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Abstract

Brain–computer interfaces (BCI) provide an alternative communication channel
which does not rely on the brain′s normal output pathway between patients suf-
fering from neuromuscular diseases and their external environment. BCI requires
at least one brain signal as input in order to interpret the intent of the user.
Non–invasive electroencephalography (EEG) is the most common and favourite
method for acquiring brain signals. In the last two decades, several EEG based
BCIs have been developed to help these patients. The brain signals which can be
recorded in EEG and used as the input for BCIs include motor sensory rhythm,
slow cortical potential, P300 and steady–state visual evoked potential (SSVEP).
Compared to the other EEG based BCI paradigms, SSVEP based BCI has the
advantage of high information transfer rate, high detection rate, less user train-
ing time required and commands scalability. Furthermore, SSVEP based BCI is
normally operated in the self paced mode which is more intuitive and practical
for real world applications. Recently, SSVEP based BCIs have attracted great
attention in the field of BCI research.

While most SSVEP BCI studies focus on the improvement of signal detection and
classification accuracy, there is a need to bridge the gap between BCI research
and practice in the real world. SSVEP based BCI requires an external visual
stimulator to elicit SSVEP response. Currently, for most SSVEP based BCIs,
the viewing distances between the visual stimulator and the users are less than
100cm, limiting the usability and flexibility of BCI and its potential applications
and users. This study proposes a novel distance adaptable SSVEP BCI paradigm
which allows its users to operate the system from a range of viewing distances
between the user and the visual stimulator. Unlike the conventional SSVEP BCI
where users can only operate the system when they are sitting in front of the
visual stimulator at a fixed distance which is normally less than 100cm, in our
proposed system, users can operate the BCI at any viewing distance within the
range in this proposed BCI. It is hoped that the proposed BCI system can improve
the usability and the flexibility of BCI and also broaden the range of potential
applications and users. For example, it can be used by older people with degen-
erating mobility or by patients with impaired mobility in the care environment
to support their independence. Moreover, it can also be used by healthy people
in a smart home or for a game control environment.

The primary goal of the present study is to investigate the feasibility of the pro-
posed distance adaptable SSVEP based BCI. This study first investigates the
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impact of the viewing distance on SSVEP response and compensates the dete-
riorated SSVEP resulting from the viewing distance by changing the intensities
of the visual stimuli. 10 healthy subjects participate in the experiment to assess
the feasibility of the distance adaptable SSVEP based BCI. The feasibility of the
system is evaluated by the classification performance of off–line experiments at
different viewing distances. The classification accuracies of the proposed BCI are
examined by different EEG time window lengths, number of SSVEP harmonics
and the number of recording electrodes employed. This study also investigates
the sources of deterioration of SSVEP detection in BCI setup and proposes an
electrode ranking method to select the recording electrodes for the implementa-
tion of the real time on line system.

The experimental results demonstrate that a distance adaptable SSVEP BCI is
achievable and that electrodes chosen by the proposed electrode ranking method
outperform electrodes chosen by random selection in classification performance.
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Chapter 1

Introduction

Brain–computer interfaces (BCI) provide an alternative communication channel
which does not rely on the normal motor output of the nervous system between
users and their external environment (Wolpaw et al., 2000; Shih et al., 2012; Xu
et al., 2013; Lesenfants et al., 2014). BCI requires at least one brain signal associ-
ated with a task from the user in order to interpret the user’s intent. BCIs can use
invasive or non–invasive methods to obtain the brain signal. Non–invasive (sur-
face) electroencephalography (EEG) is the most common and preferred method
to acquire the brain signal due to its low risk, low cost and easy setup (Wol-
paw et al., 2002). Brain signals, such as sensor motor rhythms (SMR), slow
cortical potentials (SCP), visual evoked potentials (VEP), steady–state visual
evoked potentials (SSVEP) and P300, can be used as the input of BCIs. These
BCI paradigms have successfully translated brain signals into control commands
(Wolpaw et al., 2000; Martinez et al., 2007). Compared to other BCI paradigms,
SSVEP based BCI can offer a higher accuracy rate, a higher information transfer
rate, better scalability and requires less training time (Martinez et al., 2007; Bin
et al., 2009b; Kelly et al., 2005d). SSVEP is the brain response to the repetitive
visual stimulus of frequencies over 6Hz and can be recorded in EEG (Bin et al.,
2009b; Kelly et al., 2005d; Lin et al., 2006; Piccini et al., 2005).

1.1 Aims of this study

SSVEP based BCI has demonstrated that it can provide a reliable channel to
the users to communicate and control an external device in several studies. For
example, Volosyak (2011) proposed a speller based on SSVEP. The mean classifi-
cation accuracies and information transfer rates (ITR) were over 95% and over 60
bits/min. An environment controller comprising 48 commands was implemented
by Gao et al. (2003) and achieved ITR 68 bits/min. A mental speller, also based
on SSVEP, which allowed spelling one letter by one selection utilising 30 LEDs to
present a conventional QWERTY keyboard of 26 letters and 4 symbols, was de-
veloped by Hwang et al. (2012). The reported ITR exceeded 40 bits/min. These
aforementioned studies have shown that high ITR and classification accuracies
can be achieved by SSVEP based BCIs. They also demonstrated that the supe-
rior performance of SSVEP BCI can be achieved by single or sequential selection
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tasks.

Recently, SSVEP has been incorporated with other BCI paradigms to form the
hybrid BCI system. For example, Edlinger et al. (2011) used a hybrid BCI com-
prising of SSVEP and P300 paradigms in an application for smart home control
in a virtual reality environment. SSVEP was used to turn on/off the P300 com-
ponent BCI which was used to select control commands. Savić et al. (2014) used
a hybrid BCI combining SSVEP and SMRs paradigms in a functional electrical
therapy for stroke patients. These studies also demonstrated the versatility of
SSVEP based BCI.

Meanwhile, great effort has been made to overcome the obstacle of the number of
frequencies available to encode visual stimuli. Four stimulating frequencies can
present 6 to 10 visual stimuli by using dual frequencies to present one stimulus
(Shyu et al., 2010; Hwang et al., 2013). Jia et al. (2011) encoded the visual stimu-
lus by including phase information. In their study, 15 visual stimuli were created
by 3 distinct frequencies. Furthermore, the stimulus was presented by multiple
frequencies in a serial order in multiple frequencies sequential coding (MFSC)
(Zhang et al., 2012). The number of stimuli can be up to 9 in combinations of 2
coding epochs and 3 distinct frequencies by MFSC.

There are few SSVEP based BCI studies which attempted to improve SSVEP
detection rates and reduce the calibration phase. Lin et al. (2006) proposed a
SSVEP detection method based on canonical correlation analysis (CCA). Their
proposed CCA SSVEP detection method estimated the CCA correlation coeffi-
cients between EEG signals and the reference signal corresponding to one stim-
ulating frequency. The reference signal producing the largest CCA correlation
coefficient was regarded as the attended target. Friman et al. (2007) proposed
a SSVEP detection method which combined multiple electrodes signals into a
channel signal to enhance SSVEP response and cancel noise. Both methods out-
performed the conventional power spectral density analysis.

Currently, a few commercial EEG headsets are available, e.g. EMOTIV, which
provides user friendly EEG acquisition, easy setup feature, wireless recording and
have been evaluated and used in BCI studies (Lin et al., 2014). The aforemen-
tioned studies have offered a solid theoretical background in demonstrating the
feasibility of SSVEP based BCI, from the fundamental visual stimuli to SSVEP
detection. Therefore, there is a need to bridge the gap between BCI studies and
real world applications.

SSVEP based BCI is an exogenous system which relies on an external visual stim-
ulator in order to elicit the required SSVEP response. These visual stimulators
are normally set close to the users at a distance less than 100cm (Hwang et al.,
2012; Muller-Putz and Pfurtscheller, 2008; Savić et al., 2014) which limits the
application of the BCI system. This study proposes a novel SSVEP based BCI
which can adapt to the change in viewing distance between users and visual stim-
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uli and allows its users to access BCI at a range of distances. In a conventional
SSVEP based BCI system, the users have to be in front of the visual stimuli
in order to operate the BCI. Such setup limits its flexibility and usability. The
proposed new paradigm can improve accessibility, versatility and flexibility. It is
hoped that this new proposed paradigm can broaden the potential target users
and applications.

The distance adaptable feature can take advantage of a self paced system to
enhance flexibility, increase potential applications and widen the range of poten-
tial users. SSVEP response is affected by the types, stimulating frequencies and
colours of of visual stimulator. SSVEP response is sensitive to modulation depth
of visual stimulator which is related to stimulus intensity. This study starts by in-
vestigating the impact of the viewing distance between the visual stimulator and
the users on SSVEP response. The primary goals of the present study include:

1. Investigation of the impact of the viewing distance on SSVEP response.

2. Evaluation of the feasibility of a distance adaptable SSVEP based BCI
allowing users to operate the BCI system at any given distance (≤ 350cm).

3. Inspection of the practicality and reliability of a distance adaptable SSVEP
based BCI.

1.2 Requirements of this study

From a functionality and design point of view, the proposed SSVEP based BCI
should have the following features and requirements:

1. To provide a stable and reliable visual stimulator to elicit a SSVEP response.

2. To be able to adapt to the change in viewing distance so that the users can
operate the system in a range of viewing distances.

3. To be able to detect SSVEP in a relatively short time.

4. To be user friendly and easy to use.

In order to evaluate the above requirements, the following have been developed
in this study:

1. A visual stimulator consists of two modules, a visual stimulator module and
a control module. The control module can provide stable and reliable visual
stimulation. The number of stimuli and the frequencies are adjustable by
custom–built software and hardware.

2. The intensity of the visual stimulator can be adjusted by changing the value
of the resistor connected to it.

3. The implemented classification algorithms can classify EEG data efficiently,
in terms of the accuracies and time required.
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1.3 Achievements of this study

The primary goal of this study is to investigate the feasibility of the proposed
distance adaptable SSVEP based BCI which can adapt to the change of the
viewing distance between users and the visual stimulator and allows its users to
operate the BCI in a range of distances. The following have been developed,
implemented and evaluated:

1. A portable visual stimulator module: The visual stimulator module con-
sists of a stimulating panel which contains four red LEDs and a control
module based on a programmable microcontroller. The main functions of
the control module include:

• A stable and reliable square wave generator to control LEDs. Each
square wave has a different frequency with 50% duty cycle: The fre-
quency, the duty cycle of the square wave and the number of the visual
stimuli can be modified by programming the microcontroller.

• Synchronising the visual stimulator with the EEG acquisition equip-
ment: Synchronisation is implemented by sending the event trigger
signal to the EEG acquisition equipment.

• Time control of the whole experiment.

2. Implementation of three classification methods: Three classification algo-
rithms based on canonical correlation analysis (CCA), minimum energy
combination (MEC) and maximum contrast combination (MCC) have been
implemented using MATLAB. They are all multiple electrode based classi-
fication methods. The classification performance of three methods is com-
pared. The result shows the performance of these three methods, CCA,
MEC and MCC, is very similar in terms of the classification accuracy.

3. Investigation of impact of viewing distance on SSVEP: Inspecting the im-
pact of viewing distance on SSVEP response in terms of power spectrum
and the time– and phase–locking to stimulus properties. When the inten-
sity of visual stimuli is the same, SSVEP power decreases and the time–
and phase–locking to the stimulus become less prominent as the viewing
distances increase.

4. Investigation of impact of EEG time window length and the number of
SSVEP harmonics on the classification performance: It was found that in
the proposed paradigm, the longer EEG recording time can improve the
classification accuracies and the number of SSVEP higher harmonics has
no significant impact on the classification accuracies.

5. Exploring the impact of the electrode number employed on classification
performance: This study employed 11 electrodes for EEG acquisition. A
comprehensive classification performance analysis based on all possible elec-
trode combinations (over 2000 combinations) was performed.
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6. Analysis of inter–subject variance: A comprehensive analysis on inter–
subject variance in terms of the highest classification rates, the minimum
number required to achieve the highest classification rates and the compos-
ite of optimal electrodes was conducted.

7. Identifying the source of deterioration of SSVEP classification accuracies:
This study identified the sources which affect SSVEP detection.

8. Proposing a method to rank and select the electrodes: This study proposed
a method to rank 11 pre–selected electrodes. The electrode rankings were
used as the order/priority in selecting the electrodes. The results show
that the electrodes selected via the proposed ranking method outperform
the electrodes by random selection. The proposed method provides a quick
and efficient way to select electrodes for data acquisition.

1.4 Contributions of this study

The main contributions of this study include:

1. Propose and demonstrate of the feasibility of a novel distance adaptable
SSVEP based BCI. To the author′s best knowledge, this is the first study
that evaluates and confirms the feasibility of a distance adaptable SSVEP
based BCI.

2. Investigate the impact of viewing distance on SSVEP response in terms
of power strength and other properties and how to compensate it. To the
author′s best knowledge, this is the first study that investigates and confirms
the impact of the viewing distance on SSVEP response.

3. Investigate the relationship between SSVEP response and the intensity of
the visual stimulus.

4. Perform comprehensive analysis to investigate the impact of the number of
electrodes over BCI classification accuracies. To the author′s best knowl-
edge, this study provides the most comprehensive analysis for investigating
the impact of the number of electrodes over BCI applications.

5. Propose and implement a simple, effective and flexible electrode selection
method.

6. Investigate and identify the source of deterioration of SSVEP classification
accuracies in BCI setup.

1.5 List of publications

1. Wu, Chi-Hsu, and Heba Lakany. ”Evaluation of the feasibility of a novel dis-
tance adaptable steady–state visual evoked potential based brain–computer
interface.” Neural Engineering (NER), 2015 7th International IEEE/EMBS
Conference on. IEEE, 2015.
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2. Wu, Chi-Hsu, and Heba Lakany. ”The Effect of the Viewing Distance of
Stimulus on SSVEP Response for Use in Brain–Computer Interfaces.” In
Systems, Man, and Cybernetics (SMC), 2013 IEEE International Confer-
ence on, pp. 1840–1845. IEEE, 2013.

3. Wu, Chi-Hsu, and Heba Lakany. ”Impact of Stimulus Configuration on
Steady State Visual Evoked Potentials (SSVEP) Response.” In COGNI-
TIVE 2012, the Fourth International Conference on Advanced Cognitive
Technologies and Applications, pp. 77–82. 2012.

1.6 Organisation of the thesis

The rest of this thesis is organised as follows: Chapter 2 gives an overview of
BCI, in terms of its components, paradigms, users, applications, current limita-
tions and challenges. It also provides an overview of the visual pathway of the
eyes and the genesis of event related potentials. Chapter 3 describes the design of
the experiments, including the visual stimuli, experiment protocols and the data
recording and processing methods. The data analysis methods are also explained
in Chapter 3.

Chapter 4 explores the impact of viewing distances on SSVEP response. In this
chapter, power spectrum and time– and phase–locking properties of SSVEP are
analysed and discussed. The classification performance with/without intensities
of visual stimuli is also investigated.

Chapter 5 is the core of this thesis. The feasibility of a distance adaptable SSVEP
based BCI is evaluated in this chapter. The classification performances corre-
sponding to different EEG recording time and the number of SSVEP harmonics
at different viewing distances are computed and compared. Practical BCI design-
ing issues are also considered, such as the minimum number of electrodes required
and the thresholds in the classification process.

Chapter 6 discusses the data analysis results. Chapter 7 is the conclusion of this
study and also outlines the limitations, contributions and the future work of this
study.

The pin–out diagram of the microcontroller, data sheets of LEDs used in this
study and more figures and tables of the analysis results are included in Appen-
dices.
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Chapter 2

Overview of Brain–Computer
Interface

Brain–computer interface (BCI) is a multi–disciplinary research collaborating the
fields of neurology, physiology, mathematics, computer science, bio–signal pro-
cessing and electronics engineering. This chapter starts by presenting a brief
overview of BCI constituents and how BCI works.

Next we will focus on Electroencephalography (EEG) based BCI and review dif-
ferent EEG based BCI paradigms and their potential users and applications. EEG
was discovered by Hans Berger in 1929 (Wolpaw et al., 2002). In 1973, Jaques
Vidal published a paper which evaluated the feasibility to communicate directly
between the brain and a computer (Vidal, 1973). In 1988, Farwell and Donchin
(1988) proposed a P300 based mental speller. In 1999, short cortical potentials
(SCP) based BCI allowed the users to type the letter after they underwent inten-
sive training to learn to regulate their SCP (Birbaumer et al., 1999). Meanwhile,
the research group in Wadsworth center (Shih et al., 2012) demonstrated that
cursor movement can be controlled using mu rhythm in one and two dimensions.
Finally, the limitations and challenges of SSVEP based BCI are discussed.

2.1 Components of BCI

Figure 2.1 illustrates a typical EEG based BCI block diagram which consists of
modules for signal acquisition, signal pre–processing, signal feature extraction,
classification, command translation and command execution (van Gerven et al.,
2009). The classification result and the output of BCI are used to provide the
feedback to the users. This loop starts off from the user who exerts an effort (i.e.
performs a task) to generate a brain signal as an input to the BCI and closes with
the feedback. Different BCI paradigms will require the users to perform different
tasks. For example, in motor imagery paradigm, it requires the users to perform
motor imagery task (1 in mental task/stimulation). For P300 BCI, users are
required to attend a visual stimulator in matrix (2 in mental task/stimulation).
For SSVEP based BCI, users are required to attend to the flickering of a visual
stimuli (3 in mental task/stimulation).
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Figure 2.1: A typical EEG based BCI block diagram. BCI consists of modules
for signal acquisition, signal pre-processing, feature extraction, classification, command
translation, command execution and application output. The BCI loop starts when the
user performs a task to generate a change in his/her brain signal which is used as the
input of BCI and is closed by feedback to the user. This figure is reprinted and
modified from van Gerven et al. (2009) with permission from the publisher.

• Signals: BCI could be classified to invasive or non–invasive systems accord-
ing to the method of recording the brain signal from the users as input
(Lebedev and Nicolelis, 2006). Invasive methods record the activity of sin-
gle neuron, multiple neurons spiking and the local field potentials (LFP)
directly from the surface of the cortex or intra–cortex. Invasive methods,
such as electrocorticography (ECoG) and micro–electrode array (MEA), re-
quire to implant the electrodes inside the brain (van Gerven et al., 2009;
Vallabhaneni et al., 2005). Although the invasive method is able to provide
higher signal to noise ratio (SNR), higher temporal and spatial resolution,
there are some concerns about the long term use of the implanted elec-
trodes, in terms of stability, reliability and quality of the signal. Also there
is the risk of infection during or after surgery (Vallabhaneni et al., 2005;
Min et al., 2010).
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The non–invasive methods include electroencephalography (EEG), mag-
netoencephalography (MEG), functional MRI (fMRI), near infrared spec-
troscopy (NIRS) and functional transcranial doppler sonography (fTCD)
and positron emission tomography (PET) (Min et al., 2010). These meth-
ods are different in terms of the signal recorded, temporal resolution, spatial
resolution, portability and cost but all record the brain activities. MEG,
fMRI and PET are relatively expensive and technically demanding. NIRS
detects the changes in the concentrations of oxyhemoglobin (HbO2) and de-
oxyhemoglobin (Hb). This measurement limits the temporal resolution of
NIRS. fTCD is an ultrasound technique that detects the change of the cere-
bral blood flow velocity in major cerebral arteries. It has a limitation on the
penetration depth and on targeting only major vessels (Min et al., 2010).
Compared to invasive BCI, non–invasive BCIs require training. SNR and
ITR are lower. It also requires intensive professional support (Birbaumer,
2006). Figure 2.2 compares the corresponding spatial and temporal resolu-
tions using different signal acquisition techniques.

Figure 2.2: A comparison of the spatial and temporal resolutions in different
signal acquisition methods. This figure is reprinted and modified from van
Gerven et al. (2009) with permission from the publisher.

Surface EEG is to date the most favourite non–invasive method to record
brain activity, due to its low cost, easy setup, high temporal resolution and
its non–invasiveness. Unless specified, this thesis focuses on non–invasive
EEG based BCI. EEG–based BCI requires at least one brain signal asso-
ciated with an effort (i.e.task) exerted by the user as the input in order
to interpret the user’s intent. Depending on the BCI paradigm, the task
which the users perform could be imagery of the hands’ movement in what
is known as an endogenous BCI or attending to a visual stimulus in the
exogenous BCI.
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• Signal acquisition: Surface EEG signals are weak signals in the order of
micro volts. The recorded brain signal is amplified, digitised and stored
ready for preprocessing, processing and analysing.

• Signal pre–processing: Signal pre–processing aims to enhance the signal
before the features extraction phase. The signals are enhanced through
artefacts removal, applying spectral filter and spatial filter (Al-ani and Trad,
2010; Bashashati et al., 2007; van Gerven et al., 2009):

1. Artefacts removal: There are two types of EEG artefacts based upon
their source: physiological and external artefacts. The physiological
artefacts are difficult to avoid as they originate from the activities of
the subject such as ocular (EOG), muscles (EMG) cardiac activities
(ECG), respiration and sweating. EOG and EMG are the most prob-
lematic artefacts which affect EEG based BCI. Muscle activities such
as chewing, swallowing produce artefacts in the frequency above 30Hz.
On the other hand, ocular activities normally produce artefacts below
4Hz (Winkler et al., 2011; Fatourechi et al., 2007; Jafarifarmand and
Badamchizadeh, 2013) External artefacts arise externally from the en-
vironment, such as power line interference, electrodes etc. External
artefacts are reduced by applying proper spectral filter, for example
a notch filter of 50Hz or 60Hz. EEG trials contaminated with the
artefacts are either discarded or cleaned by removal of the artefacts
(Fatourechi et al., 2007; van Gerven et al., 2009).

2. Spatial filter: The signal could be optimised by applying spatial fil-
tering and the resultant signal is a linear combination of the multiple
electrodes. In a survey study (Bashashati et al., 2007), the following
spatial filters were used to optimise EEG signal in BCI designs. These
techniques are in two aspects, (1)re–referencing: e.g., common average
reference (CAR), Laplacian transform, and (2) spatial filtering: e.g.,
principle component analysis (PCA), common spatial patterns (CSP),
independent component analysis (ICA).

• Feature extraction: There are several properties of EEG signal that has
been used as features for BCI classification. These features include the
amplitude of the signal (Lee et al., 2008; Wolpaw and McFarland, 2004),
the latency of the signal (Lee et al., 2011), band power (Pfurtscheller et al.,
2000b; Blankertz et al., 2008a), time–locking to the stimulus property (Luo
and Sullivan, 2010), Fast Fourier Transform (FFT) power (Gao et al., 2003),
etc.

• Classification: The extracted features are classified by the classification al-
gorithms and translate it to a control signal. (Bashashati et al., 2007).
Currently, five different classification algorithms are used in EEG based
BCI, (1) linear, (2) neural networks, (3) nonlinear Bayesian, (4) nearest
neighbour, (5) a combination of classifiers in (1)–(4) (Lotte et al., 2007).
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Lotte et al. (2007) suggested that the classification error could result from
three types of errors, (1) system noise, (2) mapping bias and (3) variance
caused by the training data. The system noise is unavoidable. To reduce
the overall classification error, the mapping bias and variance caused by
the training data has to be reduced. The two sources of the errors depend
on the complexity and the stability of the classifiers. The classifiers with
higher complexity (unstable) tend to have low bias error but high variance
error. On the other hand, simple classifiers (stable) tend to have high bias
with low variance (Lotte et al., 2007; Al-ani and Trad, 2010). The choice
of the classifier is a compromise between the bias and variance.

Some post classification mechanisms can be put in place to reduce the mis-
classification error. For example, in the BCI proposed by Lee et al. (2008),
the classification is made every one second. However, the classification is
finalised only when the same classification is made in three successive times.
A voting mechanism is employed in a SSVEP based BCI (Luo and Sulli-
van, 2010). The final classification is based on the voting result of the last
few classifications. The feature threshold is also used to reduce the rate
of false positives. For example, in an environment control system based
on SSVEP BCI, the feature was FFT power at the stimulating frequency
and the corresponding 2nd harmonic. The threshold was the double of the
mean power between 4 and 35Hz. The corresponding stimulating frequency
which resulted in the maximum feature exceeding the threshold is recog-
nised as the attended target. Otherwise the classification is rejected. It is
clear that these post processing mechanisms are the trade–off between the
false positive rates, system speed and the true positive rates (Bashashati
et al., 2007).

• Command translation and execution: The control signal is translated to the
physical signal which controls the device. The pre–defined corresponding
action is executed and produces the output.

• Output: Depending on the output devices, the output could be a selected
letter in a spelling application or a light bulb being switched on or off in an
environment control system.

• Feedback: The classification result and the output of BCI show the users
how BCI interprets their intention and are used to provide the users the
feedback which in general is able to improve BCI performance.

2.2 Visual pathway of the eyes

This study focuses on steady–state visual evoked potential (SSVEP) based BCI.
SSVEP response is elicited through the eyes. This section provides a short review
on how the eyes work.
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The eye consists of three distinct tunics (layers) as seen in Figure 2.3. From the
outermost to the innermost, they are:

1. Outer fibrous tunic: this layer consists of the sclera and cornea. This part
of the eye offers the support and protection of the eye shape and structure.
It also provides an attachment point for the extrinsic muscles.

2. Middle vascular tunic: this layer consists of choroid, ciliary body and the
iris. This part provides the routes for the blood vessels and lymphatics
for the tissue of the eyes. Iris controls the light entering into the eyes by
regulating the size of the pupil. Regulate the shape of the lens and control
the aqueous humour circulating in the chambers of the eyes.

3. Inner nervous tunic: this layer consists of the retina. Retina transfers the
light into electrical signal and sends the visual information to the brain by
optic nerves.

Figure 2.3: Human eye structure. Courtesy: National Eye Institute, National
Institutes of Health (NEI/NIH). Website: https://www.nei.nih.gov.

The process of the human vision is as following:

1. The lights of the object enter the eyes through the cornea.

2. The lights then go through the pupil. The size of the pupil is controlled by
the iris. The amount of the lights enters the eyes is dependent on the pupil
size.

3. The lights pass through the lens next and reach the retina.
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4. The retina is the tissue at the back of the eye balls with millions of light
sensing nerve cells which turn the lights into electrical impulses.

5. The electrical impulses are sent to the brain by the optic nerve and the
image is formed.

The retina is the innermost layer of the eye which consists of a pigmented retina
and a sensory retina. The pigmented retina is a thin layer which can enhance
the visual acuity and prevent the light bouncing back and scattering from the
sensory retina. The sensory retina contains three types of the neurons, photore-
ceptors, bipolar and ganglionic. The visual network in the retinal is complicated.
The photoreceptors synapse with the bipolar neurons which then synapse with
ganglionic neurons. Between the photoreceptors and bipolar neurons, there exist
horizontal cells. Between the bipolar and ganglionic neurons, there exist amacrine
cells. Both cells can influence the interactions between photoreceptors, bipolar
and ganglionic neurons. Thereby, change the perception of the vision. The ax-
ons of the ganglion cells converge at optic disc and leave the retina as the optic
nerve. The two optic nerves, one from each eye, partially cross at optic chiasm.
At this point, half of the fibres cross over and terminate in the lateral geniculate
nucleus of the opposite side of the brain and half process to and terminate in
the lateral geniculate nucleus of the same side of the brain. Most of the axons
terminate in the lateral geniculate nucleus of the thalamus and some terminate in
the superior colliculi. The visual information travels from the lateral geniculate
nucleus and reach the visual cortex of the occipital lobe. The cells in different
areas of the visual cortex are for different vision features, such as shape, move-
ment and colour. The neurons of the visual cortex transfer the information into
an image. The visual pathway starts from the photoreceptors to the visual cortex.

Two types of the photoreceptors which detect the light are called rods and cones.
Rods are the photoreceptors which do not involve the discrimination the colours
and enable human to see in the reduced light environment. The numbers of the
rods are estimated 110–125 millions. On the other hand, cones are the pho-
toreceptors which enable the human to have colour vision. The numbers of the
cones are estimated approximately 7 millions. Three types of cones, termed as
R–G–B cones, have different sensitivity curves to the wavelength of the light.
The peak sensitivity of the curves of three cones do not accurately correspond
to the colours of red, green and blue. Therefore, sometimes they are also named
to correspond the peak sensitivity at the wavelength, i.e. long (L), medium (M)
and short (S) wavelength. The wavelengths of the peak sensitivity of three cones
are 564–580nm (L), 534–555nm (M) and 420–440nm (S). The numbers of these
three types of the cones are not equal. The ratio of R:G:B cones is 40:20:1. In
human eye, the maximum absorptions are 498nm, 440nm, 534nm and 564nm for
the rods, B type cone, G type cone and R type cone respectively. The perception
of the colour vision is subject to the various extents of the three types of the cones
stimulated. For example, the colour of blue stimulates the S type cone more than
the L and M type cones
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Human visual system consists of three main pathways, the PC (Parvocellular)
pathway, the MC (Magnocellular) pathway which process the specific visual in-
formation and has specific function (Vialatte et al., 2010; Duszyk et al., 2014;
Di Russo et al., 2002). The MC and the PC begin from retina. The PC pathway
carries the information of colours (red/blue), spatial contrast and shape. The MC
pathway detects the motion and depth (Vialatte et al., 2010; Duszyk et al., 2014).
The MC pathway has characteristics of higher conduction velocity, faster adap-
tation to stationary stimulus, larger receptive field and lower contrast sensitivity
compared to the PC pathway. Visual stimuli with higher temporal frequency
(5-40Hz) and low spatial frequency can preferentially activate the MC pathway.
Visual stimuli with low temporal frequency and high spatial frequency can result
in more activation in the PC pathway (Di Russo et al., 2002). Therefore, the
contribution of the pathways on SSVEP is highly dependent on the properties
of stimuli. For example, black and white checkerboards with high temporal fre-
quency and low spatial frequency can evoke larger SSVEP in the MC pathway
than in the PC pathway, while colour checkerboards at low temporal frequency
and high spatial frequency can produce stronger SSVEP in the PC pathway than
in the MC pathway (Vialatte et al., 2010).

2.3 BCI paradigms

This section starts from the discussion of origin of event–related potential in the
views of the traditional evoked model and phas–rest model. Next, it provides an
overview on different BCI paradigms based on different brain signals, including
Sensor Motor Rhythm (SMR), event–related (de–) synchronisation (ERD/ERS),
P300, and Visual Evoked Potential (VEP).

2.3.1 Genesis of event–related potential

The mechanism of the genesis of event related potential is unknown and a debat-
able matter in the neuroscience study (Barry, 2009; Sauseng et al., 2007; Klimesch
et al., 2007). The traditional view of event related potentials (ERP) is that ERP
is an additive evoked response to an event/stimulus independent from the ongoing
EEG. It is a stimulus (time) locked response with fixed polarity and latency, the
so called evoked model. ERP can be extracted by averaging several single trials.
The background uncorrelated EEG will be filtered out by averaging. The rival
model views ERP as the result of the phase re–organisation of (part of ) the ongo-
ing EEG, referred as phase–rest model (Sauseng et al., 2007; Moratti et al., 2007).
It is argued that the traditional average method to enhance ERP might mislead
the interpretation of ERP. The deflations of ERP components might reflect the
instances of the phase–reset of ongoing EEG, instead of the interpretation of the
classical evoked model (Jansen et al., 2003).

EEG can be characterised by the frequency, amplitude and phase of the oscil-
lations. Frequency is related to the activation of the neuron region. Amplitude
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reflects the level of neurons involvement to the process. Phase reflects the ex-
citability of the neurons (Sauseng et al., 2007). To validate the mechanisms of
ERP genesis involves the comparison of these characteristics before and after
the event/stimulus. The characteristics of validating phase–rest model include
(Barry, 2009; Sauseng et al., 2007; Shah et al., 2004):

1. Ongoing oscillation (frequency): To support phase–reset model, an ongoing
EEG oscillation of the dominate frequency is expected to exist in pre–
stimulus period to reset the phase.

2. Phase concentration (phase): A phase concentration must be seen in the
post–stimulus period in phase–reset model.

3. Power (amplitude): Phase–rest should not induce change (increase) of the
power at the dominate frequency.

4. Change of the sources of the neural activities: It is also expected the source
of the brain activities overlapping in the pre–stimulus and post–stimulus
periods in phase–rest model.

It is worthwhile to be noted that phase–reset model does not decline the evoked
response outside the dominate frequencies but the phase–rest mechanism is the
main contribution of averaging ERP (Shah et al., 2004).

However, it is argued that these characteristics are not appropriate and none
of them provides clear evidence for phase–reset model to dissociate from the
evoked model (Sauseng et al., 2007; Hanslmayr et al., 2007). For example, the
evoked potential might be too small to be detected or masked by an event de–
synchronisation (Sauseng et al., 2007). Another example is that phase concen-
tration can be seen during ERP N1 component window period which a change of
EEG amplitude might appear randomly (Hanslmayr et al., 2007). Furthermore,
the evoked response of the similar periodicities to ongoing EEG can induce a
phase concentration (Risner et al., 2009). Due to the scale of scalp EEG, it is
hard to differentiate if the neural sources are exact the same before and after the
stimulus onset (Sauseng et al., 2007).

Most of the studies assessing ERP mechanism cannot provide enough evidence to
fully support one model and exclude the other. It is difficult to separate phase–
reset from the evoked response and vice versa. To improve spatial resolution
and temporal resolution in the recording and analysis methods will help to dis-
entangle one from the other. Microelectrode (depth electrode) and intracranial
EEG recordings provide higher spatial resolution, which help to understand the
mechanisms (Sauseng et al., 2007). Fell et al. (2004) employed depth electrodes to
record EEG and confirmed that evoked mechanism dominated in MTL–P300 and
AMTL–N400 generation. However, phase rest model was not completely ruled
out from the process. For MTL–P300 target response, a clear phase concentration
and power increase were seen during the time period from 200ms to 500ms and
at time period from 300ms to 1000ms respectively. So both models contributed
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to P300. For AMTL–N400, initially, only phase–locked of hit response was ob-
served from 100ms to 400ms without change of power. But at a later time course
from 500ms to 800ms, a significant power was seen. But MTL–P300 non–target
response is solely contributed by the phase–rest mechanism. Shah et al. (2004)
conducted an animal experiment of the odd ball paradigm on a monkey which
has multi–electrode arrays implanted. They supplied the evidence that evoked
mechanism as the predominate role in the genesis of ERP. Like other studies,
phase–rest model was not excluded from ERP generation. By the investigation
of Event Related Spectral Perturbation(ERSP) and Inter–trial coherence (ITC)
of P300 used in BCI, Ming et al. (2010) also confirmed that both mechanisms con-
tributed to the generation of P300. ERSP and ITC are the measurement of event
related power change and the degree of synchronisation between EEG and the
event respectively Delorme and Makeig (2004). Moratti et al. (2007) investigated
the relationship between spontaneous EEG and SSVEP. It was concluded that
the change of SSVEP power during the stimulation was weak while the change
of inter–trial phase locking (ITPL) was significant across most of the subjects.
Phase–rest of ongoing EEG played a more important role than evoked model in
the generation of SSVEP.

While none of the studies can provide exclusive evidence to support only one of the
mechanisms, most studies demonstrated the contribution of each model on ERP
components at different times (Moratti et al., 2007; Barry, 2009). Barry (2009)
indicated that the early exogenous auditory ERP component mainly resulted
from the phase–rest of the ongoing EEG. On the contrary, the later endogenous
ERP component was mainly induced by evoked response. Another auditory ERP
study by (Jansen et al., 2003) indicated that the auditory ERP in time range
of 50–250ms was resulted from phase–rest of ongoing EEG. Hanslmayr et al.
(2007) demonstrated that the phase–rest of alpha band contributed to VEP early
component. Although a significant phase concentrate shown in delta band, the
evoked model was not excluded from contributing to the later ERP components
of this frequency band. Becker et al. (2008) investigated the impact of the alpha
band on visual evoked potential by model simulation and experiment. The results
of model simulation and experiment indicated that the early component of ERP
was fit to the evoked mechanism and independent of the alpha band rhythm. But
phase–rest of the alpha band rhythm contributed to the later ERP component.

The aforementioned studies could not conclude that ERP has solely resulted
from either of the two models but the mixture of two. However, these studies
did quantify the contribution of each mechanism. Understanding the genesis of
ERP can provide a better picture of the cognitive process, neural information
process and EEG response to external stimulus. For example, in SSVEP study,
phase–rest was regarded to gate frequency tagged information flux and improved
the SNR for neural processes (Moratti et al., 2007).
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2.3.2 EEG based BCI brain signal

BCI detects the brain activity and translates it to an appropriate command.
The change of the electrical oscillation can be induced either by the sensory
stimulation or motor activities. Sensory stimulation results in event related po-
tential while the motor behaviour, on the other hand, modulates the rhythms
of EEG(Pfurtscheller and Lopes da Silva, 1999; Pfurtscheller and Neuper, 2010).
Different EEG based BCI paradigms utilise different phenomena as the system
inputs, including (Pfurtscheller and Neuper, 2001; Guger et al., 2011):

1. Sensor Motor Rhythm (SMR), event–related (de–)synchronisation (ERD/ERS)

2. Slow Cortical Potential (SCP)

3. P300

4. Visual Evoked Potential (VEP)

SCP based BCI needs intensive training and is less accurate but more stable and
independent on sensory, motor and cognitive functions compared to the other
paradigms (Guger et al., 2011). SCP is not a popular paradigm recently(Guger
et al., 2011). The rest of this section will provide a brief overview on BCIs based
on SMR, P300 and VEP.

2.3.2.1 Motor sensory

There exists a few rhythms in the brain signals which can be recorded in EEG,
such as the alpha rhythm in the occipital area, Rolandic mu rhythm and central
beta rhythm etc. Execution, imagination or observation of movement of the limbs
can modulate the mu and beta rhythms which can be recorded from sensorimotor
cortices. The phenomenon of the attenuation of mu rhythm over the contralateral
sensorimotor cortex is termed as event–related de–synchronisation (ERD) which
is associated to the movement or plan of movement. On the contrary, event–
related synchronisation (ERS) is the phenomenon of the increase of mu rhythm
which is associated to post–movement and relaxation (Pfurtscheller et al., 2000b;
Pfurtscheller and Neuper, 2001, 2010; Blankertz et al., 2008a). The amplitude
and the frequency of brain rhythms depend on the number of coherently acti-
vated neurons (Pfurtscheller, 2001). The more neurons that are synchronously
activated, the larger the amplitude is and the lower the frequency is. The am-
plitudes of the rhythms are negatively correlated to the frequency and so does
ERD/ERS(Pfurtscheller and Lopes da Silva, 1999).

Sensor–motor rhythm (SMR) BCI paradigm is based on the detection of the
change of these rhythms to discriminate the subjects intent. SMR BCIs nor-
mally provide a cue to guide the users to perform the tasks in a pre–defined time
window (Pfurtscheller and Neuper, 2001). As it takes time for the rhythms to
change in response to the motor event, it was suggested the interval between
two events should be at least 10s to allow ERD/ERS to develop and recover,
especially for the alpha band (Pfurtscheller and Lopes da Silva, 1999). It was
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also suggested that ERD distribution of imagery of one–side limb was limited
to the contralateral sensorimotor cortex to actual movement (Pfurtscheller and
Neuper, 2001). Imagery of movement is one of the preferable strategy in this BCI
paradigm (Pfurtscheller and Neuper, 2001). Motor imagery tasks, such as imag-
ining the movement of the right hand, left hand, foot and tongue can modulate
SMR. ERD induced by hand movement imagery was observed in all subjects but
the one by foot was not seen in every subject. (Pfurtscheller and Lopes da Silva,
1999; Pfurtscheller and Neuper, 2010). Therefore, it is crucial to determine the
most suitable strategy for each subject.

One EEG feature of this BCI paradigm is the frequency band power of the
rhythms. To extract this feature, EEG data were bandpass filtered. The fre-
quency band of the bandpass filter is an important parameter in ERD/ERS anal-
ysis. It was suggested that the fixed frequency band might result in incorrect
classification. Pfurtscheller and Lopes da Silva (1999) suggested three methods
to determine this subject–specific parameter:

1. Reactive frequency: this method compares the power spectrum between the
baseline and the active period. Depending on the frequencies of interest, the
active period could be the preparation phase, execution phase or recovery
phase. By comparison of the powers between baseline and active period,
the most significant frequency band was found.

2. Continuous wavelet transform: the frequency band is found by time fre-
quency analysis using the wavelet transform. The peak frequency found in
the wavelet transform is more accurate than the method of comparison of
power spectra.

3. Peak frequency: Klimesch et al. (1998) suggested to use the mean peak
frequency fa as the anchor for each frequency band of the rhythms. The
bandwidth of each frequency band is 2Hz. fa can be found by the following
steps: (1) calculate the power spectrum of the mean EEG of all epoch
of each electrode. (2) the peak frequency of each electrode can be found
according to individual power spectrum. (3) fa is obtained by averaging all
the peak frequencies. The frequency bands of the band pass filter and band
power are subject dependent.

Several groups have demonstrated that SMR BCI can provide a reliable, accurate
and robust communication.

One of BCIs developed by Wadsworth BCI research group uses the brain signals
of mu (8–12Hz) and beta (18–26Hz) rhythms (Wolpaw et al., 2000). The users
learn to modulate mu and beta rhythm by motor imagery via the training ses-
sions. It takes 2–3 weeks to the users to learn to communicate or control via
BCI, such as answering a simple question, selecting items from a menu, mov-
ing a cursor in one, two or three dimensions and control a hand prostheses etc.
Figure 2.4 illustrates an example of modulated mu rhythm corresponding to the
top and bottom targets of cursor movement. In controlling the cursor in two
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dimensions, each trial starts when the target appears. 1s later, the cursor shows
in the centre of the monitor. The cursor begins to move until it hits one of the
edges. If it hits the target, the cursor disappears and the target flashes for 1s
as the reward. Otherwise, the cursor remains for 1s and the target disappears.
The screen becomes blank for 1s and the next trial starts. Graz BCI group

Figure 2.4: EEG data in frequency domain and r2 topography.Users learn to
modulate mu and beta rhythms to move the cursor. In this figure, mu rhythm for top
target is more prominent than the button target. This figure is reprinted from
(Mak and Wolpaw, 2009) Copyright c© 2009 IEEE.

utilises ERD/ERS associated with motor imagery as the control signal. Graz
BCI discriminates EEG patterns associated imagery (Pfurtscheller et al., 2000b).
Similar to Wadsworth BCI, the participants of Graz BCI also included patients.
Figure 2.5 shows ERD/ERS of C3 and C4 during imagery movement of right
and left in Graz BCI experiment(Pfurtscheller et al., 2000b). The experiment
starts with a training session without feedback. Each trial begins when a fixation
cross is displayed at the centre of the screen. A beep is sounded at 2s after the
onset of the cross. At 3s, the cue indicating to the right or left appears for 1.25s.
The subject imagines the movement of his/her right or left hand according the
direction of cue.

The data from the training session is used to train a subject dependent classifier.
The classifier is applied later to an on–line experiment with feedback. There are
two types of feedback, the delayed feedback and continuous feedback. In the de-
layed feedback experiment, the feedback is provided at the end of each trial. In
the continuous feedback, the feedback provided to the users lasts for 4s in each
trial. The classifier is updated after few feedback sessions.

Berlin Brain–Computer Interface (BBCI) is also based on the modulation of SMR
(Blankertz et al., 2008a,b). The core of BBCI is machine learning which aims to
transfer the learning/training to machines and reduce the training of the users.
There are two phases operated in BBCI machine learning system, the calibration
phase and feedback phase. In calibration phase, BCI classifier is trained by EEG
data when the users perform the mental tasks without feedback. In feedback
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Figure 2.5: Grand average ERD of C3 and C4 during the imagery movement
of right and left. The baseline is between 0.5s to 2.5s. ERD and ERS are the
negative and positive deflections compared to the baseline. The gray bar stands for the
time interval when the cue appears. This figure is reprinted from (Pfurtscheller
et al., 2000b) Copyright c© 2000 IEEE.

.

phase, BCI uses the output the classifier trained in calibration phase as the input
of BCI application and provides the online feedback to users.

BBCI employs three types of motor imagery movements to modulate SMR, left
hand, right hand and right foot. EEG recorded in calibration phase is used to
train the classifier. The performances of three classifiers which contain two of
the three imaginary movements are assessed. Two imaginary movements of the
classifier which results in the best performance are chosen as the mental tasks
for feedback phase. In feedback phase, the users move the cursor to one of the
vertical bars located at two edges of the screen by performing the motor imagery.
A trial starts after 750m after onset of the cue indicating the target to hit. A trial
completes when the cursor hits one of the vertical bar. If the bar hit is correct,
the bar turns to green. If the bar is hit incorrectly, it turns to red. The next trial
starts after 520 ms. In a performance assessment study for fourteen nave to BCI,
the mean accuracy of thirteen subjects in feedback session was 82.6% ± 11.4%.
Figure 2.6 depicts the ERD of C3 and C4 and topography of imagery movement
of right and left.

The research of SMR BCI is focused on optimisation of EEG features, selection
of electrode locations, and frequency band power, choice of motor/imagery move-
ment and spatial filters (Wolpaw et al., 2000; Pfurtscheller et al., 2000b; Blankertz
et al., 2008a).
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Figure 2.6: EEG of electrodes C3 and C4 and topography during motor
imagery of right and left hand. ERD is significant at contralateral sensorimotor of
the imagery movement. This figure is reprinted from (Blankertz et al., 2008a)
Copyright c© 2008 IEEE.

2.3.2.2 P300

P300 is a component of ERP which can be elicited by the oddball paradigm. In
oddball paradigm, two stimuli are presented to the subjects. One of the stimuli
is more frequent than the other. The infrequent stimuli are the rare and task–
relevant targets (Polich, 2007; Hagen et al., 2006). The rare stimulus elicits ERP
with a large positive deflection of a latency approximately 300ms (between 200ms
to 700ms) after the stimulus onset and was prominent over parietal–occipital and
fronto–central area. P300 can be elicited by many sensory modalities, for exam-
ple, auditory, visual or tactile. A mental prosthesis speller based on P300 was first
proposed by (Farwell and Donchin, 1988). In this P300 speller, a 6 × 6 matrix of
letters and commands was presented to the subjects on a computer screen. In one
intensified sequence (a trial), each row or column was intensified once in a random
order. Hence each intensified sequence contained 12 flashes and only two of 12
were task–relevant and rare which constituted an oddball paradigm which elicited
P300. The subjects were instructed to focus on the selected letter/command, one
of 36 cells in the matrix. Subjects were also asked mentally to count the number
of the selected target being intensified. P300 was detected by averaging EEG of
the same row or the same column. The target was the intersection of the row
and column which elicited P300.

P300 could be described by its amplitude and latency. Farwell and Donchin
(1988) used the amplitude of P300 as the feature to identify the attended target.
P300 has low SNR. This ratio was enhanced by averaging a couple of epochs
(Farwell and Donchin, 1988). The amplitude of P300 could be affected by the
interval between two targets. As the row and column was intensified randomly,
the target to target interval was random too. Therefore, the inter–stimulus in-
terval (ISI) could affect the detection of P300. In Farwell and Donchin (1988)
study, the amplitude of averaged P300 elicited by longer ISI (500ms) was larger
than but shorter ISI (125ms). ISI is an important parameter which could affect
the accuracy and speed in P300 BCI paradigm. P300 can be affected by the
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visual stimuli, such as the intensity and target probability (Polich et al., 1996).
Sellers and Donchin (2006) investigated the impacts of matrix size (the number
of the cells in the matrix), i.e. the probability of the target, and ISI on P300
based BCI. Two matrix sizes, 3×3 and 6×6, and two ISIs, 175ms and 350ms,
were evaluated. The results suggested that although 6×6 matrix elicited larger
P300, the combined condition of 3×3 and shorter ISI had highest classification
accuracy than the other conditions. The impact of ISI was not consistent in the
study of Farwell and Donchin (1988).

A speller is the most common application of P300 based BCI. The row–column
(R–C) paradigm introduced by Farwell and Donchin (1988) to intensify the stim-
uli is the most popular paradigm to present the virtual keyboard. Two common
errors might be induced by RCP. One of the errors is termed as adjacency distrac-
tion error. When the subjects try to focus their attention on the target cell, they
might be distracted by the non–target cells at the same row or column and elicit
a wrong P300. Another error is termed as double flashes error. This error occurs
when the row and the column containing the target cell is intensified in succes-
sion. The elicited P300 of two successive flashes are overlapped in time and result
in the change of amplitude and morphology (Townsend et al., 2010). Moreover,
if the interval between two target flashes is less than 500ms, it may cause the
attention blink or repletion blindness (Fazel-Rezai and Abhari, 2009). Recently,
there were a few different methods to present the virtual keyboard to enhance the
elicited P300 and prevent the perceptual errors to improve the accuracy. These
paradigms were:

1. Single Character (S–C) paradigm: Guan et al. (2004) proposed P300 speller
which intensified one single character a time. The background theory be-
hind this method was that amplitude of P300 increased as the target prob-
ability decreased. As a result, P300 was easier to be detected. In their
study, two spellers of the similar keyboard layout, one using R–C paradigm
and one using S–C were compared. The results showed that S–C had higher
classification accuracy and ITR than R–C paradigm so were the amplitudes
of elicited P300. However, the results in the study of Guger et al. (2009)
showed that R–C paradigm had better performance although the ampli-
tudes of P300 elicited by S–C were larger. The author suggested that the
letter selection time of S–C was longer than R–C paradigm. It might cause
the tiredness of the subjects and hence reduced the performance. In the
study of Guan et al. (2004), the interval of one intensification sequence of
R–C and S–C paradigms were the same. Furthermore, more non–target
training sets were used to train the SC paradigm classifier than those used
for the R–C paradigm classifier.

2. CheckerBoard (C–B) paradigm: Townsend et al. (2010) proposed a checker-
board paradigm to solve the problems of adjacency distraction and double
flashes. In this paradigm, an 8×9 matrix comprising the letters, symbols
and commands were presented to the users as shown in Figure 2.7c. To ex-
plain how this paradigm worked, the matrix was viewed as a conventional
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checkerboard of white and black cells as shown in Figure 2.7a. As a result,
the selection was located in either a white or black cell as seen in Figure
2.7a. The selections in the white cells and black cells were further split into
a 6×6 white matrix and a 6×6 black matrix in a random manner respec-
tively as shown in Figure 2.7b. The flash sequence started from the rows
of two matrices, from the first row to the last row, white matrix first and
followed by black one. After all rows of two matrices flashed, the columns
were flashed in a similar manner, from the most left column to the right
column, white matrix first and followed by the black one. Six elements
were presented to the subjects in each flash. After 24 flashes, the elements
in both white and black matrices were randomly reallocated. The layout
of the matrix remained the same to the subjects all the time as seen in
Figure 2.7c. But the flash elements were different in between trials. In this
paradigm, for each cell, its adjacent cells were in the opposite colour ma-
trix. The flashing elements were either from the white or black matrix. The
adjacent elements could not be included in the same flash. The adjacency
distraction error was avoided. Moreover, once a cell flashed, it waits for
the opposite colour matrix to flash for 6 rows or 6 columns before it flashed
again. It took at least 6 further flashes for one cell to flash again and so
the double flashes errors were eliminated. The classification accuracy and
ITR of C–B paradigm were better than C–R paradigm (mean accuracy:
92% vs. 77%, ITR 23 bits/min vs. 17 bits/min). The amplitudes of P300
elicited by C–B paradigm were also larger than C–R paradigm. This might
be contributed by the reduction of target probability of C–B paradigm.

3. Region based (R–B) paradigm: region based paradigm was proposed by
Fazel-Rezai and Abhari (2009) to reduce adjacency distraction error. In
R–B paradigm, the characters were grouped in seven different regions on
the screen. Each region contained 7 characters as shown in Figure 2.8a.
Each region was intensified randomly. The selection of one character in
this paradigm required two selections. First selection was to select the
region which contained the target. The characters of the selected region
of the first selection were split into seven regions as shown in Figure 2.8b.
Each character was intensified randomly. In this example, the circled region
containing 3, 4, 5, 6, 7, 8 and 9 was selected. The numbers of the selected
region were further expanded into 7 regions. The intensification of the target
was similar to S–C paradigm but with larger scale in the first selection.
Compared to the original C–R paradigm (6×6 matrix), R–B paradigm had
higher accuracy than the C–R one. The author showed improvement to the
reduction of adjacency distraction error and of the target probability.

