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Abstract

Dependency between rates of occurrence of events can exist for a variety of rea-

sons. For example, management culture within organisations can have a similar

impact on multiple outcomes. Modelling approaches that assume independence

between event rates can be mathematically convenient, but they might also fail to

account for all the information within the data since the existence of dependency

means that data from one process can provide information about the rate of occur-

rence on similar processes. However, estimating correlated event rates is challeng-

ing. We address this challenge by developing an inference framework to account for

such dependency using copulas in order to make full use of available data.

We develop an empirical Bayesian inference method based on a multivariate

Poisson – Clayton with Gamma marginals probability model. The proposed model

aims to capture both aleatory and epistemic uncertainties. We assume that events

are generated from a homogeneous Poisson process capturing the pure inherent

randomness in the observations, i.e. the aleatory uncertainty. Epistemic uncer-

tainty is represented by the prior where the marginal distributions of event rates

are Gamma, and the underlying correlation is captured by the Clayton copula. Of

particular interest are situations where we might anticipate low rates of occurrence.

The Clayton copula is appropriate for situations with left tail dependence, that is

where low rates are considered relatively more correlated compared to high rates.

However, estimating copulas dependence parameter using count data can be

challenging. Hence, we provide analytical expressions for estimating dependency
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of the Clayton copula as a function of the count data realised from Poisson pro-

cesses. We examine the relative accuracy of the model and investigate the robust-

ness of results under different parameter settings. To support comparison between

the proposed model and existing theory, we consider the classic empirical Bayes

method assuming independent Gamma priors. Findings are based on simulation

experiments. We also evaluate our method when applied for supplier ranking using

de - sensitised real data. We explicitly discuss the ranking problem from a Bayesian

perspective, and we propose multiple ranking methods. We identify cases with dif-

ferent final rankings which further enhance the importance of not choosing to ig-

nore dependency.
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Chapter 1

Introduction

1.1 Research Context and Motivation

Bayesian and empirical Bayesian models have been advocated within the con-

text of risk and reliability. Kaplan (1983, 1985) introduced the two-stage or hierarchi-

cal Bayesian model for determining failure rates within a probabilistic risk analysis

context. In particular, Kaplan (1983) described the two-stage Bayesian model as ’a

simple procedure which operates on the data in such a way that the output of the

first stage, i.e. the posterior distribution of the first stage, becomes the prior dis-

tribution of the second stage’. Since then, two - stage Bayesian models have been

suggested for various purposes (see Iman & Hora, 1989; Hora & Iman, 1990; Bunea,

Charitos, Cooke, & Becker, 2005; Vaurio, 2005).

In most applications of Bayesian inference for event rate processes, the event

rates of each process are assumed to be statistically independent, given some pa-

rameters. If these unknown parameters are hyperparameters, then they can be fully

specified through the prior distribution. However, in the presence of correlation,

a multivariate distribution can be defined for capturing the dependency between

all unknown parameters. Then by applying Bayes Theorem and so updating the

prior on the observed data, the rates of events can be estimated. Thereby, the un-
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derlying dependence on the rates can be incorporated into the Bayesian modelling

procedure, which ensures coherent and theoretically sound rates estimates, as well

as, allows the rates estimates to be informed based on information for multiple

events. While the assumption of independence is mathematically convenient, such

approaches fail to account for all the information within the data, as the existence of

dependency means that data from one process can provide information about the

rate of occurrence on similar processes.

Estimating dependent event rates can be challenging. Dependency between

rates of occurrence of events can exist for a variety of reasons. For example, manage-

ment culture within organisations can have a similar impact on multiple outcomes.

Inference of multiple event rates in the presence of dependency has been consid-

ered in supply chain risk problems. For example, Quigley, Wilson, Walls, and Bed-

ford (2013) developed a Bayes linear Bayes model for correlated event rates within

a Bayesian methodological framework. They consider that events generated from

a homogeneous Poisson process and Gamma prior distributions; and, the correla-

tion between the rates is modelled using a Hypergeometric function. Even if this

approach performs significantly well, it has some limitations. The form of the mul-

tivariate prior in terms of its correlation and the marginal distributions could be

considered restricted. The subjective character of the proposed method, which re-

quires expert judgement for specifying the correlation coefficient on the rates could

be considered challenging. Therefore, the need for creating an inference framework

that considers dependency between multiple event rates and provides flexibility in

terms of dependence structure motivated this study.

The underlying correlation between event rates can be complex. The depen-

dence structure of event rates can be described as symmetric when low and high

rates are similarly correlated, lower tail dependent when low rates are more cor-

related compared to high rates, and upper tail dependent when high rates appear

more correlated compared to low rates. Copulas provide a means of describing and

2
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modelling such dependence structures (Nelsen, 2007). Therefore, developing an

inference framework to account for dependency using copulas and make full use

of empirical data available within a Bayesian methodological framework motivated

this research.

This research investigates the impact of not accounting for dependency. Stud-

ies in supply chain discuss dependency within organisations. For example, Tseng

(2010) investigate the relationship between organizational culture and knowledge

conversion on corporate performance. Their results suggest that both organiza-

tional culture and knowledge conversion are positively correlated with the corpo-

rate performance. In particular, as they state ’an adhocracy culture enables knowl-

edge conversion and enhances corporate performance more than clan and hierar-

chy cultures’. Considering three particular approaches, just in time, supply chain

management and total quality management, Kannan and Tan (2005) examine the

extend to which these approaches are correlated and further investigate how they

may affect the overall business performance. According to their findings, under-

standing of supply chain dynamics and commitment to quality have the greatest

effect on performance. Sezen (2008) investigate how supply chain integration, sup-

ply chain information sharing and supply chain design may affect the supply chain

performance. Their findings suggest that integration and information sharing are

correlated with performance measures, but their effect is lower than supply chain

design. Green, Whitten, and Inman (2008) investigate the impact of logistics per-

formance on organizational performance within the manufacturing sector. Their

findings suggest that ’logistics performance is positively impacted by supply chain

management strategy and that both logistics performance and supply chain man-

agement strategy positively impact marketing performance, which in turn positively

impacts financial performance’.

From another angle, several studies investigate the supplier relations within sup-

ply chain and their impact on performance. Field and Meile (2008) investigate the

3
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relationship between supplier relations and satisfaction with the overall supplier

performance. According to their analysis, cooperation and long-term commitment

are significantly positively correlated with satisfaction with overall supplier perfor-

mance. Kannan and Tan (2002) investigate the impact of supplier selection and as-

sessment on business performance. They identify that assessment of a supplier’ s

willingness and ability to share information can have a significant impact on the

organisation performance. Moreover, Carr, Kaynak, Hartley, and Ross (2008) sug-

gest that supplier training and supplier involvement contribute significantly to the

supplier’ s operational performance. Terpend and Krause (2015) investigate the im-

pact of incentives on supplier performance. They propose two categories: compet-

itive, market - based incentives with which suppliers are rewarded based on their

performance relatively to other suppliers, and cooperative incentives, where both

buyer and supplier share benefits based on their joint performance. Their findings

suggest that competitive incentives can be ’an effective approach to improving de-

livery, quality, innovation and flexibility, for purchases where the buyer - supplier

relationship is characterized by balanced and moderate amounts of mutual depen-

dence’. S. Li, Ragu-Nathan, Ragu-Nathan, and Rao (2006) explore the impact of

supply chain management practices on competitive advantages and organizational

performance. With focus on five SCM dimensions - strategic supplier partnership,

customer relationship, level of information sharing, quality of information shar-

ing, and postponement, their identified that higher levels of SCM practice lead to

enhanced competitive advantage and improved organizational performance, and

competitive advantage positive affects the organizational performance. Sánchez

and Pérez (2005) explore the relationship between the dimensions of supply chain

flexibility and organization performance by analysing a sample of 123 automotive

suppliers. They identify a positive correlation between the flexibility and organiza-

tion performance, however different flexibility dimensions have different impact on

the organization performance. Key performance indicators (KPIs) can be defined as

4
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’a set of metrics which reflect the operation performance’ and consider critical for

manufacturing operation management and continuous improvement. Kang, Zhao,

Li, and Horst (2016) state that KPIs in a manufacturing system are not independent,

and they may have intrinsic mutual relationships. Therefore, they introduce a multi

- level hierarchical structure for identifying and analysing KPIs and their relation-

ships in production systems.

