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Abstract 

Onshore wind turbine technology has matured to the point when assets are now expected to 

produce availabilities greater than 97%. The wind speed a wind turbine operates in has an 

impact on its reliability. Hitherto this relationship has not been defined, quantified or used to 

undertake analysis to assess how wind turbine performance would be affected by conditions 

at a prospective site.   

Wind turbine reliability data comes from two modern onshore wind farms, located in 

Scotland, using multi-megawatt wind turbines. This information is used alongside data from 

meteorological masts, located on each site, to determine the mean wind speed on the day of 

each recorded failure that resulted in corrective maintenance.   A methodology is proposed in 

this thesis to define the relationship between wind turbine component failure rates and wind 

speed using Bayes Theorem. With these relationships known and wind speed dependent 

failure rates calculated, component reliability is modelled using discrete Markov Chains and 

Monte Carlo Simulation.  

The model is used to extrapolate the failure rate and wind speed relationships found within 

the onshore dataset to a proposed onshore and offshore site. From the generated data, wind 

turbine annual component failure rates are calculated for each site and analysis is performed 

to determine how component failure rates are likely to change throughout a year due to 

seasonal wind speeds at each site. The calculated seasonal failure rates allow wind turbine 

performance to be analysed more closely than if using traditional annual failure rates. A 

spares optimisation model is finally proposed using the wind speed dependent failure rate 

model. The output of this thesis is of particular relevance to operators of offshore wind 

farms. 
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1. The Drive Towards Clean Electricity Production in the UK 

In the UK and across Europe there has been a change in the electricity generation paradigm 

over the past 10 years or so. This has been led primarily due to the threat of climate change. 

The Intergovernmental Panel on Climate Change (IPCC) issued their First Assessment 

Report on climate change in 1990. Their conclusion was that the increased atmospheric 

concentrations of greenhouse gases was causing a natural greenhouse effect [1-1]. The IPCC 

recognised that energy production and use was the biggest contributing factors to the 

greenhouse gas problem and noted that fossil fuel combustion caused 70 – 90% of the total 

anthropogenic emissions of CO2 [1-1]. 

Since the IPCC report was delivered policies gradually were put in place to curb CO2 and 

other greenhouse gas emissions. The Kyoto Protocol to the United Nations Framework 

Convention on Climate Change was signed in 1997 by the member states of the United 

Nations (UN) [1-2]. This treaty was designed to set national targets to reduce the production 

of greenhouse gases throughout the world. The UK agreed to reduce their CO2 levels by 

12.5% of the 1990 levels while other nations agreed similar deals. As a result developed 

nations began to invest in renewable electricity as an alternative to the traditional methods of 

generation [1-3].  

The UK however decided to invest in Closed Cycle Gas Turbine (CCGT) power stations 

mainly because of falling gas prices, recent technological advances and privatisation of the 

UK electricity market. From 1990 to 2002 the percentage of electricity in the UK generated 

by gas rose from 5% to 28 % [1-4]. This period of time was known as the ‘Dash for Gas’. In 

data analysed by the IPCC, it was found that in the 50
th
 percentile, gas produces 469 grams 

of CO2/kWh compared to coal that produces 1001 grams of CO2/kWh [1-5]. Therefore 

CCGT plants produced significantly lower levels of CO2 than the coal fired power stations 

and due to the rapid roll out of gas fired power plants, by 2009 the UK managed to reduce its 

CO2 output by 15.2 % of the 1990 levels [1-3].  
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Part of this reduction in CO2 was due to renewable electricity technology becoming more 

attractive to investors as the price of gas increased rapidly in 2004, as shown in Figure 1-1, 

therefore causing the domestic gas and electricity prices to increase [1-6]. 

 

 

Figure 1-1: Average price of gas at UK delivery points from 1990 to 2011 in real (accounting for 

inflation) and current terms [1-6] 

 

Advances made in onshore wind energy technology in other areas of Europe meant that 

Wind Turbines (WTs) became a viable alternative to traditional forms of generation. 

Additionally, political pressure began to build and further CO2 reduction targets were set by 

the UK government with the Energy White Paper in 2003 and the Energy Review in 2006 

[1-7], [1-8]. Then in 2007, with the publication of the Energy White Paper - Meeting the 

Energy Challenge, a target of 10% of electricity generation to come from renewable sources 

was set for 2010 and additionally an aspirational target of 20% was set for 2020 [1-9]. 

Finally in 2008 the government passed the Climate Change Act into law which required a 

reduction in CO2 emissions by 80%, compared to 1990 levels, by 2050 [1-10]. One of the 

primary mechanisms for achieving this was through the use of renewable technologies.  
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Currently the UK still relies heavily on fossil fuels and imports 20% of its primary supply of 

gas, compared to 2000 when the UK exported 4.2% [1-11]. The UK therefore relies on cheap 

gas imports from geopolitically sensitive countries. Recently the UK government reacted to 

these problems by encouraging investment in the next generation of nuclear power stations 

to be built in England [1]. However nuclear power stations require very high capital costs 

compared to every other form of generation and also carries operating and decommissioning 

risks [2]. The new 3
rd

 generation of reactors, called the European Pressurised Reactor (EPR), 

are relatively untested and recent projects in Flamanville, France and Olkiluoto, Finland are 

currently over budget and delayed [3]. In an effort to reduce the risk, EDF agreed to a joint 

venture between themselves and two Chinese companies in 2013 to build EPR reactors in the 

UK [1-12]. These nuclear power stations will replace the current second generation, 

advanced gas-cooled reactor, nuclear power stations in the UK that are all due to be 

decommissioned by 2024.   

Despite these developments, the UK government continues to promote investment in wind 

energy – specifically offshore wind. Onshore wind projects however have had subsidies 

lowered and as many of the best sites have already been developed, investors are now 

looking to develop potentially more lucrative offshore sites.  From 2001, offshore 

development rounds have been licenced to operators in UK waters. Currently after two 

rounds, approximately 3.6 GW of offshore wind energy capacity has been installed.  

Developers have also competed to develop round 3 sites that are situated further offshore and 

have the potential to generate 31GW of electricity. 

Offshore wind has been targeted by the UK government as a solution to helping the UK meet 

their 2050 targets. However a lot of uncertainty remains about the technology. The high 

capital costs of the WTs have not begun to decrease as expected while OEMs compete over 

new innovative concepts and larger machines. Furthermore large offshore sites have not been 



Chapter 1. Introduction 

5 

 

developed as quickly as expected, therefore OEMs have not been able to make savings on 

economies of scale through the supply chain.   

As a result, operational experience is limited, especially for sites located far offshore. One 

example is Dogger Bank, a Round 3 site located approximately between 125 km - 290 km 

offshore in the North Sea, with a potential capacity of 13 GW [1-13]. For the UK to meet its 

targets, sites like Dogger Bank have to be developed. However the logistical challenges 

posed by this site are more considerable than any site currently in operation in Europe. For 

the wind farm to transmit a good quality supply of electricity to the mainland it is vital that 

the WTs are reliable and achieve high levels of availability. Failures at such long distances 

from shore will be considerably harder to repair and will cost significantly more than those at 

sites currently operating. And as the sizes of WTs increase, the weight of components is also 

likely to increase. Therefore expensive heavy lifting vessels may be required more frequently 

to carry out repairs.  

The offshore environment however poses another challenge. Mean annual wind speed 

offshore is greater than that experienced onshore. This is one of the reasons why offshore 

wind is so attractive to investors, the potential electricity production is significantly higher, 

so too therefore are potential profits. The impact this wind speed will have on reliability is 

not fully understood. Published operational data has been limited to onshore reliability data 

from European wind farms, using out-dated WT models. Onshore WTs achieve such high 

levels of performance that the impact of wind speed on reliability has not been a popular 

focus of research. However this may change as the potential gains and losses offshore are so 

high.  

In order for the UK to continue its drive towards clean electricity production it is vital that 

offshore wind be an attractive investment to developers. For this to happen and for it to be an 

effective method of electricity generation, offshore WTs must be as reliable as possible. The 



Chapter 1. Introduction 

6 

 

factors that affect WT reliability must therefore be understood clearly. This thesis will 

attempt to ascertain more about WT reliability by gaining a better understanding into how 

reliability is affected by wind speed. 
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2. Publications Resulting From the Work of This Thesis 

 

Wilson, G and McMillan, D (2012) Modelling the effects of the environment on wind turbine 

failure modes using neural networks. In Supergen 2012, 2012-09-08, Hangzhou, China  

 

Wilson, G and McMillan, D (2013) Modelling the effects of seasonal weather and site 

conditions on wind turbine failure modes. In: ESREL 2013, 2013-09-30, Amsterdam. 

 

Wilson, G and McMillan, D (2013) Modelling the impact of the environment on offshore 

wind turbine failure rates. In: EWEA Offshore 2013, 2013-11-19, Frankfurt. 

  

Wilson, G and McMillan, D (2014) Quantifying the impact of wind speed on wind turbine 

component failure rates. In: EWEA 2014 Annual Event, 2014-03-10, Barcelona. 

 

Wilson, G and McMillan, D (2014) Assessing Wind Farm Reliability Using Weather 

Dependent Failure Rates. In: The Science of Making Torque from Wind 2014, 2014-06-26, 

Copenhagen. 

 

McMillan, D., Dinwoodie, I., Wilson, G., May, A., Hawker, G. (2014) Asset Modelling 

Challenges in the Wind Energy Sector. In Cigre 2014, 2014-08-25, Paris.   

http://strathprints.strath.ac.uk/45783/
http://strathprints.strath.ac.uk/45783/
http://strathprints.strath.ac.uk/45394/
http://strathprints.strath.ac.uk/45394/
http://strathprints.strath.ac.uk/47994/
http://strathprints.strath.ac.uk/47994/
http://strathprints.strath.ac.uk/47994/
http://strathprints.strath.ac.uk/47994/
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3. Key Research on the Impact of Wind Speed on Wind Turbine 

Reliability  

The majority of European research undertaken in the specific  area of the impact of wind 

speed on reliability has been carried out by Peter Tavner and his colleagues at Durham 

University. Since 2010 they have published four papers in this area, all of which will be 

discussed in detail in Chapter 2.3.4. Previous to this, the most prominent research was 

carried out by Berthold Hahn in 1997 [1-14]. Table 1-1 shows a summary of these authors 

and the papers they have published.  

Table 1-1: Matrix of authors and their contribution to notable papers on impact of wind speed on 

reliability  
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P. J. Tavner (Durham 

University) 
       

S. Faulstich 

(Fraunhofer, IWES) 
       

B. Hahn (Fraunhofer 

IWES) 
        

P. Lyding (Fraunhofer 

IWES) 
         

M. Wilkinson (Garrad 

Hassan, pre. Durham) 

 
         

D. M. Greenwood 

(Durham University) 

 
        

M. W. G. Whittle 

(Durham University) 

 
        

R. Grindele (Durham 

University) 
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4. Thesis Contribution to Field of Research 

The research carried out in this thesis adds to the field of research in the following areas: 

1. The dataset used in this analysis is larger and more advanced than the dataset used 

by Tavner. It is also more informative than the dataset used by Wilkinson which 

consisted of SCADA alarm logs which do not accurately describe the location of 

failure within the WT.  

2. The detail of the dataset used in this thesis allows analysis to be undertaken at a 

component level.  

3. The methodology used in this thesis does not assume a linear relationship between 

wind speed and reliability – as Tavner and Hahn did. Therefore the impact of wind 

speed on reliability above and below rate wind speed is calculated more accurately. 

4. The impact of wind speed on component reliability is quantified in terms of power 

generation and availability. The economic benefit of using this model as opposed to 

traditional constant failure rate models is evaluated. 

5. Offshore WT reliability is calculated at a component level using the model 

developed in this thesis.  

6. Finally the model developed in this thesis is applied to offshore wind farm spares 

optimisation to determine if the research undertaken in this thesis is of benefit to 

industry.  

  



Chapter 1. Introduction 

10 

 

5. Thesis Outline 

Chapter 2 introduces some of the basic theories of engineering system reliability covering 

concepts such as failure rates, repair rates and maintenance that will be referred to 

throughout the thesis. Then the existing reliability databases that are used frequently in the 

literature are summarised. Finally WT reliability literature is reviewed, starting from the 

early research that took place before the arrival of multi-megawatt turbines and concluding 

with research that has been published on offshore WT reliability. The chapter culminates 

with a review of the literature, shown in Table 1-1, that specifically focuses on the impact of 

wind speed on WT reliability.  

Chapter 3 outlines the theory behind the proposed model which will be used in the 

subsequent thesis chapters. 

Chapter 4’s goal is to summarise the data used in the subsequent chapters. The WT 

reliability data is introduced and the process in which it is gathered is explained, weather 

data from onshore and offshore met masts are also analysed. To conclude the chapter a 

methodology used by Tavner and his colleagues is then replicated using the weather and 

reliability data. From this the merits of analysing the impact of temperature and humidity, as 

well as wind speed, are assessed.  

Chapter 5 outlines the methodology and describes the motivation for the methods used and 

how the aims of the thesis will be met. Markov Chains, Monte Carlo Simulation and Bayes 

Theorem are presented. The approaches used in designing various elements of the model are 

described and many parameters are defined.  

Chapter 6 shows the capabilities of the wind speed dependent failure rate model in 

calculating component failure rates and site availabilities for when subjected to onshore and 

offshore wind speed inputs. The impact of wind speed dependent failure rates on electricity 
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generation is then assessed and the model is compared to a traditional stationary failure rate 

model.  

Chapter 7 demonstrates an offshore wind farm spares optimisation model using the wind 

speed dependent failure rates. Offshore constraints are added to the model, component costs 

are estimated and the spares optimisation process is described. A comparison is then made 

between spare strategies using wind speed dependent failure rates and using stationary 

failure rates to test the effectiveness of the spares optimisation model.  

Finally Chapter 8 presents the main results, conclusions and identifies areas where more 

research should be undertaken.   
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1. Reliability Analysis of Engineering Systems  

The impact of a failure to a WT can range from a minor failure to the control system, to the 

cataclysmic scenario of a blade fracturing and becoming airborne. In the former’s case the 

power output of the wind farm would decrease by less than 1%, leading to an almost 

negligible impact on the transmission grid frequency. The WT would be repaired easily and 

begin operating after a short period of downtime. In the latter’s case the damage to the WT 

would be significant but perhaps less concerning than the danger and risk caused to the 

general public. Downtime would be long, if indeed the WT could be repaired at all. 

As will be demonstrated in this chapter, the probability of the latter occurring is very low – 

indeed blade fractures are relatively rare events [2-1] . However, it is the job of engineers to 

ensure that the probability of this happening does not just remain low but decreases as the 

number of installed WTs increases and the size of machines become larger over time.  

A control system failure however is far more likely to occur and does so regularly, as will be 

discussed [2-2], [2-3]. These types of failures impact the economic viability of the 

technology and therefore impinge on deployment and limit the growth of the industry.  

Reliability is an essential part of engineering and must be considered at all points in the 

design, deployment and operation of a system. Traditionally reliability was assessed and 

perfected using engineering judgement [2-4]. However, quantitative methods are used much 

more frequently now to provide good quality information with which engineers can make 

better informed decisions. As will be demonstrated throughout this chapter,, systems can 

now be designed more economically due to an improved knowledge of their operation and 

behaviour. 

1.1. Availability, Failure Rate and Repair Rate 

A key reliability metric is availability – this is the percentage of time that a system is 

operating as it should be. For an operating system this metric is calculated using Equation 
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2-1 [2-5], [2-6]. The uptime is the period of time that the system is able to operate and the 

downtime is the time in which the system is not operating due to failure.  

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 
 

Equation 2-1 

 

This metric gives the probability that a system will operate at a given point in time. It is 

influenced by two other metrics – failure rate and repair rate. The failure rate λ, is the 

probability of the system (or a subsystem) failing at a given point in time. It is calculated 

using Equation 2-2 and Equation 2-3  [2-5]. In general terms, a failure is defined as any fault 

(or unplanned event) which causes the system downtime [2-5]. 

𝜆 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑡𝑜 𝑎 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑡𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙 𝑝𝑒𝑟𝑖𝑜𝑑𝑜𝑓 𝑡𝑖𝑚𝑒 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑤𝑎𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 
 

Equation 2-2 

𝜆 =  
1

𝑀𝑒𝑎𝑛 𝑇𝑖𝑚𝑒 𝑇𝑜 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 (𝑀𝑇𝑇𝐹)
 

Equation 2-3 

 

The repair rate µ, describes the probability of a component being repaired during a given 

period of time. It is represented by the symbol μ and is calculated using Equation 2-4 and 

Equation 2-5 [2-5].  

𝜇 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑎𝑖𝑟𝑠 𝑡𝑜 𝑎 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑡𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙 𝑝𝑒𝑟𝑖𝑜𝑑𝑜𝑓 𝑡𝑖𝑚𝑒 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑤𝑎𝑠 𝑏𝑒𝑖𝑛𝑔 𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑
 

Equation 2-4 

𝜇 =
1

𝑀𝑒𝑎𝑛 𝑇𝑖𝑚𝑒 𝑇𝑜 𝑅𝑒𝑝𝑎𝑖𝑟 (𝑀𝑇𝑇𝑅)
 

Equation 2-5 

 

A failure is defined as being an unplanned event that causes the WT to be unavailable to 

generate electricity. Low or high wind speed events do not constitute failures as the WTs are 

available to generate if the resource is within the design limits. Incidents such as the 
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untwisting of cables and pitch lubrication cycles which cause the WT to stop generating are 

not defined as failures as these as part of the operational schedule of the WT.   

As an illustrative example, Figure 2-1 shows a time series of a single WT’s state during a 

year of operation. The two states the WT can be in are the up state, 1 when the WT is 

available to generate and the down state, 0 when the WT has failed and is unable to generate 

electricity. Downtime from annual servicing is omitted from the figure.  

 

Figure 2-1: Failure rate, repair rate, downtime and availability illustrative example 

 

The first failure occurs on day 130, the WT then remains down until day 175 when it is 

repaired and resumes operating again. The WT then fails for a second time on day 285 after 

which it is repaired 40 days later. The WT then remains in the up state until the end of the 

year.  

Table 2-1: Illustrative example reliability metrics 

Downtime (days) 85 

Uptime (days) 280 

Availability (%) 76.7 

Failure Rate (failures/WT year) 2.6 

Repair Rate (repairs/WT year) 8.6 
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The uptime of the WT during the year was 280 days, while the downtime was 85 days. The 

availability, failure rate and repair rate are calculated using Equation 2-1, Equation 2-2 and 

Equation 2-4 and are shown in Table 2-1. 
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1.2. Reliability Functions 

The hazard rate λ(t) is a function of time that describes the probability of a failure occurring 

to a component at a time t, assuming the component has survived thus far. In WT literature it  

is often used to mean the same thing as the failure rate; however the difference between the 

two metrics is that the hazard rate is a function of time.  

In mechanical systems the hazard rate is often described as being a bath tub curve. It is by far 

the most common description of the hazard rate in the reliability text. Its origin is unknown – 

however it did appear in an actuarial life table analysis in 1693 [2-7] . As shown in Figure 

2-2, it divides the hazard rate into three distinct periods of operation: 

 Infant mortality or burn in 

 Random failures or useful life 

 Wear out period  

 

Figure 2-2: The bathtub curve of a mechanical system [2-7] 

 

Theoretically, components should be maintained to keep them within the useful life period of 

their life before being replaced to prevent them from entering the wear out period and 

become uneconomical to continue using [2-5]. Equally, new components should be put 

λ(t) 
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through a burn in process before they are installed so that they are within their useful period 

at the beginning of operation [2-8].  

However each component has a different hazard rate and predicting this metric for a WT is a 

challenge. As components are frequently replaced, in anticipation of the wear out period, this 

region of the curve is not often well modelled. Many also argue that the bath tub curve is 

only successful for very few cases in predicting the impacts of aging and equipment failures 

[2-8], [2-9]. 

If a hazard rate is calculated using WT reliability data it is often assumed to be constant. 

Although the bath tub curve is not always appropriate it is also unlikely that components 

maintain constant hazard rates throughout their lives. However if the population of WTs in 

the sample have differing or unknown ages, assuming a constant hazard rate is often justified 

as the data is often not of the quality required to correctly model the underlying distribution 

[2-5].   

A constant hazard rate, or more specifically failure rate, leads to the most commonly used 

distribution in reliability engineering – the negative exponential distribution [2-10], [2-11]. 

This is described in Equation 2-6, where the survivor function R(t) is defined [2-5].  

𝑅(𝑡) =  𝑒−𝜆𝑡 
Equation 2-6 

 

The failure density function f(t) and cumulative failure distribution Q(t) is therefore defined 

as shown in Equation 2-7 and Equation 2-8 [2-5]. 

𝑓(𝑡) =  
−𝑑𝑅(𝑡)

𝑑𝑡
= 𝜆𝑒−𝜆𝑡 

Equation 2-7 

𝑄(𝑡) =  ∫ 𝜆𝑒−𝜆𝑡 𝑑𝑡 = 1 −
𝑡

0

𝑒−𝜆𝑡 
Equation 2-8 
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The failure density function f(t), is illustrated in Figure 2-3. The regions Q(t) and R(t) 

represent the cumulative failure distribution and the survivor function respectively. As time t 

increases, the probability of the component surviving (R(t)) decreases and the cumulative 

failure (Q(t)) increases.  

 

Figure 2-3: Failure density function f(t) 
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1.3. Maintenance 

The purpose of maintenance is to keep the system operating at the required level of 

performance. Using Figure 2-3 as an example, if the system is operating at f(t) and 

maintenance is carried out, when the system resumes operating at will be at f(t-x).The value 

of x depends on the action performed and how effective it is. If an assumption is made that in 

the case of a failure a replacement is made and the system resumes operating in an ‘as good 

as new’ state where x = t. However, if the component is rehabilitated, rather than a 

completely replaced, the maintenance may be imperfect and the system may resume 

operating between the ‘as good as new’ and the ‘as bad as old’ state, where x ≤ t [2-12]. The 

cost of rehabilitation is generally less than the cost of replacement, therefore to determine the 

correct course of action, reliability and economics must be considered [2-13]. 

There are two different classifications of maintenance – preventive and corrective [2-5], [2-

6]. Preventive maintenance is undertaken prior to a failure occurring. Tasks such as cleaning, 

lubricating and replacing components that are believed to be near the wear out period of their 

life, constitute preventive maintenance. Preventive maintenance is carried out to reduce the 

risk of failure. In some systems the outcome of a failure is not great enough to merit 

preventive maintenance; therefore the system is allowed to operate until a failure occurs. 

However in other systems, a failure during operation could result in huge losses or even 

death, therefore preventive maintenance is essential to keep the system running at its 

required performance level.   

Preventive maintenance is often performed at regular intervals; corrective maintenance 

however must be undertaken whenever a component fails. Downtime due to corrective 

maintenance is also less predictable and manageable than preventive maintenance as often 

the failure diagnosis requires visual inspection whereas preventive maintenance is planned 

and scheduled to ensure minimum downtime to reduce any lost revenue.  
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As a result, it is important to remember that when failure rates are calculated using reliability 

databases, it is very likely that preventive maintenance has been performed to maintain the 

system at an acceptable performance level. Therefore when a failure to a component did 

occur, it happened in spite of efforts to maintain it operating at a suitable f(t). If preventive 

maintenance was not undertaken on these systems, the failure rates in the reliability 

databases would very likely be higher.      
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1.4. Summary 

This cost of operating a system is influenced by the losses in output and revenue due to 

component failure. Failure rates and repair rates of components can be calculated from 

reliability data to provide a better understanding of the system. Efforts can then be made to 

increase system availability. This cost is referred to as operation and maintenance (O&M) 

cost. 

Improvements in availability can be achieved through developing an  effective maintenance 

schedule that would ensure that preventive maintenance would minimise system downtime 

and corrective maintenance events. Preventive maintenance should target the components 

which cause the most concern, replacing or repairing them before they cause long periods of 

downtime. It is also important that spares holdings must be maintained to hold enough 

replacement components in order to account for both preventive and corrective maintenance.  

Although these improvements increase revenue they also cost money to implement and 

sustain. Ultimately reliability evaluation is used to reduce the failure rate of a system and 

increase the repair rate to an optimum point beyond which it does not become economically 

viable to spend more money on O&M.  

The following section will introduce WT reliability data that has been used frequently in the 

literature. From this, WT reliability trends will be highlighted and discussed.  
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2. Accessible Wind Turbine Reliability Data 

All of the reliability evaluation analysis discussed in the previous section is conditional on 

reliability data being available with which to perform analysis. Ideally reliability data should 

come from homogenous populations that consist of systems of the same age and design, 

which operate in the same conditions. However WTs operate in different conditions within 

wind farms that vary in size and in some occasions WT model. WT reliability data is 

therefore not homogenous at all. However efforts have been made to gather suitable 

reliability data over many years for many WTs.    

. The literature which will be discussed in the following section refers to five wind turbine 

reliability databases. Other databases such as these exist, however this thesis will focus on 

these five. They  are explained in the following section and Table 2-3 gives a summary of 

the databases  [2-14]–[2-18]. The taxonomy used in each database was different; however 

the databases used mostly common component descriptions.    

2.1. WMEP 

Comprising of roughly 64000 maintenance reports from 1500 WTs, the Scientific 

(Wissenschaftlich) Measurement and Evaluation Program (WMEP) database is compiled by 

the Fraunhofer IWES [2-14]. The data was collected using logbooks for each WT from 1989 

– 2006. All disruptions, repairs, malfunctions and maintenance events were recorded along 

with monthly production figures.  

2.2. LWK 

The Landwirtschaftskammer (LWK: English translation Centre for Agriculture) database 

from Northern Germany whose population was fixed when recording began in 1993 and 

decreased over time as WTs were decommissioned [2-15], [2-19]. All WTs in LWK 

consisted of three-bladed, upwind rotors. However there were various models and concepts 

as shown in Table 2-2.   
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Table 2-2: Turbine Models in LWK database [2-15] 

Turbine Model  Power Control Concept Name 

Tacke TW600 Stall control 
Indirect Drive, Base Line 

Control 

Vestas V39 500 Pitch control, hydraulic 
Indirect Drive, Advanced 

Control 

Enercon E40 Pitch control, electrical Direct Drive 

Nordex N52/N54 Stall control 
Indirect Drive, Base Line 

Control 

Enercon E66 Pitch control, electrical Direct Drive 

 

2.3. Windstats 

Windstats was a quarterly newsletter which published production and operating data from 

WTs in Germany and Denmark [2-16]. The population was not fixed and the installed 

capacity of the turbines increased over the ten year period in both Germany and Denmark [2-

16].  

However the quantity of turbines in the dataset reduced in Denmark over time while the 

number in Germany increased [2-16] .  

This may go some way to explaining the differences in failure rates between the two 

countries shown in Table 2-3. The German dataset saw a rapid expansion in wind energy 

over the ten year period where the number of WTs in the dataset increased each year and the 

average rating of these turbines also increased [2-3]. However in Denmark, WTs were 

already an established technology and many had been operating across the country for many 

years. As the older, smaller, machines stopped generating the number of turbines in the 

database decreased. However larger, more modern turbines were built to the replace the 

older models [2-3]. 

Despite the Danish database consisting of older WTs the failure rate of the dataset was lower 

than that of the German database. This was because the WT models used on the German 
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wind farms were more complex and less reliable than the older, smaller and less complex 

turbines used by the Danish in their wind farms [2-3]. See Chapter 2.3.2 for a more detailed 

discussion about this.   

 

2.4. VTT 

The VTT database was maintained by the Technical Research Centre of Finland [2-17]. It 

comprised of statistical data of performance, downtime and failures for a set of WTs in 

Finland. The data comes from grid connected WTs in Finland. Production data has been 

gathered since 1992, while failures statistics from 72 WTs have been analysed since 1996 [2-

17]. Annual reports are produced annually and are open for public use [2-17]. Elforsk 

Elforsk provided annual reports detailing the performance, downtimes and component 

failures of most of the WTs in Sweden [2-18]. Statistical data on the wind power systems of 

Sweden is gatherd by Vattenfall, which then passes this data onto Elforsk who publish an 

annual report on WT performance in Sweden [2-20]. Most of the WTs in Sweden are 

included in the analysis and performance data has been collated from as far back as 1989 [2-

20].  
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Table 2-3: Reliability Database Summary  

 Country Time 

Span 

Number of 

Turbines 

WT Years of 

Experience 

Average 

Failure Rate 

over whole 

survey period 

(failures/ WT 

year) 

Average 

Annual 

Downtime 

over whole 

survey period 

(hours/ WT 

year)  

Subassembly with 

Highest Failure Rate 

Subassembly with 

Longest downtime per 

failure 

WMEP [2-

14] 

Germany 1989 – 

2006 

1500 15000 2.4 156 
1. Electric 

2. Control 

3. Sensors 

1. Gearbox 

2. Drive Train 

3. Generator 

LWK [2-15] 
Germany 1993 – 

2006 

241 5719 1.9 27 
1. Electric 

2. Rotor 

3. Control 

1. Gearbox 

2. Rotor 

3. Electric 

Windstats 

Germany [2-

16] 

Germany 1995 – 

2004 

4285 27700 1.8 93 
1. Rotor 

2. Electric 

3. Sensors 

1. Gearbox 

2. Rotor 

3. Drive Train 

Windstats 

Denmark [2-

16] 

Denmark 1994 – 

2003 

904 18700 0.7 - 
1. Control 

2. Rotor 

3. Yaw-System 

- 

VTT [2-17] 
Finland 2000 – 

2004 

92 356 1.5 237 

1. Hydraulic 

2. Rotor 

3. Gearbox 

1. Gearbox 

2. Rotor 

3. Support & 

Housing 

Elforsk [2-

18] 

Sweden 1997 – 

2004 

723 4378 0.8 58 
1. Electric 

2. Hydraulic 

3. Sensors 

1. Drive Train 

2. Yaw System 

3. Gearbox 
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3. Research into Wind Turbine Reliability 

3.1. Early WTs 

WT reliability has been an issue since WTs first began to be built commercially in the 1970s. 

One of the first papers on WT reliability concerned the MOD WT series built in the mid-

seventies to eighties in the USA [2-21]. Starting in 1975, NASA designed and built the 

MOD-0, 100kW WT. It had a blade diameter of 38 m and was used initially as testing 

apparatus for aerofoil designs, rather than a generating turbine [2-21]. The MOD-0 was then 

upgraded by Westinghouse to the MOD-0A in 1978; four turbines were built to this design 

throughout the USA. During routine inspections it was discovered that cracking had begun to 

appear in the blades [2-21]. The MOD-0A was then superseded by the MOD-1 which was 

built by General Electric in 1979 [2-21]. This model experienced many engineering 

problems and as a result had its operation restricted.  

The American aerospace company Boeing then undertook the design and installation of the 

MOD-2 WT [2-21] [2-22]. This was rated at 2.5 MW output – a high output even by today’s 

scale – and had a rotor diameter of 91m. Three were installed in 1980 in Washington State. 

In 1981 the first turbine suffered a major failure when the hydraulics failed to function and 

the pitch control system prevented the rotor from accelerating from 17.5 rev/min to 29 

rev/min [2-21] [2-22]. The rotor was brought to a halt after which a full safety analysis was 

carried out where it was discovered that the main shaft was cracking [2-21]. 

As WTs became bigger, concerns arose over whether the design rules at the time would not 

be suitable for large WTs and may compromise safety and design. Up until this period, WTs 

were designed in a deterministic manner [2-4]. The design rules at the time did not address 

the reliability of the WTs components and did not take into account the severe consequences 

that may have occurred if a large WT had suffered a major failure [2-4].  
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Seebregts et al concluded that for large scale, multi-megawatt turbines which would be 

manufactured in mass production it would not be practical or safe to design the WT using 

“trial and error” like small WTs had been designed up until that point [2-4]. Therefore 

systematic and analytical tools would be required to improve WT reliability for the large 

scale turbines. Seebregts et al proposed using a combination of failure mode and effects 

analysis (FMEA), fault tree analysis and environmental risk assessment to improve the 

reliability of WT designs [2-4].  

The purpose of the environmental risk assessment was to analyse the impact of a blade 

failing. This was a common reliability and safety concern in the 1980s and early 1990s and 

as a result many of the papers at that time, written about WT reliability, focused on 

addressing this type of failure [2-21] [2-23] [2-24].  

Seebregts et al showed that this methodology was beneficial in improving reliability and 

recommended that it be used along with the existing deterministic analysis used at the time 

[2-4]. However Seebregts et al did identify that there was “a fundamental lack of knowledge 

of physical phenomena in WT engineering that may cause hazardous situations, e.g. 

excessive vibrations” [2-4]. Computers did not have the processing power at the time to 

accurately model vibrational effects and these could only be analysed by preforming 

extensive load case situations in the calculation stage [2-4].  

Seebregts et al recommended an electronic data collection be installed on every turbine to 

ensure that O&M data was gathered easily and used to optimise maintenance schedules [2-

4]. Modern WTs have a Supervisory Control and Data Acquisition System (SCADA) which 

preforms this job.     

In 1996, when the wind capacity worldwide was 4GW, Sayas and Allan investigated the 

reliability of WTs and their effect on the transmission and distribution system [2-25]. 

Markov chains were used to model the stochastic nature of WT failures in order to model the 
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availability of a WT. Markov chains had been used to model similar processes in previous 

research [2-26] [2-27] [2-28]. In Figure 2-4 it shows the state diagram for two WTs which 

operate in binary states, either in an “up” state, which means any power output can be 

achieved as the machine is fully operational, or the “down” state which means the machine is 

out of service [2-25].  

 

Figure 2-4: State diagram for two binary WTs [2-25] 

 

The operating state the WTs are in depends upon their failure rate λ and repair rate µ, which 

are determined using [2-5]. A stochastic transitional probability matrix can be calculated 

from this arrangement. This matrix contains the probability of each state change.   

Due to the unpredictable nature of wind, Sayas and Allan wanted to analyse the impact of a 

wind farm on an electrical grid, so they built their model following the same principles as 

before [2-25]. Their model is shown in Figure 2-4.  

Sayas and Allan developed this model for a wind farm of 14 WTs, with each WT capable of 

generating 150kW, using real site data which would calibrate the wind model [2-25]. Instead 

of 4 wind states, as shown in Figure 2-4, there were 15 to increase the accuracy of the results 

[2-25]. Their results showed that the overall availability of the WTs in their model was very 

similar to that experienced in reality for onshore wind farms, roughly 98% [2-25].  
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This research was important as it gave developers an idea of the capacity factor a WT could 

achieve, taking the reliability of the machine into account. The analysis could also be used 

by network operators to calculate the amount of energy a wind farm would be likely to 

produce using a capacity outage probability table. It was also an early attempt to try to model 

the stochastic nature of WT failures. However, it was quite simplistic and did not consider 

the differences between major and minor failure modes and the downtimes associated with 

each. The failure rate used was also for the whole system rather than for specific 

subassemblies.   
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3.2. Modern Onshore WT Reliability 

In 2005 multi-megawatt WTs were beginning to become more common in Spain, Denmark 

and Germany [2-3]. But because the technology was relatively new, there were concerns 

over the operating life of the WTs and how the reliability of the WTs would change over 

time.  

Using WT reliability data from the German and Danish Windstats database Tavner found the 

average failure rates of WTs based in Germany and Denmark for each year of recorded data, 

from 1996 - 2003 [2-29] . 

Tavner foun that over time the failure rate of both datasets decreased, in both cases by 

roughly 50% [2-29]. Tavner and his colleagues also concluded that [2-29]: 

 German turbines fail approximately twice as often as Danish turbines. 

 German failure rates are improving faster than Danish failure rates.  

 The failure rates of German mechanical sub-assemblies are about double that of the 

Danish turbines.  

 The German electrical sub-assemblies also fail more often than the Danish electrical 

sub-assemblies. 

Both the German and Danish turbines show similar perturbations, the authors believed this 

was because of weather which they thought would be similar in both sets of locations. 

Tavner compared WT reliability with the failure rates of traditional forms of power 

generation. He found that although wind generators were less reliable than steam turbine 

generators, they were better than diesel and gas turbines and their reliability  

However there was a significant difference between the reliability of turbines sited in 

Germany and those sited in Denmark. This difference was because in general the German 

WTs were younger and had larger installed capacities than the Danish WTs [2-3], [2-16], [2-
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30]. They were also variable speed, whereas many of the Danish WTs were constant speed. 

By maintaining a constant rotational speed, at all times throughout generation, the 

conversion of energy from wind to electricity is not as efficient. But this more simple design 

is a lot more reliable as simpler and better established components are used, whereas variable 

speed WTs at this time were a modern design using more complex and used less tested 

components [2-3], [2-29].  

Tavner et al identified the electrical sub-assembly as an area to focus attention on to improve 

WT reliability [2-3], [2-29]. This recommendation was however based on their considerably 

high failure rates which affected the variable speed German WTs. However the authors 

recognised that the downtime which resulted from a failure to the electrical subassembly 

tended to be quite short compared to larger mechanical components, such as the gearbox, 

which failed less often [2-3], [2-30].  

To attempt to answer the question of the life span and reliability of WTs through time, 

Tavner and his colleagues analysed the Windstats data further and in 2007 [2-3]. As 

discussed previously in 0, the life curve of mechanical components is usually represented by 

the bathtub curve which describes the hazard rate, or the failure rate of a component of a 

system over time (λ(t)), as shown in Figure 2-2 [2-3], [2-5]. A life curve can be calculated 

using equation 3, which is the power law process (PLP) and is used in reliability analysis for 

complex, repairable equipment [2-3].  

𝜆(𝑡) =  
𝛾

𝜃
(

𝑡

𝜃
)𝛾−1 Equation 2-9 

𝛾, 𝜃 > 0; 𝑡 ≥ 0  

 

The PLP function models a wide range of failure processes by varying the shape (𝜃) and 

time (𝛾) parameters.  
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 When 𝛾 < 1, the failure rate (λ) decreases with time to model the infant mortality 

period.  

 When 𝛾 = 1 the failure rate remains constant and models the useful life period. 

 When 𝛾 > 1, the failure rate increases with time to model the wear out failures. 

 

By estimating the shape and time parameters for the Danish and German WTs, Tavner and 

his colleagues plotted a life curve for both the Danish and the German WTs using the PLP. 

The algorithm for this process can be found in [2-3]. The curves correlated well with the 

actual data.  

No attempt was made to produce a deterioration curve because the authors believed that if a 

WT began to show signs of deterioration it would be taken out of service before serious 

reliability issues arose [2-3]. There was also no deterioration data available to the authors to 

validate their results if they were to attempt to model it [2-3].  

Tavner and his colleagues observed that there were very significant differences between the 

two datasets. These differences were due to the differences in WT models prevalent in each 

dataset. Indeed, the total average yearly failure rate for the German and Danish turbines in 

Windstats was 1.79 and 0.43 respectively [2-3], [2-16]. Interestingly this showed that the 

more complex machines, which were designed to be more efficient at extracting energy from 

the wind, were less reliable [2-3], [2-30]. For these more complex designs to be 

economically viable the WTs would have had to generate additional power to compensate 

for the energy they were losing from failing more often. Their maintenance strategies would 

also have to be better to reduce downtime. 

Tavner, van Bussel and Spinato investigated the reliability of different turbine models in 

2006 with a conference paper at the IEE 2nd International Conference on Power Electronics, 

Machine & Drives [2-30]. The authors used the LWK database as opposed to WindStats. 
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This was because WindStats did not state the concepts of the different WTs in its database – 

whereas LWK did [2-30].  

Failure rates for each turbine concept were calculated using the Homogenous Poisson 

Process, which produced failure rates which were assumed to be constant over time [2-3] [2-

30]. As shown in Figure 2-5, the LWK turbines have similar failure rates to those in the 

German WindStats database; this is because the two datasets have similar WTs in terms of 

size and concept [2-30].    

 

Figure 2-5: Comparison in failure rate between Windstats and LWK databases [2-25]  

 

The LWK database has data for three general WT concepts, several models of which are 

shown in Table 2-4 [2-15], [2-30]: 

 Fixed Speed Indirect Drive 

 Variable Speed Indirect Drive 

 Variable Speed Direct Drive 
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Table 2-4: WT Models in LWK Dataset  [2-15], [2-30] 

Turbine Size Group Turbine Model Rating (kW) Speed 

1 Tacke TW600  

Vestas V39 500 

Enercon E40 

600 

500 

500 

Fixed 

Variable 

Variable 

2 Nordex N52/N54 

Enercon E66 

800/1000 

1500 

Fixed 

Variable 

 

Tavner and his colleagues make several observations about the difference in reliability 

between the three concepts [2-30]: 

 The gain in reliability from using a direct drive is made up from losing the gearbox. 

 However, the electronics in the direct drive WT (E40) are more unreliable and 

actually make the concept less reliable than the indirect drive WT (V39 500).  

The fixed speed geared WT (TW600) has the most reliable electronics and benefits from not 

requiring pitch mechanisms. However the blades of the TW600 are the most unreliable of the 

The results for the larger turbines, shown in Figure 2-6, led the authors to the conclusion that 

the indirect drive WTs (N52/N54) were marginally less reliable, on a whole, compared the 

direct drive turbines (E66) [2-30]. However the failure rate of the generator in the E66 was at 

least double that of the generator used in the N52/N54.  

