, 59], see also Appendix A for details.
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3.3.2 Internal stability.

In this Section we will discuss the stability problem of the ground-state quadratic 

solitons with respect to perturbations which are localised in the same dimensions 

where soliton itself is localised (internal stability). We start from the general 

problem of stability of two-dimensional stationary solution of Eqs. (3.23) (71,2 = 

0), A1j2 = A,2(r = + y^- Consider small complex perturbations of the

stationary solution Ai!2(r),

En = (An + (Un(z, x, y) + iWn(z, x, y))etnKZ, n = 1,2. (3.26)

Linearization of Eqs. (3.20),(3.21) and substitutions Un ~ un(x,y)eXz and Wn

wn(x,y)eXz result in the following eigenvalue problem (EVP)

£iü = —Xw, 

Êow = Xü,

(3.27)

where u = {ui,u2)t, w = (wL, w2)T. £0 and Êi are:

£ = ( + « + ^2 Ai \ (3 28)
° -A. -±^1 + 2« + /^

£ = f -^1 + k- A2 -Ar _ 

_A1 -^ + 2K + p)

The EVP (3.27) can be solved only numerically. However, some general con­

clusions can be made without numerics. Eigenvalues of the continuous part of 

the spectrum with stable and spatially unbounded eigenfunctions belong to the 

rays (iQc, ¿00) and (-¿Qc, -zoo), where Qc = min^n, 2k + ^). Unstable spatially 
localised eigenmodes of the discrete part of the spectrum have eigenvalues with 

ReX > 0. They must always have a counterpart with ReX < 0 because of the 

hamiltonian nature of our problem.

Phase 
(^,£2)4^,^), (3.30)
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and translational symmetries, (x,?/) -> (x+xo,y+yo), of model equations generate 

three neutrally stable (A = 0) eigenmodes which are

,wy = 0.

(3.31)

(3.32)

(3.33)

EVP (3.27) can be reduced to the two EVPs, = -A2u and £i£ow — -A2w, 

which have identical spectra and these spectra are equivalent to the spectrum of

the original EVP. Now it is clear that every zero eigenvalue corresponding to the 
eigenmodes (3.31),(3.32),(3.33) is doubly degenerate. Degeneracy of translational 

modes is attributed to presence of two-dimensional Galilean invariance

(3.34)

where

v$ = ^(f- |uz), f = r- VZ, v 
A A

iVX+jVy.
2

Degeneracy of the phase mode is attributed to infinitesimal variations of k. Thus 

zero eigenvalue has sixfold degeneracy. So called associated eigenmodes can be 

assigned to these three additional zeros. These modes are

Uyx = WVx

/

(3.35)

(3.36)

uVy = o,Wvy = y (3.37)

Eigenmodes (3.31),(3.32),(3.33),(3.35),(3.36),(3.37) obey the following identities:

¿ow# = 0, ¿¡A, = -Ux, ¿oWVy = -Uy (3.38)
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Ê\Uy — 0, £]UK — Wÿ (3.39)

In the polar basis
d2 1 d 1 d2

± dr2 r dr r2 d02 ’
and translational and Galilean modes take the form ur — dr(A-!, A2)Te±z6, wv =

r^^A^e^0.

It is clear that without restriction of generality solution of EVP (3.27) can be 

presented as superposition of azimuthal Fourier modes cos JO and sin JO (J = 

0,1,2,...) with complex coefficients depending on r and z:

u(r,0) = 52 (wc J O') cos JO + uaJ(r) sin JO), (3.40)
j

v(r, 0) = ^vcJ(r) cos JO + vsJ(r) sin JO). (3.41)
j

Providing that original solution is azimuthally symmetric, A1)2(z, y) = A^r), it 

is straightforward to show that cosine and sine perturbations obey identical EVPs. 
Throughout this Chapter we deal only with stability of 0 independent solutions, 

therefore subscripts ’c’ and ’s’ will be omitted below. More general case, when 

cosine and sine perturbations are coupled will be considered in Chapter 5.

Resulting EVP for perturbations with azimuthal index J has the form of EVP 

3.27 with following replacement

d2 Id 
dr2 r dr

J^ 
r2 ' (3-42)

Considering perturbations with J = 0 it can be shown that famous Vakhitov

Kolokolov criterion [81]
2(uK,w<l>)=dKQ = 0, (3-43)

where Q is the energy invariant of the Eqs. (3.20),(3.21), 

Q = / dV^ + ^E^2) (3-44)

gives stability threshold for quadratic solitons, see Sections 3.3.3 and 4.2 for more 
details. This condition generally holds for any nontopological envelope soliton
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Figure 3.2: Q vs k for one, two, and three dimensional solitons, respectively, 
presented at figures (a),(b),(c). /3 = 0 (full line), 0 = 1 (dotted line), (3 = -1 
(dashed line)

originating as a solution of model equations possesing single phase symmetry 

[82]. Numerical and analytical [60, 83, 59], [Sec. 3.3.3], [Sec. 4.2] calculations 

show that, similarly to the generalised NLS equation [81], ground-state quadratic 

soliton is unstable providing that

dKQ < 0. (3.45)

Dependencies of Q vs k for different signs of 0 and different dimensions are 

presented in Fig. 3.2. One can see that one and two dimensional solitons can be 
unstable only for negative 0 and that optical bullets can be unstable for either 

sign of 0. It is important to stress that Vakhitov-Kolokolov criterion generally 

gives only one instability threshold and possible presence of others always has to 

be checked numerically.

3.3.3 Soliton dynamics near instability threshold

Let us assume that all free soliton parameters vary adiabatically with propagation 
distance. E.g., in one-dimensional type I case soliton has four such parameters. 

They are (j), k, x0, and v. Knowing that we are seeking instability threshold given 

by (3.43), it is naturally to assume that only

« = n(ez) = k(Q,
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where E < 1. It can be shown that translational and Galilean modes are not 
responsible for instabilities of bright solitons in models with translational and 
Galilean symmetries. However, one must always be careful, because in models 

with broken Galilean symmetry, e.g. for quadratic solitons with walk-off or if 
k2/kx 7^ 2, translational and Galilean modes are very important ones [64],

To show how the adiabatic approach works we will use an example of ID solitons. 

As one will see derivations for 2D and 3D geometries are perfectly analogous. 
Keeping in mind all previous comments, we expand solution of Eqs. (3.20),(3.21) 

near ’unknown’ instability threshold, which happens at some k = kc, in the 

asymptotical series

Ev = eiKoZ (Ai(rr, k) + ie^x, k, <) + e202(z, 0 + 0 + • • •) (3-46)

E% = el2reoz (^(x, k) + ie^Ax, k, Q + e2^^, k> 0 + 0 + ■ • ■)
(3-47)

Obviously Ko has to be close enough to kc, but how close will be clear from 
subsequent calculations. In main order s° the Eqs. (3.25) are readily recovered. 

In first (e1), second (e2), and third (e3) orders, respectively, the following problems 

need to be solved ,
4 P* I = (3.48)

I 01 I \ A2 I

02 d | 01 | | 0101 

02 y y 01 y y — 0i/2

03 _ d | 02 ] | 0201 “ 0102

03 ) dC 02 J y 0102

3k d 3 3

All effects related to the energy radiation from the soliton will be neglected, al­
though they can be treated within framework of the asymptotic series (3.46),(3.47) 

Consideration of the radiation requires application of an approach which involves 

spatially unbounded modes of the continuous spectrum, see e.g. [84].
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We will focus on the dynamics of solitons due to excitation of the spatially lo­

calised mode of the EVP (3.27), which is close to neutrally stable eigenmode 

(3.31). Solvability condition of Eq. (3.48) in the class of spatially localised func­

tions requires
= 0, (3.51)

OK

that is in fact specifies value of k = kc suspicious for the change of stability. 

In the language of eigenmodes of the EVP (3.27) it means that some mode of 
the discrete spectrum coincides with neutral mode (Ai, 2A2)T at the point where 

condition (3.51) is satisfied. Because Eq. (3.51) must be satisfied in first order, 

it means that we can consider values of kq such that

= Ko) ~ e2. (3-52)

The solvability condition of second order problem is satisfied automatically. The 

solvability condition of third order problem will give some ordinary differential 

equation for k. Thus the problem of soliton stability can be reduced to a study 

of the simple problem of stability of the fixed points of some ordinary differential 
equation. The only problem is to calculate coefficients in this equation. It requires 

that one knows the solutions of the Eqs. (3.48), (3.49). These solutions can be 
build in implicit form using Wronskian based techniques [85]. The resulting 

answers will be far from nice, simple expressions. They will be some cumbersome 
integrals of Aij2 and their k derivatives, which are difficult to simplify. Therefore 

we will apply the method based on the energy conservation [86]. This method 
does not require solving of Eq. (3.49), but generally speaking Eq. (3.48) still 

needs to be solved.

Solution of Eq. (3.48) can be presented in the form

(3.53)

than Eq. (3.49) can be rewritten as

- k2dKXi + k2n (3.54)
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where n = (xnx12, -^21)T. Now energy invariant at k = k0 can be written in 

the form

Q(k0) = + 2s2 z) + 2^, f2)) + O(«)O(e4) = (3.55)

Q(k) + 2e2 (k2(zi, z) - 2{£ldKa, x2^ + O(k)O(s4) = 

Q(k) + 2e2 (¿dKd, x^k, + d^d^a, fi))«2)

+e2k2 ({x^z) - 2(dKa,n} - 2(92a,fr)) + O(k)O(c4),

where a = (A^ A2)T and z- (in, 2xyf)T. Performing cumbersome transforma­

tions and using Eqs. (3.38),(3.39) and identity Tq^i = 9Ka one can show that 

Eq. (3.55) can be reduced to

QM - QM = e2 (2Mk + A2) + O(A)O(E4), (3.56)
\ Utt j

where
Af = (¿^x-^xf) = (Tq

Assuming that deviations of k from k,q are order of £2, k — kq = $ ~ g2, and 

taking into account (3.52) one can easily show that Eq. (3.56) becomes

2£2M6 + Q'6+l-Q"62 = Q, (3.57)

where the prime stands for dK and Q and Q are calculated at n = kq. Previ­

ously mentioned cumbersome calculations leading to Eq. (3.56) can actually be 
ignored. Knowing that Q' ~ e2 and assuming that Q" ~ 0(1), and that Q 6 and 

Q”62 have the same order of magnitude, than, it follows that 6 ~ e2. Thus all 

terms proportional to £262 have order of e6 and can be ignored already in Eq. 

(3.54), providing that substitution k — = 5 had been made. This arguments

immediately lead from Eq. (3.55) to Eq. (3.57). Now returning to the original 

variable z we transfrom Eq. (3.57) into

2M^ + Q'<S + ie".52 = 0, (3.58)
oz* 2

Eq. (3.58) has two fixed points <5 = 0 and 5 = 5i = — 2Q /Q . 5 = 0 corresponds 
to the solitary solution under consideration, k = Ko, and 5 = 5i corresponds
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to the solution with « = k0 + 5P Because £0 is nonnegative operator, see e.g. 

[79], and (A1,2A2)T, it is clear that M > 0. Q has a minimum at k = kc 

therefore Q" > 0. Knowing these facts one can analyse stability of the fixed 

points. Eigenvalues corresponding to the solution 5 = 0 are

(3.59)

and the other fixed point has eigenvalues

(3.60)

Therefore when one of the fixed points is stable (center) the other one is unstable 

(saddle). This shows that Vakhitov-Kolokolov criteria is necessary condition for 

stability of the soliton under consideration (n = Ko), he. that for dKQ < 0 close 

to the point dKQ = 0 there is an unstable eigenvalue. This, of course, does not 

forbid presence of other unstable eigenvalues of the EVP (3.27). However, as 

we discussed earlier, numerical investigation shows that the instability threshold 

(3.51) is only one for ground-state solitons.

The phase portrait of the Eq. (3.58) in the plane (5,5) is very simple [86]. It 

consists from the two already mentioned fixed points, the homoclinic trajectory 
starting and ending at the saddle point and surrounding the center. Once fixed 

point is centre, so any small deviation from it always leads to oscillations. Devia­

tions from the saddle directed inside the homoclinic loop will lead to oscillations 
and ones directed outside the loop will lead to soliton spreading [86]. For three- 

dimensional solitons all possible scenarios of the soliton dynamics are shown in 

Fig. 3.3.

On the language of eigenmodes, oscillations of the soliton originate from the fact 

that discrete eigenmode with purely imaginary eigenvalue from the gap in the 

continuous spectrum’is excited by perturbations. Close to the point dKQ = 0 
approximate value of this eigenvalue is given by Eqs. (3.59). Nonlinearity of 
course leads to generation of frequencies which are multiple of the just mentioned 

eigenvalue. Generation of these harmonics means that part of the energy of 

the soliton transfers to the eigenmodes which belong to the continuum, that
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Figure 3.3: (a) Optical bullet instability scenarios for /3 = 1, k — 0.04. (b) The 
same but for (3 = —1, k = 0.52. (c) Long-lived pulsation, 0 = 0, k = 1. Solid 
(dotted) lines correspond to fundamental (second) harmonic. Deviations from 
stationary transverse profiles are 2% for (a)-(c).
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ultimately means radiation of the energy. However, this radiation is very weak 

and the oscillations persists very long time, see Fig. 3.3, for more details, see 

[84, 87],

3.4 Three-wave solitons

Three-wave quadratic solitons obey Eqs. (3.16),(3.17),(3.18) and they are known 

in one, two and three dimensions, see e.g. [62, 79]. Main differences with degen­

erate model (3.14),(3.15) originate from the fact that Eqs. (3.16),(3.17),(3.18) 

have two phase symmetries:

(3.61)

Stationary solutions now constitute two-parameter family. We seek solutions of 

Eqs. (3.16),(3.17),(3.18) in the form

Ei = A^y,^^ 

E2 = A2(x,y,T')ei^‘, 

E3 = A3(x,y,Ty^.

(3.62)

Existence of bright solitary solutions with tails decaying in both space and time 

require (k ± 5) > 0, 2k > —and 7m > 0. In analogy with two-wave solitons 

we suppose that 71j2 = 273 and rescale time, t = y/ÿït, then for spherically 
symmetric solutions Eqs. (3.16),(3.17),(3.18) become

D — 1 dAi . .
, 2 4---------- j— = 2(k + 6)Ai — 2A2A3,dp2 p dp

d2A2 D — 1 dA2 ,
+ ~~dï = 2(k “ j i -l3’

ÉT + P^dA, = 4 + _
dpz p dp

(3.63)

Exact analytical solution are again known for D = 1 and ¡3 = 

(3.64)
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Stability analysis similar to described for degenerate case was presented in Ref. 
[62]. In first order approximation it reveals stability threshold, which in our 

notations is given by
dsQdKQu = dKQdsQu, (3.65)

where
Q = Qi + Q2 + 2Q3 (3.66)

is the total energy and
Qu = Qi - Q2 (3-67)

is the energy unbalance. Because of the symmetry property (3.61), Q and Qu or 

equivalent combinations of Qm = f dVlEj2 are conserved quantities. Stability 

threshold (3.65) is typical for solitonic models with two phase symmetries and it 

was known in other branches of nonlinear science, for review see [82].