Motivated by the challenges in supply chain, we propose methods for ranking

correlated event rates. Hierarchical models have been proposed for quantitative

comparisons between organisations (see Raudenbush & Bryk, 2002). Goldstein and

Spiegelhalter (1996) discussed the statistical issues involved in providing compar-

isons between institutions in the area of health and education, and suggested rank-

ings based on confidence intervals of the random effects associated with organi-

sations. Hierarchical models have also been proposed in areas closely related to

organizational comparisons. In the supply chain area, various methods and models

have been proposed for supplier ranking (De Boer, Labro, & Morlacchi, 2001; Chai,

Liu, & Ngai, 2013). Walls, Quigley, Parsa, and Comrie (2016) present a novel mod-

elling suite using relevant historical data for supporting the analysis of risk in differ-

ent stages of supplier life. They proposed an empirical Bayes method for ranking us-

ing Poisson process data with heterogeneous exposure to risk. However, their analy-

sis stands only under the assumption of independence, which makes our proposed

method distinct from theirs. As in many cases, when dealing with real world appli-

cations, the dependency between performance rates exists and therefore needs to

be considered. Ranking under uncertainty can be a complicated process, and the

final ranking result can be affected by various factors. We account for dependency

on the rates, implying that it is driven by the operations within organisations rather

than the occurrence of rare or extreme events. Of particular interest is where few

data exist, resulting in low rates of occurrence. With emphasis on left tail depen-

dence where low rates are considered relatively more correlated compared to high

5
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rates, Clayton copula is being investigated.

1.2 Research Aim and Objectives

The aim of this research is to develop an inference framework to account for de-

pendency of event rates realised from Poisson process using copulas. This research

associates the empirical Bayesian inference method with the Clayton copula, and

makes full use of the empirical data available. The following objectives are to be

achieved:

• Explicate the relationship between key statistics from the empirical data and

the dependence parameter of the Clayton copula;

• Derive analytical expressions of the Clayton’ s dependence parameter in rela-

tion to parameters ’known’ from the empirical data;

• Evaluate the empirical Bayesian method using Clayton copula for capturing

the underlying dependency on the rates of events;

• Investigate the impact of not accounting for dependency.

1.3 Thesis Structure

This section provides a structure of this thesis with a brief summary of the con-

tent in each chapter. Figure 1.3.1 illustrates this structure.

6
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Figure 1.3.1: Diagram showing the structure of this thesis.

Firstly, the theoretical background to copulas including relevant dependence

measures and description of bivariate copulas; and a literature review on Bayesian

and empirical Bayesian approach in modelling along with applications in risk are

presented in Chapter 2. We also examine the literature to discuss the gaps and hence

to inform the research questions within the aim and objectives outlined above. In

Chapter 3 we set up the modelling framework that is informed by the literature and

will underpin all analysis reported in the thesis. We detail the empirical Bayesian

considering dependency on the rates modelled with Clayton copula and the clas-

sic empirical methods assuming independence in Chapter 3. Chapter 4 describes
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the relationship between the empirical data realized from Poisson processes and

the dependence parameter of the Clayton copula and presents the analytical ex-

pressions obtained. In Appendix A, we report the findings of the simulation study

conducted. More detailed, we present all parameters chosen, and we discuss how

different marginal parameter choices affect the correlation between Kendall’s tau

of the Prior and Poisson data. We also discuss how the proposed models perform

using the theoretical settings and when the estimated prior parameters are used.

To examine the relative accuracy of the proposed empirical Bayesian model with

Clayton copula, we conduct a simulation study. To support further comparison be-

tween the proposed model and existing theory, we consider the classic empirical

Bayes method assuming independent Gamma priors. We investigate what happens

if we choose to ignore dependency and perform the classic empirical Bayes method,

and what are the consequences if there are any. A benchmarking study is conducted

with which we identify and present cases where the consequences of our choice to

ignore dependency are more significant than others. The simulation and bench-

marking studies are presented and discussed in Chapter 5.

We investigate the impact of not accounting for dependency with an applica-

tion to supplier ranking problem. Chapter 6 demonstrates our proposed methods

for ranking. Particularly, our motivation, the purpose and the distinctiveness of the

approach are explained in Sections 6.2, 6.3, 6.4, respectively. Relevant literature re-

view on supplier selection and ranking process is also presented in Section C. The

ranking problem from a Bayesian perspective and our methodological framework

are explained in Section 6.5.

Ranking under uncertainty can be a complicated problem. Chapter 7 presents

examples of analysis and model applications using de-sensitised real data from the

prime manufacturer, considering multiple situations. Our approach is based on the

empirical Bayes method considering the underlying dependence between the late

delivery rate and the non - conformance rate. We consider three, mean rank, me-

8
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dian rank and ranking by the cumulative distribution of ranks. The implications of

each are also discussed. We further compare the proposed model with the classic

empirical Bayes model and report our findings in Section 7.4. Finally, our conclu-

sions and future work are presented in Chapter 8.
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Literature Review

2.1 Introduction

This chapter reviews the existing literature of Copulas along with the Bayesian

and empirical Bayesian approach, with an emphasis on studies related to modelling

dependency under uncertainty.

In particular, this chapter begins with a literature review of Copulas by discussing

the most commonly used bivariate copula families and relevant dependence mea-

sures (Sections 2.2.3 and 2.2.2). A discussion about copula applications within the

field of risk and reliability followed by a criticism of copulas are provided in Sections

2.2.4 and 2.2.5, respectively. The Bayesian and empirical Bayesian methodological

frameworks are discussed in Section 2.3. Empirical Bayesian studies in risk are re-

viewed in Section 2.3.3. This chapter concludes by discussing the research gaps and

defining the research questions of this research in Section 2.4.

10
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2.2 Copulas

2.2.1 Definition

Copulas can describe the dependence between multiple event rates compre-

hensively and accurately. Copulas, from the Latin for "bond" or "tie", are distri-

bution functions that bind multiple distribution functions under a specific depen-

dence structure and allow to separate modelling of the dependency from modelling

the marginal distributions (Nelsen, 2007). Nelsen (1999) characterised copula as "a

function that joints multivariate distribution functions to their one – dimensional

marginal distribution functions" or as "a distribution function whose one - dimen-

sional margins are uniform on the interval (0,1)". The formal definition of Copulas

and the Sklar’s Theorem are presented in the following.

Definition. Copula (Nelsen, 2007)

An m - dimensional copula (or m - copula) is a function C from the unit m - cube

[0,1]m to the unit interval [0,1] which satisfies the following conditions:

1. C (1, · · · ,1, an ,1, · · · ,1) = an for every n ≤ m and all an in [0, 1];

2. C (a1, · · · , am) = 0 if an = 0 for any n ≤ m;

3. C is m - increasing.

Theorem. Sklar’ s Theorem (Nelsen, 2007)

Let H be a joint distribution function with margins F and G. Then there exists a copula

C such that for all x, y in R̄,

H(x, y) =C (F (x),G(y)).

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on

RanF ×RanG. Conversely, if C is a copula and F and G are distribution functions,

11
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then the function H defined above is a joint distribution function with margins F and

G.

Copulas bind together univariate distributions,called marginal distributions or

marginals, to form a multivariate distribution. Copulas capture the dependence

structure between random variables. The dependence between any number of vari-

ables is characterized by the family of the copula C and the copula’s dependence

parameter θ. The family of the copula specifies the structure of the dependence, i.e.

if there is a strong association in either of the tails (upper or lower tail dependence)

or both (symmetric dependence), while the dependence parameter θ specifies the

strength or even direction of the dependence. In the bivariate case, two random

variables X and Y with cumulative distribution functions FX (x),FY (y) respectively,

are’ coupled’ by copula C if their joint distribution function can be expressed as,

FX ,Y (x, y) =C (FX (x),FY (y);θ),

where θ represents the dependence parameter of the copula that measures the de-

pendence between the marginals FX and FY . Copulas, C, are cumulative distribu-

tion functions by definition, however the density function, if it exists, can be found

by taking the partial derivatives of C with respect to each component. The bivariate

density function can be expressed in terms of the copula density and the marginal

densities as follows,

c(FX (x),FY (y)) = fX ,Y (x, y)

fX (x) fY (y)
⇒ fX ,Y (x, y) = c(FX (x),FY (y)) fX (x) fY (y)

where fX , fY and fX ,Y represent the marginal density functions and the non-zero

density of variables X ,Y . Following the Sklar’s theorem, if FX and FY are continu-

ous, then copula C is unique; otherwise, copula C is uniquely determined on the

Cartesian product of its marginals’ ranges, Ran FX × Ran FY (Kurowicka & Cooke,

12
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2006; Nelsen, 2007).