These P300 based spellers used visual stimulus to elicit P300. As mentioned in the
start of this session, auditory modality can also elicit P300. Furdea et al. (2009)
developed an auditory P300 based BCI speller. In this auditory P300 system, a
similar virtual keyboard (5×5 matrix, containing 25 alphabets) to Farwell and
Donchin (1988) was presented to the subjects. A unique number was assigned to
each row (1 to 5) and column (6 to 10). In the visual C–R paradigm P300 speller,
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(a)

(b)

(c)

Figure 2.7: An 8×9 matrix of P300 based BCI in checkerboard paradigm.(a)
A virtual conventional checkerboard divided the selections into white and black cells.
The checkerboard was for the explanation purpose and wasnt seen by the subjects.
(b) The elements of white cells and black cells were split into one white and one black
checkerboard respectively randomly. After a complete flash sequence (24 flashes), these
elements were split randomly again. These two matrices were not seen by the subjects.
(c) The visual stimulus presented to the subjects during the trials. The locations of the
elements were the same. But the intensified elements of each flash differed depending
on the matrix shown in (b). The example showed the elements of top row of white
matrix were intensified. This figure is reprinted from (Townsend et al., 2010),
page 1111, with permission from Elsevier.

the target is coded by the intensified row and column. In an auditory P300 sys-
tem, the stimuli are presented by the voice of a spoken number representing the
row and column and the target is coded by the numbers assigned to the rows
and columns. The task of the subjects is to focus on the numbers presenting the
coordinates of the target and count their occurrence. The amplitudes of P300
elicited by auditory stimulus were not significantly different from the ones elicited
by a visual one but had higher latencies. The accuracy and bit rates of auditory
were lower than the visual system, mean accuracy 65%. A greater subject vari-
ance was seen from the accuracy of auditory system, from 100% to under 15%
compared to a more consistent one in the visual stimulus system, 100% to 75%.
However, 9 out of 13 subjects achieved over 70% accuracy. This modality of P300
BCI demonstrated its feasibility to most subjects.

Käthner et al. (2013) also employed the auditory modality to elicit P300. In their
study, a 5×5 matrix same as Furdea et al. (2009) was presented to the subjects
to show the coordinates of the targets. The row and column were coded by the
direction and pitch of a tone. Five different combinations of the directions and
pitches represented in five columns. The same combinations of the directions and
pitches presented in five rows. The tone sequence first presented the columns
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(a) (b)

Figure 2.8: Visual stimulus of P300 based BCI in region based paradigm. In
region based paradigm, the characters were allocated into 7 regions. Each region was
intensified in random order. One target required two successive selections. (a) The
layout of the regions in the first selection. Each region contained 7 characters. (b)
When one of the regions was identified as the selection, the characters of the selected
region were further separated into 7 regions. Each region contained only one character
as shown in the right of the figure. This figure is reprinted from (Fazel-Rezai
and Abhari, 2009), Copyright c© 2009 IEEE.

followed by the sequence presenting the rows. The subjects selected the target by
focusing on the tones for the column and the row of the target. Several ISIs were
tested in the experiment to determine the optimal accuracy and speed. Data
analysis showed that compared to the visual paradigm, auditory stimulus elicited
larger P300 with greater latency at ISI = 560ms. The accuracy and bit rate of
the auditory paradigm were lower than the visual. Moreover, the accuracy de-
creased as ISI decreased. The performance of the accuracy also showed a greater
inter–subject variance. For ISI = 400ms, the mean accuracy was 65% ± 31.03%.
Sixteen out of twenty subjects achieved ≥ 70% of accuracy at least one of ISIs.
The author concluded that auditory P300 BCI was feasible to most healthy sub-
jects. But its performance could not level with the visual one, in terms of the
accuracy and bit rate etc.

Brouwer and Van Erp (2010) examined the feasibility of a tactile modality of P300
BCI. The tactile stimuli were implemented by vibrating tactors placed around the
waists of the subjects. Three experiments were performed to evaluate the impact
of the tactor number, stimulus onset asynchrony (SOA) and the duration of on
off on BCI performance. It was found that in tactile modality, the tactor (target)
number had no significant impact on the accuracy. However, the fewest tactor
number (2) elicited smaller amplitude of P300 response. SOA and the durations
of tactor on and off all affected BCI performance. In their experiment, it was
found that the medium SOA (=376ms) with same duration of on off (=188ms)
yielded the best mean performance with a mean ITR=3.71 bits/min while the
highest bit rates were seen in shorter SOA. The study demonstrated the feasibil-
ity of tactile P300 BCI. However, the author concluded that it required further
improvement before it could be applied to any potential application.
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For patients with visual impairment, the auditory and tactile modalities P300
BCI can provide an alternative option other than the visual one. However, these
modalities manipulate the level of discrimination task difficulties and workload of
the users. As a consequence, it affects the performance. For example, in Brouwer
and Van Erp (2010), some subjects reported the difficulties of discriminating the
target and the adjacent non–target tactors. The author also suggested that in
the visual modality, there was a visual perception difference between target and
non–target but not in the tactile modality. In the auditory modality of Käthner
et al. (2013), the subject also reported difficulties in ignoring the non–targets.
The author had similar comments on the perception of the targets and non–
targets in visual modality which could not apply to the auditory modality. The
discrimination task of the auditor modality proved more difficult and demanding
which might increase the workload of the users and affect the resulting P300.
Both studies pointed out that the motivation of the subjects is a factor which
affects BCI performance.

2.3.2.3 Visual Evoked Potential (VEP)

VEP based BCI paradigms are based on different types of VEPs as the control
signal, mainly flash visual evoked potential (FVEP), SSVEP and code modu-
lated visual evoked potential (c–VEP) (Bin et al., 2009a; Lee et al., 2008). Visual
stimuli are required in VEP based BCI to elicit the visual evoked potential. In
FVEP paradigm, visual stimuli are modulated by different duration of ON–OFF
sequences. FVEP is time–locked and phase–locked to the stimuli onset or offset.
EEG is segmented according to the sequences of ON–OFF of stimuli. The se-
quence of the stimulus results in the largest FVEP is identified as the attended
target (Lee et al., 2008). In SSVEP paradigm, each visual stimulus is modulated
by a unique flickering frequency. EEG data can be transferred to the frequency
domain. Induced SSVEP can be observed prominent at the flickering frequency
and/or its harmonics. The attended target can be identified by the frequency with
the largest SSVEP. c–VEP can be induced by the visual stimuli modulated by a
pseudorandom binary sequence. All stimuli are modulated by the same binary
sequence except a fixed time lag between two successive stimuli. This paradigm
assumes that the induced VEP is identical from trial to trial, a response which
can be predictable. The target can be identified by matching the templates of
the stimuli (Bin et al., 2009a, 2011). In short, the visual stimuli of three VEP
based BCIs are modulated by the time, the frequency and the code. Both FVEP
and c–VEP systems require synchronous signal for the onset of the stimuli (Bin
et al., 2009a).

Lee et al. (2008) implemented a FVEP based BCI. The visual stimuli were mod-
ulated by the sequences of random duration of ON and OFF. The sequence was
mutually independent between the stimuli. EEG data were segmented by the
sequences of stimuli onset and offset. FVEP was enhanced by average of a few
(10) epochs. FVEP showed clear latencies at valleys N1, N2 and peaks P1, P2.
The properties of the latencies and voltages were extracted as the classification
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features. These peaks and valleys were found in 200ms after the onset or offset
of the stimuli. P2 and N2 were observed more prominent in FVEP induced by
onset of the stimulus. P1 and N1, on the contrary, were more robust in FVEP
induced by the offset of the stimulus. The difference between P2 and N2 of onset
induced FVEP and the difference between P1 and N1 of offset induced FVEP
were calculated. The sequence of the stimulus resulting the largest peak–valley
of above two differences was identified as the attended target. In this paradigm,
one of the key parameters was the number of epochs which were averaged to en-
hance FVEP. The number of epochs could affect the accuracy and speed. On one
hand, increasing this number improved the accuracy. On the other hand, more
epochs decreased the processing speed. In their experiment, 10 epochs averaging
achieved accuracy higher than 90%.

The latencies of the peaks and valleys VEP affect the performance of ITR. In Lee
et al. (2008) experiment, the participated subjects demonstrated the reliability
and short latency of two peaks and valleys of both the onset and offset FVEP.
These peaks and valleys occurred in 130ms after the onset or offset of the stim-
ulus. To prevent the responses of the consecutive onset–offset (or offset–onset)
overlapping, the duration of ON or OFF lasts at least 116.7 ms(10 frame refresh
intervals of a 60Hz monitor) in their experiment. (Bin et al., 2011) realised a
c–VEP based BCI whose average ITR was over 100bits/min. The visual stimuli
were modulated by a pseudo 63 bits binary m–sequence which represents white
and black (1 and 0 as binary suggests) series in a stimulating cycle. All stimuli
were modulated by the same m–sequence, except a fixed time lag of 2 frame re-
fresh intervals (2 circular shift bits in the sequence) between two adjacent targets.
The experiment first obtained VEP referenced template when the subject stared
at one of the designate target for 200 stimulation cycles, referred as the referenced
target. VEP referenced template was the average result of 200 epochs EEG. The
stimuli were modulated by the same m–sequence except a fixed time lag. There-
fore, the response of each stimulus was expected the same with the time lag. The
expected templates of the other stimuli were obtained by circular shifting the ref-
erenced template according to the time lag between the stimuli and the referenced
target. The attended target was identified by templates matching, the correla-
tion coefficient of EEG and the stimuli templates. The template of the stimulus
resulted in the highest correlation coefficient was identified as the attended target.

It is clear to be seen that in c–VEP paradigm, the stimulating sequence and time
lag of adjacent stimuli were two important parameters. First, the length of the
sequence affected ITR performance. Second, the time lag and sequence length
both determined the maximum number of the targets. In the study of (Bin et al.,
2011), 16 and 32 targets were evaluated. The stimuli of both systems were mod-
ulated by the same m–sequence. The results showed that 16 targets had higher
accuracy than 32 targets but lower ITRs. It was suggested that the higher ac-
curacy of 16 targets was contributed by longer time lag (4 frames vs. 2 frames)
which in term affected the autocorrelation functions of the stimulus templates.
Three VEP based BCI have distinct properties in terms of visual stimuli mod-
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ulation, features of classification, classification methods and performance. Lee
et al. (2008) identified the target by averaging the epochs which had lower com-
putation complexities than the classification methods employed by SSVEP and
c–VEP paradigms (SSVEP based BCI will be discussed in later session/chapter).
The lower computation complexity was at the cost of ITR. FVEP had lowest
ITR (<35 bits/min) among three VEP based BCIs. A c–VEP based spelling
BCI with online adaptation was able to reach 144bits/min. The speed of spelling
was up to 21.3 letters per min which is close to normal keyboard speed (Spüler
et al., 2012). Both FVEP and c–VEP based BCIs can have more stimuli (≥ 25)
than frequency–coded SSVEP. As a result, frequency–coded SSVEP based BCI
is more suitable to a system with fewer options.

The motion visual evoked potential (m–VEP) can also be used as input to a
BCI system. Motion visual evoked potential is evoked by brief motion visual
stimuli. The advantages of m–VEP include the large amplitude of the response
and consistency of the response across the subjects (Hong et al., 2009). (Hong
et al., 2009) had a comparison study of m–VEP (N200) based BCI and P300
based BCI. The virtual keyboards of both systems were similar, a 6 × 6 matrix
comprising the letters and numbers. In m–VEP based BCI, a vertical bar, the
motion stimulus, appeared in the right edges of the virtual keys of the same row
or same column simultaneously at the onset of the stimuli. The bars moved left-
ward for a brief time and disappeared. The moving bars appeared in the next
row or column. The motion stimuli appeared in a random order of the rows and
column, but appeared in the rows before in the columns. A stimulating cycle
included the motion stimuli appearing in 6 rows and 6 columns. The subject
made the selection by starring at the key desired. The target was identified by
the detection of attended row and column. The colours of the bars were different
at each time they appeared. The subjects were asked to perform the mental tasks
of naming the colour of the attended target. The duration of a complete stimu-
lating cycle was 2.4s. This paradigm was able to achieve comparable performance
of P300 based BCI with less electrodes. m–VEP was elicited by low luminance
and contrast which reduced the fatigue and discomfort of the subjects. However,
this paradigm was limited by the duration of a complete stimulating cycle. The
average ITR of this speller was less than 20 bits/min.

m–VEP was also applied to an Internet browsing BCI application by Liu et al.
(2010). The principle of the browsing system was similar to the one of a m–
VEP speller. The major difference was that only 6 targets were in the Internet
browsing system. Also, the moving stimulus appears in targets one by one. The
duration of a complete stimulating cycle lasted for 1.1s. As a result, ITR was
higher than 40 bits/min.

2.3.2.4 Steady–State Visual Evoked Potential (SSVEP)

This section provided an overview of SSVEP. A detailed review on SSVEP based
BCI was given in sections 2.5 and 2.6. Visual evoked potentials (VEP) are the
brain response to visual stimulation, such as the flash light and reversal graphic
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pattern etc. Depending on the stimulating frequency, VEPs can be divided into
transient visual evoked potential (tVEP) and SSVEP (Tobimatsu et al., 1996; To-
bimatsu and Kato, 1996). When the stimulation rate is low, the sensory pathway
has enough time to go back to baseline state before the next stimulation. tVEP
is evoked by a low stimulus rate (< 1Hz) (Tobimatsu et al., 1996; Tobimatsu and
Kato, 1996) and tVEP can be characterised by a few deflations whose amplitude
and latency are time–locked to the stimulus. P100 is one of the most important
components of tVEP deflations. The amplitude and latency show abnormal val-
ues in some clinical conditions/diseases (Tobimatsu et al., 1996).

When the stimulation rate is high, the sensory pathway has not got enough time
to reset before the next stimulation. The responses are overlapped and become
steady (Di Russo et al., 2007). SSVEP can be elicited by the repetitive presenta-
tion of the visual flickering stimuli with the frequency over 6Hz (Di Russo et al.,
2007; Wang et al., 2006; Toffanin et al., 2009). SSVEP can be characterised by the
amplitude and phase (Tobimatsu and Kato, 1996; Di Russo et al., 2007). SSVEP
is a sinusoidal like response with the same fundamental frequency of stimulus and
its higher harmonics and/or sub–harmonics frequencies (Herrmann, 2001; Wang
et al., 2006; Di Russo et al., 2007). SSVEP becomes prominent after a several
hundred milliseconds of the stimulus onset (Moratti et al., 2007; Morgan et al.,
1996). It can be observed most significant from the occipital area over the brains
visual cortex and can be recorded using EEG (Herrmann, 2001; Pastor et al.,
2003; Moratti et al., 2007; Di Russo et al., 2007; Toffanin et al., 2009). SSVEP is
often used to study the neural process associated with a frequency–tagged stimu-
lus. SSVEP power and phase can be measured in a narrow band spectrum centred
at the stimulating frequency. This property is useful to discriminate SSVEP from
ongoing EEG and artefacts which have broadband spectrum. Therefore SSVEP is
relatively immune to artefact and has high SNR (Silberstein et al., 2001). Longer
stimulation period can increase SNR (Srinivasan et al., 2006). Phase–reset of
ongoing EEG is the mechanism of SSVEP. This mechanism may also enhance
SNR. SSVEP is stable and is not disturbed by transient disturbance (Moratti
et al., 2007) SSVEP is widely used in cognitive studies, such as visual attention,
object recognition and working memory. SSVEP is sensitive to the parameters of
the visual stimuli, such as flickering frequency, colour, size and intensity (Morgan
et al., 1996; Srinivasan et al., 2006).

The visual attention studies (Müller et al., 1998; Toffanin et al., 2009; Ding et al.,
2006; Herrmann, 2001; Walter et al., 2012; Morgan et al., 1996) showed that the
amplitude of SSVEP can be modulated by the visual spatial attention without
shifting the gaze of the eyes termed as covert attention. The amplitude of SSVEP
is highly correlated to the level of attention (e.g. attended, divided attention and
ignored) (Toffanin et al., 2009). The amplitude of SSVEP induced by shifting
the gaze directly on the stimulus by overt attention can be 10 times larger than
covert attention. The attention also affected the amplitude and scalp distri-
bution of SSVEP. The analysis of the scalp distribution and source of SSVEP
showed that in covert attention, SSVEP was found strongest at contra–lateral

29



CHAPTER 2. OVERVIEW OF BRAIN–COMPUTER INTERFACE

parieto–occipital area. In overt attention, central occipital area was found most
prominent (Walter et al., 2012). That fact that SSVEP can be modulated by
covert attention is an important fundamental basis for an independent SSVEP
BCI. It will be discussed in section 2.5.1. SSVEP is a phase–locked response to
visual stimulus. The use phase–tagged technique to discriminate SSVEP will be
discussed in section 2.5.2. The modulation effect of attention to SSVEP phase is
subject–variant (Morgan et al., 1996; Müller et al., 1998).

The neural process of SSVEP is not completely understood (Vialatte et al., 2010).
A cluster of neurons of the cortex synchronised by a flickering stimulus is consid-
ered as a SSVEP neural network. SSVEP is a frequency–dependent response to
the frequency of the stimuli. It was suggested that there are three SSVEP neural
networks corresponding to three different frequency bands, i.e. low band from
5–12Hz, middle band from 12–25Hz and high band from 25–50Hz (Wu, 2014b).
SSVEP can be seen more predominate at some particular frequencies, so called
resonance frequencies (Herrmann, 2001). For example, SSVEP responses at the
frequencies of 10, 20 40 and 80Hz are stronger than at their adjacent frequencies.
The frequencies around 15Hz can elicit the strongest SSVEP in human as sug-
gested by Pastor et al. (2003) while Wang et al. (2006) suggested 15Hz, 31Hz and
41Hz of three different bands evoke stronger SSVEP. The amplitude of SSVEP
elicited by different frequency bands is different (Pastor et al., 2003; Wang et al.,
2006). In general, the low and middle frequency bands can elicit larger SSVEP
than high frequency band. However, the background noise at low and middle
frequency band is also stronger than the high frequency band. As a result, the
SNRs of the three frequency bands are similar (Wang et al., 2006).

The accepted frequency band of SSVEP is limited to 5Hz to 50Hz (Vialatte et al.,
2009). However, some studies demonstrated that SSVEP could be elicited be-
tween 1 and 100Hz (Herrmann, 2001). Vialatte et al. (2009) recorded SSVEP at
the stimulating frequencies between 0.5Hz to 5Hz. The results showed periodicity
but less sinusoidal. The author suggested this resulted from the superposition of
few harmonics and low SNR at the low frequency in this frequency band. FFT
was used to verify if the response was SSVEP or a mere transient VEP. FFT
showed peak values of the response occurred at the frequencies around 1, 2.5
and 5Hz which were close to the sub–harmonics of 10Hz, one of the resonance
frequencies described in Herrmann (2001).

SSVEP is also used in some clinic diseases studies, such as Parkinson, Alzheimer,
and schizophrenia (Vialatte et al., 2010; Silberstein et al., 2001). The patients
of these diseases showed abnormalities in their visual pathways. For example, it
was reported by Krishnan et al. (2005) that the elicited SSVEP powers at the
frequencies of beta and gamma bands by the schizophrenia patients were lower
than the normal subjects. On the contrary, the noise at the frequency of beta
band was higher.

One of the disadvantages of SSVEP stimulation is the visual stimuli might evoke
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visual–evoked seizures. It was estimated that 0.3% to 3% of the population has
photosensitivity. Intensity and frequency are two most important factors that
induce seizure. Frequencies between 15 and 25Hz are most likely to trigger seizure
(Fisher et al., 2005).

2.3.3 Hybrid BCI

The hybrid BCI (hBCI) is defined as a BCI system consisting of at least of one
conventional BCI and another system based on a different BCI paradigm, a phys-
iological signal or a signal from external devices. hBCI is able to take advantage
of the different systems involved and improve the classification accuracies. hBCI
process the inputs in either a sequential or simultaneous manner. In sequential
hBCI, the output of one system is used as the input of the other system or as
a switch to enable the other system. For simultaneous BCI, the signals from
different systems are processed in parallel at the same time. The main issue
hBCI facing is the selection of the best possible combination from different BCI
paradigms that exist (Pfurtscheller et al., 2010a; Amiri et al., 2013a,b). Theoret-
ically speaking, hBCI could be developed using any combination of different BCI
paradigms. This section is focused only on a hBCI which comprises of a SSVEP
based BCI and other BCI paradigms.

Pfurtscheller et al. (2010b) demonstrated a sequential hBCI which combined ERD
and SSVEP based BCI to open and close a hand orthosis. In the proposed sys-
tem, ERD BCI was used as a switch to activate SSVEP based BCI to open or
close the orthosis and to deactivate SSVEP based BCI during the resting period
in a self paced BCI setup. After the training to operate SSVEP and ERD hBCI,
the subjects were asked to open and close the hand orthosis using SSVEP based
BCI with and without the ERD BCI. The results showed that with the ERD
BCI as the brain switch, the overall false positive rates were lower than the ones
without it. SSVEP based BCIs were also incorporated with P300 paradigm in
a smart home control system (Edlinger et al., 2011). The user used SSVEP to
start or stop the operation of P300 BCI system to choose the control commands.
With SSVEP as the switch, the user was able to decide when to use the system.

Allison et al. (2010b) proposed a simultaneous hBCI comprising SSVEP and ERD
paradigms. The subjects in their experiment performed three different mental
tasks, motor imaginary task, visual attention and both. The classification accu-
racies of the task with both motor imaginary and visual attention combined were
higher than the ones of only one of two tasks performed separately. The author
suggested that the hybrid BCI might provide more information for the classifica-
tion. The mental tasks performed in the hBCI might have also made the users
more focused and concentrating and as a result, the performance was improved.
A 6× 6 P300 conventional speller integrated SSVEP was introduced by Panicker
et al. (2011). SSVEP was used to control detection. The rows and columns of
the matrix were flashed as the same as conventional P300 based BCI. But the
elements of the matrix also flickered at the same frequency to elicit SSVEP which
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indicated whether the user intended to operate the speller or not. The results
showed the feasibility of the hBCI as P300 and SSVEP were able to be elicited
at the same time. The off-line experiment classification accuracies with SSVEP
were higher than those without SSVEP. Xu et al. (2013) also combined SSVEP
into a 3 × 3 P300 speller. In their paradigm, each item of the matrix had two
phases, flicker phase and event phase. Each item of the matrix was intensified
in a random order. When the item was flashed, it was in event phase without
flickering. On the other hand, the other 8 items were in the flicker phase in which
they flickered at 15Hz without being intensified. Therefore, EEG of the attended
target exhibited P300 without SSVEP which was termed as SSVEP blocking.
The features combined P300 and SSVEP blocking achieved higher classification
accuracy.

Yin et al. (2014) also proposed a hybrid BCI comprising P300 and SSVEP
paradigms in a speller application. The target was identified by the detection
of P300 and SSVEP. In their method, the letters/characters (36 targets, a–z, 1–9
and del) were divided into 6 subgroups. Each subgroup had the same number of
targets. The items of the same subgroup flickered at the same frequency. Differ-
ent subgroups were assigned a different frequency to elicit SSVEP. Each subgroup
was a P300 speller and the items were intensified in random order to elicit P300.
The detection of SSVEP was to determine which subgroup was attended. P300
was to determine the item in the attended subgroup was focused. Thus the at-
tended target was identified. Compared to the conventional 6 × 6 matrix, the
number of the flashes of the targets was reduced to half. Compared to the speller
based on SSVEP alone, the number of the selection increased or it required fewer
selections to obtain the letter. As a result, ITR increased.

From the above aforementioned studies, hBCIs could improve the classification
accuracies, ITR and reduce false positives. While most of hBCIs employed two
BCI paradigms, Choi and Jo (2013) assessed the feasibility of a sequential hBCI
consisting of P300, SSVEP and ERD paradigms to control a robot to navigate,
explore and recognizse the object in a maze. SSVEP and P300 were used for the
control commands and ERD was used to change the states. The significance of
the proposed hBCI was that hBCI could be used for complicated tasks.

However, there are some issues related to hBCI that still require investigation.
For example, what kind of feedback should be provided and which paradigm the
feedback should be based on? Also, the interference of the tasks between two (or
more) chosen paradigms is unknown. For example, in a P300/SSVEP study, it
was found that P300 response of hBCI was similar to stand alone P300 BCI. But
SSVEP was worse in hBCI (Z. Allison et al., 2014). In a hBCI of ERD/SSVEP
study, the subjects showed no interference and interference between two tasks
were 50:50 (Allison et al., 2012). In the same study, it was also found that ERD
activity developed faster than SSVEP but SSVEP was more prominent than ERD
in a simultaneous hBCI.
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2.4 Target users and the applications

Kübler et al. (2013) suggested that the functionality, independence and ease of
use were three important factors to be considered in the design BCIs for the daily
use as an assistive technology. A BCI acceptance survey study to target users of
ALS patients, revealed that there was a gap between the expectation and reality
in terms of accuracy, speed and training at the time of the survey conducted by
(Huggins et al., 2011). However, the gap was narrowing. For example, the survey
showed the expected word processing speed was 15–19 letters per min compared
to the actual speed in reality of 5 letters per min at the time of the survey. The
current BCI spelling speed could be over 20 letters per min (Spüler et al., 2012).
In this section, an overview of the potential users and applications were provided.

2.4.1 Target and potential users

The primary aim of BCI research is to help the severely disabled and paralysed
patients to restore the communication and movement. Wolpaw et al. (2006) sug-
gested that the efficacy which these patients can benefit from BCI depended on
the degree of the physical impairment and further divided these potential users
into three groups, (1) completely locked–in, (2) only limited neuromuscular ac-
tivities intact and (3) substantial neuromuscular activities remaining.

The patients in the first group were completely locked–in. Whether they were
able to benefit from BCI remained unclear. A few studies have demonstrated
that the patients were able to learn to communicate via BCI effectively before
they entered the late stages of the diseases in various BCI paradigms. Two nearly
completely paralysed patients learnt to regulate their slow cortical potentials af-
ter 4 to 6 weeks of training (Kübler et al., 1998). (Kübler et al., 2005; Wolpaw
and McFarland, 2004) reported that ALS patients and spinal cord injury patients
were able to control cursor movement in two dimensions by the modulation of mu
and beta rhythms. P300 based BCI demonstrated its usability as an alternative
communication channel for ALS patients in the studies of (Sellers and Donchin,
2006; Nijboer et al., 2008). Birbaumer (2006) showed that the patients who learnt
to control BCI before they became completely locked–in were able to maintain the
ability of operating BCI when they were completely locked–in. It was suggested
that the completely locked–in patients were unable to use BCI if they learnt to
control BCI after they were at the late stage of the disease, i.e. becoming com-
pletely locked–in (Birbaumer, 2006). Birbaumer and Cohen (2007) hypothesised
that the totally locked–in patients might develop the conditions (decline of cogni-
tive function, extinction of thought) which prevented them to learn to control the
BCI. Therefore, if the patients could learn to control BCI at an earlier stage of
the disease before being totally locked–in, it is more likely they would be able to
communicate via a BCI system as the disease progressed (Birbaumer, 2006; Mak
and Wolpaw, 2009). The authors suggest that further investigation is required
to understand the benefits the first group of totally locked–in patients could get
from BCI.
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The second group was the primary target users. When the conventional methods
could not provide sufficient assistance, BCI could be an option. A few studies
to investigate the relationship between the BCI performance and the level of
impairment showed that both healthy subjects and patients could operate BCI
effectively. For example, a performance comparison study between the healthy
subjects and paralysed patients in a four–class P300 based BCI indicated that
the overall performance of the healthy subjects was significantly better than the
most impaired patients but not the less impaired patients (Piccione et al., 2006).
Another similar study based on a six–class P300 BCI also had a similar conclu-
sion that healthy subjects had better performance than patients (Hoffmann et al.,
2008). However, both studies showed that even severely disabled patients were
able to control a P300 based BCI. Kübler and Birbaumer (2008) also suggested
that most of the patients of this group could control BCI. Due to the limitation
of current BCI systems, the third group of patients might be better off using the
assistance of conventional technology (Wolpaw et al., 2006).

In normal circumstances, BCI might not be considered as a communication
method by healthy people due to its low speed, relatively low accuracy, low
bandwidth compared to existing interfaces, such as the mouse and the keyboard.
However, in some particular situations, which were termed as induced disability
or situational disability by Nijholt et al. (2009), healthy subjects might benefit
from BCI. Apart from the performance, BCI normally require special dedicated
hardware, software and the assistance of set up. As the technology progresses and
the hardware and software improve, for example, dry electrode, graphics user in-
terface and advanced signal processing, Allison et al. (2007) suggested that the
healthy people might consider BCI as a choice for the following reasons:

1. BCI as an addition to existing interfaces and auxiliary when induced dis-
ability occurs.

2. BCI can provide extra information which the existing interfaces cannot.

3. BCI can improve performance.

4. BCI can provide a private and confidential communication channel.

5. BCI can detect the intention earlier than the actual action.

6. BCI is fun and novel.

Nijholt et al. (2009) further pointed out that game players and game developers
were the potential users of BCI due to matched characters between them and
BCI. For example, the gamers were aware that playing a game was a skill to learn
and training/practice was required in order to improve such skill. The gamers
adopted the new technology and accepted that the benefits from adopting the new
technology might be minimal. However, for this group, BCI might be designed
differently for the medical purpose.
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2.4.2 Applications

BCI can be used to substitute or restore the impaired motor function of pa-
tients. Soekadar et al. (2011) classified BCI systems into (1) assistive BCI and
(2) restorative BCI according to the aims of BCI use. The lost motor functions
of the patients can be substituted and restored by the aid of the assistive BCI
system and the restorative BCI system respectively. The assistive BCI provides
the paralysed, disabled patients with an alternative channel to communicate and
control the device. The main applications of this aspect include:

1. Communication: Text speller is the major application to restore communi-
cation of the patients. Few speller applications of BCI has been developed
and tested outside laboratory environments for patients. The evaluation
results demonstrated the usability of these systems as a communication
channel. These spelling BCI applications included, a motor imagery based
speller proposed by Perdikis et al. (2014), the thought–translation device
based on slow cortical potential from Birbaumer et al. (2000, 2003), P300
speller from Vaughan et al. (2006); Sellers et al. (2006). SSVEP paradigm
was also employed in spelling applications(Hwang et al., 2012; Volosyak
et al., 2009).

2. Prosthesis control: Most of the commercial prosthesis control required vol-
untary motor activities which might not be suitable to the patients with
severely neuromuscular impairment (Guger et al., 1999). Guger et al. (1999)
used EEG based BCI to open and close hand prosthesis by imagery of right
hand or left hand movement. A tetraplegic patient learnt to control the
hand prosthesis via motor imagery based BCI and was able to lift light
weight objects after a few months of training (Pfurtscheller et al., 2000a). A
four–class SSVEP based BCI was able to control an electrical hand prosthe-
sis to open, close, turn the wrist right or left (Muller-Putz and Pfurtscheller,
2008).

3. Environment control: Cincotti et al. (2008) proposed a home environment
control system comprised motor imagery (MI) based BCI to improve the
quality of life and independence of the patients suffering from neuromuscular
disorders. The system allowed the patients to control the light, TV, alarm
and door etc. It also included a robotic platform which allowed the patients
to virtually move. The result of the pilot study showed that BCI could
enable the patients to use the environment control system.

4. Locomotion control: Long et al. (2012) proposed a hybrid BCI consisted of
P300 and MI paradigms which could control the directions and speed of a
wheelchair. This hybrid wheelchair control system had four commands, turn
right, turn left, accelerating and decelerating. The wheelchair was turned
right or left by the motor imagery of right and left hand respectively. The
wheelchair was accelerated when P300 and the idle state of motor imagery
were detected. On contrary, when the imagery of foot movement and the
idle state of P300 were detected, the wheelchair was decelerated. It was
tested and evaluated in simulated and real wheelchair.
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BCI was applied to neurorehabilitation therapy. For example, motor imagery
was shown useful on the motor rehabilitation for stroke patients. Current stroke
rehabilitation therapy such as active motor training depended on the residual
motor function of the patients which might not be suitable for the patients with
limited motor function. Motor imagery does not rely on the physical movement
but could activate the motor network (Ang and Guan, 2013). Therefore, BCI was
an alternative option to current therapy for the patients. Also, current therapy
was unable to provide the feedback to the therapists and patients for monitor-
ing and learning. BCI was a solution to provide such feedback (Kaiser et al.,
2012). Daly and Wolpaw (2008) suggested two strategies of the restorative BCI
in neurorehabilitation. The first strategy was to use BCI to train the patients to
produce normal brain activities. In this stage, BCI measured the brain activities
of the patients, extracted the features of the signal and used the these features
as the feedback to the patients. The second strategy was to use BCI output to
activate the device which assisted the patients to move during the motor tasks.
Savić et al. (2014) integrated a hybrid BCI of SSVEP and MI to a functional elec-
trical stimulation therapy for stroke patients. The users of the proposed system
first used SSVEP to select one electrical stimulation pattern from three grasp
patterns, palmar, lateral, or precision. The users imagined the selected grasp to
generate ERD. The detection of ERD triggered the functional electrical stimula-
tion of the selected pattern. The concurrence of MI and sensory stimulation of
FES facilitated the motor function recovery.

Recently, BCI applications, such as games control, were developed for healthy
people. BCI had more to offer to healthy people, not only regarding device con-
trol but also BCI was able to monitor the mental state of the users, e.g. the level
of arousal, tiredness, drowsiness and workload etc. BCI provided the direct mea-
sure and analysis of the mental state. Müller et al. (2008) evaluated the feasibility
of EEG based BCI to monitor the mental state in a security surveillance scenario.
Lin et al. (2008) developed a BCI based system to monitor the drowsiness of the
drivers and provide the warning. A few BCI based smart home control systems
were proposed to control the domestic appliances such as TV, phone etc. Edlinger
and Guger (2012) used a hybrid BCI comprising of SSVEP and P300 paradigms
to control a smart home in a virtual reality environment. SSVEP was used to
turn on/off P300 BCI and P300 BCI was used to select the control command.
Kanemura et al. (2013) designed a framework which integrated a wheelchair and
smart home for older and disabled people to control household equipment.

BCI was also used as a training tool to improve the memory and attention and
slow down cognitive decline in older healthy people. Lee et al. (2013) evaluated
the feasibility of BCI used as training tool to improve the memory and attention
of healthy older people. The participants of the pilot experiment underwent 24
sections of BCI intervention. The participants used BCI to play card–pairing
memory games. BCI was used to open or close a card. The experimental results
showed a positive impact when using the BCI on improving memory and attention
of the healthy older subjects. A research group of the University of Valladolid also
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attempted to use BCI as a training tool to offset the ageing effects in cognitive
decline.

2.5 Limitations of SSVEP based BCI

SSVEP based BCI is classified as dependent BCI. The selection of stimulating
frequencies for visual stimuli is restricted to the availability of the frequency and
user comfort. This section first presents how independent SSVEP BCI can be
achieved by covert attention. Next, this section reviews studies which increase
the number of visual stimuli over the available frequencies and how user fatigue
can be reduced.

2.5.1 Dependent BCI

BCI can be divided into dependent and independent BCI. The output of depen-
dant and independent BCIs does not rely on the brain normal output pathway.
However, dependent BCIs require the control of peripheral muscles and nerves
in order to generate the brains activities as the input of BCIs. On the contrary,
independent BCIs do not depend on these activities to modulate the required
brain activities. SSVEP based BCI is categorised as a dependent BCI as it needs
its users to control their gaze shift to the targets to generate SSVEP response
although the output does not depend on the brain normal output pathway (Al-
lison et al., 2008; Kelly et al., 2005b; Zhang et al., 2010a; Lopez-Gordo et al.,
2011). However, some studies have demonstrated SSVEP can be modulated by
spatial attention without shifting the gaze. It is referred as covert attention
which does not need the gaze control and is different from overt. This is an im-
portant fundamental basis for SSVEP based BCI towards to an independent BCI.

In the attention studies of SSVEP, at least two different types of the visual pre-
sentations were employed to elicit SSVEP response: One presenting two images
flickering by two frequencies at two visual fields, one in left and one in right (Mor-
gan et al., 1996; Müller et al., 1998) and the other one presenting two images,
which were distinguished by the colours or shapes, superimposed in the same
region (Müller and Hübner, 2002; Chen et al., 2003; Müller et al., 2006). During
the experiments, the subjects were asked to attend the image in the left or right
visual field or one of the superimposed images in the central vision field and ig-
nore the other one. The subjects kept their fixation in the central region in all
conditions. The attended image was the target and the unattended one was the
ignored one or distracter. Some experiments also asked the subjects to respond
when some conditions are met. For example, a particular letter or number in a
sequence or image shape changes was detected. A brief overview of the paradigms
of SSVEP covert attention experiments will be presented next in this session.

Morgan et al. (1996) displayed two white rectangular stimuli positioned bilateral
to the middle of a monitor. The stimuli flickered at 8.6Hz or 12Hz. An alphabet
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sequence comprised by letters randomly chosen from A to K and 5 was super-
imposed with the stimuli. The subjects were asked to respond when the target
5 was detected. The experimental result showed that SSVEP response can be
enhanced by the selective attention.

Chen et al. (2003) presented the stimuli by overlapping 7 vertical bars and 7
horizontal bars on a monitor. The bars were red or green and flickered at two
frequencies, 7.41Hz or 8.33Hz. During the trial, the width of one vertical and hor-
izontal bar increased or decreased for three times and back to the original. The
subjects were asked to respond the width change from any of three central middle
bars of the attended image or to the central bar width change in two different ex-
periments (attend–to–all and attend–to–middle). The results also suggested that
SSVEP response can be modulated by the increased and decreased attention of
the visual stimuli.

Müller et al. (2006) implemented a continual Brownian–motion–like visual stim-
ulator by superimposing blue and red dots, 125 dots for each colour, in a grey
circular background. The flickering frequencies were 7Hz and 11.67Hz for red and
blue dots respectively. Throughout the trial, the dots kept moving by changing
their positions in random directions and time durations. Subjects were asked to
respond the detection of the coherent motion of the attended dots (blue or red).
The result indicated that SSVEP response can be enchanced by paying attention
to one of the colour dots. The visual stimuli of the study by Müller and Hübner
(2002) were the superimposition of a large letter and a small letter. The small
letter was located in a gray oval in the centre of the large letter. Both letters were
alphabet sequence randomly chosen from A to O. The flickering frequency pair
of the letters was 7Hz and 11.67Hz. The subjects were asked to attend either the
large letter or small letter and ignore the other. The task was to respond whether
H appearing in the attended–letter sequence or not. The result also suggested
that SSVEP response was more prominent with attention.

Müller et al. (1998) employed two vertical bars embedded 5 bi–colour (red and
green) LEDs as the visual stimuli, one in left and one in right of the visual field.
The flickering frequencies of the left bar and right bar were 20.8Hz and 27.8Hz
correspondingly. LED colour was red most of the time during each trial. Two of
the LEDs located in the top, middle and bottom changed to green simultaneously
at random during the trial. The task of the subjects was to respond when the top
and bottom LEDs of the attended bar changed to green. The above experiments
investigated the effect of covert attention on SSVEP. The experimental results
demonstrated that SSVEP was able to be modulated by covert attention without
shifting the gaze or head movements. These studies showed that SSVEP elicited
by the attended stimulus is stronger than the one elicited by the same stimulus
when the other field or other image was attended. Most of independent SSVEP
BCI studies were based on covert attention.

Kelly et al. (2005a, 2005b, 2005c) had three pioneer studies which applied SSVEP
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modulated by covert attention to BCI. The visual stimulation paradigm was sim-
ilar to what was described in Morgan et al. (1996). The subjects were asked to
count and report the number of the target letter encountered during a trial. In
their experiments, several stimulating frequency pairs were tested. The classifi-
cation features included the elicited SSVEP, the alpha band (8–14Hz) power and
the ratio of the alpha band powers at contralateral hemispheres. One of the stud-
ies also compared the classification accuracy by overt attention which allowed the
subjects to shift their gaze. The classification from the study employed the power
and ratio of the alpha band activities was slightly higher than 70%, the threshold
of a binary BCI. The classification accuracy by SSVEP features and combined
features of SSVEP and the alpha band power achieved 70.3% and 79.5% respec-
tively. Although the combined feature improved the classification accuracy, it
was much lower than the performance of overt attention which exceeded 90%. A
real time online BCI was implemented and tested in one of their studies which
provided auditory and visual biofeedback (Kelly et al., 2005c). 11 subjects tested
this system. The highest ITR from one of the subject was 3.27 bits/min. Six
subjects had at least one session out of 5 with classification accuracy over 75%.
Two subjects achieved the accuracies lower than 50% in all sessions. A further in-
vestigation suggested that these two subjects constantly distracted by the letters
changing from the unattended side. When they performed overt attention, the
accuracy rates exceeded 90%. The author suggested that an independent SSVEP
based BCI was achievable. However, the subjects might need more training to
learn how to control covert attention and the performance could be improved by
subject–specific parameters.

Another independent SSVEP BCI system based on covert attention was proposed
by Allison et al. (2008). Three different visual stimuli used to elicit SSVEP were
similar to the paradigms of Chen et al. (2003) and Morgan et al. (1996). Two
of them were similar to Chen et al. (2003) with two colour schemes. The visual
stimuli were superimposed images of 6 vertical and 6 horizontal bars (line–boxes).
One of the colour schemes was white or dark gray. One of the colour schemes
was red or green. The vertical bars flickered at 10Hz and the horizontal bars
flickered at 12Hz. The third visual stimuli were two black and white checker-
boards situated at left and right side of the monitor. The flickering frequencies
for the left and right checkerboards were 6Hz and 15Hz. During the experiments,
the subjects were asked to attend the vertical or horizontal bars in the bar stim-
ulation or attend one of the checkerboards in a checkerboard stimulation. The
experiment results showed that about half of the subjects were able to product
robust SSVEP to control SSVEP BCI. The colours of bars had no significant
impact on SSVEP. However, SSVEP response resulting from the checkerboards
outperformed the response of the line–boxes. The author suggested that the vi-
sual stimuli were the root cause of the different performance. The subjects might
shift their gaze in the experiment of checkerboards. Meanwhile, the author also
pointed out that the attention strategy which the subjects adapted might also
affect their performance. Therefore, providing appropriate training to learn an
attention strategy may improve the performance.
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Zhang et al. (2010a) adapted a similar visual stimuli described in Müller et al.
(2006). The visual stimuli comprised two groups of dots, one red and one blue.
Instead of moving, the red dots rotated counter–clockwise and blue rotated in
clockwise direction at the same angular speed, 1◦ per frame. The red dots and
blue dots flickered at 12Hz and 10Hz respectively. Three–day training was pro-
vided to subjects participating in the experiment. The average classification ac-
curacy was around 71% which again was slightly higher than the threshold 70%
in a binary BCI (Kübler et al., 2004). Nearly half of the subjects improved their
performance by the training. SSVEP amplitudes of these subjects were increased
significantly on the third day compared to the first day. This showed the training
could help the performance of covert attention. To avoid the interaction between
two stimuli which declined SSVEP, if the dots of different colours overlapped, the
blue colour dots were displayed. This was to avoid the interaction between two
steady–state stimulation and declined SSVEP response in the experiment.

Lesenfants et al. (2011) compared the classification of SSVEP overtly and covertly
induced by three patterns of visual stimuli, block pattern, lines pattern and
checker pattern. In block pattern overt stimulation, stimuli were two filled–
squares located in the left and right. The stimuli of line pattern or checker
pattern were employed in covert attention stimulation. The line pattern stimuli
were two images of 7 vertical and 7 horizontal bars which were superimposed
at the same location and were similar to the line–boxes stimuli in Allison et al.
(2008) study. The checker pattern was the same as the line pattern but the over-
lapped segments of the vertical and horizontal bars were removed. The stimulus
flickered at 85/8Hz or 85/6Hz with colour red or yellow on an 85Hz monitor. The
classification accuracies showed no surprises. The overt block pattern had the
best classification accuracy of 99% across all subjects. For the covert stimula-
tion, the checker pattern had better performance than the line pattern. The
average accuracy of checker pattern was over 75% for stimulating duration over
5s. The author suggested that the stimuli without overlapped segment helped
the subjects to concentrate. The results also supported that the interaction of
two stimuli might result in a weaker SSVEP response (Zhang et al., 2010a). The
components of SSVEP harmonics modulated by covert attention did not improve
the classification performance and did not show significance.

Most of independent SSVEP BCIs presented the visual stimuli on a monitor. Lim
et al. (2013) integrated two LED arrays into the eye pieces of glasses. Unlike the
usual SSVEP BCI which presented the same frequencies to both eyes simultane-
ously, the stimulating frequencies to the left and right eye were different in the
proposed SSVEP BCI. The subjects were asked to focus and concentrate their
attention on one LED array with their eyes closed. The data analysis showed
that the light through the eyelids also elicited SSVEP and resulted in an average
classification accuracy of 90% from the on–line experiment with trial duration
longer than 3s. A more recent independent SSVEP study evaluated the feasibil-
ity of SSVEP independent BCI on the healthy subjects and locked–in syndrome
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patient in both offline and online experiments (Lesenfants et al., 2014). The inde-
pendent SSVEP based BCI also used LEDs as the visual stimuli which was a 7cm
× 7cm square in the form of interlaced pattern composed of red and yellow LEDs
flickering at 14Hz and 10Hz respectively. The mean accuracies of the healthy sub-
jects were 85% and 74% in offline and online experiments. For the patients group,
only 2 out of 6 patients performed over 63%, which was the chance level in their
experiment, accuracy in the offline experiment and one of 4 patients above 70%,
which was the lowest accuracy in order to communicate in BCI of two classes, in
the online experiment. Their study also investigated SSVEP response elicited by
covert attention. It was found that the spectrum power at the stimulating fre-
quency of the target and its corresponding harmonics decreased compared to the
overt attention. The frequency components of SSVEP harmonics did not improve
the classification accuracies. The spectrum power at non–target stimulating fre-
quency was close to the one of the target stimulating frequency. The author also
suggested that the low accuracies of the patients might be due to their clinical
conditions.

In these independent SSVEP BCI studies, the subjects attended the target by
covert attention without shifting their gaze at the cost of the classification ac-
curacy. Overall speaking, the average accuracy of each study was slightly over
70%, the threshold of effective binary BCI. Lopez-Gordo et al. (2011) proposed
a method to customise subject–specific visual stimuli to enhance SNR of SSVEP
by covert attention. The method investigated SNR of SSVEP modulated by
covert attention at the different combination of spatial frequencies and temporal
frequencies. SNR was defined by the following equation:

SNR =
|Vaf − Vif |2 + |Va1 − Vi1|2

Nf +N1

(2.1)

Where Vaf and Va1 were the amplitude and phase of SSVEP at fundamental and
2nd higher harmonics frequency when attending the visual stimuli. Vif and Vi1
were the amplitude and phase of SSVEP at fundamental and 2nd higher harmonic
frequencies when ignoring the visual stimuli. Nf and N1 were the mean power of
noise at frequency span [-2 2]Hz central at fundamental and 2nd higher harmonics
frequencies but excluding these two frequencies. The analysis results showed
that the best configuration might not elicit the strongest SSVEP. This could be
explained by the numerator of SNR which was SSVEP power difference between
attended condition and ignored condition at the stimulating frequency and its 2nd

harmonic. Although the maximum response was expected at 4 cycles per degree
(cpd) of the spatial frequency, the optimal SNR was actual occurred at higher
spatial frequency. At higher spatial frequency, the power of SSVEP in ignored
condition tended to be smaller due to the smaller stimulus. The classification
features of most independent SSVEP BCI did not include the response of the
ignored one. Optimal SNR study might provide independent SSVEP BCI an
feature to classify the subjects selection. For example, the ratio of SSVEP power
at stimulating frequencies can be used as a feature for classification. When a
selection was made, one of the stimulating frequencies must be attended while
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the others are ignored. The attended frequency should have prominent SSVEP
compared to the ignored ones. The above studies demonstrated the feasibility
of independent SSVEP BCI. However, so far, these independent SSVEP BCI
studies only allowed a binary selection. The overall classification accuracy was
slightly over 70%. However, it also showed that appropriate training which might
help the subjects to learn attention strategy and improve BCI performance. The
bilateral visual stimuli might outperform the visual stimuli of two superimposed
images in the central region although it requires more evidence to rule out the
gaze shifting effect.

2.5.2 Visual stimulator

Frequency is the most important parameter to SSVEP. Frequency can determine
SSVEP response and the comfort of users. The range of frequency which can
elicit SSVEP is from 6Hz and up to 90Hz. Different frequency bands have differ-
ent characteristics, in terms of induced SSVEP response, noise, comfort/fatigue
of the users, available frequencies which can elicit SSVEP response and induce
complications.

Conventional SSVEP BCI assigned each target a different frequency (Gao et al.,
2003; Jia et al., 2011; Wong et al., 2010; Zhang et al., 2012; Shyu et al., 2010).
However, there were some limitations in frequency selection as follows: (1) Not
all frequencies can elicit prominent SSVEP response. (2) Frequencies which have
common harmonics or are multiples of each other should be avoided to prevent
any confusion. (3) Some frequencies could cause fatigue or induce complications
(e.g. seizure). (4) For stimulators presented on a monitor, the stimulating fre-
quencies are restricted by the monitor refresh rate. Only the sub–frequencies
of the refresh rate are available for accurate stimulation. These factors limit the
number of frequencies available to be selected (Hwang et al., 2013; Jia et al., 2011;
Zhang et al., 2012; Shyu et al., 2010). The limited frequency selection is a ma-
jor challenge to SSVEP based BCI design and attracts a lot of research attention.

Gao et al. (2003) and Hwang et al. (2012) used LEDs as the visual stimuli to
implement an environment controller with 48 commands and a QWERT style
keyboard with 30 inputs respectively. All LED visual stimuli flickered at distinct
frequencies in a frequency band with very narrow frequency resolution, 0.2Hz and
0.1Hz respectively. Both studies demonstrated the feasibility of BCI and deliv-
ered high ITR. Both studies employed Fourier Transforms to detect the gazed
target. In order to accurately detect SSVEP with high frequency resolution, it
requires longer time of data recording (Mukesh et al., 2006; Lee et al., 2010). Five
and ten seconds of data acquisition were required to get 0.2 and 0.1Hz resolution
without zeros padding. The time required for acquiring data for one selection of
the two studies were 3s and at least 4s with zeros–padding. ITR was limited by
the data acquisitioned time. The frequency bands of two studies were 6–16Hz
and 5–9.9Hz which are close to the spontaneous the alpha band. Such frequency
bands could make the subjects uncomfortable and fatigued. Also, some of the
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classification methods, e.g. CCA and MEC, might not be suitable to such systems
as the volume of algorithms with high computational complexity require shorter
recording time, computations is proportional to the number of targets.

There were several methods proposed to create more targets despite the limited
available frequencies. These methods encoded SSVEP in different manners, for
example, one target presented by more than one frequency, adding phase lags to
stimuli etc. Table 2.1 is a list of SSVEP encoding methods. Most of them can be
applied to both the monitor and light stimulators.

Table 2.1: List of SSVEP encoded methods. Most of these methods can be applied
to both monitor and LED.

SSVEP decoded method No. of No of Proposed By
Frequencies Stimuli

Convetional N N
Mixing phase and frequency N > N (Wong et al., 2010; Lee et al.,

2010; Jia et al., 2011)
Dual frequencies stimulation N N + CN

2 (Shyu et al., 2010; Hwang et al.,
2013)

Multiple Frequencies N ≥ N2 (Zhang et al., 2012)
Sequential Coding (MFSC)
Half filed stimulation pattern N N2 (Materka and Byczuk, 2006;

Materka and Poryzala, 2013; Yan
et al., 2009)

Presentation approximation - - (Wang et al., 2010b)

Mukesh et al. (2006) recorded SSVEP induced by two overlapping stimuli flick-
ering at two different frequencies (f and f

2
) on the centre of the monitor. SSVEP

spectrum showed prominent not only at f and f
2

but also at the combined fre-

quencies of f and f
2
. As one of the stimulating frequencies is the harmonic of the

other, it was hard to associate the response at the higher frequency to the com-
bined frequencies, the harmonics or both effects. Nonetheless, it demonstrated
the feasibility of dual frequency stimulation. Shyu et al. (2010) used two LEDs
flickering at two different frequencies (f1 and f2, f1 < f2) to present a visual
stimulus. Four different frequencies can present six (= C4

2) different targets. The
frequencies of the pair to present a target are different. Besides the peaks at stim-
ulating frequencies, the peaks can be also observed at the combined frequencies,
fhs = 2f1 − f2 and fhb = 2f2 − f1. Where fhs < f1 and fhb > f2. In some trials,
SSVEP responses at the stimulating frequencies were not prominent. SSVEP at
fhs and fhb can help to discriminate the selection.

The visual stimulus of dual frequency stimulation can be presented in half–field
stimulation pattern to encode SSVEP. Half–field stimulation is a phenomenon
that the visual stimulus at one of the visual fields fabricates predominant VEP
response in the contra–lateral visual cortex (Materka and Byczuk, 2006; Materka
and Poryzala, 2013). The visual stimuli of half–field stimulation were presented
by two stimuli located bilaterally at left and right visual fields flickering at two
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frequencies which can be the same or different. The difference of the signals at
the bilateral electrodes enhanced SSVEP signal and suppressed the noise when
two flickering frequencies were the same but with opposite phases (Materka and
Byczuk, 2006; Materka and Poryzala, 2013). Yan et al. (2009) proposed half field
stimulation pattern which could create N2 targets by N frequencies. In half–field
stimulation pattern, the subjects attended the target and remained the fixation
in the middle of two stimuli. The frequency pair of the target can be detected at
the contra lateral hemispheres (Yan et al., 2009). One downside of the half–field
stimulation pattern was that some subjects reported that it was difficult to main-
tain the fixation at the middle point between the two stimuli. As a consequence,
the performance was affected.