According to the results presented in Ref. [62] soliton dynamics near the threshold 

specified by the Eq. (3.65) is very similar to the degenerate case. There are certain 
peculiarities related to the existence of another branch of stable solitons [88]. This 

bistability happens in a very narrow parameter region close to the boundary of 

the soliton existence and it will not be discussed here.

Author’s point of view is that the asymptotic theory of stability of two- and 

generally multi-parameter solitons is still far from to be completed. Some steps 

in the direction to solve this problem are presented in Appendix B.

3.5 Instabilities of ring-like solitons with bright 

central spot

Ground-state solitary solutions being the most important solitary solutions do 
not exhaust the set of solitary solutions due to three-wave mixing, see e.g. [56, 

89, 90, 91, 92, 93, 94, 95, 96]. In this section we will consider the stability of 

two-dimensional higher-order solitary waves with bright central spots surrounded 
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by one or more rings. Such solutions were also known for NLS equation with 

pure Kerr [97] and saturable [81, 91, 98] nonlinearities. For quadratic nonlinear 

media their existence was reported in [90, 91, 92], see also Section 5.1 below. 

No universal stability criterion is known for higher-order bound states and their 

stability has to be studied individually in every case. It has been shown that 
for saturable nonlinearity higher-order bound states with bright central spots 

are stable with respect to purely radial perturbations, obeying to criteria for 

ground states, but unstable with respect to azimuthally dependent perturbations, 

showing breakup of their rings into filaments [98].

We consider Eqs. (3.20),(3.21) with 71,2 = 0. In the whole region of the existence 
of the spatially localised solutions I was able to numerically find families of many­
ring solutions with bright central peak. Examples of spatial profiles of one- and 

two-ring solutions are presented in Fig. 3.4(a). For any finite number of rings, 

the fundamental field has radial zeroes but the second harmonic field always 
remains positive, though having minima close to the zeros of the fundamental. 

For increasing (3 (cascading limit) the second harmonic field tends to carry less 

and less of the energy. The situation is opposite for negative (3, when a values 

are close to the boundary of soliton existence. Dependencies vs « of the energy 

invariant Q are presented in Fig. 3.4(b).

We will consider in most detail stability of the solutions with only one ring outside 

the central peak. These show the main features of the dynamics of solutions with 

an arbitrary number of rings. First we focus symmetry-preserving perturbations, 
J = Q, see Eqs. (3.40)-(3.42). Asymptotic techniques described above can be 

applied to many ring solutions as well. However, the positiveness of M can not 
be proved analytically. But independently from the sign of M it is clear that the 
neutrally stable mode (3.31) branches at the point dKQ = 0 giving instability for 
either dKQ < 0 or dKQ > 0. Numerical investigation of EVP (3.27),(3.42) shows 

that instability happens for dKQ < 0, see Figs. 3.4(b),3.5, and it means that M > 

0 in the vicinity of dKQ = 0. Thus we can conclude that the standard stability 
criterion for ground states [81, 60] is also a necessary condition for stability of 

higher-order bound-states. This instability is related to the existence for dKQ > 0
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Figure 3.4: (a) Radial profiles of one- and two-ring solitary waves. Full (dashed) 
lines are for (A2). (b) Total energy vs n for one-ring (full lines) and two- ring 
(dashed lines) solitary waves. The negative values of (3 are chosen so as to give 
dKQ = 0 at k = 3.

of a pair of eigenmodes with purely imaginary eigenvalues (with opposite signs) 

lying in the gap (-iflc,iflc). At the point dKQ = 0 these eigenmodes coincide 

with the neutral mode and for more negative (3 appear again but with purely real 

eigenvalues of opposite sign, signifying instability. For the ground-state this is 

the only instability scenario and these modes disappear into the continuum for 

large (3 > 0.

However, detailed numerical investigation reveals that two pairs of discrete eigen­

modes exist in J = 0 case. Interplay between them leads to a new bifurcation 

scenario, which is different from scenario known for ground state solutions. I will 

study this scenario varying [3 for fixed k = 3. Changing k at fixed (3 has no 

qualitative effect due to scaling properties of (3.25).

Real and imaginary parts of key eigenvalues from the discrete spectrum are plot­
ted vs (3 in Fig. 3.5. In the limit of large /3 I found one internal eigenmode (line 

1 in Fig. 3.5) but at ~ 4.75 another internal eigenmode (line 2) emerges from 
the continuum. On emergence mode 2 has ImXo = k = 3, but as (3 is decreased 

the eigenvalues of the two modes come together, as Fig. 3.5 shows. They fuse at 

(3 ~ -0.82 to form two pairs of eigenfunctions with complex conjugate eigenval-
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Figure 3.5: Real (full lines) and imaginary (dotted lines) parts of the eigenvalues 
of J = 0 eigenmodes vs ¡3, k = 3.

ues, giving onset of an instability (lines 3,4). At ~ -2.06 a reverse bifurcation 

takes place (lines 5,6). One eigenmode (Fig. 3.6(a)) then has a purely imaginary 

eigenvalue (line 6) until it loses its stability at (3 — —5.61 (line 7) where dKQ — 0. 

This is the standard instability scenario described above. The other eigenmode 

undergoes a similar bifurcation, but at 0 ~ -2.17 (lines 5,8) which is well before 
the point dKQ = 0. At this bifurcation the eigenfunction profiles, Fig. 3.6(b), 

are quite different from those of the neutrally stable eigenmode. Thus, unlike the 

previously-known case (lines 6,7 in Fig. 3.5) this new instability cannot be cap­
tured by asymptotic expansion around that neutral eigenmode. In both cases the 

unstable eigenvalues reach a maximum then go steeply to zero near the existence 

limit of solitary solutions, 0 = -2k.

The cascade of symmetry preserving bifurcations presented in Fig. 3.5 is some­
what similar to that for TEr mode instability in a planar waveguide (ID ge­

ometry) with Kerr nonlinearity [99] where joint action of the refraction index 

discontinuities and field nodes leads to instability. In our situation the new 

symmetry-preserving instability develops in the region where the nodeless sec­

ond harmonic starts to dominate over the fundamental, which has one or more 

nodes.
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Figure 3.6: (a) The internal eigenfunction corresponding to branch 6 in Fig. 3.5 
at the point ¡3 = -5.58, slightly before the bifurcation point dKQ = 0. (b) The 
internal eigenfunction corresponding to the bifurcation point at w^ere
branches 5,8 in Fig. 3.5 meet. Dots mark the neutrally stable eigenmode, k = 3.

For symmetry-breaking perturbations, J / 0, the stability properties are not so 
rich as for J = 0. For J = 1 numerics reveals the presence of a neutral mode and 

a pair of eigenmodes in the discrete spectrum with purely real eigenvalues, one 
of which is responsible for instability. I did not find any exchange of stability of 

these modes. For every J from 2 to 5 I find such a pair of discrete eigenmodes 

with purely real eigenvalues and all modes for J > 5 belong to the continuum. 
The unstable perturbations for J = 3,4 are localised around the ring of the 
bound-state in a manner similar to what happens in saturable media [98].

To show how the character of instability of the one-ring solution depends on 
phase mismatch parameter I plot in Fig. 3.7 growth rates vs (3 for all unstable 

eigenmodes. For phase mismatches from the cascading limit down to ~ -3 
symmetry breaking instabilities with J = 3,4 are dominant. However, suffi­

ciently far from the NLS limit our new scenario, with azimuthally homogeneous 
perturbations dominant, is realised. I stress again (see discussion above) that 

this symmetry preserving instability is not related to violation of the criterion 
dKQ > 0. Note that in the limit [3 » 1 the J = 0 internal eigenmode exists and 

the J = 1 eigenmode has non-zero growth rate (Fig. 3.7(b)).
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Figure 3.7: Growth rates of the maximally unstable eigenmodes vs (3 for one- 
ring solitary solutions. Dotted line in (b) displays ImAo of the J 0 internal 
eigenmode marked by Line 1 in Fig. 3.5. k = 3.

One expects the propagation dynamics of solitary states to be mainly determined 

by the perturbation eigenmode with maximal growth rate. To examine this I 
performed an extensive series of numerical simulations of Eqs. (1), using both 

polar and cartesian grids. Predictions based on our stability analysis are in good 

agreement with the results of our simulations. An example of noise-stimulated 
break-up of a one-ring solution into three filaments is shown in Fig. 3.8(a). I plot 

the real part of the fundamental field profile rather than the intensity distributions 
to show that the daughter solitons formed from the ring are out of phase with 

the central one. Radiation losses in the break-up are quite small, so that the 

initial energy Q is mostly divided among the daughter solitons. Their diameters 

are comparable to the width of the initial ring. For 0 values where growth rates 
for J = 3 and J = 4 are almost equal the simulation results depended on the 

particular noise realisation, but I mostly observed the ring forming four filaments, 

one of which was usually less intense than the others.

Throughout the whole range of parameters where the symmetry-breaking insta­

bility is dominant we observed repulsion between the central spot and daughter 
filaments, which results from the fact they are out of phase [53, 100], see Fig. 
3.8(a). This repulsive force makes the outer filaments move out along radii (Fig.
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Figure 3.8: (a) Real part of the fundamental harmonic held at a late stage of 
a simulation of the symmetry-breaking process, (b) Superimposed images of its 
transverse intensity distribution at different values of z, showing radial trajecto­
ries of the daughter solitons. 0 =-1, k = 3. Brightness and size of central spot 
in figure (b) are exaggerated by the superposition of multiple images.

3.8(b)), in contrast to the tangential motion of daughter solitons after breakup of 
one-ring solitary waves carrying non-zero orbital angular momentum [91], where 

inter-soliton forces are negligible in comparison to the need to conserve angular

momentum.

Our stability analysis predicts a novel symmetry-preserving instability scenario 
where the J = 0 eigenmode dominates. This prediction is indeed confirmed by 

the simulations. For example, at 0 = -4.2, instead of fragmentation I observed 

coalescence of the ring with the central spot to form a single filament. After 

transient dynamics this filament forms an oscillating solitary wave, see Fig. 3.9. 
These undamped pulsations are related to the existence of an internal eigenmode 

of the ground-state solution [83].

Considering now two-ring solitary solutions, I present the growth rates for the 

dominant. eigenmodes and an example of symmetry- breaking instability, see Fig. 

3.10. General features of the dynamics are qualitatively similar to the one-ring 

situation.

The evolution of filaments following a symmetry breaking instability of peak-and-
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Figure 3.9: (a) Initial (dashed lines) and post-coalescence (solid lines) radial 
profiles of fundamental and second harmonics simulated where the symmetry­
preserving instability is predicted to dominate, (b) Corresponding evolution of 
\Eij2\ at r = 0 vs propagation coordinate z. k = 3, (3 = -4.2

ring solitary solutions in saturable Kerr media [98] is a question which has not 

previously been examined. In simulations of this problem I observed the same 

sort of dynamics as described above for quadratic media, but with no coalescence 
phenomena. Note, also that higher-order one dimensional x^ solitons are also 

known, see [56, 89, 96], but question of their stability has not yet been rigorously 

studied.

3.6 Summary

In this Chapter equations describing degenerate and nondegenerate three wave 
mixings in quadratic nonlinear media have been derived from the first principles. 

Review of the results and methods of the stability theory of the ground-state 
quadratic solitons has been presented. In particular, adiabatic theory of the 

soliton dynamics [60, 86] has been reproduced.

Detailed analysis of stability of cylindrically-symmetric higher-order solitary waves 
has been performed. For a wide range of positive mismatches, symmetry-breaking
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Figure 3.10: (a) Growth rates of the dominant unstable eigenmodes vs (3 for two- 
ring solitary solutions, (b) Real part of the fundamental field at a late stage of a 
simulation of the symmetry-breaking process. (3 = 1, k = 3.

0 2 4 6 8 101214

instability of the rings is predicted, and confirmed by simulations which show that 

the instability leads to filamentation into daughter solitons which are repelled ra­

dially from the central spot. For sufficiently negative phase mismatches I predict 

that a new symmetry- preserving instability becomes dominant. This is con­
firmed in simulations, in which the rings are found to coalesce with the central 

filament, forming an oscillating, single-peaked, solitary wave. Threshold of this 
novel instability is not given by the famous Vakhitov-Kolokolov formula (3.43).
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Chapter 4

Modulational instability of 
solitary waves due to three-wave 

mixing

4.1 Introduction

In this Chapter I am going to present some of the analytical and numerical results 

related with modulational instability (MI) of quadratic solitons. This instability 

can happen for one- and two-dimensional spatial solitons due to group velocity 

dispersion terms, see Eqs. (3.14),(3.15) and (3.16),(3.17),(3.18). The case of MI 

of one-dimensional soliton in media with anomalous GVD for all harmonics is for­

mally equivalent to the MI due to diffraction along second transverse dimension.

The problem of MI of solitons was pioneered by Kanashov and Rubenchik 
[101] in the context of degenerate three-wave mixing and during the y^-boom of 

the last years it was re-explored and supported by numerical [102,103, 59] and, in 

spatial case, by experimental [104] results. The nondegenerate case was studied 

in [105] and it reveals qualitatively different behaviour, which, as it should be 
already clear from the context of the Chapter 2, originates from the presence of 
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the extra symmetry in the differential phase see Eq. (3.61).

In first section of this Chapter I will present analytical results in low-frequency 

limit for one- and two-dimensional solitons. Peculiar and still unpublished points 

will be: showing presence of new unstable branch bifurcating from the continuum; 

and deriving analytical formulae for situation where MI of solitons happens close 

to the threshold of the longitudinal instability, specified by Eq. (3.43). Second 

section is devoted to nondegenerate situation and it is based on a recent paper 

[105],

4.2 Degenerate three-wave mixing

In degenerate case spatio-temporal evolution of the wave packet is governed by 
Eqs. (3.14),(3.15). For simplicity we will consider the case with dy = 0, «i = 1/2, 

a2 = 1/4 and 51,2 = 0:

idzEr + + 7i9^i + E*E2 = 0, (4.1)Zu
idzE2 + + 72^E2 + -Ef = ^E2.4 £

As was discussed in previous Chapter, Eqs. (4.1) with suppressed temporal 
derivatives have family of soliton solutions Em = AmÇx')éim^Kz+^, m — 1,2. To 

study MI of this solitons one can seek solutions of Eqs. (4.1) in the form of spatial 

solitons weakly modulated in time at frequency Q > 0:

= <4-2)

Setting Um = umeXz, Wm = wmeXz, we obtain two adjoint eigenvalue problems

(4 + ^2t) (4 + (4-3)
(4 + Q27) (4 + = - A2w, (4.4)

where v = (ui,^)7/ w — (wi,W2)t, 4,1 are given by Eqs. (3.28), (3.29) and

Si o ' 
( ° 72 )

(4.5)
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In the general situation the stability problem can be solved only numerically, but 

for small absolute values of A we can obtain analytical results.

