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Abstract

In the coming years, a previously unexplored regime of quantum electrodynamics will

be opened up to experimental study for the first time: the strong-field regime. Under

the influence of strong electromagnetic fields, virtual particles in the quantum vacuum

become polarised, and wave propagation in regions of strong field becomes nonlinear.

This Thesis explores this regime using nonlinear vacuum electrodynamics.

The nonlinear nature of the vacuum imbues a region of strong field with an effective

refractive index, such that wave propagation becomes analogous to propagation in a

medium. This permits a novel view of an old problem concerning the energy-momentum

tensor of light. In the context of light interacting with a medium two rival forms

exist of the energy-momentum exist, each supposedly supported by theoretical and

experimental evidence. By translating the problem to nonlinear electrodynamics, where

the medium is replaced by a strong electromagnetic field, it is found that a much more

precise statement can be made about which formulation should be adopted.

Maxwellian electrodynamics is known to be invariant under the conformal group, an

extension of the usual Poincaré symmetry group. In general, nonlinear electrodynamics

is invariant under Poincaré symmetries, and not the extended conformal group. The



conformal group has been exploited in a wide range of areas of physics to simplify

difficult problems. The possibility of using a conformally invariant, nonlinear theory

of electrodynamics to describe strong-field physics is investigated. An entire class of

conformally invariant nonlinear theories of electrodynamics is found, and their structure

analysed. The role such theories may have in strong-field physics is then assessed,

and it is found that in (3 + 1) spacetime dimensions, the only physically meaningful

conformally invariant theory of electrodynamics is Maxwell’s theory.

A charged particle moving through a medium emits Cherenkov radiation when its

velocity exceeds the phase velocity of light in that medium. Under the influence of a

strong electromagnetic field the nonlinear nature of the vacuum allows for the possibility

of high-energy particles to radiate via the Cherenkov process. The properties of this

vacuum Cherenkov radiation are analysed from first principles, and applied to two

physically relevant examples. It is found that this radiation process may be relevant to

the excess signals of high-energy photons in astrophysical observations.
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Chapter 1

Introduction

Our current understanding of the laws of nature describes the world using four fun-

damental forces; the electromagnetic, weak, strong and gravitational forces. Of all of

these, the one most relevant to everyday experience is the electromagnetic force, which

describes the interaction between matter and light. The modern understanding of this

force began with the revolutionary work of Faraday and Maxwell [1], the latter of which

achieved one of the first instances of “unification” in physics, by demonstrating that

electric and magnetic fields are manifestations of the same underlying electromagnetic

force. The development of special relativity [2], and quantum mechanics led to a further

paradigm shift in how we describe electromagnetism, through the work of Dirac[3, 4],

and later Feynman [5–8], Schwinger [9–11], Tomonaga [12, 13], and Dyson [14, 15] with

the development of quantum electrodynamics (QED).

QED represents the most precise and successful theory to ever be developed in

physics, as evidenced by the extraordinary agreement between theoretical predictions

[16, 17] and experimental data [18, 19], which give an accuracy to over 10 significant
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Chapter 1. Introduction

figures. The success of QED rests on the use of perturbation theory, where scattering

processes are calculated by an expansion in powers of the QED-coupling, the fine-

structure constant α = e2/4πε0c~ ' 1/137. Tests of QED have all but exhausted

the high-energy frontier probed by the most powerful particle accelerators available,

such as the Large Hadron Collider, and aside from some notable anomalous results

(for example the “proton size puzzle”, where the predicted and measured size of the

proton appear to be in disagreement [20]), there has been almost no discrepancy in

its predictions, or hints at new physics in this regime. QED is one part of a larger

framework, the Standard Model of particle physics, which unites the electromagnetic,

weak and strong forces under one common description: quantum field theory. So far,

the electromagnetic and weak forces have been shown to be unified into the electroweak

force, and a main goal of theoretical physics over the past 70 years has been to unify

all three forces of the Standard Model, and ultimately gravity, under one framework.

However, with no prediction of the Standard Model shown to be incorrect so far, how

can we hope to make progress in pursuit of this goal? One thing which could be done is

to look for unexplored parameter regimes within the Standard Model, to try and find

where our descriptions break down, and progress can be made.

Recently, there has been a resurgence of interest in an essentially unexplored param-

eter regime, where it is hoped that the limits of QED can be tested. This is the so-called

strong- or high-field regime, where instead of pushing to higher and higher energies, we

consider the influence of high-intensity electromagnetic fields on the behaviour of the

fundamental interactions of light and matter (for extensive reviews see [21–33]). Interest

in the strong-field regime began early on in the history of QED, with significant contri-
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Chapter 1. Introduction

butions from Sauter [34], Heisenberg & Euler [35] and Schwinger [36]. It is well known

that quantum field theories predict the existence of virtual particles, and that due to

the uncertainty principle, particle-antiparticle pairs fluctuate in and out of existence in

the quantum vacuum. In the standard, high-energy approach to QED, these particles

play the role of mediating between incoming and outgoing particle states. Introducing

a strong electromagnetic field changes the situation considerably. The electromagnetic

field can interact with the virtual particles, which has the effect of changing the field

equations from linear to nonlinear, thus opening up an entirely new regime in QED.

The virtual particles are charged, and so interact with electromagnetic fields. With a

strong enough field, they can become momentarily polarised, and real particles propa-

gating through the region of strong field can interact strongly with the virtual particles,

producing a vast range of effects which cannot be observed in vacuum. The work of

Sauter [34] and Schwinger [36] described the scale at which these nonlinear effects be-

come important, defining the critical field of QED, ES = m2
ec

3/|e|~ ' 1.32 × 1018

V.m−1 (corresponding to an intensity IS ∼ 1029 W.cm−2)1. This is the field strength

required to perform work on the electron-positron pair equal to the rest mass energy

of the particles over a Compton wavelength, which brings the particles on-shell.2 In

other words, strong electromagnetic fields can create real particles from vacuum. This is

the so-called Schwinger mechanism for pair production [36]. Schwinger pair production

is a fundamentally nonperturbative effect, meaning that the usual perturbation theory

1Here me is the electron mass, c is the speed of light, e is the electron charge, and ~ is the reduced
Planck’s constant.

2The terms “on-shell” and ‘off-shell’ refer to whether or not the particles satisfy the relativistic
mass-shell condition. A particle with 4-momentum pµ and mass m is said to be “on-shell” and real if
it satisfies p2 = m2, or “off-shell” and virtual if p2 6= m2.
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Chapter 1. Introduction

which lies at the heart of the success of QED cannot be used.

Study of the effect of strong electromagnetic fields remained a purely theoretical

pursuit until the 1960’s due to the required field strengths being well beyond the reach

of anything which could be experimentally produced. This changed with the invention

of the laser, which initiated a new wave of theoretical interest in the strong-field regime

(see for example [37–40]). Perhaps the most important development, which has made

the study of these effects an experimental reality is the dramatic increases in power

offered by the chirped-pulse amplification technique [24, 41], recently celebrated with

the award of the Nobel prize in physics.3 The advancement in laser power has steadily

progressed since, with a number of petawatt class facilities currently online (e.g. [42–

46]). These systems represent a current state-of-the-art, but still lie well below the

critical field, ES , in terms of the field strengths which can be achieved. Further strides

towards the strong field limit will come over the next few decades, however, as a range

of new facilities are either planned or under construction, which will begin a new dawn

in high-intensity physics. These include upgrades to the VULCAN laser system at the

Central Laser Facility in the UK [47, 48] and the APOLLON laser in France [49], both

of which are envisaged to reach 10PW of power. Currently under construction is the

Extreme Light Infrastructure (ELI), a European wide project aiming to deliver four

facilities with a focus on the use and applications of high-intensity lasers. Of these, the

Nuclear Physics program (ELI-NP) [50] is hoped to come online in the next few years,

3A major challenge in amplifying ultrashort laser pulses is that the high intensities involved can cause
unwanted nonlinear effects in, or damage to, the gain medium. Chirped pulse amplification overcomes
this by first temporally stretching and “chirping” (low frequency components move to the front) the
pulse to create a longer pulse with lower peak power, before the interaction with the gain medium. The
pulse is then amplified, compressed, and the “chirp” removed to create a short, high-intensity pulse
without damaging the gain medium or generating unwanted nonlinear effects.
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Chapter 1. Introduction

with projected intensities of I ∼ 1023—1024 W.cm−2 hoped to be achieved. Though still

several orders of magnitude less than the critical intensity IS , a vast array of effects are

hoped to be observed [23, 25–28, 31–33]. These high-intensity laser systems, and others

which have been planned, such as XCELS in Russia [51], are primarily responsible for

the resurgence of interest in the strong-field regime.

One of the first effects to be investigated will be the unresolved problem of radi-

ation reaction [52], the response of a charged particle to the radiation it emits in an

electromagnetic field. Recently, the first data measuring the radiation reaction effect

has been obtained by experimental groups using the Gemini laser at the Central Laser

Facility in the UK [53, 54], which has prompted new questions about our theoretical

understanding of the problem [54]. The problem may lie in the weakness of radiation

reaction at the laser intensities used in the experiments, and so the increased field

strengths provided at upcoming facilities will allow us to further probe this effect. In-

vestigating pair production will also be a key goal at next generation facilities. As

discussed above, nonperturbative Schwinger pair production requires a field strength of

the order ES , though various proposals have been made of configurations which could

possibly bring down the pair-production threshold by several orders of magnitude (e.g.

[55–66]). Aside from the Schwinger mechanism for pair production, there is also the

trident process, where an electron emits a photon which subsequently decays into an

electron-positron pair. Due to the interaction with a strong background field, this can

occur by either the one-step (where the intermediate photon is off-shell) or two-step

(where the intermediate photon is on-shell) processes [67]. The one-step process was

measured in the landmark experiment E-144 at the Stanford Linear Accelerator Centre
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Chapter 1. Introduction

(SLAC) [68, 69], twenty years ago, with no new experiments probing this pair produc-

tion mechanism. The huge advances in field strength since this experiment will give

a new opportunity to measure this effect. Related to the Schwinger pair-production

mechanism is a range of processes related to to polarisation of the vacuum induced by

strong fields, mentioned above, which will be discussed in more detail in the following

Chapter but includes vacuum birefringence, photon splitting, and photon-photon scat-

tering [23, 25, 27, 28, 31]. There are also several studies indicating that these future

facilities may be able to investigate new physics beyond the Standard Model [26].

There are, however, also other sources of strong electromagnetic fields in the uni-

verse. In astrophysics, rapidly rotating neutron stars, or pulsars, are known to produce

magnetic fields several orders of magnitude above the critical magnetic field of QED,

BS = ES/c = m2
ec

2/e~ ' 4.41 × 109 T (see for example [70–72]). Many of the pro-

cesses described above have also been considered in such strong magnetic fields, such as

Compton scattering [73] (which is closely related to radiation reaction) [74–76], photon

splitting [77–79] and a range of other vacuum birefringence and vacuum polarisation

effects, for example [80–88]. See also the reviews [89, 90]. Strong electromagnetic fields

can also be generated in particle collisions using heavy nuclei, such as in the exper-

iments conducted at the Relativistic Heavy Ion Collider (RHIC) [91], and the Large

Hadron Collider (LHC) [92] (see for example [93]).
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1.1 Outline of the thesis

To describe strong-field effects, two approaches are available. The first uses the full

theory of QED, in the background of a strong electromagnetic field, and is typically

referred to as strong-field QED. The second is based on the use of effective nonlinear

theories of electromagnetism, which is the main topic of this thesis, and will be discussed

in detail in Chapter 2. There are two prominent examples in the literature, the theories

of Euler-Heisenberg, which is found as a low-energy limit of QED, and Born-Infeld,

which in modern work is found as a low-energy limit of string theory. Each of these

theories is built up from the Lorentz invariants of the electromagnetic field. It is possible

to extend both of these theories to a class of generalised nonlinear theories, which can be

studied in a very general sense based on the requirement of only depending on the two

independent electromagnetic invariants of the field. Chapter 2 will discuss the effects

which can be described by each, as well as give the technical details of generalised

nonlinear theories of electromagnetism.

In the linear vacuum described by Maxwell’s theory, there is no ambiguity in the

energy-momentum of radiation. However, the nonlinearities induced in the vacuum by

strong electromagnetic fields can be described as as analogous to a dielectric medium,

imbuing the region of strong field with an effective refractive index. In the case of radi-

ation interacting with a real dielectric medium, there is a well known issue surrounding

the “correct” form of the energy-momentum of light as it propagates in the material,

often referred to as the “Abraham-Minkowski controversy”. We investigate this topic

in an entirely novel way in Chapter 3, by analysing the energy-momentum of radiation

8
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moving though a strong electromagnetic background field. This gives an outline of the

work contained within [94], as well as significantly extending the analysis.

As mentioned, the properties of the linear Maxwellian vacuum are well understood.

Much of this can be attributed to the linearity of the theory, however, there is also an

additional property of Maxwellian electrodynamics which lends to its simplicity. This is

the fact that it obeys the conformal symmetry group, an extension of the usual Poincaré

group which includes the additional symmetries of invariance under special conformal

transformations and dilations (details to follow). In the quantisation procedure from

Maxwell to QED, this conformal invariance is lost, and invariance is constrained to the

Poincaré group. The main reason for this loss of conformal symmetry is the introduction

of an explicit scale, namely the electron mass me in QED4. This constraint, however,

is not a priori imposed on generalised nonlinear theories of electrodynamics. The

possibility of obtaining a conformally invariant nonlinear theory, and whether such a

theory could in some regime be used as a physically relevant description of strong-field

physics is investigated in Chapter 4.

Each of the Chapters just described deal mainly with the formal aspects of nonlin-

ear electrodynamics. The theories are rich in structure, and warrant the investigation

of these properties, but perhaps of greater importance is their phenomenological impli-

cations. Many of these have been well studied, and an outline is presented in the next

Chapter. An interesting effect, which has attracted less attention that its counterparts,

is the possibility of particles propagating in the nonlinear vacuum emitting Cherenkov

4At a more fundamental level, the classical action of the Standard Model is almost conformally
invariant with the only violations of the symmetry being due to the Higgs couplings. See discussion in
[95] and references therein
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radiation. Cherenkov radiation is usually considered in the context of particles prop-

agating through a medium, and occurs when the particle velocity exceeds the phase

velocity of light. In a strong electromagnetic field, wave propagation becomes nonlinear,

reducing the phase velocity of light to less than the vacuum speed of light, c, providing

the opportunity for relativistic particles moving through the region of strong field to

emit radiation through the Cherenkov mechanism. This is the subject of Chapter 5,

where we present the first fully quantitative, first principles analysis of the Cherenkov

process in strong electromagnetic fields, and discuss the phenomenological implications

in the context of both the high intensities provided by upcoming laser-matter experi-

ments, and the strong magnetic fields found produced in astrophysical contexts. This

work gives a more comprehensive view of the work presented in [96]. Finally, we sum-

marise, provide some closing remarks, and discuss the outlook of the presented work in

Chapter 6.

1.2 Units and conventions

Throughout this work a covariant notation of tensors and 4-vectors is used, where

indices are raised and lowered using the metric tensor gµν = diag(+1,−1,−1,−1) with

Greek indices running from µ = 0, ..., 3. Thus, a vector aµ = (a0,a) contracted with

the metric gives a covector aµ = (a0,−a). The Einstein summation convention for

repeated tensor indices is assumed throughout, such that the Lorentz contraction of

10



Chapter 1. Introduction

two 4-vectors is

(a.b) ≡ aµbµ = a0b0 − a.b. (1.1)

We use bold-font to denote the spatial components of a 4-vector, and distinguish the

contraction of 4-vectors (1.1) with the usual scalar product of 3-vectors a.b =
∑3

i=1 a
ibi

using the bracketed notation above.

For a given rank-2 tensor, Aµν , the dual tensor will be denoted Ãµν = εµναβAαβ/2,

where εµναβ is the completely anti-symmetric Levi-Civita tensor. Where necessary, we

will use the convention ε0123 = +1, such that ε0123 = −1.

We use natural units throughout, unless otherwise stated, such that c = ~ = ε0 = 1,

where c is the speed of light, ~ is the reduced Planck’s constant, and ε0 is the vacuum

permittivity. The charge of the electron is e = −|e| ' −1.602 × 10−19 C, with mass

me ' 9.109 × 10−31 kg. Where relevant, we will also use the proton mass mp '

1.673× 10−27 kg.

11



Chapter 2

Nonlinear vacuum

electrodynamics

The study of nonlinear theories of electrodynamics can be traced back to the early

days of QED. In general, these theories aim to describe strong field processes, which

are not captured by a Maxwellian description of electrodynamics, by using effective

field theories which have nonlinear interaction terms between electromagnetic fields.

The two most prominent examples are the theories due to Heisenberg & Euler [35], and

Born & Infeld [97], which have very different origins and uses in the modern literature.

Euler-Heisenberg theory is obtained through integrating out the fermionic degrees of

freedom in the path integral of quantum electrodynamics (QED), which then allows for

a nonlinear interaction between real photons, as shown in Figure 2.1. The physical pro-

cess responsible for this is the existence of fluctuations – in the form of virtual particle-

antiparticle pairs – within the QED vacuum. In the presence of strong fields, these

charged virtual pairs can become polarised and interact with photons passing through

12



Chapter 2. Nonlinear vacuum electrodynamics

Figure 2.1: Euler-Heisenberg theory integrates out the fermionic degrees of freedom
corresponding to virtual particles (solid lines; left), to give an effective theory where
photons (wavy lines) interact directly (right).

high-field regions. As mentioned briefly in the introduction, the Euler-Heisenberg the-

ory can be used to describe a wide range of effects related to strong-field QED (for an

overview we direct the reader to the reviews [22, 23, 27, 98–103]). After integrating out

the fermionic degrees of freedom, the theory is described by an effective action. The

effects described by the Euler-Heisenberg theory can be defined as either dispersive,

or absorptive processes, related to the real and imaginary parts of the effective action,

respectively. Dispersive effects are those which describe photon-photon interactions.

This is possible in a region of strong electromagnetic field, due to the fact that the

vacuum behaves analogously to a dielectric material with well defined refractive index

[22, 90]. This was recognised in the early work of Halpern [104], Euler & Kockel [105]

and Weisskopf [106] as leading to the possibility of real photon-photon scattering (such

as that shown in Figure 2.1), which was first calculated later by Karplus & Neuman

[107], and is still an actively researched effect, with many different proposals for how it

may be observed [23, 40, 108–116], and suggestions that it could be used as a probe of

physics beyond the Standard Model [117]. There are also the related effects of photon

13
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splitting [77–79, 118–120] where an initial high energy photon interacts with the strong

background field and “decays” into a pair (or more) of lower energy photons, and vac-

uum birefringence [39, 77, 121–127] which is completely analogous to birefringence in

a medium, but induced by the strong electromagnetic background field. The latter

of these, vacuum birefringence, is being investigated through the PVLAS experiment

[128]. The absorptive processes, on the other hand, are those which take incoming

photons to outgoing electron-positron pairs, i.e. pair production. This has become one

of the most actively researched effects in the study of Euler-Heisenberg theory, and

strong-field QED in general. The theory of Euler-Heisenberg has also been extended

to non-abelian gauge fields [129–131], and had a significant impact on the study of

quantum field theories in curved space-times [132–137].