2.2.2 Dependence Measures

Copulas are considered useful for modelling and describing the dependency be-

tween random variables (Nelsen, 1999). However, there are multiple ways one can

measure dependence. In this section, we present the Pearson correlation coeffi-

cient and rank correlation measures as defined by Nelsen, 2007; Kurowicka & Cooke,

2006.

2.2.2.1 Correlation coefficient

The product moment correlation or Pearson linear correlation coefficient of two

random variables (X ,Y ), is defined as

ρX ,Y = cov(X ,Y )

σX ·σY
,

where cov(X ,Y ) = E(X Y )−E(X )E(Y ), σX ,σY > 0, σX and σY denote the standard

deviations of X and Y , respectively.

The Pearson correlation coefficient, ρX Y , (a) is a measure of linear correlation,

(b) is symmetric, (c) the lower and upper bounds on the inequality −1 ≤ ρX Y ≤ 1

measure perfect negative and positive linear correlation (known as normalization

property), and (d) it is invariant with respect to linear transformations of the vari-

ables (Trivedi & Zimmer, 2007). However, it has some limitations which are listed

below:

• The dependence structure of a multivariate distribution is not fully deter-

mined by the correlation matrix and it is not invariant under strictly increas-

ing nonlinear transformations. For example, if X ∼ N (0,1) and Y = X 2, then

cov(X ,Y ) = 0, but (X ,Y ) are clearly dependent. Therefore, having zero corre-

lation, does not imply independence.

13
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• It is not defined for some heavy-tailed distributions whose second moments

do not exist, e.g., some members of the stable class and Student’s t distribution

with degrees of freedom equal to 2 or 1.

2.2.2.2 Rank correlation

Informally, a pair of random variables are concordant if "large" values of one

tend to be associated with "large" values of the other, and "small" values of one with

"small" values of the other. Let (xi , yi ) and (x j , y j ) denote two observations from a

vector (X ,Y ) of continuous random variables. Then, (xi , yi ) and (x j , y j ) are concor-

dant if xi < x j and yi < y j or if xi > x j and yi > y j (Nelsen, 2007). We define the

"concordance function" Q which is the difference between the probability of con-

cordance and discordance,between two vectors (X1,Y1) and (X2,Y2) of continuous

random variables with (possibly) different joint distributions H1 and H2 , but with

common margins F and G (Nelsen, 1999).

Theorem. Concordance Function (Nelsen, 1999)

Let (X1,Y1) and (X2,Y2) be independent vectors of continuous random variables with

joint distribution functions H1 and H2, respectively, with common margins F (of X1

and X2)and G (of Y1 and Y2). Let C1 and C2 denote the copulas of (X1,Y1) and (X2,Y2),

respectively, so that HI (x, y) = C1(F (x),G(y)) and H2(x, y) = C2(F (x),G(y)). Let Q

denote the difference between the probabilities of concordance and discordance of

(X1,Y1) and (X2,Y2), i.e., let

Q = P [(X1 −X2)(Y1 −Y2) > 0]−P [(X1 −X2)(Y1 −Y2) < 0].

Then,

Q =Q(C1,C2) = 4
Ï

I 2
C2(u, v)dC1(u, v)−1.
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2.2.2.2.1 Spearman’s rho

Consider two random variables X and Y with continuous distribution functions F1

and F2, respectively, and joint distribution function H. Then, Spearman’s rank cor-

relation or Spearman’s rho is defined as,

ρX ,Y = ρ(F1(X ),F2(Y )).

Spearman’s rho is the linear correlation between F1(X ) and F2(Y ), which are integral

transforms of X and Y .

The population version of the rank correlation can be defined as proportional

to the probability of concordance minus the probability of discordance for two vec-

tors (X1,Y1) and (X2,Y2), where (X1,Y1) has distribution FX Y with marginal distri-

bution functions FX and FY and X2,Y2 are independent with distributions FX and

FY . Moreover (X1,Y1), (X2,Y2) are independent (Joe, 1997),

ρ = 3(P [(X1 −X2)(Y1 −Y2) > 0]−P [(X1 −X2)(Y1 −Y2) < 0]).

2.2.2.2.2 Kendall’s tau

Let (X1,Y1) and (X2,Y2) be independent and identically distributed random vectors,

each with joint distribution function H. Then, Kendall’s tau is defined as the proba-

bility of concordance minus the probability of discordance,

τ= τX ,Y = P [(X1 −X2)(Y1 −Y2) > 0]−P [(X1 −X2)(Y1 −Y2) < 0].

Both measures are based on the concept of concordance, which refers to the

property that large values of one random variable are associated with large values

of another, whereas discordance refers to large values of one being associated with

small values of the other. Both, Spearman’s rho and Kendall’s tau, can be expressed

in terms of copulas (Nelsen, 1999).
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If X and Y are continuous random variables with joint distribution function F

and margins FX and FY , let C denote the copula, that is, F (x, y) = C (FX (x),FY (y)),

then Spearman’ s rho and Kendall’ s tau for X and Y can be expressed as,

ρC = 12
∫ ∫

I 2
[C (u, v)−uv]dud v

τC = 4
∫ ∫

I 2
C (u, v)dC (u, v)−1.

2.2.2.2.3 Relationship between Kendall’s tau and Spearman’s rho

For continuous copulas, researchers convert the dependence parameter of the cop-

ula function to a measure such as Kendall’s tau or Spearman’s rho which are both

bounded on the interval [−1,1] and are independent of the functional forms of the

marginal distributions.However, they are not simple functions of moments and hence

computationally intensive.

While both Kendall’s tau and Spearman’s rho measure the probability of con-

cordance between random variables with a given copula, the values of ρ and τ are

often quite different. The relationship between ρ and τ varies considerably from

family to family, but we summarise some universal inequalities for these measures

(Balakrishnan & Lai, 2009; Kruskal, 1958).

1. −1 < 3τ−2ρ ≤ 1

2. 1+ρ
2 ≥ (1+τ

2

)2

3. 1+ρ
2 ≥ (1−τ

2

)2

4. 3τ−1
2 ≤ ρ ≤ 1+2τ−τ2

2 , τ≥ 0

5. τ2+2τ−1
2 ≤ ρ ≤ 1+3τ

2 , τ≤ 0 .
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2.2.2.3 Tail Dependence

The following tail dependence coefficients measure the dependence between

the variables in the upper - right quadrant and the lower - left quadrant of [0,1]×
[0,1] (Balakrishnan & Lai, 2009).

Definition. Tail Dependence (Balakrishnan & Lai, 2009)

The upper tail dependence coefficient (parameter) λU is the limit (if it exists) of the

conditional probability that Y is greater than the 100ath percentile of G given that X

is greater then the 100ath percentile F as a approaches 1,

λU = lim
a→1

Pr [Y >G−1(a) | X > F−1(a)].

IfλU > 0, then X and Y are upper tail dependent and asymptotically independent

otherwise.

Similarly, the lower tail dependence coefficient is defined as,

λL = lim
a→0

Pr [Y ≤G−1(a) | X ≤ F−1(a)].

2.2.3 Bivariate Copulas

Copula functions are considered a powerful and useful tool for describing and

modelling complex dependence structures (Nelsen, 2007). Multiple types of cop-

ulas exist, which describe different dependence structures. For example, Gumbel

(1960) proposed a copula function that captures the upper tail dependence and

Clayton (1978) presented a copula for capturing lower tail dependency. According to

the literature, Gumbel copula is sensitive to upper tail dependence, Clayton copula

is sensitive to lower tail dependence, and Frank copula is sensitive to symmetric de-

pendence (Dodangeh, Shahedi, Shiau, & Mirakbari, 2017). We further discuss these

copula families.
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2.2.3.1 Product copula

The simplest copula, the product copula, has the form C (u1,u2) = u1u2, where

u1 and u2 take values in the unit interval of the real line. The product copula is

important as a benchmark, as it corresponds to independence (Trivedi & Zimmer,

2007).