In the study of Shyu et al. (2010), some trials did not display strong SSVEP re-
sponse in a dual frequency stimulation experiment at the stimulating frequencies.
In Yan et al. (2009) a half–field stimulation pattern experiment, subjects reported
the difficulty to remain the fixation in the middle. In an earlier study, Cheng et al.
(2001) observed that if the subjects did not keep the fixation at the centre of the
monitor in a dual frequency stimulation, as a consequence, one frequency might
be stronger or weaker than the other. To resolve the fixation problem, the visual
stimuli were presented by two overlapped blocks of two different colours, red and
green, flickering simultaneously at two frequencies (f1 and f2, f1 < f2). The
reversal of red–black and green–black were ON and OFF for each frequency. The
colour was yellow when both stimuli were ON. This paradigm also successfully
elicited SSVEP at both stimulating frequencies and their combined frequencies.
For example, at frequencies f2−f1, 2f1−f2 and 2f2−f1. Teng et al. (2010) drove
the LED by summation of two or three sinusoidal waveforms of different frequen-
cies to test the impact of multiple stimulating frequencies on SSVEP response.
In a dual frequency stimulation, if the difference of the stimulating frequencies
is less than 4Hz, SSVEP was only observed at one of the stimulating frequency
(normally at lower of two). Only when the difference of the stimulating frequen-
cies was larger than 4Hz, SSVEP peaks at both stimulating frequencies could be
seen. For triple frequencies stimulation, even the difference between the stimu-
lating frequencies was larger than 4Hz, not all SSVEP at stimulating frequencies
could be observed (Teng et al., 2010). This was another downside of LED dual
frequency stimulation as it limited the frequency selection. This phenomenon was
also exhibited in some cases in the study of overlapped dual frequency stimuli of
Cheng et al. (2001).

Hwang et al. (2013) proposed a checkerboard dual frequency stimulation which
resolved the fixation problem. In conventional graphics reversal stimulation, the
checkerboard can be seen as two mutual groups, group 1 and group 2 which have
different colours (phases) at any given time. In conventional checkerboard re-
versal pattern stimulation, group 1 and group 2 flicker at the same frequency
(half of the stimulating frequency) so the group colour is different. In the modi-
fied checkerboard reversal method proposed by Hwang et al. (2013), the cells of
group 1 flickered at one frequency (f1) and the cells of group 2 flicker at another
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f2. Such flickering mechanism resulted in four different images during the stimu-
lation. Two of them are the conventional checkerboards. Two of them were either
all white or black. The resultant SSVEP showed prominent at frequency f1 + f2.
Four frequencies could present 10 different targets, 4 of the targets with f1 = f2. N
frequencies made total N+CN

2 targets in this dual frequency stimulation method.

The dual frequency method modulated the target by two different frequencies
simultaneous. Zhang et al. (2012) proposed the method– Multiple Frequencies
Sequential Coding (MFSC). MFSC presented the target by a few frequencies in
a serial order within a stimulation cycle. One stimulation cycle comprised of a
few coding epochs (a fixed number, M) and one resting epoch for the subject to
shift the gaze. In each coding epoch, the target was assigned a frequency. The
detection of the target is based on the sequential combination of frequency de-
tection of the coding epochs in a stimulation cycle. MFSC procedure added the
temporal information as part of the process. The number of the available targets
depends on the numbers of the coding epochs (M) within a stimulation cycle and
the number of the frequencies used (N). For example, if the numbers of the coding
epochs and selected frequencies are both 3 (M=N=3). The total available targets
were up to 27 (NM = 33). In this example, each stimulation cycle had 3 en-
coding epochs. Three different frequencies,f1, f2 and f3 were used. This scenario
made 27 different frequency combinations (targets). This method required the
synchronisation between the stimulator and the data acquisition module in order
to form the correct sequential order and operate BCI in asynchronous mode. The
synchronisation was achieved by sending an onset signal at the beginning of each
coding epoch and the resting epoch. If the users started to make selection after
the first coding epoch onset, this caused a cycle lag which was different from
conventional self paced BCI. The cycle lag might be one of the drawbacks of this
system which only decoded a selection in a cycle starting from the first coding
epoch. MFSC increased the number of available targets by increasing the number
of the coding epochs in a stimulation cycle at the expense of reducing ITR. More
coding epochs in a cycle meant more time required to detect the selection. The
classification performance of each coding epoch which was independent to each
other was also tested and confirmed in the study.

One of the applications of SSVEP based BCI is spelling. MFSC can create enough
targets for a spelling application to allow a single selection for one letter. One of
the protocols to select the letter in spelling application is a decision tree (Cecotti,
2010a). On the contrary, in a decision tree protocol, the selection of one letter
requires more than one step. In such a protocol, the letters and space, for ex-
ample, can be divided into 3 groups (hence each groups has 9 letters/selections)
at the very beginning of the selection process. After one of the groups is se-
lected, the letters in the selected group are further divided into three groups until
each group contained only one letter/selection. In the example, it required three
frequencies for letter groups and each letter required three sequential selections
(9–3–1). Such system might need two more frequencies as function keys. In the
example, a spelling system of decision tree protocol, each letter was encoded by
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three frequencies. However, more mental tasks and strategies are required than
MFSC. It also creates 27 different selections by 3 different frequencies. From
the operation point of view, without taking the cognitive and mental loads into
account, it might be more flexible and efficient than MFSC without the cycle lag.
The selection of function key such as delete only needed one selection.

(Jia et al., 2011) proposed a method to encode the visual stimuli mixed frequen-
cies with phases. The visual stimulator is a Thin Film Transistor (TFT) monitor
of 60Hz refresh rate. The stimulating frequencies were 10Hz, 12Hz and 15Hz,
which are all sub–frequencies of 60Hz. Six, five and four visual stimuli flickered
at 10, 12 and 15Hz, with different stimuli phases. Three frequencies presented
15 visual stimuli. The flickering sequence of the 15 visual stimuli is illustrated
in Figure 2.9. This method encodes SSVEP using both frequency and phase.
To understand the underlining classification of this method, three types of the
phases are defined. The first is the stimulus phase which is the phase lag of the
onset of the stimuli of the same frequency. The second is SSVEP phase which is
SSVEP latency, the time between SSVEP peak occurrence and the onset of the
stimulus. The third phase is the measured phase which is SSVEP latency to the
stimulus phase of 0◦. Figure 2.9 illustrates four stimuli flickering at 15Hz, the
stimulus phases are 0◦, −90◦, −180◦ and −270◦.

For classification, it first detected the frequency of the attended target followed by
phase detection. To detect the phase, a reference phase has to first be calculated.
Reference phase of each target is a subject–specific parameter. It is the average of
the measured phases from EEG of the preliminary experiment. FFT amplitude
was used to detect the frequency, a conventional SSVEP power spectral density
(PSD) classification. To detect the phase, FFT coefficients were projected to the
direction of the reference phase plane of the targets flickering at the detected
frequency. The largest projection is identified as the attended target. Ideally, the
measured phase of the attended target should be the same as the corresponding
stimulus phase. However, this is unlikely to be realised in practice, but, it should
be close to its corresponding stimulus phase, stimulus phase of the same flickering
frequency should divide 360◦ equally. As the measured phase varies, the reference
phases of the same stimulating frequency might not be divisible by 360◦ and would
require calibration. The calibration could be done by adding the differences
between the reference and the related stimulus phases, followed by averaging.
The average value is then added to the stimulus phases as the calibrated reference
phases. It was found that the standard deviation of the differences between the
actual reference phase and stimulus phase were 15◦, 16◦ and 16◦ for 10, 12 and
15Hz respectively. If such difference was normally distributed, for 95% confidence
level, the difference would fall within two times of the standard deviations (=30◦

and 32◦) as the phase margin. It was suggested that the stimuli of the same
frequency should not exceed 6 whose phase margin is 30◦.

The monitor screen is comprised of a matrix of pixels and is refreshed in a row
by row fashion. Therefore, a time lag exists in different vertical positions during
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Figure 2.9: Flickering sequence of 15 targets implemented by 3 different fre-
quencies and different phases. The refresh rate of the monitor is 60Hz. The phase
difference between two adjacent stimuli is 1 refresh interval which results in 60◦, 72◦ and
90◦ of the phase difference for 10, 12 and 15Hz respectively. This figure is reprinted
from (Jia et al., 2011) Copyright c© 2011 IEEE.

the refresh process. In other words, there is a phase lag between the images of
different vertical positions on the screen. Based on the phase lag caused by the
vertical positions, (Wong et al., 2010) developed a phase encoding method which
took the vertical phase lag into account. In their study, there were two different
phases, one was the phase from conventional phase tagged method, referred as
predefined phase; one was the phase caused by the vertical positions in the moni-
tor, referred as vertical phase. The stimuli positioned in the same row were given
a different predefined phase. These stimuli were duplicated to a different row.
Thereby, the stimuli of the same row had different predefined phases but the same
vertical phases. The stimuli of the column had different vertical phases but the
same predefined phases. The stimulus phase was the sum of the predefined phase
and vertical phase. In their study, six visual stimuli of 20Hz were presented in a
matrix of 2 × 3. The predefined phase was −120◦ and the vertical phase −60◦.
The resultant phases of 6 stimuli were 0◦, −120◦, −240◦, −60◦, −180◦ and −300◦

in row order.

The above method created more phase variation by including the phase difference
caused by the relative vertical positions. For the six targets, the centre of the
rows is at top and bottom quarter of the screen. Under the same condition, if
12 targets are presented in the matrix of 4 × 3. If the centre of the rows is at
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the position of 1/8,
3/8,

5/8 and 7/8 of the screen (from top), the relative vertical
phase of two adjacent rows was −30◦. The resultant phases of this condition are
0◦, −120◦, −240◦, −30◦, −150◦, −270◦, −60◦, −180◦, −300◦, −90◦, −210◦, and
−330◦. The phase margin was only ±15◦. To create more stimuli and maintain a
phase margin, it may require a high resolution screen. When all stimuli flicker at
the same frequency, the predefined phase and the vertical phase must be carefully
chosen to prevent the duplicated phase.

Lee et al. (2010) implemented a cursor system with 8 LEDs flickering at the
same frequency with distinct stimulus phases. The phase delay, referred between
two adjacent stimuli was 45◦ which made the phase margin ±22.5◦. The system
was synchronised by the onset of the stimulus with no phase lag. To detect the
attended target, the time latency from SSVEP peaks to the onset of the stimu-
lus with no phase lag was measured. A control experiment measured this time
latency for all targets in a one minute data recording set up. The latency of
the stimulus with no phase lag was referred to as tref which was used as a time
reference to detect the attended target and was subject-specific. In an online
experiment, tpeak, the latency of SSVEP peak occurrence was estimated. The
detected time delay, td was also calculated as the difference between tpeak and
tref . td was converted to detected phase. The distances between detected phase
and the expected phase delay of each target were calculated. The closest one was
the attended target. Ideally, the detected phase should be the same as the phase
delay of the detected target. However, there was always a difference between
them. The standard deviation of the difference of the detected phases and stimu-
lus phases was around ±11.69◦ across all subjects. For 95% confidence level, the
phase margin was around two times of the standard deviation, around 23◦. It
was suggested that the stimuli of the same frequency in the phase tagged system
should not exceed eight.

SSVEP phase drifts for various reasons, for example, due to the changes of the
cognitive condition, the task and the adaptation of the stimuli. As a result, the
reference phase and reference time required to be recalibrated or adjusted also
changes. Wu et al. (2011) integrated this phase calibration process into a bipha-
sic stimulus method. In the biphasic stimulus method, the stimuli were encoded
by the same stimulating frequency but distinct phases. However, each stimula-
tion cycle (1.8s) were divided into two stimulating periods (0.9s each) with two
different phases. The phase of first stimulating period (reference phase period)
was reference phase which was the same and applied to all stimuli. The phase
of the second stimulating period (phase–shift period) was different stimulus–to–
stimulus. EEG of a stimulation cycle was segmented into a reference phase epoch
and a phase–shift epoch. In their experiment, eight stimuli were created by two
stimulating frequencies. Four stimuli flickered at one of the two frequencies and
the phase lag of two neighbouring stimuli was 90◦. Fourier transform was applied
to EEG. Hotelling t–squared test was used to detect the frequency. The detected
phase was the difference between the phase extracted from EEG reference epoch
and the phase extract from EEG phase–shifted epoch and the target was iden-
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tified. It was found that there was a phase transition period, around 150ms, at
the time between two stimulating periods. The EEG of the phase transition pe-
riod was excluded from both epochs. This method required two different phases
stimulation in one cycle. Therefore, ITR might be affected due to the longer
stimulation time.

As mentioned earlier, the frequency selection of the visual stimuli based on a
monitor is restricted by the monitor refresh rate. Only the sub–frequencies of
the refresh rate can be selected. However, a frame–based approximation method
proposed by Wang et al. (2010b) resolved this limitation. A sixteen–button vir-
tual telephone keypad on a 60Hz TFT monitor was presented. The selected
frequencies of the stimuli ranged from 9 to 12.75Hz with 0.25Hz resolution. The
average accuracy rate of this system is over 95% and the average ITR rate is 75.4
bits/min. The sub–frequencies of the 60Hz monitor are 30, 20, 15, 12, 10, 8.57Hz.
From the monitor refreshing frames point of view, 10Hz stimulus completes an
ON and OFF every 6 frames. For 11Hz stimulus, it takes 5.45 frames which
are unlikely to be realised if the time durations of ON and OFF are the same.
The approximation presentation method maintained the frequency, 11 of on–off
but changed the number of frames for some ON and OFF. In other words, the
time durations of ON and OFF in the approximation presentation method in one
ON–OFF flash were not always the same. For example, the sequence of frames
of 11Hz in one second could be [3 3 3 2 3 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 2]. The
pair of two underlined numbers stands for one ON–OFF flash. The sequence of
11Hz is illustrated in Figure 2.10. The sequence contained 11 ON–OFF flashes.
The number of frame intervals was 60. This sequence kept the total frames to
60 and maintained 11 times of flashes in a second. FFT spectrum demonstrated
a clear peak at the stimulating frequency and its harmonics. SSVEP elicited by
approximation and conventional methods in terms of SSVEP amplitude, SNR
and classification accuracy was compared by Nakanishi et al. (2013). The results
demonstrated that conventional method elicits better SSVEP response than ap-
proximation method but the difference between two methods was not significant.
The approximation method can be used in SSVEP BCI systems which require a
lot of targets.

Figure 2.10: Frame sequence for 10Hz and 11Hz stimuli presented on a mon-
itor with 60Hz refresh rate (Wang et al., 2010b)
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Cecotti (2010b) investigated the feasibility of the duty cycle as a feature in SSVEP
classification when the visual stimulator is presented on a monitor. The author
defined the duty cycle as the ratio of the black screen to one stimulation cycle.
Obviously, the duty cycle was also restricted to the monitor refresh rate. For
example, for 10Hz stimulating frequency in a 60Hz refresh rate monitor, the duty
cycles can only be 50%, 33.3%, 16.7% with 3, 2 and 1 frame of black frames (3,
4 and 5 frames of graphics), respectively. It was found that different duty cycles
can induce different SSVEP distributions, mainly at the fundamental, 2nd and
3rd harmonics. The difference of the spectra could be used as a feature to classify
the attended target. In other words, the stimuli flickered at the same frequency
with different duty cycles could be discriminated. However, the discrimination
was clearer when the difference of the duty cycles was large. A large difference of
the duty cycles also limited the frequency selection as only lower frequencies are
more likely to have large differences of duty cycles.

The visual stimulators could be presented on monitors (CRT and TFT monitors)
or in the form of flickering light (LED). For light stimulation, the waveform driv-
ing the stimuli is an important factor which can affect SSVEP response. A square
wave is one of the most common waveforms to drive LED visual stimuli in SSVEP
based BCI paradigm. The shape of the waveform is an important parameter in
addition to the frequency and the duty cycle.

Wu (2009) explored the influence of a square wave duty cycles on SSVEP response
from 10% to 90% at stimulating frequency 10Hz. It was found that 40% and 50%
duty cycles were the optimal duty cycles to elicit the most prominent SSVEP.
Duty cycles 10%, 20%, 80% and 90% on the other hand elicited weaker SSVEP.
Overall speaking, duty cycles had similar impact on SSVEP at the fundamental
and 2nd harmonics. When the duty cycle was over 50%, some 2nd harmonic re-
sponses were larger than the ones of the fundamental. The duty cycle duration of
a square wave can offset its DC component (from a Fourier series point of view).
The author suggested that the DC component of square wave provided constant
luminance stimulation to the eyes and inhibited some cells of eyes to change the
polarity caused by stimuli. When the duty cycle was under 50%, DC component
was not big enough to induce strong inhibition. When the duty cycle exceeded
over 50%, DC value was big enough to lead strong inhibition. As a result, 40%
and 50% duty cycle induced prominent SSVEP response.

Optimal duty cycles can enhance SSVEP response. Lee et al. (2011) also exam-
ined the influence of duty cycles on SSVEP at the stimulating frequency 13.16Hz,
11 different duty cycles from 10.5% to 89.5%. Before examining SSVEP response,
the study conducted a survey about the visual comfort to the visual stimuli with
different duty cycles. The results of the visual comfort survey indicated that most
subjects felt the higher the duty cycles the more comfortable the visual stimuli.
Over 60% of the 30 subjects considered 89.5% duty cycle as comfortable and
delightful. Six of the 30 subjects continued the next experiment to evaluate how
the duty cycles impacted SSVEP response. SSVEPs elicited by 13.16Hz with
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11 different duty cycles from 10.5% to 89.5% were recorded and examined. The
results showed that different duty cycles caused different impact on the ampli-
tude of SSVEP at fundamental and 2nd harmonic. As the duty cycle increased,
SSVEP amplitudes at the fundamental frequency also increased. On the contrary,

those of the 2nd harmonic decreased. As a result, the ratio (Rf =
Amphar
Ampbase

) of

the amplitude of SSVEP at fundamental (Ampbase) and 2nd harmonic (Amphar)

decreased as duty cycle increased. With 89.5% duty cycle, SSVEP at 13.16Hz
was the most prominent and the one at 26.32Hz was the weakest compared to
the other duty cycle values. The authors suggested the longer stimulation pe-
riod of the high duty cycle contributed to an increased SSVEP response. The
2nd harmonic was highly related to the rise of attention. The authors suggested
that due to the discomfort of low duty cycles, the subjects might have paid more
attention as a result the 2nd harmonic was stronger than for high duty cycles.
The shorter OFF period might contribute to the comfort of the visual stimuli.
Based on the results of the visual comfort survey and SSVEP investigation ex-
periment, an SSVEP BCI system consisting of 6 LEDs driven by high duty cycles
(89.5%) was implemented. This study showed that carefully chosen duty cycles
could not only enhance SSVEP but also improve the comfort of the users to the
visual stimuli at a low–middle frequency band. The impact of duty cycles was
not consistent with the finding of another study Wu (2009) which showed similar
impact on SSVEP of the fundamental and 2nd harmonic.

The impact of the duty cycles on SSVEP responses reported in the studies of
Wu (2009) and Lee et al. (2011) did not agree with each other. Both studies
investigated only one frequency and the frequencies of the two studies were not
the same. Shyu et al. (2013) investigated the impact of the duty cycle on SSVEP
response at a wider frequency range from 21Hz to 36Hz ( in 3Hz increments) with
duty cycles from 10% to 90% (in 10% increments). The results demonstrated that
the optimal duty cycles to elicit the biggest SSVEP were subject–dependent and
frequency–dependent. The optimal duty cycles found in their experiment varied
from 20% to 80% across all subjects and all stimulating frequencies. Therefore, a
50% duty cycle of the square wave might not be the only optimal choice. Instead,
a duty cycle should be chosen according to the stimulating frequency and the
individual subject in order to boost his/her SSVEP response. The study also
demonstrated that duty cycle was time–invariant. Once an optimal duty cycle
has been chosen, it required no further calibration.

Beside the square wave, the sinusoidal, and triangle waveforms can also turn
LEDs on and off. The driving mechanisms of the three waveforms are differ-
ent. Square wave has only two states which either turns LED on or off. For
sine and triangle waves, as long as the voltage levels of the waves, which are
not a constant, exceed the LED threshold, the LED is on. Besides the driving
mechanism, from a Fourier series point of view, they also differ in the frequency
components content. Teng et al. (2011) investigated SSVEP spectra induced by
LED driven by different waveforms: sinusoidal, triangle and square waves. The
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impacts on SSVEP responses were examined by comparison of SSVEP at three
frequencies, fundamental, 2nd and 3rd harmonics. It was found that a square
wave with 50% duty cycle outperformed both the sinusoidal and triangle waves
and elicited SSVEP responses at the three frequencies in most trials, especially
at the fundamental and 3rd harmonic. Interestingly, apart from the fundamental
SSVEP, 2nd harmonic could be seen regardless of the waveform. Theoretically,
a sinusoidal wave has no harmonics. A square wave with 50% duty cycle and
a triangle waveform had only odd harmonic components. This indicated that
SSVEP harmonics might result from the fundamental frequency or the artefacts
of the stimuli. It was concluded that a square wave with 50% duty cycle was the
preferred waveform to elicit the strongest SSVEP at the fundamental frequency
while sinusoidal waveform was the preferred one to minimise the harmonics. In
the same study, it was also found that square wave of a 50% duty cycle can elicit
stronger and consistent SSVEP than 10% and 25% duty cycles. The study did
not investigate duty cycles over 50%.

2.5.3 Fatigue

The selection of the stimulating frequencies of the visual stimuli was a dilemma
between the user comfort and the response. The lower frequency band resulted
in more prominent response but caused user discomfort and fatigue. It also had
the risk to induce epileptic seizures. On the other hand, the higher frequency
band can reduce fatigue of the users but produced weaker SSVEP response (Diez
et al., 2011).

There were several SSVEP studies attempted to reduce the fatigue and increase
the comfort of the users. For example, Diez et al. (2011, 2013) proposed a BCI
using high frequencies (37, 38, 39 and 40Hz) to control a mobile object and a
robotic wheelchair. Lee et al. (2011) reported that the high duty cycle driven vi-
sual stimuli with stimulating frequency 13.16Hz improved the comfort of the user.

Chang et al. (2014) proposed an SSVEP based BCI using amplitude–modulation
technique to modulate the visual stimuli to reduce the fatigue of the users. In
their approach, the frequencies of the carrier (fc) was set above 40Hz and the
modulating frequency (fm) was within the alpha band. The actual stimulating
frequencies of the proposed system were fc ± fm Hz which were below 55Hz and
higher than 28Hz. This frequency range was higher than the critical flicker–fusion
frequency (Lee et al., 2011). The frequencies lower than the critical flicker–fusion
frequency induced the discomfort of the users. The visual stimulation of the
proposed system also elicited other harmonics which belonged to low frequency
band, such as fc−3×fm and 2×fm. These harmonics of low frequency band had
the larger amplitude of SSVEP response and contributed to improve the classifi-
cation performance. As a result, the proposed system had the advantages of high
and low frequency bands. In their on–line experiment, the subjects were given
three types of visual stimuli modulated in low frequency band, high frequency
band and amplitude–modulation. The participants evaluated three types stimuli
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in terms of eye fatigue, sense of the flickering and daily use. The results showed
that the low frequency stimuli induced more eye fatigue and sense of the flickering
than the other two types. On the other hand, the participants preferred the high
frequency or amplitude modulation stimuli for daily use than the low frequency
stimuli. The online experimental results also showed that the mean accuracies of
the amplitude modulation stimuli were higher than the other two.

2.6 Challenges of SSVEP based BCI

The design of asynchronous BCI, inter–subject variance, illiteracy and the speed
of BCI remain the challenges of BCI. This section provides an overview of these
challenges and possible solutions.

2.6.1 Asynchronous BCI

BCI can be categorised as synchronous and asynchronous BCI. The users of the
synchronous BCI follow the cue initiated by BCI and perform the tasks to gener-
ate the input of BCI in the pre–defined time window. The users can only control
synchronous BCI in the time period initiated by the system. A synchronous BCI
is also called cue–based BCI. On the contrast, the asynchronous BCI is a self
paced BCI. The control is initialised by the users intention. An asynchronous
BCI has two states, intentional control state (IC state, or active state) and no
control state (NC state, or idle state). In active state, the users perform the tasks
to control BCI. In idle state, the user has no intention to control BCI, users either
do not to perform any mental tasks or perform a mental task which would not
change the BCI output. In idle state, the asynchronous BCIis more natural but
the synchronous BCIis easier to be implemented. Asynchronous BCI detects the
brain activities of the two states (i.e. active and idle) all the time. To discriminate
these two states and reduce the false positive rate during idle state is one of the
main challenges in asynchronous BCI design. To differentiate between active and
idle state, normally a rejection classifier or a reliability function with a threshold
is employed (Lotte et al., 2008). The performance of such classifier or function

is assessed by the specificity and sensitivity, where specificity =
TN

FP + TN
and

sensitivity =
TP

TP + FN
(Xia et al., 2013). TP, FP, TN and FN stand for True

Positive, False Positive, True Negative and False Negative respectively. Several
asynchronous SSVEP based BCIs adapted such principle.

Wang et al. (2010a) proposed a rejection classifier for SSVEP based BCI. The
features of the classifier were obtained by CCA and maximum contrast combi-
nation (MCC). The rejection classifier included the first two largest correlation
coefficients between EEG signals and the reference signals of the stimulating fre-
quencies. The third element was SNR by MCC. According to their study, the
active state had, in general, high correlation coefficients and SNR while the same
features of the idle state were lower. The main cause of the misclassification was
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due to some stimulating frequencies overlapping with the alpha band. Therefore,
an the alpha band detection mechanism was implemented. If the detection of
SSVEP overlapped with the alpha band, its 2nd harmonic was used to ensure
whether it was SSVEP response in active state or spontaneous alpha wave of the
idle state. The classification accuracy of idle state with the alpha band detection
exceeded 90%.

(Xia et al., 2013) developed a reliability function with a threshold for a SSVEP
based BCI. SSVEP based BCI had four possible selections. The feature vector
comprised of the canonical correlation coefficients of four targets. The ratio of the
second largest coefficient to the largest coefficient in the feature vector was used
to compare the threshold and discriminate between the active and idle states.
The threshold was subject–specific and was calculated from a synchronous ex-
periment and applied to the asynchronous operation mode to detect the active
and idle states. In the active state, SSVEP was prominent. The correlation co-
efficient to the target frequency (the largest one) was significantly larger than
the other non–target frequencies (second largest one). Therefore, this ratio was
smaller than the threshold in the active state. On the other hand, none of the
coefficients in the feature vector was significantly large in the idle state. There-
fore this ratio was larger or equal to the threshold. The results showed that the
average true positive rate was above 75% and the false positive rates were 2.37%
and 12.05% for IC and NC states respectively.

Currently, most BCIs are synchronous which is not natural in real world applica-
tions (Leeb et al., 2007). Some BCI applications operated in asynchronous mode
have been developed. Leeb et al. (2007) used motor imagery BCI to control a
wheelchair in a virtual environment. This application used a threshold to detect
the active and idle states. The result demonstrated that the subject can control
the wheelchair accurately in a virtual environment. Another similar application
from Velasco-Álvarez and Ron-Angevin (2009) also demonstrated that subjects
were able to control the wheelchair in a virtual reality environment after a few
training sessions.

Diez et al. (2011) used high frequency SSVEP based BCI to move a ball on a
screen to a target position. The proposed method detected SSVEP response by
analysing the normalised power at the stimulating frequencies. The power of a
2s window was calculated 4 times per second. If the maximum power within a
time period (time threshold) was the same as the stimulating frequency, the ball
was moved in the selected direction. To reduce the false positive rate caused by
Midas Touch Effect (Diez et al., 2011), the time threshold was increased. The
classification accuracy varied from 65% to 100%.

2.6.2 User acceptance and inter–subject variance

The system reliability and its ease–of–use affect the user acceptance of BCI (Luo
and Sullivan, 2010). Subject–specific setup was able improve the reliability and
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performance of the system (Scherer et al., 2009; Cecotti, 2010a). Due to the
inter–subject variance, a calibration phase was normally required to determine
some subject–specific parameters(Cecotti, 2010a). In SSVEP based BCI, for ex-
ample, the calibration phase is used to calibrate the amplitude–frequency in a
frequency–tagged system and the reference phase in a phase–tagged system for
different subjects system (Chang et al., 2012).

The use of gel based electrodes and the number of the electrodes employed are
the main issues for the ease of use of the system. Currently, there are dry elec-
trodes available as an alternative of the traditional gel based ones. How to reduce
the number of the electrodes employed without compromising the performance
remains a challenge in BCI studies (Arvaneh et al., 2011).

Several SSVEP BCI studies attempted to reduce the time for the calibration
phase. For example, Volosyak et al. (2010) proposed a multi–target amplitude–
frequency method which significantly reduced the required time compared to one
target in a time method. In the multi–target method, four different frequencies
were stimulated at the same time. For each subjects, the top 5 frequencies which
elicited the strongest SSVEP were found by both the single target and multi–
target calibration methods. For 4 of the 5 subjects, at least 3 of the 5 frequencies
for each subject were the same. The multi–target method only required 25% of
the time required in the single target method. Chang et al. (2012) proposed a
calibration–free SSVEP based BCI by using a stepping delay flickering sequence
to drive the visual stimuli. The detection rate of the system from 8 subjects var-
ied between 91% and 100%. Cecotti (2010a) proposed a calibration–less SSVEP
based speller which used subject–independent parameters. The classification ac-
curacies of 8 subjects ranged between 84% and 97%.

Multiple–electrodes could improve BCI performance and inter–subject variance
(Luo and Sullivan, 2010; Friman et al., 2007). Several classification methods
for SSVEP detection based on multiple electrodes had been proposed and out-
performed the conventional power spectral density based analysis (PSDA) using
bipolar electrodes (Friman et al., 2007; Lin et al., 2006). Although multiple elec-
trodes improved BCI performance and reliability, more electrodes increased the
set up and preparation time, computational cost and were more likely to induce
user discomfort (Luo and Sullivan, 2010; Tam et al., 2011).

Reducing the number of the electrodes in the system could bring the following
benefits, (Arvaneh et al., 2011; Tam et al., 2011; Lan et al., 2007),

1. A smaller electrode number could reduce the time of preparation and dis-
comfort and improve the usability and comfort of BCI.

2. A smaller electrode number could reduce computation load, the cost of the
hardware and make the system more affordable.

3. Reducing the number of the electrodes could remove the redundant/irrelevant
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electrodes. As a result, it helps to prevent overfitting of the classifier and
provide stable features.

Fewer electrode selection procedures had been developed. For example, in the
study of Lin et al. (2006), the electrodes were selected by CCA correlation co-
efficients. In their electrode selection process, one electrode combined with its 5
nearest electrodes to form an electrode set with 6 electrodes. EEG of this elec-
trode set was used to compute CCA correlation coefficient which was assigned
to that electrode. CCA correlation coefficients of one electrode to all stimulating
frequencies were averaged. The selection was based the averaged coefficients. 8
electrodes with highest coefficients were chosen as the recording electrodes. In
another SSVEP BCI study (Bin et al., 2009b), also based on CCA, the electrodes
were selected according to the coefficients of CCA spatial filter. The coefficients
of CCA spatial filter indicated the contribution of the electrodes to canonical
variant. 9 electrodes with the largest absolute values of the coefficients were se-
lected.

Wang et al. (2004) proposed a lead–selection method which selected an optimal
pair of bipolar electrodes, one as the signal electrode and one as the reference for
SSVEP paradigm BCI. The lead–selection method used independent component
analysis (ICA) to separate electrode signal into SSVEP signal and noise. The
signal and noise correlations between different electrodes were computed. The
optimal electrodes were selected according to the ratio of the signal and noise
correlation of different electrodes. The classification accuracy of the selected op-
timal electrodes reached almost 100% with a time window of 4s. The results
showed that the ITRs of 16 subjects ranged from 57 to 29 bits/min (mean ITR=
42 bits/min). Luo and Sullivan (2010) proposed a 4–class SSVEP BCI which
used one single dry electrode. The mean classification rate was over 70% but the
detection rates also showed great inter–subject variance from 100% to lower than
20%. Chang et al. (2012) also employed one one electrode in a 6–class SSVEP
based BCI. The classification accuracies between the subjects were consistently
high (over 90%). These studies showed that high classification rates could be
achieved with fewer electrodes.

As the process to determine the best electrode is time consuming, is there uni-
versal set of the electrodes which could be applied to all the subjects existed?
Schröder et al. (2005) argued that a universal optimal electrode subset might not
work for all the subjects due to, (1) inter–subject head shape difference. The
signal recorded from the electrode positions might be different, (2) the strategies
of the mental task between the subjects might be different and (3) the brain ar-
eas which reflect the significance of the mental task between the subjects might
be different. EEG differed from session to session and depended on the subjects
physiological condition at the time, such as tiredness, attention and the strategies
employed for each mental tasks (Tam et al., 2011).
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2.6.3 Illiteracy

BCI illiteracy is one of the challenges facing BCI research. BCI illiteracy is a
phenomenon when BCI cannot detect the users brain activities needed as input.
BCI illiteracy varies across different BCI paradigms. Blankertz et al. (2010b)
estimated about 15% to 30% of BCI users cannot control motor imagery based
BCI effectively. Another estimated illiteracy across different BCI paradigms was
between 10% and 25% (Allison et al., 2010a). BCI illiteracy is less noticeable
in BCI paradigms based on event related potentials. None of the estimations of
BCI illiteracy is negligible. The reason behind BCI illiteracy is unknown. But it
is believed that training and feedback could reduce it.

Few BCI studies, as described later, attempted to answer the following questions:

1. How many people can actually use BCI effectively?

2. What factors can affect BCI performance?

3. How BCI illiteracy can be detected/predicted?

4. How can BCI illiteracy be overcome?

Guger and Edlinger (2007); Guger et al. (2009, 2011) conducted three studies
on a large number of subjects (>50) to investigate how effectively people oper-
ate BCI in three different paradigms including motor imagery, P300 and SSVEP.
Bremen BCI research group also had two field studies (Allison et al., 2010a;
Volosyak et al., 2011) for SSVEP based BCI. The studies investigated how many
un–screened subjects could actually use BCI as a communication channel and
what factors such as age, gender, experience and sleep etc., might affect BCI per-
formance. In the studies (Guger and Edlinger, 2007; Guger et al., 2009, 2011),
99, 100 and 53 subjects participated in the experiments of BCIs based on motor
imagery, P300 and SSVEP respectively. These studies provided a brief training
session to the subjects and the subject–specific classifiers were obtained from the
training sessions. The results showed that most of the subjects were able to con-
trol BCI in three studies. But BCI performance in terms of the classification
accuracies varied in different paradigms. In motor imagery BCI, only 6.2% of the
subjects achieved over 90% accuracies and around 51.3% of the subjects achieve
the classification accuracy over 70%. In P300 BCI, 67% of the subjects were able
to spell the word LUCAS correctly (100%). Only less than 2% of subjects were
unable to spell a single letter. 86.7% of the subjects could control SSVEP based
BCI with over 90% accuracy after the training session. About 2% had accuracy
lower than 70%. In Bremen two field studies (Allison et al., 2010a; Volosyak
et al., 2011), 106 and 86 visitors to the expositions at Hannover were recruited.
In the study where the subjects performed a spelling task, the range of the mean
accuracies among different text spellings was between 66 to 100%. The overall
mean accuracy was over 95%. In the study where the subjects performed the
navigation of the maze task, two frequency bands, medium and high, were eval-
uated. In medium frequency band, only two subjects were unable to complete
the task and were regarded as BCI–illiterates. Thirty subjects were unable to
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complete the task using the high frequency band. For those who succeeded to
navigate the maze, the mean accuracies were 92% and 89% for the medium and
high frequency bands respectively.

Most of the subjects in the above studies had no prior experience in BCI. The
subjects of motor imagery BCI study from Guger and Edlinger (2007) and Allison
et al. (2010a); Volosyak et al. (2011) studies were the visitors to the exhibitions.
Most of BCI nave people were able to operate BCI. The performance of SSVEP
and P300 BCI was better than the motor imagery BCI in these studies. However,
it might not be able to conclude that SSVEP and P300 BCI had less illiteracy
than motor imagery BCI, because these experiments had different setup, signal
processing methods, etc. However, Breman SSVEP BCI studies also showed less
BCI illiteracy in SSVEP paradigm. Their result of the maze navigation study
suggested that the high frequency band had more BCI illiterates than the medium
frequency band.

These studies also used questionnaire to explore the relation between BCI perfor-
mance and inter–subject factors, such as age, gender, education level, handedness,
hours of sleep in the previous night, experience of BCI and computer game, con-
sumption of alcohol, caffeine and cigarette etc. In general, the impacts of these
factors on BCI performance were not statistically significant.

In the spelling study of the Bremen group (Allison et al., 2010a), it was found that
the text requiring the least number of cursor movements resulted in the highest
ITR. Thereby, the author suggested the design of BCI should minimise mental
loading. The mental tasks of the motor imagery BCI was more demanding than
SSVEP and P300. This might explain why more subjects can control SSVEP
better than motor imagery based BCI for all the subjects who were nave to BCI.
However, the length of the spelt text did not show significant impact on BCI
performance. The authors pointed out that the subjects did not like the long
text and the extent of the application complexity could affect BCI performance.
Simple tasks, in general, were performed more accurately than complicated tasks
(Kübler et al., 2013).

BCI control is a new skill (Wolpaw et al., 2002). BCI is a close loop system with
two controllers, the user and the BCI itself (Pfurtscheller and Scherer, 2010).
However, the users are often not given proper training and feedback to learn
this skill. As the impact of training was seen in a SSVEP BCI study (Guger
et al., 2011) when a brief short training session improved the overall performance
significantly. The impact of feedback, on one hand, might help the subjects to
concentrate but on the other hand, it might distract the subjects on perform-
ing the task itself. The performance of motor imagery BCI was similar with
or without the feedback. Pfurtscheller and Neuper (2001) reported that BCI
performance does not significantly improve by increasing the feedback sessions
when the accuracy exceeded over 80%. They termed this as man–machine learn-
ing dilemma (MMLD). In a BCI system, the BCI user and the system itself are
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highly interdependent and have to adapt to each other. The adaptation starts
from training the BCI. In the training phase, no feedback is provided to BCI user.
When the feedback session begins, each feedback session is an adaptation from
the user to BCI. However, feedback may introduce noise and unfavourably affect
BCI performance. A study on the impact of the biased feedback on BCI perfor-
mance suggested that the design of BCI feedback should take the users present
BCI skill into consideration (Barbero and Grosse-Wentrup, 2010). In the study,
it is found that an incorrect feedback has negative impact on BCI performance
for those who are able to operate BCI efficiently. However, introducing incorrect
classification results to feedback when the subject did not make any error (but
only perceives that the interface is performing incorrectly) might improve BCI
performance for those whose performance was around chance level. The feedback
and motivation are important in BCI performance. The author hypothesised
that presenting inaccurate classification results through the feedback to motivate
subjects may improve BCI performance.

Vidaurre and Blankertz (2010) proposed an approach of machine learning co–
adaptive calibration between the classifier and the users. In the study, the users
were divided into three groups according to their BCI performance. In the first
group, a classifier was obtained in the calibration phase without feedback. The
users of this group performed well in the feedback session. In the second group,
the user–specific classifier was obtained but the users of this group did not perform
well in the feedback phase. The third group was the users whose classifiers were
not obtained. The proposed approach aimed to improve the performance of the
users in the second and third groups. There were three steps of co–adaptation,

1. Phase I: In this phase, BCI used a subject–independent classifier which
allowed fast adaptation to users. The subject–independent classifier was
also adapted.

2. Phase II: The data of Phase I was used to select subject–dependent param-
eters, such as the frequency band and electrodes of the spatial filter. The
electrodes were re–selected in the trials of this phase and the classifier was
re–trained.

3. Phase III: The data of Phase II was used to calculate the spatial filter and
the subject–dependent parameters were optimised in phase II. An unsuper-
vised classifier was re–trained in this phase.

The accuracy of the users of group two and three improved from 50% to over 70%
through this proposed adaptation process.

Allison et al. (2010b) suggested that a hybrid BCI could be a cure to BCI illit-
eracy. In their study, the subjects were asked to perform three types of tasks,
motor imagery task only, attending visual stimuli only, and performing both mo-
tor imagery and attending visual stimuli simultaneously in a hybrid BCI of motor
imagery and SSVEP paradigm. The results showed when the subjects performed
only one of the two tasks, 5 of 14 subjects of each task attained the accuracy
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below 70%. However, all subjects attained over 70% accuracy when performing
both tasks at the same time in the hybrid BCI paradigm. A similar result was
achieved with a hybrid BCI developed to control a wheelchair (Li et al., 2013).
In a task evaluation session, BCI determined the best subject–dependent mental
strategy. For each subject, the best mental strategy could be motor imagery,
SSVEP or both. The experimental results showed that subjects could control
the wheelchair by one of the paradigms even if they were illiterate with another
paradigm. However, the best performance results came from the combination of
both strategies. These studies suggested that hybrid BCI offered the users more
modalities to operate the system and in turn more information was provided to
the BCI (Li et al., 2013). Moreover, improved signal processing algorithms to
analyse the data and extract salient features could also improve BCI illiteracy
(Brunner et al., 2010).

Blankertz et al. (2010a) suggested that the resting alpha rhythm can be used as
a performance predictor of motor imagery BCI. It was found that the strength
of the SMR idle rhythm was highly correlated to the performance of the motor
imagery BCI. This predictor comprised of two minutes of EEG recording from
subjects C3 and C4 while the subjects are relaxed with their eyes opened. The
predictor could be used as a screening criteria before the experiment. Ahn et al.
(2013) and (Blankertz et al., 2010a) found that a BCI–illiterate group, exhibited
weaker alpha rhythm in comparison to a BCI–literate group, and a strong theta
rhythm with eyes opened at resting. Theta band was negatively correlated to
BCI performance. They also found that gamma rhythm in the prefrontal area
was highly related to BCI performance. The baseline resting rhythm and early
self–regulated slow cortical potential could be used as BCI performance predictors
for SSVEP and SCP BCI respectively (Fernandez-Vargas et al., 2013; Neumann
and Birbaumer, 2003).

2.6.4 Speed

BCI performance can be assessed by three aspects, classification output, appli-
cation output and influence on its users (Vaughan et al., 2003; Thompson et al.,
2013). BCI classification output is a performance measurement of its algorithm
to convert the brain signal into one of the possible classes. The bit rate and accu-
racy are most common indicators in this aspect (Vaughan et al., 2003; Thompson
et al., 2013; Kronegg et al., 2005). BCI application output is the performance
measurement of a valid user communication bandwidth. The impact of BCI on
its user is to determine how BCI makes a difference to its users, for example, the
quality of their life (Vaughan et al., 2003; Thompson et al., 2013). To compare
the performance across different BCI paradigms, the classification accuracy, bit
rate per trial and ITR are normally used as a starting point. ITR is a joint result
of accuracy and bit rate. Bit rate (bits/trial) (Wolpaw et al., 1998; Kronegg et al.,
2005)can be calculated by the following equation (2.2),

B(bits/trial) = log2N + P × log2 P + (1− P )× log2

1− P
N − 1

(2.2)
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In equation (2.2), N is the number of BCI classes, P is the classification accuracy.
ITR (bits/min) can be obtained as in (Yuan et al., 2013) by equation (2.3).

ITR(bits/min) = B × 60

T
(2.3)

Where T is time interval (in second) required to generate a classification output.

From above two equations (2.2) and (2.3), it is clear that the parameters N, P
and T all affect bit rate and ITR. These three parameters are correlated and have
different impact on each other. McFarland et al. (2003) studied the correlation
between the bit rate and the number of targets. The bits/trial increased as the
number of the targets increased and reached to its highest at 4. The bit rate
equation (2.2) suggested that increasing the number of targets will increase the
bit rate. However, McFarland et al. (2003) pointed out that this is not neces-
sarily the case if the user had poor performance with fewer number of targets.
The same study also suggested that classification accuracy could be improved by
increasing the trial interval at a possible cost of decreasing the overall ITR. The
study also showed that ITR was highest when the trial interval was 3(McFarland
et al., 2003).

Although the above equations (2.2) and (2.3) provide an objective view of BCI
information output to assess the performance across different BCIs, it has its lim-
itations. Some assumptions are made for the bit rate equation. First of all, it is
assumed that BCI is a memory–less and stable system which can only recognise
N classes. It is also assumed that the probability of each class being chosen is

the same and is equal to 1
N

. The classification accuracy (=P) and error (= (1−P )
(N−1))

of all classes is also the same (Wolpaw et al., 1998; Kronegg et al., 2005; Yuan
et al., 2013). Nevertheless, none of these assumptions are strictly always true.
For example, the equation of calculating bit rate might not be applied to an
asynchronous BCI which has no–control (NC) state. NC class is not one of the
N classes but it is more likely to be selected than any of the N classes of IC state
(intentional control state). Similarly, BCI may have different classes in different
conditions which would make equation (2.2) not suitable to use. For example,
in a menu selection BCI, the number of classes is different at different stages of
the process. Furthermore, in a P300 spelling application, the next letter selected
sometimes is highly dependent on the letters that were previously selected. Using
the equation without making all these aforementioned assumptions might lead to
unexpected results (Kronegg et al., 2005; Yuan et al., 2013; Thompson et al.,
2013).

The bit rate is an important performance measure for BCI systems. However, for
some applications such as a spelling application, bit rate might not provide an
objective view of the BCI performance. For example, in a spelling application, if
an erroneous selection is made, it will take at least two extra selections to correct
the erroneous one; one to delete the error and one to select the correct letter.
For an application like spelling, error corrections are not the information which
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the users want to deliver. Furdea et al. (2009) defined the written symbol rate
(WSR) which takes error corrections into account. Analogous to bit rate, symbol
rate (SR) and WSR are defined by equations (2.4) and (2.5)

SR =
B

log2N
(2.4)

Where B, N are the same as equation (2.2). WSR is defined by

WSR =


2SR− 1

T
if SR > 0.5

0 if SR ≤ 0.5
(2.5)

where T is the interval between two trials. WSR excluded the error selection. In
a spelling application, the error correction could be done by deleting the wrongly
selected letter. When SR ≤ 0.5 this means that the users are making more errors
than correct selections. SWR is assigned to zero in such case. Townsend et al.
(2010) defined the practical bit rate by taking the error correction into account.
If the error rate is perr, perr= 1-p (accuracy), (M) selections have to be made to
deliver information of Ntotal letters. M could be obtained by equation (2.6)

M = Ntotal

∞∑
i=0

(2perr)
i =

Ntotal

1− 2× perr
,when perr < 0.5 (2.6)

The practical bit rate could be obtained from the expected total selections re-

quired. From equation (2.6),
1

1− 2× perr
selections are required to make one

correct selection. Therefore, in a system of N selections, the practical bits per

selection can be experessed as
log2N

1

1− 2× perr

=log2N × (1− 2× perr).

The practical bit rate (PBR) is obtained by equation (2.7)

PBR =

{
(1− 2× perr)× log2N if perr < 0.5

0 if perr ≥ 0.5
(2.7)

perr is replaced by 1-p. Equation (2.7) is re-written as equation (2.8)

PBR =

{
(2× p− 1)× log2N if p > 0.5

0 if p ≤ 0.5
(2.8)

Figure 2.11 plots the theoretical bit rate and practical bit rate vs. accuracy. The
theoretical bit rate (TBR) represents the maximum bit rate the system could
deliver. The practical bit rate (PBR), on the other hand, illustrates the realistic
rates which could be expected. The difference between the TBR and PBR is due
to error correction (perr). When perr is close to zero, PBR is almost equal to
TBR. PBR is zero when p ≤ 0.5.
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Figure 2.11: The comparison of the theoretical and practical bit rate. This
plot was based on a BCI with 36 selections, for example a 6× 6 P300 speller.

Yuan et al. (2013) supplied a list of guidelines to correctly use these equations
to produce an objective measurement of ITR. These guidelines unambiguously
defined N, P and T to ensure the ITR provided a true and fair view of BCI perfor-
mance. For an N class system, N should be based on the total possible selections,
instead of the selections at different stages of the process. For the classification
accuracy, there should be enough test trials and no error correction mechanism
when estimating ITR. A class should be randomly selected with the same prob-
ability as other classes. In a synchronous BCI, the time duration between two
selections could affect ITR. Therefore, it should be explicitly mentioned if this
time duration between two selections was included as part of the time interval
when estimating ITR. Finally, ITR should be based on all participants data, not
the screened subset of subjects with better performance.

Yuan et al. (2013) also discussed the impact of the number of the classes, the
classification accuracy and time interval on ITR. The error of ITR (4ITR) can
be estimated by the following two equations (2.9) and (2.10) as defined in (Yuan
et al., 2013),

4ITR =
60

T
× log2

P × (N − 1)

1− P
×4P (2.9)
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And

4ITR =
−60

T 2
×B ×4T (2.10)

From equations (2.9) and (2.10) , the parameters T,P and N all affect ITR, es-
pecially T.

Without considering the trial interval, the accuracy is often used to measure the
performance of BCI classification algorithm. It is very natural and straightfor-
ward to compare accuracy with the chance level in the first instance. For example,
in a four–class BCI, the result is compared with the chance level 25% (1/4). An
effective BCI should have its accuracy higher than chance level. For example,
70% for a two–class BCI paradigm whose theoretical chance level is 50% (Alli-
son et al., 2010b). Müller-Putz et al. (2008) examined the relationship between
the classification accuracy (or chance level) and the number of trials per class
and argued that without considering the number of trials, the explanation of the
data might be incorrect. It was found that the chance level is affected by the
number of trials representing per each class. The larger the number of trials, the
closer the chance level is to its theoretical value. For example, a two–class BCI
paradigm has a theoretical chance level of 50%, i.e. when the number of trials is
close to infinity, however, with 20 trials/class, at a confidence level = 99% , the
chance level should be 75% and for a four–class BCI with 100 trials/class, at a
confidence level = 99%, the chance level is 35% (Combrisson and Jerbi, 2015).
Simply comparing the classification accuracy to the theoretical chance level with-
out considering the number of trials will mislead the interpretation of the results
(Müller-Putz et al., 2008).

BCI translates the classification result based on a particular feature vector into
a command to the intended application. The extracted features should be mod-
ified and optimised according to different conditions to optimise the output and
increase the valid bandwidth (Vaughan et al., 2003; Thompson et al., 2013). For
example, a built–in word prediction function in a spelling system could increase
the valid communication bandwidth. The output of the word is dependent on
already selected letters. A simplified error recovering procedure can also improve
the efficiency of BCI operation (Yuan et al., 2013). At a BCI application level,
the efficiency and utility metrics are used to assess BCI performance. This level
is correlated to the computer human interface (HCI).

Bit rate and ITR might not be the only performance indicators (Vaughan et al.,
2003; Yuan et al., 2013). However, they are currently the most important and
fundamental ones. The enhancement and improvement of a BCI system before
and after classification might be considered wasted effort in without a high ITR
module.
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2.7 Summary

In this chapter, we have presented different BCI paradigms and their advantages
and disadvantage. We also focus on SSVEP based BCI and discuss its limitations
and challenges. Several studies have proposed different techniques to overcome
the limitations and the challenges. These studies have established solid funda-
mentals and enhanced the feasibility of a SSVEP BCI system.
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Methodology

One of the primary goals of this study is to evaluate the feasibility of a distance
adaptable SSVEP based BCI. There are two main experiments in this study. The
first experiment, termed as Investigation Experiment, is an initial experiment to
explore the impact of the viewing distance on SSVEP response on a limited num-
ber of subjects. The second experiment, termed as Feasibility Experiment, is to
evaluate the feasibility of a four–class SSVEP based BCI setup. Both experiments
are approved by the departmental Ethics Committee.

3.1 Experimental setup

In the Investigation and the Feasibility Experiment, four viewing distances, 60cm,
150cm, 250cm and 350cm, are tested. Four frequencies, 12Hz, 13Hz, 14Hz and
15Hz are chosen as the stimulating frequencies.

3.1.1 Subjects

Subjects were recruited according to the following inclusion/exclusion criteria:
age over 18 years old, normal or corrected-to-normal vision, no history of epilep-
tic seizure (in particular, photosensitive epilepsy), no history of any neurological
diseases, injuries or trauma, no allergy to conductive gel and English speaking to
understand the instruction.