Born-Infeld electrodynamics was originally proposed as a theory to describe the

behaviour of the electron which solved the problem of the infinite self-energy which

had plagued earlier calculations. Unlike the theory of Euler-Heisenberg, however, it is

a fundamentally classical theory, having been derived essentially as a direct generalisa-

tion of Maxwellian electrodynamics. The rapid adoption of quantum physics into the

description of particles and fields with the development of QED could in part be seen as

a reason for why Born-Infeld theory was given less attention, though some interesting

properties of the theory were recognised early on by Schrödinger. The theory admits

an electric-magnetic duality [138], and allows for interesting exact solutions of solotonic

electromagnetic waves [139, 140]. Much later, it was found that the Born-Infeld theory

is the only known nonlinear generalisation of electrodynamics which preserves many of

the key results of linear Maxwellian theory, specifically the lack of birefringence and
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Chapter 2. Nonlinear vacuum electrodynamics

shocks [141–143] (for a review of the general properties of the Born-Infeld theory, we

refer the reader to [144]). Taking the theory as a fundamental description of electro-

magnetism and attempting to quantize the theory using the well established procedures

of QED, however, led some, including Dirac [145], to believe that it was incompatible

with quantum field theory. This would have consigned the theory to the realm of in-

teresting, but unimportant, physical theories, had it not been for its rediscovery as a

low-energy limit of certain string theories [146]. This has led to a resurrection of the

theory, with numerous studies investigating this connection (for reviews see [147–149]).

There are also several studies connecting General Relativity and Born-Infeld electrody-

namics, such as modifications to General Relativity inspired by the Born-Infeld theory

being found to exhibit some useful, and interesting properties [150].

While these two examples represent the most well known, and best studied, particu-

lar theories, all theories of nonlinear electrodynamics can be grouped into a generalised

description. Analysing the behaviour of these generalised theories allows the fundamen-

tal properties shared among each class of theory to be defined, and also to show when

an exceptional theory arises with different properties. There have been many studies

on such general theories, for example [141–143, 151–165]. The general structure and

properties of these theories is presented in the rest of this chapter.

2.1 General nonlinear vacuum electrodynamics

To begin, we first ask what requirements a nonlinear theory of electromagnetism must

have, and how do we define them? Regardless of their origins, or uses in the literature,
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all theories of nonlinear electrodynamics are built up purely from electromagnetic fields,

which must obey Lorentz invariance and gauge symmetry. As such the action integral

S defining the theory must be a Lorentz scalar. Given an electromagnetic field Fµν

defined in terms of the electromagnetic gauge potential Aµ,

Fµν =∂µAν − ∂νAµ, (2.1)

and its dual F̃µν = ε αβ
µν Fαβ /2 (where ε αβ

µν is the Levi-Civita tensor), the only two

Lorentz invariants1 we can generate are (see e.g. [166, 167])

X =− 1

4
FµνFµν =

1

2

(∣∣E∣∣2 − ∣∣B∣∣2) (2.2)

Y =− 1

4
F̃µνFµν = E.B. (2.3)

The invariant X is a genuine Lorentz scalar, however the invariant Y is a pseudoscalar

due to the fact that it is formed from the product of a vector (the electric field E) and

a pseudovector (the magnetic field B). This means that under parity transformations

(t,x) → (t,−x) the pseudoscalar Y will change sign, Y → −Y . Aside from the weak

nuclear force [168], the fundamental forces are known to be invariant under parity trans-

formations, and so any generalised nonlinear theory of electrodynamics must contain

only even powers of the invariant Y . While it is possible to consider Lorentz scalars

(or pseudoscalars) built up from higher order powers of the electromagnetic field tensor

1To be more precise, the invariants X and Y are the only independent invariants of the elec-
tromagnetic field in (3 + 1) spacetime dimensions and in theories with no higher derivatives of the
electromagnetic field. If higher derivative terms of the electromagnetic field Fµν were included in the
action of the theory, one could form further invariant quantities, e.g. ∂µF

µν∂λF
λ
ν , Fµν∂λ∂

λFµν , etc.
Such theories are not considered in this work.

16



Chapter 2. Nonlinear vacuum electrodynamics

and its dual, these can be shown to reduce to functions of the two invariants X and

Y , such that (2.2) and (2.3) represent the only independent invariants of the electro-

magnetic field [166, 167]. Appendix A gives some useful identities involving Fµν and

F̃µν , which will be used extensively throughout this thesis. With these considerations

we can now define a general nonlinear theory of electrodynamics by using Lagrangian

functions L(X,Y ) which are arbitrary functions of the invariants (2.2) and (2.3), such

that the action is,

S =

∫
d4z
√
−gL(X,Y ), (2.4)

where g = det gµν is the determinant of the metric. Nonlinear theories of electromag-

netism of this form are sometimes referred to as the Plebanski class of electrodynamics,

owing to the works [142, 143] studying theories of this form (though Boillat also anal-

ysed this class independently [141]). The field equations are obtained in the usual way

by varying the action with respect to the electromagnetic gauge potential, Aµ, which

gives,

∂µH
µν =0, (2.5)

where we define the excitation tensor Hµν ,

Hµν ≡
∂L
∂X

Fµν +
∂L
∂Y

F̃µν . (2.6)
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This along with the usual Bianchi identity,

∂µF̃
µν = 0, (2.7)

describe the dynamics of the fields. The excitation tensor (2.6) can be interpreted

as encoding the nonlinearities of the theory, and can be expressed in terms of the

polarization and magnetization tensors of the strong-field vacuum2. The effect of this

on radiation moving through the nonlinear vacuum is analogous to propagation through

a dielectric medium, a fact that will be exploited later in this work.

Though the general class of nonlinear electrodynamics theories (2.4) will be the

primary focus of this work, it will be useful also to consider the specific examples.

First, in the notation presented above, the Lagrangian function of linear Maxwellian

electrodynamics is simply,

LM =X. (2.8)

In this case, using (2.5), we recover the usual vacuum field equations of Maxwell’s

theory,

∂µF
µν =0. (2.9)

The success of Maxwellian electrodynamics in the weak-field limit also gives us a phys-

ical requirement for any nonlinear extension, in that it must reproduce the known

2An interesting corollary to this is that properties of the linear vacuum may be able to be derived
from the underlying quantum theory, see for example [169, 170].
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effects of linear electromagnetism in this limit. This fact will play a significant role in

the discussion of conformally invariant nonlinear theories of electrodynamics in Chapter

4.

The Euler-Heisenberg Lagrangian function is derived from QED coupled to a strong

background electromagnetic field, in the limit of the background fields being treated

as constant.3 This gives an effective nonlinear theory which describes the behaviour of

strong fields interacting with virtual particles in the vacuum [35, 36],

LEH =− 1

8π2

∫ ∞
0

dη

η3

{
e2abη2

tanh(eaη) tan(ebη)
− 1− e2η2

3

(
a2 − b2

)}
e−ηeES , (2.10)

where ES is the critical field, and ±a and ±ib are the eigenvalues of the constant field

tensor Fµν . These eigenvalues are related to the invariants (2.2) and (2.3) by

a =

√√
X2 + Y 2 +X, b =

√√
X2 + Y 2 −X. (2.11)

The Lagrangian (2.10) is derived from the path integral representing the coupling of

QED to a background gauge field Aµ,

Z[A] =

∫
DψDψ̄eiSQED[A,ψ,ψ̄], (2.12)

3Typically in strong-field QED, the particle energies and field strengths are strong enough that the
formation length of a given process is typically much smaller than the scale of the structure of an
inhomogeneous field, such that the field can be treated as at least locally constant [171].
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where SQED[A,ψ, ψ̄] =
∫
d4zLQED[A,ψ, ψ̄] is the QED action with Lagrangian function,

LQED[A,ψ, ψ̄] =ψ̄(iγµDµ −m)ψ − 1

4
FµνFµν . (2.13)

Here, γµ are the Dirac matrices, ψ and ψ̄ are the fermion fields, Dµ = ∂µ + ieAµ is

the covariant derivative, and Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor.

Under the approximation that the background field Fµν can be treated as constant or

slowly varying with respect to quantum fluctuations, the path integrals over ψ and ψ̄

in (2.12) can be performed, giving the effective Lagrangian (2.10).

The theory of Born-Infeld, on the other hand, has completely different origins and

uses in the modern literature. The original formulation [97], as discussed above, sought

a theory of electrodynamics which self-consistently solved the problem of the infinite

self-field of the electron. The theory is defined by the Lagrangian function,

LBI(X,Y ) =
1

κ2

(
1−

√
1− 2κ2X − κ4

4
Y 2

)
. (2.14)

where the Born-Infeld parameter κ is an undefined constant of nature. In the original

formulation of the theory, it essentially played the role of an absolute allowable electric

field strength, with the correspondence κ ∝ 1/Eabs, where the absolute field strength

was estimated as Eabs ' 2× 1020 V.m−1 [97]. This was to play a role analogous to the

speed of light, c, in special relativity. Consider the Lagrangian L of a relativistic point
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particle of mass m and 3-velocity v,

L = −mc2

√
1− |v|

2

c2
. (2.15)

Since if |v| > c the Lagrangian becomes complex, and no longer physically meaningful,

the speed of light, c, plays the role of an upper limit on particle velocities. In complete

analogy with this, Born & Infeld hoped to derive a Lagrangian function in which Eabs

limited allowable electromagnetic field strengths, thus completely removing the infinite

self-field problem, and arrived at (2.14). However, the advent of quantum mechanics,

and subsequently quantum electrodynamics, gave a more universal approach to remov-

ing divergences through the process of renormalisation, which essentially ended the

hopes for Born-Infeld as a fundamental theory of electromagnetism. In the modern lit-

erature, Lagrangian functions of the form (2.14) have been found as a low-energy limit

of string theory [146], where the parameter κ is typically associated with the string

tension.

The full forms of the Lagrangians of Euler-Heisenberg and Born-Infeld are valid for

all applicable values of electromagnetic field strengths, and as such describe the wide

range of effects detailed above. In many instances, however, a weak-field E,B � ES , BS

expansion of (2.10) and (2.14) can provide a description of many processes [90]. Using

this approximation, we find that, both of the theories can be expressed in the form,

L = X + λ+X
2 + λ−Y

2, (2.16)
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to lowest non-trivial order, with the constants,

Euler-Heisenberg:
1

4
λ+ =

1

7
λ− =

α

90π

1

E2
S

(2.17)

Born-Infeld: λ+ = λ− =
1

2
κ2. (2.18)

As discussed above, the weak-field Lagrangian (2.16) is free of terms linear in the in-

variant Y , such as Y or XY in (2.16), as such terms lead to a violation of parity and are

neglected on physical grounds. From (2.17) and (2.18) we can see that the two theories

are fundamentally different. Euler-Heisenberg theory predicts the effect of vacuum bire-

fringence, whereby the phase velocity of light propagating through a region of strong

electromagnetic field depends on its polarisation. In the weak field limit, this can be

seen as a direct consequence of the constants λ± defined in (2.17) not being equal.4 On

the other hand, the theory of Born-Infeld is defined in the weak-field limit by (2.18),

where the equality of the two constants λ± means that the theory does not exhibit the

birefringence effect, which along with the fact that it does not allow for shocks makes

it unique in the class of nonlinear theories of electrodynamics [144]. Though less well

motivated than Euler-Heisenberg theory as a physically meaningful effective descrip-

tion of strong-field physics, this (along with its discovery as a low-energy limit of string

theory [146]) has been one of the main factors leading to its continued study. In the

coming years, experiments hoping to measure vacuum birefringence such as the PVLAS

experiment [128] will determine whether Born-Infeld theory is a physically meaningful

4This is shown explicitly in Chapter 5, where we derive the phase velocity of waves propagating
through a strong electromagnetic field in the weak-field limit defined by Lagrangian functions of the
form (2.16) (see equation (5.36)).
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description of nature, or just an interesting but unphysical model of electrodynamics.

Since Euler-Heisenberg theory is derived directly from QED, where observational con-

sequences are sought in the work that follows we will use the simplified weak-field limit

(2.16), with (2.17) defining the constants λ±.

So far, we have presented the general theory of nonlinear electrodynamics, the

resulting field equations, and highlighted the forms of the most commonly used theories.

We are now in a position to turn our attention to a little discussed feature of light

propagation in nonlinear electrodynamics, which will prove to be an interesting and

novel take on an old problem.
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The energy-momentum of light

Since the beginning of the 20th century, a debate has been fought concerning the

definition of the momentum of light in a medium. The behaviour of light in the linear

vacuum has been well understood since the pioneering work of Maxwell. Due to the

vacuum constitutive relations relating the displacement and electric fields D = ε0E,

and the magnetic field and magnetic induction H = B/µ0, the momentum density

of a light wave, g, can be equivalently described using either g = D × B or g =

E×H/c2. However, if the wave is propagating through some material, the constitutive

relations are changed to incorporate the electromagnetic properties of the medium,

namely the polarisation, P , and the magnetisation, M , such that D = ε0E + P and

H = B/µ0 −M . The effect of this is that D ×B 6= E ×H/c2, or in other words,

we have two distinct ways of describing the momentum density of the light wave,

which lead to different physical predictions of the total momentum carried by the wave

in the medium. The debate surrounding which of these relations should be adopted

to describe the momentum density is often referred to as the “Abraham-Minkowski
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controversy”. Minkowski [172, 173] proposed that the momentum density should be

gM = D × E, corresponding to a wave with initial momentum p having momentum

pM = np inside a medium of refractive index n, and Abraham [174, 175] instead

favoured the gA = E ×H/c2 formulation, which gives a total momentum pA = p/n.

Both pM and pA attributed to the rival forms of the momentum density can be

derived from simple physical considerations [176]. To obtain the Minkowski form of the

momentum, we consider an atom of mass m, with a transition frequency ω0, which is

moving away from a source of light at a velocity v. The source is producing light with

a fixed frequency ω, and the entire system is immersed in a medium with a refractive

index n [177], as shown in Figure 3.1. As it propagates, the atom will absorb photons

from the field if the Doppler-shifter frequency of the light matches with the transition

frequency, i.e. if

ω0 ' ω
(

1− nv

c

)
, (3.1)

with c the speed of light. After absorbing a photon, the atom will have a new velocity

v′, and by simple consideration of the conservation of energy and momentum we have,

1

2
mv′

2
+ ~ω0 =

1

2
mv2 + ~ω, mv′ =mv + pphoton, (3.2)

with pphoton the momentum of the absorbed photon. Combining the two equations in
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(3.2) we arrive at,

pphoton =
~ωn
c

2v

v + v′
' ~ωn

c
, (3.3)

where we used the fact that the change in the velocity of the atom will be small, such

that v′ ' v. Since the photon in free space would have momentum p = ~ω/c, we have

arrived at the Minkowski form of the momentum pM = np.

Figure 3.1: An atom and light source immersed in a medium with refractive index n.
The atom has a phase transition frequency ω0, and is moving with a velocity v away
from the light source. The light is being produced at a frequency ω.

The derivation of the Abraham form of the momentum is also straightforward. In

this case we instead consider a photon with an initial momentum p = ~ω/c, which is

travelling in the z-direction towards a transparent block with refractive index n [178] as

shown in Figure 3.2. The block is initially at rest, and has a thickness L and mass M .

As the photon passes through the block, its speed is reduced by the refractive index to

c/n. By considering the uniform motion of the centre of mass of the system, we can

determine the amount by which the block will be displaced from its initial position,

∆z =(n− 1)L
~ω
Mc2

. (3.4)

The fact that the block has been displaced must mean that there has been a momentum
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transfer from the photon to the block. The momentum of the block can be determined

as,

pblock = M
∆z

L(n/c)
=

(
1− 1

n

)
~ω
c
. (3.5)

Since the block was initially at rest, the total momentum of the block-photon system

is simply the initial photon momentum ~ω/c Thus, by conservation of momentum, we

find that,

pphoton =
~ω
cn
, (3.6)

which is the Abraham form of the momentum of light pA = p/n.

Figure 3.2: A photon with energy ~ω travels in the z-direction with speed c towards a
transparent block at rest (mass M , thickness L, refractive index n).

These two simple examples highlight the conceptual difficulties underlying the

Abraham-Minkowski debate. On the one hand, we arrived at the Minkowski form of the

momentum by appealing to the conservation of energy and momentum. On the other

hand, we arrived at a completely different form for the momentum by using the prin-

ciples of the uniform motion of the centre of mass and the conservation of momentum.

Throughout the latter half of the 20th century this conundrum fuelled many theoreti-

cal and experimental investigations, which found evidence supporting both Minkowski
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[179–183] and Abraham [184–188]. More recently, the debate has been claimed as re-

solved in [189], where both forms of momentum are argued to be physically relevant,

with the Minkowski form associated with the canonical momentum, and Abraham with

the kinetic momentum. However some authors have highlighted the limitations of this

analysis (see e.g. [190]).

Another postulated resolution to the problem has come from various authors (e.g.

[191–193]), and lies instead in the importance of the material contribution to the

total energy-momentum. It is suggested that by appropriately separating the total

energy-momentum into wave and material parts that the approaches by Abraham and

Minkowski are equivalent, with the discrepancies between them being related to which

parts of the energy-momentum are attributed to the wave, and which are left to the

material. While this provides a reasonable resolution to the problem, in practice ac-

curately defining the energy-momentum of real materials is an almost impossible task,

and it has been suggested that this difficulty has led to numerous studies claiming

decisively one form of the momentum over the other. For a discussion of this, and a

comprehensive review of the debate we refer the reader to [194].

The problem of defining the material contribution to the energy-momentum impacts

the analysis of experiments, and so it is reasonable to ask whether the Abraham-

Minkowski controversy can be viewed from an entirely different perspective which avoids

the need for a material medium. Theories of electrodynamics which allow for the

possibility of real photon-photon interactions, which we refer to collectively as nonlinear

vacuum electrodynamics, offer the possibility of looking at the Abraham-Minkowski

debate from a purely electromagnetic setup. As discussed above, these theories can be
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described with the analogy of the vacuum behaving as a medium under the influence of

the nonlinear interactions of the fields. This gives us an entirely new way of approaching

the Abraham-Minkowski debate, through analysing the energy-momentum of a purely

electromagnetic set up, built up of fields which are characterised from the outset, and

avoiding the difficulty in describing the energy-momentum of the medium.

