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Abstract

In this thesis, we develop a number of theoretical approaches that can be used to

investigate the nucleation and growth of islands in submonolayer deposition. In

particular, we consider initially a rate-equation approach in which we propose a

system of differential equations as a mean-field model of the submonolayer depo-

sition of monomers onto a surface. A key feature of these equations is that they

depend explicitly on a parameter known as the critical island size. We use rigorous

and novel mathematical techniques to obtain results on the asymptotic behaviour

of the point island size distribution.

A fragmentation theory approach is also used in a one-dimensional model to

obtain information on the asymptotic behaviour of the distribution of gaps be-

tween islands, the latter being represented by points on a line. This then leads to

corresponding results for the capture zone distribution (CZD) associated with the

islands. The CZD asymptotic forms that we obtain will be seen to differ from those

of the Generalised Wigner Surmise (GWS) which has recently been proposed for

island nucleation and growth models. The results predicted by our fragmentation

approach and by the GWS are compared to kinetic Monte Carlo simulation data,

and although this highlights both strengths and deficiencies in each approach, it

also provides evidence that the fragmentation approach is more satisfactory than

the GWS.
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We conclude by presenting a model for the nucleation of point islands in one

dimension that leads to distributional fixed point equations. This approach de-

velops a new retrospective view of how the inter-island gaps and capture zones

have developed from the fragmentation of larger entities. Solutions of these equa-

tions are compared to the simulation data, and to theoretical models based on

more traditional fragmentation theory approaches. These comparisons confirm

the competitive performance of the distributional fixed point equations.
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Chapter 1

Introduction

Coagulation and fragmentation processes are ubiquitous in nature and can often

be found to lie at the heart of technological processes. Here by coagulation we

mean the aggregation of smaller units of matter (which we call particles below) to

create larger units. These units of matter can be objects as different as polymer

molecules, clay particles, red blood cells or planetoids. Fragmentation processes

are processes by which particles fall apart into smaller units. Though the main

topic of this thesis is submonolayer deposition and growth, to be discussed in

detail later, we start by presenting a number of examples from other areas where

coagulation and fragmentation processes are important.

In astrophysics, the aggregation of dust particles is a common process in a

variety of settings, such as the formation of protoplanetary disks. A protoplanetary

disk is a rotating circumstellar disk of dense gas surrounding a young, newly formed

star or a T Tauri star; it is the initial process in planet formation. The aggregation

of dust particles can influence the appearance and evolution of a protoplanetary

disk, and the subsequent planet [41, 88]. The coagulation-fragmentation processes

were considered previously in this literature by Barrow [9].

1
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In medicine, blood clotting provides an excellent example of coagulation-fragmentation

dynamics. Red blood cells aggregate to form long, cylindrical shaped objects called

rouleaux. A variety of diseases can cause strong adhesion between red blood cells

which leads to blood vessel obstruction. For a model of the early stages of rouleaux

formation, see [69].

Colloids are mixtures in which (colloidal) particles of one substance are dis-

persed in another. Colloidal particles are larger than those present in solutions

but still invisible to the naked eye. Colloids exist in a number of forms, such as

foams (whipped cream), emulsions (mayonnaise, milk) and aerosols, which will be

described later. Processes such as the curdling of milk fall within the coagulation-

fragmentation framework.

An aerosol is a suspension of fine solid particles, liquid droplets in a gas, or a

combination of these, such as smoke, air pollution and smog [28, 34]. Understand-

ing coagulation and fragmentation of soot particles under different conditions, is

important in air pollution control; flame aerosol reactors are an emergent technol-

ogy for the synthesis of nanoparticles [63].

In polymer science, processes of polymerisation such as step- and chain-growth

polymerisation are clearly coagulation processes. Polymer chain breakage due to

high shear mechanical action, chemical attack or radiation-induced chain scission

[7] are examples of fragmentation in this industrially critical context.

In molecular biology, a molecule consisting of four key elements – carbon, hy-

drogen, oxygen and nitrogen – is known as an amino acid. Amino acids polyermise

into polypeptides; polypeptides also polymerise into protein molecules (or simply

proteins). Proteins consist of polymers built from a series of up to twenty different

kinds of amino acids [58]. A protein is an example of a macromolecule (a large

molecule). Other examples are deoxyribonucleic acid (DNA) and ribonucleic acid
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(RNA). The polymerisation of proteins is a coagulation process and the method

used to treat this polymerisation is similar to those for polymer science as discussed

above.

Molecular beam epitaxy (MBE) is a process for growing thin films, which

arise in a variety of applications such as optical coatings, corrosion protection,

semiconductor devices and the self-assembly of nanostructures [5]. As this thesis

deals with modelling and simulation of early stages of MBE, we will now discuss

it in detail.

1.1 Molecular Beam Epitaxy

Epitaxy denotes the method of depositing a crystalline film on a crystalline sub-

strate; such a deposited film is called an epitaxial film. If a film is deposited on

a substrate of the same composition, the process is called homoepitaxy; other-

wise it is called heteroepitaxy. MBE uses beams of atoms (or molecules) under

ultra-high vacuum conditions. The reason for such conditions is to minimise the

damage from the uncontrollable deposition of impurities such as H2 and CO2 [8].

Experimental techniques have been used to obtain data on the dynamics of

MBE. Diffraction methods and direct imaging methods are the two main experi-

mental techniques. The former involves the use of X-ray reflectivity and neutron

scattering [73, 85]. Scanning tunnelling microscopy (STM) is the most commonly

used direct imaging method, along with atomic force microscopy, scanning elec-

tron microscopy and transmission electron microscopy. In order to study epitaxial

growth down to the atomic scale, STM snapshot images of epitaxial growth are

taken at room temperature [80]. This provides the possibility of understanding

growth processes. Despite the fact that STM has the ability to provide a res-
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olution picture of a substrate at atomic scale, the scanning time is long, which

leads to a limitation on the size of possible experimental systems. Note that the

scanning time mainly means that we cannot directly view a nucleation process,

and in general we can only observe the statistics of islands following nucleation.

Therefore, we are concerned with the statistical consequences of various possible

nucleation scenarios, and how these compare to experimental observations.

The nucleation and growth processes that characterise the growth of thin

films, involve deposition of atoms on the surface, surface diffusion, and re-

versible chemical binding to other atoms and/or to the surface [78].

The first stage of MBE, when atoms or monomers are deposited onto a clean

substrate, is called submonolayer deposition. It is of the utmost importance

in MBE as the morphology and properties of the resulting multilayer film depend

on the submonolayer structures. To describe submonolayer growth we will need

the following concepts. We will call any cluster of monomers an island. A stable

island is one from which no monomers can dissociate. If the smallest stable island

contains i+ 1 monomers, the number i is the critical island size. Coverage, θ,

is the percentage of substrate sites with monomers or islands on them.

The initial stage of MBE usually involves competition between nucleation

and growth of islands due to monomer deposition, and diffusion of unattached

monomers (adatoms). A minimal microscopic picture of submonolayer depo-

sition may be described as follows [33]: monomers are deposited randomly with

deposition rate F (in units of monolayers per unit time) onto a substrate surface.

Isolated monomers diffuse along empty sites, hopping with Arrhenius rate

Dr = ve−Ed/(kbT ).

Here, kb is Boltzmann’s constant and T is the substrate temperature. The term
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Ed is the activation barrier for diffusion and v is the pre-exponential factor. In

the case of MBE, v is also known as the vibration frequency for hopping. D is

subsequently the diffusion rate and so we have

D =
Dre

2

l
,

where l is the lattice connectivity (2 in one-dimension, 4 in two-dimensions and 6

in three-dimensions) and e is the hop length (lattice spacing).

New (immobile) islands are formed by aggregation of at least i + 1 diffusing

monomers at a site, and growth of existing islands occurs by capturing monomers.

To obtain a more realistic model [33] one may also include in this picture

• dynamics of (sub-stable) islands of size i or less;

• island mobility;

• direct impingement, that is, dynamics of monomers deposited on top of is-

lands.

The monomer diffusion process can be described by a random walk on the

substrate lattice with rate D. The dynamics of the process depend on the ratio

R = D/F . The parameters θ and R together with the critical island size i and

the temperature T play a crucial rôle in understanding the variation of island size

and density.

Typically, it is found that for a fixed coverage θ, as R increases, the distance

between the islands also increases. Similarly, for a fixed F , as coverage increases the

island density also increases. In Figure 1.1, snapshots show in the two-dimensional

case the growth of circular islands as the coverage increases; the region surrounding

each island will be discussed in Subsection 1.3.4.
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Coverage = 5% Coverage = 10%

Coverage = 15% Coverage = 20%

Figure 1.1: The coverage θ = 5%, 10%, 15% and 20% obtained by data from
Monte Carlo simulations via MATLAB.

At high temperatures, monomers can re-evaporate, a process also known as

desorption. The critical island size i is dependent on temperature, with i in-

creasing as temperature increases. In this thesis, we assume kbT < Ea where Ea

is the adsorption energy. Then kbT < Ed < Ea allows free monomer diffusion

at reasonable rates. Note that if a monomer is attached to a stable island, it

is bound there by Ei, say. So its barrier to diffusing away from the island is at

least Ei + Ed (it could, in principle, be larger). Therefore we might also say that
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kbT ≪ Ei for irreversible aggregation, in which the desorption process may be

taken to be negligible during the stages of nucleation and growth of islands. Under

such an assumption, in terms of F the coverage θ is given by θ = Ft, where t is

the deposition time [8, 12]. In terms of coverage, there are four distinct regimes,

namely

1. Low coverage (L): at early times, the coverage and typical island size are both

small. During the deposition process in this regime, the monomer density

is much larger than the island density. There is a linear increase in the

monomer density; island density is increasing due to the nucleation of new

islands.

2. Intermediate coverage (I): the density of islands becomes comparable with

the monomer density. The monomer density decreases as the island density

increases due to significant nucleation of new islands.

3. Aggregation (A): here the island density increases slowly, and the monomer

density decreases more rapidly – the fate of a monomer is much more likely

to be aggregation into an island than nucleation of a new island.

4. Percolation or Coalescence (C): the island density decreases as islands co-

alesce. This causes the creation of a lattice-spanning cluster (percolation).

Eventually second-layer growth occurs.

If we assume that either islands are mobile or that detachment of monomers

is possible for an island of any size, then there are two different types of processes

that can cause a reduction in the number of islands (known as coarsening) in the

percolation regime : Ostwald and Smoluchowski ripening. Ostwald ripening is

a phenomenon in which small clusters dissolve and redeposit their monomers into
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larger islands. Smoluchowski ripening occurs when islands migrate until they

collide and coalesce with other islands.

From now on, we focus only on the submonolayer deposition stage: it is vital

to understand how the processes of deposition and diffusion affect the shape of

islands and their size and spatial distributions, since the islands may be seen as

the building blocks upon which the eventual film morphology depends.

1.2 The Need for Mathematical and Computa-

tional Modelling

From the above discussion, it should be clear that understanding submonolayer

deposition dynamics is crucial if we want to be able to predict and control epitaxial

film morphology. More precisely, given a system with parameters θ, R, T and i,

an understanding is required of the following topics:

1. dependence of the island size distribution on the parameters of the system,

in particular on the critical island size i;

2. island and monomer density evolution during the deposition process;

3. evolving island morphology;

4. dependence of the dynamics on system size.

Experimentally, the important parameters for a given combination of substrate

and deposited material are deposition rate F , temperature T and time t. In terms

of a simplified model these translate to the ratio R = D/F , coverage θ and i.

The critical island size i will depend on both T and F ; the rate at which islands

can dissociate depends on the bonding energy, Ei, of the monomer to the island.
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For stable islands this rate will be much lower than that at which new monomers

impinge thus depending on F . In this thesis, these material aspects will not be

considered in any further detail. Instead, we focus on the impact of the model

parameters R, θ and i on the resultant statistics.

As we briefly noted above, experimental techniques (in addition to being expen-

sive) are time-consuming and limited by experimental system size. Hence a need

has long been felt for a theoretical and computational assault on this industrially

important problem.

It has been found that kinetic Monte Carlo (MC) simulations are an invaluable

way of generating numerical data that compare well with experimental data [15,

53]. This technique for the stages of nucleation and growth of islands will be

discussed in detail in Chapter 6. For now it suffices to say that these simulations

can yield realistic statistics for the nucleation and growth stages. However, not

only are MC simulations restricted in the size of the system we can simulate by

memory and execution time limitations of available computers, but it is also true

that no simulations can by themselves explain how the growth might depend on

deposition rate and/or temperature; only a theoretical analysis can do that. On the

other hand, MC simulations provide a falsification framework for any theoretical

work, since a theory’s predictions can always be checked against the results of a

MC simulation. This is the philosophy behind the present thesis.

1.3 Modelling Methodology

1.3.1 The Goal of Modelling

A considerable effort has been expended in trying to develop theories of nucleation

and growth processes during submonolayer deposition. The goal is to provide a
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comprehensive theory for the island size distribution (ISD). This is an impor-

tant part of a more general aim of understanding and perhaps manipulating the

formation of islands during the nucleation and growth stages. Despite the fact

that the simple process of island formation during such stages has been exten-

sively studied, the development of a formulation of a theory that would predict

ISD consistent with experiments and computer simulations remains an important

challenge.

Earliest attempts to compute the ISD have been in terms of rate equations

which were developed in the 1960s; see [78] and the references therein. This ap-

proach was popular until the 1990s, when kinetic MC simulations were introduced.

The comparison of results obtained from both approaches shows that rate equa-

tions fail to reproduce the ISD accurately despite the fact that average behaviour

of densities, such as total island density (the sum of all islands), obtained by rate

equations have been confirmed by MC simulations. Reasons for this failure will be

discussed later in this section. This discrepancy prompts the challenge of finding

an alternative modelling framework that allows one to predict experimentally and

numerically obtained ISD.

1.3.2 Rate Equations and the Island Size Distribution

Rate equations often involve systems of ordinary differential equations (ODEs), or

alternatively integro-differential equations. Much of the work in the present thesis

is a contribution to this area of research.

We start by introducing a general discrete framework to describe the time

evolution of clusters that takes into account binary coagulation and multiple frag-

mentation. This takes the form [13, 24, 83, 86]
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dcj(t)

dt
=

1

2

j−1∑

k=1

σk,j−kck(t)cj−k(t) −
∞∑

k=1

σj,kcj(t)ck(t)

− ajcj(t) +
∞∑

k=j+1

akbj,kck(t), j ≥ 1, (1.1)

where the first sum is interpreted as zero when j = 1. In (1.1), for each j ∈ Z
+

and t ≥ 0, cj(t) is the density of clusters of size j at time t. In many cases, a

cluster of size j will be regarded as consisting of j identical atoms or monomers.

The coagulation coefficients σj,k = σk,j represent the rate at which a cluster of

size j joins with a cluster of size k to form a cluster of size j + k. The terms aj

and bj,k are the net rate of break-up of a cluster of size j and the average number

of clusters of size k created upon the break-up of a cluster of size j, respectively.

Note that a1 = 0.

Thus, the first term of the right-hand side of (1.1) describes the creation of

clusters of size j by coagulation of clusters of sizes k and j − k. The factor 1/2 is

included since the first sum includes both a cluster of size j − k coalescing with

one of size k and vice versa. The second term corresponds to the depletion of

clusters of size j due to their coalescence with other clusters. The third term is

the rate at which clusters of size j vanish by fragmenting into clusters of smaller

sizes. Finally, the fourth term corresponds to the rate at which the pool of clusters

of size j is replenished by fragmentation of clusters of size k > j. It is also possible

to consider a model that accounts for multiple coagulation, in which clusters may

also be formed by collisions of more than two monomers. Such phenomena occur

in ballistic aggregation; for more details see [39, 40].

Since coagulation through collisions of monomers features prominently in the

growth of islands, it is not surprising that a standard tool in theoretical studies
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for nucleation and growth stages is a system of equations based on (1.1) without

fragmentation terms. Equation (1.1) can be adjusted by a source term J0(t),

representing an external supply of monomers [25, 82]. In the simplest case, one

may consider constant monomer input such as J0(t) ≡ F and this leads to several

widely studied models [6, 42, 53, 66].

If we assume that islands (or clusters) evolve by capturing or releasing a single

monomer, a physically realistic system of rate equations with critical island size

i = 1, deposition rate F and diffusion rate of monomers D can be obtained by

making the identifications σ1,1 = 2Dσ1, σ1,j = Dσj for j > 1, a1 = 0, a2b1,2 = 2γ2

and ajb1,j = γj for j > 2. Here, σj and γj are respectively the rates of capture and

release of monomers from an island of size j. We have

dc1
dt

= F − 2Dσ1c
2
1 −Dc1

∞∑

j=2

σjcj + 2γ2c2 +

∞∑

j=3

γjcj

− 2Fκ1c1 − F
∞∑

j=2

κjcj

dcj
dt

= Dc1(σj−1cj−1 − σjcj) + (γj+1cj+1 − γjcj)

+ Fκj−1cj−1 − Fκjcj , j ≥ 2,

where we have also included direct impingement, with κj being the rate of direct

impingement of monomers into an island of size j. The reason for the factor 2 is

that the formation of a dimer results in the loss of two monomers. In the case

of irreversible aggregation, which occurs at low temperatures, and negligibility of

direct impingement, we set γj = 0 and κj = 0 to obtain
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dc1
dt

= F − 2Dσ1c
2
1 −Dc1

∞∑

j=2

σjcj (1.2)

dcj
dt

= Dc1(σj−1cj−1 − σjcj), j ≥ 2. (1.3)

For the general case of critical island size i ≥ 1, corresponding to (1.2) and (1.3)

we have a system of equations

dc1
dt

= F − nDσ1c
n
1 −Dc1

∞∑

j=n

σjcj (1.4)

dcn
dt

= D(σ1c
n
1 − σnc1cn) (1.5)

dcj
dt

= Dc1(σj−1cj−1 − σjcj), j > n, (1.6)

in which we have set n := i + 1. Note that the stable islands of size j only

exist when j > i. All the physics of the rate equations (1.2) and (1.3) is in the

coefficients; different coefficients lead to different behaviour. Several choices for

σj , such as σj = 1 and σj = jp where p = 1/2 or 1/3 depending on the dimension

of islands, have been considered; for more details see [16, 66].

A particularly simple case of these rate equations arises when we treat all

islands as point islands, not having any spatial extent, and assume that all the

coagulation constants can be taken to be equal. Choosing Dσj = 1, we obtain

a system that has been considered by Bartelt and Evans [11] and da Costa, van

Roessel and Wattis [25], namely
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dc1
dt

= α− 2c21 − c1

∞∑

j=2

cj (1.7)

dcj
dt

= c1cj−1 − c1cj, j ≥ 2, (1.8)

where we have put F = α in order to stay consistent with the notation used by

da Costa et. al. [25]. There are other approximations being made – namely,

no spatial dependence, as discussed above, and in addition no time (or coverage)

dependence. Moreover, in [6] the authors have developed a self-consistent rate-

equation theory which accurately predicts the average quantities (average island

size, average monomer density and average island density etc.) as a function of

coverage for a given critical island size regardless of the shape of islands.

One could also take cluster size to be a continuous variable. The continuous

counterpart of (1.1) [24, 45, 79, 86] is the integro-differential equation

∂

∂t
u(x, t) =

1

2

∫ x

0

σ(x− y, y)u(y, t)u(x− y, t) dy −
∫ ∞

0

σ(x, y)u(x, t)u(y, t) dy

− a(x)u(x, t) +

∫ ∞

x

a(y)b(x|y)u(y, t) dy, (1.9)

where the discrete sums of (1.1) have been replaced by integrals. Here, u(x, t)

stands for the density of clusters of size x at time t. The continuous version of

the coefficient σj,k is σ(x, y), the coagulation kernel. The function a(x) is the

fragmentation rate. The function b accounts for the fragmentation of a cluster of

size y into several daughter clusters; b(x|y) describes the distribution of clusters

of size x being produced when a cluster of size y fragments. For the binary case

of the fragmentation process, according to Cheng and Redner [22], Lamb [45] and
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Ziff and McGrady [87], a general continuous linear fragmentation equation in the

absence of coagulation is in the form

∂

∂t
u(x, t) = −1

2
u(x, t)

∫ x

0

H(x− y, y) dy +

∫ ∞

x

H(x, y − x)u(y, t) dy, (1.10)

where H(·, ·), the binary fragmentation kernel, is assumed to be symmetric.

Here H(x, y) represents the rate at which a particle of size x + y splits up into

particles of sizes x and y. This is a special case of (1.9) with

σ ≡ 0; a(x) =
1

2

∫ x

0

H(x− y, y) dy; b(x|y) =
H(x, y − x)

a(y)
.

If a(x) = xλ, then we say that the fragmentation kernel is homogeneous with

homogeneity index λ. Homogeneity requires the kernel b to have the form

b(x|y) = h

(
x

y

)
1

y
, (1.11)

so that b is homogeneous of degree −1. This homogeneous form corresponds to the

assumption that the distribution of daughter clusters is determined by the fraction

(daughter size)/(parent size).

Note that when a parent cluster of size y fragments, the number of daughter

particles formed, and their combined mass, are given by the integrals
∫ y
0
b(x|y)dx

and
∫ y
0
xb(x|y)dx respectively. Consequently, in a mass-conserving, binary process,

where each fragmentation produces only two daughter clusters with combined mass

equal to the parent mass, we must have

∫ y

0

b(x|y) dx = 2;

∫ y

0

xb(x|y) dx = y. (1.12)
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In the homogeneous case, when b(x|y) is given by (1.11), (1.12) can be expressed

as

∫ 1

0

h(r) dr = 2;

∫ 1

0

rh(r) dr = 1. (1.13)

1.3.3 Similarity Solutions

What kind of results can one obtain from considering equations such as (1.1), (1.2),

(1.3) and (1.9)? Explicit solutions of such equations are important in understand-

ing the behaviour of the size distribution. However, exact solutions have been

found only for very special rate coefficients, such as in the pure discrete coagula-

tion equation case σj,k = 1, σj,k = (j + k)/2, σj,k = jk and only for monodisperse

initial conditions cj(0) = δ1,j , where δk,j denotes the Kronecker delta (see [83] for

details). Obtaining explicit solutions presents a difficult challenge, for which the

use of elementary analytical methods is not usually suitable. However, we can use

the infinite set of differential equations (1.1) for theoretical investigations into the

long-term behaviour of island growth. This is done by applying a scaling approach

which often allows us to identify solutions known as scaling solutions. This is

particularly true for homogeneous kernels that are characterised by the property

σνj,νk = νλσj,k for some scalar λ if this property is followed by σj,k = jλp(j/k)

for some function p(·). In such a case, σνj,νk is called homogeneous of degree

λ. Dynamic scaling solutions (or similarity solutions) of (1.1) are sought in the

form

cj(t) =
1

r(t)τ
φ

(
j

r(t)

)
, (1.14)

where cj(t) is the concentration of islands comprised of j ≥ 1 monomers, τ is a

positive exponent and
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r(t) =

∑∞
j=1 jcj(t)∑∞
j=1 cj(t)

(1.15)

represents a typical island size; see the works of Leyvraz [46] and van Dongen

and Ernst [77] for details. The function φ is the scaling function. Self-similar

solutions of the form (1.14) are useful since they may describe the behaviour of

general solutions of such equations. For example, it is conjectured – and in some

cases proved – that solutions arising from a range of different initial data will

approach a scaling solution in the long term [49, 50, 83].

For the case of mass-conserving solutions, we set τ = 2 in (1.14) so that the

total mass in the system remains constant for all time. The choice of τ = 2 is

determined by considering the total mass of the system

M(t) =
∞∑

j=1

jcj(t). (1.16)

By introducing a continuous variable ζ = j/r(t), the sum in (1.16) is replaced by

an integral over ζ and substituting (1.14) for cj(t), we obtain

M(t) = r(t)2−τ
∫ ∞

0

ζφ(ζ) dζ.

For M(t) to be constant, we require τ = 2. However, in the case of submonolayer

growth, for monomer density mass is not conserved because of, for example, the

presence of F in (1.2).

Dynamic scaling solutions of the form (1.14), but expressed in terms of coverage

θ rather than t, are considered by several authors such as Amar et. al. [3]. We

observe that in the case of irreversible aggregation θ =
∑∞

j=1 jcj(t) and we assume

the scaling form

cj(θ) = G(θ, r(θ))φ(j/r(θ))
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where r is the average island size and G(θ, r(θ)) is some function of θ and r. By

a similar analysis for M(t) to the one above, we obtain G(θ, r) = θ/r2, where φ(·)

satisfies
∫∞
0
ζφ(ζ) dζ = 1. Thus, the scaling form for island density is

cj(θ) =
θ

r2
φ

(
j

r

)
,

which is the same as the dynamic scaling form of (1.14). The scaling form is

only valid in low coverage (usually θ ≤ 20%) before the coalescence stage where

growing islands start to interact with each other [10, 12, 74]. The scaling function

φ depends weakly on θ for realistic islands for up to θ = 20% [12]. This means

that the scaling function is consistent for any value of θ up to 20%. However, for

the point-island case, φ is independent of θ. Another condition for the validity of

the scaling form is that the ratio, R = D/F , must be large enough, say R ≥ 107

or the average island size, r = (θ − c1)/
∑

j≥i cj also needs to be sufficiently large.

Similarity solutions for the linear fragmentation equation

∂

∂t
u(x, t) = −a(x)u(x, t) +

∫ ∞

x

a(y)b(x|y)u(y, t) dy, (1.17)

(see equation (1.9)) have also been sought by a number of authors including Cheng

and Redner [22, 23], Treat [75] and Ziff and McGrady [87]. These investigations

have focussed on the homogeneous case

∂

∂t
u(x, t) = −xλu(x, t) +

∫ ∞

x

yλ−1h

(
x

y

)
u(y, t) dy, (1.18)

described earlier, in which a(x) = xλ and b(x|y) is given by (1.11) for some function

h that satisfies the mass conservation condition
∫ 1

0
rh(r) dr = 1.

Such similarity solutions can be expressed in an analogous manner to (1.14)

with τ = 2. For example, in [75] Treat shows that similarity solutions can be
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written as

u(x, t) =
N2(t)

V
φ

(
N(t)x

V

)
= V

(
N2(t)

V

)2

φ

(
N(t)x

V

)
, (1.19)

where the scaling function φ, referred to in [75] as the reduced distribution, is

required to satisfy an integral equation and is normalised so that

∫ ∞

0

φ(y) dy =

∫ ∞

0

yφ(y) dy = 1, (1.20)

and

N(t) :=

∫ ∞

0

u(x, t) dx, V (t) :=

∫ ∞

0

xu(x, t) dx,

are, respectively, the zeroth and first moments of the similarity solution u. An

explicit expression for φ involving the Meijer G-function, is derived in [75, Section

6] for the specific case when the function h in equation (1.11) takes the form

h(r) = rγ(b0 + b1r + · · ·+ bpr
p),

p = 0, 1, . . ., γ and b0, b1, . . . , bp ∈ R. We shall make use of the simple case p = 1

in Chapter 5. With regard to the question of existence of similarity solutions for

more general homogeneous fragmentation equations, results have been obtained

by Escobedo et. al. in [31].

The rate equations (1.2) and (1.3) can successfully predict the scaling behaviour

of average quantities, such as the total island density
∑
cj, [6]. However, islands

of the same size are assumed to grow at the same rate no matter where they are

located and it is difficult to choose a large set of σj for j ≥ 1 correctly. Conse-

quently, with an incorrect choice of rate coefficients, a rate-equation approach is
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likely to lead to predictions of ISD which differ substantially from results that are

obtained experimentally or by MC simulations [11, 54].

Because of this, we have to (a) employ an experimental procedure that will give

us realistic data on submonolayer growth and (b) try to find a modelling approach

that will allow us to improve the approximation of the ISD to obtain results that

agree with the data from MC simulations.

1.3.4 Attempts to Improve the ISD Approximation: the

Capture Zone Distribution

There have been several attempts to improve the approximation of the ISD, which

is the main goal here. In 1996 Mulheran and Blackman [54] suggested a way to

model nucleation and growth of islands in various dimensions with i = 1, 2, 3 using

the concept of a capture zone distribution (CZD). They defined the capture

zone (CZ) associated with an island to be the substrate region surrounding the

island that consists of all points closer to the island than to any other island.

Figure 1.2 illustrates the CZD. In that figure, the CZs are indicated by the cell

boundaries for one-dimensional (1-D) and two-dimensional (2-D) islands.

For the 1-D point-island model in the case of i = 1, Blackman and Mulheran

[14] had the idea of using a fragmentation-based approach to analyse gap size

distributions (GSDs) and, subsequently, CZDs. In the 1-D case, an island is an

end-point of a gap. Nucleation of new islands during the deposition leads to the

fragmentation of gaps and CZs. In Figure 1.3, we summarise the features of the

model just described.

Blackman and Mulheran assumed that nucleation is rare in a gap of any size

and derived an equation for the position dependent monomer density, n1(x) (its

average is c1), which is
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Coverage = 20%

Figure 1.2: On the left-hand side, black rectangles correspond to 1-D islands.
Horizontal lines mark the midpoints between the edges of two islands defining
their CZs as the resulting proximity cells. If instead we use the midpoint between
the centres of islands indicated by the dashed lines, we have Voronoi cells. On
the right-hand side, the islands appear approximately circular and the CZs are
indicated by the cell boundaries.

Figure 1.3: Summary of the features of the model. Solid circles represent an island;
open circles are monomers. A capture zone is the separation of the bisectors of
neighbouring gaps.

D
d2n1

dx2
+ F ≈ 0,

under the assumption that the monomer density is in an approximately steady

state, that is, all time derivatives vanish. To obtain the GSD in this 1-D case, they

describe the evolution of gap sizes as a fragmentation process. This is motivated

by the observation that any new nucleation that occurs in a parent gap of width,
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say, y, will result in the creation of two daughter gaps of widths, say, x and y− x.

Due to the fact that the fragmentation of a parent gap leads to two gaps, this is

the binary case of fragmentation process. With n1(x), Blackman and Mulheran

derived a fragmentation equation for the GSD function in the case of i = 1. If

there is no correlation between the sizes of two neighbouring gaps the connection

between the GSD and CZD is given by [14],

P (s) = 2

∫ 2s

0

φ(x)φ(2s− x) dx, (1.21)

where φ(x) is the GSD function and P (s) is the CZD function. The factor 2 is

included to preserve the normalisation for P (s) [14].

It was suggested by Pimpinelli and Einstein [61] that the Generalised Wigner

Surmise (GWS) may accurately describe the CZD given in any dimension d for

any critical island size i. The GWS is a simple expression generalising the Wigner

Surmise from Random Matrix Theory that accounts for spacing distributions in

a host of fluctuation phenomena such as energy levels of atomic nuclei, quantum

chaos and distances between parked cars [1, 61]. Let s(t) = A(t)/〈A〉(t), where

A(t) and 〈A〉(t) are, respectively, the area of a CZ and its average at fixed time t,

and let P (s) be the probability of finding an island with scaled CZ of area between

s and s+ ds. Then Pimpinelli and Einstein suggested the scaled CZD, depending

on the sole parameter β, may be represented in the form

Pβ(s) = aβs
β exp(−bβs2), (1.22)

where
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β =





2
d
(i+ 1) if d = 1, 2

i+ 1 if d = 3,
(1.23)

and aβ and bβ are constants chosen so that
∫∞
0
P (s) ds =

∫∞
0
sP (s) ds = 1. The

GWS will be discussed in more detail later in this thesis.

There has been recent work on providing a suitable theory of capture zones in

order to predict accurately the ISD. One may consider a Joint Probability Dis-

tribution (JPD) in order to develop an approach that describes the evolution of

island sizes of j and CZ areas of A. This approach considers both the distributions

of island size and CZ area; hence the name JPD. Such an approach was originally

proposed by Mulheran and Robbie [55]. The basic JPD rate equations [33] are

dcj,A
dt

= FAcj−1,A − FAcj,A + P+
j,A

dcst
dt

− Pj,A
dcst
dt

, j ≥ i, (1.24)

where cst =
∑

j≥i cj is the density of stable islands and cj,A is the island density of

size j and CZ area A. There are two growth rates that describe the rate at which

monomers land within a specific CZ area of A and the growth rate of an island

due to direct impingement. The former rate equals F (A− j) and the latter equals

Fj. Thus, the total growth rate is FA. In the right-hand side of (1.24), the first

and second terms describe the total growth rate of island of size j and CZ of area

A. In other words, the first and second terms, known as the gain and loss terms,

describe the total growth rate for an island of size j and CZ area A. The term

Pj,A is the probability that a nucleation event occurs anywhere within the CZ of

area, A, belonging to an island of size j. Thus, the CZ of the new island overlaps

and reduces the original CZ of this existing island of size j, resulting in the loss

of an original island of size s and area A. P+
j,A is similar to Pj,A except that this

probability will result in the gain of an island of size s and new area A. The term
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dcst/dt is approximately the nucleation rate of a stable island. The processes of

nucleation are described in the latter two terms on the right-hand side of (1.24):

the third term is the gain term since islands of size j and area A are being created

by the fragmentation of larger CZs. Likewise, the fourth term is the loss term

due to the reduction of the number of islands of size j and area A by nucleation

events. Note that one can obtain the ISD and CZD by considering the equations

of
∑

A cj,A and
∑

j cj,A respectively [32]. In terms of CZDs and subsequently ISD,

the JPD is an advance because it allows us to capture local growth rates caused

by different spatial environments around the islands. Further information can be

found in [33].

The following question was raised in [66]: can the rate equations be successful

in predicting the correct shape of the ISD if the capture numbers σj(θ) are allowed

to depend on both j and the coverage, θ? To answer this question, in [42] Körner

et. al. consider the following rate equations in the case of irreversible aggregation

along with direct impingement of arriving monomers

dc1
dt

= (1 − θ)F − 2Dσ1c
2
1 −Dc1

∞∑

j=2

σjcj − 2Fκ1c1 − F

∞∑

j=2

κjcj (1.25)

dcj
dt

= Dc1(σj−1cj−1 − σjcj) + Fκj−1cj−1 − Fκjcj , j ≥ 2. (1.26)

The authors obtain the capture number σj(θ) which depends on both island size j

and θ by collecting data for σ from MC simulations for constant θ, approximating

the average σ as a function of j and θ and formulating rate equations using these

averaged σ. They concluded that coefficients σj with no θ dependence lead to a

poor prediction of ISD and thus there is a rate-equation model for submonolayer

deposition that behaves just like the data from MC simulation if one takes into
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account the correct dependence of σj on both j and θ. More details can be found

in [42].

Seba [70] investigated a 1-D model aimed at describing the spacing distribu-

tion between cars parked in an infinitely long street to ensure the parking of as

many cars as possible. The underlying strategy that is adopted for any particular

parking attempt is as follows. A random position x on the street is selected. If

a large enough interval centred at x is free, the car may park in the interval at x

thereby fragmenting the interval. Otherwise, another random position x is chosen

and so on. Cars are also allowed to leave, and new cars can then park in the

vacated interval; this leads to an equilibrium model. As a means of describing the

spacing distribution approximately, Seba derived the distributional fixed point

equation (DFPE)

Xd
△
= a(1 +Xd). (1.27)

Here Xd is the distance between two parked cars, a is an independent random

variable with a probability density, f(a), and the symbol
△
= means that the left-

and right-sides of (1.27) have the same distribution. One idea that we shall pursue

in this thesis is to adapt the Seba model for the case of nucleation and growth on

a 1-D substrate, where the distance between any two neighbouring cars may be

interpreted as the gap between any two neighbouring islands. More details will be

given later in Chapter 3.

1.3.5 Monte Carlo Simulation

MC methods form a family of algorithms that use pseudorandom numbers to

conduct a statistical sampling experiment with a mathematical model. The idea

was originally proposed in 1940s by Metropolis, Ulam and von Neumann [30, 51].

A MC method can be viewed as a type of simulation that uses repeated random
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sampling to compute the behaviour of some process. However, it should be noted

that there are many definitions of a MC simulation, such as in [18, 68]. Typically,

one creates a model which describes a real-life random system and to do this, one

must identify random variables. The resulting model can be run on a computer

many times; these will generate different values of the random variables [48]. Once

this is completed, the data from this model is analysed. Since the 1940s there have

been many different versions of MC simulations which can solve various kinds

of computational problems in a large range of applications in physics, statistics,

computer science and other fields [48]. More details about MC simulations in the

modelling of submonolayer deposition will be discussed in Chapter 6.

The following diagram illustrates how a MC simulation is related to the other

approaches for submonolayer growth discussed in this work.