Phase, translational and Galilean symmetries and infinitesimal variations of k 

allow us to identify neutral eigenmodes of the adjoint operators and £oA- 
These eigenmodes are = (A1,2A2)T, wv = x(Ai}2A2)T, uK — ^(A^, A2)t, 

and ux = dx(Ai,A2)T. These four modes obey following identities: = 0,

— —ux, ¿i^k = and £,\ux 0.

Similarly to the previously studied cases branches of discrete spectrum produced 

by the spatially symmetric w^, uK and by the spatially asymmetric vectors wv, ux 

can be considered as independent ones. To study the discrete spectrum arising 
due to branching of the symmetric/asymmetric modes it is naturally to consider 

EVP (4.4)/(4.3).

Let us start from the symmetric problem. We seek solution of the EVP (4.4) in 

the form
w = w</, + Wi + ..., (4-6)

where |wi| ~ A2 ~ e < 1. Generally, one must also specify order of Q2, but 

at this stage it is enough to assume that Q2 ~ en (n > 1)- Using the identity 

CruK = -w# it is straightforward to show that

wY = ¿o1 (A2uk - • (4-7)

Multiplying (4.4) by uK and using Eqs. (4.6), (4.7) we get

Q2(7w</>, w</>) — A2 (~dKQ + A2M — A2Q2(£0 , (4.8)

where Q = f dx^ + 2A2) and M = (¿o'1«», uK). It is time now to specify order 
of Q2 and dKQ. If we are far from the threshold of the longitudinal instability, 
dKQ = 0, we can assume dKQ ~ e° and A2 ~ Q2 - e. In this situation in the 

leading order A2 is

A2 ~ = f dx^A\ + 472A2). (4.9)
dKQ dKQ J
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In a particular case 71 = 272 Eq. (4.8) becomes

which coincides with the corresponding formula for single and coupled NLS equa­

tions, see Eqs. (2.41), (2.50).

If the point dKQ = 0 is close then to have self-consistent expression which incor­

porates branches of the spectrum due to both neutral and gap modes we should 
assume that dKQ ~ A2 ~ £ and Q2 ~ e2. In this situation A2 obeys the quadratic

equation
Q2(7W0,w^) ~ A2 (~dKQ + X2m\ , 

\ /
(4.10)

which has roots

Al = A ( ± Jbw + 4^^,^)
2M \ 2 V 4

(4.U)

At Q = 0 Eq. (4.8) becomes

A^M + aW) =0 (4-12)

and it now describes doubly degenerate neutral mode and modes with eigen-

One of the last modes is responsible for instability happening at dKQ < 0. Looking 
at Eq. (4.13) one can easily recognise Eq. (3.59) obtained in the previous Chapter 

by the slightly more sophisticated adiabatic approach.

Now we turn our attention to the branching of the spatially asymmetric eigen­

modes and seek solution of EVP (4.3) in the form

u = ux + ui + ■ ■ ■, (4-14)

where |wi| ~ e. Acting similarly to the symmetric case we find that

Ui = Z"1 (A2w„ - Q2^) • (4-15)
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In order to satisfy solvability condition of the first order problem we have to 

multiply (4.3) by wv, which after some algebra gives

Q2{^Ux, Ux) — A2 (^UX,WV) + A2— X2£l {£1 7ua:,wv))- (4.16)

Because of the fact that there are no spatially asymmetric modes inside the gap 
of the continuous spectrum for Q = 0 all inner products in Eq. (4.16) always 

have order of unity and therefore in the leading approximation A2 is given by

fl2 Ux) _ (7^j; (4-17)
” (ux,Wv) Q

which again should be compared with corresponding formula for NLS equations, 

see Eqs. (2.42), (2.51).

I have to say that the approach presented here is a modification of the approach 

which was applied Chapter 2 to the coupled NLS equations. It allows continuation 
into the region of small Q not only neutrally stable modes, but also stable and 
unstable eigenmodes with eigenvalues close to zero. It is clear that the root A2 

of Eq. (4.10) corresponds to the spectral branch produced by the neutral modes 
and that the root Al corresponds to the branch produced by the stable (dKQ > 0) 

or unstable {dKQ < 0) modes which have nonzero eigenvalues.

Note, that at the point where the analytical solution is known the growth rates 

(4.9), (4.17) can be found in explicit form and values of Q where instabilities 

disappear also can be calculated, see [102, 103], Results of the similar calculation 

for the type II case will be presented in the next section. It is obvious that 

possibility to play with relative energies of first and second harmonics and signs 
of 712 gives quite a few possible scenarious of MI in model. However, below 

we will consider only the simplest but typical situations with 71 and 72 having 

the same signs.

Let us now to formulate conclusions, which can be made on the basis of the 

analytical formulas (4.9), (4.17), (4.11) describing the situation with small values 

of A and Q and compare these conclusions with results of numerical analysis.

75



The last is obviously always necessary to investigate the whole range of Q and 

understand the competition between different instability branches.

Anomalous dispersion, 71,2 > 0.

It is clear from (4.9), (4.11) that if dKQ > 0 then only the neutral mode gives 
onset to the MI instability and that the eigenvalues corresponding to the stable 

gap modes (if they exist) remain within the gap of the continuum spectrum. 

For dKQ < 0 the situation is reversed. Namely, the eigenvalue corresponding to 
shifts inside the gap with Q increasing and eigenvalue corresponding to the 

eigenmode responsible for the longitudinal instability grows with Q increasing.

In this case MI branches predicted by analytical analysis seem to be the only un­
stable branches of the spectrum. Numerically calculated growth rates and spatial 

profiles of unstable eigenmodes vs Q are presented in Fig. 4.3. The nonlinear 
stage of modulational instability development was analysed by direct numerical 

solution of Eqs. (4.1). In the case when solitary stripe is stable with respect 
to longitudinal perturbation, dKQ > 0, the initially uniform stripe develops into 

multihump structure and each hump forms into a stable soliton-like filament os­
cillating with propagation, see Fig. 4.1. Such a scenario is typical not only for 

quadratic solitons, see [59, 103,106], but also for solitons in media with saturable 

nonlinearity [107].

More intriguing problem is what happens with longitudinally unstable solitary 
stripe, dKQ < 0. Because of the fact that longitudinal instability is strongly 

suppressed by the modulational one, see Fig. 4.3(b), break up of the stripe into 
filaments is the dominating process compare to spreading or beating of the stripe 

as whole, see previous Chapter. Most of the energy of the filaments formed at 

the initial stage of the instability contains in the second harmonic but important 
that always there is a seeding at fundamental frequency. Thus according to the 

results reported in Ref. [108] conditions for formation of quadratic solitons are 
still satisfied. Indeed, numerical simulation shows that the filaments eventually 
form soliton-like entities which now carry more energy in the fundamental field, 

see Fig. 4.2. This redistribution of the energy through the cascading and mutual
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Figure 4.1: Development of the MI for /3 — 0 (0 < dKQ e k 1, 71 272
0.5. (a) |Ei|, (b) \E2\ for z = 25.

trapping mechanisms leads to a quite large radiation into nonsolitary forms, see 

Fig. 4.2(b).

Note that, filaments are usually formed after propagation of 4-6 diffraction lengths 

for noise level ~ 1-3%. Large propagation distances corresponding to the results 

presented in Figs. 4.1, 4.2 were taken to actually show that filaments indeed form 

quasi-stable soliton-like structures.

Normal dispersion 71,2 < 0.
Eq. (4.17) indicates that spatially asymmetrical (’snake’) instability is always 

presented in this case. Spatially symmetrical (’neck ) instability starting from 
the neighborhood of Q = 0 is clearly impossible when dKQ ~ £°. However, if 

dKQ ~ £ low-frequency neck MI becomes possible for either sign of dKQ, see Eq. 

(4.11). If dKQ > 0, than neck MI starts to grow from 

IbM^w^w^y

because at Q = Qc two stable gap modes collide and give onset to the complex 

conjugated eigenvalues. If dKQ < 0 than both A^ and Al are positive. A_ 

increases and A^ decreases with Q increasing and at D, = Qc they collide and
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Figure 4.2: Development of the MI for (3 — —1.93 (0 > dKQ ~ e), k 1, 
71 = 272 = 0.5. fa) fb) |E21 for z = 50.

transform into complex conjugate eigenvalues.

For normal GVD numerical analysis indicates presence not only MI branches 

predicted by the asymptotical analysis but also other branches which split form 

continuum at some critical values of Q, see below for details.

Let us start from consideration of such (3 and k values which are close to the 

bifurcation point dKQ = 0 from the right, i.e. dKQ > 0. Then there are two 
eigenmodes inside the gap of continuous spectrum at Q = 0 with the eigenvalues 
given by Eq. (4.13). With Q increasing the eigenvalues corresponding to the 

continuation of the gap modes and of the neutral mode start to approach 

each other and finally they collide at Q = Qc giving rise to the onset of the neck­

type instability with complex conjugated eigenvalues. Details of this scenario are 

shown in Fig. 4.4. Note, that for normal GVD gap is narrowing with increasing 
Q and it closes at O?g = min(a/|7i|, (2« + With further increase of Q

instability growth rate approaches its maximum, then decays and finally disap­
pears inside the continuum at Q > Q9, see Fig. 4.5 (full line). Slightly before this 

point but after the closure of the gap branch of discrete spectrum with purely 

real eigenvalues splits from continuum. When the corresponding growth rate, see
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0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 4.3: Instability growth rates, spatial profiles of the solitary solutions and of 
the unstable eigenmodes for k = 1, 71 = 272 = “/¿V / 2
MI growth rates vs Q: (a) = 0; (b) (3 = -1.87 (full line) 0 = -1.93 (dashed
line), (c), (d) Components of the unstable eigenmodes: (c) 0 = 0, SZ - 1.^; 
/3 = -1.93, Q = 0.65.
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Figure 4.4: Bifurcation diagram showing collision of two gap modes and onset 
of neck-type instability with complex conjugated eigenvalues: 0 = -1.8, k = 1, 
7i = 272 = -0.5.

Figure 4.5: Instability growth rates for k = 1, 0 = -1.8. Full line corresponds 
to the neck MI with complex conjugated eigenvalues, dashed lineto the neck Ml 
with real eigenvalue and dotted line to snake MI. For the snake MI first maximum 
belongs to the branch with real eigenvalue and second one to the branch with 
conjugated eigenvalues.
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dashed line in Fig. 4.5, approaches its maximum, it appears to be slightly larger 

than growth rate associated with unstable band linked to the complex conjugated 

eigenvalues. Considering snake instability we also found two unstable bands of 

Q. First band bifurcates from translational mode at Q = 0 and second band 

bifurcates from continuum having complex conjugated eigenvalues. Comparing 

growth rates due to these two neck-type instabilities and growth rate due to 
snake instability, see Fig. 4.5, one can see that the latter is strongly suppressed. 
Note, that maximal growth rates of the secondary MI branches happen at ^max > 

which are approximatly twice the frequency ttmax giving maximum of the primary 

instabilities.

Increasing wave-vector mismatch ¡3 and keeping k = 1, i.e. moving away from 
the point dKQ = 0, secondary branches of the neck and snake instabilities quickly 
decay and finally disappear. At the same time neck instability with complex 

conjugate eigenvalues survives for wide range of (3 and remains dominant over 
snake instability up to ~ 0, see Fig. 4.6. Typical spatial profiles of the most 

unstable neck and snake eigenvectors are presented in Fig. 4.7. I have to note 
that scenario of appearance of the complex conjugated eigenvalues changes with 

increasing (3. After disappearence of the gap modes at Q = 0 [83], branch of MI 

with complex conjugated eigenvalues splits from continuum after the gap closure. 
Direct numerical simulation of Eqs. (4.1) with initial conditions in the form of 

a soliton stripe perturbed only by noise fully supports the presented stability 

analysis, see Figs. 4.8,4.9,4.10.

4.3 Nondegenerate three-wave mixing

Considering MI due to non-degenerate 3WM one can expect that at least for­

mally situation should be very similar to the case of the coupled NLS equations 
considered in Chapter 2, because symmetry properties of these two models are 

the same.
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Figure 4.6: Maximal growth rates of the neck (full line) and snake (dashed line) 
instabilities. 71 = 72 = —0.5, k = 1.

Let us rewrite here for convenience model equations (3.16), (3.17), (3.18) describ­

ing three wave interaction choosing ai)2 = 2«3 = 1/2:

idzEr + + ^Ei + E2E3 = 0,

+ (4.18)
£

idzE3 + ^^3 + 73^t ^3 + E1E2 = PE3-

The stability boundary against purely spatial perturbations boundary of 3-wave 

solitons is given by the condition (3.65). Spatially stable domain is in fact almost 
the entire domain of soliton existence, excluding only a small range of k, S values 
with (3 < 0 [61, 62], To study MI due to GVD we seek solutions of Eqs. (4.18) 

in the form of spatial solitons weakly modulated in time at frequency Q > 0:

Em = (Am(x) + (Um(x, z) + iWm(x, z)) cos

where m = 1,2,3, k1j2 = k±S, k3 = 2k, <£1i2 (/) ± ik, h = and are
arbitrary constants. Setting Um = umeXz, Wm = wmeXz, we obtain two eigenvalue 

problems
(4 + ^27) (4 + fi27)« = “ (4.19)
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Figure 4.7: Spatial profiles of the most unstable eigenvectors: 71 = 7? - -°-5> 
a = 1. (a., J P = 2, fl = 0.9; /?=-!,« = 1.9. Dotted fines mark
corresponding profiles of the solitary wgges.



Figure 4.8: Competition between neck and snake instabilities. Snake instability 
is suppressed, k = 1, (3 = —1, 7i = 72 = —0.5. (a^ |-®i,2| at z = 10, (bi^J | 1,21 
at z = 15

Figure 4.9: Competition between neck and snake instabilities. Neck and snake 
instabilities have approximatly equal growth rates, k = 1, = 0, 71 = 72 = -0-5- 

|^i,2| at z — 10, (bi^) 1^1,2! at z = 15

0 5 10 15 20 25 30
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Fieure 4 10: Competition between neck and snake instabilities. Neck instability 
is suppressed, k = 1, [3 = 5, 71 = 72 = -0.5. (ai)2) |Bij2| at z = 10, (bl>2) |A,2| 
at z — 12

(Â + Q27)(4 + = -A2w (4.20)

where u = (ux, u2, u^, w — (wi,W2,W3)t and

A3 -A2

“Ai
-Ay -1V1 + 2k + /3?