The rest of this Chapter is structured as follows. In Section 3.1 we introduce the

covariant Minkowski and Abraham energy-momentum tensors, and discuss some of the

different features of these in the material context. The energy-momentum tensor is

derived and analysed for the nonlinear theories of electrodynamics in 3.2, and we find

some similarities appearing with the Minkowski form of the energy-momentum. An

unexpected result from this consideration, however, is that we find that for an arbitrary

electromagnetic field Fµν there is a unification of the Abraham and Minkowski tensors.

To be able to discriminate between the two approaches, we find that we must instead

follow the analogy of light interacting with a medium more closely, by separating the full

electromagnetic field Fµν into a probe and background configuration. This is analysed

in Section 3.3 where we show that the nonlinear energy-momentum of a probe field

interacting with a strong background is naturally described by the Minkowski form of

the energy-momentum. In Section 3.4 we highlight the difficulties in the interpretation

of the Abraham energy-momentum in this context, and highlight the the evidence which

seems to support the use of the Minkowski tensor. Finally, we summarise in Section

3.5.
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3.1 Abraham and Minkowski energy-momentum tensors

Before considering the Minkowski and Abraham tensors in the context of nonlinear

vacuum electrodynamics, we begin by defining each of these in the usual light-matter

scenario using a covariant formalism, and highlight some of the key features of each. We

consider an electromagnetic field defined by the anti-symmetric tensor Fµν = ∂µAν −

∂νAµ, where Aµ is the gauge field. The constitutive relations which describe how the

electromagnetic fields of the medium interact with the incident field are encoded into

the electromagnetic excitation tensor,

Hµν =
1

2
Z αβ
µν Fαβ , (3.7)

where the tensor Z αβ
µν describes the (possibly nonlinear) interaction between the elec-

tromagnetic fields, and encodes information about the properties of the medium.

With this notation, the Minkowski and Abraham energy-momentum tensors are,

respectively [195, 196],

Θµ
ν = HµαFαν +

1

4
δµνH

αβFαβ , (3.8)

and,

Ωµ
ν =Θµ

ν +
1

2
(FµαHαν −HµαFαν )

+
1

2

[
uµuα(FνβH

αβ −HνβF
αβ) + uνu

α(FµβHαβ −HµβFαβ )
]
. (3.9)
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Here, the time-like (u2 = 1) vector field uµ which appears in the Abraham tensor has

a physical interpretation as being the 4-velocity of the medium. The Abraham tensor

(3.9) is also written here in terms of the Minkowski tensor (3.8). The main motivation

of Abraham in deriving an alternative expression for the energy-momentum of the wave

was the conservation of angular momentum. Since (3.8) is not (in general) symmetric, at

the time it was believed this did not allow for angular momentum to be conserved, and

so Abraham’s formulation takes Minkowski’s approach and introduces additional terms

which make it manifestly symmetric. Non-symmetric energy-momentum tensors can,

however, still conserve angular momentum [196], but there is still relevant motivation

in wishing to obtain a symmetric tensor, which is necessary for example to couple to

gravity in general relativity [197].

It is worthwhile here to highlight some basic features of (3.8) and (3.9). Firstly,

taking the trace of each we find that,

Θµ
µ = 0 = Ωµ

µ. (3.10)

A traceless energy-momentum tensor indicates invariance under conformal transforma-

tions, which explicitly includes scale invariance. It could be argued that this is to be

expected for Minkowski and Abraham, as each of these tensors aim to only describe the

wave part of the energy-momentum, and since the wave is comprised of massless pho-

tons, there is an inherent scale invariance in this. However, the effect of a medium on

a photon can be thought of, in some respects, as imbuing the photon with an effective

mass, as the photon moves at speeds less than the speed of light in vacuum c, and so
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the traceless nature of (3.8) and (3.9) is somewhat surprising, if not counter-intuitive.

Secondly we can look at how each of these formulations conserve 4-momentum

by taking the divergence. From the Minkowski tensor (3.8), the divergence can be

expressed as a momentum-balance equation [196],

∂µΘµ
ν + F (m)

ν + F (J)
ν = 0 (3.11)

where the effective 4-force densities F (m)
ν and F (J)

ν are due to the macroscopic transfer

of energy from the field to the medium and the presence of external currents and charges,

respectively [196]. If we assume a closed system (F (J)
ν = 0), and a simple (time-

independent and homogeneous) medium (F (m)
ν = 0), then 4-momentum is strictly

conserved in the Minkowski formulation, despite (3.8) not being symmetric. In the

case of Abraham, we find from (3.9) the appearance of an additional term, F (A)
ν , in

the momentum-balance equation,

∂µΩµ
ν + F (A)

ν = ∂µΘµ
ν , (3.12)

which is generally called the Abraham 4-force density. Surprisingly, given that the

Abraham formulation was derived on the basis of momentum conservation, even when

∂µΘµ
ν = 0, the Abraham 4-force term typically results in non-conservation of 4-

momentum, ∂µΩµ
ν 6= 0. It should be noted, however, that numerous experimental

investigations have claimed to have measured the Abraham force which results from

F (A)
ν (e.g. [184, 185, 188]). Despite the fact that the Abraham 4-force density may
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be physical, the fact that the Minkowski formulation can preserve 4-momentum based

purely on the symmetry conditions of the medium has been used to argue that (3.8)

may be the more appropriate description of the energy-momentum of light in medium

[196].

3.2 Energy-momentum in nonlinear electrodynamics

With the Minkowski and Abraham tensors now defined, and basic properties of each

highlighted, we move on to the discussion of the energy-momentum tensor in the non-

linear theories of electrodynamics defined by the action (2.4). We obtain this in the

usual way, varying (2.4) with respect to the metric tensor gµν which defines the energy-

momentum tensor Tµν as,

δS = −1

2

∫
d4z
√
−gTµνδgµν . (3.13)

The details of the calculation, and the useful identities which are used, are presented

in Appendix B. We find that the energy-momentum tensor of nonlinear vacuum elec-

trodynamics is given by,

Tµν = HµαFαν − δµνL, (3.14)

where the excitation tensor Hµν is defined in (2.6). What is immediately apparent

from comparing this with (3.8) is that the only difference between Minkowski and

the nonlinear energy-momentum appear in the strictly diagonal terms (those which
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are proportional to δµν ). Thus momentum density, which comes from the off-diagonal

terms, are identical in the nonlinear and Minkowski formulations. As an aside, we also

note that the energy-momentum tensors of Minkowski (3.8) and the nonlinear theory

(3.14) can be expressed as,

Tµν =Θµ
ν − δµν

(
L −X ∂L

∂X
− Y ∂L

∂Y

)
. (3.15)

In this form the difference of the two energy-momentum tensors is proportional to the

Legendre transform of the Lagrangian function L ≡ L(X,Y ), suggestive of the Hamil-

tonian of the nonlinear theory. This may hint at some interesting, deeper connection

between the two, though we do not pursue this line of enquiry further here.

With a similar appearance, and identical off-diagonal terms, it is interesting to

consider if there are differences between the properties of (3.14) and (3.8). Taking the

trace of (3.14) we find,

Tµµ = −4

(
L −X ∂L

∂X
− Y ∂L

∂Y

)
, (3.16)

and since L ≡ L(X,Y ), in general, nonlinear extensions to Maxwellian electrodynamics

give energy-momentum tensors which are not traceless.

A powerful feature of the energy-momentum tensor (3.14) is that regardless of the

precise form of the Lagrangian function, the energy-momentum is always conserved

for closed systems. This can be seen by taking the divergence of (3.14), and firstly

expanding the derivative of the Lagrangian function in terms of derivatives of the
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Lorentz invariants X and Y ,

∂µT
µ
ν =(∂µH

µα)Fνα +Hµα(∂µFνα ) + ∂νX
∂L
∂X

+ ∂νY
∂L
∂Y

. (3.17)

The first term here is zero, as a result of the field equations for nonlinear electro-

magnetism (2.5). Taking the derivatives of X and Y , we can express the divergence

as,

∂µT
µ
ν =Hµα(∂µFνα )− 1

2
Hαβ∂νFαβ . (3.18)

Finally, we can rewrite the last term using the alternative form of the Bianchi identity

(2.7)

∂µFνα + ∂νFαµ + ∂αFµν = 0, (3.19)

to show finally that,

∂µT
µ
ν = 0. (3.20)

In the case of Minkowski, which was also divergence free, we had to make further as-

sumptions about the field and matter configurations. From the analysis presented here,

there appears to be a much more natural interpretation of the Minkowski formulation

in nonlinear electrodynamics, or rather, more obvious similarities between these two

cases. This leads us to ask how we might interpret Abraham.
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In the case of a real material medium, the tensor Hµν will have some compli-

cated structure, which ensures that the energy-momentum tensors of Abraham and

Minkowski are distinct. In the nonlinear electrodynamics, however, with the excitation

tensor defined in (2.6) we find that this leads to a unification of the Minkowski and

Abraham approaches, such that,

Θµ
ν = Ωµ

ν . (3.21)

How can this be explained? We mentioned previously that one of the proposed reso-

lutions to the Abraham-Minkowki debate is simply that the total energy-momentum

of the system will be equivalent in both cases. The differences between the Abraham

and Minkowski formulations then is attributed to how the total energy-momentum is

separated into wave and material contributions1. The fact that the two approaches are

unified in (3.21) could be viewed as the nonlinear electromagnetic statement of this

same idea. In the analysis presented so far for the Minkowski and Abraham tensors in

nonlinear electromagnetism, (3.8) and (3.9) respectively, no distinction has been made

between the background field, and the probe field. Instead we have been working with

the full electromagnetic field tensor Fµν . The tensors Θµ
ν and Ωµ

ν , defined with the

1This resolution to the Abraham-Minkowski debate would give some clarity on why theoretical
studies have come out in favour of both formulations. Depending on how the problem is approached,
and how the total energy-momentum of the system is separated, the approximations used to describe
the energy-momentum contribution of the medium could lead to one or the other of the formulations to
be obtained. However, it does not fully explain why there has been experimental work which purports
to name one of the formulations correct, as experiments measure something real, which would be
independent of how the theorists separate the energy-momentum. In response to this, Barnett [189]
has suggested that both formulations are correct, but correspond to physically different forms of the
momentum of light, with Minkowski associated with the canonical momentum, and Abraham with
the kinetic momentum. Then, depending on how the experiment was set up, it would be sensitive to
measuring one form of the momentum over the other.
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full electromagnetic field Fµν , and the excitation tensor (2.6), can be thought of as

the total energy-momentum tensors of the system. The question here is how do we

build up a better picture, which could possibly lead to a clearer distinction between

the two formulations? To do this, we will more closely follow the light-matter analogy

by splitting the full electromagnetic field into a background and probe configuration,

to mirror the separation into wave and material parts.

3.3 Perturbing around a strong background field

So far, the full electromagnetic tensor, Fµν , has been left completely arbitrary, and it

is implicitly assumed that this accounts for all fields within the system, i.e. both the

background field, and the probe field in which we are primarily interested. We choose

to now separate the full electromagnetic tensor into its constituent parts, assuming that

we can treat the probe field as a perturbation on the background field,

Fµν = Fµν + fµν , (3.22)

where Fµν is the background, and fµν is the probe field. These conventions will be used

throughout this Chapter, i.e. terms which depend on the background only (O(f0)) will

use calligraphic font (e.g. A), terms of linear order in the perturbation (O(f1)) will be

lower-case (e.g. a) and terms second order (O(f2)) will use lower-case sans-serif font

(e.g. a). For completeness, the background field is taken to be completely arbitrary and

no assumptions are made about its spacetime dependence. The only condition which is

placed on it is that the amplitude of the background field is the dominant contribution
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to the full electromagnetic field tensor, |F| � |f |, and that the background is taken

to be slowly varying with respect to the probe, such that terms linear in the probe f

average to zero.

With (3.22) the Lorentz invariant parameters (2.2) and (2.3) become,

X =− 1

4
FµνFµν −

1

2
Fµνfµν −

1

4
fµνfµν = X + 2x+ x, (3.23)

Y =− 1

4
F̃µνFµν −

1

2
F̃µνfµν −

1

4
f̃µνfµν = Y + 2y + y, (3.24)

where we have

X =− 1

4
FµνFµν x =− 1

4
Fµνfµν x =− 1

4
fµνfµν . (3.25)

and analogous definitions for Y .

Through using (3.23) and (3.24) (or equivalently (3.22)) we can perform Taylor

expansions of the Lagrangian function and its derivatives, which are explicitly given

in Appendix C. With these definitions, the excitation tensor (2.6) can be expressed

order-by-order as,

Hµν = Hµν + hµν + hµν +O(f3), (3.26)

where we omit higher order terms since these will be negligible provided the magnitude

of the probe field is small compared to the background. We also only consider terms

up to O(f2), as the Minkowski (3.8) and Abraham (3.9) tensors are second order in

the probe field.
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3.3.1 Abraham and Minkowski forms of the probe energy-momentum

As mentioned above, the energy-momentum tensors of Minkowski (3.8) and Abraham

(3.9) represent the full energy-momentum of the system, since the electromagnetic field

F contains both the background and probe parts, and we assume a closed system with

no free sources. In the case of light interacting with a real medium, the Minkowski

and Abraham tensors describe only the energy-momentum of the light, and so it is

necessary here to use the analogous description in terms of the probe f in (3.22) This

is equivalent to simply making the substitutions Fµν → fµν and Hµν → hµν . Thus we

have,

Θ̃µ
ν = hµαfαν +

1

4
δµνh

αβfαβ , (3.27)

and,

Ω̃µ
ν =Θ̃µ

ν +
1

2
(fµαhαν − hµαfαν )

+
1

2

[
uµuα(fνβ h

αβ − hνβfαβ) + uνu
α(fµβhαβ − hµβfαβ )

]
. (3.28)

where we have used a tilde to distinguish these from the full tensors (3.8) and (3.9).

Had we instead expanded the full tensors perturbatively, this would give both the

background and probe contributions to the energy-momentum, not just the probe part

which these tensors are meant to represent. Crucially, with the precise form of the first

order excitation tensor (C.7) found in Appendix C, these two descriptions are no longer
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equivalent, i.e.,

Θ̃µ
ν 6= Ω̃µ

ν . (3.29)

We now have two distinct descriptions of the energy-momentum of the probe field

in the nonlinear interaction with the background field, giving a closer analogy to the

light-matter interactions which are usually considered.

3.3.2 The nonlinear energy-momentum in the background/probe con-

figuration

To proceed to calculate the perturbed nonlinear energy-momentum tensor, it is con-

venient to perform the expansion into powers of the probe field at the level of the

action. The Lagrangian function can be Taylor expanded around the background, and

expressed as (see Appendix C),

L(X,Y ) = L(X ,Y)− 1

2
Hµνfµν −

1

4
hµνfµν . (3.30)

The action is,

S = S(0) + S(1) + S(2) +O(f3). (3.31)

The first term

S(0) =

∫
d4z
√
−gL(X ,Y) (3.32)
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depends only on the background, the second term

S(1) =− 1

2

∫
d4z
√
−gHµνfµν (3.33)

is linear in the probe field, which would time-average to zero with an oscillating probe.

The important term here is the last term which is second order in the probe,

S(2) =− 1

4

∫
d4z
√
−ghµνfµν . (3.34)

All orders of the excitation tensor (3.26) can be expressed in the form of a constitutive

relation, analogous to (3.7), and we choose to express hµν in this way,

hµν =
1

2
χ αβ
µν fαβ . (3.35)

In (3.7), the tensor Z αβ
µν defines the properties of the medium, and as such charac-

terises the effect the medium will have on the passing probe wave. Analogously, the

role χ αβ
µν plays in (3.35) is to define the properties of the nonlinear vacuum under the

influence of the strong electromagnetic field, encoding the nonlinear interaction which

will be experienced by the probe field. This can be shown explicitly in the calculation

of the energy-momentum tensor from (3.34). The term of interest is now,

S(2) =− 1

16

∫
d4z
√
−g
(
gµλgνρ − gµρgνλ

)
χ αβ
λρ fαβ fµν , (3.36)
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where we explicitly insert (antisymmetric combination of) the metric tensors which

raise the indices on hµν in (3.36).

To obtain the energy-momentum tensor, we again use the usual approach of varying

(3.36) with respect to the metric gµν ,

δS(2) =− 1

16

∫
d4zδ

[√
−g
(
gµλgνρ − gµρgνλ

)
χ αβ
λρ

]
fαβ fµν

=
1

2

∫
d4z
√
−gtµνδgµν , (3.37)

where we define tµν as the O(f2) contribution to the energy-momentum tensor. The

only terms which may depend on the metric are those within the square brackets.

There are two terms to consider here. The first comes from the variation of the terms

explicitly involving the metric tensor,

−1

8

[
δ
(√
−g
(
gµλgνρ − gµρgνλ

))]
χ αβ
λρ fαβ fµν =

1

2

√
−g
[
hµαf ν

α +
1

4
gµνhαβfαβ

]
δgµν ,

(3.38)

where we used the identities (B.2) and (B.6). We can immediately identify the term in

the square brackets in (3.38) as the Minkowski form of the energy-momentum (3.27).

This contribution to the total energy-momentum at O(f2) has come from the explicit

dependence on the metric. Another term remains, however, which comes from the

variation of the constitutive tensor χ αβ
µν . Using the definition (C.7), and following an

analogous procedure as presented in Appendix B for dealing with the metric dependence
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of terms appearing in χ αβ
λρ , we arrive at,

−1

8

(√
−g
(
gµλgνρ − gµρgνλ

))
δ
[
χ αβ
λρ

]
fαβ fµν =

1

2

√
−ghµαF ν

α δgµν . (3.39)

This is the term which is responsible for the non-zero trace of the energy-momentum

tensor (at this order in the probe). In other words, the O(f2) contribution to the

energy-momentum tensor is,

tµν =Θ̃µν + hµαF ν
α , (3.40)

where the second term comes entirely from the variation of the tensor χ. As mentioned

previously, in the usual light-matter interaction (3.7), Z encodes the properties of

the medium, and so the additional term alongside the Minkowski energy-momentum

in (3.40) can have the interpretation of being the nonlinear vacuum analogies to the

material contribution accompanying the wave part of the energy-momentum tensor.

With the Minkowski form appearing naturally, based on nothing but the usual

variational procedure of deriving the energy-momentum, it is natural to ask the role,

if any, Abraham may play in the nonlinear theories. It is always possible to arbitrarily

separate the total energy-momentum into whatever parts we wish, and so there would

be nothing stopping us, in principle, from separating out the energy-momentum into

a description which involves the Abraham form, with some additional terms which we

could say were the contribution from the strong background field. However, this would

be very artificial, and in the next Section we discuss some of the difficulties with the
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Abraham energy-momentum in nonlinear electrodynamics.