Physical Phenomenon

MC Simulations

Rate equations Fragmentation equations for gaps

Statistics of the CZD

Statistics of the ISD

MC simulations provide the statistical data for the CZD, and, in the 1-D case

only, also the GSD. Moreover, these simulations can yield realistic statistics of

behaviour. It is natural for one to ask why we bother to develop mathematical

theory such as rate equations at all. The answer is that MC simulations in them-



Chapter 1 27

selves cannot explain how the growth might depend on deposition rate and/or

temperature; only theoretical analysis is capable of doing this; hence the dashed

arrows. It is important to note that MC simulations are the main way of falsifying

theories concerning either the ISD or the CZD.

1.3.6 Summary

Despite several attempts at finding a reliable formulation for the ISD that allows

one to predict the results from MC simulations accurately, such a formulation still

remains an open, challenging problem. The main topics in this thesis are:

• To generalise the mean-field work of da Costa et. al. to the case i > 1.

• To generalise the Blackman and Mulheran model to the case of general i ≥ 0.

• To study in more detail the validity of the GWS for other cases of i and d

in addition to the case i = 0, 1 in d = 1, 2 considered in [61].

• To determine whether the predictions of the d = 1 Blackman and Mulheran

fragmentation-nucleation theory for the CZD and the GWS are compatible.

• To adapt the DFPE approach to the non-equilibrium, dynamic scaling prob-

lem of island nucleation and growth in the 1-D model. This lays the founda-

tions for a new approach to a more general understanding of nucleation and

growth in higher dimensions.

It is important to note that there is a controversy in the literature over the

definition of mean-field models and non mean-field models notably in [4, 81] where

Amar et. al. claimed their work went beyond the mean field, and Vvedensky et.

al. claimed it did not.
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It is not clear what is the true definition of mean-field theory in the context of

submonolayer deposition. Vvedensky et. al. seem to use the following definition:

a model is mean-field if its dependent variables are space-independent. Amar et.

al. used a more relaxed definition: a model is not mean-field if its parameters have

been derived from a realistic (space-dependent) theory.

Nevertheless, the goal has always been to construct a theory that would predict

the ISD results accurately.

1.4 Overview of Thesis

The thesis is divided into eight chapters. A summary of each of the subsequent

chapters in the thesis is as follows.

In Chapter 2, we discuss techniques that will be of aid in later chapters, such

as the concept of a river for Chapter 4 and Laplace’s method for determining the

asymptotic behaviour of solutions for Chapter 5.

In Chapter 3, we give a more detailed account of scaling solutions for discrete

coagulation and continuous fragmentation equations. Moreover, we also discuss

several established contributions to this area of research; although some of these

topics may be reasonably well known, it is convenient to provide a summary of

the key points for later reference.

In Chapter 4, we use the concept of a river to extend the results of da Costa

et. al. [25] to the case when the critical island size i is larger than 1 and obtain

analogous results to those presented in [25]. To the best of our knowledge, this

is the first time that the idea of a river originating in the work of non-standard

analysts such as the Dieners, has been used to solve an applied mathematical

problem. In short, we can describe the ISD for i > 0 if we use rate equations (1.4)-
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(1.6) with σj = 1.

In Chapter 5, we derive a generalised form of the Blackman and Mulheran

formulation [14] for the GSD in the general case of i ≥ 0 of the 1-D Blackman

and Mulheran fragmentation-nucleation theory [14]. We extend this approach to

the case of general critical island size i ≥ 0. Moreover, we describe how the

asymptotic behaviour of the 1-D Blackman and Mulheran theory for the CZD and

the GWS conjectured by Pimpinelli and Einstein are compatible. After introducing

a class of fragmentation kernels that depend on the critical island size, we highlight

asymptotic results that we have obtained using the binary fragmentation equation

(1.10). In deriving these asymptotic results, we use methods developed by Cheng

and Redner, and Treat, together with a modified theorem of the 2-D Laplace

method tailored specifically for the case i = 0. Our results establish that both

models cannot be correct simultaneously.

After discussing the difference between the Blackman and Mulheran theory,

and the GWS in Chapter 5, in Chapter 6 we discuss the model we have used in

our MC simulations. These simulations provide the data that we compare with

the predictions arising from the GWS to test the validity of the conjecture of

Pimpinelli and Einstein. As stated earlier, it will be seen that it is only in the

case of d = 2 that the GWS provides a good fit to the data. Shi et. al. [71]

suggest otherwise in the case of point islands; however, the GWS may be more

applicable for extended islands. Moreover, for the 1-D point islands case only, we

shall investigate the large and small asymptotic behaviour of the GSD and CZD,

and the nucleation rate for islands. After an extensive investigation on data from

MC simulations, a summary of these results is given.

In Chapter 7, after discussing the Seba approach in detail for our problem of

irreversible aggregation we conclude that this type of approach to fragmentation
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problems is promising and merits further investigation. Moreover, we compare

this approach with the Blackman and Mulheran model and the data from MC

simulations.

In Chapter 8, a summary of the conclusions of each chapter is presented. We

also propose new future directions and open, challenging problems that need to be

investigated and solved in order to generalise the results of this thesis.
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A Summary of Methods

2.1 Introduction

In this chapter, we will discuss several key methods that prove to be crucial to the

investigations into understanding the island size distribution (ISD) in this thesis.

We begin, in Section 2.2, with a powerful tool called the Newton Polygon (NP).

This method allows us to understand the asymptotic behaviour of solutions to

polynomial equations and to ordinary and partial differential equations [20, 21,

36]. However, in this thesis, we will restrict our attention to ordinary differential

equations only.

After discussing the NP method for ordinary differential equations (ODEs), we

turn to the little-known concept of a ‘river’, which will be used in Chapter 4 to

establish the asymptotic behaviour of monomer and island densities. As we shall

point out, the concept of a river is similar to the NP method but also incorporates

some convergence criteria [17, 19, 26, 27, 76]. It should be noted that our work in

Chapter 4 is largely motivated by [25], where da Costa, van Roessel and Wattis

use differential equation techniques, such as Centre Manifold theory, to determine

31
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the asymptotic behaviour of solutions to a system of differential equations which

can be obtained as a special case of the system we study in Chapter 4. The

river concept plays an important role in our analysis as it overcomes the obstacle

presented by our inability to apply, to the general system, some of the arguments

used in [25], particularly those which rely on proving the existence of invariant

regions in the phase plane associated with the system.

In Chapter 4 and beyond, we will analyse the ISD, the gap size distribution

(GSD) and the capture zone distribution (CZD) with the aim of obtaining the

small- and large-size asymptotic behaviour of each distribution. Our analysis will

lead to certain problems which can be tackled by means of Watson’s lemma and

results on one-dimensional (1-D) Laplace integrals. For example, in Chapter 5,

we will encounter a triple integral which requires the application of a combination

of properties of one- and two-dimensional Laplace integrals. Watson’s lemma and

relevant results on 1-D Laplace integrals are given in Sections 2.4 and 2.5.

We will introduce the bootstrap method which can be used to overcome diffi-

culties that can arise in situations where the theoretical distribution of a statistic is

either complicated or unknown, or the sample size is too small for straightforward

statistical inference. We will apply this method in Chapters 6 and 7 to calculate,

for example, the average gradient of both small- and large-size behaviours of GSDs

and CZDs, and the average moment of these distributions.

2.2 Newton Polygon

We aim to use the NP method in order to understand the asymptotic behaviour

of solutions to ODEs. Therefore, in this section, we will give a description of the

main techniques involved in investigating ODEs via NPs. Our account will be
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based largely on that given by Cano in [21], and so we will define a polynomial F

of the n + 1 variables y0, y1, . . . , yn, with x dependent coefficients, by

F (y0, y1, . . . , yn) =
∑

γ∈A
aγ,ρx

γyρ00 . . . yρn
n . (2.1)

In (2.1), the coefficient of the term yρ00 . . . yρn
n is aγ,ρx

γ , where γ ∈ A ⊂ R, ρ =

(ρ0, . . . , ρn) and aγ,ρ is a scalar. Associated with F is the ODE

F

(
y,
dy

dx
, . . . ,

dny

dxn

)
= 0, (2.2)

which we shall abbreviate to F (y) = 0.

Example 2.2.1. If we have the following equation in the form (2.2)

F

(
y,
dy

dx
,
d2y

dx2

)
= F (y) = 2xy′y′′ − x3y2,

then we rewrite F (y) in the form (2.1)

F (y0, y1, y2) = 2xy1y2 − x3y2
0. (2.3)

For the first term in the right-hand side of (2.3), i.e. 2xy1y2, we have ρ =

(ρ0, ρ1, ρ2) = (0, 1, 1) and γ = 1. Similarly, for the second and last term, we

have ρ = (2, 0, 0) and γ = 3. With γ = 1 and γ = 3 for each term, we have

A = {1, 3}.

A set of planar points, known as the cloud of points of F , is defined in the

following manner; see [21, p.19].

Definition 2.2.2 ([21]). Let F be given by (2.1) and associate to each coefficient
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aγ,ρ the point in R × N that is defined by

Pγ,ρ :=

(
γ −

n∑

j=1

jρj ,

n∑

j=0

ρj

)
.

Then the cloud of points of F is the set

P(F ) :=
{
Pγ,ρ | aγ,ρ 6= 0

}
.

The next definition, describing the NP associated with F , can be found in [21,

p.20].

Definition 2.2.3 ([21]). The Newton Polygon N(F ) of F is the convex hull of the

set

⋃

P∈P(F )

(P + {(a, 0) | a ≥ 0}) .

The following definition and remarks are used to obtain necessary initial con-

ditions for the equation F (y) = 0

Definition 2.2.4. Let L be a line in R
2 with slope −1/µ. Then µ is the inclination

of L.

The line L(F ;µ) is defined to be the line with inclination µ ∈ R such that N(F )

is contained in the left closed half-plane defined by L(F ;µ), and L(F ;µ)∩N(F ) 6=

∅. In [21, Eq. (2)], for each L(F ;µ) the author defines the polynomial

Φ(F ;µ)(c) =
∑

Pγ,ρ∈L(F ;µ)

aγ,ρc
ρ0+...+ρn(µ)ρ11 . . . (µ)ρn

n ,

where (µ)k = µ(µ − 1) · · · (µ − k + 1) and Pγ,ρ is given in Definition 2.2.2. As in

[21, p.20], the following statements can be made about N(F ).
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• For each µ ∈ R, L(F ;µ) ∩N(F ) is either a side or a vertex of N(F ).

• If L(F ;µ)∩N(F ) is a side, say S, then Φ(F ;µ)(c) is the associated character-

istic polynomial.

• Let p = (a, h) be a vertex of N(F ) and let µ1 < µ2 be the inclinations of the

adjacent sides at p. For any µ such that µ1 < µ < µ2, L(F ;µ)∩N(F ) = {p}.

Then Φ(F ;µ)(c) = chΨ(F ;p)(µ) where

Ψ(F ;p)(µ) =
∑

Pγ,ρ=p

aγ,ρ(µ)ρ11 . . . (µ)ρn
n .

Remark 2.2.5. 1. Suppose that (x1, y1) and (x2, y2) lie on a line with inclina-

tion µ. Then

y2 − y1

x2 − x1

= −1

µ
(µ 6= 0) ⇔ x1 + µy1 = x2 + µy2.

2. Consider the term aγ,ρx
γyρ00 . . . yρn

n . Applying the differential operator asso-

ciated with this term to y = xµ, we obtain the following equation

aγ,ρx
γxρ0µ(µ)ρ11 x

ρ1(µ−1) . . . (µ)ρn
n x

ρn(µ−n)c
Pn

j=0
ρj

=
[
aγ,ρ(µ)ρ11 . . . (µ)ρn

n c
|ρ|
]
xγ−

Pn
j=1

jρj+µ
Pn

j=0
ρj ,

where |ρ| =

n∑

j=0

ρj. So, all points on a side of N(F ) will contribute to

the same power of x, i.e. if the inclination of S is µ, then each point(
γ −

n∑

j=1

jρj ,

n∑

j=0

ρj

)
on S satisfies
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γ −
n∑

j=1

jρj + µ
n∑

j=0

ρj = constant.

3. If p = (a, h) is a vertex of N(F ) then for each term aγ,ρx
γyρ00 . . . yρn

n in F

that corresponds to p we must have h =

n∑

j=0

ρj. Hence cρ0+...+ρn = ch for all

such terms.

More detail on necessary initial conditions can be found in [21, p.20]. A short

example found in [36] will be illustrated using Cano’s approach as described above

Example 2.2.6. Let F (y) = xyy′′ − xy′′ + yy′ − y′ − x(y′)2. The corresponding

polynomial F (y0, y1, y2) is then given by

F (y0, y1, y2) = xy0y2 − xy2 + y0y1 − y1 − xy2
1. (2.4)

In Table 2.1, A and B are defined as

2∑

j=1

jρj and

2∑

j=0

ρj respectively. Note that

γ and ρj represents the power of x and the power of yj for 0 ≤ j ≤ 2 respectively.

Term γ ρ = (ρ0, ρ1, ρ2) A B Pγ,ρ := (γ − A,B)

xy0y2 1 (1, 0, 1) 2 2 (−1, 2)
−xy2 1 (0, 0, 1) 2 1 (−1, 1)
y0y1 0 (1, 1, 0) 1 2 (−1, 2)
−y1 0 (0, 1, 0) 1 1 (−1, 1)
−xy2

1 1 (0, 2, 0) 2 2 (−1, 2)

Table 2.1: Vertices of (2.4)

As seen in Figure 2.1, we have two vertices (−1, 2) and (−1, 1), and an edge.

Consider the former vertex first

F (xµ) = x(xµ)(xµ)′′ + xµ(xµ)′ − x[(xµ)′]2 = (µ2 − µ+ µ− µ2)x2µ−1 = 0.
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x

y

(-1,2)

(-1,1)

Figure 2.1: Newton Polygon for (2.4).

So, Φ(F,µ)(c) ≡ 0 and Ψµ
(F,p) ≡ 0 for 0 < µ <∞. Similarly, for (−1, 1)

F (xµ) = −x(xµ)′′ − (xµ)′ = −µ2xµ−1.

So, Φ(F,µ)(c) = −µ2c and Ψµ
(F,p) = −µ2 for −∞ < µ < 0. For the edge, µ = 0, we

have F (cx0) = F (c) = 0 and so Φ(F ;0)(c) = 0.

For more details, we refer to [21, 36]. However, it is sufficient to know the

method of finding vertices and edges, i.e. Definition 2.2.3, which is a key part of

the analysis in Chapter 4 along with the concept of a river which we discuss next.

2.3 The Mathematical Concept of a River

The concept of un fleuve or a river will play a key role in establishing the asymptotic

behaviour of monomer and island densities. As discussed earlier, we use the NP

method to find rivers and we can obtain more information on asymptotic behaviour

through convergence criteria associated with rivers. If one draws a phase portrait

for the system of equations



Chapter 2 38

dX
dt

= X ′(t) = 3,

dY
dt

= Y ′(t) = 3(Y (t)2 −X(t)),
(2.5)

then one will observe two concentrations of trajectories in a particular area of the

phase portrait in Figure 2.2. These thick concentrations of trajectories are rivers

(one is attracting and the other is repelling) which we will now explain in detail.

Following [17, 19, 26, 76], we consider a two-dimensional system of polynomial

differential equations,

X ′ = P (X, Y ),

Y ′ = Q(X, Y ).
(2.6)

Figure 2.2: Phase portrait of (2.5). This figure is obtained from MATLAB via
the pplane code.

Definition 2.3.1. Given a polynomial P (X, Y ) and r ∈ R, the r-degree of P ,

denoted by degrP , is the highest power of X appearing in P (X,Xr). We denote by
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Pr(X, Y ) the maximal polynomial obtained using monomials from P (X, Y ) such

that degrP =degrPr.

As an example, consider Q(X, Y ) = 3(Y 2 −X). If we set, say, Y = X2, then

we have deg2Q = 4 and Q2(X, Y ) = 3Y 2.

Definition 2.3.2 ([26]). A positive semi-orbit (X(t), Y (t)) of (2.6) which is such

that X(t) → ∞ as t→ ∞ is called a river of type (k, r) at X = ∞ if the following

conditions are satisfied.

1. Qr(1, k) = 0;

2. lim
t→∞

Y (t)/X(t)r = k;

3. c(r) := 1 − r+ degrQ− degrP > 0;

4. Pr(1, k) 6= 0 and [∂Qr/∂Y ](1, k) 6= 0.

If a (k, r)-river exists, the integer c(r) is called the order of the river. The

significance of c(r) is commented upon in [26]; in essence, the order provides a

measure of the rate of convergence of other trajectories towards the river. Note

that one may also define the analogous concept of a river of type (k, r) at X = −∞,

and, by changing the rôles of X and Y and replacing the condition c(r) > 0

by c(r) < 0, a river of type (k, r) at Y = ∞ or at Y = −∞. To determine

whether a river actually exists for a given system, it would appear that the first

step would be to identify a semi-orbit against which the various conditions of

Definition 2.3.2 can be tested. The question then arises as to how such a semi-

orbit can be found. Fortunately, Definition 2.3.2 has been shown to be equivalent

to an existence theorem, which we now state. This theorem is originally from [27]

and also appears in various forms in [17, 19, 76].
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Theorem 2.3.3. The system (2.6) admits a (k, r)-river if and only if there is a

pair (k, r) satisfying the definition of a (k, r)-river.

Thus, the existence of a (k, r)-river is guaranteed if a pair (k, r) can be found

satisfying conditions 1.-4. of Definition 2.3.2. In practice, the possible values of r

are sought first by applying NP technique and the following lemma.

Lemma 2.3.4 ([27]). If the positive semi-orbit (X(t), Y (t)) is a (k, r)-river for

the system (2.6), then r must be a solution of the equation (1, r) · v, where v is a

direction vector of a segment of the east-looking boundary of the Newton Polygon

of Q(X, Y ).

Once a (k, r)-river has been shown to exist, the next step is to identify how

neighbouring trajectories behave. Fortunately, we have the following simple Lia-

punov stability criterion; see [17] for details.

Theorem 2.3.5 (Stability). Suppose that the system (2.6) admits a (k, r)-river

and define Φ(X, Y ) = Q(X, Y )/P (X, Y ). Then the (k, r)-river is locally asymp-

totically stable in the Liapunov sense if

∂Φ

∂Y
(X, kXr) < 0. (2.7)

Thus, if (2.7) holds, then any solution which is sufficiently close to the river at

some finite time will, in the long term, become arbitrarily close to the river.

Example 2.3.6. Consider the system of equations (2.5) in which P (X, Y ) = 3

and Q(X, Y ) = 3(Y 2 −X). We begin by applying the NP approach to the function

Q. If we set X = x, Y = y0 and Q = F , then in terms of the notation used in

Section 2.2, we have

F (y0) = 3(y2
0 − x), (2.8)
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and so

Term γ ρ = (ρ0) A B Pγ,ρ := (γ −A,B)

3y2
0 0 (2) 0 2 (0, 2)

−3x 1 (0) 0 0 (1, 0)

Table 2.2: Vertices of (2.8)

�

�

������

������

Figure 2.3: Newton Polygon for (2.5).

As seen in Figure 2.3, we have the single segment given by the straight line,

with gradient −2, connecting the points (1, 0) and (0, 2). Note that a direction

vector of this segment is v = (1,−2) and so, from Lemma 2.3.4, we require r to

satisfy the equation (1, r) · (1,−2) = 0. It follows that the only possible value is

r = 1/2. To establish that a (k, 1/2)-river exists for some value(s) of k, we now

use Theorem 2.3.3. We begin by examining

Q(X,X1/2) = 3(X −X) = 0,

and so, by Definition 2.3.1, deg1/2Q = 0 and Q1/2(X, Y ) = 3(Y 2 − X). From

Definition 2.3.2, part 1, we see that k must satisfy

Q1/2(1, k) = k2 − 1 = 0,
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and therefore the only possible rivers are of types (1, 1/2) and (−1, 1/2). Let

us consider the case of (1, 1/2) first. Since P1/2(X, Y ) = P (X, Y ) = 3 and

Q1/2(X, Y ) = Q(X, Y ) = 3(Y 2−X), we obtain c(1/2) = 1−1/2+0−0 = 1/2 > 0.

Moreover,

P1/2(1, 1) = 3 6= 0 and
∂Q1/2

∂Y
(1, 1) = 6 6= 0.

It follows from Theorem 2.3.3 that a (1, 1/2)-river exists, and moreover, from part

2 of Definition 2.3.2, we have

lim
t→∞

Y (t)

(X(t))1/2
= 1,

from which we deduce that

Y ∼ X1/2 as X → ∞.

This shows that the river runs through the first quadrant of the (X, Y ) plane as

X → ∞. To determine whether or not it is locally asymptotically stable, we try to

use Theorem 2.3.5. In this case,

Φ(X, Y ) = Y 2 −X ⇒ ∂Φ

∂Y
(X,X1/2) = 2X1/2 − 1,

and we see that the stability criterion fails, since 2X1/2 − 1 is not always positive

in the first quadrant. This is clearly reinforced by Figure 2.2 which shows that this

river is repelling.

Consider next the case of k = −1. Once again we can apply Theorem 2.3.3 to

establish that a river of type (−1, 1/2) exists, with
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Y (t) ∼ −X1/2 as X → ∞.

This river runs through the fourth quadrant of the (X, Y ) plane, and, since

∂Φ

∂Y
(X,−X1/2) = −2X1/2 − 1 < 0,

we can deduce that it is locally attractive.

In conclusion, we have

• a repelling river with r = 1/2 and k = 1 that runs through the first quadrant

of the (X, Y ) plane;

• an attracting river with r = 1/2 and k = −1 that runs through the fourth

quadrant,

as seen in Figure 2.2.

The useful combination of the concept of a river and the NP method for finding

rivers will be used in Chapter 4 to combat a problem, that is difficult to be solved

by methods used by da Costa et. al. [25] in order to obtain asymptotic behaviour

of monomer and island densities.

2.4 Watson’s Lemma

Watson’s lemma is a useful technique for deriving the asymptotic expansion of an

exponentially decaying integral. As we shall require this technique in Chapter 4,

it is convenient to include a statement of the lemma here; a proof can be found in

[84, p.20].

Lemma 2.4.1 (Watson’s lemma [84]). If
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1. f(t) is analytic when |t| ≤ a+σ, where a > 0, σ > 0, except at a branch-point

at the origin, and

f(t) =

∞∑

m=1

amt
m/r−1, (2.9)

where |t| ≤ a, r being positive

2. |f(t)| < Kebt, where K and b are independent of t, when t is positive and

t ≥ a

3. | arg(z)| ≤ π/2 − ∆, where ∆ > 0

4. |z| is sufficiently large,

then there exists an asymptotic expansion of f(t) in the form (2.9) given by the

formula

g(z) =

∫ ∞

0

f(t)e−zt dt ∼
∞∑

m=1

amΓ
(m
r

)
z−m/r. (2.10)

Note that we have used the symbol ∼ in equation (2.10). Given two functions

of r(z) and s(z), if

lim
z→z0

r(z)

s(z)
→ K,

where K is a finite, non-zero limit then we obtain

r = O(s).

This means r is asymptotically equivalent to the order of s(z). If K = 1, then we

write r ∼ s.

A short example of the use of Watson’s lemma is:
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Example 2.4.2. Consider the integral

g(z) =

∫ ∞

0

e−zt

(1 + t)
dt.

Here, for t ≥ 0, f(t) = (1 + t)−1 is continuous on (0,∞) and has the Maclaurin

expansion

f(t) = 1 − t+ t2 − t3 + · · · =

∞∑

n=0

(−1)ntn, |t| < 1.

Then we have, by applying Watson’s lemma, for |z| → ∞ and | arg(z)| ≤ π/2−σ <

π/2

g(z) =

∫ ∞

0

f(t)e−zt dt =

∫ ∞

0

∞∑

n=0

(−1)ntne−zt dt

∼
∞∑

n=0

(−1)nΓ(n+ 1)z−(n+1)

=
∞∑

n=0

(−1)n
n!

zn+1
.

To the leading order term, we have

g(z) ∼ 1

z
,

which means that g(z) behaves like 1/z for large z.

2.5 One-Dimensional Laplace Integral

When dealing with Laplace-type integrals of the form
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I(λ) =

∫ b

a

g(z)e−λS(z) dz, (2.11)

one is often interested in determining their asymptotic behaviour. As discussed

in [84], one approach is to expand the function S(z) as a Taylor series around a

minimum point zm, leading to

S(z) = S(zm) + S ′(zm)(z − zm) + S ′′(zm)
(z − zm)2

2
+ · · · .

If the minimum zm is such that S ′(zm) = 0 and S ′′(zm) > 0, then

S(z) − S(zm) = S ′′(zm)
(z − zm)2

2
+ · · · .

In the case of a maximum point zm, one replaces −λ in (2.11) by λ. We can now

estimate I(λ) for large λ by

I(λ) ≈
∫ zm+ǫ

zm−ǫ
g(zm)e−λ(S(zm)+S′′(zm)(z−zm)2/2) dz

≈ g(zm)e−λS(zm)

∫ ∞

−∞
e−λS

′′(zm)(z−zm)2/2 dz

≈ g(zm)e−λS(zm)

√
2π

λS ′′(zm)
. (2.12)

For the case of a maximum point, the term 2π is replaced by −2π.

Example 2.5.1. To illustrate this form of estimation of Laplace-type integrals, we

consider the Gamma function, which for R(x) > 0 can be defined by

Γ(x) =

∫ ∞

0

zx−1e−z dz.

It follows that
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Γ(x+ 1) =

∫ ∞

0

zxe−z dz,

and, on substituting z = xy, we obtain

Γ(x+ 1) = xx+1

∫ ∞

0

yxe−xy dy = xx+1

∫ ∞

0

exS(y) dy,

where S(y) = ln(y) − y. From this, we obtain a maximum point ym = 1 since

S ′(y) = 1/y − 1 and S ′′(y) = −1/y2 and so by (2.12)

Γ(x+ 1) ≈ xx+1e(−1)x

√
−2π

(−1)x
= xx+1/2e−x

√
2π,

which is Stirling’s approximation.

We shall require the results presented in this section in Chapters 4 and 5. In

particular, the latter chapter contains our modified version of the original two-

dimensional Laplace integral explained in [84] by Wong, that specifically allows us

to obtain the large-size asymptotic behaviour of the CZD.

2.6 Bootstrap Method

There are sometimes situations where the theoretical distribution of a statistic is

either complicated or unknown, or the sample size is too small for straightforward

statistical inference. These problems can be easily solved by using the bootstrap

method, which we describe next.

The bootstrap method (or bootstrapping) is a method for assigning measures

of accuracy to sample estimates (mean, variance etc.) of the original data set,

typically drawn from the Monte Carlo (MC) simulation [64]. The data set consists

of N independent and identically distributed (iid) data points. The terminology
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iid means that, in this case, each data point has the same probability distribution

as the others and the sequential order of the data points is not important.

The bootstrap method uses the original data set, namely D0, to generate,

usually, a high number of synthetic data (or bootstrap data) sets, namely D1, D2,

. . .. Each data set has N data points. The procedure is to draw N data points

at a time with replacements from the original set D0. We do not get the original

set each time because of the replacement. Instead, we get bootstrap data sets in

which some fraction of the original data points are replaced by duplicated original

points. Since the bootstrap data sets are statistically similar to the original set,

they make a good approximation to the (unknown) distribution of the original set.

This is not saying that the bootstrap method is infallible – there are some

cases in which the method can fail, such as when the iid assumption is false and

the sequential order of the data points is vital. Nevertheless, for a large class of

problems, especially the ones in Chapters 6 and 7, the bootstrap methods do easily

obtain the errors in an estimated parameter (mean, variance etc.) set drawn from

the MC simulation.



Chapter 3

Previous Work

3.1 Analysis of the Island Size Distribution via

Rate Equations

In this chapter, we will discuss several key papers that have either motivated or

played a prominent rôle in the investigations into the island size distribution (ISD)

that are presented in this thesis. We begin, in Section 3.1.1, with a significant

contribution by Bartelt and Evans [11] who demonstrated that, in the case of

point islands, and with critical island size i = 1, a rate-equation approach will fail

to produce the ISD obtained by Monte Carlo (MC) simulations if one chooses an

incorrect form for the capture rate coefficients. As explained in [11], this failure is

due to the fact that the rate-equation approach is mean-field in nature, with all

islands of the same size assumed to grow at the same rate, irrespective of their

positions.

Prior to [11], Blackman and Wilding [16] presented a successful scaling analysis

of the rate equations that enables the large-time behaviour of monomer, island

and total island densities to be predicted for a class of capture rate coefficients,

49



Chapter 3 50

including the constant rate coefficients that are customarily used for point-island

models. Once again, the rate equations that were considered corresponded to the

case of i = 1.

The case of constant capture rate coefficients and critical island size i = 1

was also the subject of a more recent investigation by da Costa, van Roessel and

Wattis [25]. In contrast to the two earlier papers mentioned above, the authors

in [25] were able to establish the long-term behaviour of monomer and island size

distributions in a mathematically rigorous manner, albeit at the cost of dealing

only with a relatively simple case of the rate equations. We shall comment below

on how the results obtained in [25] compare with those given in [11] and [16].

In Section 3.2, we discuss a novel approach developed by Blackman and Mul-

heran [14] for introducing some spatial dependence into one-dimensional (1-D)

models of nucleation and island growth. This approach involves the concepts of

the gap size and capture zone distributions. Key to this is the recognition that

the nucleation of a new island in a gap between two adjacent stable islands will

result in the fragmentation of the gap. Thus the evolution of the gap sizes between

stable islands caused by nucleation can be interpreted as a fragmentation process.

After describing the fragmentation equation used in the work of Blackman and

Mulheran, we go on to give some details of another common model used in the

study of fragmentation processes, particularly in the work of Ziff and McGrady;

see, for example, [87]. In this model, the evolution of a system of fragmenting

particles is described by means of an integro-differential equation, and it is an

equation of this type that we will use when extending the results of [14]. One

advantage of using an integro-differential equation to describe the fragmentation

of gaps, is that there are a number of well-established scaling theory results that

we are then able to exploit. In particular, we shall give an account of a paper [75]
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due to Treat.

In the last two sections, we survey some work of Pimpinelli and Einstein [61], in

which the use of the Generalised Wigner Surmise plays a key part, before conclud-

ing with a discussion of a paper by Seba [70] on the spacing distribution between

parked cars on an infinitely long street. We believe that the latter, which leads to a

distributional fixed point equation, is intimately related to the gap size distribution

problem and we explore this connection in Chapter 7.

3.1.1 The Work of Bartelt & Evans and Blackman & Wild-

ing

In the case of irreversible aggregation, which occurs at low temperatures, if we

assume that islands evolve by capturing a single monomer, then a physically real-

istic system of rate equations with critical island size i = 1, deposition rate F and

diffusion rate D of monomers can be obtained. Recall from Chapter 1 that such a

system of equations is given by

dc1
dt

= F − 2Dσ1c
2
1 −Dc1

∞∑

j=2

σjcj (3.1)

dcj
dt

= Dc1(σj−1cj−1 − σjcj), j ≥ 2. (3.2)

Each term in the above system of equations has already been discussed in Sec-

tion 1.3.2. Equations (3.1) and (3.2) have been used by a number of authors in

investigations into the ISD in thin film growth. In this section we highlight the

contributions made by Bartelt and Evans [11] and Blackman and Wilding [16].

In [11], the scaling form
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cj(θ) =
θ

r2
φ

(
j

r

)
,

is assumed for solutions of (3.2), where, as noted in Section 1.3.3, r is the average

island size, θ is the coverage and the function φ is the scaling function. In [11],

Bartelt and Evans consider a point-island model, i.e. that each island occupies

only a single site, with an additional label attached to indicate an island’s size. In

this case, the capture rates σj in the mean-field rate equations would customarily

be chosen to be independent of j, with σj = σav = r−1
∑

j≥2 σjcj. However,

Bartelt and Evans use their simulation results to calculate size-dependent rates σj

and derive a relationship of the form σj = σavC(j/r), for some function C. Scaled

ISDs φ are then obtained and plotted for each of the two cases, σj = σav and

σj = σavC(j/r), and it is observed that these differ; see [11, Fig. 2]. In particular,

the distribution for the former has a discontinuity at a scaled island size of 3/2.

In determining the size-dependent rates and in their analysis, Bartelt and Evans

use the notion of a Voronoi tessellation of the substrate region containing the

islands. Each cell in such a tessellation corresponds to the region of the substrate

closer to an island than to any other island and so corresponds to the capture

zone of an island described in Section 1.3.4. The assumption that most monomers

deposited within a cell will aggregate with the associated island was exploited in

[11] to obtain an appropriate form for the function C.

It should be noted that, prior to the work of Bartelt and Evans in [11], Black-

man and Wilding [16] had also used a rate-equation approach to investigate the

scaling behaviour of island growth in thin films, using (3.1) and (3.2). As in [11],

described above, Blackman and Wilding took into account the possibility of the

capture rates σj depending on j, but unlike the former, who used simulations to

obtain σj , Blackman and Wilding assumed a power law dependence of the form
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σj = jp,

with 1/3 ≤ p ≤ 1/2 representing the physically relevant range of p-values. It was

also assumed in [16] that the decrease in the number of monomers is governed by

another power law, namely

c1(t) ∼ t−w, as t→ ∞, (3.3)

where the exponent w is to be determined. Assuming a scaling ansatz of the form

cj(t) =
1

jτ
f

(
j

tz

)
,

it was shown [16, Eq. (9)] that, for p < 1/2,

z = 2(3 − 2p)−1, τ =
1

2
+ p, w = (3 − 2p)−1,

and the time dependence of the nth moment

Mn = tz(n+1−τ)
∫ ∞

0

xn−τ dx,

is therefore given by

Mn ∼ t(2n+1−2p)/(3−2p); (3.4)

see [16, Eq. (10)]. Analogous results are also obtained for the case 1/2 ≤ p < 1.

Note, in particular, that when p = 0, in which case σj = 1 for all j, the above

assumptions and subsequent results reduce to

c1(t) ∼ t−1/3, Mn(t) ∼ t(2n+1)/3 as t→ ∞. (3.5)
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We shall return to (3.5) in the next section.

Moreover, in the same paper, Blackman and Wilding had also considered the

case where islands of size m+1 are stable and all islands of size smaller than m+1

will dissociate. It should be noted that their parameter m is the critical island

size, i.e. their m is the equivalent of our i in this thesis. By the same assumptions

σj = jp and (3.3), it was shown [16, Eq. (19)] that, for p < 1/(m+ 1),

z = (m+ 1)[(m+ 2) − (m+ 1)p]−1, τ =
m

m+ 1
+ p, w = [(m+ 2) − (m+ 1)p]−1,

and the time dependence of the nth moment is given by

Mn ∼ t[(m+1)n+1−(m+1)p]/[(m+2)−(m+1)p]; (3.6)

see [16, Eq. (20)]. Note that equation (3.6) is equivalent to (3.4) for them = 1 case.

As mentioned before, analogous results are also obtained for the case 1/(m+1) ≤

p < 1. In the case of p = 0, the above results reduce to

c1(t) ∼ t−1/(m+2), Mn(t) ∼ t[(m+1)n+1]/(m+2) as t→ ∞. (3.7)

We shall return to (3.7) in Chapter 4.

3.1.2 The Work of da Costa, van Roessel and Wattis

We now turn our attention to a more recent investigation [25] by da Costa, van

Roessel and Wattis. Once again, the rate equations that are studied are given by

(3.1) and (3.2), but with the constant α > 0 used instead of F and with
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Dσj = 1, for all j. (3.8)

Although (3.8) is a very restrictive assumption, the fact that the resulting equa-

tions simplify to

dc1
dt

= α− 2c21 − c1

∞∑

j=2

cj (3.9)

dcj
dt

= c1cj−1 − c1cj, j ≥ 2, (3.10)

enables a number of results to be established using analytical arguments that are

mathematically more rigorous than those employed in the two papers [11] and [16]

summarised in the previous subsection.

In [25], da Costa et. al. begin by introducing a new variable c0 defined by

c0(t) =

∞∑

j=1

cj(t),

and make the assumption that c0(0) <∞. Note that c0 corresponds to the zeroth

moment M0 and so, from (3.5), it is expected that

c1(t) ∼ t−1/3 and c0(t) ∼ t1/3 as t→ ∞. (3.11)

In terms of c0, equations (3.9) and (3.10) can be expressed as

ċ0 = α− c0c1,

ċ1 = α− c21 − c0c1,

ċj = c1cj−1 − c1cj , j ≥ 2.