(4-21)

-a2 \
-A

-1V1 + 2aî + /??

(4.22)

0 0
72 0

0 73 ;

(4-23)

Phase and Galilean symmetries generate three neutral eigenmodes of the operator 
AA). These modes are = (A, A2,2A3)T, = (A>—A,0)T, and wv =

x(A, A,2A)T. Infinitesimal variations of k and 5, and translational symmetry 
generate neutral modes of the adjoint operator £oÂ: uk = 9K{Ay, A2, A3) , ug — 

^(AiMaMa)7, and ux = dx(Ay, A2, A3)T. These six modes obey the following

85



identities CqW^ = 0, CqW^ — 0, CqWv — — ux, C,\UK — w^, Ciu$ w^,

— O'

Here we will apply asymptotic approach of the Chapter 2 assuming that all gap 
eigenmodes have eigenvalues obeying the condition |A| Q. In practice this 

only excludes a small neighborhood of the spatial stability boundary discussed 

above. I will omit most of the details of the calculations because they were already 

discussed in Chapter 2 and the previous Section. Three eigenvalue pairs ±A are 
obtained from solvability conditions of the first order problems. One, associated 

with the asymmetric eigenvector wx, obeys

[dxj2^(dxAmy. (4.24)
Q J

Clearly the asymmetric mode is unstable for normal GVD, which corresponds 

to the snake instabilities found in NLS, see Chapter 2, and degenerate 3WM 
[101, 102, 103] models. In particular, for the above-quoted exact solution we find

A^ ~ Q(7i + 72)+7s) ,

which coincides with the corresponding formula for the Type I case [102] on 

putting 71 = 72 and rescaling.

The other two eigenvalue pairs are associated with linear combinations of the 

spatially symmetric vectors Cvwv + C^w^, and thus with neck-type instabilities. 

They are the roots of
nA4 + &Q2A2 + cQ4 = 0, (4-25)

where 2a = (dgQdKQu - dKQdsQu\ b = dKQMi + 72Q2) + Wu(7iQi + 72Q2 + 
473Q3) + (Mu + 9iQ)(72Q2-7iQi)> c= -8(7172^2+ 7273Q2Q3 + 7173Q1Q3) 

and a was specified earlier. These expressions are quite complicated, but yield 

some important general results. Clearly c is negative when all 7m of the same sign. 
Since a > 0 throughout the spatially monostable domain, it follows that the two 
roots A2 are always real and of opposite sign, so that there is always an unstable 

neck-type mode. Thus similarly to the case of the coupled NLS equations we 
establish coexistence and competition of neck and snake instabilities for normal

GVD.
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Simple analytic expressions for growth rates of these neck modes can be obtained 
in several special cases, e.g. in the case of second harmonic generation (07 = ^2)- 

Setting 71 = 72 and <5 = 0 the two eigenmodes have either = 0 or = 0, 

with eigenvalues

W1
Aj — + 273<^3^ (4.26)

For 5 = 0, dKQ is positive and dgQi is negative in the spatially monostable 

domain. Thus the (’anti-phase’) neck instability for 7i < 0 can be directly at­

tributed to the gauge symmetry in the differential phase and its associated 
neutral mode w,/,. On the other hand X^ is associated with the usual (’in-phase’) 

neck MI for anomalous GVD in models with a single gauge symmetry. Explicit 

expression for A^ can be found for ^ = —

9 4k 7172 , o„, \
------ ,-------- H 273 ■ 
71 + 72------------ /

Solving the eigenvalue problem numerically, we find that in low-frequency limit 

the instability growth rates precisely match those predicted by our perturbation 
theory, see Fig. 1(a), (b). As Q is increased each MI gain curve reaches a 

maximum and then decreases. A typical example of the maximal MI growth rate 
vs ¡3 is presented in Fig. 1(c). Similar plots for Qu 7^ 0 and across wide range 

of 7m values show the same behaviour. Thus we conclude that for normal GVD 
the new neck instability strongly dominates the snake one. Note that its growth 

rate is maximised, as Fig. 1(a), (b) illustrate, for Qu = 0. For normal GVD the 

unstable eigenfunctions become weakly confined and develop oscillating tails as

Q increases.

Spatial profiles of the symmetric eigenfunctions at maximum gain (Q = D,max) are 
presented in Fig. 2. Despite this being well beyond the perturbative limit in which 

expressions (4) apply, the novel neck MI eigenmode still has qualitatively the 

same form as w^, i.e. wi = — w^, W3 = 0, indicating that the if phase symmetry 
underlies the instability through the whole range of Q. Similarly, the unstable 

neck mode for anomalous GVD is evidently associated with the symmetry.

87



Figure 4.11: (a-b) Instability growth rate vs Q: Q = 65, (3 - Q. Thick (thin) lines 
are for k = 2, 5 = 0, Qu = 0 (k = 2.075, 5 = 1.525, Qu - 36/ Full (^he^ 
lines correspond to neck (snake) MI. Dotted lines are perturbative results, (a) 
Normal dispersion: 71,2 = 273 = —0.5. (b) Anomalous dispersion. 71,2 73
0.5. (c) MI growth rate at D = Dmax vs for k = 2, S = 0. Full (dashed) lines 
correspond to neck (snake) MI for = 273 = -0.5; dot-dashed line to neck MI
for 71,2 = 273 = 0.5
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Note that there are different scenarious of the termination of the MI branches for 

large values of Q. One scenario is that the unstable branch terminates in the gap 

at some Q = Qc- This scenario occurs for anomalous dispersion because the gap 

gets wider with increasing Q. However in the case of normal dispersion the gap 
narrows with increasing Q, and close at = minm(£m/|7m|) while MI may still 

exist, here = k ± 6, & = 2k + P- It means that no eigenmodes of discrete 
spectrum with ReX = 0 exist for Q > Qg. After the disappearance of the gap the 

unstable eigenfunctions develop oscillating tails. Both in degenerate and nonde­

generate cases the band of unstable frequencies of the snake branch is narrow 
for negative (3 and therefore it may terminate before the gap closes. In particu­

lar providing the solitary solution is known analytically exact expressions for the 

cutoff frequency Qc can be found for the case 71,2 = 273. For snake instability 
Q2 _ -3K/(471); with eigenvectors vc = 0, wc = (1,1, y/^fth^x sech^x, 

while for the neck instability in the anomalous dispersion Q* = 5k/(471), with 

eigenvectors Fc = (1,1,72)^^ wc = 0. Branch corresponding to the 

anti-phase neck instability terminates after the gap closes.

To test our linear stability analysis and study the nonlinear evolution we per­
formed an extensive series of computer simulations of the system (1) with initial 

conditions in form of a soliton stripe perturbed by spatio-temporal white noise 
of order 1%. Typical simulation results are presented in Fig. 3 and they fully 

support our predictions. We chose the size of the computational window in the 

time domain to be 187r/QmOx, and the initial soliton stripe rapidly develops nine 
humps, in accord with the stability analysis. During further evolution the mod­
ulated stripe forms into a train of pulses which either spread (normal GVD) or 

form a persistent chain of three-wave optical bullets (anomalous GVD). Due to 

the initial noise, modes from a band of frequencies close to £lmax are able to grow 
and compete, and hence the modulations in Fig. 3 are somewhat irregular.

A striking difference between Figs. 3(a,c) is that the initially imposed trans­

lational symmetry of the solitary stripe along the time dimension is broken m 

different ways. For normal GVD interleaved intensity peaks of Ex and E2 are 
formed, while for anomalous GVD the intensity peaks coincide. (Each amplitude
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Figure 4.12: Most unstable eigenmodes (Cl = Clmax) for (3 - S - Q, k — 2. (a) 

Normal dispersion: 71)2 = 273 = -0-5; (b) Anomalous dispersion: 71>2 = 273 =

0.5.

is modulated with period 2%/Q max')

This difference is directly related with the spatial form of the most unstable 

eigenvectors. In the case of normal GVD w. and w2 are out of phase and w3 = 0, 

see Fig. 2(a), leading to the interleaving. Since EiE2 drives E3, the intensity 
profile of the second harmonic becomes modulated with period n/Clmax, see Fig. 

3(a3). Because the overlap of the three fields is diminished by this evolution, 
mutual trapping becomes impossible and the whole structure eventually spreads 

through diffraction and dispersion, see Fig. 3(b). For anomalous GVD, all three 
components of most unstable eigenvector are in phase, see Fig. 2(b), and thus all 

three intensities become modulated with the same temporal period, see Fig. 3 

(Cl), (c2), (cs). This provides conditions for mutual self-trapping of the filaments, 

see Fig. 3(d).

4.4 Summary and discussion

In this Chapter we have analysed and described dispersive MI of spatial solitons 
due to degenerate and non-degenerate 3WM. For anomalous GVD soliton stripe
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Figure 4.13: Development of noise-induced instability of spatial soliton stripe: 
k = 2, 5 = (3 = 0. Left (right) panels for 71)2 = 273 = -0.5 (71)2 = 273 - 0 5/ 
(am) \Em\ at z = 2.7, (b) \E.\ at z = 4.5, (cm) \Em\ at z = 5.4, (d) \E.\ at
z = 10.8.
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typically breaks into a chain of of soliton-like long-lived filaments. New and 

nontrivial results have been found for normal GVD. In degenerate case the snake 

MI is found to be dominant for positive wavevector mismatch. For negative wave 
vector mismatch the neck instability with complex eigenvalues originating either 
from the continuus spectrum or from internal modes is the dominant instability. 

This instability has its analogy for plane wave solutions [109, 110, 111]. However, 

secondary MI branches described above are probably pure sohtonic effect, because 

they have not been found for plane waves [109, 110, 111].

In nondegenerate case the extra neutral mode associated with the additional 

phase symmetry gives rise to a new branch of MI. This is symmetric (of neck 

type), and is found to dominate the asymmetric (snake) instability throughout the 

whole region of soliton existance. It is noteworthy that MI branches bifurcating 
from continuum also have been found in non-degenerate case, but detail study of 

them has little sense because the corresponding instability growth rate is mainly 

suppressed by the instability due to symmetry in the differential phase.
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typically breaks into a chain of of soliton-like long-lived filaments. New and 

nontrivial results have been found for normal GVD. In degenerate case the snake 

MI is found to be dominant for positive wavevector mismatch. For negative wave 
vector mismatch the neck instability with complex eigenvalues originating either 

from the continuus spectrum or from internal modes is the dominant instability. 
This instability has its analogy for plane wave solutions [109, 110, 111]. However, 

secondary MI branches described above are probably pure solitonic effect, because 

they have not been found for plane waves [109, 110, 111].

In nondegenerate case the extra neutral mode associated with the additional 

phase symmetry gives rise to a new branch of MI. This is symmetric (of neck 

type), and is found to dominate the asymmetric (snake) instability throughout the 

whole region of soliton existance. It is noteworthy that MI branches bifurcating 
from continuum also have been found in non-degenerate case, but detail study of 

them has little sense because the corresponding instability growth rate is mainly 

suppressed by the instability due to symmetry in the differential phase.
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Chapter 5

Azimuthal modulational 
instability of self-trapped beams 
with phase dislocation in 
saturable Kerr and quadratic 
nonlinear media

The present Chapter deals with 2D propagation of electromagnetic waves in self­

focusing saturable and in quadratically nonlinear media. In particular, we will 

consider azimuthal modulational instability of higher-order solitons in such me­

dia. Bright solitary waves decaying monotonically with distance from the axis 

(ground-states) are the most important solitary solutions in these media, but do 

not exhaust the set of self-trapped solutions. Considering 2D NLS with pure 

cubic nonlinearity Gagnon and Paré [112] built two remarkable sets of analytic 
solutions. These sets are analogs of Hermite-Gaussian and Laguerre-Gaussian 

modes of the propagation equation in linear media. In a certain limit these ’non­

linear modes’, which generally depend on the longitudinal coordinate, transform 
into self-trapped solutions [112]. Several types of solitary wave reported by dif­
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ferent authors, e.g. with a bright central spot and one or more radial nodes [97], 
’doughnut’ solutions with a nested phase dislocation [113], the ’dipole’ solution 

[114], and solutions with both radial and azimuthal nodes [115, 116], are appar­

ently special cases of these ’nonlinear modes’ built by Gagnon and Paré. It is 

natural to expect that analogues of these solutions can exist in models which in 

certain limits are close to the NLS. Indeed, solutions with a bright central spot 

and radial nodes have been studied in saturable [81, 107] and quadratic nonlinear 
media [90, 92, 94]. Solutions with a dark central spot and nested phase dislocation 
have been also reported in both saturable [117, 118, 119, 91, 120] and quadratic 

[91, 92] media.

The stability of these solutions is a non-trivial issue because the standard stabil­

ity criterion for ground-states [81] is only a necessary condition for the internal 

stability of higher-order solutions with nodes, and has no relevance to MI. It was 

first shown for saturable nonlinearity [107] that many-ring solutions with a bright 

central spot are stable with respect to purely radial perturbations but unstable 

with respect to azimuthally dependent perturbations, showing break-up of their 

rings into filaments. Similar solutions in quadratic nonlinear media show not only 

symmetry-breaking azimuthal instability, in analogy with saturable media, but 

also a novel symmetry-preserving decay scenario which is absent for the ground­

state quadratic solitons, see Chapter 3 and [94].

Our special interest here is in self-trapped solutions with a phase dislocation, 
surrounded by one or more bright rings. Break-up of these rings into filaments 
has been reported in [117, 118, 119, 91, 120, 92]. Note that in Ref. [118] this 

break-up was interpreted not as an intrinsic property of the solutions but as due 

to interaction with another beam. Experimental observations of filamentation 

of finite beams with a nested phase dislocation has been recently reported for 
the self-focusing saturable [121, 122], photorefractive [123] and quadratic [124] 

media. The spatial profiles of the input beams used in these experiments did 

not correspond to self-trapped solutions but we believe that the dynamics of fil­

aments elaborated below can provide valuable physical insight and reflects key 
features underlying evolution from more general initial conditions. This conclu­
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sion is supported by similarities between the numerical simulations of Torner and 

Petrov [125] in which they observed break-up in quadratic nonlinear media of 

input Laguerre-Gaussian modes with phase dislocation, and the evolution of the 

corresponding self-trapped solutions studied below.