3.4 Minkowski or Abraham?

The purpose of this Chapter has been to look at the Abraham-Minkowski controversy

from the point of view of nonlinear vacuum electrodynamics, to see what we can learn

about the momentum of light in this particular situation. There are two key arguments

which highlight the importance of the Minkowski energy-momentum tensor in nonlinear

electrodynamics.

The first is that Minkowski appears naturally in the expansion of the full energy-

momentum tensor in (3.40). It is always possible to arbitrarily separate the total

energy-momentum (at a given order in the probe field), but doing that is rather arti-

ficial, and has no real physical motivation. We obtain the Minkowski form as a direct

consequence of varying the explicit metric dependence in (3.36), with the additional

terms coming from the variation of the constitutive tensor χ αβ
µν . This has a clear

physical interpretation when compared with the analogy of light interacting with a

real medium, where the constitutive tensor encodes the information about the material

properties.

The second is related to the interpretation of the velocity field uµ in the Abraham

tensor describing the probe field (3.28). In the context of light-matter interactions, this

has a reasonable and quantifiable interpretation as the 4-velocity of the material with

which the probe field is interacting. In the case of the full tensor (3.9) in theories of

nonlinear vacuum electrodynamics, terms proportional to uµ vanish due to the form of
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the full excitation tensor (2.6), and there are therefore no problems presented with the

appearance of the velocity field. For the Abraham energy-momentum tensor describing

only the probe field (3.28) however, these terms do not vanish, and we are left with

explicit dependence on the velocity field. Unlike in the usual context of light-matter

interactions, we have no real medium present. Instead, the presence of fluctuations

in the quantum vacuum and a strong background field lead to an incident probe field

behaving analogously to how it behaves in a medium. Thus, there is no structure

which can have a velocity field associated with it, and so uµ has no real meaning, other

than being a velocity field. As a result of this, and since the equation itself gives no

indication of how to determine uµ, any practical calculation would require a specific

and arbitrary reference frame to be chosen, introducing a preferred frame of motion and

thus violating Lorentz invariance. Unlike in the case of light-matter interactions, where

the breaking of Lorentz invariance is a physical consequence of having a real medium,

the nonlinear vacuum electrodynamics theories strictly retain this symmetry. While

it could be argued that since the full energy-momentum tensor is Lorentz invariant

and the symmetry breaking of the Abraham tensor would be compensated by another

term, considering the Abraham form as an independent function which describes purely

Lorentz invariant fields is troubling. Another argument which could be made is that

there is a partial breaking of the Lorentz symmetry due to the background field itself.

For example, a magnetic field introduces a preferred direction. However, performing

a Lorentz transformation along the direction of the field, which leaves the form of the

field invariant, changes the form of the Abraham energy-momentum, and so the Lorentz

symmetry is violated. These problems are not found in the Minkowski formulation,
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giving a greater credibility to the use of the Minkowski tensor (3.27) as the correct

description of the energy-momentum of light in nonlinear vacuum electrodynamics.

3.5 Summary

The correct way to describe the energy-momentum of light in a medium has had a long

history of debate, with no decisive consensus being reached within the community as

to which approach should be taken — Abraham or Minkowski. The nonlinear vacuum

under the influence of strong fields can provide us with a purely electromagnetic way of

looking at nonlinear light propagation, and we have considered the energy-momentum

of light in theories of nonlinear vacuum electrodynamics. We have seen that for the

full field, the nonlinear vacuum energy-momentum tensor (3.14) has obvious qualita-

tive similarities to the Minkowski tensor, but that in fact, the form of the excitation

tensor for the full theory (2.6) leads to a unification of the approaches of Abraham

and Minkowski, possibly highlighting and giving evidence to the equality of the full

energy-momentum of the system in these two different approaches. By separating the

full electromagnetic field into a strong background and weak probe configuration, the

Minkowski form appears naturally, with a clear physical interpretation of all the terms.

Conversely, the Abraham energy-momentum plays no real role, and how to interpret

it in this context appears to have no answer. These points, coupled with the clear

violation of Lorentz invariance introduced by the Abraham form appears to promote

Minkowski as the more correct description of the energy-momentum of light in nonlinear

vacuum electrodynamics.
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Conformally invariant nonlinear

electrodynamics

So far, the basic requirement of theories of nonlinear electrodynamics defined by the ac-

tion (2.4) has been that they are built up from only Lorentz invariant contractions of the

field, through the parameters X (2.2) and Y (2.3). The adherence to Lorentz invariance

has been a foundational principle of modern theoretical physics since Einstein’s revo-

lutionary development of Special Relativity [2], leading ultimately to Quantum Field

Theory. In the years that followed the development of the theory of Special Relativity,

it was demonstrated by Bateman [198–200] and Cunningham [201] that Maxwell’s the-

ory of electromagnetism is invariant under a larger symmetry group than the Poincaré

group which defines Lorentz invariance: the conformal group (see also the more recent

work [202]). As well as the usual Lorentz symmetries, the conformal group includes in-

variance under scale, and special conformal, transformations. It is the largest extension

of the Poincare symmetry group which leaves the lightcone invariant. The invariance
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of the lightcone (the path which defines the past and future propagation of a ray of

light) is related to the definition of a conformal mapping as a transformation which

preserves angles. We will discuss the technical features of the conformal group in the

next Section.

Since the work of Bateman and Cunningham, conformal invariance in physical sys-

tems has had a varied and far reaching impact. For an excellent review on the historical

development, we refer the reader to the review by Kastrup [203] (see also [204–206]).

Arguably the biggest influence which conformal invariance has had on modern physics

is the integral role it played in the development of gauge theory by Weyl. In an

attempt to combine electromagnetism with Einstein’s recently formulated theory of

General Relativity, Weyl exploited a conformal rescaling of the metric tensor to arrive

at a transformation which simultaneously transformed the metric and the electromag-

netic potential [207, 208] (see also the review [209] and the discussion in the book by

Wald [197]). It was then that the term “gauge transformation” first entered the lex-

icon of theoretical physics. While this original attempt was found to be problematic

[203], it significantly influenced the direction of the early days of quantum mechanics,

with Schrödinger adapting the gauge transformation [210], and Weyl establishing the

usual gauge transformation we are familiar with in subsequent work, in the context of

quantum mechanics [211, 212].

Aside from a few notable examples (e.g. [213–220]) there was little use of conformal

invariance in the physics community for some time after the work of Weyl. Of these, the

work of Pauli [219] provides an interesting interpretation of conformal invariance, with

respect to the discussions presented in Chapter 3. He noted that conformal invariance
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of a theory can be determined by the trace of the energy-momentum tensor, such that

for most theories, the signature of conformal invariance is the vanishing of the trace.

We can see an example of this by considering the usual Maxwellian theory, defined

by the Lagrangian function (2.8). In this case, the trace of the energy-momentum

tensor vanishes. As discussed in the previous Chapter, the energy-momentum tensors

of Minkowski (3.8) (or (3.27)) and Abraham (3.9) (or (3.28)) have the traceless property,

but this is not observed in general nonlinear electromagnetic theories, where the energy-

momentum tensor is defined by (3.14) (or (3.40)). We will return to this below.

After this work the use of conformal invariance in theoretical physics somewhat

fell out of fashion until the work of Wess [221], who applied conformal invariance to

quantum field theory, and investigated the resulting conservation laws and commuta-

tion relations for scalar, spinor and vector fields. This initiated further investigations

which would lead to conformal field theory becoming a field within its own right. It

was found that many of the interaction terms in the classical field theories of physics

are conformally invariant in the work of Kastrup [222] (who also coined the term “spe-

cial conformal transformation” [223]). This discovery led to the investigation of how

conformal field theory may be useful in the description of the asymptotic behaviour of

quantum field theories [224–227], and also gave a description of the special conformal

transformation as a gauge transformation of Minkowski space [228], mirroring the ini-

tial use of the conformal transformation of Weyl discussed above. Conformal invariance

then became an important topic in the theory of current algebras, where it was found to

be partially conserved [229, 230], and using a procedure introduced by Wilson [231] was

used as an asymptotic symmetry in lepton-hadron scattering [204, 232–235]. Following
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on from this, the energy-momentum tensor in QFT was revisited by several authors,

and the conformal anomalies in the energy-momentum, as well as the divergence of the

dilation and special conformal currents were found to be proportional to the β-function

[236–246]. This demonstrated that theories for which the β-function vanishes, or has

nontrivial fixed points, are conformally invariant. One of the most prominent theories

for which this appears to be the case is the supersymmetric N = 4 Yang-Mills the-

ory (see e.g. [247]), which is used extensively in modern theoretical physics (discussed

further below).

Perhaps the most significant advance in the use of conformal invariance was the

development of the conformal bootstrap approach to quantum field theories [248–251],

a nonperturbative technique which uses a non-Lagrangian formulation of quantum field

theory to analyse the properties of correlation functions. This led to a revolution in the

study of 2D conformal field theories, where it was found that the conformal group leads

to an infinite set of transformations, which makes many models (such as the 2D-Ising

model) exactly solvable [252–256], and its use as a tool in statistical physics, studying

critical phenomena was established.

The final use of conformal symmetry which will be mentioned is its use in the

speculative area of string theory. The conjecture of Maldacena [257], known as the

AdS/CFT (or gauge-gravity) conjecture, relates D+1 dimensional supergravity theories

to D dimensional conformal field theories (made precise by Witten [258]). Since this

work this conjectured duality has been one of the most active areas of research in

theoretical physics, spawning thousands of papers on the various properties of quantum

field theories (see reviews [259–266]), which would not be possible without the use of
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conformal invariance.

In light of the above, it is clear that exploiting conformal invariance in theoreti-

cal physics, whether in the sense of taking conformal symmetry to be fundamental or

using the extended group to simplify more difficult problems, can lead to interesting

new research directions and insights. The rest of this chapter is devoted to answering

the question: can a conformally invariant, nonlinear theory of electromagnetism exist,

and if so, can it be used as a model of strong field processes? The motivation behind

this is the following. It is known that Maxwellian electrodynamics is a conformally

invariant, linear theory of electromagnetism, but that a more complete description of

electromagnetic phenomena is found by using the machinery of QED. In the quanti-

zation process, we lose the additional symmetries of the conformal group, obtaining

instead a Poincaré invariant, nonlinear theory. So far in this thesis, we have shown

how an effective field theoretic description, using classical nonlinear electromagnetism

can be used to describe a wide range of quantum phenomena in strong electromagnetic

fields, and it is natural to wonder if the extended symmetries offered by the conformal

group could be exploited in the same way as its use in other areas of physics, as a means

to find, or guide, solutions to difficult problems. It may also be possible that in some

regime, such a theory could be used to model some aspects of Euler-Heisenberg theory,

or other physics. A conformally invariant, nonlinear theory of electromagnetism would

represent a true “middle ground” between the theories of Maxwell and QED, and may,

like Euler-Heisenberg, be useful in the study of strong fields.

To approach this question, in Section 4.1 we outline the formal aspects, and techni-

cal details of the conformal group. We then proceed to apply conformal transformations
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to the nonlinear theories defined by the Lagrangian functions L(X,Y ) in Section 4.2,

as well as discuss the implications of the constrained Lagrangian functions, and we con-

clude by revisiting the energy-momentum tensor in the conformally invariant context.

4.1 The conformal group

The conformal group is an extension of the usual Poincaré group, to include scale/dilation

transformations and special conformal transformations. The Poincaré group is the full

symmetry group of special relativity, which includes invariance under translations, ro-

tations and boosts. The associated algebra can be represented in terms of the 10

generators,

Translations: Pµ =i∂µ, (4.1)

Lorentz transformations: Jµν =i (zµ∂ν − zν∂µ) , (4.2)

which give the commutation relations,

[Pµ,Pν ] =0, (4.3)

[Jµν ,Pλ] =− i (gµλPν − gνλPµ) , (4.4)

[Jµν ,Jλρ] =i (gµρJνλ − gµλJνρ + gνλJµρ − gνρJµλ) , (4.5)

where gµν is the Minkowski metric. Invariance under translations (4.1) corresponds

to conservation of the associated energy-momentum tensor of the theory, ∂µT
µν = 0,

whereas invariance under Lorentz transformations (4.2) allows the energy-momentum
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tensor to be chosen to be symmetric Tµν = T νµ, due to the conserved current Jµνρ =

1
2

(
zµT νρ − zνT

µ
ρ

)
.

To extend the Poincaré group to the conformal group, we introduce the dilation

and special conformal transformations,

Dilations: D =i (zµ∂µ) , (4.6)

Special conformal: Kµ =2izµz
λ∂λ − iz2∂µ, (4.7)

corresponding to a further 5 generators, such that the conformal group is a 15 parameter

symmetry group. These generators give us the further commutation relations,

[D,Kν ] =iKν , (4.8)

[D,Pν ] =− iPν , (4.9)

[Kµ,Pν ] =− 2i (gµνD − Jµν) , (4.10)

[Kµ,Jνλ] =− i (gµνKλ − gµλKν) , (4.11)

with all other commutators being zero. Dilation transformations require that the trace

of the energy-momentum tensor can be expressed as the divergence of a current, Tµµ =

∂µJµ, with Jµ often referred to as the the virial current [237]. The conserved current

corresponding to this transformation is Dµ = zλTµλ−Jµ. In this, the term zλTµλ causes

the transformation, however on its own this is not enough to preserve scale invariance.

This is the role that the virial current, Jµ, plays, by rescaling all fields such that scale

invariance is ensured. The special conformal transformation requires that the trace of
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the energy-momentum tensor vanishes Tµµ = 0, with the associated conserved current

Kµ = (2zλzν − gλνz2)Tµλ .

With the structure of the conformal group now established in terms of the genera-

tors, how do we view the transformation more generally? As mentioned previously, the

conformal group is the symmetry group which leaves the light-cone invariant. There are

two distinct, but related, uses of the term “conformal transformation” in the literature

(for a good insight into the distinction see [203]). The first is interpreting a general

conformal transformation as a coordinate transformation zµ → z̃µ which takes,

gµνdz
µdzν → gµνdz̃

µdz̃ν = Ω2(z)gµνdz
µdzν . (4.12)

The function Ω(z) in this case depends on the particular transformation (see below).

The view of conformal transformations as coordinate transformations, defined by (4.12),

contains the full symmetries implied by the above generators. In this view, translations,

Lorentz transformations, dilations and special conformal transformations correspond to

the coordinate transforms,

Translation: zµ → z̃µ = zµ + aµ, Ω(z) = 1 (4.13)

Lorentz: zµ → z̃µ = Λµνz
ν , Ω(z) = 1 (4.14)

Dilation: zµ → z̃µ = λzµ, Ω(z) = λ, (4.15)

Special: zµ → z̃µ =
zµ − aµz2

1− 2(a.z) + a2z2
, Ω(z) = 1− 2(a.z) + a2z2, (4.16)

with aµ an arbitrary constant 4-vector, Λµν a Lorentz matrix, and λ a scaling parameter.
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The special conformal transformation can also be considered as an inversion zµ → zµ/z2

followed by a translation, and another inversion.

The second interpretation, which is the method used by Weyl [207], is instead as

a geometrical gauge transformation, where instead of a coordinate transformation we

have a local rescaling of the metric,

gµν → g̃µν =ω2(z)gµν ,

gµν → g̃µν =ω−2(z)gµν (4.17)

where ω(z) is now an arbitrary scalar function. This is the definition of conformal sym-

metry most commonly used in the physics literature. In this instance, the coordinates

are kept fixed, and the transformation is a pure rescaling of the metric on unchanged

coordinates. Thus, this transformation has the action of changing the metric to be-

come curved, though still conformally flat. This interpretation of conformal invariance

is more general than the coordinate transformation (4.12), in the sense that since it

only directly accounts for dilation/scale transformations, and so is not as restrictive

as the coordinate transform interpretation defined by (4.12). It is possible to have a

scale invariant theory which is not conformally invariant [267], however the converse

is not true (as scale transformations are a subset of the full conformal group). In

many useful physical applications of conformal invariance, though, studying the scale

transformations is sufficient for certain interesting phenomena to be discussed.
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4.2 Conformally invariant nonlinear electrodynamics

As already discussed, the aim of this Chapter is the investigation of conformally invari-

ant theories of nonlinear electrodynamics. Maxwell’s theory is conformally invariant

and linear, while QED is Poincaré invariant and nonlinear. Nonlinear theories of elec-

trodynamics, such as Euler-Heisenberg, have been successfully utilised to study a range

of physical processes in strong fields, but there are many instances of problems becoming

intractable even in these simplified effective field theories. When a difficult problem

is encountered in physics, the more symmetric we can make the problem, the more

progress can usually be made. Often in the literature, conformal transformations can

be used to turn a complicated problem in to a simpler one, and so it is natural to see

if conformal symmetry could be exploited in nonlinear electrodynamics to produce an

effective field theory of strong-field interactions in which problems can be tackled in a

more tractable way.

In the following, we will adopt the definition of conformal invariance used by Weyl,

as a rescaling of the metric tensor (4.17). Generally, this is not as strong a statement

of conformal invariance, however, it is the most widely used definition in the physics

literature, and also for the purposes investigated here gives identical results to using

the coordinate transform definition (4.12).

4.2.1 Transformation of the action

Our starting point is again the nonlinear action (2.4). Since we are adopting the view

that the coordinates remain the same, and it is instead the metric that transforms
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according to (4.17), then under the conformal transformation,

√
−g → ω4(z)

√
−g. (4.18)

This can be shown directly by considering that for a general rank-2 tensor Aµν , the

determinant can be found by using the Levi-Civita tensor density ε̃µνλρ (see eqn. (B.8)),

det(A) =
1

4!
ε̃µνλρε̃αβσκA

α
µ A β

ν A σ
λ A κ

ρ , (4.19)

such that g ≡ det(g) → det(g̃) = ω8(z)g. Thus, under the conformal transformation,

for the action to be invariant, we also require that the Lagrangian function transforms

as,

L(X,Y )→ ω−4(z)L(X,Y ). (4.20)

What is the effect then of the transformation on the invariants of the theory X and

Y ? The transformations are straightforward to calculate, though for the Y invariant

the transformation is most clearly seen by using tensor density form of the Levi-Civita

tensor εµναβ = ε̃µναβ/
√
−g, (see (B.8) of Appendix B). Thus, we have that,

X → ω−4(z)X, Y → ω−4(z)Y, (4.21)

As mentioned in the introduction to this Chapter, the function ω(x) is arbitrary,

and so for convenience we simply set ω−4(z) = λ in the following, but note that the
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results work for a generic spacetime dependent function. From (4.20) and (4.21) it is

clear that under the action of the conformal transformation,

λL(X,Y ) = L(λX, λY ). (4.22)

Differentiating both sides with respect to λ, the conformally invariant Lagrangian func-

tion takes on the simple form,

L(X,Y ) =X
∂L(λX, λY )

∂X
+ Y

∂L(λX, λY )

∂Y
. (4.23)

This is valid for arbitrary λ, and so we are free to set λ = 1,

L(X,Y ) =X
∂L(X,Y )

∂X
+ Y

∂L(X,Y )

∂Y
. (4.24)

We can arrive at a simpler form for the Lagrangian function by using “polar variables”,

X =R cosφ, Y =R sinφ, (4.25)

with R2 = X2 + Y 2, such that,

R
∂

∂R
= X

∂

∂X
+ Y

∂

∂Y
. (4.26)

Using the new variables in (4.24), gives a differential equation in terms of R and φ
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which can be integrated directly to give,

L(R,ϕ) = RB(ϕ) (4.27)

where B(ϕ) is an arbitrary function of ϕ. Finally, returning to a description in terms

of X and Y ,

L(X,Y ) = XC

(
Y

X

)
, (4.28)

where C(Y/X) is an arbitrary function of the combination Y/X (and is related to

the function B(tan−1(Y/X)) in (4.27) by C(Y/X) =
√

1 + Y 2/X2B(tan−1(Y/X))).