2.2.3.2 Farlie - Gumbel - Morgenstern copula

The Farlie - Gumbel - Morgenstern (FGM) copula has the following form,

C (u1,u2;θ) = u1u2(1+θ(1−u1)(1−u2)).

The FGM copula was first proposed by Morgenstern (1956). The FGM copula is con-

nected to the product copula. The FGM copula collapses to the product copula if

the parameter θ takes the value zero, in the presence of independence. Notably,

this copula family is not recommended in cases where strong dependence is under

consideration (Trivedi & Zimmer, 2007).

2.2.3.3 Gaussian (Normal) copula

The Gaussian - Normal copula has the following form,

C (u1,u2;θ) =ΦG (Φ−1(u1),Φ−1(u2);θ)

=
∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
1

2π(1−θ2)1/2
×

(−(s2 −2θst + t 2)

2(1−θ2)

)
d sd t

where Φ is the cumulative distribution function (CDF) of the standard normal dis-

tribution, and ΦG (u1,u2) is the standard bivariate normal distribution with corre-

lation parameter θ restricted to the interval (−1,1). Gaussian copula is considered

flexible as it allows both positive and negative dependency. Figure 2.2.1 illustrates

the bivariate Gaussian copula using different dependence parameters (from strong
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negative dependence to strong positive dependence), showing its symmetric prop-

erty and how the dependence structure changes in different situations. Simulated

samples of size 1000, generated using the following R commands,

normal.copula<- normalCopula(param = - , dim = 2)

x<- rCopula(n = 1000,normal.copula).
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Figure 2.2.1: Graphical representation of the bivariate Gaussian copula showing the sym-
metric dependence structure in cases where the dependence parameter is -0.9, -0.6, 0.4 and
0.8.

2.2.3.4 Student t copula

The Student t Copula has the following form,

C t (u1,u2;θ1,θ2) =
∫ t−1

θ1
(u1)

−∞

∫ t−1
θ2

(u2)

−∞
1

2π(1−θ2
2)1/2

×
(
−(s2 −2θ2st + t 2)

2(1−θ2
2)

)−(θ1+2)/2

d sd t

where tθ1 (u1) is the CDF of the standard univariate t - distribution with θ1 de-

grees of freedom. The Student t copula has two parameters, θ1,θ2; parameter θ1

refers to degrees of freedom and controls the heaviness of the tails, and θ2 refers to

the dependence parameter. Student t copula allows symmetric dependence in the

tails and can be used for both positive and negative dependence.

Figures 2.2.2, 2.2.3, 2.2.4 provide graphical representation of the Student t cop-

ula in different situations. The degrees of freedom control the heaviness of the tails,

where small values of degrees of freedom increase the tail dependency. However,

careful consideration is required as relatively small numbers may lead to generate
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"wings" (see Figure 2.2.4). Worth also noticing that for large values of degrees of

freedom, the Student t copula approximates the Gaussian Copula. Simulated sam-

ples of size 1000, generated using the following R commands,

student.cop<-tCopula(param = -, dim = 2, df= - )

s<-rCopula(1000, student.cop).

Figure 2.2.2: Graphical representation of the bivariate Student t copula showing the sym-
metric dependence structure in the tails when the dependence parameter θ is -0.8 with de-
grees of freedom equal to 2, 6, 10, 30. Showing that the number of degrees of freedom affect
the heaviness of the tail dependency.
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Figure 2.2.3: Graphical representation of the bivariate Student t copula showing the sym-
metric dependence structure in the tails in cases where the dependence parameter θ is 0.5
and 0.85, and the degrees of freedom is 2; and when θ is 0.3 and 0.7 with 4 degrees of free-
dom.
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Figure 2.2.4: Graphical representation of the bivariate Student t copula showing that low
degrees of freedom may generate "wings" effect. The dependence parameter θ is -0.6, 0.4
and 0.7 with 1 degree of freedom, respectively.

2.2.3.5 Clayton copula

The Clayton copula has the following form,

C (u1,u2;θ) = (u−θ
1 +u−θ

2 −1)−1/θ

with the dependence parameter θ restricted on the region (0,∞). The probability

density function of the Clayton copula is given by,

c(u1,u2;θ) = ∂2C (u1,u2;θ)

∂u1∂u2
= (θ+1)(u1u2)−(θ+1)(u−θ

1 +u−θ
2 −1)−

2θ+1
θ .

The Clayton copula can only be used in cases where positive dependence is un-

der investigation. Considered to be the most appropriate choice in cases where

strong left tail dependence and relatively weak right tail dependence is observed.

The low-tail dependence of the Clayton copula has the following form,

LT = lim
u1→0+

C (u1,u1)

u1
= lim

u1→0+
(2u−θ

1 −1)−1/θ

u1
= 2−1/θ.
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There is also a closed-form formula describing Kendall’s tau of Clayton copula

as a function of the dependence parameter θ, as follows

τ= θ

θ+2
⇒ θ = 2τ

1−τ .

Figure 2.2.5 provides a graphical representation of the bivariate Clayton copula

for dependence parameter θ 2, 5 and 8. We illustrate the effect of the dependence

parameter on the left tail dependency. Simulated samples of size 1000, generated

using the following R commands,

clayton.cop <- claytonCopula(param= -, dim = 2)

y <- rCopula(1000, clayton.cop).

Figure 2.2.5: Graphical representation of the bivariate Clayton copula for dependence pa-
rameter θ 2, 5 and 8, showing the effect of the dependence parameter on the left tail.

2.2.3.6 Frank copula

The Frank copula has the following form,

C (u1,u2;θ) =−θ−1log

{
1+ (e−θu1 −1)(e−θu2 −1)

e−θ−1

}
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with the dependence parameter θ ∈ (−∞,+∞). The Frank copula can only be used

in situations where negative dependency is considered, and as the Gaussian and

Student-t copulas, it allows symmetric dependency in the tails. Frank copula is con-

sidered the best choice in cases where we notice weak tail dependence and strong

dependence centred in the middle of the distribution. Comparing Frank copula

with Gaussian, simulation studies have shown that Franks’ copula tail dependence

is weaker than the Gaussian copula. Figure 2.2.6 shows a graphical representation of

the bivariate Frank copula with dependence parameter θ -10, -5, 2 and 6. Simulated

samples of size 1000, generated using the following R commands,

frank.cop <- frankCopula(param= - , dim = 2)

f <- rCopula( n=1000 , frank.cop).
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Figure 2.2.6: Graphical representation of the bivariate Frank copula with dependence pa-
rameter θ -10, -5, 2 and 6.

2.2.3.7 Gumbel copula

The Gumbel copula has the following form,

C (u1,u2;θ) = exp
(
−(ũθ

1 + ũθ
2 )1/θ

)
,

where −ũ j = log u j and θ ∈ [1,∞). Gumbel copula can only be used in cases where

positive dependence is expected. Gumbel copula exhibits strong right tail depen-

dence and relatively weak left dependence. Considered an appropriate copula choice

in cases where we recognise strong correlation one high values and relatively weak

correlation on low values. Figure 2.2.7 provide a graphical representation of the bi-

variate Gumbel copula for dependence parameter θ 2, 5 and 8. We illustrate the

effect of the dependence parameter on the right tail dependency. Simulated sam-

ples of size 1000, generated using the following R commands,

gumbel.cop <- gumbelCopula(param = -, dim = 2)

g <- rCopula(1000, gumbel.cop).

26



Chapter 2. Literature Review

Figure 2.2.7: Graphical representation of the bivariate Gumbel copula for dependence pa-
rameter θ 2, 5 and 8, showing the effect of the dependence parameter on the right tail.

Having presented and discussed the most commonly used copula families, we

now present their main properties in the summarizing table 2.2.1.