Note that the solutions discussed above are assumed to be linearly polarised in 

the transverse plane. Based on the Maxwell equations for a purely azimuthal field 

propagating in Kerr-like media, the existence of a family of many-ring solutions 

with a dark central spot [126, 127] and its azimuthal instability [128] have been 

reported. The model equation studied is like the NLS, but with an additional 

term of the form r-2 (r is the radial coordinate) argumenting the usual transverse 

laplacian operator. This model has some formal resemblance to the case of a 
scalar field with a singly-charged vortex, but the analogy has not been developed 

by these authors, and we will not pursue it here.

5.1 Self-trapped beams with phase dislocation 

in saturable media

5.1.1 Model and stationary solutions

The evolution of the slowly varying electric field envelope £ in the nonlinear 

medium is governed by the equation, see e.g. [121],

2ikdz£ + d2x£ + d^£ + 2k^nNL(r)£ ==Q, (5.1)

Z and X,Y are the longitudinal and transverse coordinates, w0 is the carrier 

frequency, k = tiqWq/c is the carrier wave number in the medium, n0 is the 
(linear) refractive index and c the velocity of light in vacuum. The field is scaled 

such that I = |£|2 is the intensity, and ti^lIX) is the intensity dependent part 

of the refractive index. The form of tiXl depends on the medium: e.g. for a 

Kerr medium tinl = n?!- In most media, the index change shows some form 

of saturation. For example, in a two-level medium excited well off resonance 
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the nonlinear index can be described by n^L = ^2^/(1 + I/IsatY with Isat the 

saturation intensity. This is the model we will use in the present work. Such 

a medium is self-focusing n2 > 0 (or more generally dn^/dl > 0) and self- 

defocusing in the opposite situation.

We now re-scale our variables so as to reduce (5.1) to the dimensionless form

(5-2)

through the following substitutions: Z — zld, X — wx, Y — wy, 8 — Ey IsatlNt/ldi 

where ld = kw2 and lNL = c/(w0|n2|Aat) are the diffraction and nonlinear lengths, 

w is a characteristic transverse length scale, V± = idx+jdy. We will concentrate 

henceforth on the model with self-focusing (n2 > 0) saturable nonlinearity

|£^|2 _ Inl^o
I -mln , i/(|£|2) =

l + al^l2’ Id
(5-3)

which describes, e.g., nonlinear response of a two-level medium excited well off 

resonance. Here a is a saturation parameter, and clearly the Kerr limit is simply 

given by a = 0. For this reason, and also for computational convenience, we 

retain a as a scaling parameter, even though it can clearly be scaled away.

It is well known, and qualitatively clear, that under an appropriate balance be­

tween diffractive stretching and nonlinear focusing (ld ~ Inl) the electromagnetic 

radiation can be self-trapped forming a self-induced waveguide. Formally this 

means that Eq. (5.2) has non-diffracting solutions of the form

E(x,y,z) = A^x,y)elKZ, (5-4)

Here k has sense of the eigenvalue of the corresponding waveguide mode which 

many authors term as the nonlinear wave-vector shift. The transverse profile 

A(x, y) is can be chosen to be real, and obeys

v 5x = 2 (K - /(|X|2)) x. (5.5)

Beam confinement demands exponential decay of |>l| at infinity, which requires 

n > 0. Multiplying (5.5) by A* and integrating the left-side by parts one gets

- y dxdy\Vj_.A|2 = J~ dxdy^n- /(|M|2)) |A|2 > (k— max /) y da;dy|v4|2. (5.6)
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-1Since f <a~l, any self-trapped solutions of our model must have 0 < k < a

Below we will concentrate on one particular class of self-trapped solutions of Eq. 

(5.5) namely those with a phase singularity at the center, which have the form:

^,y) = A(r)eiW, (5.7)

where r = + y2, is the polar anSle and therefore Eq. (5.5) becomes

+ = 2(k - ¡(A2))A, (5.8)
dr2 r dr r2

Physically I must be an integer (there is no phase singularity for I = 0), while 

A(r) must obey the following boundary conditions

r -»0 A(r) -> r^co, (5.9)

r —> oo A(r) —> -^=e

where coi00 are real constants. There is redundancy in Eq. (5.8), since either k or 

a can be scaled away. We prefer to keep them both: a to provide transition to 

the pure cubic nonlinearity and n to retain the traditional form of the Vakhitov- 
Kolokolov stability criterion [81] (for more details see next subsection).

Eq. (5.8) with boundary conditions (5.9) was solved numerically using a second- 

order finite differences method. We found that for any non-zero integer I one-, 

two- and many-ring solutions with a central phase singularity exist in the entire 

region 0 < k, ck-1 specified above. Typical radial profiles of A for different values 

of I are presented in Fig. 5.1. While these profiles can be obviously be approxi­

mated by analytical techniques, see e.g. [112, 119], here we confine ourselves to 

numerical solutions, which have, in principle, arbitrarily high accuracy.

5.1.2 Stability

Having found these stationary solutions, their stability is a natural question to 

study. Consider small complex perturbations e(z, r, 0) of the stationary solution 

(5.7),
E(z, r, 0) = (A(r) + e(z, r, 0)yKz+iW. (5.10)
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Figure 5.1: Plots of the held amplitude A(r) for I = 1,2,3, k = 1 and a = 0.1. 
(a) One-ring and (b) two-ring solutions of Eq. (5.8). The labels in Figs. 1, 2 
denote I values.

The general solution of the linearised problem for e can be expressed as a su­

perposition of azimuthal Fourier modes (J = 0, ±1,±2...) with complex 

coefficients dependent on r and z. Therefore looking for the exponentially growing 

perturbations which characterise instability, we set

e(z,r,e) = iJ" (5.U)

and obtain the following non-self-adjoint eigenvalue problem:

9J,—
-A^f -Lj

(5-12)

where gj = (gj,9j)T, / = df /dA2 and

1 1 d ~d 
J 2 r dr dr

-—r— K + f + A2f'.- ±

Note that Eq. (5.12) is obviously valid also for I = 0, i.e. for the solitary 

waves with finite intensity at r = 0. It can be shown that for I = 0 perturbations 

proportional to cos JO and sin JO are equivalent and can be treated independently. 
This fact was implicitly used in Refs. [107, 128]. Therefore the dimension of the 

eigenvalue problem in the space of real functions can be reduced from 4 x 4 to 
2x2 when I = 0. This also follows from the fact that if I = 0 then Eq. (5.12) has
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Figure 5.2: Energy Q vs k for one-ring solutions with I = 1,2,3 and a — 0.2.
Horizontal lines correspond to a pure Kerr medium, a = 0

the solutions g J = ±^*- Presence of a phase singularity destroys this symmetry 

property and cosine and sine perturbations cannot be decoupled.

The symptotic behaviour of the eigenvectors gj is 

r —> 0

r —> oo

(5.13)

where are complex constants and the branch of the square root in the ex­
ponent must be chosen such that the eigenfunctions are square-integrable. The 

eigenvalues of the discrete spectrum corresponding to such eigenfunctions can 
lie anywhere in the complex plane outside the rays {in, zoo) and (—in, — zoo). 

These rays belong to the continuous spectrum with unbounded eigenfunctions. 
Unstable eigenmodes have eigenvalues with ReXj > 0. They must always have 

a counterpart with ReXj < 0 because of the hamiltonian nature of our problem, 

see Section IV.

Due to the symmetries of the our model ( phase (E -> Ee^) and translational 

(E(x, y) -> E{x + Sx, y + Sy))) Eq. (5.12) has neutrally stable modes, i.e. modes 
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with zero eigenvalues. The corresponding eigenvectors are

These eigenmodes can be associated with J - 0, ±1 respectively.

Neutral modes are important for analytic approaches to stability problems of 

this type. Asymptotic techniques, see Section 3.3.3, can be used to show that 

the neutrally stable mode ^00) branches at the point dKQ = 0 giving instability of 

any bound solution of Eq. (5.8) if

dKQ < 0,

here Q is the energy flux

(5.15)

(5.16)

Thus the standard stability criterion for the ground states [81] is also a necessary 

condition for the stability of self-trapped beams with a phase dislocation.

For pure Kerr media (a = 0) dKQ = 0 and a collapse instability is present [117], 

The evolution of this collapse in z is of polynomial type, therefore it can easily be 

suppressed by an exponential instability if there is one. This is indeed the case 
in our situation due to the exponential instabilities for J 0 described below. 

In case of single-ring solutions with I ± 0, which have no nodes for r > 0, a 

variational approach to the eigenvalue problem (5.12) can be applied in a manner 
similar to that done in Refs.[81, 128]. It shows that dKQ > 0 is also sufficient 
for stability against symmetry-preserving perturbations (J = 0). Plots of the 

energy vs k for the one-ring solutions are presented in Fig. 5.2. We conclude 

that the one-ring solitary waves are stable with respect to J = 0 perturbations 
in saturable media. For many-ring solutions there is no comparable approach, 

nor any simple criterion which is sufficient for symmetry-preserving stability and 

numerical checks are always necessary [94].

The above analytic criterion says nothing about stability against symmetry break­

ing perturbations, i.e. MI is not excluded even where dKQ > 0 holds. Azimuthal
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Figure 5 3- Growth rates of the unstable eigenmodes of the one-ring solution vs 
a forii= 1. (a) 1 = 1, (b) I = 2. Here and in Figs. 5.4,5.8,5.13,5.15 numbers 
denote J values.

MI corresponds to modes with J 0 having exponential growth, in general 

leading to J-fold intensity modulation around the ring, breaking the cylindrical 

symmetry of the intensity of the stationary solution. For J = 1 we might hope 
for an analytic result linked to the $ neutral mode, but asymptotic expansion 

shows that this neutral mode is not linked to the appearance of any instability. 

However this obviously does not forbid presence of instability for any J 0 in­
cluding J = 1 and we are obliged to study the eigenvalue problem (5.12) with 

some different method. There are several possible numerical approaches to solve 

such problems, see e.g. [107, 129]. We chose to reduce (5.12) to an algebraic 

eigenvalue problem by replacing the differential operators with the second order- 

finite differences. We apply zero boundary conditions for some large value of r 

and appropriate conditions at r = 0, as given in (5.13). 100 to 200 grid points was 

usually enough to get good precision. Zero boundary conditions for large r is a 
potential source of problems because weakly decaying eigenvectors require large 

numbers of grid points to maintain accuracy. However we did not meet such 

a situation in any of the investigations described in this paper. Furthermore, 

numerical results for the neutrally stable modes were always in good agreement 

with Eqs. (5.14).
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Figure 5.4: Growth rates vs K of the most unstable eigenmodes of the one-ring 
solution for a = 1. (a) I = 1, (b) I = 2.

Numerical analysis of symmetry-breaking perturbations (J 0) shows the pres­

ence of instabilities over a finite range of values of J in every case. The results for 

the one-ring solutions with I = 1,2,3, k = 1 and a = 0.1 were presented earlier in 
Letter format [91]. Here we study in detail how variations of the parameters and 

of the initial noise level influence symmetry breaking instabilities of the one-ring 
solitary waves with I = 1,2 and two-ring wave with I = 1. These cases are typical 

of the break-up of ring stationary waves in saturable Kerr media which carry 

orbital angular momentum.

Let us first describe the one-ring solutions. Although, because of the above- 

mentioned scaling, all possible situations can in fact be captured varying just one 

parameter keeping the other fixed, for convenience and ease of interpretation we 

plot the growth rates (ReXj) of the unstable eigenmodes vs both parameters, see 
Figs. 5.3,5.4. For I = 1 just three unstable eigenmodes (J = 1,2,3) appear, with 

J = 2 mode dominating through the whole range of a and k. For I = 2 either 

of the two modes J = 3,4 can be dominant depending on the parameter values. 

Generally the instability gets stronger for a —> 0 and it is practically suppressed 

for a -> 1/k. Suppression of MI (of any nature) with increasing saturation is a 
common phenomenon which has also been reported for the fundamental bright 

and dark solitons in saturable media [12, 129]. Considering variations of k, for
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Figure 5.5: Real and imaginary parts of the maximally unstable eigenmodes for 
one-ring solutions, (a) I = 1, J = 2, a = 0.3, k — 1 and (b) I = 2, J = 4, a = 0.1, 
« = 1. Dashed lines mark the radial profile of the self-trapped solution A(r).

k close to 0 or to 1/a the instability is again practically suppressed. This is 

also typical for the symmetry-breaking instabilities of other kinds of the ring­

structures [107, 119, 128].

We found that the unstable eigenvalues are generally complex. If the instability 
for an eigenmode disappears within the existence region of the solitary solution 

the imaginary part of the corresponding Aj usually remains finite as its real part 

goes through zero. In particular this holds for the unstable eigenmode with J — 1, 

and is the reason why instability for this mode cannot be captured by asymptotic 

expansion near the neutral mode .

We found that the radial profiles of the most unstable eigenfunctions mainly 
concentrate around the rings of the stationary solutions, see Fig. (5.5). Because 

A(r) is real, it is the real part of the perturbations which determines the field 

amplitude modulation pattern which develops around an unstable ring. Therefore 

we expect the initially uniform ring will develop Jmax minima and Jmax maxima 
on propagation, where Jmax is the azimuthal index of the perturbation eigenmode 

with the maximal growth rate. As a consequence, the ring should break up into 

Jmax filaments. However other eigenmodes, in particular those with J = Jmaxil, 
can have comparable growth rates, which can affect the filamentation process and
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Figure 5.6: Breakup of the one-ring solution with I — 1, k — 1. (a) a — 0.3, 
s = 0.01, z = 14; (b) a = 0.1, s = 0.05, z = 7.

make the output pattern depend somewhat on the particular realisation of the 

initial noise.

To test the results of our stability analysis we performed an extensive series of 

numerical simulations of Eq. (5.2) with initial conditions in the form

E(r,6) = (l + s(qr(r,6)+iqi(r,eW^ (5.17)

where qr,i are real functions modeling gaussian noise in the interval (-1,1) and 

s is a constant. Simulation was done on the polar grid with 128 and 100 - 200 
grid points along the angular and radial coordinates respectively. The polar grid 

prevents the numerical noise effects of discretising a ring onto a rectangular grid 
from unduly influencing the number of filaments formed. For low noise level (s 

of the order 0.01 or less) the most unstable eigenmode was clearly dominant m 
the majority of simulations. Increasing the noise to s ~ 0.1 led to the occasional 

appearance of J = Jmax i 1 filaments. In most of the simulations the filaments 
formed from the same ring had similar intensities. This suggests that the unstable 

eigenmode dominating at the beginning of the instability suppresses all the others. 

(For an exception see Fig. 5.6(b).)