The authors attribute the greater number of generator failures in the direct drive turbines to 

the more complex generator which is used in direct drive WTs [2-30]. The direct drive 

generators from the LWK dataset also suffered from a lack of standardisation because their 

manufacture was on a smaller scale than the geared induction generators [2-30]. The size of 

the direct drive generator was also a factor in its reliability as the stator and rotor windings 

were much longer, it was therefore much harder to seal against external agents [2-30].  
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Figure 2-6: LWK concepts failure rate comparison 1MW turbines [2-30] 

 

 

The conclusion to the research undertaken by Tavner et al into the various concepts was that 

there were positives and negatives for each configuration. Gains in reliability made in one 

area inevitably led to sacrifices in another [2-30]. 

Echavarria and her colleagues like Tavner and his, was also interested in how WT reliability 

changed over time, and how this changed depending on WT configuration. She instead used 

the WMEP database which, like the LWK database, recorded the models and concepts of 

WTs [2-14], [2-31].  

By examining individual components Echavarria attempted to understand how the reliability 

of major components advanced over time and what technologies present in the WMEP 

database worked most effectively [2-2], [2-31].   

The WMEP database comprised of a fixed population turbines of a variety of sizes and ages. 

Figure 2-7 shows the three size categories of WT with their corresponding failure rates 

during each recorded year of operation [2-2], [2-31]. The smallest category (less than 

500kW) had a relatively constant failure rate throughout this recorded period, while the 

larger categories (which were made up of many of the newer, more complex turbines) 
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showed a decrease in failure rate from year one to year six, but then a large amount of 

failures for years seven and eight. The multi-megawatt turbines were some of the first of 

their kind to be installed and therefore suffered many early life failures which tend to come 

from new technologies [2-2], [2-31]. The increase in failure rate in years seven and eight 

may have been because of a serial defect. The smaller turbines were older and were of a 

more simplistic design, therefore because of their age and their reliability the failure rate was 

low and relatively constant throughout the recorded period [2-2], [2-14], [2-31].  

 

Figure 2-7: Catagorised annual failure rates for WMEP dataset for each operational year [2-2] 

 

Figure 2-8 shows the annual number of exchanges of component in the WMEP database [2-

2]. The blades and the generator are the two most exchanged components [2-2]. This is 

because the WMEP database is made up of many WTs with synchronous generators that fail 

often and stall regulated turbines which experience many blade failures. 
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Figure 2-8: Annual exchanges of main components for WMEP database [2-2] 

 

Despite the blades being replaced so frequently in stall regulated turbines the pitch regulated 

WTs in the database are actually less reliable as shown in Figure 2-9 [2-2]. This is because 

the pitch system and the rotor (without the blades) fails frequently on the pitch regulated 

WTs [2-2].   

 

Figure 2-9: Component failure rates throughout operation of WMEP database for pitch and stall regulated 

WTs [2-2] 
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Echavarria and her colleagues assessed the reliability of the different types of generators in 

her dataset. The majority were induction generators, the rest were synchronous generators. 

Of the synchronous generators, 20% were direct drive WTs [2-2], [2-31]. They found the 

synchronous generators to have higher annual failures than the induction generators – as 

shown in Figure 2-10 – but that also their reliability improved over time [2-31].  

 
 

Figure 2-10: Component failure rates throughout operation of WMEP database for induction and 

synchronous generators [2-2] 

 

This corroborated well with Tavner’s conclusions in [2-30], which also found that German 

turbines – of which many had synchronous generators – failed more often but got more 

reliable over time. 

In general the direct drive WTs were the least reliable in the WMEP dataset, followed by the 

geared synchronous generator WT and then the geared induction generator WTs which were 

the most reliable, as illustrated in Figure 2-11 [2-2]. 
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Figure 2-11: Component failure rates throughout operation of WMEP database for induction drive, direct 

drive and synchronous generators [2-2] 

 

Power electronics were also found to be less reliable in the synchronous generator which 

again corroborates with Tavner’s work with van Bussel and Spinato in [2-30]. Echavarria 

and her colleagues found that around half of the failures found in their German dataset were 

due to control systems and electronics [2-31].  

With Echavarria’s research taking a more in depth look at the individual components and 

how they performed in different types of WT, Spinato published a paper in 2009 with 

Tavner, van Bussel and Koutoulakos which looked specifically at the reliability of WT 

components [2-1].  

As with previous research they found that the older, simpler, Danish WTs were the most 

reliable WTs. But it was clear from Figure 2-12 that this wasn’t just for the system as a 

whole, but also for each component [2-1].  
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Figure 2-12: Failure rates of components from Windstats database and LWK [2-1]  

 

Spinato and his colleagues found the most unreliable components to be, in descending order 

of magnitude to be the electrical system, rotor, converter, generator, hydraulics and finally 

the gearbox [2-1]. However, when taking into account the resultant downtime from each 

component from the LWK database, shown in Figure 2-13, it was clear that in the LWK 

case, the gearbox, generator and electrical system were the largest contributors to the mean 

time to repair MTTR [2-1].  

 

 

Figure 2-13: LWK survey hours lost per failure comparison for each component [2-1]   
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This conclusion was also reached by Ribrant and Bertling in their analysis of a Swedish WT 

dataset which came from two different sources which overlapped each other and comprised 

of roughly 780 WTs [2-20]. One of the sources was the Elforsk database [2-18].  

The most frequently failed subassembly in their dataset was also the electrical system which 

accounted for 17.5% of the failures from 2000 – 2004 [2-20]. However in terms of 

downtime, the gearbox was the most troublesome component, taking 19.4% of the downtime 

and contributing over 11.6 hours of downtime per WT, per year [2-20]. 

Ribrant and Bertling found that the average gearbox failure took 256 hours to repair [2-20]. 

Table 2-5 presents details of the gearbox failures in the dataset between 1997 and 2004 [2-

20]. Interestingly, the frequency of gearbox failures decreases over time while the average 

downtime per failure increases. This is most likely because major failures are occurring after 

the WT has been operating for several years, while the minor failures occur early in the life 

of the gearbox and then decrease over time.  

Table 2-5: Gearbox Failures in Elforsk Dataset between 1997 – 2004 [2-20] 

Year 1997 1998 1999 2000 2001 2002 2003 2004 

1997-

2004 

Number of 

Failures 

21 41 52 26 30 42 13 7 232 

Total 

downtime 

(hours) 

4031 2518 5061 6172 5228 12589 3987 2309 41895 

Average 

downtime 

per failure 

192 61 97 237 174 300 307 330 181 

Percentage 

of total 

downtime 

(%) 

9.4 5.3 7.3 15.5 13.6 33.5 14.8 17.4 14.6 

 

The authors examined the subcomponents within the gearbox; their data is shown in Table 

2-6 [2-20]. The last row represents failures where no subcomponent has been specified; 

Ribrant and Bertling noted that half of these correspond to serious failures which have 

resulted in the whole gearbox being replaced [2-20]. They also noted that most bearing 
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failures required a replacement gearbox or all gearbox bearings [2-20]. B1 corresponds to 

failure caused by wear; this is the most frequent cause of failure in the gearbox. 

Table 2-6: Gearbox Subcomponents Failure Data from Elforsk Dataset [2-20] 

Component  Number of 

Failures 

Average 

Downtime 

(hours) 

Number of 

Failure Cause: 

B1 

Average 

downtime 

Cause: B1 

(hours) 

Bearings  41 562 36 601 

Gearwheels 3 272 2 379 

Shaft 0 0 0 0 

Sealing 8 52 4 30 

Oil System 13 26 5 36 

Not Specified 44 230 19 299 

 

Table 2-7: Comparison of Swedish, German and Finish WTs Failure Data [2-20] 

Country Sweden Finland Germany 

Average Number of failures 

per turbine 
0.402 1.38 2.38 

Average downtime per year 52 237 149 

Average downtime per 

failure (hours) 
170 172 62.6 

Most frequent failures 

1. Electrical 

Systems 

2. Sensors 

3. Blades/Pit

ch 

1. Hydraulics 

2. Blades/Pitch 

3. Gears 

1. Electrical 

System 

2. Control 

System 

3. Hydraulics/

Sensors 

Most amount of downtime 

1. Gears 

2. Control 

system 

3. Electrical 

system 

1. Gears 

2. Blades/Pitch 

3. Hydraulics 

1. Generators 

2. Gears 

3. Drive Train 

Longest downtime per 

failure 

1. Drive 

Train 

2. Yaw 

system 

3. Gears 

1. Gears 

2. Blades/Pitch 

3. Structure 

1. Generators 

2. Gears 

3. Drive Train 

 

The authors compared their Swedish data with statistics from Germany and Finland; this is 

presented in Table 2-7 [2-20]. Interestingly they found German turbines to be the most 

unreliable but have the lowest downtime per failure, while Swedish turbines were the most 

reliable but experienced long periods of downtime per failure [2-20]. The low downtime in 
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Germany was attributed by Ribrant and Bertling to “…a better and nearer service 

organisation…” [2-20]. It is interesting to note that the German survey showed a high 

number of generator failures, this may be due to the high number of direct drive WTs present 

in the survey. 

The comparative differences in reliability between direct drive and indirect drive WTs was 

researched further by McMillan and Ault [2-32]. They developed a Markov Chain Monte 

Carlo Simulation model for calculating the merits of direct drive and indirect drive turbines. 

Models like this had been used previously by [2-5], [2-25], [2-33], [2-34]. Using failure rates 

and repair rates from [2-2], [2-3]. McMillan and Ault’s calculations found that technically, 

direct drive and indirect drive turbines could achieve very similar availabilities, with direct 

drive being slightly better, this is shown in Figure 2-14 [2-32]. 

 

Figure 2-14: Comparison of annual availability of direct drive and gearbox driven WTs [2-32] 

 

 

However, economically they found that a direct drive turbine did not produce as good a 

revenue as a geared turbine [2-32]. A direct drive turbine would produce £237k a year, 

whereas an equivalent geared turbine would produce £291k [2-32]. This difference was 

attributed to the higher repair and replacement costs for the direct drive concept. The costs 

for each of the components they were using in their model are found in Table 2-8 [2-32].  
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Table 2-8: Component Costs Used In Model [2-32] 

Component Indirect Drive (£) Direct Drive (£) 

Gearbox 121,733 N/A 

Generator 177,066 313,740 

Rotor 210,000 210,000 

Electronics 22,133 66,400 

 

However, McMillan and Ault found that if their assumptions of repair rate for the 

synchronous generator improved sufficiently the direct drive turbine would achieve even 

greater availability and improve its annual revenue [2-32]. Many generator failures are minor 

electrical faults that can be easy fixed rather than severe mechanical failures experienced by 

gearboxes that cause long periods of downtime [2-32].  

Despite lots of research currently being undertaken to improve and understand gearbox 

reliability – for example [2-35]–[2-37] – Spinato makes a very good point that gearbox 

reliability may not be able to be improved upon as the reliability of gearboxes in other 

industries is similar to the WT industry [2-1]. Therefore the best solution in improving WT 

reliability may be improving the reliability of direct drive generators. This may be most 

advantageous offshore, where the rules of operation and maintenance change significantly.  
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3.3. Offshore Reliability 

In 1999 the Dutch Offshore Wind Energy Converter (DOWEC) project began with the goal 

to develop technology and concepts which would make large scale offshore wind farms 

economically viable [2-38]. At this time offshore wind farms were very small (less than 

40MW) and were many based in the Baltic Sea, close to shore.  

DOWEC recognised that the levels of reliability achieved at that time onshore 

(approximately 98%) would be very difficult to achieve offshore. Van Bussel and Zaaijer 

acknowledged that the availability that could be achieved offshore would be determined by 

the optimal cost expenditure on O&M [2-39]. This problem is illustrated Figure 2-15 which 

shows the point at which the lifetime cost of O&M is greater than the value of the energy 

that could be generated with the additional availability. The only way to increase availability 

economically beyond this point is improve the quality of O&M strategy, without increasing 

lifetime costs. In Figure 2-15 this would have the effect of reducing the gradient of the direct 

cost of O&M line.  

 

Figure 2-15: The optimum total cost of O&M 
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One way to reduce the cost of O&M is to decrease the failure rate of the system. Therefore 

Van Bussel and Zaaijer sought to look at current onshore technology and try to find a 

concept which was reliable enough that it would be suitable for use offshore.   

Using two data sources, Van Bussel and Zaaijer calculated the failure rate for a typical 

onshore WT. The data, which originates mainly from the northern coast of Germany and 

contained many small turbines that would never be sited offshore, is shown in the second 

column of Table 2-9 [2-39].      

Table 2-9: Failure Rates for WT Components  

Component Onshore λ 

(failures/year) 

Reduced λ  

(failures/year) 

Shaft & Bearings 0.02 0.02 

Brake 0.05 0.05 

Generator 0.05 0.05 

Parking Brake 0.05 0.05 

Electric 0.14 0.10 

Blade 0.16 0.11 

Yaw System 0.23 0.15 

Blade Tips 0.28 0.14 

Pitch Mechanism 0.28 0.14 

Gearbox 0.30 0.15 

Inverter 0.32 0.16 

Control 0.34 0.17 

Total 2.20 1.28 

 

The authors recognised that a failure rate of 2.20 would not be suitable offshore [2-39]. Two 

failures per turbine year and a further two other scheduled downtimes for planned 

maintenance could mean 800 trips annually to an offshore wind farm of 200 WTs. Research 

using other data sources has shown that onshore WT were capable in 2001 of improved 

reliability [2-3], [2-20]. However like the dataset used by Van Bussel and Zaaijer, these WTs 

were much smaller than WTs which would be sited offshore, their reliability would therefore 

be better than the larger, more complex offshore machines [2-39].  
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Van Bussel and Zaaijer used their reliability data to assign failure rates to six alternative WT 

concepts which they then evaluated [2-39]. The six concepts investigated are dated by 

comparison to the concepts used today by the major manufacturers. Siemens and Vestas 

were traditionally users of indirect drive, wound rotor induction generators for their onshore 

models. But in 2013 Siemens installed their first direct drive permanent magnet WT offshore 

[2-40]. While also in 2013 Vestas (and their joint venture partners Mitsubishi Heavy 

Industry) announced that their offshore concept would also use a permanent magnet 

generator as they believed this would improve reliability [2-41].  

Tavner undertook an assessment on WT concepts in 2008. Using the same data they had 

used in their 2006 and 2007 papers, they assessed the different WT concepts present in their 

LWK dataset with relevance to offshore use [2-42]. They came to the conclusion that direct 

drive WTs may produce a higher availability offshore because it removes the long MTTR 

caused by the gearbox [2-1], [2-42]. Indeed if the direct drive WT concept assessed by Van 

Bussel and Zaaijer were to improve on its electronics and generator reliability, its failure rate 

would reduce significantly and their results may have been different [2-39].  

Interestingly, the first offshore WTs widely deployed in UK offshore waters added weight to 

this argument. The Capital Grants Scheme was launched in 2001 by the Department of Trade 

and Industry. Its aim was to help nurture the growth of an offshore wind industry in the UK 

and it attempted to do this by supporting medium scale projects in shallow UK waters. Five 

projects in England were supported; their total installed capacity was 390 MW. Table 2-10 

gives a summary of each of the sites [2-43].  
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Table 2-10: Summary of Round 1 offshore wind farm sites supported by Capital Grants Scheme [2-43] 

 
Location Capacity 

(MW) 

WT Model Water 

Depth (m) 

Distance 

from centre 

of wind farm 

to shore (km) 

Operator 

North Hoyle 60 Vestas V80 7-11 9.2 RWE npower 

Scroby Sands 60 Vestas V80 5-10 3.6 E.on 

Kentish Flats 90 Vestas V90 5 9.8 Vattenfall 

Barrow 90 Vestas V90 15-20 12.8 Centrica/Dong 

Burbo Bank 90 SWT – 3.6 - 107 2-8 8 Dong 

 

With the exception of Burbo Bank, the other four sites all used Vestas V80/90 WTs. These 

turbines are variable speed, pitch controlled WTs, which use a gearbox and a doubly fed 

induction generator (DFIG). As a requirement the operators of North Hoyle, Scroby Sands, 

Kentish Flats and Barrow had to publish their operational data annually. The reports consist 

of wind speed, performance and operational data [2-44].    

All four sites suffered from severe gearbox reliability. The WTs were originally designed for 

use onshore, the modifications made to them so they could be deployed offshore was 

minimal [2-43]. The average availabilities for the four sites was 80.2%, the lowest of which 

was Barrow with an availability of 67.4% over the single year that its data was published [2-

43], [2-44]. The gearboxes on all four sites suffered from bearing failure in the planetary 

gears, as a result a retrofit program was organised and all the gearboxes were overhauled and 

replaced [2-43]. Despite this, the average capacity factor for all four sites was 29.5% - the 

best performing site was North Hoyle which had an average capacity factor over 3 years of 

35% [2-43], [2-44]. A significant reason for its high performance - its availability was the 

highest of the sites at 87.7% - was because the gearboxes were not entirely replaced over a 

three year period during which the capital grants scheme published its data [2-43].   

Another project that published its operational data was the Dutch offshore wind farm 

Egmond Aan Zee. From 2007 – 2009 it produced annual reports detailing monthly 

production and availability, component failures and resultant downtimes. It too suffered 

severe gearbox failures and over the three year period of reporting overhauled each gearbox 
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in their fleet [2-45]. They too used the Vestas V90 WT and installed 36 of them, in 30 m 

deep waters, 10 km from shore [2-45], [2-46]. Over the reported period, Egmond Aan Zee 

achieved an availability of 80% [2-45]. This was mainly because of failures and resultant 

downtime caused by the gearbox. On average the gearbox contributed to 55% of the total 

downtime, as shown in Figure 2-16  [2-45].  

The downtime data from Egmond Aan Zee is similar to that from the onshore LWK 

database, analysed by Tavner and his team, shown in Figure 2-13 [2-42]. The gearbox, 

electrical system/control system and the generator are the components which cause the most 

downtime for both datasets. For the offshore turbines on Egmond Aan Zee however the 

gearbox dominated the downtime much more. This difference may be due to the effects of 

the offshore conditions and the different O&M strategies, but it is also likely to be partially 

due to the different models of WTs in each dataset. The LWK dataset as mentioned before 

contained direct drive turbines which have less reliable generators and electronics and no 

gearboxes.   

 

Figure 2-16: Reliability of components at Egmond Aan Zee between 2007 - 2009 
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The impact of logistics on downtime can be demonstrated in Figure 2-17, which shows the 

average downtime when a single failure occurred to a component on Egmond Aan Zee. 

Large components that required a lifting vessel dominated the downtime. Interestingly the 

average time taken for scheduled maintenance was approximately 3 hours – this equated to 

5% of the downtime, as shown in Figure 2-16.  

 

Figure 2-17: Average downtime per component failure at Egmond Aan Zee 2007 - 2009 

 

It is important to note that for all the offshore wind farms discussed, the same WT model 

was used which suffered from a serial gearbox fault, which required replacement and heavy 

lift vessels. After reporting for the Capital Grant Scheme stopped at the end of 2007, the 

capacity factors for the UK offshore sites increased, as shown in Table 2-11, to an average of 

33.3% [2-46]. For each site with the exception of North Hoyle this was an improvement, 

however the capacity factor is influenced by the wind resource and the logistics that year, as 

well as the reliability. The data for Egmond Aan Zee is not available after 2009.  

Table 2-11: Capacity factors for UK offshore wind farms 2008 – 2012 [2-43] 

 

Capacity Factor (%) 

Wind Farm 2008 2009 2010 2011 2012 Mean 

Barrow 39.7 34.2 30.7 40.7 38.2 36.7 

Kentish Flats 33.6 29.5 31.0 34.8 32.6 32.3 

North Hoyle 36.1 36.2 27.2 32.2 34.7 33.3 

Scroby Sands 29.9 32.2 28.2 32.7 32.4 31.1 
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Despite improvements in reliability it is still interesting to observe the logistical issues that 

occurred when a major component failed. The consequential downtime which typically 

resulted from a failed offshore gearbox included the following [2-43]: 

1. the time taken to diagnose the failure 

2. the time taken to decide how to respond to the failure 

3. ordering time for components 

4. waiting for a heavy lifting vessel 

5. waiting for a safe access window 

6. transit time to the wind farm 

7. time spent waiting for safe conditions to perform maintenance (see Table 2-12 [2-

34]) 

8. performing maintenance actions 

This procedure was not just isolated to gearboxes; it was the same for any major component 

whose repair or replacement required a heavy lifting vessel. In fact, even for a component 

which did not require a heavy lifting vessel, the other steps still applied and added 

significantly to the overall downtime.  

Table 2-12: Maintenance Weather Constraints [2-34] 

 

Wind Speed (m/s) Restrictions 

>30 No access to site 

>20 No climbing WTs 

>18 No opening roof doors fully 

>15 No working on roof of nacelle 

>12 No going into hub 

>10 No lifting roof of nacelle 

>7 No blade removal 

>5 No climbing met masts 

 

Logistics are vitally important offshore. If a failure occurs in winter when the weather is 

likely to be hostile, the WT can be down for as long as it takes for a safe weather window to 
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open, regardless of the failure and whether the equipment required to repair it is available [2-

47]. With this issue in mind, Van Bussel and Henderson tried to examine what areas could 

be improved upon to cope better with the harsh offshore environment and improve downtime 

and availability [2-48].  

The authors observed that the accessibility of a site could determine the economic viability 

of a project [2-48]. Figure 2-18 was developed from results taken from an earlier project, 

which evaluated the O&M costs for a 100 unit wind farm site [2-49]. It shows how 

dramatically the achievable availability falls as the accessibility is reduced.  

 

Figure 2-18: Comparison between vassel accessability and WT availability offshore [2-48] 

 

To improve availability Van Bussel and Henderson recommended four areas of focus [2-48]: 

 Access methods 

 Lifting facilities 

 Maintenance strategies 

 O&M modelling 

Van Bussel and Henderson recognised in 2001 that access had to be less sensitive to the 

wind and wave conditions [2-48]. Building a walkway from a vessel to a turbine that was 

able to safely transfer personnel in harsh conditions would be hugely advantageous. 
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Walkways such as this have been developed by several companies in recent years that allow 

the safe transfer of personnel during periods which hitherto would have been unsafe to work 

in [2-50]. Research from Feuchtwang and Infield looked at the impact of access on 

availability; they found that component repair times actually had a greater impact on 

downtime than failure rates. They also believed that the gearbox, generator and blades would 

have the greatest impact on availability as they required lifting vessels which were restricted 

by the sea state [2-47].  

Lifting facilities are easy to come by onshore, however offshore they are very expensive as 

discussed by Van Bussel and Zaaijer [2-39]. The period over which a vessel can be hired 

depends on many issues, some of which are: where the vessel is sailing from originally; the 

time of year; the distance from land to shore; the activity required to be undertaken by the 

vessel; and the competition in the market for vessels from other wind farms and oil and gas 

companies [2-51]. Van Bussel and Henderson predicted that once the lifting height exceeded 

80 m offshore, costs would become a serious problem. More recently McMillan and 

Dinwoodie have reached a similar conclusion, that the costs of heavy lifting vessels will 

become a serious issue as more offshore wind farms begin to be installed, leaving a shortage 

of available vessels to undertake O&M for operating wind farms, thus increasing the demand 

and the cost [2-52].  

The strategies used to maintain offshore WTs originally were very similar to those employed 

onshore. However, because of access constraints and the costs involved in vessel hire 

discussed above, condition monitoring was recommended by Van Bussel and Henderson so 

that journeys could be planned in advance with the foresight of a particular failure likely to 

occur [2-48]. By planning journeys in advance, vessels could be booked ahead of time (if 

required) for a period of time when access was likely, spare components could be sourced 

and lost energy could be minimised by fixing any problems before they cause a failure [2-

34].    
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The economic argument of installing condition monitoring systems offshore was discussed 

by McMillan and Ault [2-34]. Using discrete-time Markov Chain Monte Carlo simulation 

and assuming the offshore maintenance weather constraints, shown in Table 2-12, they 

concluded that the benefit of installing a condition monitoring system depended on the cost 

of implementing the system and its accuracy [2-34]. The system would have to be accurate 

in 60% to 80% of cases for it to be an economical option [2-34]. However the authors 

doubted whether condition monitoring systems would be able to achieve this level of 

accuracy offshore [2-34].  

However more recent work undertaken by Besnard and Bertling has argued that condition 

monitoring, of at least the drive train and the blades, is economically beneficial [2-33]. 

Further research was undertaken by Nilsson and Bertling to assess the life cycle cost of a 

condition monitoring system installed for an offshore wind farm. They found that 

improvements to maintenance planning could be made using the condition monitoring 

system and that the improved performance of the offshore wind farm would justify the cost 

of the system.  

Many issues identified in the research touch upon the impact of the environment on WT 

reliability. The following section will explore this area of research in more detail by 

discussing research which is closely aligned with the focus of this thesis. 
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3.4. Research Focusing on the Effects of Wind Speed on WT Reliability  

The effects of wind speed on WT reliability were addressed by Hahn in 1997 [2-53]. Using 

WMEP data Hahn demonstrated that there was a relationship between the average daily wind 

speed and the number of failures per day in some of the WT components within his dataset. 

This is shown in Figure 2-19 [2-53]. 

 

Figure 2-19: Number of failures per day against average daily wind speed using WMEP data [2-53] 

 

Tavner and his colleagues then carried out analysis in 2006 using Windstats data which they 

hoped would determine if there were was a relationship between failure rate and wind energy 

index (WEI) [2-54]. The WEI is a measurement that describes the wind speed across the 

whole of Denmark, by using this index Tavner assumed that the WTs in the Danish 

Windstats database were distributed uniformly throughout the country [2-54]. Their results 

compared the average monthly failure rate of the WTs in the dataset between 1994 – 2004 

and the WEI for each month in Denmark between the same time period [2-54].   

Despite showing a convincing relationship between failure rate and wind speed, the results 

from Tavner’s analysis, by his own admission, were rather simplistic. The Windstats 

database, as previously discussed, contained lots of different models of WT. As a result a 
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large degree of underlying detail was lost in the analysis. Assuming that the wind speed 

across the whole of Denmark was representative of wind speeds experienced on each site 

was also inaccurate.  

In 2010, Tavner and his colleagues built on their earlier work to discover if a relationship 

existed between wind speed and failure rate [2-55]. To correct the failings of their previous 

paper the authors this time looked at three individual wind farms in Germany, all with the 

same WT model, and used weather data from sites sited close to the wind farms. In total their 

dataset had roughly 202 WT years of data from the WMEPs database [2-14], [2-55].  

The three sites were: 

 Fehmarn – located on the Baltic Sea coast. 

 Krummhorn – Located on the North Sea coast.  

 Ormont – located in the highlands in Rhineland Palatinate. 

The WTs used on the sites were a mixture of Enercon E30 and E33’s. Both concepts were 

rated at 300kW, had synchronous wound rotors, were variable speed, hydraulic blade pitch 

controlled and were manufactured from 1988 – 1993. They were the last geared turbines to 

be produced by Enercon before they switched exclusively to direct drive WTs [2-55].  

Similar analysis to Tavner’s previous paper on the subject was carried out initially on the 

German data site by site. However, they showed little evidence of a relationship between 

WEI and failure rate, unlike the Danish data [2-54], [2-55]. A more detailed analysis was 

undertaken which considered the cross correlation between particular meteorological 

parameters and WT failures. The results of this analysis are shown in Table 2-13 [2-55].  

Krummhoern had limited cross-correlations because there was no weather station on site [2-

55].  The most closely correlated functions were the maximum wind speed and failures [2-

55].   
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Table 2-13: Cross-Correlation Coefficients for German Wind Farm Sites [2-55] 

Cross-Correlation 

Cross Correlation Coefficients at zero Lag 

Fehmarn Krummhoern Ormont 

Daily 

Aggregation 

Monthly 

Aggregation 

Daily 

Aggregation 

Monthly 

Aggregation 

Daily 

Aggregation 

Monthly 

Aggregation 

Maximum Wind 

Speed/Failures 
0.23 0.76 0.3 0.76 0.1 0.56 

Mean Wind 

Speed/Failures 
0.22 0.74 -  -  0.13 0.55 

Standard Deviation 

of Wind 

Speed/Failures 

0.22 0.73 -  -  0.13 0.57 

Temperatures 

Variation/Failures 
0.2 0.68 0.26 0.76 0.13 0.56 

Humidity/Failures 0.22 0.73 0.3 0.75 0.13 0.55 

Maximum Wind 

Speed/Standard 

Deviation of Wind 

Speed 

-  0.99  -  -  - 0.99 

 

Overall there was a significant cross-correlation (55 – 75%) between the weather data and 

the failure data for each of the sites [2-55]. And the high cross correlations at all three sites 

with temperature and humidity as well wind speed standard deviation suggested that the true 

correlation may lie between failure rate and changes in the weather [2-55]. 

In 2013 the authors published a second paper to update their results, using the same 

methodology and almost the same dataset [2-56].  This time they looked briefly at the effects 

of seasonal weather on specific subcomponents. They concluded that humidity had more of 

an effect on electrical components than on mechanical components [2-56]. They also 

observed that the WTs in their dataset confirmed engineering experience that electrical 

subassemblies were more prone to the effects of varying temperatures than mechanical [2-

56]. 
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Michael Wilkinson, from the renewable energy consultants GL Garrad Hassan, and his 

colleagues investigated the effects of the environment on downtime and failure rates [2-57]. 

Using the GL Garrad Hassan WT database – which contained more than 23,000 WTs – 

Wilkinson used SCADA Alarm Logs and availability databases to determine the impact of 

the environment on WT failure rates [2-57]. 

Their analysis of monthly mean wind speed and temperatures, from their availability data, 

matched the results that Tavner and his colleagues produced in 2006 that showed there had 

been more downtime in the winter months when wind speed was higher on average and the 

temperature was lower [2-54], [2-57]. Wilkinson’s analysis is shown in Figure 2-20 and 

Figure 2-21. 

  

Figure 2-20: Monthly mean wind speed against 

average downtime [2-57] 
Figure 2-21: Monthly mean temperature against 

average downtime [2-57] 

 

The SCADA Alarm Log data, shown in Figure 2-22 and  Figure 2-23, also showed similar 

results [2-57]. Although there was a peak around 18°C, both in the alarm log frequency and 

duration, indicating that lots of failures occurred at 18°C lasting for a long period of time. 

This may be because the high ambient temperatures caused sensors within the WT to set the 

alarm off, possibly because the nacelle became very hot inside. It seems unlikely that the 

high temperatures caused actual failures to occur to components which resulted in downtime 

– as Figure 2-24 demonstrated; months with high mean temperatures had short downtimes in 

the availability data of the same wind farms.    
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Figure 2-22: Relationship between mean wind speed 

and SCADA alarm log frequency and duration 

[2-57] 

Figure 2-23: Relationship between mean air 

temperature and SCADA alarm log frequency 

and duration [2-57] 

 
 

Figure 2-24 shows the relationship between maximum wind speed and maximum air 

temperature correlation with failure rate and downtime of the WT [2-57]. It appears from 

Wilkinson’s results that extreme maximum air temperatures, as well as maximum wind 

speeds of between 28 – 33m/s, cause rises in failure rate and downtime. 

 

Figure 2-24: Maximum wind speed and air temperature correlation with failure rate and downtime [2-57] 

 

Therefore results from Wilkinson et al would suggest that there is a clear relationship 

between temperature, wind speed, failure rate and downtime [2-57]. However, there are a 

number of areas where this could be disputed.  

 It is not clear whether inspections, retrofits and scheduled maintenance were 

included in the availability database. This is important as these operations can only 

take place when the wind speed is below a certain threshold which means it is safe to 

climb the turbine.  
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 Many failures can only be detected by inspection, it is not clear if the failures in this 

database are recorded to have failed on the date of inspection or the date the SCADA 

system or condition monitoring detected a failure. If the failure was recorded on the 

day of inspection this would skew the results to show failures occurring in accessible 

turbine conditions.   

 And Figure 2-24 implies that failures at higher wind speeds and lower temperatures 

are more severe as they have longer downtimes. However it could be argued that 

these figures merely show that WTs are more inaccessible in higher wind speeds. 

High average monthly wind speeds and low average monthly temperatures correlate 

well as shown in Figure 2-25 [2-57].    

 

Figure 2-25: Seasonal wind speed and temperature trends against average WT downtime from GL Garrad 

Hassan database [2-57] 

 

 It is not clear what has to happen for a SCADA alarm to be switched off. If a visual 

inspection is required this duration will depend on the weather conditions and will 

affect the results. For instance if the alarm is raised in the winter when the mean 

wind speed tends to be high, it is reasonable then to assume that downtime will 

increase due to the accessibility of the turbine.   
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4. Chapter 2 Summary 

Reliability analysis theory was introduced in Chapter 2.1. The failure rate, repair rates and 

availability are calculated using Equation 2-1, Equation 2-2 and Equation 2-3. These metrics 

will be used throughout this thesis in describing system reliability.  

Reliability databases that have been frequently used in the literature include WindStats 

Germany and Denmark, LWK, WMEP, VTT and Elforsk. All six databases are comprised of 

onshore WTs or vary sizes and models. The databases are all classified differently and do not 

follow a consistent taxonomy. According to these databases the component that fails most 

frequently is the control system – sometimes classified as the electric system. However the 

component that causes the longest downtime when it fails is the gearbox.  

WT reliability literature was examined in Chapter 2.3. The availability of an onshore WT is 

typically 97% - 99%; the downtime includes preventive and corrective maintenance [2-48]. 

System failure rates vary from 2.20 – 0.43 failures per WT year [2-3], [2-39]. It has been 

found that WT reliability improves after installation, following a bathtub type curve [2-3].  

The logistical issues associated with offshore WTs means that availability is likely to be 

reduced compared to onshore. Components that cause long downtimes and require heavy lift 

vessels cause the biggest risk to production [2-39].  

Offshore reliability data is not well studied in the literature and the type analysis that was 

undertaken using onshore data has yet to be replicated. Analysis that is available, from the 

UK round 1 sites and from Egmond Aan Zee, is not typical of offshore WTs that will be used 

in today’s offshore wind farms [2-43], [2-58]. The WTs suffered from serial gearbox issues 

and as a result availability was extremely low and not representative of typical operation.   

Research that has been carried thus far in understanding the impact of wind speed on WT 

reliability has been carried out by Tavner and colleagues and Wilkinson of GL DNV [2-55]–
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[2-57]. They did not focus their attention specifically on wind speed specifically but also did 

analysis on air temperature and humidity. In the case of both Tavner and Wilkinson the 

conclusion was reached that wind speed appears to have an impact on WT failure rate.   
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1. The Markov Approach  

WTs are repairable systems and a common method of modelling a repairable system is 

through the use of the Markov Approach which can be applied to model systems which 

exhibit stochastic behaviour which may change discretely or continuously with respect to 

time and space.  

The Markov approach is applicable to a system if it is the case that future states of the 

system are independent of all past states of the system, except the immediately preceding 

state. This means that the future random behaviour of the system does not depend on how the 

system came to be in its current state, but only the state it is in at present. The system must 

also be stationary, in that probability of making a transition from one state to another must 

remain the same at all times. This approach therefore applies to systems in which the 

probability of failure (the failure rate) is the same at all times.  

This function is exponential and describes the behaviour of a system that can be modelled by 

a Markov approach. 

When system reliability is modelled using a Markov model, space is discrete and represents 

the states in which the system and its components can be in, while time can be either discrete 

or continuous [3-1]. The discrete case is commonly known as a Markov Chain, while the 

continuous case is known as a Markov Process. These two models will be compared to find 

what method would be most suitable to model the effect of wind speed on reliability.    
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1.1. Discrete Markov Chain Theory 

The degradation of engineering systems is often described using state based representation 

[3-1]. Figure 3-1 shows a simple system that can exist in 2 possible states, either operating 

or failed. If for example the system was in the operating state at time step 1, the probability 

that at time step 2 the system will be in a failed state is the failure rate λ. The probability the 

system will remain in the operating state is 1-λ. If at time step i, the system moves into the 

failed state, the probability that at i+1 the system will be in the operating state is the repair 

rate μ, while the probability it will remain in the failed state is 1-μ. 

 

The stochastic transitional probability matrix for this system is shown in Equation 3-1. The 

operating and failed states are denoted by the letters o and f respectively. 𝑃𝑖𝑗 represents the 

probability of making a transition from state i to state j after a time step.  

𝑷 = [
𝑃11 𝑃12

𝑃21 𝑃22
] = [

1 − 𝜆 𝜆
𝜇 1 − 𝜇

]  
Equation 3-1 

 

If a system were to be modelled where there were intermediate states between operating and 

failure, this too could be modelled. Markov chains can be used to model systems with n 

states,. In each case the number of row and column denotes the “from state” and the “to 

state” respectively. 

 

 

Figure 3-1: Simple Markov system 
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The system shown in Figure 3-1 can change from state 1 to state 2 freely over time, 

depending on the values of μ and λ. This system can be changed to model a scenario when 

the probability of failure remains, but the probability of the system being repaired is 0. This 

means that when the system changes from operating to failed, the probability it will remain 

failed is 1. In this case, the failed state is referred to as an absorbed state, as it is a state that 

the system cannot leave once it has entered [3-1].  

Absorbed states are often used to evaluate the number of time steps a mission orientated 

system can be used before it suffers from catastrophic failure. It can also be used to model 

the reliability of repairable systems if the repair time for a component is always the same and 

is not probabilistic. If for example a system, which had the same states of the system shown 

in Figure 3-1, always started in the operating state then at some point in its life failed but 

was always repaired after 5 time steps each time, the failed state could be modelled as an 

absorbed state. Therefore the process of the system being repaired is not Markovian, 

however the failure process is.  
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1.2. Continuous Markov Process Theory 

A Markov Process differs to a Markov Chain in that time is not discretised, but is instead 

continuous. Like a Markov Chain, the Markov Process is stationary and relies on the 

assumption that the failure and repair characteristics remain the same during the fixed period 

of time during which the system is analysed. The failure and repair characteristics are 

therefore exponential.  

Rather than transition probabilities, the Markov Process relies on transition rates. A 

transition rate is defined by Billingon and Allan as the number of times a transition occurs 

from a given state, divided by the time spent in that state [3-1]. In the case of a reliability 

model these can be thought of as failure rates and repair rates.  

Stochastic probability matrices can be derived for continuous Markov Processes, much like 

those developed for discrete Markov Chains. The difference is that in the continuous case, a 

discrete interval of time ∆t can be introduced that is small enough that there is a low 

probability that more than one transition can take place during the time interval. The 

probability of a failure taking place during the time interval ∆t is equal to the failure rate 

multiplied by the time interval. For the system shown in Figure 3-1, the stochastic 

probability matrix is described in Equation 3-2. Like Equation 3-1 the rows of the matrix 

must sum to 1.   

𝑷 =  [
1 − 𝜆Δ𝑡 𝜆Δ𝑡

𝜇Δ𝑡 1 − 𝜇Δ𝑡
] 

Equation 3-2 

 

The stochastic probability matrix can be solved to calculate the survivor function for the time 

interval R(∆t).  
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1.3. Applications of the Markov Approach in Wind Energy Literature 

The Markov approach is used frequently across many different areas of research. This 

section will however focus on instances when it has been utilised in the field of WT 

reliability and investigate how the authors solved their models. 

1.3.1. Analytical Method 

As briefly described in Chapter 2.3.2, Sayas and Allan endeavoured to model the reliability 

of a WT and the impact of a wind farm on the electricity distribution network [3-2].  

Focusing specifically on their attempts to model the failure and repair process, Sayas and 

Allan stated that the failure rate of a WT increased at higher wind speeds and quoted three 

references from the American Wind Energy Association conference in 1993 – two of which 

could not be found [3-2]. The available paper describes the reliability of very small machines 

by today’s standards – the Enertech 44 WT range which consisted of a 13.4m rotor that was 

capable of generating 25kW, 40kW or 60kW [3-3]. The WTs did seem to fail more often in 

winter months and due to extreme weather events, but these models had very little in 

common with their larger, more intelligent and robust successors that operate today.  

Sayas and Allan designed their model so that failures that occurred at extreme wind speeds 

were catastrophic and therefore resulted in expensive and long downtimes [3-2]. They 

considered the wind speed to be split into two different ranges – wind speeds that were 

within design limits (wind speed states I-III) and wind speeds that were extreme (wind speed 

state IV). Their model would be designed so that when the WT was operating within the 

former range it would have one set of failure rates and repair rates, while if it were operating 

in the latter range it would have another set.  

The WTs within the model were considered to be binary state components that would either 

be operating (the up state) or failed (the down state). A failure within the design limit wind 

speed would result in minor damage, whereas a failure while operating in wind speed state 
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IV would cause severe damage. Severe damage led to a longer downtime than minor damage 

and the probability of the WT failing while in state IV was higher than in the other lower 

wind speed states. 

Figure 3-2 shows their system, which consists of a total of 12 different states that the WT 

may be operating within at any time step.   

 

 

Figure 3-2: Wind Farm model of 1 WT and 12 wind speed states [3-2] 

 

Most relevant to this thesis is that the approach taken by Sayas and Allan in using different 

failure rates and repair rates for the design wind speed states and the extreme wind speed 

state actually contravenes one of the properties of a Markov Chain in that the model should 

be stationary, when in this case the transition probabilities change depending on the wind 

speeds. Despite this, the model was better at reproducing the sample data as their data 

showed different failure rates at different wind speeds. 

The analytical method used by Sayas and Allan to solve their model was applicable to their 

model because it was relatively simple. Their WT model had 2 possible states, for a wind 

farm of n WTs the total number of states considered was  2𝑛 for each wind speed state. This 

means that for a moderately sized wind farm of 30 WTs the total number of states per wind 

state is 1,073,741,824. For WT model that consisted of 12 main components (each existing 

either in the up state or the down state), within a wind farm model of 200 WTs, operating in 
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several potential wind speed states, each with their own failure rate and repair rates for each 

of the twelve components - the number of potential states that would need to be evaluated for 

each discrete time interval would be huge. For systems with the level of complexity that 

would be required to model the impact of wind speed on WT reliability for large scale wind 

farm projects, there is another method which is more suitable.   