Copulas Parameter Space Properties

Gaussian θ ∈ (−1,1) • Positive and negative dependence
• Symmetric dependence in the tails
• Linear correlation cases

Student t θ2 ∈ (−1,1), θ1 ∈R+ • Positive and negative dependence
• Symmetric dependence in the tails
• Small θ1 increases tail dependence
• Large θ1 approximates Gaussian

Clayton θ ∈ (0,∞) • Positive dependence
• Asymmetric dependence
• Strong left tail dependence

Frank θ ∈ (−∞,∞) • Positive and negative dependence
• Symmetric dependence in the tails
• Weak tail dependence (Weaker than Gaussian)
• Strong dependence centred in the middle

Gumbel θ ∈ [1,∞) • Positive dependence
• Asymmetric dependence
• Strong right tail dependence

Table 2.2.1: Summarizing the basic properties of commonly used copula families.
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2.2.4 Copulas in Risk and Reliability

Apart from the unique dependence structure that copulas provide, copulas bind

different marginal distributions under the same dependency with no restrictions

in terms of the marginal choice (Kurowicka & Cooke, 2006). For example, one can

choose between two Gamma marginal distributions or one Gamma and one Nor-

mal distribution; then, by using a copula of its choice with any of the two marginal

combinations, a bivariate distribution will be constructed. Therefore, copula func-

tion is a powerful tool in modelling because primarily, it provides the flexibility of

choosing among different dependence structures and secondly it provides flexibility

in the marginal distributions. Both flexibilities are significantly necessary because,

in real-world applications, not all dependencies between event rates are perfectly

linear or well defined; and not in all situations, the marginal distributions can be

chosen by only one class of distributions.

Copulas have been used in various systems for reliability modelling. Y. Wang and

Pham (2011) use time-varying copulas to model the correlation between multiple

degradation processes and random shocks within a competing risk model. Tang, Li,

Zhou, Phoon, and Zhang (2013) use copulas for constructing bivariate distributions

system reliability. Z.-w. An, Zhang, and Wang (2015) develop a reliability model for

wind turbines based on failure parts correlation which is modelled using copulas.

Z. An and Sun (2017) use copulas for modelling multiple dependent competing fail-

ure processes with shock loads above a certain level. D.-Q. Li et al. (2015) use copu-

las to construct the bivariate distribution of shear strength parameters and discuss

its impact on Geotechnical System Reliability.Shen, Zhang, Zhuang, and Guo (2018)

use mixed copulas to model the dependent function failure modes and evaluate the

reliability of the Gear Door Lock System (GDLS).

One copula function can describe one specific dependence structure, but by

mixing multiple copulas, one can capture multiple dependencies. For instance,

Eryilmaz (2014) applied Clayton and Gumbel copulas for dynamic reliability mod-
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elling of dependent components of weighted-k-out-of-n systems. X. Wang, Wang,

Chang, and Li (2020) use Clayton, Gumbel and Frank copulas to capture the cor-

relation between contact fatigue failure and wear failure of bearings and establish a

reliability model of rolling bearing based on multi correlation failure node. Morales-

Nápoles, Paprotny, Worm, Abspoel-Bukman, and Courage (2017); Morales Nápoles,

Worm, Abspoel-Bukman, Huibregtse, and Courage (2015) use one parameter bi-

variate copulas, Gaussian, Gumbel and Clayton, to analyse rain gauge data in the

Netherlands and provide a better assessment of risks related to extreme rainfall

events. Behrensdorf, Broggi, and Beer (2019) use multivariate copulas to represent

realistic dependency structures between different networks.

2.2.5 Criticism of Copulas

Copulas have also been criticised. Particularly, to better inform and caution the

audience about the problems associated with copulas Mikosch (2006) gave several

criticisms. Some of these criticisms are listed below, as presented by Balakrishnan

& Lai, 2009.

• "There are no particular advantages of using copulas when dealing with mul-

tivariate distributions. Instead, one can and should use any multivariate dis-

tribution which is suited to the problem at hand and which can be treated by

statistical techniques."

• "The marginal distributions and the copula of a multivariate distribution are

inextricably linked. The main selling point of the copula technology - sepa-

ration of the copula (dependence function) from the marginal distributions -

leads to a biased view of stochastic dependence, in particular when one fits a

model to the data."

• "Various copula models (Archimedean, t-, Gaussian, elliptical, extreme value)
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are mostly chosen because they are mathematically convenient; the rationale

for their applications is murky."

• "Copulas are considered as an alternative to Gaussian models in a non- Gaus-

sian world. Since copulas generate any distribution, the class is too big to be

understood and to be useful."

• "There is little statistical theoretical theory for copulas. Sensitivity studies of

estimation procedures and goodness-of-fit tests for copulas are unknown. It

is unclear whether a good fit of the copula of the data yields a good fit to the

distribution of the data."

We acknowledge that some of the concerns about how copulas should be used

and which family should be chosen, i.e. not only because they are mathematically

convenient, were reasonable, especially when there was a little statistical theoreti-

cal theory about copulas. If we consider this research study, where we investigate

the dependence between unknown rates of events modelled using copulas, to our

knowledge relevant studies have not yet been proposed in the literature.

On the other hand, we do not agree with the first criticism where it states that

one could use any multivariate distribution instead of using copulas. In Bayesian

methodology, we select a parametric distribution family and choose the appropri-

ate parameters which will best represent our beliefs about the ’true’ prior. However,

it may not be possible to represent our beliefs about the ’true’ prior with any of the

standard parametric distributions, or any multivariate distribution; and even if we

can, there are cases where two distributions are visually identical but in fact, are en-

tirely different. Therefore, copulas can fill this gap and provide a more informative

alternative that will best represent our beliefs.

Despite the criticism, copulas provide a number of flexibilities, e.g. can bind

multiple distribution functions with no restrictions, and capture complex depen-

dence structures by providing flexibility in terms of marginal choice, which are valu-
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able in modelling, therefore they have piqued the interest of researchers and more

and more studies contribute to knowledge. We aim to investigate copulas by incor-

porating them within an empirical Bayesian framework.

2.3 Bayesian and Empirical Bayesian Approach

Bayesian methods have been first introduced by Rev. Thomas Bayes, a minister

and amateur mathematician, in 1763. In the 19th century, Laplace, Gauss and oth-

ers showed some interest in the area, but other statisticians ignored and opposed

the approach in the early 20th century. Fortunately, around 1950, the Bayesian

methods have been actively advocated by statisticians such as L. J. Savage, Bruno

de Finetti and many others (Carlin & Louis, 2008).

The Bayesian approach considered to be an increasingly effective and practical

alternative to the classic, or frequentist, statistical philosophy for statistical analysis

and design (Carlin & Louis, 2008). Different philosophical positions, conceptual jus-

tifications, arguments or mathematical proofs led to philosophical battles between

the classical and Bayesian statisticians over the years. In the classical approach, as

Carlin and Louis (2008) define, the procedures are evaluated based on imagining

repeated sampling from the model, or the likelihood, which defines the probability

distribution of the observed data conditional to some unknowns. Then, the prop-

erties of this procedure are evaluated within this sampling framework by assigning

fixed values to those unknown parameters. On the other hand, the Bayesian ap-

proach requires not only a sampling model but also a prior distribution. The latter

refers to our prior knowledge about all unknown parameters in the model. The con-

ditional distribution of these unknowns given the observed data (posterior) is then

obtained using the likelihood and the prior. In Bayesian analysis, the procedures

can be evaluated through the repeated sampling of unknowns from the posterior

distribution given the observed data. The empirical Bayesian (EB) approach differs
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from the classic Bayesian approach, as it occurs when we allow the observe data to

play some role in determining the unknown parameters and consequently, the prior

distribution.

Bayesian methods offer an alternative perspective, and often provide solutions

to practical statistical problems. However, there were concerns regarding the practi-

cal issues arise from the application of such methods. While the methods were the-

oretically simple, required computing power and simulation techniques for evalu-

ating complex integrals which at that time was challenging and discouraging. From

a computational perspective, the issue has mainly been resolved (Carlin & Louis,

2008). We now present some of the advantages of using Bayesian methods, as pre-

sented in (Berger, 2013),

• ’Bayesian methods provide the user with the ability to incorporate prior infor-

mation formally.’

• ’All Bayesian analyses follow directly from the posterior; no separate theories

of estimation, testing, multiple comparisons, etc. are needed.’