(3.12)

The advantage that (3.12) has over the system (3.9) and (3.10) is that, although
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both are infinite-dimensional systems, the first two equations in (3.12) only involve

the first two unknowns, c0 and c1 and this means that these can be studied sepa-

rately using rigorous techniques on finite-dimensional systems of ordinary differen-

tial equations. The results obtained on c0 and c1 can then be used in conjunction

with the third equation (3.12) to derive corresponding results on cj, j ≥ 2.

For notational convenience, da Costa et. al. replace c0 and c1 by y ≥ 0 and

x ≥ 0 respectively. The two-dimensional (2-D) system of equations for x and y is

then

ẏ = α− xy,

ẋ = α− x2 − xy.





(3.13)

The first result established in [25] are

Proposition 3.1.1 ([25]). For any solution (x, y) of (3.13) the following hold true,

as t→ ∞,

• x(t) → 0;

• y(t) → ∞;

• x(t)y(t) → α.

Poincaré compactification and Centre Manifold methods are then used to prove

Theorem 3.1.2 ([25]). Let cj be any non-negative solution of (3.9) and (3.10).

Then, as t→ ∞, the following hold true

•
(

3

α
t

)1/3

cj(t) → 1 for all j ≥ 1;

• (3α2t)−1/3
∞∑

j=1

cj(t) → 1;
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•
(

3

α
t

)2/3
(
α− c1(t)

∞∑

j=1

cj(t)

)
→ 1.

which are in agreement with equation (3.5) obtained by Blackman and Wilding

for the case p = 0.

A scaling analysis is also carried out in [25] by means of a clever change of

variables, which allows the third equation in (3.12) to become linear. First a new

time scale is defined by

τ(t) − τ(t0) =

∫ t

t0

c1(s) ds, (3.14)

The variables cj are then transformed to c̃j using c̃j(τ) = cj(t(τ)) where t(τ) is the

inverse function of τ(t). In terms of c̃j and τ , the third equation in (3.12) becomes

dc̃j
dτ

= c̃j−1 − c̃j .

Theorem 3.1.3. Let cj be any non-negative solution of (3.9) and (3.10) with

initial data satisfying cj(0) ≤ ρ/jµ for all j, where ρ > 0 and µ > 1/2 are fixed

constants. Let τ(t) and c̃j(τ) be as given in (3.14). Then, with η = j/τ 6= 1 fixed,

the following holds

lim
j,τ→∞

√
2

α
τ c̃j(τ) = Φ1(η),

where

Φ1(η) :=





(1 − η)−1/2 if η < 1,

0 if η > 1.

Note that the scaling solution in Theorem 3.1.3 is discontinuous. The case

when η = 1 is also examined with the corresponding result being
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Theorem 3.1.4. Let cj be any non-negative solution of (3.9) and (3.10) with

monomeric initial data. Let τ(t) and c̃j(τ) be as given in (3.14). Then, with

ξ = (j − τ)/
√
τ ∈ R fixed, the following holds

lim
j,τ→∞

(
π2

α2
τ

)1/4

c̃j(τ) = Φ2(ξ),

where

Φ2(ξ) := e−ξ
2/2

∫ ∞

0

e−ξw
2−w4/2 dw.

Note that, da Costa et. al. comment that Figures 1 and 2 which they produce

in [25] using Φ1 and Φ2 are similar to Figure 2 obtained by Bartelt and Evans in

[11].

As discussed earlier, equations (3.9) and (3.10) represent the case of island

growth with critical island size i = 1. In Chapter 4, we shall adapt the arguments

used by da Costa et. al. to produce analogous asymptotic results for a general

critical island size i ≥ 1 where the growth of islands is described by the rate

equations (1.4)–(1.6) in Chapter 1, verifying in particular (3.7). We should stress,

however, that our river-based approach leads to weaker versions of the i = 1 results

obtained in [25] as we have only been able to establish the asymptotic behaviour

for a restricted class of solutions and not for all non-negative solutions (as in

Theorems 3.1.3 and 3.1.4).
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3.2 Analysis of the Gap Size Distribution in One-

Dimensional Nucleation and Growth Model

The mean-field nature of a rate-equation approach invariably leads to results that

do not compare well with simulation data. Motivated by this, several attempts

have been made to improve matters by introducing some measure of heterogeneity

in the island growth process to reflect the variability in island environment. As

described in Subsection 3.1.1, Bartelt and Evans [11] used the idea of a Voronoi

tessellation when determining size-dependent capture rates. We now give a brief

account of a fragmentation based approach used by Blackman and Mulheran [14]

to investigate the distribution of gap sizes between neighbouring islands, and sub-

sequently the capture zone distribution of islands, in a 1-D point island model

with critical island size i = 1.

It should be noted that the fragmentation equation introduced in [14] as a

means of describing the gap size evolution differs from the integro-differential ver-

sion that is customarily used in studies of fragmentation processes. As we discuss

in Subsection 3.2.2, in one such study, Ziff and McGrady [87] considered a binary

fragmentation equation to study processes such as depolymerisation using a frag-

mentation kernel similar to the one Blackman and Mulheran used in their work

[14]. Ziff and McGrady were able to obtain an explicit similarity solution of their

fragmentation equation.

Despite the success of Ziff and McGrady, explicit solutions to integro-differential

fragmentation equations with other, more complicated, kernels are notoriously dif-

ficult to obtain. However, we can apply a scaling approach which often allows us

to identify similarity solutions. For example, in [75], Treat adopted a scaling
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ansatz to produce similarity solutions. The latter were then used to obtain the

small- and large-size asymptotic behaviour of general solutions. This is described

in Subsection 3.2.3.

As mentioned earlier, influenced by the work of Blackman and Mulheran, and

being aware of the fact that a number of asymptotic results are available for frag-

mentation equations of the type studied by Ziff and McGrady, we have been able

to produce a modified fragmentation-based approach to the gap size distribution

(GSD) which relies on the integro-differential formulation rather than the alterna-

tive equation used in [14]. By using methods presented in Chapter 2, particularly

those relating to the Laplace integral, we have successfully extended the results in

[14] from i = 1 to a general value of i. This will be discussed fully in Chapter 5.

3.2.1 The Blackman and Mulheran Theory

In the 1-D point island nucleation and growth model, with critical island size

i = 1, Blackman and Mulheran noted that a nucleation occurring in a gap of

width y will fragment the parent gap into two new daughter gaps of widths, say

x and y − x. They then exploited this fact to model the evolution of gap sizes

as a fragmentation process, and, from this, were able to determine the GSD. As

the fragmentation of a parent gap leads to two daughter gaps, this is a binary

fragmentation process. Note that this approach to the GSD applies only to the

1-D model, which is illustrated in Figure 1.3 (see Chapter 1).

Following the analysis of Bales and Chrzan [6], the position dependent monomer

density n1(x, t), whose average is c1(t), satisfies the diffusion equation

∂n1

∂t
= D

∂2n1

∂x2
+ F −DE−2n1, (3.15)

where E is defined as the average distance a monomer travels before being captured
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by an island or another monomer. As argued in [14, Sections 4 and 5], during the

aggregation regime the monomer density between a pair of islands situated at

x = 0 and x = y is in an approximately steady state, and the monomer density is

given approximately by the ordinary differential equation

D
d2n1

dx2
+ F = 0. (3.16)

The solution of (3.16) is

n1(x) =
1

2R
x(y − x), (3.17)

where x is the distance from an island located at one end of the gap, and R = D/F

is the ratio of monomer diffusion rate to deposition rate. Since the critical island

size i is 1, we only require two monomers at a given x for nucleation to occur at

x. According to (3.17), the probability of a new nucleation occuring in a gap of

width y may be taken as being proportional to

a(y) =

∫ y

0

n1(x)
2 dx =

(
1

2R

)2 ∫ y

0

[x(y − x)]2 dx =

(
1

2R

)2
y5

30
. (3.18)

Moreover, given that a nucleation event has taken place in a gap of width y, the

probability that it will occur at a position x in the gap is proportional to h(x/y)/y

where

h(r) =

(
1

2R

)2

[r(1 − r)]2, 0 ≤ r ≤ 1. (3.19)

Blackman and Mulheran derive an equation [14, Eq. (30)] for describing the

effect of a new nucleation, namely
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FM+1(x) = FM(x)

(
1 − x5

µM(5)

)

+

∫ ∞

x

FM (y)

(
y5

µM(5)

)(
h

(
x

y

)
+ h

(
1 − x

y

))
dy

y
, (3.20)

where M is the total number of traps on the line of length L, FM (x) is the number

of gaps in the range x to x+ dx and µM(p) is the pth moment of FM(x); see [14,

Eq. (24)]. Moreover, they also derive an equation [14, Eq. (31)] for the scaled

probability in the form

X
dφ

dX
+

(
2 +

X5

Q5

)
φ = 2

∫ ∞

X

(
Y 5φ(Y )

Q5

)
h

(
X

Y

)
dY

Y
, (3.21)

where φ(X) is the scaled GSD function with X = x/〈x〉 and Qp is the moment of

φ(X); see [14, Eq. (26)].

Blackman and Mulheran have used different values of the ratio R and the

coverage θ in their MC simulations for the GSD, confirming good scale invariance

as in [14, Fig. 11]. Moreover, they compare these MC data for the GSD to (3.21).

This is done by considering a line of length, L say, and, by using random number

generation, generating an array of points on this line [14, p.688]. The selection

of a pair of existing points (i.e. a gap) between which a new point is introduced

is influenced by the fifth power of the separation of the points. The reason for

the fifth power is due to (3.18). This procedure for L = 1000 − 10000 is repeated

over 10000 runs. Blackman and Mulheran have commented on comparisons for

the GSD that, though the fit is good, the MC data is more widening than the

prediction of (3.21).

Under the assumption that nucleation has effectively mixed up the gaps so that

nearest neighbours are not correlated, Blackman and Mulheran define the capture
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zone distribution (CZD), P (s), by the convolution equation

P (s) = 2

∫ 2s

0

φ(x)φ(2s− x) dx, (3.22)

where φ is the gap size scaling function, s is the scaled size of capture zones and the

factor 2 ensures the normalisation of P (s). More detail about the CZD discussed

by Mulheran and Blackman [54] can be found in Chapter 1, Subsection 1.3.4.

Using MC simulations, as in the case for GSD, Blackman and Mulheran have

again confirmed good scale invariance for the CZD using different values of R and

θ as in [14, Fig. 12]. Moreover, they compare the MC data to the convolution

equation (3.22) where the gap size scaling function, φ, is obtained from (3.21). In

[14, Fig. 12], the comparison is excellent and this supports the assumption that

the correlation of the two neighbouring gaps can be ignored and so, in the 1-D

case only, we have a direct way of obtaining the function for the CZD.

3.2.2 The Ziff and McGrady Fragmentation Equation

Ziff and McGrady [87] used the binary fragmentation equation

∂

∂t
u(x, t) = −1

2
u(x, t)

∫ x

0

H(x− y, y) dy +

∫ ∞

x

H(x, y − x)u(y, t) dy, (3.23)

to investigate the size distributions of polymer chains that arises as a result of

polymer degradation. Each term in (3.23) is discussed in Section 1.3.2. To repre-

sent the situation when the breaking of bonds is more likely to occur in the middle

of a chain, the fragmentation kernel H was chosen to be H(x, y) = xy, in which

case (3.23) becomes
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∂

∂t
u(x, t) = −1

6
x3u(x, t) + 2

∫ ∞

x

x(y − x)u(y, t) dy. (3.24)

Ziff and McGrady derived an explicit solution of (3.24), subject to the monodis-

perse initial condition u(x, 0) = δ(x− l), in the form

u(x, t) = e−tl
3/6δ(x− l) + tlx2

∫ l

x

y−2e−ty
3/6 dy, (3.25)

and established that the scaling behaviour of (3.25) is given by

u(x, t) ∼ xtφ(xt1/3), (3.26)

where

φ(x) =
xl

61/33

∫ ∞

x3/6

n−4/3e−n dn. (3.27)

It is important to note that the solution (3.25) may not be unique according

to [72]. This is particularly due to the fact that this solution is not normalised,

which will be discussed in Chapter 5.

If we follow the argument of Blackman and Mulheran, discussed earlier, but

use the standard binary fragmentation equation (3.23) instead of (3.20), then we

arrive at an integro-differential equation for describing the gap size evolution in the

i = 1 case. We shall explore this in Chapter 5, where we shall also propose, and

investigate, an appropriate binary fragmentation equation for the case of general

i in which we set

a(y) =

∫ y

0

n1(x)
i+1 dx. (3.28)

The equation (3.24) studied by Ziff and McGrady will be seen to correspond to
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the case i = 0.

3.2.3 Similarity Solution of the Linear Fragmentation Equa-

tion

Equation (3.24) is a particular case of the linear, homogeneous fragmentation

equation [75]

∂

∂t
u(x, t) = −cρxρu(x, t) + cρ

∫ ∞

x

yρ−1h(x/y)u(y, t) dy, (3.29)

where ρ ≥ 0 and cρ is a constant; see Subsection 1.3.3 in Chapter 1. From [75,

p.2524], similarity solutions of (3.29) can be written in the form

u∗(x, t) =
N∗2(t)

V
φ

(
N∗(t)x

V

)
, (3.30)

where φ is normalised so that, as noted in Chapter 1,

∫ ∞

0

φ(x) dx =

∫ ∞

0

xφ(x) dx = 1, (3.31)

and

N∗(t) :=

∫ ∞

0

u∗(x, t) dx, V :=

∫ ∞

0

xu∗(x, t) dx,

are the zeroth and first moments of u∗ respectively.

Asymptotic properties of φ have been established by Cheng and Redner [22, 23]

and Treat [75]. In particular, it has been shown that there exists a constant c > 0

such that if γ is real, lim
r→0

r−γ−2

∫ r

0

ωh(ω) dω exists and is non-zero, then

φ(x) = O(xγ) as x→ 0, (3.32)
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φ(x) = O(xh(1)−2 exp(−cxρ)) as x→ ∞, (3.33)

where ρ is the exponent that appears in (3.29).

The scaled similarity variable η = (x/µ)ρ is introduced in [75, Section 5] with

φ(x) = φ̄(η). An explicit expression for similarity solutions, involving Meijer G-

functions, is derived in [75, Section 6] for the specific case when the function h in

equation (3.29) takes the form

h(r) = rγ(b0 + b1r + · · ·+ bpr
p),

where p is a non-negative integer, b0, . . . , bp ∈ R and 0 ≤ r ≤ 1. In the case of

general p, Treat also derived the following expression for φ(η) [75, Eq. (6.13)]

φ̄(η) =
Γ(k1/ρ)Γ(k2/ρ) · · ·Γ(kp/ρ)

Γ((γ + 1)/ρ)Γ((γ + 2)/ρ) · · ·Γ((γ + 1 + p)/ρ)

× ρ

µ
ηγ/ρ Gp+1,0

p,p+1

(
kp − γ − 1

ρ
; 0,

p

ρ
; η

)
, (3.34)

where, with (kp−γ−1)/ρ standing for (k1−γ−1)/ρ, (k2−γ−1)/ρ, . . . , (kp−γ−1)/ρ,

and p/ρ for 1/ρ, 2/ρ, . . . , p/ρ, the Meijer G-function is defined [75, Eq. (6.15)] as

Gp+1,0
p,p+1

(
kp − γ − 1

ρ
; 0,

p

ρ
; η

)

= Gp+1,0
p,p+1

(
k1 − γ − 1

ρ
,
k2 − γ − 1

ρ
, . . . ,

kp − γ − 1

ρ
; 0,

1

ρ
,
2

ρ
, . . . ,

p

ρ
; η

)

=
1

2πi

∫ Ω+i∞

Ω−i∞
η−z

× Γ(z)Γ(z + (1/ρ)) · · ·Γ(z + (p/ρ))

Γ(z + (k1 − γ − 1)/ρ)Γ(z + (k2 − γ − 1)/ρ) · · ·Γ(z + (kp − γ − 1)/ρ)
dz,
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where Ω > 0, and kp, p ∈ Z
+, are positive.

For the linear daughter distribution that corresponds to the case p = 1, from

the function h(r) the coefficients b0 and b1 can be expressed as [75, Eq. (7.5)],

b0 = (2 + γ)(k1 − γ − 1); b1 = −(3 + γ)(k1 − γ − 2),

where k1 is positive. In the p = 1 case, Treat also derived an alternative represen-

tation of the Meijer G-function [75, Eq. (6.26)]

G2,0
1,2

(
k1 − γ − 1

ρ
; 0,

1

ρ
; η

)
= e−ηψ

(
k1 − γ − 2

ρ
; 1 − 1

ρ
; η

)
, (3.35)

where,

ψ

(
k1 − γ − 2

ρ
; 1 − 1

ρ
; η

)
=

∫∞
0
z(k1−γ−2)/ρ)−1(1 + z)−(k1−γ−1)/ρe−ηz dz

Γ((k1 − γ − 2)/ρ)
. (3.36)

In the simple case p = 1, as discussed in [75, Section 7.2], the integral form

(3.34) of the solution φ simplifies via (3.35) to

φ̄(η) =
Γ(k1/ρ)

Γ((γ + 1)/ρ)Γ((γ + 2)/ρ)

ρ

µ
ηγ/ρe−ηψ

(
k1 − γ − 2

ρ
; 1 − 1

ρ
; η

)
, (3.37)

where

µ =
Γ((γ + 1)/ρ)Γ((k1 + 1)/ρ)

Γ((γ + 3)/ρ)Γ(k1/ρ)
,

and ψ is defined in (3.36). For the large-η expansion case, Treat derived, with ψ
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being defined in (3.36),

φ̄(η) =
(γ + 2)

Γ((γ + 1)/ρ)µ
ηγ/ρψ

(
1; 1 − 1

ρ
; η

)
, (3.38)

with

µ =
Γ((γ + 1)/ρ)(γ + 3)

Γ((γ + 2)/ρ)(γ + 2)
,

and k1 = γ + 2 + µ.

Since similarity solutions take the form (3.30), we are interested in obtaining

the small and large x behaviour of φ(x). We also are interested in the large-η

expansion [75, Section 7.2.2] that will be useful for the analysis in Chapter 5,

where, as described earlier, we will obtain the small- and large-size asymptotics

of the fragmentation equation with the arguments used in the work of Blackman

and Mulheran.

3.3 The Generalised Wigner Surmise

Recently, Pimpinelli and Einstein introduced a new theory for the CZD, employing

the Generalised Wigner Surmise (GWS) [61],

P (s) = aβs
β exp(−bβs2), (3.39)

where

β =






2
d
(i+ 1) if d = 1, 2

i+ 1 if d = 3,
(3.40)
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causing some controversy; more detail about (3.39) can be found in Chapter 1,

Subsection 1.3.4. Despite the excellent visual comparisons between the GWS and

MC data taken from the literature [61], the GWS has already been challenged.

Oliveira and Reis [57] have presented simulation results for point islands (at

coverage θ = 10%), fractal islands (at θ = 20%) and square islands (at θ = 10%)

grown on a 2-D substrate with critical island sizes i = 1 and 2 to study the ISD and

the CZD numerically. Oliveira and Reis confirm good scale invariance for the CZD

for point, fractal and square islands respectively in [57, Fig. 1(a), 2(a) & 2(b)] with

different values of R. They compare these simulation data to the GWS, confirming

excellent agreement and providing some support for the universal Gaussian tail of

the CZD [61]. For the ISD, Oliveira and Reis use the empirical formula derived

by Amar and Family [2]

fi(x) = Cix
i exp(−iaix1/ai), (3.41)

where x is the scaled island size, and Ci and ai are normalisation constants. Equa-

tion (3.41) is used to investigate the peaks of ISDs and allows one to estimate i.

However, because of its significant deviations from the point-island model as in

[2, 33], the exact form of the ISD has yet to be found. As expected, Oliveira and

Reis found that using (3.41) shows deviations from the simulated ISD for other

types of islands.

In a short comment on [61], Li, Han and Evans [47] also question the i = 1,

d = 2 GWS form for the CZD, proposing their own form based on a sophisticated

theory for capture zone evolution in two dimensions [32]. They also presented

an alternative theory which yields a modified form for the large-size behaviour of

CZD, supported by data for the simulated growth of compact islands with i = 1.

This form seems to agree with that found by Oliveira and Reis, contradicting the



Chapter 3 70

GWS [57].

In other work, Shi, Shim and Amar [71] studied i = 1 point-island models in

dimensions d = 1, 2, 3, 4. The shapes of the lattice for each d are a line (d = 1),

square and triangle (d = 2), cubic (d = 3), and hypercubic (d = 4). Shi et. al.

have used two simulation models, namely SSA (Shi, Shim and Amar) and EB

(Evans and Bartelt). In the EB model, if a monomer diffuses to, or is deposited

at, a site which has an occupied site as a neighbour, that monomer is immediately

captured by another diffused monomer or an island. This short-range interaction

does not exist in the SSA model, where if a monomer either hops onto an island

or onto another monomer, then this particular monomer is captured by this island

or a new island is nucleated, respectively. For d = 2 − 4, Shi et. al. confirm little

dependence on θ for a fixed value of R. However, for a fixed θ = 10%, the peak of

the simulated CZD decreases as the value of R increases. These are observed for

d = 3 in [71, Fig. 1] and similar results are obtained for d = 2 and d = 4. It is

noted that the dependence of the peak of the CZD on R is more sensitive for the

EB model than the SSA model. This may be due to the interaction range in the

EB model being larger than those of the SSA model.

Surprisingly, the conclusion for d = 1 is different. Firstly, SSA confirms good

agreement of simulated data for different values of R with those of results in the

work of Blackman and Mulheran [14]. For θ = 10%, the peak of the simulated

CZD increases with R as the value of R increases, which is different from those

results for d = 2 − 4. By investigating the peak of the simulated CZD, Shi et. al.

find that the CZD is more sharply peaked and narrower than the GWS suggests,

and a better choice of β is 3 rather than β = 2 for d = 2, 3. Moreover, for d = 1, it

is notable that the peak height analysed by Shi et. al. suggests that the predicted

value of β = 4 is not correct. Therefore it is by no means established whether the
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GWS provides a good theoretical basis for understanding the CZD found in island

nucleation and growth simulations.

Recent work by González, Pimpinelli and Einstein [35] has revisited the case of

i = 1, developing the original fragmentation equation (3.21) [14] and the GWS ar-

guments in response to deviations between prediction and simulation. As discussed

earlier, Blackman and Mulheran proposed that a(x) ≈ x5 as in (3.18). However,

González et. al. observe that exponents 3 and 4 instead of 5 give better agree-

ment with their simulation data. But neither these values describe the large-size

asymptotic behaviour of the scaled gap size x. They comment that the small-size

asymptotic behaviour of the GSD may depend on the probability for the nucle-

ation to occur in a specific position between two existing islands. In [35], the GSD

decays like exp(−Bx3), for some constant B, instead of exp(−Bx5) as predicted

by the Blackman and Mulheran fragmentation theory approach or exp(−Bx2) as

predicted by the GWS. González et. al. have concluded that the GWS with the

suitable selection of β is a good approximation for the CZD.

It is interesting to note that the justification for the relationship between the

parameter β and the critical island size is based on the same physical model anal-

ysed in this thesis. In [61], the island nucleation rate is discussed in terms of the

monomer density n, and the probability of (i+ 1) monomers coinciding is used to

give the nucleation rate as ni+1. This is the same physical basis Blackman and

Mulheran have used for their fragmentation theory in the case of i = 1 [14].

Therefore, in Chapter 5 we will conclude the work presented in this thesis with

a discussion of how the Blackman and Mulheran theory and the GWS approaches

differ and how they might be reconciled. Also, in Chapter 6 confrontation with the

MC simulation and experiment will ultimately arbitrate between these theories.

Along these lines, we note the recent analysis of the case of i = 1 in [35], and our
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own detailed comparisons with extensive simulation data for i = 0, 1, 2, 3.

3.4 The Distributional Fixed Point Equation

Seba [70] investigated a 1-D model of spacing distribution between cars parked

in an infinitely long street to ensure the parking of as many cars as possible.

The underlying strategy that is adopted for any particular parking attempt is as

follows. A random position x on the street is selected. If a large enough interval

centred at x is free, the car may park in the interval at x thereby fragmenting

the interval. Otherwise, another random position x is chosen and so on. Cars

may leave as well and new ones immediately park in the interval. As a means of

describing the spacing distribution approximately, Seba derived the distributional

fixed point equation (DFPE)

Xd
△
= a(1 +Xd). (3.42)

Here Xd is the distance between two parked cars, a is an independent random

variable with a probability density, f(a), and the symbol
△
= means that the left-

and right-hand sides of (3.42) have the same distribution. It is assumed that f(a)

is symmetric such that f(a) = f(1 − a). The DFPE (3.42) can be solved by

iteration. If we define w(t) of Xd as the probability density of the distance Xd,

then the cumulative density function W (t) of Xd can be written as an integral

equation in the form [70, Eq. (8)]

W (t) =

∫ 1

0

W

(
t

a
− 1

)
f(a) da = t

∫ ∞

t−1

W (s)f

(
t

s+ 1

)
ds

(s+ 1)2
. (3.43)
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Seba chooses the beta distribution with two parameters being equal to 2, i.e.

β(2, 2), for f(a) which leads to f(a) = a2−1(1 − a)2−1/B(2, 2) = 6a(1 − a) where

B(·, ·) is the Beta function. He then differentiates (3.43) with respect to t four

times to obtain the delay differential equation [70, Eq. (14)]

t3
d2

dt2

(
w(t)

t

)
= 6w(t− 1). (3.44)

In [70], Seba compares the prediction results from (3.42) and (3.44) with exper-

imental data obtained by measuring the distances between cars parked in a street

and observed that the prediction compares well with experimental data.

The idea we pursue later in the thesis is to adapt the Seba model for the

case of nucleation and growth on a 1-D substrate as a way of describing the ISD

accurately. The connection between our model and the Seba model is that we

may interpret the distance between any two neighbouring cars as the gap between

any two neighbouring islands. This may be also a way of describing both GSDs

and CZDs which may allow us to analyse the DFPE and its counterpart integral

equation. More details will be given later in Chapter 7.
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Long Time Behaviour of

Monomer and Point Island Size

Distributions

4.1 Introduction to the System

In Chapter 3, we described how equations (3.9) and (3.10), with constant capture

rate coefficients, have been the subject of rigorous mathematical analysis aimed

at determining the asymptotic behaviour of monomer and island size distributions

and proving the convergence of island size distribution (ISD) to a similarity solu-

tion. As indicated earlier, this rigorous analysis has been carried out under the

assumption that the critical island size is given by i = 1. In this chapter, our aim is

to relax this rather restrictive condition by extending the i = 1 results obtained by

da Costa, van Roessel and Wattis in [25] to the case when i > 1. In achieving this

aim, we shall use techniques associated with the Newton Polygon and the notion

of a river, as outlined in Chapter 2. This is in contrast to the approach that relied

74
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upon the Centre Manifold and Tubular Flow theorems that was adopted in [25].

Our reasons for using this alternative approach are two-fold. Firstly, we have been

unable to apply the approach used by da Costa et. al. to the case i > 1. Secondly,

we believe that the method which we use is easier to apply than that adopted in

[25] even in the i = 1 case. Moreover, our results for a general i immediately yield

those of [25], albeit for a restricted class of solutions, on setting i = 1 and pro-

vide confirmation of the results of Blackman and Wilding for the case of constant

capture rate coefficients and a general critical island size. Further motivation for

our work in this chapter is also provided by the fact that an important objective

in the modelling of the submonolayer nucleation and growth regime is to identify

how the critical island size i influences the scaling properties of the resulting ISD.

We generalise the model of [25] to the case of submonolayer deposition with

point islands of critical size i ≥ 1. We assume that islands of size 1 < j ≤ i simply

do not arise and as such that islands of size j > i cannot fragment into monomers.

Under these assumptions and the assumptions of da Costa et. al. [25], we consider

a system of equations

ċ1 = α− ncn1 − c1

∞∑

j=n

cj,

ċn = cn1 − c1cn,

ċj = c1cj−1 − c1cj , j > n,






(4.1)

where cj(t) is the expected number of islands of size j, n(:= i+ 1) is the smallest

stable island size and α ∈ R is the constant monomer input.

The advantage of the system of equations (4.1) is, as in the work of da Costa

et. al., that the analysis of the long-time behaviour of solutions reduces to a study

of a two-dimensional system of ordinary differential equations. Let Y (t) = c1(t)
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and formally set X(t) =

∞∑

j=n

cj(t). Then, substituting in the equation for ċ1 leads

to

Ẏ = α− nY n − Y X.

We differentiate X with respect to (w.r.t) t to obtain,

Ẋ =

∞∑

j=n

ċj = Y n − Y cn + Y

∞∑

j=n+1

(cj−1 − cj) = Y n.

Thus, we have a system of equations

Ẏ = α− nY n −XY,

Ẋ = Y n,

ċn = Y n − Y cn,

ċj = Y (cj−1 − cj), j > n.






(4.2)

One can recover the equations (3.9) and (3.10) analysed by da Costa et. al. in

[25] by setting n = 2 and noting that c0 = X + Y . We notice that there is no

factor n = 2 in equation (3.9). We show that this is not inconsistent. Recall, from

Chapter 3, the system of equations investigated by da Costa et. al.

ċ0 = α− c0c1, c0(t) =

∞∑

j=1

cj(t),

ċ1 = α− c21 − c0c1,

ċj = c1(cj−1 − cj), j ≥ 2.





(4.3)

Let us write the ċ1 equation as

ċ1 = α− c21 − c21 − c1

∞∑

j=2

cj(t) = α− 2c21 − c1X, X =

∞∑

j=2

cj(t).
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Then differentiate X w.r.t t to obtain

Ẋ =

∞∑

j=2

ċj =

∞∑

j=2

(c1cj−1 − c1cj) = c1

∞∑

j=2

cj−1 − c1

∞∑

j=2

cj = c21.

Hence, letting Y = c1, we recover

Ẏ = α− 2Y 2 −XY,

Ẋ = Y 2,





since we have the following relation c0 =
∞∑

j=1

cj = X + Y .

Note that the first two equations in (4.2) decouple from the rest and that once

the behaviour of Y (t) is known for large t, we can recover the long-time behaviour

of cj(t) by solving, one by one, linear equations.

As in [25], we can establish the equivalence of solutions to (4.1) and (4.2).

Following the approach used in [25], we first introduce a new timescale

τ(t) :=

∫ t

0

Y (s) ds, (4.4)

along with scaled variables, c̃j(τ) := cj(t(τ)). Since Y (t) > 0, τ(t) is positive and

monotonic increasing, and so has an inverse which we denote by t(τ). Using the

new timescale, we derive for j ≥ n

c̃′j(τ) =
dcj
dt

dt

dτ
=
c1cj−1 − c1cj

c1
⇔ c̃′j = c̃j−1 − c̃j.

By using the variation of constants formula, we obtain

c̃j = e−τ
∫ τ

0

esc̃j−1(s) ds+Ke−τ =

∫ τ

0

e−sc̃j−1(τ − s) ds+Ke−τ ,

where K ≡ c̃j(0) is a constant. Note that the equation ċn = cn1 − c1cn becomes
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c̃′n = c̃n−1
1 − c̃n ⇒ c̃n = e−τ c̃n(0) +

∫ τ

0

e−(τ−s)[c̃1(s)]
n−1 ds.

For j = n+ 1, we have

c̃n+1(τ) = e−τ
∫ τ

0

esc̃n(s) ds+ e−τ c̃n+1(0) =

∫ τ

0

e−sc̃n(τ − s) ds+ e−τ c̃n+1(0)

=

∫ τ

0

se−s[c̃1(τ − s)]n−1 ds+ e−τ [τ c̃n(0) + c̃n+1(0)].

We now use induction to establish a formula for c̃j in the general case j ≥ n.

Proposition 4.1.1. For j ≥ n,

c̃j(τ) = e−τ
j∑

k=n

τ j−k

(j − k)!
c̃k(0) +

1

(j − n)!

∫ τ

0

sj−ne−s[c̃1(τ − s)]n−1 ds. (4.5)

Proof. When j = n, we have c̃n(τ) = e−τ c̃n(0) +
∫ τ
0
e−s[c̃1(τ − s)]n−1ds and so the

formula holds for j = n. Suppose the formula for c̃j holds for some fixed j ≥ n.

Then

c̃j+1(τ) = e−τ c̃j+1(0) +

∫ τ

0

e−(τ−s)c̃j(s) ds

= e−τ c̃j+1(0) +

∫ τ

0

e−(τ−s)

[
e−s

j∑

k=n

sj−k

(j − k)!
c̃k(0) ds

+
1

(j − n)!

∫ s

0

(s− r)j−ne−(s−r)[c̃1(r)]
n−1 dr

]
ds. (4.6)

By changing the order of integration, from (4.6) we obtain
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c̃j+1(τ) = e−τ c̃j+1(0) + e−τ
∫ τ

0

j∑

k=n

sj−k

(j − k)!
c̃k(0) ds

+
1

(j − n)!

∫ τ

0

[∫ τ

r

e−(τ−r)(s− r)j−n[c̃1(r)]
n−1 ds

]
dr

= e−τ c̃j+1(0) + e−τ
j∑

k=n

τ j−k+1

(j − k + 1)!
c̃k(0)

+
1

(j − n)!

∫ τ

0

e−(τ−r)[c̃1(r)]
n−1 (τ − r)j−n+1

(j − n+ 1)
dr

= e−τ
j+1∑

k=n

τ j+1−k

(j + 1 − k)!
c̃k(0) +

1

(j + 1 − n)!

∫ τ

0

e−(τ−r)(τ − r)j+1−n[c̃1(r)]
n−1 dr

= e−τ
j+1∑

k=n

τ j+1−k

(j + 1 − k)!
c̃k(0) +

1

(j + 1 − n)!

∫ τ

0

e−ssj+1−n[c̃1(τ − s)]n−1 ds,

as required. �

Now, we obtain a theorem about the equivalence of solutions of (4.1) and (4.2)

Theorem 4.1.2. If X(0) < ∞, then a solution of system (4.2) will also be a

solution of (4.1).

Proof. We begin by introducing the following generating function,

F (τ, z) =

∞∑

m=n

c̃m(τ)zm = e−τ
∞∑

m=n

m∑

k=n

τm−k

(m− k)!
zmc̃k(0)

+

∞∑

m=n

zm

(m− n)!

∫ τ

0

sm−ne−s[c̃1(τ − s)]n−1 ds

= G(τ, z) +H(τ, z).

Rearranging, we obtain
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G(τ, z) = e−τ
∞∑

m=n

m∑

k=n

τm−k

(m− k)!
zmc̃k(0)

= e−τ
∞∑

k=n

∞∑

m=k

τm−k

(m− k)!
zmc̃k(0)

= e−τ
∞∑

k=n

∞∑

m=0

τm

m!
zm+k c̃k(0)

= e−τ(1−z)
∞∑

k=n

zkc̃k(0).

The series above converges for |z| ≤ 1 since the series
∞∑

k=n

c̃k(0) is convergent

presumably because X(0) < ∞. The series
∞∑

k=n

|c̃k(0)| < ∞ is also convergent

because c̃k(0) ≥ 0. Also, |z||c̃k(0)| ≤ |c̃k(0)| if |z| ≤ 1. Thus,

∞∑

k=n

|zk||c̃k(0)| ≤
∞∑

k=n

|c̃k(0)| =
∞∑

k=n

c̃k(0),

which converges by comparison test (non-limit version). For τ = 0, F (0, z) =
∞∑

m=n

c̃k(0)zm and therefore we have

G(τ, z) = e−τ(1−z)F (0, z) for |z| ≤ 1. (4.7)

If we now examine H(τ, z), then, on rearranging, we obtain
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H(τ, z) =
∞∑

m=n

zm

(m− n)!

∫ τ

0

[c̃1(τ − s)]n−1sm−ne−s ds

=
∞∑

m=n

zn
∫ τ

0

[c̃1(τ − s)]n−1 (sz)m−n

(m− n)!
e−s ds

= zn
∫ τ

0

[c̃1(τ − s)]n−1e−s+sz ds

= zn
∫ τ

0

[c̃1(s)]
n−1e−(τ−s)(1−z) ds.