1.3.2. Simulation Method 

Systems in general can be analysed in two ways, either analytically, or using stochastic 

simulation. The difference between the two methods is how the stochastic nature of an 

engineering system is modelled. In the case of an analytical solution, mathematical solutions 

are calculated for the system which gives the same answers each time to describe the system. 

Stochastic simulation however simulates the actual random behaviour of systems over and 

over again, almost like performing continual experiments. Estimates are then made by 

counting the number of times a different event occurs in the experiments.  

In 1996, when Sayas and Allan wrote their paper, analytical solutions could be could be 

calculated very quickly, while simulation techniques required more computational time. 

Today however computational power is considerably greater and therefore simulation 

techniques are a much more practical option of calculating system reliability. 

The advantages of using simulation techniques is that they are better at modelling systems 

and accounting for uncertainty – because analytical techniques return the same answer they 

may instil false confidence. 

There are two types of stochastic simulation, random and sequential [3-4]. The random 

approach simulates chooses time intervals randomly and while the sequential approach 

simulates the intervals in chronological order [3-4]. This thesis will consider the sequential 

approach as the model will attempt to calculate the impact of wind speed.  
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Monte Carlo Simulation is type of stochastic simulation. It requires an input of uniform 

random numbers that are used to simulate randomness. If an analytical method was used to 

evaluate the probability of either getting ‘heads’ when tossing a coin, it would calculate that 

the probability was 0.5. If Monte Carlo Simulation was used, a uniform random number – 

usually between 0 and 1 – would be generated. If the number was between 0 and 0.5 a 

‘heads’ would have occurred, while if a number between 0.5 and 1 was generated, a ‘tails’ 

would have occurred. After a simulation of 100 trials it is very likely the result would also be 

0.5, the same as the analytical calculation.  

1.3.3. Markov Chain Monte Carlo Simulation 

Markov Chains and Monte Carlo Simulation are commonly used together in what is called 

Markov Chain Monte Carlo Simulation (MCMCS). Besnard and Bertling used this method 

to evaluate how different maintenance strategies would affect the reliability of WT blades [3-

5]. The following model, shown in Figure 3-3 was developed to describe the deterioration 

process of a blade. 

The four deterioration states are shown as the states labelled X. If no maintenance is 

performed, the blade starts off at state 𝑋1, before deteriorating through each state until it 

finally fails at state F. Alternatively the blade may leave any of the deterioration states other 

than 4 and go directly to F. Once the blade fails it returns to state 𝑋1and was assumed to be 

as good as new, the simulation then continues until a suitable sample is taken [3-5]. The 

failure rates λ represent the transition rates – init being the probability of a crack forming, det 

denoting the deterioration rate and l representing the sudden failure of the blade. 
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Figure 3-3: Besnard and Bertling’s blade deterioration Markov Chain model [3-5] 

 

To prevent the blade from failing different maintenance strategies are trailed which allow the 

condition of the blade to be known, these are shown as the states D. These different 

strategies are represented by the transition rates 𝜋 [3-5]. If for instance the maintenance 

strategy was perfect, all the transition rates 𝜋 would equal 1 and a fault would be detected as 

soon as the blade went from deterioration state 𝑋1 to 𝑋2. Maintenance could then be 

undertaken and the blade would then return to state 𝑋1 at the next time interval. With 

maintenance strategies it becomes less likely that the blade would be allowed to deteriorate, 

however it does not change the probability of the blade failing suddenly [3-5].  

Besnard and Bertling used Monte Carlo Simulation to solve the Markov Chain for different 

maintenance strategies [3-5]. So while the failure rates all remained the same, the transition 

rates 𝜋 changed for each strategy. Costs were attached to the various aspects of the 

maintenance strategies as well as production losses, blade replacement, installation, and 

logistics. Many simulations were then run with differing parameters to determine the most 

economical strategies in various different scenarios. This flexibility in using MCMCS made 
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the model highly informative. Other notable examples of models of this type were developed 

by Negra and his colleagues and McMillan and Ault [3-6], [3-7]. The former developed a 

model that identified the factors most relevant to offshore wind farm reliability, while the 

latter used MCMCS to evaluate the benefit that condition monitoring brings to offshore 

WTs.  
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1.4. Conclusion  

This thesis will use the Markov Chain Monte Carlo Simulation approach in developing a 

model that describes the effect of the wind speed on WT reliability, much like the models 

developed by Besnard and Bertling, McMillan and Ault and Negra and his colleagues [3-5]–

[3-7]. However this model will also follow the approach taken by Sayas and Allan in using a 

non-stationary Markov Chain by using different transition rates depending on the wind speed 

[3-2]. 

MCMCS was selected for use in this thesis because: 

 They are used frequently in the literature for modelling maintenance and 

deterioration.  

 MCMCS models care very flexible and can be used along with other models. 

Therefore the wind speed dependent failure rates can be incorporated into the 

MCMCS model.  

 Monte Carlo Simulation can be used to solve the Markov Chain accurately and 

relatively quickly. 

The methodology for calculating these transition rates will be explained Chapter 5.1 before 

being implemented in the wind speed dependent failure rate model in Chapter 5.2 
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2.  Modelling Wind Speed Dependent Failure Rates  

In trying to model the relationship between wind speed and the transition rate between the 

operating state and the failed state, otherwise known as the failure rate, several methods were 

analysed.  

Because of the original work carried out by Tavner and his colleagues in this area, the first 

method used to quantify the relationship was cross-correlation, as described in the previous 

Chapter 2.3.2 [3-8], [3-9]. However cross correlation was judged not to be a suitable method 

for calculating the transition rates, as its main function is to evaluate the similarity between 

two signals to determine if a relationship exists, rather than describe what the relationship 

actually looks like.  

A high correlation coefficient between a WT component and the wind speed does not tell 

you anything about the transition rate of that component or how it changes according to wind 

speed. In modelling using Markov Chains it is vitally important to understand what the 

relationship looks like so a suitable Markov Chain can be constructed. 

Artificial Neural Networks (ANNs) were also identified as a possible method of analysing 

the relationship. ANN have been applied to WT gearbox condition monitoring systems due 

to their ability of processing large volumes of data and finding patterns between many 

variables [3-10].  

They were used in this case to take several time series’ of wind speed data and wind farm 

failuresand calculate the difference between operating conditions and conditions that led to 

component failures. A paper was presented on the subject using data from another operator 

[3-11].  

However like cross-correlation analysis, ANNs were considered to not be a suitable method 

for determining the failure rate and wind speed relationship. A concern about ANNs is that 
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they are essentially black boxes and this issue was encountered during analysis. Each time 

the ANN fitted itself to the input data, the weighting of each of the layers of synapses were 

different. With a larger dataset this problem may have been overcome as the ORD was split 

so a proportion of the data could be used for training and another proportion for validation.   

Another concern was that there was no limit to the information that could be used to train the 

ANN, however it was difficult to determine what model inputs added value to the accuracy 

of the model due to its black box nature. 

After a period of time experimenting with ANN it was decided that a more transparent, 

simpler method should be used to model the impact of wind speed on failure rates.  
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2.1. Bayes Theorem 

Bayes Theorem is used in statistical inference to update the probability of a hypothesis being 

true as new evidence is discovered. It calculates the posterior probability as a consequence of 

the prior probability and a likelihood function derived from the observed data.   

For example, A represents a set of events that have the following properties: 

1. A is a set of subsets {𝐴1, 𝐴2, … , 𝐴𝑛} 

2. The subsets 𝐴𝑖 do not have any two elements in common. 

3. All the subsets together encompass all possible values of set A and so are 

collectively exhaustive.  

4. Each one of the subsets 𝐴𝑖 has a nonzero probability of occurrence.  

B is any event that occurs in the same sample space. To calculate the probability of B, the 

law of total probability is used, shown in Equation 3-3. 

               𝑃(𝐵) = 𝑃(𝐵|𝐴1)𝑃(𝐴1) + 𝑃(𝐵|𝐴2)𝑃(𝐴2) + ⋯ + 𝑃(𝐵|𝐴𝑛)𝑃(𝐴𝑛)

=  ∑ 𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)

𝑛

𝑖=1

 
Equation 3-3 

 

If event B has occurred, the probability that event 𝐴𝑘 also occurred is calculated using Bayes 

Theorem, shown in Equation 3-4. 𝑃(𝐴𝑘|𝐵) represents the posterior probability, while 

𝑃(𝐵|𝐴𝑘), 𝑃(𝐴𝑘) and 𝑃(𝐵) denote the likelihood function, the prior probability and model 

evidence respectively.  

𝑃(𝐴𝑘|𝐵) =
𝑃(𝐵|𝐴𝑘)𝑃(𝐴𝑘)

∑ 𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)𝑛
𝑖=1

=
𝑃(𝐵|𝐴𝑘)𝑃(𝐴𝑘)

𝑃(𝐵)
 

Equation 3-4 
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2.2. Application 

Bayes Theorem is used in this thesis to calculate a component failure rate as a function of 

wind speed; this is shown in Equation 3-5.  

𝑃(𝜆𝑖|𝑤) =  
𝑃(𝑤|𝜆𝑖)𝑃(𝜆𝑖)

𝑃(𝑤)
 

Equation 3-5 

 

 

If w is the average daily wind speed on a given day, 𝜆𝑖 represents a failure to component i. 

The term on the left hand side of Equation 3-5 represents the probability of a failure 

occurring to a component (𝜆𝑖), given the mean daily wind speed w. This probability 

represents the failure rate of component i, as a function of average daily wind speed w.  

On the right hand side of Equation 3-5, the prior probability 𝑃(𝜆𝑖) is calculated very simply 

using component failure rates and Equation 2-2.  

For the model evidence 𝑃(𝑤) to be calculated, probabilities are estimated using the met mast 

data. As the ORD comes from 2 wind farms, which each experience different wind speed 

conditions, proportional probabilities were calculated from the met mast data from the two 

sites to create a distribution which is referred to as the calibration wind speed distribution.   

The term P(w|𝜆𝑖), is the probability of wind speed w occurring, given a failure has occurred 

to component i. This is calculated by taking probabilities of the daily average wind speeds 

recorded on days when a failure occurred to component i. 

In the following sections two methods will be discussed that can be sued to calculate the 

calibration wind speed distribution 𝑃(𝑤) and the probability of a wind speed given a 

component failure P(w|𝜆𝑖).  
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2.3. Kernel Density Estimate 

Kernel density estimation allows the probability density function of a random variable to be 

estimated non-parametrically. It also allows inferences to be made about a population, based 

on what is known about the data sample – which is very useful in this application because in 

many components’ cases there are very few failures and so plotting 𝑃(𝑤|𝜆𝑖) can be 

problematic.  

𝑓(𝑥) =  
1

𝑛𝑏
 ∑ 𝜔 (

𝑥 − 𝑥𝑖

𝑏
)

𝑛

𝑗=1

  
Equation 3-6 

 

If a random sample X (x1, x2,…,xn) is taken from some unknown distribution, to calculate the 

probability density function f a kernel density estimator can be used, shown in Equation 3-6 

[3-12]. This involves using a kernel ω, which is a specified symmetrical function and is 

located at every sample point. The kernel can be a range of functions, but in this case it is a 

Normal kernel which integrates to 1 and is a function of the bandwidth b, which scales the 

kernel. The kernels are then summed together to make a kernel density estimate.  

The bandwidth of the kernel is very important as it cannot vary across the whole sample. If 

too large a bandwidth is chosen it would conceal the finer details of the data, if too small a 

bandwidth is selected the kernel density estimate is spikey and infers less about the 

population [3-12]. 

The matlab function ‘ksdensity’ calculated the bandwidth using the normal distribution 

approximation, shown in Equation 3-7 [3-13], [3-12].  

𝑏 = (
4�̂�5

3𝑛
)

0.2

 
Equation 3-7 
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2.4. Normalised Histograms  

A normalised histogram is essentially a discretised PDF. It is calculated very simply by first 

ordering the samples into bins before determining the proportion of each bin compared to the 

size of the whole sample.  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑛𝑠 =  
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑟
 

Equation 3-8 

 

Bins are generally taken by subtracting the maximum from the minimum reading (xmax and 

xmin respectively) and dividing by the desired bin width r, as shown in Equation 3-8. The data 

is then separated into the bins. There is no optimum bin width and bins do not all have to be 

the same width. 
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3. Chapter 3 Summary 

A non-stationary approach was taken to the failure rates when modelled using the Markov 

Chains. This means that the component failure rates were able to change at each time step 

interval, much like in the Markov Chain model developed by Sayas and Allan [5-1].  

Bayes Theorem is used to determine the wind speed dependent failure rate using historical 

wind speed data and component failure data. 

Two approaches are used to calculate the three inputs to the Bayes Theorem equation – 

Kernel Density Estimate and normalised histograms. The chosen method for use in the wind 

speed dependent failure rate model is discussed in Chapter 5.   
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1. Wind Turbine Reliability Data 

Wind turbine reliability data was provided by a utility as a result of a technology and 

innovation project undertaken at the University of Strathclyde. Due to confidentiality 

agreements, the utility will be referred to as “the operator” throughout the course of this 

thesis. The reliability data will be referred to as the operator’s reliability dataset (ORD). 

Throughout this Chapter the ORD will be the dataset analysed and then in Chapters 6 and 7 

used in producing the models and results of this thesis.  

The WTs were owned and by the operator but were under the warranty of the OEM. 

Therefore, during the period the data was recorded, the wind farm was maintained by the 

OEM. However the operator maintained detailed records of all work carried out by the 

OEM.   

1.1. Sites 

The reliability data used in analysis, obtained through the operator comprises of reliability 

records from Site A and Site B wind farms. As shown in Table 4-1, both wind farms use the 

same model of wind turbine and are roughly the same age, although most WTs at Site B are 

19 months older.  

Table 4-1: Summary of the ORD 

 Site A Site B 

Commission Date  14
th

 December 2007 1
st
 March 2005 

Number of WTs 140 54 

Installed Capacity (MW) 322 124.2 

Capacity Factor (%)* 26.7 22.6 

Wind Turbine Model SWT-2.3-101 SWT-2.3-101 

Duration of recorded data (First 

failure – last failure) 

07/01/2010 – 31/01/2012 03/01/2010 – 20/12/2011 

Dataset Size (WT Years) 278.5 105.9 

* From June 2013 – May 2014 [4-1], [4-2] 
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The sites are both located in central Scotland, within roughly 25 miles of each other, as 

shown in Figure 4-1 and Figure 4-2. In total the dataset amounts to 384.4 wind turbine years 

of data.  

At the end of 2012, Scotland had an installed onshore wind capacity of 3,739 MW [4-3]. The 

ORD accounts for 11.9% of Scotland’s installed capacity during the time the data was 

recorded. 

 

Figure 4-1: Location of wind farms  
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Figure 4-2: Location of wind farms 
 

1.2. Wind Turbine Model 

The SWT-2.3-101 is a Siemens WT, with an installed capacity of 2.3MW and a rotor 

diameter of 101m [4-4]. The WT is variable speed, pitch controlled which means that: 

1) Cut-in to rated wind speed – the rotational speed of the blades increases, as does the 

torque. 

2) Rated to cut-out wind speed – the rotational speed of the blades and the torque 

remains constant, controlled by the pitching of the blades 

3) Above cut-out wind speed – the blades are pitched fully and the rotation speed 

reduces to zero. The mechanical brake is then applied.   

Figure 4-3 shows an example of a rotor speed, torque curve for a variable speed, pitch 

regulated wind turbine. The control system keeps the WT operating in the most efficient part 
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of the power coefficient curve for as long as possible. The efficiency then decreases as the 

wind turbine reaches rated speed – shown in Figure 4-3 between 8 – 11.5 m/s. Then at 11.5 

m/s the wind turbine maintains a constant power output by pitching the blades to adjust the 

lift and therefore the torque.   

 

Figure 4-3: Torque - Rotor Speed curve for variable speed, pitch regulated WT [4-5] 

 

The SWT-2.3-101 is a doubly fed induction generator (DFIG), which consists of a wound 

rotor induction generator with slip rings, which takes current into or out of the rotor, and a 

gearbox [4-6]. 

As the blades rotate a torque is produced in the low speed shaft, linking the rotor to the 

gearbox. The gearbox then steps up the rotational speed and passes this on, through the high 

speed shaft to the generator where electricity is produced. The electricity is then converted 

from AC to DC and then back to AC via the power converters before passing into the 

network [4-6] 

The variable speed operation is achieved by a controllable voltage which is injected into the 

rotor at slip frequency [4-7]. Figure 4-4 shows how the power converters decouple the WT 



Chapter 4: Data Analysis 

 

95 

 

from the grid and the position of the crowbar which protects the power converters and the 

generator from high voltages and currents [4-7].  

The WT system consists of twelve main components, shown in Figure 4-5 in the medium 

sized boxes. They are the: 

 Emergency System 

 Meteorological Instruments 

 Rotor 

 Blade Pitch System 

 Drive Train 

 Yaw System 

 Hydraulic System 

 Control System 

 Main Generator 

 Lifting System 

 Nacelle 

 Tower 

The taxonomy of the WT system follows the Reference Designation System for Power 

Plants (RDS-PP) which has been adapted specifically for WTs [4-8]. This system is used by 

many operators in classifying failures. The taxonomy used by the operator comes from RDS-

PP and is shown in Figure 4-5. 

 

Figure 4-4: Schematic of a DFIG WT [4-7] 
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Figure 4-5: Taxonomy of WT system using RDS-PP system [4-8] 
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1.3. Reporting Mechanism 

When a WT was shut down at either Site A or Site B, a record was taken at the operators 

control centre. The record included information of the time, reason for the stoppage, the 

component responsible for the failure (if a component was responsible), the WT that the fault 

occurred in and the downtimes attributed to that fault. Reasons for a WT being shut down 

included: 

 Maintenance – preventative and corrective 

 An external causes the stoppage – this could be national grid curtailing the wind 

farm 

 High wind speeds (above rated wind speed) 

 Low wind speeds (below cut-in wind speed) 

A component did not have to be replaced for it to necessarily be considered a failure – 

repairs were quite often made to components rather than installing new components and on 

many occasions the WT shut down because of low oil pressures or component overheating. 

Therefore a failure to the main gearbox did not require the entire gearbox to be replaced each 

time.   

The identity of the failed component was determined by technicians on site. Importantly 

however, the time the failure occurred was not the time at which the fault was diagnosed; it 

was the time at which it was decided to stop the WT and to make it unavailable. For the 

analysis which will be described in the following chapters, it was necessary that the initial 

time recorded in the reliability data be as close as possible to the time when the component 

actually failed. 

The component to which the failure occurred was identified in the ORD according to their 

functional location. The functional location was a code of letters and numbers which 

signified the wind farm, wind turbine and location within the wind turbine system in which 

the failure took place.  
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An example of this code is “SIA1A040MDY”. The first 2 characters indicate the first 2 

letters of the wind farm’s name, in this case Site A. The following 3 characters distinguish 

Site A from any other wind farms owned by the operator that also have the first 2 letters of 

their name to be “SI”. The 6
th
, 7

th
 and 8

th
 characters, which are always numbers, represent the 

asset to which the failure occurred – in this case WT number 40. The last characters indicate 

the component that failed which in the example’s case was the control system. Codes which 

indicate the location of the failure within the system are shown in Table 4-2. There are 33 in 

total.  

Table 4-2: Description of functional locations  

Functional Location Description 

CHI Emergency System 

CHI01 Speed Vibration system 
CHI02 Vibration Supervision System 

CVK Meteorological Instruments 
CVK01 Anemometer 

CVK02 Wind Vane 

MDA  Rotor 
MDA01 Blades 

MDA02 Blades Bearings 

MDB Blade Pitch System 

MDK Drive Train 

MDK01 Main Shaft Assembly 
MDK02 Main Gearbox 

MDK03 Mechanical Brake System 
MDK04 Torque Arm System 

MDK05 High Speed Shaft Transmission 

MDL Yaw System 

MDL01 Bed Frame  

MDL02 Yaw Ring 
MDL03 Yaw Brake System 

MDL04 Yaw Drive Assemblies 

MDX Hydraulic System 

MDY Control System 

MDY01 Main Control Cabinet 
MDY02 Power Converter Cabinet 

MKA Main Generator 

SMA Lifting System 

SMA01 Hoist 
SMA02 Fall Arrest System 

SMA03 Personnel Lift 

UMC Nacelle 

UMD Tower 
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The functional locations in bold are classified and referred to in this thesis as components, 

the others are sub-components. For example, the yaw system as a whole will be considered a 

component but the bed frame will be considered a sub-component of the yaw system.  

The downtime attributed to each failure is the total time lost from when the WT stops 

operating, to when it becomes available to operate if the wind conditions allow it to do so. 

The length of the downtime is influenced by a number of variables, shown in Figure 4-6.   

The WT is shut down when the SCADA system detects a fault during data analysis. Once 

this happens the time of the stoppage is recorded and engineers try to make a partial 

diagnosis of the fault. Very often the same failures occur and require only a remote reset. If 

the WT cannot be reset remotely engineers must access the WT to repair the fault, this can 

only be done below certain wind speeds and so the engineers must wait until it is safe to 

access the WT before they make a full diagnosis of the fault [4-9]. Once the engineers know 

the reason for the fault they must decide whether a replacement component is required. If it 

is not the engineer will repair the component, after which the WT will be available to resume 

operation. If a replacement component is required and is available immediately to the 

engineers, they will make their repair. But if it is not available a spare must be ordered. Once 

the component arrives the WT can then be repaired and allowed back into normal operation.  

Some components however require a crane if they are to be replaced or repaired. If for 

example a blade is damaged and needs replaced, a crane must lift the blade from the hub and 

then reattach a replacement. In this case there will be further waiting time for the crane to 

arrive on site and for it to be prepared for lifting. Furthermore, cranes cannot operate at high 

wind speeds for safety reasons; therefore there may be more waiting time once the crane is 

prepared to lift.        
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Figure 4-6: Flowchart downtime process 

 

The downtime recorded in the reliability records is therefore a function of waiting time 

caused by accessibility, logistics, and repair time.   

Interestingly, in some instances the OEM would use components which had failed previously 

but had subsequently been refurbished. In some cases, components which had been in one 

WT and had then failed and been refurbished, were then fitted to a second WT when it 
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required a replacement. It is possible therefore that one component may have failed multiple 

times and been used in multiple WTs.  

This means that this dataset cannot be used to estimate the number of loading cycles each 

component is subjected to before it fails. A bathtub curve for each component also cannot be 

calculated because the age of each component is unknown.  

Because of this uncertainty over the age and state of replacement components the assumption 

was made that when a component failed it was replaced by a new component.   
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1.4. Reliability Analysis  

The following sections show failure data from the ORD. These failures only account for 

corrective maintenance as the aim is to determine the impact of wind speed on component 

failure rates. Preventative maintenance is not included as by definition this refers to 

maintenance that is carried out to prevent a failure and not as a result of an actual failure.  

Using the reliability analysis theory described in Chapter 2.1, the reliability data from the 

ORD will be evaluated to determine the component failure rates. The seasonality of these 

failures will then be analysed to establish whether the WT fails more frequently in the 

winter, when wind speeds are higher.  
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1.4.1. Component Failures 

The following section describes analysis of the ORD data. Figure 4-7 shows the failure rate 

and average downtime per failure for each component within the ORD. The component that 

caused the highest average downtime per failure was the rotor. The rotor had a low failure 

rate of 0.047 failures per WT year – amounting to 18 failures during the recorded period. 

One of these failures caused a downtime of 110 days. The average downtime of the 

remaining rotor failures was 11.4 hours.  

 

Figure 4-7: Average component downtime per failure and component failure rate of ORD 

 

The control system failed the most frequently of all the components, the resultant downtime 

however was not as problematic as the rotor, drive train or hydraulics. The drive train was 

the second most unreliable component and caused the second longest downtime per failure.  

Figure 4-8 shows major failures, which are failures that caused downtimes greater than 24 

hours. These more severe failures occurred again most frequently to the control system, 

which is not unexpected as the control system experienced the most failures of all the 
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components. The emergency system, lifting system, nacelle and tower did not experience 

any failures that caused a downtime of greater than 24 hours.  

 

Figure 4-8: ORD average component downtime per failure and component failure rate only considering 

failures that resulted in downtimes greater than 24 hours.  

 

Figure 4-9 shows the percentage of the total failures that experienced downtimes greater than 

24 hours, 48 hours and 168 hours (a week). The pitch control system had the highest 

percentage of its failures that had caused downtimes greater than 24 hours.  

The control system, despite causing the most failures lasting over 24 hours, had a relatively 

low percentage of its failures contribute to downtimes of 24 hours or over. The rotor that as 

shown in Figure 4-7, caused the longest downtimes per failure had a relatively low 

percentage of its failures cause excessive downtime. If the single failure to the blade (that 

caused a downtime of 110 days) is not considered, the rotor was actually a relatively reliable 

component that generally did not cause long downtimes.   

Interestingly, the drive train was almost as probable to fail for 48 hours as it was 24 hours. It 

had the highest percentage of failures that caused downtimes greater than 48 hours and a 
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week. In terms of downtime distribution the drive train was most comparable to the 

generator, as many of its failures also caused downtimes greater than a week. However the 

drive train fails 5 times more frequently than the generator, as shown in Table 4-3. Because 

of its relatively high failure rate and likelihood of causing long downtimes, the drive train 

was a component that caused significant reliability problems.  

 

Figure 4-9: Percentage of component failures that cause downtimes greater than 24 hours, 48 hours and 1 

week in ORD. 

 

Of the drive train components, the main gearbox failed by far the most frequently, as shown 

in Figure 4-10. There were no failures categorised by the operator to be general drive train 

failures (MDK) or torque arm system failures (MDK04) during the time in which the data 

was recorded.  

Failures to the main shaft assembly, which rarely happened, always resulted in downtimes of 

greater than 48 hours. The most severe failure that occurred caused a downtime of 2203 

hours (92 days roughly) and was a result of a failed main bearing. Another failure to the 

main bearing caused a downtime of roughly 160 hours.  
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The main gearbox – which had a failure rate of 0.1275 as shown in Table 4-3 – had only 8% 

of its failures lead to a downtime of greater than 24 hours and half of those failures lasted 

longer than a week. These long term failures comprised of a failed gearbox motor that 

required 74 hours to repair and a failed gearbox that had to be completely replaced – this 

resulted in 10 days (241 hours) of downtime.  

The high speed shaft transmission behaved similarly to the main shaft assembly in that it 

failed infrequently, but caused long periods of downtime. The most severe failures were due 

to the damage to the high speed shaft that ultimately required the high speed shaft to be 

replaced.  

 

Figure 4-10: Sub-component failure rate and percentage of sub-component failures that cause downtimes 

greater than 24 hours, 48 hours and 1 week in ORD. 

 

The drive train components are generally very large and heavy and so would have required 

heavy lifting equipment whenever they needed to be replaced. They are also very expensive 

and rarely require replacement. Therefore is possible that when the drive train components 

failed there were not spare components in storage. Therefore when a component in the drive 
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train needed replaced it could lead to long periods of downtime spent waiting for 

components to arrive and for a heavy lifting crane to become available.  

Failures that only caused downtimes of less than 24 hours, classed as minor failures, are 

shown in Figure 4-11. The components with the highest failure rates for failures of this type 

were the control system, followed by the drive train and then the yaw system. This is to be 

expected as the majority of failures were minor and these three components experienced the 

highest number of failures. As shown in Figure 4-12, between 79.3 % to 83.5 % of failures 

that occurred to the control system, drive train and yaw system were minor.   

In terms of total downtime experienced in the whole dataset throughout the recorded period, 

the control system is the highest contributor as shown in Figure 4-13. This is followed by the 

drive train, rotor and hydraulics. There was an incident where a failure to the hydraulics of a 

Site A WT led to a gearbox failure which required the gearbox and the hydraulic component 

replacement. This caused a downtime of 1600 hours for that WT. The likely reason for this 

long period of downtime was probably due to the gearbox and logistics involved in its 

replacement, however according to the reliability records the failure appeared to initially be 

caused by a fault to the hydraulics, which then led to the gearbox failing. The incident was 

therefore classified by the operator as a hydraulics failure. 
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Figure 4-11: ORD average component downtime per failure and component failure rate only considering 

failures that resulted in downtimes less than 24 hours. 

 

 

Figure 4-12: Percentage of component failures that result in downtimes of less than 24 hours in ORD 
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Figure 4-13: Total downtime contributed by each component in ORD 

 

The control system failed the most frequently and it is this reason it contributes the most to 

downtime. As shown in Figure 4-7, the average downtime of a control system failure is 

actually a relatively short period of time. This is mainly because most control system failures 

can be repaired quite quickly using spares that are inexpensive and easy store. The control 

system in a Siemens 2.3 MW WT is located at ground level and so repairs can be made with 

little regard to the environmental conditions.  

1.4.2. Seasonal Failures 

The ORD began to be reocrded from the beginning of January 2010 to the very start of 

January 2012 (or in Site B’s case right to the end of December 2011), as shown in Table 4-1. 

The whole dataset therefore encompasses each day during 2010 – 2011.  

The failures that occurred in each month, of the two years for both sites, are shown in Figure 

4-14. The combined 2010 and 2011 failures show a rough seasonal trend where the WTs 

failed more often in the winter months than in the summer months.  
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Figure 4-14: Number of failures that occur in each month in 2010, 2011 and both years combined for both 

wind farms in ORD 

 

These results agree with research performed by Tavner et al and Wilkinson et al that found 

that failures in their dataset also showed a seasonal trend, shown in Figure 2-22 and Figure 

2-23 [4-10], [4-11].  

The trend is not so obvious when only looking seperately at the data from both years, shown 

in Figure 4-14. However it is likely that with more data, from over a greater period of time, 

the seasonal trend would become more obvious, as found by Tavner and Wilkinson [4-10], 

[4-11].  

Site A and Site B have very different seasonal trends. As shown in Figure 4-15, Site A failed 

less often in the summer months, while Site B appears to have suffered more failures in the 

summer months and fewer from November to February. As there are only 2 years of data 

available, this difference may be due to a lack of data at Site B, as its dataset is a third of the 

size of the Site A dataset.   



Chapter 4: Data Analysis 

 

111 

 

 

Figure 4-15: Number of failures that occur in each month for Site A and Site B 

 

The three most frequently failed components, the control system, drive train and yaw system, 

appear to follow seasonal trends, as shown in Figure 4-16. The yaw system perhaps shows 

the strongest seasonal trend, clearly failing less often in the summer months compared to the 

winter months. The control system and drive train have very similar trends, failing often in 

May, before declining over the summer and increasingly again in October.  

 

Figure 4-16: Seasonal reliability trends for the control system, drive train and yaw system in ORD 
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There is less evidence of anything that could resemble a seasonal trend in any of the other 

components. This could be because there are too few failures that occur to these components 

for a seasonal trend to be identified from the data. The generator for example only failed 12 

times over the duration of the recorded period.  

Interestingly the tower failed most frequently in May, specifically in 2011. The sub-

component that failed in every one of these cases was the tower fan, this required the WT to 

shut down for no more than 3 hours for it to be replaced. It could be that the tower fan failed 

most often in May because the temperature increased sharply inside the tower in May 2011 

due to the ambient temperature rise at the beginning of summer. This may have caused the 

fans to work harder than usual and thus caused a failure. It is unclear whether the WT was 

stopped specifically for the fan to be repaired or whether it was discovered broken when 

preventative maintenace was carried out and the WT was shut down while the technicians 

were inside the tower.       
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1.4.3. Failure Rate Summary 

Table 4-3 shows a summary of failure rate data for the components and their subcomponents 

on both wind farms. There were 202 failures in 2010 at Site A compared to 88 in 2011. The 

35 failures that occurred in 2012 all took place in January.  

In contrast, 2011 was the year that Site B experienced the most failures. Its control system 

and hydraulic system suffered the highest level of failures. The hydraulic system of the WTs 

at Site B failed 4 times more often than those at Site A. Overall Site B was a less reliable site 

than Site A, the failure rates of the two being 1.35 and 1.17 failures per WT year 

respectively.  

This difference may have been due to Site B being slightly older than Site A and so it may 

have began to suffer failures that were not observed at Site A over the recorded period, but 

may have occurred subsequently. However, as discussed in Chapter 4.1.3 the age of the 

components is not known as it was policy to often repair, refurbish and then fit the 

component to another WT. The effects of aging are therefore not considered. 

This thesis will investigate another potential cause for this difference. If Hahn and Peter 

Tavner and his colleagues are correct, the differences in reliability between these two sites 

could be due, at least in part, to the weather conditions each site is subjected to. 
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Table 4-3: Component failure rate summary 

Component 

Code 

Site A Failure 

Rate 

(Failures 

per WT 

year) 

Site B Failure 

Rate 

(Failures 

per WT 

year) 

Total 

Failure 

Rate 

(Failures 

per WT 

year) 

Grouped 

Component 

Failure Rate 

(Failures per 

WT year) 

2010 2011 2012 2010 2011 2012 

CHI 0 0 0 0.0000 0 0 0 0.0000 0.0000 0.0052 

CHI01 1 0 0 0.0036 0 0 0 0.0000 0.0026 

CHI02 1 0 0 0.0036 0 0 0 0.0000 0.0026 

CVK 1 1 0 0.0072 0 5 0 0.0472 0.0182 0.0754 

CVK01 2 0 0 0.0072 0 0 0 0.0000 0.0052 

CVK02 20 0 0 0.0718 0 0 0 0.0000 0.0520 

MDA  0 2 0 0.0072 0 3 0 0.0283 0.0130 0.0468 

MDA01 1 2 2 0.0179 4 4 0 0.0756 0.0338 

MDA02 0 0 0 0.0000 0 0 0 0.0000 0.0000 

MDB 7 8 2 0.0610 4 5 0 0.0850 0.0676 0.0676 

MDK 0 0 0 0.0000 0 0 0 0.0000 0.0000 0.1561 

MDK01 0 1 0 0.0036 1 3 0 0.0378 0.0130 

MDK02 29 17 1 0.1687 2 0 0 0.0189 0.1275 

MDK03 0 0 0 0.0000 0 2 0 0.0189 0.0052 

MDK04 0 0 0 0.0000 0 0 0 0.0000 0.0000 

MDK05 2 2 0 0.0144 0 0 0 0.0000 0.0104 

MDL 18 4 5 0.0969 4 5 0 0.0850 0.0936 0.1509 

MDL01 0 0 0 0.0000 0 0 0 0.0000 0.0000 

MDL02 0 0 0 0.0000 0 0 0 0.0000 0.0000 

MDL03 2 1 2 0.0179 0 0 0 0.0000 0.0130 

MDL04 5 2 0 0.0251 4 6 0 0.0945 0.0442 

MDX 3 6 3 0.0431 5 13 0 0.1701 0.0780 0.0780 

MDY 35 29 2 0.2369 9 13 0 0.2079 0.2289 0.5202 

MDY01 5 2 3 0.0359 6 8 0 0.1323 0.0624 

MDY02 44 10 11 0.2333 14 9 0 0.2173 0.2289 

MKA 3 0 1 0.0144 5 3 0 0.0756 0.0312 0.0312 

SMA 0 0 0 0.0000 0 0 0 0.0000 0.0000 0.0104 

SMA01 3 0 1 0.0144 0 0 0 0.0000 0.0104 

SMA02 0 0 0 0.0000 0 0 0 0.0000 0.0000 

SMA03 0 0 0 0.0000 0 0 0 0.0000 0.0000 

UMC 2 0 0 0.0072 0 4 0 0.0378 0.0156 0.0156 

UMD 18 1 2 0.0754 0 2 0 0.0189 0.0598 0.0598 

Total 202 88 35 1.1665 58 85 0 1.3511 1.2174 1.2174 
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2. Weather Data 

The weather data used in the analysis is shown in Figure 4-17. The red arrows indicate the 

locations of weather stations while the yellow triangles show the wind farms and their 

respective met masts.  

 

Figure 4-17: Weather station and met mast locations. Yellow triangle represents a met mast while red 

arrows indicate the location of a weather station. 

 

The weather variable focused upon in this thesis is wind speed. However analysis will be 

undertaken in Chapter 4.3 using temperature and humidity data as well for each site. 

Therefore the aim of this section is to provide wind speed, temperature and humidity time 

series data for both Site A and Site B over the period in which the ORD was recorded. It will 

therefore be possible to know the weather conditions when a failure occurred to a 

component.   
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2.1. Meteorological Masts 

Both Site A and Site B are served by 2 meteorological masts (met masts) that log data every 

10 mins. Data from each mast was provided by the operator. The Site A data includes:  

 Wind direction 

 Minimum wind speed 

 Maximum wind speed 

 Mean wind speed 

These measurements are taken at 17m, 27m, 61m and 66m from ground level. The Site B 

wind speed data provided by the operator is not as extensive as the Site A data and only 

contains the mean wind speed every 10 mins at 66m.  

The wind speed measurements from 66m are used to calculate the wind speed at WT hub 

height of 80 m. This is done by using the logarithmic wind profile, shown in Equation 4-1, 

where U is the instantaneous wind speed, h is the height that the wind measurement has been 

taken (1) and is required to be calculated (2) [4-6].  

𝑈2 = 𝑈1 (
log (

ℎ2

𝑧0
)

log (
ℎ1

𝑧0
)

) Equation 4-1 

The surface roughness, z0 is assumed to be 0.04 as Site A and Site B are not areas within 

cities or forests, there are not many trees or hedges, but neither would be considered a flat 

grassy plain. Surface roughness lengths for different terrains are shown in Table 4-4 [4-6].  

Table 4-4: Typical Surface Roughness Lengths [4-6] 

Type of terrain Roughness Length, zo (m) 

Cities, forests 0.7 

Suburbs, wooded countryside 0.3 

Villages, countryside with trees and hedges 0.1 

Open farmland, few trees and buildings 0.03 

Flat grassy plains 0.01 

Flat desert, rough sea 0.001 
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2.1.1. Site A Meteorological Mast 

All wind speed data shown in this section and all successive sections are calculated speeds, 

for an 80m hub height, using Equation 4-1. In onshore and offshore cases zo equals 0.04m  

and 0.001m respectively.   

Site A wind farm possesses two met masts; data was made available from 1
st
 January 2009 to 

the 30
th
 April 2013. During that period of time the second met mast was not operating, 

therefore measurements could only be taken from one location on the site.   

 

Figure 4-18: Met mast 1 availability 

 

There were also occasions when the operational mast was not functioning either and there 

was therefore no obtainable met mast data. Figure 4-18 shows the available period and the 

unavailable periods – first from 01/07/2011 to 30/09/2011 and second from 01/09/2012 to 

30/09/2012. The met mast availability was 95.1% during this period. For these periods where 

there was no Site A met mast data available, Met Office weather station data from Prestwick 

was used to fill the remaining gaps. Data from this weather station will be presented in 

Chapter 4.2.2.1. 
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The average wind speed of Site A between 01/01/2010 and 30/04/2013 was 5.98 m/s; this 

however is calculated while there is data missing in several summer months and only 

including the first 4 months of 2013.  

2.1.2. Site B Meteorological Mast   

Only 10 minute mean wind speeds were made available from both Site B met masts 1 and 2. 

The readings were taken from 01/01/09 to 31//12/11 and were measured at WT hub height. 

Met mast 2 was available 97.6% of the time between 01/01/09 and 31/12/11, while met mast 

1 was unavailable for much longer periods of time and had an availability of only 83%.  

 

Figure 4-19: Time series of Site B met masts at hub height: a) Met Mast 1 b) Met Mast 2 

 

A wind speed time series of Site B was constructed using the data from both met masts. Met 

mast 2 is available for the longest period of time, importantly during which time the ORD 

was recorded by the operator, it was therefore used as the primary source of data.  

The periods of time when data was missing from met mast 2 are shown in Figure 4-19b) as 

days when the mean wind speed is 0 m/s.  These gaps in data for met mast 2 were filled in 

using readings made by met mast 1 for the same period of time. If data was missing from 
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both datasets, Met Office weather station data from Salsburgh was used to fill the remaining 

gaps . Data from this weather station will be discussed in Chapter 4.2.2.1. The Site B average 

daily wind speed time series, using data from both met masts and Salsburgh data, is shown in 

Figure 4-20.  

 

Figure 4-20: Site B daily average wind speed time series at hub height 

 

From the completed Site B wind speed time series, the average wind speed of the site from 

01/01/2010 – 31/12/2012 was 6.72 m/s at WT hub height. The average daily maximum and 

minimum wind speed, taken from the 10 minute mean wind speeds, was 11.96 m/s and 2.64 

m/s respectively. Daily wind speed histograms of the Site B time series are shown in Figure 

4-21.    
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Figure 4-21: Site B histograms a) Daily average wind speed b) Daily maximum wind speed and c) Daily 

minimum wind speed at hub height 
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2.2. Met Office Weather Stations 

Two Met office weather stations were required to fill gaps in wind speed data from Site A 

and Site B. They are described in Chapter 4.2.2.1. An additional station was used to gather 

data for analysis later in this thesis, in Chapter 4.2.2.2.  

2.2.1. Prestwick and Salsburgh 

UK land and marine surface weather station data can be attained through the Met Office 

Integrated Data Archive System (MIDAS) [4-12]. Daily weather tables were obtained for 

Prestwick and Salsburgh weather stations, containing hourly mean temperature, wind speed 

and humidity measurements. The Prestwick data was from the period of the 1
st
 of January 

2010 until the 31
st
 of December 2011, while the Salsburgh data was from the 1

st
 of January 

2010 to the 31
st
 of December 2012.  