This defines the full class of conformally invariant, nonlinear effective field theories of

electromagnetism.

From this we can see that the Maxwellian Lagrangian function LMax = X clearly

falls within this more general class (in that case the function is simply C = 1). The aim

of this work, as stated above, is to investigate this class of theories, and determine if they

could be useful as a tool to model strong-field QED processes. Before discussing this,

however, we will revisit the energy-momentum tensor of nonlinear electromagnetism,

with the new added constraint of a conformally invariant theory, to check if the theories

defined by (4.28) agree with our initial intuition about conformal invariance.
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4.2.2 The energy-momentum tensor revisited

We first use the conformally invariant Lagrangian function (4.28) in the definition of

the excitation tensor. Defining ξ = Y/X we have,

Hµν =FµνC(ξ) +
(
F̃µν − Fµνξ

) d

dξ
C(ξ). (4.29)

Inserting this into the energy-momentum tensor (3.14), we find

Tµν = (FµαFαν − δµνX)C(ξ) +
(
F̃µαFαν − FµαFαν ξ

) d

dξ
C(ξ). (4.30)

As mentioned previously, the vanishing of the trace of the energy-momentum is

typically taken to define invariance under conformal transformations. Checking this

with (4.30), we find that this is the case, and for the Lagrangian functions (4.28),

Tµµ = 0. (4.31)

So, as expected, the restriction to conformally invariant theories gets rid of the non-

vanishing trace in the full energy-momentum tensor. In the previous Chapter, we noted

that when the energy-momentum tensor is expanded in a background/probe configu-

ration, the term appearing alongside the Minkowski tensor in (3.40) is responsible for

the non-zero trace (since the Minkowski tensor is traceless). It can be easily shown by

inserting (4.28) into the additional term that the trace now vanishes.
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4.2.3 Physical implications?

We have demonstrated that it is possible to derive an entire class of Lagrangian func-

tions which are nonlinear in the electromagnetic fields, and satisfy conformal invariance,

however, can these theories be used to describe strong field processes in some limit? For

an effective theory of electromagnetism to be physically meaningful, a basic requirement

would be that it reproduces the weak field predictions of Maxwellian electrodynamics

as the fields approach zero. If we write the arbitrary function C(ξ) as,

C(ξ) =1 +D(ξ), (4.32)

then the weak field limit to obtain Maxwellian electrodynamics in vacuum corresponds

to,

D(ξ)

∣∣∣∣
X,Y→0

→ 0. (4.33)

However, since this function depends only on the ratio of the two invariants, the limit

cannot be taken in a meaningful way. The only function which satisfies the above limit

is D(ξ) = 0, i.e. the only conformally invariant theory of electromagnetism is Maxwell’s

theory. It has been known for some time that the conformal invariance of Maxwell’s

theory is found only in 4 space-time dimensions, but here we have a further hint at

the special role Maxwell’s theory plays, as being the only conformally invariant, and

physically meaningful theory of electromagnetism in 4D. Another, more physically

intuitive explanation for the lack of a physically relevant, nonlinear conformal theory
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of electromagnetism is that a conformal transformation has the ability to change weak

fields into strong fields, and vice versa, as highlighted by the transformation of the field

invariants (4.21). In other words, without having a specific scale involved (such as the

Schwinger critical field ES), there is no real meaning to describing fields as either weak

or strong, and there is no distinction between the two.

So to summarise this Chapter: It is possible to use the restriction to conformally

invariant theories of electrodynamics, and develop an entire class of theories satisfying

the larger conformal group. The Lagrangian functions of such theories take a very

simple form, where the full class is defined by the family of functions C(ξ), where

ξ = Y/X. This dependence on the ratio of the two electromagnetic invariants, however,

means that the only physically meaningful conformally invariant theory is Maxwellian

electrodynamics.
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Cherenkov radiation from the

nonlinear vacuum

So far in this thesis we have considered mainly technical aspects of nonlinear theories

of electrodynamics. We now turn to a discussion of a phenomenological feature of

such theories, which compared to other effects such as vacuum birefringence and pair

production, has not had as much attention given to it in the literature.

In the case of a charged particle moving through a real material medium a well

known effect occurs when the particle velocity exceeds the phase velocity of light in that

medium — the phenomenon of Cherenkov (sometimes Vavilov-Cherenkov) radiation

[268, 269]. The first theoretical work to explain these results was presented by Frank

and Tamm [270] (though much earlier work by Heaviside [271] and Sommerfeld [272]

considered similar effects). The critical mechanism behind this effect is essentially that

due to the presence of a medium of refractive index n, the phase velocity of light becomes

less than the speed of light, vp = c/n. A particle travelling through the medium with
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θC cβ

Figure 5.1: Cherenkov radiation occurs due to the build up of wavefronts (red dashed)
with origin centred on the particle’s orbit (black dashed). The constructive interfer-
ence of these wavefronts produces Cherenkov radiation, which is emitted in a cone-like
structure following the direction of the particle, which is moving with speed cβ, with
the cone defined by the Cherenkov angle θC .

velocity cβ > vp will therefore outrun any electromagnetic waves it could emit. This

can lead to the emission of real radiation due to the build up of wave fronts associated

with the particle, producing the well known “Cherenkov cone” (analogous to the Mach

cone of acoustics) of radiation behind the particle, as shown in Figure 5.1.

As discussed in detail above, the nonlinear interaction of electromagnetic fields in

the vacuum leads to an effect on the propagation of light which is analogous to the

behaviour of light in a material medium. Crucial to this is the possibility to observe

what is sometimes referred to as “slow light” (see for example [164]), i.e. the phase

velocity of the propagating wave can become less than c, the speed of light in vacuum.

The presence of “slow light” in the nonlinear vacuum then should lend itself to the

possibility of a particle with sufficient energy passing through a region of strong field

to produce Cherenkov radiation, as well as the usual synchrotron radiation caused by

acceleration in the field. The possibility of charged particles producing radiation by

a Cherenkov-type mechanism in strong electromagnetic fields was first investigated by
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Erber [273], who used insights gained from QED to obtain semi-quantitative estimates

of Cherenkov radiation emitted by particles in a strong magnetic field (see also [274]).

The Cherenkov effect was further studied in the work of Ritus [171, 275] in the context

of radiative corrections and analysis of the photon propagator in strong field QED. This

was primarily based on calculating the effective mass of a photon in a strong field, and

using the real part of this to determine the Cherenkov rate in a constant crossed field.

Ginzburg [276] considered Cherenkov radiation in the context of transition radiation,

and determined that for a particle moving across the boundary from a region of no field

to a region of strong magnetic field, normal transition radiation would always dominate

over the possible Cherenkov radiation which may occur. More recently Cherenkov

radiation obtained by a particle propagating through a photon gas was considered

in [277–279], also in the context of the theory of Euler-Heisenberg. These studies

each highlight the possibility of obtaining Cherenkov radiation, but do not completely

develop the theory through a direct use of background field structures and analysis

of propagation conditions of the radiation. In each case cited, the results are mainly

qualitative, and rely on analysis based on the Euler-Heisenberg effective action. It is

the aim of this Chapter to provide a more general look at Cherenkov radiation from

the nonlinear vacuum. The analysis uses the most general form of the Lagrangian

function L = L(X,Y ) such that it is valid for arbitrary nonlinear theories, and makes

no assumptions about the background field structure, other than working in the limit

where variations of the background can be neglected with respect to variations of the

radiation field.

Cherenkov radiation has been studied quite extensively in a different (but related)
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context which is more in line with the approach presented here — in Lorentz violating

extensions of (quantum) electrodynamics [280–287]. In these theories, instead of in-

troducing nonlinearities between the fields (as in Euler-Heisenberg [35] or Born-Infeld

[97] electrodynamics), the Cherenkov process is mediated by the inclusion of terms

in the QED Lagrangian which allow for Lorentz violations at high energies, arising

for example in some models of string theory [288, 289] and other “Beyond Standard

Model” theories (e.g. [290–292]). While arising from different motivations, many of the

results found in this line of enquiry will prove useful in developing a full, first-principles

approach to Cherenkov radiation in nonlinear electrodynamics.

The rest of this Chapter is structured as follows. In Section 5.1 we present brief

review of the key features of standard Cherenkov radiation found in the literature. In

particular we derive the Cherenkov angle formula which can be used in any physical

situation, whether it be in a real medium, or in an electromagnetic background, and

discuss the power radiated per unit frequency in the case of an isotropic and homo-

geneous medium. Section 5.2 is devoted to reviewing wave propagation in nonlinear

electrodynamics. Specifically, we show how the birefringent dispersion relation of the

probe field is obtained by analysis of the propagating modes. The results from the

preceding Section are then used to give the Cherenkov angle and power spectrum in

nonlinear theories of electromagnetism in Section 5.3. Particular attention is given

to how the expressions for the Cherenkov angle and power spectrum must be gener-

alised to account for the background electromagnetic field, which acts analogously to

an anisotropic medium. The expressions obtained here are, aside from a few reason-

able assumptions, completely general, and can be used for arbitrary Lagrangians and
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background fields. One of the key features of Cherenkov radiation (in any context)

is that the power spectrum has an explicit linear dependence on the emitted photon

energy. In the case of particles interacting with real material media, a natural cut-

off in the power spectrum occurs. We also discuss the cut-off in nonlinear theories of

electromagnetism in Section 5.3. To gain some insight into the possible phenomenolog-

ical applications of the theory, in Section 5.4 we specialise to the case of an energetic

particle propagating in different constant background fields. For Cherenkov radiation

to be observable, it must be non-negligible with comparison to the usual synchrotron

radiation in electromagnetic fields. As such, we provide analysis which compares the

synchrotron and Cherenkov spectra for the different field structures, to see if there are

regimes in which Cherenkov may become comparable to, or dominate over, synchrotron

radiation. Finally we summarise and conclude in Section 5.5.

5.1 Cherenkov radiation in a simple medium

Before discussing Cherenkov radiation in nonlinear theories of electrodynamics, it is

useful to highlight some of the key features of the Cherenkov process in the case of

a particle interacting with a simple medium. Consider a particle travelling through

some medium with a velocity β. The particle begins at the origin and as it propagates

wave-fronts associated with the particle will be emitted. These wave-fronts will have

their centre at the particle position and will propagate outwards with phase velocity

vp(k). At some later time t, for a point r to lie on the wave-front emitted at the origin
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it will be constrained by the surface equation,

Φ(r, t) = r2 − v2
p(k)t2 = 0. (5.1)

This makes no assumption about the background through which the particle is mov-

ing. Any anisotropies or inhomogeneities would enter into the constraint through the

dependence of the phase velocity on the wave-vector.

An infinitesimal time δt after the first wavefront was emitted, another will be pro-

duced by the particle, centred at a new position. There will also be a constraint equation

which defines points that lie on this new wave-front,

Φ′(r, t) =(r − βδt)2 − v2
p(k)(t− δt)2,

'r2 − v2
p(k)t2 − 2(r.β − v2

p(k)t)δt = 0. (5.2)

Where we linearised in δt in the last line. As stated in the introduction, Cherenkov

radiation is essentially due to the constructive interference of these wave-fronts. We

therefore wish to find the points satisfying both of the constraint equations above, so

we require,

2(r.β − v2
p(k)t)δt = 0, (5.3)

to be satisfied for all small times δt. Using r.β = rβ cos θC , (with r = |r|, β = |β|) and
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substituting (5.1) into (5.3), we arrive at the definition of the Cherenkov angle,

cos θC =
vp(k)

β
. (5.4)

We can see immediately that this can only be satisfied when β > vp, as stated in

the introduction. When the phase velocity exceeds the particle velocity, the wave-

fronts never overlap and cannot interfere with each other, so no Cherenkov radiation is

emitted. Essentially, Cherenkov radiation is generated due to the charge and current

densities of particles. Since particles are located at a point, the charge and current

densities involve delta-functions, and so contain Fourier components at all frequen-

cies. When the Cherenkov condition (5.4) is satisfied, the radiation generated by these

Fourier components can propagate, and real, measurable radiation is produced.

A derivation of the power spectrum can be found in standard textbooks (e.g. [293]).

The essential features are that we begin from Maxwell’s equations describing a particle

travelling through a simple medium with a constant velocity, and Fourier transform to

obtain expressions for the Fourier transformed fields. Then, the energy radiated as the

particle travels is found by considering the energy flow through a tube surrounding the

particle’s trajectory. The end result is that the power radiated per unit frequency is

given by,

dP

dω
=
e2

4π
ω sin2 θC . (5.5)

Cherenkov radiation in an isotropic medium is always linearly polarised in the plane

spanned by β̂ and k̂, i.e. the plane formed by the direction vectors of the particle

velocity and the radiation. The polarisation will also be orthogonal to k̂. Orienting the
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coordinate system such that the particle velocity is in the ẑ-direction, the Cherenkov

angle then coincides with the polar angle of the emitted radiation, such that the spatial

part of the (normalised) wavevector is

k̂ = sin θC cosφx̂+ sin θC sinφŷ + cos θC ẑ. (5.6)

Then, the unit normalised spatial part of the polarisation of ICR is

ε̂0 =
β̂ − cos θC k̂

sin θC
. (5.7)

In the usual discussions of Cherenkov radiation in the literature, the angle and

power spectrum are calculated on the assumption of a homogeneous and isotropic

medium, and so we refer to it as isotropic-medium Cherenkov radiation (ICR). Each

of the expressions (5.4) and (5.5) are relatively simple in their structure, with (5.5)

depending simply on the Cherenkov angle, which depends only on the ratio of the

phase and particle velocities. As such, vp and β are the key parameters. Above,

we have made no assumptions on the medium (or background) in the derivation of

the Cherenkov angle, and so it is clear that (5.4) should be valid for any theory in

which there is a phase velocity less than the speed of light, such that highly energetic

particles can emit Cherenkov radiation. This is what motivates us to consider this

effect in nonlinear electrodynamics, where the nonlinear interaction between a strong

background field and propagating radiation can lead to a reduced phase velocity.
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5.2 Wave propagation in strong background fields

As just discussed, the above considerations and derivation of the Cherenkov angle gives

us an opportunity to discuss Cherenkov radiation in the context of theories where we

can have “slow-light”, i.e. light moving at speeds less than the vacuum speed of light

c. Thus, the first step to discuss this in the context of nonlinear electrodynamics is to

look at how the nonlinearities modify the propagation of light moving through strong

background fields. We adopt the procedure implemented in Chapter 3 of separating

the electromagnetic field Fµν into a strong, slowly varying background Fµν and a weak

radiation field fµν .

The background satisfies the field equations,

∂µHµν =0, ∂µF̃µν =0, Hµν =LXFµν + LY F̃µν , (5.8)

where the shorthand notation

LZ1...ZN ≡
∂NL(X,Y )

∂Z1...∂ZN

∣∣∣∣
(X=X ,Y=Y)

(5.9)

is used, and as before,

X =− 1

4
FµνFµν , Y =− 1

4
F̃µνFµν . (5.10)

Our concern is the dynamics of the probe field, fµν . Since the background is much

stronger than this, we can treat the probe field as a small perturbation, and so Taylor
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expand and linearise the field equations in the probe field. Using (5.8) and keeping

only terms up to order O(f), we arrive at the field equation for the probe field,

∂µ

(
χµναβfαβ

)
=0, (5.11)

where,

χµναβ ≡LX
(
gµαgνβ − gµβgνα

)
− LXY

(
FµνF̃αβ + F̃µνFαβ

)
− LXXFµνFαβ − LY Y F̃µνF̃αβ + LY εµναβ . (5.12)

The probe field will also satisfy a Bianchi identity,

∂µf̃
µν =0. (5.13)

The system of equations (5.11) and (5.13) has been extensively studied in the literature

(e.g. [22, 118, 152]). We first write the probe field in terms of a single Fourier mode,

fµν = (kµaν − kνaµ) eik.x, (5.14)

where kµ is the wavevector of the radiation field, and aµ is the gauge 4-potential. This

solves the Bianchi identity (5.13). Then, by taking the background to be slowly varying

with respect to the probe, such that we can neglect derivatives of the background, the

remaining field equation (5.11) becomes simply an algebraic equation for the wavevector
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kµ of the radiation field,

χµναβkνkβaα =0. (5.15)

This can then be solved by writing aµ in terms of the 4-vectors,

a+
µ =Fµνkν , a−µ =F̃µνkν , Cµ =FµλFνλkν , (5.16)

which along with kµ generically form a basis and are the only independent vectors

which can be formed from the background field, its dual, and the wave-vector (any

other contractions between these objects gives a vector proportional to one of the

above). Thus we have,

aµ =c+a
+
µ + c−a

+
µ + ccCµ + ckkµ, (5.17)

which when inserted into (5.15) gives conditions on the parameters ci (i = {+,−, c, k}),

such that we find cc = 0 and ck is an arbitrary parameter, i.e. it is pure gauge, and we

therefore set to zero, ck = 0. The gauge field can then be explicitly given as,

aµ =c+a
+
µ + c−a

−
µ , (5.18)

where a±µ are the polarisation 4-vectors of the radiation field.

The coefficients c+ and c− can depend on scalar contractions involving the wave-

vector (dependence is left implicit), and are related to each other through a system of
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equations which can be solved to determine the dispersion relation (see in particular

[118, 294] for a treatment which has the most notational similarity to the work presented

here). Defining the following parameters,

A =
[
LX (LX + 2LXY Y − 2LY Y X ) +

(
LXY 2 − LXXLY Y

)
Y2
]
, (5.19)

B =− 1

2

[
LX (LXX + LY Y ) + 2

(
LXY 2 − LXXLY Y

)
X
]
, (5.20)

C =−
[
LXY 2 − LXXLY Y

]
, (5.21)

where the shorthand notation (5.9) has been used again, we find that the dispersion

relation can be expressed as,

k2
± =Ω±FµλFµρk

λ
±k

ρ
±, Ω± =

−B ±
√
B2 −AC
A

, (5.22)

with kµ+ (kµ−) being the wavevector associated with the polarization 4-vector aµ+ (aµ−).