Thus,

F (τ, z) = e−τ(1−z)F (0, z) + zn
∫ τ

0

[c̃1(s)]
n−1e−(τ−s)(1−z) ds,

which, at z = 1, yields

F (τ, 1) = F (0, 1) +

∫ τ

0

[c̃1(s)]
n−1 ds = F (0, 1) +

∫ τ

0

[Ỹ (s)]n−1 ds. (4.8)

Recall Ẋ(t) = Y (t)n such that

X̃ ′(τ) = Ỹ (τ)n−1, (4.9)

and the fact that F (τ, 1) = X̃(τ). Differentiate (4.8) w.r.t τ

F (τ, 1)′ = F (0, 1)′ + Ỹ (τ)n−1 ⇔ X̃ ′(τ) = Ỹ (τ)n−1,

which satisfies (4.9). �
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4.2 Asymptotic Behaviour of the Monomer and

Total Island Distributions

Our aim now is to determine the asymptotic behaviour of solutions to the sys-

tem (4.2). For this we can apply the theory discussed in Chapter 2 to the equa-

tions for X and Y in (4.2) to investigate whether any (k, r)-rivers exists, and, if so,

determine their stability. We begin by using the Newton Polygon (NP) method to

find the possible river exponents r, and define Φ(X, Y ) by

Φ(X, Y ) :=
Q(X, Y )

P (X, Y )
,

where Q(X, Y ) = α− nY n −XY and P (X, Y ) = Y n. It follows that

dY

dX
= αY −n − n−XY 1−n := Φ(X, Y ). (4.10)

It can be shown that the NP of Φ(X, Y ), which is a generalised polynomial,

provides the same information as that of Q(X, Y ). The former is as in Figure 4.1.

Following the approach explained in Chapter 2, we take

F (y0) = αy−n0 − n− xy1−n
0 (4.11)

and then examine each term in turn. This is set out in Table 4.1 with A = 0 and

B = ρ
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Figure 4.1: Phase portrait of (4.10) for n even (on the left-hand side of this figure)
and odd (on the right-hand side).

Term γ ρ = (ρ0) A B Point (γ,B)

αy−n0 0 (−n) 0 −n (0,−n)
−n 0 (0) 0 0 (0, 0)

−xy1−n
0 1 (1 − n) 0 1 − n (1, 1 − n)

Table 4.1: Vertices of the system using the Newton Polygon method

Figure 4.2: Newton Polygon for (4.10).
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We want to find the real numbers r such that the vector (1, r) is perpendicular

to the direction vectors of the segments Γ1 or Γ2. Let us consider the case of the

segment Γ1 first. This segment connects (0, 0) to (1, 1 − n), and its gradient is

(1− n). Thus, we have r1 = 1/(n− 1) for Γ1. For Definition 2.3.2 part 1, we start

with

Φ(X,X1/(n−1)) = αX−n/(n−1) − n− 1,

and so degr1Φ = 0, and Φr1(X, Y ) = −n−XY 1−n. By Definition 2.3.2 part 1, we

have (note that Φr(1, k) = Qr(1, k) = 0)

Φr1(1, k) = 0 ⇔ −n− k1−n = 0,

i.e. k ∈ R has to satisfy

k1−n = −n,

from which it follows that when n is odd, say n = 2l + 1, where l ∈ Z
+, then we

have k = [−(2l + 1)]−1/2l. In other words, there are no solutions. In the case of

even integer n = 2l, we have k is obtained as an odd root of a negative number

and so k is negative. This implies that the only real solution is negative, i.e. the

river runs through the fourth quadrant of the (X, Y ) plane. Moreover, we have

P (X,X1/(n−1)) = Xn/(n−1) ⇒ Pr1(X, Y ) = Y n;

Q(X,X1/(n−1)) = α− nXn/(n−1) −Xn/(n−1) ⇒ Qr1(X, Y ) = −nY n −XY,

and, by Definition 2.3.2 part 3, c(r) = (n+ 2)/(n− 1) ≥ 0. Finally, we have
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Pr1(1, k) = kn 6= 0 and
∂Qr1

∂Y
(1, k) = n− 1 6= 0.

Hence, by Theorem 2.3.3, the river with r1 = 1/(n− 1) exists. Next, we want to

determine whether this river is attractive or repulsive using Theorem 2.3.5. We

differentiate Φ(X, Y ) with respect to Y , setting Y ∼ kX1/(n−1),

ΦY (X, Y ) = −nαY −n−1 − (1 − n)XY −n,

i.e.

ΦY (X, kX1/(n−1)) = −nα−nk−(n+1)X−(n+1)/(n−1) − (1 − n)k−nX−1/(n−1).

Since ΦY (X, kX1/(n−1)) is not always negative for all X > 0, this river with r1 =

1/(n− 1) is repulsive.

The segment Γ2 connects (1, 1 − n) to (0,−n), and its gradient is 1. Thus

r2 = −1 for all n ≥ 2. We use the value r2 = −1 to determine k and, by

Definition 2.3.2 part 2, we set

Y = R(X) ∼ kX−1.

The term degr2Φ = n leads to Φr2(X, Y ) = αY −n − XY 1−n. By Definition 2.3.2

part 1, we obtain

Φr2(1, k) = αk−n − k1−n = 0,

which leads to k = α. Moreover, we have
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P (X,X−1) = X−n ⇒ Pr2(X, Y ) = Y n;

Q(X,X−1) = α− nX−n − 1 ⇒ Qr2(X, Y ) = α−XY,

and, by Definition 2.3.2 part 3, c(r) = n+ 2 > 0. Finally, we have

Pr2(1, k) = αn 6= 0 and
∂Qr2

∂Y
(1, k) = −1 6= 0.

Hence, by Theorem 2.3.3, the river R(X) corresponding to r2 = −1 exists. More-

over, since Y = R(X) ∼ αX−1, where α > 0 and X → ∞ as t→ ∞, we can state

that R(X) is in the first quadrant of the XY plane. Next we want to determine

whether R(X) is locally attractive by applying Theorem 2.3.5. We differentiate

Φ(X, Y ) with respect to Y , setting Y ∼ αX−1, to obtain

ΦY (X, Y ) = −nαY −n−1 − (1 − n)XY −n ⇔ ΦY (X,αX−1) = −α−nXn+1.

Since ΦY (X,αX−1) < 0 for positive X, we have by Theorem 2.3.5 that the river

is locally attractive.

In conclusion, we have

• an attracting river with r2 = −1 and k = α that runs through the first

quadrant of the (X, Y ) plane;

• for even integer of n, a repelling river with r1 = 1/(n−1) and k = (−n)1/(1−n)

that runs through the fourth quadrant;

• for odd integer of n, a river with r1 = 1/(n − 1) and k = (−n)1/(1−n) does
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not exist,

as seen in Figure 4.1.

Having established that the river R(x) is locally attractive, the next step would

be that of proving that all solutions in the first quadrant are attracted to the river.

Unfortunately, we have been unable to establish this more global asymptotic result.

In conclusion, we have shown that the rivers with r1 = 1/(n− 1) and r2 = −1,

respectively, are repulsive and attractive. Since we have the locally attractive river

R(x) which is relevant for X(t) ≥ 0 and Y (t) ≥ 0, we can go back to the system

of equations (4.2) and determine the asymptotic behaviour of solutions that start

off in the basin of attraction of R(X). Note that solutions X(t) and Y (t) must be

non-negative because X(t), total stable island density, and Y (t), monomer density,

cannot be physically negative. Since Y ∼ αX−1, so that Ẋ = Y n ∼ αnX−n, for

X we have

X(t) ∼ t1/(n+1)[(n+ 1)αn]1/(n+1). (4.12)

Similarly, since Y (t) ∼ α/X(t) for large time, we have

Y (t) ∼ t−1/(n+1)

[
α

n+ 1

]1/(n+1)

. (4.13)

Clearly, we have XY → α for any solution of (4.2) as t → ∞. To obtain the

rate of convergence of XY , we differentiate the Y equation in (4.2) with respect

to time and rearrange it as

˙(XY ) = −n2Y n−1Ẏ − Ÿ .

By rearranging the Y (t) equation i.e. XY = −α− nY n − Ẏ , if XY ∼ α + ats

for large time, we have
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asts−1 ∼ n2

n + 1
t−(2n+1)/(n+1)

[
α

n + 1

]n/(n+1)

− (n+ 2)

(n+ 1)2
t−(2n+3)/(n+1)

[
α

n+ 1

]1/(n+1)

∼ n2

n + 1
t−(2n+1)/(n+1)

[
α

n + 1

]n/(n+1)

.

Integrating w.r.t t gives us

ats ∼ −n
[

α

n+ 1

]n/(n+1)

t−n/(n+1),

and so, as XY ∼ α+ ats, we have

X(t)Y (t) ∼ α− n

[
α

n+ 1

]n/(n+1)

t−n/(n+1). (4.14)

4.3 Long Time Behaviour of the Island Size Dis-

tributions

In this section we have a theorem which describes the long-term behaviour of cj(t)

with j ≥ n. Before we proceed, we are required to prove the following proposition

Proposition 4.3.1. Let τ be given by (4.4), so that

τ(t) − τ(t0) =

∫ t

t0

Y (s) ds, (4.15)

and define Ỹ (τ) = Y (t(τ)), where t(τ) is the inverse function of τ(t) and Y

satisfies (4.13). Then the relation between t and τ , and the long time behaviour of

Ỹ (τ) are, respectively,

(i)
(

n
n+1

) (
n+1
α

)1/(n+1)
t−n/(n+1)τ(t) → 1 as t→ ∞;
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(ii)
(
nτ
α

)1/n
Ỹ (τ) =

(
nτ
α

)1/n
c̃1(τ) → 1 as τ → ∞.

Proof. From (4.13), ∀ǫ > 0 ∃ T = T (ǫ) s.t ∀ t > T

[
(n+ 1)t

α

]1/(n+1)

Y (t) ∈ [1 − ǫ, 1 + ǫ].

Let us focus on the upper bound case. Then ∀ t > T , Y (t) ≤ (1+ǫ)
[

(n+1)t
α

]−1/(n+1)

.

Substituting into (4.15), for t > t0 ≥ T , we have

τ(t) − τ(t0) ≤
∫ t

t0

(1 + ǫ)

[
(n + 1)s

α

]−1/(n+1)

ds

= (1 + ǫ)

[
(n + 1)

α

]−1/(n+1)(
n + 1

n

)(
tn/(n+1) − t

n/(n+1)
0

)
.

Multiplying this inequality by
(
n+1
n

)−1
[

(n+1)
α

]1/(n+1)

t−n/(n+1) and then leads to

lim sup
t→∞

(
n

n + 1

)(
n+ 1

α

)1/(n+1)

t−n/(n+1)τ(t) ≤ 1 + ǫ.

Similarly, for the lower bound,

lim inf
t→∞

(
n

n + 1

)(
n+ 1

α

)1/(n+1)

t−n/(n+1)τ(t) ≥ 1 − ǫ.

By the sandwich theorem with ǫ > 0, we get, as t→ ∞

(
n

n + 1

)(
n+ 1

α

)1/(n+1)

t−n/(n+1)τ(t) = 1 + o(1). (4.16)

Furthermore,
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1 + o(1) =

(
n

n+ 1

)(
n+ 1

α

)1/(n+1)

t−n/(n+1)τ

(
Ỹ (τ)

Y (t)

)n

=

(
Ỹ (τ)

Y (t)

)n (nτ
α

)((n+ 1)t

α

)−n/(n+1)

=

(
Ỹ (τ)

Y (t)

)n



(
nτ
α

)1/n
(

(n+1)t
α

)1/(n+1)




n

,

and so

(nτ
α

)1/n

Ỹ (τ) =

(
(n+ 1)t

α

)1/(n+1)

Y (t)[1 + o(1)] = 1 + o(1). (4.17)

�

Next, we will need to obtain the long time behaviour of c̃j(τ) for j ≥ n, as this

is required before Proposition 4.3.1 can be used to obtain the long time behaviour

of c1(t) and cj(t) with j ≥ n.

Proposition 4.3.2. With τ being defined by (4.15) and Y satisfying (4.13), the

long time behaviour of c̃j(τ) is

(nτ
α

)(n−1)/n

c̃j(τ) → 1 as τ → ∞, j ≥ n. (4.18)

Proof. We recall the c̃j(τ) equation (4.5), with c̃1(τ) ≡ Ỹ (τ), and multiplying (4.5)

by
(
nτ
α

)(n−1)/n
gives
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(nτ
α

)(n−1)/n

c̃j(τ) =
(nτ
α

)(n−1)/n

e−τ
j∑

k=n

τ j−k

(j − k)!
c̃k(0)

+
(nτ
α

)(n−1)/n 1

(j − n)!

∫ τ

0

sj−ne−s[Ỹ (τ − s)]n−1 ds.

The first term in the right-hand side of the above expression is the contribution

due to the non monomeric initial data and since j is fixed, we have

τ (n−1)/ne−τ
j∑

k=n

τ j−k

(j − k)!
c̃k(0) = τ (n−1)/ne−τ

[
τ j−n

(j − n)!
c̃n(0) +

τ j−n−1

(j − n− 1)!
c̃n+1(0) + · · ·

]

= O(τ j+(n−1−n2)/ne−τ )

= o(eιτ ) as τ → ∞,

for every ι < 1 since τ j+(n−1−n2)/ne(ι−1)τ → 0 as τ → ∞. In order to study the

remaining integral term, change the integration variable to s = yτ . Then

(nτ
α

)(n−1)/n 1

(j − n)!

∫ τ

0

sj−ne−s[Ỹ (τ − s)]n−1 ds

=
(nτ
α

)(n−1)/n 1

(j − n)!

∫ 1

0

(yτ)j−ne−yτ [Ỹ (τ − yτ)]n−1(τdy)

=
(nτ
α

)(n−1)/n 1

(j − n)!

∫ 1

0

[
τ(1 − y)

τ(1 − y)

](n−1)/n

(yτ)j−ne−yτ [Ỹ (τ(1 − y)]n−1(τdy)

=
τ j−n+1

(j − n)!

∫ 1

0

[(n/α)τ(1 − y)](n−1)/n

(1 − y)(n−1)/n
yj−ne−yτ [Ỹ (τ(1 − y)]n−1 dy

=
τ j−n+1

(j − n)!

∫ 1

0

ψ(τ(1 − y))

(1 − y)(n−1)/n
yj−ne−yτ dy,

where ψ(τ(1 − y)) = [(n/α)τ(1 − y)](n−1)/n[Ỹ (τ(1 − y)]n−1.
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Let 0 < ǫ < 1 be fixed and write
∫ 1

0
=
∫ 1−ǫ
0

+
∫ 1

1−ǫ. Since ψ(s) is a continuous

function and is 1+o(1) as s→ ∞ by Proposition 4.3.1 (ii), it is bounded in [0,∞)

and so there exists a positive constant Mψ such that 0 ≤ ψ(s) ≤ Mψ ∀s. From

this

τ j−n+1

(j − n)!

∫ 1

1−ǫ

ψ(τ(1 − y))

(1 − y)(n−1)/n
yj−ne−yτ dy ≤Mψτ

j−n+1

∫ 1

1−ǫ

yj−n

(1 − y)(n−1)/n
e−yτ dy

≤Mψτ
j−n+1e−(1−ǫ)τ

∫ 1

1−ǫ

yj−n

(1 − y)(n−1)/n
dy

< Mψτ
j−n+1e−(1−ǫ)τ

∫ 1

1−ǫ

1

(1 − y)(n−1)/n
dy

= ǫ1/nnMψτ
j−n+1e−(1−ǫ)τ ,

and, by the arguments of da Costa et. al. in [25, p.382], the term above tends to

zero as τ → ∞. For the integral over (0, 1 − ǫ), we have y < 1 − ǫ ⇒ τ(1 − y) >

τǫ → ∞ as τ → ∞. By Proposition 4.3.1 (ii), we conclude that ψ(s) = 1 + o(1)

in the region of integration provided τ is sufficiently large. Thus, ∀δ > 0 ∃ T (δ)

such that ∀τ > T (δ), ψ(τ(1 − y)) ∈ [1 − δ, 1 + δ] and as τ → ∞, with

I0,j(τ) :=

∫ 1−ǫ

0

yj−n

(1 − y)(n−1)/n
e−τy dy,

we obtain

(1 − δ)I0,j(τ) ≤
∫ 1−ǫ

0

ψ(τ(1 − y))

(1 − y)(n−1)/n
yj−ne−yτ dy ≤ (1 + δ)I0,j(τ). (4.19)

We can expand (1 − y)−(n−1)/n straight away by using the binomial series, i.e.
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(1 − y)−(n−1)/n =

∞∑

k=0




1
n
− 1

k


 (−y)k.

Thus,

I0,j(τ) =

∫ 1−ǫ

0

yj−n

(1 − y)(n−1)/n
e−τy dy =

∫ 1−ǫ

0

yj−ne−τy
∞∑

k=0




1
n
− 1

k


 (−1)kyk dy.

Let g(y) =

∞∑

k=0

(−1)k




1
n
− 1

k


 yj+k−n. Then, by Watson’s lemma (see Chap-

ter 2 for more detail),

∫ 1−ǫ

0

g(y)e−τy dy ∼
∞∑

k=0

(−1)k




1
n
− 1

k


 Γ(j + k − n+ 1)τ−(j+k−n+1)

=
Γ(j − n+ 1)

τ j−n+1
+
n− 1

n
.
Γ(j − n + 2)

τ j−n+2
+ · · · .

Thus,

I0,j(τ) =
Γ(j − n+ 1)

τ j−n+1
+ O(τ−j+n−2) as τ → ∞.

Equation (4.19) now gives

(1 − δ)

[
Γ(j − n+ 1)

τ j−n+1
+ O(τ−j+n−2)

]
≤
∫ 1−ǫ

0

ψ(τ(1 − y))

(1 − y)(n−1)/n
yj−ne−yτ dy

≤ (1 + δ)

[
Γ(j − n + 1)

τ j−n+1
+ O(τ−j+n−2)

]
,
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and, by multiplying each term by
τ j−n+1

Γ(j − n + 1)
,

(1 − δ)[1 + O(τ−1)] ≤ τ j−n+1

Γ(j − n+ 1)

∫ 1−ǫ

0

ψ(τ(1 − y))

(1 − y)(n−1)/n
yj−ne−yτ dy

≤ (1 + δ)[1 + O(τ−1)].

Thus,

τ j−n+1

Γ(j − n+ 1)

∫ 1−ǫ

0

ψ(τ(1 − y))

(1 − y)(n−1)/n
yj−ne−yτ dy =

τ j−n+1

(j − n)!

∫ 1−ǫ

0

ψ(τ(1 − y))

(1 − y)(n−1)/n
yj−ne−yτ dy

= 1 + O(τ−1).

Hence, as in [25, p.382], we have

(nτ
α

)(n−1)/n

c̃j(τ) → 1 as τ → ∞, j ≥ n,

as expected. �

For the long time behaviour of c1(t) and cj(t), we have the following theorem

Theorem 4.3.3. Let (X(0), Y (0)) be in the basin of attraction for R(X). Then

the long time behaviour of c1(t) and cj(t), respectively, are

(i)
(
n+1
α

)1/(n+1)
t1/(n+1)c1 → 1;

(ii)
(

(n+1)t
α

)(n−1)/(n+1)

cj → 1, ∀j ≥ n,

as t→ ∞.

Proof. From Proposition 4.3.1, we first recall
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τ ∼
(
n+ 1

n

)(
α

n + 1

)1/(n+1)

tn/(n+1),

and then, by Proposition 4.3.1 (ii), we obtain

[(
n + 1

α

)1−1/(n+1)

tn/(n+1)

]1/n

c1 =

(
n+ 1

α

)1/(n+1)

t1/(n+1)c1 → 1 as t→ ∞.

Similarly, Proposition 4.3.2 gives

(
(n + 1)t

α

)(n−1)/(n+1)

cj → 1 as t→ ∞ ∀j ≥ n.

�

4.4 Self-Similar Behaviour of the Coagulation Sys-

tem Outside the Characteristic Direction

4.4.1 Self-Similar Function

Our objective now is to find a function Φ1(η), η 6= 1, such that

lim
j,τ→∞

[nτ
α

](n−1)/n

c̃j(τ) = Φ1(η),

where η = j/τ is fixed. with η 6= 1. To this end, we shall require Propositions 4.1.1

and 4.3.1 as well as the Stirling formula for the Gamma function,

Γ(x) =
√

2πxx−1/2e−x[1 + O(x−1)] as x→ ∞;

see Example 2.5.1 in Chapter 2. Note that Proposition 4.3.1 (ii) gives
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(nτ
α

)(n−1)/n

[c̃1(τ)]
n−1 → 1 as τ → ∞.

Once again we assume throughout that (X(0), Y (0)) is in the basin of attraction

of the river R(X), where X(0) =
∞∑

j=n

cj(0) and Y (0) = cj(0).

4.4.2 Monomeric Initial Data

For monomeric initial data with j ≥ n, we have

(nτ
α

)(n−1)/n

c̃j(τ) =

(
nτ
α

)(n−1)/n

(j − n)!

∫ τ

0

sj−ne−s[c̃1(τ − s)]n−1 ds. (4.20)

Consider the function φ1 defined on [n,∞) × [0,∞) by

φ1(x, τ) =

(
nτ
α

)(n−1)/n

Γ(x− n + 1)

∫ τ

0

sx−ne−s[c̃1(τ − s)]n−1 ds. (4.21)

Let x = ητ . Then, from (4.21), we obtain

φ1(ητ, τ) =

(
nτ
α

)(n−1)/n

Γ(ητ − n+ 1)

∫ τ

0

sητ−ne−s[c̃1(τ − s)]n−1 ds.

The change of variable s = yτ now leads to
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φ1(ητ, τ) (4.22)

=

(
nτ
α

)(n−1)/n

Γ(ητ − n + 1)

∫ 1

0

(τy)ητ−ne−τy[c̃1(τ − τy)]n−1(τdy)

=

(
n
α

)(n−1)/n
τ (n−1)/nτ ητ−n+1

Γ(ητ − n+ 1)

∫ 1

0

yητ−ne−τy[c̃1(τ(1 − y)]n−1 dy

=
τ ητ−n+1

√
2π

(n
α

)(n−1)/n

(ητ − n+ 2)n−3/2−ητ (ητ − n+ 1)eητe2−n × (1 + O((ητ + 2 − n)−1))

× τ (n−1)/n

∫ 1

0

yητ−ne−yτ [c̃1(τ(1 − y)]n−1 dy [using Stirling’s formula]

=
ηn−1/2−ηττ ητ−n+1+n−3/2−ητ+1eητ

(
n
α

)(n−1)/n

√
2πen−2

(1 + O(τ−1))

× τ (n−1)/n

∫ 1

0

yητ−ne−yτ [c̃1(τ(1 − y)]n−1 dy

=
eητηn−1/2−ηττ 1/2

(
n
α

)(n−1)/n

√
2πen−2

(1 + O(τ−1))

∫ 1

0

yητ−ne−yττ (n−1)/n[c̃1(τ(1 − y)]n−1 dy

=
ηn−1/2−ηττ 1/2

(
n
α

)(n−1)/n

√
2πen−2

(1 + O(τ−1))

∫ 1

0

eτ(η ln(y)−y+η)τ (n−1)/n[c̃1(τ(1 − y)]n−1

yn
dy

=
ηn−1/2−ηττ 1/2

√
2πen−2

(1 + O(τ−1))

∫ 1

0

ψ(τ(1 − y))eτ(η ln(y)−y+η)

yn(1 − y)(n−1)/n
dy, (4.23)

where ψ(τ) =
(
nτ
α

)(n−1)/n
[c̃1(τ)]

n−1. Note that in the above calculation,

1

1 + O(x−1)
=

1

1 + 1/x+ · · · ≈ 1 − 1

x
+ · · · = 1 + O(x−1).

Let

In(η, τ) := η−ηττ 1/2eητ
∫ 1

0

ψ(τ(1 − y))eτ(η ln(y)−y)

yn(1 − y)(n−1)/n
dy,

ignoring constants as τ → ∞ for the time being. There are two cases, η > 1 and

η ∈ (0, 1), to be considered to seek the function Φ1(η) as described earlier in this
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section. If we consider the case η > 1 first, then we have the following proposition.

Proposition 4.4.1. If η > 1, then Φ1(η) = 0.

Proof. We examine the term in the integral In(η, τ) given by

y−neτ(η ln(y)−y) = e(ητ−n) ln(y)−yτ = eg1(y),

where g1(y) is defined by

g1(y) = (ητ − n) ln(y) − yτ.

For all y ∈ (0, 1] and τ > n
η−1

, the function g1(y) satisfies

g′1(y) =
1

y
(ητ − n) − τ ≥ (ητ − n) − τ > 0.

For y ∈ (0, 1], we have g1(y) ≤ g1(1) = −τ . This leads to

∫ 1

0

ψ(τ(1 − y))
eτ(η ln(y)−y)

yn(1 − y)(n−1)/n
dy ≤Mψe

−τ
∫ 1

0

dy

(1 − y)(n−1)/n
= nMψe

−τ .

Thus, following da Costa et. al.’s argument [25, p.384], for η > 1 we have

In(η, τ) → 0 as τ → ∞. �

Consider the case η ∈ (0, 1) next.

Proposition 4.4.2. If η ∈ (0, 1) then Φ1(η) = (1 − η)−(n−1)/n.

Proof. The exponential term inside the integral In(η, τ) is ef(y) where

f(y) = τ(η ln(y) − y) ⇒ f ′(y) = τ

(
η

y
− 1

)
⇒ f ′′(y) = −ητ

y2
.
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Now f ′(y) = 0 ⇔ y = η and f ′′(η) = − τ
η
< 0. So, the exponential term has a

unique maximum at y = η. To seek the asymptotic behaviour of In(η, τ), we write

In(η, τ) = η−ηττ 1/2eητ
(∫ ǫ

0

+

∫ 1−ǫ

ǫ

+

∫ 1

1−ǫ

)
ψ(τ(1 − y))

eτ(η ln(y)−y)

yn(1 − y)(n−1)/n
dy

=: In,1(η, τ) + In,2(η, τ) + In,3(η, τ). (4.24)

Consider In,1(η, τ) first. The calculation is similar to that used for the case

η > 1. Since we have 0 < y < ǫ < ηe−1, for all τ > n
(1−e−1)η

, we obtain g1(y) =

(ητ − n) ln(y) − yτ and

g′1(y) =
ητ − n

y
− τ =

τ(η − y) − n

y
> 0.

Thus, g1(y) ≤ g1(ǫ) ≤ g1(ηe
−1) = (ητ − n) ln(η)− (ητ − n)− τηe−1. Following

da Costa et. al.’s argument [25, p.385], we have

In,1(η, τ) → 0 as τ → ∞. (4.25)

Next, consider the case In,3(η, τ). The exponential term is

eτ(η ln(y)−y)eητe−ητ ln(η) =: e−τg3(y),

where the function g3(y) = (η ln(η) − η) − (η ln(y) − y). By da Costa et. al.’s

argument [25, p.385], we again have

In,3(η, τ) → 0 as τ → ∞. (4.26)

By (4.25) and (4.26), we have
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I(η, τ) = In,2(η, τ) + o(1) as τ → ∞. (4.27)

Consider the final case In,2(η, τ). We need to make a few minor modifications

to da Costa et. al.’s argument. As they state, since y < 1−ǫ⇒ τ(1−y) > τǫ → ∞

as τ → ∞, then ψ(τ(1 − y)) = 1 + o(1) for large τ . So, ∀δ > 0, ∃ T (δ) such that

∀τ > T (δ), ψ(τ(1 − y)) ∈ [1 − δ, 1 + δ] and, with

Jn(η, τ) :=

∫ 1−ǫ

ǫ

e−τφ(y)

yn(1 − y)(n−1)/n
dy and φ(y) = y − η ln(y) − η,

we have

(1 − δ)η−ηττ 1/2Jn(η, τ) ≤ In,2(η, τ) ≤ (1 + δ)η−ηττ 1/2Jn(η, τ). (4.28)

Since φ(y) is smooth and has a unique minimum y = η ∈ (ǫ, 1 − ǫ) with

φ(η) = −η ln(η) and φ′′(η) = η−1, we can use Laplace’s method for the asymptotic

evaluation of integrals; see Section 2.5. We obtain, via this method,

J(η, τ) ≈ eητ ln(η)

ηn(1 − η)(n−1)/n

√
2π

τ/η
. (4.29)

By (4.22), (4.27), (4.28) and (4.29), we obtain

φ1(ητ, τ) =
ηn−1/2e2−n√

2π

η−ηττ 1/2eητ ln(η)

ηn(1 − η)(n−1)/n

√
2π

τ/η
(1 + O(τ−1))

=
e2−n

(1 − η)(n−1)/n
(1 + O(τ−1))

=
1

(1 − η)(n−1)/n
(1 + O(τ−1)).
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�

By Proposition 4.4.1 and 4.4.2, for monomeric initial data we have

Theorem 4.4.3.

Φ1(η) :=





(1 − η)−(n−1)/n if 0 < η < 1,

0 if η > 1.

4.4.3 Non-Monomeric Initial Data

For non-monomeric initial data, we have

(nτ
α

)(n−1)/n

c̃j(τ) = φ1(j, τ) +
(nτ
α

)(n−1)/n

e−τ
j∑

k=n

τ j−k

(j − k)!
c̃k(0),

where φ1(η) is defined in the previous subsection. Since we already have established

that the term φ1 is related to the term Φ1 defined by Theorem 4.4.3, all that is

required is to show that the second part of the non-monomeric solution goes to zero.

This establishes that the asymptotic behaviour for monomeric initial conditions

also holds for the non-monomeric case.

We define v := 1
η
, τ = jv and assume c̃k(0) ≤ ρk−µ. Then

(nτ
α

)(n−1)/n

e−τ
j∑

k=n

τ j−k

(j − k)!
c̃k(0) ≤ ρ

(
njv

α

)(n−1)/n

e−jv
j∑

k=n

(jv)j−k

(j − k)! kµ

=: ρ
(n
α

)(n−1)/n

φ2(v, j),

where φ2(v, j) = (jv)(n−1)/ne−jv
j∑

k=n

(jv)j−k

(j − k)! kµ
. Note that v 6= 1 since η 6= 1. We

now prove the next proposition.
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Proposition 4.4.4. For v ∈ (0, 1) and v > 1,

φ2(v, j) → 0 as j → ∞.

Proof. Consider first the case v > 1. Let us change the summation variable by

setting l := j − k to obtain

φ2(v, j) = (jv)(n−1)/ne−jv
j−n∑

l=0

(jv)l

l!(j − l)µ
≤ (jv)(n−1)/n

nµ
e−jv

j−n∑

l=0

(jv)l

l!
. (4.30)

Considering ul := (jv)l/l! and by studying the sign of

ul+1 − ul =
(jv)l

l!

(
jv

l + 1
− 1

)
,

we see that the maximum of ul is attained at l = ⌊jv⌋ > jv − 1 > j − 1 > j − n.

From (4.30)

(jv)(n−1)/n

nµ
e−jv

j−n∑

l=0

(jv)l

l!
<

(jv)(n−1)/n

nµ
e−jv(j − n+ 1)

(jv)j−n

(j − n)!
. (4.31)

Note that
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1

(j − n)!
=

(j − n+ 1)

(j − n + 1)!

=
(j − n + 1)(j − n + 2)

(j − n + 2)!

...

=
(j − n + 1)(j − n + 2) . . . (j − 1)

(j − 1)!

≈ (j − n+ 1)
jn−2

Γ(j)

=
(j − n + 1)jn−2

√
2πjj−1/2e−j

(1 + o(1)).

Thus, from (4.31) we conclude that

(jv)(n−1)/n

nµ
e−jv

j−n∑

l=0

(jv)l

l!

<
(jv)(n−1)/n

nµ
(j − n+ 1)2e−jv

jn−2(jv)j−n√
2πjj−1/2e−j

(1 + o(1))

=
v(n−1)/n−n+j

nµ
√

2π
(j − n+ 1)2j(n−1)/n+n−2−j+1/2+j−nej−jv(1 + o(1))

=
v(n−1)/n−n

nµ
√

2π
(j − n+ 1)2j(n−1)/n−3/2ej−jv+j ln(v)(1 + o(1))

=
v(n−1)/n−n

nµ
√

2π

(
j − n+ 1

j

)2

× e−j(v−1−ln(v))+[(n−1)/n+1/2] ln(j)(1 + o(1)). (4.32)

Following da Costa et. al.’s argument [25, p.388], we can state that (4.32)

tends to zero as j → ∞.

Consider the case v ∈ (0, 1). Let β ∈ (ve1−v,min{ve, 1}) be fixed and write
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φ2(v, j) = (jv)(n−1)/ne−jv




∑

0≤l≤βj

(jv)l

l!(j − l)µ
+

∑

βj≤l≤j−n

(jv)l

l!(j − l)µ



 =: S1(j)+S2(j).

First, we concentrate on S1(j). Then we obtain

S1(j) ≤ (jv)(n−1)/ne−jv
∑

0≤l≤βj

(jv)l

l!(j − βj)µ

=
(jv)(n−1)/n

jµ(1 − β)µ
e−jv

∑

0≤l≤βj

(jv)l

l!

≤ (jv)(n−1)/n

jµ(1 − β)µ
e−jvejv

=
v(n−1)/n

(1 − β)µ
j(n−1)/n−µ,

and so we have

S1(j) → 0 as j → ∞ if µ >
n− 1

n
.

By Stirling’s expansion, for large l,

l! =
√

2lπ

(
l

e

)l
(1 + O(l−1)) ≥ e−lll+1/2.

Therefore, since in S2 we have (j − l)µ ≥ nµ ≥ 1,
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S2(j) ≤ (jv)(n−1)/ne−jv
∑

βj≤l≤j−n

(jv)l

e−lll+1/2

= (jv)(n−1)/ne−jv
∑

βj≤l≤j−n
l−1/2

(
jve

l

)l

< (jv)(n−1)/ne−jv(jβ)−1/2
∑

βj≤l≤j−n

(
jve

l

)l

< v(n−1)/nj(n−1)/n−1/2β−1/2e−jv
(
ve

β

)⌊βj⌋+1
1 − (ve/β)j−n−⌊βj⌋

1 − ve/β

< v(n−1)/nj(n−1)/n−1/2e−jv
(
ve

β

)j−n+1
β1−1/2

ve− β

=
v(n−1)/nβ1/2

ve− β
j(n−2)/2n

(
ve

β

)1−n(
ve1−v

β

)j

→ 0 as j → ∞.

Thus, since (4.32), S1(j) and S2(j) all tends to zero as j tend to infinity, we

have

lim
j,τ→∞

(nτ
α

)(n−1)/n

e−τ
j∑

k=n

τ j−k

(j − k)!
c̃k(0) = 0.

�

Hence, by Theorem 4.4.3 and Proposition 4.4.4,

Theorem 4.4.5. With η = j
τ

fixed, η 6= 1 and (X(0), Y (0)) in the basin of attrac-

tion of the river R(X), we have

lim
j,τ→∞

(nτ
α

)(n−1)/n

c̃j(τ) = Φ1(η),

where
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Φ1(η) :=





(1 − η)−(n−1)/n if η < 1,

0 if η > 1.

Suppose we want to find a self-similar function for cj(t). Recall the following

relations from Proposition 4.3.1, equation (4.12) and Theorem 4.3.3 respectively,

τ ∼
(
n+ 1

n

)(
α

n + 1

)1/(n+1)

tn/(n+1); (4.33)

X =
∞∑

j=n

cj(t) ∼ [(n+ 1)αnt]1/(n+1); c1 ∼
[(

n + 1

α

)
t

]−1/(n+1)

. (4.34)

By (4.34), for large t we obtain (note that c1 → 0 as t→ ∞)

〈j〉 =

∑∞
j=1 jcj(t)∑∞
j=1 cj(t)

∼ αt

[(n+ 1)αnt]1/(n+1)
=

(
α

n + 1

)1/(n+1)

tn/(n+1). (4.35)

By (4.35), (4.33) becomes

τ ∼
(
n+ 1

n

)(
α

n + 1

)1/(n+1)

tn/(n+1) ∼
(
n + 1

n

)
〈j〉.

This leads to the following main result.

Theorem 4.4.6. As t → ∞, we have, for (X(0), Y (0)) in the basin of attraction

of the river R(X),

lim
t→∞

[(
n + 1

α

)
〈j〉
](n−1)/n

cj(t) = Φ1

(
f1

(
j

〈j〉

))
,

where f1

(
j

〈j〉

)
=

(
n

n + 1

)
j

〈j〉 .