Two subjects (one male and one female, ages 33 and 45) participated in the first
experiment, the Investigation Experiment, to examine the impact of the viewing
distance on SSVEP. One subject is näive to BCI and one subject has SSVEP
based BCI experience. Consent forms and the experiment information pack are
provided to the subjects before the experiment. The experiment procedure is
explained briefly. Each subject is seated on a comfortable chair in a dim room.
Subjects are instructed to avoid blinking and movement during the experiment,
especially during the attending phase. The subjects of the Investigation Ex-
periment are invited to participate the Feasibility Experiment. An additional
8 subjects are recruited for the Feasibility Experiment. A total of 10 subjects
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(8 males, 2 females, ages between 21 and 45) participated in the Feasibility Ex-
periment. The procedure and protocol of the Investigation and the Feasibility
Experiments are the same.

3.1.2 Data acquisition

Surface EEG is recorded using a 128 channels EEG cap(Montage No. 15, EASY-
CAP) based on 10–20 international system. SSVEP can be recorded most signif-
icantly at the electrodes over the visual cortex (Bin et al., 2009b; Zhang et al.,
2011; Lin et al., 2006; Müller-Putz et al., 2005). 11 electrodes over visual cortex
are selected as signal electrodes. Cz is chosen as the ground and Fz as the refer-
ence electrode. Figure 3.1a shows the electrode montage and channel selection.
The subject wears an EEG cap. EEG abrasive skin prepping gel (Nuprep Gel)
and EEG conductive gel (Electro–Gel) are applied to the electrode sites to elimi-
nate the dead skin and reduce the impedance between scalp and electrodes. The
impedance is kept under 5kΩ throughout the entire experiment. EEG acquisition
hardware and software are SynAmps2 (amplifier) and NeuroScan 4.5 (recording
software), both from Compumedics Neuroscan. EEG sampling frequency is 2k
Hz. Figure 3.1b shows EEG cap with electrode cables connected in the experi-
ment.

(a) (b)

Figure 3.1: Electrode selection of EEG acquisition. (a) 11 electrodes (in the
black dotted circle) over the visual cortex are selected as EEG recording electrodes.
Cz (in the yellow circle) and Fz (in the purple circle) are selected as the ground
electrode and the reference electrode respectively. The electrode positions are from
http://www.easycap.de. (b) A subject wearing an EEG cap with electrode cables con-
nected in the experiment.
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3.1.3 Experiment protocol

The experiment records surface EEG while the subjects are attending the flick-
ering LED. in each experiment, there are 4 blocks, one block for each viewing
distance, at most. Each block consists of 4 runs, one run for each class. Each
run has twenty trials. Each trial contains two phases, one resting phase and one
attending phase. To prevent visual adaptation and habituation, the duration of
the resting phase lasts for 5s or 6s at random. The stimulation duration of one
attending phase lasts for 5s. The timing scheme of the experiment is shown in
Figure 3.2 which is applied to both Investigation and Feasibility Experiment. In
the Investigation Experiment, the visual stimulator flickering at one of the stim-
ulating frequencies is presented to the subject at same viewing distance. In the
Feasibility Experiment, four LEDs flickering at four different stimulating frequen-
cies are presented to the subject. In the resting phase, the visual stimulator is
off. During the attending phase, the LED(s) is/are flickering at the designated
frequency. The stimulation duration of each experiment is around 60 minutes.
The electrode impedance is checked between two runs. There is a 1–2 minutes
break between two runs.

In both experiments, the viewing distances presented to the subjects are in the
same fixed order, 60cm-150cm-250cm and 350cm. The attending targets were
presented and attended in random order in the Investigation Experiment and in
the Feasibility Experiment respectively.

Figure 3.2: Timing of the Investigation Experiment. Each experiment has four
sessions at most. Each session contains 4 runs. Each run has 20 trials. Each trial
includes one resting phase lasting for 5s or 6s randomly and one attending phase lasting
for 5s.

In the Investigation Experiment, only one LED flickering at one frequency is
presented to the subjects in uncompensated or compensated condition. In un-
compensated condition, the intensities of LEDs are the same regardless of the
viewing distances. Whereas, in compensated condition, the intensities of LED
are increased as the viewing distances increase (compared to the intensities at
the viewing distance at 60cm). The intensities of LEDs at the same viewing dis-
tance are the same.
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In the Feasibility Experiment, four LEDs flickering at different frequencies simul-
taneously are presented to the subjects. Figure 3.3 shows one of the subjects in the
Feasibility Experiment facing 4 LEDs stimuli at the viewing distance 60cm. The
intensities at different viewing distances are different. Refer to section 3.3.2 on
page 78 for how the intensity of the LED at different viewing distance is adjusted.

Figure 3.3: One of the subjects in the Feasibility Experiment facing 4 LEDs
stimuli at the viewing distance 60cm. This figure is for illustration purposes only
as the room during the experiment is dim.

3.2 Data pre–processing

The recorded EEG data is filtered by a zero shift FIR band pass 1–50Hz filter
provided by NeuroScan. EEG was segmented into epochs from 1s before stimulus
onset to 5s after stimulus onset. Epoch segmentation was performed by EEGLAB
toolbox (Delorme and Makeig, 2004).

3.3 Visual stimuli design and stimulation pa-

rameters

In this section, the visual stimulators and the parameters selection used in both
experiments are described. This section begins with the selection of the parame-
ters used in the experiments followed by the design of the visual stimulator and
the circuit used to drive LED.
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3.3.1 Visual stimulus (stimuli)

SSVEP is sensitive to the properties of the visual stimuli, such as flickering fre-
quency, colour, size, duty cycle and intensity of the light (Morgan et al., 1996;
Srinivasan et al., 2006). SSVEP′s response is also highly correlated to the level
of attention (Morgan et al., 1996; Toffanin et al., 2009). Currently, there is no
general agreement on the best configuration of visual stimuli as SSVEP is a con-
founded response of these parameters which can affect each other. For example,
colour of visual stimuli could affect the frequency selection. When using 11Hz of
stimulating frequency, red colour of visual stimuli can elicit the strongest SSVEP.
At 13Hz of stimulating frequency, blue light can elicit the strongest SSVEP (Zhu
et al., 2010a). Duszyk et al. (2014) investigated the effect of visual stimuli colours
on SSVEP response. In their experiments, 5 colours, blue, green, white, yellow
and red, were tested with different frequencies. Overall speaking, blue colour
elicited the weakest SSVEP response regardless of the frequencies used in the ex-
periment. The differences of SSVEP responses elicited by the other four colours
were not significant. The mean strength of SSVEP elicited by different colours
were in order of white > yellow > red> green. However, the order of SSVEP re-
sponse elicited by different colours is also dependent on the stimulating frequency.
In 14Hz, the order was white > yellow > red > green. In 25Hz, the order was
yellow > white > red > green. Gollee et al. (2010) used red light in their SSVEP
study to control a functional electrical stimulation system.

SSVEP response is also dependent on the stimulating frequency (Morgan et al.,
1996; Herrmann, 2001). The frequency-SSVEP amplitude was normally used to
choose the stimulating frequency. However, there was no general rule or guideline
to choose the frequencies in terms of frequency band and the frequency resolu-
tion. It was highly dependent on the purposes of studies. For example, Gao
et al. (2003) and Hwang et al. (2012) implemented environment controller and
keyboard by LED visual stimuli. In their studies, they chose low frequency bands
with 0.02Hz and 0.01Hz of resolution. In Friman et al. (2007) study, they chose
5, 7, 9, 11, 13, and 15Hz to drive LED visual stimuli which belong to low and
medium frequency bands. Bin et al. (2009b) also used the frequencies in low and
medium bands, 6.7, 7.5, 8.6, 10, 12 and 15Hz. Volosyak et al. (2011) and Gollee
et al. (2010) used medium frequency band (13, 14, 15 and 16 Hz) in their studies.
High frequency band (34, 36, 38, 40 Hz) was also used, for example, by Volosyak
et al. (2011). Tsoneva et al. (2015) used high frequency band (40 to 60 Hz) in
their SSVEP study.

LED is easy to be integrated into most of the environments and its portability fits
the aim of the study. In a survey study of visual stimulation methods in SSVEP
BCI (Zhu et al., 2010a), it was reported that 24 out of 58 reviewed studies used
LED as the visual stimulator. Among those 24 studies using LED, red, white
and green colours of LED were used in 8, 4 and 3 studies respectively. 9 out of
24 did not specify the colour. Most of studies used red LED used medium band
frequencies (12 to 30 Hz). The classification methods of this study were CCA,
MEC and MCC. The frequencies of the studies using these methods were in the
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range of 5 to 40Hz. The majority was in the medium band (Bin et al., 2009b;
Friman et al., 2007; Gollee et al., 2010; Volosyak et al., 2011). This study chose
red LEDs driven by the stimulating frequencies 12, 13, 14 and 15Hz in medium
frequency band as the visual stimuli. Changing viewing distance between the
visual stimuli and the users could change the perception of the intensity, size of
the visual stimuli and the extent of the attention of users.

In the Investigation Experiment, two types of LEDs with different intensities are
used as the visual stimuli, OSRAM TM, part no: LR G6SP–CADB–1–1, 7100mcd
for higher intensity, and part no: LS E63B–BBCB–1–1, 2525mcd for lower in-
tensity. Both LEDs are red colour and surface mount devices. In the Feasibility
Experiment, 4 red colour LEDs of the same type, OSRAM TM, part no: LR
CP7P–JSJU–1, are used as the visual stimuli. Each LED is mounted on a small
plate. The size of the plate is (L × W: 19.9mm × 19.9mm) for both LR G6SP–
CADB–1–1 and LS E63B–BBCB–1–1. The size of the plates is (L × W × H :
20mm × 20mm × 3.85mm) for LR CP7P–JSJU–1.

The plate makes LED easier to be handled during the experiment. LR CP7P–
JSJU–1 mounted on a plate is shown in Figure 3.4a. In the Investigation Ex-
periment, one LED plate is attached to the centre of a 60cm (Length)×40cm
(Width) board. In the Feasibility Experiment, 4 LED plates are attached to the
same board in a rectangular layout symmetric around the centre of the panel.
The distance between the centres of two adjacent LED plates is 25cm as seen in
Figure 3.4b. Their main characteristics, such as emission angle and spectrum /
dominant wavelength are listed in Table 3.1. In the Investigation Experiment,
LR G6SP–CADB–1–1 and LS E63–BBCB–1–1 are used to investigate the impact
of the viewing distances on SSVEP response. LR CP7–JSJ–1 is used to evaluate
the feasibility of proposed SSVEP based BCI.

Table 3.1: Characteristics of LEDs used in this study.

Dominant Viewing
LED Wavelength (nm) Angle (◦) Colour Class Experiment

Exempt group
LS E63B-BBCB-1-1 633 30 Red (IEC 62471:2008) Investigation

Class 1M
LR G6SP-CADB-1-1 625 120 Red (IEC 60825-1) Investigation

Exempt group
LR CP7P-JSJU-1 623 80 Red (IEC 62471:2008) Feasibility

LED data sheets and characteristics charts (Tables A-1, A-2,and A-3. Figures A-
1, A-2 and A-3) can be seen in Appendix A.

Shyu et al. (2013) demonstrated that the optimal duty cycle was subject and
frequency dependent. The aim of this study is not to find the optimal duty cycle
for an individual subject and frequency. In this study, LED is driven by a square
wave with a 50% duty cycle which has been widely used in other SSVEP studies
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(a) LED plate.

(b) LED panel with four LEDs.

Figure 3.4: Visual stimulus (stimuli) used in the experiments. (a) shows one
LED stimulus used in the experiment. This image is obtained from RS Components,
website: http://uk.rs-online.com. (b) shows the board with 4 LED stimuli.

(Müller et al., 1998; Wu, 2009; Teng et al., 2011).

According to manufacture (OSRAM) data sheets of LEDs, LEDs LS E63B–
BBCB–1–1(Version 1.0, 2013)and LR CP7P–JSJU1 (Version 1.2, 2013) fall into
the class of Exempt group in Standard IEC 62471:2008. LR G6SP–CADB–11
(Version 2007) falls into CLASS 1M LED PRODUCT according to IEC 60825-1.
Safety characterisation of the LEDs was further verified using setup shown in
Appendix A, Figure A-4. Power meter (Thorlabs, model no. PM160T ) used
in setup was to measure the output power of LEDs to ensure that it meets the
requirements of Standard EN ISO 15004-2:2007. The power of brightest LED
(LR CP7P-JSJU-1 with highest intensity) used in the experiment was tested at
60cm (shortest distance). The result can be found in Appendix A, Figure A-5.
The power is under the limitation of Group 1, 5.4.1.3 (limitation is 200 µW) and
5.4.1.6.

3.3.2 LED driver circuit design

The square wave driving LED is generated by a microcontroller (MicrochipTM,
PIC c©18F46K20) based circuit. The circuit diagrams are in Figure 3.5 and the
actual circuit used in the experiment is depicted in Figure 3.6.

For illustration purposes, only the important modules are shown in Figure 3.5.
Each module in Figure 3.6 is matched to a corresponding module in Figure 3.5a.
The core of this circuit is the microcontroller which is programmed to perform
three main tasks:

1. Control the stimulation timings of the different phases in the experiments.

2. Generate 4 square waves with the frequencies 12, 13, 14 and 15Hz respec-
tively. The duty cycles of 4 square waves are 50%.
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3. Send synchronous (event) trigger signal to data acquisition module.

(a)

(b)

(c)

Figure 3.5: LED driving circuits used in the experiment. (a)The circuit used
in the Feasibility Experiment. (b) and (c) only showed the visual stimulator module
which is different from (a). The rest of the modules are the same as in (a), (b) and (c).
(b) and (c) are used in the Investigation Experiment.

The circuit can be divided into several modules based on their functions:

1. Programming upload module: the microcontroller is programmed through
PICKitTM3 (MICROCHIPTM, see Figure 3.6). The program is edited, com-
piled in C and converted to machine code using MPLAB (MICROCHIPTM).

2. Control module: each run of the experiment starts by push the button
switch in this module. Three LEDs in this module are used as the counters.
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They flicker before the start and after the completion of one run of the
experiment. During the resting phase of each trial in the run, LEDs display
the timing progress of the resting phase for every second from 0 to 5 or 6s.

Figure 3.6: The circuit used in the experiments. The red box on the top of the
circuit is PICKitTM3. The cable on the right of the circuit is connected to the amplifier
SynAmps2 to send the synchronous signal to NeuroScan.

3. Synchronisation module: the circuit sends an 8-pin synchronisation signal
to the data acquisition module through a D-25 connector (parallel port). As
there are only two events in the experiment, therefore, only three pins which
can make up to 7 different events (and one value as the hold-on value) of the
microcontroller are used. The other 5 pins out of the 8 are connected to the
ground. The circuit sends two synchronisation signals to data acquisition
module, the visual stimuli onset (96, the onset of the attending phase) and
the visual stimuli offset (64, the onset of the resting phase).

4. Visual stimulator module: the circuit generates 4 square waves of 4 different
frequencies with 50% duty cycle to drive the LEDs. The frequencies and
duty cycle of the square waves are easily modified when needed by editing
the program. The number of the square waves can be increased by employ-
ing more pin outputs, for example, pin 23 to pin 26. The intensities of the
LEDs are controlled by the serial potentiometers or resistors (R12, R13, R14

, R15, RL, RG) and the voltage supply Vs illustrated in Figure 3.5. The
square waves are used to drive the LED directly or as the switch to turn
the transistor on–off.
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The circuit was connected to a DC power supply (Digimess Instruments Ltd,
model no. HY3003-2, Line regulation: CV≤ 0.01%+2mv, CC≤ 0.2%+2mA,
Load regulation: CV≤ 0.01%+3mV (I≤ 3A) CC≤ 0.2%+3mA (I≤ 3A), Ripple
and noise: CV≤ 0.5mVr.m.s (I≤ 3A) CC≤ 3mAr.m.s (I≤ 3A)). In the experi-
ment, the square waves driven LEDs were monitored, visualised and assessed by a
digital oscilloscope (Tektronix digital oscilloscope TDS 2014). No difference was
detected. Figure 3.7a depicted the screen shots of 4 square waves from Tektronix
digital oscilloscope. Four waveforms, from the top to the bottom with colours
orange, cyan, violet and light green, stand for the square waves of frequency 12,
13, 14 and 15Hz respectively.
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Figure 3.7: Screen shots of 4 stimulating frequencies from Tektronix digital
oscilloscope TDS 2014. (a) The waveforms presented by the colours of orange, cyan,
violet and light green, from top to bottom, are the square waves with frequencies 12,
13, 14 and 15Hz respectively. (b) The sampling data of the screen shots are analysed
and re-plotted by Matlab.

The precision and the stability of the square waves are evaluated in terms of their
frequencies and duty cycle by analysing the numerical data of the screen shots of
Tektronix digital oscilloscope. The waveforms are re–plotted using Matlab using
the numerical data of the corresponding screen shots as shown in Figure 3.7b.
For explanation purposes, it starts from time 0. The sampling rate of the scope
is 5,000Hz. Each square wave contains 2,500 data points, i.e. 0.5 s (500ms).
The frequency and duty cycle of each square wave are computed based on two
successive ON–OFF (or OFF–ON) intervals. The duty cycle is the ratio between
the duration of ON and the duration of ON–OFF (or OFF–ON). The computation
result is shown in Table 3.2. The frequency output and duty cycle of each square
wave are relatively stable. The circuit design and programming which generate
the optimised square waves to drive LEDs are not the primary goals of this study.
Overall speaking, the frequency output of each square wave fluctuates within the
range of ±0.3Hz around the designed frequency. The output frequency is within
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the range of the designated frequency ± 0.25%. The duty cycle fluctuates ±0.3%
around 50%. More analysed results can be found from Figure B-1 and Table C-1
in Appendix B and Appendix C.

Table 3.2: Frequencies and duty cycles of Figure 3.7a. The results of the fre-
quencies and duty cycle are based on the sampling data of Figure 3.7a and analysed
by Matlab. f and D stand for frequency and duty cycle, respectively.

12Hz 13Hz 14Hz 15Hz

f (Hz) D (%) f (Hz) D (%) f (Hz) D (%) f (Hz) D (%)
12.02 50.00 13.02 50.00 14.01 50.14 14.97 50.00
12.02 50.00 12.99 49.87 14.01 50.14 14.97 50.00
12.02 50.00 12.99 49.87 13.97 50.00 14.97 50.00
12.02 50.00 12.99 49.87 14.01 49.86 14.97 50.00
12.02 50.00 12.99 49.87 14.01 49.86 15.02 50.15
12.02 50.00 13.02 50.00 13.97 50.00 15.02 50.15
12.02 50.00 12.99 50.13 14.01 50.14 14.97 50.00
12.02 50.00 12.99 50.13 14.01 50.14 14.97 50.00
11.99 50.12 12.99 50.13 13.97 50.00 14.97 50.00
11.99 50.12 12.99 50.13 14.01 49.86 14.97 50.00

- - 13.02 50.00 14.01 49.86 14.97 50.00
- - - - 14.01 49.86 14.97 50.00
- - - - - - 15.02 50.15

Mean 12.01 50.02 13.00 50.00 14.00 49.99 14.98 50.03
SD(%) 0.08% 0.10% 0.12% 0.23% 0.13% 0.25% 0.13% 0.13%

The voltages of four LEDs in the Feasibility Experiment can be seen in Figure 3.8.
The voltage in Figure 3.8 is measured between the anode of LED and the ground
when (a) LED is off, (b) the transient period between off and on, (c) LED is on,
(d) the transient period between on and off.

The circuit (as shown in Figure 3.5 ) used in both experiments is the same. The
only difference is how the LED is driven. Nonetheless, the intensities of LEDs are
altered by changing the serial resistor. The values of R and the corresponding
currents and luminance of LEDs at different setup in the experiment are listed
in Tables 3.3 and 3.4. The potentiometers (variable resistors) are measured by
a multimeter (EUROSONIC ES–214MT). The current is measured in mA us-
ing a digital multimeter(MASTECH, MAS830LC). The luminance of LEDs with
different serial resistors is measured by a calibrated light meter (ISO-TECH, ILM-
01). Table 3.3 lists the values of LED current and the corresponding luminance
measured at the distance 60cm for LEDs, LS E63B–BBCB–1–1 and LR G6SP-
CADB-1-1 used in the Investigation Experiment. Table 3.4 lists the values of
LED current and the corresponding luminance measured at the distance 60cm
for LED, LR CP7P–JSJU–1 used in the Feasibility Experiment.

The hypothesis of this study is that the viewing distance will reduce the per-
ception of the intensity. As a result, the stimulation by the light is reduced and
in turn affects SSVEP response. The focus of this study is to investigate how
the viewing distance of a flickering light stimulus changes SSVEP. However, this
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(a) (b)

(c) (d)

Figure 3.8: The voltages between LED anodes and the ground. (a) LED is off,
(b) the transient period between off and on, (c) LED is on, (d) the transient period
between on and off.

study is not aimed at finding out the optimal intensity corresponding to a view-
ing distance for each subject. The optimisation of the intensity is important for
the user acceptance and comfort but the customising process is time consuming.
Therefore, in the experiment, the reduction of LED intensity is done by increas-
ing the value of the resistors, decreasing the voltage and/or changing LED. To
increase intensity, it can be done by reducing the value of the resistors. To ensure
the safety of the subject’s vision, the brightness of the LEDs used in the experi-
ments does not exceed the brightness of the normal light used in the laboratory
which is verified by the light meter measurement. The experiment is performed
in a dim room. Furthermore, the subjects are advised to stop at any time when
they do not feel comfortable.

Before conducting the Feasibility Experiment, an initial resistor/intensity selec-
tion experiment is performed to determine the resistor values to be used in the
Feasibility Experiment. To the author′s best knowledge, there are no guidelines
or rules which describe the relationship between the intensity of the stimulus and
the associated SSVEP response. In the Investigation Experiment, it is assumed
that the impact of the viewing distance can be compensated by increasing the
stimulus intensity. However, it is difficult to know if the compensation is appro-
priate, i.e. not over or under compensation.
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Table 3.3: Value of the resistor used in the circuit and the corresponding
current and luminance of LED, LS E63B–BBCB–1–1 and LR G6SP–CADB–
1–1, used in the Investigation Experiment. Units of current and luminance are
in mA and lux. The luminance was measured at the viewing distance 60cm.

LED and circuit Resistor (Ω) 150 120 68 50 33 6.7

LS E63B–BBCB–1–1 Current – 1.5 – – – –
Circuit in Figure 3.5b Luminace – 0.46 – – – –

LR G6SP–CADB–1–1 Current 1.1 1.3 5.6 9.1 11.2 16.6
Circuit in Figure 3.5c Luminace 0.34 0.30 0.48 0.69 0.87 2.63

Table 3.4: Value of the resistor used in the circuit and the corresponding
current and luminance of LED, LR CP7P–JSJU–1, used in the Feasibility
Experiment. Units of current and luminance are in mA and lux. The luminance was
measured at the viewing distance 60cm.

LED and circuit Resistor (Ω) 450 300 100 75 30 15 10 5

LR CP7P–JSJU–1 Current 2.8 3.7 10.5 13.4 27.5 42.0 49.7 61.0
Circuit in Figure 3.5a Luminace 0.32 0.64 1.85 2.70 5.90 9.65 12.04 21.39

In the initial resistor/intensity selection experiment, the voltage supply and LED
are fixed. Changing the value of the resistor is the only way which can change the
LED intensity. The purpose of the resistor/intensity selection experiment is to
determine the maximum resistor values corresponding to each viewing distance
which can elicit a SSVEP response resulting in a 95% classification accuracy. The
intensity of the stimulus is not the only factor which can affect SSVEP. Hence,
the resistor/intensity selection experiment aims to find an optimal resistor value
based on the classification accuracy. In theory, the optimal resistor’s value results
in 100% classification accuracy. However, this is not always the case. Therefore,
we define an optimal resistor′s value as the value which results in at least 95%
classification accuracy. The classification rate is computed using CCA with 2s of
EEG time window length after the stimulus onset, the number of SSVEP har-
monics is 1 and the recorded EEG is down–sampling to 100Hz. All the recorded
EEG data of 11 electrodes are used in the analysis.

In resistor/intensity selection experiment, only one visual stimulus (LED part no
LR CP7P–JSJU–1) is used. For each viewing distance, one resistor is selected as
the starting point. The experiment protocol and setup are similar to that of the
Investigation Experiment. The rest of the experiment is described as follows, the
flowchart of the procedure can be found in Figure 3.9:

1. one run of 20 trials stimulation is performed by the use of the selected
resistor.

2. compute the classification accuracy of 20 trials.
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3. if the accuracy is higher than or equal to 95%, the LED is considered too
bright and so the resistor’s value is increased to reduce the LED brightness.
Repeat steps 1 and 2. Otherwise, go to step 4.

4. if the classification rate of the last run is over 95%, it is assumed that the
resistor′s value of the last run is the optimal value which results in at least
95% accuracy. The resistor of the last run is chosen as the optimal resistor
for the particular viewing distance. Otherwise, it is assumed that a brighter
LED will lead to higher classification accuracy. Therefore, the resistor value
is reduced and repeats the procedure from step 1.

Figure 3.9: An optimal resistor/intensity selection procedure for one viewing
distance. This procedure aims to find the optimal value of the resistor which can
result in 95% classification accuracy.

In resistor/intensity selection procedure shown in Figure 3.9, the change of resis-
tor values depended on the resultant /associated classification accuracy and the
viewing distances. If the classification accuracy was low (≤ 70%), a multiple steps
of change in the resistor value are examined. The step of change is dependent on
the viewing distance. At longer distances, the resultant classification accuracy is
more sensitive to resistor value change and hence one step of change was smaller.
One step of change is 50 Ω for 60cm and 150cm, and 5 Ω for 250cm and 350cm.

It might be argued that there exists a resistor value between the resistor values
of the last two runs which can also result in classification accuracy over 95%.
The selected resistor value is not optimal. The resistor/intensity selection ex-
periment is an exhausting, frustrating and time consuming process. Only one
subject attends this initial selection experiment. On the completion of the initial
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experiment, four resistor values are chosen for four viewing distances. Another
resistor set of four resistors of smaller values is estimated according to the resistor
set found in the initial experiment. As it is also assumed, the estimated resistor
set can make LEDs brighter and thereby elicit stronger SSVEP. This is a precau-
tion and consideration by taking the inter–subject variance into account. For the
subjects participating in the Feasibility Experiment, the estimated resistor set is
the starting point to adjust the brightness of the LEDs.

It is worth noting that the LED is a directional light source and hence its light
intensity varies by the viewing angle. As a result, in the Feasibility Experiment
the intensity of the LED varies at different viewing angles which require to be
taken into consideration for different viewing distances.

Figures A-1, A-2 and A-3 are the radiation characteristics of the LEDs used in
the experiments. These figures which can be found in Appendix A illustrate the
relationship between the viewing angles and luminous intensity. The luminous
intensity I is a function of the viewing angle (2ϕ) of LED, I = f(ϕ). The
luminous intensity decreases as the viewing angle increases. According to the
definition of the viewing angle by the manufacture OSRAMTM, viewing angle of
the LED is equal to 2 ×ϕ. The viewing angles (2 ϕ) listed in the data sheets
(see Tables A-1, A-2, and A-3 in Appendix A) are 2 times of the angle (ϕ) where
the luminous intensity is equal to 50% of its maximum luminous intensity. The
angles subtended between the subjects and a LED of the viewing distances of
60cm, 150cm, 250cm and 350cm are 11.8◦, 4.8◦, 2.9◦ and 2.0◦ respectively and
within ϕ in the Feasibility Experiment.

3.4 Data Analysis

This section covers the scope and techniques of the data analysis in this study.
These techniques include FFT, ITC and Stimulus Locked Inter–trace Correlation
(SLIC) to visualise SSVEP response, CCA, MEC and MCC to classify EEG
data, and Receiver Operating Characteristic (ROC) to assess the performance of
classification. The parameters of data analysis, electrode analysis and threshold
analysis are also explained in this section.

3.4.1 Analysis of Investigation Experiment

In the Investigation Experiment, the analysis is focused on how the viewing dis-
tance affects SSVEP response. The properties of SSVEP elicited at different
viewing distances are inspected. These properties include SSVEP power, the
phase and time locking to the stimulus. The corresponding classification accura-
cies of EEG data are also explored. The analysed results in both uncompensated
and compensated condition are compared. Fast Fourier transform (FFT) is used
to calculate SSVEP power. Inter–trial coherence (ITC) and Stimulus–Locked
Inter–trial Correlation (SLIC) analysis are used to examine SSVEP phase– and
time–locking to the stimulus properties.
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3.4.2 Analysis of Feasibility Experiment

The feasibility of a distance adaptable SSVEP based BCI is assessed based on
the classification performance at different viewing distances. Its usability and ro-
bustness are further examined by different parameters, such as the EEG recording
time after the stimulus onset, the number of SSVEP harmonics and the number
of the electrodes used for the classification. This section explains the definition
of the terms and the data analysis in the Feasibility Experiment.

3.4.2.1 Experiment condition

The experiment condition is defined by the target stimulus to which the subjects
attend and the viewing distance at which the target is placed. There are 16
different experiment conditions (4 (targets) × 4 (viewing distances)) for each
subject in the Feasibility Experiment.

3.4.2.2 EEG analysis parameters

The EEG data of each subject at 16 experiment conditions is analysed (classified)
using different parameters. These parameters are as follows:

1. EEG time window length (TWL): EEG is epoched 1s before and 5s after
the stimulus onset. EEG time window length (TWL) is EEG data window
length from the stimulus onset. For the classification, EEG TWL could be
up to 5s in this study. For EEG classification in the Feasibility Experiment,
EEG TWLs considered are 1.00s, 1.25s, 1.50s, 1.75s, 2.00s, 3.00s, 4.00s and
5.00s.

2. Number of SSVEP harmonics: The number of SSVEP harmonics used in
the data analysis varies from 1 to 3. In this study, H1 stands for when only
the fundamental frequency of SSVEP is employed for data analysis. H2 and
H3 stand for when the 2nd harmonics and 3rd harmonics of SSVEP were
added to evaluate the impact of the number of SSVEP harmonics.

3. EEG sampling frequency: EEG is recorded at 2k Hz sampling frequency in
the experiment. To reduce the computation time, it is down–sampling to
100Hz.

3.4.2.3 Classification methods

Three classification methods are employed and compared in this study. The three
methods are canonical correlation analysis (CCA), minimum energy combination
(MEC) and maximum contrast combination (MCC). The output of each classifi-
cation method for one trial is the feature vector of 4 elements corresponding to
4 classes (stimulating frequencies). The features are the correlation coefficients,
SSVEP power and SNR for CCA, MEC and MCC respectively. The stimulating
frequency corresponds to the maximum value of the feature vector is regarded as
the attended target. All three methods are based on multiple electrodes and are
described in detail in section 3.4.5.
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3.4.2.4 Number of electrodes (Ny)

This study also inspects the impact of the number of electrodes on the classifi-
cation performance. 11 electrodes are selected for the EEG acquisition. All elec-
trode subsets from the 11 electrodes are investigated. The number of electrodes
(Ny) in one electrode subset varies from 1 to 11. The corresponding electrode sub-
set to the number of electrodes Ny is given by C11

Ny
, 1 ≤ Ny ≤ 11. The total elec-

trode subsets are equal to
∑11

Ny=1C
11
Ny

= C11
1 +C11

2 +C11
3 + · · ·+C11

10 +C11
11 = 2047

i.e., for each subject in each experiment condition, 2,047 electrode combination
(subsets) are examined and the corresponding classification is estimated. Elec-
trode subsets, total classifications and feature outputs corresponding to the elec-
trode number are listed in Table 3.5. The classifications and feature outputs are
based on 20 epochs for one experiment condition.

Table 3.5: The electrode number and the corresponding number of the elec-
trode set, classification results and feature outputs.

Electrode No 1 2 3 4 5 6 7 8 9 10 11 Total

Electrode Sets 11 55 165 330 462 462 330 165 55 11 1 2047
Classifications 220 1100 3300 6600 9240 9240 6600 3300 1100 220 20 40940

Features Outputs 220 1100 3300 6600 9240 9240 6600 3300 1100 220 20 40940

The data analysis focuses on the classification accuracy. The recorded EEG
in different experiment conditions is classified using the different EEG analysis
parameters, classification methods and the number of the electrodes. The classi-
fication accuracies are compared.

The results are further analysed by other techniques, such as confusion matrix,
ROC to obtain more information about BCI performance. The confusion matrix
reveals the recall rate and precision rate. The receiver operating curves provide a
different angle on the classification result. When measuring BCI performance, the
true positive rate (accuracy) is not the only metric. Confusion matrix and ROC
can visualise BCI performance in both true and false positive rates. Furthermore,
the analysed results are used to rank the electrodes to select the optimal electrode
subsets and the minimal number of the electrodes required without compromising
the classification accuracies. Framework of the data analysis in the Feasibility
Experiment is shown in Figure 3.10.

3.4.3 SSVEP analysis using FFT

SSVEP is a frequency dependent signal. FFT is one of the most common used
techniques to extract SSVEP features in the frequency domain, mainly the power
in the stimulating frequency and its harmonics. FFT is used to compute the
signal–to–noise ratio (SNR). SNR is an important factor for SSVEP in the clas-
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Figure 3.10: Framework of the data analysis in the Feasibility Experiment.

sification. SNR at frequency f is defined by equation (3.1) (Wang et al., 2006),

SNRf =
2×N × x(f)∑N

n=1[x(f − n× fres) + x(f + n× fres)]
(3.1)

x(f) is FFT power at frequency f. fres in equation (3.1) is the frequency resolution.
N is the number of neighbouring frequencies. N is set to 8. SNR analysis is to
inspect how the EEG recording time and the viewing distance affect the elicitation
of SSVEP. Additionally, the z score of SSVEP is also used to examine SSVEP
response. z score is calculated by equation (3.2),

z =
x− µ
σ

(3.2)

For each subject for every experiment condition, FFT power before the visual
stimulus onset are computed using equation (3.2)where µ is the maximum power
among these epochs (20 epochs for most subjects), σ is the standard deviation of
the power of these epochs. A z score of 2 is regarded as significant at 95% level.
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3.4.4 SSVEP time– and phase–locking properties

SSVEP is phase- and time-locked to the visual stimulus onset (Lee et al., 2010;
Luo and Sullivan, 2010; Zhu et al., 2010b). SLIC and ITC will both be used to
inspect the impact of the viewing change on these properties.

3.4.4.1 Inter–trial coherence (ITC)

ITC is a time–frequency domain analysis developed by Delorme and Makeig
(2004). It is defined by equation (3.3)

ITC(f, t) =
1

n

k∑
n=1

Fk(f, t)

|Fk(f, t)|
(3.3)

Where Fk(f, t) is the spectral estimation of kth trial at frequency f and time t.
ITC measures the extent of the synchronisation between EEG and the event. In
SSVEP, the event refers to the visual stimulus onset. ITC varies from 0 to 1. A
high value of ITC indicates high synchronisation between the recorded EEG data
and the event (Delorme and Makeig, 2004).

3.4.4.2 Stimulus locked inte–trace correlation (SLIC)

SLIC is a classification method based on EEG signal in time domain and is
proposed by Luo and Sullivan (2010). The process of SLIC is as follows SLIC
segments EEG data into traces which starts from the stimulus onset and ends
with the stimulus offset according to the flickering sequence of the stimulating

frequency. The time interval of each trace is equal to
1

f
, where f is one of the

stimulating frequencies. Figure 3.11 illustrates one EEG segment. The first row
of Figure 3.11 shows EEG raw data of subject 9 when attending to a 13Hz target
at a viewing distance of 60cm. SLIC segments EEG data into the traces between
two successive stimulus onsets by LED flickering sequences. The white–black bars
at the top of the plots at the second to the fifth row are LED flickering sequences
of 12, 13, 14 and 15Hz respectively. The white bar stands LED on and black bar
stands LED off. The time span of each trace is between two successive stimulus
onsets. Therefore, EEG data were segmented into 12, 13, 14 and 15 traces in one
second for 12, 13, 14 and 15Hz respectively as shown in Figure 3.11. The two
successive vertical red dash lines is one trace. In this example, the data points of

each trace are equal to bfs
f
c. bfs

f
c denoting the largest integer which is smaller

or equal to
fs
f

, fs is the EEG sampling rate.
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Figure 3.11: EEG data segmenting of SLIC inter–traces. EEG raw data of
subject 9 is shown in the plot of the first row. The white and black bars shown at the
top of the plots from second to fifth plot are LED flickering sequences of 12, 13, 14
and 15Hz respectively. White is on and black is off. The red dash vertical lines are the
stimulus onsets of four LEDs. Each trace contains EEG data in two successive stimulus
onsets. As a result, 12, 13, 14 and 15 traces are extracted for 12, 13, 14 and 15Hz. The
data points of the traces of the same stimulating frequency are the same but different
from the traces of other frequencies.

Figure 3.12 shows SLIC inter–traces and pair correlations distribution of Fig-
ure 3.11. The thin blue curves in the first row of Figure 3.12 are the traces from
EEG data segmentation. For illustration purpose, only part of the traces shown.
The red thick curves are the mean of the blue traces of each corresponding stim-
ulating frequency. The mean curve of the attended frequency is sinusoidal like
while the ones of the unattended frequencies are flat. This indicated SSVEP
response is time locked to the attended–stimulus onset. The second row of Fig-
ure 3.12 is the inter–trace correlation distribution. The histogram of the attended
frequency has a clear left skew. The histograms of the unattended frequencies
are similar to normal distributions with mean value close to 0. Luo and Sullivan
(2010) used the medium value of the correlations as the classification feature.
The medium value is not affected by the outliers.
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Figure 3.12: Curves of mean SLIC inter–traces and pair correlation results
of Figure 3.11. The top row of Figure 3.12 shows the mean curves of the inter–trace
of different frequencies. y axis is the voltage of unit (V) and x axis is the data point.
The EEG sampling rate of this plot is 2k Hz. The second row is the histogram of
correlations. Each histogram has 20 bins as shown on x axis. y axis is the number of
each bin.

3.4.5 Classification

In this session, three SSVEP recognition methods based on multiple electrodes are
discussed, including CCA, MEC and MCC. One of the disadvantages of surface
EEG is that the brain signals are weak. Multiple recording electrodes technique
could improve the signal recognition (McFarland et al., 1997; Garcia-Molina and
Zhu, 2011). Spatial filter technique was normally employed to enhance the signal
and suppress the noise in BCI. Spatial filter gives a weight to each electrode
according to its importance. The spatial filter results in a new signal which is the
linear combination of the multiple electrodes. The new resultant signal (S) can
be presented by the original multiple electrode (Ny electrodes) signals (X) and
the spatial filter by equation (3.4),

S = Xw (3.4)

Where X is a matrix with dimension Nt×Ny and Nt is EEG data points in time
and Ny is the number of electrodes. The dimension of the vector w is Ny × 1.
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Common average reference (CAR), small Laplacian and large Laplacian are three
common spatial filters which had been used in BCI (McFarland et al., 1997). In
CAR, the resultant EEG signal of ith electrode is obtained by subtracting the
mean of all recording electrodes from EEG signal of ith electrode. EEG signal of
the ith electrode was denoted by ei. X of equaltion (3.4) is [e1, e2, · · · , eN ]. The
element wn,i in CAR spatial filter matrix is

wn,i =

{
− 1

N
when n 6= i,

1− 1
N

when n = i.
(3.5)

In Laplacian, one centre electrode (i) and its 4 surrounding electrodes (ei1, ei2, ei3, ei4),
nearest neighbouring electrodes for small Laplacian and next nearest-neighbouring
for large Laplacian are applied to the spatial filter. The mean of 4 surround-
ing electrodes is subtracted from the centre electrode. X of equation (3.4) is
[ei, ei1, ei2, ei3, ei4]. The element wn,i in Laplacian spatial filter matrix is

wn,i =

{
−1

4
when n 6= i,

1 when n = i.
(3.6)

In equation (3.6), the distances between the central electrode and each surround-
ing neighbouring electrodes are the same. The following three SSVEP detection
methods also construct a spatial filter based on different principles and extract
the features from the constructed signal (Bin et al., 2009b; Friman et al., 2007;
Garcia-Molina and Zhu, 2011).

3.4.5.1 Canonical Correlation Analysis (CCA)

Canonical correlation analysis (CCA) is a statistical multi–variant technique
which is used to investigate the correlation of two sets of variables. If there are
two sets of variable X and Y , CCA finds two vectors wT

x = [wx1, wx2, . . . , wxNy]
and wT

y = [wy1, wy2, . . . , wyNh] which transfer X and Y into two canonical vari-
ables U(= wT

x ·X) and U(= wT
y ·Y ) such that the correlation coefficient ρ between

U and V is maximised. p and q are the number of the variables in variable sets X
and Y . CCA can compute more than one pair canonical variables up to min(p, q)
pairs. The correlation between each pair is maximised. The canonical variables
of different pairs are uncorrelated. The correlation coefficient ρ of the first pair
canonical variable is the largest and the most important.

ρ = max
wx,wy

E(UV )√
E(U2)E(V 2)

= max
wx,wy

E(wT
xXY

Twy)√
E(wT

xXX
Twx)E(wT

y Y Y
Twy)

(3.7)

CCA was first applied to SSVEP recognition by Lin et al. (2006) in an offline
analysis. When CCA is applied to an m–class SSVEP based BCI which has Ny

electrodes, N points of EEG data in each electrode, EEG sampling rate fs, the
two sets of variables are multiple electrodes EEG signals, X (Ny×N matrix) and
the reference signal, Y of one stimulating frequency f, which contains sine and
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cosine components of f, 2f, . . . , Nh harmonics. The reference signal Yk (2Nh×N
matrix) of stimulating frequency fk is expressed by equation (3.8)

Yk =


sin[2πfk(1/fs)] sin[2πfk(2/fs)] · · · sin[2πfk(N/fs)]
cos[2πfk(1/fs)] cos[2πfk(2/fs)] · · · cos[2πfk(N/fs)]

...
...

. . .
...

sin[2πNhfk(1/fs)] sin[2πNhfk(2/fs)] · · · sin[2πNhfk(N/fs)]
cos[2πNhfk(1/fs)] cos[2πNhfk(2/fs)] · · · cos[2πNhfk(N/fs)]

 (3.8)

In a multiple electrodes BCI system, there are more than one pair of canonical
variables can be calculated and thereby more than one correlation coefficient ρ.
The correlation coefficients between X and Yk, denoting by ρk,1, ρk,2, · · · , ρk,l, the
maximum number of ρ is l, l=min(Ny, 2Nh). The largest correlation coefficient
ρk,1 was found from the first pair canonical variables. ρk,1 is the value used by
SSVEP recognition. Correlation coefficient ρk,1 will be referred as ρk for each
stimulating frequency fk. CCA finds all maximum correlation coefficients ρk be-
tween X and Yk, k = 1, 2,..., m. The corresponding stimulating frequency of
the reference signal which produces the maximum ρ is identified as the attended
target. In a multiple electrodes BCI system, there are more than one pair of
canonical variables can be calculated between X and Yk. However, only the cor-
relation coefficient of the first pair is used for SSVEP detection. CCA finds all
maximum correlation coefficients ρk between X and Yk, k = 1, 2,..., m. The
corresponding stimulating frequency of the reference signal which produces the
maximum ρ is identified as the attended target.

Figure 3.13 illustrates CCA process. CCA finds the matrices Wx and Wy and
transfers EEG data X and the reference signal of the target k to the canonical
variables U and V. The correlation coefficient ρk of X and Yk is found. CCA re-
peats the same process and finds all the correlation coeifficients ρ1, ρ2, · · · , ρm, be-
tween X and the reference signals of the stimulating frequencies fk, k=1, 2,..., m.
The corresponding frequency fi relating to the maximum of (ρ1, ρ2, · · · , ρm) = ρi,
1 ≤ i ≤ m, is identified as the attended target.

(Lin et al., 2006; Bin et al., 2009b). However, some studies argued that the
reference signal employed in CCA is not optimal. The reference signal in CCA is
applied to all the trials for all subjects which do not take inter–subject and inter–
trial variance into consideration. The performance of CCA could be enhanced by
estimating a modified reference signal which considers the variance of the subjects
and/or the trials. The optimisation of the reference signal not only improves the
classification accuracy but also reduces the number of electrodes and the time
length of the data required.
The matrix wx provides a weight factor to each electrode which transfers X to a
canonical variable and enhances SNR. Figure 3.14 is the comparison of raw EEG
X and the canonical variable U = wT

x Ẋ. In this example, Subject 3 attended
a 15Hz target at viewing distance 150cm. From this figure, it can be seen that
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Figure 3.13: Illustration of CCA process in finding a correlation coefficient
ρ between EEG data and one of the reference signals of the target. This
figure is reprinted and modified from (Lin et al., 2006) Copyright c© 2006
IEEE.

SSVEP is enhanced and the noise is subpressed. As a result, SNR is enhanced.
CCA has been proven as an efficient classification method in SSVEP recognition
by a few studies. Modified CCA was also proposed to improve the classification
accuracies.

Pan et al. (2011) proposed a modified reference signal by adding SSVEP response
phase of the subject to the reference signal used in the original CCA. It is referred
to as p–CCA. In p–CCA, SSVEP response phase is estimated by the apparent
latency, a time delay of SSVEP response due to the conduction of the visual path-
way. It is a subject and stimulating frequency dependent parameter. The results
showed that p–CCA outperformed the original CCA by 6.8% in classification ac-
curacy. p–CCA outperformed the original CCA at all stimulation times (EEG
data duration) in the experiment. The classification accuracies of both methods
improve as the stimulation time increases. It is observed that the classification
performance of p–CCA improves more in the shorter time interval than the longer
one. The author suggested that it is because SSVEP response is phase–locked to
the stimulus and its phase is more concentrated as the stimulation time increases.

3.4.5.2 Minimum Energy Combination (MEC)

Another SSVEP recognition algorithm based on principle component analysis
(PCA) in a multiple electrodes BCI system is MEC which is proposed by Friman
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Figure 3.14: SSVEP spectrum of original EEG X and one canonical variable U.
The red squares indicate the response at the stimulating frequency (=15Hz).

et al. (2007). In MEC algorithm,

1. EEG signal and SSVEP response mode: EEG signal y of ith electrode
in a multiple electrodes based system can be modelled by equation (3.9),

yi =

Nh∑
k=1

ai,k sin(2πkft+ φi,k) +
∑
j

bi,j(t) + ei(t) (3.9)

ai,k sin(2πkft+φi,k) of equation (3.9) is SSVEP response at frequency f and
its harmonics. The amplitude and phase of each frequency kf are denoted
by ai,k and φi,k respectively. The nuisance signal and noise are represented
by bi,j and ei(t).

2. Subspace of SSVEP: Let X = [X1, X2, · · · , XNh], each Xk contains
sin(2πkft) and cos(2πkft) in the columns. If each yi has Nt data points,
yT
i = [yi(1), yi(2), · · · , yi(Nt)] can be written as yi = Xai + Zbi + ei. In a

system of Ny electrodes with Nt data points in each electrode, the signals
of all electrodes can be expressed by a Nt×Ny matrix Y = [y1, y2, · · · , yNy ].

3. Channel signals: A channel signal is defined as the linear combination of
all electrode signals.

S =

Ny∑
i=1

wiyi = YW (3.10)
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If S has Ns channel signals,Ns ≤ Ny, then S can be expressed as S=YW.
Where W = [w1, w2, · · · , wNs ]Ny×Ns is a matrix of the dimension Ny ×Ns.

4. Remove SSVEP signal from EEG: To find optimal w which enhances
SSVEP and suppresses the noise, MEC first removes SSVEP signal from
EEG by projecting electrode signals Y onto a space of base X. As shown in
Figure 3.15, Yprojection = X(XTX)−1XTY . Yprojection is SSVEP component.
MEC removes SSVEP component, Yprojection from electrode signal Y. The

remaining signal (Ŷ = Y − Yprojection = Y − X(XTX)−1Y ). Ŷ should
contain the nuisance signal and noise only.

Figure 3.15: Signal projection on the subspace of SSVEP (X ). The black line
denotes the electrode signal containing SSVEP, nuisance signal and noise. The red line
denotes SSVEP signal which is the projection of the electrode signal on SSVEP sub-
space. The purple line denotes the remaining signal of Y after removing the projection.

5. Select eigenvectors: MEC aims to find an optimal matrix which min-
imises ‖Ŷ w‖ = min(wT Ŷ T Ŷ w). Ŷ w is the linear combination of the re-
maining signals of the electrodes. w can be obtained by selecting the eigen-
vectors of the matrix Ŷ T Ŷ . The eigenvector corresponding to the smallest
eigenvalue is selected first which forms the first channel signal which has the
minimum energy of the noise and nuisance signal. To increase the robust-
ness, the eigenvector corresponding to the next largest eigenvalue is also
selected until the following criterion (3.11) is met.∑Ns

i=1 λi∑Ny

j=1 λj
> 0.1 (3.11)

whereNs represents the minimal number of eigenvectors selected to meet (3.11).
Each eigenvector results in one channel signal. i.e. around 90% of the nui-
sance signal and noise is discarded or 10% of the nuisance signal and noise
is kept. Afterwards, Ns channel signals are compiled.

6. SSVEP detection: SSVEP power of the channel signal is calculated by

P =
1

NsNh

Ns∑
j=1

Nh∑
i=1

‖XT
i sj‖2 (3.12)
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The frequency which produces the maximum power is identified as the at-
tended target.

7. An example of the channel signals: Figure 3.16 illustrates an example
of channel signals when one of the subjects attended 13Hz target at the
viewing distance of 250cm.
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Figure 3.16: Comparison of FFT of the original EEG and the channel signals
of MEC.(a) The original electrode signal and (b)–(k) 10 channel signals by MEC.
The red square is SSVEP response at the attended frequency (13Hz). The cyan circles
are signals at unattended frequencies (=12, 14 and 15Hz). 10 selected eigenvalues are
shown in the subplots one by one. The total % stands for the sum of selected eigenvalues
(from 1 to 10) to the sum of all eigenvalues.

In this example, Ns is equal to 10, i.e. ten out of 11 eigenvalues and the corre-
sponding eigenvectors are selected. In Figure 3.16, the red square denotes SSVEP
at the attended frequency. The cyan circles denoted the frequency components
of the unattended stimulating frequencies. The corresponding eigenvalue λi is
shown in each channel signal. The total percentage stands for the accumulated
percentage to the sum of all eigenvalues. For example, in the channel signal 5,

the total %=

∑5
i=1 λi∑11
j=1 λj

=0.3%. It is clearly seen in Figure 3.16(a) before applying

MEC, SSVEP response at the stimulating frequency is unable to be detected.
SSVEP of channel signals (b) to (j), at the attended frequency are easier to be
detected. The eigenvalues are selected in an ascending order (from smallest to
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largest). The frequency which results in the maximum power is identified as the
attended target.

3.4.5.3 Maximum Contrast Combination (MCC)

MCC is another spatial filter which is also proposed by Friman et al. (2007).
This method is to enhance the SNR by maximising SSVEP and minimising the
nuisance and noise. The maximum SNR is obtained by maximising the following
equation (3.13),

max
w

‖Y w‖2

‖Ŷ w‖2
= max

w

wTY TY w

wT Ŷ T Ŷ w
(3.13)

Y and Ŷ are the same as described in the MEC method. w is found by solving
the generalised decomposition of Y TY and Ŷ T Ŷ . The eigenvector correspond-
ing to the largest eigenvalue results in the highest SNR while the eigenvector
corresponding to the smallest eigenvalue results in the lowest SNR. Figure 3.17
illustrates an example showing that SNR was enhanced by MCC. The example is
when Subject 2 attended 13Hz at the viewing distance of 60cm. The SNR shown
in the figure is the ratio of FFT amplitude at the stimulating frequency to the
average of the signals between 0 and 45Hz excluding the stimulating frequency.

3.4.6 Confusion matrix

A confusion matrix is a table (matrix) that allows the visualisation of the per-
formance of a classifier (Kohavi and Provost, 1988). The confusion matrix of an
N -class system is an N × N square matrix. Table 3.6 shows an example of the
confusion matrix for an SSVEP BCI with four classes associated with four the
frequencies 12, 13, 14 and 15Hz. Each row represents the classification output
of one class. The element ni,j indicates the number of times the class i has been
misclassified as class j. When i = j, the classification is correct. The diagonal
elements of the confusion matrix are the number of times of correct classifica-
tions and the other elements denote incorrect classifications. A perfect classifier
produces the confusion matrix with only non–zero elements in the diagonal and
zeros elements off the diagonal.

Table 3.6: Confusion matrix of 4 classes. Each row of the matrix represents the
classification output of one class. The element ni,j indicates the number of the class i
has been identified as class j.

12Hz 13Hz 14Hz 15Hz
12Hz n11 n12 n13 n14

13Hz n21 n22 n23 n24

14Hz n31 n32 n33 n34

15Hz n41 n42 n43 n44
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Figure 3.17: Comparison of the SNRs of original EEG and applied MCC. MCC
enhanced SNR. (a) shows FFT of the original EEG data and the SNR is equal to 0.6.(b)
shows FFT of (a) after applying MCC spatial filter. SNR is enhanced to 6.