Site A and Site B are located 13km and 27 km away from Salsburgh and Prestwick weather 

stations respectively, as shown in Figure 4-17.   

Prestwick and Salsburgh are sited relatively close to Site A and Site B respectively and so 

their measurements will be used to provide measurements for days when the met masts were 

down. However as Salsburgh weather station is sited at a higher elevation than Site B and 

Prestwick will be affected more by coastal winds than Site A the wind speeds recorded at the 

weather stations will not be very accurate reflections of the wind speeds on the wind farms. 

The topographies of the sites are also very different. However these measurements will not 

contribute significantly to the overall dataset and nearby weather stations have been used 

before in the literature to give approximate weather conditions by Tavner [4-13].    

Temperature and humidity readings were taken from each of the stations and used to compile 

Site A and Site B weather datasets to be used in analysis for Chapter 4.3. The temperature 

and humidity was measured at 1.25 meters using a louvered white screen [4-14]. Therefore 

two assumptions were made in compiling the weather datasets. Firstly that the conditions 
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recorded at the weather stations were the same as those recorded at their respective wind 

farms and secondly that the humidifies and temperatures recorded at 1.25m were the same as 

those conditions experienced by all the WT components and sub-components. 

Wind speeds were measured using standard Met Office met masts that were 10 m tall. 

Equation 4-1 was used to estimate the wind speed a hub height of 80 m [4-6]. 

The daily averages were calculated by taking the mean of the hourly mean measurements. 

The time series of daily average wind speed, temperature and humidity are shown in Figure 

4-22 and Figure 4-23 for Prestwick and Salsburgh respectively. 

  

 

 

Figure 4-22: Prestwick time series of a) Daily average wind speed b) Daily average temperature and c) 

Daily average humidity hub height 
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Figure 4-23: Salsburgh time series of a) Daily average wind speed b) Daily average temperature and c) 

Daily average humidity hub height 

 

The average wind speed, temperature and humidity of Prestwick and Salsburgh are shown in 

Table 4-5.   

Table 4-5: Average site conditions  

Site Average Hub Height 

Wind Speed (m/s) 

Average Humidity (%) Average Temperature 

(°C) 

Prestwick 6.46 81.03 9.64 

Salsburgh 7.92 89.86 7.38 

  

2.2.2. Leuchars 

Data from Leuchars met office weather station will be used in analysis undertaken 

throughout this thesis [4-12]. As shown in Figure 4-17, the site is located on the East coast of 

Scotland. The measurements taken at Leuchars are the same as those taken at Prestwick and 

Salsburgh. However, as will be discussed in Chapter 4.3.3, only the wind speed data will be 

used for Leuchars in the analysis. Equation 4-1 is used to calculate the wind speed at a hub 

height of 80 m. 
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Figure 4-24 shows a histogram of mean daily wind speed for the Leuchars weather station. 

The mean daily wind speed of the site is 6.59 m/s.  

 

 

Figure 4-24: Leuchars mean daily wind speed at hub height histogram 
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2.3. Offshore Data 

The FINO 1 platform was erected in mid-2003 in the North Sea, roughly 45 km from the 

island of Borkum, as shown in Figure 4-25 [4-15]. The goal of the platform was to gain more 

data for that region of the sea for the development of future offshore wind farms. The data 

would then serve to reduce the risks in the design, erection and operation of the offshore 

WTs. In 2009 the offshore wind farm Alpha Ventus was commissioned to the East of FINO 

1, as shown in Figure 4-25. 

 

Figure 4-25: Location of FINO 1 platform [4-15] 

 

The German Wind Institute (DEWI) is responsible for the measurements taken at the 

platform [4-15]. The platform is the site for a 100 m meteorological mast that is equipped 

with cup anemometers, wind vanes and ultrasonic anemometers (USA) – their positions are 

shown in Figure 4-26 [4-15].  
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Figure 4-26: Positions of measurement equipment on FINO 1 platform 

 

DEWI provides 10 – minute mean measurements of wind direction data from the wind vanes 

and cup anemometers and 10 Hz data from the USA’s. Data was obtained between 

01/01/2006 and 31/12/2011 from the 70 m cup anemometer. Using Equation 4-1, and a 

surface roughness length of 0.001 m, the wind speed was calculated for a hub height of 80 m 

[4-6]. This is a relatively low hub height for an offshore wind turbine – the Siemens 6MW 

offshore WT has blades that are 75m long – but it keeps the offshore data comparable to the 

onshore data and with such a low surface roughness length the wind speed profile does not 

differ significantly above 80 m. With the wind speed adjusted, the mean daily wind speed at 

FINO 1 is calculated to be 9.48 m/s. The FINO 1 wind speed PDF and time series between 

01/01/2006 and 31/12/2011 are shown Figure 4-27. 
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Figure 4-27: FINO 1 hub height met mast data a) Mean daily wind speed time series b) Mean daily wind 

speed normalised histogram  
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3. The Impact of Temperature and Humidity on Reliability 

Analysis was undertaken to investigate the impact of wind speed, temperature and humidity 

on WT reliability by Tavner and his colleagues in 2013, building on work carried out in 2006 

and 2010 [4-10], [4-13], [4-16].  

They compared several wind farm availability time series with time series of the local 

weather conditions. The weather data that represented two of the sites came from onsite met 

masts while a weather station, located 17 km away, was used to provide data for the third.  

Cross correlations were taken between the wind farm availability time series and the 

corresponding weather time series over the same period. The aim of the analysis was to show 

that the weather has a direct effect on the reliability of a wind turbine. This work has been 

discussed in more detail in Chapter 2.3.4. 

Tavner and his colleagues concluded that temperature and humidity had an impact on WT 

reliability as well as wind speed. The purpose of this section is to undertake similar analysis 

using the available reliability and weather data and determine if the same conclusion can be 

drawn using this dataset. If it is the case that temperature and humidity have a direct impact 

on reliability, they will be included in the analysis undertaken in Chapter 6 and Chapter 7.  
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3.1. Cross Correlation Analysis 

Cross-correlation is a measure of similarity between two signals, shown in Equation 4-2 [4-

13], [4-17]. In this case, f(t) and g(t) are the two signals, 𝜏 the time lag between the signals 

and Rfg representing the cross-correlation [4-17].  

 

𝑅𝑓𝑔(𝜏) =  ∫ 𝑓(𝑡)𝑔(𝑡 +  𝜏)𝑑𝑡 
∞

−∞

 

 

Equation 4-2 

This can be written as shown in Equation 4-3, where T is the period of observation [4-13]. 

 

𝑅𝑓𝑔(𝜏) =  lim
𝑇 →∞

1

2𝑇
∫ 𝑓(𝑡)𝑔(𝑡 + 𝜏)𝑑𝑡

𝑇

−𝑇

 

 

Equation 4-3 

In the case of sampled signals, the expression is rewritten as shown in Equation 4-4, where N 

is the number of data points and m is the lag [4-13]. Each time series must be sampled 

uniformly. 

 

𝑅𝑓𝑔[3 − 𝑚] =  lim
𝑁 →∞

1

2𝑁 + 1
∫ 𝑓[𝑛]𝑔[3 − 𝑛 + 𝑚]

𝑁

−𝑁

 

 

Equation 4-4 

Cross-correlation can now be calculated where signals f(t) and g(t) are a finite length. The 

biased cross-correlation is calculated as shown in Equation 4-5 [4-13]. 

 

𝑅𝑓𝑔[3 − 𝑚] =  
1

𝑁
∑ 𝑓[𝑛]𝑔[3 − 𝑛 + 𝑚]

𝑁−𝑚+1

𝑛=1

 

Equation 4-5 

As the lag, m increases in Equation 4-5, the cross-correlation decreases as the overlap of the 

signals reduces [4-13]. This problem is fixed by wrapping the signals around themselves in 
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time. This is done by taking the reliability and weather data for an equal number of years and 

wrapping the signals so the final December is then proceeded by the first January.  

 

𝑅𝑓𝑔[3 − 𝑚] =  
1

𝑁 − [3 − 𝑚]
∑ 𝑓[𝑛]𝑔[3 − 𝑛 + 𝑚]

𝑁−𝑚+1

𝑛=1

 

 

Equation 4-6 

As it is not possible that future weather conditions can have an impact on present WT 

reliability, only positive lags are considered. Therefore m = 1,…,M + 1 [4-13].  

The cross-correlation coefficient C, is the normalised version of the cross-correlation divided 

by the signal power, shown in Equation 4-7 [4-13]. A cross-correlation coefficient can be 

calculated for any lag, m. 

 

𝐶[3 − 𝑚] =  
𝑅𝑓𝑔[3 − 𝑚]

[3 − 𝑅𝑓𝑓[0] ∙ 𝑅𝑔𝑔[0]]0.5
 

 

Equation 4-7 

The cross-correlation coefficient is then between -1 and 1. If C = 0 there is no cross-

correlation between the two signals; if C = 1 then the signals are perfectly positively 

correlated and if C = -1, the signals are perfectly negatively correlated [4-13]. 
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3.2. Results  

Using the same methodology as Tavner and his colleagues, the cross correlation of the time 

series of the number of WT failures at both Site A and Site B were calculated with the site 

daily average weather conditions. Only downtimes that were due to corrective maintenance 

were considered. Downtimes due to preventative maintenance, low wind and high winds 

were not included. 

Only failures and weather conditions that took place between 01/01/2010 and 31/12/2011 

were analysed. Failures that occurred to Site A WTs in 2012 were omitted as including them 

would mean that the time series would be 761 days long and this would distort the analysis 

due to the seasonality of the weather measurements and the wrapping of the weather time 

series.  

Table 4-6: Correlation coefficients of Site A and Site B  

Site 
Minimum 

Temperature 

Maximum 

Temperature 

Average 

Temperature 

Average 

Wind Speed 

Maximum 

Wind Speed 

Average 

Humidity 

Site A 

Correlation 

at zero lag 0.36 0.43 0.41 0.52 0.52 0.46 

Maximum 

correlation 
0.41 0.47 0.46 0.52 0.52 0.47 

Site B 

Correlation 

at zero lag 0.39 0.36 0.39 0.40 0.40 0.40 

Maximum 

correlation 
0.41 0.36 0.39 0.40 0.40 0.40 

 

The weather condition that is most closely correlated with the wind farm availability time 

series at Site A and Site B is the average wind speed and maximum wind speed time series. 

As shown in Table 4-6 their correlation at zero lag was 0.52 and 0.40 at Site A and Site B 

respectively; in both cases the maximum was at zero lag indicating that the wind speed had 

an immediate impact on wind turbine availability. The high correlation suggests that an 

increase in wind speed coincides with an increase in the number of failed WTs.  
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Average humidity at Site B was also as equally highly correlated as average wind speed and 

maximum wind speed. The highest maximum correlation at Site B was minimum 

temperature with a correlation coefficient of 0.41. However this maximum occurred after a 

lag of several months. After this period of time it is unlikely that the minimum temperature 

has impacted WT reliability.  

 

 

Figure 4-28: Site B time series of a) number of failures and b) mean daily wind speed 

 

 

 

Figure 4-29: Site A time series of a) number of failures and b) mean daily wind speed 
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The time series for both the mean daily wind speed and the number of failures for Site A and 

Site B are shown in Figure 4-28 and Figure 4-29 respectively.  

 

 
Figure 4-30: Correlelograms of wind farm availability and mean daily temperature, humidity and wind 

speed for a) Site A and b) Site B 
 

Figure 4-30 shows the correlelograms of mean daily temperature, humidity and wind speed 

signals for both Site A and Site B, with a lag of 0 days to 730 days. The seasonality of the 

mean daily temperature can be seen in Figure 4-30a) and Figure 4-30b), with peaks and 

troughs occurring at intervals of roughly 365 days. The maximum correlation coefficient for 

the mean daily temperature and failure frequency at Site A is 238 days. This suggests that it 

is the temperature 238 days before a failure that has the greatest impact on the reliability of 

the component. Similarly the maximum correlation coefficient of mean daily temperature at 

Site B occurs at a lag of 414 days. It seems very unlikely that failures could be caused by 

conditions 414 days beforehand. The correlation coefficient remains relatively constant as 

the lag increases however.  

.    
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3.3. Discussion 

The results from the Tavner study and from this analysis are very similar, as shown in Table 

4-7 [4-13]. They clearly show that there was a correlation between the WT reliability and 

wind speed, temperature and humidity. The Tavner study achieved their results to a 99.9% 

level of significance, however just how that metric was calculated was not explained. This 

metric is therefore not calculated using this dataset. 

The ORD has far more WTs than the dataset used by Tavner and his colleagues, however the 

period over which the data was recorded was less. Overall Tavner and his colleagues used 

202 WTYs of data, whereas the ORD dataset contains 372.5 WT years (minus the 2012 Site 

A data which was omitted because of the wrapping process).  

Table 4-7: Cross correlation analysis from Tavner et al [4-13] 

Weather 

Condition 

Fehmarn Krummhorn Ormont 

Correlation 

at zero lag 

Maximum 

Correlation 

Correlation 

at zero lag 

Maximum 

Correlation 

Correlation 

at zero lag 

Maximum 

Correlation 

Max Wind 

Speed 

0.23 0.25 0.29 0.31 0.13 0.14 

Standard 

Deviation of 

Wind Speed 

0.22 0.24 - - 0.14 0.16 

Maximum 

Temperature 

0.19 0.22 0.27 0.28 0.11 0.13 

Minimum 

Temperature 

0.18 0.21 0.24 0.26 0.09 0.11 

Temperature 

Variation 

0.19 0.23 0.26 0.28 0.12 0.14 

Average 

Humidity 

0.23 0.24 0.30 0.31 0.13 0.14 

 

It is understandable how the wind speed could have a direct impact on how the WT operates; 

this is described in Chapter 2.3.4 and shown in Figure 4-3. It is much harder to explain how 

the temperature and humidity have a direct impact on reliability. However, why does there 

appear to be a relationship between the temperature (and humidity) and the number of WT 

failures?  
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Another issue when attempting to understand the impact of temperature and humidity on 

component failures is that the measurements taken in both this analysis and Tavner’s case 

were of the surroundings, rather than those experienced inside the nacelle (or the tower) by 

the failed components. In the case of the SWT-2.3-101 model, the temperature and the 

humidity inside the WTs were monitored and controlled by an internal climate control unit 

[4-4]. This is the case now with all modern multi-megawatt machines. It is not clear whether 

a unit like this was fitted to the WTs in Tavner’s dataset; no mention is made within the 

product brochure of the 330kW model [4-18]. If a system was not fitted it would be 

reasonable to assume the ambient temperature to be related to the nacelle temperature. 

However in the case of the SWT-2.3-101 that same assumption cannot be made due to the 

interference of the climate control system. Why then was there a clear correlation between 

temperature and humidity and wind turbine reliability shown in Table 4-6 and Table 4-7?  

Table 4-8: Cross-correlation coefficients of daily mean temperature, humidity and wind speed for Site A 

and Site B 

Site 

Daily mean cross-correlation Coefficient 

Temperature and 

Humidity 

Temperature 

and Wind speed 

Humidity and 

Wind Speed 

Site A 

Zero lag 

correlation 
0.88 0.82 0.91 

Max 

correlation 
0.88 0.82 0.91 

Site B 

Zero lag 

correlation 
0.82 0.77 0.92 

Max 

correlation 
0.82 0.77 0.92 

 

Wind is the movement of air which is caused by differences in atmospheric pressure due to 

temperature differences. Therefore the wind speed is related to temperature which in turn 

also influences humidity. Because these factors are all closely related and are not 

independent from one another it is difficult to determine whether the correlation they each 

show with WT reliability is due to causation, or if they are indirectly linked.  The cross-
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correlation coefficients of temperature and wind speed for Site A and Site B is 0.82 and 0.77 

respectively, as shown in Table 4-8. 

Seasonally, the wind speed, temperature and humidity follow clear trends. The temperature 

in the Site A and Site B datasets increase in the summer and decrease in the winter, as shown 

in Figure 4-31b. The humidity also follows a predictable pattern in Figure 4-31c, rising in the 

winter and falling in the summer. The wind speed generally decreases in the summer and 

increases in the winter, as shown in Figure 4-31a. It is likely that the high correlation 

between all of the weather characteristics and WT reliability, shown in Table 4-6 and Table 

4-7, is due to the predictable and regular relationships between the weather characteristics, 

rather than their direct influence on the reliability of the WTs. Therefore the high cross-

correlation coefficients relating the temperature and humidity to WT reliability may be due 

to their close relationship with the wind speed, rather than because the temperature and 

humidity are influencing the WT directly.  

 

Figure 4-31: Monthly weather trends for Site A and Site B a) mean daily wind speed b) mean daily 

temperature and c) mean daily humidity 
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Because a climate control system is employed within the SWT-2.3-101 and because of the 

ambiguity over the direct impact of ambient temperature and humidity on WT reliability, it is 

difficult to determine if ambient temperature or humidity have any direct effect on WT 

reliability. Therefore this thesis will subsequently focus solely on the impact of wind speed 

on WT reliability. The following chapter will describe the methodology that will be used to 

model the relationship between the two variables.  
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4. Chapter 4 Summary 

The purpose of this Chapter was to introduce and perform initial analysis on the ORD and to 

find weather data for the wind farm sites over the recorded period.  

The WT reliability data used in this thesis comes from two sites in Scotland that have a 

combined total of 194 WTs. The size of the dataset is 384.4 WT years and is called the ORD. 

The WTs used at both wind farms are the same model and have an output capacity of 2.3 

MW. Each WT comprises twelve components, shown in An example of this code is 

“SIA1A040MDY”. The first 2 characters indicate the first 2 letters of the wind farm’s name, 

in this case Site A. The following 3 characters distinguish Site A from any other wind farms 

owned by the operator that also have the first 2 letters of their name to be “SI”. The 6th, 7th 

and 8th characters, which are always numbers, represent the asset to which the failure 

occurred – in this case WT number 40. The last characters indicate the component that failed 

which in the example’s case was the control system. Codes which indicate the location of the 

failure within the system are shown in Table 4-2. There are 33 in total.  

Table 4-2. The downtimes are also recorded by the ORD, Figure 4-6 shows what happens 

during the downtime period of each failure.  

Reliability analysis is undertaken in Chapter 4.1.4 using the ORD dataset. The analysis 

compares well to previously published reliability data shown previously in Chapter 2.3.4. 

The least reliable components are the control system, yaw system and drive train. On 

average the rotor, drive train and hydraulics cause the longest periods of downtime. A 

summary of component failure rate data from the ORD is shown in Table 4-3. 

The weather data used in this thesis comes from three sources – the met office MIDAS 

database, onsite met masts from the operator and the offshore FINO1 met mast located in the 

North Sea. Weather time series are constructed for Site A and Site B using the onsite met 

mast data and MIDAS data from nearby weather stations, shown in Figure 4-17.  
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Research undertaken by Tavner suggested that temperature and humidity may also impact 

WT reliability [4-13]. Using the WT reliability and weather data Tavner’s methodology was 

followed to determine if temperature and humidity should be included in the analysis 

undertaken in this thesis. It was found in Chapter 4.3 that although the methodology used by 

Tavner suggested that temperature and humidity were related to WT reliability, there was not 

enough evidence to suggest that they had a direct effect. Therefore it was decided that the 

thesis would maintenance its focus exclusively on the impact of wind speed on WT 

component failure rate (see Chapter 4.3.3). 

Using the data presented in this Chapter, Chapter 5 will utilise the methodologies discussed 

in Chapter 3 to calculate the relationship between wind speed and reliability. A model will 

then be developed in Chapter 6 and Chapter 7 that will be able to extrapolate this 

relationship to sites where component failure rates are unknown.    
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1. Calculating Wind Speed Dependent Failure Rates 

Following on from the models discussed in Chapter 3, Chapter 5.1 uses these proposed 

models to calculate wind speed dependent failure rates. Failure rates are calculated first 

using Kernel density functions, (discussed previously in Chapter 3.2.3) and then normalised 

histograms (discussed in Chapter 3.2.4).  

Both methods use Bayes Theorem (as discussed in Chapter 3.2.1), shown in Equation 5-1. 

𝑃(𝜆𝑖|𝑤) =  
𝑃(𝑤|𝜆𝑖)𝑃(𝜆𝑖)

𝑃(𝑤)
 

Equation 5-1 

 

The chosen method to be used in the wind speed dependent failure rate model is decided 

upon in Chapter 5.1.3. 

1.1. Kernel Density Functions 

The calibration wind speed distribution P(w) was calculated first by taking kernel density 

estimates of both Site A and Site B and binning the data from both wind farms at the same 

intervals. This was done using the Matlab function ‘ksdensity’ [5-2].  

Table 5-1: Site A and Site B minimum and maximum mean daily wind speeds 

Mean Daily Wind Speed  Site A Site B 

Maximum (m/s) 15.72 17.07 

Minimum (m/s) 1.24 0.96 

 

The bins were calculated by taking the minimum and maximum mean daily wind speed of 

both sites and dividing the range between into 100 equal intervals. The minimums and 

maximums are shown in Table 5-1. The first and last bins are at 0.96 m/s and 17.07 m/s 

respectively. The intervals are each 0.16 m/s.  
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Figure 5-1: Site A, Site B and calibration (P(w)) datasets mean daily wind speed PDF calculated using 

kernel density estimates 

 

Figure 5-1 shows the PDFs of Site A and Site B. Site A consists of 278.5 WT years of data, 

while Site B consists of only 105.9 WT years of data - therefore 72.5% of the data comes 

from Site A. P(w) must reflect that difference in size and be a weighted combination of the 

two datasets.  Equation 5-3 is used to calculate the calibration wind speed PDF, j and 𝛼 

represent the bin number and the weighting respectively. The weighting was calculated using 

Equation 5-2. The calibration wind speed dataset P(w) is shown in Figure 5-1.  

𝛼 =  
𝑆𝑖𝑧𝑒 𝑜𝑓 𝑆𝑖𝑡𝑒 𝐴 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 Equation 5-2 

 

 
 

𝑃(𝑤𝑗) = 𝑃(𝑆𝑖𝑡𝑒 𝐴𝑗)𝛼 + 𝑃(𝑆𝑖𝑡𝑒 𝐵𝑗)(1 − 𝛼) Equation 5-3 

 

The term P(w|𝜆𝑖), is the probability of wind speed w occurring, given a failure has occurred 

to component i. This is calculated by taking a PDF of the daily average wind speeds recorded 

on days when a failure occurred to component i. The data is binned at the same intervals as 

P(w).   
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An advantage of using kernel density estimation is that this method allows probabilities to be 

calculated for wind speeds where no data was available from Site A or Site B . This means 

however that a probability is given that the mean daily wind speed will be less than 0 m/s, 

which is not possible.  

However the disadvantage of using kernel density estimates is that there may not be enough 

data to accurately represent. The circles in Figure 5-2 and Figure 5-3 represent the raw data 

which are the probabilities of each daily wind speed occurring calculated from the ORD data 

of the control system and drive train, while the line is the estimated PDF. A non-parametric 

distribution is used because although mean daily wind speed follows a Weibull distribution, 

it is not known what distribution mean daily wind speed will follow when only considering 

days when an individual component fails [5-3]. 

In the control system’s case, the PDF fits the data well – the sum of squares S, calculated 

using Equation 5-4 where y is the raw data and m is the estimated PDF, equals 0.003. But in 

the case of the drive train it fits less well, as shown in Figure 5-3.  

𝑆 =  ∑(𝑦𝑖 − 𝑚𝑖)
2

𝑛

𝑖=1

 
Equation 5-4 
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Figure 5-2: PDF of wind speed conditions on days when the control system failed. S = 0.003.  

 

 

Figure 5-3: PDF of wind speed conditions on days when the drive train failed. S = 0.013. 
 

 

 

For components that fail less often there are fewer data points for the PDF to be fitted to and 

the goodness of fit reduces as the kernel estimator function struggles to accurately fit a 

suitable curve to so few data points. As shown in Figure 5-4, in the case of the emergency 

system which fails only twice, S equals 0.460. This is clearly very inaccurate and 

improvements would have to be made before using this estimated PDF in the model but 

because these components fail so infrequently and have such low failure rates (𝑃(𝜆𝑖)), when 
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𝑃(𝜆𝑖|𝑤) is calculated it is so small compared to other less reliable components that the 

inaccuracy of the fitting has very little impact on the overall model. Therefore the less 

reliable components that are more interesting for the purposes of this analysis are modelled 

more accurately than the more reliable components that contribute less to the overall 

downtime.  

 

 

Figure 5-4: Goodness of fit of kernel estimates of P(w|𝝀𝒊) and number of failures of each component in 

dataset 

 

1.1.1. Component Wind Speed Dependent Failure Rates Using Kernel Density 

Function 

Using the probability density estimates of P(w|𝜆𝑖) and P(w) calculated in the previous 

section by using kernel density estimates, the probability of failure given a mean daily wind 

speed P(𝜆𝑖|𝑤) can be calculated. 

𝑃(𝜆𝑡|𝑤) =  ∑ 𝑃(𝜆𝑖|𝑤)

𝑡

𝑖=1

 
Equation 5-5 
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When the WSD failure rates of all 12 components were summed and multiplied by the 

system failure rate, as shown in Equation 5-5 to calculate the probability of a failure to the 

WT system given the wind speed (𝑃(𝜆𝑡|𝑤)) for each wind speed bin, the plot in Figure 5-5 

was produced. It showed that as the mean daily wind speed increased the probability of 

failure increased. This was especially the case at mean daily wind speeds greater than 15 

m/s. When downtime filters were applied to remove failures which did not result in 

downtimes of less than 12 hours, 24 hours and 48 hours, the trend continued as illustrated in 

Figure 5-5.   

 

Figure 5-5: P(λt|w), with downtime filters of 0 hours, 12 hours, 24 hours and 48 hours.  

     

Only mean daily wind speeds upwards of 2 m/s were considered because firstly, as discussed 

in the previous section, one of the problems with estimating the PDF of 𝑃(𝑤|𝜆𝑖) was that it 

calculated that there was a probability of the average wind speed being less than 0 m/s – this 

skews the probability estimation for wind speeds less than 2 m/s. Secondly, as shown in 

Equation 5-1, calculating 𝑃(𝜆𝑖|𝑤) requires 𝑃(𝑤|𝜆𝑖)  to be divided by 𝑃(𝑤) – therefore if the 
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model evidence shows that the probability of the wind speed being less than 1 m/s is zero, 

𝑃(𝜆𝑖|𝑤) will equal infinity.       

As the mean daily wind speed increased, the proportion of all the failures which caused 

downtimes greater than 12 hours, 24 hours and 48 hours also increased as shown in Figure 

5-6. This showed that as the mean daily wind speed increased, the failures which occur at 

these higher wind speeds caused longer downtimes. This could be partially because failures 

that happened on days with high wind speeds statistically were more likely to be followed by 

periods of time with high wind speeds, as would be expected in winter. This then would 

result in maintenance crews being unable to access the WT to make their repairs, thus 

increasing downtime. But it was unlikely that wind speeds would remain so high for over 48 

hours without giving the crews the opportunity to access the WT, it is therefore also 

reasonable to suggest that failure severity appears to increase as the mean daily wind speed 

increases.    

 

Figure 5-6: Percentage of total failures to the whole system against mean daily wind speed and failures 

which result in downtimes of greater than 12 hours, 24 hours and 48 hours. 
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The control system suffered the greatest amount of failures of all WT components in the 

dataset. As a result the shape of the plot shown in Figure 5-5 was influenced significantly by 

the relationship between the control system and mean daily wind speed. As shown in Figure 

5-7 the failure rate of the component increased as the mean daily wind speed increased, 

especially above 15 m/s. The plot displays the same false peak at roughly 14 m/s as that 

shown in Figure 5-5. The peak was the result of the fitting of 𝑃(𝜆𝑖|𝑤)𝑃(𝜆𝑖) shown in Figure 

5-2.   

 

Figure 5-7: P(λt|w) of the control system, with downtime filters of 0 hours, 12 hours, 24 hours and 48 hours. 

 

The proportion of failures which cause downtimes greater than 24 hours and 48 hours 

decreases as the mean daily wind speed increases. This backs up the preliminary data 

analysis undertaken in Chapter 4.1.4.1 that showed that although the control system 

frequently failed; when it did it was for a relatively shorter period of time.  

Figure 5-8 shows that counter to many other WT components, increasingly high wind speeds 

do not cause the control system to suffer long periods of downtime. Above 10 m/s, the 

percentage of failures that caused downtimes greater than 24 hours and 48 hours against all 
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control system failures, declined. Although like other components the proportion of failures 

causing downtimes greater than 12 hours did increase.  

 

Figure 5-8: Percentage of total failures to the control system against mean daily wind speed and failures 

which result in downtimes of greater than 12 hours, 24 hours and 48 hours. 

 

Interestingly the drive train shows a slightly different plot of WSD failure rates as shown in 

Figure 5-9. 

 

 

Figure 5-9: P(λt|w) of the drive train, with downtime filters of 0 hours, 12 hours, 24 hours and 48 hours. 
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Firstly the drive train WSD failure rate reached its second highest point at 14 m/s when no 

downtime filter was applied; it then peaked at 17 m/s. The failure rate did not increase 

beyond these two points. In the case of the control system (and the yaw system) the failure 

rate accelerated in this region. However this flattening, which was also seen when the 

downtime filters were applied, makes sense when the operation of the drive train is 

considered at wind speeds in this region.  

At wind speeds above rated the gearbox maintains a constant torque while the control system 

operates the pitching of blades which keep the rotor turning at as near to a constant wind 

speed as possible. The drive train therefore does not work as hard beyond rated wind speed 

and may suffer fewer failures as a result. However from Figure 5-5it is clear that the WT 

does fail more often above rated wind speed as the two highest peaks are situated at 14 m/s 

and 17 m/s.  

The reason for the peak at 14 m/s could have been a result of the drive train changing its 

operating strategy frequently while the wind speed varied between below and above rated. 

Rated wind speed for the SWT-2.3-101 is between 8 m/s – 11.5 m/s, but because it is not 

instantaneous wind speed being measured but mean daily wind speed, a day which has an 

average wind speed of 14 m/s would spend a good proportion of time below rated and above 

rated wind speed causing the WT to operate between the two strategies.  

The final peak at 17 m/s is likely to be a result of the fitting of 𝑃(𝑤|𝜆𝑖) and 𝑃(𝑤) at the tails, 

a problem that is evident in the tails of the filtered 12 hour and 24 hour curves in Figure 5-5. 

The failure rate should always be higher for the series with the highest number of failures – 

when a filter is applied data points are removed, therefore the failure rate should be the same 

or lower at all points of the 12 hour and 24 hour filtered data, compared to the series with no 

filter. The data points for each component, after a downtime filter is applied, are presented in 

Table 5-2. Similarly the 24 hour filter series should not have a higher failure rate than the 12 
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hour filter series. This is again due to curve fitting and will be discussed in more detail in the 

subsequent section.  

 

Figure 5-10: Percentage of total failures to the drive train against mean daily wind speed and failures 

which result in downtimes of greater than 12 hours, 24 hours and 48 hours. 

 

The severity of failures appeared to increase at high wind speeds for the drive train, as shown 

in Figure 5-10. Unlike the control system, failures which caused downtimes greater than 48 

hours increased at high wind speeds. To highlight the issue of curve fitting at wind speeds, 

Figure 5-10 shows that beyond 15 m/s the percentage of failures that caused a downtime 

greater than 12 hours was over 100%, which is obviously incorrect as there 25 fewer failures 

as shown in Table 5-2. This occurs because of P(w) being so close to 0 for these mean daily 

wind speeds.   
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Table 5-2: Data points for each component when downtime filters are applied 

Component Number of Failures when Downtime Filter Applied 
0 Hours 6 Hours 12 Hours 24 Hours 48 Hours 

Emergency System 2 1 0 0 0 
Met Instruments 29 5 4 1 0 

Rotor 18 13 5 3 1 

Blade Pitch System 26 16 11 8 3 
Drive Train 60 49 35 12 11 

Yaw System 58 37 20 12 6 
Hydraulics 30 18 13 6 3 

Control System 200 122 92 33 15 
Generator 12 6 4 2 1 

Lifting System 4 2 1 0 0 

Nacelle  6 1 0 0 0 
Tower 23 3 0 0 0 

 

The yaw system, which has the third highest failure rate of all the components, has a WSD 

failure rate similar to the control system in that it increases as the wind speed increases as 

shown in Figure 5-11. Again there is a problem with the failure rate of the 12 hour downtime 

filtered data as it is greater than the non-filtered data above 16 m/s.  

 

Figure 5-11: P(λt|w)  of the yaw system, with downtime filters of 0 hours, 12 hours, 24 hours and 48 hours. 

 



Chapter 5. Wind Speed Dependent Failure Rates Methodology  

 

155 

 

 

Figure 5-12: Percentage of total failures to the yaw system against mean daily wind speed and failures 

which result in downtimes of greater than 12 hours, 24 hours and 48 hours. 

 

The yaw system also appeared to fail for longer periods of time as the wind speed increased, 

as shown in Figure 5-12. 

 

Figure 5-13: Plot of P(λi|w) for the control system, drive train, yaw system and the remaining nine 

components, labelled as Misc.  
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Comparing the 𝑃(𝜆𝑖|𝑤) of the three least reliable components it is clear that in general there 

was an increase in the probability of failure as the wind speed increased, as shown in Figure 

5-13. When the 𝑃(𝜆𝑖|𝑤) of the remaining nine components were summed together, labelled 

as Miscellaneous in Figure 5-13, they too showed an increase in failure rate as the wind 

speed increased.  

The failure rates of all four sets similarly increased rapidly beyond 16 m/s and also increased 

between 4 m/s and 2 m/s. In both cases it was caused by the kernel estimates taken of  

𝑃(𝑤|𝜆𝑖) and 𝑃(𝑤). The following section will discuss why this happens and consider a 

possible solution in using normalised histograms instead.  
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1.2. Normalised Histograms  

The bins used in for the normalised histograms in this chapter are selected in Chapter 5.2.5.2, 

where the model is validated. 

Normalised histograms were taken of the mean daily wind speed met mast data from Site A 

and Site B and then were combined wind speed in the same manner described in Chapter 

5.1.1, Equations 5-2 and 5-3, to produce a calibrated wind speed (P(w)) dataset that 

describes the data from both sites, shown in Figure 5-15. Similarly a normalised histogram 

was also taken of the mean wind speeds when failures occurred to the individual 

components. This returned probabilities of the wind speed being within each bin when a 

failure occurred to a component 𝑃(𝑤|𝜆𝑖), an example of which is shown in Figure 5-14. 

The WSD failure rate of the WT system is shown in Figure 5-16. It differs slightly to the 

WSD failure rate calculated using the kernel density estimate in Figure 5-5. One of the 

obvious differences is that the failure rate beyond 13 m/s in Figure 5-16 is less than that 

modelled in Figure 5-5. This is the case for the 0 hour, 12 hour, 24 hour and 48 hour filtered 

datasets.  

 

 

 

Figure 5-14: The probability of a mean wind speed 

w occurring on a given day, when a failure has 

occurred to i. 

Figure 5-15: The probability of a mean wind speed 

w occurring on a given day. 
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Figure 5-16: P(λi|w) for the control system, calculated using normalised histograms, with 0 hour, 12 hour, 

24 hour and 48 hour downtime filter 

 

The reason for this difference is shown in Figure 5-17 where the numerator of Equation 5-1 

is shown against the denominator for the control system when no downtime filter is applied. 

For the failure rate to increase in the final bin as dramatically as it does in with the kernel 

density estimate method, either P(w) would need to decrease or, as the failure rate P(λi) 

remains constant for each of the bins, P(w|λi) would need to increase.  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 - 3m/s 3 - 5m/s 5 - 7m/s 7 - 9m/s 9 - 11m/s 11 - 13m/s 13 - 17m/s

F
a

il
u

re
 R

a
te

 (
F

a
il

u
re

s 
p

er
 W

T
 Y

ea
r)

 

0 Hour

12 Hour

24 Hour

48 Hour



Chapter 5. Wind Speed Dependent Failure Rates Methodology  

 

159 

 

 

Figure 5-17: P(w) and P(w|λi)P(λi) for the control system with 0 hour downtime filter when the histogram 

method is used 

 

The drive train and yaw system WSD failure rates are shown Figure 5-18. Both the drive 

train and the yaw system show very similar trends to those shown in Figure 5-9 and Figure 

5-11. The yaw system finishes with its highest failure rate at the highest wind speed range, 

whereas the drive train reliability shows a similar trend as illustrated in Figure 5-9.   

The WSD failure rates for the remaining components are shown in Appendix II. Unlike 

Figure 5-13, if all the failure rates were summed together for each of the nine most reliable 

components the highest failure rate would not occur at the highest wind speed range but 

between 7 – 9m/s.  
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Figure 5-18: P(λi|w) for the yaw system and the drive train with no downtime filter applied  
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1.3. Conclusion 

In the case of the drive train and the yaw system, both methods modelled the WSD failure 

rates similarly. These components failed more frequently than any of the other components, 

with the exception of the control system, so it is important that there is good agreement 

between the two methods in how the WSD failure rates were modelled.  

The modelling of the nine most reliable components will not affect the accuracy of the 

overall model as much as the fitting of the least reliable components. However as shown in 

Figure 5-16 the modelling of 𝑃(𝜆𝑖|𝑤) was very similar apart from at the highest wind speed 

ranges.  

This was also the case with the control system which was modelled very similarly in the 

wind speed ranges between 1 m/s to 13 m/s, but beyond 13 m/s the two methods interpreted 

the failure rates differently. The histogram method was optimistic and believed that the 

failure rate would not increase as sharply beyond 14 m/s. The kernel density estimate plotted 

that the failure rate would increase rapidly as the wind speed increased. The reason for this 

difference is due to the way the kernel density estimate works. Because normal distributions 

were used to model the PDF assumptions were made beyond the sample due to the tails of 

the distributions.  

This is demonstrated in Figure 5-19 which shows a normalised histogram and kernel density 

estimate of a synthetic sample which shows the probability of mean daily wind speed given 

the failure to a component P(λi|w), created using distributions of the met mast data and ORD. 

The histogram only plots up until the wind speed bin 16 m/s -18 m/s, beyond that point there 

are no data points that fall into the higher bins – therefore failure rates would be equal to 0 

above this range.  
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Figure 5-19: Comparison between kernel density estimate method and normalised histogram using Site A 

wind speed dataset 

 

The kernel density estimate however plots beyond the range of the sample and makes a 

prediction about the whole population, rather than just the three year sample of wind speed 

data. Failure rates are calculated beyond 16 m/s – 18 m/s using this method, even although 

such events did not occur in the data. However because the probability of the wind speed 

being at this range are so improbable, 𝑃(𝜆𝑖|𝑤) becomes very large. This is the reason why the 

failure rate increased almost exponentially for all the components in Figure 5-13. This is also 

the case in the above example for wind speeds less than 0 m/s, which in reality would have a 

probability of 0. This problem can be solved by using tighter bandwidths – this makes the 

model more accurate but the benefits of estimating beyond the limits of the sample are lost.  

The reason it would be beneficial to estimate failure rates for wind speeds beyond the limits 

of the sample data is because many sites operate at higher wind speeds than those 

experienced on the ORD sites. For the model to become more valid in these cases it would 

be valuable to extrapolate the relationships to higher wind speed ranges. If reliability does 
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decrease with wind speed as the results in this section suggest, it is these existing sites and 

potential sites like these that would benefit most from this model. This would be especially 

applicable to assessing the impact of the offshore environment.  

Of course the impacts of offshore could not be properly appreciated without an O&M model 

that accounts for logistics and accessibility, which is somewhat beyond the bounds of this 

thesis. But to model the impact of wind speed on component reliability offshore it would be 

advantageous to use ORD from an offshore wind farm using WTs which have been designed 

specifically for that environment. Currently however this data is not easily accessible 

because of industrial confidentiality. In many cases were it available it may only be of 

limited use due to the age of the WTs, with many of them likely to be operating in the early 

failure region of the bathtub curve. Experience from Egmond Aan Zee and the Round 1 sites 

demonstrated that the early years of operation for an offshore wind farm can be very difficult 

and may not represent their long term reliability [5-4]–[5-6].  

So to summarise, the key difference in the two methods was the way in which the tails of the 

P(w) and P(w|λi) distributions were modelled. Although the kernel estimation method may 

be more applicable for windy sites, the modelling of failure rates at high wind speeds is not 

particularly accurate and may lead to inaccurate results. It is also inaccurate at low wind 

speeds. In both cases these events do not happen often, although this may be a problem if the 

model is extrapolated to another much more or less windy site. The histogram method is 

more accurate as it only considers the data present in the sample – which consists of 3 years 

of wind speed data and 2 years of ORD – and does not make assumptions about the long 

term site conditions or component reliability. There are also no issues with goodness of fit. 

However at wind speeds above 17 m/s the histogram method calculated the failure rates of 

all components to be 0, which is clearly not the case.  
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The method decided upon for the model was the histogram method and the problem with it 

predicting a failure rate of 0 beyond 17 m/s was solved by making the assumption that the 

failure rate P(λi|w) beyond 17 m/s was the same as that calculated in the last wind speed bin, 

13 m/s – 17 m/s in this case. This was the chosen option as although it might be optimistic in 

assuming the failure rate of a component at 13 m/s to be the same the failure rate at 20 m/s, 

the assumption is based on reliable figures and the model can therefore give a logical 

prediction that is neither the worst case nor the best case scenario. In any case the probability 

of the mean daily wind speed being above 17 m/s is relatively low, even offshore as shown 

in Chapter 4.2.3. The majority of the failures will still occur on days when the mean daily 

wind speed is within the accurately modelled range of between 2 m/s – 13 m/s 
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2. Wind Speed Dependent Failure Rate Model Description 

The basic purpose of the WSD failure rate model used in this thesis is to simulate the impact 

of wind speed on WT reliability. A schematic of this model is shown in Figure 5-20. This 

section will describe the model step by step and will then present some of the outputs after 

validation. 