This implies that solutions have the self-similar asymptotic behaviour
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cj(t) ∼ 〈j〉−(n−1)/nΦ1

(
f1

(
j

〈j〉

))
,

provided that f1(j/〈j〉) 6= 1. Thus, we obtain a discontinuous scaling solution for

i ≥ 1.

4.5 Self-Similar Behaviour of the Coagulation Sys-

tem Along the Characteristic Direction

The case η = 1, which has been mentioned briefly in the previous section, was

investigated by da Costa et. al. [25, p.21]. We were able to obtain analogous results

to these obtained by da Costa et. al. However, in the modelling of submonolayer

deposition, we were unable to determine whether these results do or do not have

any physical meaning in terms of both monomer and island size distributions.

Therefore, we will summarise a few key results that will collapse into the results

obtained by da Costa et. al. when one sets n = 2, rather than show full calculations

for obtaining these results. As in [25, p.21], our objective is to find a function Φ2(ξ)

such that

lim
j,τ→∞

[n
α

](n−1)/n
√

2π

n
τ 1/2−1/(2n) c̃j(τ) = Φ2(ξ),

where ξ = j−τ√
τ

is fixed. In the case of monomeric initial data, we have the following

theorem.

Theorem 4.5.1. With ξ = j−τ
τ1/2 fixed, ξ ∈ R and (X(0), Y (0)) in the basin of

attraction of R(X), we have, as j, τ → ∞,

(n
α

)(n−1)/n
√

2π

n
τ 1/2−1/(2n)c̃j(τ) → Φ2(ξ),
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where

Φ2(ξ) := e−ξ
2/2

∫ ∞

0

e−ξw
n−w2n/ndw.

As in the previous section, we want to find a self-similar function for cj(t).

Recall the following relation

τ ∼
(
n+ 1

n

)
〈j〉.

This leads to the following key result.

Theorem 4.5.2. As t → ∞, we have, for (X(0), Y (0)) in the basin of attraction

of the river R(X),

lim
t→∞

√
2πα−(n−1)/nn−(n+1)/2n((n + 1)〈j〉)(n−1)/2ncj(t) = Φ2(f2(j, 〈j〉)),

where f2(j, 〈j〉) =

(
n

n + 1

)1/2
(
j −

(
n+1
n

)
〈j〉

〈j〉1/2

)
.

4.6 Conclusion

For the point-island case of general i ≥ 1, we have obtained the long time behaviour

of a class of solutions to (4.2). To the best of our knowledge, this is the first time

that the idea of rivers has been used to solve an applied mathematical problem.

This method allows us to obtain the asymptotic behaviour of the monomer and

island size distributions easier than the use of the Centre Manifold and Tubular

Flow theorems that was adopted in the work of da Costa et. al. Moreover, we

have proved the convergence to a self-similar profile Φ1(η), see Theorem 4.4.6 where

there is a discontinuity at η = j/τ = 1, i.e. f(j/〈j〉) = 1. It is important to note
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that if one sets i = 1 such that n = 2, then one will recover restricted versions of

the results obtained by da Costa et. al. in [25]. To fully recover the results in [25]

requires the first quadrant to be in the basin of attraction of the river R(X), and

this has not yet been established.

Our results (4.12) and (4.13) are consistent with equation (3.7) obtained by

Blackman and Wilding; more detail can be found in Chapter 3 along with the

work of Bartelt and Evans, which we will discuss next. The model studied in

this chapter is closely related to the one studied by Bartelt and Evans in [11] for

the i = 1 point-island case. They derived an equation for the scaled island size

distribution (ISD) and obtained a divergence at 3/2. In this chapter, we provide

a short analysis of divergence at j/τ = 1. Let j be the island size and 〈j〉 be the

average island size such that

〈j〉 =

∑
j≥n jcj(t)∑
j≥n cj(t)

=
θ −∑n−1

j=1 jcj(t)∑
j≥n cj(t)

,

(
θ = Ft =

∑

j≥1

jcj

)
.

Now, recall that we simply do not allow islands of size 1 < j ≤ i to arise. This

implies that ck(t) = 0 for k = 2, 3, . . . , n− 1. Then we have, with α = F ,

〈j〉 =
αt− c1(t)∑
j≥n cj(t)

.

Recalling, from (4.34) and (4.35), that

τ ∼
(
n+ 1

n

)(
α

n + 1

)1/(n+1)

tn/(n+1) ∼
(
n + 1

n

)
〈j〉.

We see that there is the discontinuity (at j/τ = 1) is at

j(
n+1
n

)
〈j〉 ∼ 1 ⇔ j

〈j〉 ∼ n+ 1

n
. (4.36)
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Equation (4.36) confirms the divergence obtained by Bartelt and Evans for

i = 1 (n = 2). However, as explained in [11, p.54] and [53, p.89], since there is no

divergence in the results obtained from Monte Carlo simulations the comparisons

with ISDs based on (4.2) fail and thus the divergence in Φ1(η) is not observed in

reality. One of the reasons for this is that under a system of equations (4.2), they

neglect local growth caused by islands’ spatial environments.

Therefore, we are required to improve the approximation of the ISD and several

attempts to improve this approximation have been considered in the past such as

the capture zone distribution (CZD) by Mulheran and Blackman [54], the frag-

mentation approach for the i = 1 point-island case by Blackman and Mulheran [14]

and the Joint Probability Distribution (JPD) [32, 55]. These (and other attempts)

have been discussed in Subsection 1.3.5.

Because of the failure behind (4.2), we attempt to improve the approximation

of the ISD by modifying the fragmentation approach for the case of a general i ≥ 0

in the next chapter.

However, two important consideration which is raised by this chapter are to

formulate conditions on the coefficients of rate equations which ensure a contin-

uous scaling solution and to determine the physical meaning of Φ2(ξ) as seen in

Theorem 4.5.2 for the nucleation and growth stages in the submonolayer deposi-

tion.
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The Gap Evolution Equation

5.1 Introduction

In this chapter, our main aim is to derive the equivalent of the Blackman and

Mulheran (BM) formulation [14] for the gap size distribution (GSD) in the case

of a general critical island size i ≥ 0 and then use this to obtain the capture zone

distribution (CZD) via the convolution identity

P (s) = 2

∫ 2s

0

φ(x)φ(2s− x) dx, (5.1)

as discussed in Chapter 3. We shall use asymptotic results on solutions of fragmen-

tation equations due to Treat, together with properties of Laplace-type integrals,

to obtain qualitative information on both the GSD and CZD. Our fragmentation-

based results are compared with those obtained from the Generalised Wigner Sur-

mise (GWS)

Pβ(s) = aβs
β exp(−bβs2), (5.2)

to determine whether they are compatible.

111
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5.2 The Gap Evolution Equations

We recall from Chapter 3 that the main idea of the BM theory is that, since any

new nucleation that occurs in a parent gap of width, say y, will result in the

creation of two daughter gaps of widths, say x and y − x, the evolution of gap

sizes can be considered as a fragmentation process, from which we can obtain the

GSD. As the fragmentation of a parent gap leads to two daughter gaps, this is a

binary fragmentation. We follow the BM model and assume that in the regime of

aggregation (the regime where island density remains constant while the monomer

density decreases; see Chapter 1, Section 1.1), the monomer density at x in a gap

of width y is given by

n1(x) =
1

2R
x(y − x), (5.3)

where x is the distance from an island located at one end of the gap, and R = D/F

is the ratio of monomer diffusion rate to deposition rate. If the critical island size

is i, we require i + 1 monomers at a given x for nucleation to occur at x. On the

basis of assumption (5.3), the probability of a new nucleation occuring in a gap of

width y may be taken as being proportional to

a(y) =

∫ y

0

n1(x)
i+1 dx =

(
1

2R

)i+1 ∫ y

0

[x(y − x)]i+1 dx

=

(
1

2R

)i+1

B(i+ 2, i+ 2)y2i+3, (5.4)

where B(·, ·) is the Beta function. Moreover, given that a nucleation event has

taken place in a gap of width y, the probability that it will occur at a position x

in the gap is proportional to h(x/y)/y where
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h(r) =

(
1

2R

)i+1

[r(1 − r)]i+1, 0 ≤ r ≤ 1. (5.5)

Therefore, we take b(x|y) = lh(x/y)/y where the constant l is chosen so that

∫ y

0

xb(x|y) dx = y;

∫ y

0

b(x|y) dx = 2; (5.6)

see Chapter 1 Section 1.3. We obtain

∫ y

0

xb(x|y) dx = l

∫ y

0

x

y
h

(
x

y

)
dx =

ly

(2R)i+1

∫ 1

0

ri+2(1−r)i+1 dr =
lB(i+ 3, i+ 2)

(2R)i+1
y,

and so, in order to satisfy
∫ y
0
xb(x|y)dx = y, we require

l =
(2R)i+1

B(i+ 3, i+ 2)
.

This leads to

b(x|y) =
[x(y − x)]i+1

B(i+ 3, i+ 2)y2i+3
. (5.7)

Note that with this choice of b, the binary fragmentation condition (1.12) (see

Chapter 1)

∫ y

0

b(x|y) dx =

∫ y

0

xi+1(y − x)i+1

B(i+ 3, i+ 2)y2i+3
dx =

B(i+ 2, i+ 2)

B(i+ 3, i+ 2)
= 2,

is satisfied as expected. Thus, equation (1.10), with (5.4) and (5.7), becomes

∂

∂t
u(x, t) = −B(i+ 2, i+ 2)

(2R)i+1
x2i+3u(x, t) +

2

(2R)i+1

∫ ∞

x

[x(y − x)]i+1u(y, t) dy,
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and a simple re-scaling of the time variable then yields the evolution equation for

gap sizes u(x, t)

∂

∂t
u(x, t) = −B(i+ 2, i+ 2)x2i+3u(x, t) + 2

∫ ∞

x

[x(y − x)]i+1u(y, t) dy. (5.8)

Equation (5.8) is a particular case of the linear, homogeneous fragmentation equa-

tion

∂

∂t
u(x, t) = −cρxρu(x, t) + cρ

∫ ∞

x

yρ−1h(x/y)u(y, t) dy, (5.9)

where ρ ≥ 0 and cρ is a constant; see [75] and Section 3.2 of Chapter 3. To obtain

(5.8) from (5.9) we set

ρ = 2i+ 3, cρ = B(i+ 2, i+ 2), h(r) =
2

cρ
(1 − r)i+1ri+1. (5.10)

5.3 Asymptotics of Scaling Solutions for the Gap

Size Distribution

The next step is to find the small- and large-size asymptotics of similarity solutions

of the gap evolution equation (5.8). As noted in Chapter 3, such similarity solutions

can be written in the form

u∗(x, t) =
N∗2(t)

V
φ

(
N∗(t)x

V

)
, (5.11)

where φ is normalised so that
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∫ ∞

0

φ(x) dx =

∫ ∞

0

xφ(x) dx = 1, (5.12)

and

N∗(t) :=

∫ ∞

0

u∗(x, t) dx, V :=

∫ ∞

0

xu∗(x, t) dx,

are the zeroth and first moments of u∗ respectively.

Since similarity solutions take the form (5.11), we require the small and large x

behaviour of φ(x). An explicit expression, involving a Meijer G-function, is shown

in Chapter 3 for the specific case when the function h in equation (5.9) takes the

form

h(r) = rγ(b0 + b1r + · · ·+ bpr
p),

p = 0, 1, 2, . . ., γ and b0, . . . , bp ∈ R to be determined. We shall make use of

the simple case p = 1, discussed in Chapter 3 in the next section. As noted in

Chapter 1, asymptotic properties of φ have also been established for more general

homogeneous functions h. In particular, recall equations (3.32) and (3.33) in

Chapter 3 where it is shown that there exist constants k, m and c > 0 such that

φ(x) ∼ kxγ as x → 0, (5.13)

provided that lim
r→0

r−γ−2

∫ r

0

sh(s) ds exists and is non-zero, and

φ(x) ∼ mxh(1)−2 exp(−cxρ) as x→ ∞. (5.14)

In the case of the gap evolution equation (5.8), (5.10), (5.13) and (5.14) lead

immediately to the following result
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Theorem 5.3.1 (Asymptotics of scaling solutions for the one-dimensional (1-D)

GSD). Let

u∗(x, t) =
N∗2(t)

V
φ(x),

be the similarity solution of (5.8). Then, for each critical island size i ≥ 0, we

have

1. φ(x) ∼ kxi+1 = O(xi+1) as x→ 0 for some constant k;

2. φ(x) ∼ mx−2 exp(−cx2i+3) = O(x−2 exp(−cx2i+3)) as x → ∞ for constants

c > 0 and m.

Proof. From (5.10), h(r) = 2ri+1(1 − r)i+1/cρ and the stated results follow since

h(1) = 0, ρ = 2i+ 3 and

2

cρ
r−i−3

∫ r

0

si+2(1 − s)i+1 ds =
2

cρ
r−i−3

i+1∑

j=0

∫ r

0

(i+ 1)!

j!(i+ 1 − j)!
(−1)jsi+j+2 ds

=
2

cρ

i+1∑

j=0

(i+ 1)!

j!(i+ 1 − j)!

(−1)jrj

(i+ j + 3)

→ 2

cρ(i+ 3)
as r → 0.

�

We may use Theorem 5.3.1 to obtain the asymptotic behaviour of the CZD,

P (s). As shown in the next section, we determine the asymptotics of P (s) as

s→ 0 for all i ≥ 0 and as s→ ∞ for i = 0 only.
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5.4 Asymptotics of Scaling Solutions for the Cap-

ture Zone Distribution

Under the assumption that nucleation has effectively mixed up the gaps so that

nearest neighbours are not correlated, we define the CZD function, P (s), by the

convolution identity

P (s) = 2

∫ 2s

0

φ(x)φ(2s− x) dx, (5.15)

where φ is the gap size scaling function considered in the previous section.

Following Theorem 5.3.1 part 1, for small s we have the following theorem.

Theorem 5.4.1 (Small asymptotics of the 1-D CZD). For each critical island size

i ≥ 0, we have

P (s) = O(s2i+3) as s→ 0,

where P (s) is the one-dimensional capture zone distribution.

Proof. We have, for small s and 0 < x < 2s,

φ(x) ≤ Mxi+1, φ(2s− x) ≤M(2s− x)i+1,

where M is a constant. Hence

P (s) ≤ 2M2

∫ 2s

0

xi+1(2s− x)i+1 dx

= M222i+4s2i+3

∫ 1

0

ti+1(1 − t)i+1 dt

= M222i+4B(i+ 2, i+ 2)s2i+3.



Chapter 5 118

Hence, P (s) = O(s2i+3) as s→ 0. �

The next aim is to understand the asymptotic behaviour of P (s) as s → ∞.

This is more of a challenge, as it is not clear how to use part 2 of Theorem 5.3.1

for general i. So, as s→ ∞, we only consider the case i = 0 and subsequently the

equation

∂

∂t
u(x, t) = −x

3

6
u(x, t) + 2

∫ ∞

x

x(y − x)u(y, t) dy, (5.16)

which is the equation analysed by Ziff and McGrady [87]. The homogeneous

function h for equation (5.16) can be obtained from the general linear daughter

distribution,

h(r) = rγ(b0 + b1r) =
2

cρ
(1 − r)i+1ri+1, (5.17)

with cρ = B(i + 2, i + 2). So when i = 0, cρ = 1/6 and h(r) = 12(1 − r)r =

r(12 − 12r) as seen in (5.10). From this, we set γ = 1, b0 = 12 and b1 = −12.

On applying (3.37) or (3.38) in Chapter 3, we deduce that φ(x) = φ̄(η), where

η = (x/µ)3,

µ =
Γ(2/3)Γ(7/3)

Γ(4/3)Γ(2)
=

4

3
Γ

(
2

3
,

)

and

φ̄(η) =
3

Γ(2
3
)µ
e−ηη1/3

∫ ∞

0

(1+s)−4/3e−sη ds =
3

Γ(2
3
)µ
η1/3

∫ ∞

0

(1+s)−4/3e−(1+s)η ds.

Substituting z = 1 + s, we have
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φ̄(η) =
3

Γ(2
3
)µ
η1/3

∫ ∞

1

z−4/3e−zη dz.

Now we set zη = u to obtain

φ̄(η) =
3

Γ(2
3
)µ
η2/3

∫ ∞

η

u−4/3e−u du,

and therefore the GSD, φ, is given explicitly by the formula

φ(x) =
3x2

Γ(2
3
)µ3

∫ ∞

(x/µ)3
u−4/3e−u du. (5.18)

Note that this φ(x) is similar to the Ziff and McGrady equation (3.27) with

the constant µ3 ≈ 5.88 on the lower limit of integration in (5.18) replaced by 6.

This key difference occurs because Treat [75, p.2524] imposes the normalisation

conditions (5.12) on φ where the zeroth and first moments of φ are required to be

1. Observe that the moments of (5.18) are

φm =

∫ ∞

0

xmφ(x) dx =
3

µ3Γ(2
3
)

∫ ∞

0

∫ ∞

(x/µ)3
xm+2u−4/3e−u du dx

=
3

µ3Γ(2
3
)

∫ ∞

0

∫ u1/3µ

0

xm+2u−4/3e−u dx du =
3µm+3

µ3(m+ 3)Γ(2
3
)

∫ ∞

0

u(m−1)/3e−u du,

and thus

φm =
3µmΓ(1

3
(m+ 2))

(m+ 3)Γ(2
3
)

. (5.19)

It follows from (5.19) that the normalisation and mean conditions (5.12) are satisi-

fied, since we have φ0 = 1 and φ1 = 1 as required. If we follow the same analysis

for the Ziff and McGrady formula
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φ̂(x) = Ax2

∫ ∞

x3/6

u−4/3e−u du,

where A is some normalising constant, then

φ̂m =
A6(m+3)/3

(m+ 3)
Γ

(
m+ 2

3

)
.

It follows that

φ̂0 =
6A

3
Γ

(
2

3

)
,

and so, for φ̂0 = 1, we require A = (2Γ(2/3))−1. However, for this choice of A, we

obtain

φ̂1 =
64/3

8

Γ(1)

Γ(2/3)
≈ 1.0064.

Consequently, with the Ziff and McGrady formula, no normalising constant A can

be found for which both φ̂0 = 1 and φ̂1 = 1

With (5.18) we can now determine the asymptotic behaviour of P (s) as s→ ∞.

To do this, we first let u = x3v/µ3. Then, (5.18) becomes

φ(x) =
3x2

µ3Γ(2
3
)

∫ ∞

1

e−v(x/µ)3
(
x3v

µ3

)−4/3(
x3

µ3

)
dv

=
3x

µ2Γ(2
3
)

∫ ∞

1

e−v(x/µ)3v−4/3 dv. (5.20)

Substituting (5.20) into (5.15), we have
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P (s) = 2

∫ 2s

0

(
3x

µ2Γ(2
3
)

∫ ∞

1

e−v(x/µ)3v−4/3 dv
3(2s− x)

µ2Γ(2
3
)

∫ ∞

1

e−w((2s−x)/µ)3w−4/3 dw

)
dx.

Let x = 2sz. Then we obtain

P (s) =
18

µ4Γ(2
3
)2

∫ 1

0

(
2sz

∫ ∞

1

e−v(2sz/µ)3v−4/3 dv

× (2s− 2sz)

∫ ∞

1

e−w((2s−2sz)/µ)3w−4/3 dw

)
2s dz

=
144s3

µ4Γ(2
3
)2

∫ ∞

1

∫ ∞

1

(vw)−4/3

×
∫ 1

0

z(1 − z)e−(2s/µ)3(z3v+(1−z)3w) dz dv dw. (5.21)

Our strategy is to use the usual 1-D Laplace’s method to estimate the inner

integral, which will give us a new two-dimensional (2-D) Laplace integral with

respect to v and w on D̄ = [1,∞) × [1,∞). We have the following proposition.

Proposition 5.4.2. As s→ ∞, the inner integral of (5.21),

∫ 1

0

z(1 − z)e−(2s/µ)3S(z) dz,

satisfies

∫ 1

0

z(1 − z)e−(2s/µ)3S(z) dz ∼
(

2s

µ

)−3/2

η(v, w)e−(2s/µ)3S(z+) as s→ ∞,

where S(z) = z3v + (1 − z)3w, z+ =
√
w/(

√
w +

√
v) and
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S(z+) =
vw

(
√
v +

√
w)2

; η(v, w) = z+(1 − z+)

√
2π

S ′′(z+)
. (5.22)

Proof. Since S ′(z) = 3z2v − 3(1 − z)2w, to find critical points of S(z) we must

have z2v − (1 − z)2w = 0, i.e. (v − w)z2 + 2wz − w = 0. There are two cases to

be considered: v 6= w and v = w. Let us consider the former case first. We have

z± =
−2w ±

√
4w2 + 4w(v − w)

2(v − w)
=

−w ±√
vw

v − w
, v 6= w.

At a minimum point, S ′′(z) = 6zv + 6(1 − z)w ≥ 0. Now,

S ′′(z+) = 6v

(−w +
√
vw

v − w

)
+ 6w

(
v −√

vw

v − w

)
=

6
√
vw(v − w)

v − w
= 6

√
vw > 0,

since v ≥ 1 and w ≥ 1. Note that

z+ =
−w +

√
vw

v − w
=

√
w√

w +
√
v

∈ (0, 1). (5.23)

Expanding S(z) around z+ [84], we have

S(z) − S(z+) = S ′′(z+)
(z − z+)2

2
+ O((z − z+)3).

Then, for (2s/µ)3 ≫ 1, in the neighborhood of z+ we have

∫ 1

0

g(z)e−(2s/µ)3S(z) dz ∼ g(z+)e−(2s/µ)3S(z+)

√
2π

(2s/µ)3S ′′(z+)
as s→ ∞,

by the Laplace method, where g(z) = z(1− z) and S(z+) is given in (5.22). Thus,

for the case of v 6= w to the leading order term as s → ∞ the inner integral in
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(5.21) becomes

∫ 1

0

z(1 − z)e−(2s/µ)3S(z) dz ∼
(

2s

µ

)−3/2

η(v, w)e−(2s/µ)3S(z+),

with η(v, w) defined in (5.22) and S ′′(z) = 6
√
vw.

For the case of v = w, there exists only one critical point, z+ = 1/2 with

S(1/2) = v/4 and S ′′(1/2) = 6v > 0 since v ≥ 1. Note that these can be obtained

from equation (5.23) on setting v = w in the formulae involving z+. Thus, by

a similar analysis to that used for the case v 6= w, to the leading order term as

s→ ∞, the inner integral in (5.21) becomes

∫ 1

0

z(1 − z)e−(2s/µ)3S(z) dz ∼
(

2s

µ

)−3/2

η(v)e−(2s/µ)3S(z+) as s→ ∞,

with η(v) defined in (5.22).

�

Hence (5.21) becomes, as s→ ∞,

P (s) ∼ s3/2

∫ ∞

1

∫ ∞

1

η(v, w)(vw)−4/3e−(2s/µ)3S(z+) dv dw. (5.24)

The integral in (5.24) can be obtained as a special case of the general 2-D

Laplace integral

J(m) =

∫∫

D

g(v, w)e−mf(v,w) dv dw, (5.25)

by setting
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D̄ = [1,∞) × [1,∞);

g(v, w) = η(v, w)(vw)−4/3 =
√

π
3

(vw)1/4

(
√
v+

√
w)2

;

m =
(

2s
µ

)3

,






(5.26)

and

f(v, w) = S(z+) =
vw

(
√
v +

√
w)2

. (5.27)

Consequently, any results on the large m behaviour of (5.25) can be used to deduce

the large s behaviour of P (s). The large m behaviour of the integral (5.25) is

discussed by Wong [84, Chapter VIII, Sections 10, 11]. As pointed out by Wong

[84, p.459–460], the major contribution to the asymptotic expansion comes from

points where f(v, w) attains its absolute minimum. The case where the global

minimum occurs at an interior stationary point of D̄ is examined in [84, Chapter

VIII, Section 10] while the case of the minimum being attained on the boundary

of D̄, either at a stationary point or a critical point of the second kind, is dealt

with in [84, Chapter VIII, Section 11].

If we consider the function f given by (5.27) then we see that the minimum

value of f(v, w) on [1,∞)×[1,∞) occurs at the corner point (1, 1), which is neither

a stationary point of f nor a critical point of the second kind. Instead, (1, 1) is a

so-called critical point of f of the third kind.

Proposition 5.4.3. The function f(v, w) has a global minimum of 1/4 on D̄

attained at the corner point (1, 1).

Proof. We differentiate f(v, w) with respect to v and w respectively to obtain

fv =
w3/2

(
√
v +

√
w)3

; fw =
v3/2

(
√
v +

√
w)3

.
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Since the region D̄ is [1,∞) × [1,∞), f has no stationary point in D̄. Suppose

we consider the region D̄R = [1, R] × [1, R] for some constant R. In D̄1, f(v, w)

is continuous and so has a global minimum which is attained at either an interior

stationary point or at a boundary point. Since there are no stationary points, the

minimum occurs on the boundary which consists of the four line segments:

• a: v = 1, 1 ≤ w ≤ R and f(1, w) = w(1 +
√
w)−2;

• b: w = 1, 1 ≤ v ≤ R and f(v, 1) = v(
√
v + 1)−2;

• c: v = R, 1 ≤ w ≤ R and f(R,w) = Rw(
√
R +

√
w)−2;

• d: w = R, 1 ≤ v ≤ R and f(v, R) = Rv(
√
v +

√
R)−2.

Since fv > 0 and fw > 0 on D̄, and hence also on D̄R, it follows that the

minimum value of f(v, w) on lines a and b is f(1, 1) = 1/4. Similarly, the minimum

value on lines c and d is f(R, 1) = f(1, R) = R(1+
√
R)−2. Hence, for each R > 1,

the global minimum value of f(v, w) on D̄R is f(1, 1) = 1/4 and the result follows.

�

Returning to the more general case of (5.25), we say that (v0, w0) is a critical

point of the third kind for f(v, w) if it is a point on the boundary of D̄ at which

the boundary has two intersecting tangent lines, but neither tangent line coincides

with that of the level curve f(v, w) = f(v0, w0); see [84, Chapter VIII, Section

8]. Equivalently, there is some parameterisation of the boundary which has a

discontinuous derivative of some order at (v0, w0); see [84, Chapter VIII, Section

2]. Unfortunately, Wong does not give any details of the large m behaviour of

J(m) when the global minimum of f occurs at a critical point of the third kind.

However, this case can also be treated by adapting the arguments used in [84].

As explained in [84, p.448-449], by making appropriate changes of variables, we
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can assume that the critical point on the boundary is located at (0, 0), and at this

point the boundary coincides with the coordinate axes in the vw-plane. Expanding

f in a Maclaurin series then yields

f(v, w) = f00 + f10v + f01w + f20v
2 + f11vw + f02w

2 + · · · ,

where

fjk =
∂j+k

∂vj∂wk
f(0, 0).

Since the constant term f00 merely contributes a factor e−mf00 to J(m) we can also

assume, again without loss of generality, that f00 = 0.

Consequently, we can write

f(v, w) = f10v + f01w + · · · , f10 6= 0, f01 6= 0.

= f10v[1 + P (v, w)] + f01w[1 +Q(v, w)], (5.28)

where P (v, w) and Q(v, w) are power series in v and w, with P (0, 0) = Q(0, 0) = 0;

see [84, p.449, Eq. (8.3)].

Theorem 5.4.4. Let f(v, w), g(v, w) be smooth functions on a domain D̄ and let

f(v, w) attain its minimum value of 0 at the critical point (0, 0) of the third kind

and satisfy fv(0, 0) > 0 and fw(0, 0) > 0. Moreover, assume that the boundary of

D̄ at (0, 0) coincides with the coordinate axes in the vw-plane. Then

J(m) =

∫∫

D̄

g(v, w)e−mf(v,w) dv dw ∼ g00

f10f01

m−2 = O(m−2) as m→ ∞,
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where g00 = g(0, 0).

Proof. As indicated above (equation (5.28)) we can write

f(v, w) = f10v(1 + P (v, w)) + f01w(1 +Q(v, w)), f10 6= 0, f01 6= 0,

= f10V + f01W,

where V = v(1 + P (v, w)) and W = w(1 + Q(v, w)). Let D̄′ denote the image of

D̄ under this change of variables. Then

J(m) =

∫∫

D̄′

G(V,W )e−mF (V,W ) dV dW, (5.29)

where

G(V,W ) = g(v, w)
∂(v, w)

∂(V,W )
, F (V,W ) = f10V + f01W.

By [84, Chapter V, Theorem 9], the double integral in (5.29) can be written as

J(m) =

∫ M

0

h(t)e−mt dt, (5.30)

where 0 and M denote the infimum and supremum of F in D̄′ (or equivalently, of

f in D̄) respectively, and

h(t) =

∫

F (V,W )=t

G(V,W )√
F 2
V + F 2

W

dσ,

σ being the arc length of the curve F (V,W ) = t.

Following the argument used in [84, p.449], we now make the transformation



Chapter 5 128

V =
ξ

f10

cos2(η); W =
ξ

f01

sin2(η),

which gives ξ = f10V + f01W = F (V,W ). Since f10 > 0 and f01 > 0 (by assump-

tion), the line F (V,W ) = t lies outside D̄′ whenever t < 0 and so h(t) = 0 for

t < 0. For t > 0, we have

h(t) =

∫ π/2

0

Φ(t, η) dη,

where

Φ(t, η) =
2

f10f01

∑
Φjkt

j+k+1 cos2j+1(η) sin2k+1(η), (5.31)

with

Φjk =
Gjk

f j10f
k
01

and Gjk =
∂j+k

∂vj∂wk
G(0, 0). (5.32)

Hence

h(t) ∼
∑

bjkt
j+k+1 as t→ 0+, (5.33)

where

bjk =
Φjkj!k!

(j + k + 1)!f10f01
, (5.34)

since
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∫ π/2

0

cos2j+1(η) sin2k+1(η) dη =

∫ π/2

0

(1 − sin2(η))j(sin2(η))k cos(η) sin(η) dη

=
1

2

∫ 1

0

(1 − u)juk du

=
1

2
B(j + 1, k + 1);

see [84, p.450]. It follows from (5.30) and Watson’s lemma that

J(m) ∼
∑

bjkΓ(j + k + 2)m−(j+k+2) as m→ ∞.

Since b00 = g00/(f10f01), the stated result follows.

�

Theorem 5.4.5 (Large size asymptotics of the 1-D CZD). Let the critical island

size i = 0. Then

P (s) = O(s−9/2e−2(s/µ)3) as s→ ∞.

Proof. From (5.24) and (5.25),

P (s) = O
(
s3/2

∫∫

D̄

g(v, w)e−mf(v,w) dv dw

)
,

where D̄ = [1,∞) × [1,∞), m = (2s/µ)3, g(v, w) =
√
π/3(vw)1/4(

√
v +

√
w)−2

and f(v, w) = vw(
√
v +

√
w)−2.

As discussed earlier, f attains a minimum value of 1/4 at the corner point

(1, 1), which is a critical point of the third kind. Note that the boundary of D̄ at

(1, 1) consists of two perpendicular lines v = 1 and w = 1. Moreover, fv(1, 1) > 0

and fw(1, 1) > 0. Consequently, from Theorem 5.4.4, we deduce that
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P (s) = O(s3/2e−mf(1,1)m−2) = O
(
s3/2e−(2s/µ)3/4

(
2s

µ

)−6
)

= O(s−9/2e−2s3/µ3

) as s→ ∞.

�

5.5 Conclusion: the Blackman and Mulheran The-

ory versus the Generalised Wigner Surmise

In the case of the one-dimensional (1-D) point-island model only, by Theorem 5.4.1,

the exponent of 2i+3 is odd for all i ≥ 0 which differs from the Generalised Wigner

Surmise (GWS) prediction (5.2) that we should have Pβ(s) ∼ sβ = s2(i+1) as s→ 0

in d = 1. By Theorem 5.4.5, GWS does not hold for i = 0 also asymptotically as

s → ∞. Hence, it follows that the Blackman and Mulheran (BM) model and the

GWS cannot be simultaneously correct.

Here we will discuss the differences between the two theoretical approaches

presented in this chapter. It is interesting to note that the analysis of GWS and the

BM theory are based on the same physical model. In [61], the authors discuss the

nucleation rate in terms of the monomer density and just as in the BM theory, the

probability of (i+1) monomers coinciding is required. This leads to the nucleation

rate, approximately ni+1
1 . This is essentially the same as the physical basis we have

used in this chapter. Similarly, despite the fact both approaches are based on the

same physical model there is a conflict of GWS with the BM theory. So, the

question is why do these two theoretical approaches exhibit different behaviour for

small- and large-sizes of capture zones?
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In small-size scaling, the authors in [61] consider the nucleation rate within

capture zones of size s. Moreover, they reconsider such a nucleation rate using the

locally averaged monomer density. They argue that the capture zone distribution

Pβ(s) ∼ s2i+2 = s2(i+1) = sβ for small s in the 1-D case. However, the justification

of the nucleation rate using locally averaged monomer density within a capture

zone is not clear.

In [62], the authors use a spatially dependent monomer density within a capture

zone instead to derive the nucleation rate for two-dimensional substrates. This

involves integrating the monomer density to the power of (i+ 1) over the capture

zone which results in a different β = i+ 2.

We can use this type of modification for our case here. By the same argument,

using (5.3), we take the local monomer density in a capture zone of small size s

which is obtained by two gaps of size s/2. If we do this, we recover β = 2i + 3

which is in agreement with Theorem 5.4.1. The argument used in [62] is heuristic

at best and the more rigorous methods adopted in this chapter may be viewed as

more satisfactory.

In this chapter we have proved that for i = 0 in large-size scaling, the large-size

dependence of the capture zone distribution (CZD) following equation (5.15) mir-

rors the corresponding gap size distribution (GSD) φ(x) – instead of the Gaussian

tail of equation (5.2), we have P (s) ∼ exp(−2s3/µ3). It can be conjectured, unlike

the Gaussian tail, that the CZD for larger values of i will follow exp(−cis2i+3) for

some constants ci, following the asymptotics of the corresponding GSD.

Essentially, when dealing with one dimension, we show that the GWS of [61]

does not correspond with the asymptotic solutions to the BM theory analysis of

point island nucleation and growth. As the physical basis of these two approaches is

the same, we therefore believe that failings of the GWS have led to such differences.
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This does not necessarily imply that we take the BM model to be correct – we will

now discuss this.

Since the BM theory is based on (5.3) and (5.15), we need to discuss the

validity of these equations. Equation (5.3) says that nucleation events are rare

in a gap of any size x so that monomers equilibrate between nucleations. This

assumption is true if in the aggregation regime the monomer density is assumed

to be approximately steady state, that is, if we neglect any effect of nucleation.

One could argue that a nucleation event is likely to occur roughly at the centre

of any existing gap. From this, such a gap will have similar size to the left and

to the right of a new island. However, when such an island is nucleated in an

existing gap, correlations in both new gaps tend to vanish. Assuming there is no

correlation between the sizes of the two neighbouring gaps, we have (5.15).

Note that equations (5.3) and (5.15) are independent of each other, one of them

being false does not imply that the other is also false.

In Chapter 6, we will discuss whether the MC simulations can confirm that

(5.3) and (5.15) are valid or not and determine whether the BM theory or GWS

is true. In brief, equation (5.3) needs modification for large gap size x. This may

suggest a better fragmentation kernel for the gap evolution equation.

Also, the fact that we have shown that the correlation coefficient between each

gap is almost zero tells us that there is no relationship between each gap prior to

nucleation events. This seems to almost confirm the assumption behind (5.15).

However, since (5.3) is true for small x, and if (5.15) is true then these tell us

that GWS with the original definition of β = 2(i + 1) cannot be true in at least

the 1-D point-island case.
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The Gap Size and Capture Zone

Distributions in Monte Carlo

Simulations

6.1 Introduction

As noted in Chapter 3, Pimpinelli and Einstein introduced a new theory for

the capture zone distribution (CZD) employing the Generalised Wigner Surmise

(GWS) from Random Matrix Theory [61], causing some controversy. Oliveira and

Reis [57] have presented simulation results for islands grown on a two-dimensional

substrate with critical island size i = 1 and 2, providing some support for the

proposed Gaussian tail of the CZD [61]. However, Li et. al. [47] presented an

alternative theory which yields a modified form for the large-size CZD behaviour,

supported by data for the simulated growth of compact islands with i = 1. This

form seems to agree with that found by Oliveira and Reis, contradicting the GWS

[57]. In other work, Shi et. al. [71] studied i = 1 models in d = 1, 2, 3, 4 dimen-

133
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sions, finding that the CZD is more sharply peaked and narrower than the GWS

suggests. Therefore it is by no means established whether the GWS provides a

good theoretical basis for understanding the distribution of capture zones found

in island nucleation and growth simulations.