• ’Bayes and EB procedures possess numerous optimality properties.’

Bayesians and classical statisticians have been criticising each other for multi-

ple reasons over the years (see Carlin & Louis, 2008). Notably, Bayesian approaches

have been criticised for not being able to deal with various examples, for over-relying

on computationally convenient priors, and for being too fragile in their dependence

on the priors; and classical approaches for not being able to incorporate relevant

prior information, for not being efficient, flexible and coherent (i.e. ’a failure to pro-

cess available information systematically, as a Bayesian approach would’ (Carlin &

Louis, 2008). Classic statistical approaches do not dependent any prior beliefs, re-

sulting in claims of ’objectivity’ which are often considered illusory by the Bayesians

who believe that the underlying data mechanisms of such methods require ’myri-
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ads’ assumptions. In contrast, Bayesians often remark that their only assumption is

the prior family selection which should be explicitly declared and checked.

2.3.1 Bayesian Models

Bayesian models are considered parametric models in general, or stochastic mod-

els as relevant probability distribution functions are assigned to random variables

or parameters involved. In contrast to the ’classical’ parameter models, Bayesian

models require a prior probability distribution or simply prior for the unknown pa-

rameter of the model. Within this context, the unknown parameter is considered

a random variable rather than constant. Bayesian models consist of the following

basic components,

• The (observed) data, denoted by y ,

• The (unknown) model parameter, denoted by θ,

• The data – model distribution or likelihood, specified by f (y |θ) or L(y |θ),

• The prior distribution, specified by f (θ) or π(θ).

We now present the classic two-stage Bayesian model and address its main dif-

ference compared to the empirical Bayes model. We initially specify the likelihood

Y |θ given the unknown parameter θ, as follows

Y |θ ∼ f (y |θ).

In Bayesian methodology, the unknown parameter θ is not fixed but a random quan-

tity or variable. The probability distribution of θ summarises and describes any

prior knowledge or information about this quantity, and it is called prior distribu-

tion,

θ ∼ f (θ) or π(θ).
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Note that either Y or θ can be vectors, and the prior can be parametric or nonpara-

metric. If the prior distribution has parameters, these are known as hyperparame-

ters. The sequence of priors and parameters lead to hierarchical models in which

the final step requires all remaining parameters to be known. In contrast to classic

Bayesian model, the empirical Bayes methodology involves the estimation of the

prior parameters by using the observed data available. Practically, the name ’em-

pirical Bayes’ arises from the fact that empirical data are used for estimating x and

updating the prior distribution. The hyperparameters can be estimated using the

maximum likelihood estimation method (MLE) or the method of moments (MME).

2.3.1.1 Posterior and predictive distribution

Inference about the unknown parameter θ is based on the posterior distribution,

or estimated posterior in EB. The posterior distribution of θ is defined by

π(θ|y) = f (y |θ)π(θ)

f (y)
,

where,

f (y) =


∫

f (y |θ)π(θ)dθ , if θ is continuous

∑
θ f (y |θ)π(θ) , if θ is discrete

and is obtained following the Bayes’ Theorem. Practically, the posterior distribution

is the normalised product of the likelihood and the prior distribution. Since f (y)

is a constant quantity with respect to parameter θ, the posterior distribution may

also be expressed as proportional to the product of the likelihood and the prior as

follows,

f (θ|y) ∝ f (y |θ) ·π(θ).

Determining the posterior distribution requires the calculation of the normali-

sation constant f (y), which sometimes can be challenging or event not analytically
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tractable. Considering now the predictive ability of Bayesian models, we define the

predictive distribution for a future observation y?, which is independent of y given

the parameter θ, as follows,

f (y?) =
∫

f (y?|θ)π(θ) dθ.

As Puza (2015) stated, the predictive distribution summarises "the information

concerning the likely value of a new observation, given the likelihood, the prior and

the data we have observed so far."

2.3.1.2 Prior distribution

In the Bayesian approach as already mentioned, we assign probability distribu-

tions to describe not only the observed data but also the unknown model parameter

θ. Mainly, our belief and any other relevant information we may have about the pa-

rameter θ are formed in a subjective probability, before even looking at the data

y . Then this subjective probability combined with all information in the observed

data, the posterior distribution from which our inference is derived emerges. How-

ever, determining the appropriate form of the prior distribution may be challenging.

The prior distributions are elicited based on information from relevant historical

studies or expert judgement, or both.

2.3.1.2.1 Elicited priors

We consider two different types of uncertainty in modelling, the aleatory and the

epistemic. Aleatory uncertainty represents the pure inherent randomness in the

observations, whilst epistemic uncertainty corresponds to the state of knowledge

about the quantity of interest. The more data we observe, the more we learn, result-

ing in reduced epistemic uncertainty. Within the Bayesian methodological frame-

work, the aleatory uncertainty is captured through the likelihood distribution func-
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tion, while the prior distribution represents the epistemic uncertainty. The elicita-

tion process requires experts expressing their beliefs about the unknown quantity

in the model, and hence, the epistemic uncertainty in the form of a subjective prob-

ability distribution.

The elicitation process for constructing subjective probabilities can be a time

- consuming and challenging process (Carlin & Louis, 2008). A simple approach

describing the process is the following. Suppose that θ is univariate, we first con-

sider a manageable number of "possible" θ values and then, we assign probability

masses to each. The sum of the assigned probabilities needs to be 1, and their con-

tribution needs to reflect on our beliefs as closely as possible. However, even if both

conditions are satisfied, there are cases where some elicited priors provide more

useful inference than others (Quigley, Bedford, & Walls, 2014). Another approach

is to simply select a parametric distribution family and choose the appropriate pa-

rameters which will best represent our beliefs about the ’true’ prior. Although the

latter approach seems simple, we address two limitations. First, it may not be pos-

sible to represent our beliefs about the ’true’ prior with any of the standard para-

metric distributions; and second, even if we can, there are cases where two distri-

butions are visually identical but in fact, are entirely different. For example, the

distributions Normal(0, 2.19) and Cauchy(0, 1) are visually similar, have identical

percentiles (25th, 50th, 75th) but completely different properties (Carlin & Louis,

2008).

In addition, structured elicitation processes have also been developed for con-

structing subjective probability distributions (for further see Quigley et al., 2014;

Carlin & Louis, 2008). Such processes usually require an ’expert’ and an ’analyst’

and aim to "minimise the impact of biases inherent in surfacing and capturing sub-

jective expert judgement" (Quigley et al., 2014). The expert assesses the uncertainty

about the quantity of interest, and the analyst collects relevant data and information

from the expert and formulates the prior distribution.
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Since the elicitation process relies on an expert’s belief, it is almost impossible to

identify a single correct subjective probability as each person interprets and forms

their beliefs from different perspectives and through personal experience. However,

calibration and information measures can be used to help develop proper scoring

rules for creating priors via mathematical aggregation of multiple beliefs. Assess-

ments of calibration can be obtained when the subjective probabilities can be com-

pared to observed realisations or when observations of the quantity of interest are

available or can be generated from the predictive distribution. The information

measure can be assessed by calculating the mean squared error of the difference

between the observed realisations and the elicited probabilities or based on infor-

mation scores.

2.3.1.2.2 Conjugate priors

When we select the prior from a family distribution that is ’conjugate’ with the dis-

tribution describing the data (likelihood), the posterior distribution belongs to the

same family as the prior. Typically, such prior selections are considered more com-

putationally convenient than others as they lead to well-defined posteriors and sim-

plify calculations required. If the likelihood and the prior are not conjugate, the

posterior cannot be defined by a well - known distribution function and therefore,

we require numerical integration or Monte Carlo simulation methods for evaluating

complex integrals.

2.3.1.2.3 Empirical prior elicitation methods

There are multiple other methods to construct prior distributions (for more details

see Carlin & Louis, 2008). In contrast with all other methods mentioned previously,

the empirical estimation method uses the observed data to determine the prior.

Quigley and Walls (2018) developed a method for constructing subjective proba-

bility distributions by combining expert judgement and empirical data within an
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empirical Bayes framework.