 

Figure 5-20: Flow chart showing model process for one WT 

 

The model has a daily resolution and begins simulation at day t = 1. It continues to run until 

it has simulated the lifetime of a WT, which for the purposes of this thesis is defined as being 
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twenty years or 7300 days – this is a common period of life which is used by other authors 

[5-7]–[5-9].  

Figure 5-20 shows the layout of a model consisting of 1 WT. To model a wind farm this 

model is layered and the steps are repeated in parallel for however many WTs there are 

designated to be in the farm. A schematic of this is shown in Figure 5-21 for a wind farm of 

n WTs.  

 

Figure 5-21: Multi WT model 

  

The simulations are carried out until the results converge. This is described in more detail in 

Appendix I.   
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2.1. Wind Speed 

It will be explained later in Chapter 6.2 and Chapter 7.2 how further inputs can be added to 

model income and O&M expenditure but while the model is in its basic form, shown in 

Figure 5-20, the wind speed is the only model input.  

The wind speed input is a time series of mean daily wind speed which will be wrapped to 

create a 20 year time series, therefore it is important that at a minimum the input time series 

should be 1 year long and for anything larger it must be whole years to avoid any 

discontinuity in the seasonal variations. An example is shown in Figure 5-22 where a wind 

speed time series that is 3 years long has been wrapped to produce a 20 year dataset.  

 

Figure 5-22: Wrapped time series of mean daily wind speed over 20 year period 

 

Each daily mean wind speed is fed into the model in order. In the examples used in this 

thesis the wind speed time series always begins on the 1
st
 of January – therefore when t = 1 

the wind speed is that of the 1
st
 of January, at t = 2 it is the 2

nd
 of January and so on.  

  



Chapter 5. Wind Speed Dependent Failure Rates Methodology  

 

168 

 

2.2. Failure Simulation 

Failures are stochastically simulated using MCMCS, as discussed in Chapter 3.1.3.3. The 

model must construct a Markov Chain each time step, representing all 12 components. 

Figure 5-23 describes this Markov Chain. The model creates a vector λ(w), shown in 

Equation 5-6, which contains the failure rate (or transition rate) λ from the ‘operating’ state 

to the ‘failed’ state of each of the 12 components i.  

 

Figure 5-23: Markov chain used for failure simulation 

 

𝝀(w) = (𝜆1(𝑤), 𝜆2(𝑤), 𝜆3(𝑤), … , 𝜆12(𝑤)) Equation 5-6 

 

For example, to calculate λ at time step j the mean daily wind speed is found to be w(j) = 5.3 

m/s. As w falls in the range 4 m/s – 6 m/s, the WSD failure rates for that wind speed range 

are used to populate the vector.  These failure rates are shown previously in Figure 5-16, 

Figure 5-18 and Appendix II as annual failure rates; these are divided by 365 to calculate 

daily failure rates. This process constitutes step 1, which is shown in Table 5-3.  

Step 2 requires that the vector is cumulatively summed. If λ12 is greater than 1 the vector is 

normalised in Step 3. In the example shown in Table 5-3 this final term is less than 1 and so 

the vector is does not change from step 2 to step 3. The purpose of these 2 steps is to create a 

vector that represents the cumulative probability of a transition from the operating state to 
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the failed state. Monte Carlo Simulation can be used subsequently to simulate stochastic 

failures. 

Table 5-3: Process of calculating λ(w) 

Component Code i 

Step 1 Step 2 Step 3 

λi λi = cumsum(λi) λi = normalise(λi) 

CHI 1 0.00E+00 0.00E+00 0.00E+00 

CVK 2 6.57E-05 6.57E-05 6.57E-05 
MDA  3 8.77E-05 1.53E-04 1.53E-04 

MDB 4 1.75E-04 3.29E-04 3.29E-04 

MDK 5 3.29E-04 6.57E-04 6.57E-04 
MDL 6 3.07E-04 9.64E-04 9.64E-04 

MDX 7 1.53E-04 1.12E-03 1.12E-03 
MDY 8 9.86E-04 2.10E-03 2.10E-03 

MKA 9 6.57E-05 2.17E-03 2.17E-03 
SMA 10 2.19E-05 2.19E-03 2.19E-03 

UMC 11 0.00E+00 2.19E-03 2.19E-03 

UMD 12 1.10E-04 2.30E-03 2.30E-03 

 

For a wind farm of n WTs it is assumed that the mean daily wind speed is the same across 

the entire site and therefore at time step j is equal to 5.3 m/s. Hence the component failure 

rates at each WT are the same. The model generates a uniform random number 0 ≥ 𝑥 ≤

1 for time step j. If x is less than any of the variables λi then a failure occurs. If for instance 

in this example x = 1.90E-03, this is less than λ12 so a failure has occurred. The component to 

which the failure occurred is identified by the cumulative probability density shown in 

Figure 5-24. 
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Figure 5-24: Cumulative probability density of λ(w) 

 

As x is less than λ8, but more than λ7, the failure is due to a controller failure, which is λ8. 

Had x been greater than λ12 then no failure would have occurred.  

With the probabilities used in this example it would be much more likely that no failure 

would occur. But as the size of the wind farm increases the probability that x will be less 

than λ12 during time step j increases. 

If a failure does occur to a WT during the simulation, it is recorded by the model and a 

downtime is calculated. However if a failure does not occur the model continues to simulate 

through the remaining WTs until all n have been analysed. Once the model reaches n and 

finishes analysing the final WT it returns to the beginning of the model, as shown in the flow 

chart in Figure 5-20, and then moves onto the next time step and begins the process again.  
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2.3. Downtime Calculation 

If a failure occurs in a component, the model then simulates downtime d through Monte 

Carlo Simulation. Continuing the example used in the previous section of a failure to the 

control system at time step j, when the mean daily wind speed was 5.3 m/s, the model 

follows the following steps shown in Figure 5-25.  

 

Figure 5-25: Downtime calculation flow chart 

 

Firstly the model finds the downtimes caused by failure to the control system. It then isolates 

the failures which occurred at wind speeds between 4 m/s – 6 m/s. In doing this the model 

starts with 200 failures and then reduces it to 48. Figure 5-26 shows a normalised 

distribution of the downtimes within this dataset - it resembles a negative exponential 

distribution.  

The uniform random number is then generated which selects an integer between 1 and 48. 

The integer in turn selects a downtime from the list of 48 which is then applied to the model.  

1 

• Find the downtimes caused by the failed component 
within the reliability data 

2 

• Find the downtimes which occurred within the 
relevant mean daily wind speed range   

3 

• Use a uniform random variable to select a downtime 
from the list at random  

4 
• Apply downtime to model  
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This downtime d is then transformed from hours into days and used to populate the 

component availability matrix. 

 

Figure 5-26: Normalised histogram showing distribution of downtimes caused by control system failures at 

mean daily wind speed between 4 m/s and 6 m/s 
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2.4. Availability 

The component availability matrix is 12 columns by 7300 rows. Each WT in the wind farm 

has an availability matrix. The columns represent the components while the rows correspond 

to the time steps, of which there are 7300. Before the simulation commences the availability 

matrix is populated with 1’s. If the row mean is 1 the WT is in an operating condition.  

In the previous example a downtime d was calculated for the control system failure. If d is 

less than 1 day, 18 hours for example, then this equals 0.75 days. So when the control system 

fails at time step j, the row j is changed from a row of 1’s to a row of eleven 1’s and a single 

0.25 at column 8 because it was only available for 0.25 of the day.  

If d was 180 hours this equates to 7.5 days. The model would change column 8 in rows j to 

j+d-2 to 0’s and j+d-1 to 0.5 meaning that there would be 7.5 days of downtime, including 

the day in which the failure occurred as it is assumed that all failures occur at the very start 

of the day.  

Using the availability matrix WT availability can be calculated as well as component 

availability.   

This simulation was required to meet the convergence criterion (discussed in Appendix I). A 

single simulation scenario of a 200 WT wind farm over 20 years took several hours before 

the results had converged.  
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2.5. Validation 

To check the validity of the WSD failure rate model a wind speed dataset was generated 

using the calibration wind speed wind speed distribution shown in Figure 5-1. The dataset 

was produced using random numbers so there was therefore no seasonality, as shown in the 

moving average time series of the calibration wind speed dataset shown in Figure 5-27. 

 

 

Figure 5-27: Moving average plot of calibration wind speed wind speed dataset  

 

However the model did calculate failure rates for each component using the generated 

simulation data from the model and wind farm availability. There were 100 simulations of a 

200 WT wind farm with a life cycle of 20 years, this equalled 400,000 WT years of 

simulated data.  

2.5.1. Component Failure Rates 

In total there was 0.32% difference between the model’s estimation of the failure rate of the 

whole system and the failure rate measured according to the ORD, as shown in Table 5-4. In 

general the components were modelled well and those with the highest failure rates were 

modelled the most closely. This difference in failure rate calculation is most likely due to the 

calculation of the failure rate which assumes that the wind turbine is in operation 100 % of 
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the year, when in reality there are periods of downtime when it has already failed and so is 

not available to fail again. This is why the failure rate is underestimated by the model, 

because it does account for downtime and therefore operates for a shorter period of time and 

fails less often as a result.  

The mean availability of a wind farm subjected to the wind speeds of the calibration wind 

speed dataset time series was calculated by the model to be 99.46 %. The availabilities of 

Site A and Site B were 99.46 % and 99.40 % respectively, the weighted availability of the 

whole dataset was 99.44 %. This slight difference between the model and the dataset is again 

due to the underestimation in failure rate.  

Table 5-4: Component failure rates – modelled and recorded values from ORD 

Component Failure Rate (Failures per WT year) 

WSD failure rate model ORD 

Blade Pitch System 0.069 0.068 

Control System 0.517 0.520 

Drive Train 0.159 0.156 

Emergency System 0.025 0.026 

Hydraulic System 0.079 0.078 

Lifting System 0.010 0.010 

Main Generator 0.031 0.031 

Meteorological Instruments 0.076 0.075 

Nacelle 0.015 0.016 

Rotor 0.046 0.047 

Tower 0.057 0.060 

Yaw System 0.150 0.151 

Total 1.234 1.238 

 

When Site A and Site B were used as inputs, the WSD model returned availabilities of 99.49 

% and 99.39 % respectively – a 0.03 % and 0.01 % difference from their actual values. This 

corresponded to a difference of 2.6 hours and 0.9 hours downtime difference respectively per 

WT per year.  

There were two main reasons for these differences. Firstly the WSD model was calibrated 

using a mixture of values from the Site A and Site B time series. Therefore when the model 
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was inputted with the time series of only one of the sites it produced an estimate that was 

slightly skewed by the relationship found between the component failure rates and the wind 

speed conditions of the other site.   

Secondly both the Site A and Site B wind speed time series also covered periods of time in 

which the reliability data was not recorded by the operator. In Site A’s case the wind speed 

data was gathered between 1/1/2010 to 31/12/2012, while the ORD was only gathered 

between 1/1/2010 to 31/1/2012, there was therefore 11 months of wind speed data in the 

time series which was not used to calibrate the model. The Site B wind speed time series has 

12 months of met mast data that preceeded the period during which its reliability data was 

gathered.  

When the input data was altered to only consist of the wind speed time series covering the 

period over which the ORD was measured (and therefore the same data used to calibrate the 

WSD model) the availability for Site A and Site B was calculated to be 99.45% and 99.40% 

respectively. This gave the actual value of Site B but gave a slightly pessimistic result for 

Site A, 0.01% less available than was actually the case. This difference is likely to be due to 

the wind speed data from January 2012 which was omitted from the Site A wind speed time 

series because of the requirement of the model to have time series inputs that consist of 

whole years to maintain the effect of seasonality.    
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Figure 5-28: Comparison in component failure rates calculated by the model with Site A time series input 

and failure rates calculated using the whole ORD and only the data from the ORD corresponding to 

Site A 

 

The component failure rates calculated by the WSD model using the Site A input (Site A 

Model) compared well to the failure rates calculated using the whole dataset (Site B and Site 

A) and ORD data from only Site A wind farm as presented in Figure 5-28.  

Mean monthly failure rates were calculated from the simulated data of each component 

generated by the model. These monthly failure rates of the three least reliable components at 

Site A, the control system, yaw system and drive train are shown in Figure 5-29. All three 

components showed seasonal trends – failing less often in the summer and failing more often 

in the winter months when the wind speed was greater. The control system was 

approximately 46 % more likely to fail in December than in June according to the model.  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
a

il
u

re
 R

a
te

 (
F

a
il

u
re

s 
p

er
 W

in
d

 T
u

rb
in

e 

Y
ea

rs
) 

Site A Model λ 

ORD λ 

Site A Only ORD λ 



Chapter 5. Wind Speed Dependent Failure Rates Methodology  

 

178 

 

 

Figure 5-29: Monthly failure rates for the three least reliable components calculated by the model with Site 

A wind speed data input 

 

The results when Site B was used as an input (Site B model) also compared well to the 

output of the model. The model produced a whole system failure rate only 0.05 % greater 

than the failure rate calculated from ORD and 4.5 % less when comparing it to the failure 

rates calculated only considering the Site B contribution to the ORD. However the failure 

rates modelled for the drive train and hydraulics were not as accurately modelled as other 

components, as shown in Figure 5-30. The model was biased by the relationship between the 

wind speed at Site A and the failure rates of the drive train and the hydraulic system.  

That is one of the problems with the use of the two datasets; Site A is represented much 

more by the model than Site B because it has a larger dataset. Ideally both datasets would be 

of a similar size, use similar WT models but preferably experience different climates to give 

a good comparison and range of scenarios – but because Site A is a bigger dataset and both 

wind farms operate in similar conditions, the relationship that the WTs have at Site A to their 
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surroundings is stronger in the model than those from Site B. This means that any interesting 

features at Site B are lost in the model quite easily.  

However because Site B is a smaller dataset it is difficult to know whether the WTs there do 

display any interesting behaviour that is different statically to the Site A sample. For 

instance, if 54 WTs were selected randomly from the Site A dataset, their relationship 

between wind speed and component failure rates may differ to the rest of the population 

similarly to the way that the Site B dataset does.  

 

Figure 5-30: Comparison in component failure rates calculated by the model with Site B time series input 

and failure rates calculated using the whole ORD and only the  data from the ORD corresponding to 

Site B 

 

Overall the model was well calibrated to the data, but the model could be improved if a 

larger dataset was available. In the following chapter this model will be developed further to 

include income from the sale of electricity and expenditure due to operation and 

maintenance. Finally the model will be developed for use in planning spares strategies for 

different wind farms.   
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2.5.2. Bin Width Selection 

The bins used in the model validation and in Chapter 5.1.2 were selected after various bins 

were tested using the model. The number of bins and their widths that could have been tested 

is limitless. Therefore after some initial analysis it was decided that three options would be 

evaluated, they are shown in Table 5-5. 

Table 5-5: Bin options tested  

Bin Bin Options (m/s) 

a b c 

1 1-3 1-5 1-4 

2 3-5 5-7 4-6 

3 5-7 7-9 6-8 

4 7-9 9-11 8-10 

5 9-11 11-13 10-12 

6 11-13 13-15 12-14 

7 13-17 15-17 14-17 

Availability 99.46 99.47 99.48 

 

Using the three bin options, the model calculated that option a) was the most accurate 

according to the availability the model produced. As discussed in the previous section, the 

availability of Site A and Site B during the period in which the ORD was gathered was 

99.44%.   

When the component failure rates, calculated by the WSD model, were analysed for each bin 

option, a) was again the most accurate, as shown in Table 5-6. The failure rate of the whole 

system was only 0.32% less than the failure rate of the whole system calculated using the 

ORD. Options b) and c) produced failure rates that were 0.48% and 2.4% lower than the 

ORD. Using the bin widths of option a) also produced the most accurately modelled failure 

rates of the three least reliable components, the drive train, control system and yaw system.  
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Table 5-6: Accuracy of bin options 

Component 

λ (Failures Per WT year) 

Bin Options ORD 
A b c 

Emergency System 0.025 0.025 0.024 0.026 

Meteorological Instruments 0.076 0.077 0.072 0.075 

Rotor 0.046 0.044 0.047 0.047 

Blade Pitch System 0.069 0.069 0.069 0.068 

Drive Train 0.159 0.158 0.152 0.156 

Yaw System 0.150 0.150 0.149 0.151 

Hydraulic System 0.079 0.079 0.075 0.078 

Control System 0.517 0.514 0.508 0.520 

Main Generator 0.031 0.033 0.031 0.031 

Lifting System 0.010 0.010 0.011 0.010 

Nacelle 0.015 0.016 0.015 0.016 

Tower 0.057 0.058 0.057 0.060 

Total 1.234 1.232 1.208 1.238 
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3. Chapter 5 Summary 

The MCMCS approach was adopted in Chapter 5 to develop a model that would describe the 

effect of wind speed on the WT component failure rate. The model would be similar those 

developed previously by other authors in the area of WT reliability, discussed in Chapter 3.  

The WSD failure rates used in the MCMCS model are calculated using Bayes’ Theorem. 

The wind speed and ORD is put into mean daily wind speed range bins, shown in before the 

probability of a failure occurring to a component, given a mean daily wind speed 𝑃(𝜆𝑖|𝑤), is 

calculated.  

The WSD model was then validated in Chapter 5.2.5 by using the calibration wind speed 

time series as a model input. The WSD model calculated a whole system failure rate 0.32% 

less than the actual failure rate of the average WT in the ORD. The availability calculated by 

the WSD model was 99.46%, slightly higher than the actual availability of 99.44% for both 

Site A and Site B combined.   

The following section will use the model developed in this Chapter and apply other onshore 

and offshore wind speed time series inputs from Leuchars weather station and the FINO 

offshore met mast. Annual and monthly component failure rates will be calculated for each 

WT component before analysis is undertaken to determine the difference in estimated annual 

production using a WSD model and a stationary failure rate model.  
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1. Basic Reliability Analysis 

The model described in Chapter 5.2 is used in this chapter to analyse the impact of wind 

speed on WT failure rates. From the previous chapter a methodology was selected using 

MCMCS, this model used WSD failure rates calculated using wind speed data and reliability 

data from two onshore wind farms.  

The model will be used in this section to analyse two wind speed datasets. The first dataset is 

from an onshore met office weather station located in Leuchars, Scotland – described 

previously in more detail in Chapter 4.2.2.2. This station was selected because its mean daily 

wind speed time series is typical of the sort of conditions experienced by an onshore wind 

farm. It will therefore be used to analyse how WSD failure rates can be applied to a wind 

farm subjected to wind speeds typical onshore. 

The second dataset is the FINO offshore met mast, described in detail in Chapter 4.2.3. This 

mean wind speed time series is representative of the wind speeds faced by an offshore wind 

farm. The model will use the WSD failure rates to calculate component failure rates when 

subjected to offshore conditions.   

In the literature, WT reliability is described by failure rates and downtimes experienced by 

onshore wind turbines. The problem with comparing onshore and offshore reliability is that 

although the definition of a failed WT is the same, what happens before and after the failure 

is different. Preventative maintenance is carried out differently offshore and downtime is 

likely to increase due to logistical issues and accessibility problems. The longer downtime 

periods offshore mean that if two WTs were to be compared, one offshore and the other 

onshore, were they to fail twice in a year the failure rate would be very likely be greater for 

the offshore WT. If the onshore WT had an annual downtime of 4 days and the offshore WT 

had a downtime of 12 days, the availability of the two WTs was 98.63% and 96.71% 

respectively, as shown in Table 6-1. Although both WTs failed as frequently throughout the 
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year, because the offshore WT had a longer period of downtime (due to logistics and access) 

it operated for a shorter period of the year. Therefore the period of time it was available to 

fail was less, increasing the failure rate by 2.27%.      

Table 6-1: An example of the differences in failure rate calculated onshore and offshore 

 Annual 

Downtime 

Annual 

Availability 

Annual Number 

of Failures 
λ 

Onshore 4 days 98.63% 2 2.022 

Offshore 12 days 96.71% 2 2.068 

 

Therefore it is important to remember that the results in the following sections are calculated 

using a model that was calibrated with onshore wind turbine reliability data. Any discussions 

relating the results to how a WT may perform offshore should consider that they may be 

optimistic because of these differences in calculating onshore and offshore failure rates.      

In the following sections the model and its outputs will be referred to as the FINO model or 

the Leuchars model, depending on which wind speed time series was used as an input. As 

discussed previously, the ORD refers to the reliability data recorded at Site A and Site B. 
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1.1. Availability and Component Failure Rates 

Using the FINO and Leuchars models, failures are generated via MCMCS using input wind 

speed times series datasets and WSD failure rates for each component much like in the 

previous section. The model consists of a 200 WT wind farm, with a life span of twenty 

years. Simulations are run until the results converge (as described in Appendix I).  

From the simulated data, the average annual availability of WTs in the FINO and Leuchars 

model respectively are calculated to be 98.90% and 99.39%. It is to be expected that the 

FINO model would have a lower availability as the wind speed time series has a high 

average wind speed and therefore would induce higher component failure rates when used as 

an input.  

The downtime therefore for each model is 4.1 days per annum for the FINO model and 2.2 

days per annum for the Leuchars model. However these values do not include periods that 

the WT is shut down for preventative maintenance or for any other reason throughout its 

lifetime. This is the case because as discussed previously the ORD does not include 

stoppages for preventative maintenance. According to Nilsson and Bertling, onshore WTs 

have preventative maintenance undertaken every 6 months, each time lasting between 4 – 7 

hours for two people [6-1]. For the offshore site Kentish Flats, preventative maintenance 

occurs more frequently at three to six month intervals and annually contributes to two days 

of downtime per WT year [6-1].    

1.1.1. FINO Model 

The FINO and Leuchars models record the number of failures which occur to each 

component throughout the simulations so that the average failure rate of each component can 

be calculated. The FINO model returns the component failure rates shown in Figure 6-1.   
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The largest difference between the component failure rates of the ORD and the failure rates 

calculated using the FINO model were the control system, the yaw system and the Nacelle, 

as shown in Table 6-2. 

 

Figure 6-1: Comparison between the component failure rates calculated by the model using the FINO wind 

speed time series as an input and the failure rates calculated with the ORD 

 

The failure rate of the drive train is calculated to increase by roughly 40% and the whole 

system by 54%. This meant that with a WT subjected to FINO wind speeds it would be 

expected to experience 2 failures every year, double that expected by the WTs at Site A and 

Site B. The control system would also be expected to fail almost twice as often during its 

lifetime. For a 200 WT wind farm there would be approximately 189 control system failures 

expected per year.  

In the case of Egmond Aan Zee, roughly 85 stoppages occurred per year between 2007 and 

2009 that were due to control system failures and this was for a wind farm of only 36 WTs 

[6-2]. The gearbox failure rate also increased to roughly 0.47 failures per year, compared to 

data from WMEP which shows onshore gearboxes failing only 0.12 times a year [6-2]. 

However the WTs in WMEP are much less advanced than the 36 Vestas V90s used at 

Egmond Aan Zee, they also did not suffer from a serial gearbox fault that the V90s did.   
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Table 6-2: Comparison of component failure rates generated by FINO model and calculated using the 

ORD  

Component FINO Model 

(Failures per WT 

year) 

ORD 

 (Failures per WT 

year) 

Difference 

Blade Pitch System 0.068 0.068 0% 
Control System 0.946 0.520 82% 

Drive Train 0.219 0.156 40% 
Emergency System 0.009 0.026 -64% 

Hydraulic System 0.089 0.078 14% 

Lifting System 0.010 0.010 -6% 
Main Generator 0.029 0.031 -8% 

Meteorological Instruments 0.066 0.075 -12% 
Nacelle 0.036 0.016 130% 

Rotor 0.056 0.047 20% 

Tower 0.098 0.060 63% 
Yaw System 0.285 0.151 89% 

Total 1.910 1.238 54% 

 

1.1.2. FINO Model 12 Hour Filter 

From the information recorded in the ORD it was clear that not all control system failures 

required an engineer to visit the WT to fix the failure as many caused downtimes less than 15 

mins long. Therefore it would be inaccurate to say that were the WTs in this simulation sited 

offshore there would be 189 trips offshore per year, purely to repair the control system. 

Firstly it is likely that more than one WT could be repaired per trip and secondly many 

failures could be repaired remotely as is the case onshore.  

However assuming that any control system failure fixed remotely required less than 12 hours 

of downtime, it is possible to use the model to analyse only the failures that caused 

downtimes greater than 12 hours. It can be assumed that these are the failures that required 

an engineer to fix the WT on site, which could also be assumed to be the case offshore.  

If this 12 hour assumption were the case for the other components as well, it leads to the 

conclusion that within the ORD, there were 137 failures per year on average during the 

recorded period that required an engineer to visit the failed WT in order to make the repair. 

When the 12 hour downtime filter was applied to the output of the FINO model, it calculated 

that there would be 241 failures per year to a 200 WT wind farm that would require an 
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engineer to visit the failed WT to make the repair. For the control system alone there would 

be 38 failures, an increase of 97 % compared to the ORD, as illustrated in Table 6-3.   

Table 6-3: Comparison of component failure rates generated by FINO model and calculated using the 

ORD when a 12 hour filter has been applied 

Component FINO Model 

(Failures per WT 

Year) 

ORD (Failures per 

WT Year) 
Difference 

Blade Pitch System 0.058 0.042 39% 

Control System 0.626 0.317 97% 

Drive Train 0.191 0.127 50% 
Emergency System 0.000 0.013 -100% 

Hydraulic System 0.051 0.047 8% 
Lifting System 0.005 0.005 -12% 

Main Generator 0.005 0.016 -71% 

Meteorological Instruments 0.011 0.013 -19% 
Rotor 0.046 0.034 36% 

Yaw System 0.213 0.096 122% 
Total 1.205 0.710 70% 

 

1.1.3. FINO Model 48 Hour Filter 

To analyse very serious failures, a 48 hour downtime filter can be applied. This results in a 

123% increase in the whole system failure rate from the ORD to the FINO model output.  

This means that in terms of failures that cause downtimes greater than 48 hours, the impact 

of the FINO wind speed time series causes the failure rate to more than double to 0.44 

failures per WT year. The individual component failure rates are shown in Figure 6-2 – the 

failure rates of the control system, yaw system and drive train were calculated to increase by 

117 %, 264 % and 129 % respectively in the FINO model compared to the ORD.  
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Figure 6-2: 48 hour downtime filtered comparison between the component failure rates calculated by the 

model using the FINO wind speed time series as an input and the failure rates calculated with the ORD 

 

Table 6-3 and Figure 6-2 demonstrate that the FINO model calculates that the impact of 

higher wind speeds will not just be increased component failure rates, but also failures that 

are more severe and cause longer downtimes. This has particular significance for offshore 

WTs as logistical issues and accessibility reduces availability significantly even if failure 

rates and downtimes remain the same as those recorded onshore. However, offshore 

availability could be improved by gaining a better understanding of the impact of wind speed 

on component failure rates and enhancing the quality of maintenance. 

1.1.4. Leuchars Model 

In contrast to the results produced by the FINO model, the outputs of the Leuchars model 

were more similar to the component failure rates calculated in the ORD, as illustrated in 

Figure 6-3. Although there is an increase in failure rate for the three most troublesome 

components, it is not as dramatic a change compared to those calculated by the FINO model. 
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Figure 6-3: Comparison between the component failure rates calculated by the model using the Leuchars 

wind speed time series as an input and the failure rates calculated with the ORD 

 

The differences in the output from the two models are due to the different input wind speed 

time series, with the exception of this there is no difference between the two models. In the 

case of the control system the model recognises that the failure rate increases as the wind 

speed increases as shown in Figure 6-4. This WSD failure rate of the control system is the 

same as that presented in Figure 5-16. However the wind speed time series input from 

Leuchars is differently distributed to FINO. More often the mean daily wind speed at 

Leuchars is between 3 – 7 m/s where the failure rate is relatively low. The FINO wind speed 

time series has wind speeds that are more frequently at the high wind speed ranges where the 

failure rate is greater. Therefore when Leuchars is used as an input wind speed the control 

system failure rate is less than that calculated by the FINO model.     
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Figure 6-4: P(w) for FINO and Leuchars wind speed datasets and the control system WSD failure rate over 

the daily wind speed range 

  

The mean daily wind speed at Leuchars is 6.59 m/s compared to the calibration wind speed 

dataset which was 5.98 m/s. As shown in Table 6-4, the model calculates that this slight 

increase in wind speed at Leuchars will lead to an 8 % increase in whole system failure rate 

and significantly a 13 % and 15 % increase in control system and yaw system failure rate.  

Table 6-4: Comparison of component failure rates generated by Leuchars model and calculated using the 

ORD  

Component Leuchars Model 

(Failures per 

WT Year) 

ORD  

(Failures per 

WT Year) 

Difference 

Blade Pitch System 0.068 0.068 0% 

Control System 0.588 0.520 13% 

Drive Train 0.163 0.156 4% 

Emergency System 0.021 0.026 -19% 

Hydraulic System 0.078 0.078 0% 

Lifting System 0.011 0.010 10% 

Main Generator 0.030 0.031 -3% 

Meteorological Instruments 0.075 0.075 0% 

Nacelle 0.019 0.016 19% 

Rotor 0.048 0.047 2% 

Tower 0.066 0.060 10% 

Yaw System 0.173 0.151 15% 

Total 1.340 1.238 8% 
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As Figure 6-5 shows, the higher wind speeds were more frequent at Leuchars than in the 

calibration wind speed dataset. Therefore the control system failure rate was higher more 

often in the Leuchars model as P(w) was higher from 9 m/s to 17 m/s.  

The model is more complex than simply calculating the mean daily wind speed of a site and 

using that value to calculate the WT failure rate. It is the distribution of the wind speed at a 

site that has the largest influence on the calculated failure rates. This was demonstrated when 

the calibration wind speed dataset was modified by increasing every mean daily wind speed 

reading by 0.6 m/s. The average wind speed of this modified dataset was 6.59 m/s, the same 

as the Leuchars dataset. However when this new time series was used as an input in the 

model the availability and failure rate were 99.44% and 1.312 failures per WT year 

respectively. These calculations predicted Leuchars to still be a less reliable site despite both 

time series having the same mean.  

 

Figure 6-5: P(w) for the Calibration and Leuchars wind speed datasets and the control system WSD failure 

rate over the daily wind speed range 
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The reason for the difference in results between these two datasets is demonstrated clearly in 

Figure 6-6, which shows the failure rate of the yaw system on the secondary axis and P(w) 

on the primary axis. The Leuchars model calculated that the yaw system failure rate was 5 % 

greater than when the modified calibration wind speed dataset was used. The main reason for 

this difference is in the 13 – 17 m/s wind speed bin, shown in Figure 6-6, where P(w) is 

higher at Leuchars meaning that the yaw system failure rate will be at its highest more 

frequently at Leuchars. So despite both wind speed datasets having the same average wind 

speed, the wind speed distribution shape is the most significant factor in calculating 

reliability with the model.  

 

Figure 6-6: P(w) for the Calibration wind speed dataset plus 0.6 m/s, Leuchars wind speed dataset and yaw 

system failure rate over the daily wind speed range 

 

1.1.5. Leuchars Model 12 Hour Filter 

When the downtime filter of 12 hours was applied to the Leuchars model and the ORD, the 

whole system failure rate of the Leuchars model increased by 9% compared to the ORD. 

Similarly the control system and yaw system failure rates also increased in the Leuchars 

model compared to the ORD, by 20 % and 21 % respectively as shown in Table 6-5 
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Table 6-5: Comparison of component failure rates generated by Leuchars model when 12 hour downtime 

filter is applied and ORD failure rates 

Component Leuchars Model 

(Failures per WT 

Year) 

ORD  

(Failures per WT 

Year) 

Difference 

Blade Pitch System 0.032 0.029 13% 

Control System 0.287 0.239 20% 

Drive Train 0.099 0.091 9% 

Emergency System 0.000 0.008 -100% 

Hydraulic System 0.034 0.034 1% 

Lifting System 0.009 0.010 -16% 

Main Generator 0.010 0.010 -1% 

Meteorological Instruments 0.013 0.013 3% 

Rotor 0.074 0.052 41% 

Yaw System 0.117 0.096 21% 

Total 0.777 0.710 9% 

 

1.1.6. Leuchars Model 48 Hour Filter 

When a 48 hour filter was applied to only analyse the very serious failures that led to long 

periods of downtime, the total failure rate was calculated to increase by 20 % compared to 

the ORD, as shown in Table 6-6. The impact of the Leuchars wind speed time series was 

therefore not as severe as the FINO offshore wind speed data.  

Table 6-6: Comparison of component failure rates generated by Leuchars model when 48 hour downtime 

filter is applied and ORD failure rates 

Component Leuchars Model 

(Failures per WT 

Year) 

ORD (Failures per 

WT Year) 
Difference 

Blade Pitch System 0.025 0.021 21% 

Control System 0.101 0.086 18% 

Drive Train 0.038 0.031 21% 

Hydraulic System 0.014 0.016 -8% 

Main Generator 0.005 0.005 -13% 

Meteorological Instruments 0.003 0.003 6% 

Rotor 0.008 0.008 8% 

Yaw System 0.046 0.031 46% 

Total 0.240 0.200 20% 

 

This section has shown how, using WSD failure rates, the model can be used to calculate the 

availability and component failure rate of a potential site, using only a wind speed time 

series. However a more detailed analysis can be undertaken that describes how the failure 
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rate of each component changes seasonally. By gaining an understanding of how the 

probability of component failure changes from month to month, maintenance strategies 

could potentially be planned based on this knowledge. The following section describes how 

failure rate of various components change seasonally in the FINO and Leuchars model.     
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1.2. Seasonal Component Failure Rate 

The wind speed changes seasonally – increasing in the winter and decreasing in the summer. 

With this in mind and according to the results shown in the previous section and from the 

WSD failure rates introduced in Chapter 5.2.5.1, it must be the case that component failure 

rate must change seasonally due to the wind speed conditions.  

In the previous section, annual failure rates and availabilities were presented. In the onshore 

literature these metrics are very useful in describing the reliability of onshore WTs. However 

in the offshore environment, seasonal failure rates would be a much more valuable metric 

due to the seasonality of WT accessibility. This point is illustrated by Figure 6-7 which 

shows the exceedence probability of significant wave height for each season from wave 

buoys sited in the North Sea [6-3]. Offshore WT access is limited by wind speed and 

significant wave height [6-4], [6-5]. Chapter 4.2.3 shows the high wind speeds experienced 

by FINO, while Figure 6-7 shows that in Winter and Autumn the probability of the 

significant wave height exceeding 1.5 m was higher than in Summer and Spring [6-6]. This 

difference may increase at distances further from shore.   

 

Figure 6-7: Seasonal exceedence probability of significant wave height for site in North Sea  
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If an offshore WT were expected to require a visit from a technician due to failure twice a 

year, the time of year these failures occur has a big impact on its productivity. Were they to 

occur in the summer, the WT could be repaired relatively easily due to the higher probability 

of access. Or if the failures occurred in the winter, the productivity would be reduced 

significantly because of poor access due to higher significant wave heights. Were the failures 

to occur randomly, the impact of the failures that occurred in winter would have a far greater 

impact than those that occurred in the summer.  

In the case of onshore WTs, although it is unclear whether the failure rate varies significantly 

seasonally, the accessibility does not create problems to the same degree as those 

experienced offshore because they operate at lower wind speeds and are obviously not 

affected by sea state. Were failures to occur more often in the winter they could be repaired 

relatively easily compared to offshore WTs.  

However if offshore WTs do fail more frequently in the winter, knowing the failure rates at 

this time of year becomes very valuable to the owners and operators of offshore WTs due to 

the poor accessibility and therefore likely long periods of downtime they will experience in 

the winter. An annual failure rate does not adequately describe the reliability of the asset as 

what happens in periods of poor access has the greatest impact on the productivity of the 

wind farm.  

This section therefore aims to establish whether WT component failure rates vary seasonally 

onshore and offshore. The FINO model will be used to evaluate the impact offshore while 

the Leuchars model will be used to assess the affects onshore. 

Seasonal failure rates will be generated in each model by inputting their respective daily 

mean wind speed time series in the correct chronological order. Therefore the overall impact 

of each month on the failure rate of every WT component can be evaluated.  
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1.2.1. FINO Model 

The figures shown in this section and the following section show the average failure rates 

that are calculated after taking enough samples so that the results converge. The failure rates 

presented in each of the graphs are annual failure rates, not monthly failure rates even 

although each data point is in reference to a calendar month. They are presented in this 

convention so that these results can be easily discussed and compared alongside failure rates 

presented in previous sections throughout this thesis, all of which represented annual failure 

rates.  

Figure 6-8 is produced using outputs from the FINO model. It clearly shows an increase in 

the failure rate of the control system and yaw system in winter and a reduction in failure rate 

in summer.  In November the failure rate of the control system was modelled to increase by 

82 % compared to June. While for those same months the yaw system failure rate increased 

by 44 %.  

 

Figure 6-8: FINO model seasonal output for the control system and the yaw system  
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were calculated to be so similar, the two components were modelled to fail differently 

throughout the year. The drive train reliability is more consistent, only failing 14 % more 

often in November than in June. This is due to the differences between the WSD failure rates 

of the two components. Interestingly the nacelle was modelled to fail very seasonally. It is 

however a very reliable component that only failed 6 times in the ORD – as such it is 

difficult to draw any definitive conclusion from results concerning it. This is also the case 

with the emergency system, generator and lifting system that failed 0, 12 and 4 times in the 

FINO model respectively.   

 

Figure 6-9: FINO model seasonal output for the blade pitch system, drive train, hydraulic system, nacelle 

and tower 

 

Several of the components showed seasonality but in the opposite way expected, with the 

meteorological instruments, rotor, emergency system, generator and lifting system modelled 

to failed more often in the summer and less often in the winter. The reason for this – 

especially in the case of the emergency system, generator and lifting system – is likely to be 

due to a lack of data. Another possibility could be that preventative maintenance has been 

labelled incorrectly as corrective maintenance, although this is unlikely given there are 

relatively few failures attributed to each component.   
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Figure 6-10: FINO model seasonal output for the emergency system, lifting system, main generator, 

meteorological instruments and rotor 

 

A factor that certainly does have an impact on the seasonal failure rate of these components 

that appear more reliable in the winter is shown in Figure 6-11. The failure rate of the 
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year.  
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components resisting failure at these wind speeds. The wind speeds did not reach these levels 
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fail during the relatively short period of time over which the data was recorded. However 

this shortcoming in the data becomes very apparent when the FINO model is used. Because 

the wind speed distribution at FINO is so different to the distributions at Site A and Site B, 

illustrated in Chapter 4.2.1 and Chapter 4.2.3, these rare high wind speed events become 

more apparent in the FINO model. For components like the control system, that fails so 

frequently, there is enough data to plot the relationship between failure rate and wind speed 

at this bin. And as the model works by assuming that any wind speed higher than 17 m/s has 

a failure rate equal to that calculated in the 13 – 17 m/s bin, the control system can be 
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the wind speed is greater than 13 m/s (or 11 m/s in the case of the meteorological 

instruments) the failure rate is 0 and a failure cannot therefore occur. These wind speeds 

occur more frequently in the winter and this explains why the components appear to be more 

reliable in the winter months when the FINO model is used.  

 

Figure 6-11: WSD failure rates for the main generator, meteorological instruments and rotor 
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Figure 6-12: Seasonal failure rate of control system from FINO model when downtime filters were applied 

 

This change in seasonality as the failure severity increases is even more apparent in the yaw 

system. As demonstrated in Figure 6-13, the difference in failure rate in November compared 

to June is 283.09 % when a 48 hour downtime filter is applied. As discussed previously, 

when no filter is applied it was 44.02 %. Therefore the yaw system is almost 3 times more 

likely to suffer a severe failure in November compared to June and if a failure does occur in 

November there is a 49.64 % chance it will cause more than 48 hours of downtime, whereas 

in June it is only 23.15 %.  

 
 

Figure 6-13: Seasonal failure rate of the yaw system in FINO model when downtime filters were applied 
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In the case of the drive train, the seasonality also becomes greater as downtime filters are 

applied, as shown in Figure 6-14. There were 105.77 % more 48 hour failures in November 

compared to June in the model; therefore a failure in November is twice as likely to suffer a 

failure greater than 48 hours.  

 
 

Figure 6-14: Seasonal failure rate of the drive train from FINO model when downtime filters were applied 
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1.2.3. Leuchars Model 

The seasonal changes in wind speed are not as great at Leuchars compared to FINO, as 

shown in Chapter 4.2.2.2 and Chapter 4.2.3. This is to be expected however as Leuchars is a 

typical onshore site – the Leuchars model therefore used to investigate the seasonality of 

onshore WTs in following section.  

The seasonal failure rates of the control system, yaw system and drive train in the Leuchars 

model were therefore less variable than the FINO model as shown in Figure 6-15. Although 

the control system still varied seasonally (the failure rate in November being 57.10 % higher 

than in June), it did not vary as much as it did in the FINO model. This was also the case for 

the drive train and the yaw system which for the same months varied 28.23 % and 53.78 % 

respectively.  