The simplified case of point island nucleation and growth in one dimension has

proven to be a good test case for theories. Blackman and Mulheran [14] studied

the system with critical island size i = 1, using a fragmentation equation approach.

In this system, we can view the substrate as a string of inter-island gaps, and new

island nucleation caused by the deposited monomers as a fragmentation of these

gaps. Thus in order to understand the CZD, it is important first to be able to

describe the gap size distribution (GSD).

In the previous chapter we have extended the analysis of the fragmentation

equations of [14] to the case of general i ≥ 0. We have been able to derive the

small- and large-size asymptotics of the GSD, and by assuming random mixing

of the gaps caused by the nucleation process, we have also derived the small-size

asymptotics for the CZD for general i and the large-size behaviour for i = 0.

One key feature to emerge from the gap evolution equations as discussed in the

previous chapter is that the asymptotic behaviour of the CZD is different to that

of the GWS [61]. It therefore is appropriate to ask what support, further to that

in [14], for the fragmentation equation approach is offered by Monte Carlo (MC)

simulations of the system. Recent work by González et. al. [35] has revisited

the case of i = 1, developing the original fragmentation equation [14] and GWS

arguments in response to deviations between prediction and simulation. In this

work we will explore simulation results for the one-dimensional model with i =

0, 1, 2, 3, and consider the relative merits of the fragmentation theory [37] and

GWS [61] approaches.
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The aims of this chapter are, using MC simulations,

• To investigate the validity of the GWS discussed in Chapter 3 for one-, two-

and three-dimensional (1-D, 2-D and 3-D respectively) nucleation and growth

models;

• To investigate the correlations between neighbouring gaps in a 1-D model;

• To investigate the GSD and CZD in more detail, especially at small- and

large-size scaling. Moreover, we compare their results to two theories – the

GWS and gap evolution equations – and comment on whether these theories

agree, or otherwise, with data from MC simulations.

6.2 Monte Carlo Simulations

Firstly, a decision must be made about shapes of islands; point or extended. Here,

by point island we mean islands that have no spatial extent, such that a stable

island of any size greater than the critical island size i will always occupy a single

lattice site. Alternatively, extended island shapes are allowed; such islands

grow by capturing monomers that diffuse to their locations. The shape of these

islands depends on the dimension d; an island with 2 × radius as the length for

d = 1, a circular island for d = 2 and a spherical island for d = 3. However, it

is possible that the dimension of an island could be different from the substrate

and still be physical, such as hemispherical islands growing on a flat 2-D surface.

Dendritic (or fractal) is another possibility for the island shape; such an island has

a characteristic tree-like structure, growing predominantly in the direction from

which monomers diffuse [3, 54]. In this chapter we will not consider dendritic

islands in favour of the cases of point and extended islands. In this thesis, MC
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simulations were programmed in FORTRAN, and the results of the simulations

were analysed and visualised in MATLAB.

6.2.1 Full Simulation

Within the full simulation, monomers are deposited onto an initially empty 1-D

array of sites representing the substrate at deposition rate F monolayers per unit

time. Deposited monomers perform random hops between nearest neighbour lat-

tice sites within periodic boundary conditions; this diffusion occurs at the constant

monomer rate D. In the case i > 0, a new island is nucleated when the number of

monomers at any one site exceeds the critical island size. The i = 0 case represents

spontaneous nucleation, and in this case monomers have a small probability pn of

nucleating a new island whenever they hop. Note that the lower the value of pn,

the lower the nucleation rate and the larger the gaps, which delays the onset of

the monomer density saturation we assume in this thesis. However, if pn is too

high, then we obtain a high density of islands and the granularity of the lattice be-

comes an issue for modelling in the gaps. Once nucleated, the new island absorbs

monomers that hop onto it from a nearest neighbour site, therefore increasing in

size. These processes are illustrated for the 1-D case in Figure 1.3 of Chapter 1,

Section 1.3.

As the rate F increases, there is a decrease in the average time a monomer

diffuses before it meets another monomer or island. As diffusion and deposition

are occuring as competing processes the statistical properties depend on the ratio

R = D/F .

The deposition process can be measured by the nominal substrate coverage,

θ = Ft. Note that in the case of point islands, the coverage can exceed 100% even

whilst most of the substrate remains free for monomer diffusion. For a fixed value
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of θ, the average distance between islands increases in relation to an increase in

R – and for fixed R, the island density increases as coverage increases. We are

interested in the scaling properties of the aggregation regime [3] where the island

density exceeds the monomer density. The value of θ for which the regime starts

is dependent on i and R; we check that the values for θ are sufficiently high to

ensure that we are in the aggregation regime.

An important point raised by Ratsch et. al. [65] needs consideration for the

point-island model. In the work of Ratsch et. al., the island size distribution

(ISD) for point island models, where the process of nucleation is endless, does not

scale in the asymptotic limit. In other words, the ISD has to become singular for

θ → ∞ for any R, so that scaling breaks down at large coverage. The reason for

this is that the lattice becomes saturated with islands and all the capture zones

have become size one. Note that the connection between size of island and its

capture zone area is vital for the ISD to scale.

Interestingly, for extended islands Ratsch et. al. confirm that the ISD do scale

in the scaling limit. This may be due to the fact that islands usually coalesce

at around θ = 20% and at this point there is no more nucleation. However, for

extended islands, scaling will break down at θ beyond 20%, i.e. when coalescence

plays a major role. This leads to the lattice being covered by islands and so capture

zone becomes size one.

In the Results section, we provide average island densities, 〈cj〉, from extended-

and, more importantly, point-island MC simulations for each value of i = 0 − 3.

Note that cj is the number density of island size j, and 〈cj〉 is its average which

varies with θ and R. This allows us to ensure that, according to these results, the

lattice does not become saturated with islands and, thus, are long way short of

the limit referred by Ratsch et. al.
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6.2.2 Single-Gap Nucleation Rate Simulation

In the 1-D single-gap simulation, we simulate point island nucleation events in

gaps ranging from size g = 50 to g = 500 which proves to be adequate to illustrate

the nucleation mechanisms at play. In this case, monomers can diffuse as usual on

a lattice of length g, but if they attempt to hop beyond the length of the lattice

the monomers are removed from the simulation.

A monomer deposition increments the simulated time by 1/g when the nominal

monolayer deposition rate F is set to unity – recall that what is important is the

ratio R = D/F , rather than the absolute value of either F or D. At each step

of the algorithm, either a new monomer is deposited at a randomly chosen site

in the gap or an existing monomer is diffused, according to the relative rate of

such processes. Explicitly, a monomer is deposited into the gap with probability

Fg/(Fg + Dn) = 1/(1 + Rn/g), where n represents the number of monomers

present in the gap. If deposition does not occur, a randomly chosen monomer

then hops to a nearest neighbour site. For i = 1, 2 and 3, if i + 1 monomers

coincide at a site to form a stable island, the simulation ends and the time to the

nucleation event is recorded. Repeat runs always start with an empty lattice, and

we obtain reliable statistics on the nucleation times within each gap size.

We use R = 106 for i = 1, 2, and R = 105 for i = 3 due to simulation time

constraints. In the single-gap simulations we also monitor the average monomer

density profile across the gaps and the number of hops each monomer makes.

The latter will indicate whether deposition events influence island nucleation. If

nucleation is caused solely by the diffusional fluctuations of monomers, then stable

islands should only include monomers that have taken many hops. However, if

nucleation closely follows a deposition event then the island will contain monomers

that have only made few hops since being deposited.
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6.3 The Gap Evolution Equations Revised

The data from MC simulations can be used as a benchmark against which to test

predictions of theories for the GSD and CZD. In this subsection we will revise the

fragmentation approach considered in the previous chapter.

A nucleation that occurs in a parent gap of width y will result in the creation

of two daughter gaps of widths x and y − x. The probability that the nucleation

occurs at position x < y is taken from the long-time (steady state) monomer

density profile in the gap,

n1(x) =
1

2R
x(y − x), (6.1)

where, as before, R = D/F . In particular, we assume that the nucleation probabil-

ity is obtained from this monomer density n1(x)
αn , with the value of αn reflecting

the nucleation process. We then obtain

∂

∂t
u(x, t) = −B(αn + 1, αn + 1)xλu(x, t) + 2

∫ ∞

x

[x(y − x)]αnu(y, t)dy, (6.2)

where B(·, ·) is the Beta function and λ = 2αn + 1. Here, u(x, t) is the number

of gaps of size x at time t. Each term in (6.2) has already been discussed in the

previous chapter.

In Chapter 5 we set αn = i+ 1 under the assumption that nucleation is a rare

event solely driven by the diffusion of the monomers. In doing this we implicitly

assume that the i + 1 monomers necessary to create the nucleus are all in some

sense mature, each separately obeying the long-time steady-state density profile

n1(x). However, we shall also have need to consider the case when nucleation is

triggered by a deposition event. Here a newly deposited monomer either lands
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close to (or even directly onto) a pre-existing cluster of i > 0 mature monomers.

In this case, we set αn = i.

By a similar analysis to that used for αn = i + 1 in Chapter 5, the following

asymptotics for the 1-D GSD are then found:

φ(z) ∼ kzαn as z → 0; (6.3)

φ(z) ∼ kz−2 exp(−czλ) as z → ∞, (6.4)

for constants c > 0 and k. Here z = x/x̄(t) is the scaled gap size where x̄ is the

average gap size.

We may use this information to understand the scaling asymptotics of the CZD

P (s) where s is the scaled capture zone size. It follows that

P (s) ∼ ks2αn+1 as s→ 0, (6.5)

for some constant k. The large-size scaling of P (s) can be computed only for the

special case αn = 1, i = 0. It has been shown that, for some constant k,

P (s) ∼ ks−9/2e−2s3/µ3

as s→ ∞, (6.6)

where µ is a positive constant.

As seen in the previous chapter, we note here that the large-size asymptotics of

the GSD and the CZD are thus the same for spontaneous nucleation (i = 0) using

(5.1). Given the form of (5.1) for P (s), we conjecture that the correspondence

between the GSD and CZD large-size asymptotics will hold for other values of

i ≥ 1 although it has not been proved.
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Here we note that the asymptotics of the fragmentation equation approach

above and the GWS, with β, the sole parameter in the GWS, do not agree (see

the conclusion section in the previous chapter for more detail), which in part

motivates the present MC study.

6.4 Results

In Subsection 6.4.1, we consider the validity of the GWS for the case of all 1-D,

2-D and 3-D models by comparing the GWS to the MC data visually and comment

on whether the expected value of a parameter used in the GWS form is correct

or not. In Subsection 6.4.2 and subsequent ones, the 1-D point-island model will

be considered for the relationship between the GSD and CZD, and the small- and

large-size scaling of both the GSD and CZD. Moreover, we compare these results

to the prediction of the fragmentation theory approach as discussed in the previous

section.

6.4.1 The Validity of Generalised Wigner Surmise

Here, we are comparing the data from MC simulations to the GWS

Pβ(s) = aβs
β exp(−bβs2), (6.7)

conjectured by Pimpinelli and Einstein where β is given by (3.40) in Chapter 3. In

these simulations, we consider both extended (at θ = 5 − 20%) and point islands

(at θ = 20%) for the case of i = 0−3. CZDs were obtained and fitted to the GWS

functional form, with β no longer restricted to the values in (3.40).

As noted in Chapter 3, Shi et. al. have carried out simulations of point-

island models of irreversible nucleation and growth in d = 1–4 in the i = 1 case.
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Their model is similar to our point-island simulation except that if a monomer is

deposited directly on or, hops onto, an island, then this monomer aggregate to an

island. In this subsection, we compare our results to those of Shi et. al.

6.4.1.1 Case I: d = 1

Our simulations were performed on lattices with 106 sites, with R = 8× 106 up to

coverage θ = 20%, averaging results over 100 runs. For i = 0 we set the sponta-

neous nucleation probability to pn = 10−7. As discussed in Section 6.2, we must

ensure that point island densities for each i are much less than unity. In Table 6.1,

where len is defined as the length of the lattice, we confirm that these island densi-

ties are well short of the limit referred as in [65]. This means that the lattice in our

MC simulations is not completely occupied by islands and hence the scaling does

not break down. As discussed in Section 1.1, there are four distinct regimes – low

coverage, intermediate coverage, aggregation and coalescence regimes. We are in-

terested in intermediate coverage and aggregation regimes. Intermediate coverage

is the regime where the island density increases as the monomer density decreases

due to significant nucleation of new islands. The aggregation regime occurs when

the island density still increases (slowly) and the monomer density reduces. This

is where a diffused monomer is more likely to be captured by an island rather than

joining another monomer to nucleate a new island.

The MC simulation has entered the intermediate coverage when there is a

crossover between the monomer and island densities. In Figure 6.1, we see that

the crossover for the case of i = 0 occurs at θ ≈ 15%. In Figures 6.1 and 6.2, there

is a clear crossover between both monomer and island densities within coverage

θ = 20% except for the i = 3 point-island case. This is due to rarity of nucleation

of islands in the i = 3 model. However, since we are dealing with point islands,
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the coverage can be large and eventually there is a crossover beyond θ = 20%.

Of course, this is true as long as the island density does not reach the limit as

discussed earlier.

i 〈cj〉/lena 〈cj〉/lenb

0 0.259% 0.282%
1 0.879% 0.954%
2 0.384% 0.416%
3 0.202% 0.215%

a Extended islands, θ = 20%
b Point islands, θ = 20%

Table 6.1: Average island density, 〈cj〉, at coverage θ = 20% for d = 1.
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Figure 6.1: Monomers (c1) and island (cj) densities vs. coverage (up to θ = 20%)
for 1-D extended islands.



Chapter 6 145

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2x 10
4

θ

c 1, c
j

 

 

c
j

c
1

i = 0

0 0.02 0.04
0

1000

2000

3000

4000

5000

6000

7000

θ

c 1, c
j

i = 1

0 0.1 0.2
0

1000

2000

3000

4000

5000

θ

c 1, c
j

i = 2

0 0.1 0.2
0

5000

10000

15000

θ

c 1, c
j

i = 3

Figure 6.2: Monomers (c1) and island (cj) densities vs. coverage (up to θ = 20%)
for 1-D point islands.

In Figures 6.3 and 6.4, we plot the CZDs from the MC data at θ = 5%,

10%, 15% and 20% for extended islands, and 20% for point islands. Moreover,

we compare the GWS to these figures for the CZD. as illustrated in Figures 6.3

and 6.4. We allow β to be a real (not necessarily integer-valued) parameter by

calculating the deviation between the MC data and the GWS for various β, and

identify the value that minimises this deviation. In other words, assuming the

GWS is true we want to know whether the data does fit β = 2
d
(i+1) for any i and
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d better than any other integer values of β. The best optimal values of β are used

in the right-hand plots of Figures 6.3 and 6.4.
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Figure 6.3: CZDs and the deviation between MC data and the GWS for various
β, with for i = 0 and 1 in d = 1.

In order to provide an estimate of the error in fitting of β to the MC data, we

adopt a strategy to bin the data using binwidths of size 0.01v with v = 1, 2, ..., 20.

This allows us to calculate the average of these deviation between MC data and

the GWS for various β, and an approximate 95% confidence interval. The results

of this fitting procedure are presented in Table 6.2 for the CZD.
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Figure 6.4: CZDs and the deviation between MC data and the GWS for various
β, with i = 2 and 3 in d = 1.
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i GWS CZDa CZDb CZDc

0 2 2.785 ± 0.007 2.904 ± 0.010 2.930 ± 0.011
1 4 4.021 ± 0.017 3.998 ± 0.017 4.187 ± 0.019
2 6 5.934 ± 0.030 5.895 ± 0.028 6.422 ± 0.034
3 8 6.282 ± 0.032 6.507 ± 0.034 7.260 ± 0.043
a Extended islands, θ = 10%
b Extended islands, θ = 20%
c Point islands, θ = 20%

Table 6.2: Best optimal values of β for d = 1.

Utilising bootstrap methods (see Chapter 2 for detail) with 1000 samples of

size as big as the original sample size we consider the average value of β for the

general case of i ≥ 0, and therefore find the approximate 95% confidence interval

of these averages. Moreover, we have confirmed that these bootstrap results in

Table 6.3 (with much smaller errorbars due to very large number of bootstrap

samples) are consistent with the results in Table 6.2.

i GWS CZDa CZDb CZDc

0 2 2.760 ± 0.001 2.882 ± 0.001 2.900 ± 0.001
1 4 3.993 ± 0.001 3.966 ± 0.001 4.156 ± 0.001
2 6 5.890 ± 0.001 5.864 ± 0.001 6.388 ± 0.001
3 8 6.238 ± 0.002 6.464 ± 0.002 7.215 ± 0.002
a Extended islands, θ = 10%
b Extended islands, θ = 20%
c Point islands, θ = 20%

Table 6.3: Best optimal values of β for d = 1 using bootstrap methods.

As we see in Table 6.2, in the extended-island case for i = 1 and 2 the data

fit the expected values of β = 4 and β = 6 respectively better than other integer

values of β. The results for point islands in the cases of i = 1 and i = 2 are similar

to these for realistic islands. For i = 0, the data seems to fit β = 3 rather than the

expected value of β = 2. Likewise, for i = 3, the data fit β = 6 and β = 7 rather

than the expected value of β = 8 for extended and point islands respectively. In



Chapter 6 149

[71], Shi et. al. found that the peak height of the CZD in d = 1 with i = 1, and

at very large R, is higher than the GWS with β = 4 despite the fact that their

simulation data is close to the predicted β = 4.

6.4.1.2 Case II: d = 2

Our simulations were performed on lattices with 1581 × 1581 sites, with R = 107

up to coverage θ = 20%, averaging results over 100 runs. For i = 0 we set the

spontaneous nucleation probability to pn = 10−7. As before, in Table 6.4, we

confirm that these point island densities are well short of the limit referred as in

[65] and thus the scaling for the ISD does not break down. In Figures 6.5 and

6.6, there is a clear crossover between both monomer and island densities within

coverage θ = 20% except for the i = 3 case. This may be due to the fact that it

is much rarer to nucleate a new island by joining four monomers than any case of

lower i. As before, in Figures 6.7 and 6.8, we plot the CZDs from the MC data

at θ = 5%, 10%, 15% and 20% for extended islands, and 20% for point islands.

Moreover, we compare the GWS to these figures for the CZD and use the same

approach as for the d = 1 case to find optimal β values.

i 〈cj〉/lena 〈cj〉/lenb

0 0.019% 0.041%
1 0.155% 0.322%
2 0.012% 0.030%
3 0.002% 0.006%

a Extended islands, θ = 20%
b Point islands, θ = 20%

Table 6.4: Average island density, 〈cj〉, at coverage θ = 20% for d = 2.
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Figure 6.5: Monomers (c1) and island (cj) densities vs. coverage (up to θ = 20%)
for 2-D extended islands.
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Figure 6.6: Monomers (c1) and island (cj) densities vs. coverage (up to θ = 20%)
for 2-D point islands.
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Figure 6.7: CZDs and the deviation between MC data and the GWS for various
β, with i = 0 and 1 in d = 2.

As before, we adopt a strategy to bin the data using binwidths of size 0.01v

with v = 1, 2, ..., 20 in order to obtain the average of the deviations between MC

data and the GWS for various β, and an approximate 95% confidence interval.

The results of this fitting procedure are presented in Table 6.5 for the CZD.

As before, we have used bootstrap methods with 1000 samples of size as big

as the original sample size, we considered the average value of β for the general

case of i ≥ 0 and have found the approximate 95% confidence interval of these
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Figure 6.8: CZDs and the deviation between MC data and the GWS for various
β, with i = 2 and 3 in d = 2.
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i GWS CZDa CZDb CZDc

0 1 1.450 ± 0.006 0.959 ± 0.005 2.012 ± 0.008
1 2 2.351 ± 0.009 1.952 ± 0.007 2.726 ± 0.011
2 3 3.683 ± 0.015 3.484 ± 0.015 3.516 ± 0.014
3 4 4.041 ± 0.018 4.037 ± 0.019 3.868 ± 0.021
a Extended islands, θ = 10%
b Extended islands, θ = 20%
c Point islands, θ = 20%

Table 6.5: Best optimal values of β for d = 2.

averages. Moreover, we have confirmed that these bootstrap results in Table 6.6

are consistent with the results in Table 6.5.

i GWS CZDa CZDb CZDc

0 1 1.433 ± 0.001 0.956 ± 0.001 1.991 ± 0.001
1 2 2.329 ± 0.001 1.934 ± 0.001 2.702 ± 0.001
2 3 3.658 ± 0.002 3.469 ± 0.002 3.483 ± 0.001
3 4 4.007 ± 0.006 4.011 ± 0.006 3.846 ± 0.004
a Extended islands, θ = 10%
b Extended islands, θ = 20%
c Point islands, θ = 20%

Table 6.6: Best optimal values of β for d = 2 using bootstrap methods.

As we see in Table 6.5, the data for extended islands agree with the GWS.

Though the case i = 2 for both point and extended islands is questionable as the

best fit β could be 4 and the case i = 1 for point islands found better agreement

with β = 3. In [71], Shi et. al. found that in the case of i = 1, the data from the

models agree with β = 3 rather than β = 2 which confirms our results.

6.4.1.3 Case III: d = 3

Our simulations were performed on lattices with 189 × 189 × 189 sites, with R =

4.5 × 106 up to coverage θ = 20%, averaging results over 100 runs. For i = 0 we

set the spontaneous nucleation probability to pn = 10−7. In Table 6.7, we also
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confirm that these point island densities are well short of the limit referred as

in [65]. Recall that the intermediate coverage regime occurs when monomer and

island densities are intersected over a certain coverage. In Figures 6.9 and 6.10,

apart from the i = 1 case, the crossover of both monomer and islands densities is

much more likely to occur at later coverage for point islands. Comparably, for the

extended-island case, the MC simulation has entered the intermediate coverage

regime well within θ = 20% except for i = 3. For the i = 3, the intermediate

coverage regime does not occurs because of quite low number of islands. This may

be due to the fact that it is much rarer to nucleate a new island by joining four

monomers. In Figures 6.11 and 6.12, we plot the CZDs from the MC data at

θ = 5%, 10%, 15% and 20% for extended islands, and 20% for point islands. As

in the case of d = 1 and d = 2, we compare the GWS to these figures for the CZD

and find the best optimal values of β.

i 〈cj〉/lena 〈cj〉/lenb

0 0.004% 0.027%
1 0.141% 0.310%
2 0.002% 0.020%
3 0.001% 0.003%

a Extended islands, θ = 20%
b Point islands, θ = 20%

Table 6.7: Average island density, 〈cj〉, at coverage θ = 20% for d = 3.
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Figure 6.9: Monomers (c1) and island (cj) densities vs. coverage (up to θ = 20%)
for 3-D extended islands.
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Figure 6.10: Monomers (c1) and island (cj) densities vs. coverage (up to θ = 20%)
for 3-D point islands.
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Figure 6.11: CZDs and the deviation between MC data and the GWS for various
β, with i = 0 and 1 in d = 3.

We adopt the same strategy as in the previous subsection for the average of the

deviations between MC data and the GWS. The results of this fitting procedure

are presented in Table 6.8 for the CZD. Using bootstrap methods as before, we

have confirmed that these bootstrap results in Table 6.9 are consistent with the

results in Table 6.8.

As we see in Table 6.8, the data for both point and extended islands completely

disagree with the GWS. It is interesting to note that, in [71], Shi et. al. found that
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Figure 6.12: CZDs and the deviation between MC data and the GWS for various
β, with i = 2 and 3 in d = 3.
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i GWS CZDa CZDb CZDc

0 1 0.126 ± 0.027 0.002 ± 0.003 1.951 ± 0.008
1 2 0.867 ± 0.006 0.688 ± 0.008 0.790 ± 0.007
2 3 2.139 ± 0.008 2.110 ± 0.009 2.127 ± 0.008
3 4 2.070 ± 0.008 2.065 ± 0.009 2.527 ± 0.009
a Extended islands, θ = 10%
b Extended islands, θ = 20%
c Point islands, θ = 20%

Table 6.8: Best optimal values of β for d = 3.

i GWS CZDa CZDb CZDc

0 1 0.133 ± 0.001 0.000 ± 0.000 1.906 ± 0.001
1 2 0.995 ± 0.001 0.814 ± 0.001 1.011 ± 0.001
2 3 2.298 ± 0.002 2.273 ± 0.002 2.273 ± 0.001
3 4 2.332 ± 0.003 2.330 ± 0.003 2.557 ± 0.001
a Extended islands, θ = 10%
b Extended islands, θ = 20%
c Point islands, θ = 20%

Table 6.9: Best optimal values of β for d = 3 using bootstrap methods.

in the case of i = 1, the data from the models agree with β = 3 rather than β = 2.

According to Table 6.8, in the i = 1 point island case the data is closer to 1. In

other words, the data from our simulations suggests that β = 1 rather than the

GWS’s β = 2 or β = 3 as suggested by Shi et. al. After checking our simulation

methods again, we are still unable to understand why these results differ.

6.4.2 The Validity of Convolution Equation

At this point, it is wise to mention that we consider only the 1-D point-island

model for the rest of this chapter. This is because we are now investigating the

GSD which is relevant for the 1-D model. In the case of the 1-D point-island

model, assuming there is no correlation between the sizes of the two neighbouring

gaps, then we recall the convolution equation for P (s), the CZD with s being the
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scaled capture zone size,

P (s) = 2

∫ 2s

0

φ(z)φ(2s− z)dz, (6.8)

where φ(z) is the GSD function with z being the scaled gap size. Here, we have used

the data from MC simulations to determine whether there is correlation between

the sizes of the two neighbouring gaps or not. In Figure 6.13, we have shown

almost zero correlation between the sizes of two gaps for the i = 1 point-island

case. The graphical representation for other values of i in the case of point and

extended islands are similar to Figure 6.13.
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Figure 6.13: gap(j) vs. gap(j + 1) for j ∈ Z
+ in the case of i = 1 and d = 1.

As we see in Table 6.10, there is almost zero correlation in the 1-D case. It is

interesting to note that, at θ = 20%, the correlation of gaps for extended islands is

consistently lower than those of point islands for the case of i = 0–3. We may need

to revise equation (6.8) (equation (3.22) in Chapter 3): If there is weak correlation

between the sizes of the two neighbouring gaps, then we have
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i 20% a 20% b 40% a 100% a

0 −0.0737 ± 0.0035 −0.0420 ± 0.0034 −0.0782 ± 0.0028 −0.0746 ± 0.0023
1 −0.0519 ± 0.0017 −0.0267 ± 0.0019 −0.0520 ± 0.0017 −0.0540 ± 0.0012
2 −0.0567 ± 0.0026 −0.0383 ± 0.0028 −0.0536 ± 0.0024 −0.0537 ± 0.0025
3 −0.0523 ± 0.0036 −0.0362 ± 0.0041 −0.0569 ± 0.0032 −0.0627 ± 0.0034
a Point islands
b Extended islands

Table 6.10: Average correlation coefficients of sizes of two neighbouring gaps for
d = 1.

P (s) ≈ 2

∫ 2s

0

φ(z)φ(2s− z)dz, (6.9)

as confirmed in the work of González et. al. [35].

6.4.3 Single-Gap Nucleation Rate

In Figure 6.14 we show the results for the average monomer density profile within

gaps of size g = 100 and g = 300 for i = 1. For the smaller gap size, we see

that the profile agrees well with the assumption made in the fragmentation equa-

tion approach, coinciding with the long-time steady-state solution of the diffusion

equation with random deposition (6.1). This is typical for the lower end of the

range of gap sizes that occur in the full simulation at higher coverage, for all the

values of i that we have studied.

However, for the larger gap size g = 300 shown in Figure 6.14, we see that

the monomer density profile falls a long way below the long-time prediction. This

behaviour is typical for all values of i at the upper end of gap sizes found in our full

simulations. The reason for the shortfall is the higher nucleation rate in the larger

gaps; the average monomer density profile does not have sufficient time to reach

its saturated level in (6.1) before a nucleation event occurs. As stated, the range of
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gap sizes g used in the single-gap simulation is determined by the range typically

seen in our full simulations. Therefore, this failure to reach the saturated monomer

density profile with the large gaps can also be seen in our full simulation results

(data not shown). This will have direct consequences for how the nucleation rate

varies with gap size for larger gaps, as we now show.
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Figure 6.14: Monomer density profile in a single gap of size g = 100 (top) and
g = 300 (bottom) for i = 1

In Figure 6.15 we show the average time for a nucleation event to occur 〈tnuc〉

for all single gaps in the case of i = 1, 2 and 3 (note that the data for i = 2

and i = 3 have been shifted horizontally to avoid overlapping curves). We note
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that the data obeys the power-law form predicted by the fragmentation equation

approach for small gap sizes g, but as expected deviates strongly for larger gaps.

In fact, the average time to nucleation becomes much higher than predicted by the

use of the saturated monomer density profile, since the actual profile for the larger

gaps is lower, therefore presenting slower than expected nucleation rates (but still

fast compared to the time it takes for the monomer density to grow from zero to

its saturation level).

The straight line fits in Figure 6.15 are for the small gap size data only (g ∈

[50, 150]). We use these to estimate how the nucleation rate varies with gap size g

through 1/〈tnuc〉 ∝ gγ, with the values of the power γ reported in Table 6.11. We

have used bootstrap methods with 1000 samples of size as large as the original to

find an approximate 95% confidence interval in Table 6.11.

The fragmentation equation approach (as mentioned in Section 6.3 above) sug-

gests that this power should be 2i + 1 or 2i + 3, depending on whether island

nucleation is driven by monomer deposition or solely by monomer diffusion re-

spectively. The results in Table 6.11 suggest that the simulation reflects both

these mechanisms, with the small gap size nucleation rate exponent lying between

these two possibilities.
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Figure 6.15: Average time for a nucleation event to occur at all gaps.

i λa λb Simulation
1 3 5 3.630 ± 0.028
2 5 7 6.615 ± 0.097
3 7 9 8.296 ± 0.219
a λ = 2i+ 1
b λ = 2i+ 3

Table 6.11: Small gap nucleation rate exponents from the single gap simulations.

In Figure 6.16 we present histograms for the number of hops taken by the

youngest monomer in an island for the g = 100 and g = 300 i = 1 simulations.

The histogram has a long tail, showing that in many cases all the monomers in

the island are indeed mature in the sense that they have diffused many times since

their deposition. However, there is also a sharp increase in likelihood of a monomer

only taking very few diffusive steps before being caught up in a nucleation event.

In other words, there are a significant number of nucleation events driven by fluc-

tuations due to deposition. This supports the conclusion that nucleation in these

simulations is driven by a combination of deposition and diffusion fluctuations in
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monomer density, helping to explain the intermediate values for the nucleation

rate exponents in Table 6.11.
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Figure 6.16: Histogram of the number of hops taken by the youngest monomer in
an island for i = 1, for gap size g = 100 (crosses) and g = 300 (diamonds). In
the main figure the number of monomers is truncated at 100. The inset shows
the same result at the lower number of hops without truncation of the number of
monomers in the histogram.

6.4.4 Full Simulation Behaviour

We can now look at our full MC simulations results as we have established the

nucleation behaviour in single gaps. It is quite difficult to obtain exact solutions

for the fragmentation equation approach, but such an approach provides concrete

predictions for the small- and large-size behaviours of the GSD and CZD. We can

establish which of the two theories is the better basis on which to understand the

observed behaviour, by comparing the CZD properties with those of the GWS.

Our simulations were performed on lattices with 106 sites, with R = 8 × 106

up to coverage θ = 100%, averaging results over 100 runs. For i = 0 we set the

spontaneous nucleation probability to pn = 10−7. Recall that, in Section 6.2, we
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need to ensure that point island densities at θ = 20% and θ = 100% for each i

are less than the lattice of size 106. In Table 6.12, we confirm that these island

densities are well short of the limit referred as in [65] and so the scaling for the ISD

does not break down. As before, in Figure 6.17, there is a clear crossover between

both monomer and island densities well within coverage θ = 100% especially the

i = 3 point-island case (occurs at θ ≈ 50%).

i 〈cj〉/lena 〈cj〉/lenb

0 0.282% 0.487%
1 0.954% 1.467%
2 0.416% 0.540%
3 0.215% 0.256%

a Point islands, θ = 20%
b Point islands, θ = 100%

Table 6.12: Average point island density, 〈cj〉, at both coverage θ = 20% and
θ = 100% for d = 1.
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Figure 6.17: Monomers (c1) and island (cj) densities vs. coverage (up to θ = 100%)
for 1-D point islands

6.4.4.1 Small-Size Scaling of the Gap Size and Capture Zone Distri-

butions

In Figures 6.18 and 6.19, we report the small size behaviour of the GSD (φ(z))

and CZD (P (s)) in logarithmic scale at θ = 20%. In order to fit the slopes in

these plots, and obtain reliable error estimates, we adopt the following numerical

technique. The size data are binned using regularly spaced bins on the logarithmic

abscissa, with bin widths bmr where b and r are fixed constants and m ≥ 0. By
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choosing a range of values for b = 1.1, 1.2, 1.3 and 1.4, and r = 0.0125, 0.025

and 0.05, all of which provide reasonable choices for binning the data, we obtain

a number of straight-line fits. This allows us to calculate the average of these

gradients and a 95% confidence interval. The results of this fitting procedure are

shown in Tables 6.13 and 6.14.
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Figure 6.18: Small-size GSD in logarithmic scale for i = 0, 1, 2 and 3 at coverage
θ = 20%. The dashed line is the straight-line fit to data.
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Figure 6.19: Small-size CZD in logarithmic scale for i = 0, 1, 2 and 3 at coverage
θ = 20%. The dashed line is the straight-line fit to data.

For the small-size asymptotic behaviour of the GSD and CZD we compare the

data from MC simulations with the fragmentation equation approach predictions

of Section 6.3. For the GSD, the dominant term is zαn as z → 0 (see (6.3)).

Likewise, for the CZD the dominant term is s2αn+1 (see (6.5)). For the latter, we

also have the competing prediction of the GWS which is sβ (see (6.7)). The values

from these theories are also displayed in Tables 6.13 and 6.14.

i αn
a αn

b GSDc GSDd

0 - 1 0.876 ± 0.033 0.905 ± 0.029
1 1 2 1.701 ± 0.045 1.579 ± 0.105
2 2 3 2.789 ± 0.080 2.718 ± 0.074
3 3 4 2.719 ± 0.082 3.271 ± 0.056
a αn = i
b αn = i+ 1
c θ = 20%
d θ = 100%

Table 6.13: Average gradient for the small-size scaling of the GSD using different
bin-widths at coverages θ = 20% and 100%.
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i 2αn + 1a 2αn + 1b GWSc CZDd CZDe

0 - 3 2 2.730 ± 0.030 2.751 ± 0.086
1 3 5 4 4.187 ± 0.050 4.372 ± 0.149
2 5 7 6 5.883 ± 0.207 5.957 ± 0.187
3 7 9 8 7.200 ± 0.382 6.138 ± 0.124
a αn = i
b αn = i+ 1
c β = 2(i+ 1)
d θ = 20%
e θ = 100%

Table 6.14: Average gradient for the small-size scaling of the CZD using different
bin-widths at coverages θ = 20% and 100%.

Utilising bootstrap methods with 1000 samples of size as big as the original

sample size we consider the average gradient of small GSD and CZD, and therefore

find the approximate 95% confidence interval of these averages. Moreover, we have

confirmed that these bootstrap results in Tables 6.15 and 6.16 (with much smaller

errorbars due to the very large number of bootstrap samples) are consistent with

the results in Tables 6.13 and 6.14.

i αn
a αn

b GSD(20%)c GSD(100%)c

0 - 1 0.946 ± 0.002 0.868 ± 0.001
1 1 2 1.741 ± 0.002 1.521 ± 0.001
2 2 3 2.893 ± 0.009 2.795 ± 0.008
3 3 4 2.638 ± 0.009 3.133 ± 0.014
a αn = i
b αn = i+ 1
c bmr with r = 0.0125 & b = 1.3 (i = 0–2)

& b = 1.4 (i = 3)

Table 6.15: Average gradient for the small-size scaling of the GSD using bootstrap
methods at coverage θ = 20% and 100%.