The Empirical Bayes approach captures the epistemic uncertainty through ex-

perts identifying pool of analogous problems for which there is data and as such the

data can be used to estimate the prior (Quigley & Walls, 2018). The empirical data

are ’pooled’ to estimate the unknown parameters of the prior, and the posterior es-

timate is the weighted average between the individual and the pool. The method of

moments (MME) and the maximum likelihood estimation method (MME) can be

used for estimating the prior parameters.

2.3.2 Bayesian Inference

2.3.2.1 Point estimation

Once the posterior distribution or density has been determined, the Bayesian

point estimate of the unknown model parameter θ can be obtained. Mainly, there

are three point estimates which are presented below (Puza, 2015).

• Posterior mean,

E(θ|y) =


∫
θ f (θ|y)dθ , if θ is continuous,∑

θ θ f (θ|y) , if θ is discrete.

• Posterior mode,

Mode(θ|y) = any values m ∈ℜ which satisfies

f (θ = m|y) = max
θ

f (θ|y)

or l i m
θ→m

f (θ|y) = sup f (θ|y),

or the set of all such values.
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• Posterior median,

Medi an(θ|y) = any value m of θ such that

P (θ ≤ m|y) ≥ 1/2 and P (θ ≥ m|y) ≥ 1/2,

or the set of all such values.

2.3.2.2 Interval estimation

The statement "the probability that θ lies in C given the observed data y is at

least (1−α)" gives the ’informal’ definition of the confidence interval. The formal

definition of the ’Bayesian confidence interval’ is given below.

Definition. Bayesian confidence interval

A 100× (1−α)% confidence interval for θ is a subset C of Θ such that,

P (C |y) ≥ 1−α ⇒
∫

C
p(θ|y) dθ ≥ 1−α,

where integration is replaced by summation if θ is discrete.

2.3.3 Empirical Bayes Applications in Risk

Bayesian and empirical Bayesian models have been widely used within the con-

text of risk and reliability over the years. Notably, the two-stage or hierarchical

Bayesian model was introduced by Kaplan (1983, 1985) for determining failure rates

within a probabilistic risk analysis context. Kaplan (1983) described the two-stage

Bayesian model as ’a simple procedure which operates on the data in such a way

that the output of the first stage, i.e. the posterior distribution of the first stage,

becomes the prior distribution of the second stage’. Iman and Hora (1989) used

two-stage methodology for modelling recovery times with an application to the loss

of off-site power at nuclear power plants. Hora and Iman (1990) used two-stage

Bayesian modelling of initiating event frequencies at nuclear power plants. Bunea

39



Chapter 2. Literature Review

et al. (2005) performed different two-stage Bayesian models, comparing them to the

one-stage model (Vaurio, 2005), for analysing reliability data for nuclear power fa-

cilities (called ZEDB project).

Moreover, estimating rare events or eliciting a prior when few or even zero oc-

currences observed can also be challenging. One way to overcome this challenge

is following empirical Bayes inference methods. When using empirical Bayesian

methods, the events of each process are pooled for estimating each event rate. Con-

sequently, each rate is defined as the weighted average between the pooled event

rate and the frequency of the event observed from data. Usually, Bayesian models

suggest that the events are realised from Poisson distributions, which depend on

the event rate and the exposure time for each event. There are many approaches

which combine Poisson process data with empirical Bayes (EB) methods in risk

analysis. For example, Ferdous, Uddin, and Pandey (1995) use EB to support in-

ference for the Weibull distribution within a software reliability growth context and

Vaurio (2002, 2005) discuss the application of EB for estimating the typical cause

failure rates. Vaurio and Jänkälä (2006) use EB for failure rates and probabilities

estimation methods within a Poisson modelling framework, Quigley, Bedford, and

Walls (2007a) use EB for estimating the rate of occurrence of rare events within a

Homogeneous Poisson process framework in a railway safety model, Quigley, Bed-

ford, and Walls (2009) use EB for estimating the reliability development of one-shot

device and Quigley and Walls (2011) mix Bayes and EB to anticipate the realisation

of engineering concerns. Quigley, Hardman, Bedford, and Walls (2011) combine EB

and expert judgement for estimating rare event frequency motivated by a Proba-

bilistic Risk Assessment (PRA) project. They propose a novel and robust, although

partially subjective, EB method in which a pool of events is used for estimating the

frequency of rare events, and experts assess homogenisation factors under the as-

sumption that events are generated from a Homogeneous Poisson Process.

In Bayesian inference, the event rates of each process are assumed to be statisti-
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cally independent, given some parameters. If these unknown parameters are hyper-

parameters, can then be fully specified through the prior distribution. In the pres-

ence of correlation, a multivariate distribution can be defined for capturing the de-

pendency between all unknown parameters. Then by applying the Bayes Theorem

and considering the observed data, the rates estimates can be updated. Thereby, the

underlying dependence on the rates can be incorporated into the Bayesian mod-

elling procedure, which primarily ensures coherent and theoretically sound rates

estimates, and secondarily, allows the rates estimates to be informed based on in-

formation for multiple events. Considering dependency or not, the posterior distri-

bution is not always analytically traceable. Therefore, numerical integration, Monte

Carlo or Markov Chain Monte Carlo (MCMC) methods are of need, and hence can

be computationally intensive (Gelman et al., 2013).

Considering dependency within the Bayesian methodological framework, Quigley

et al. (2013) developed a Bayes linear Bayes model for correlated event rates. They

consider that events generated from a homogeneous Poisson process and Gamma

prior distributions; and, the correlation between the rates is modelled using a Hy-

pergeometric function. Even if this approach performs significantly well compared

to the full Bayesian model, it has some limitations. Mainly, the subjective character

of the proposed method, which requires expert judgement for specifying the corre-

lation coefficient on the rates could be considered challenging. Also, the choice of

the marginal distributions and the dependence structure could be considered re-

stricted and challenging in situations where other marginal distributions would be

more appropriate or when the dependence structure is more complicated. There-

fore, the need for creating a method that considers dependency between multiple

event rates and provides flexibility in terms of marginal choice and dependence

structure has motivated this study.

41



Chapter 2. Literature Review

2.4 Research Gaps and Discussion

Estimating multiple event rates is challenging, especially when these unknown

rates are correlated. There are problems in supply chain risk, safety risk analysis of

a national railway network and reliability, where inference of multiple event rates

in the presence of dependency is considered (see Quigley et al., 2013). Modelling

approaches to these problems usually assume that the event rates of each process

are conditionally statistical independent (Quigley et al., 2011). The underlying de-

pendency between the event rates is assessed through subjective inference methods

or require expert judgement; or is obtained empirically using the maximum likeli-

hood estimation method or the method of moments (Quigley et al., 2013). In addi-

tion, the dependence structure between multiple event rates can be comparatively

complex and therefore, multivariate distribution functions are of need to describe

such structures. According to the literature, copula functions can be used for mod-

elling and capturing such complex dependence structures (Nelsen, 2007). However,

to our knowledge, empirical Bayesian methods combined with copulas within this

context, i.e. prior copula, have not yet been explored or developed.

This research aims to fill this gap and contributes to the research field by devel-

oping an inference framework to account for dependency between multiple event

rates realized from Poisson processes using copulas. We investigate the underly-

ing dependence on the rates and not the correlation on the realisations of events

(Poisson process data), implying that the underlying dependence on the rates is

driven by the operations within organisations rather than the occurrence of rare

or extreme events. Many studies in risk and supply chain area have been derived

showing the existence of correlation between operations within organisations. For

example, management culture within organisations can have a similar impact on

multiple outcomes. Tseng (2010) investigate the relationship between organiza-

tional culture and knowledge conversion on corporate performance. Their results
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suggest that both organizational culture and knowledge conversion are positively

correlated with the corporate performance. In particular, as they state ’an adhoc-

racy culture enables knowledge conversion and enhances corporate performance

more than clan and hierarchy cultures’. Of particular interest are situations where

we anticipate low rates of occurrences which are relatively more correlated com-

pared to the high. With emphasis on capturing the left tail dependency, an empirical

Bayesian inference method combined with Clayton copula is proposed. We aim to

evaluate the proposed method and answer to the following key research question,

R.Q. How good are the assessments of mean rates when using a moment - based in-

ference approach within an Empirical Bayes method assuming dependency be-

tween the rates?