 

Figure 6-15: Leuchars model seasonal output for the control system and the yaw system 
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January. However in Figure 6-16 over the same two months there is only a variation of 2.18 

% and the most reliable month was November.  

 
 

Figure 6-16: Leuchars model seasonal output for the blade pitch system, hydraulic system, nacelle and 

tower 
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Figure 6-17: Blade pitch system mean WSD failure rate for each wind speed bin 
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in the summer months that occurred in the FINO model. These issues are again due to how 

the component’s WSD failure rate is modelled and because as shown previously in Figure 

6-5, high wind speeds occur more frequently at Leuchars in comparison to the calibration 

wind speed data.  

 

 
Figure 6-18: Leuchars model seasonal output for the emergency system, lifting system, generator, rotor 

and meteorological instruments  
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Figure 6-19: Seasonal failure rate of the control system from Leuchars model when downtime filters were 

applied 
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have far longer downtimes than those caused by the yaw system. This is illustrated in Figure 
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Figure 6-20: Seasonal failure rate of the yaw system from Leuchars model when downtime filters were 

applied 
 

 
 

Figure 6-21: Seasonal failure rate of the drive train from Leuchars model when downtime filters were 

applied 
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1.3. Discussion 

It is important to consider that the ORD recorded very few details beyond the functional 

location, the date and time and the downtime. The logistics involved with repairing the WT 

were not included within the data. There was not enough detail to distinguish between 

failures that caused x hours of downtime because of the severity and the damage caused and 

failures that also had x hours of downtime, but were due to waiting on ordered parts or 

because the high wind speeds meant that the nacelle was inaccessible for a long period of 

time. 

With knowledge that these logistical and accessibility issues exist it would be sensible to 

assume that there will be more failures with long downtimes in winter compared to summer, 

regardless of failure severity. But it also makes sense intuitively that the harsher winter 

months would put more stress on the WT and cause more component failures. The results 

clearly show that in most cases, component downtime increases with wind speed, however 

the failure data is not detailed enough to be able to say with certainty what the actual reason 

for this relationship was.  

It is probable that that rather than it being for a single reason it is due to a combination of 

both the failures being more severe in winter and the logistics and accessibility issues. 

Unfortunately, an accurate model would be required to understand this relationship better. 

However this model, like the majority of others, used reliability data that cannot help 

describe this relationship. It therefore must be assumed that any potential site will experience 

the same logistical and accessibility issues that Site A and Site B did and therefore all results 

using other wind speed time series will be biased by the maintenance procedures used at Site 

A and Site B.      

Site A, which contributes the most data to the reliability records, had a relatively low mean 

wind speed of 5.86 m/s during the recorded period as previously discussed. Although the 
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maintenance procedures for the site are not known it is reasonable to assume that the nacelles 

are accessible for a larger proportion of the year than most UK onshore wind farms, which 

tend to have higher mean wind speeds. Therefore it is likely that the downtimes are dictated 

more by the severity of the failures and logistical issues such as spares holdings and waiting 

times for components.  

These seasonal failure rates are used throughout the remainder of this thesis and it is 

therefore essential that these shortcomings with the model are considered. Ideally data of 

greater quality and quantity would have been available for analysis, but because large scale, 

multi-megawatt, onshore wind farms have only been operating for a relatively short period 

of time, data of adequate quality and quantity is scarce. However the data used in this 

analysis is as good as, if not better quality than the data used by Tavner and colleagues in 

their recent publication on this area [6-7]. It is both a larger dataset and one that consists of 

modern WTs of the same age and model that is not too dissimilar to WTs that will be 

deployed offshore. For these reasons the quality of the ORD is superior to the data from 

Wind Stats, WMEP and LWK used by so many other authors.   

Using these results from the FINO and Leuchars models, the following section will examine 

the impact of seasonal failure rates on electricity production and determine whether they 

have an impact on the performance of onshore and offshore WTs.   
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2. Electricity Generation 

From the previous section it is clear that both models calculate that more failures occur to a 

WT in the winter months and that the downtime per failure would also increase in winter. 

The opposite was found in summer, where the number of component failures and the 

downtime per failure deceased.  

Standard models that use annual failure rates and repair rates do not account for these 

changes throughout the year. As a result it is possible that the production could be 

overestimated in the winter months and underestimated in the summer months.  

The FINO and Leuchars models will be developed from the previous section to account for 

electricity generation. This will be done by incorporating a power curve into the models that 

will calculate the electricity generated at each time step from the input mean daily wind 

speed time series.  

In both the case of the Leuchars and the FINO model more failures will occur in the winter 

and these failures will cause longer downtimes. Therefore a relatively high volume of 

potential electricity will be lost at this time of year, when the wind speed is highest. 

However, if the WT fails less frequently in the summer and for shorter periods of time, will 

the WSD failure rates, have any impact on net production?  

The following section will attempt to answer this question by analysing how onshore 

electricity generation is affected when WSD failure rates are used in analysis, rather than 

constant failure rates.  
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2.1. The Power Curve 

The simple model used in Chapter 6.1 was developed by calculating the potential electricity 

and actual electricity generated by each WT. This is shown in Figure 6-22 as 𝐸𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 and 

𝐸𝐴𝑐𝑡𝑢𝑎𝑙 respectively.  

 

 

Figure 6-22: Model flow chart with electrical generation calculation included 

 

The potential electricity is calculated at every time step, regardless of the availability of the 

WT. However the actual electricity is only calculated if the WT is operating. These two 

variables are then used to calculate the lost generation 𝐸𝐿𝑜𝑠𝑡, shown in Equation 6-1. 
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𝐸𝐿𝑜𝑠𝑡 = 𝐸𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 − 𝐸𝐴𝑐𝑡𝑢𝑎𝑙  Equation 6-1 

  

To calculate the electricity output a power curve must be developed. In both the FINO model 

and the Leuchars model the parameters used in calculating the power curve are identical and 

they are shown in Table 6-7.  

Table 6-7: Estimated power curve properties  

Rating 2.3 MW 

Power Coefficient (Cp) 0.275 

Swept Area (A) 9.17 x 10
3
 m

2 

Air Density (ρ) 1.2 kg/m
3 

Cut-in Wind Speed 3 m/s 

Rated Wind Speed 11.5 m/s 

Cut-out Wind Speed 25 m/s 

Hub Height 80 m 

 

The rating of the WTs used in each model are 2.3MW – the same as the output of the WTs 

used at Site A and Site B. The power curve is generated using  Equation 6-2 between cut in 

and rated wind speed and then assuming zero output below cut in and rated output above 

rated wind speed.electricity  

 

Figure 6-23: Power curve used to calculate WT output 
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𝑃 =
1

2
𝐶𝑝𝜌𝐴𝑉3 × 24 

Equation 6-2 

 

 

The output calculated by the model using the power curve is an approximation of the energy 

actually generated in a day. Mean daily wind speed is a metric that does not fully describe 

the conditions experienced by a site throughout a day and as the power curve in non-linear 

there can be big differences in generation between two days that have the same mean daily 

wind speed. Also the control systems used in variable speed WTs are not perfect – therefore 

power curves in reality provide a guide as to what the expected output of a WT should be in 

standard operating conditions [6-8]. As wind speed changes at very high frequencies, the 

actual output can vary significantly from expected output [6-8].  

Another issue to consider is that the optimum WTs for sites with the wind speed conditions 

of Leuchars and FINO would be different. Leuchars, a typical onshore site, would be served 

well by a 2.3MW WT. FINO however has such a good wind resource that a larger machine 

with a higher output would be more appropriate. However, because the ORD corresponds to 

a 2.3MW WT and so a comparison can be made between both models, for the initial analysis 

the power curve is identical.   
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2.2. Price of Electricity 

As this thesis has used data from UK onshore wind farms, the price of electricity that will be 

used in the analysis undertaken in this Chapter and Chapter 6 will be taken from the UK. The 

unit price of electricity in the UK is currently dictated by the market price of a unit of 

electricity and the market price of the subsidy. Market electricity prices vary seasonally, 

however for the analysis undertaken in this thesis a constant price is assumed.  

Currently each form of renewable generation is given a specified quantity of Renewable 

Obligation Certificates (ROCs) for each generated unit. In the case of onshore and offshore 

wind, 0.9 ROCs and 2 ROCs are currently received per unit generated [6-9]. These rates 

however depend on the date that the generation was commissioned. For offshore sites 

commissioned in 2015/2016 and 2016/2017 this rate will drop to 1.9 ROCs and 1.8 ROCs 

per unit. Beyond 2017 the ROC scheme expires, however commissioned sites that agreed to 

be part of the ROC scheme will continue to receive their subsidy for 20 years beyond their 

commission date [6-10].      

Table 6-8: Strike price for onshore and offshore wind depending on commission date 

 Strike Price (£/MWh) 

2014/15 2015/16 2016/17 2017/18 2018/19 

Onshore Wind 95 95 95 90 90 

Offshore Wind 155 155 150 140 140 

 

This system will change in March 2017 when the new scheme Contracts for Difference 

(CfD) begins [6-11]. Under this arrangement generators are protected from market 

fluctuations and are instead guaranteed a strike price. In the case of onshore and offshore 

wind this will be £95/MWh and £155/MWh if they are commissioned in 2014/2015. This 

reduces the later a project is commissioned as shown in Table 6-8.  
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These reductions serve two purposes, firstly they encourage developers to invest quickly in 

generation capacity and secondly the prices account for the reduction in the cost of energy 

which will hopefully occur with an increase in deployment and improved designs.  

The strike price is given to the generator for each generated unit. If a generator is producing 

onshore wind electricity at a price less than the strike price they will make a profit from 

whatever the difference is between their costs and their subsidy. However, if it costs the 

generator more than the strike price to generate electricity, they make a loss as the strike 

price does not cover their costs [6-11].  

Until March 2017 generators can apply for either scheme. The analysis undertaken in this 

Chapter will use the CfD price of electricity in its analysis as it is the system that will be 

implemented for at least 5 years. Therefore the sale price for a unit of onshore electricity 

used in the model is £95/MWh for onshore generation. This price does not account for 

electricity sold through the spot market and this will not be considered in the analysis.  
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2.3. Site Production 

As discussed previously, the impact of wind speed on failure rate is not accounted for in 

models that use constant failure rates. The following sections examine the impact of WSD 

failure rates and downtimes on electricity production.  

To demonstrate the advantage of using WSD failure rates failure rates, comparisons will be 

made between results generated using the WSD FINO and Leuchars models – demonstrated 

in the previous section – and calculations produced by constant FINO and Leuchars models. 

These constant models comprise of failure rates that remain constant throughout the year 

regardless of wind speed, such that are used traditionally.  

These constant failure rates used in this analysis are taken simply from the annual 

component failure rates calculated by the FINO and Leuchars models in Table 6-2 and Table 

6-4, using the WSD failure rates. Therefore if for instance the FINO model is run twice, first 

using the constant failure rates and secondly the WSD failure rates, the system failure rates 

after both simulations will be the same. But the distribution of failures throughout a typical 

year will be different and therefore so will the energy generated. The WSD failure rate 

model will simulate failures that occur at times of high wind speed, whereas in the constant 

failure rate model failures will occur uniformly throughout a year.   

The purpose of this comparison is to identify the difference in calculated yield between a 

model that uses constant failures rates, as most models do, and a model whose failure rates 

change according to the daily mean wind speed (the WSD failure rates). A comparison will 

also be made using constant failure rates calculated from the ORDbase. This is to compare 

the difference in yield if the WTs subjected to the FINO and Leuchars wind speeds are 

assumed to have the same failure rate as those at Site A and Site B.  

The model will calculate production using the power curve developed in Chapter 6.2.1 to 

convert the wind speed time series to electricity and then determine the income generated by 
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taking the electricity prices established in 0. Chapter 6.2.3.3 will use a power curve for a 5 

MW WT, calculated in the same way as the 2.3 MW power curve. The difference between 

the constant and WSD failure rate models will then be compared and discussed.  

The WSD failure rate models have component failure rates that change each at each time 

step of the simulation with the mean daily wind speed of the wind speed time series. The 

constant failure rate model consists of component failure rates at each time step that are 

calculated simply by dividing the annual component failure rates of Table 6-2 and Table 6-4 

respectively by 365. This is also the case with the ORD data model, using annual component 

failure rates calculated in Table 4-3.    
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2.3.1. FINO Model 

The WSD FINO model produces the monthly failure rates and generated power shown in 

Figure 6-24. The failure rates shown are annual failure rates, calculated in the same way as 

the seasonal failure rates in Chapter 6.1.2.  The power generated shown in Figure 6-24 is 

calculated by averaging the total output each month throughout the simulations. It therefore 

shows the annual average output of each month.  

 

Figure 6-24: Mean monthly failure rate and mean monthly power generated for WSD failure rate FINO 

model   

 

Figure 6-24 shows the an expected output given that in the WSD failure rate FINO model, a 

WT is more likely to fail in the winter months but will also generate more power at this time 

of year because of high wind speeds; despite spending more time unavailable. The monthly 

power generated does not appear to be affected by the higher failure rates in the winter – this 

is because onshore WTs have high availabilities, even when faced with strong wind speeds 

such as those experienced at FINO.    

The results from the constant failure rate FINO model differ greatly. The MCMCS in this 

case uses constant failure rates, therefore failures are as likely to occur in summer as in 
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winter – as shown in Figure 6-25. The power generated does not change significantly 

compared to the output generated in Figure 6-24 in the WSD failure rate model.  

 

Figure 6-25: Mean monthly failure rate and mean monthly power generated for constant failure rate FINO 

model   

 

When analysing the power lost ELost, of the WSD failure rate FINO model it is higher in 

winter than in summer as illustrated in Figure 6-26. This is to be expected given the higher 

monthly failure rates in winter shown in Figure 6-24. The impact of failing at a time when 

wind speeds are high is that the WT is likely to lose more potential electricity than in 

summer. The downtimes in winter are also more likely to be longer.  

Due to the WSD failure rates and downtimes, the model calculates that the percentage of lost 

power to power generated will increase in the winter and decrease in the summer, as shown 

in Figure 6-26. Therefore according to the WSD failure rate FINO model, the WTs 

underperform in winter compared to the summer because they are modelled to fail more 

often for longer periods of time. Therefore due to reliability issues WTs in the WSD failure 

rate model are less productive in the winter than they would be calculated to be if using 
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constant failure rates. Equally however the WTs are more productive in the summer when 

the failure rate and downtime per failure decreases. However, does this increase in 

productivity compensate for the reduction experienced in winter? 

 

Figure 6-26: Power lost as a percentage of power generated and lost power for WSD failure rate FINO 

model   

 

The FINO constant model calculates that average power lost as a percentage of generated 

power would be roughly 1.1 % throughout the year. However the FINO model calculated 

that approximately 1.5 % is lost in winter compared to approximately 0.9 % in the summer – 

the average throughout the year is 1.2 %.  

A comparison in annual outputs of the WSD failure rate FINO model and the constant failure 

rate model is shown in Table 6-9. The annual failure rates of the two models are the same; 

however the WSD failure rate model does not generate as much power as the constant failure 

rate model. Therefore in the case of the WSD failure rate model, the greater production in 

summer does not make up for the bad production in the winter. The difference between the 

two calculations is 9.206 MWh per WT year. For a 200 WT wind farm this equals £174,914 

in difference between the incomes expected had constant failure rates been used in analysis.  
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Table 6-9: Summary of FINO model power generated, power generated and failure rate for WSD, constant 

and ORD data failure rates 

Model 

Per WT Year 

Total Power 

Generated (MWh) 

Total Power Lost 

(MWh) 

Total Power Lost 

as a percentage of 

Total Power 

Generated (%) 

Mean Failure Rate   

FINO WSD 

Failure Rates  
10841.125 135.218 1.247 1.910 

FINO Constant 

Failure Rate 
10850.331 126.012 1.161 1.910 

ORD Constant 

Failure Rates 
10914.875 61.468 0.563 1.238 

 

The difference in using WSD failure rates as opposed to standard constant failure rates, in 

terms of calculating annual generation, is worth roughly £875 per WT year for an onshore 

wind farm with FINO wind speed conditions, using a 2.3 MW WT.  

The constant failure rates are initially calculated using the FINO model. If an operator were 

to assume that the failure rates experienced at Site A and Site B in the ORD were the same 

for every site, the yield would be calculated to be 0.60% higher than if the constant failure 

rates were used in the simulation. Therefore the difference between using the ORD failure 

rates and those calculated using the constant annual failure rates is £6131.68 per WT year. If 

the WSD failure rates are used to calculate the yield, this difference increases to £7006.25 

per WT year.  
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2.3.2. Leuchars Model 

Similarly to the FINO model comparison in the previous section, the WSD failure rate 

Leuchars model is contrasted against a stationary annual failure rate Leuchars model. The 

purpose of this analysis is to determine if the difference in the models is as great for an 

onshore wind speed time series model, as a model that uses an offshore wind speed time 

series.  

Figure 6-27 shows the monthly mean whole system annual failure rate and the mean power 

generated on average each month simulated by the WSD failure rate Leuchars model. Like 

the results of the WSD failure rate FINO model, there is a clear correlation between the two 

measurements, both increasing in the winter and then declining in the summer.  

 
 

Figure 6-27: Mean monthly failure rate and mean monthly power generated for WSD failure rate 

Leuchars model   

 

The variation in power generated however is greater in the Leuchars model. The power 

generation increases by 121.3 % from June to November in the Leuchars model compared to 

102.4 % in the FINO model, the results of which are shown in Figure 6-24. This difference 

in variation is not due to the seasonality of the wind speeds in both time series, as FINO 
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varies considerably more throughout the year than Leuchars, but because the high wind 

speeds at FINO mean that the 2.3 MW WT used in the model operates more often above 

rated where the power production is constant. The seasonal variation in generated power 

may increase when a larger WT is tested in the FINO model in Chapter 6.2.3.3.  

The impact of the higher winter failure rates and downtimes is not so severe in the Leuchars 

model compared to the FINO model as shown in Figure 6-28. The power lost as a percentage 

of power generated is less than calculated with the FINO model in Figure 6-26. The power 

lost is also considerably less than in the FINO model due to the lower potential energy in the 

Leuchars wind speed time series.   

 
Figure 6-28: Power lost as a percentage of power generated and lost power for the WSD failure rate 

Leuchars model   

 

Similarly to the FINO constant failure rate model, the Leuchars constant model has a 

monthly failure rate that remains relatively constant as expected. The Power generation is 

very similar to that modelled in the WSD failure rate FINO model shown in Figure 6-27. 
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Figure 6-29: Mean monthly failure rate and mean monthly power generated for the constant failure rate 

Leuchars model   

 

As expected the power lost as a percentage of power generated remains constant throughout 

the year due to the relatively constant monthly system failure rates. This constant model 

therefore underestimates the losses in winter and over estimates the losses in summer 

compared to the WSD Leuchars model.   

 

Figure 6-30: Power lost as a percentage of power generated and lost power for the constant failure rate 

Leuchars model   
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The impact of these differences in the calculation of the annual production is fairly minimal, 

as shown in Table 6-10. Per WT year the WSD failure rate model calculates a difference of 

5.746 MWh in the calculated site outputs. This equates to £545.87 per WT year, which for a 

site of 200 WTs would represent a reduction of £109,174 in income per year, compared to 

the income expected had constant failure rates been used.   

Table 6-10: Summary of Leuchars model power generated, power generated and failure rate for WSD, 

constant and ORD failure rates 

Leuchars Model 

Per WT Year 

Total Power 

Generated 

(MWh) 

Total Power Lost 

(MWh) 

Total Power Lost 

as a percentage of 

Total Power 

Generated (%) 

Mean Failure 

Rate  

WSD Failure 

Rates 
5388.230 42.176 0.78 1.342 

Constant failure 

rates 
5393.976 36.430 0.67 1.329 

ORD Failure 

Rates 
5399.996 30.410 0.56 1.238 

 

The merits of using a WSD failure rate model to calculate the yield of an onshore site with a 

low annual mean wind speed is not as convincing as for a site with the resource of FINO. 

The difference in using failure rates from the ORD and those calculated using WSD failure 

rates is 6.020 MWh when using constant annual failure rates in the simulation and 11.766 

MWh when using WSD failure rates, as shown in Table 6-10. Per WT year this equates to 

£571.90 and £1117.77 respectively.  
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2.3.3. FINO 5 MW model 

As discussed previously in Chapter 6.2.3, the 2.3 MW onshore WT model does not fully take 

advantage of the potential energy of the FINO site. The capacity factor of the FINO model 

from Chapter 6.2.3.1 is 54 %, which is exceptionally high. A larger WT would be used in 

reality for a site like this, such as a 5 MW WT generator.  

In this section a 5 MW WT with the parameters shown in Table 6-11 is used to generate a 

simple 5 MW FINO model. With the exception of the power coefficient, these are based on 

the NREL offshore reference WT [6-12]. The difference in performance in using WSD 

failure rates in the analysis, compared to constant failure rates is assessed and compared to 

the original FINO model from Chapter 6.2.3.1 that used 2.3 MW WT parameters shown in 

Table 6-7.  

Table 6-11: 5 MW WT parameters 

Rating 5MW 

Cut in speed 3 m/s 

Rated Speed 11.5 m/s 

Cut out speed 25 m/s 

Power Coefficient (Cp) 0.375 

Rotor radius 63 m 

Air Density 1.2 kg/m3 

Hub Height 90 m 

 

A power curve for this WT was estimated, using the WT parameters shown in Table 6-11 

and the wind power formula from Equation 6-2. The power curve is illustrated in Figure 

6-31.  

The difference between the outputs of the 2.3 MW FINO model and the 5 MW FINO model 

are shown in Table 6-12. The 5 MW model generates 17% more electricity throughout the 

year, but loses 16% more power throughout the year. Additionally, the power lost as a 

percentage of the total power generated decreases to 1.203% in the 5 MW model from 



Chapter 6. Applications of Wind Speed Dependent Failure Rates 

 

231 

 

1.247% in the 2.3 MW model (shown in Chapter 6.2.3.1). The capacity factor when using a 

5 MW WT for the FINO wind resource is 24%, which is much more reasonable.  

 

Figure 6-31: Power curve of the 5 MW WT 

 

The reason for the improved performance of the 5 MW WT is because it is able to generate 

higher amounts of electricity and the differences between the 2.3 MW and 5 MW WT power 

curves.  

Table 6-12: Mean monthly outputs of WSD failure rate 2.3 MW and 5 MW FINO models 

Month 
Power Generated 

(MWh) 
Power Lost (MWh) 

Power Lost as a % 

of Power Generated 

Failure Rate 

(Failures per WT 

Year) 

2.3MW 5MW 2.3MW 5MW 2.3MW 5MW 2.3MW 5MW 

Jan 1132.701 1283.262 17.257 19.836 1.524 1.546 2.232 2.241 

Feb 912.407 1067.989 13.145 15.379 1.441 1.440 1.869 1.886 

Mar 1066.756 1215.389 15.374 17.314 1.441 1.425 2.135 2.142 

Apr 748.443 912.885 9.114 10.595 1.218 1.161 1.686 1.671 

May 830.915 974.756 9.697 10.940 1.167 1.122 1.835 1.820 

Jun 575.476 736.151 5.375 6.612 0.934 0.898 1.498 1.489 

Jul 695.402 870.789 6.444 7.758 0.927 0.891 1.678 1.662 

Aug 732.170 894.878 6.579 7.985 0.899 0.892 1.675 1.710 

Sep 910.828 1083.151 9.711 11.334 1.066 1.046 1.879 1.913 

Oct 1009.582 1173.710 11.539 13.827 1.143 1.178 2.038 2.033 

Nov 1164.985 1282.186 15.650 17.817 1.343 1.390 2.281 2.264 

Dec 1061.460 1202.107 15.332 17.350 1.444 1.443 2.130 2.105 
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The difference between the WSD failure rate 5 MW FINO model (𝜆𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙) and the constant 

failure rate 5 MW FINO model (𝜆𝑠𝑡𝑎𝑖𝑜𝑛𝑎𝑟𝑦) is shown in Table 6-13. It shows that the WSD 

model generates less power than the constant model by 14.9 MWh per WT year. If this 5 

MW machine was used onshore this difference in estimated yield would equal £1415 per 

WT year, or £283,100 per year for a wind farm of 200 WTs.  

Table 6-13: Mean monthly outputs of WSD failure rate 5 MW FINO model and the constant failure rate 5 

MW FINO model   

Month 
Power Generated 

(MWh) 
Power Lost (MWh) 

Power Lost as a % 

of Power Generated 

Failure Rate 

(Failures per WT 

Year) 

𝜆𝑊𝑆𝐷 𝜆𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝜆𝑊𝑆𝐷 𝜆𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝜆𝑊𝑆𝐷 𝜆𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝜆𝑊𝑆𝐷 𝜆𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 

Jan 1283.262 1287.662 19.836 15.436 1.546 1.199 2.241 1.943 

Feb 1067.989 1070.646 15.379 12.722 1.440 1.188 1.886 1.785 

Mar 1215.389 1218.275 17.314 14.428 1.425 1.184 2.142 1.948 

Apr 912.885 913.268 10.595 10.212 1.161 1.118 1.671 1.883 

May 974.756 974.850 10.940 10.846 1.122 1.113 1.820 1.956 

Jun 736.151 735.303 6.612 7.460 0.898 1.015 1.489 1.870 

Jul 870.789 869.608 7.758 8.939 0.891 1.028 1.662 1.946 

Aug 894.878 894.151 7.985 8.712 0.892 0.974 1.710 1.942 

Sep 1083.151 1083.572 11.334 10.912 1.046 1.007 1.913 1.867 

Oct 1173.710 1174.806 13.827 12.730 1.178 1.084 2.033 1.953 

Nov 1282.186 1285.004 17.817 14.999 1.390 1.167 2.264 1.894 

Dec 1202.107 1205.011 17.350 14.446 1.443 1.199 2.105 1.947 

Total/ 

Average 
12697.25 12712.15 156.746 141.841 1.203 1.106 1.911 1.911 

 

If the ORD failure rates are used in the analysis instead, shown in column 3 of Table 6-2, the 

average annual production is 12782.01 MWh and the power lost is 71.98 MWh. The 

difference in this calculated annual production and that calculated by the FINO 5 MW 𝜆𝑊𝑆𝐷 

model is £13138.73 per WT year using offshore electricity rates.  

Therefore according to the WSD FINO model, if a wind farm operator assumed that failure 

rates offshore at FINO would remain consistent with onshore failure rates recorded at Site A 

and Site B, they would earn roughly £2.6 million less per year for a 200 WT offshore wind 

farm. This difference would be due to reduced reliability offshore and failures occurring 
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more frequently in the winter when potential electricity generation is at its highest. The 

extended downtime due to offshore logistics and accessibility is not accounted for by the 

model. This will be considered in more detail in the following chapter when a simplified 

offshore constraint model will be constructed by adapting the model shown in Figure 6-22.  
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2.4. Discussion 

The WSD failure rate models for Leuchars and FINO estimate a reduction in output 

compared to traditional constant failure rate models. This estimation only analyses the 

electricity generated and energy lost, it does not include the costs of O&M that result from 

preventative and corrective maintenance.  

The benefit of using the WSD failure rate model developed in this thesis is that monthly 

estimates can be made of component failures and the impact these failures have on 

production can be analysed in better detail than simply assuming constant failure rates. 

Losses in production in the winter due to increased failure rates and the increases in the 

summer due to reduced failure rates are also accounted for in the WSD failure rate model 

that otherwise would not be accounted for in a constant failure rate model. The WSD model 

calculates that the losses suffered in the winter are not compensated in the summer, as 

opposed to the constant models that are not detailed enough to consider this issue.  

The constant and WSD models calculate much lower electricity generation than the ORD 

failure rate models. This is to be expected as the failure rates calculated by the FINO and 

Leuchars models are higher than those calculated in the ORD. If operators were to assume 

that WT failure rates would remain the same if they were subjected to FINO wind speeds 

substantially more energy would be lost than expected due to increases in component failure 

rates.  

  



Chapter 6. Applications of Wind Speed Dependent Failure Rates 

 

235 

 

3. Chapter 6 Summary 

This chapter has demonstrated simple application of the WSD failure rates calculated in 

Chapter 5.2.5.1. Component failure rates were calculated using the WSD failure rate model 

and the FINO and Leuchars input wind speed time series. As shown in Table 6-2 the failure 

rate of the system according to the FINO model was 1.910 failures per WT year and the 

availability was 98.90%. The Leuchars model showed a slight increase in failure rate of 

8.24% compared to the ORD, but as the mean wind speed did not differ significantly 

compared to the calibration wind speed data, the change was not as great as FINO. The 

components most significantly affected by the high wind speeds at FINO were the control 

system, the yaw system and the drive train as shown in Table 6-2. Their failure rates were 

calculated by the FINO model to increase by 82%, 89% and 40% respectively.  

Using the WSD failure rates, the FINO and Leuchars models plotted monthly component 

failure rates from the simulated data. The monthly failure rates calculated by the Leuchars 

model vary less significantly than those calculated by the FINO model  

Finally the model was adapted in Chapter 6.2 to calculate electricity generation. It was found 

that using the FINO and Leuchars models that the energy lost on average per WT year was 

greater than if using models with constant failure rates. This percentage was higher in the 

FINO model than in the Leuchars Model.  

In Chapter 6.2.3.3 a 5 MW model WT was simulated for the FINO model, in this example 

the difference in revenue calculated by the FINO model compared to model that had used the 

onshore failure rates of Site A and Site B was £2.6 million per year for a 200 WT wind farm.  

The following Chapter analysis will be undertaken to determine if there is an economic 

advantage to having a spares strategy that varies each month according to the calculated 

WSD component failure rate.  
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1. Background 

1.1. Offshore Maintenance 

The previous chapter demonstrated that a model can be developed that can calculate seasonal 

and annual WT component failure rates for an offshore site using wind speed dependent 

failure rates. Although simulating offshore logistics and accessibility is beyond the scope of 

this thesis, one possible application of the wind speed dependent failure rate models is 

offshore wind farm spares optimisation. This chapter will demonstrate a model that will use 

the seasonal and annual failure rates calculated in Chapter 6.1.1.1 and Chapter 6.1.2.1to 

design an optimum strategy for spares optimisation in corrective maintenance.   

The importance of a maintenance strategy and therefore spares optimisation to the actual 

availability of an offshore WT was highlighted by Van Bussel and Zaaijer and is described in 

detail in IEC 61400-26-1 [7-1], [7-2]. The offshore availability is affected by the 

accessibility of the site, the limits of theoretical availability and by the maintenance strategy 

as shown in Figure 7-1 [7-1]. From an operator’s point of view the only factor they can 

directly control is the maintenance strategy.  

 

Figure 7-1: The impact of maintenance strategy on theoretical and actual availability [7-1] 
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Although a maintenance strategy includes preventative and corrective maintenance, this 

section will only focus on the latter. It is assumed that the two activities take place 

independent of one another and that both maintain separate inventories.   

In Chapter 6.1.1.1 the FINO model calculated component failure rates for a WT subjected to 

offshore wind speeds. It produced annual component failure rates in Chapter 6.1.1.1 and 

more detailed seasonal component failure rates in Chapter 6.1.2.1 that showed how the 

reliability of each component was calculated to vary throughout the year due to the mean 

daily wind speed. The goal of Chapter 7 is to develop a model for finding the optimum 

spares strategy for an offshore wind farm subjected to the same offshore wind speeds and to 

use both the annual and seasonal failure rates to design the strategies.  

Chapter 7.1 will briefly explain the theory behind spares optimisation before the FINO 

model used in the previous chapter is adapted in 0 to assess potential spares provision 

strategies for an offshore wind farm of 200 WTs. Offshore constraints are applied to the 

model in Chapter 7.2.4 before a range of scenarios are presented and assessed in Chapter 

7.3.1 and Chapter 7.3.2. A sensitivity analysis of the model and the selected optimum 

strategies will be undertaken in Chapter 7.3.3, before finally in Chapter 7.3.4 the 

effectiveness of the model will be discussed.  
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1.2. Periodic Review Inventory System with Emergency Replenishments 

Costs for maintaining a spares provision system include the purchasing of new components, 

the holding of these components, the cost of lost generation due to downtime and general 

costs associated with operation and maintenance [7-4].  

There are two inventory renewal policies often used often in practice – the continuous and 

periodic review systems [7-5]. The continuous review inventory system is a common way of 

maintaining an inventory that involves tracking each component in the spares inventory and 

counting each time a component is removed to be used as a spare. This system requires a 

maximum level S for each component and a reorder level s (S, s) [7-4], [7-6]. Whenever the 

number of spares of a component falls below s, the component is reordered and the inventory 

returns to its maximum S. An example of the continuous review system is shown in Figure 

7-2. In this example and in the following example Figure 7-3, for simplicity it is assumed 

that the lead time for components to be delivered is 0 hours.  

 

Figure 7-2: Example of continuous review system  
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The periodic system however differs in that rather than there being a level of stock that 

triggers a reordering of components, there is an ordering period (OP) at which the stock is 

reviewed and then topped up to the S level [7-7]. An example of this system is shown in 

Figure 7-3.  

 

Figure 7-3: Example of periodic review system 

 

The continuous review system ensures that stock levels do not reach 0 by reordering once the 

inventory level falls to s. In the example the lead time is 0 hours, however in reality it be 

could be any period greater than this. Therefore the reordering level can be optimised 

according to the failure rate and lead time to ensure that the risk of the inventory reaching 0 

is minimised. Another benefit of the continuous system is that the stock levels ordered each 

time from the supplier x, are the same. However a downside to the system is that the ordering 

periods are not consistent, as shown in Figure 7-2. Although suppliers may benefit from 

filling consistent order volumes the timing is uncertain and this may lead to charges from the 

supplier if they have to fast-track an order [7-7].  
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The periodic system suffers from the opposite issues [7-7]. The ordering period is consistent 

each time, but the volume of each order is not. As shown in Figure 7-3 the ordered stock 

levels x are all different. From a supplier’s point of view this system is also problematic. 

Additionally the periodic system does not protect against reaching empty stock levels, as 

shown at OP3. If this were the inventory level for an offshore wind farm, any failures beyond 

the period of time when the inventory level reached 0 would result in a long period of 

downtime and significant lost generation.  

For an offshore wind farm, neither system is suitable. The option used in this thesis is a 

hybrid of both systems, referred to as the Periodic Review Inventory System with 

Emergency Replenishments. This system has been used previously by Chiang and Gutierrez 

and by Tagaras and Vlachos to develop systems where orders are placed at regular intervals, 

like a periodic review inventory system, but also allow emergency orders to be placed at any 

time if the stock levels drop below a certain level [7-7], [7-8]. In Chiang and Gutierrez’s 

model, emergency orders can be placed at any time and have shorter lead in times but are 

subject to significantly higher costs [7-8]. In the Tagaras and Vlachos model, the emergency 

orders follow the same time and cost conditions, but can only be made at specific review 

times [7-7].  

For this analysis, the Chiang and Gutierrez approach will be used. But additionally there will 

be three ordering modes as opposed to Chiang and Gutierrez’s two modes. These modes are:  

 A scheduled order made at each scheduled ordering period 

 An unscheduled order, made when the inventory level drops below the reorder level 

s 

 An emergency order which is made when the inventory level reaches 0 

An example of this inventory system is shown in Figure 7-4, where each unscheduled order 

requires a lead time of t = LT. The scheduled ordering periods (OP) are shown at regular 
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intervals, while an unscheduled order (UO) occurs after OP1 and an emergency order (EO) 

after OP2. Scheduled orders do not have a lead time as they are organised well in advance to 

replenish stocks while the emergency order has no lead time but costs a considerable amount 

more than an unscheduled order.  

 

Figure 7-4: Periodic inventory review system with emergency replenishments 
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1.3. Offshore Wind Farm Inventory System 

1.3.1. Maximum and Reorder Levels 

The periodic inventory review system with emergency replenishments can be applied to the 

corrective maintenance strategy of an offshore wind farm of 200 WTs. If failure rates have 

been calculated for each component, the inventory levels S and s of each component can be 

easily calculated from the number of failures expected to occur over a set time period. In the 

case of the ORD from Site A and Site B, the annual failure rates for each component are 

shown in column 2 of Table 7-1. For a 200 WT wind farm, the annual number of expected 

failures can be calculated by multiplying the annual component failure rate by 200, as shown 

in column 3.  

Table 7-1: Maximum and reorder levels (S, s) using ORD and βS and βs factors that equal 2 and 0.1 

respectively 

Component 

λ (Failures 

per WT 

Year) 

Expected 

annual 

failures for a 

200 WT 

farm 

Maximum 

stock level 

(S) 

Reorder 

level  

(s) 

Emergency system 0.026 5 10 1 

Met Instruments 0.075 15 30 3 

Rotor 0.047 9 19 2 

Blade Pitch System 0.068 14 28 3 

Drive Train 0.156 31 62 6 

Yaw System 0.151 30 60 6 

Hydraulics 0.078 16 32 3 

Control System 0.520 104 208 21 

Generator 0.031 6 12 1 

Lifting System 0.010 2 4 0 

Nacelle 0.016 3 6 1 

Tower 0.060 12 24 2 

  

In this case, the maximum and reorder levels S and s, shown in columns 4 and 5 respectively, 

are calculated by applying the maximum and reorder factors βS and βs respectively, to the 

expected number of annual failures in column 3 and rounding to the nearest component. The 

factors βS and βs in Table 7-1 are 2 and 0.2 respectively.  
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For this example the inventory would initially be stocked to level S, failures would then take 

place and the stocks of each component would deplete until level s was reached, at which 

time the stock level of that component would be returned to level S after an unscheduled 

order and a lead time of LT.  

As the maximum level was calculated using the annual failure rate, the stocks would be 

unlikely to be depleted to s level for quite some time. Although it may seem sensible to over 

stock and reduce risk, holding such a large volume of spares is costly and would require a 

very large holding facility that would only be at capacity for a short period of the year as the 

stocks depleted. It is more effective to build a smaller facility and reduce the OP.  

As found by Kabir and Olayan, failure distributions have a significant impact on the 

optimum spares strategy [7-9]. If the failure rate of a component were to remain constant 

throughout a year then maximum and reorder component levels based on annual failure rates 

may be a suitable spares strategy.  

However as discussed in the previous sections, the failure rates of WT components change 

seasonally and the potential losses due to downtime also vary, increasing in the winter and 

decreasing in the summer. Therefore it may be the case that spares levels may be too low in 

the winter and too high in the summer. If this were the case the risk of being under stocked 

would be high in the winter due to high wind speeds and the cost of holding and purchasing 

components would be unnecessarily high in the summer when failures would be less likely 

to happen. The most economic strategy could be to order more stock in the winter and less 

stock in the summer – therefore reducing the risk of being under stocked in the winter and 

decreasing the holding cost in the summer.  

1.3.2. Emergency and Unscheduled Orders 

However, these economics depend entirely upon the risks of each individual site which 

varies according to accessibility, water depth, wind speed conditions and model of WT. 
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These risks are represented in the inventory system by charges that apply to unscheduled and 

emergency orders.  

If an offshore wind farm allows the stock levels to deplete to the point that there are no 

spares left and an emergency order is placed the suppliers, in this case the OEM, may charge 

an additional fee as compensation so that the order can be fast tracked past those already in 

the order book and delivered straight away [7-10]. If the required component is large, like a 

gearbox or a blade, a heavy lift vessel may also have to be hired at short notice and high cost 

to deliver the component to site and fit it to the WT [7-1], [7-11]. To prevent emergency 

orders from occurring to a project and impacting the profitability of the asset, asset managers 

may also be penalised by the asset owner for bad performance if they allow spares levels to 

deplete to the point where generation is lost unnecessarily.    

Even in the case of unscheduled orders there is a lead in time for new stock to be ordered, 

dispatched and delivered. While the order is still in process there is always the risk that the 

stock level could deplete further and reach the point where there are no spare components 

left, resulting in an emergency order needing to be placed or a fine from the owner.  

Therefore considering the risks involved in keeping spare components under stocked and the 

expense of over stocking, it is important that an optimum inventory strategy is found with 

suitable S and s levels. The spares optimisation model will use the periodic review inventory 

system with emergency replenishments to design an optimum component spares holding 

strategy. The following section will describe the spares optimisation model and the 

parameters and constraints applied to the model to represent the inventory risks.   
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2. Spares Optimisation Model Description  

The downtimes recorded in the ORD all correspond to failures that take place on sites that 

operate according to onshore conditions and onshore logistics. Therefore to model 

downtimes that are related to offshore logistics, the wind speed dependent downtime 

function is removed from the FINO model shown in Figure 6-22 and instead, a spares 

provision function is added, as illustrated in Figure 7-5.  

 

Figure 7-5: Flow chart of spares optimisation model 

 

The spares optimisation model differs to the previous models in that downtime is no longer 

solely a function of wind speed. If the spares provision is under stocked when a failure 
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occurs, there will be a longer downtime than if the spares provision were correctly or over 

stocked. This is because the downtime comprises of the waiting time to either replace the 

failed component with a spare from the inventory, or to wait for a spare to be delivered so it 

can be fitted. The average downtime period for an individual failure is therefore now a 

function of spare component availability, while the availability of a WT is a function of wind 

speed and spare component availability.  

The model still works in the same way as in the previous Chapter – failures are generated by 

MCMCS according to the wind speed dependent failure rates and FINO wind speed time 

series. The wind speed dependent failure rates are the same as those calculated Chapter 

5.2.5.1. However the addition of the spares provision function allows the model to evaluate 

how effective different maintenance strategies are when they are applied to the wind farm. 