The results for the small-size scaling exponent of the GSD in Table 6.13 show

that the fragmentation equation approach provides a reasonably sound framework

for understanding the island nucleation and growth process. For i = 1, 2 and 3
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i 2αn + 1a 2αn + 1b GWSc CZD(20%)d CZD(100%)d

0 1 3 2 2.763 ± 0.008 2.585 ± 0.009
1 2 5 4 4.089 ± 0.013 4.356 ± 0.014
2 5 7 6 5.976 ± 0.030 6.133 ± 0.032
3 7 9 8 6.768 ± 0.021 6.181 ± 0.025
a αn = i
b αn = i+ 1
c β = 2(i+ 1)
d bmr with r = 0.0125 & b = 1.3 (i = 0–2) & b = 1.4 (i = 3)

Table 6.16: Average gradient for the small-size scaling of the CZD using bootstrap
methods at coverage θ = 20% and 100%.

we see that the exponent at θ = 100% lies between the two possible values αn = i

and αn = i + 1 suggested by the theory. This is as expected following the single-

gap nucleation results presented above, which show that both the deposition- and

diffusion-driven nucleation mechanisms are at play in the simulations. We note

that the θ = 20% results for i = 3 lie below αn = i = 3, but we believe that this

is due to the fact that the MC simulation has only just entered the aggregation

regime in this case. We also see that for i = 0, the exponent is close to the

αn = i + 1 = 1 prediction (αn = 0 is not a viable possibility), being closer at

θ = 100%.

The trends shown in the small-size scaling exponent of the CZD in Table 6.14

are rather similar. We see the i = 0 data are close to the λ = 2i + 3 = 3

prediction of the fragmentation equation approach, being somewhat larger than

the β = 2(i+1) = 2 predicted by the GWS. For i = 1 and 2 the data are bracketed

by the two alternatives suggested by the fragmentation theory, as indeed is the

GWS exponent which appears to present a reasonable compromise given the two

alternative nucleation mechanisms. The case of i = 3 provides an exception, which

hints at the breakdown of the relation in (6.9) between the GSD and the CZD.

This will be discussed further in the conclusion section.
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6.4.4.2 Large-Size Scaling of the Gap Size and Capture Zone Distri-

butions

In Figures 6.20 and 6.21 we present the large-size behaviour of the GSD and CZD

from the full simulations. The data are plotted in order to test the common large-

size functional form suggested by the fragmentation equation approach for the

GSD and by the GWS for the CZD, namely exp(−czp) (see (6.4) and (6.7)). In all

cases, the data do conform well to this functional form. In addition, we perform

fits to find the gradients p on these plots. In order to provide an estimate of the

error in these fits, we adopt a similar strategy to that used above for the small-size

scaling and bin the data using binwidths of size 0.01v with v = 1, 2, ..., 20. The

results of this fitting procedure are presented in Tables 6.17 and 6.18 for the GSD

and CZD respectively.
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Figure 6.20: Large-size GSD in logarithmic scale for i = 0, 1, 2 and 3 at θ = 20%.
The dashed line is the straight-line fit to data.
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Figure 6.21: Large-size CZD in logarithmic scale for i = 0, 1, 2 and 3 at θ = 20%.
The dashed line is the straight-line fit to data.

Once again we compare the exponents p from the MC simulation data with

the theoretical predictions. For the GSD, the fragmentation equation approach

predicts values of 2αn+1 for p. For the CZD, the fragmentation equation prediction

is p = 3 for i = 0 (see (6.6)) and we conjecture that the values for i > 0 will match

those of the GSD. In contrast, the GWS prediction for the CZD is the universal

value p = 2. The values from these theories are displayed in Tables 6.17 and 6.18.

i αn
a αn

b GSDc GSDd

0 - 3 2.515 ± 0.006 2.665 ± 0.007
1 3 5 3.130 ± 0.009 3.383 ± 0.008
2 5 7 4.364 ± 0.020 5.112 ± 0.025
3 7 9 5.094 ± 0.026 6.437 ± 0.034
a αn = i
b αn = i+ 1
c θ = 20%
d θ = 100%

Table 6.17: Average exponents for the large-size scaling of the GSD using different
bin-widths at coverage θ = 20% and 100%.
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i 2i+ 3a GWS CZDb CZDc

0 3 2 3.108 ± 0.012 3.043 ± 0.043
1 - 2 3.721 ± 0.020 3.826 ± 0.021
2 - 2 4.946 ± 0.029 5.536 ± 0.033
3 - 2 5.464 ± 0.041 6.530 ± 0.042
a λ = 2i+ 3
b θ = 20%
c θ = 100%

Table 6.18: Average exponents for the large-size scaling of the CZD using different
bin-widths at coverage θ = 20% and 100%.

Again, as before, to stay consistent with the results in Tables 6.17 and 6.18, we

have calculated the gradient of large-size scaling of GSD and CZD using the boot-

strap methods. In Tables 6.19 and 6.20, we also have confirmed good consistency

between both set of results.

i 2αn + 1a 2αn + 1b GSDc GSDd

0 1 3 2.513 ± 0.001 2.656 ± 0.001
1 3 5 3.121 ± 0.001 3.372 ± 0.001
2 5 7 4.384 ± 0.004 5.139 ± 0.003
3 7 9 5.192 ± 0.004 6.504 ± 0.005
a αn = i
b αn = i+ 1
c θ = 20%
d θ = 100%

Table 6.19: Average exponents for the large-size scaling of the GSD using bootstrap
methods at coverage θ = 20% and 100%.

In Table 6.17 we see that the fragmentation equation approach provides a useful

point of reference to the observed large-size scaling exponents of the GSD. Again

we see values that are bracketed by the two possible nucleation mechanisms for

i = 1 and 2, whilst the behaviour for i = 0 is a little below the predicted exponent

of p = 3. For i = 3 the data’s exponent is below even that of the deposition-

induced nucleation case. However, we have shown in Subsection 6.4.3 above that
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i 2i+ 3a GWS CZDc CZDd

0 3 2 3.131 ± 0.003 3.219 ± 0.007
1 - 2 3.762 ± 0.002 3.885 ± 0.003
2 - 2 4.981 ± 0.006 5.581 ± 0.005
3 - 2 5.511 ± 0.008 6.506 ± 0.008
a λ = 2i+ 3
b θ = 20%
c θ = 100%

Table 6.20: Average exponents for the large-size scaling of the CZD using bootstrap
methods at coverage θ = 20% and 100%.

the monomer density profile does not reach its saturation value in larger gaps, so

that the nucleation rate in these gaps is lower than predicted by the theory. This

seems to provide a rational explanation for the discrepancies.

The results in Table 6.18 for the large-size scaling behaviour of the CZD are

rather informative. We firstly observe that the MC data exponents do indeed

mirror those of the GSD in Table 6.17 quite well. This means that the universal

GWS prediction for p = 2 is always wrong. We also see that the concrete prediction

for i = 0 from the fragmentation equations, namely p = 3, is well supported by

the simulation data.

6.5 Conclusions

It was proposed that the capture zone distributions (CZDs) are described well

by the Generalised Wigner Surmise (GWS). Therefore, it is of interest to study in

more detail the validity of the GWS for the one-dimensional (1-D), two-dimensional

(2-D) and three-dimensional (3-D) nucleation and growth models for point and

extended islands.

As we see in Table 6.2, in the 1-D extended-island case for i = 1 and 2 the data

fit the expected values of β = 4 and β = 6 respectively better than other integer



Chapter 6 177

values of β. The results for point islands in the cases of i = 1 and i = 2 are similar

to these for realistic islands. Monte Carlo (MC) data have also confirmed that for

i = 0, β could be 3 rather than the expected value of β = 2. In [71], Shi et. al.

found that the peak height of the CZD in d = 1 is higher than the GWS with

β = 4 despite the fact that their simulation data is close to the predicted β = 4.

Moreover, for i = 3, the data fit, respectively, β = 6 and β = 7 rather than β = 8

for extended and point islands.

As we see in Table 6.5, in the case of the 2-D model we have confirmed that

the data for both point and extended islands agree with the GWS except that for

the case of i = 2 the MC data suggested that β could be 4. Similarly, the case

i = 1 for point islands found better agreement with β = 3. In [71], Shi et. al.

found that in the case of i = 1, the data from the models agree with β = 3 rather

than β = 2 which confirms our results.

Moreover, in Table 6.8, in the case of the 3-D model we have confirmed that

the data for both point and extended islands disagree with the GWS. Also, in the

case of the i = 1 point island model, we have found that the data is closer to

β = 1 rather than the GWS’s prediction β = 2. Note that in [71] Shi et. al. have

found that β is closer to 3 according to their point island simulations. Despite

the fact that our results are consistent with the results of Shi et. al. for the 1-D

and 2-D cases, we were unable to agree with their result for the 3-D case and the

explanation for this difference is unknown.

We have considered the convolution equation (6.8) for P (s) in terms of φ(z)

for the (1-D) model, under the assumption that the nucleation events have mixed

up the gaps effectively so that nearest neighbour gaps are not correlated. By

calculating the average correlation coefficients, we have found that there is almost

zero correlation and this indicates that (6.8) may be approximate rather than



Chapter 6 178

exact, albeit a rather good approximation

We have also investigated the 1-D point island nucleation and growth simu-

lations in order to test out predictions for the asymptotics of the gap size and

capture zone distributions. The work shows that the fragmentation equation ap-

proach provides a good framework in which to understand the MC simulation

results. The theory can be used to investigate two cases for the nucleation process

for i > 0, the first where nucleation is driven by deposition events, the second

where fluctuations caused solely by monomer diffusion induce nucleation.

Firstly we presented single-gap simulation results which show that both these

nucleation processes are active, so that the observed nucleation rates are bracketed

by these two extremes. Furthermore, we showed that for larger gaps the average

monomer density profile does not reach the long-time steady state assumed in

the fragmentation equation. As a result, the nucleation rates in large gaps are

slower than predicted by the theory, with the shortfall increasing with gap size.

Therefore, the simple power-law scaling of the nucleation rate with gap size breaks

down at larger sizes, with obvious consequences for the fragmentation equation

predictions for the gap size distribution (GSD).

We note here that deviations from the original Blackman and Mulheran [14]

predictions for the nucleation rate dependence on gap size have recently been

observed for the i = 1 1-D model [35]. In this work, the authors report that the

nucleation rate has two regimes; for small sizes, it approximately obeys s4, whilst

at larger sizes it approximately follows s3. The latter power-law feeds into the

asymptotic form of the GSD and hence the CZD, yielding the functional form

exp(−s3). We note here that these values are close to those we find for i = 1

in Table 6.11 for the small gap nucleation rates and Tables 6.17 and 6.18 for the

large-size GSD and CZD scaling. We therefore propose that the explanations
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presented here in terms of competing nucleation mechanisms and unsaturated

monomer density profiles will also explain the results reported in [35].

We then presented data for the full island nucleation and growth simulation.

For the small-size GSD scaling, we found results consistent with the fragmentation

equation predictions for i = 0. For i = 1, 2 and 3 the exponents were bracketed

by the values for the alternative nucleation mechanisms as expected. For the

large gap size scaling, the MC data followed the functional form suggested by

the fragmentation theory, with the exponents again being largely bracketed by

the predicted values, although the breakdown of the nucleation rate scaling is

apparent, especially for larger i.

In the case of the CZD, we once again successfully placed the observed simula-

tion data into the context provided by the fragmentation equation. Interestingly,

the GWS predictions for the small-size CZD scaling work extremely well since

they bisect the exponents from the alternative nucleation mechanisms. As dis-

cussed elsewhere [37], the predicted formula for the parameter β of the GWS can

be brought into line with either nucleation mechanism following the arguments of

Pimpinelli and Einstein [62], but the original prediction of these authors, (3.40),

does seem to speak well for their physical intuition [61].

However, the predicted GWS form for the large-size CZD scaling fails badly

when confronted with our 1-D point island simulation results. This is in contrast to

recent tests performed using two-dimensional (2-D) substrates [57], which suggests

that there is something unique to the 1-D case, possibly due to the topological

constraints in how capture zones are constructed from the inter-island gaps. This

aspect is worthy of further investigation.

In order to predict the asymptotics of the CZD, we have assumed that the

capture zones can be constructed from pairs of gaps sampled randomly for the
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GSD (see (6.8)). This is valid provided that the nucleation has effectively mixed up

the gaps so that nearest neighbours are no longer correlated [14]. One consequence

is that the small-size exponents of the CZD (say p1) are related to those of the

GSD (say p2) through p1 = 2p2 + 1. Looking at the results in Tables 6.13 and

6.14, we see that this relationship is reasonably obeyed for i = 0 and 1 but starts

to break down for i = 2 and 3. This is perhaps understandable, since for the

higher critical island sizes, the nucleation rate slows down dramatically over time

suggesting less well-mixed systems. This is another point for further consideration

in future theory development work.

Despite the limitations of the fragmentation equation approach used in this

work, such as its failure to capture the time-dependent nature of the monomer

density profile within gaps, it has provided an excellent theoretical framework

from which to consider the island nucleation process. Hence, alongside the points

discussed above, future work might also look at how the fragmentation kernels can

incorporate this time dependence, and how the two nucleation mechanisms can be

combined into a consistent set of fragmentation equations.



Chapter 7

The Distributional Fixed Point

Equation Approach

7.1 A Retrospective Approach

The island size and capture zone distributions (ISD and CZD respectively) that

underlie the island growth rates evolve towards scaling forms despite the on-going

nucleation of new islands with continued fragmentation of the existing capture

zones [52]. Furthermore, the form of the scaling functions depends on the critical

island size i, where i+1 is the smallest stable island size. A number of theoretical

approaches, such as the rate-equation approach considered in Chapter 4, have

been used to model this behaviour, ranging from rate equations which neglect

the variation in capture zone sizes [3, 6, 10, 67] due to spatial arrangements of the

islands, to those which attempt to include this information explicitly [4, 11, 14, 32,

54, 55]. An example of this latter approach is the fragmentation theory approach

considered originally by Blackman and Mulheran, and extended in Chapters 5

and 6. All these approaches can be characterised as forward-looking in the sense

181
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that they are based on predicting how the size distributions evolve as new islands

nucleate.

In this chapter we present an alternative, retrospective point of view where

we ask how the capture zones present in the system came to be created. This

approach was inspired by Seba [70] where he investigated a one-dimensional (1-

D) model aimed at describing the spacing distribution between cars parked in an

infinitely long street to ensure that any gap which is large enough for a car to

park in according to the probability f(a), described below. To describe this

spacing distribution approximately in the 1-D car-parking problem, Seba derived

the distributional fixed point equation (DFPE)

Xd
△
= a(1 +Xd).

Here Xd is the distance between two parked cars, a is an independent random

variable with a probability density f(a) and the symbol
△
= means that the left-

and right-sides of the above DFPE have the same distribution. More details about

this model can be found in Chapter 3.

In this thesis, we focus on the case of point island nucleation in a 1-D system

since this allows for more complete analysis and comparisons with results from a

more traditional fragmentation theory approach in Chapters 5 and 6. This new

perspective provides interesting insight into why scaling occurs as well as yielding

excellent comparisons with our simulation data.

The aim of this chapter is to investigate the effectiveness of the integral equation

(IE) counterpart of the DFPE for the gap size and capture zone distributions.

We do this by comparing solutions to the IE with data from Monte Carlo (MC)

simulations, and investigating the moments and small/large-size asymptotics of the

IE. We have also included Treat’s function for the gap size distribution (GSD), as
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derived in Chapter 5, as a useful benchmark in comparing the MC data and the

IE in the case of i = 0 only. Once we have carried out the analysis for both the

GSD and CZD, we compare these to the MC data and determine how well the IEs

fare.

7.2 Analysis of the Scaled Gap Size Distribution

A point island approximation is often used both for clarity and because it ap-

proximates the growth of small, well-separated islands, and 1-D systems occur

experimentally during island growth at substrate steps. Here we employ the same

1-D model as in Chapters 5 and 6.

I5 4I 3I 2II1

3CC4
C5

1
g g

5
g
4

g
3

Figure 7.1: The islands numbered I1–I5 on the 1-D substrate. The gaps between
the islands are labelled g1, g5, g4 and g3, and the capture zones of islands I5, I4
and I3 are labelled C5, C4 and C3 respectively.

Figure 7.1 illustrates some islands nucleated on the lattice, which are numbered

by the times of their birth. In other words, the island I1 is the oldest. Each island

has its own capture zone with its size being the bisection of this island’s two

neighbouring gaps.

The creation of gap g5 was formed by the nucleation of the young island, I5,

in Figure 7.1, which occurred in the gap of size (g1 + g5) between older islands I1

and I4. In general, any randomly chosen gap with scaled size z in the system will
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occur by the fragmentation of a larger gap formed by the combination of z + zn

where zn (say) is a neighbouring gap size. In general we do not have the benefit of

the chronological ages to guide us, so we make a mean field approximation for the

size of the neighbouring gap, namely zn = 1. Then we have the following DFPE

[70] for the gap size distribution (GSD) φ(z)

z
△
= a(1 + z), (7.1)

where gap splits into proportions a and 1 − a.

Before we progress further, we note that in Seba’s 1-D car-parking problem

[70], any car is free to leave - this renders this model reversible, which is not the

same as in the 1-D nucleation and growth of irreversible islands studied in this

thesis. However, we suggest the following argument in considering reversibility

versus irreversibility. First, we consider the 1-D model and the population of

gaps once we have reached the scale-invariant regime. The ongoing nucleation in

any system will cause the mixing of gaps; this in itself presents an opportunity. In

a well-mixed system it is common to make a mean-field approximation. Say we

are to choose any existing gap – created by the fragmentation of a larger gap of

size z + zs – we can then capture the essential physics of the system by replacing

zs by the average size 〈zs〉 = 1. We then arrive at the DFPE as described above.

An interesting point to note is that the DFPE is as much an approximation to

Seba’s 1-D car-parking problem as it is to the island nucleation system.

As noted in Chapter 5 and [14], in the aggregation regime, we derive the prob-

ability f(a) of fragmenting a gap into proportions a and (1 − a) from the steady-

state monomer density profile. We obtain f(a) in the form of the normalised beta

distribution
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f(a) =
aαn(1 − a)αn

B(αn + 1, αn + 1)
=

(2αn + 1)!

(αn!)2
aαn(1 − a)αn , (7.2)

where αn reflects the dominant nucleation mechanism. Recall, from Chapter 6,

that we define αn = i+1, i ≥ 0 for nucleation resulting from the diffusion of mature

monomers, and αn = i, i ≥ 1 for nucleation triggered by deposition of monomers.

Note that for the i = 0 spontaneous nucleation, only the αn = i + 1 model is

physically reasonable, since there is no possibility of a monomer depositing close

to a pre-existing critical island size of i in this case.

Following the analysis in [59, 70], we obtain an IE which is equivalent to the

DFPE (7.1)

Proposition 7.2.1. For the gap size distribution, φ(z), the following integral equa-

tion

φ(z) =

∫ min(z,1)

0

φ
(z
a
− 1
) f(a)

a
da, (7.3)

is derived from the distributional fixed point equation (7.1).

Proof. Suppose we have a cumulative density function (CDF), Φ(z) = 0 (say) if



Chapter 7 186

z < 0. Then we have

Φ(z) = Prob[z1 ≤ z]

= Prob[a(1 + z1) ≤ z] [from (7.1)]

= E[ Prob[a(1 + z1) ≤ z | a] ] [by the properties of conditional expectations]

=

∫ 1

0

Prob[a(1 + z1) ≤ z]f(a)da [by the definition of E]

=

∫ 1

0

Prob[z1 ≤ z/a− 1]f(a)da

=

∫ 1

0

Φ(z/a − 1)H(z/a− 1)f(a)da,

where H(·) is the Heaviside function since Φ(z1) = Prob[z1 ≤ a] and since Φ(z) = 0

if z < 0. Hence the CDF satisfies

Φ(z) =

∫ min(z,1)

0

Φ
(z
a
− 1
)
f(a)da. (7.4)

Now, since the probability density function is the derivative of the CDF, we

would like to differentiate Φ(z) with respect to z and use the Leibniz rule. However,

it is not clear whether Φ(z) is differentiable or not. Since we know that f(a) is

differentiable, we change variables to w = z/a− 1 to obtain

Φ(z) = z

∫ ∞

max(0,z−1)

Φ(w)f

(
z

w + 1

)
1

(w + 1)2
dw.

We can differentiate the right-hand side of the above equation for all z and so we

can also differentiate the left-hand side. Having established that we can differen-

tiate Φ(z) with respect to z, we return to (7.4). However, it is not clear whether

equation (7.4) is differentiable at z = 1. So, we carefully consider two cases z < 1

and z > 1. In the case of z < 1, we obtain
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Φ(z) =

∫ z

0

Φ
(z
a
− 1
)
f(a)da,

and, by differentiation, we also obtain

Φ′(z) = φl(z) = Φ(0)f(z) +

∫ z

0

φ
(z
a
− 1
) f(a)

a
da.

Similarly, for the case of z > 1, we obtain

Φ(z) =

∫ 1

0

Φ
(z
a
− 1
)
f(a)da,

and, by differentiation, we also obtain

Φ′(z) = φr(z) =

∫ 1

0

φ
(z
a
− 1
) f(a)

a
da.

Taking left-sided and right-sided limits, we have

lim
z→1−

φl(z) =

∫ 1

0

φ
(z
a
− 1
) f(a)

a
da,

and

lim
z→1+

φr(z) =

∫ 1

0

φ
(z
a
− 1
) f(a)

a
da.

Thus, by the sandwich theorem, we obtain

φ(z) =

∫ min(z,1)

0

φ
(z
a
− 1
) f(a)

a
da.

�

In Figure 7.2 we show the convergence of iterates of equation (7.3), with f(a)

given by equation (7.2). The limit satisfies the DFPE (7.1), and so is the form (7.3)
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Figure 7.2: The evolution of gap size distribution under iteration of (7.3) with
i = 1. The solid lines are for α = i + 1 in (7.2), and the broken lines for α = i,
where the broken lines are shifted along the abscissa for clarity.

that we wish to compare to the scale-invariant GSD found in the MC simulations.

Moreover, if we let w = z/a− 1, then we can rewrite (7.3) as

φ(z) =

∫ max(0,z−1)

∞
φ(w)f

(
z

w + 1

)(
w + 1

z

)(
− z

(w + 1)2

)
dw

=

∫ ∞

max(0,z−1)

φ(w)f

(
z

w + 1

)
1

w + 1
dw.

It is interesting to see how the solutions to the DFPE (7.3) compare to those

of the fragmentation theory, for which the asymptotic behaviours are known in

Chapters 5 and 6. In fact, if f(a) = aαn(1−a)αn/B(αn+1, αn+1), then for small

z
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f

(
z

w + 1

)
=

1

B(αn + 1, αn + 1)

zαn

(w + 1)αn

(
1 − z

w + 1

)αn

∼ 1

B(αn + 1, αn + 1)

zαn

(w + 1)αn
,

and so

φ(z) ∼ zαn

B(αn + 1, αn + 1)

∫ ∞

0

φ(w)

(w + 1)αn+1
dw.

Hence, for small z we obtain

φ(z) = O
(
f

(
z

w + 1

))
,

which shows that φ has the same behaviour as f . In other words, for small z we

have φ(z) ∼ kzα for some constant k.

We can quantify the performance of the solutions using the mth moments Zm

of the distributions. Following the analysis (and the notation used) in [44], from

(7.1) we have

Zm = 〈zm〉 = 〈(a(1 + z))m〉 = 〈
m∑

k=0

m!

k!(m− k)!
amzk〉

=

m∑

k=0

m!

k!(m− k)!
〈am〉〈zk〉, (7.5)

where
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〈am〉 = E[am] =

∫ 1

0

amf(a) da =
1

B(αn + 1, αn + 1)

∫ 1

0

am+αn(1 − a)αn da

=
B(m+ αn + 1, αn + 1)

B(αn + 1, αn + 1)
(7.6)

:= Bm. (7.7)

Hence, from (7.5) we find the following recursive relationship, with 〈zk〉 = Zk,

Zm = Bm

m∑

k=0

m!

k!(m− k)!
Zk, (7.8)

and Bm as defined above.

7.2.1 A DFPE without a Mean-Field Approximation As-

sumption for the Gap Size Distribution

In deriving equations (7.1) and (7.3) in the previous section, we invoke a mean-

field approximation for the size of the neighbouring gap, putting y = 1. We could

instead find the fixed point of the following DFPE that does not make a mean-field

assumption:

z
△
= a(z1 + z2), (7.9)

where the gaps z1 and z2 are, independently, drawn from the same distribution as

z. As before a is drawn from the probability distribution f(a) of equation (7.2).

Then instead of (7.3) we have the integral equation

Proposition 7.2.2. For the gap size distribution, φ(z), the following integral equa-

tion
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φ(z) =

∫ 1

0

∫ z/a

0

φ
(z
a
− z1

)
φ(z1)

f(a)

a
dz1 da, (7.10)

is derived from the distributional fixed point equation (7.9).

Proof. As before, suppose we have a cumulative density function (CDF), Φ(z)

(say). Then we have

Φ(z) = Prob[a(z1 + z2) ≤ z]

= E[ Prob[a(z1 + z2) ≤ z | a] ] [by the properties of conditional expectations]

=

∫ 1

0

Prob[a(z1 + z2) ≤ z]f(a) da [by the definition of E and z ∈ [0,∞)]

=

∫ 1

0

E[ Prob[a(z1 + z2) ≤ z] | z1]f(a) da

=

∫ 1

0

∫ z/a

0

Prob[a(z1 + z2) ≤ z]φ(z1)f(a) dz1 da [since z/a− z1 ≥ 0]

=

∫ 1

0

∫ z/a

0

Prob[z2 ≤ z/a− z1]φ(z1)f(a) dz1 da

=

∫ 1

0

∫ z/a

0

Φ(z/a− z1)φ(z1)f(a) dz1 da.

We differentiate with respect to z to obtain

φ(z) =

∫ 1

0

∫ z/a

0

φ
(z
a
− z1

)
φ(z1)

f(a)

a
dz1 da.

�

Convergence of iterates of (7.10) are shown in Figure 7.3, we show the limit

satisfies the DFPE (7.1).
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Figure 7.3: The evolution of gap size distribution under iteration of (7.10) with
α = 1 − 4.

Equation (7.9) with f(a) as in (7.2) is considered by Dufresne in [29, p.289],

where it is shown that the fixed point is given by a gamma distribution. Explicitly

the fixed point probability distribution is

Γ(α + 1, ν, z) =
zα exp(−z/ν)
Γ(α + 1)να+1

.

The mean of the above gamma distribution is (α+1)ν and so, by setting (α+1)ν =

1, we rescale z to unity to obtain
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Γ

(
α + 1,

1

α + 1
, z

)
= φα(z) =

(α + 1)α+1

Γ(α + 1)
zα exp(−(α + 1)z). (7.11)

Note that if we assume (7.11), then for small z we obtain φ(z) ∼ kzα for some

constant k. In Figure 7.3, this gamma distribution is shown by the stars. It is

apparent that the iterations converge to the form (7.10), confirming the result

obtained by Dufresne in [29].

7.2.2 Treat’s Gap Size Distribution Function Revised

Recall that in Chapter 5, for the i = 0 case we were able to use the fragmentation

approach combined with Treat’s results to obtain

φ(x) =
3x2

Γ(2
3
)µ3

∫ ∞

(x/µ)3
u−4/3e−u du, (7.12)

where

µ =
4

3
Γ

(
2

3

)
.

The moments of (7.12) Tm (note the different notation, Tm being used rather

than φm as introduced in Chapter 5) are

Tm =
3µm+3

µ3(m+ 3)Γ(2
3
)

∫ ∞

0

u(m−1)/3e−u du,

i.e.

Tm =
3µmΓ(1

3
(m+ 2))

(m+ 3)Γ(2
3
)

, (7.13)

where the calculation for (7.13) has already been done in Chapter 5. Also, in
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that chapter, we have confirmed that the zeroth and first moments of (7.13) are

1 as expected. Now, in the case of i = 0 we can compare (7.12) and its moment

(7.13) to the IE (7.3) and its moments (7.8) respectively. In the Result section

of the current chapter, we discuss how well the moments, small- and large-size

asymptotics of (7.3) compare with those of the MC data for the GSD.

7.3 Analysis of the Scaled Capture Zone Distri-

bution

We recall that one possible way of obtaining the CZD is from the GSD via the

convolution equation (3.22) assuming that there is no correlation between the size

of two neighbouring gaps. In turn, we know that the CZD can be obtained from

the GSD through the random pairing of gaps such that

s
△
=

1

2
(z1 + z2),

where s is the scaled capture zone size and, for two gap sizes z1 and z2,

z1
△
= a(z1 + zn1

); z2
△
= b(z2 + zn2

),

where zn1
and zn2

are neighbours to be replaced by averages and we have a and

b 6= a ∈ (0, 1) with the identical distribution (7.2). Invoking a mean field approxi-

mation such that zn1
and zn2

may be replaced by the average 〈z〉 = 1 in the above

equation yielding

s
△
=

1

2
(a(1 + z1) + b(1 + z2))

△
=

1

2
(a + aa1 + aa1a2 + · · · + b+ bb1 + bb1b2 + · · · ),
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where a 6= a1 6= a2 6= · · · and b 6= b1 6= b2 6= · · · ∈ (0, 1) as defined earlier, and the

latter relation is obtained by the iterations.

However, in Chapter 6 and [35], there are weak correlations between the sizes of

two neighbouring gaps. We need to carefully consider the evolution of the capture

zones in the system. In Figure 7.4 (akin to Figure 7.1), each island has its own

capture zone with its size, s1, s2, s, s4 and s2 respectively, being the bisection of

this island’s two neighbouring gaps.

1
s

3
s s

4
s

2
s

1
I

4
I 3

I
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I

Figure 7.4: The sizes of capture zones of islands (black circles) are labelled s1, s2,
s, s4 and s2 respectively.

From Figures 7.1 and 7.4, the capture zone of size s was created by the frag-

mentation of the parent capture zone of size (s3 + s+ s4) caused by the nucleation

of an island I5. Since s can be viewed as the fragmentation of part of s3 (to the

right of an island I3) and part of s4 (to the left of an island I4) we may write on

average

s
△
=
a

2
(s+ s3) +

b

2
(s+ s4). (7.14)

However, as the nucleation and growth of islands stage has progressed, we do

not know how much of the neighbouring capture zones to take, nor indeed how

large these zones are. Moreover, as discussed for the GSD, we too do not have the

benefit of the chronological ages to assist us. So, we can again invoke a mean field

approximation, s3 = 1 and s4 = 1 for these nearest neighbour correlations to find
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the following DFPE for a general (scaled) capture zone

s
△
=

1

2
(a+ b)(1 + s), (7.15)

where we must emphasise that the DFPE (7.15) uses a mean field approximation.

Equation (7.15) can be solved by iterations

s
△
=

1

2

[
(a+ b) +

1

2
(a + b)(a1 + b1) +

1

4
(a+ b)(a1 + b1)(a2 + b2) · · ·

]
.

In (7.15), the proportions a and b are, respectively, independently drawn from

f(a) and f(b) of (7.2). It is important to note that the derivation of the DFPE (7.15)

is independent of those for the GSD. This raises the possibility of constructing a

similar DFPE for higher dimension substrates without having to rely on the GSD.

An equivalent IE, like that of (7.3), can be identified for (7.15). Then we have

the IE for the CZD, P (s)

P (s) =

∫ min(s,1)

0

P

(
s

as
− 1

)
fs(as)

as
das. (7.16)

The exact form of fs(as) is unknown but we can calculate numerically as by the

following formula

as =
(a + b)

2
,

such that a and b are drawn from (7.2). The function fs(as) is obtained by gener-

ating a set of MC values of a and b using simulations such that

as,j =
(aj + bj)

2
.
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We can easily quantify the performance of the solutions to (7.16) using the

mth moments Sm for the CZDs. Following the analysis in [44], from (7.15)

Sm = 〈sm〉 = 〈
(

1

2
(a+ b)(1 + s)

)m
〉

=
1

2m

m∑

k=0

m!

k!(m− k)!
〈am−k〉〈bk〉

m∑

p=0

m!

p!(m− p)!
〈sp〉. (7.17)

Here, we have

〈am−k〉 =

∫ 1

0

am−kf(a) da =
B(m− k + i+ 2, i+ 2)

B(i+ 2, i+ 2)
= Bm−k,

where Bm−k is defined by (7.6). Similarly, we also have 〈bk〉 = Bk. Referring back

to (7.17) we find the following recursive relationship, with 〈sp〉 = Sp,

Sm =

(
1

2

)m m∑

k=0

m!

k!(m− k)!
Bm−kBk

m∑

p=0

m!

p!(m− p)!
Sp. (7.18)

For obtaining the moments of the GWS, Pβ(s), by a similar analysis to that

used for the moment of (7.15),

Gm =

∫ ∞

0

smPβ(s) ds

= aβ

∫ ∞

0

sm+βe−bβs
2

ds

=
aβ

2b
(m+β+1)/2
β

∫ ∞

0

u(m+β+1)/2−1e−u du

=
aβΓ

(
1
2
(m+ β + 1)

)

2b
(m+β+1)/2
β

. (7.19)

Recall from Chapter 3 that
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aβ =
2Γ
(
β+2

2

)β+1

Γ
(
β+1

2

)β+2
; bβ =

(
Γ
(
β+2

2

)

Γ
(
β+1

2

)
)2

,

and, from this, we can write the following expression

aβ

2b
(m+β+1)/2
β

=
2Γ
(
β+2

2

)β+1
/Γ
(
β+1

2

)β+2

2Γ
(
β+2

2

)m+β+1
/Γ
(
β+1

2

)m+β+1
.

Thus, from (7.19) and the definition of β = 2(i + 1) for the 1-D model, we

obtain the moments of the GWS

Gm =
Γ(i+ 3/2)m−1Γ(i+ (m+ 3)/2)

(i+ 1)!m
. (7.20)

In the Results section, we discuss how well the moments, small- and large-size

asymptotics of both (7.16) and the GWS compare with those of the MC data for

the CZD.

7.4 Monte Carlo Simulation

This is essentially the same simulation as the one used in Chapter 6. Recall that

monomers are deposited onto an initially empty 1-D array of sites representing

the substrate at a rate F monolayers per unit time. Deposited monomers perform

random hops between nearest neighbour lattice sites within periodic boundary

conditions; this diffusion occurs at the rate D. In the case i > 0, a new island

is nucleated when the number of monomers at any one site exceeds the critical

island size. The i = 0 case represents spontaneous nucleation, and in this case

monomers have a small probability pn of nucleating a new island whenever they

hop. Once nucleated, the new island absorbs monomers that hop onto it from a

nearest neighbour site, therefore increasing in size.
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Since we assume that any monomer cannot evaporate from the substrate, the

deposition process can be measured by the nominal substrate coverage, θ = Ft.

Note that in the case of point islands, the coverage can exceed 100% even whilst

most of the substrate remains free for monomer diffusion. The value of θ for which

the aggregation regime (where scale-invariance is found) starts is dependent on i

and R; we check that the values for θ are sufficiently high to ensure that we are

in the aggregation regime.

As before, our simulations were performed on lattices with 106 sites, with

R = 8 × 106 up to coverage θ = 100%, averaging results over 100 runs. For i = 0

we set the spontaneous nucleation probability to pn = 10−7.

7.5 Results

7.5.1 Comparisons of the Integral Equation and Monte

Carlo Data for the Gap Size Distribution

In Figure 7.5 we compare the converged form of the GSDs from equation (7.3),

which we denote as φαn(x), with those found in our MC simulations for various

critical island size i. For i = 1−3, we see that the observed GSD lies between that

of the αn = i+ 1 and αn = i distributional fixed point solutions. This is expected

since we have found elsewhere that island nucleation is driven by both deposition

events and purely diffusional fluctuations in monomer density in Chapter 6. For

spontaneous nucleation where i = 0, only the αn = i + 1 = 1 model is physically

reasonable.
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Figure 7.5: The GSDs compared to histograms of MC data for various critical
island size i, taken at nominal coverage θ = 20% and θ = 100%. The solid curve
are the converged solutions to (7.3) with αn = i + 1 with i = 0, 1, 2, 3, and the
broken lines are for αn = i with i = 1, 2, 3.