When using a confusion matrix to evaluate the performance of a classifier, a few
performance measurements are computed. These measurements are described as
the following using the example of Table 3.6:

• Recall rate or true positive rate (tpr): Recall rate of class i is the percentage
of class i being classified correctly as estimated by equation (3.14).

recall rate of class i =
ni,i∑4
j=1 ni,j

(3.14)

• False positive rate (fpr): False positive rate of class i is the percentage of the
classes which are not class i but are identified as class i . fpr is estimated
using equation (3.15)

false positive rate of class i =

∑4
j=1 nj,i∑4

k=1

∑4
l=1 nk,l

, where j 6= i and k 6= i.

(3.15)

• Precision rate: Precision rate of class i is the percentage of classifications
identified as class i which are correct.

precision rate of class i =
ni,i∑4
k=1 nk,i

. (3.16)
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• Overall accuracy (acc): Overall accuracy is the percentage of correct clas-
sifications and calculated by equation (3.17)

acc =

∑4
i=1 ni,i∑4

k=1

∑4
l=1 nk,l

(3.17)

3.4.7 Receiver Operating Characteristic (ROC)

ROC curve is an efficient technique to assess the performance of a two–class clas-
sifier. In ROC plot, the x axis and y axis represent the false positive rate and
true positive rate respectively. The true and false positive rates are defined in
equations (3.14) and (3.15) in section 3.4.6. Figure 3.18 illustrates an example of
ROC plot with a few points denoting the performance of the classifiers.

Figure 3.18 demonstrates a typical ROC curve of a discrete classifier. The diag-
onal blue line represents the classification result of a random–guess. All points
on the line yield the same levels of the true positive rate and false positive rate
(50:50). In this example, the classified outputs of the classifier at point A are
always recognised as the negative class. As a result, the false and true positive
rates at A are 0. On the other hand, the output of the classifier at point G (1,1),
are always recognised as the positive class. Therefore, the false and true positive
rate is 1. The classifier at point B denotes the perfect classifier with 100% of
true positive rate and 0% of the false positive rate. A good classifier should be
located in the upper triangle (true positive rate > false positive rate) of the ROC
curve as in Figure 3.18 and near the y axis with high true positive rate and low
false positive rate. The classifier of point D is considered more conservative than
the classifier of point E because the low false positive rate is at the expense of
the low true positive rate compared to the one at point E. On the contrary, the
classifier of point E is more liberal than point D due to the fact that the high
true positive rate comes with the high false positive rate.

The classification output of a discrete classifier, such as SSVEP BCI classifier,
is the predicted class label. The output of a discrete classifier is one confusion
matrix corresponding to a single pair of false and true positive rates and rep-
resents a single point in the ROC curve space. The classification output of the
classification algorithms used in this study is based on a 4–element feature vector
corresponding to 4 classes. The value of the element stands for the level of the
likelihood of the corresponding class. When the threshold is used with the fea-
ture vector, the output of the classifier depends on whether the feature is over the
threshold or not. One threshold results in one point in ROC space. A continuous
ROC curve can be made by changing the threshold from −∞ to +∞. When
ROC curve is built, the area under curve (AUC) of ROC is used to evaluate
and compare the performance of the classifiers. The value of AUC is between 0
(inclusive) and 1 (inclusive). In general, the larger the AUC is, the better the
classifier performance is.
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Figure 3.18: ROC plot example. Each point shown on the plot illustrates the per-
formance of a discrete classifier. This figure is reprinted and modified from
(Fawcett, 2006), page 862, with permission from Elsevier.

A single point of the ROC is used with F measurement which combines the recall
rate (true positive rate) and precision rate into one metric and is defined by
equation (3.18). F measurement and a single ROC point provide a balanced
view on the classification performance regarding the true and false positive rates.

F =
2× (recall rate)× (precision rate)

(recall rate) + (precision rate)
(3.18)

In this study, there are four classes. In order to obtain ROC curve, one class
is labelled as the positive class and the other three classes are labelled as the
negative class. For example, to obtain the ROC of 12Hz, 12Hz is labelled as the
positive class. 13, 14 and 15Hz are labelled as the negative class. The classifica-
tion results of four classes at the same viewing distance are used to generate ROC.

Each element in the feature vectors is used as the score and is assigned to a la-
bel corresponding to one of the four classes. For example, to get ROC of each
stimulating frequency at viewing distance 250cm, classification feature vectors of
12Hz, 13Hz, 14Hz and 15Hz at 250cm will be used. To get ROC of 12Hz, the first
element of all feature vectors is extracted as score vector. The labels assigned to
the elements from 12Hz were 12Hz. Similarly, the labels assigned to 13Hz, 14Hz
and 15Hz were 13Hz, 14Hz and 15Hz respectively. The score and label vectors
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were used to find ROC of 12Hz. To get ROCs of 13Hz, 14Hz and 15Hz, the
score vectors were extracted from second, third and fourth elements from feature
vectors for 13Hz, 14Hz and 15Hz respectively. The labels assignment is the same
as making ROC of 12Hz.

A true positive is counted if the score of the positive class is larger or equal
to the threshold. A false positive is counted in the same manner. By chang-
ing the values of the thresholds, a continuous ROC plot and its respective AUC
are obtained. Continuous ROC and AUC are used to assess the classification
performance of different number of the electrodes employed and the electrodes.
The built–in function perfcurve in Matlab is used to plot ROC and compute AUC.

This modified way provides an estimation of the classification performance. For
class i, if its corresponding true and false positive rates are tpr and fpr respectively,
then the overall accuracy of the system acc could be represented by the following
equation (3.19), when the number of the trials of each class are the same.

acc =
[tpr + 3× (1− fpr)]

4
(3.19)

In equation (3.19), when the classification output of the negative class is correctly
classified as not the positive class, it is counted as one true negative.

3.4.8 Optimal electrodes

This study investigates the minimal number of electrodes required for each subject
in order to achieve the highest possible classification rate. The highest classifica-
tion rate for each subject is defined in each experiment condition as the highest
possible classification rate (true positive rate) that could be estimated in that
experiment condition regardless of the number of the electrodes. There are more
than 2,000 electrode subsets from combining 11 electrodes. For each subject,
there might be more than one electrode subset which can result in the highest
value for classification accuracy. Those electrode subsets resulting in the highest
classification are termed as the optimal electrode subsets. The optimal electrode
subsets with the least (smallest) number of electrodes are termed as the minimal
optimal electrode subsets.

3.4.8.1 Optimal electrode sets

By analysing the optimal electrode subsets, the following metrics for each subject
are revealed:

1. Minimal optimal number (mon) of the electrode subset: the minimum elec-
trode number of the optimal electrode subsets.

2. Electrode number distribution of optimal electrode subsets: the distribution
of the electrode numbers of the optimal electrode subsets. It depicts the
optimal electrode subsets by the number of the electrodes.
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3. Highest classification accuracy: the highest possible classification rate for
one subject in different experiment conditions that can be achieved.

4. Demographics of the electrodes: the demographics of the electrodes illus-
trating the electrode combinations of the optimal electrode subsets and the
minimal electrode subsets. This analysis is to identify which electrodes
to include in the minimal optimal electrode and in the optimal electrode
subsets for each subject.

3.4.8.2 Electrode rankings

This study also proposes a method to rank the electrodes according to their im-
portance or performance for the electrode selection. The electrode ranking is
the order of the electrode being selected. It is flexible as ranking can be applied
to any number of the electrode subsets, from 1 to the maximum number of the
electrodes (in this study, the maximum number is 11.). It is also adaptable as
The electrodes selected can be adjusted according to the classification rate which
differs by the subjects and BCI applications. The cross validation demonstrates
that the electrodes selected in the order of the electrode ranking outperform over
60% the total electrodes subsets of the same electrode number.

The electrodes are ranked by either the coefficients of the spatial filter or the clas-
sification accuracies. When the electrode subset of all electrodes is employed, each
coefficient in the spatial filter corresponds to an electrode. When the electrode
subsets of one electrode are employed, the classification accuracy corresponds to
an electrode too. These two metrics are different in the dependence between the
electrodes. In the coefficient method, the coefficients are the results based on
the dependence between all electrodes. On the other hand, the electrodes are
completely independent in classification accuracy method. The ranking process
of each method is described as the following:

• Spatial filter coefficients: For CCA, the spatial filter is for the first canonical
variants pair. For MEC and CCA, the spatial filter is the eigenvector of
the smallest eigenvalue of the matrix Ŷ T Ŷ described in page 91 and the
eigenvector of the largest eigenvalue of the generalised decomposition of
Y TY and Ŷ T Ŷ matrix described in page 93 respectively. The corresponding
electrode with the largest absolute value of the coefficient is ranked first,
followed by the second largest until the smallest value.

• Classification accuracy: The classification accuracy of single electrode is
the ranking criterion. The corresponding electrode with the highest clas-
sification accuracy is ranked first, followed by the second highest until the
lowest.

If more than one electrode has the same coefficient or classification accuracy,
the electrode of the higher order is ranked first. The order of the electrode is
[POz, Oz, Iz, 124, 125, O1, 127, 128, O9, O10, O2]. The efficacy of the electrode
ranking are cross validated by the average classification accuracy and highest
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classification rate and lowest classification rate of the electrode subsets of the
same number of the electrodes. When the electrode ranking is used to select the
electrodes, the only parameter required is how many electrodes should be in the
electrode subset. If the electrode subset requires Ny electrodes, then the first
top Ny electrodes in the ranking are selected. The electrode subset selected by
the electrode ranking is termed as ranked electrode subset. The performance of
the ranked electrode subset is assessed by performance index (PI). To calculate
PI of the ranked electrode subset of Ny, first find the classification accuracy of
the ranked electrode subset. Next, count the number of the electrode subsets
of Ny electrodes which outperform the ranked electrode subset. This number is
denoted as Nop. If the total electrode subsets of Ny electrodes is NNy, then PI is
expressed by equation (3.20). The larger PI is the better performance the ranked
electrode subset achieves.

PI = 1− Nop

NNy

(3.20)

3.4.9 Threshold analysis

Threshold is an important parameter in real BCI applications. The value of the
threshold will affect the classification results. If the threshold is set too high, the
false positives are reduced at the cost of reduced true positives. On the contrary,
if the threshold is set too low, the high true positives are at the expense of high
false positives. The threshold setting is a compromise between the true positives
and false positives.

In a threshold based decision classification system, the class is recognised when
the value of the respective feature exceeds the threshold. To inspect the impact
of the threshold on the classification performance, a new class termed as UI (Un–
Identified) class is created. UI class is recognised when the maximum feature
does not exceed the threshold. A conventional confusion matrix of 4 classes is
also modified with an extra column named UI to demonstrate the impact of the
threshold. The thresholds are found by the following two methods, explained in
sections 3.4.9.1 and 3.4.9.2.

3.4.9.1 ROC threshold

As mention earlier in continuous ROC plot, each point on ROC curve corre-
sponded to a threshold. The overall classification accuracy of class i was estimated
by equation (3.19). The optimised threshold of class i was the threshold which
maximised equation (3.19). The impact of threshold on the classification was
evaluated after the threshold for each class was found by applying the threshold
to the classification results in the classification profile.
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3.4.9.2 Threshold by F measurement

In section 3.4.9.1, the optimised thresholds maximise the overall classification
rates. In this section, the optimised threshold of each class is found to maximise
F measurement of each class. F measurement is defined in equation (3.18). The
process to find the thresholds which maximise F of each class is as following:

1. For each subject, the range of the threshold of each class is found based on
four different experiment conditions at the same viewing distance.

2. The threshold range of each class is the minimum and maximum values of
the element of the feature vector corresponding to the class. To compute
the precision rate of one class, the other three experiment conditions are
used to compute the false positives.

3. The applied thresholds start from the minimum value of the range to the
maximum value of the range in the steps of 1

99
of the difference between the

maximum and minimum values. The corresponding recall rate, precision
rate and F measurement are calculated.

4. The recall rate, precision rate and F measurement resulted from different
thresholds are compared. The threshold resulting in the highest F is the
optimised threshold.

3.5 Summary

In this chapter, two main experiments, the Investigation Experiment and the
Feasibility Experiment, have been presented. The design and the parameters
selection of visual stimuli were also explained. Furthermore, the scope and tech-
niques of the data analysis were also explored. The principle, implementation,
and evaluation of the proposed electrode ranking method were also described in
this chapter.
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Chapter 4

Results – data analysis of
Investigation Experiment

In this chapter, the impact of the viewing distances on SSVEP response in terms
of (1) power spectrum of SSVEP response, (2) the properties of time– and phase–
locking to the stimulus and (3) the classification accuracy will be presented and
investigated. SSVEP power spectrum is visualised using FFT power spectrum.
The time and phase locking to the stimulus properties are examined using SLIC
and ITC.

Finally, the classification accuracy is verified by CCA. One of the primary goals
of this study is to understand how viewing distances affect SSVEP response and
the classification accuracy. In this chapter, 11 electrode signals are applied to
CCA. The impact of the numbers and locations of electrodes are investigated in
Chapter 5.

4.1 Impact of viewing distances on SSVEP re-

sponse in uncompensated condition

In uncompensated condition, the intensity of LED visual stimulator is the same at
all viewing distances. In this section, SSVEP response and classification accuracy
in uncompensated condition at different viewing distance are presented. Table 4.1
showed LED luminance in uncompensated and compensated conditions.

Table 4.1: Luminance of LEDs at four viewing distances in the Investiga-
tion Experiment, one in the uncompensated condition and another in the
compensated condition. Unit of LED luminance is in lux. Intensity of LED at the
viewing distance does not require compensation.

LED 60cm 150cm 250cm 350cm

LS E63B-BBCB-1-1 (uncompensated) 0.46 0.17 0.12 0.02
LR G6SP-CADB-1-1 (compensated) 0.30 0.56 0.26 0.18
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4.1.1 Power spectrum of SSVEP response

Figure 4.1 depicts FFT power spectrum when the subject attends to a 14Hz
target at four viewing distances without LED intensity compensation. The results
shown in Figure 4.1 is based on estimating the average power over 11 electrodes
and across 20 epochs. EEG sampling frequency was 2k Hz and EEG TWL was
4s which resulted in 0.25Hz frequency resolution in frequency domain. It is clear
that the power of SSVEP at the attended frequency14Hz decreases dramatically
as the viewing distance increases. The 2nd harmonic (not labelled) also had a
similar declining tendency corresponding to the increase of the viewing distance.
The results illustrating FFT power spectrum when the subjects attended to 12,
13 and 15Hz can be found in Appendix B. See Figures B-3, B-5 and B-7 on pages
212, 213 and 214 for details.
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Figure 4.1: FFT power spectra at four viewing distances without LED in-
tensity compensation. The attended target of this figure is 14Hz. FFT power
spectrum presented is the mean EEG of all epochs and electrodes. It can be observed
that SSVEP power at the attended frequency (14Hz) decreases as the viewing distance
increases without LED intensity compensation. The power at the 2nd harmonic (not
labelled)also decreased as viewing distance increased.

One way Analysis of Variance (ANOVA) was performed to test the significance
of the viewing distance on the power of SSVEP. AVONA test of SSVEP power
at 14Hz showed a p value < 0.01 and F (3,76)=15.24 (df=3 × 76). This result
indicates that the impact of the viewing distance on SSVEP power is significant.
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To examine the differences between the four viewing distances considered in this
study, further post hoc test is applied. The results showed that the mean SSVEP
power at 60cm viewing was significantly different from the ones at the other
three viewing distances. The mean SSVEP power at viewing distance 150cm,
250cm and 350cm were not significantly different. The boxplot of SSVEP power
for attending 14Hz and the corresponding ANOVA test result are illustrated in
Figure 4.2. The boxplots and corresponding ANOVA tests for attending at 12,
13 and 15Hz can be found in Appendix B. See Figures B-4, B-6 and B-8 on
pages 212, 213 and 214. The results all confirm that the significant impact of
the viewing distance on SSVEP power apart from 12Hz.
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 F = 15.2445

Figure 4.2: Boxplot of SSVEP power when the subject attended at the target
of 14Hz at four viewing distances without LED intensity compensation. This
figure shows that SSVEP response at 14Hz decreases as the viewing distance increases.

4.1.2 Time–locking to the stimulus onset property

SSVEP is time– and phase–locked to the stimulus. SLIC was used to examine the
time locked property to stimulus. As explained in Chapter 3, SLIC first divides
EEG into segments according to the sequences of the stimulating frequencies.
Figure 4.3 demonstrates EEG segmentation by four stimulating frequency se-
quences. The first row of Figure 4.3 is the original EEG signal when the subject
attends at 13Hz target. The second to fifth rows depict the original EEG signal
segmented into traces between two stimulus onsets for 12, 13, 14 and 15Hz. The
white bar and black bar in the second to fifth rows of the plot indicate LED ON
and OFF period. The white and black bars consist a full stimulating periods.
In one second, there are 12, 13, 14 and 15 ON–OFF repetitions for 12Hz, 13Hz,
14Hz and 15Hz respectively. As a result, there are 12, 13, 14 and 15 traces for
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12, 13, 14 and 15Hz respectively. SLIC computes the correlation coefficients of
two different traces within the same frequency.
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Figure 4.3: EEG data segmentation by SLIC. The first row of this figure is the
original EEG data. The second to fifth row is the inter–traces of EEG data segmented
by 12, 13, 14 and 15Hz respectively. The white–black segments at the top of the second
to fifth rows of the sub–figures stand for LED ON–OFF. The attended frequency of
this figure is 13Hz.

Figure 4.4 depicts one of SLIC results. In Figure 4.4, the subject attended to
13Hz target at 4 different viewing distances with the same LED intensity. The
top row of Figure 4.4 represents EEG inter–traces (the blue thin lines) and the
mean curve (the red thick line) of the inter–traces. Figure 4.4 is based on the
processing of 2s of EEG data. For illustration purposes, only about one third of
the total traces are plotted but the mean curve is the average over all traces (24,
26, 28 and 30 inter–traces corresponding to 12, 13, 14 and 15Hz respectively).
The mean curves become flatter as the viewing distance increases and that the
mean curve of viewing distance 60cm is a sinusoidal like curve.

The second row of Figure 4.4 shows the histogram depicting the correlation co-
efficient between two traces. The x axis represents the values of the correlation
coefficients which are between -1 and 1 while the y axis stands for the number
of occurrence of the correlation coefficients. At the viewing distance of 60cm, a
clear left skewed distribution can be seen. As the viewing distance increases, this
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Figure 4.4: EEG inter–traces and histogram of inter–trace correlation coef-
ficients distribution without LED intensity compensation. First row is the
inter–trace EEG in time domain at different viewing distances. Blue thin line is one
single inter–trace and red thick line is the average of all inter–traces. The second row
is the histogram of inter–trace correlation coefficients distribution. LED intensity is
the same for all viewing distances. This figure demonstrates how the viewing distances
affect the time locking property of SSVEP at the attended frequency (13Hz) only.

distribution is more similar to a normal distribution. This can be verified by their
median and mean value. At short viewing distances, the median (mean) value of
the correlation coefficients is higher than that of the longer viewing distances. At
250cm and 350cm viewing distances, the median (mean) values approached zero.
More SLIC results for 12, 14 and 15Hz can be found in Appendix B, see Figures
B-15, B-16 and B-17. These results are similar to those exhibited in Figure 4.4.
They also demonstrate the impact of changing the viewing distances on the time
locking property. That is, this property is clearly seen at 60cm but not equally
clear for the longer viewing distance in uncompensated condition.

4.1.3 Phase–locking to the stimulus onset property

Figure 4.5 shows one of ITC results when the subject attends 14Hz target at four
viewing distances without LED intensity compensated. From Figure 4.5, ITC
at 14Hz drops dramatically at the viewing distances 250 and 350cm compared
to the viewing distances 60cm and 150cm. The declined trends can also be
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observed at the higher harmonics of 14Hz. EEGLAB is used to calculate ITCs in
Figure 4.5. ITC at 14Hz is obtained by linear interpolation of its two neighbouring
frequencies, one higher and one lower. The box plots of estimated ITC of 14Hz
at four viewing distances can be seen in Figure 4.6.

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

IT
C

 

 
60cm 
150cm
250cm
350cm

Figure 4.5: ITC at different viewing distances when the subjects attended at
the target of 14Hz without LED intensity compensation. ITC at the attended
frequency (14Hz) decreases as the viewing distance increases. This decrease can also
been seen at the higher harmonics of 14Hz.

One way ANOVA is performed to check the significance of the viewing distances.
p value < 0.001. The difference of ITC at different viewing distances is signifi-
cant. In Figure 4.6, the mean ITCs of two closest neighbouring frequencies of the
attended frequency are the average across 11 electrodes. More ITC results can
be seen in Appendix B. See Figures B-21, B-22, B-23, B-24, B-25 and B-26.

4.1.4 Classification accuracy

In this section, the impact of changing the viewing distance on the classifica-
tion accuracy in uncompensated condition is inspected. CCA using 11 electrode
signals is employed to classify EEG data into one of the 4 possible classes corre-
sponding to the four frequencies. EEG TWL is 2s and EEG was down–sampling
by 100Hz. The number of SSVEP harmonics is 1. Table 4.2 lists the classification
rates of 4 classes at 4 viewing distances without LED intensity compensation.
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Figure 4.6: Boxplot of ITC when the subject attended at the target of 14Hz
at four viewing distances without LED intensity compensation. This figure
shows that ITC at 14Hz decreases as the viewing distance increases. ITC of 14Hz is
obtained by linear interpolation of two neighbouring frequencies of 14Hz.

Table 4.2: Classification accuracies without LED intensity compensation.
EEG data was classified by CCA using 11 electrode signals.

12Hz 13Hz 14Hz 15Hz Accuracy(%)

12Hz 20 0 0 0 100%
13Hz 0 20 0 0 100%

60cm 14Hz 6 0 14 0 70%
15Hz 8 2 0 10 50%
12Hz 19 1 0 0 95%
13Hz 14 6 0 0 30%

150cm 14Hz 10 1 9 0 45%
15Hz 13 2 0 5 25%
12Hz 18 2 0 0 90%
13Hz 17 3 0 0 15%

250cm 14Hz 18 2 0 0 0%
15Hz 18 1 1 0 0%
12Hz 16 4 0 0 80%
13Hz 17 2 1 0 10%

350cm 14Hz 17 3 0 0 0%
15Hz 19 0 0 1 5%
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From Table 4.2, apart from 12Hz, the classification accuracies are very low for the
rest of the stimulating frequencies apart from the ones at the viewing distance
60cm. At the longer viewing distances, such as 250cm and 350cm, the classi-
fication accuracies are lower than the probability of the chance (25%). Overall
speaking, 12Hz has the highest classification rate while 15Hz has the lowest. The
classification result shows the impact of changing the viewing distance on the
classification.

4.2 Impact of viewing distances on SSVEP re-

sponse in compensated condition

In compensated condition, the intensity of LED is higher at longer viewing dis-
tance than at the shorter viewing distance. In this section, SSVEP response and
classification accuracy in compensated condition at different viewing distance are
assessed in the same manner as in section 4.1.

4.2.1 Power spectrum of SSVEP response

Figure 4.7 depicts FFT power spectra when the subject attends at 15Hz target
at four viewing distances with different LED intensities.
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Figure 4.7: FFT power spectrum at four viewing distances with LED intensity
compensation. The attended target of this figure is 15Hz. FFT power spectrum of
this figure is the mean of all epochs and electrodes. SSVEP power at the attended
frequency at longer viewing distance can be larger than the one at shorter viewing
distance with LED intensity compensation.
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With LED intensities compensation, the power of SSVEP at the attended fre-
quency15Hz remains at the similar level at all viewing distances. The power
associated with longer viewing distance can be even larger than the one at the
shorter viewing distance (compared (a) and (b)). The power of the 2nd harmonic
at viewing distance 150cm is stronger than that of the fundamental frequency.
One way ANOVA was performed to examine the impact of the viewing distance
over the power of SSVEP in compensated condition. The result which can seen
in Figure 4.8 shows that p value > 0.01, F (3,76) =2.75 (df=3 × 76). It shows
that the impact of the viewing distance on SSVEP power is not significant with
LED intensity compensation. In ANOVA test, for each viewing distance, the test
data are SSVEP powers of 20 epochs.
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Figure 4.8: Boxplots of SSVEP powers at four viewing distances with LED
intensity compensation. The attended target of this figure is 15Hz. Each viewing
distance has 20 epochs.

Figures illustrating FFT power spectra when the subject attended to 12, 13 and
14Hz can be found in Appendix B. See Figures B-9, B-11 and B-13 on pages
215, 216 and 217 for details. The results indicate that SSVEP response can
be prominent at long viewing distance when LED intensities are compensated.
These SSVEP power specta are calculated based on mean EEG over 11 electrodes
and 20 epochs. EEG sampling rate is 2k Hz and EEG TWL is 4 s. These param-
eters are the same as the ones used to obtain the results illustrated in section 4.1.
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The boxplots and ANOVA test for attending at 12, 13 and 14Hz can be found
in Appendix B. See Figures B-10, B-12 and B-14 on pages 215, 216 and 217
for details. As it can been from Figures B-12 and B-14, the p value < 0.01. To
understand the difference between different viewing distances, post hoc is applied.
Without LED intensity compensated, the powers of the viewing distance 60cm
are significantly different from the other three viewing distances. With LED
intensity compensation, the significant difference only exists between the longest
and shortest viewing distance.

4.2.2 Time–locking to the stimulus onset property

Figure 4.9 shows the individual inter–trace (blue thin line) and the mean intertace
(red thick line) in the first row and the histogram of the correlation coefficients
between inter–traces in the second row when the subject attends at 13Hz target
with LED intensity compensated.
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Figure 4.9: EEG inter–traces and histogram of inter–trace correlation coef-
ficients distribution with LED intensity compensation. First row is the inter–
trace EEG in time domain at different viewing distances. Blue thin line is one single
inter–trace and red thick line is the average of all inter–traces. The second row is
histogram of inter–trace correlation coefficients distribution. LED intensity is com-
pensated according to the change of the viewing distances. This figure demonstrates
that the inter–trace correlation at different view distance remains consistent with LED
intensity compensated.

With LED compensation, the mean inter–traces are all in sinusoidal like wave-
form. The histograms of correlation coefficients at viewing distances 150, 250
and 350cm also show left skewed pattern as seen at the viewing distance 60cm.
The mean and median values of the inter–trace correlation coefficients are larger
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than the ones shown in Figure 4.4 for all viewing distances. More SLIC results
in compensated condition can be found in Appendix B, see Figures B-18, B-19
and B-20 on pages 221 and 223 for details.

4.2.3 Phase–locking to the stimulus onset property

Figures 4.10 and 4.11 show ITC results of different viewing distances and their
corresponding boxplots with LED intensity compensation. These two figures
provide evidence that ITC are improved in compensated condition. With LED
intensity compensated, ITC at the attended frequency and its higher harmonics
are significantly increased compared to the ones in uncompensated condition. In
Figure 4.10, ITCs of attended frequency, 14Hz at the viewing distances 60 and
150cm are almost overlapped. ITCs of the 2nd harmonic frequency also improved.
More ITC results of different stimulating frequencies with LED intensity compen-
sation can be found in Figures B-27, B-29 and B-31 in Appendix B on pages 227,
228 and 229. All these figures demonstrate that ITCs at all viewing distances
are increased in compensated condition.
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Figure 4.10: ITC at different viewing distances when the subjects attended
at the target of 14Hz with LED intensity compensation. With LED intensity
compensation, ITC values at attended frequency are more stable compared to the ones
without LED intensity compensation (see Figure 4.5).
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Figure 4.11: Boxplot of ITC when the subject attended at the target of
14Hz at four viewing distances with LED intensity compensation. This
figure shows that ITC at attended frequency, 14Hz is more consistent than without
LED compensation (see Figure 4.6). ITC of 14Hz is obtained by linear interpolation of
the two nearest neighbouring frequencies of 14Hz .

4.2.4 Classification accuracy

The same classification approach using the signals of 11 electrode signal is applied
to classify EEG data when the subjects attended to one of the targets at different
viewing distances in compensated condition. Table 4.3 summaries the classifica-
tion rates in all experiment conditions. The classification rate of 12Hz remains as
high as the one without LED intensity compensation. The classification rates of
the other targets improve significantly, although low classification rates can still
be observed. The classification rate of 15Hz remains the lowest compared to the
other attended frequencies. But none of the classification rates are lower than
the probability of the chance (25%).
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Table 4.3: Classification accuracies with LED intensity compensation. EEG
data was classified by CCA using 11 electrodes signal.

12Hz 13Hz 14Hz 15Hz Accuracy

12Hz 20 0 0 0 100%
13Hz 1 19 0 0 95%

60cm 14Hz 3 0 17 0 85%
15Hz 6 1 3 10 50%
12Hz 19 0 1 0 95%
13Hz 0 20 0 0 100%

150cm 14Hz 2 0 18 0 90%
15Hz 1 0 0 19 95%
12Hz 20 0 0 0 100%
13Hz 4 16 0 0 80%

250cm 14Hz 8 0 12 0 60%
15Hz 9 1 1 9 45%
12Hz 18 1 1 0 90%
13Hz 5 15 0 0 75%

350cm 14Hz 6 1 13 0 65%
15Hz 13 1 1 5 25%

4.3 Summary

It can be expected that intensity of the visual stimulator decreases as the view-
ing distance increases. In compensated condition, SSVEP response become more
prominent in terms of the power and other related properties. As a result, the
classification rates also improve significantly in comparison to uncompensated
case. It is difficult to define the optimal response. For BCI, the most important
aspect is to convey the subjects intent into a command accurately and speedily.
If the classification performance at viewing distance 60cm is used as a benchmark
to compare to, the results in Table 4.3 shows that the classification performance
at the other distances could outperform or underperform that of the 60cm.

SSVEP response is sensitive to the intensity of the visual stimulus. However,
author best knowledge, in most SSVEP studies, the intensity of the visual stimu-
lus is used to explain the modulation depth. In practice, there are a few concerns
to increase the intensity of the visual stimulator. On one hand, higher intensity
might improve the classification performance. On the other hand, high inten-
sity may potentially induce discomfort of the subject and may become a health
and safety issue for the subject’s vision. There should be a balance between the
performance and the intensity of the visual stimulator. Before Feasibility Exper-
iment, a resistor/intensity selection experiment is performed to find the optimal
resistor value (LED intensity) for the subjects. It is seen in this chapter that
15Hz has the lowest classification accuracy. For this reason and also to reduce
the time of the experiment, in the resistor/intensity selection experiment, only
15Hz target is used to find the resistor value. It is assumed that the other classes
will outperform the class of 15Hz under the same condition.
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Chapter 5

Results – data analysis of
Feasibility Experiment

In this chapter, the feasibility of a distance adaptable SSVEP based BCI is eval-
uated. This chapter starts with the resistor/intensity selection experiment as
described in Chapter 3. The detailed process, see Figure 3.9. SNRs and z scores
across the subjects are examined by different EEG time window lengths (TWLs)
at different viewing distances. The confusion matrix and ROC are employed to
assess the classification performance by the true and false positives. The im-
pact of the number of the electrodes in the electrode subsets on the classification
performance is also investigated. Finally, the electrodes are ranked according to
their importance and the classification performance. The efficacy of the ranked
electrode subset is cross-validated.

5.1 Initial Resistor/Intensity Selection Experi-

ment

In Chapter 4, it was found that 15Hz had the lowest classification accuracy among
all the stimulating frequencies under the same experiment conditions. For this
reason and to reduce the time of resistor/intensity selection, only 15Hz stimulat-
ing frequency was tested. It was assumed that the other stimulating frequencies
should have better classification performance than 15Hz under the same con-
dition. The resistor/intensity selection process was described in Figure 3.9 on
page 79 in Chapter 3. The selected resistors based on Figure 3.9 were 450, 100,
30 and 15 Ω for viewing distances 60, 150, 250 and 350cm respectively. Their
corresponding luminance at different viewing distances can be found in Table 5.1.

As the resistor/intensity selection experiment is time-consuming and exhausting,
only one subject participated in this experiment. The resistors used in the Fea-
sibility Experiment are selected based on the result of one subject. To take the
variance of the subjects into account, for each viewing distance, the resistor value
used in the Feasibility Experiments slightly lower. The resistors used in the Fea-
sibility Experiment are 300 Ω for 60cm, 75 Ω for 150cm, 15 Ω for 250cm and 5 Ω
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for 350cm. This set of the resistors is applied to all the subjects who participated
in the Feasibility Experiment. The corresponding luminance at different viewing
distances in the Feasibility Experiment can be found in Table 5.1.

Table 5.1: Luminance of LEDs at four viewing distances in the Feasibility
Experiment and Intensities obtained from resistor/intensity experiment. As
it can be seen that LED intensity at viewing distance 350cm is the highest for both
experiments.Unit of luminance is in lux.

Resistor (Ω) 300 75 15 5 450 100 30 10

60cm 0.64 - - - 0.32 - - -
150cm - 0.50 - - - 0.37 - -
250cm - - 0.70 - - 0.46 -
350cm - - - 1.03 - - - 0.60

5.2 Signal to noise ratio and z scores of SSVEP

response

In this section, SNRs and z scores of SSVEP response at different viewing dis-
tances are assessed to verify if SSVEP response can be elicited at different view-
ing distances. SNR is obtained by using equation (3.1) on page 83 and z score is
computed by equation (3.2) on page 83. SNR is an important metrics for signal
classification. On the other hand, z score is the index of the signal strength.

5.2.1 SNR

Figure 5.1 (a) to (d) represents average SNRs across the subjects of each attended
frequency for different viewing distances. Their grand average across the attended
frequencies is shown in (e). This figure demonstrates that SNRs increase as EEG
TWL increases. It can be seen that, apart from the attended frequency of 13Hz,
at the same EEG TWL, SNRs of the viewing distances are in the order of 60cm,
150cm, 250cm and 350cm.

To test the impact of the viewing distance on SNRs of the same attended fre-
quency in the same EEG TWL, one way ANOVA tests are performed on SNRs
of ten subjects of the same attended frequency in the same EEG TWL between
different viewing distances. p values show that for 12Hz 14Hz, and 15Hz, SNRs of
60cm are significantly different (p <0.01) from the ones of 250cm and 350cm for
most of EEG TWLs. However, there is no significant difference in SNRs between
viewing distances of 150cm, 250cm and 350cm. For the attended frequency of
13Hz, the impact of the viewing distance is not significant.

The impact of the attended frequency on SNRs is examined by re-organising the
data of Figure 5.1. The re-organising data can be seen in Figure 5.2. Apart from
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Figure 5.1: SNRs across the subjects of different viewing distances using
different EEG TWL for each attended frequency. (a) to (d) SNRs across the
subjects of different viewing distances using different EEG TWL for each attended
frequency. (e) Grand average across the attended frequencies of (a) to (d).

the viewing distance of 60cm, SNRs of all attended frequencies are very close,
especially in EEG TWLs between 1s to 3s. One way ANOVA tests are used to
test the impact of attended frequency on SNRs of 10 subjects at the same viewing
distance in the same EEG TWL. p values show that only SNRs of 12Hz and 13Hz
at the viewing distance 60cm between 1s and 3s of EEG TWLs are significantly
different (p <0.01).

Figures B-33, B-34, B-35 and B-36 in Appendix B illustrate SNRs of each subject
when the subjects attend one of the targets at different viewing distances. They
can be found from page 230 to 233 in Appendix B. These figures show great
variance among the subjects. Some subjects have significantly higher SNRs than
the others. For example, SNRs of the subjects 1, 2, 3, 4 and 6 are higher than
the ones of the subjects 5, 7, 8, 9 and 10. For subjects 1, 2, 3, 4 and 6, SNRs
are increased relatively stable as EEG TWL increases. However, for subjects 5,
7, 8 and 10, the increase is fluctuated. The orders of SNRs at different view
distances are different between the subjects. There is no particular order in
common between the subjects. For example, SNRs of 60cm could be largest for
one subject but smallest for another subject.
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Figure 5.2: SNRs across the subjects of different attended frequencies using
different EEG TWL for each viewing distance. (a) to (d) SNRs across the
subjects of different attended frequencies using different EEG TWL for each viewing
distance. (e) Grand average across the viewing distances of (a) to (d).

5.2.2 z scores

Figure 5.3 (a) to (d) represents average z scores across the subjects of each at-
tended frequency for different viewing distances. Their grand average across the
attended frequencies is shown in (e). z scores of SSVEP response also increase as
EEG TWL increases. Apart from the attended frequency of 12Hz, at the same
EEG TWL, z scores of SSVEP response of the viewing distances are in the order
of 60cm, 150cm, 250cm and 350cm.

One way ANOVA is performed on z scores of all subjects of the same attended
frequency at the same EEG TWL between different viewing distances to inspect
the impact of the viewing distance on z scores. The results of p values are similar
to the ones found in SNRs. There is no significant difference in z scores between
the groups of 150cm, 250cm and 350cm. However, z scores of the group of 60cm is
significantly different from the groups of 150cm, 250cm and 350cm in some EEG
TWLs. Except viewing distance of 350cm, z scores exceed 2 for all the attended
frequencies when EEG TWL is equal to or larger than 2s. For 350cm, z scores
exceed 2 between 3s to 4s
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Figure 5.3: z scores across the subjects of different viewing distances using
different EEG TWL for each attended frequency. (a) to (d) z scores across
the subjects of different viewing distances using different EEG TWL for each attended
frequency. (e) Grand average across the attended frequencies of (a) to (d).

The impact of the attended frequency on z score is also investigated. Data of
Figure 5.3 are rearranged by the viewing distances and the rearranged data are
plotted in Figure 5.4. Each subplot of Figure 5.4 shows four attended frequencies.
Figure 5.4 clearly shows that z scores of different stimulating frequencies at the
same viewing distance are very close between 1s to 3s of EEG TWLs. ANOVA
also indicates that the difference of z scores between different stimulating fre-
quencies at the same viewing distance is not significant.

Figures B-37, B-38, B-39 and B-40 are z scores when the subjects attend the
target of 12, 13, 14 and 15Hz respectively at 4 viewing distances. They are in the
pages 234 and 237 in Appendix B. z scores are similar to SNRs. The subjects
with high z scores also have high SNRs. For example, in Figure B-40, z scores
of S1, S2, S3, S4 and S6 are prominent compared to the S5, S7, S8 and S10. S5
and S8 have z scores lower than 0. z score is considered as significant when it is
equal to or higher than 2.

For both SNRs and z scores, the viewing distance has higher impact than the
attended frequency. When EEG TWL is less than 3s, for the same viewing
distance, SNRs and z scores of different attended frequencies are very close. SNRs
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Figure 5.4: z scores across the subjects of different attended frequencies using
different EEG TWL at the same viewing distance. (a) to (d) across the sub-
jects of different attended frequencies using different EEG TWL at the same viewing
distance. (e) Grand average across the viewing distances of (a) to (d).

and z scores of the viewing distance 350cm are lower than the other viewing
distances. In section 5.3, the classification performance is evaluated by three
classification methods, CCA, MEC and MCC.

5.3 Classification analysis

This section provides an overview of the classification results. Three different
classification methods, CCA, MEC and MCC are employed to classify EEG data.
To find the suitability of the algorithms, they are compared in the classification
accuracies and average time elapsed for one classification. Next, the impacts of
several parameters over the classification performance are investigated. These
parameters include EEG TWL, the number of SSVEP harmonics, the number of
the electrodes etc. Furthermore, based on the results from the aforementioned
classification algorithms, confusion matrix and ROC are applied to further assess
the classification performance.
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5.3.1 Comparison of classification methods

Figure 5.5 shows the classification accuracies from three classification methods,

CCA, MEC and MCC. The ratio of
# of epochs being classified correctly

# of total epochs
× 100%

is defined as the classification accuracy. In each subplot of Figure 5.5, the classifi-
cation accuracy is the mean accuracy across 10 subjects and 4 attended frequen-
cies. The number of SSVEP harmonics is 1 (H1) and EEG is down–sampling by
100Hz (termed as fs100Hz). Signal of 11 electrodes is used to classify EEG. The
classification results of three classification methods as shown in Figure 5.5 are al-
most identical. For example, in (a), at EEG TWL 2s, the classification accuracies
are 88.25%, 87.63% and 88.13% for CCA, MEC and MCC respectively. In (b),
at EEG TWL 3s, the classification accuracies are 88.74%, 88.12% and 88.75% for
CCA, MEC and MCC respectively.
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Figure 5.5: Mean classification accuracies across the subjects and 4 attended
frequencies at different EEG TWL for each viewing distance using different
classification methods. (a) to (d) are the mean classification accuracies for the
viewing distance 60cm, 150cm, 250cm and 350cm respectively.

The classification accuracies improve as EEG TWL increases for all classifica-
tion methods. However, the improvement in accuracies becomes saturated after
EEG TWL 3s. This can be seen that the curves of the classification accuracies are
shaper in EEG TWLs between 1s and 3s than 3s to 5s. Although the classification

120



CHAPTER 5. RESULTS – DATA ANALYSIS OF FEASIBILITY EXPERIMENT

accuracies of the different viewing distance vary, the curves of the classification
accuracies against EEG TWLs are similar. These methods produce acceptable
classification accuracies (≥ 70%) with EEG TWLs equal to 2s or longer.

5.3.2 Number of SSVEP harmonics

In this section, the impact the number of SSVEP harmonics on classification
accuracies is investigated. Figure 5.6 represents the comparison of classification
results using different number of SSVEP harmonics. In Figure 5.6, the classifi-
cation method is CCA and the number of the electrodes is 11. The classification
accuracies are the mean accuracies across the subjects and the viewing distances.
From Figure 5.6, it is clearly seen that the classification accuracies of different
number of SSVEP harmonics are almost the same. For example, at EEG TWL 3s,
the classification accuracies for attended frequency 15Hz are 74%, 74% and 71%
for H1, H2 and H3 respectively. The classification accuracies of H1 are slightly
higher than H2 and H3.

The impact of the number of SSVEP harmonics is also inspected on different num-
ber of the electrodes. Figure B-41 which can be found in Appendix B presents the
same classification accuracies as Figure 5.6. Figure B-41 only uses 7 electrodes.
The classification accuracies between H1, H2 and H3 are also almost identical.
The impact of the number of SSVEP harmonics is further examined on the other
classification methods. The results can be found in Figures B-42 and B-43 in
Appendix B. The number of SSVEP harmonics does not show significant impact
on the classification accuracies for different classification methods. The classifi-
cation accuracies between H1, H2 and H3 are very similar.

5.3.3 Classification accuracies of attended frequencies and
viewing distances

This section inspects the impacts of the attended frequencies and the viewing
distances on the classification accuracies. Figure 5.7 represents the classification
accuracies of each attended frequency at different viewing distances. The clas-
sification method of this figure is CCA and the numbers of SSVEP harmonics
and the electrodes are 1 and 11 respectively. The classification accuracies are the
mean accuracies across the subjects. Figure 5.7 shows that for the same attended
frequency, its highest classification accuracies can be seen at the viewing distance
of 60cm while the lowest appears in the longest viewing distance 350cm. At the
same viewing distance, the attended frequency 12Hz has the highest classification
accuracies while 15Hz has the lowest ones. The classification accuracies of 12Hz
are consistent regardless of the viewing distances. They might be different but
very stable. For example, at EEG TWL 2s, the accuracies of 12Hz are 97.5%,
94.5%, 95%, and 94.5% at viewing distance 60cm, 150cm, 250cm and 350cm re-
spectively. On the other hand, the accuracies of 15Hz show great variance between
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Figure 5.6: Comparison of classification accuracies using different number of
SSVEP harmonics. In this figure, the classification method is CCA and the number
of the electrodes is 11. (a) to (d) are the mean classification accuracies across the
subjects and the viewing distances of attended frequency 12Hz, 13Hz, 14Hz and 15Hz
respectively. (e) is the mean classification across the subjects, viewing distances and
the attended frequencies.

the viewing distances. For example, at EEG TWL 2s, the accuracies of 15Hz are
78%, 68.5%,62.5% and 53% for viewing distances of 60cm, 150cm, 250cm and
350cm. This figure also shows that the classification accuracies of 12Hz is high
from 1st second of attending phase compared to the other attended frequencies.
At EEG TWL 1s, the accuracies are 81%, 58.5%,54.5% and 36% for 12Hz, 13Hz,
14Hz and 15Hz at 350cm viewing distance. The accuracies of 12Hz are also most
reliable. Its accuracies vary from 96% to 100% at EEG TWLs between 3s and
5s. The accuracies of 15Hz vary from 90.5% to 62.5% at EEG TWLs between 3s
and 5s.

The classification accuracies obtained by using MEC and MCC classification
methods can be found in Figures B-44 and B-45 in Appendix B. The analy-
sis parameters are the same as Figure 5.7. These two figures demonstrate the
same outcomes of Figure 5.7. The accuracies improve as EEG TWL increases
for all the attended frequencies at all viewing distances. The classification ac-
curacies of 60cm are highest and the ones of 350cm are the lowest among the
viewing distances. The classification accuracies of 12Hz are the highest and most
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Figure 5.7: Classification accuracies of 4 attended frequencies at different
viewing distances. The classification method of this figure is CCA. (a) to (d)
The classification accuracies of each attended frequency at one of the viewing distances.
The accuracies are the mean across the subjects. (e) The grand average across the
viewing distances of (a) to (d). The number of SSVEP harmonics and electrodes used
in this figure are 1 and 11 respectively.

reliable and the ones of 15Hz are the lowest and most variant across the viewing
distances.

5.3.4 Inter–subject variance

Inter–subject variance in the classification accuracies is assessed next. Figure 5.8
shows the mean classification accuracies across the subjects of the attended fre-
quencies at one viewing distance. This figure is the result of CCA using 2s of
EEG TWL, H1 and 11 electrodes. The blue vertical bar shows the standard de-
viations of the accuracies. This figure clearly shows that the accuracies of 12Hz
are the highest and the ones of 15Hz are the lowest over the viewing distance. It
also shows that the variances of the same attended frequency at different viewing
distances are similar. But the variances of different attended frequencies at the
same viewing distance are great. In general, inter–subject variance of the classi-
fication accuracies of 12Hz is smaller than the others and the variance in 15Hz
is the largest. For example, at viewing distance 350cm, the standard deviations
of 12Hz and 15Hz are 10% and 36% respectively. The variances of the different
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attended frequencies between the viewing distances are similar. For example, at
viewing distance 150cm, the standard deviations of 12Hz and 15Hz are 8% and
34% respectively.

One way ANOVA is applied to test the impact of the attended frequency on the
classification accuracies at the same viewing distance. In Figure 5.8, the shapes
of diamond, circle and square stand for the group of 13Hz, 14Hz and 15Hz. Each
column of the dots presents the ANOVA results of the group presented by the
dot and the corresponding group in the column. For instance, in column of
12Hz, there are three shapes of dots representing the group of 13Hz, 14Hz and
15Hz. These dots also represent ANOVA results between the groups which the
dots present and 12Hz. The black un–filled dot stands for non–significance and
the red filled dot stands for the significance. This example shows that the clas-
sification accuracies of 12Hz are significantly different from the other attended
frequencies. The difference of the classification accuracies of the other attended
frequencies is not significant. The similar results can also be observed in the use
of different classification methods, MEC and MCC. The results can be found in
Figures B-46 and B-47 in Appendix B. The data of Figures 5.8, B-46 and B-47
are used to test the impact of the viewing distances on classification accuracies
of the same attended frequency at different viewing distances. ANOVA results
show 8 out of 24 tests are significant. The tests shown significance are mainly
between the group of 60cm and groups of 150cm and 250cm.

5.3.5 Confusion matrix and ROC

In previous sections 5.3.2, 5.3.3 and 5.3.4, the classification accuracies (true pos-
itive rates) have been evaluated. The results demonstrate that in spite of the
impact of the viewing distance, the high classification accuracies can be observed
at longer viewing distance. In this section, the confusion matrix is used to further
inspect the classification performance. The recall rates and precision rates are
both explored. The recall rate is the same as the classification accuracy as defined
in section 5.3.1. Confusion matrix offers other metrics to evaluate the classifier,
for example, precision rate. Figure 5.9 shows the confusion matrix of grand total
of all subjects at different viewing distance. The confusion matrix of (a) to (d)
is the sum of the individual confusion matrix of each subject. (e) is the grand
total of (a) to (d). The columns indicate the classification results of the classifier
and rows indicate the actual class. The cell ni,j stands for the number of i class
being classified as j class. The classification method of this figure is CCA. The
number of SSVEP harmonics and the electrodes are 1 and 11 and EEG TWL is 3s.

Confusion matrix not only reveals the classification accuracies but also the preci-
sion rates of different classes. It is known from section 5.3.3 that 12Hz and 15Hz
have the highest and lowest accuracies. It is clear shown in Figure 5.9 that 12Hz
has highest number of false positives and 15Hz has the lowest number of the false
positives at the same viewing distance. In other words, from precision point of
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Figure 5.8: Classification accuracies across the subjects of all attended fre-
quencies at different viewing distance and their grand average. The clas-
sification method of this figure is CCA. (a) to (d) The classification accuracies
of each attended frequency at one of the viewing distances. The accuracies are the
mean across the subjects. (e) The grand average across the viewing distances of (a) to
(d). The number of SSVEP harmonics and electrodes used in this figure are 1 and 11
respectively. EEG TWL is 2s.

view, 15Hz outperforms the other attended frequencies. As the viewing distance
increases, the number of false positives of 12Hz increases dramatically. The false
positives of 12Hz are 39 at 60cm and increase to 117 at 350cm. The outcome of
one misclassification is most likely 12Hz. Confusion matrix using classification
methods MEC and MCC with the same parameters can be found in Appendix B,
Figures B-48 and B-49. These confusion matrices from different methods are very
similar.

Confusion matrix of Figure 5.9 is converted into ROC plots. Each confusion
matrix corresponding to 4 points which stand for 4 classes (attended frequen-
cies) in ROC space as shown in Figure 5.10. For a good classifier, ROC point
should be as close as to y axis (indicating low false positive rate) and as distant
as from x axis (indicating high true positive rate). In Figure 5.10, ROC space is
divided/gridded into 25 cells. As it can be seen, the location of the points differs
greatly at different viewing distances. For ROC points of 13Hz and 14Hz at each
viewing distance, they are either located in the most left–upper area or close to

125



CHAPTER 5. RESULTS – DATA ANALYSIS OF FEASIBILITY EXPERIMENT

198

7

15

17

237

2

192

5

7

206

0

0

178

2

180

0

1

2

174

177

200

200

200

200

800

15hz

12hz

14hz

13hz

13hz

14hz

12hz

15hz

sum of
column

sum of
 row

(a) 60cm

194

22

10

19

245

3

172

9

20

204

1

3

181

7

192

2

2

0

154

158

200

199

200

200

799

15hz

12hz

14hz

13hz

13hz

14hz

12hz

15hz

sum of
column

sum of
 row

(b) 150cm

198

27

39

39

303

1

169

5

18

193

1

1

155

6

163

0

3

1

137

141

200

200

200

200

800

15hz

12hz

14hz

13hz

13hz

14hz

12hz

15hz

sum of
column

sum of
 row

(c) 250cm

196

30

35

52

313

2

155

11

14

182

1

10

148

9

168

1

5

6

125

137

200

200

200

200

800

15hz

12hz

14hz

13hz

13hz

14hz

12hz

15hz

sum of
column

sum of
 row

(d) 350cm

786

86

99

127

1098

8

688

30

59

785

3

14

662

24

703

3

11

9

590

613

800

799

800

800

3199

15hz

12hz

14hz

13hz

13hz

14hz

12hz

15hz

sum of
column

sum of
 row

(e) grand total

CCA−ept3sec−H1−fs100Hz
no of eletrodes: 11

Figure 5.9: Confusion matrix of grand total of all subjects at different viewing
distance using CCA. The confusion matrix of (a) to (d) is the sum of the individual
confusion matrix of each subject. (e) is the grand total of (a) to (d). Each number
in the cell is the number of class i being classified as class j. The numbers of SSVEP
harmonics and electrodes are 1 and 11 in this figure. The classification method is CCA
and EEG TWL is 3s.

this area which indicates that they are superior to 12Hz and 15Hz. The points
of 12Hz and 15Hz, they are either distant from both x and y axis or close to x
and y axis which indicate that they have either high true and false positive rates
or low true and false positive rates at the same time. At the viewing distance
of 60cm, all the points are located in the most left–upper area. As the viewing
distance increases, the location of the points starts to move away from this area.
At the viewing distance of 350cm, none of the points are located in this area.
The change of the location is different for each class. The ROC point of 12Hz
moves away from y axis as the viewing distance increases but the vertical position
does not change much. The ROC point of 15Hz moves towards to x axis while
its horizontal position does not change much. The ROC points of 13 and 14Hz
change both vertical and horizontal positions with less degree of the change in 12
and 15Hz. In general, 60cm is the best and 350cm is the worst.