Examples of the break-up of one-ring solutions with I = 1 into 2 and 3 filaments 

and with I = 2 into 4,5 and 3 filaments are presented in Figs. 5.6, 5.7. Parameters
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Figure 5.7: Breakup of the one-ring solution with I — 2, k — 1. (a) a - 0.1, 
s = 0.005, z = 7; (b) a = 0.1, s = 0.08, z = 4; (c) a = 0.6, s = 0.08, z - 26.

and level of the initial noise are specified in the figure captions. There is excellent 
agreement between the predictions of the stability analysis, see Fig. 5.3, and the 

results of these direct numerical simulation of the original model.

In case of a pure Kerr medium (a = 0) the exponential growth of the symmetry­

breaking perturbations should dominate over the algebraic growth of the symmetry­
preserving collapse instability. In the simulations for the Kerr case we indeed first 

observed filamentation of the ring and subsequently collapse of the filaments.

For the two-ring solitary solutions with I = 1, we present just the growth rates 
for the dominant eigenmodes vs a, see Fig. 5.8. All unstable eigenmodes can be 

naturally separated into two groups. The radial profiles of the eigenmodes from 
one group concentrate around the first ring and from the other around the second 

ring, see Fig. 5.9. Because of this each ring develops its own modulated pattern 
and breaks up into the different number of filaments. We present here, see Fig. 

5.10, results of the numerical simulation for a = 0.05 (when J = 2 and J = 6 
modes dominate for the first and second ring respectively) and for a = 0.6 with 
dominant J = 2 and J = 5 modes. For a = 0.05 first ring is more unstable and 

for a = 0.6 second ring is more unstable. For the latter situation the instability 

of the first ring is so weak that its break up did not occur within the propagation 

distance simulated.

The examples presented in Figs. 5.6,5.7,5.10 show that filamentation happens
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Figure 5.8: Growth rates of selected unstable eigenmodes of the two-ring solution 
vs a for k = 1 and I = 1. Dashed (full) lines are for the modes concentrated 
around the first (second) ring.

over propagation distances from several to several tens of diffraction lengths. For 

small values of a and optimal initial energy, i.e. adjusting k to maximise the 

instability, we were able to observe filamentation within one or two diffraction 

lengths.

Finally, regarding the possibility of analytical study of the stability with respect 
to symmetry-breaking perturbations we suggest that a proper generalisation of 

the averaging techniques developed originally in [107] may be the most efficient 

way to do it.
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Figure 5.9: Real and imaginary parts of the maximally unstable eigenmodes for 
the two-ring solution. l = l,a = 0.05, K = 1- J = 2 and J = 6 for the eigenmodes 
concentrated around the 1st and 2nd ring respectively. Dashed line, radial profile 
of the self-trapped solution A(r).

Figure 5.10: Breakup of the two-ring solution with I = 1 and k = 1. (a) a = 0.05, 
s = 0.005, z = 4; (b) a = 0.6, s = 0.1, z = 26.
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5.2 Self-trapped beams with phase dislocation 

in quadratic media

5.2.1 Model and stationary solutions

The evolution of the slowly varying envelopes of the fundamental (£1) and second 

harmonic (¿2) electric fields in a noncentrosymmetric crystal is governed by the 

Eqs. (3.20), (3.21) with 71j2 = 0. We look for stationary solutions of these 

equations in the form

Em = A^r^e^10^^, m = 1,2. (5.18)

The real amplitudes Ai)2 obey the equations

^- + -^L-l̂ =^-A2)Al, (5.19)
dr2 r dr r2

- - ^2 = 4(2« + ^A2 - 2Al
dr2 r dr r2

Eqs. (5.19) have a family of the ring-like solutions similar to the case of the 

saturable medium. However there is no condition similar to Eq. (5.6) and there­

fore just the requirement of exponential decay of the tails. This imposes a re­
striction on the parameter range where the solitary solutions can exist, namely 

« > max(0,-/3/2). Radial profiles of Ai,2 for one- and two-ring cases are pre­
sented in Fig. 5.11. For the many-ring solutions the fundamental field At has 

radial nodes but the second harmonic A2 always remains positive, though having 
minima close to the zeros of the fundamental. For large (3 Eqs. (3.20)-(3.21) can 

be approximately reduced to the NLS equation for the fundamental field and for 

increasing ¡3 the second harmonic tends to carry less and less of the total energy. 

A2 goes to zero faster than Ai as r —> 0 because the order of the phase singular­

ity for the second harmonic is double that of the fundamental one. One of the 

parameters either k or ¡3 can be scaled away from Eqs. (5.19) [57]. However we 
like to keep them both: (3 is not very natural parameter for scaling because it can 
be positive, negative or zero and we keep « because of its physical interpretation
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Figure 5.11: Plots of the held amplitudes A^r) (full lines) and A2(r) (dashed 
lines) of (a) one-ring and (b) two-ring solutions of Eq. (5.19) for I — 1 (thick 
lines), I = 3 (thin lines), k = 1 and = 0.

as a nonlinear wave vector correction, and also, as remarked above, because it is 

the natural parameter for investigation of stability.

5.2.2 Stability

Considering small perturbations of the stationary solutions (5.18) in the form

em(z, r, 0) = + 9Jm\r)e•xjz tje, m — 1,2 (5.20)

we get the following non-self-adjoint eigenvalue problem

¿JI

—A2 

A, 
0

a2

0 
—Ai

Ai
0 -

f+hj2
0 -

0

-Ai 
0 

^J2

9 J,

where gj = (gji,9ji,9j2,9jz)T and

1
2

’1 d
r drT

d 
dr

± J)2 
r

— K,

Id d-----— 
r dr dr

1
r2

(21 ± J)2 - 2k — ft,

(5-21)
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Figure 5.12: Energy Q vs k for one-ring solutions with I - 1 (thick lines) and 
I = 2 (thin lines): (3 = -3 (dash-dotted lines), (3 — 0 (full lines) and (3 — 3 
(dashed lines).

Pure imaginary A j belonging to the continuous spectrum lie in the rays (iQc, zoo) 

and (-ittc, -zoo), where Qc = min(w, 2k+(3) (5.21). Neutrally stable eigenmodes 

for J = 0 and J = ±1 are

Ai

-A 
2A
-2A

(5.22)

^±^A2dr r

Symmetry-preserving (J = 0) perturbations of the one-ring solutions are damped 

for
dKQ = dK I dxdy(\Ei\2 + 2\E212) (5.23)

where Q is the energy flux. Representative plots of Q vs k are presented in 

Fig. 5.12. The instability for negative (3 is related to the existence for dKQ > 0 

of a pair of the eigenmodes with purely imaginary eigenvalues (with opposite 
signs) lying in the gap (—zQc, zQc). At the point dKQ = 0 these eigenmodes 
coincide with the neutral mode and for larger \(3\ appear again but with real 

eigenvalues of opposite signs. For the one-ring solitary solution this is the only 

route to a symmetry-preserving instability. We found that it is always suppressed
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Figure 5.13: Growth rates of the maximally unstable eigenmodes of the one- ring 
solution vs /3 for k = 1. (a) I = 1, (b) I = 2.

by stronger symmetry-breaking instabilities, i.e. MI is always dominant in this 

case.

For cases where Ai(r) changes its sign (i.e. two or more rings), the criterion (5.23) 

is just a necessary condition and we found a new scenario of symmetry-preserving 

instability. It appears in a manner similar to that which we have described for 
solutions with a bright central spot and one or more rings [94], However we found 

that this instability dominates the symmetry-breaking one only in a very narrow 
range of /3 values, close to the boundary of the solitary wave existence. This 
contrasts with the case described in Ref. [94] (zero angular momentum), where 

the symmetry- preserving scenario is a major factor for a significant region of 

values.

Plots of the growth rates of the unstable eigenmodes vs /3 for the one-ring solutions 

with I = 1,2 presented in Fig. 5.13. In the limit of 0 » 1 the dominating mode is 

the same as the one in the saturable medium for small saturation values, i.e for a 
close to 0. The growth rates of the dominating eigenmodes increase linearly with 

increasing of k, see Ref. [92] and Fig. 5.19. An example of the radial profiles of 

the components of the most unstable eigenmode is presented in Fig. 5.14.
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Figure 5.14: Real and imaginary parts of the maximally unstable eigenmodes of 
the one-ring solution. I = 1, J = 3, p = 0, k = 1- (a) is for the fundamental field 
and (b) is for the second harmonic. Dashed lines mark the radial profiles of the 
self-trapped solution, Aii2(r).

The growth rates of the essential eigenmodes vs for the two-ring solution with 

I = 1 are presented in Fig. 5.15. (These results are restricted to /? > -1.9 

because for increasingly negative P the many-ring solitary solutions become very 

wide and extra care is needed in the stability analysis.) Again the localisation of 

the eigenmodes on the rings suggests that during propagation any ring will break 

up into Jmax filaments, where Jmax shows maximum gain on that particular ring.

These predictions of our stability analysis are fully supported by simulations of 
Eqs. (3.20)-(3.21) and our comments in the previous section about saturable 

media, e.g. about the influence of noise on the symmetry-breaking instabilities, 

are also valid in quadratic media. An example of the break-up of the one-ring 

solution with I = 2 to four filaments is presented in Fig. 5.16.
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5.3 Dynamics of filaments

As was shown above, self-trapped beams with a phase dislocation at the center 
and with varying numbers of rings exist as stationary solutions in both saturable 

and quadratic nonlinear media. They are unstable against symmetry-breaking 

perturbations, breaking up into a set of filaments during propagation. In this 

section we extend the analysis of the dynamics of the filaments outlined by us 

in [91]. This analysis is based on the conservation laws. Given initial values of 

the conserved quantities we show how to predict featues of the trajectories of the 

filaments, and even how to estimate their number.

The conserved hamiltonian and momenta which are essential to our present pur­
poses are introduced by a Lagrangian reformulation of the problems. This also 

makes it possible to develop analogies between solitary waves and particles.

Eqs. (3.20)-(3.21) can be written as Euler-Lagrange equations

9 dC dC Q dC 
did{dzE^~ dE*m ¿y 'd^E^

where the Lagrangian density £ is

£ — - 52 {^rrßzErn C.C.) H. 
Z m=l,2

(5.24)

(5.25)

The corresponding formulae for Eq. (5.2) can be obtained by simply omitting 

the subscript m, and this procedure will be implied in most formulae below, 

exceptions being stated explicitly.

In the above, H is the corresponding hamiltonian density, which for Eqs. (3.20)- 

(3.21) takes the form:

H = èlVx^il2 + ^IVx^I2 + /W2 - |(^2 + (5-26)

2 4

while for Eq. (5.2) 1 - rlBl2?/ =-|V±£|2-yo du f(u) (5-27)
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Figure 5 15: Growth rates of selected unstable eigenmodes of the two-ring solution 
vs§/3 for k = 1 and 1 = 1. Dashed (full) lines are for the modes concentrated 
around first (second) ring.

Considering variations of the action integral S = f” dz f dxdy£ with respect 
to infinitesimal spatial translations and rotations it can be shown that if £ is 

invariant under these transformations the following two quantities are integrals

of motion

P = y dxdy fl, (5.28)

L = i dxdy f x fi. (5.29)

Here r = ix + jy and

m=l,2

( + «.) = 1 E (^VxEm - ce.) . (5.30)
\d(dzEm) / m=l,2

By definition P is the linear momentum of the field, L its angular momentum, 

both expressed in terms of fl, its linear momentum density. Solitary wave so­
lutions (5.7), (5.18) carry zero linear momentum, P = 0, and nonzero angular 
momentum, \L\ = |Z|Qo, where Qo are the energy invariants, see (5.16) and (5.23), 

evaluated at these stationary solutions.

Eq. (5.29) for the angular momentum is just the paraxial approximation for the 

optical orbital angular momentum per unit length [130]. The angular momentum
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Figure 5.16: Breakup of the one-ring solution with I — 2, — 5, k — 1, s — 0.05, 
z = 6. (a) first harmonic, (b) second harmonic.

12

carried by light beams has attracted much recent interest. It has been predicted, 

and proved experimentally, that Laguerre-Gaussian beams with azimuthal mode 

index I carry orbital angular momentum lh per photon [131]. Frequency doubling 

of such a beam has been shown [132] to generate a second harmonic with doubled 

azimuthal mode index 21. Note that the present ’nonlinear modes’ also obey this 

relation, because of the factor 2 in (5.23).

Both our models (5.2), (3.20)-(3.21) have the property of Galilean invariance, e.g. 

in the quadratic medium:

(E,, E,, f) -> (E^, £2^^, (5-31)

where

$ = v(r - ^vz), ^-r-vz, v = wx + jvy,

Under this transformation, a structure with zero linear momentum is boosted 

to P = Qv, therefore we can expect analogies with Newtonian mechanics with 

Q playing the role of mass. In particular, a fundamental soliton, which has no 
intrinsic angular momentum, will have orbital angular momentum L = r x Qv 

about the origin, provided |r] is larger than the soliton size. It follows that if 

the total field can be regarded as a superposition of several separate localised 
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structures, e.g. solitons, we can expect the dynamics of these structures (while 

they remain well localised) to be somewhat similar to the dynamics of mechanical 

particles.

Because our model systems are not integrable, numerical methods are necessary 

to study the creation and dynamics of soliton filaments. For simulation of the 

soliton dynamics we used a split-step algorithm on a cartesian grid with initial 

conditions obtained on the polar grid as described in Section IL Once the number 

of filaments is established the transition from one grid to the other does not 

cause any significant loss of precision. As a further check, conservation of energy, 

hamiltonian and momenta was monitored during the simulations.

We found numerically that filaments formed due to the azimuthal modulational 

instability do not diffract with propagation, but remain well localised and soliton­

like. Superimposing images of the transverse intensity distribution at different 

z values we found that these filaments move out along tangents to the initial 

ring, carrying away its angular momentum as orbital angular momentum, see 
Fig. 5.17 for the case of a saturable medium. Several figures in Ref. [91] show 

this behaviour for both saturable and quadratic media and different values of I.

Because, once fully formed, the filaments seem to behave like simple, free New­
tonian particles, we now examine whether their number and dynamics can be 

predicted on the basis of the quasi-mechanical considerations. We consider only 

the dynamics of the filaments formed after the break-up of the one-ring struc­

tures. This is because an essential condition to apply the ’mechanical’ approaches 

developed below is that the initial structures which undergo filamentation have 
to produce during their evolution a set of well separated filaments. Break-up of 

the many-ring solutions results generally in strong interaction between filaments 

from different rings, and so is too complex to consider in the present approach.