The more effective the strategy is, the lower the cost of corrective maintenance. Therefore 

high wind speeds will continue to cause more component failures, but the effectiveness of 

the spares strategy will determine how long the WT remains down. 

The model relies on the assumption that every downtime that occurs is due to a failed 

component that requires complete replacement and that when the failure occurs this 

replacement is carried out if or when a spare is available. The ORD records each downtime 

that occurs to a WT and categorises whether the outage is due to corrective or preventative 

maintenance. However it is not always clear in the dataset whether a component has been 

replaced, refurbished or, in the case of electrical components, simply reset. The implications 

of this assumption will be discussed further in Chapter 7.3.4 
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2.1. Spares Provision Function  

The purpose of the spares provision function is to introduce all of the aspects discussed in 

Chapter 7.1 into the model. It operates as a function within the main model, as shown in 

Figure 7-5 and performs calculations at each time step.  

As described in Figure 7-6, the spares provision function first determines which component 

has failed – in this case the failed component is i – it then determines whether there is a spare 

component available with which to repair i. If there is a spare component it is removed from 

the inventory and used. The WT suffers downtime due to the repair being carried out 

𝑑𝑟𝑒𝑝𝑎𝑖𝑟, this downtime is then applied to the component availability 𝑎𝑖 in the step after the 

spares provision function, as shown in Figure 7-5.  

 
Figure 7-6: Flow chart of spares provision function 

 

The function then checks the stock level of component i, if it is below level s new 

components are ordered to return the stock level to S. Costs are incurred in doing this, firstly 
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the cost of the components and secondly the cost of making an unscheduled order to the 

OEM.  

If there is not a spare component, the function first checks if an order has been placed 

already in a previous time step to replenish the stocks. If an order has not been placed, new 

components are ordered, the WT is shut down for an extended downtime until they arrive 

(𝑑𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑) and a penalty is paid. If an order for i has already been placed, the model shuts 

the WT down for 𝑑𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑. As spares have already been ordered, further component costs 

and penalties are not paid.  

At the end of the process, whether a spare component i was available or not, the stock levels 

for that day are counted and the holding costs are calculated by multiplying the number 

components stored that day by the daily rate.  
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2.2. Inventory levels  

The initial component stock levels are set prior to the when the model begins a simulation by 

varying the maximum and reorder level factors βS and βs and multiplying them by the 

number of WTs and the component failure rates as shown previously in Table 7-1.  

However, as opposed to using the annual failure rate in Table 7-1, the spares optimisation 

model uses the monthly failure rates so that levels S and s are set to provide the wind farm 

with enough components to last a month.  

By ordering components on a monthly basis rather than annually, like in Table 7-1, smaller 

holding facilities can be used and the inventory will be at low capacity for shorter periods of 

the year. Holding costs will therefore be reduced, while the total annual cost of ordering 

components remains the same.   

At the end of each month the components are scheduled to be reordered automatically to 

level S without any additional charges such as penalties or ordering costs. The components 

arrive for use on the first day of the month. 

If βS and βs were to equal 1 and 0.4 respectively, the maximum and reorder levels S and s of 

the control system would vary from month to month as shown in Figure 7-7. These monthly 

levels are dependent on the monthly failure rates calculated using the model. The monthly 

failure rates have been calculated using the FINO model from Chapter 6.1.2.1. Therefore the 

model must first calculate monthly failure rates from the prior simulations in Chapter 6.1.2.1 

and then use these calculated monthly failure rates to set a spares strategy. Throughout this 

Chapter, the analysis undertaken first requires the results calculated from Chapter 6.   
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Figure 7-7: Monthly maximum and reorder levels for the control system using βS and βs factors of 1 and 0.4 

respectively 

 

Had a constant constant failure rate been used in this case, as opposed to monthly failure 

rates, the monthly maximum and reorder levels of the inventory would have been 16 and 6 

control system components respectively each month throughout the year. The risk of keeping 

a constant stock level throughout the year is shown in the months January, March, October, 

November and December where the expected number of failures in those months exceeds 

16. If not enough spares are available to repair the WT and the level drops to 0, a penalty 

will be issued by the model and energy will be lost. In the summer however fewer than 16 

failures are expected to occur, therefore the inventory would be overstocked. Holding costs 

at this time of year would therefore be higher, although it would be unlikely that any 

penalties would be issued.  

However, by varying the inventory levels throughout the year the risks posed by winter wind 

speeds can be mitigated by holding more spares of the components most likely to fail. 

Equally costs can be reduced in the summer by holding fewer spares.   

0

5

10

15

20

25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

N
u

m
b

e
r 

o
f 

C
o

m
p

o
n

e
n

ts
 

Maximum

Reorder



Chapter 7. Spares Optimisation Using Wind Speed Dependent Failure Rates 

 

256 

 

2.3. Estimating Component Costs 

Calculating the cost of each component is vital in planning effective maintenance strategies. 

Aalthough all the WT components consist of many subcomponents (i.e. the drive train is 

made up of the gearbox, bearings, the high speed shaft and many other subcomponents) this 

analysis assumes that each component is a single entity with a single wind speed dependent 

failure rate function. There is no distinction in the model between a gearbox failure and a 

high speed shaft failure; they are both categorised drive train failures. The component cost of 

a gearbox is roughly 13% of the overall WT cost [7-12]. However the cost of replacing gear 

box oil is considerably less. The cost of replacing a drive train component in this analysis 

must therefore reflect the costs of all its subcomponents and probabilities of each of them 

failing.   

The ORD unfortunately does not include information on component costs. Therefore 

component costs will be estimated in this section using the ORD and estimated O&M costs 

from the literature. According to a report undertaken by Riso National Laboratory the 

average cost of O&M for a typical onshore wind farm is about 0.6 €/kWh  - 0.7 €/kWh of 

generated energy in a year [7-13]. A value of 0.65 €/kWh is assumed.  

From May 2013 to March 2014 Site A and Site B achieved capacity factors of 28% and 24% 

[7-14], [7-15]. The capacity factor of both sites combined was approximately 26.5%. If an 

assumption is made that these annual performances are typical of Site A and Site Band also 

typical of an onshore wind farm, then O&M costs can be estimated using the Riso National 

Laboratory figures.  

The cost of O&M for both sites was calculated as shown in Equation 7-1 and Equation 7-2. 

Using an exchange rate of 0.8 UK pounds to 1 euro, this equals £ 27762.94. This was 

rounded up to bring the annual cost of O&M per WT to be £30000. 
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𝐴𝑛𝑛𝑢𝑎𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐻𝑜𝑢𝑟𝑠 𝑖𝑛 𝑎 𝑦𝑒𝑎𝑟 × 𝑊𝑇 𝑅𝑎𝑡𝑖𝑛𝑔 × 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 

𝐴𝑛𝑛𝑢𝑎𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 365 × 24 × 2.3 × .265 = 5339.22 𝑀𝑊ℎ 

Equation 7-1 

 

𝐴𝑛𝑛𝑢𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑂&𝑀 = 𝐴𝑛𝑛𝑢𝑎𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑘𝑊ℎ) × 𝐶𝑜𝑠𝑡𝑜𝑓 𝑂&𝑀/𝑘𝑊ℎ 

𝐴𝑛𝑛𝑢𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑂&𝑀 = 5339.22 × 1000 × 0.65 =  €34704.93 

Equation 7-2 

 

 

Of this £30000, half of this cost was assumed to be due to corrective maintenance. The other 

£15000 would be taken up by insurance, labour, balance of plant, preventative maintenance 

and administration. This assumption was taken as research from Rademakers and colleagues 

quoted typical corrective maintenance and preventative maintenance costs as being roughly 

0.005 – 0.010 €/kWh and 0.003 – 0.006 €/kWh respectively [7-16].  

Component costs were calculated according to the downtime on average per failure to each 

component, as shown in Equation 7-3. These values were then normalised as shown in Table 

7-2. The component failure rate λ was then multiplied by the normalised downtime values �̂�, 

shown in column 5 of Table 7-2. This value is the normalised downtime multiplied by the 

probability of a failure occurring in a year; it was then summed for all twelve components. 

The total cost of O&M attributed to corrective maintenance was then divided by this 

summed value as shown in Equation 7-3. Finally this scalar was multiplied by the 

normalised downtime for each component.      

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝐶𝑜𝑠𝑡𝑖 = (
15000

∑ 𝜆𝑗𝑑�̂� 𝑛
𝑗=1

) × �̂�𝑖 
Equation 7-3 

 

This method gave component costs that were weighted according to the downtime they 

caused to the system for each failure. They are shown in column 6 of Table 7-2.  
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Table 7-2: Estimated component cost 

Component 
Downtime 

per failure 

(hours) 

Normalised 

Downtime 

(�̂�) 

λ (Failures 

per WT 

year) 

Failure 

Rate x 

Normalised 

Downtime 

Component 

Cost (£) 

Emergency system 0.7 0.001 0.026 3.8E-05 200.3 

Meteorological Instruments 6 0.013 0.075 1.0E-03 1860.9 

Rotor 158.2 0.352 0.047 1.6E-02 48746.6 

Blade Pitch System 28.7 0.064 0.068 4.3E-03 8846.9 

Drive Train 89.6 0.199 0.156 3.1E-02 27600.5 

Yaw System 22.8 0.051 0.151 7.7E-03 7040.4 

Hydraulics 71.3 0.159 0.078 1.2E-02 21979.1 

Control System 28.0 0.062 0.520 3.2E-02 8638.7 

Generator 31.0 0.069 0.031 2.2E-03 9561.2 

Lifting System 8.1 0.018 0.010 1.9E-04 2505.2 

Nacelle 2.1 0.005 0.016 7.4E-05 654.7 

Tower 3.2 0.007 0.060 4.2E-04 970.9 

       

If these component costs are applied to the Calibration model, which is the wind speed 

dependent failure rate model that uses the calibration wind speed data as an input, the model 

returns an annual mean cost of corrective maintenance of £14873. This is 0.85% lower than 

the expected value of £15000.  

When the component costs shown in Table 7-2 are applied to the FINO model, the mean 

annual cost of corrective maintenance is calculated to be £22086.  The seasonal costs 

calculated by the FINO model for the control system, drive train and rotor are shown in 

Figure 7-8. The values shown for each month are equivalent annual costs and are calculated 

by multiplying the mean monthly component costs by 12. The costs are displayed in this 

convention so that seasonal component costs can be easily compared to the annual mean 

cost.   
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Figure 7-8: Corrective maintenance costs of the control system, drive train and rotor calculated from the 

FINO model 

 

The rotor costs increase in the summer according to the FINO model. This is because the 

costs are directly influenced by the monthly failure rate, which in the rotor’s case increases 

during the summer according to the FINO model.  

The rotor failure rate increases in the summer for the same reasons that the blade pitch 

system also increases in the summer according to the FINO model – this was discussed 

Chapter 6.1.3. The wind speed dependent failure rate of the rotor is shown in Figure 7-9, the 

failure rate for days when the mean daily wind speed is above 13 m/s is 0. As a result of this 

the FINO model experiences many winter days when the rotor cannot fail.   
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Figure 7-9: Wind speed dependent failure rates of the rotor 

 

As discussed previously, the failure rate above 13 m/s is 0 with other components such as the 

blade pitch system. But because the component cost of the rotor was the third most 

expensive in terms of its cost per failure, this may have implications on the accuracy of the 

spares optimisation model.  

This highlights a potential flaw in the FINO model. But as the failure rate of the rotor is so 

low this issue only becomes problematic when costs are applied to the FINO model. In the 

ORD the rotor has a high downtime per failure because of a single occurrence of a blade 

failure which caused 110 days of downtime. The remaining rotor failures only had an 

average downtime of 11 hours. The presence of this catastrophic blade failure in the dataset 

means that the average downtime of a rotor failure is approximately 160 hours. This high 

average downtime gives its corrective maintenance cost a high weighting. 

If this failure is removed from the dataset the rotor becomes a component with far less 

influence on the output of the FINO spares optimisation model. Removing this failure from 

the model would increase the weighting of other components such as the drive train and the 
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control system. However it would mean that the FINO model becomes less representative of 

reality because the probability of the WT suffering a catastrophic blade failure is zero. 

 

Figure 7-10: Monthly contributions to the annual O&M costs of the blade pitch system, hydraulic system 

and rotor from the FINO model once the catastrophic rotor failure was removed from the dataset  

 

The effect of removing the catastrophic blade failure from the analysis is shown in Figure 

7-10 where the cost of a rotor component is reduced from £48747 to £3893, a reduction of 

79%. The impact this change has on the overall monthly cost of the whole system is shown 

in Figure 7-11. The difference between the two FINO models is not actually that significant: 

the average annual cost with the blade failure is £22,690, while removing the blade failure 

reduces the cost to £22,090 due to the reduction in lost generation caused by the long period 

of downtime. In the case of many components, data is scarce and removing other significant 

data points as well as the catastrophic blade failure only makes it less representative of the 

data. The failure rate of the rotor as discussed before is also very low. Consequently because 

of these reasons the blade failure remained in the model.  
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Figure 7-11: Monthly comparison of corrective maintenance costs for the whole WT system from the FINO 

model when the catastrophic rotor failure is included and removed from the dataset 
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2.4. Offshore Seasonal Constraints 

As discussed previously, creating a complex offshore accessibility and vessel logistics 

computer program is beyond the scope of this thesis. Therefore more basic constraints have 

been put on the model by applying seasonal downtimes and costs. To reduce computational 

time the year is split into only two seasons that run from October – March and April – 

September. The latter will be referred to as summer, while the former is winter.   

Repair time (𝑑𝑟𝑒𝑝𝑎𝑖𝑟) is the downtime applied to the model if a spare component is available 

to be fitted to a WT immediately. In the winter time this downtime is likely to be higher than 

summer due to: 

 Poor WT accessibility due to high significant wave height [7-17]–[7-19]   

 Health and safety restrictions on access to the nacelle and use of heavy lifting cranes 

due to high wind speeds [7-20]     

 Increased competition in vessel hire from other offshore wind farms causing a lower 

availability [7-11] 

For these same reasons, extended downtime (𝑑𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑) due to waiting for components to be 

delivered and then fitted will also increase in the winter. But additionally in the winter there 

will be an increased demand from other wind farms for spare components and if the 

components are large enough that they need to be delivered by vessels there will be reduced 

sailing times due to the weather and sea conditions.  

As the downtime per failure was calculated to increase in the winter using the onshore ORD, 

this is also reflected in this model. Two sets of downtimes are used in the model for both 

𝑑𝑟𝑒𝑝𝑎𝑖𝑟 and 𝑑𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑, a winter value and a summer value. 

Penalty charges also vary seasonally as the purpose of the charge is to represent the risk of a 

failure that occurs when the maintenance strategy is not adequate enough to ensure the 
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availability of spare components that can be fitted immediately.  This risk accounts for the 

cost of hiring vessels to either sail to the WT to carry out the repair, or to deliver components 

to site from the manufacturer at short notice. This charge should also therefore be 

significantly higher during winter due to the accessibility and vessel availability issues 

already explained previously. Furthermore, from the point of view of the owner, they would 

want as little downtime in winter as possible because of the higher lost revenue due to higher 

potential energy generation. They could therefore penalise an operator more in the winter 

than in the summer for any unnecessary downtime. The model therefore changes the penalty 

charge depending on the month the WT is operating in – the winter charge is also 

significantly higher in each case to represent the more extensive risks at this time of year.  

Unscheduled orders that are made when the order drops below the reorder level s, are also 

subject to an additional charge. Because of the higher risks and expense of ordering 

components in the winter, this value changes seasonally. The risk to generation when the 

WT falls below s is less than when the level falls to 0. Therefore the cost of making an 

unscheduled order is only 10% of the penalty cost.     

Lastly a charge is made to every component held in the spares inventory per day. This charge 

represents the holding cost and consists of the personnel, plant and overheads related to the 

operation and maintenance of the wind farm. This cost is assumed to remain constant 

throughout the year and so does not have a winter value and a summer value. However in the 

case of many components the volume of components held in the winter increases due to the 

spares strategies – this therefore means the total expense of holding components increases in 

the winter. This cost varies according to the number of personnel working on site, the size of 

the holding facilities and various other overheads related to the operations base including the 

number of CTV’s required per turbine and fuel costs – both of which increase with the 

distance from the operations base to the wind farm. 
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2.5. Optimised Spares Strategy Example 

To elucidate how the model works, three spares strategies are assessed for a 200 WT wind 

farm subjected to FINO wind speeds. The cost and downtime parameters used in the model 

are the same for each strategy, as shown in Table 7-3. The spares optimisation model brings 

together the functionality of the previous demonstrated applications in Chapter 6.1 and 

Chapter 6.2 to calculate an optimum spares strategy using the wind speed time series of the 

site in question (in this case FINO) and the wind speed dependent failure rates calculated in 

Chapter 5.2.5.1.    

As described in Chapter 7.2, the model generates failures according to the input wind speed 

time series. A spares strategy is set for the simulation and its effectiveness is economically 

assessed. Offshore constraints are applied to the model to represent the economic difficulties 

of operating an offshore wind farm as described in the previous section. The suitability of 

each tested strategy will depend on the offshore constraints applied to the model and the 

input wind speed used to generate the component failures.     

The FINO spares optimisation model is used in this example. It is assumed that the monthly 

failure rates, calculated previously using the FINO model in Chapter 6.1.2.1, are known and 

therefore are used to plan the monthly maximum and reorder levels for each strategy, shown 

in columns two and three in Table 7-3 as the maximum and reorder factors βS and βs. The 

parameters in Table 7-3 that are seasonal are presented in the format winter / summer. Each 

parameter is explained in greater detail in Chapter 7.3.1 

Table 7-3: Downtime and cost parameters used for each spare strategy  

Spares 

Strategy 

Maximum 

factor (βS) 

Reorder 

factor  

(βs) 

𝑑𝑟𝑒𝑝𝑎𝑖𝑟  

(hours) 

𝑑𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 

(hours) 

Penalty 

(£) 

Holding 

(£/comp-

onent day) 

Unsche-

duled 

Order (£) 

a) 1.2 0.4 

48 / 12 240 / 72 
125000 / 

25000 
200 

12500 / 

2500 
b) 1 0 

c) 1.2 1 
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Strategy a) sets a high maximum level to ensure that there are enough spare components 

available to avoid penalties, it also sets a βs of 0.4 to ensure that when levels drop close to 0 

an unscheduled order is made.  

The second strategy b) however sets lower factors to reduce the cost of holding components, 

however because the reorder level is 0, the risk of falling to 0 components and a failure 

occurring is higher.  

The final strategy c) has a βS of 1.2 and a βs of 1 – this means that the risk of the spares 

holding falling to 0 is very small, as after the levels drop by 17% (to the reorder level s), an 

unscheduled order is placed to increase the level back to S. This means that although the risk 

of a penalty is very low, the holding costs and ordering costs will be high.  

All three strategies have their merits – the optimum strategy depends on the parameters 

selected. For a site with low holding costs and high penalty costs it would make sense to 

have a strategy that has a high maximum and reorder level to keep the spares levels high. 

However for a site with high holding costs, low penalty costs and short extended downtimes 

it would be preferable to keep a low stock because the risk of being without a component 

might make more financial sense than keeping high stock levels.   

Figure 7-12 shows the results of a one year simulation of the FINO model for each of the 

three strategies, focusing on the control system spares levels. In each case the y axis 

indicates the level of the spare control system components on each day throughout the year.  

The time series shows that at the beginning of every month the holdings increase or remain 

the same. This is because there is a scheduled order every month to return the levels to S, 

however because S varies from month to month due to the seasonal failure rates, the levels 

may already be greater than S at the start of the month. An example is shown in Figure 7-12 

a) when at the start of June the holdings did not increase. This is because during May the 
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levels decreased to below the reorder level for that month; components were then reordered 

and returned to the S May level. Although failures to the control system did occur before the 

start of June, the levels remained higher than the S level of June when the time came to make 

the scheduled order at the start of the month – the spares level therefore remained the same.  

 

Figure 7-12: Control system spares levels throughout one year period using strategies a), b) and c) 

 

Strategy a) makes more unscheduled orders of control system components throughout the 

year than b). This is because the difference between the maximum level and the reorder level 

in a) is less than b). Strategy c) however clearly makes the most unscheduled orders, most 

frequently in November because of the high wind speeds and higher probability of control 

system failure.  

The three systems deal differently with the high wind speeds (and therefore high number of 

control system failures) in November. Strategies a) and b) each place unscheduled orders in 

November because levels drop below reorder level. Strategy c) however makes 4 

unscheduled orders to ensure the levels remain above s level. In this case neither strategy 

was able to manage November effectively – a good strategy would have ensured enough 
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spares were ordered to last for the month, incurring no penalties and minimising holding and 

ordering costs.   

The only instances of penalties being issued for bad management of the spares strategy is for 

February and May, by strategy b). The spares level also drops to 0 in March and April before 

stocks are reordered. The high reorder levels of strategies a) and c) prevent penalties 

occurring in the case of the control system – however holding costs are higher as a result.     

The total cost of each strategy over the same year is shown in Table 7-4. These costs 

comprise of the holding costs, component costs, unscheduled order costs, lost generation due 

to downtime and penalty costs.  

As shown in Table 7-4, the costs of the 200 WT wind farm are highest for each strategy in 

the winter months when the unscheduled ordering and penalty costs are higher and the 

downtimes are longer. Over the first year of the simulation, strategy b) is the most 

economical with a total cost of £8,568,499 or £42,842 per WT year. However November, 

which was the month with the highest wind speed and highest component failure rates, was 

least economically managed by strategy b) – in this case the best strategy was a).  

Table 7-4: Total costs incurred by 200 WT wind farm in the first year of using strategies a), b) and c) 

Month Total Costs per Strategy (£) 

a b c 

Jan 1287191 1155905 1494692 

Feb 864173 885766 1128330 

Mar 1302983 998645 1065723 

Apr 369957 366142 313087 

May 487805 440108 597072 

Jun 372162 309569 254346 

Jul 342407 276003 312556 

Aug 396376 346546 346187 

Sep 348069 403687 433923 

Oct 1198972 1189010 1274271 

Nov 915588 1288913 1219726 

Dec 1071672 908206 1168610 

Total 8957355 8568499 9608522 
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Table 7-5 gives a better description of where these costs come from by breaking each month 

and strategy down into  factors that are used to calculate the total cost. Strategy b) was the 

cheapest in terms of holding costs and unscheduled ordering costs, but the most expensive 

for component cost, lost generation and penalty costs. Strategy a) was the second most 

expensive in each area with the exception of penalty costs in which it was the cheapest, 

while strategy c) was least expensive in terms of component costs and lost generation, but 

the most expensive for unscheduled orders and holding costs.  

As illustrated in Figure 7-13, the cost of lost generation is the highest contribution to 

maintenance costs of all five factors in the simulation. To reduce this cost a spares strategy 

should reduce as much as possible the extended downtimes, in this case strategy c) does that 

best, but does so at the expense of high holding costs.      

 

Figure 7-13: Contribution to total cost of each strategy by the costs of holding, penalties, unscheduled 

ordering, components and lost generation 

 

In this example, strategy b) is the most economical. However these results are based only on 

a single year of simulation – were the model to be simulated over a longer period of time and 

were more monthly samples taken it may be that a) or c) would be the most economical. This 
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example also uses only one set of costs – if the holding costs were to fall for example, 

strategy c) may become the most economical. Lastly this example only examines a very 

limited range of spares strategies; it is likely that there is a more economical βS and βs than 1 

and 0.   

The following section will use a wider range of costs and examine more spares strategies. It 

will also use longer periods of simulated data from which to draw a more reliable 

conclusion.    
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Table 7-5: Break down of costs incurred for a 200 WT wind farm using maintenance strategies a), b) and c).  

Month Holding Costs per Strategy 

(£) 

Penalty Costs per Strategy 

(£) 

Unscheduled Ordering 

Costs per Strategy (£) 

Component Costs per Strategy 

(£) 

Lost Generation Costs per 

Strategy (£) 

a b c a b c a b c a b c a b c 

Jan 219000 133000 253800 0 125000 125000 162500 62500 187500 509814.95 425450.08 563401.52 395876.02 409955.01 364990.75 

Feb 168800 119600 207600 125000 125000 375000 150000 50000 187500 35286.774 229840.71 18894.357 385086.42 361325.08 339335.51 

Mar 224800 123000 238400 125000 125000 0 150000 75000 187500 198215.72 146024.08 87429.637 604967.14 529620.62 552393.02 

Apr 149000 99400 191600 0 0 0 22500 22500 32500 65277.709 96670.204 11449.542 133178.92 147571.64 77537.163 

May 168400 113600 201800 25000 25000 25000 35000 22500 47500 141123.11 156410.91 181300.35 118282.07 122597.3 141471.73 

Jun 168200 115400 182200 50000 50000 0 20000 25000 22500 88495.626 69268.27 12968.195 45466.326 49900.943 36677.322 

Jul 164200 108000 196600 0 0 0 20000 10000 35000 129764.37 104626.38 43604.777 28442.957 53376.361 37351.18 

Aug 162400 127800 194200 25000 0 25000 27500 15000 40000 136061.06 177206.21 48321.302 45414.544 26539.461 38665.771 

Sep 170600 140200 207200 0 0 25000 12500 15000 40000 73058.976 193879.94 78027.706 91909.598 54607.054 83695.521 

Oct 194600 137600 229000 125000 250000 0 137500 37500 237500 175133.25 234745.88 256087.82 566739.22 529164.26 551683.11 

Nov 209200 133600 235600 0 0 0 62500 87500 262500 106779.61 299536.33 83225.063 537108.84 768276.22 638400.45 

Dec 172000 133000 236000 125000 125000 125000 125000 62500 175000 120929.94 138131.88 42153.975 528742.01 449573.68 590456.5 

Total 2171200 1484200 2574000 600000 825000 700000 925000 485000 1455000 1779941 2271791 1426864 3481214 3502508 3452658 
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3. Results 

Throughout Chapter 6 the impact of wind speed dependent failure rates on WT performance 

have been analysed. This section aims to use this knowledge and apply it to the area of 

spares optimisation to reduce the cost of maintaining an offshore WT.  

The FINO wind speed time series, as discussed previously, originates from an offshore 

platform in the North Sea. As the previous chapters have shown that there is a clear 

difference in seasonal variation and strength of wind speed between Leuchars and FINO, this 

section will only examine the application of a spares optimisation model for the FINO 

model. Applying offshore constraints to the Leuchars model would be of no benefit because 

offshore sites experience greater wind speeds and generate much more electricity.  

Therefore using the theory explored in Chapter 7.1 and the model described in Chapter 7.2, 

this section will analyse multiple spares strategies and determine the total cost of 

implementing each one when applied to the FINO model.  

Secondly, the suitability of using a seasonal approach – such as in Chapter 7.2.5 – with S and 

s values that vary from month to month according to seasonal component failure rate, will be 

compared to a constant constant approach where S and s values remain constant through the 

year. In both cases the maximum and reorder levels have been calculated using the wind 

speed dependent failure rate FINO model. In the constant approach the calculated annual 

component failure rates in Table 6-2 in Chapter 6.1.1.1 are used in designing an appropriate 

strategy. However in the case of the seasonal approach, the knowledge which is gained in 

Chapter 6.1.2.1 by calculating component monthly failure rates is used to devise a strategy. 

The average cost per WT for the two different approaches, referred to as the seasonal and 

constant approaches, will be analysed for each the spare strategy.  
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A broad range of values for each parameter are used in this analysis because of the lack of 

operational knowledge currently available in the literature. The main point of this analysis 

therefore is to demonstrate the ability of the spares optimisation model to plan an economical 

strategy and to exhibit an application of wind speed dependent failure rates that have been 

used to calculate the S and s values in both the seasonal and constant approaches. When there 

is greater operational experience and better informed cost and downtime figures in the 

literature, the parameters of this model can be reset and more accurate analysis can be 

undertaken on a site by site basis.  
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3.1. Model Parameters 

The wind speed dependent failure rates generated by the FINO model in Chapter 6.1.1.1 are 

used to calculate the maximum and reorder levels (S, s) of each component, each month, for 

the various spares strategies using the same procedure demonstrated in Chapter 7.2.5.  

Two approaches to spares strategies are assessed that both use wind speed dependent failure 

rates, a seasonal option and a constant option. In the constant option, monthly failure rates 

are simply calculated by dividing the annual failure rate of each component by 12 – the 

levels therefore remain constant from month to month throughout the simulations. In the 

seasonal case, the component spares levels vary according to the component monthly failure 

rate calculate in Chapter 6.1.2.1. Figure 7-14 shows an example of these two differing 

approaches that use the strategy where factors βS and βs, are1 and 0.4 respectively.  

 

Figure 7-14: Seasonal spares strategy and constant spares strategy when βS and βs equal 1 and 0.4 

respectively 

 

Many factors influence the downtimes and costs of an offshore wind farm such as: the 
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farm is affected in a differently way, positively or negatively, for each variable. Due to this 

uncertainty and the significant knowledge gaps exist in the literature, there is not a typical set 

of downtimes and costs frequently used in the literature that can be applied to this model. 

Therefore three scenarios are simulated, a high cost, medium cost and low cost input 

scenario labelled HC, MC and LC respectively.  

The mechanism for simulating failures (through the use of wind speed dependent failure 

rates and MCMCS) remains the same for each scenario. The costs and downtimes used in 

each of these scenarios are shown in Table 7-6, Table 7-7 and Table 7-8. In the future, more 

reliable estimates of these values can be made and applied to this model when costs and 

downtimes are better understood.  

The MC scenario uses values that have been estimated from various sources of information 

in the literature and are judged to be reasonable costs and downtimes of an offshore wind 

farm. The HC scenario represents possible downtimes and costs for an offshore WT located 

at a site like Dogger Bank which is located very far from shore and in hostile sea conditions. 

The LC scenario shows the cost and downtime characteristics of an offshore site located near 

shore, such as a UK round 1 site.     

Table 7-6: Extended and repair downtimes for each input scenario 

Downtime Season 

Downtime Scenario 

HC MC LC 

𝑑𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑  (hours) Winter 480 240 120 

Summer 144 72 36 

𝑑𝑟𝑒𝑝𝑎𝑖𝑟   (hours) Winter 96 48 24 

Summer 24 12 6 
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Table 7-7: Penalty costs and unscheduled order costs for each input scenario 

Penalty and 

Reordering Cost 

Scenario 

Winter  Summer  

Penalty Cost (£) Unscheduled 

Order Cost (£) 

Penalty Cost (£) Unscheduled 

Order Cost (£) 

HC 250000 25000 50000 5000 

MC 125000 12500 25000 2500 

LC 62500 6250 12500 1250 

 

Table 7-8: Daily holding costs for each input scenario 

Holding Cost Scenario Cost per Component Day (£) 

HC 400 

MC 200 

LC 100 

 

3.1.1. Downtimes 

The values of downtimes 𝑑𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 and 𝑑𝑟𝑒𝑝𝑎𝑖𝑟 used in the model scenarios are shown in 

Table 7-6. The summer values in both cases are significantly less than the winter to reflect 

the difficulties caused by wind speed and sea state in the winter as previously discussed. The 

range of values used as downtimes have been estimated based on research carried out by 

Feuchtwang and Infield [7-21]. Feuchtwang and Infield specifically investigated how delays 

waiting for suitable weather windows affected WT downtime and how the wave height 

threshold of a vessel influences this. Using North Sea data, they found that for a failure that 

required a downtime of 1 day, the average delay in waiting for a suitable weather window in 

which to repair the WT would be 1 – 8 days [7-21]. This delay depended safety limit of the 

vessel; if it could operate in 2m significant wave heights it would be 1 day, but if it could 

only operate at 1m the delay would be 8 days.  

Additionally research was undertaken by Dowell to assess the waiting time required for 

access to a WT to preform minor maintenance on a generator in the North Sea [7-22]. Minor 

maintenance in this case required less than one day to carry out repairs and access using a 

crew transfer vessel (CTV) that typically has operational limits of between 1m to 2.5m 
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significant wave height [7-22]. The waiting time consisted only of delays due to constraints 

on safe sea states and wind speeds. Dowell found that for this minor repair to be carried out 

with waiting time of less than 10 hours, the probability in summer and winter was 

approximately 85% and 35% [7-22].  

As the waiting times in the spares optimisation model take into account delays caused by 

component and vessel availability, whereas Dowell and Feuchtwang and Infield do not, 

downtimes 𝑑𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 and 𝑑𝑟𝑒𝑝𝑎𝑖𝑟 were estimated using the results from both papers as a 

guide. As a result, 𝑑𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 in the MC scenario is roughly three times greater in the winter 

than in the summer to reflect the difference between summer and winter waiting time found 

by Dowell [7-22].  

3.1.2. Penalty and Unscheduled Order Costs 

The penalty costs for each scenario are shown in Table 7-7. The winter costs are 5 times 

higher than the summer costs to account for the increase in vessel cost, the reduced 

accessibility and therefore resultant increase in hire periods. The higher winter penalties are 

imposed for the purpose of ensuring that the spares strategy in the winter will reduce the 

potential risk of losing valuable generation while wind speed is high. The costs have been 

estimated from [7-1], [7-23], [7-24]. The reordering costs, described in Chapter 7.2.4, are 

10% of the cost of the penalty costs and are also shown in Table 7-7. 

The average cost of a jack up barge according to the website Rigzone, is £65,000 per day [7-

23]. However not every failure requires a jack up barge. When a downtime filter of 48 hours 

was applied to the FINO model, the failure rate of the whole system was 0.44 failures per 

WT year. This means that 23% of the failures that occur in the FINO model have downtimes 

greater than 48 hours – if these failures are assumed to require a crane the rest require a CTV 

vessel with an estimated day rate of £3,500 which consists of fuel costs and captain [7-25]. 

The weighted cost a vessel is therefore calculated to be £17645. In the MC scenario, winter 
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𝑑𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 is 10 days – assuming that a vessel is required for half of that period the total hire 

cost would be £88,225. As this cost does not include the cost of securing the vessel or further 

penalties imposed by the operator, the penalty price is rounded up to £125,000 in the winter. 

The summer cost is estimated to be approximately a fifth of the winter cost as only 1 day of 

the 𝑑𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 is assumed to require a vessel.  

3.1.3. Holding Costs 

Daily component holding costs were estimated assuming that the process of storing a 

component consisted of: 

 The cost of floor space within a warehouse 

 The cost of maintaining spare components  

 Daily staff costs for holding component 

 Cost of plant and holding of boats 

 Overheads  

The daily cost of floor space was calculated to be 45p/m
2
 [7-26]. The size of each component 

varies; some components such as blades are very large, while others like the control system 

are small. The floor space of a nacelle was taken as the average floor space per component. 

Using the nacelle dimensions described in the NREL reference offshore WT, the floor space 

occupied by a nacelle is taken to be 4m x 10m [7-27]. Assuming that a 2m space is required 

around the nacelle for plant and personnel, the occupied floor space is calculated to be 112 

m
2
. Applying the daily cost of 45p/m

2
, the daily cost equals £50.40.  

Staff costs were estimated assuming that on average three personnel are present at the 

storage facility throughout each day. According to employment websites a crane operator is 

paid approximately £17/hour, it is assumed that the hourly expense to the operator per 

employee at the storage facility is £20/hour after insurance, pensions and other expenses. 

This equals £1440 per day. Using a βS factor of 1, the mean S level of components stored at 
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the beginning of a typical month is 32, this number should theoretically drop to zero at the 

end of the month as failures occur and components are replaced. Therefore taking an average 

of 16 components stored at any given day, the price of a single component per day in 

personnel costs is therefore estimated to be £90.  

The weight of a nacelle is 82 tonne, the plant required to move this component would need 

to be capable of lifting 100 tonnes. A warehouse would very likely use a gantry crane; 

however the price of a 100 tonne gantry crane was unavailable. The daily hire price of a 

mobile 100 tonne crane is on average £834 according to the crane hire company Ainscough 

[7-28]. It is likely that a fixed gantry crane would be less expensive than a mobile crane, 

therefore a cost of £500 a day is assumed. Additionally smaller plant will be required for 

moving smaller components; for this a daily rate of £100 is assumed. Per component this 

equals £37.50.  

Although the daily hire rate of a CTV is included in the downtime costs (Chapter 7.3.1.1, 

page 276), the cost of holding the CTV’s and reserving them for use each day is included in 

the holding cost. These costs also include the personnel required to maintain the CTVs and 

the facilities needed to dock them.    

The total daily holding costs of floor space, personnel and plant per component day are 

therefore £177.90. These costs do not included warehouse overheads or the cost of 

maintaining the spare components or the holding cost of CTVs. The MC scenario therefore 

assumes the total cost of holding a component per day is £200.  

3.1.4. Maintenance Strategies 

For each scenario, the life cycle of a 200 WT wind farm will simulated repeatedly by the 

spares optimisation model using the same spares strategy. The output of the model will be 

the cost of operating the wind farm. Once the results converge for each scenario the model 

will then test another spares strategy that uses another set of βS and βs factors. This will 
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continue until all the possible spares strategies have been tested by the model. The βS and βs 

of the spares strategies tested by the model are shown in Table 7-9. For each spares strategy, 

a seasonal spares strategy will be used and also a constant spares strategy, as demonstrated in 

Figure 7-14. Theoretically there is no limit to the strategies the spares optimisation model 

can test, those used in Table 7-9 were selected to give a broad range of scenarios but not so 

comprehensive that the computation time of the simulations became impractical.  

In total 27 spare strategies are tested. This is done twice for the constant and seasonal 

strategies. Each strategy is then tested using each downtime and cost scenario. Therefore in 

total 162 sets of simulations are undertaken for every combination of spares strategy and 

downtime and cost scenario.   

Table 7-9: βS and βs factors for each spares strategy tested by the spares optimisation model 

Maintenance 

Strategies 
βS βs 

I 1 0 
II 1.2 0 

III 1.4 0 
IV 1.6 0 

V 1.8 0 

VI 2 0 
VII 1 0.4 

VIII 1.2 0.4 
IX 1.4 0.4 

X 1.6 0.4 

XI 1.8 0.4 
XII 2 0.4 

XIII 1 0.8 
XIV 1.2 0.8 

XV 1.4 0.8 
XVI 1.6 0.8 

XVII 1.8 0.8 

XVIII 2 0.8 
XIX 1.2 1.2 

XX 1.4 1.2 
XXI 1.6 1.2 

XXII 1.8 1.2 

XXIII 2 1.2 
XXIV 1.6 1.6 

XXV 1.8 1.6 
XXVI 2 1.6 

XXVII 2 2 
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3.2. FINO Model Cost Scenarios 

The seasonal spares approach produced the lowest corrective maintenance costs for two of 

the three scenarios modelled as illustrated in Figure 7-15. Table 7-10 shows that, the HC and 

MC scenarios both performed more economically when a seasonal component stocking 

approach was taken, opposed to maintaining a constant level of each component in the spares 

holding. For the LC scenario however, the constant spares approach was the most 

economical option.  

 

Figure 7-15: Monthly Corrective Maintenance Costs using constant and seasonal approach  

 

As described in Table 7-10, in the case of both the HC and the MC scenarios the optimum 

seasonal spares strategy to use, according to the simulated data, were βS and βs factors that 

equal 1 and 0.4 respectively. These factors mean that at the start of each month the spares 

levels are equal to the expected number of failures that will occur that month, calculated by 

the seasonal failure rate FINO model from Chapter 6.1.2.1. Once the spares level of a 

component drops to 40% of that expected value, an unscheduled order is made to return the 

component spares level to the number of expected failures for that month. The risk of 
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incurring a penalty cost is therefore reduced as an order is placed in advance of spares levels 

dropping to 0.      

Table 7-10: Summary of optimum strategies for each scenario 

Scenario Optimum 

Strategy (βS, 

βs) 

Corrective Maintenance 

Cost (£’s per WT year) 

(Constant–

Seasonal)/ 

Seasonal 

(%) 

Difference in Wind Farm 

Life Corrective 

Maintenance Cost  (£'s) Seasonal Constant 

HC (1, 0.4) 7.44E+04 7.86E+04 5.34 16.8E+06 

MC (1, 0.4) 4.18E+04 4.38E+04 4.52 8E+06 

LC (1.2, 0.8) 2.48E+04 2.44E+04 -1.20 -1.6E+06 

 

For the HC scenario, the difference in corrective maintenance costs using the same βS and βs 

factors, but taking a constant approach to spares levels, is 5.34%. For a 200 WT wind farm 

over 20 years, this results in a difference of roughly £16.8 million of expenditure just on 

corrective maintenance, as shown in Figure 7-16.  

 

Figure 7-16: Difference in wind farm life corrective maintenance cost between using the optimum strategy 

with a seasonal or constant approach  
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The mean monthly cost of corrective maintenance for HC scenario wind farm is shown in 

Figure 7-17. The highest cost throughout the year is due to lost generation. The lost 

generation is so high because the repair and extended downtimes for the HC scenario are 

such long periods of time, resulting in a lot of lost generation when a WT fails. As the model 

uses offshore wind CfD electricity costs, the impact of the lost generation is magnified. In 

the summer however, because of the reduction in extended and repair downtime and the 

lower wind speeds, the holding costs become the highest cost as the downtimes reduce 

because of the lower risk. The summer is the time of year the holding costs are at their 

lowest because of the reduced quantity of spare components held. But because those costs 

are not influenced in the model by the season they are the biggest contributor to the monthly 

corrective maintenance costs at that time of year.  