For each class, its corresponding F measurement is computed and shown in the
right-lower corner of ROC plot. F measurement takes both accuracy and preci-
sion rates into consideration and combines them as one metrics. Although 12Hz
has the highest accuracies, with the lowest precision rates, F measurements of
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Figure 5.10: ROC plots corresponding to the confusion matrices of Figure 5.9
and F measurements. Each ROC plot (a) to (e) is corresponding to one confusion
matrix of Figure 5.9 (a) to (e). The classification method and parameters are the same
as Figure 5.9.

12Hz are not the highest. On the other hand, F measurements of 15Hz are not
the lowest in spite of the lowest accuracies. F measurement confirms that the
classification performance of 13Hz and 14Hz are superior to the ones of 12Hz and
15Hz, except at the viewing distance of 150cm.

Confusion matrices of Figures B-48 and B-49 are also converted into ROC plots
as shown in Figures B-50 and B-51. These figures are in Appendix B. Their
corresponding F measurements are also computed. The results are similar to
Figures 5.10. F measurements of the attended frequencies are in the order of
14Hz, 13Hz, 15Hz and 12Hz for three methods. To further evaluate the classifi-
cation performance, the continuous ROC plots are introduced next.

Figure 5.11 represents the continuous ROC. This figure is based on classification
method CCA. The numbers of SSVEP harmonics and the electrodes are 1 and
11. EEG TWL is 3s. For each subplot (a) to (d) in Figure 5.11 , the classification
results of each subjects at the same viewing distance are combined together. The
classification results using CCA are the canonical correlation coefficients of EEG
and the reference signals of four attended frequencies. They are termed as the
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scores. Each score is given a label corresponding to the attended frequency. By
changing the thresholds, one threshold results in one ROC point and a continuous
ROC curve is obtained. In continuous ROC, AUC is used to assess the classifi-
cation performance. AUC is a value between 0 and 1. The higher value of AUC
is, the better classification performance is.

Figure 5.11 shows that in general, the viewing distance of 60cm has higher mean
AUC of all attended frequencies compared to the other viewing distances. 350cm
has the lowest mean AUC. This result is consistent with F measurements of
Figure 5.9. That is F measurements of 60cm are higher than the other viewing
distances and the ones of 350cm are the lowest. For individual attended frequency
at the same viewing distance, there is no particular order. AUC of 15Hz is nor-
mally the lowest. It is not completely same as Figure 5.9. Both results indicate
that accuracy and precision should be taken into account to assess classification
performance.

Figures B-52 and B-53 in Appendix B are the continuous ROC curves based on
classification method MEC and MCC. The numbers of SSVEP harmonics and
the electrodes are 1 and 11. EEG TWL is 3s. They can be found in page 244.
These two figures are consistent with Figure 5.11.

Next, the impact of the number of the electrodes employed on the classification
accuracies are evaluated by the highest, mean and lowest classification accuracies
corresponding to the number of the electrodes. The optimal electrode sets and
the minimal optimal electrode sets will be discussed in section 5.4 .

5.3.6 Number of the electrodes

Figure 5.12 represents the mean values of the highest, average and lowest ac-
curacies corresponding to the number of the electrodes across the subjects and
attended frequencies at different viewing distance. The vertical bar is the stan-
dard deviation of the average accuracies of the subjects. This figure is based
on classification method CCA. The number of SSVEP harmonics is 1 and EEG
TWL is 2s. The number of the electrodes employed in previous classification
accuracies analysis is mainly 11. Figure 5.12 shows that different number of the
electrodes has the pattern as 11. That is, with the same number of the electrodes,
the classification accuracies of the viewing distance 60cm is highest and the one
of 350cm is the lowest. This rule is valid to three accuracies, the highest, average
and the lowest.

For each viewing distance, the highest accuracies occur at the number of the
electrodes between 5 and 7. For example, the highest accuracies are 92%, 88%,
85% and 84% for the viewing distances of 60cm, 150cm, 250cm and 350cm re-
spectively. The corresponding number of the electrodes are (6, 7), (5), (6) and
(5, 6). This indicates that more electrodes employed might not result in higher
accuracies. However, the average accuracies are linear to the number of the elec-
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Figure 5.11: Continuous ROC curves of all attended frequencies at different
viewing distances. The subplots of (a) to (d) are for viewing distances of 60cm,
150cm, 250cm and 350cm respectively. This figure is based on classification method
CCA. The numbers of SSVEP harmonics and the electrodes are 1 and 11. EEG TWL
is 3s.

trodes. The larger the number of electrodes is, the higher the corresponding
average accuracies are. The lowest accuracies do not result from the smallest
number of the electrodes. For example, in this figure, the lowest accuracies re-
sults from 2 electrodes for all viewing distances. The lowest accuracies are 37%,
30%, 30% and 25% for the viewing distances of 60cm, 150cm, 250cm and 350cm
respectively. The inter-subject variances across the number of the electrodes are
similar. For example, at the viewing distance 250cm, the standard deviations
of the average accuracies are between 25% and 30%. Apart from the viewing
distance of 60cm, the smaller number of the electrodes shows less inter–subject
variant and the larger number of the electrode shows greater inter–subject variant.

The same analysis is applied to the classifications based on MEC and MCC.
Three accuracies corresponding to the number of the electrodes based on MEC
and MCC can be found in Figures B-54 and B-55 in page 245 of Appendix B.
They are consistent with Figure 5.12.
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Figure 5.12: The highest, average and lowest classification accuracies and the
standard deviation corresponding to the number of the electrodes across
the subject and attended frequencies at different viewing distances. EEG
TWL is 2s and the number of SSVEP harmonics is 1 in this figure. The classification
method is CCA.

5.4 Optimal electrode sets

This section is focused on the analysis of the optimal electrode subsets. The
optimal electrode subsets of the subject are the electrode subsets which result in
the highest classification accuracy in one experiment condition. The optimal elec-
trode subsets with the least electrode number are termed as the minimal optimal
electrode subsets. The optimal electrode subsets of the same subject could be
experiment-condition and classification method dependent. In this section, the
distribution of the optimal electrode subsets over the number of the electrodes is
investigated first.

5.4.1 Distribution of optimal electrode subsets

To get the optimal electrode subset distribution, the highest classification accu-
racy of one subject in one experiment condition is found. For each number of the
electrodes (1 to 11), the number of optimal electrode subsets corresponding to
one electrode number will be counted and transferred to percentage by dividing
the total electrode subsets of the corresponding electrode number n which is equal
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to C11
n .

Table 5.2 represents the optimal electrode subsets distribution of 10 subjects over
the number of the electrodes and the highest classification rate of each subject
across the attended frequencies and the viewing distances. For each subject, the
optimal electrode subset distribution of one experiment condition is found. For
one subject, there are 16 experiment conditions. Table 5.2 shows the average of
16 experiment conditions for each subject. The columns from 2 to 12 in Table 5.2
represent the ratio between the number of the optimal electrode subsets which
result in the highest classification rate and the total electrode subsets of the cor-
responding electrode number. The column of Highest is the highest classification
accuracy in the experiment condition. Table 5.2 is based on CCA with 1st har-
monic of SSVEP. EEG TWL is 2s.

Table 5.2: Optimal electrode subsets distribution over the number of the elec-
trodes and the highest classification rate of each subject across the attended
frequencies and the viewing distances. This table is based on CCA. The per-
centage (%) in column 2 to 12 represents the ratio between the number of the optimal
electrode subsets which result in the highest classification rate and the total electrode
subsets of the corresponding electrode number. The column of column head Highest is
the highest classification accuracy in the experiment condition. The number of SSVEP
harmonics is 1 and EEG TWL is 2s.

ele # 1 2 3 4 5 6 7 8 9 10 11 Highest

S1 7.95% 15.11% 25.95% 41.08% 55.07% 65.38% 71.57% 74.85% 75.57% 75.57% 75.00% 99.38%
S2 0.57% 4.09% 10.45% 19.96% 29.71% 39.88% 50.36% 60.68% 70.57% 79.55% 87.50% 96.88%
S3 10.80% 17.39% 31.02% 46.36% 59.88% 70.71% 78.41% 83.03% 86.25% 88.64% 93.75% 100.00%
S4 10.80% 10.11% 13.83% 19.17% 25.12% 32.49% 40.23% 47.69% 52.73% 57.39% 50.00% 97.19%
S5 1.70% 0.00% 0.27% 0.70% 2.35% 4.96% 8.84% 13.11% 17.39% 22.16% 25.00% 82.50%
S6 2.27% 5.00% 8.83% 13.75% 18.30% 22.56% 26.74% 29.81% 32.16% 34.09% 37.50% 95.63%
S7 0.00% 0.00% 0.27% 0.21% 0.46% 1.06% 1.89% 3.26% 4.09% 5.11% 6.25% 74.38%
S8 0.00% 0.11% 0.34% 1.46% 3.44% 7.13% 11.63% 17.01% 22.73% 28.98% 37.50% 82.50%
S9 0.57% 4.55% 7.05% 10.11% 13.88% 17.09% 19.70% 22.69% 26.36% 32.39% 37.50% 96.56%
S10 3.41% 0.11% 0.57% 0.70% 0.32% 0.20% 0.19% 0.34% 0.91% 1.70% 6.25% 57.19%

Table 5.2 shows that with carefully chosen electrodes, the classification accuracies
could be very high. For example, the mean highest accuracies across 16 experi-
ment conditions for subject 3 is 100%. This indicates that for subject 3, in any
experiment condition, there is at least one electrode subset results in 100% clas-
sification accuracy. Apart from S3, the mean highest accuracies of the subjects
1, 2, 4, 6 and 9 are over 95%. The lowest one is under 60% from S10.

For most of the subjects, the number of optimal electrode subsets could be any
number from 1 to 11. Only S5, S7 and S8 do not have optimal electrode subsets
in electrode numbers 1 and 2. It is also clearly seen that the ratios between
the optimal electrode subsets and the total electrode subsets of the correspond-
ing electrode number increases as the electrode number increases except electrode
number 11 and S4, S10. It is monotonically increasing against the electrode num-
ber. This might be explained by the followings. First, as the electrode number
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increases, it is more likely to include the minimal optimal electrode subset. As
long as the extra-added electrodes do not provide irrelevant information, the elec-
trode subsets are very likely to remain the same performance. Moreover, the total
number of the electrode subsets become smaller when the electrode number ≥ 7.
When the electrode number become 11 which has only one electrode subset, it ei-
ther results in the same or worse performance. For subject 10, the distribution is
not monotonically increasing. It might result from the overall poor performance.
The classification accuracies of S10 might be the result of the chance.

Furthermore, for S1, S2, S3, S4, S6 and S9 whose mean highest accuracies are over
95%, their optimal electrode distributions over the number of the electrodes are
significantly higher than S5, S7, S8 and S10. The optimal electrode distributions
of S5 and S8 whose mean highest accuracies are over 80% are higher than S7
and S10. This might be also explained by the overall poor performance for those
subjects with low classification accuracies.

5.4.2 Number of minimal optimal electrode subsets

This section investigates what is the minimal electrode number required in order
to result in the highest accuracies for each subject. Figure 5.13 shows the elec-
trode number of minimal optimal electrode subsets of each subject. Each subplot
presents one viewing distance. One dot shape presents one attended frequency.
The blue bar presents the mean electrode number of 4 attended frequencies at
the same viewing distance. Figure 5.13 is based on CCA with 1st harmonic of
SSVEP and 2s of EEG TWL.

Figure 5.13 shows that the electrode number of the minimal optimal electrode
subset is dependent on the subject and the experiment condition. The range of
the electrode number of the minimal optimal electrode subsets across the subjects
and the experiment condition is between 1 and 8. The majority is ≤ 4. There is
no particular pattern for the electrode number distribution. However, for most
of the subjects, the mean values of the different viewing distance are consistent.
All of the mean values are less than 6.

5.4.3 Demographics of minimal optimal electrode subsets

This section investigates the demographics of the minimal optimal electrode sub-
sets. It attempt to find which electrodes are in such electrode subset and the sub-
ject variance in terms of optimal electrodes. In this section, only the electrodes
of the minimal optimal electrode subsets are investigated but not the optimal
electrode subsets. As mentioned earlier that the electrodes in the optimal elec-
trode subsets might not be the optimal. The optimal electrode subsets might be
optimal because they contain enough electrodes which can result in the highest
accuracies. To prevent the bias, only the minimal optimal electrode subsets are
inspected.
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Figure 5.13: Mean electrode number of the minimal optimal electrode subsets
for the subjects at different viewing distances. The blue bar presents the mean
electrode number of the minimal optimal electrode subsets for each subject across the
attended frequencies. The dot presents the electrode number of one attended frequency
at one viewing distance. This figure is based CCA. EEG TWL is 2s and the number
of SSVEP harmonics is 1.

Table 5.3 shows the demographics of the minimal optimal electrodes of the sub-
ject across the attended frequencies and the viewing distances. The numbers of
this table stand for how many times the corresponding electrodes are in the min-
imal optimal electrode subset for the corresponding subjects across the attended
frequencies and viewing distances. It is obvious to conclude that the electrode
Oz is the electrode which is the most common electrode included in the minimal
optimal electrode subsets for all subjects. The electrodes O2 and O1 are the next.
The higher numbers of the three electrodes indicate that they can work with the
many other electrodes to achieve the accuracies. The least common electrode is
O10 which is far from Oz.

The same analysis is applied to the classification results based on MEC and MCC.
The optimal electrode subsets distributions for MEC and MCC can be found in
Tables C-3 and C-4. The optimal electrode subsets distributions of MEC and
MCC are similar to the one of CCA. For example, S5, S7 and S8 have no optimal

133



CHAPTER 5. RESULTS – DATA ANALYSIS OF FEASIBILITY EXPERIMENT

Table 5.3: The demographics of the minimal optimal electrodes of the subject
across the attended frequencies and the viewing distances. This table is
based on CCA with the 1st harmonic of SSVEP and 2s of EEG TWL. The
number shown in the table represents the number of the corresponding electrodes being
one of the electrodes in the minimal optimal electrode subset for the corresponding
subject across the attended frequencies and viewing distances.

ele POz Oz Iz 124 125 O1 127 128 O9 O10 O2

S1 3 35 18 18 11 26 21 14 20 21 13
S2 10 53 5 18 19 37 25 9 7 5 37
S3 8 56 7 15 10 15 14 14 12 14 17
S4 10 35 13 12 7 8 10 10 10 8 26
S5 8 27 12 8 16 23 26 25 10 3 12
S6 14 48 14 9 14 11 6 10 8 9 15
S7 24 26 5 31 17 11 7 12 8 4 13
S8 15 22 6 15 5 14 5 12 11 4 18
S9 7 13 22 13 23 14 16 19 40 26 15
S10 10 12 12 6 5 13 11 10 9 11 7

Grand Total 109 327 114 145 127 172 141 135 135 105 173

electrode subsets with electrode number 1. Except S4 and S10, the distribution is
monotonically increasing against the electrode number without taking electrode
number 11 into account. Figures B-56 and B-57 in Appendix B show the electrode
number of minimal optimal electrode subsets of each subject across the attended
frequencies and viewing distances. Again, they are very similar to the ones of
CCA. For example, the ranges of the electrode numbers of the minimal optimal
electrode subsets are between 1 and 8. The mean electrode numbers are ≤ 6.
Finally, the demographics of the minimal optimal electrode subsets are listed
in Tables C-5 and C-6 in Appendix C. Electrode Oz is also the most common
electrode found in the minimal optimal electrode subsets, followed by O1 or O2.
O10 is the least common electrode found in the minimal optimal electrode subsets.

5.5 Electrode rankings

In section 5.4, it is found that it does not need all the electrode signals to achieve
the highest accuracies. In this study, 11 electrodes over the occipital area were
pre-selected as EEG acquisition channels. This section proposes an electrode
selection algorithm which chooses the electrodes from 11 pre-selected electrodes
according to their importance and evaluates the performance of the selected elec-
trodes.

In this proposed electrode ranking method, 11 pre–selected electrodes are ranked
according the coefficients of the spatial filters and the classification accuracies.
In coefficients of the spatial filters method, the coefficients of the spatial filters
are obtained when the signals of 11 electrodes employed for classification. In
the classification accuracies method, the classification accuracy of each electrode
corresponds to the accuracy resulting from its own. The rankings of the elec-
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trodes stand for their relative importance which is measured by the values of
the corresponding coefficients or accuracies. After the electrodes are ranked, the
electrode with the highest ranking is selected first, followed by the next highest
ranked electrode until the lowest ranking of the electrodes is selected. Depending
on the number of the electrodes required, this ranking is flexible and suitable for
any electrode number. In other words, if the desired electrode number is Ny,
1 ≤ Ny ≤ 11, the electrodes of the first Ny rankings are selected to form the
electrode set.

The electrode set formed by the electrodes selected by the electrode ranking is
termed as the ranked electrode subset. The efficiency of the ranked electrode
subset is evaluated by the comparison to the highest, average and lowest accu-
racies of the electrode subsets of the same electrode numbers Ny varying from 1
to 11. To get an objective view on its performance, a performance index (PI)
is introduced. Each electrode number has one corresponding PI. For electrode
number Ny, PI is the performance index of the corresponding ranked electrode
set in the electrode subsets with Ny electrodes. PI is defined by equation (3.20)
and with value between 0 and 1. The higher PI is, the better the ranked electrode
set is.

The electrodes are ranked and evaluated by the rule of leave–one–out. In other
words, the electrodes are ranked by the data of 9 subjects. The resultant ranking
is evaluated by the subject who is excluded from the ranking process. As a result,
there will be 10 electrodes rankings.

5.5.1 Ranked by spatial filter coefficients

To use the coefficient of the spatial filters to rank the electrodes, the mean coef-
ficients across the subjects and across the experiment conditions are found. The
coefficients of the spatial filters of subjects are either positive or negative. To
prevent the cancelling out effect between the subjects, the absolute values of the
coefficients are used. For example, one electrode has strongly negative impact
on one subject but has the reverse impact on the other subject. If adding these
two together directly, the impact of this electrode is cancelled out. The mean
coefficients across the subjects and the experiment conditions are divided by the
largest coefficient. The final mean coefficients are between 0 and 1 through this
division. The electrode with the largest coefficient is ranked the first. The elec-
trode with the second largest coefficient is ranked the second until the electrode
with the lowest coefficient is ranked the last (11th).

Figure 5.14 represents the topographies of the mean spatial filter coefficients of
11 electrodes. This figure is based on CCA with the 1st harmonic of SSVEP and
EEG TWL 2s. The subplots of (a) to (d) present the mean spatial coefficients of
11 electrode across the subjects and the attended frequencies at different viewing
distances. The subplot of (e) is the grand average of (a) to (d). The coefficients
of each subject are the coefficients obtained by the rule of leave–one–out.
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Figure 5.14: Topographies of mean CCA spatial filter coefficients of the elec-
trodes across the subjects and attended frequencies at different viewing
distances. The spatial filter is obtained using the electrode subsets consisting of 11
electrodes in classification. The classification method of this figure is CCA.

Subplots of (a) to (d) are very similar. The centre of 11 pre–selected electrodes
is roughly located in the position of the electrode Oz. The electrode Oz has the
highest coefficient. The electrodes surrounding Oz also have higher coefficients,
for example, O1, O2, 124, 125, 127 and 128. On the other hand, the coefficients
of the electrodes distant from Oz are smaller, for example O10. Compared to
Table C-6 which shows the demographics of the minimal optimal electrode sets.
They agree to each other. That is, the electrodes with higher spatial coefficients
are also more likely found in the minimal optimal electrode sets.

Table 5.4 lists the electrode ranking for each subject by using the rule of leave–
one–out across the attended frequencies and the viewing distances. Although the
data to construct the rankings are different for each subject, the rankings are
very similar as seen from Table 5.4. At least 4 out of 11 electrodes have the same
order. They are the first three electrodes, Oz–127–128 and the last one is O10.

Next, the electrode rankings are cross–validated to evaluate its efficiency. The
process is as following. For each subject, the electrode rankings are evaluated by
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Table 5.4: Electrode Rankings for each subject by using the rule of leave-
one-out across the attended frequencies and the viewing distances. These
electrode rankings are based on CCA spatial filter coefficients. The electrode
rankings have at least four electrodes in the same order, Oz, 127 and 128 are the top
three rankings and O10 is the last ranking.

ele ranking 1 2 3 4 5 6 7 8 9 10 11

S1 Oz 127 128 O2 124 Iz 125 O9 O1 POz O10
S2 Oz 127 128 124 O2 Iz O9 125 O1 POz O10
S3 Oz 127 128 O2 124 125 Iz O9 O1 POz O10
S4 Oz 127 128 O2 124 125 Iz O9 O1 POz O10
S5 Oz 127 128 O2 124 Iz O9 125 O1 POz O10
S6 Oz 127 128 124 O2 Iz 125 O9 O1 POz O10
S7 Oz 127 128 124 125 O2 Iz O1 O9 POz O10
S8 Oz 127 128 O2 124 Iz 125 O9 O1 POz O10
S9 Oz 127 128 O2 124 O9 Iz 125 POz O1 O10
S10 Oz 127 128 124 Iz 125 O2 O9 O1 POz O10

11 electrode numbers, from 1 to 11. For each electrode number, the classification
accuracy of the ranked electrode set and the highest, average and lowest accu-
racies corresponding to that electrode number in different experiment conditions
are found. PI corresponding to that electrode number is calculated. Table 5.5 is
the mean results across the subjects and the experiment conditions.

Table 5.5 clearly demonstrates the followings. First of all, the accuracies of ranked
electrode sets are monotonically increasing against the electrode number. By us-
ing the electrode rankings, increasing the electrode also increase the accuracies.
Moreover, the ranked accuracies are much higher than the corresponding lowest
accuracies. Except the electrode number 9, the ranked accuracies are also higher
than the corresponding average accuracies. However, none of the ranked accura-
cies are equal to the corresponding highest accuracies. Furthermore, PI indicates
that the ranked electrode sets has over 65% to 85% possibility to outperform or
have the same performance as the electrode sets of the same electrode number.
These all demonstrate that the electrode ranked by the spatial coefficient can be
used to select the electrodes.

PIs of Table 5.5 only show an overall view on the performance across the subjects.
To further examine the feasibility of the electrode rankings to individual subject,
PIs of Table 5.5 are investigated. Table 5.6 lists PIs of the subjects correspond-
ing to the electrode numbers. From this table, it is clearly seen that most of PIs
are over 50%. Only 7 out of 110 PIs are lower than 50%. In other words, the
ranked electrode sets have more than 50% of the possibility to perform the same
or better than the randomly selected. PIs which are over 50% can be observed
in any electrode numbers. It not only is seen in the electrodes numbers which
have fewer electrode subsets, for example, 1, 2, 9 and 10, but also in the electrode
numbers which have more electrode subsets, for example, 4, 5, 6 and 7. This
shows that the electrode ranking can be used to select the electrode for the new
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Table 5.5: Electrode rankings evaluation results across the subjects and ex-
periment conditions. The electrode rankings are evaluated by comparing
the ranked accuracies resulting from the ranked electrode sets and the cor-
responding highest, average and lowest accuracies of the same electrode
number. PIs are listed in the last row of the table. This table is based on
CCA.

ele # 1 2 3 4 5 6 7 8 9 10 11

Ranking
accuracies 57.86% 60.46% 62.93% 68.65% 72.78% 76.72% 76.97% 77.37% 77.40% 79.63% 79.91%
Highest 64.21% 78.53% 84.28% 85.59% 86.63% 87.00% 86.63% 86.16% 84.84% 82.84% 79.91%
Average 51.13% 55.09% 59.68% 64.25% 68.19% 71.46% 74.01% 75.97% 77.52% 78.76% 79.91%
Lowest 34.73% 30.48% 31.77% 34.64% 37.52% 42.62% 49.62% 57.03% 64.96% 71.56% 79.91%

PI 84.49% 69.56% 66.98% 71.87% 76.45% 82.67% 80.61% 78.51% 73.85% 85.06% 100.00%

user of a SSVEP based BCI.

Table 5.6: PIs of individual subject corresponding to one electrode number
when using the leave–one–out electrode rankings. The classification data of
this table are based on CCA. This table expands PIs of Table 5.5 from the mean
values to the details of each subject.

ele # 1 2 3 4 5 6 7 8 9 10 11

S1 94.32% 78.75% 89.39% 89.89% 70.08% 81.40% 93.48% 91.89% 92.16% 94.32% 100.00%
S2 88.07% 88.07% 74.28% 87.73% 96.31% 92.11% 87.97% 91.36% 88.30% 95.45% 100.00%
S3 97.73% 97.73% 90.98% 91.78% 99.85% 95.16% 99.51% 87.16% 88.64% 92.05% 100.00%
S4 95.45% 62.95% 81.97% 91.97% 93.97% 94.59% 90.27% 84.24% 75.91% 88.07% 100.00%
S5 80.11% 51.36% 40.91% 68.41% 78.61% 83.79% 83.43% 81.48% 84.77% 86.36% 100.00%
S6 98.30% 86.82% 89.32% 86.21% 89.33% 90.83% 80.04% 78.90% 77.39% 83.52% 100.00%
S7 65.91% 46.59% 55.19% 78.20% 71.65% 66.48% 64.79% 62.80% 54.20% 80.68% 100.00%
S8 73.86% 76.93% 60.53% 59.72% 90.73% 91.40% 70.97% 72.05% 67.73% 83.52% 100.00%
S9 75.57% 31.36% 27.20% 16.23% 8.35% 65.48% 71.10% 76.25% 64.43% 72.73% 100.00%
S10 75.57% 75.00% 60.08% 48.60% 65.64% 65.52% 64.56% 58.94% 45.00% 73.86% 100.00%

The electrode rankings derived above are based on 16 experiment conditions
which take more than one hour for one subject. In reality, this process needs to
be speeded up. The effectiveness of the electrode ranking derived by one experi-
ment condition is evaluated. The process to develop the electrode ranking is the
same as described earlier, except that only one experiment condition is consid-
ered at one time. The data used to validate the rankings is the same condition
of the excluding subject. The mean PIs of each experiment condition are used to
evaluate the effectiveness. As a result, there are 16 mean PIs across the subjects
over the electrode numbers.

Figure 5.15 illustrates PIs across the subjects at each experiment condition. This
Figure is based on CCA classification method. This figure also confirms the us-
ability of the electrode rankings. Only one out of 176 average PIs is lower than
50% (13Hz, 350cm). Quite a few PIs are over 75%.

Electrode rankings are also derived from the classification results using classi-
fication methods MEC and MCC. The topographies of the mean spatial filter
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Figure 5.15: PIs across the subjects for each experiment condition. PIs of
this figure are the evaluation metrics of the electrode rankings based on the
CCA spatial filter coefficients. It shows that except one PI is lower than 50%, all
PIs are over 50%. It demonstrates the usability of the electrode rankings in selection
of the electrodes and the efficiency of the ranked electrode sets.

coefficients of 11 electrodes for MEC and MCC can be found in Figure B-58 and
B-59 in Appendix B respectively. The parameters of harmonics and EEG TWL
are the same as those of Figure 5.14. Unlike previous analysis, the results of the
same analysis of three methods are very similar. The topographies patterns of
MEC and MCC are more diversified than CCA, especially MEC. The highest
values of the topographies of MEC spatial filter does not always locate in the
centre of all electrodes which is Oz. For example, electrodes 127 and 128 at some
viewing distances. As a result, the importance of the electrodes in three methods
is different. For example, in CCA, the coefficient of the electrode Oz is signifi-
cantly higher than the others. This is not the case in MEC. It is also different in
MCC whose most important electrodes are Oz and O2.

Using MEC and MCC spatial filter coefficients to rank the electrodes, the cor-
responding leave–one–out electrode rankings are listed in Tables C-7 and C-8.
As expected, the corresponding electrode rankings of each subject are also more
diversified than CCA. For example, 127 and 128 share the first two top rankings
and POz and O10 share the last two using MEC spatial filter coefficients. The
electrode ranking using MCC has the Oz as the top ranked electrode which is the
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same as CCA. O2 is at the second ranking. The last two ranking positions are
mainly shared by O10 and O1. Overall speaking, the electrode rankings using
the same spatial filter coefficients for each subject are different but very similar
as seen in both MEC and MCC.

The electrode rankings are cross-validated by the highest, average and lowest
accuracies of the corresponding electrode number. PIs are also calculated. The
results are listed in Tables C-9 and C-10. The raked accuracies are monotonically
increasing against the electrode number, same as CCA. The ranked accuracies
are much higher than the lowest ones. Majority of them are also higher than the
averages. None of PIs in MEC or MCC are lower than 50% which indicates that
the ranked electrode has higher opportunity to perform better than the randomly
chosen electrode sets.

PIs of the individual subject of Tables C-9 and C-10 are further explored. The
results are listed in Tables C-11 and C-12. There are more PIs in MEC and MCC
which are lower than 50% than in CCA. See the bold number in both tables. The
robustness of the electrode rankings is also examined by using the classification
data of one experiment condition. Figures B-60 and B-61 in Appendix B are
the PIs across the subjects at each experiment condition. They are based on the
classification data of MEC and MCC classification methods. There are more PIs
from MEC which are lower than 50%. However, the majority of PIs exceed 50%.

In section 5.5.2, the electrodes will be ranked by the classification accuracy result-
ing from the corresponding electrode. In this section, the electrodes are ranked
by the coefficients of the spatial filter when the 11 electrodes are employed in the
classification. The coefficients of the spatial filter are the outcomes of a complete
interaction/dependence between all electrodes. The rankings of section 5.5.2 are
the results of complete independence between the electrodes. The computations
of the coefficients of the spatial filter and the single electrode classification are the
lowest compared to the other electrode numbers. It only requires 20 classifications
and 220 classifications respectively in one experiment condition.

5.5.2 Ranked by single electrode classification accuracy

In this section, all the procedures for ranking the electrodes are the same as sec-
tion 5.5.1. The only difference is that this section ranks the electrodes according
to classification accuracy of the corresponding electrode not the coefficient of the
spatial filter. Therefore, the first thing to know is the single electrode classifica-
tion accuracy.

Figure 5.16 shows topographies of mean classification accuracies of the corre-
sponding electrodes across the subjects and attended frequencies at different
viewing distances. As the classification accuracies between the electrodes are
close, therefore the range of the colour-map is roughly between the lowest to
highest, instead of 0 to 1 to improve the reading of the topographies. (Other-
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wise, the colours of all electrodes are almost the same.) Also, the single electrode
accuracies are the same for three different classification methods. Therefore, the
electrode rankings by using single electrode accuracies are the same for three
methods. In this section, for MEC and MCC, only the evaluation of the elec-
trode rankings and PIs will be presented.
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Figure 5.16: Topographies of mean classification accuracies of the correspond-
ing electrodes across the subjects and attended frequencies at different view-
ing distances. The classification accuracy of each electrode is the accuracy results
from the corresponding electrode. The classification method of this figure is CCA. In
fact, the singles electrode accuracy is the same regardless of the classification method
employed. Also, as the accuracies between the electrodes are close, in order to provide
a better visualization between the electrodes, the scales of the colour-maps differ. The
larger scales of the colour-map will result in the colour un-discriminated between the
electrodes. The upper and lower limitation of the colour-map are roughly equal to the
lowest and highest single electrode accuracy.

Figure 5.16 shows that the highest single electrode accuracy occurs from the elec-
trode around Oz, or Oz itself. The electrodes surrounding Oz are also exhibiting
higher accuracies than the electrode which are distant from Oz, for example O10.
Overall speaking, the difference between the electrodes is not significant. The
range of the mean accuracies of the electrodes is between 40%-60% .
The efficacy of electrode rankings listed in Table 5.7 is evaluated by comparing the
ranking accuracies resulting from the ranked electrode sets and the corresponding
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Table 5.7: Electrode Rankings for each subject by classification accuracies
using the rule of leave–one–out across the attended frequencies and the
viewing distances. These electrode rankings are based on single electrode classifica-
tion accuracy. Electrode Oz is at the first ranking position while O10 is at last for all
subjects.

ele ranking 1 2 3 4 5 6 7 8 9 10 11

S1 Oz 124 128 125 127 O1 POz Iz O2 O9 O10
S2 Oz 124 O1 128 127 125 POz Iz O2 O9 O10
S3 Oz 124 O1 127 128 125 POz Iz O2 O9 O10
S4 Oz 125 124 POz 128 O1 127 O2 Iz O9 O10
S5 Oz 124 125 O1 128 127 POz O2 Iz O9 O10
S6 Oz 124 128 O1 125 127 POz Iz O2 O9 O10
S7 Oz 124 128 125 O1 127 POz Iz O2 O9 O10
S8 Oz 124 O1 125 128 127 POz Iz O2 O9 O10
S9 Oz 124 125 128 O1 127 Iz O9 POz O2 O10
S10 Oz 124 O1 125 128 127 POz O2 Iz O9 O10

highest, average and lowest accuracies. Table 5.8 presents the ranking, highest,
average and lowest accuracies and PIs corresponding to the electrode numbers
and classification methods. This table also gives an overview on the performance
of the classification methods. The number of SSVEP harmonics and EEG TWL
used in the analysis of Table 5.8 is 1 and 2s respectively.

The difference of mean highest accuracies across the electrode numbers corre-
sponding to each classification is less than 1%. So are the average and lowest
accuracies. This indicates that the performance of three classification methods
is almost the same. The mean ranking accuracies across the electrode numbers
resulting from the ranked electrode sets are 72%, 70% and 72% for CCA, MEC
and MCC respectively. These values are also very close. The corresponding mean
PIs are 79%, 73% and 79%. CCA and MCC are slightly better than MEC in the
mean ranking accuracies and mean PIs. The lowest PIs occur at the electrode
numbers 2 and 3 for three classification methods. For electrode number 5 and
6, PIs of CCA and MCC are also higher than MEC. There are more electrode
subsets in these two electrode numbers than the others. The ranking accuracies
of three classification methods show the properties of monotonically increasing
against the electrode numbers.

PIs of CCA in Table 5.8 are explored for each subject and shown in Table 5.9.
Only 8 out of 110 PIs are lower than 50%. The mean PI across the electrode
numbers of S3 is highest, which is over 90%. The one of S9 is the lowest which
is lower than 60% but exceeds 50%. Only S7, S9 and S10 have mean PIs across
the electrode numbers which are lower than 75%. PIs of Table 5.9 shows that
electrode rankings by the single electrode accuracy can be used to select the elec-
trodes for each subject.

The same analysis of PIs for each subject is performed on MEC and MCC. The
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Table 5.8: Electrode rankings evaluation results across the subjects and ex-
periment conditions. The electrode rankings are evaluated by comparing
the ranking accuracies resulting from the ranked electrode sets and the
corresponding highest, average and lowest accuracies of the same electrode
number. PIs are also listed. This table includes the evaluation of three classification
methods.

ele # 1 2 3 4 5 6 7 8 9 10 11

CCA Ranking
accuracies 57.86% 60.65% 63.31% 68.71% 72.90% 76.53% 76.90% 77.28% 77.47% 79.63% 79.91%
Highest 64.21% 78.53% 84.28% 85.59% 86.63% 87.00% 86.63% 86.16% 84.84% 82.84% 79.91%
Average 51.13% 55.09% 59.68% 64.25% 68.19% 71.46% 74.01% 75.97% 77.52% 78.76% 79.91%
Lowest 34.73% 30.48% 31.77% 34.64% 37.52% 42.62% 49.62% 57.03% 64.96% 71.56% 79.91%

PI 84.49% 69.36% 67.89% 71.72% 77.21% 81.62% 80.04% 77.75% 74.59% 85.06% 100.00%
MEC Ranking

accuracies 52.58% 52.93% 57.78% 68.34% 70.56% 73.56% 76.22% 78.15% 77.72% 78.53% 79.75%
Highest 64.28% 78.78% 84.28% 85.97% 86.69% 87.06% 86.78% 86.06% 85.16% 83.25% 79.75%
Average 51.15% 54.84% 59.56% 64.24% 68.28% 71.63% 74.23% 76.17% 77.57% 78.67% 79.75%
Lowest 34.67% 28.02% 30.02% 33.08% 37.05% 42.74% 49.90% 58.00% 65.12% 71.75% 79.75%

PI 68.52% 54.31% 56.39% 70.68% 69.67% 70.68% 75.57% 80.38% 75.86% 79.26% 100.00%
MCC Ranking

accuracies 57.89% 60.56% 63.28% 68.62% 72.81% 76.59% 77.06% 77.25% 77.40% 79.59% 79.78%
Highest 64.21% 78.53% 84.25% 85.63% 86.56% 86.97% 86.59% 86.22% 84.94% 82.75% 79.78%
Average 51.14% 55.09% 59.67% 64.24% 68.18% 71.45% 74.01% 75.97% 77.51% 78.73% 79.78%
Lowest 34.73% 30.48% 31.96% 34.61% 37.36% 42.68% 49.59% 57.06% 64.93% 71.50% 79.78%

PI 84.20% 69.16% 67.63% 71.71% 76.04% 81.63% 80.31% 77.66% 74.24% 85.17% 100.00%

results of PIs can be found in Tables C-13 and C-14. There were 13 and 7 out
of 110 PIs which are lower than 50% in MEC and MCC respectively. 5 and 3 of
10 subjects have the mean PIs across the electrode numbers lower than 75% in
MEC and MCC respectively. One subject has mean PI lower than 50% in MEC.
There is no subject with mean PIs over 90% in MEC.

Table 5.9: PIs of individual subject corresponding to one electrode number
using the leave–one–out electrode rankings of Table 5.7. This table shows
detail PIs of CCA in Table 5.8 from the mean values to the values of each
subject.

ele # 1 2 3 4 5 6 7 8 9 10 11

S1 94.32% 77.27% 87.88% 86.67% 74.72% 81.40% 93.48% 91.89% 92.16% 94.32% 100.00%
S2 88.07% 88.07% 76.52% 87.73% 96.31% 92.11% 87.97% 91.36% 88.30% 95.45% 100.00%
S3 97.73% 97.73% 90.98% 91.78% 99.85% 95.16% 99.51% 87.16% 88.64% 92.05% 100.00%
S4 95.45% 62.95% 81.97% 91.97% 92.15% 92.55% 87.95% 84.24% 78.75% 88.07% 100.00%
S5 80.11% 48.18% 42.27% 69.89% 78.61% 80.33% 80.19% 76.55% 84.77% 86.36% 100.00%
S6 98.30% 85.57% 89.32% 84.02% 90.98% 90.83% 84.02% 78.90% 77.39% 83.52% 100.00%
S7 65.91% 50.68% 59.05% 78.09% 71.97% 66.02% 67.50% 63.11% 58.18% 80.68% 100.00%
S8 73.86% 77.84% 62.50% 62.23% 90.73% 91.40% 72.65% 74.73% 71.36% 83.52% 100.00%
S9 75.57% 30.34% 25.68% 16.23% 8.54% 59.74% 65.47% 70.57% 61.36% 72.73% 100.00%
S10 75.57% 75.00% 62.73% 48.60% 68.22% 66.71% 61.67% 58.94% 45.00% 73.86% 100.00%

Finally, the efficacy of the electrode rankings derived by using less classification
data is assessed by the corresponding PIs. The electrode rankings are obtained by
using the classification data from one experiment condition instead of 16 across
the subjects by the rule of leave-out-out. Each subject has 16 electrode rank-
ings corresponding to 16 experiment conditions. Each electrode ranking will be
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assessed by comparison the ranking accuracies and the accuracies resulting from
the electrode sets with the same electrode number. The corresponding PI is cal-
culated according to the comparison result. The mean PIs across the subjects for
each experiment condition are illustrated in Figures 5.17, B-62 and B-63.
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Figure 5.17: Mean PIs across the subjects for each experiment condition
based on CCA. PIs of this figure are used as the evaluation metrics of the
electrode rankings based on the single electrode classification accuracy. It
shows that three PIs are lower than 50%, the rest of PIs exceed 50%. It demonstrates
the usability of the electrode rankings in selection of the electrodes and the efficiency
of the ranked electrode sets.

There are 3 to 4 PIs in each classification method lower than 50%. The electrode
numbers are 3 or 4. Compared to the same results of the mean PIs using spatial
filter coefficients, the mean PIs of MEC significantly better than the ones using
spatial filter coefficients, see Figure B-60 which has more than 10 PIs below 50%.
For CCA and MCC, the difference is not significant. However, the majority of
PIs exceed 50%. For viewing distances, the mean PIs of the viewing distance 60
cm and 150cm are higher than the other viewing distances. The majority of PIs
at 60cm and 150cm are over 75%. Overall speaking, the mean PIs of the elec-
trode number 3 or 4 are the lowest corresponding to the viewing distances. Only
10 out of 528 PIs (across three methods) are lower than 50%. The inter-subject
variance is not great as the mean standard deviation across the electrode numbers
is around 15% for three methods which is slightly better than the results by the
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spatial filter coefficients (between 15% to 17%). PIs demonstrate the electrode
ranking works for the individual subject and the efficacy of the ranked electrode
sets which have better chance to result in higher accuracies than the randomly
selected electrode sets.

So far, there is no threshold applied to the classification. i.e. a classification re-
sult is reached without considering if the response is significant enough. In CCA
for example, the frequency corresponding to the largest canonical correlation co-
efficient is regarded as the attended target. In real BCI operation, the threshold
is implemented mainly to prevent the false positive, especially for asynchronous
BCI which is the nature of SSVEP based BCI. In asynchronous BCI, the user
might leave the system in idle state for a long time while BCI keeps producing
classification outcomes. The applied threshold will limit the outcomes and re-
duce the false positives. In this study, there are no idle state recordings in the
experiment. The investigation of the threshold in section 5.6 is focused the how
threshold can affect the classification results, i.e. true and false positives when
BCI is not in the idle state. Next, the impact of threshold on the true and false
positive is investigated.

5.6 Threshold analysis

In this section, the thresholds are applied to the classification and the impact of
the thresholds over the classification performance is investigated. The threshold
analysis also attempts to find the optimised thresholds for each attended fre-
quency so that the overall accuracies are maximised or optimise the metrics of
classification measurements, such as F measurement.

5.6.1 Impact of the thresholds on the classification

Equation (3.19) on page 97 is used to find the thresholds which maximise the
overall accuracies. Each point in the continuous ROC plot, such as Figure 5.11
corresponds to a false positive rate (x axis) and a true positive rate (y axis)
which result from a threshold. The thresholds which maximise equation (3.19)
are found in each experiment condition and applied. Before the thresholds ap-
plied, the frequency corresponding the maximum value in the feature vector is
regarded the attended frequency. When the thresholds applied, the maximum
value of feature vector is compared to the corresponding threshold. Only if it
exceeds or is equal to the threshold, the corresponding frequency is recognised as
the attended target. Otherwise, it is recognised as UI (Un–Identified) class.

Figure 5.18 shows the confusion matrix with thresholds applied. The confusion
matrix without applying the thresholds can be found in Figure 5.9. The thresh-
olds applied in this figure are the thresholds which maximise the accuracy of
equation (3.19) on page 97. The thresholds are different for different experiment
conditions but the same for all subjects in one experiment condition. The thresh-
olds, true positive rates and false positives rates used in equation (3.19) are from
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Figure 5.11. For 15Hz, it has no false positives in all viewing distances. The total
false positives of 12Hz are 28 (see Figure 5.18 (e)) which are reduced from 312
(see Figure 5.9 (e)). The true positives are also reduced. It indicates that the
thresholds have the impact on both false positives and true positives.
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Figure 5.18: Confusion matrix of grand total of all subjects at different view-
ing distance using CCA with the thresholds applied. The confusion matrix
without applying the thresholds can be found in Figure 5.9. The thresholds applied in
this figure are the thresholds which maximise the overall accuracy of equation (3.19) on
page 97. The thresholds are different among the experiment conditions but the same
for all subjects in one experiment condition. The thresholds, true and false positive
rates used in equation (3.19) are from Figure 5.11.

Figure 5.18 is based on CCA. The confusion matrices using MEC and MCC with
thresholds applied are in Figures B-64 and B-66 in Appendix B. Both demon-
strate the similarity as seen in Figure 5.18. Figure 5.19 provides a better view
on how the thresholds affect the classification results. Figure 5.19 shows that in
order to maximise the accuracy of equation (3.19), for each attended frequency,
both false and true positives are reduced. 12Hz is the one affected the most as
it has most UIs from both false and true positives. 12Hz is the only frequency
which has more reduced number in the false positives than the true positives.
The other frequencies have more reduced number in the true positives than the
false positives. This can be seen from 4 viewing distances.
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UI matrices based on MEC and MCC can be seen from Figure B-65 and B-67 in
Appendix B. The more the false positives are reduced, the more the true posi-
tives are reduced which is the same as Figure 5.19. The impact on the individual
attended frequency is also similar. For example, 12Hz is the only frequency which
has more reduced number in the false positives than the true positives. There is
no false positives of 15Hz.
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Figure 5.19: Maxtrix of UI class after applying the thresholds on the classifi-
cation. Each UI matrix is the difference between the corresponding confusion matrices
of Figures 5.9, and 5.18 in the same subplot. This figure is based on CCA.

The impact of thresholds on the classification is further examined by the use of
a modified ROC plot as shown in Figure 5.20. In Figure 5.20, the false positive
rate (fpr) is calculated according to the confusion matrix of Figure 5.18. In order
to evaluate the impact on the true positive rate (tpr), i.e. the accuracies of the
attended frequencies, the corresponding tpr is calculated as the following. The
total of classifications is based on the confusion matrix in Figure 5.9 without the
thresholds applied, i.e. the total classifications are the same as the original. The
number of the true positive, the number of being classified correctly, is based
on the confusion matrix in Figure 5.18. As the number of the true positives is
reduced, as a result, the modified tpr decreases.

ROC points of all attended frequencies in Figure 5.20 are almost located in line
with y axis which indicated that the false positive rates are approaching to ze-
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Figure 5.20: Modified ROC plots corresponding to the confusion matrices
of Figure 5.18 and F measurements when the thresholds applied. The false
positive rate (fpr) in this figure is calculated according to the confusion matrix in
Figure 5.18. However, to see how the true positive rate (tpr), the accuracies of each
frequency, are affected by the thresholds, the total classification number of each row is
based on Figure 5.9 and the number of the true positives, the number of being classified
correctly, of each frequency is based on Figure 5.18. As a result, the true positive rates
decrease.

ros. However, its modified true positive rates also drops significantly compared
to Figure 5.10. This means that the applied thresholds will reduce both false
and true positives. The number of UIs shown in Figure 5.19 might suggest that
the responses of false positives are also strong compared to the ones of the true
positives. The total number reduced in the true positives is more than the false
positives. The reduction in the false positives is at the expense of reducing the
true positive rate.

Modified ROC plots based on MEC and MCC are shown in Figures B-68 and B-
69 in Appendix B. As expected, ROC points are in line with y axis but also
closer to x axis. It also demonstrates the fact that both false positives and true
positives are both affected by applying the thresholds.

In this section, the thresholds on the classification results are evaluated. It is
found that the thresholds have the same impact on the false positives and true
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positives. The thresholds used in this section are the thresholds which max-
imise the accuracy in equation (3.19). The thresholds applied in this section are
experiment–condition dependent without considering the inter–subject variance.
For one experiment condition, it is the same for all the subjects. In next section,
the thresholds will take the subjects and experiment conditions into account. The
same analysis as this section will be performed.

5.6.2 Thresholds maximising F measurement

In this section, thresholds are applied to maximise F measurement which is de-
fined by equation (3.18) on page 96. The thresholds are subject–experiment
condition dependent. For each subject, there are four experiment conditions at
the same viewing distance. For each attended frequency, the features of 4 ex-
periment conditions are extracted from the classification data which include the
features of the true and false positives. For example, for the attended frequency
12Hz, the features of all epochs which are classified as 12Hz are extracted no
matter what the actual attended frequency is. The features from the data of the
actual attended frequency 12Hz are the true positives. Those from the actual
attended frequencies 13, 14 and 15Hz are false positives. For each attended fre-
quency, the minimum and maximum values of the thresholds are the minimum
and maximum values of the corresponding features. The maximised F measure-
ment is found by applying different thresholds. The applied thresholds start from
the minimum value of the threshold with increment of one tenth of the difference
between the maximum and minimum values. The classification is re-evaluated
with the applied thresholds. If the attended frequency corresponding to the max-
imum value of the feature vector is equal or exceeds the threshold, it is classified
as the corresponding frequency. Otherwise, it is classified as UI class. The cor-
responding confusion matrix and the corresponding recall, precision rates and F
measurement are compared. The thresholds which result in the highest F values
are selected as the optimised thresholds for corresponding subject in the corre-
sponding experiment condition.

Figure 5.21 represents sum of the individual confusion matrix of each subject at
one viewing distance obtained with the optimised thresholds found through the
above process. The confusion matrix without threshold can be found in Figure 5.9
on page 126. Comparing these two figures, it is clear that for each attended fre-
quency, both the true and false positives are affected. Figures B-71 and B-73
show the confusion matrix with the optimised thresholds applied using MEC and
MCC respectively. The impact of the thresholds on the classification is similar
to Figure 5.21. The detailed UIs corresponding to Figure 5.21 are shown in Fig-
ure 5.22. From Figure 5.22, across the frequencies, only 34 true positives in total
are affected by the thresholds. However, total 221 false positives are affected.
For each individual frequency, the reduction in false positives is higher than the
reduction in true positives. 12Hz is affected most in both true and false positives.
On the other hand, 15Hz is the least affected also in both true and false positives.
The reduction of the true positives is less than the false positives in all attended
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Figure 5.21: Confusion matrix of grand total of all subjects at different view-
ing distance using CCA. This figure is corresponding to Figure 5.9 in which no
thresholds are applied. The thresholds of each subject in each experiment condition
are different. The thresholds applied to each subject in different experiment condition
maximise F measurement of the corresponding experiment condition. If the feature
used as the classification criterion is lower than the thresholds, it is classified as UI
class. (a) to (d) is the sum of the individual confusion matrix of each subject. (e) is
the grand total of (a) to (d). Each number in the cell is the number of class i being
classified as class j. The numbers of SSVEP harmonics and electrodes are 1 and 11 in
this figure. The classification method is CCA and EEG TWL is 3s.

frequencies. This is different from what has been seen in section 5.6.1. Compared
to the other frequencies, 12Hz has more false positives. In order to improve the
precision rate, i.e. to reduce the false positives, the thresholds cannot be too
low as seen in section 5.6.1. As a consequence, both true and false positives are
affected most. 15Hz, on the contrary, has the lowest true and false positives com-
pared to the other frequencies. The gain of the reduction in the number of the
false positives might not compensate the loss of the reduction in true positives.
Therefore, the optimised thresholds are not too high. It can also be observed
that only 4 false positives across the frequencies resulting from attended 12Hz
are affected. Without the threshold, the false negatives of 13, 14 and 15Hz when
attending frequency 12Hz are 8, 3 and 3 respectively. Each of them is the false
positive corresponding to attending 13, 14 and 15Hz. As 12Hz has the most
prominent SSVEP response and highest true positives, its corresponding false
negatives are low. Also, if the false negatives induce, their corresponding feature
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must be very high in order to exceed the ones of 12Hz. Therefore, to reduce these
false positives with high values of the features will also reduce more true positives
which will decrease F. Only 4 of them are reduced after the thresholds are applied.
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Figure 5.22: UI number of the confusion matrix in Figure 5.9 with applied
thresholds which maximise F measurements. Each matrix of this figure is the
difference between two corresponding matrices in Figures 5.9 and Figure 5.21.

Figures B-70 and B-72 illustrate UIs number of Figures B-48 and Figure B-49
when the thresholds are applied. These figures are in Appendix B. These two
Figures demonstrate the similarity of Figure 5.22. For example, only 4 and 1
false positives resulting from attending 12Hz are affected by the thresholds for
MEC and MCC respectively. They also show that 12Hz has most true and false
positives affected. Figure 5.23 shows the revised ROC plot of Figure 5.10 when
the thresholds are applied. Each ROC subplot is corresponding to one confusion
matrix of Figure 5.21 .

Figure 5.23 represents the modified ROC when the subject-specific thresholds
are applied. The false, true positive rate and F are computed by the same way
as Figure 5.20. Compared Figure 5.23 and 5.10, the relative positions of ROC
points are the same. Compared to Figure 5.10, ROC points in Figure 5.23 move
towards to x axis and y axis. This indicates that the thresholds have impact on
false and true positives but the change is not significant. Overall speaking, F
measurements improve with the thresholds which maximise F for each subject
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in all experiment conditions. This suggests that carefully chosen thresholds can
improve the classification performance.
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Figure 5.23: Modified ROC plots corresponding to the confusion matrices of
Figure 5.21 and F measurements with the thresholds applied. ROC plots
corresponding to the confusion matrices of Figure 5.21 and F measurements. Each
ROC plot (a) to (e) is corresponding to one confusion matrix of Figure 5.21 (a) to
(e). The classification method and parameters are the same as Figure 5.9. With the
thresholds applied, F measurements are higher compared to Figure 5.10.