Thus, for a general theory of nonlinear vacuum electrodynamics we have birefringence,

as evident by the two dispersion curves, labelled by the ± subscript, see figure 5.2.

From (5.22), using k2 = (ω2 − |k|2) = (v2
p − 1)|k|2, and defining the direction vector

k̂µ = kµ/|k|, then the phase velocity of the probe is,

v2
p± =1 + Ω±FµλFµρ k̂

λ
±k̂

ρ
±. (5.23)

Providing only that the background field can be treated as slowly varying with respect

to the radiation field then this description of the phase velocity is entirely general. The

symmetries of the background — e.g. anisotropy, homogeneity, etc. — are accounted
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vp-
vp+

B

Figure 5.2: Demonstration of vacuum birefringence effect using the example of a mag-
netic field. Outside of the magnetic field the incident probe wave has polarisation
aligned parallel (red), and perpendicular (green) to the magnetic field. The nonlinear
interaction causes the parallel polarisation mode to acquire a phase velocity vp+, and
the perpendicular mode vp−.

for through the contraction between the field (through the tensor FµλFµρ ) and the

(normalised) wave-vectors k̂µ(±). Any information about the specific theory used enters

through the functions Ω±.

As an aside, we point out the interesting interpretation of the dispersion relation

as being due to the presence of an effective geometry induced by the background field

structure. This has been well discussed in the literature (see e.g. [153, 295] for more

details), but rests essentially on the fact that we can derive the pair of effective metrics,

Gµν± =gµν − Ω±FµλFνλ , (5.24)
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which we then use to define the light-cone structure underlying our theory,

Gµν± kµkν = 0, (5.25)

instead of the usual k2 = gµνkµkν = 0 light-cone condition.

5.3 Cherenkov radiation in nonlinear electrodynamics

The gauge field solutions obtained above represent any probe field propagating on a

strong field background, and so the task now is to specialise to the case where the

probe field is radiation due to the Cherenkov effect. To describe Cherenkov radiation,

we need to consider two things — the definition of the Cherenkov angle, θC , which is the

emission angle of the radiation relative to the direction of the particle velocity β; and

the power radiated per unit frequency, dP/dω. For the case first considered by Frank

& Tamm [270] of Cherenkov radiation from an isotropic and homogeneous medium

(which we will refer to throughout as ICR), the quantities of interest are defined by

(5.4) and (5.5). The question now becomes how can these definitions be generalised to

the case of nonlinear vacuum electrodynamics?

5.3.1 Cherenkov angle in nonlinear electrodynamics

With respect to the Cherenkov angle definition, the generalisation is extremely straight

forward. A background field will act analogously to an anisotropic medium, meaning

that the phase velocity will no longer be a universal parameter, as is the case for an

isotropic background, but will instead depend on the wavevector of the propagating ra-
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diation, i.e. vp ≡ vp(k). In other words, the phase velocity depends on the propagation

direction of the radiation relative to the direction of the background electromagnetic

field. Thus, it is simply a case of taking this anisotropy in to account through including

this dependence in (5.4), by using the phase velocity (5.23) such that,

cos θC =
vp(k)

β
=⇒ cos2 θ±C =

1

β2

(
1 + Ω±FµλFµρ k̂

λ
±k̂

ρ
±

)
, (5.26)

which is valid in any (constant) background field and nonlinear theory. The anisotropic

nature of the background enters through the contraction between the background field

Fµν and the wavevector kµ.

5.3.2 Power spectrum in nonlinear electrodynamics

To generalise the power radiated per unit angle, we need to consider what features

of the radiation produced in the nonlinear theory are different due to the anisotropic

background, when compared to ICR which is described by (5.5). Firstly, as indicated

already, the phase velocity which the radiation experiences will depend on the direc-

tion in which it is travelling. This can be easily taken into account, as all it really

means is that the power spectrum will depend on both the emitted frequency and on

the azimuthal angle φ, such that we consider d2P/dωdφ, which is then integrated over

the angular dependence to give the power radiated per unit frequency. Secondly, the

polarisation of the radiation in the nonlinear theories will have a different orientation

due to the anisotropic nature of the background. To take both of these differences in

to account and generalise the power spectrum (5.5) we follow the approach of Altschul
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[280], who considered Cherenkov radiation in the context of Lorentz violating exten-

sions of electromagnetism. These types of theories are used as candidates for possible

physics beyond the standard model, and characterise high energy effects by allowing for

violations of Lorentz invariance at high energy. The nonlinear theories we are consid-

ering here strictly maintain this Lorentz symmetry, but the the field equations (5.13)

and (5.11) are formally identical to the CPT-even Lorentz violating theories considered

in [280], due to linearisation. The key observation in [280] is that Cherenkov modes

corresponding to different wave vectors kµ propagate independently, and hence behave

as waves propagating in an isotropic medium with scalar refractive index n = 1/vp(k̂).

Since these modes are independent, a distinct Cherenkov condition will be satisfied for

each of the modes independently, and so we can treat them separately. So, to tackle

the first difference — the dependence of the phase velocity on the wavevector — we

recognise that although the phase velocity will depend on the relative angle between

the radiation and the background, the phase velocity has a fixed value, the radiation

will “see” what looks like a constant phase velocity as it propagates, as in the ICR case.

So the real difference between the two types of radiation comes down to the differences

in the polarisation, and if we can take this in to account in a formal way, then it should

be possible to easily generalise (5.5) for nonlinear electrodynamics.

From the vector structure of the gauge field (5.18) we have two independent po-

larisation 4-vectors aµ+ and aµ−, however the spatial parts of these will in general not

coincide with ε̂0. If we define the polarisation 3-vectors corresponding to aµ+ and aµ−

as ε̂+ and ε̂− respectively, then only the projection of ICR along these directions will

propagate. This leads to the result for the radiated power per unit frequency per unit
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azimuthal angle:

d2P±
dωdφ

=
e2

8π2
|ε̂0.ε̂±|2ω sin2 θ±C (φ). (5.27)

Here, ε̂± are the (unit normalized) polarisation 3-vectors of the polarization modes

aµ± (see below for details). The azimuthal dependence, i.e. the effect of anisotropy

of the background, will in general arise through the overlap functions |ε̂0.ε̂±|2 and

the Cherenkov angle θ±C . To obtain the total power per unit frequency, we simply

integrate (5.27) with respect to φ, and take the sum of the contributions from each of

the polarisation modes,

dP

dω
=
e2

8π2

∑
+,−

∫ 2π

0
dφ|ε̂0.ε̂±|2ω sin2 θ±C (φ). (5.28)

In generalising the power spectrum from the ICR case to nonlinear electrodynamics,

the key detail is the overlap functions |ε̂0.ε̂±|2 which give the projection of ε̂0, the ICR

polarisation, along the polarisation 3-vectors ε̂± which come from the nonlinear theory.

The polarisation 3-vectors ε̂± come from the 4-vectors aµ±, however, they are not simply

the spatial components a± of aµ±. To define ε̂± as the polarisation 3-vectors from

the nonlinear theory, we must work in a gauge where the temporal component of aµ±

vanishes, i.e. the Weyl gauge a0
± = 0. In general this will not be the case, as different

background electromagnetic fields will give rise to different component structures of

aµ±. For example, a background electric field E will introduce a nonzero a0
+, and a
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background magnetic field B will introduce a nonzero a0
−,

Electric: a0
+ = k.E, (5.29)

Magnetic: a0
− =− k.B. (5.30)

To proceed, we make use of the fact that the decomposition of the electromagnetic field

fµν in terms of the gauge 4-potential (5.14) is invariant under the gauge transformation,

aµ± → a′µ± = aµ± + C±kµ, (5.31)

and choosing C+ = −k.E/ω when we have a background electric field and C− = k.B/ω

for a background magnetic field will ensure the new gauge 4-potential a′µ± is in the Weyl

gauge, and the spatial components will then be proportional to the unit normalised

3-vectors, a′± ∝ ε̂±. It can then be deduced that the unit normalised polarisation

3-vectors are,

ε̂+ =
E + v−1

p k̂ ×B − v−2
p (E.k̂)k̂

|E + v−1
p k̂ ×B − v−2

p (E.k̂)k̂|
, ε̂− =

−B + v−1
p k̂ × E + v−2

p (B.k̂)k̂

| −B + v−1
p k̂ × E + v−2

p (B.k̂)k̂|
, (5.32)

where vp is the phase velocity, which can either be obtained from the definition of the

Cherenkov angle vp = β cos θC or from the dispersion relation (5.23).

5.3.3 Power spectrum cut-off

The power spectrum of both ICR (5.5) and nonlinear electrodynamics (5.28) are linear

in the frequency ω, which would appear to suggest that as we go to higher and higher
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emitted photon energies ~ω, the spectrum would suffer from divergences. In the case

of ICR, or any Cherenkov radiation observed in a real medium, the cut-off in the

spectrum is a natural phenomenon, which occurs because the dispersion relation has

an explicit frequency dependence, and so the Cherenkov angle θC depends on ω. This

results in a frequency dependent refractive index and for high frequencies the refractive

index approaches unity. Since n = 1/vp no Cherenkov radiation can be generated, as

cos θC = 1/βn < 1 cannot be satisfied at these high frequencies.

For the nonlinear theories, the dispersion relation (5.22) does not give a mechanism

for a natural cut-off to emerge in an analogous way, and so we must find a suitable way

of imposing a cut-off on the spectrum (5.28). This is a problem which has also been en-

countered in other contexts, such as the previously mentioned studies which considered

Cherenkov radiation in Lorentz violating theories [280, 281]. So if Cherenkov radiation

can really be observed from the nonlinear vacuum, we must assume the existence of

some high-energy process which acts to provide a cut-off in the frequency spectrum in

an analogous way.

We could simply impose a cut-off directly on the frequency ω, however frequency is

not a Lorentz invariant quantity. The same statement holds for simply setting the cut-

off as some energy, say the electron mass-energy mec
2. There should be a real, physical

mechanism which conspires to create a cut-off in the spectrum, and so we should look

towards a Lorentz and gauge invariant description for the cut-off. A useful parameter

to consider then is the photon quantum nonlinearity parameter, χγ , which is defined
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by [171],

χγ =
|e|
m3
e

√
−FµλFνλkµkν , (5.33)

for a photon of 4-momentum kµ. A suitable cut-off for the theory could then be, for

example,

χ2
γ .1, (5.34)

It is not possible with the theory presented here to directly derive this cut-off limit, as

it is beyond the scope of this theory, and we need to assume the existence of some new

physics or other effects at high energies which would impose a natural cut-off. In the

case of Euler-Heisenberg theory it is possible that including derivative corrections to the

theory may provide a natural route to obtaining the cut-off. Since Euler-Heisenberg

is derived on the basis of constant fields, when high frequencies are involved, these

derivative corrections arise. This prospect is not covered in this work, though we hope

to return to this in the future.

5.4 Weak-field Lagrangian and constant fields

We now know how to take into account the anisotropic background through (5.28),

and can simply use the k-dependent phase velocity (5.23) to determine our Cherenkov

angle. Our analysis so far has been completely general, with no assumptions made

about the dynamics, other than the fact that we are treating the background field as
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slowly varying with respect to the radiation field. It will be more instructive now,

to consider particular field configurations, and also work within a specified nonlinear

theory. As such, we will now move to consider the quadratic weak-field Lagrangians

defined in (2.16), which give the lowest order, parity preserving corrections to Maxwell’s

theory,

L =X + λ+X
2 + λ−Y

2.

With this simplification, the parameters Ω±, defined in (5.22) become, to leading order,

Ω± '2λ±, (5.35)

such that,

v2
p± '1 + 2λ±FλµFλν k̂

µ
±k̂

ν
±, cos2 θ±C '

1

β2

(
1 + 2λ±FλµFλν k̂

µ
±k̂

ν
±

)
. (5.36)

From the definition of the phase velocity (and Cherenkov angle) above, and consid-

ering for example the values of the parameters λ± for Euler-Heisenberg (2.17) and the

estimate for Born-Infeld (2.18) (see also text above this), we can see that the effect on

the phase velocity is going to be a very small correction, which will be enhanced by hav-

ing very energetic particles with γ2 = 1/(1− β2)� 1, and very strong electromagnetic

fields. So, when considering what sort of background fields to look at, there are two

candidates for physically meaningful sources of strong electromagnetic fields: lab-based

high-powered lasers which can be approximated by a “constant crossed field”, which is
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one that has equal and orthogonal electric and magnetic components, and astrophysical

sources of magnetic fields such as pulsars, which can be approximated by a constant

magnetic field.

If Cherenkov radiation due to nonlinear electromagnetic interactions is to be ob-

served, it will have to be non-negligible with comparison to the usual synchrotron

radiation which will occur due to the acceleration of the particle in the field. The syn-

chrotron spectrum for a particle in a magnetic field of field strength B was first obtained

by Schwinger [296]. For a particle of mass m and charge e moving perpendicularly to

the magnetic field this is (reinstating factors of c),

dPSynch

dω
=

√
3

2π

e3B

mcε0

ω

ωS

∫ ∞
ω/ωS

dxK5/3(x), (5.37)

where Kν(x) is the order ν modified Bessel function of the second kind and

ωS =
3

2

eB

m
γ2. (5.38)

In the case of a constant crossed field, with field strength E, we use (5.37) and (5.38)

with the substitution B → 2E/c (where the factor of 2 comes from the fact that the

constant crossed field has both electric and magnetic components).

In the above analysis, the particle is considered to be moving rectilinearly. It may

be questioned whether this approximation can be used, as the strong field will deflect

the particle. However, we will address this point below in Section 5.4.2, and highlight

that for a wide range of parameter values which are considered, the approximation

84



Chapter 5. Cherenkov radiation from the nonlinear vacuum

holds to a high degree of tolerance.

5.4.1 Constant crossed field

As discussed above, advances in laser technology have begun to open up the strong-field

regime of quantum electrodynamics to experimental study. Doing QED calculations in

strong background fields with realistic models of the laser field is an extremely chal-

lenging task, though many insights have been gained through using what is commonly

referred to as a constant crossed field model of the laser. This approximation is consid-

ered to be valid in the ultrarelativistic regime, as for high particle energies and intense

fields, even complicated pulse structures look approximately constant to the particle

(this is the basis of what is known as the locally constant field approximation, used

extensively in numerical simulations of strong-field QED processes e.g. [38, 171, 297,

298]).

To be more precise, a constant crossed field is a field with equal and perpendicular

electric and magnetic components. This is essentially the zero-frequency (constant)

limit of a plane-wave. In the coordinate basis (D.2) defined in Appendix D, a con-

stant crossed field with magnitude E, with Poynting vector in the ẑ-direction, and

polarisation in the ŷ-direction has an electromagnetic field tensor,

Fµν =E [(ηµ − εµ3 ) εν2 − (ην − εν3) εµ2 ] . (5.39)
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With this definition, the electromagnetic invariants of the background are,

X =− 1

4
FµνFµν = 0, Y =− 1

4
F̃µνFµν = 0. (5.40)

We consider a charged particle to be counter-propagating with respect to the Poynting

vector of the constant crossed field, as in this configuration the energy transfer between

the field and the particle will be maximised, and the strongest effect observed. With

this configuration, the Cherenkov angle θC coincides with the usual polar angle θ in

spherical polar coordinates. We express the normalised wavevector k̂µ in terms of the

coordinate basis (D.2),

k̂ν =vpην + sin θC cosφε1ν + sin θC sinφε2ν + cos θCε3ν . (5.41)

Substituting (5.39) and (5.41) into the definition of the phase velocity (5.36) we find,

v2
p± =1− 2λ± (vp± + cos θC)2 . (5.42)

Using vp± = β cos θ±C , the Cherenkov angle takes on the simple form,

cos2 θ±C =
1[

β2 + 2 (1 + β)2 λ±E2
] . (5.43)

So for the case of the constant crossed field, the Cherenkov angle is independent of the

azimuthal angle φ. As mentioned previously, Cherenkov radiation is only found when

the condition cos2 θC < 1 is satisfied. Thus, we find that Cherenkov radiation can be
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emitted by a particle interacting with a constant crossed field when,

(γ +
√
γ2 − 1)2E2 >

1

2λ±
, (5.44)

where we have expressed things in terms of the Lorentz factor γ2 = 1/(1 − β2) of the

particle. The inequality (5.44) highlights the need for extremely high field strengths

and particle energies, when considering the magnitude of the parameters λ±.

We now need to consider the polarisation 3-vectors ε̂±, which we previously defined

through (5.32). We have the two polarization 4-vectors a+
µ = Fµνkν , and, a−µ = F̃µνkν ,

which with the constant crossed field background (5.39) are,

aµ+ =− E [(ηµ − εµ3 ) |k| sin θC sinφ+ (ω + |k| cos θC) εµ2 ] , (5.45)

aµ− =− E [(ηµ − εµ3 ) |k| sin θC cosφ+ (ω + |k| cos θC) εµ1 ] . (5.46)

As discussed above, to interpret the spatial components of these vectors as being pro-

portional to the 3-polarisations, the temporal components must vanish. However, from

(5.45) and (5.46), we find that,

a0
+ =− E|k| sin θC sinφ, a0

− =− E|k| sin θC cosφ, (5.47)

and so we must work with the gauge transformed 4-vectors aµ± → a′µ± = aµ± + C±kµ

from (5.31), with the parameters,

C+ =v−1
p E sin θC sinφ, C− =v−1

p E sin θC cosφ. (5.48)
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Thus, taking the spatial components of the transformed gauge 4-vector a′µ+ we have,

a′+ =E|k|v−1
p

{
sin θC sinφk̂ + vp sin θC sinφẑ − vp [cos θC + vp] ŷ

}
, (5.49)

which has a normalisation of,

|a′+| =E|k|v−1
p

√
v2
p (cos θC + vp)

2 −
(
v2
p − 1

)
sin2 θC sin2 φ, (5.50)

such that the polarisation 3-vector ε̂+ is given by,

ε̂+ =
a′+
|a′+|

=
sin θC sinφk̂ + vp sin θC sinφẑ − vp [cos θC + vp] ŷ√

v2
p (cos θC + vp)

2 −
(
v2
p − 1

)
sin2 θC sin2 φ

. (5.51)

Similarly, the spatial components of the transformed gauge 4-vector a′µ+ are,

a′− =E|k|v−1
p

{
sin θC cosφk̂ + vp sin θC cosφẑ − vp [cos θC + vp] x̂

}
, (5.52)

which with the normalisation,

|a′−| =E|k|v−1
p

√
v4
p + 2v3

p cos θC + v2
p

(
cos2 θC − sin2 θC cos2 φ

)
+ sin2 θC cos2 φ (5.53)

gives the polarisation 3-vector

ε̂− =
a′−
|a′−|

=
sin θC cosφk̂ + vp sin θC cosφẑ − vp [cos θC + vp] x̂√

v4
p + 2v3

p cos θC + v2
p

(
cos2 θC − sin2 θC cos2 φ

)
+ sin2 θC cos2 φ

. (5.54)

Finally then, the squared overlap functions |ε̂±.ε̂0|2 are found by combining (5.51)

88



Chapter 5. Cherenkov radiation from the nonlinear vacuum

and (5.54) with the polarisation 3-vector of ICR (5.7), giving respectively,

|ε̂+.ε̂0|2 =
v2
p sin2 φ (vp cos θC + 1)2

v4
p + 2v3

p cos θC − (v2
p − 1) sin2 θC sin2 φ+ v2

p cos2 θC
, (5.55)

and,

|ε̂−.ε̂0|2 =
v2
p csc2 θC cos2 φ (vp cos θC + 1)2

v2
p csc2 θC(cos θC + vp)2 − (v2

p − 1) cos2 φ
. (5.56)

These have quite a complicated structure, and dependence on various parameters

such as the Cherenkov angle θC and the phase velocity vp. However, using the fact that

vp ' 1 +O(λ), where λ = λ± is small we find that,

|ε̂+.ε̂0|2 ' sin2 φ+O(λ), (5.57)

and,

|ε̂−.ε̂0|2 ' cos2 φ+O(λ). (5.58)

We find that to a within a high level of accuracy, these approximations give near

identical results to the full expressions (5.55) and (5.56) when the rest of the structure

of the power spectra (5.28) is taken into account.