Recall that for small z we have φ(z) ∼ kzαn for some constant k. This is essen-

tially the same small-size asymptotic behaviour found in the fragmentation theory

approach (6.3) in Chapter 6. It is not possible to obtain the large-size asymptotics

for φαn(x). However, numerical analysis of the solutions in Figure 7.5 shows that
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they differ from the fragmentation equation approach and we will further analyse

this later in this chapter. The reason for this can be traced to the derivation of

equation (7.3), where not only do we adopt a mean field approximations for nearest

neighbour gap sizes, but we also neglect long-range correlations which are expected

to be more prominent for larger gaps created early in the growth process. An ex-

ample of this effect is the creation of g4 which arose from the nucleation of I4 and

the fragmentation of gap of size (g5 + g4 + g3). This type of nucleation event is not

included in the DFPE, which assumes that the gaps arise from the fragmentation

of only two parents. Note that these events, arising from next-nearest-neighbour

(or even longer) inter-gap correlations, will tend to involve large gaps rather than

small ones. Nevertheless, the results in Figure 7.5 show that the solutions capture

much of the essential physics for the GSDs.

In Figure 7.5, we also compare Treat’s i = 0 φ(z) in (7.12) derived from the

traditional fragmentation theory approach as discussed in Chapter 5. This is a

useful benchmark to the MC data. As we see, for the i = 0 case (7.12) does fits

the MC data quite well.

In the next subsection we argue that the mean-field DFPE (7.1) in fact provides

a more realistic picture of the GSD than does the a priori more natural DFPE (7.9).

7.5.2 Fragmentation Bias for the DFPE with a Non Mean-

Field Approximation Assumption

The model presented given by (7.9) and (7.10) for the GSD is not appropriate for

the island nucleation process, since we know from MC simulations, in Chapter 6,

that larger gaps are fragmented by nucleation events more often than smaller

ones. We can account for this fragmentation bias by including the fragmentation

probability z2α+1, which comes from the integral of equation (6.1). Incorporating
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this bias in equation (7.10) we find

φ(z) =

∫ 1

0

∫ z/a

0

φ
(z
a
− z1

)
φ(z1)

f(a)

a2α+2
z2α+1 da dz1. (7.21)

Note that we do not obtain this from a DFPE directly since the DFPE equivalent

of (7.21) is unknown.

We now compare the fixed point probability distribution of equation (7.21)

with those from the mean-field approximation (7.3) and from (7.10) above; see

Figure 7.6. Note that the effect of the bias is to skew the distribution away from

that of equation (7.10), which over-represents small gaps, towards that of the

mean-field approximation – see Figure 7.5. This shows that the correct inclusion

of the fragmentation bias justifies the mean-field approximation used for the gaps.
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Figure 7.6: Comparison of the integral equations (7.3), (7.10) and (7.21) for the
various gap size models with α = 1 − 4.

7.5.3 Comparisons of the Integral Equation, Monte Carlo

Data and the Generalised Wigner Surmise for the

Capture Zone Distribution

In Figure 7.7 we compare the converged form of the CZD of (7.15) with those from

the MC simulations. Again we find some excellent comparisons, particularly for

i = 0 and i = 1. We also plot the GWS as a convenient analytical form for the
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CZD whose parameters depend on i. Visually we see that our solutions work at

least as well as, and in the case of i = 0 much better than the GWS.
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Figure 7.7: The CZDs compared to histograms of MC data for various critical
island size i, taken at nominal coverage θ = 20% and θ = 100%. The solid curve
are the solutions to (7.3) for αn = i+ 1 with i = 0, 1, 2, 3, and the broken lines are
for αn = i with i = 1, 2, 3.

7.5.4 Moments of the Gap Size Distribution

Here, we compare the moments of the IEs (7.8) and, for i = 0 only, (7.13) with

the data from the full MC simulations at θ = 20% and θ = 100% for the GSD.

Using bootstrap methods with 1000 samples of size as big as the original sample,
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we consider the average moments of the MC data for the general case of i ≥ 0, and

therefore find the approximate 95% confidence interval of these averages. These

errorbars are very small due to very large number of bootstrap samples. We have

presented these results in Table 7.1 for all cases of i = 0, 1, 2 and 3.

By obtaining the moment of the MC data per simulation run, we consider the

average moment of the MC data for the GSD over 100 simulation runs, and there-

fore find the approximate 95% confidence interval of these averages. Moreover, we

have confirmed that these results in Table 7.2 is fairly consistent with the results

in Table 7.1.

m Tm Zm
a Zm

b MC c MC d

i = 0
2 1.290 - 1.286 1.296 ± 0.001 1.290 ± 0.001
3 1.962 - 1.964 1.989 ± 0.001 1.963 ± 0.001
4 3.363 - 3.429 3.456 ± 0.001 3.365 ± 0.001

i = 1
2 - 1.286 1.200 1.213 ± 0.001 1.206 ± 0.001
3 - 1.964 1.652 1.685 ± 0.001 1.659 ± 0.001
4 - 3.429 2.542 2.598 ± 0.001 2.520 ± 0.001

i = 2
2 - 1.200 1.154 1.146 ± 0.001 1.139 ± 0.001
3 - 1.652 1.492 1.453 ± 0.001 1.427 ± 0.001
4 - 2.542 2.123 1.991 ± 0.001 1.924 ± 0.001

i = 3
2 - 1.154 1.125 1.130 ± 0.001 1.118 ± 0.001
3 - 1.492 1.395 1.400 ± 0.001 1.360 ± 0.001
4 - 2.123 1.881 1.863 ± 0.001 1.766 ± 0.001

a αn = i
b αn = i+ 1
c Point islands, θ = 20%
d Point islands, θ = 100%

Table 7.1: Moments of the GSDs for i = 0, 1, 2 and 3 from the DFPE (7.8) with
αn = i + 1 or αn = i (if appropriate), and from the MC simulations taken at
θ = 20% and θ = 100% (θ is deposition rate times elapsed time).

In Table 7.1 we compare the moments calculated from (7.8) alongside those



Chapter 7 206

m Tm Zm
a Zm

b MC c MC d

i = 0
2 1.290 - 1.286 1.269 ± 0.004 1.259 ± 0.003
3 1.962 - 1.964 1.948 ± 0.009 1.915 ± 0.007
4 3.363 - 3.429 3.385 ± 0.026 3.282 ± 0.018

i = 1
2 - 1.286 1.200 1.200 ± 0.001 1.195 ± 0.001
3 - 1.964 1.652 1.668 ± 0.003 1.643 ± 0.003
4 - 3.429 2.542 2.572 ± 0.008 2.496 ± 0.006

i = 2
2 - 1.200 1.154 1.127 ± 0.002 1.128 ± 0.002
3 - 1.652 1.492 1.429 ± 0.003 1.413 ± 0.003
4 - 2.542 2.123 1.958 ± 0.007 1.905 ± 0.006

i = 3
2 - 1.154 1.125 1.110 ± 0.003 1.101 ± 0.002
3 - 1.492 1.395 1.375 ± 0.005 1.340 ± 0.004
4 - 2.123 1.881 1.829 ± 0.009 1.739 ± 0.007

a αn = i
b αn = i+ 1
c Point islands, θ = 20%
d Point islands, θ = 100%

Table 7.2: Average moments of the GSDs for i = 0, 1, 2 and 3 from (7.8) with
αn = i+1 or αn = i, and from the MC simulations taken at θ = 20% and θ = 100%.

taken from our MC simulations for i = 0 and i = 1. These confirm the competitive

performance of the DFPEs. It is interesting to note that the moments of Treat’s

φ(z) in (7.13) for i = 0 are similar to Zm and notably compare with the MC data

at θ = 100% very well. This, along with the visual evidence from Figure 7.5, may

not be surprising since (7.12) satisfies the small- and large-size asymptotics of the

GSD extremely well as confirmed in Chapter 6.

Similarly, in Table 7.1 the moments of (7.8) for i ≥ 2 seem to satisfy the

MC data at both θ = 20% and θ = 100% fairly well. Furthermore, according to

Table 7.1, the moments of the MC data seems to fit (7.3) in the form of αn = i+1

better than those in the form of αn = i which may suggests that in terms of
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nucleation mechanisms the diffusion process is more dominant than the deposition

process.

7.5.5 Moments of the Capture Zone Distribution

Here we compare the moments of the IEs (7.18) and the GWS (7.20) with the

data from the full MC simulations at θ = 20% and θ = 100% for the CZD. As

before, we have used bootstrap methods with 1000 samples of size as large as

the original sample size to consider the average moments of the MC data for the

general case of i ≥ 0, and therefore find the approximate 95% confidence interval

of these averages. We have presented these results in Table 7.3 for all cases of

i = 0, 1, 2 and 3.

Again, as before, to stay consistent with the results in Table 7.3, we have

calculated the average moment of the MC data by obtaining the moment per

simulation run. In Table 7.4, we also have confirmed good consistency between

both set of results.

In Table 7.3 we compare the moments calculated from (7.18) and (7.20) along-

side those taken from our MC simulations for i = 0 − 3. These confirm the

competitive performance of the DFPEs, meaning that the solution of the DFPEs

do describe the CZD well.

7.5.6 Small-Size Scaling of the Integral Equation

In Figure 7.8, as an alternative approach to the data analysis, we report the small-

size behaviour of the converged solutions to the IEs (7.3) and (7.16) for the GSD

(φ(z)) and CZD (P (s)) in logarithmic scale. We are able to calculate the gradients

for small-size scaling of (7.3) and (7.16). The results of this fitting procedure are

shown in Tables 7.5 and 7.6. For the small-size asymptotic behaviour of the GSD
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m Gm Sm
a Sm

b MC c MC d

i = 0
2 1.178 - 1.138 1.137 ± 0.001 1.134 ± 0.001
3 1.571 - 1.439 1.435 ± 0.001 1.425 ± 0.001
4 2.313 - 1.989 1.977 ± 0.001 1.949 ± 0.001

i = 1
2 1.105 1.138 1.098 1.101 ± 0.001 1.098 ± 0.001
3 1.325 1.439 1.305 1.316 ± 0.001 1.307 ± 0.001
4 1.708 1.989 1.665 1.690 ± 0.001 1.666 ± 0.001

i = 2
2 1.074 1.098 1.076 1.069 ± 0.001 1.066 ± 0.001
3 1.227 1.305 1.234 1.212 ± 0.001 1.202 ± 0.001
4 1.483 1.665 1.500 1.448 ± 0.001 1.425 ± 0.001

i = 3
2 1.057 1.076 1.062 1.062 ± 0.001 1.056 ± 0.001
3 1.175 1.234 1.190 1.189 ± 0.001 1.169 ± 0.001
4 1.366 1.500 1.401 1.395 ± 0.001 1.352 ± 0.001

a αn = i
b αn = i+ 1
c Point islands, θ = 20%
d Point islands, θ = 100%

Table 7.3: Moments of the CZDs for i = 0, 1, 2 and 3 from the DFPE (7.18)
with αn = i+ 1 or αn = i (if appropriate), and from the MC simulations taken at
θ = 20% and θ = 100% (θ is deposition rate times elapsed time).

and CZD we compare (7.3) and (7.16) with the data from MC simulations and

the fragmentation equation approach predictions of Section 6.3. The values from

these theories are also displayed in Tables 7.5 and 7.6. These tables are extensions

of the original Tables 6.13 and 6.14 presented in Chapter 6, allowing us to easily

compare the results of (7.3) and (7.16) with the previous results. We also recall a

few of conclusions from Chapter 6 for convenience.

In Table 7.5, for the GSD we see that in the case of i ≥ 1 the MC data exponent

at θ = 100% lies between the two possible values αn = i and αn = i + 1 which

show that both the deposition- and diffusion-driven nucleation mechanisms are at

play in the simulations. We also see that for i = 0, the exponent is close to the
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m Gm Sm
a Sm

b MC c MC d

i = 0
2 1.178 - 1.138 1.114 ± 0.003 1.107 ± 0.002
3 1.571 - 1.439 1.405 ± 0.005 1.389 ± 0.004
4 2.313 - 1.989 1.936 ± 0.012 1.901 ± 0.008

i = 1
2 1.105 1.138 1.098 1.090 ± 0.001 1.088 ± 0.001
3 1.325 1.439 1.305 1.303 ± 0.002 1.295 ± 0.002
4 1.708 1.989 1.665 1.673 ± 0.004 1.651 ± 0.003

i = 2
2 1.074 1.098 1.076 1.051 ± 0.001 1.056 ± 0.001
3 1.227 1.305 1.234 1.192 ± 0.002 1.190 ± 0.002
4 1.483 1.665 1.500 1.424 ± 0.004 1.411 ± 0.003

i = 3
2 1.057 1.076 1.062 1.043 ± 0.002 1.040 ± 0.002
3 1.175 1.234 1.190 1.167 ± 0.003 1.152 ± 0.002
4 1.366 1.500 1.401 1.370 ± 0.005 1.332 ± 0.003

a αn = i
b αn = i+ 1
c Point islands, θ = 20%
d Point islands, θ = 100%

Table 7.4: Average moments of the CZDs for i = 0, 1, 2 and 3 from (7.18) with
αn = i+1 or αn = i, and from the MC simulations taken at θ = 20% and θ = 100%.

i αn
a αn

b (7.3)a (7.3)b GSDc GSDd

0 - 1 - 0.946 0.876 ± 0.033 0.905 ± 0.029
1 1 2 0.946 1.853 1.701 ± 0.045 1.579 ± 0.105
2 2 3 1.853 2.697 2.789 ± 0.080 2.718 ± 0.074
3 3 4 2.697 3.489 2.719 ± 0.082 3.271 ± 0.056
a αn = i
b αn = i+ 1
c θ = 20%
d θ = 100%

Table 7.5: Average gradient for the small-size scaling of the GSD using different
bin-widths at coverages θ = 20% and 100%.

αn = i+ 1 = 1 prediction at both θ = 20% and θ = 100%. The results show that

the small-size asymptotics of (7.3) seem to underestimate the expected gradients
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Figure 7.8: Small-size form of the IEs (7.3) and (7.16) for the GSD and CZD
respectively in logarithmic scale for i = 0, 1, 2 and 3. The dashed line is the
straight-line fit to data.

i 2αn + 1a 2αn + 1b GWSc (7.16)a (7.16)b CZDd CZDe

0 - 3 2 - 2.938 2.730 ± 0.030 2.751 ± 0.086
1 3 5 4 2.938 4.503 4.187 ± 0.050 4.372 ± 0.149
2 5 7 6 4.503 5.915 5.883 ± 0.207 5.957 ± 0.187
3 7 9 8 5.915 6.627 7.200 ± 0.382 6.138 ± 0.124
a αn = i
b αn = i+ 1
c β = 2(i+ 1)
d θ = 20%
e θ = 100%

Table 7.6: Average gradient for the small-size scaling of the CZD using different
bin-widths at coverages θ = 20% and 100%.

consistently for each value of i.

For the CZD, in Table 7.6, we see that the i = 0 data are close to the λ =

2i + 3 = 3 prediction of the fragmentation equation approach, being somewhat

larger than the β = 2(i+1) = 2 predicted by the GWS. The GWS exponent which

appears to present a reasonable compromise given the two possible nucleation
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mechanisms. As in the case of the small-size asymptotics of the GSD, for i ≤ 2,

we have confirmed that the MC data at θ = 20% and θ = 100% satisfies the

small-size asymptotics of (7.16) for αn = i + 1 well. It is worth noting that the

performance of (7.16) in this analysis does closely follow the GWS. For i = 3 at

θ = 100%, it is notable that (7.16) seems to fare better than both the predictions

of fragmentation theory approach and the GWS for the CZD.

7.5.7 Large-Size Scaling of the Integral Equation

In Figure 7.9 we present the large-size behaviour of the IEs (7.3) and (7.16) for the

GSD and CZD respectively. As before in Chapter 6, the data are plotted in order

to test the common large-size functional form of (6.6) and the GWS and compare

these results to the fragmentation equation approach for the GSD and the GWS

for the CZD as well as the MC data. In addition, we perfom fits to find the

exponents of (7.3) and (7.16) on these plots. The results of this fitting procedure

are presented in Tables 7.7 and 7.8 for the GSD and CZD respectively. As noted

earlier, Tables 7.7 and 7.8 are simply extensions of the original Tables 6.17 and

6.18 in Chapter 6. Again, we recall the conclusions from Chapter 6.

Once again we compare the exponents of (7.3) and (7.16) with the MC simu-

lation data and the fragmentation equation theoretical predictions. Recall, from

Chapter 6, that for the GSD, the fragmentation equation approach predicts values

of 2αn + 1. For the CZD, the fragmentation theory prediction is 3 for i = 0 (see

(6.6)). In contrast, the GWS prediction for the CZD is the universal value 2. The

values from these theories are displayed in Tables 7.7 and 7.8.

For the GSD, as discussed in Chapter 6, we see values bracketed by the two

possible nucleation mechanisms for i = 1 and 2. The prediction exponent for i = 0

is 3 but the actual behaviour is slightly below this. The data’s exponent is below
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Figure 7.9: Large-size form of the IEs (7.3) and (7.16) for the GSD and CZD
respectively in logarithmic scale for i = 0, 1, 2 and 3. The dashed line is the
straight-line fit to data.

i αn
a αn

b (7.3)a (7.3)b GSDc GSDd

0 - 3 - 2.301 2.515 ± 0.006 2.665 ± 0.007
1 3 5 2.301 2.730 3.130 ± 0.009 3.383 ± 0.008
2 5 7 2.730 3.065 4.364 ± 0.020 5.112 ± 0.025
3 7 9 3.065 3.335 5.094 ± 0.026 6.437 ± 0.034
a αn = i
b αn = i+ 1
c θ = 20%
d θ = 100%

Table 7.7: Average exponents for the large-size scaling of the GSD using different
bin-widths at coverage θ = 20% and 100%.

even that of the deposition-induced nucleation case for i = 3. It is notable that the

IE (7.3) is consistently below the prediction of the fragmentation theory approach

and the MC data. This strongly suggests that the large-size predictions of both

are not the same, unlike the small-size predictions. For i = 0 and i = 1 the IE

(7.3) seems to compare well with the MC data for the GSD. The results are rather

mixed – in conclusion neither the IE (7.3) nor the fragmentation theory approach
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i 2i+ 3a GWS (7.16)a CZDb CZDc

0 3 2 3.180 3.108 ± 0.012 3.043 ± 0.043
1 - 2 3.639 3.721 ± 0.020 3.826 ± 0.021
2 - 2 3.967 4.946 ± 0.029 5.536 ± 0.033
3 - 2 4.231 5.464 ± 0.041 6.530 ± 0.042
a λ = 2i+ 3
b θ = 20%
c θ = 100%

Table 7.8: Average exponents for the large-size scaling of the CZD using different
bin-widths at coverage θ = 20% and 100%.

predict the large-size asymptotics of the GSD obtained from the MC simulation

for i ≥ 2.

For the CZD we observe that the MC data exponents Table 7.8 do indeed

mirror those of the GSD in Table 7.7 quite well. We also see that the concrete

prediction for i = 0 from the fragmentation theory, namely 3, is well supported by

the simulation data. Similarly, for i = 0 the IE (7.16) seems to compare very well

along with the MC data and the fragmentation theory prediction for the CZD.

As the case for the GSD above, the large-size asymptotics of (7.16) is consistently

below the MC data. We could say the same for the prediction of the fragmentation

theory if, as discussed in Chapter 6, the conjecture that the 2i + 3 prediction of

large-size asymptotics for the CZD is correct. Despite the fact that (7.16) does

not satisfy the MC data for i > 1, it is observed that (7.16) fares better than the

universal prediction of the GWS, that is 2, and the conjecture described above.

7.6 Conclusions

In summary, we have presented distributional fixed point equations (DFPEs) for

the nucleation of point islands in one dimension. The approach develops a new

retrospective view of how the inter-island gaps and capture zones have developed
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from the fragmentation of larger entities. The fixed point of the resulting integral

equations (IEs) offers a new perspective on why scale-invariant distributions arise

from the nucleation process. This approach was inspired by Seba’s one-dimensional

(1-D) car-parking model and, despite the reversibility of the Seba case, we were

able to overcome the irreversibility barrier of our model.

We have considered three gap size models as presented in (7.1), (7.9) and (7.21).

The DFPE (7.9) may be considered as the non mean-field version of (7.1). In fact,

the fixed point for the former DFPE is given by a gamma distribution. However, we

show that this model is not suitable for the island nucleation and growth processes

as evidenced by the MC data for the gap size distribution (GSD). It is suggested

that this particular model ignores the fact that larger gaps are more likely to be

fragmented by nucleation events than smaller gaps. In other words, this model

has over-represented smaller gaps.

In Chapter 6, under the assumption that the island nucleation and growth stage

is in the aggregation regime, the probability of a new nucleation occuring in a gap

of width z is proportional to z2αn+1. If we incorporate this fragmentation bias in

the IEs for the non mean-field model, then we see that the IEs (7.21) follow the

mean-field IEs (7.3) closely. Interestingly, the former seems to be strongly related

to Treat’s solution for the i = 0 case. This creates a few questions – since we have

used same assumptions in the same fragmentation model, are the IEs (7.21) the

same as Treat’s solution? Usually, physical intuition leads to the DFPEs, and, in

turn, IEs follow algorithmically. So, what is the DFPE equivalent of (7.21)? Can

one work out the DFPEs from the IEs by working backwards?

We now turn our attention to the IEs (7.3) for the GSD; we then presented

the same data as shown in Chapter 6 for the nucleation and growth simulation.

Numerical analysis of the solutions in Figure 7.5 show that the IEs differ from the
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fragmentation theory approach. The reason for this is that we neglect longer-range

correlations which are expected to be more prominent for larger gaps created early

on in the growth process. Nevertheless, the results in Figure 7.5 show that the

solutions capture much of the essential physics for the gap size distribution (GSD).

Moreover, for i = 0 in Figure 7.5, we also compare the moments of Treat’s φ(z) in

(7.13) derived from the traditional fragmentation theory approach to those of the

IEs (7.3). It is confirmed that Treat’s (7.12) does fit the Monte Carlo (MC) data

quite well. In the case of i = 0, this vindicates the whole fragmentation theory

structure outlined in Chapter 5 although the fragmentation theory has limitations

due to, for example, a significant decrease in the nucleation rate for higher critical

island sizes; see Chapter 6 for further detail.

We note that the moments for the MC data seem to fit the IEs in the form of

αn = i + 1 better than those in the form of αn = i, which may suggest that the

diffusion process is more likely to be dominant than the deposition process due to

the large value of R = D/F . For the small-size GSD scaling, the IEs predict the

MC data well for i ≥ 0 except possibly the i = 3 case. A possible explanation for

this exception may be that, as mentioned in Chapter 6, the simulation does not

enter the aggregation regime at low coverage in the i = 3 case.

For the large-size asymptotics of the GSD, we note that the IEs consistently

predict below that of the fragmentation theory approach and the MC data. This

is a strong suggestion that the large-size predictions of both are not the same, in

contrast to the small-size predictions. For i = 0 and i = 1, the IEs compare well

with the MC data. In contrast, for higher critical island sizes, neither the IEs nor

the fragmentation theory approach predicts the large-size asymptotics we obtain

from MC simulations for i ≥ 2.

We now consider the IEs (7.16) for the capture zone distribution (CZD). The
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construction of the IEs for the CZD is independent of those for the GSD, which

is possibly a major conceptual advance to be discussed later in this section. In

order to support the performance of the DFPEs (or its counterpart IEs), as in

the case for the GSD we also have considered the moments and small- and large-

size asymptotics of the IEs and the Generalised Wigner Surmise (GWS) alongside

those taken from our MC simulations for i ≥ 0.

The moment of the IEs performs notably better than the GWS in two cases

of i = 0 and i = 1, and at least as well as the GWS for i ≥ 2. We also confirm

that the MC data satisfy the small-size asymptotics of the IE for αn = i+1 in the

case of i ≤ 2. The performance of the IEs competes well with the GWS and seems

to fare better with i = 3 in comparisons to the predictions of the fragmentation

theory approach (in the αn = i+ 1 case) and the GWS.

For i = 0 and i = 1 in the case of large-size CZD scaling, the IEs (7.16)

appears to compare very well along with the MC data and the fragmentation

theory prediction. As for the GSD case, however, the large-size asymptotics of

(7.16) consistently gives results that are below the MC data. If the conjecture

is correct that the prediction of large-size asymptotics for the CZD is 2i + 3, as

discussed in Chapter 6, then we could say the same for (7.16) being consistently

below the predictions. Despite the fact that (7.16) does not satisfy the MC data

for i > 1, we observe that (7.16) fares better than the universal prediction of the

GWS – that is, 2 – and the conjecture described above.

In conclusion, this promising approach clearly needs further investigation, es-

pecially for the GSD. Nevertheless, we have shown how the solutions of DFPEs, or

their counterpart IEs, compare well to MC simulation data – performing at least

as well as the GWS, and notably better for the case of i = 0.

One key outcome of our approach is that it allows one to construct the DFPEs
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for the CZD directly. Recall, in Chapters 5 and 6, the CZD has been obtained from

the GSD via the convolution equation (3.22). This provides a fresh perspective

for capture zones; the retrospective approach might also help in higher dimensions

where equivalents to the GSD do not exist – this could be considered as future

work.



Chapter 8

Conclusions and Future

Directions

8.1 Conclusions

For decades, considerable effort has been expended in trying to develop theories

of nucleation and growth processes during submonolayer deposition. The aim of

this work is to find a modelling framework that allows us to explain the island size

distributions (ISDs) found both experimentally and in Monte Carlo (MC) simula-

tion. A validated modelling framework would also provide predictive capabilities

for the design of new experiments and material processes.

In Chapter 4, for a restricted class of solutions, we have obtained the long

time behaviour of the monomer and island size distributions for rate equations

with constant coefficients and the concept of a ‘river’ for the point-island case

of general critical island size i ≥ 1. To relax the aforementioned restriction, we

requires that all solutions in the first quadrant are attracted to the river. Also, we

have proved the convergence of the ISD to a self-similar profile where there is a

218
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discontinuity at scaled island size of (i+ 2)/(i+ 1). This is confirmed by the work

of Bartelt and Evans who also studied the i = 1 model closely related to the one

considered by da Costa et. al. [25]. However, the data from the MC simulation

shows that there is no discontinuity for the ISD and hence the divergence discussed

does not exist in reality. For consistency check, if one sets i = 1, then the results

obtained in Chapter 4 will be collapsed to restricted versions of the results obtained

by da Costa et. al. [25]. Furthermore, our weaker versions of the results obtained

by da Costa et. al. provide confirmation that our results are consistent with the

results in the work of Blackman and Wilding with p = 0 (the constant capture

rate coefficients).

The Generalised Wigner Surmise (GWS) was proposed by Pimpinelli and Ein-

stein to describe better the capture zone distribution (CZD). In Chapters 5 and 6,

we have discussed the differences between the Blackman and Mulheran fragmen-

tation theory and the GWS for the one-dimensional (1-D) point island nucleation

and growth model. Since these two theoretical approaches are based on the same

physical intuition, it is useful to confront these predictions together by means of

the MC data. Essentially, in Chapter 5, we have shown that the GWS does not

correspond with the small- and large-size asymptotic solutions to the Blackman

and Mulheran (BM) fragmentation theory analysis. We have concluded that the

BM theory and the GWS cannot be simultaneously correct. In Chapter 6, we pre-

sented MC data for the point island nucleation and growth simulation. We show

that the fragmentation theory provides a good theoretical framework in which to

understand the MC simulation results. Moreover, for the large-size CZD, the GWS

is not successful when confronted with our 1-D simulation data since the Gaussian

tail of the GWS is not observed in the simulation data. However, there are a

few limitations of the BM fragmentation theory, such as its failure to capture the
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time-dependent nature of the monomer density profile within gaps.

Nevertheless, this theory provides an useful theoretical framework from which

to consider the island nucleation process – the deposition process or the diffusion

process. It is important to note that similarity solutions correspond to t → ∞,

which implies that one mechanism will completely dominate another. This is true,

at the asymptotic limit of large R = D/F where θ = Ft, the diffusion mechanism

will dominate the deposition one. However, in practice, once cannot get to this

limit in simulations or experiments (nor can we get to t→ ∞). Therefore, it is still

valid to consider the behaviour whether one mechanism or the other dominates

because this provides a good bracket to understand our MC data.

We have presented distributional fixed point equations (DFPEs) for the nucle-

ation of point islands in one dimension. The approach develops a new retrospective

view of how the inter-island gaps and capture zones have developed following the

fragmentation of larger entities. Numerical analysis of the solutions in Chapter 7

demonstrate that the IEs differ from the results obtained from fragmentation the-

ory approach. The reason for this is we neglect longer-range correlations – they

are expected to be more prominent for larger gaps created early in the growth

process. Nevertheless, the results show that the solutions capture much of the

essential physics for the gap size distribution (GSD).

We focus our attention on the IEs for the CZD. The moment of the IEs performs

notably better than the GWS in two cases – namely, i = 0 and i = 1 – and at least

as well as the GWS when i ≥ 2. The performance of the IEs competes well with

the GWS and seems to fare better with i = 3 when compared to the predictions

obtained by the fragmentation theory approach (in the αn = i + 1 case) and the

GWS. In the i = 0 and i = 1 cases for the large-size CZD scaling, the IEs (7.16)

appear to compare very well along with the MC data and the fragmentation theory
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prediction. However, the large-size asymptotics of (7.16) consistently give results

that are below the MC data. Despite the fact that the IEs do not satisfy the MC

data for i ≥ 2, we observe that the IEs fares better than the universal prediction

of the GWS.

Despite this promising approach requiring further investigation – especially for

the GSD – we have shown how the solutions of DFPEs, or their counterpart IEs,

compare well to the MC simulation data; performing at least as well as the GWS,

and notably better for the case of i = 0. A key advantage of this approach is that

it allows the construction of the DFPEs for the CZD without having to rely on

the GSD via the convolution equation. This raises the possibility of constructing

a similar DFPE for the CZD in higher dimensional systems.

8.2 Future Directions

In order to establish the global asymptotic result that confirms the results obtained

by Blackman and Wilding [16] and da Costa et. al. [25], we need to prove that

all solutions in the first quadrant are attracted to the river R(X). Due to the

discontinuity found in the analysis for rate equations with constant capture rate

coefficients, we need to consider the conditions on the coefficients of rate equations

which will ensure a continuous scaling solution. Moreover, in the work of Blackman

and Wilding, they had assumed that all islands of sizes 1 < j ≤ i were allowed to

fragment. Despite the fact that our case only assume that islands of sizes 1 < j ≤ i

simply do not arise, the asymptotic behaviour is the same in both cases, which is

remarkable and merits further analytical work. Moreover, da Costa et. al. and we

have considered the η = 1 case, which leads to a self-similar function, Φ2(ξ). This

raises a question – what is the physical meaning of this function in terms of the
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modelling of submonolayer deposition?

In the fragmentation theory approach, it was observed that the nucleation rate

slowed down over time in the higher critical island sizes, which could suggests

less well-mixed systems. Along with this, a better fragmentation kernel that can

incorporate this time dependency is required – this implies that the fragmentation

equation will be nonlinear.

The DFPE approach is novel and, clearly, this needs further investigation. We

might need to derive a better DFPE for the GSD that will incorporate long-range

correlations. Note that the other two (non mean-field) gap size models are based

on nonlinear IEs, which then could have to come from a nonlinear fragmentation

equation. So, two interesting questions here are: what are the fragmentation

equations and the similarity solutions of the aforementioned gap size models. Also,

another future direction is to extend the DFPE for the CZD to higher dimensional

cases; note that it is not possible to extend the DFPE for the GSD since the GSD

only makes sense in the 1-D case and the derivation of the DFPE for the CZD is

independent of those for the GSD which is one of key outcomes raised in Chapter 7.

In general, these conclusions and future directions are for the irreversible case,

that is, no attached monomer can leave away from an island – this is one of

the main assumptions we have adopted in this thesis. It is natural to consider

the reversible case as studied in the past by several authors, such as Blackman

and Wilding [16], Mulheran and Blackman [54], and Ratsch, Zangwill, Smilauer

and Vvedensky [67]. However, we need to ask carefully: what do we mean by

reversibility in this research field? As mentioned in Chapter 1, monomers can re-

evaporate from the substrate at high temperatures, as observed by experiment –

such process is known as desorption, which is one of the important processes for

the nucleation and growth stage in some cases. We must note that this is not the
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only possible scenario of reversibility – other possibilities are:

• Using the critical island size i > 1 already implies some reversibility – smaller

(unstable) islands of size at most i+1 disassociate as soon as they form, or at

least do so quickly compared to the average lifetime of a deposited monomer

before either being captured by an existing island or join other monomer to

nucleate a new island in the aggregation regime;

• Allowing small or all islands to diffuse – we have not looked at this possibility

in this thesis;

• Islands of size, say, k +m < i+ 1 breaking into two islands of size k and m

respectively, which is the possibility of more complex pathways for disasso-

ciation.

As we see, this research field is rapidly evolving and it is difficult to mention

all works especially in the case of some authors, such as Amar, Evans, Körner,

Mulheran and so on. Here, we will only include a few recent papers (that are not

related to any theory developed in this thesis) based on the theory of nucleation

and growth of islands only as a way of providing a (small) snapshot of what is

happening elsewhere prior to the publication of this thesis.

For the general survey on the submonolayer deposition and multilayer epitaxial

thin film growth, a recent paper is written by Evans, Thiel and Bartelt [33]. This is

not only focused on the theory of epitaxial growth but also on several case studies,

which are relevant to the aforementioned theory. This is a good survey for both

interested readers and experts.

Petrov, Miller, Rehse and Fornari [60] propose a new mathematical approach

for the ISD in the i = 1 case of 1-D submonolayer deposition. This approach is

based on exact difference-differential rate equations. The next step is to generalise
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this approach for higher critical island sizes; they believe that this approach can

be extended for the two-dimensional (2-D) case.

It was recognised that both islands and deposited monomers may diffuse, which

influences the island density and the ISD. This motivates the work of Mulheran

and Robbie [56]. Their simulations are similar to the one considered in this thesis

with some differences: in a 2-D substrate, monomers are deposited randomly at

a rate of F . These deposited monomers then diffuse and when monomers join,

the island is irreversibly nucleated. The critical island size, i is 1 and the shape

of islands is fractal unlike point and extended islands. These islands diffuse with

the diffusion rate Dj−µ, where D is the monomer diffusion rate, j is the number

of monomers in an island and µ is the exponent to be determined by experiments

and simulations. Once the perimeters of islands meet, these islands coalesce into

a larger island. It was noted that the value of the exponent µ lies typically in the

range 1 < µ < 2 for 2-D islands on a 2-D substrate. Mulheran and Robbie have

considered self-consistent rate equations in a similar manner as the work of Bales

and Chrzan [6]. This work also leads to the following two papers [38, 43], which

we discuss next.

Motivated by experiments on colloidal nanoparticles, Kryukov and Amar con-

sider the case where islands are allowed to diffuse in the irreversible nucleation

and growth stage [43] to study the effects on the island density and the ISD. They

have confirmed that their island-density results are in good agreement with the

results of Mulheran and Robbie [56]. Also, Hubartt, Kryukov and Amar present

a generalisation of the self-consistent rate-equation approach originally developed

by Bales and Chrzan [6] to the case of irreversible growth and island mobility.

Hubartt et. al. [38] assume that islands diffuse with the rate Dj−µ, which is

essentially the same as the one considered by the work of Mulheran and Robbie
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as mentioned above. Hubartt et. al. have concluded that, in studying the ISD

for few values of µ < 3, their self-consistent rate-equation approach is in better

agreement with their simulation data than the traditional rate-equation approach.

This is expected since the presence of cluster mobility would reduce the effects

of correlations, which influence the ISD. However, correlations are important for

larger islands in the case of µ ≥ 3 and so the agreement with their simulation data

is not good.

In [42], Körner, Einax and Maass consider rate equations in the case of irre-

versible nucleation and island growth along with direct impingement of arriving

monomers. The authors obtain capture numbers σj(θ) which depend on both is-

land size j and θ by collecting data for σ from MC simulations for constant θ,

approximating the average σ as a function of j and θ and formulating rate equa-

tions using these averaged σ. Körner et. al. conclude that coefficients σj with no

θ dependence lead to a poor prediction of ISD and thus there is a rate-equation

model for submonolayer deposition that behaves just like the data from MC sim-

ulation if one takes into account the correct dependence of σj on both j and θ.

More details can be found in [42].

Despite the fact that there is a wide range of works raising several different

questions that may, or may not, be related to each other, these all have one

common goal – obtaining reliable formulation for the all-important ISDs. On a

final note, the structure of islands, capture zones surrounding each island and gaps

between two neighbouring islands in the 1-D case – in any size and model – are

clearly examples of coagulation-fragmentation processes as introduced in the very

beginning of this thesis.
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