Figures B-74 and B-75 in Appendix B are modified ROC plots corresponding to
the confusion matrix of Figures B-71 and B-73 for MEC and MCC respectively.
For MEC and MCC, at least 4 out of 16 F values of Figures B-74 and B-75 are the
same as the ones in Figures B-50 without threshold. The other 12 values of F in
Figures B-74 and B-75 are higher. For each viewing distance, the improvements
of 12Hz are more prominent compared to the other frequencies.

Compared Figures 5.23 and 5.20, ROC points of Figure 5.23 are not as close to
y axis as the points in Figure 5.20. However, they are also more distant from
x axis than the points of Figure 5.20. This means that the thresholds have the
similar impact on both false and true positive in this paradigm. The thresholds
can improve the overall the performance. However, the selection of the thresholds
is the trad-off between false and true positive rate.

152



CHAPTER 5. RESULTS – DATA ANALYSIS OF FEASIBILITY EXPERIMENT

5.7 Interaction between attended and unattended

targets

In this section, the interaction between attended and unattended targets was
investigated. SSVEP responses of four different stimulating frequencies at differ-
ent viewing distances were investigated when the subjects attended one of them.
SSVEP responses of attended and unattended targets at different time instances
in attending phase were also examined.

5.7.1 SSVEP responses of attended and unattended tar-
gets

Figure 5.24 illustrates mean FFT responses across the subjects of 4 stimulating
frequencies when the subjects attended one of the attended frequencies in the
Feasibility Experiment. Figure 5.24 is the mean of 20 epochs from each subject
in different experiment conditions. The attended frequency is 12, 13, 14 and
15Hz for the subplots (a), (b), (c) and (d) respectively. It is clearly seen that
SSVEP responses of the attended frequencies were elicited at different viewing
distances. Moreover, SSVEP response of the unattended frequencies can also
be seen. SSVEP of unattended frequencies was more prominent at the longer
viewing distance than the shorter one. Figure 5.25 illustrates SSVEPs of one
individual subject. SSVEP of unattended frequencies of this subject was more
prominent than SSVEPs of unattended frequencies across the subject shown in
Figure 5.24.

One way ANOVA test was performed to test the different of SSVEPs of the same
attending frequency at different viewing distance. In Figure 5.24, ANOVA results
are presented by the dots matrix beside the legend. The shapes of diamond circle
and square represent 150cm, 250cm and 350cm respectively. Each row of the dot
matrix stands for one viewing distance which is the same as the legend. The
shapes of diamond, circle and square stand for the group of 150cm, 250cm and
350cm. Each row of the dots represents the ANOVA results of the group pre-
sented by the dot and the corresponding group of the row. The first, second and
third row represent the group of 60cm, 150cm and 250cm. For instance, in the
first row, three dots represent the ANOVA test results between 60cm and 150cm,
250cm and 350cm (diamond, circle and square). The significance level is 0.01. If
p value ≤ 0.01, it is presented by red-filled dot otherwise by black un-filled dot.

153



CHAPTER 5. RESULTS – DATA ANALYSIS OF FEASIBILITY EXPERIMENT

10 12 13 14 15 16 18 20
0

2

4

6

8

(a) 12hz−Grand average
across subjects

P
ow

er
 (

uV
)2

 

 

(Hz)

60cm
150cm
250cm
350cm

10 12 13 14 15 16 18 20
0

2

4

6

8

(b) 13hz−Grand average
across subjects

P
ow

er
 (

uV
)2

 

 

(Hz)

60cm
150cm
250cm
350cm

10 12 13 14 15 16 18 20
0

2

4

6

8

(c) 14hz−Grand average
across subjects

P
ow

er
 (

uV
)2

 

 

(Hz)

60cm
150cm
250cm
350cm

10 12 13 14 15 16 18 20
0

2

4

6

8

(d) 15hz−Grand average
across subjects

P
ow

er
 (

uV
)2

 

 

(Hz)

60cm
150cm
250cm
350cm

Figure 5.24: Mean SSVEP response of the same attended frequency across the
subjects at different viewing distances and ANOVA test results of SSVEPs
of the same attended frequency between different viewing distances.

For some stimulating frequencies, SSVEP response of the attended frequency is
similar to or smaller than the attended one. For example, when this subject at-
tended to 12Hz or 13Hz at the viewing distance of 350cm, SSVEP of unattended
15Hz was higher than attended 12Hz and SSVEP of unattended 14Hz and 15Hz
were similar to attended 13Hz.

SSVEP responses of the attended and unattended frequencies were subject de-
pendent. Figures B-76 and B-77 in Appendix B were two examples from two
other subjects. One is better and one is worse than the subject of Figures 5.25.
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Figure 5.25: Mean SSVEP response of the same attended frequency of sub-
ject 2 at different viewing distances and ANOVA test results of SSVEPs
of the same attended frequency between different viewing distances. The
presentation of ANOVA test is the same as described in Figure 5.24.

SSVEP time–locking to the stimulus property of the attended and unattended
frequencies were further investigated. Figure 5.26 is the plot of SLIC inter–
trace and the corresponding pair correlations of 4 stimulating frequencies when
the subject attended to 14Hz at viewing distance 350cm. The time–locking to
the stimulus onset is expected to be observed at the attended frequency, 14Hz.
Figure 5.26 showed that the inter–trace correlation of 14Hz (attended frequency)
was larger than 12 and 13Hz (unattended frequencies). However, the inter–trace
correlation of 15Hz was similar to 14Hz and the median value of 15Hz was higher
than 14Hz. The mean curves of the inter–traces also demonstrated that the
inter–traces of 15Hz were highly correlated although it was unattended. For
some subjects, the time–locking property at the attended frequency became less
clear, especially at the longer viewing distance.
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Figure 5.26: The plot of SLIC inter–traces and the inter–trace pair correla-
tions at four stimulating frequencies when one of the subjects attends at
14Hz target at the viewing distance 350cm. Both 14Hz and 15Hz show the
significance of the time locking property in the mean curve of the inter–traces and
correlations when the target 14Hz is attended.

5.7.2 SSVEP response change in attending phase

In this section, the ratios of SSVEP responses between attended frequency and
unattended frequencies were investigated. A/U ratio, is defined by the ratio be-
tween the power of SSVEP at the attended (A) frequency and the sum of SSVEP
powers at three unattended (U) frequencies. A/U ratio is similar to SNR but
focused on the signals at the stimulating frequencies which illustrated the ratios
of SSVEP at the attended and unattended frequencies.

Figure 5.27 illustrates the mean SSVEP powers across the subjects of all stimu-
lating frequencies when subjects attended 14Hz at 250cm and the corresponding
A/U ratios. In this example, SSVEP power of the attended frequency (14Hz)
was lower than the powers of unattended frequencies 12Hz and 13Hz in the 1st

second of the attending phase. It took more than 2s before the power of 14Hz
exceed the one of 12Hz. A/U ratio increases as the time increased. SSVEP of
12Hz remained prominent through the entire attending phase.

Figure 5.28 showed mean SSVEP powers across the subjects of all stimulating
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Figure 5.27: Mean SSVEP powers of SSVEPs of the attended frequency and
unattended frequencies and its corresponding A/U ratio through entire at-
tending phase. This figure illustrates SSVEP powers of all stimulating fre-
quencies in (14Hz, 250cm) experiment condition. This figure illustrates SSVEP
powers of all stimulating frequencies in (14Hz, 250cm) experiment condition. A/U ratio
increases as the time increases. So do SSVEPs at all stimulating frequencies. It takes
more than 2s before the power of attended frequency (14Hz) exceeds the one of 12Hz.

frequencies when the subjects attended the target of 12Hz at the viewing distance
250cm. SSVEP powers of the attended frequency 12Hz were much higher than
the unattended ones from the 1st second of the attending phase. A/U ratios were
close or exceeded one through entire attending phase.

Figures B-78, B-79 and B-80 in Appendix B depicted mean SSVEP powers across
the subjects of all stimulating frequencies in different experiment conditions,
(13Hz, 350cm), (15Hz, 150cm) and (14Hz, 60cm). In these examples, SSVEP
powers of the attended frequency were lower than the powers of 12Hz in the 1st

second of the attending phase.

5.7.3 A/U ratios of different stimulating frequencies

Figure 5.29 illustrates the average A/U ratios across the subjects of each at-
tended frequency at four viewing distances. Each subplot indicates one attended
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Figure 5.28: Mean SSVEP powers of SSVEPs of the attended frequency and
unattended frequencies and its corresponding A/U ratio through entire at-
tending phase. This figure illustrates SSVEP powers of all stimulating fre-
quencies when the subjects attend the target 12Hz at the viewing distance
250cm SSVEP powers of attended frequency 12Hz shows prominent from the start (a).
A/U ratios through entire attending phase are close or larger than one. Both A/Us
and mean SSVEP powers of all attended frequencies increase as the time increases.

frequency and its corresponding A/U ratios at different viewing distances over
time. For example, in Figure 5.29 (a), the attended frequency was 12Hz. A/U
ratios in Figure 5.29 (a) were the ratios of powers at 12Hz and the sum of the
powers of 13Hz, 14Hz and 15Hz over the time at different viewing distances. For
each attended frequency, A/U ratios of the same viewing distance increased as
EEG TWL increased. In Figure 5.29 (b), at viewing distance 250cm, A/U of 5s
was the highest and A/U ratio of 1s was the lowest. The differences of A/U ratios
of different TWL at shorter distances (60cm, 150cm) were larger than at longer
distances (250cm, 350cm).

The A/U ratios were also used to investigate the false positive rates. Figure 5.30
(a)-(d) represent the false positive rates at different viewing distances for each
attended frequency and (e) represents the grand average across the attended
frequencies over time. Figure 5.30 shows that the false positive rates decreased as
EEG TWL increased. For each attended frequency, A/U ratios increased as EEG
TWL increased. The false positive rate of the attended frequency is correlated
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Figure 5.29: A/U ratios of SSVEP powers between the attended and unat-
tended frequencies across the subjects for one attended frequency at dif-
ferent viewing distances over the time. Each subplot stands for one attended
frequency. Subplots (a) to (d) present the attended frequency 12Hz, 13Hz,14Hz and
15Hz respectively over the time instances from 1s to 5s.

to the A/U ratios of unattended frequencies when they were attended. As a
result, the corresponding false positive rates decreased. Figure 5.30 shows the
result of CCA. Similar results from MEC and MCC can be found in Figures B-81
and B-82.

5.7.4 A/U ratios of different viewing distances

The data of Figure 5.29 were rearranged according to viewing distances. Fig-
ure 5.31 provided another view on how A/U ratios changed over the attended
frequencies at the same viewing distance. A/U ratios of 12Hz were always the
highest compared to the other frequencies over the time and the viewing dis-
tances. Between 1s and 3s, 15Hz had the lowest A/U ratios compared to 13Hz
and 14Hz, except 3s at 60cm. This might explain why 15Hz had the lowest clas-
sification accuracies.

A/U ratios were used to examine the true and false positive rates. A/U ratios
of attended 12Hz were higher than the other attended frequencies. As seen in
Figure 5.7, attended 12Hz had higher accuracies than the other attended fre-
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Figure 5.30: False positive rates of different viewing distances of the same
attended frequency and their grand average across the attended frequencies
over time. This figure is the result of CCA. Each subplot stands for one attended
frequency. Subplots (a) to (d) present the attended frequency 12Hz, 13Hz,14Hz and
15Hz respectively over the time instances from 1s to 5s.

quencies. Figure 5.32 illustrates the false positives of all attended frequencies for
each viewing distance. It is clearly seen that the false positive rates of 12Hz were
significantly higher than the other attended frequencies.

The false positive rates of each individual attended frequency were related to
the A/U ratios of the corresponding unattended frequencies when they were at-
tended. When 13, 14 and 15 Hz were attended, the powers of unattended 12Hz
were high. As a result, the corresponding false positive rates of 12Hz were higher
than the other attended frequencies. On the other hand, A/U ratios of 15Hz were
the lowest among all frequencies. It explained why the false positive rates of 15Hz
were the lowest. The average false positive rates across the viewing distances are
16%, 7%, 3% and 1% for 12Hz, 13Hz, 14Hz and 15Hz respectively at EEG TWL
2s.

The results of the false positive rates by MEC and MCC can be found in Fig-
ures B-83 and B-84 in Appendix B. The figures both show that 12Hz had the
highest false positive rates and 15Hz had the lowest false positives rates which
are the same as Figure 5.32.
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Figure 5.31: A/U ratios of SSVEP powers between the attended and unat-
tended frequencies across the subjects at one viewing distance for different
attended frequencies over the time. Each subplot stands for viewing distance.
Subplots (a) to (d) present the viewing distance 60cm, 150cm,250cm and 350cm re-
spectively over the time instances from 1s to 5s. The data of this figure are the same
as Figure 5.29.
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Figure 5.32: False positives rates of different attended frequencies at the same
viewing distance and their grand average across the viewing distance over
time. This figure is the result of CCA. Each subplot stands for one viewing
distance. Subplots (a) to (d) present the viewing distance 60cm, 150cm, 250cm and
350cm respectively over the time instances from 1s to 5s.
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5.8 Summary

It was suggested that a 70% of classification accuracy is the threshold for effective
BCI communication (Kübler et al., 2004). Table 5.10 lists the mean classifica-
tion accuracies across the subjects, the stimulating frequencies of each viewing
distance and the corresponding standard deviations. Table 5.11 lists the mean
classification accuracies across the subjects and the viewing distances of each
stimulating frequency.

From Table 5.10, the mean classification accuracies are over 70% when the EEG
TWL exceeded 1.25s. When the EEG TWL exceeded 1.75s, the mean classifica-
tion accuracies of four viewing distances were over 75%.

Table 5.11 shows that it requires 3s of EEG TWL for mean classification accu-
racies of all stimulating frequencies to be over 70%. To test the impact of the
EEG TWL, ANOVA was applied to the subjects classification accuracies of one
viewing distance and one attended frequency of 8 different EEG TWLs seen in
Table 5.10. p values (df = 7×72, 8 EEG TWL and 10 subjects in each TWL)
showed no significant difference in most of the combinations of viewing distance
and stimulating frequency. Only (60cm-12Hz) and (250cm-13Hz) were signifi-
cance in classification accuracies (p values = 0.002 and 0.003). This result is
different from another previous study by Bin et al. (2009b) which showed the
significant impact of EEG TWL on classification accuracies.

Table 5.10: Mean classification accuracies across the subjects and stimulating frequen-
cies of each viewing distance and the standard deviations (mean ± std) % using different
EEG TWL. This table is the result of CCA.

TWL 1.00s 1.25s 1.50s 1.75s 2.00s 3.00s 4.00s 5.00s

60cm (71 ± 13)% (78 ± 10)% (82 ± 11)% (84 ± 10)% (88 ± 9)% (93 ± 6)% (94 ± 5)% (95 ± 5)%
150cm (66 ± 17)% (73 ± 15)% (77 ± 13)% (81 ± 11)% (82 ± 11)% (88 ± 8)% (90 ± 5)% (90 ± 5)%
250cm (62 ± 20)% (68 ± 16)% (72 ± 16)% (74 ± 16)% (76 ± 14)% (82 ± 13)% (84 ± 13)% (85 ± 12)%
350cm (58 ± 18)% (63 ± 20)% (67 ± 18)% (72 ± 17)% (73 ± 17)% (78 ± 15)% (80 ± 13)% (81 ± 12)%

Mean (64 ± 17)% (71 ± 15)% (74 ± 15)% (78 ± 14)% (80 ± 13)% (85 ± 10)% (87 ± 9)% (88 ± 9)%

Table 5.11: Mean classification accuracies across the subjects and viewing distances of
each stimulating frequency and the standard deviations (mean ± std) % using different
EEG TWL. This table is the result of CCA.

TWL 1.00s 1.25s 1.50s 1.75s 2.00s 3.00s 4.00s 5.00s

12Hz (87 ± 4)% (90 ± 2)% (94 ± 2)% (95 ± 2)% (95 ± 1)% (98 ± 1)% (98 ± 2)% (98 ± 2)%
13Hz (63 ± 8)% (71 ± 8)% (73 ± 9)% (80 ± 7)% (83 ± 9)% (86 ± 8)% (88 ± 8)% (89 ± 7)%
14Hz (58 ± 7)% (66 ± 7)% (72 ± 7)% (73 ± 6)% (76 ± 7)% (83 ± 8)% (83 ± 9)% (84 ± 9)%
15Hz (48 ± 10)% (55 ± 13)% (59 ± 10)% (63 ± 10)% (66 ± 10)% (74 ± 11)% (78 ± 10)% (79 ± 10)%

Mean (64 ± 7)% (71 ± 8)% (74 ± 7)% (78 ± 6)% (80 ± 7)% (85 ± 7)% (87 ± 7)% (88 ± 7)%
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Chapter 6

Discussion

This chapter discusses the results of the experiments. The primary goal of this
study is to evaluate the feasibility of a novel distance adaptable SSVEP based
BCI. The impact of the viewing distance on SSVEP response was first investigated
in the Investigation Experiment. The intensity/resistor selection experiment at-
tempted to find the minimum intensity which could result in the designated clas-
sification accuracy (95%).

The classification performance of a four-class SSVEP based BCI setup at four
different viewing distances were further evaluated in the Feasibility Experiment
in which the compensated intensities at different viewing distances were based on
the results of the intensity/resistor selection experiment. Furthermore, the clas-
sification performance using different EEG TWLs, number of SSVEP harmonics
and number of the electrodes by three classification methods, CCA, MEC and
MCC were inspected and compared.

This study also proposed a procedure for the electrode selection. This electrode
selection procedure was based on the electrode rankings. The rankings of the elec-
trodes were obtained according to the spatial filter coefficients of the electrodes
and the classification accuracy of single electrode.

6.1 Stimulator selection

Currently, there is no general agreement on the best configuration of visual stim-
uli in SSVEP in terms of the types, colours of the stimulators. However, LED
can elicit stronger SSVEP response compared to the graphics stimuli presented
in the monitors (CRT and LCD) (Wu et al., 2008).

The colour of the stimulus has the impact on the performance and comfort (Bieger
et al., 2010; Cao et al., 2012; Tello et al., 2015). Bieger et al. (2010) found that the
colours of the visual stimulus resulting in better performance in ITR also induced
discomfort and vice versa. Cao et al. (2012) showed that the white stimulus has
the best performance, followed by colours of gray, red, green and blue. Both
studies used LCD monitor to present the stimuli. Tello et al. (2015) examined
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the colours of LEDs on the performance and comfort. They tested 4 frequencies
(8, 11, 13 and 15Hz) using four colours, blue, green, yellow and red. The results
showed that overall speaking, red colour led to the best performance and least
comfort across the frequencies. Green and blue were more comfortable with lower
ITR. The choice of the colour should balance the comfort and performance.

Visible light (wavelength from 380nm to 780nm) has the thermal and photochem-
ical effects which can cause damage and hazards. Two possible hazards from the
light are retinal thermal injuries and blue light hazard which depend on the wave-
length of the incident radiation (OSRAM, 2012). OSRAM (2012) suggested that
there is no need of specific-safety assessment for OSRAM LED product with the
dominant wavelength, λdom, falling into the range of, (510nm ≤ λdom ≤ 660nm)
On the contrary, the high-power LEDs of blue colour and a small number of green
colour with wavelength falling into the range of 450nm ≤ λdom < 510nm is likely
to induce the risk of the hazard. Typical peak of the white LEDs in the spectrum
is 450nm which falls fall into the blue light hazard area.

This study attempts to evaluate the feasibility of the distance adaptable SSVEP
BCI. The red LED was chosen due to its high performance and the concern of the
safety. After the colour is chosen, the luminance is the most important parameter
to choose the LED in this study. The LED was chosen from the low luminance
to the high luminance.Three different types LEDs with different maximum lumi-
nance and radiation characteristics were chosen in this study.

Three LEDs, all from the same manufacture OSRAM, with different luminance
and radiation characteristics were chosen in this study. They are LS E63B-BBCB-
1-1(for the Investigation Experiment), LR G6SP-CADB-1-1(for the Investigation
Experiment) and LR CP7P-JSJU-1(for the Feasibility Experiment) with λdom
633nm, 625nm and 623nm respectively. The viewing angle is 30◦, 120◦ and 80◦

respectively.

The main aim in selecting the most appropriate LED was luminance. The second
property was that the LED radiation characteristics are within the field of view
of the subjects at any distance. It has been shown that this is satisfied and
confirmed by

1. Subjects who participated indicated that they can see the flickering LED
during the experiments.

2. EEG recorded in the experiments has exhibited the same flickering frequen-
cies in the associated epochs manifested in SSVEP.

3. Geometrical analysis of the experiment setup described in Figures 6.1 and
6.2. In Figures 6.1 and 6.2, inter-pupillary distance (IPD) is taken into ac-
count. Mean IDP of the adult is 63mm. IPD of almost all adults is within
the range of 45-80 mm (Dodgson, 2004). In the Investigation experiment,
the viewing angles of LEDs are 120 and 30 for LR G6SP-CADB-1-1 and LS
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E63B-BBCB-1-1, respectively. In the Investigation experiment, only one
visual stimulus was presented to the subjects at the centre of the panel. As
it can be seen from the geometry illustrated in Figures 6.1, the subjects were
well within the region of LED viewing angle. Figures 6.1 only illustrates
the worst scenario when the viewing distance is 60cm as x (distance within
viewing angle) is smallest when viewing distance is 60 cm for the same LED.

When there is only one stimulus, the viewing angle of the LED does not
play a crucial part. Even the angle is small, the vision of the subjects are
still fallen within the viewing angles (for example 30◦). However, when
there is more than one stimulus, the viewing angle is important as seen in
Figure 6.2. If the viewing angle is too narrow, the vision of the subjects
might fall outside the viewing angle (for example 30◦). However, if it is
too wide, it will increase the interference of the neighbour stimulus (for
example 120◦). To trade off these two, we choose the middle value of two
LEDs used in the Feasibility Experiment as the LED used in the Feasibility
Experiment.

Figure 6.1: The vision of the subjects was within the viewing angle in the
Investigation Experiment. This figure described the worst case when the viewing
distance is 60 cm which has the smallest x.

According to the data sheets of the manufacture, the brightness of LEDs Bright-
ness values are measured during a current pulse of typically 25 ms, with an
internal reproducibility of ± 8% and an expanded uncertainty of ± 11% for LS
E63B-BBCB-1-1(Version 1.0, 2013), and LR CP7P-JSJU-1 (Version 1.2, 2013).
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Figure 6.2: The vision of the subjects was within the viewing angle in the
Feasibility Experiment. This figure described the worst case when the viewing
distance is 60 cm which has the smallest x . The radiation characteristic of LED between
0◦ (optical axis) to 40◦ (half of the viewing angle) is shown in the background. The
radiation characteristic of LED is from OSRAM Opto Semiconductors GmbH.

Brightness groups are tested at a current pulse duration of 25 ms and a tolerance
of ± 11% LR G6SP-CADB-1-1 (Version 2007).

6.2 Impact of viewing distance

This section will discuss the impact of the viewing distance on the luminance
of the visual stimuli in the Investigation Experiment, the results of the inten-
sity/resistor selection experiment and the compensated intensities applied in the
Feasibility Experiment.

6.2.1 Investigation Experiment

SSVEP response was highly dependent on the intensity of the visual stimulus.
In the Investigation Experiment, the intensities of visual stimuli decreased as the
viewing distance increased in the uncompensated condition as shown in Table 4.1.
As a result, SSVEP response was severely deteriorated and the classification ac-
curacies were low in uncompensated condition as seen in Figure 4.1 and Table 4.2.
On the other hand, when the intensities of the visual stimuli were compensated,
the corresponding SSVEP response became stronger and the classification ac-
curacies were also improved compared to uncompensated condition as seen in
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Figure 4.7 and Table 4.3.

This result is consistent with other studies which investigated the luminance effect
on SSVEP response and classification accuracies. Mouli and Palaniappan (2016)
investigated the effect of the luminance of the visual stimuli on SSVEP response.
In their study, the visual stimulus was presented in 4 different luminance levels,
25%, 50%, 75% and 100% of the maximum luminance. They found that as the
luminance level increased the amplitudes of SSVEP response also increased, up to
the luminance level 75%. The luminance of 75% resulted in the strongest SSVEP.
Bieger et al. (2010) examined the influences of stimulation properties on SSVEP
based BCI also suggested that the luminance and contrast have the positive
impacts on the performance of SSVEP BCI. Moreover, Punsawad and Wongsawat
(2014) evaluated how the luminance of the visual stimulator induced the user
fatigue in SSVEP BCI. Their results also showed that the higher luminance of the
visual stimulator outperformed the lower luminance in terms of the classification
accuracy.

6.2.2 Intensity/Resistor Selection Experiment

The intensity/resistor selection experiment attempted to find the optimal inten-
sity at different viewing distance for each subject. The selection criterion was
based on the procedure as described in Figure 3.9. As shown in Table 5.1, to
achieve the same classification accuracy, the longer viewing distance required
higher intensity than the shorter distance. If the intensity of LED at the viewing
distance 60cm is normalised as 1, then the intensities to achieve the same classifi-
cation accuracy were 1.16, 1.44 and 1.88 for the viewing distances 150cm, 250cm
and 350cm respectively based on the intensities listed in Table 5.1. The greater
the viewing distance is, the higher corresponding intensity is.

Based on the one subject experiment, the experimental result suggested in order
to achieve the same classification accuracies the greater viewing distances require
higher intensities. This might suggest that changing the viewing distance not
only changed the intensity of the visual stimulus but also change other parame-
ters which can affect SSVEP response and the performance of BCI. The higher
intensity at greater viewing distance compensated the intensity as well as the
other parameters.

6.2.3 Feasibility Experiment

In the Feasibility Experiment, four LEDs flickering at different frequencies were
presented to the subjects simultaneously. Also seen in Table 5.1, in the Fea-
sibility Experiment, the intensities of LEDs at different viewing distances were
higher than the corresponding intensities found in the intensity/resistor selection
experiment. The corresponding ratios of the intensities used in the Feasibility
Experiment and found in intensity/resistor selection experiment at each viewing
distance were 2.00, 1.35, 1.52 and 1.72 for 60cm, 150cm, 250cm and 350cm re-
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spectively.

However, the results showed that

1. there exists a great inter—viewing distance variance in classification per-
formance,

2. there also exists a great inter–frequency variance in classification perfor-
mance and

3. there exists a great inter–subject variance in classification performance and

4. the classification accuracies were not as high as 95% as expected.

The inter-subject variance is a common problem in BCI research. For exam-
ple, different subjects induced different SSVEP response with the same visual
stimulator with the same luminance (Mouli and Palaniappan, 2016). The In-
vestigation Experiment demonstrated the importance of intensities of the visual
stimuli on SSVEP response. Intensity/Resistor Experiment and the Feasibility
Experiment suggested that the intensity of the visual stimuli was not the only
parameter which affects SSVEP response. There were other parameters which
are also important and could be potentially affected by the changing the viewing
distance. These parameters will be discussed in the section (6.3).

6.3 Other parameters

The experimental results in the Investigation Experiment demonstrated that the
intensity of the visual stimulus could severely affect SSVEP response. However,
in the Feasibility Experiment, the higher intensity at greater viewing distance
could not produce better classification performance. This suggested that there
were other parameters which are also important to SSVEP response and could
be influenced by the viewing distance.

Table 6.1 lists the parameters which could affect SSVEP response (Zhu et al.,
2010a; Fernandez-Vargas et al., 2013; Wu, 2014a; Duszyk et al., 2014). Some of
the parameters are subject-specific, such as their levels of the attention, age and
visual acuity. Some of the parameters of visual stimuli are fixed upon the choice,
such as stimulating frequency, colour, type, duty cycle and number of the visual
stimuli.

Some of the parameters are environment control variables, such as intensity, view-
ing distance, size and spatial proximity between stimuli. These parameters in-
teract with each other. For example, changing the viewing distance of the visual
stimuli could change the perception of intensity, size and the visual angle of the
visual stimuli. The viewing distance could also affect the perception of spatial
proximity between stimuli. As a result, changing the competition between the
stimuli and disturb SSVEP response of attended stimulus.
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Table 6.1: Parameters affecting SSVEP response (Zhu et al., 2010a;
Fernandez-Vargas et al., 2013; Wu, 2014a; Duszyk et al., 2014).

Parameters

Attention span
Subject Age

Visual acuity

Stimulating frequency Intensity/luminance
Colour Modulation depth

Visual Stimuli Viewing Distance Size
Types of visual stimuli Duty cycle
Number of stimuli Spatial proximity between stimuli

6.3.1 Human visual system

In human vision system, the density of the receptors in fovea is much higher than
the periphery (Treder and Blankertz, 2010; Larson and Loschky, 2009). The fovea
is a small region which subtends about 2◦ of visual angle in the central of the
visual field (Treder and Blankertz, 2010). It has been well documented that the
visual stimulus fallen into the central vision can induce stronger SSVEP than in
the peripheral vision (Lopez-Gordo et al., 2011).

At shorter viewing distance, the SSVEP of attended target is induced in the cen-
tral vision while the SSVEP of unattended targets were induced in the peripheral
vision which was weaker. As the viewing distance increased, both attended and
unattended targets were within the central vision. As a result, SSVEPs of at-
tended and unattended targets were both induced in central vision. That is, as
the viewing distance increased, SSVEP response of unattended targets was also
increased.

The SSVEP in central vision was time locked to the stimulus while SSVEP in-
duced in peripheral is not. Therefore, averaging epochs should be able to enhance
the SSVEP in central vision and suppress the response in peripheral vision (Lee
et al., 2010). Figure 5.24 was obtained by averaging epochs across the subject
and showed the SSVEP responses of all stimulating frequencies, attended or unat-
tended. It was clearly seen that the SSVEP responses of the unattended targets
increased as the viewing distance increased. When the viewing distance was
350cm, SSVEP responses of 4 stimulation frequencies were seen in the spectra.
The result provided the evidence that at the greater viewing distance, both the
attended and unattended targets were in the central vision.
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6.3.2 Proximity between the stimuli

When the viewing distance changed, the perception of the proximity between the
stimuli also changed. Reduced proximity between the stimuli could increase the
competition between attended and unattended targets which affected SSVEP re-
sponse of attended target and the classification accuracies. Several studies have
investigated this effect (Fuchs et al., 2008; Ng et al., 2011, 2012; Resalat and
Setarehdan, 2012; Duszyk et al., 2014). The layout of multiple choices of SSVEP
based BCI should ensure the unattended stimuli to fall into peripheral vision
and avoid to fall into foveal vision with attended target to reduce the competi-
tion between the stimuli and the distraction of the subjects (Kuś et al., 2013).
For example, competition of un–attended targets in peripheral vision was also
reported by Hwang et al. (2012) in a LED keyboard based on SSVEP study. It
was found that the classification accuracies could be improved by increasing the
distances between the adjacent keys in vertical and horizontal from 1cm to 2cm.
No optimal distance was investigated in their study.

The co-amplification effect can be observed from the experimental result of this
study. Figures 5.27 , B-78, B-79 and B-80 illustrate the changes of the SSVEP
responses at different time during the attending phase. Apart from the attended
target 12Hz, the SSVEP responses of the attended targets were at the similar level
to the other unattended targets at the first second. It took 2-3 seconds before the
A/U ratios exceeded 0.5. At greater viewing distances, as seen in Figures 5.27
(250cm) and B-78 (350cm), the SSVEP of the attended target did not actually
become dominant (A/U ratios were less than 0.9) through the entire attending
phase.

Ng et al. (2011, 2012) investigated the impact of the unattended targets in terms
of the number, proximity, size and stimulating frequency of visual stimuli. In their
experiments, they tested the proximity between attended and unattended targets
of 2◦, 3◦, 5◦ and 7◦. They found that proximity of 5◦ and 7◦ performed better
than 2◦ and 3◦. They suggested that the visual competition between attended
and unattended was most severe when the unattended targets were within 5◦ of
the fovea. To reduce the competition between targets, the proximity between the
stimuli should be greater than 5◦.

Resalat and Setarehdan (2012) examined the influence of the proximity (termed
as inter source distance in their study) of 2 LEDs on SSVEP. The inter source
distances used in their experiments were 4, 14, 24, 44 and 64 cm. LEDs in white
were placed 60cm in front of the subjects and resulted in horizontal visual angles
of 3.8◦, 13.4◦, 22.6◦, 40.2◦ and 56◦. They found that inter source distance of 44
cm could produce the highest classification accuracy while 4 cm produced the
lowest.

The result of our study was in line with the aforementioned visual competition
studies. In the Feasibility Experiment setup, when the viewing distance was
350cm, the perceptive proximity between the attended and unattended targets
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are less than 4.5◦ both in the horizontal and vertical directions. As a result,
SSVEP of attended and un–attended targets were enhanced at viewing distances
350cm. The classification accuracies of 350cm and the false positive rates of 350cm
were the worst among the four different viewing distances. In other words, the
greater viewing distance could increase the competition between the attended
and unattended targets. The layout design of the multiple visual stimuli should
take this into consideration.

6.3.3 Perception of LED spatial radiation

The perception of the LED spatial radiation (intensity) is also changed by the
viewing distance. In Figure 6.2, the vision of the subjects is within the angle
ranges of (8.06◦, 15.38◦), (3.24◦, 6.27◦), (1.95◦, 3.78◦) and (1.39◦, 2.70◦) from the
optical axis of LED for 60, 150, 250 and 350 cm of the viewing distance. These
ranges are well within the half of the viewing angle 80◦. This is applied to the
attended and unattended LEDs. Therefore, although at shorter viewing distance,
the percentage of perception of the light is less than the greater viewing distance.
The perception of the unattended LEDs is also weaker. This might be able to
explain that shorter viewing distance outperformed the greater viewing distance.

6.3.4 User attention and fatigue

SSVEP response is highly dependent on the levels of attention of the subjects. As
the viewing distance increased, the visual span also increased. This might make
the subject more difficult to focus their attention. Some subjects reported that
it became more difficult to focus on the attended target as viewing distance in-
creased. During the attending phase, if the subjects divert their attention to the
unattended visual stimuli, it is likely that the SSVEP response of the attended
is reduced. Some SSVEP studies also observed that loss of attention and focus
could cause the deterioration of SSVEP′s response (Wu, 2014a; Lin et al., 2014).

As mentioned earlier, the intensity of the visual stimuli at the viewing distance
of 350cm is the highest among four viewing distances. However, it produced the
lowest classification accuracies in average. Mouli and Palaniappan (2016)reported
that the maximum luminance induced the weakest SSVEP response of all sub-
jects and also increased the eye fatigue in their experiment. The participants of
their study also indicated that the 75% of the maximum luminance was the most
comfortable luminance to focus. Bieger et al. (2010) and Wang et al. (2013) also
suggested that although the higher intensity could induce stronger response, it
also increased the discomfort.

Another possible reason why the greater viewing distances have lower classifica-
tion accuracies is due to fatigue caused by the experiment protocol. Due to the
experiment setup, the order of presenting the visual stimuli to the subjects in the
Feasibility Experiment is fixed, in the order of 60cm–150cm–50cm–350cm. The
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greater the viewing distance is, the later the experiment is. This order might
induce the fatigue of the subjects at the greater viewing distance.

6.4 Impact of spontaneous EEG on SSVEP

In the Investigation Experiment, only one flickering LED was presented to the
subjects. The flickering frequency was one of the four stimulating frequencies.
The classification results shown in Tables 4.2 and 4.3 on pages 107 and 113
clearly provide evidence that spontaneous EEG could affect classification accu-
racies of SSVEP. If the flickering frequency was not 12Hz, there should be no
SSVEP response at 12Hz. However, as seen in both Tables 4.2 and 4.3, the ma-
jority of misclassified outcomes was 12Hz. 12Hz is within the alpha band which
might explain the classification accuracies of 12Hz were high in uncompensated
condition.

Other evidences also suggested the contribution of the spontaneous EEG. Firstly,
the classification accuracies of 12Hz were high from the 1st second of the attending
phase. The mean accuracies of 12Hz across the viewing distance at the 1st second
of the attending phase were over 85%, compared to 63%, 58%, 48% of 13Hz, 14Hz
and 15Hz. Secondly, during the attending phase, attention seemed to have less
impact on 12Hz than the other frequencies. The mean increased accuracies across
the viewing distances from 1s to 2s were 9%, 32%, 32% and 36% for 12Hz, 13Hz,
14Hz and 15Hz. The mean increased accuracies across the viewing distances from
2s to 4s are 3%, 6%, 10% and 19% for 12Hz, 13Hz, 14Hz and 15Hz. The variance
of classification accuracies at 12Hz across the subjects was smallest compared to
other frequencies. Also, subjects all showed good classification performance at
12Hz.

Wang et al. (2010a) proposed to use the 2nd harmonic to discriminate the source
of the signal, from spontaneous EEG or SSVEP. The assumption of this method
was that if the source of signal was from SSVEP, the 2nd harmonic should be
prominent. In this study, the higher harmonics were not prominent enough to
discriminate the source.

6.5 Impact of competing frequencies

Keitel et al. (2010) investigated the competition between the attended frequen-
cies (10Hz or 15Hz) and the un-attended frequencies (12Hz or 60Hz). They found
that the amplitudes of SSVEP of attended frequencies were decreased with the
unattended frequencies present. The results showed that 12Hz and 60Hz unat-
tended frequencies had similar impact on SSVEP of attended frequency of 10Hz.
However, 12Hz had a higher impact on SSVEP of 15Hz than 60Hz. The am-
plitude of SSVEP of the attended frequency was suppressed the most when the
combination of attended unattended frequencies were 15Hz and 12Hz. It was
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suggested that unattended frequency within alpha band had higher impact than
outside alpha band on SSVEP of attended frequency. Attended frequency within
alpha band was less affected by the unattended frequency.

Keitel et al. (2010) supported the results of this study that the 12Hz had the best
performance and 15Hz has the worst performance in terms of the classification
accuracy. 12Hz is within alpha band and less affected by un–attended frequen-
cies. It also explains why 12Hz had highest false positive rate. When 12Hz was
unattended, it had the higher impact on the others.

6.6 Optimal electrode sets

The classification methods using multiple electrodes can reduce the inter-subject
variability by extracting more information from multiple electrode signals. Conse-
quently, it can reduce the calibration phase required from the subjects. However,
more electrodes might reduce the inter-variance but it can also bring the irrele-
vant, redundant information, increase the preparation time and computation cost
(Lan et al., 2006). The results of the analysis of the optimal electrode sets show:

• Highest classification: The possible highest classification accuracy of indi-
vidual subject is different. From Table 5.2, it varies from 100% down to
57%.

• Minimal optimal electrode subset: The minimal electrode numbers required
in order to achieve the highest rate for most of the subjects are either 1, 2
or 3 electrodes as seen from Table 5.2. This indicates that high accuracies
can be achieved by carefully chosen electrodes with fewer electrodes. The
demographics of the minimal optimal electrode subsets can be seen from
Table 5.3. All of the electrodes are included in the minimal optimal elec-
trode subsets at least once. However, electrode Oz is the electrode which is
most found in the minimal optimal electrode set for all the subjects.

• Optimal electrode subsets: The distribution of the optimal electrode sub-
sets over the electrode number is different between subjects. In Table 5.2,
only three subjects (S5, S7 and S8) have no optimal electrode subsets for
all electrode numbers. For example, S7 has no optimal electrode subsets
for electrode number 1 and 2. For the subjects who have high classifica-
tion accuracies, there are more optimal electrode subsets than the subjects
who have lower classification accuracies. In general, the electrode subsets
with more electrodes are more likely to become optimal than fewer elec-
trodes. The classification accuracies are based on the signals of the elec-
trodes. Therefore, more electrodes mean more information and result in
higher accuracies. However, it is also possible that the additions of more
electrodes are redundant and have no actual impact on the classification
performance. For example, in CCA classification, if the additional elec-
trode is the linear combination of the existing electrodes, the addition of
this electrode might not have any impact on the result. In other words, if
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the subset of the optimal electrode set is already an optimal electrode set,
it is likely that the additional electrode(s) might not have real impact. It
might require more to fully understand the interaction of the electrodes and
give a better definition of the optimal electrode sets but only dependent on
the classification accuracies.

Lin et al. (2006) also proposed a channel selection based on CCA. Several elec-
trodes were selected by prior knowledge. For each electrode, its nearest M elec-
trodes were further selected to combine a patch. The patch containing (M+1)
electrodes was used to compute CCA coefficient which was assigned to this chan-
nel. The channel was selected based on the average of CCA coefficients corre-
sponding to the stimulating frequencies used in BCI system. The results showed
the inter-subject variance. However, most of the selected electrodes across sub-
jects were located in occipital area. In their study, M was equal to 5 and the 8
best electrodes were selected for each subject.

Friman et al. (2007) also inspected the impact of electrode number used on the
classification. In their study, only the best classification accuracy corresponding
to one electrode number was recorded. Their result showed that the higher the
electrode number was, the higher the best classification accuracy is using MEC
and MCC classification methods.

6.7 Electrode rankings and selection

This study proposes a method to rank the electrodes using the coefficients of the
spatial filter or single electrode classification accuracy. The electrode rankings are
used to select the electrodes according to the number of the electrodes required.
When the electrodes are ranked by the coefficients of the spatial filter, the rank-
ings are based on the importance of the electrode which is the absolute value of its
coefficient in transfer matrix. On the other hand, when the electrodes are ranked
by the single electrode accuracies, the rankings are based on individual electrode
independent of the other electrodes. The importance of the electrode purely de-
pends on the classification accuracy resulting from the corresponding electrode
alone. These two methods of rankings require the least computation loads, 20
and 220 classifications for the coefficient method and the accuracy method re-
spectively.

Electrodes are ranked by using the leave–one–out rule. The validation results of
PIs are encouraging and promising. The majority PIs are higher than 50% for all
subjects, the mean PI across the electrode numbers (1 to 10) over the subjects
are 77% ± 13% and 78% ± 13% for the coefficients and accuracies, respectively.
PIs indicates the ranked electrode subsets are more likely to have at least same
performance as the randomly chosen electrode subsets across all the electrode
numbers. PIs also demonstrate the proposed electrode rankings an efficient and
reliable way in selecting electrodes.
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6.8 Summary

As seen in Table 6.1, there are many factors which can affect SSVEP response.
Changing the viewing distance also change several parameters. The intensity of
visual stimulus decreased as the viewing distance increased. To achieve the same
accuracy in one stimulus experiment, the greater distance requires higher inten-
sity. However, in a four-class BCI setup, the classification accuracies decreased
at the greater viewing distance even the intensity is highest. There are several
explanations. The greater viewing distances make it difficult for the subjects to
attend and focus. The high intensity compensation could induce the subject vi-
sual fatigue. The greater viewing distances also increase the competition between
attended and unattended targets. As a consequence, the SSVEP response of the
unattended targets increased.

This chapter also analyzes the electrode ranking algorithm. Optimal electrode
subsets show great inter-subject variance in terms of the classification accuracies
and electrode locations. PI demonstrates the usefulness of the proposed electrode
ranking method.
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Conclusions and future work

This study investigates the feasibility of developing a novel distance adaptable
SSVEP based BCI. The results obtained have demonstrated the feasibility of the
proposed BCI paradigm. This final chapter concludes the thesis by presenting a
summarised critique of the study conducted. The critique will give an account of
contributions, limitations and main conclusions of this study. Finally, the chapter
presents possible directions of the future work.

7.1 Contributions

The following are the main contributions of this study:

1. Proposition and demonstration of the feasibility of a novel dis-
tance adaptable SSVEP based BCI. The implementation of the pro-
posed SSVEP BCI is described in Chapter 3. The design, experiment pro-
tocol and data analysis can also be found in Chapter 3. Its feasibility can
be found in the data analysis of Chapter 5.

2. Provide the evidence of how viewing distance affects SSVEP re-
sponse in terms of power strength and other properties and how
to compensate it. In this study it was found that SSVEP response and
several SSVEP signal properties become weaker as viewing distance in-
creases. This impact can be compensated by changing the intensities of the
visual stimuli. The impact of viewing distance on SSVEP response and the
classification accuracies in uncompensated and compensated conditions can
be seen in Chapter 4.

3. Demonstrate the relationship between SSVEP response and the
intensity of the visual stimulus. The intensity compensation corre-
sponding to the change in viewing distance is evaluated by the initial resis-
tor/intensity selection experiment. The resistor/intensity selection experi-
ment design and results can be found in Chapters 3, 5 and 6.

4. Perform comprehensive analysis to investigate the impact of the
number of electrodes over BCI classification accuracies. In this
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study, 11 EEG recording electrodes over the visual cortex are chosen using
prior knowledge. Based on the pre–selected electrodes, the classification
accuracies of all possible combinations (more than 2000 combinations) of
the electrodes with different electrode numbers are evaluated. See Chapters
3 and 5.

5. Propose and implement a simple, effective and flexible electrode
selection method. An electrodes selection method based on the rankings
of the electrodes is proposed. 11 pre–selected electrodes are ranked accord-
ing to the coefficients of the filters or the classification accuracies. The
rankings of the electrodes are used as the order to select the electrodes.
The results show that the electrodes selected based on this ranking method
outperform the random selection. See Chapter 5.

6. Investigate and identify the source of deterioration of SSVEP clas-
sification accuracies in BCI setup. Based on the data of this study,
the sources of deterioration of SSVEP classification accuracies are sponta-
neous EEG and unattended targets. The impact of the unattended targets
is highly related to the viewing distance. The impact of unattended targets
is more prominent as the viewing distance increases. See Chapters 4, 5 and
6.

7.2 Limitations

The limitations of the current study are mainly bound to the constraints of time
and resources. We acknowledge the following limitations:

1. Subjects: Due to the time length of the experiment, and subsequent recorded
data size analysis, only 10 subjects in total were recruited in the study. Sev-
eral SSVEP studies (Friman et al., 2007; Lin et al., 2006; Bin et al., 2009b)
also recruited a similar number of subjects, 10, 11 and 12 respectively. The
participants of this study are younger than 50 years old. However, the po-
tential target users of the intended system might be older than 50 years old.
To recruit more subjects in different ages is one of the directions of future
work.

2. Experimental setup: There are a few limitations of the experimental setup,

(a) Viewing distance: Only four fixed viewing distances were tested, 60cm,
150cm, 250cm and 350cm. Viewing distance of 60cm between the
visual stimulators and the subjects has been used in a few SSVEP
studies (Kelly et al., 2005a,c; Zhang et al., 2010a; Jia et al., 2011;
Zhang et al., 2012; Hwang et al., 2012). In this study, longer viewing
distances of 150cm, 250cm and 350cm are also evaluated.

(b) The experiment setup is restricted to the data recording system which
connected the electrodes to the amplifier. When changing the view-
ing distance, the visual stimuli also need to be moved to a different

177



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

distance. As a result, (1) the subjects were confined to a particular
area, (2) the change of the viewing distances is in a fixed order which
is 60cm-150cm-250cm-350cm. It cannot be ruled out that subject fa-
tigue may contribute to the performance at 350cm.

Most BCI studies use the conventional EEG recording system. The
subjects wear an EEG cap with electrode cables connected to EEG
acquisition equipments(Kelly et al., 2005a; Lin et al., 2006; Friman
et al., 2007; Bin et al., 2009b; Hwang et al., 2012; Zhang et al., 2012).
However, with advances in wearable and wireless technologies, there
are more SSVEP studies employing wearable wireless EEG recording
devices (Piccini et al., 2005; Wang et al., 2011; Liao et al., 2012; Lin
et al., 2014). This would be one of the directions of future work.

Furthermore, the experiment protocol is not always random in SSVEP
BCI study. For example, Lin et al. (2014) evaluated the feasibility of a
commercial EEG recording device used in SSVEP BCI during walking.
In their study, treadmill was used to imitate walking. The speeds in
their study were also in a fixed order, 0m/s–0.45m/s–0.89m/s–1.34
m/s.

(c) Visual stimuli: Intensities of the stimuli are fixed based on the results
of the experiment from one subject. Other parameters of the visual
stimuli were also fixed such as colours, stimulating frequencies, and
the duty cycle of the waveform. Several SSVEP BCI studies also fixed
the intensities, colours, stimulating frequencies and the duty cycle of
the visual stimuli (Gao et al., 2003; Zhu et al., 2010a; Hwang et al.,
2012).

(d) Position of the visual stimuli: The subjects were instructed to fixate
their gaze at the centre of the board during the experiment. The
position of the board was kept at the same height regardless of the
height of the subjects. However, this position could affect the visual
angle subtended between LEDs and subjects.

3. SSVEP modulation methods: In this study, SSVEP was frequency modu-
lated. There are other methods which can modulate visual stimuli, such
as mixing phase and frequency, dual frequencies stimulation and half filed
stimulation pattern (Lee et al., 2010; Shyu et al., 2010; Materka and Byczuk,
2006; Materka and Poryzala, 2013). More information on these methods can
be found in Table 2.1 on page 43.

4. Data analysis methods: There were several other methods which can extract
the features of SSVEP. However, due to the length of time, only CCA, MEC
and MCC were used. Other classification methods include conventional
FFT, SLIC in time domain and continuous wavelet transform (Gao et al.,
2003; Hwang et al., 2012; Luo and Sullivan, 2010; Zhang et al., 2010b). In
this study, FFT and SLIC were used to visualise SSVEP.
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5. Performance measurement: Due to the restriction of time, this study evalu-
ates the feasibility of the proposed system by using classification accuracy.
This study did not evaluate other performance measurements, such as com-
fort and speed (Lee et al., 2011; Gao et al., 2003; Hwang et al., 2012).

7.3 Conclusions

A novel distance adaptable SSVEP based BCI is proposed in this study. This
study first investigates the impact of viewing distance on SSVEP response and
the classification accuracies. It is found that the impact of the viewing distance
on SSVEP response can be compensated by changing the visual stimuli. Next,
its feasibility is evaluated by presenting four red LEDs flickering at 12, 13, 14 and
15Hz at four viewing distances of 60cm, 150cm, 250cm and 350cm to subjects.
EEG data are analysed in terms of its power, time– and phase– locking to the
stimulus properties and classification accuracies. The impact of the number and
location of the electrodes is also investigated. Moreover, the sources of deterio-
ration of SSVEP detection in BCI setup are also inspected and identified. The
main conclusions of this study are summarised as follows:

1. The classification accuracies demonstrate the feasibility of the proposed
distance adaptable SSVEP BCI.

2. There is a great inter-subject variance in classification accuracies.

3. SSVEP response can be affected by the change of the viewing distance
between the users and the visual stimulators. The change of the viewing
distance also changes other parameters which are related to the SSVEP
response. The compensation of the intensity of visual stimuli can improve
the SSVEP response and classification accuracies significantly. However,
intensity is not the only one parameter affected by the viewing distance.
The change of the viewing distance also affect the attention, increase the
competition between targets and the corresponding high intensity induce
the visual fatigue. They all have impact on the performance.

4. The number of the recording electrodes has no direct impact on the classi-
fication accuracy, i.e. more recording electrodes do not always result in a
higher classification rate. The location of the recording electrodes is more
important.

5. The true positive rate and false positive rate of the stimulating frequencies
are highly correlated, i.e. the stimulating frequency resulting in high true
positives also results in high false positives.

6. The spontaneous EEG is one of the sources causing deterioration of SSVEP
classification accuracies. The other source of deterioration of SSVEP classi-
fication accuracies is the unattended targets. The impact of the unattended
targets is related to the viewing distance and the stimulating frequencies.
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7.4 Future work

This study has demonstrated the feasibility of the proposed SSVEP BCI paradigm.
However, there are many potential perspectives related to this study, both in
academia research and commercial application developments. The future work
includes:

1. Subjects: Further study is required to investigate the root causes of the
inter-subject variance. As there are many parameters which can affect
SSVEP response, one of the direction of inter-subject study might focus on
the sensitivities and priorities of different parameters to the subjects.

The subjects with age within the target population should be included.

2. Optimal intensities of the visual stimuli: Further study is required to inves-
tigate the optimal intensities of the visual stimuli corresponding to viewing
distance. The higher intensities not only enhance the SSVEP response but
also induce the visual fatigue and discomfort which also affect the perfor-
mance. In a multiple choice SSVEP BCI, higher intensities also increase
the inference from the unattended targets. The optimal intensities should
trade off BCI performance against the comfort of the users.

3. Visual stimuli: SSVEP responses are highly related to the colours, sizes,
stimulating frequencies, duty cycles and driving waveforms of the visual
stimuli. Some of the parameters are correlated to each other, for example
colours and frequencies. Present study is focused on the evaluation of the
feasibility of the distance adaptable SSVEP BCI. Future work should also
take the user comfort into account by different choice of the colour and
stimulating frequencies. In the practical system, these parameters should
be able to change and adapt according to the comfort, preference and per-
formance of the individuals.

4. Viewing angle of the visual stimuli(LEDs): In an ideal scenario, the vision of
the subjects is expected to be within the extended viewing angle of attended
LEDs and fall out the ones of the unattended. A narrow viewing angle can
reduce the interference of the unattended but also make it easier to fall
out the viewing angle of the attended target. On the other hand, a wide
viewing angle can increase interference of the unattended but easier to fall
within the viewing angle region of the attended. The future work should
investigate this effect and find the optimal trade off.