The final thing we need before looking at the power spectrum is the energy cut-off

which comes from the photon nonlinearity parameter χγ defined in (5.33), with the

89



Chapter 5. Cherenkov radiation from the nonlinear vacuum

condition (5.34). Using the background field (5.39), we have,

χ2
γ =

e2

m6
e

E2|k|2 (vp + cos θC)2 , (5.59)

and using vp = β cos θC ,

χ2
γ =

e2

m6
e

E2|k|2 (β + 1)2 cos2 θC . (5.60)

Now, using the definition of the Cherenkov angle in the constant crossed field (5.43),

and inserting the resulting expression for χ2
γ into the inequality (5.34) we find the

maximum emitted photon energy to be (reinstating factors of c and ~),

~ωmax '
m3
ec

5

2e~E
(5.61)

where we used the approximation ω2 ' |k|2. This approximation is valid here, as

we only wish to have an approximate value for the energy cut-off. The cut-off here

is really only a guide, based on the requirement that a physical cut-off will be an

observable effect, and so must come from some gauge and Lorentz invariant mechanism,

and so a first order approximation suffices. Alongside the Cherenkov angle (5.43)

and polarisation overlap functions (5.57) and (5.58), we now have everything we need

to compare the power spectrum (5.28) with the synchrotron spectrum (5.37) (with

the substitution B → 2E/c). We will also consider a specific theory, and since it is

arguably the best motivated physically (as it is derived fom QED), we will work with

Euler-Heisenberg, where the parameters λ± have the values (2.17).
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The next generation of high-intensity laser facilities such as the Extreme Light In-

frastructure [50] aim to achieve peak field strengths on the order of E ∼ ES × 10−3

(with ES the critical field of QED). The high-energy particles which will predominantly

be used in strong-field QED experiments at these facilities will be electrons generated

through laser wakefield acceleration, with energies up to γ ∼ 105 (' 50 GeV). Thus,

we consider this parameter regime in comparing the spectra from Cherenkov and syn-

chrotron radiation in a constant crossed field. Figure 5.3 shows the calculated power

per unit frequency due to each of the radiation processes as a function of the emitted

photon energy ~ω. The black dashed line represents the cut-off found from (5.61),

~ωmax ∼ (m3
ec

5)/(2e~E) ' 0.25 GeV. Below this limit, the synchrotron radiation is

always the dominant process (by several orders of magnitude). Thus, observing the

Cherenkov effect appears unlikely for even future laser facilities. This is primarily

due to the limitation on the ability to produce high energy electrons in the lab. For

γ � 1, the Cherenkov spectrum becomes roughly proportional to the square of the field

strength, E2, to leading order, and so for a fixed field strength, increasing the energy

of the particles has very little effect on the Cherenkov spectrum. Conversely, the syn-

chrotron spectrum becomes more and more suppressed as γ increases for fixed values of

E. For the field strength considered here (E ∼ ES × 10−3) an electron Lorentz factor

of γ ∼ 2.5× 106, corresponding to an energy of 1.3 TeV would be required to have the

contributions from Cherenkov and synchrotron processes approximately equal at the

cut-off ~ω ∼ 0.25 GeV, as shown in Figure 5.4. There would also be the concern that to

reach these high field strengths in a real experiment, strong focussing techniques need

to be used to compress the laser pulse, and this brings in a significant range of other
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effects which would act to drown out the Cherenkov signal, or deplete the electron en-

ergy significantly to the point that by the time the electron reaches the peak intensity

of the pulse, its energy has fallen below the Cherenkov threshold.

One may wonder whether considering heavier particles, such as protons, would offer

a better opportunity to observe Cherenkov radiation, as the synchrotron spectrum will

be suppressed. However, this turns out to not be the case, and we find instead that the

Cherenkov spectrum is also suppressed. This is due to the fact that, although protons

with much higher energies can be produced, for example in the LHC with energies of

up to 7 TeV, the Cherenkov spectrum depends on the energy only through the Lorentz

factor γ. Thus, even for the highest energy protons which can be produced in the lab,

the suppression of γ by the proton mass leads to a similar situation as noted above

for electrons. Thus, the possibility of observing Cherenkov radiation in the lab seems

bleak.

Since the main obstacle for Cherenkov radiation to become comparable to the syn-

chrotron radiation of a particle appears to be the availability of high energy particles,

it is natural to turn our attention instead to astrophysics, where the only limit on the

particle energy is the so-called GZK limit γ . 1011 [299, 300], and so we consider a

constant magnetic field to model the fields produced by pulsars.

5.4.2 Constant magnetic field

The availability of high energy particles and strong electromagnetic fields makes study-

ing Cherenkov radiation in the context of astrophysics very natural. As mentioned pre-

viously, the only limit to the energy particles can have is the GZK limit γ . 1011 [299,
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Figure 5.3: Radiated power per unit frequency from the interaction of an electron with
γ = 105 (∼ 50 GeV) and a crossed field with field strength E = ES × 10−3, due
to: Synchrotron radiation (red); total Cherenkov radiation (blue, solid); Cherenkov +
mode (blue, dashed); Cherenkov − mode (blue, dot-dashed). The cut-off energy (black,
dashed) is ~ωmax ∼ 0.25 GeV.
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Figure 5.4: Radiated power per unit frequency from the interaction of an electron with
γ ∼ 2.5 × 106 (1.3 TeV) and a crossed field with field strength E = ES × 10−3, due
to: Synchrotron radiation (red); total Cherenkov radiation (blue, solid); Cherenkov +
mode (blue, dashed); Cherenkov − mode (blue, dot-dashed). The cut-off energy (black,
dashed) is ~ωmax ∼ 0.25 GeV.
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Chapter 5. Cherenkov radiation from the nonlinear vacuum

300], and several pulsars have been observed to produce magnetic fields with strength

up to and exceeding the the critical Schwinger magnetic field BS = ES/c ' 4.4×109 T.

We therefore turn our attention to consider Cherenkov radiation from particles moving

in constant magnetic fields.

We consider a constant magnetic field of strength B, aligned in the ŷ-direction,

which in the same basis as before can be expressed as,

Fλρ =B
(
ελ1ε

ρ
3 − ε

λ
3ε
ρ
1

)
. (5.62)

It can be shown that charged particles moving along the field lines cannot emit Cherenkov

radiation, due to the fact that superluminal velocities β > 1 are required. As such,

we consider particles moving perpendicular to the magnetic field, in the ẑ-direction,

which is also valid on the basis that any parallel component of the velocity could be

removed by a Lorentz transformation along the field lines which leaves the background

field invariant. With this configuration, as before, the Cherenkov angle θC corresponds

to the usual polar angle θ in spherical polar coordinates, and so we use the normalised

wavevector k̂µ from (5.41). Inserting the field structure (5.62) and (5.41) into the phase

velocity definition (5.36) then gives us,

v2
p± '1− 2λ±B

2
(
1− sin2 θC sin2 φ

)
cos2 θ±C '

1− 2λ±B
2 cos2 φ

β2 + 2λ±B2 sin2 φ
, (5.63)
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which gives the Cherenkov condition,

γ2B2 >
1

2λ±
. (5.64)

We see here that unlike in the case of a constant crossed field, the Cherenkov angle

now has an explicit dependence on the azimuthal angle φ.

Following the same procedure as before, we now need to consider the the polarization

overlap functions which appear in the Cherenkov power spectrum (5.28). With the

definition of the field (5.62) and the wavevector kµ in spherical polar coordinates we

find that,

aµ+ =−B|k| (εµ1 cos θC − εµ3 sin θC cosφ) (5.65)

aµ− =−B (ηµ|k| sin θC sinφ+ εµ2ω) . (5.66)

Unlike for the crossed field, only the aµ− polarisation 4-vector has a nonzero temporal

component, the aµ+ 4-vector is already in the Weyl gauge a0
+ = 0 and so we have,

a+ =−B|k| (x̂ cos θC − ẑ sin θC cosφ) . (5.67)

which gives,

|a+| =B|k|
√

1− sin2 θC sin2 φ. (5.68)
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The polarisation 3-vector ε̂+ is then found as before from,

ε̂+ =
a+
|a+|

= −(x̂ cos θC − ẑ sin θC cosφ)√
1− sin2 θC sin2 φ

. (5.69)

The other polarisation mode aµ− instead has a nonzero temporal component,

a0
− =−B|k| sin θC sinφ, (5.70)

and so we must use the gauge transformation aµ− → a′µ− = aµ− + C−kµ, with,

C− =v−1
p B sin θC sinφ. (5.71)

With the gauge transformation taken into account, we have,

a′− =Bv−1
p |k| sin θC sinφk̂ − ωBŷ (5.72)

which with the normalisation,

|a′−| =B|k|v−1
p

√
v4
p −

(
2v2
p − 1

)
sin2 θC sin2 φ (5.73)

gives the polarisation 3-vector,

ε̂− =
a+
|a+|

=
sinφ sin θC k̂ − v2

pŷ√
v4
p −

(
2v2
p − 1

)
sin2 θC sin2 φ

. (5.74)

Combining together the polarisation 3-vectors (5.69) and (5.74) with the polarisa-
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tion 3-vector of ICR (5.7), we find that the squared overlap functions,

|ε̂+.ε̂0|2 =
cos2 φ

1− sin2 θC sin2 φ
, (5.75)

|ε̂−.ε̂0|2 =
v4
p cos2 θC sin2 φ

v4
p − (2v2

p − 1) sin2 θC sin2 φ
=

cos2 θC sin2 φ

1− sin2 θC sin2 φ
+O(λ2

−), (5.76)

where for |ε̂−.ε̂0|2 we used the fact that v2
p = 1 +O(λ−).

The final thing to consider is the energy cut-off which comes from the photon

nonlinearity parameter χγ defined in (5.33), with the condition (5.34). Using a similar

procedure as for the constant crossed field case, we find that the highest emitted photons

have an energy,

~ωmax ∼
m3
ec

4

2e~B
, (5.77)

analogously to that of the constant crossed field. In fact, since we consider the cut-off

to be an approximation, it would have sufficed to simply make the change E → Bc.

We have everything we need to now consider the spectrum, and to compare it

against the synchrotron emission in the constant magnetic field. We will choose to

work with the Euler-Heisenberg theory again. We are considering high energy cosmic

rays, which are predominantly protons, and so we consider the two radiation processes

for these. This amounts to changing m→ mp in (5.37). Factors of me appearing in the

Cherenkov spectrum (through the parameters λ±) and the cut-off are not changed. The

reason for this is that the nonlinear terms appearing in the Lagrangian (2.16) and the

mass scale appearing in the cut-off (5.77) are (for Euler-Heisenberg) determined by the
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Figure 5.5: Radiated power per unit frequency from protons interacting with a constant
magnetic field B = 104 T, with Lorentz factors: (a) γ = 5 × 107, (b) γ = 5 × 109, (c)
γ = 5× 1011. The cut-off energy is ~ωmax ∼ 226 GeV.

fluctuations of particle-antiparticle pairs in the vacuum, which will mainly be electrons

and positrons. The total power radiated per unit frequency is again determined by

(5.28).

In astrophysics, the strongest magnetic fields which have been observed are those

produced by rapidly rotating pulsars. These objects have characteristic attributes of

mass and radius, which with the rotational period determine the typical field strengths

produced. There are two broad classes of pulsars, those with a relatively longer rota-

tional period which have values of the magnetic field strength of around B ∼ 108 T,

and rapidly rotating “millisecond pulsars” which have typical values of B < 5× 104 T

[301] (though there are many examples of pulsar magnetic fields with field strength

B > BS [71]). We envisage the scenario where very high energy cosmic rays, in the

form of protons, are propagating past, and interacting with the strong magnetic field

of a pulsar. Figure 5.5 shows the spectra for Cherenkov and synchrotron radiation for

a proton moving perpendicularly to the magnetic field of a millisecond pulsar, with

B = 104 T, for different values of γ. For clarity we have only included the total
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Cherenkov contribution. The cut-off energy found through (5.77) in this magnetic field

is ~ωmax ∼ (m3
ec

4)/(e~B) ' 226 GeV. The particle energy γ is (a) γ = 5 × 107, (b)

5 × 109 and (c) γ = 5 × 1011. Over this interval, the Cherenkov spectrum (as noted

previously) remains almost constant, due to the leading order behaviour coming from

the field strength B. For γ = 107, the intersection of the Cherenkov and synchrotron

spectrum occurs at ~ω ' 8.5 GeV, indicating that the highest energy emission will be

predominantly due to the Cherenkov effect, rather than the usual synchrotron process.

This intersection is roughly inversely proportional to the energy, i.e., (b) ~ω ' 54 MeV,

(c) ~ω ' 0.54 MeV. So for the highest energy proton cosmic rays, the highest energy

radiation is completely dominated by the Cherenkov process.

Detections of high energy particles coming from astrophysical sources are predom-

inantly cosmic rays which are mainly protons. However, the environment around neu-

tron stars is also teaming with high energy electrons and positrons which have been

generated through pair creation mechanisms. It is important to also consider these

lighter particles, and how their lower mass affects the Cherenkov spectrum. Staying

with the same field strength as above of B = 104 T, corresponding to millisecond pul-

sars, we have the same value for the cut-off energy in the spectrum. Figure 5.6 gives

the corresponding spectra for electrons over the same values of γ as was considered for

protons above. We see that in this case, synchrotron radiation is a much more dominant

effect, with only electrons with the highest energies of γ > 109 emitting comparable

amounts of Cherenkov radiation in the high energy end of the spectrum. This is to

be expected, as noted previously, as the electrons are much lighter and so are more

susceptible to oscillating in the magnetic field and producing synchrotron radiation.
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Figure 5.6: Radiated power per unit frequency from electrons interacting with a con-
stant magnetic field B = 104 T, with Lorentz factors: (a) γ = 5× 107, (b) γ = 5× 109,
(c) γ = 5× 1011. The cut-off energy is ~ωmax ∼ 226 GeV.

Millisecond pulsars represent the subsection of the pulsar population which produce

the lowest magnetic fields. Much more common are pulsars with stronger magnetic

fields surrounding them. For the vast majority of known objects of this class, a typical

field strength is several orders of magnitude greater, at around a value of B ∼ 108 T.

Moving up to this field strength, the cut-off energy of the spectrum dramatically de-

creases due to the inverse relationship found in (5.77). However, for very high energy

particles γ � 1, we find that the Cherenkov spectrum becomes essentially proportional

to the field strength, meaning that although the spectrum is cut off at a lower energy,

large amounts of Cherenkov radiation could still be produced in these fields. We there-

fore consider fields of B = 108 T for both protons (shown in Figure 5.7) and electrons

(shown in Figure 5.8). The cut-off energy has now reduced by four orders of magni-

tude to ~ωmax ∼ 23 MeV. As eluded to, although the cut-off energy has decreased, the

dependence of the Cherenkov spectrum on the magnetic field strength has meant that

even for the lowest energy electrons considered here, there is a regime at the highest

end of the spectrum in which Cherenkov radiation is the dominant contributor over
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synchrotron radiation.

There is currently a debate within the astrophysics community concerning the origin

of observed excesses of high energy photons found in recent data. For example obser-

vations of intense gamma rays from the Galactic Centre [302] have prompted a range

of possible explanations, such as dark matter annihilation [303], and unresolved pulsar

sources [304]. The Cherenkov process detailed in this Chapter provides a new, and

so far unexplored, gamma ray production mechanism, which warrants further study in

this context.
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Figure 5.7: Radiated power per unit frequency from protons interacting with a constant
magnetic field B = 108 T, with Lorentz factors: (a) γ = 5 × 107, (b) γ = 5 × 109, (c)
γ = 5× 1011. The cut-off energy is ~ωmax ∼ 23 MeV.
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Figure 5.8: Radiated power per unit frequency from electrons interacting with a con-
stant magnetic field B = 108 T, with Lorentz factors: (a) γ = 5× 107, (b) γ = 5× 109,
(c) γ = 5× 1011. The cut-off energy is ~ωmax ∼ 23 MeV.
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Validity of the rectilinear motion approximation

In the above we have assumed that the particles are moving rectilinearly, i.e. in straight

lines. In reality, no motion will ever be perfectly rectilinear, and so we must justify our

use of the approximation here in the examples considered. We will therefore assume

that a particle can turn through some angle θmax � 1 and still be considered to move

in a straight line during the emission process.

A particle with Lorentz factor γ � 1 and mass m in a magnetic field of strength B

will undergo cyclotron oscillations with a characteristic radius,

R =
γmc

eB
. (5.78)

Since the particle is ultrarelativistic, we approximate its speed to be c. Now, in a

magnetic field of strength B, we can approximate the phase velocity of emitted radiation

as,

vp ' c(1− λ±B2). (5.79)

Then, over the emission of a complete wavelength λ, the particle will travel a distance

d =
λ

λ±B2
, (5.80)

meaning that during the emission the particle will deviate from rectilinear motion by
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an angle,

θ =
d

R
=

λe

γmcλ±B
. (5.81)

It is valid to approximate the motion of the particle as rectilinear provided that it

turns an angle θ < θmax during the emission of a wavelength, for some θmax � 1. With

this condition it follows the results are reliable for wavelengths λ satisfying,

λ < λmax =λ+B
mc

e
γθmax, (5.82)

where the value λ+ has been chosen as, for Euler-Heisenberg theory, this is more re-

strictive than λ−.