 

Figure 7-17: Breakdown of mean monthly wind farm corrective maintenance costs for HC scenario using 

optimum maintenance strategy and a seasonal component stocking approach  

 

In the MC scenario all the costs and downtimes reduce, but the component costs remain the 

same – they therefore become a more influential factor in the corrective maintenance costs as 
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shown in Figure 7-18. The other model variables remain the same proportionally as in Figure 

7-17 because the optimum strategy is the same, as shown in Table 7-10. The component 

costs are proportionally quite high in May, July, August and September due to the different S 

and s levels each month. In April and June component costs are lower, this is either because 

unscheduled orders are commonly made the previous months, or because the spares ordered 

at the start of the previous month did not deplete to the reorder level before the monthly 

scheduled order was made.  

 

Figure 7-18: Breakdown of mean monthly wind farm corrective maintenance costs for MC scenario using 

optimum maintenance strategy and a seasonal component stocking approach 

 

For the LC scenario the optimum strategy is to maintain a constant spares level and use βS 

and βs factors of 1.2 and 0.8 respectively. The change in strategy is illustrated in Figure 7-19, 

where the component costs are less variable each month as the S and s levels remain the 

same.  

Because a constant strategy is used, it should be expected that penalty costs would increase 

as a proportion of the total corrective maintenance costs, however as shown in Figure 7-20 
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this is not the case. The reason for this is due to the optimum strategy selected, as βS = 1.2, 

meaning that the maximum level S, is higher. This should mean that holding costs become an 

issue, but because the cost of holding a component in this scenario is so low, as a percentage 

of overall corrective maintenance cost for this strategy, it is approximately the same as the 

proportional costs of holding in the HC scenario.    

 
Figure 7-19: Breakdown of mean monthly wind farm corrective maintenance costs for LC scenario using 

optimum maintenance strategy and constant component stocking approach 

 

The impact of the penalty costs on the overall corrective maintenance cost decreases as the 

applied costs and downtimes are reduced from HC to LC. In the LC case the contribution is 

significantly lower than in the HC or MC scenario, this is because the strategy is to hold a 

higher amount of spares at the start of every month reducing the likelihood that a penalty 

will need to be issued because of stock levels reaching 0. The reason that penalties still occur 

despite reordering factors being 0.8 is because the level of spares required in the winter is 

underestimated because of the use of a constant strategy.  
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Figure 7-20: The percentage breakdown of total corrective maintenance costs for each scenario using their 

optimum spares strategy and component stocking approach  

 

The unscheduled costs cost more than the penalty costs in each scenario. In the HC and MC 

scenarios the optimum strategies are the same and so there is not a great deal of difference 

between the two. However the more cautious strategy for the LC scenario means that 

unscheduled orders are made more frequently because the spares levels fall below the 

reordering levels more often.  

As illustrated in Figure 7-19 the significance of the component cost increases as the other 

costs begin to fall. The effect of this increase reduces the impact of lost generation in the LC 

scenario compared to HC and MC. The reduction in downtime brings the contribution of lost 

generation to the overall corrective maintenance cost from 42% to 33%, as shown in Figure 

7-20.    

The results show that in the case of the HC scenario and MC scenario the selection of a 

seasonal spares approach is advantageous. However in the LC scenario, because the 

penalties and risk of lost generation is so much lower, it is more economical to maintain a 

constant strategy. These results were expected as the LC scenario represents onshore 
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operating conditions most closely and is therefore not affected in the same way by the 

environment. 

In the case of the HC scenario, which is the most extreme and may represent the costs faced 

at a location like Dogger Bank most accurately of the three, savings of 5.34% are calculated 

to be made by adopting a strategy based on a seasonal spares stocking approach. The 

difference between these two approaches, using the optimum strategy of βS and βs equalling 

1 and 0.4 respectively, is described in Figure 7-21. The cost that has the biggest impact on 

the seasonal approach being the most economical is the holding costs, that are higher in the 

constant approach because they store too many components during the summer that do not 

get used. The holding costs are also higher in the constant approach because the number of 

CTVs held in the summer is the same as that in the winter, despite fewer failures taking 

place. A more cost effective solution would be to reduce the CTVs in the summer and 

increase in the winter as the seasonal approach does.      

 

Figure 7-21: Comparison of wind farm costs for HC scenario using a seasonal and constant component 

stocking strategy where βS and βs equal 1 and 0.4 respectively 
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As previously discussed, experience in operating offshore wind farms is scarce and so these 

costs used to estimate downtime, holding cost, penalty cost, unscheduled cost and 

component costs are not typical of a single specific offshore wind farm. In fact, each 

offshore wind farm will face different costs depending on the location of their wind farm, the 

distance from their port that houses their spare components, the depth of their water and the 

sea state. The following chapter will explore how these differing costs affect the model by 

performing a sensitivity analysis. Then the effectiveness of the model and the suitability of 

this application for wins speed dependent failure rates will be discussed.  
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3.3. FINO Model Sensitivity Analysis  

In the previous section, the spares optimisation model found optimal spares strategies for 

three arbitrary cost scenarios. The scenarios used costs and parameters that were estimated 

from limited available data. Therefore the results shown in the previous section describe 

those specific scenarios which may not be reflective of any real offshore wind farm. The 

model results depend entirely on the parameters used. In the case of the LC scenario the 

constant approach was the most economical. It is likely that for offshore wind farms with 

different parameters to those used in this analysis, that a constant approach would also be the 

most sensible option.   

In this section the sensitivity of the FINO spares optimisation model to each of these 

estimated parameters will be assessed. The difference between using a seasonal and constant 

approach will be calculated while running the two optimum strategies calculated in the 

previous section. The following costs and parameters will be analysed: 

 Component costs 

 Penalty and unscheduled order costs 

 Holding costs 

 Extended and repair downtimes (𝑑𝑟𝑒𝑝𝑎𝑖𝑟 and 𝑑𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑) 

The base case from which the sensitivity analysis will be performed is the MC scenario 

described in 0. Each parameter will then be separately increased by 100% or reduced by 50% 

to evaluate how sensitive the model is to each of them. The advantage of this approach over 

the one taken in the previous section is that a more detailed analysis can be undertaken to 

investigate why the model calculates that one approach is better than another.  It will also 

show the parameters which are most important to the model and each strategy. 

In total there are 3 different values available to each parameter (-50%, MC and +100%). 

There are therefore 64 possible combinations of the four parameters with different values 
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that can be evaluated for each of the twenty seven strategies shown in Table 7-9. This would 

take an extremely long time to analyse computationally and would be of limited value.  

Therefore only two strategies will be assessed in the sensitivity analysis – they are the 

optimum strategy of the HC and MC scenario in the previous section where βS and βs were 

equal to 1 and 0.4 respectively and the optimum strategy for LC where they equal 1.2 and 

0.8 respectively. By varying each parameter only once at a time, 9 sets of simulations are 

carried out for each strategy. These consist of the MC case and 2 sets of simulations for each 

of the 5 parameters. 

The results of the sensitivity analysis are shown in Figure 7-22 and Table 7-11. The benefit 

of using the seasonal stocking approach when using the MC parameters and optimum 

strategy is 4.52%, as shown in Table 7-10. The holding costs, penalty and unscheduled costs, 

extended and repair downtimes and component costs are individually increased and decrease 

by 100% and 50% respectively. These are the same costs and downtimes modelled in the HC 

and LC scenarios previously, shown in Table 7-6, Table 7-7 and Table 7-8.  

The parameter this strategy is most sensitive to is the cost of penalties and unscheduled 

orders. When this increases by 100% the difference between using a seasonal stocking 

approach and a constant approach increases to 7.12%, as illustrated in Table 7-11. Therefore, 

if a wind farm with the characteristics of the MC scenario were to find that the costs of 

penalties and unscheduled orders increased, possibly due to an increase in jack-up vessel 

cost, there would still be a benefit in using spares factors of 1 and 0.4. However if the costs 

decrease the benefit of using the strategy and approach also decreases. In this case the spares 

optimisation model could be used to find the optimum strategy for these new parameters. 

 



Chapter 7. Spares Optimisation Using Wind Speed Dependent Failure Rates 

 

291 

 

 
Figure 7-22: Sensitivity analysis showing the benefit of taking a seasonal component stocking approach 

when using optimum HC and MC strategy (βS and βs equal 1 and 0.4) 

 

When the downtimes, holding costs and component costs increased and decreased by 100% 

and 50% respectively, the benefit of using the seasonal stocking approach decreases from the 

base case MC scenario. As shown in Table 7-11, of these parameters when the downtime is 

increased by 100% that it still remains beneficial to maintain the seasonal spares approach 

with the optimum MC and HC strategy. In this case the benefit is only 0.24%, which equates 

to approximately £100/WT year.  

Table 7-11: Sensitivity analysis of spares optimisation model using the optimum MC and HC strategy  

Parameter 

% Difference  

((Constant - Seasonal) / Seasonal) x 100 

- 50% MC + 100% 

Penalty Costs and Unscheduled 0.10 4.52 7.12 

Component Cost -0.18 4.52 -0.29 

Holding Cost -0.47 4.52 0.05 

Downtimes  0.15 4.52 0.24 

 

The same sensitivity analysis is undertaken using the LC optimum strategy, which was to use 
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calculated difference in corrective maintenance costs between using a seasonal approach and 

a constant approach is -0.39%. The best approach is therefore to maintain constant spares 

levels throughout the year. However when the sensitivity analysis is undertaken, the benefit 

of using the constant approach decreases in each case, as shown in Figure 7-23.  

 

Figure 7-23: Sensitivity analysis showing the benefit of taking a seasonal component stocking approach 

when using a strategy where βS and βs are equal 1.2 and 0.8 

 

As shown in Table 7-12, the switch to a seasonal stocking approach using this strategy 

becomes beneficial when the holding costs or the penalty and unscheduled order costs 

decrease and finally if the extended and repair downtimes increase by 100%.     

Table 7-12: Sensitivity analysis of spares optimisation model using a strategy where βS and βs are equal 1.2 

and 0.8 
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In the event that the parameters do increase or decrease by 100% or 50% respectively from 

the MC scenario values (shown in Table 7-6, Table 7-7 and Table 7-8), the spares 

optimisation model calculates that the following spares strategies and approaches shown in 

Table 7-13 would be the most economical options to be taken. In six of the eight cases a 

seasonal approach is the best option.  

Table 7-13: Optimum spares strategies and approaches for sensitivity analysis parameters   

Percentage Increase 
Approach 

(Seasonal or 

Stationary) 

Optimum 

Spares 

Strategy  

(βS, βs) 

Corrective 

Maintenance 

Cost (£’s per 

WT Year) 
Penalty and 

Unscheduled 

Order Cost 

Comp Costs Holding Cost 
𝑑𝑟𝑒𝑝𝑎𝑖𝑟  and 

𝑑𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑  

100% 0 0 0 Stationary 1.2, 0.4 49,478 

-50% 0 0 0 Seasonal 1.2, 0.8 38,166 

0 100% 0 0 Seasonal 1.2, 0.8 48,038 

0 -50% 0 0 Seasonal 1.2, 0.4 38,089 

0 0 100% 0 Stationary 1.0, 0.4 52,620 

0 0 -50% 0 Seasonal 1.4, 0.8 36,319 

0 0 0 100% Seasonal 1.2, 0.4 56,543 

0 0 0 -50% Seasonal 1.2, 0.4 34,640 

 

When the penalty and unscheduled order cost is increased and when the downtimes are 

increased, a constant approach using βS and βs factors of 1.2 and 0.4 is the best strategy. 

However as shown in Chapter 7.3.2, the most economical option when every parameter is 

increased by 100% is a seasonal spares stocking approach and a strategy of 1 and 0.4. The 

results shown in Table 7-13 therefore demonstrate that neither a seasonal or constant 

approach is the most economical when the costs or downtime parameters are increased.   
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3.4. Discussion 

The FINO model’s primary application, as shown in Chapter 6, was to calculate the 

component failure rates of a WT subjected to FINO wind speeds and calculate the impact of 

these failures on performance. The aim of the analysis undertaken in this chapter was to use 

the results of the FINO model in Chapter 6 and design an offshore wind farm spares 

optimisation model that could calculate corrective maintenance costs for a variety of 

offshore scenarios. Many different strategies were assessed, using a seasonaland constant 

spares approach.  The optimum strategy, whether constant or seasonal, was determined using 

the MCMCS wind speed dependent failure rate model, described in 0.  

The results in Table 7-10 show that in the HC and MC scenario there is a benefit in 

designing a spares strategy that takes into account the seasonality of component failure rates 

due to wind speed. For the LC scenario however the optimum strategy uses a constant 

approach. The results suggest that in some cases, substantial savings could be made to the 

corrective maintenance cost by taking a seasonal approach when designing the strategy as 

opposed to a constant approach. For the modelled wind farm of 200 WTs, the benefit of 

adopting a seasonal strategy is roughly £16.8 million in the HC scenario and £8 million in 

the MC scenario.   

However there are many issues with the spares optimisation model, many of which relate to 

the problems previously discussed in Chapter 6.1.3 relating to the MCMCS and wind speed 

dependent failure rate aspects of the model. The model also assumes that every failure that 

occurs requires a replacement, which in reality is not likely to be the case. The component 

failure rates calculated in Chapter 7.2.3 are based on this assumption that all corrective 

maintenance results in component replacement this assumption as it is unclear within the 

ORD whether components have been rehabilitations or replacements are made in the event 

of corrective maintenance. If component rehabilitations were considered, these costs would 

need to be calculated from the £15,000 corrective maintenance estimation made in Chapter 
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7.2.3 and the logistical costs of performing a repair off shore would also have to be 

estimated. Further issues would also need to be considered. Firstly, what would be the 

impact of rehabilitation on the failure rate of the component and how perfect or imperfect the 

repair would be? Secondly, if reliability was reduced after component rehabilitation, what 

would be the most cost effective corrective maintenance option for an offshore wind farm? 

The assumption that all failures result in replacement was therefore made to reduce the 

complexity of the model and the scope of this thesis.  

As discussed previously, the costs, downtimes and other parameters used in this analysis are 

estimates and approximations due to the lack of data available from operating offshore WTs. 

Unlike onshore WTs, for which maintenance is not generally problematic or risky, offshore 

maintenance is affected greatly by the location of the wind farm. As discussed previously, 

operational risks are also greater offshore due to the higher value of offshore wind energy, 

which is 63% greater offshore according to CfD, and the mean daily wind speed which 

provides a far more profitable resource. Any downtime experienced offshore has greater 

consequences due to the costs and logistics of maintenance and the greater potential loss for 

every hour the WT remains down.   

Because of this unpredictability, three scenarios were modelled. The HC and LC were 

extreme examples and it is likely that the majority of offshore wind farms would have costs 

somewhere in between their calculated range of £78,600 - £24,400 per WT year for 

corrective maintenance alone. However the extreme scenarios demonstrate that the model 

gives reasonable corrective maintenance cost estimations in either case.  

These estimates for each scenario are conservative however. The model uses the same wind 

speed dependent failure rates calculated using the ORD. An assumption is made that 

component failure rates remain constant for wind speeds greater than 13 m/s. This 

assumption is a reasonable one to make onshore as the mean wind speed is much lower, 
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however as shown in Chapter 4.2.3  the daily mean wind speed frequently rises above 13 m/s 

offshore. For some of the less reliable components, such as the control system and the yaw 

system, the failure rates increase until reaching the 13 m/s to 17 m/s range. There is nothing 

to suggest that they would not continue to rise beyond this point. However to calculate these 

failure rates, reliability data must become available for sites that are subjected to mean daily 

wind speeds above 17 m/s.  

Because of this lack of data, the model cannot be validated properly by comparing calculated 

corrective maintenance costs to those actually found on an operating offshore site. However, 

it was estimated by Rademakers and colleagues in 2009 that corrective maintenance offshore 

would be roughly 0.005 – 0.010 €/kWh [7-16].  

Using these costs for the FINO model, where as shown in Chapter 6.2.3.1 the total generated 

by the 2.3MW FINO WT was 10841.125 MWh/WT year, the corrective maintenance costs 

per WT year would equal €54,205 – €108,410 or roughly £43,500 – £87,000. Using the total 

generated by the 5MW FINO model, shown in Chapter 6.2.3.3, this cost increases to £51,000 

- £102,000 per WT year. The lower range of these estimates are reasonably close to the 

calculated corrective maintenance cost of the MC and HC scenarios of £41,800 and £74,400, 

shown in Table 7-10.   

In Chapter 7.3.3 a sensitivity analysis is undertaken for two of the strategies – the optimum 

HC and MC strategy and the optimum LC strategy (βS and βs equal 1, 0.4 and 1.2 and 0.8 

respectively). As each parameter value increases and decreases, as shown in Table 7-13, 

other strategies become the optimum options. This demonstrates that the model parameters 

are vital in calculating the optimum strategy and that two offshore wind farms will very 

likely have two different optimum strategies. 

The analysis only evaluates two approaches, constant and seasonal. It is possible that a 

hybrid of the two could be an optimum approach in some cases. Alternatively, rather than 
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ordering components on a monthly basis, it would be more economical if they were ordered 

more or less frequently. A more advanced model could explore these options in more detail.  
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4. Chapter 7 Summary 

The maintenance strategy of an offshore wind farm is extremely important to asset 

performance due to issues with access, component reliability, logistics and vessel costs. 

Chapter 7 uses the wind speed dependent failure rate MCMCS FINO model from Chapter 6 

to find the optimum corrective maintenance strategy for a 200 WT offshore wind farm 

subjected to FINO mean daily wind speeds. 

A periodic review inventory system with emergency replenishments is used to manage the 

spare component levels of the offshore wind farm. This system consists of a maximum 

spares level S and a reorder level s. WT failures are simulated using the FINO model and 

various spares strategies are tested using maximum and reorder factors βS and βs. These 

factors are multiplied by the expected number of failures to occur at the wind farm over the 

period of a month. These monthly failure rates are either calculated using the annual FINO 

model component failure rates calculated in Chapter 6.1.1.1 or the monthly FINO failure 

rates calculated in Chapter 6.1.2.1. In the formers’ case the S and s levels remain constant 

throughout the year, whereas in the latter’s case they vary from month to month and relate to 

the component failure rate calculated according to the mean daily wind speed.  

Basic offshore constraints are added to the spares optimisation model to simulate the logistic 

and access issues experienced offshore, these are described in Chapter 7.2.4. These 

constraints vary in the summer and the winter. Costs and downtimes are applied to the 

offshore constraints, detailed in Chapter 7.3.1.  

Three scenarios are modelled using a range of cost and downtime values. The MC scenario 

and HC scenario are both calculated to have an optimum strategy that uses a seasonal 

approach and βS and βs factors of 1 and 0.4 respectively. The benefit of using a seasonal 

approach over a constant approach in these cases equates to £16.8 million and £8 million 

over the lifetime of the wind farm. The LC scenario’s optimum strategy however uses higher 
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βS and βs factors of 1.2 and 0.8 respectively and a constant stock level approach which over 

the lifetime of the wind farm saves £1.6 million.  

From the sensitivity analysis in Chapter 7.3.3, it is clear that the model and the suitability of 

each spares strategy is very sensitive to the parameter costs and downtimes, as shown in 

Figure 7-22 and Figure 7-23. As risks at each offshore wind farm will be very different, 

optimum spares strategies will differ in each case. In some cases however there is an 

economic advantage in considering the seasonality of component failure rates when 

designing a spares strategy.    
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1. Defining the Relationship between Wind Speed and Component 

Reliability 

As described in detail in Chapter 5, WSD (Wind speed dependent) failure rates were 

calculated using reliability data from the two onshore wind farms and wind speed data from 

onsite met masts. The mean wind speed that occurred each day when a component failed was 

therefore determined.  

This combined dataset allowed the calculation of the following: 

 The probability of a component failing on a given day 

 The probability of a mean daily wind speed occurring when a component fails 

 The probability of a mean daily wind speed occurring 

Bayes Theorem was then used to calculate the probability of a failure to a component on a 

given day, given a mean daily wind speed. The component failure rate in this case is 

dependent on the mean daily wind speed.   

Using this approach meant that the relationship between mean wind speed and component 

failure rate could be plotted for the two onshore wind farm sites. This relationship was then 

extrapolated to other sites using MCMCS.  

Figure 8-1 shows the wind speed dependent failure rate of the whole system and the standard 

annual failure rate which is not WSD and was calculated using the ORD. At the higher wind 

speed ranges the WSD failure rate is significantly greater than the constant annual failure 

rate, while at the low wind speeds the WSD failure rate is less.  
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Figure 8-1: WSD failure rates and constant annual failure rate from the ORD 

 

For the two of the least reliable components, the control system and the yaw system, this 

relationship holds, as shown in Figure 5-16 and Figure 5-18. In the met mast data that was 

used to calibrate the model, the variability the wind speed in a typical day increased at higher 

mean daily wind speeds (as shown in Figure 8-2) – therefore the control system worked 

harder on days with higher mean wind speed which could have led to an increase in failures. 

The failure rate of the drive train increases up until the 9 m/s – 11 m/s wind speed range, as 

shown in Figure 5-18. The rated wind speed of the WT is 11.5 m/s – beyond this wind speed 

the failure rate decreases. This, as explained in Chapter 6.2.3.1, was expected as beyond 

rated the drive train maintains a constant torque.  

Despite the successes in modelling the WSD failure rates of the three least reliable 

components, very few of the more reliable components failed often enough during the 

recorded period for reliable WSD failure rates to be plotted. For example, there were only 12 

generator failures in the dataset. This is a major component, however because it failed so few 

times during the recorded period its WSD failure rate, as shown in Figure 8-3, appeared to 

show a peak failure rate at the low wind speed range 1 m/s – 3 m/s.  
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Figure 8-2: Relationship between mean daily wind speed and daily wind speed standard deviation  

 

The generator also was calculated to have a failure rate of 0 for wind speeds in the 13 m/s – 

17 m/s range, as was the rotor. Because the model assumes that the failure rate beyond 17 

m/s is the same as that calculated for the highest wind speed range this means that when the 

MCMCS model was run, the probability of a failure occurring on a day with a wind speed 13 

m/s or greater was 0. 

 

Figure 8-3: WSD failure rates of the main generator and rotor 
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This result was also the case for other components and meant that when the FINO model was 

run in Chapter 6.1.1.1, the failure rate of some components decreased. This was discussed in 

more depth in Chapter 6.1.2.1. To confirm whether these components do fail less frequently 

in high wind speeds, more reliability data is required, preferably from wind farms that 

operate at sites with high mean wind speeds. 

The model assumes that the wind speed measured on site by the met mast is also the wind 

speed experienced by the failed WT. Both sites cover very large areas and it is therefore not 

possible to guarantee that the mean daily site wind speed is also the mean daily wind speed 

of the failed WT. However the wind speed of the site is a reasonable metric to measure the 

site conditions. Had detailed SCADA been available for each WT over the recorded period, 

more detailed wind speeds could have been used in the analysis.  

However, even if more detailed wind speeds are gathered the model still relies on another 

assumption which is that any failure that occurs is directly linked to the mean daily wind 

speed on the day of failure. Failures in mechanical components are often the result of wear 

over a long period of time; therefore the origin of the failure is likely to have appeared some 

time before the component became unusable and failed.  

The operator monitors their SCADA data and uses advanced algorithms to detect abnormal 

readings and diagnose the location of the failure. The point where the readings go from 

normal to abnormal is assumed to be the point where the component has failed – however it 

is possible that in many cases the wear begins before that point and in this case a prior wind 

speed event may be responsible for the failure.  
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2. Industrial Applications 

2.1. Seasonal Component Failure Rates 

The importance of understanding how failure rates change seasonally was highlighted in 

Chapter 6.1.2, where Figure 6-7 shows how the offshore wave conditions change from 

winter to summer. For offshore WTs, the sea conditions in winter make the asset difficult to 

access safely and so any failure that occurs will cause logistical and economic problems.  

The component failure rates during each month, calculated by the FINO model, are shown in 

Table 8-1. According to the model the least reliable components fail more often in the winter 

than in the summer. However the issues with the lack of data for some components, 

considered in the previous section, are evident as some components have higher summer 

failure rates. The FINO model highlights this problem because it has such a high mean wind 

speed and therefore has days that reach above 13 m/s more regularly, where the calculated 

failure rate is 0. For components such as the generator and rotor, the failure rate in the winter 

decreased compared to the summer. 

Although these results are counter-intuitive, the components they concern have such low 

failure rates that their contribution to the overall model is quite small. However in terms of 

risk the rotor does make a difference to the model. If risk is calculated simply using Equation 

8-1, where the component cost is multiplied by the failure rate, the rotor is calculated to be 

the component that causes the fourth highest risk, as shown in Figure 8-4.    

𝑅𝑖𝑠𝑘 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 × 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 Equation 8-1 

 

If the rotor risk is reduced as was proposed in Chapter 7.2.3, the risk would reduce from the 

£2291 shown in Figure 8-4 to £183.   
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Table 8-1: FINO model monthly component failure rates  

Month 

Failure Rate (Failures per WT year) 

Blade 

Pitch 

System 

Control 

System 

Drive 

Train 

Emergenc

y System 

Hydraulic 

System 

Lifting 

System 

Main 

Generator 

Met 

Instrume-

nts 

Nacelle Rotor Tower 
Yaw 

System 

Jan 0.078 1.154 0.235 0.006 0.097 0.008 0.028 0.054 0.048 0.049 0.112 0.360 

Feb 0.063 0.917 0.224 0.007 0.083 0.009 0.024 0.065 0.040 0.054 0.097 0.285 

Mar 0.070 1.081 0.230 0.011 0.105 0.009 0.029 0.057 0.047 0.056 0.106 0.330 

Apr 0.059 0.793 0.202 0.012 0.085 0.011 0.030 0.076 0.025 0.056 0.091 0.238 

May 0.069 0.876 0.214 0.010 0.086 0.009 0.030 0.072 0.033 0.062 0.094 0.260 

Jun 0.066 0.657 0.195 0.018 0.076 0.013 0.031 0.087 0.019 0.053 0.080 0.200 

Jul 0.065 0.779 0.207 0.014 0.081 0.014 0.031 0.090 0.021 0.069 0.088 0.229 

Aug 0.067 0.781 0.210 0.013 0.077 0.014 0.030 0.080 0.023 0.064 0.089 0.227 

Sep 0.066 0.946 0.226 0.011 0.090 0.010 0.027 0.069 0.033 0.055 0.097 0.291 

Oct 0.073 1.037 0.235 0.008 0.094 0.010 0.030 0.066 0.037 0.059 0.107 0.315 

Nov 0.070 1.204 0.225 0.005 0.103 0.006 0.025 0.043 0.051 0.052 0.107 0.353 

Dec 0.067 1.109 0.235 0.008 0.099 0.006 0.029 0.043 0.046 0.050 0.102 0.342 
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Figure 8-4: Component risk  

 

The blade failure that occurred during the recorded period skews the component cost – this 

was discussed in more detail in Chapter 7.2.3. A larger dataset, which contained more rotor 

failures, would give a better reflection of the actual risk the rotor imposes. A better estimate 

of component cost would also be of benefit to the model as it is calculated according to 

downtime. 

When downtime filters were applied to the monthly failure rates it was found in Chapter 

6.1.2.2 that for the more severe failures (when the downtime filter was increased to 48 hours) 

the monthly calculated failure rates for the FINO model became more seasonal. This is 

shown in Figure 8-5, where the most seasonal component, when a downtime filter of 48 

hours was applied, was the yaw system. As discussed in Chapter 6.1.2.2, the failure rate of 

the yaw increases by 283% from June to November.  

Despite the WSD failure rate of the rotor equalling 0 for mean daily wind speeds greater than 

13 m/s (as shown in Figure 8-3), the probability of a failure occurring that causes a 
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downtime greater than 48 hours increases by 88%. However winter failure rates of the main 

generator, hydraulic system and meteorological instruments fall compared to the summer.  

 

Figure 8-5: Increase in component failure rate of 48 hour downtime filtered FINO model from June to 

November   

 

As discussed in Chapter 6.1.2.4, the component failure rates of the Leuchars model are not as 

great as the FINO model; however they do show similar seasonal variation as shown in 

Figure 8-5, when a downtime of 48 hours is also applied to the data. This also demonstrates 

that there is a possible application for the model to be used for onshore wind farm sites.    
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2.2. Energy Yield Assessment 

Chapter 5 and Chapter 6.1 established that in the case of the recorded reliability from the 

operator, failures occurred more often in the winter due to high wind speeds. Failures at this 

time of year were more likely to have caused significantly longer periods of downtime, as 

discussed in Chapter 6.1.2.  

Therefore when a failure occurs in the winter the energy lost is greater than in the summer as 

the downtime is longer and the potential energy lost is higher. Equally in the summer the 

downtimes are lower and so are the losses.  

Using traditional constant annual failure rates it is not possible to analyse the impact of more 

frequent winter failures on the energy yield produced by the WT. However by using the 

WSD failure rate model the impact of seasonal failure rates was assessed in Chapter 6.2.  

Figure 8-6 shows the energy lost from each of the models analysed in Chapter 6.2.3.1 – 

Chapter 6.2.3.3. A clear seasonal trend is show where more energy is lost in the winter than 

in the summer months. This is most significant in the FINO models.   

 

 

Figure 8-6: Power lost per WT year due to corrective maintenance for the FINO and Leuchars models 

using 2.3 MW and 5 MW WTs 
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However Figure 8-6 does not present the entire influence of the higher failure rates in the 

winter periods. Figure 8-7 shows how the monthly lost power as a percentage of total power 

generated also follows a seasonal trend. Had the failure rates not been WSD and were 

instead constant, lost power would still be highest in the winter as that is the period of time 

when the potential energy is the highest. Therefore losses would also be greatest at this time 

of year.  

 

Figure 8-7: Monthly power lost as a percentage of power generated due to corrective maintenance for the 

FINO and Leuchars models using 2.3 MW and 5 MW WTs 
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Table 8-2. In each case the constant failure rate approach overestimates the generated power 

by neglecting to account for the increased number of failures in winter. For a 200 WT wind 

farm, the difference between the two approaches would equal £5.4 million over its 20 year 

lifetime.  

Table 8-2: Summary of income difference between WSD and constant failure rate models used in energy 

yield assessment 

Model 

Per WT Year 

WSD Failure Rates Constant failure Rates Income 

Difference 

Between 

Constant and 

WSD (£) 

Power 

Generated 

(MWh) 

Total Power 

Lost (MWh) 

Power 

Generated 

(MWh) 

Total Power 

Lost (MWh) 

Leuchars 2.3 MW 5388 42 5394 36 517 

FINO 2.3 MW 10841 135 10850 126 829 

FINO 5 MW 12697 157 12712 142 1341 

 

Had the WSD failure rates not been used at all and instead the failure rates from Site A and 

Site B (shown in Chapter 4.1.4) were used to estimate the energy yield, the difference 

between that and the WSD models are shown in Table 8-3. In the FINO 5 MW offshore case 

the difference is £12714 per WT year. This figure is conservative as it does not account for 

offshore access, logistical issues or preventative maintenance that would further reduce the 

availability of the WT.  

Table 8-3: Summary of income difference between WSD failure rate models and ORD failure rate model 

Model 

Per WT Year 

ORD Failure Rates 

Income Difference between ORD 

Failure Rate Models and WSD 

Failure Rate Models 

 (£) 

Power Generated 

(MWh) 

Total Power Lost 

(MWh) 

Onshore Rate 

(£90/MWh) 

Offshore Rate 

(£150/MWh) 

Leuchars 2.3 MW 5400 30 1059 1765 

FINO 2.3 MW 10915 61 6638 11063 

FINO 5 MW 12782 72 7628 12714 
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Over a 20 year lifetime the failure rates from the ORD would overestimate the yield by 

£254k. For the FINO 2.3 MW model the same difference, but using onshore electricity rates, 

would be £133k.  

The electricity rate in the case of all the analysis undertaken was assumed to remain constant 

throughout the year, when in reality the price increases in the winter (when demand is 

highest) and decreases in the summer. Were these fluctuations accounted for in the model, 

the differences between the WSD and constant models would be even greater.  

The model therefore demonstrated that – were the relationship between wind speed and 

component failure rates calculated in Chapter 4 to be representative of typical WT behaviour 

– energy yield is overestimated due to a higher probability of failures occurring in winter. 

This overestimation is greatest for sites that experience high mean annual wind speeds. In the 

case of an offshore site, failures will occur at periods when the wind speed is highest and the 

access is therefore lowest.   
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2.3. Spares Optimisation 

The impact of the offshore environment on corrective maintenance cost was assessed in 

Chapter 7. The model calculated that the cost of corrective maintenance for a 2.3 MW WT, 

subjected to FINO wind speeds, would be substantially higher than that calculated for a 2.3 

MW WT subjected to typical onshore wind speeds, (see Chapter 7.3.2). This is shown in 

Figure 8-8.  

 

Figure 8-8: Cost of corrective maintenance for a 2.3 MW WT when subjected to typical onshore and 

offshore wind speeds 

 

The reason for this increase was due to a combination of the seasonal failure rates calculated 

by the FINO model and the cost of offshore logistics that result from failures that occur more 

frequently in the winter due to high wind speeds.  

The difference in calculated corrective maintenance cost between a FINO model where 

failures are generated using the wind speed and therefore WSD failure rates and a second 

model that uses traditional annual failure rates generated randomly is shown in Figure 8-9. 
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each model (shown in Chapter 7.2.4), but the probability of failure in the constant models 

case does not change according to the wind speed. Figure 8-9 therefore shows that even if 

the correct annual component failure rates can be calculated for an offshore site, as in the 

case of the constant failure rate model, the O&M costs are underestimated compared to the 

WSD FINO model. The difference between the WSD and constant failure rate models is 

roughly 9% for each of the cost scenarios. In the HC case this equals £23 million over the 

lifetime of a 200 WT wind farm.    

 

Figure 8-9: Corrective maintenance cost for FINO model when constant failure rates and WSD failure 

rates are used in model 

 

The influence of the wind speed on preventative maintenance optimisation is not explored in 
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advance for the summer and vessels would also very likely be hired if they are believed to be 

required. Because preventative maintenance can be planned in advance, the costs of 

components and vessels are unlikely to be as high as that of the corrective maintenance. The 

lost energy as a result of the downtime will also be far less due to the low wind speeds. 

Therefore the estimation made by Rademakers that preventative maintenance will be roughly 

60% of the cost of corrective maintenance discussed in Chapter 7.2.3 may give a good 

reflection of the costs.  
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3. Appraisal of Results 

The main aim of this thesis was to model the impact of wind speed on WT component failure 

rates and gain a better understanding of possible applications of this knowledge and therefore 

its value. As data was limited, the relationship between some components and wind speed is 

still unknown. However in the case of the least reliable components (the control system, yaw 

system and drive train) it is clear that at periods of high wind speed the probability of failure 

is greater.  

The reliability dataset that was used in all the analysis (the ORD) comes from two Scottish 

onshore wind farms and contains roughly 400 WT years of reliability data. The sites are 

located within 30 miles of each other and are therefore subjected to very similar climates. 

The model of WT used at each site is the same and they are roughly the same age. As a result 

it could be argued that the results in this thesis are only really applicable to wind farms that 

operate using 2.3 MW WTs in the central belt of Scotland and are in the useful life period of 

their lives. However as different WT models, sited in different countries, have similar 

reliability attributes as the WTs used in this analysis, it could also be argued that these results 

may give a good reflection of how typical WTs perform.  

Bayes Theorem was used to plot how wind speed impacted component failure rates. This 

was a very simple process which required the mean daily wind speed to be known when a 

failure occurred. It relied on the assumption that the wind speed recorded by the onsite met 

masts were the same as those experienced by the failed WT. Both sites are relatively large 

and at some periods were only served by one available met mast. The wind speeds 

experienced by the met masts were unlikely to be the same as those experienced 

instantaneously by the failed WTs, however because the wind speeds were averaged over a 

day this value is likely to be more indicative of conditions experienced across the whole site 

at that time. This approach also assumes that the wind speed experienced on the day of 
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failure was the cause of the failure, when it may be that conditions at some day in the past 

may have caused deterioration to start only for the failure to occur days later. In many cases 

failures are likely to have begun before being spotted by the operator or by any algorithm 

using the SCADA data. In the future there may be better algorithms for detecting the very 

beginning of deterioration and this model could then be modified to use this more accurate 

data.  

The failure rates calculated by using Bayes Theorem were then used in MCMCS to produce 

more data with which to analyse. This data however was produced using limited input wind 

speed data. In the case of the FINO input wind speed data, 6 years of data was available 

which was repeated to create 20 year wind speed datasets. Despite these issues the model 

produced outputs that compared well to real data and allowed conclusions to be drawn that 

were very similar to those made by other authors in this area.   

The model used in this analysis uses limited data in a simple way that involves established 

methods used by other authors who have also carried out research in this area. The model 

can easily be adapted to accommodate additional data from other wind farms that use 

different models of WTs. The costs used in the analysis are conservative and in Chapter 7 

covered a wide range of scenarios which are applicable to different offshore wind farm sites 

that will operate under different conditions. The failure rate of components beyond 17 m/s 

are also conservatively assumed to be the same as those at 13 m/s, rather than extrapolating 

the failure rates. The results from the FINO model therefore suggest a reliability best case 

scenario.      

The analysis performed for offshore wind farms uses onshore data and offshore constraints 

estimated from the data. Each offshore wind farm will experience different operations 

problems depending on their location from shore, their depth of water and distance to nearest 

port facility. This thesis outlines a model that can be adapted by those with better offshore 
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operational data and experience to determine the impact of wind speeds on offshore WT 

operation.  

It can also be used by onshore operators who want to perform more accurate onshore yield 

assessments that account for the impact of frequent winter failures. Were this model to be 

adopted by a developer it could be used to examine how different WT models would perform 

on a selected site and the time of year certain components would be most likely to fail.  
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4. Further Work 

Work should be carried out to gain a better understanding of exactly why certain components 

fail at high wind speeds from a physical point of view. Although hypothesis are raised for the 

control system, yaw system and drive train more work should be undertaken to prevent these 

failures from occurring. In the case of the control system it may be economical to build in 

system redundancies, particularly for offshore WTs.  

During this research it became apparent that some components were removed from WTs 

once they failed and were then refurbished and used as spare components in the event that a 

failure occurred once again. The impact of this strategy is not properly modelled in this 

thesis as it was assumed that when a WT was repaired, the component failure rates were the 

same regardless of whether the repaired component was refurbished or a replacement. The 

failure rates were calculated from the whole dataset, which included a mixture of 

replacements and refurbishments. However it is not clear what strategy would be used by 

operators of offshore wind farms. If it could be discovered what components in the ORD 

were replacements or refurbishments, WSD failure rates could be calculated and analysis 

could be undertaken to determine what the best spare component strategy could be.  

This model could be used to examine the implications of using direct drive WTs over geared 

WTs. From the results, it does appear that geared drive trains may suffer more failures when 

subjected to offshore wind speed conditions (see Chapter 6.1.1.1). How direct drive WTs 

perform however is unknown. The recent shift from manufacturers such as Siemens and 

Alstom to direct drive may be as a result of the increased gearbox failures due to high wind 

speeds and frequent variation between above and below rated operational strategies. 

The impact of turbulence and wind shear is likely to directly affect WT reliability. 

Unfortunately this could not be measured accurately for each WT due to there only being 

two met masts located on each site. The value calculated by the met masts was not used in 
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the analysis (similarly to using the mean daily wind speed) because the impact of the site 

topography at each WT would not be accounted for and it was decided this was extremely 

important. If more wind speed data was available for each WT analysis should be performed 

to determine the impact of wind shear and turbulence on reliability. This may be particularly 

important offshore where the rotors are substantially larger and where there may be a 

considerable difference in wind speed from the lowest point of the swept area to the top. 

Lastly, this model uses data from WTs that operated in the useful life period of their 

operational life. The model therefore does not consider the effects of aging or burn in. The 

reliability data used in this analysis should be updated to include the most recent year’s data 

– Site B may be starting to suffer from wear out as it will soon be entering its tenth year of 

operation. With the effects of aging accounted for, better economic lifetime performance 

assessments can be made, using this model, for potential wind farm sites.   
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Appendix I – Convergence 

Criterion  

The simulations carried out in this thesis were done so using Monte Carlo simulation (MCS). 

When using MCS it is important to set a stopping rule for the simulation and this is done so 

by setting a convergence criterion.  

The simulations in this thesis were carried out in sets of 4000 WT years. This consisted of 

the lifetime (20 years) of a 200 WT wind farm. After each set of simulations, the results were 

calculated before the next set began. This process was programmed to continue until the 

simulation met the convergence criteria after which the simulation stopped.  

Convergence was reached if the mean WT availability after 5 sets of simulations remained 

the same, or was within 0.001% of each other. An example of a simulation meeting this 

criterion is show in Figure I-1. In this example the MCS stopped after 64 sets of simulations 

which equated to 256000 WT years of simulated data.
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Appendix II – Component 

Wind Speed Dependent 

Failure Rates 

The following shows WSD failure rate plots of each WT component with no downtime filter 

applied.     

 

Figure II-1: Blade Pitch System WSD failure rate plot 
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Figure II-2: Control System WSD failure rate plot 

 

Figure II-3: Drive Train WSD failure rate plot 

 

Figure II-4: Emergency System WSD failure rate plot 
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Figure II-5: Hydraulic System WSD failure rate plot 

 

Figure II-6: Lifting System WSD failure rate plot 

 

Figure II-7: Generator WSD failure rate plot 
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Figure II-8: Meteorological Instruments WSD failure rate plot 

 

Figure II-9: Nacelle WSD failure rate plot 

 

Figure II-10: Rotor WSD failure rate plot 
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Figure II-11: Tower WSD failure rate plot 

 

Figure II-12: Yaw System WSD failure rate plot 
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