5. Interference between stimulating frequencies: It has been well known that
the stimulating frequency plays an important part in SSVEP based BCI.
However, the interference caused by different combinations of stimulating
frequencies in the BCI application is not clear or understood.

6. Experiment setup: The experiment setup should be close to realistic en-
vironment. The visual stimuli should be located in a fixed position. The
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users should be able to move around and attend the stimulus in any posi-
tions within the limitations. The intensities of the visual stimulus should
response to the attending position as well as the background intensity where
BCI is operated.

The practical BCI should have more than one selection. Therefore the
layout and design of the visual stimuli are important. The layout of the
visual stimuli should reduce the level of competition of the stimuli, especially
at greater viewing distance. The layout of the stimuli also affects the choice
of LED, especially the viewing angle of LED. With the advance of the
display technology, the visual stimuli are not limited to LEDs. The design of
the visual stimuli should improve the performance of BCI and the attention
of the users but reduce the visual fatigue and tiredness.

7. Performance measurement: There are other metrics which are worth inves-
tigating, such as the comfort of the subjects in terms of the user interface,
the colour, the stimulating frequencies and layout of the stimuli.

8. Stimulation methods: This study uses the conventional SSVEP stimulation
method, i.e. one target is assigned a distinct frequency. It would be worthy
investigating if other different stimulation methods can also achieve the
results similar to or better than the results of this study, for example, mixing
same frequency with different phases.

9. Evaluation of the effectiveness and usefulness of the proposed BCI in differ-
ent applications: With the flexible viewing distance, the proposed SSVEP
based BCI can be applied to control applications which require flexible
space, for example serious games in rehabilitation therapy for patients of
stroke and Parkinson′s disease and the intelligent care environment for the
older population to help and improve their independence. BCI control can
be an option for induced disability in the applications of entertainment
game and smart home control for healthy population.

10. Investigation of distractors and intensity in real environment: These dis-
tractors include sound, other objects or subjects present and walking in the
trial. The distractors can affect the attention of the users and affect SSVEP
response. The intensity of the background could affect modulation depth
and SSVEP response. These factors need to be taken into account when
applying the proposed BCI into practice.

11. Investigate and compare the effectiveness of classification methods using
native programming language, such as C/C++.

12. Investigate the effect of LED colour to the subjects with eyesight problem.
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Kübler, A., Perelmouter, J., Taub, E., and Flor, H. (1999). A spelling device
for the paralysed. Nature, 398(6725):297–298.

Birbaumer, N., Hinterberger, T., Kubler, A., and Neumann, N. (2003). The
thought-translation device (TTD): neurobehavioral mechanisms and clinical
outcome. Neural Systems and Rehabilitation Engineering, IEEE Transactions
on, 11(2):120–123.

183



REFERENCES
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Kübler, A. and Birbaumer, N. (2008). Brain–computer interfaces and communi-
cation in paralysis: extinction of goal directed thinking in completely paralysed
patients? Clinical neurophysiology, 119(11):2658–2666.
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Data Sheets

Table A-1: Data sheet of LED LR G6SP-CADB-1-1(7100mcd). This table is from
OSRAM Opto Semiconductors GmbH.
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Table A-2: Data sheet of LED LS E63B-BBCB-1-1(2525mcd). This table is from
OSRAM Opto Semiconductors GmbH.
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Table A-3: Data sheet of LED LR CP7P-JSJU-1. This table is from OSRAM Opto
Semiconductors GmbH.

205



Appendix A - Data Sheets

Figure A-1: Spectrum and Radiation Characteristics of LR G6SP-CADB-1-
1(7100mcd). This figure is from OSRAM Opto Semiconductors GmbH.
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Figure A-2: Spectrum and Radiation Characteristics of LED, LS E63B-BBCB-1-
1(2525mcd). This figure is from OSRAM Opto Semiconductors GmbH.
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Figure A-3: Spectrum and Radiation Characteristics of LED, LR CP7P-JSJU-1. This
figure is from OSRAM Opto Semiconductors GmbH.
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Figure A-4: Experimental setup to measure output power of LEDs. 4 LEDs
are turned on in the highest intensity as in the Feasibility Experiment. The measuring
distance in this setup is 60cm.
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Figure A-5: LEDs power output of 6 measurements and their average. x axis
of this figure is the data point.
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Figure B-1: Screen shots of 4 stimulating frequencies from Tektronix digital
oscilloscope TDS 2014. (a) The waveforms presented by the colours of orange,
cyan, violet and light green, from the top to the bottom, are the square waves with
frequencies 12, 13, 14 and 15Hz respectively. (b) waveforms of (a) are re-plotted by
Matlab.
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Figure B-2: Screen shots of 4 stimulating frequencies from Tektronix digital
oscilloscope TDS 2014. (a) The waveforms presented by the colours of orange,
cyan, violet and light green, from the top to the bottom, are the square waves with
frequencies 12, 13, 14 and 15Hz respectively. (b) waveforms of (a) are re-plotted by
Matlab.
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Figure B-3: FFT power spectrum at four viewing distances without LED
intensity compensation. The attended target of this figure is 12Hz. FFT
power spectrum of this figure is the mean of all epochs and electrodes. SSVEP power
at the attended frequency decreases as the viewing distances increase without LED
intensity compensation. The power at the second harmonics (not labelled) also declined
as the viewing distances increase.
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Figure B-4: Boxplot of SSVEP powers at four viewing distances without LED
intensity compensation. The attended target of this figure is 12Hz. Each viewing
distance has 20 epochs.
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Figure B-5: FFT power spectrum at four viewing distances without LED
intensity compensation. The attended target of this figure is 13Hz. FFT power
spectrum of this figure is the mean of all epochs and electrodes. SSVEP power at the
attended frequency decreases as the viewing distances increase without LED intensity
compensation. The power at 26Hz (the 2nd harmonics, not labelled) seems stable at
all viewing distances compared to the one at 14Hz.
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Figure B-6: Boxplot of SSVEP powers at four viewing distances without LED
intensity compensation. The attended target of this figure is 13Hz. Each viewing
distance has 20 epochs.
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Figure B-7: FFT power spectrum at four viewing distances without LED
intensity compensation. The attended target of this figure is 15Hz. FFT power
spectrum of this figure is the mean of all epochs and electrodes. SSVEP power at
the attended frequency decreases as the viewing distances increase without LED in-
tensity compensation. The power at the 30Hz (the 2nd harmonics, not labelled) is not
prominent compared to the one at 14Hz.
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Figure B-8: Boxplot of SSVEP powers at four viewing distances without LED
intensity compensation. The attended target of this figure is 15Hz. Each viewing
distance has 20 epochs.
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Figure B-9: FFT power spectrum at four viewing distances with LED inten-
sity compensation. The attended target of this figure is 12Hz. FFT power spectrum
of this figure is the mean of all epochs and electrodes. SSVEP power at the attended
frequency remained at the similar level at all viewing distances. The power at longer
viewing distance can be larger than the shorter viewing distance.
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Figure B-10: Boxplot of SSVEP powers at four viewing distances with LED
intensity compensation. The attended target of this figure is 12Hz. Each viewing
distance has 20 epochs.
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Figure B-11: FFT power spectrum at four viewing distances with LED inten-
sity compensation. The attended target of this figure is 13Hz. FFT power spectrum
of this figure is the mean of all epochs and electrodes. SSVEP power at the attended
frequency remained at the similar level at all viewing distances. The power at longer
viewing distance can be larger than the shorter viewing distance.
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Figure B-12: Boxplot of SSVEP powers at four viewing distances with LED
intensity compensation. The attended target of this figure is 13Hz. Each viewing
distance has 20 epochs.
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Figure B-13: FFT power spectrum at four viewing distances with LED inten-
sity compensation. The attended target of this figure is 14Hz. FFT power spectrum
of this figure is the mean of all epochs and electrodes. SSVEP power at the attended
frequency remained at the similar level at all viewing distances. The power at longer
viewing distance can be larger than the shorter viewing distance.
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Figure B-14: Boxplot of SSVEP powers at four viewing distances with LED
intensity compensation. The attended target of this figure is 14Hz. Each viewing
distance has 20 epochs.

217



Appendix B - Figures

0 100

−20

−10

0

10

(uV)
Intertrace Response−12Hz

60cm

−1 0 1
0

10

20

30

40 Mean    = 0.2577
Median = 0.3103

Pair Correlation

0 100

−20

−10

0

10

(uV)

150cm

−1 0 1
0

10

20

30

40 Mean    = 0.0329
Median = 0.0324

0 100

−20

−10

0

10

(uV)

250cm

−1 0 1
0

10

20

30

40 Mean    = 0.0030
Median = −0.0156

0 100

−20

−10

0

10

(uV)

350cm

−1 0 1
0

10

20

30

40 Mean    = 0.0409
Median = 0.0706

Figure B-15: EEG inter–traces and histogram of inter–trace correlation coef-
ficients distribution. First row is the inter–trace EEG in time domain at different
viewing distances. Blue thin line is one single inter–trace and red thick line is the
average of all inter–traces. The second row is histogram of inter–trace correlation co-
efficients distribution without LED intensity compensation. LED intensity is the same
for all viewing distances. The subject attends 12Hz target.
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Figure B-16: EEG inter–traces and histogram of inter–trace correlation co-
efficients distribution without LED intensity compensation. First row is the
inter–trace EEG in time domain at different viewing distances. Blue thin line is one
single inter–trace and red thick line is the average of all inter–traces. The second row
is histogram of inter–trace correlation coefficients distribution. LED intensity is the
same for all viewing distances. The subject attends 14Hz target.
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Figure B-17: EEG inter–traces and histogram of inter–trace correlation co-
efficients distribution without LED intensity compensation. First row is the
inter–trace EEG in time domain at different viewing distances. Blue thin line is one
single inter–trace and red thick line is the average of all inter–traces. The second row
is histogram of inter–trace correlation coefficients distribution. LED intensity is the
same for all viewing distances. The subject attends 15Hz target.
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Figure B-18: EEG inter–traces and histogram of inter–trace correlation coef-
ficients distribution with LED intensity compensation. First row is the inter–
trace EEG in time domain at different viewing distances. Blue thin line is one single
inter–trace and red thick line is the average of all inter–traces. The second row is
histogram of inter–trace correlation coefficients distribution. LED intensity is compen-
sated to response to the change of the viewing distances. The subject attends 12Hz
target.
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Figure B-19: EEG inter–traces and histogram of inter–trace correlation coef-
ficients distribution with LED intensity compensation. First row is the inter–
trace EEG in time domain at different viewing distances. Blue thin line is one single
inter–trace and red thick line is the average of all inter–traces. The second row is
histogram of inter–trace correlation coefficients distribution. LED intensity is compen-
sated to response to the change of the viewing distances. The subject attends 14Hz
target.
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Figure B-20: EEG inter–traces and histogram of inter–trace correlation coef-
ficients distribution with LED intensity compensation. First row is the inter–
trace EEG in time domain at different viewing distances. Blue thin line is one single
inter–trace and red thick line is the average of all inter–traces. The second row is
histogram of inter–trace correlation coefficients distribution. LED intensity is compen-
sated to response to the change of the viewing distances. The subject attends 15Hz
target.
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Figure B-21: ITC at different viewing distances when the subject attended at
the target of 12Hz without LED compensation. ITC at the attended frequency
(12Hz) decreases as the viewing distance increases. This decrease can also been seen
at the higherharmonics of 12Hz.
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Figure B-22: Boxplot of ITC when the subject attended at the target of 12Hz
at four viewing distances without LED intensity compensation. This figure
shows that ITC at 12Hz decreases as the viewing distance increases. ITC of 12Hz is
obtained by linear interpolation of two neighbouring frequencies of 12Hz.
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Figure B-23: ITC at different viewing distances when the subject attended at
the target of 13Hz without LED compensation. ITC at the attended frequency
(13Hz) decreases as the viewing distance increases. This decrease can also been seen
at the higher harmonics of 13Hz.
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Figure B-24: Boxplot of ITC when the subject attended at the target of 13Hz
at four viewing distances without LED intensity compensation. This figure
shows that ITC at 13Hz decreases as the viewing distance increases. ITC of 13Hz is
obtained by linear interpolation of two neighbouring frequencies of 13Hz.
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Figure B-25: ITC at different viewing distances when the subject attended at
the target of 15Hz without LED compensation. ITC at the attended frequency
(15Hz) decreases as the viewing distance increases. This decrease can also been seen
at the higher harmonics of 15Hz.
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Figure B-26: Boxplot of ITC when the subject attended at the target of 15Hz
at four viewing distances without LED intensity compensation. This figure
shows that ITC at 15Hz decreases as the viewing distance increases. ITC of 15Hz is
obtained by linear interpolation of two neighbouring frequencies of 15Hz.
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Figure B-27: ITC at different viewing distances when the subject attended at
the target of 12Hz with LED compensation. With LED intensity compensation,
ITC values at attended frequency are more stable compared to the ones without LED
intensity compensation (see Figure B-21).
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Figure B-28: Boxplot of ITC when the subject attended at the target of
12Hz at four viewing distances with LED intensity compensation. This
figure shows that ITC at attended frequency, 12Hz is more consistent than without
LED compensation (see Figure B-22). ITC of 12Hz is obtained by linear interpolation
of two nearest neighbouring frequencies of 12Hz.
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Figure B-29: ITC at different viewing distances when the subject attended at
the target of 13Hz with LED compensation. With LED intensity compensation,
ITC values at attended frequency are more stable compared to the ones without LED
intensity compensation (see Figure B-23).
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Figure B-30: Boxplot of ITC when the subject attended at the target of
13Hz at four viewing distances with LED intensity compensation. This
figure shows that ITC at attended frequency, 13Hz is more consistent than without
LED compensation (see Figure B-24). ITC of 13Hz is obtained by linear interpolation
of two nearest neighbouring frequencies of 13Hz.
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Figure B-31: ITC at different viewing distances when the subject attended at
the target of 15Hz with LED compensation. With LED intensity compensation,
ITC values at attended frequency are more stable compared to the ones without LED
intensity compensation (see Figure B-25).
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Figure B-32: Boxplot of ITC when the subject attended at the target of
15Hz at four viewing distances with LED intensity compensation. This
figure shows that ITC at attended frequency, 15Hz is more consistent than without
LED compensation (see Figure B-26). ITC of 12Hz is obtained by linear interpolation
of two nearest neighbouring frequencies of 15Hz.
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Figure B-33: SNRs of all subjects when the subjects attend the target of
12Hz at different viewing distance at different EEG TWLs. For most of the
subjects, SNR increases as EEG TWL increases. The SNR scales of the subjects are
different.
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Figure B-34: SNRs of all subjects when the subjects attend the target of
13Hz at different viewing distance at different EEG TWLs. For most of the
subjects, SNR increases as EEG TWL increases. The SNR scales of the subjects are
different.
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Figure B-35: SNRs of all subjects when the subjects attend the target of
14Hz at different viewing distance at different EEG TWLs. For most of the
subjects, SNR increases as EEG TWL increases. The SNR scales of the subjects are
different.
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Figure B-36: SNRs of all subjects when the subjects attend the target of
15Hz at different viewing distance at different EEG TWLs. For most of the
subjects, SNR increases as EEG TWL increases. The SNR scales of the subjects are
different.
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Figure B-37: z scores of all subjects when the subjects attend the target
of 12Hz at different viewing distance at different EEG recording time in-
stances. For most of the subjects, z scores increased as EEG recording time increased.
The z score scales of the subjects are different.
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Figure B-38: z scores of all subjects when the subjects attend the target
of 13Hz at different viewing distance at different EEG recording time in-
stances. For most of the subjects, z scores increased as EEG recording time increased.
The z score scales of the subjects are different.
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Figure B-39: z scores of all subjects when the subjects attend the target
of 14Hz at different viewing distance at different EEG recording time in-
stances. For most of the subjects, z scores increased as EEG recording time increased.
The z score scales of the subjects are different.
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Figure B-40: z scores of all subjects when the subjects attended the target
of 15Hz at different viewing distance at different EEG recording time in-
stances. For most of the subjects, z scores increased as EEG recording time increased.
The z score scales of the subjects are different.

237



Appendix B - Figures

1s 2s 3s 4s 5s
0

25

50

75

100

EEG time window
(a) 12hz

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

1s 2s 3s 4s 5s
0

25

50

75

100

EEG time window
(b) 13hz

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

1s 2s 3s 4s 5s
0

25

50

75

100

EEG time window
(c) 14hz

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

1s 2s 3s 4s 5s
0

25

50

75

100

EEG time window
(d) 15hz

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

1s 2s 3s 4s 5s
0

25

50

75

100

EEG time window
(e) grand average

CCA−fs100Hz
no of eletrodes: 7

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

 

 

H1
H2
H3

Figure B-41: Comparison of classification accuracies using different number
of SSVEP harmonics. In this figure, the classification method is CCA and the
number of the electrodes is 7. (a) to (d) are the mean classification accuracies across
the subjects and the viewing distances of the attended frequency 12Hz, 13Hz, 14Hz and
15Hz respectively. (e) is the mean classification across the subjects, viewing distances
and the attended frequencies.
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Figure B-42: Comparison of classification accuracies using different number
of SSVEP harmonics using MEC. In this figure, the classification method is MEC
and the number of the electrodes is 11. (a) to (d) are the mean classification accuracies
across the subjects and the viewing distances of the attended frequency 12Hz, 13Hz,
14Hz and 15Hz respectively. (e) is the mean classification across the subjects, viewing
distances and the attended frequencies.
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Figure B-43: Comparison of classification accuracies using different number
of SSVEP harmonics using MCC. In this figure, the classification method is MEC
and the number of the electrodes is 11. (a) to (d) are the mean classification accuracies
across the subjects and the viewing distances of the attended frequency 12Hz, 13Hz,
14Hz and 15Hz respectively. (e) is the mean classification across the subjects, viewing
distances and the attended frequencies.
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Figure B-44: Classification accuracies of 4 attended frequencies at different
viewing distances. The classification method of this figure is MEC. (a) to (d)
The classification accuracies of each attended frequency at one of the viewing distances.
The accuracies are the mean across the subjects. (e) The grand average across the
viewing distances of (a) to (d). The number of SSVEP harmonics and electrodes used
in this figure are 1 and 11 respectively.
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Figure B-45: Classification accuracies of 4 attended frequencies at different
viewing distances. The classification method of this figure is MCC. (a) to (d)
The classification accuracies of each attended frequency at one of the viewing distances.
The accuracies are the mean across the subjects. (e) The grand average across the
viewing distances of (a) to (d). The number of SSVEP harmonics and electrodes used
in this figure are 1 and 11 respectively.
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Figure B-46: Classification accuracies across the subjects of all attended fre-
quencies at different viewing distance and their grand average. The clas-
sification method of this figure is MEC. (a) to (d) The classification accuracies
of each attended frequency at one of the viewing distances. The accuracies are the
mean across the subjects. (e) The grand average across the viewing distances of (a) to
(d). The number of SSVEP harmonics and electrodes used in this figure are 1 and 11
respectively. EEG TWL is 2s.
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Figure B-47: Classification accuracies across the subjects of all attended fre-
quencies at different viewing distance and their grand average. The clas-
sification method of this figure is MCC. (a) to (d) The classification accuracies
of each attended frequency at one of the viewing distances. The accuracies are the
mean across the subjects. (e) The grand average across the viewing distances of (a) to
(d). The number of SSVEP harmonics and electrodes used in this figure are 1 and 11
respectively. EEG TWL is 2s.
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Figure B-48: Confusion matrix of grand total of all subjects at different view-
ing distance using MEC. The confusion matrix of (a) to (d) is the sum of the
individual confusion matrix of each subject. (e) is the grand total of (a) to (d). Each
number in the cell is the number of class i being classified as class j. The numbers of
SSVEP harmonics and electrodes are 1 and 11 in this figure. The classification method
is MEC and EEG TWL is 3s.
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Figure B-49: Confusion matrix of grand total of all subjects at different view-
ing distance using MCC. The confusion matrix of (a) to (d) is the sum of the
individual confusion matrix of each subject. (e) is the grand total of (a) to (d). Each
number in the cell is the number of class i being classified as class j. The numbers of
SSVEP harmonics and electrodes are 1 and 11 in this figure. The classification method
is MCC and EEG TWL is 3s.
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Figure B-50: ROC plots corresponding to the confusion matrices of Figure B-
48 and F measurements. Each ROC plot (a) to (e) is corresponding to one confusion
matrix of Figure B-48 (a) to (e). The classification method and parameters are the same
as Figure B-48.
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Figure B-51: ROC plots corresponding to the confusion matrices of Figure B-
49 and F measurements. Each ROC plot (a) to (e) is corresponding to one confusion
matrix of Figure B-49 (a) to (e). The classification method and parameters are the same
as Figure B-49.
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Figure B-52: Continuous ROC curves of all attended frequencies at different
viewing distances. The subplots of (a) to (d) are for viewing distances of 60cm,
150cm, 250cm and 350cm respectively. This figure is based on classification method
MEC. The numbers of SSVEP harmonica and the electrodes are 1 and 11. EEG TWL
is 3s.
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Figure B-53: Continuous ROC curves of all attended frequencies at different
viewing distances. The subplots of (a) to (d) are for viewing distances of 60cm,
150cm, 250cm and 350cm respectively. This figure is based on classification method
MCC. The numbers of SSVEP harmonica and the electrodes are 1 and 11. EEG TWL
is 3s.
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Figure B-54: The highest, average and lowest classification accuracies and the
standard deviation corresponding to the number of the electrodes across the
subject and attended frequencies at different viewing distances. EEG TWL
is 2s and the number of SSVEP harmonics is 1 in this figure. The classification method
is MEC.
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Figure B-55: The highest, average and lowest classification accuracies and the
standard deviation corresponding to the number of the electrodes across the
subject and attended frequencies at different viewing distances. EEG TWL
is 2s and the number of SSVEP harmonics is 1 in this figure. The classification method
is MCC.
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Figure B-56: Mean electrode number of the minimal optimal electrode subsets
for the subjects at different viewing distances. The blue bar presents the mean
electrode number of the minimal optimal electrode subsets for each subject across the
attended frequencies. The dot presents the electrode number of one attended frequency
at one viewing distance. This figure is based on MEC. EEG TWL is 2s and the number
of SSVEP harmonics is 1.
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Figure B-57: Mean electrode number of the minimal optimal electrode subsets
for the subjects at different viewing distances. The blue bar presents the mean
electrode number of the minimal optimal electrode subsets for each subject across the
attended frequencies. The dot presents the electrode number of one attended frequency
at one viewing distance. This figure is based MCC. EEG TWL is 2s and the number
of SSVEP harmonics is 1.
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Figure B-58: Topographies of mean MEC spatial filter coefficients of the
electrodes across the subjects and attended frequencies at different viewing
distances. The spatial filter is obtained using the electrode subsets consisting of 11
electrodes in classification. The classification method of this figure is MEC.
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Figure B-59: Topographies of mean MCC spatial filter coefficients of the
electrodes across the subjects and attended frequencies at different viewing
distances. The spatial filter is obtained using the electrode subsets consisting of 11
electrodes in classification. The classification method of this figure is MCC.
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Figure B-60: Mean PIs across the subjects for each experiment condition.
This figure is based on the MEC spatial filter coefficients. There are more PIs
which are lower than 50% compared to Figure 5.15 which employs CCA.
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Figure B-61: Mean PIs across the subjects for each experiment condition.
This figure is based on the MCC spatial filter coefficients. It shows that
except one PI is lower than 50%, all PIs are over 50% same as Figure 5.15 which
employs CCA.
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Figure B-62: Mean PIs across the subjects for each experiment condition
based on MEC. PIs of this figure are used as the evaluation metrics of the
electrode rankings based on the single electrode classification accuracy. It
also shows that three PIs are lower than 50%, the rest of PIs exceed 50%, the same as
seen in Figure 5.17.
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Figure B-63: Mean PIs across the subjects for each experiment condition
based on MCC. PIs of this figure are used as the evaluation metrics of
the electrode rankings based on the single electrode classification accuracy.
There are four PIs lower than 50%, which are more than the ones seen in Figure 5.17.
The rest of PIs exceed 50%.
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Figure B-64: Confusion matrix of grand total of all subjects at different view-
ing distances using MEC with the thresholds applied. The confusion matrix
without applying the thresholds can be found in Figure B-48. The thresholds applied in
this figure are the thresholds which maximise the overall accuracy of the equation (3.19)
on page 97. The thresholds are different among the experiment conditions but the same
for all subjects in one experiment condition. The thresholds, true positive rates and
false positives rates used in equation (3.19) are from Figure B-52.
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Figure B-65: Maxtrix of UI class after applying the thresholds on the classifi-
cation. Each UI matrix is the difference between the corresponding confusion matrices
of Figures B-48, and B-64 in the same subplot. This figure is based on MEC.
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Figure B-66: Confusion matrix of grand total of all subjects at different view-
ing distances using MCC with the thresholds applied. The confusion matrix
without applying the thresholds can be found in Figure B-49. The thresholds applied in
this figure are the thresholds which maximise the overall accuracy of the equation (3.19)
on page 97. The thresholds are different among the experiment conditions but the same
for all subjects in one experiment condition. The thresholds, true and false positives
rates used in equation (3.19) are from Figure B-53.
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Figure B-67: Maxtrix of UI class caused after applying the thresholds on the
classification. Each UI matrix is the difference between the corresponding confusion
matrices of Figures B-49, and B-66 in the same subplot. This figure is based on MCC.
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Figure B-68: Modified ROC plots corresponding to the confusion matrices
of Figure B-64 and F measurements when the thresholds applied. The false
positive rate (fpr) in this figure is calculated according to the confusion matrix in
Figure B-64. However, to see how the true positive rate (tpr), the accuracies of each
frequency, are affected by the thresholds, the total classification number of each row
is based on Figure B-48 and the number of the true positives, the number of being
classified correctly, of each frequency is based on the Figure B-64. As a result, the true
positive rates decrease.
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Figure B-69: Modified ROC plots corresponding to the confusion matrices
of Figure B-66 and F measurements when the thresholds applied. The false
positive rate (fpr) in this figure is calculated according to the confusion matrix in
Figure B-66. However, to see how the true positive rate (tpr), the accuracies of each
frequency, are affected by the thresholds, the total classification number of each row
is based on Figure B-49 and the number of the true positives, the number of being
classified correctly, of each frequency is based on the Figure B-64. As a result, the true
positive rates decrease.
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Figure B-70: UI number of the confusion matrix in Figure B-48 with applied
thresholds which maximise F measurements. Each matrix of this figure is the
difference between two corresponding matrices in Figures B-48 and Figure B-71.
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Figure B-71: Confusion matrix of grand total of all subjects at different view-
ing distance using MEC. This figure is corresponding to Figure B-48 in which no
thresholds are applied. The thresholds of each subject in each experiment condition
are different. The thresholds applied to each subject in different experiment condition
maximise F measurement of the corresponding experiment condition. If the feature
used as the classification criterion is lower than the thresholds, it is classified as UI
class. (a) to (d) is the sum of the individual confusion matrix of each subject. (e) is
the grand total of (a) to (d). The numbers of SSVEP harmonics and electrodes are 1
and 11 in this figure. The classification method is CCA and EEG TWL is 3s.
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Figure B-72: UI number of the confusion matrix in Figure B-49 with applied
thresholds which maximise F measurements. Each matrix of this figure is the
difference between two corresponding matrices in Figures B-49 and Figure B-73.
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Figure B-73: Confusion matrix of grand total of all subjects at different view-
ing distance using MCC. This figure is corresponding to Figure B-49 in which no
thresholds are applied. The thresholds of each subject in each experiment condition
are different. The thresholds applied to each subject in different experiment condition
maximise F measurement of the corresponding experiment condition. If the feature
used as the classification criterion is lower than the thresholds, it is classified as UI
class. (a) to (d) is the sum of the individual confusion matrix of each subject. (e) is
the grand total of (a) to (d). The numbers of SSVEP harmonics and electrodes are 1
and 11 in this figure. The classification method is MCC and EEG TWL is 3s.
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Figure B-74: Modified ROC plots corresponding to the confusion matrices of
Figure B-71 and F measurements with the thresholds applied. ROC plots
corresponding to the confusion matrices of Figure B-71 and F measurements. Each
ROC plot (a) to (e) is corresponding to one confusion matrix of Figure B-71 (a) to
(e). The classification method and parameters are the same as Figure B-48. With the
thresholds applied, F measurements are higher or the same compared to Figure B-50.
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Figure B-75: Modified ROC plots corresponding to the confusion matrices of
Figure B-73 and F measurements with the thresholds applied. ROC plots
corresponding to the confusion matrices of Figure B-73 and F measurements. Each
ROC plot (a) to (e) is corresponding to one confusion matrix of Figure B-73 (a) to
(e). The classification method and parameters are the same as Figure B-49. With the
thresholds applied, F measurements are higher compared to Figure B-51.
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Figure B-76: Mean SSVEP response of the same attended frequency of sub-
ject 6 at different viewing distances and ANOVA test results of SSVEPs
of the same attended frequency between different viewing distances. The
presentation of ANOVA test is the same as described in Figure 5.24.
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Figure B-77: Mean SSVEP response of the same attended frequency of sub-
ject 8 at different viewing distances and ANOVA test results of SSVEPs
of the same attended frequency between different viewing distances. The
presentation of ANOVA test is the same as described in Figure 5.24.
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Figure B-78: Mean SSVEP powers of SSVEPs of the attended frequency and
unattended frequencies and its corresponding A/U ratio over time. This
figure illustrates SSVEP powers of all stimulating frequencies in (13Hz,
350cm) experiment condition. This figure illustrates SSVEP powers of all stimu-
lating frequencies in (13Hz, 350cm) experiment condition. A/U ratio increases as the
time increases. So do SSVEPs at all stimulating frequencies. It takes more than 3
seconds before the power of attended frequency (13Hz) exceeds the one of 12Hz.
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Figure B-79: Mean SSVEP powers of SSVEPs of the attended frequency and
unattended frequencies and its corresponding A/U ratio over time. This
figure illustrates SSVEP powers of all stimulating frequencies in (15Hz,
150cm) experiment condition. This figure illustrates SSVEP powers of all stimu-
lating frequencies in (15Hz, 150cm) experiment condition. A/U ratio increases as the
time increases. So do SSVEPs at all stimulating frequencies. It takes more than 2s
before the power of attended frequency (15Hz) exceeds the one of 12Hz.
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Figure B-80: Mean SSVEP powers of SSVEPs of the attended frequency and
unattended frequencies and its corresponding A/U ratio over time. This
figure illustrates SSVEP powers of all stimulating frequencies in (14Hz,
60cm) experiment condition. This figure illustrates SSVEP powers of all stimulat-
ing frequencies in (14Hz, 60cm) experiment condition. A/U ratio increases as the time
increases. So do SSVEPs at all stimulating frequencies. It takes more than 1s before
the power of attended frequency (14Hz) exceeds the one of 12Hz.
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Figure B-81: False positive rates of different viewing distances of the same
attended frequency and their grand average across the attended frequencies
over time. This figure is the result of MEC. Each subplot stands for one attended
frequency. Subplots (a) to (d) present the attended frequency 12Hz, 13Hz,14Hz and
15Hz respectively over the time instances from 1s to 5s.
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Figure B-82: False positive rates of different viewing distances of the same
attended frequency and their grand average across the attended frequencies
over time. This figure is the result of MCC. Each subplot stands for one attended
frequency. Subplots (a) to (d) present the attended frequency 12Hz, 13Hz,14Hz and
15Hz respectively over the time instances from 1s to 5s.
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Figure B-83: False positives rates of different attended frequencies at the
same viewing distance and their grand average across the viewing distance
over time. This figure is the result of MEC. Each subplot stands for one viewing
distance. Subplots (a) to (d) present the viewing distance 60cm, 150cm, 250cm and
350cm respectively over the time instances from 1s to 5s.
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Figure B-84: False positives rates of different attended frequencies at the
same viewing distance and their grand average across the viewing distance
over time. This figure is the result of MCC. Each subplot stands for one viewing
distance. Subplots (a) to (d) present the viewing distance 60cm, 150cm, 250cm and
350cm respectively over the time instances from 1s to 5s.
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Figure B-85: Mean optimised thresholds which maximise F measurements
across the attended frequencies for each subject and the corresponding F,
recall rates and precision rates. This figure is based on MEC classification method.
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Figure B-86: Mean optimised thresholds which maximise F measurements
across the attended frequencies for each subject and the corresponding F,
recall rates and precision rates. This figure is based on MCC classification method.
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Tables

Table C-1: Frequency and duty cycle of Figure B-1. The results of the frequencies
and duty cycle are based on the sampling data of Figure B-1 and analysed by Matlab.
f and D stand for frequency and duty cycle respectively.

12Hz 13Hz 14Hz 15Hz

f (Hz) D (%) f (Hz) D (%) f (Hz) D (%) f (Hz) D (%)
11.99 50.12 12.99 50.13 14.01 50.14 15.02 50.15
12.02 50.00 12.99 50.13 14.01 50.14 14.97 50.00
12.02 50.00 12.99 50.13 14.01 50.14 14.97 50.00
12.02 50.00 12.99 50.13 13.97 50.00 14.97 50.00
12.02 50.00 13.02 50.00 14.01 49.86 14.97 50.00
12.02 50.00 12.99 49.87 14.01 49.86 15.02 50.15
12.02 50.00 12.99 49.87 13.97 50.00 15.02 50.15
12.02 50.00 12.99 49.87 14.01 50.14 14.97 50.00
12.02 50.00 12.99 49.87 14.01 50.14 14.97 50.00
12.02 50.00 13.02 50.00 13.97 50.00 14.97 50.00

- - 12.99 50.13 14.01 49.86 14.97 50.00
- - - - 14.01 49.86 14.97 50.00
- - - - - - 14.97 50.00

Mean 12.02 50.01 12.99 50.01 14.00 50.01 14.98 50.03
SD(%) 0.08% 0.08% 0.11% 0.25% 0.13% 0.25% 0.13% 0.13%
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Table C-2: Frequency and duty cycle of Figure B-2. The results of the frequencies
and duty cycle are based on the sampling data of Figure B-2 and analysed by Matlab.
f and D stand for frequency and duty cycle respectively.

12Hz 13Hz 14Hz 15Hz

f (Hz) D (%) f (Hz) D (%) f (Hz) D (%) f (Hz) D (%)
12.02 50.00 13.02 50.00 14.01 49.86 15.02 50.15
12.02 50.00 12.99 49.87 14.01 49.86 15.02 50.15
12.02 50.00 12.99 49.87 13.97 50.00 14.97 50.00
12.02 50.00 13.02 50.00 14.01 50.14 14.97 50.00
12.02 50.00 12.99 50.13 14.01 50.14 14.97 50.00
12.02 50.00 12.99 50.13 14.01 50.14 14.97 50.00
12.02 50.00 12.99 50.13 14.01 50.14 15.02 50.15
12.02 50.00 12.99 50.13 13.97 50.00 15.02 50.15
11.99 50.12 13.02 50.00 14.01 49.86 14.97 50.00
11.99 50.12 12.99 49.87 14.01 49.86 14.97 50.00

- - 12.99 49.87 13.97 50.00 14.97 50.00
- - - - 14.01 50.14 14.97 50.00

Mean 12.01 50.02 13.00 50.00 14.00 50.01 14.99 50.05
SD(%) 0.08% 0.10% 0.12% 0.23% 0.13% 0.25% 0.15% 0.15%

Table C-3: Optimal electrode subsets distribution over the number of the
electrodes and the highest classification rate of each subject across the at-
tended frequencies and the viewing distances. The percentage (%) in column 2
to 12 represents the ratio between the number of the optimal electrode subsets which
result in the highest classification rate and the total electrode subsets of the correspond-
ing electrode number. The column of column head Highest is the highest classification
accuracy in the experiment condition. This table is based on MEC. The number of
SSVEP harmonics is 1 and EEG TWL is 2s.

ele # 1 2 3 4 5 6 7 8 9 10 11 Highest

S1 7.95% 15.11% 25.95% 41.08% 55.07% 65.38% 71.57% 74.85% 75.57% 75.57% 75.00% 99.38%
S2 0.57% 4.09% 10.45% 19.96% 29.71% 39.88% 50.36% 60.68% 70.57% 79.55% 87.50% 96.88%
S3 10.80% 17.39% 31.02% 46.36% 59.88% 70.71% 78.41% 83.03% 86.25% 88.64% 93.75% 100.00%
S4 10.80% 10.11% 13.83% 19.17% 25.12% 32.49% 40.23% 47.69% 52.73% 57.39% 50.00% 97.19%
S5 1.70% 0.00% 0.27% 0.70% 2.35% 4.96% 8.84% 13.11% 17.39% 22.16% 25.00% 82.50%
S6 2.27% 5.00% 8.83% 13.75% 18.30% 22.56% 26.74% 29.81% 32.16% 34.09% 37.50% 95.63%
S7 0.00% 0.00% 0.27% 0.21% 0.46% 1.06% 1.89% 3.26% 4.09% 5.11% 6.25% 74.38%
S8 0.00% 0.11% 0.34% 1.46% 3.44% 7.13% 11.63% 17.01% 22.73% 28.98% 37.50% 82.50%
S9 0.57% 4.55% 7.05% 10.11% 13.88% 17.09% 19.70% 22.69% 26.36% 32.39% 37.50% 96.56%
S10 3.41% 0.11% 0.57% 0.70% 0.32% 0.20% 0.19% 0.34% 0.91% 1.70% 6.25% 57.19%
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Table C-4: Optimal electrode subsets distribution over the number of the
electrodes and the highest classification rate of each subject across the at-
tended frequencies and the viewing distances. The percentage (%) in column 2
to 12 represents the ratio between the number of the optimal electrode subsets which
result in the highest classification rate and the total electrode subsets of the correspond-
ing electrode number. The column of column head Highest is the highest classification
accuracy in the experiment condition. This table is based on MCC. The number of
SSVEP harmonics is 1 and EEG TWL is 2s.

ele # 1 2 3 4 5 6 7 8 9 10 11 Highest

S1 7.95% 15.11% 25.95% 41.12% 54.94% 65.25% 71.59% 75.00% 75.57% 75.57% 75.00% 99.38%
S2 0.57% 4.09% 10.45% 19.94% 29.71% 39.88% 50.34% 60.80% 70.68% 80.11% 87.50% 96.88%
S3 11.36% 17.39% 30.91% 46.25% 59.79% 70.66% 78.37% 83.11% 86.36% 88.64% 93.75% 100.00%
S4 10.80% 10.45% 13.67% 19.11% 25.09% 32.54% 40.28% 47.50% 52.84% 57.39% 50.00% 97.19%
S5 1.70% 0.00% 0.27% 0.70% 2.35% 4.87% 8.77% 13.03% 17.05% 22.16% 25.00% 82.50%
S6 2.27% 4.77% 8.90% 13.75% 18.43% 22.77% 26.97% 29.89% 32.50% 34.09% 37.50% 95.63%
S7 0.00% 0.00% 0.27% 0.09% 0.47% 1.06% 1.70% 2.95% 3.98% 5.11% 6.25% 74.69%
S8 0.00% 0.11% 0.38% 1.65% 3.60% 7.41% 11.97% 17.80% 23.98% 31.82% 43.75% 82.50%
S9 0.57% 4.55% 7.20% 10.13% 13.87% 16.99% 19.72% 22.61% 25.91% 31.25% 31.25% 96.56%
S10 2.84% 0.11% 0.57% 0.72% 0.34% 0.20% 0.21% 0.38% 0.91% 1.70% 6.25% 57.19%

Table C-5: The demographics of the minimal optimal electrodes of the subject
across the attended frequencies and the viewing distances. The number shown
in the table presents the number of the corresponding electrodes being one of the
electrodes in the minimal optimal electrode subset for the corresponding subject across
the attended frequencies and viewing distances. This table is based on MEC with the
first harmonics of SSVEP and 2s of EEG TWL.

ele POz Oz Iz 124 125 O1 127 128 O9 O10 O2

S1 3 35 18 18 11 26 21 14 20 21 13
S2 10 52 5 18 19 36 25 9 7 4 36
S3 7 55 7 15 10 15 14 15 12 13 17
S4 10 35 13 12 7 8 10 11 10 8 27
S5 8 27 12 8 16 23 26 25 10 3 12
S6 22 60 18 13 12 16 8 13 12 15 15
S7 24 26 9 30 18 12 7 14 8 5 12
S8 14 21 5 14 6 13 6 11 9 6 17
S9 8 15 21 11 21 14 16 19 41 26 14
S10 12 12 12 8 5 13 11 10 10 11 7

Grand Total 118 338 120 147 125 176 144 141 139 112 170
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Table C-6: The demographics of the minimal optimal electrodes of the subject
across the attended frequencies and the viewing distances. The number shown
in the table presents the number of the corresponding electrodes being one of the
electrodes in the minimal optimal electrode subset for the corresponding subject across
the attended frequencies and viewing distances. This table is based on MCC with the
first harmonics of SSVEP and 2s of EEG TWL.

ele POz Oz Iz 124 125 O1 127 128 O9 O10 O2

S1 3 35 18 18 11 26 21 14 20 21 13
S2 10 52 5 18 19 36 25 9 7 4 36
S3 7 55 7 15 10 15 14 15 12 13 17
S4 10 35 13 12 7 8 10 11 10 8 27
S5 8 27 12 8 16 23 26 25 10 3 12
S6 22 60 18 13 12 16 8 13 12 15 15
S7 24 26 9 30 18 12 7 14 8 5 12
S8 14 21 5 14 6 13 6 11 9 6 17
S9 8 15 21 11 21 14 16 19 41 26 14
S10 12 12 12 8 5 13 11 10 10 11 7

Grand Total 118 338 120 147 125 176 144 141 139 112 170

Table C-7: Electrode Rankings for each subject by using the rule of leave–
one–out across the attended frequencies and the viewing distances. These
electrode rankings are based on MEC spatial filter coefficients. The top two ranking
are shared by the electrode 127 and 128. The last two rankings are either O10 or POz.

ele ranking 1 2 3 4 5 6 7 8 9 10 11

S1 128 127 Oz Iz 124 O1 O2 O9 125 O10 POz
S2 127 128 124 O1 Oz Iz O2 O9 125 O10 POz
S3 128 127 Oz Iz O2 124 O9 125 O1 O10 POz
S4 128 127 124 Oz O1 O2 125 Iz O9 O10 POz
S5 128 127 124 Oz O1 Iz O2 O9 125 O10 POz
S6 128 127 124 Oz O1 Iz O2 O9 125 O10 POz
S7 127 128 124 Oz O1 Iz 125 O2 O9 O10 POz
S8 127 128 124 O1 Oz Iz O2 O9 125 POz O10
S9 128 127 124 O1 Oz O2 Iz O9 125 O10 POz
S10 127 128 124 O1 Oz Iz 125 O9 O2 O10 POz
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Table C-8: Electrode Rankings for each subject by using the rule of leave–
one–out across the attended frequencies and the viewing distances. These
electrode rankings are based on MCC spatial filter coefficients. The electrode rankings
have at least two electrodes in the same order, Oz and O2 are the top two rankings
and the last two ranking are mainly O1 and O10.

ele ranking 1 2 3 4 5 6 7 8 9 10 11

S1 Oz O2 128 125 127 POz O9 Iz 124 O10 O1
S2 Oz O2 128 125 127 POz 124 O9 Iz O10 O1
S3 Oz O2 128 125 127 POz 124 Iz O1 O9 O10
S4 Oz O2 128 125 127 POz Iz O9 124 O1 O10
S5 Oz O2 128 125 127 POz O9 124 Iz O10 O1
S6 Oz O2 128 127 125 O9 Iz 124 POz O10 O1
S7 Oz O2 125 127 128 POz 124 O9 Iz O1 O10
S8 Oz O2 128 125 127 POz O9 124 Iz O1 O10
S9 Oz O2 128 127 125 POz 124 O9 Iz O10 O1
S10 Oz O2 125 127 128 POz O9 124 Iz O1 O10

Table C-9: Electrode rankings evaluation results across the subjects and ex-
periment conditions. The electrode rankings are evaluated by comparing
the ranked accuracies resulting from the ranked electrode sets and the cor-
responding highest, average and lowest accuracies of the same electrode
number. PIs are listed in the last row of the table. This table is based on
MEC.

ele # 1 2 3 4 5 6 7 8 9 10 11

Ranking
accuracies 52.21% 52.25% 57.34% 68.15% 70.53% 73.47% 76.15% 78.25% 77.59% 78.50% 79.75%
Highest 64.28% 78.78% 84.28% 85.97% 86.69% 87.06% 86.78% 86.06% 85.16% 83.25% 79.75%
Average 51.15% 54.84% 59.56% 64.24% 68.28% 71.63% 74.23% 76.17% 77.57% 78.67% 79.75%
Lowest 34.67% 28.02% 30.02% 33.08% 37.05% 42.74% 49.90% 58.00% 65.12% 71.75% 79.75%

PI 66.70% 52.50% 55.23% 70.12% 69.76% 70.88% 75.50% 81.33% 75.40% 79.32% 100.00%

Table C-10: Electrode rankings evaluation results across the subjects and
experiment conditions. The electrode rankings are evaluated by compar-
ing the ranked accuracies resulting from the ranked electrode sets and the
corresponding highest, average and lowest accuracies of the same electrode
number. PIs are listed in the last row of the table. This table is based on MCC.

ele # 1 2 3 4 5 6 7 8 9 10 11

Ranking
accuracies 57.89% 60.34% 62.96% 68.59% 72.71% 76.75% 77.12% 77.34% 77.34% 79.59% 79.78%
Highest 64.21% 78.53% 84.25% 85.63% 86.56% 86.97% 86.59% 86.22% 84.94% 82.75% 79.78%
Average 51.14% 55.09% 59.67% 64.24% 68.18% 71.45% 74.01% 75.97% 77.51% 78.73% 79.78%
Lowest 34.73% 30.48% 31.96% 34.61% 37.36% 42.68% 49.59% 57.06% 64.93% 71.50% 79.78%

PI 84.20% 69.15% 66.94% 72.01% 75.55% 82.63% 80.89% 78.42% 73.50% 85.17% 100.00%
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Table C-11: PIs of individual subject corresponding to one electrode number
when using the leave–one–out electrode rankings. This table expands PIs of
Table C-9 from the mean values to the details of each subject. The classification data
of this table are based on MEC.

ele # 1 2 3 4 5 6 7 8 9 10 11

S1 63.07% 37.50% 89.43% 90.23% 78.10% 77.22% 86.95% 96.33% 93.98% 96.59% 100.00%
S2 69.89% 57.84% 34.58% 68.94% 80.07% 79.72% 94.41% 92.23% 86.93% 82.95% 100.00%
S3 72.16% 34.66% 90.08% 82.65% 86.92% 97.62% 88.98% 93.48% 92.50% 94.32% 100.00%
S4 71.02% 63.86% 46.82% 70.13% 71.27% 88.91% 87.23% 79.43% 73.18% 77.27% 100.00%
S5 65.91% 62.95% 49.89% 79.51% 77.07% 79.52% 84.28% 89.89% 83.75% 82.39% 100.00%
S6 49.43% 44.43% 53.37% 83.52% 83.02% 75.54% 81.67% 78.22% 82.61% 77.84% 100.00%
S7 69.89% 56.02% 67.35% 79.79% 73.63% 73.01% 65.17% 61.10% 57.27% 35.23% 100.00%
S8 70.45% 66.36% 38.98% 60.64% 71.86% 64.95% 80.30% 83.60% 56.59% 90.91% 100.00%
S9 63.64% 41.48% 24.13% 19.68% 9.42% 8.06% 17.25% 70.72% 77.05% 91.48% 100.00%
S10 71.59% 59.89% 57.69% 66.14% 66.29% 64.20% 68.71% 68.30% 50.11% 64.20% 100.00%

Table C-12: PIs of individual subject corresponding to one electrode number
when using the leave–one–out electrode rankings. This table expands PIs of
Table C-10 from the mean values to the details of each subject. The classification data
of this table are based on MCC.

ele # 1 2 3 4 5 6 7 8 9 10 11

S1 94.32% 87.39% 87.77% 80.55% 97.36% 82.59% 87.71% 90.38% 93.30% 96.59% 100.00%
S2 87.50% 89.77% 77.80% 74.81% 94.05% 98.71% 98.01% 98.90% 100.00% 100.00% 100.00%
S3 97.73% 95.23% 91.06% 85.53% 90.79% 99.78% 99.51% 99.17% 98.07% 92.05% 100.00%
S4 94.89% 98.75% 93.67% 94.68% 92.90% 94.86% 92.65% 94.43% 95.34% 88.07% 100.00%
S5 79.55% 86.93% 75.95% 73.35% 76.83% 74.39% 68.79% 65.80% 71.59% 57.95% 100.00%
S6 97.73% 83.86% 83.07% 94.17% 85.54% 78.27% 78.26% 78.98% 82.39% 85.23% 100.00%
S7 64.77% 62.73% 67.12% 60.49% 52.23% 45.85% 87.14% 74.89% 76.59% 79.55% 100.00%
S8 73.86% 61.59% 57.05% 30.70% 42.74% 80.18% 70.53% 70.42% 65.57% 83.52% 100.00%
S9 76.14% 26.14% 32.08% 16.19% 28.98% 41.59% 44.53% 72.80% 63.52% 79.55% 100.00%
S10 75.57% 64.55% 58.48% 66.40% 56.25% 57.82% 65.98% 47.27% 66.70% 75.00% 100.00%
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Table C-13: PIs of individual subject corresponding to one electrode number
using the leave–one–out electrode rankings of Table 5.7. This table shows detail
PIs of MEC in Table 5.8 from the mean values to the values of each subject.

ele # 1 2 3 4 5 6 7 8 9 10 11

S1 63.07% 41.25% 88.11% 87.16% 78.10% 77.22% 86.95% 96.33% 93.98% 96.59% 100.00%
S2 73.86% 60.11% 40.19% 68.94% 80.07% 79.72% 94.41% 92.23% 86.93% 82.95% 100.00%
S3 72.16% 37.05% 90.08% 82.65% 82.91% 92.42% 88.98% 93.48% 92.50% 94.32% 100.00%
S4 71.02% 65.57% 46.82% 74.72% 71.27% 88.91% 87.23% 79.43% 73.18% 77.27% 100.00%
S5 68.18% 60.57% 50.68% 77.29% 77.07% 77.22% 80.97% 85.87% 83.75% 82.39% 100.00%
S6 52.84% 46.93% 53.37% 83.52% 83.02% 75.54% 81.67% 73.56% 77.27% 77.84% 100.00%
S7 72.73% 61.25% 67.80% 79.58% 73.63% 73.01% 65.89% 61.10% 57.27% 35.80% 100.00%
S8 73.30% 71.14% 43.52% 63.62% 71.19% 66.04% 82.22% 86.82% 61.14% 90.91% 100.00%
S9 66.48% 40.57% 23.07% 19.68% 11.32% 8.58% 17.25% 66.63% 77.05% 87.50% 100.00%
S10 71.59% 58.64% 60.23% 69.64% 68.13% 68.17% 70.13% 68.30% 55.57% 67.05% 100.00%

Table C-14: PIs of individual subject corresponding to one electrode number
using the leave–one–out electrode rankings of Table 5.7. This table shows detail
PIs of MCC in Table 5.8 from the mean values to the values of each subject.

ele # 1 2 3 4 5 6 7 8 9 10 11

S1 94.32% 77.27% 85.87% 86.65% 74.70% 81.34% 93.54% 91.97% 92.16% 93.75% 100.00%
S2 87.50% 88.18% 76.36% 87.84% 96.35% 92.22% 87.97% 91.25% 88.30% 95.45% 100.00%
S3 97.73% 97.73% 91.02% 91.82% 99.85% 95.16% 99.51% 87.12% 88.52% 92.05% 100.00%
S4 94.89% 62.27% 81.93% 91.89% 92.14% 92.55% 87.84% 84.32% 78.86% 88.07% 100.00%
S5 79.55% 46.82% 42.12% 68.09% 78.58% 80.93% 83.73% 76.74% 84.66% 86.36% 100.00%
S6 97.73% 85.91% 89.09% 83.43% 90.87% 90.71% 83.88% 78.98% 77.05% 84.66% 100.00%
S7 64.77% 51.59% 58.90% 78.83% 72.04% 67.25% 66.86% 63.26% 56.14% 79.55% 100.00%
S8 73.86% 77.95% 62.54% 61.86% 90.71% 90.04% 72.61% 73.45% 70.57% 83.52% 100.00%
S9 76.14% 29.89% 25.83% 16.19% 8.56% 60.35% 65.61% 70.45% 60.57% 73.30% 100.00%
S10 75.57% 73.98% 62.65% 50.53% 56.60% 65.73% 61.57% 59.09% 45.57% 75.00% 100.00%
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