Let us represent the fields in the form
TV

~ 22 B^x, y^'-W m = 1,2 (5.32)
n=l

here vn have a sense of the ’transverse velocities’ of the filaments. In other words
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Figure 5.17: Superimposed images of the transverse intensity distribution ^dif­
ferent z values showing soliton trajectories in a saturable medium: a = 0.1. i — 2. 
(a) k = 1, (b) k = 5, (c) k = 8. Propagation distance is Az = 10 for (aj-(cj.
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vn characterize the propagation directions of the solitary waves with respect to 

z axis. Bmn are assumed to be bell-shaped complex functions characterising the 

filaments, localised near the points fn = vnz. N is the number of these filaments.

Substituting (5.32) into (5.29) gives for the angular momentum

N r
] dxdy\f x vn\(\Bln\2 + 2\B2n\ )■ (5.33)

To get (5.33) we neglected the overlap of the tails of the filaments. We now assume 
that f can be replaced by fn and taken outside the integral, which then reduces 

to qn, the total energy of the filament, and so (5.33) becomes, for well-localized, 

well separated filaments:

N
L~^rn* qnvn. (5.34)

n=l

This is just the angular momentum of a set of spinless Newtonian particles with 

masses given by qn. Under the same assumptions, P — Y^n=i qnvn> also the 

Newtonian form. If the initial linear and angular momenta are wholly transferred 
to the daughter filaments, these expressions for L and P must equate to those of 

the original ring soliton, i.e |L| = \l|Qo and F = 0.

We now make another simplifying assumption, restricting ourselves to cases where 

the break-up results in a set of the filaments with approximately equal energies. 

In this situation conservation of the two momenta obliges the filaments to move 
with nearly equal speeds (|vn| — w) along paths tangent to the initial ring. Then 
in Eq. (5.34) we can estimate |fn x vn| = Rv, where R characterises the initial 

radius of the solitary solution. In practice we assigned R by an energy-weighted 

mean:
= Jrdrr(Al + 2A2) (5.35)

frdr (A2 + 2A2) ‘
Finally, assuming that the entire energy and angular momentum are transferred 

to the filaments we get a very simple expression for the escape speed:

„ ~ H (5.36)
R
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Figure 5.18: ’Transverse velocities’ of filaments in saturable media vs k for I — 2, 
a = 01 Triangles mark results of the numerical simulation. Full line 
results gained through the angular momentum formula, Eq (5-36) Dashed 
lines mark results gained through the hamiltonian formula, Eq. (5.40). Dash- 
dotted lines mark the growth rates of the perturbation eigenmodes. Thik and 
thin versions of the dashed and dash-dotted lines correspond to the cases ot d 
and 4 filaments respectively.

This expression holds, under the stated assumptions, for both saturable and 

quadratic media. Before comparing it with numerical results, we consider an 

alternative hamiltonian-based approach.

Conservation of the hamiltonian H = J dxdy H suggests another way to estimate 

v. Substitution of Eq. (5.32) into H, under the same approximations as were 

used to get Eq. (5.34), gives

N 1 JVHo £ hn + I y (5.37)
n=l Z n=l

Eq. (5.37) links the initial hamiltonian Ho with the sum of the ’intrinsic’ hamil- 

tonians hn of the individual filaments calculated in their rest frames and of the 

’kinetic energies’ arising from their transverse motion, the latter again conforming 

to the particle analogue.

The hamiltonians of the initial stationary solutions (5.7), (5.18) are respectively
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given by

Figure 5.19: ’Transverse velocities’ of filaments in quadratic media vs n for I 1, 
3 — 0. Triangles mark results of the numerical simulation. Full line marks results 
gained through the angular momentum formula, Eq. (5-36). Dashed line marks 
results gained through the hamiltonian formula, Eq. (5.40). Dash-dotted line 
marks the growth rate of the maximally unstable perturbation eigenmode with 
J=3.

Ho = -kQ0 + 2% I rdr (f(A2)A - du , (5.38)

(5.39)Ho = -kQ0 + n rdrA^A2.

Considering the initial state as a composite of the final one, the last term in Eq. 

(5.37) can be interpreted as a ’negative binding energy’ which induces break-up 

and transforms to kinetic energy of the fragments.

Supposing again that there are N identical filaments, i.e. hn — h, qn — q, we get 

the following formula for the speed:

/Ho _ M (5.40)

For practical use of Eq. (5.40) we choose N which fixes q ~ Qo/N, and then we 

can find h for this q by using energy-hamiltonian diagrams, see e.g. [11], assuming 

the filaments to be ground-state solitons. Note that in Eq. (5.40) the first term 
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inside the bracket is fully defined by the initial conditions, but the second is an 

implicit function of N. Since Eq. (5.36) does not depend on N, comparison 

between Eq. (5.36) and Eq. (5.40) leads to a direct estimate of the number N of 

daughter solitons without numerical simulation or stability analysis.

For our two model systems we present in Figs. (5.18), (5.19) respectively examples 

of v vs k obtained from the numerical simulation compared to the formulae given 
by Eqs. (5.36), (5.40). In both models there is near-perfect agreement of Eq. 

(5.36), based on angular momentum conservation, with numerical simulation. 
There is less good agreement with Eq. (5.40), based on the conservation of 

the hamiltonian, though the qualitative behaviour is correctly predicted. One 

reason for the discrepancy could be radiation, which we neglected in making 
these estimates. If so, it would seem that the radiation carries away energy and 

hamiltonian more efficiently than linear or angular momentum. Alternatively, the 

daughter solitons may be in an excited state. Certainly, internal shape oscillations 

are apparent in the simulations and also in Fig. 17 (though exaggerated by the 

superposition of a finite number of images at discrete times). These questions 

demand more detailed investigation, which we postpone to future work.

The approaches presented above can be in fact be applied to any initial field 

distribution which produces a set of well separated filaments with close intensities, 

e.g. they can be used to analyse break-up of Laguerre-Gaussian beams carrying 

orbital angular momentum.

In physical units Eq. (5.36) states that the angular divergence of the filaments is 
just the diffraction angle of a beam with radius Rw multiplied by the order |Z| of 

the phase singularity,
„ ~ HE, (5.41)

27TW

where A is the wavelength of the light (for the quadratic case, the SH field has 

half the wavelength but double the order, and so the divergence is the same 
for both fields). This link between a linear quantity, the diffraction angle, and 

the nonlinear phenomenon of azimuthal instability suggests an analogy with the 

linear approach to soliton theory developed in [133].
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5.4 Summary and discussion

Ring-like solutions with a phase dislocation nested at the center and exponentially 

decaying tails exist in self-focusing saturable and in quadratic media. They are 

quite different from the ’classical’ optical vortex soliton supported by a defocusing 

nonlinearity [12], which is a dark spot with a phase dislocation on a broad, stable, 

bright background. Dynamics of the solutions studied here is characterised by 

azimuthal modulational instability which leads to break-up of the rings into a set 
of the filaments. This sort of dynamics has already been experimentally observed, 

in a saturable alkali vapour [121, 122], in photorefractive media [123] and in 

quadratically nonlinear crystal [124]. This shows that these solitary solutions, 
some properties of which can be more or less rigorously studied theoretically, 

reflect the main features of the dynamics of input beams used in experiments.

Solitons have been observed to spiral around each other because of a balance 

between either in-phase [134] or incoherent [135] attraction and repulsion due to 

nonzero angular momentum. Here, in contrast, we have nearly free quasi-solitons, 

with dynamics dominated by angular momentum conservation. Interaction forces 
may play a minor role in partitioning the energy among the filaments, but the 

daughter solitons rapidly cease to interact and fly off along straight- line trajec­
tories without any spiraling. Note that a side view of the filaments in [121] shows 

rectilinear trajectories with no obvious evidence of any spiraling, so it seems 
possible to achieve such angular momentum dominated dynamics in practical 

experiments.

Initialising model equations (5.2), (3.20)-(3.21) with self-trapped beams with 

phase dislocation (plus noise) we demonstrated that their initial nonzero angular 
momentum transfers to the filaments and they fly out tangentially from the initial 

ring. We developed two semi-analytic approaches to the filament dynamics, in 

analogy with classical mechanics, one of them based on hamiltonian conservation 

and the other on conservation of angular momentum. Although both approaches 
give qualitatively valid estimates for the ’transverse velocity (angular divergence) 
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of the filaments, the latter appears to be more general and gives also an excel­

lent quantitative agreement with numerical results. The number N of daughter 

filaments is in most situations roughly twice the angular momentum index I, and 

thus depends relatively weakly on the other parameters. Taken together, the two 

approaches based on conservation laws yield an independent estimate for N in 

reasonable accord with estimates based on simulations and on stability analysis, 

both of which require considerable computational labour.
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Chapter 6

Main results

Here I formulate two results which I consider as the most significant outcomes of 

my work on modulational instability of optical solitary waves.

• It is general feature of parametric processes to have a single phase symme­

try, which is linked to the conservation of the total energy of the interact­
ing waves. However, some of the parametric processes, e.g. non-degenerate 
three- and four-wave mixings, also have symmetry in the differential phase 

of two waves corresponding to the conservation of the energy imbalancing. 

If the parametric process can support bright solitary waves then symmetry 
in the differential phase strongly affects dispersive modulational instabil­

ity of the solitary waves, alowing such phenomena as interleaving filament 

patterns and competion between neck and snake instabilities.

• Solitary waves with nested phase dislocation and carrying non-zero angu­
lar momentum propagating in media with different nonlinearities break up 
into soliton-like filaments. Subsequent dynamics of the filaments is strongly 

defined by the conservation of the angular momentum. It results in tan­
gential motion of filaments and their angular divergence can be estimated 

as diffraction angle of the beam times the order of the phase singularity.
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Appendix A

Variational approach

Variational approach is a poweful and relatively easy method, which allows to 
find approximation for profiles of solitary solutions and reduce partial differential 

equations describing soliton propagation to set of odinary differental equations. 
Here I show, following series of papers of other authors [55, 56, 57, 58, 59], how 

variational approach can be applied to approximate spatial profiles solitons due 

to degenerate three-wave mixing. Peculiar point of the calculations presented 

below is that I will not impose a prior restriction on the dimension of solitary 

solution.

As many others equations of physics, equations describing propagation of optical 

waves in nonlinear medium and in particular in quadratic nonlinear media can 
be obtained as conditions for extremum of the action integral: S = dz f dVE, 

where £ is the Lagrangian density and dV = dx±... dxn is elementary volume. 

For Hamiltonian models Lagrangian density can be presented as

^^dEs -H (A.l)

Here s = 1,2,... N, N is the number of interacting fields and H is the hamiltonian 
density. Riquiring extrema of S one can find equations describing evolution of

Es, which have the form
ÔH 

ldzE^ ~ SEf (A.2)
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where H is the hamiltonian H = f dVH.

For Eqs. (3.14), (3.15) with Qj = 2a2 = 1 and ¿1,2 — 0 hamiltonian is

H = i i dz^dt[|VxE1|244lV±£2|2+7i|a?Ei|2+72|a?^|2+/3|^|2-|(^+^
J J (A.3)

For simplicity we will again suppose that GVD of both field are anomalous and 

71 _ 272; T = Application of variational approach in case of arbitary 7^2 

was presented in Ref. [58].

I chose following trial functions

Er = Are-aip2+iKZ, £2 = A2e-°2p2+i2KZ, (A.4)

where p2 = x2, or p2 = x2 +y2, or p2 = x2 + y2 + r2. If one wants to reduce partial 

differential equations to a set of ordinary differential equations for free parameters 
of the trial functions, then Arj2,aij2 have to be some unknown functions of z. 

However, I only aim here to approximate shape of solitons, and therefore it is 

enough to put all unknown parameters to be constants.

For choosen trial functions Lagrangian is

-L = I0
A2k (2k + ftA^ 

(2ai)D/2 (2o:2)D/2
^1^2 I T i +____—____

(2ai + a2^ + 2 ^oa)0/2-1 + 2(2O;2)d/2-1
(A.5)

Io = I, and J2 = respectively, for one, two, and three 

dimensional geometries. Minimization of the Lagrangian gives four equations for

four unknown parameters. Parameters Aij2 and a2 can be expressed as functions

Of Oil.
8q!iI2

°"2 IokD + 2arI2(D - 2)

(207 +[££2
D/0(2ai)D/2

(2oîi + o;2)d/22A 
lo^a^/2

. 2o;i
-I2(2-D) ,

— [(2k + /3)I0 + cx2I2].

Oil and Oi2 are linked by the equation

4o!2Io(2k + /3) + ^cx2l2 —
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+ /3)Iq — «2(2 — .

It is straightforward now to get cubic equation for ax.

For D = 1 we get

10a? - (4« + 3£)a? + 4k(2k + ^)ar - k2(2k + = 0. (A.6)

Eq. (6) has exact solution ax = f if V = This solution is in an excelent 

agreement with analytical solution (3.25), see [55].

For D = 2 and D = 3 we get, respectively,

16a? + 2k(2/c + /3)ai - k2(2k + = 0, (A.7)

and
18a? + ^a? - = 0. (A.8)

The Eq. (A.8) has obvious exact solution for p = 0.

It can be shown, see e.g. [55], that Eqs. (A.6), (A.7), (A.8) have only one physi­

cally relevant root. Accordingly to [55, 58, 59] there is a tendency for variational- 

gaussian approximations to give poorer results with increasing dimension, pre­
sumably because the Lagrangian integral weights large radii more heavily as D 

increases.
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Appendix B

On stability of multi-parameter 
vector solitons

The purposes of this Appendix are to formulate general asymptotical approach 

to stability of multi-parameter solitons in Hamiltonian models, to show how it 

can be used to find expressions for the instability growth rates with arbitrary 

accuracy and to demonstrate that under the certain conditions the first order 

approximation of this approach describes not only stationary, but also oscillatory 

instabilities of solitons.

We will consider Hamiltonian equations in the form

i^ = ^, n=l,2...N, (B.l)
dz oE*

which describes wide range of physical phenomena related with self-action and 

interaction of slowly varying along z wave envelopes in various nonlinear me­
dia. Here En are the complex fields, z is the propagation direction of the 

interacting waves, x is the coordinate characterising dispersion or diffraction, 

H = H(dxEn,En,dxE*,E*) is the Hamiltonian and * means complex conjuga­
tion. We will assume that H is invariant with respect to the set of (L — 1) phase 

transformations:

En -> En exp^i^), / = 1,2,... (L - 1), (B.2)
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<j)i are arbitrary real phases and are some constants. Because H does not 
depend from x explicitly, Eqs. (B.l) are invariant with respect to arbitrarily 

translations along x:
En{x,z) -> En(x - x0,z) (B.3)

Symmetry properties (B.2), (B.3) together with Hamiltonian nature of our prob­

lem imply presence of L conserved quantities, which are (L — 1) energy invariants 
n

Ql= dx^ ! = 1,2,... (L - 1), (B.4)
J n=l

and momentum N
ql = ~ [fc <B-5)

2^ J n=l

Another important consequence of the invariances (B.2), (B.3) is that certain 

class of solutions of Eqs. (B.l) can be sought in a form when x0 and are z 

dependent. In a simplest case they are just linear functions of z
L—1

En{x, z) = an(x - klz) exp(z (B-6)
Z=1

where Ki are real parameters characterising phase velocities and angle of propaga­
tion with respect to z axis. Functions an(r) obey following differential equations

ÇiKr,dT + dn)an — (B.7)
^an '

where Ha = H(dTan, an, dTa\, a\\r = x- klz and an = Et? ^1- We assume 
now that in a certain domain of the parameter space («x, k2,■•• Eqs. (B.7)

have family of solitary solutions such that |an( —> 0 for t —> ioo.