So, considering the value of the magnetic field used above of B = 104 T and using

the proton mass m = mp,

λ < λmax =λ+B
mpc

e
γθmax ' 1.7× 10−19γθmax m, (5.83)

which corresponds to an emitted photon energy,

~ω > ~ωmin '
7.3× 1012

γθmax
eV. (5.84)

The lowest energy protons considered in this strength of magnetic field was γ = 5×107,

and assuming a tolerance of θmax = 10−2 rad, corresponds to ~ωmin ' 15 MeV.

The power spectrum has a linear dependence on the frequency ω, and in the range
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ωmin < ω < ωmax, where ωmax is found from the cut-off condition (5.77), the ratio of

the power radiated within this range to the total which would be radiated without the

lower bound of ωmin is,

R =1− ω2
min

ω2
max

' 1− (6.6× 10−5). (5.85)

As we increase the particle energy, the power radiated in this range increases signifi-

cantly, and so we can say that over the vast majority of considered cases, the motion of

the particle can be considered approximately rectilinear. Similar behaviour is seen for

protons at the higher magnetic field strength considered above, and also for electrons,

though for the lowest energy electrons the minimum energy ~ωmin is much higher, since

the electrons are more affected by the magnetic field in terms of their orbit. Despite

this, the results presented above remain well approximated at the highest end of the

spectrum by particles undergoing rectilinear motion.

5.5 Summary

To summarize, in this Chapter we have provided a comprehensive, quantitative study

of the Cherenkov effect in nonlinear theories of vacuum electrodynamics. This effect

— expected due to the reduced phase velocity of light predicted by these theories in

regions of strong fields — may provide an alternative radiation mechanism for very

high energy particles. We considered two specific examples of background field with

relevance to future experimental or observational campaigns, and determined the pos-

sibility of observing Cherenkov radiation in each case. When the background field is
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taken to be a constant crossed field (approximating a laser pulse), the availability of

high energy electrons appears to put observation of Cherenkov radiation out of reach.

In contrast, astrophysics provides environments in which the vacuum Cherenkov effect

may be observed, due to the presence of very high energy cosmic rays and strong mag-

netic fields. We have demonstrated that there are regimes in which radiation due to

the nonlinear Cherenkov effect can become dominant over radiation produced through

synchrotron emission, generating very high energy photons. A notable excess of gamma

rays with energies in the GeV–TeV range has been observed in various astrophysical

contexts, and the vacuum Cherenkov process could provide an alternative explanation

for their origin, not previously considered in the literature.
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Summary and outlook

In the coming years, a number of high-power laser facilities will come online and allow

unprecedented access to the strong-field regime of physics. The study of the processes

which can be induced by such high-intensity fields represents an exciting opportunity

for discovering new physics, and testing the limits of our already well established the-

ories, such as QED. This Thesis presents a study of several aspects of strong-field

physics, taking the approach of describing this regime using nonlinear effective theo-

ries of electrodynamics. Such theories represent a general framework within which to

study possible extensions of Maxwellian electrodynamics into the strong-field regime,

and analyse the general properties which they exhibit. One of the most powerful ap-

plications of nonlinear electrodynamics is the Euler-Heisenberg theory, which allows us

to use a classical approach to studying the quantum nature of the vacuum. In Chapter

2, an overview of the use of nonlinear electrodynamics was given. How these theories

are defined and the formalism which would be used throughout was also presented.

In Chapter 3, the structure of the energy-momentum tensor in generalised nonlinear
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theories of electrodynamics was considered, motivated in part by the historically con-

troversial problem of Abraham & Minkowski in the context of light interacting with a

material medium. In this case, a lot of the difficulty in coming to a definitive resolution

of the Abraham-Minkowski problem has been attributed to not being able to fully char-

acterise the part of the total energy-momentum associated with the medium. Without

full knowledge of this, the arbitrary splitting of the full energy-momentum of the light-

matter system appears to be the only way to circumvent the conceptual difficulties.

This is not the case in theories of nonlinear electrodynamics, where the nonlinear in-

teractions cause light to propagate analogously to its movement through a medium,

but such theories give the added advantage of all the contributions to the total energy-

momentum being known from the outset. The strict preservation of Lorentz invariance

and the natural emergence of the Minkowski form of the energy-momentum tensor

appears to support the use of Minkowski in these nonlinear theories when the total

electromagnetic field is separated into a background and probe configuration. Taking

a perturbative approach, it was shown that the component of the energy-momentum

which is second order in the probe field is naturally expressed as the Minkowski tensor

(describing the probe field) alongside an additional term which comes directly from the

metric variation of the constitutive tensor. This gives a good indication that the extra

term can be attributed to the strong-field vacuum in the interaction. This gives us a

very intuitive physical interpretation. In future work it would be interesting to further

study the more general role that the additional term plays. For example, the Minkowski

energy-momentum is known to allow violation of the positive energy condition, which

states that the energy-density ρ = TµνUµUν (with Uµ any time-like 4-vector) must be
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positive, ρ ≥ 0. As such, the term which appears from the variation of the constitutive

tensor may be responsible for ensuring that the total energy-density of the system is

positive. This will be explored in future work.

Chapter 4 considered the possibility of exploiting conformal invariance in theories

of nonlinear electrodynamics, with the aim of discovering some regime in which the

extended symmetry group could be used to describe strong-field processes. Conformal

symmetry, and conformal field theory, have been used extensively in the high-energy

physics community over the last 50 years to tackle difficult, or intractable problems in

order to help guide solutions by considering a simplified model. This Chapter explored

whether conformal symmetry could be used in the same way in theories of nonlinear

electrodynamics. It was found that a class of nonlinear conformally invariant theories

of electrodynamics can be defined, where the Lagrangian function becomes restricted

to a form which depends on an arbitrary function of a single variable. However, any

theory which is used to describe strong-field processes must be able to reproduce the

results of Maxwellian electrodynamics in the weak field limit. The structure of the

conformally invariant theories does not allow for this, as the arbitrary function depends

on the ratio of the electromagnetic field invariants Y/X. As such, there can only be a

consistent weak field limit when the function C(Y/X) = 1. When this is the case, the

conformally invariant theory is no longer nonlinear, but is in fact simply Maxwellian

electrodynamics. In this way, it was shown that the only conformally invariant theory

of electromagnetism in (3 + 1) spacetime dimensions, which is compatible with known

weak-field physics, is Maxwell’s theory. It may be interesting to extend this study to

the more abstract realm of higher-dimensional field theories. An interesting property of
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Maxwellian electrodynamics is that it is only conformally invariant in (3+1) spacetime

dimensions (see for example [205, 305]), and this invariance is lost in higher dimensions.

However, in string theory, conformal field theories are typically used and studied in

higher dimensions, especially in the context of the AdS/CFT correspondence. Though

maybe not of direct physical use, studying higher dimensional electrodynamics with

conformal symmetry could provide an interesting insight into how these theories are

structured more generally.

Finally, we turned our attention away from the more formal aspects of nonlinear

electrodynamics and considered the effect of Cherenkov radiation in strong electromag-

netic background fields in Chapter 5. This effect had been partially considered in much

earlier work by several authors in the context of Euler-Heisenberg theory. In each case,

however, much of the analysis was ad hoc and only semi-quantitative, relying on order

of magnitude calculations. A complete, first principles approach to the effect was not

to be found in the literature. Our approach provides a more comprehensive analysis of

the Cherenkov effect in strong fields, giving a framework to quantitatively define the

Cherenkov process for generalised nonlinear theories of electrodynamics and arbitrary

slowly-varying background fields. The basis of this work is the dispersion relation of a

radiation field propagating in a strong background, which can then be used to define

the phase velocity of light—the key parameter needed to discuss Cherenkov radiation

from ultrarelativistic particles. The contribution to the total emitted power from each

of the polarisation modes of the radiation was determined, and the standard results of

Cherenkov radiation in an isotropic medium were generalised to the case of nonlinear

electrodynamics using the properties of these modes. Specialising to Euler-Heisenberg
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theory, and using two examples of strong background electromagnetic field, the phys-

ical implications for this radiation process were explored in the context of lab-based

high-intensity laser experiments and astrophysics. In the case of laser-matter inter-

actions, the Cherenkov process is unlikely to be observed with next generation laser

facilities, primarily due to the current limit on the energies of particles which can be

produced in the lab. Another aspect, briefly mentioned above, is that in a real exper-

iment, although the constant crossed field gives a good first approximation to a laser

pulse, in order to reach the field strengths required for the Cherenkov effect tightly

focussed pulses are required. Since the field gradients in these realistic pulses will be

very strong, it is expected that particles interacting with the pulse may radiate away

too much of their energy before reaching the peak field strength, such that in practice

the Cherenkov condition is never satisfied in these experiments. The example of a con-

stant magnetic field was also considered, which gave some insight into the Cherenkov

effect in astrophysical environments. In this scenario, the available particle energies are

several orders of magnitude greater than what can be produced terrestrially, and the

magnetic fields produced by pulsars can be even greater than the Scwhinger critical

magnetic field BS . Significant regimes in which the radiation due to the Cherenkov

process can be dominant over the synchrotron background were found for both pro-

tons and electrons. For magnetic fields in the range investigated above, the Cherenkov

mechanism gives a previously unidentified source of gamma rays with energies in the

MeV to GeV regime. This means that the Cherenkov process may contribute to the

excess signals of high energy gamma rays which have been observed in recent years.

One thing which has not been considered in this work is how the Cherenkov signal
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in these astrophysical settings may compare to other known processes in the strong

magnetic fields, for example the production of pions which then decay into photons.

This will be investigated in future work in order to determine if the Cherenkov signal

could still be distinguished. More generally, the approach taken in this work relied on

the use of the rectilinear motion approximation. Though this is valid over a very large

range of emitted photon energies, it would be interesting to investigate non-rectilinear

motion, to develop a more robust theory. This could be achieved by using a Green’s

function approach to source the radiation from the accelerating particle, which would

then give a more general understanding of the role non-rectilinear motion may play.

Nonlinear effective field theories of electrodynamics can be used as a powerful tool in

the study of strong-field physics. There are, of course, other ways in which strong-field

effects can be described, in particular using the full machinery of quantum electro-

dynamics. The Cherenkov process described above is related to ordinary nonlinear

Compton scattering, where a charged particle absorbs photons from the background

electromagnetic field and then subsequently radiates a photon. It would be interesting

to investigate the loop corrections to nonlinear Compton scattering, to try and obtain

a derivation of the Cherenkov process from the quantum field theory perspective.

Nonlinear effective field theories of the class (2.4) are not the only effective descrip-

tions which can be derived from quantum electrodynamics. Much like Euler-Heisenberg

theory is considered on the basis of constant electromagnetic fields, when rapidly oscil-

lating (short wavelength) fields are present it is possible to obtain an effective theory

which, in addition to containing nonlinearities, introduces higher-derivative terms to

the theory [306]. As mentioned above, one of the challenges in describing Cherenkov ra-
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diation in nonlinear electrodynamics is that a cut-off has to be imposed, based on some

fundamental assumptions. This is due to the fact that the dispersion relation does not

contain any explicit dependence on the frequency ω. Higher derivative theories tend to

alter the wave propagation in such a way that frequency dependent terms enter into the

dispersion relation, and it may be possible that investigating this further could lead to

a first principles derivation of the cut-off. This possibility will be investigated in future

work.
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Appendix A

Electromagnetic field identities

Throughout the work in the main body of the text, a number of different identities

involving the electromagnetic field are used. Many of these are collected in this Ap-

pendix.

The Lorentz invariants of the electromagnetic field Fµν are,

X =− 1

4
FµνFµν , Y =− 1

4
F̃µνFµν . (A.1)

In Chapters 3 and 5 the electromagnetic field is separated into a strong slowly varying

background field Fµν and a weak probe/radiation field fµν . We define the analogous

invariants involving these fields as,

X =− 1

4
FµνFµν , Y =− 1

4
F̃µνFµν , (A.2)

x =− 1

4
Fµνfµν , y =− 1

4
F̃µνfµν , (A.3)

x =− 1

4
fµνfµν , y =− 1

4
fµνfµν . (A.4)
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As well as the invariant parameters above, which are Lorentz scalars (or pseu-

doscalars), there are also tensor identities involving the electromagnetic field. Again,

for the full electromagnetic field tensor Fµν we have,

F̃µλF νλ =− gµνY, (A.5)

which is found by using the symmetry properties of the Levi-Civita tensor εµναβ . We

also have,

F̃µλF̃ νλ − FµλF νλ =2Xgµν . (A.6)

Again, these definitions can be extended to the case where we write Fµν = Fµν + fµν .

The background (O(f0)) only identities are,

F̃µλFνλ =− gµνY, F̃µλF̃νλ −FµλFνλ =2X gµν . (A.7)

Identities first order (O(f)) in the probe field are,

F̃µαfαν + f̃µαFαν = 2ygµν , (A.8)

F̃µλf̃νλ + f̃µλF̃νλ −Fµλfνλ − fµλFνλ = 4xgµν . (A.9)

And finally, the terms second order (O(f2)) in the probe are,

f̃µλfνλ =− gµνy, f̃µλf̃νλ − fµλfνλ =2xgµν . (A.10)
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Appendix B

Calculation of the

Energy-Momentum Tensor

In this appendix, we present the explicit calculation of the energy-momentum tensor

in nonlinear electrodynamics. The energy-momentum is defined by (3.13)

δS =

∫
d4zδ

(√
−gL

)
= −1

2

∫
d4z
√
−gTµνδgµν ,

i.e. it is found by varying the action S with respect to the metric tensor gµν . Expanding

the variation, there are two terms,

δgS =

∫
d4z

[
L
(
δ
√
−g
)

+
√
−g (δL)

]
, (B.1)
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Appendix B. Calculation of the Energy-Momentum Tensor

In the first term of (B.1) we use the standard result,

δ
√
−g =

1

2

√
−ggµνδgµν . (B.2)

For the second term we expand the variation of the Lagrangian function into vari-

ations of the field invariants X and Y ,

δL =
∂L
∂X

δX +
∂L
∂Y

δY. (B.3)

To obtain the variation of X we first express X as,

X = −1

4
FµνFµν = −1

8

(
gµλgνσ − gµσgνλ

)
Fµν Fλσ . (B.4)

Taking the variation, we have,

δX =− 1

8

(
gνσδgµλ + gµλδgνσ − gνλδgµσ − gµσδgνλ

)
Fµν Fλσ

=− 1

2
FµλF

λ
ν δgµν . (B.5)

We then use the known result,

δgαβ = −gαµgβνδgµν , (B.6)
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Appendix B. Calculation of the Energy-Momentum Tensor

such that,

δX =
1

2
FµλF νλ δgµν . (B.7)

To calculate the variation of Y , we express the dual tensor F̃µν in a slightly different

form to make the dependence on the metric more explicit. This enters through the Levi-

Civita tensor εµναβ , which can be expressed in terms of a tensor density ε̃µναβ which

takes on the values (0, 1,−1) in any frame,

εµναβ =
1√
−g

ε̃µναβ . (B.8)

Thus the invariant Y can be expressed,

Y = −1

8

1√
−g

ε̃µναβFµν Fαβ , (B.9)

and so the variation is,

δgY =− 1

2
gµνY δgµν =

1

2
F̃µλF νλ δgµν , (B.10)

where we used the identity (A.5),

FµαF να =− gµνY

Hence, inserting (B.2), (B.7) and (B.10) into (B.1), and making use of the identity

(A.5) we find that the energy-momentum tensor is given by (3.14) in the main text.
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Appendix C

Perturbative expansions of

Lagrangian and excitation tensor

In moving from the energy-momentum tensor in terms of the full electromagnetic field

Fµν to the background/probe configuration in Chapter 3, the clearest physical insight

for the role each of the terms in the second order part of the energy-momentum (3.40)

comes when we first use the perturbation Fµν = Fµν + fµν at the level of the action.

We begin with the the expanded invariants (3.23) and (3.24),

X =X + 2x+ x, Y =Y + 2y + y, (C.1)

which can be then used to perform a Taylor expansion of the Lagrangian function

around the background values. To compare with Abraham and Minkowski, we consider
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terms up to O(f2). We therefore have the perturbed Lagrangian function,

L(X,Y ) =L(X ,Y) + 2 {xLX + yLY }

+
{
xLX + yLY + 2x2L2

XX + 4xyL2
XY + 2y2L2

Y Y

}
+O(f3) (C.2)

and partial derivatives,

∂L(X,Y )

∂X
=LX + 2

{
xL2

XX + yL2
XY

}
+
{
xL2

XX + yL2
XY + 2x2L3

XXX + 4xyL3
XXY + 2y2L3

XY Y

}
+O(f3),

(C.3)

∂L(X,Y )

∂Y
=LY + 2

{
xL2

XY + yL2
Y Y

}
+
{
xL2

XY + yL2
Y Y + 2x2L3

XXY + 4xyL3
XY Y + 2y2L3

Y Y Y

}
+O(f3). (C.4)

For clarity, the notation,

LX ≡
∂L
∂X

∣∣∣∣
(X ,Y)

L2
XY ≡

∂2L
∂X∂Y

∣∣∣∣
(X ,Y)

(C.5)

signifies that we first take the derivatives of L(X,Y ), and then evaluate the result on

the background.

We could go ahead and simply use (C.2) and proceed to perform the variation of

the action with respect to the metric, however we can express C.2 in a much simpler
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form. Expanding the excitation tensor (2.6) and using (C.3), and (C.4) we have,

Hµν =FµνLX + F̃µνLY , (C.6)

hµν =2Fµν
{
xL2

XX + yL2
XY

}
+ fµνLX + 2F̃µν

{
xL2

XY + yL2
Y Y

}
+ f̃µνLY , (C.7)

and,

hµν =Fµν
{
xL2

XX + yL2
XY + 2x2L3

XXX + 4xyL3
XXY + 2y2L3

XY Y

}
+ F̃µν

{
xL2

XY + yL2
Y Y + 2x2L3

XXY + 4xyL3
XY Y + 2y2L3

Y Y Y

}
+ 2fµν

{
xL2

XX + yL2
XY

}
+ 2f̃µν

{
xL2

XY + yL2
Y Y

}
. (C.8)

Making use of these definitions, we can rewrite the perturbed Lagrangian function

(C.2) as,

L(X,Y ) = L(X ,Y)− 1

2
Hµνfµν −

1

4
hµνfµν . (C.9)
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Appendix D

Coordinate basis

In Chapter 5 we consider two examples of background electromagnetic field: a constant

crossed field, and a constant magnetic field. It is convenient to specify the form of each

of these by defining a specific basis. We choose to work with the coordinate basis {η, εi}

(i = 1, 2, 3), where,

η2 =1 εi.εj =− δij η.εi =0. (D.1)

Where necessary we will use the representation,

ηµ =



1

0

0

0


ε1µ =



0

1

0

0


ε2µ =



0

0

1

0


ε3µ =



0

0

0

1


. (D.2)
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