To study stability of the solitons we seek solutions of the Eqs. (B.l) in the form 
L-l

En = (an(r) + En^r, z)) exp(i ^2 ^mW), (B.8)
i=i

where En(r, z) is small complex perturbations. Linearising Eqs. (B.l) and as­

suming that En(r,z) = ^(r^, ^(r,z) = ^(t)^ we get the following non­

selfadjoint eigenvalue problem (EVP)
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where f = (€1, ■ • • ^+1 • ■ ■ &n)T, and R, S are N x N matrix operators with

elements given by

. 62H. . PH.
- 6ni(an + iRtd-r) + ia^Sa.,

here Snt is the Kroneker symbol. Note, that the operator S' is a selfadjoint one, 
i.e. S = S^, and R is a symmetric operator, i.e. R = RT-

By infinitesimal variations of and xq or by direct substitution it can be shown 

that
T _ da

Ui = (7uai> ■ • ■'YNlaN, —7uai> ■ • • — ^ni^n) , ul = ¿jp 

a = (ai,.. - a^, a*, • • • ^*n)T ■> £ = T • • • — 1)

are neutral modes of £, i.e. = 0 {I = 1,..• L). Operator £ also has L 

associated vectors Ui = da/dni such that CUi = —Ui, I — 1,... L.

It is straightforward to see that any solution of EVP (B.9) must obey L solvability 

conditions
(«^ = 0, l = l,...L, (B.10)

where (y\z) = Ei=i J dxy*Zi and wt are neutral modes of the operator £f, &wi = 

0,

* T _ _ . db
wi = (7uai,.. .^NinN,7uai7- ■'YniQn) > —

b = (—ai,... — a^, a*,... a*N)T, I = 1,•. ■ (L — 1).

Associated vectors of are Wi = db/dni and they obey ¿^Wi — —wj, I — 1,... L-

Close to instability threshold it is naturally to assume that |A| ~ e 1- As 

was already discussed above we will consider a special class of the perturbations 
which in the leading approximation can be presented as a linear combination of 

the neutral modes. Therefore we seek asymptotical solution of EVP (B.9) in the 

following form
oo L .

& = (B-U) 
771=0 I—1
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where constants Ci and vector-functions £m>o have to be defined. Here and

below I = 1,2,... L. Substitution (B.ll) into EVP (B.9) gives recurrent system

of equations for
(B.12)

Substituting (B.ll), (B.12) into conditions (B.10) one will find homogeneous 

system of L linear algebraic equations

oo L t
A2H ^(-A2)^-2"1^^^) = 0 (B.13)

' m=0 1=1

for L unknown constants Cb System (B.13) has nontrivial solution providing that 

corresponding determinant is equal to zero. This determinant is an infinite-order 

polynomial with respect to A2. Zeros of this polynomial define spectrum of the 

solitary wave linked with the chosen class of the perturbations. Thus equation 

specifying soliton spectrum is
oo

X^^-X^D^O, (B.14)

where Dj are real constants. Eq. (B.14) always has zero root of the 2L-order. 

It indicates that each of the zero eigenvalues corresponding to the neutral modes 

Ui is doubly degenerate one. This degeneracy originates from the presence of the 

associated vectors Ub

To write explicit expressions for Dj it is convenient to introduce vectors Adj = 

(A4^ ...Ad^), where,

m = 0,1,.. .oo.

Now each Dj can be presented as

Dj= E (B.15)
mi+...mL=j

where • • ■ Ad[mL)) is the determinant of the L x L matrix consisting

from the raws and sum is taken over all such combinations of (mb... mL) 

that £f=1 mi = j. can be readily expressed via derivatives of the conserved 
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quantities with respect to the soliton parameters:

(B.16)
11

and practical calculation of form > 0 can be simplified:
Note, that in most of the cases solitary solution itself can be found only numer­

ically using any of the well established methods for solving odinary differential 

equations, and recurrent calculations of C^-^Ui can be readily reduced to nu­

merically equivalent problem.

Because |A| was assumed to be small, Eq. (B.14) has asymptotical character. 

Therefore to make it work some additional assumptions about orders of Dj must 
be made. In case if these assumptions are satisfied then Eq. (B.14) correctly 

describes soliton spectrum and predict bifurcations of the soliton. Corresponding 

eigenvalues can be found using Eq. (B.14) with any degree of accuracy. For 

example, let us assume that Do ~ e2 and Dj>o ~ 0(1). Then, presenting A as

oo

7=0

in the first order Eq. (B.14) gives linear equation for Co,

Do - e^oDr = 0, (B.18)

which indicates threshold of stationary bifurcation at Do = 0. Continuing calcu­

lations into the next order one obtains

A2 = Ml-^+O(?)). (B.19)

If Di ~ s2 then asymptotical expression (B.19) fails. This is because now to have 

balanced equation for Co one must assume that Do ~ e4, but in this case equation 

for Co changes from linear one to quadratic:

Do - eXoDr + e4C02^2 = 0. (B.20)

Eq. (B.20) gives two threshold conditions Do = 0 and D^ = 4D0D2; see Fig. B.l. 

The latter condition indicates onset of an oscillatory instability.
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Figure B.l: Soliton bifurcation diagram in the neighbourhood of the point Do - 
= 0 for D2 > 0. Insets show (Re A, Im A)-plane with horizontal/vertical axes 

corresponding to ReA/ImA and dots marking soliton eigenvalues described by 

Eq. (B.20).

By recurrence it is clear that if - e2 then to have balanced equation for Co 
one must assume that ~ £2(1+A Other words asymptotical expansion near 

neutral modes can describe soliton spectrum in such regions of the parameter 
space which are close to the codimension-(/ + 1) bifurcation. If j =0 then only 
one condition must be satisfied and asymptotical approach predicts presence of 

either two purely imaginary or two purely real eigenvalues, which can collide at 

zero. If j' = 1 then two conditions must be satisfied and asymptotical approach 

predicts presence of two pairs of the eigenvalues which can be real, imaginary or 
complex. In this situation soliton becomes oscillatory unstable providing that two 

pairs of imaginary eigenvalues collided. For every further j two new eigenvalues 

come into play.

It is now instructive, to consider two simplest situations of one- and two-parameter 
solitons and to compare results of the presented theory with previously published 

numerical and analytical results on stationary instabilities. For one parameter 
solitons: Do = D. = D2 = Using these
formulas one can show that in case of when Di ~ 0(1) first term of Eqs. (B.19) 

gives the same expression for A2 which was obtained in Refs. [27, 60, 86]. If
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D^Dz > 0 then it can be concluded that second term in Eq. (B.19) indicates sat­

uration of the growth rate when distance from the instability threshold, Do = 0, 

growthes, which agrees with numerical results [60, 94].

For two parameter solitons:

dq =

9Qi 
9ki 
dQi 
dm

dQi 
dm 
dQi 
dm

5

D± =
9Q1 
dm

Mm

dQi 
dm +

dQi 
dm

d2 =
Mff
MS

Alg +
dQi 
dm 

M^

MS

dQi 
dm

, (B.21)

dQi 
dm + dQi dQi

dm dm

Comparing first order approximation for eigenvalues given by Eqs. (B.19), (B.21) 

and those which can be calculated from the effective-particle Hamiltonians pre­

sented in [62] one will discover significant difference in the resulting formulae. 
Mapping asymptotical theory presented above to the method used in [62], it be­

comes clear that results of Refs. [62] can be recovered if one will try to calculate 
A2 in order s2 using ratio Ci/C2 obtained from the solvability conditions (B.10) 

in the order 0(1), see Eqs. (7), (10) in [62].

In summary, general form of the asymptotical approach to the problem of the 

stability of the multi-parameter solitons in the Hamiltonian systems has been 

developed. It has been shown that asymptotical study of the soliton stability re­

duces to the calculation of a certain sequence of the determinants, where famous 

determinant of the matrix consisting from the derivatives of the system invariants 
with respect to the soliton parameters [82] is just the first in the series. In its first 

approximation presented approach gives criteria for both stationary and oscilla­

tory instabilities. Higher order approximations allow to calculate corresponding 

eigenvalues with arbitrary accuracy.
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Appendix C

Useful formulae

h 1 2
sechx = chi = 

th2x = 1 — sech2x 

dx(sechNx) = -NsechNx thx 

d^sec^x) = N2sechNx - N(1 + N}sechN^2x 

dx(thx sechNx) = (1 + N)sechN+2x - NsechNx 

d2(thx sechNx) = N2sechNx thx — (1 + A) (2 + N)sechN+2x thx
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Appendix D

Numerics

Here I give brief description of FORTRAN programmes which have been written 

and used to get most of the results described in this thesis

• To find stationary solitary profiles I have descretised one-dimensional sys­

tems of ordinary differential equations using 2nd order finite differences. 

Thus, reducing the differential equations to nonlinear set of algebraic equa­
tions which have been solved by NAG16 routine c05nbf. Shooting method 

also have been occasionally used. I have used upto 400 grid points with 

maximal spatial step 0.15.

• To study stability of the solitary solutions I have also used 2nd order finite 

differences to reduce corresponding eigenvalue problems for differential op­

erator to the eigenvalue problems for matrix, which have been solved by 

NAG 17 routine f02ebf.

• To numerically simulate propagation I used split-step method, for details 
see [80]. Nonlinear step was calculated by 2nd order Runge-Kutta method 

[80]. Linear step on Cartesian grid was calculated using two-dimensional 
fast Fourier transform (FFT). On polar grid linear operator was devided to 

radial and angular parts. Radial part was integrated by Crank-Nicholson 

method [80] and angular part by the one-dimensional FFT method.
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Appendix E

Publications

Here is the full list of papers which author contributed into and which were either 

published or submitted prior submission of the thesis.

• D.V. Skryabin, Asymptotical theory of stability of multi-parameter solitary 

waves, Physica D (submitted).

• E.A. Ostrovskaya, Y.S. Kivshar, D.V. Skryabin, and W.J. Firth, Stability 

of multi-hump optical solitons, Physical Review Letters, 1999, vol. 83, No. 

2 , pp. 296-299

• D.V. Skryabin and W.J. Firth, Modulational instability of bright solitary 
waves in incoherently coupled nonlinear Schrodinger equations, Physical Re­

view E, 1999, vol. 60, No. 1, pp. 1019-1029

• D.V. Skryabin and W.J. Firth, Modulational instability of solitary waves in 
non-degenerate three-wave mixing: The role of phase symmetries, Physical 

Review Letters, 1998, vol. 81, No. 16, pp. 3379-3382

• D.V. Skryabin and W.J. Firth, Dynamics of self-trapped beams with phase 

dislocation in saturable Kerr and quadratic nonlinear media, Physical Re­

view E, 1998, vol. 58, No. 3, pp. 3916-3930
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• D.V. Skryabin and W.J. Firth, Instabilities of parametric higher-order soli­

tons. Filamentation vs coalescence, Physical Review E, 1998, vol. 58, No. 

2, pp. R1252-R1255.

• D.V. Skryabin and W.J. Firth, Generation and stability of optical bullets 

in quadratic nonlinear media, Optics Communications, 1998, Vol. 148, No. 

1-3, pp. 79-84.

• W.J. Firth and D.V. Skryabin, Optical solitons carrying orbital angular 

momentum, Physical Review Letters, 1997, Vol.79, No.13, pp.2450-2453.

• D.V. Skryabin, A.G. Vladimirov, and A.M. Radin, Phase and amplitude 

dynamics of TEM01 and TEMW modes in a class-B laser, Quantum Elec­

tronics, 1997, vol 27, No. 10, pp. 892-896 [originally published in russian: 

Kvantovaya Elektronika, 1997, vol 24, No. 10, pp. 918-922]

• A.G. Vladimirov and D.V. Skryabin, Dynamical instabilities due to inter­

action of transverse modes in a class-B laser, Quantum Electronics, 1997, 

vol 27, No. 10, pp. 887-891 [originally published in russian: Kvantovaya 

Elektronika, 1997, vol 24, No. 10, pp. 913-917]

• D.V. Skryabin, Rotating and oscillating transverse patterns in an inhomo­

geneously broadened laser operating in a pair of doughnut modes, Quantum 

& Semiclassical Optics, 1996, Vol.8, No.3, pp.485-493

• D.V. Skryabin, A.G. Vladimirov, and A.M. Radin, Spontaneous phase symmetry­

breaking due to cavity detuning in a class-A bidirectional ring laser, Optics 

Communication, 1995, Vol.116, No.1-3, pp.109-115.

• D.V. Skryabin, A.G. Vladimirov, and A.M. Radin, Self-oscillatory regimes 

in a gas ring laser, Optics & Spectroscopy, 1995, Vol.78, No.6, pp. 896- 

905 [originally published in russian: Optika i Spectroskopiya, 1995, Vol.78, 

No.6, pp.989-998].

• D.V. Skryabin and A.M. Radin, Passive optical cavity with backward scat­

tering, Optics & Spectroscopy, 1994, Vol.77, No.l, pp.96-102 [originally 
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published in russian: Optika i Spectroskopiya, 1994, Vol.77, No.l, pp.109- 

115]

• D.V. Skryabin and A.M. Radin, The correction to the paraxial approxima­

tion for the laser cavity modes, Laser Physics, 1994, Vol.4, No.l, pp.148-152

• D.V. Skryabin and A.M. Radin, Optical rign resonator with a scattering 

inhomogeneity, Optics & Spectroscopy, 1993, Vol.75, No.l, pp. 105-110 

[originally published in russian: Optika i Spectroskopiya, 1993, Vol.75, No.l, 

pp.175-185]

• D.V. Skryabin and A.M. Radin, On the high-frequency asymptotics of ring­

cavity modes, Optics & Spectroscopy, 1991, Vol.71, No.6, pp.612-614 [orig­

inally published in russian: Optika i Spectroskopiya, 1991, Vol.71, No.6, 

pp.1064-1068]
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