The empirical Bayes methodological framework involves the estimation of the

prior parameters using only the empirical count data available. The maximum like-

lihood estimation method or the method of moments can be used for estimating the

marginals prior parameters; however, estimating the copulas dependence parame-

ter can be challenging. The multivariate prior distribution cannot always be analyt-

ically expressed, as are its derivatives or moments. To our knowledge, methods for

describing the relationship between Poisson process data and prior dependency or

estimating the copulas’ dependence parameter within this context, i.e. prior copula,

have not yet proposed in the literature. To bridge this gap, we initially investigate if

there is a relationship between the empirical data and the prior dependence pa-

rameter and further how it can be explicated within this context. Therefore, the key

research question to be answered is,

R.Q. How to estimate the dependence parameter of the Clayton copula with Gamma

marginals using only empirical data realized from Poisson processes?

This research also investigates the impact of not accounting for dependency by

providing an application of the proposed method. In particular, we propose meth-
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ods for ranking. To our knowledge, there is a gap in the literature about methods

for ranking correlated event rates, and therefore we shall focus on this area. Rank-

ing under uncertainty can be a complicated process, and the final ranking result

can be affected by various factors. Although much of our discussion is relevant to

ranking on event rates, we concentrate on the area of supplier ranking. We believe

that the methods we discuss are generally applicable whatever measures are chosen

and for whatever purpose. Therefore, motivated by the challenges in supply chain,

we propose a Bayesian method for supplier ranking considering the underlying de-

pendence between the late delivery rate and the non – conformance rate. The key

research question to be answered is,

R.Q. What is the impact of accounting for dependency in the context of ranking

based on correlated event rates?

In the next chapter, we will specify the modelling context of this research, and

define the empirical Bayesian model combined with Clayton copula. Methods for

estimating the prior parameters and the posterior expectations will also be dis-

cussed in the following.
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Modelling Context

3.1 Introduction

Event rates of each process can be assumed to be statistically independent, given

some parameters. If these unknown parameters are hyperparameters, can then be

fully specified through the prior distribution (Carlin & Louis, 2008). In the pres-

ence of correlation, a multivariate distribution can be defined for capturing the de-

pendency between all unknown parameters. Then by applying Bayes Theorem and

considering the observed data, the rates estimates can be updated. Thereby, the

underlying dependence on the rates can be incorporated into the Bayesian mod-

elling procedure, which primarily ensures coherent and theoretically sound rates

estimates, and secondly, allows the rates estimates to be informed based on infor-

mation for multiple events.

We develop an empirical Bayes inference method based on a multivariate Pois-

son - Gamma probability model considering dependency on the prior captured by

a Clayton copula. The proposed model aims to capture both aleatory and epistemic

uncertainties. We assume that events are generated from a homogeneous Pois-

son process capturing the pure inherent randomness in the observations, i.e. the

aleatory uncertainty. Epistemic uncertainty is represented by the prior where the
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marginal distributions of event rates are Gamma, and the underlying correlation

is captured by the Clayton copula. Typical observable data are number of events,

which lead to Poisson distribution, depending on the event rate and the exposure

time for each event. The Clayton copula is chosen for modelling the correlation be-

tween event rates. The Clayton copula best describes left tail dependence structure,

where lower rates are considered highly correlated compared to higher. If we now

consider our motivation for this study, the copula choice is not unreasonable. We

are investigating the underlying dependence on the rates and not the correlation on

the realisations of events (Poisson process data), implying that the underlying de-

pendence on the rates is driven by the operations within organisations rather than

the occurrence of rare or extreme events. Our proposed empirical Bayes with Clay-

ton copula model along with the classic empirical Bayes model in which the rates of

events are considered independent, are defined in Sections 3.2 and 3.3, respectively.

3.2 Empirical Bayes with Copula Method

This method incorporates copulas within an empirical Bayes context, which

aims to present and propose a new method for estimating multiple event rates as-

suming dependency on the rates. Figure 3.2.1 illustrates our methodological frame-

work for the development of the empirical Bayes with Clayton copula model.
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Figure 3.2.1: Diagram showing methodology followed for this study.

We consider conditionally independent bivariate Homogeneous Poisson Pro-

cesses given their underlying rates. However, dependency in the epistemic uncer-

tainty of these rates is allowed, as captured through a Clayton copula with Gamma

marginal distributions for the prior distribution.

The prior distribution describes the variability of the rate of events within a pool,

even before observing any data. The prior distribution is the probability density

function measuring the Likelihood of an event, randomly chosen, having a rate of

event of λ. We consider Gamma marginals as follows,

Λ j i ∼Gamma(α j ,β j ), j = 1,2, i = 1,2, · · · ,m

π(λ j i ) =
β
α j

j

Γ(α j )
λ
α j−1
j i e−β jλ j i , λ j i , α j , β j > 0.

Having the marginal distributions of the rate of events, we model their joint re-

lationship by using a copula function. Clayton copula (bivariate case) with depen-

dence parameter θ and Gamma marginal distributions was chosen. The prior has
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the following probability distribution function,

c(λ1,λ2) = c(F (λ1),F (λ2)) · f (λ1) · f (λ2)

where F (·) is the cumulative distribution function of the Gamma distribution, f (·) is

the Gamma density probability function and c(u, v) is the probability density func-

tion of the Clayton copula which has the following form,

c(u, v) = (θ+1)(uv)−(θ+1)(u−θ+ v−θ−1)−(2θ+1)/θ, θ ∈ (0,∞).

The rate of events follows a constant rate over time, which implies a Homoge-

neous Poisson Process (HPP). The number of events that are realized over time in-

terval ti is denoted by the variable N j i . The distribution of N j i is Poisson and has

the following probability density function,

N j i ∼ Poi sson(λ j i ti ) , j = 1,2, i = 1, · · · ,m

P (N j i = n j i |λ j i ) = (λ j i ti )n j i e−λ j i ti

n j i !
, λ j i > 0, ti > 0, n j i = 0,1, · · · .

Following the empirical Bayesian methodology, the next step involves the prior

specification, where all prior parameters (α1,α2,β1,β2,θ) should be estimated. The

estimated marginal parameters (α̂ j , β̂ j ) for j = 1,2 are consistent estimators ob-

tained using the Method of Moment (MME) presented in Section 3.4. Knowing that

there is a closed-form formula for the Kendall’s tau and the dependence parameter

of a bivariate Clayton copula, we obtain the dependence parameter estimate θ̂ by

obtaining the Kendall’s tau estimation (see Chapter 4).

τ= θ

θ+2
⇒ θ = 2 ·τ

1−τ .

After obtaining the prior estimates, the prior distribution is now updated. The fi-
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nal step of this method refers to the posterior distribution specification, which is not

analytically traceable. Numerical methods need to be used to calculate the mean of

the posterior distribution for the i th event. Instead of numerical integration meth-

ods, a Monte Carlo - Simulation method is proposed for obtaining the expectations

of the posterior distribution (see Section 3.5). Therefore, the empirical Bayes esti-

mate of λ j i is defined as the mean of the posterior distribution,

E(λ j i |N1i , N2i ) =

∞∫
0

∞∫
0
λ j i × c(λ1i ,λ2i )×Poi s(λ1i )×Poi s(λ2i ) dλ1i dλ2i

∞∫
0

∞∫
0

c(λ1i ,λ2i )×Poi s(λ1i )×Poi s(λ2i ) dλ1i dλ2i

,

λ̂ j i = E(λ j i |N1i , N2i ) , j = 1,2 , i = 1,2, · · · ,m.

3.3 Classic Empirical Bayes Model with Independent Event

Rates

We now present the classic Gamma - Poisson empirical Bayesian model, where

no underlying dependency on the rates is considered. The rate of events follows a

constant rate over time, which implies Homogeneous Poisson Processes (HPP). The

number of events that are realized over time interval ti is denoted by the variable

N j i . The distribution of N j i is Poisson and has the following probability density

function,

N j i ∼ Poi sson(λ j i ti ) , j = 1,2, i = 1, · · · ,m

P (N j i = n j i |λ j i ) = (λ j i ti )n j i e−λ j i ti

n j i !
, λ j i > 0, ti > 0, n j i = 0,1, · · ·

We note that N1i , N2i are assumed conditionally independent given λ1i ,λ2i . The

realization from the HPP are assumed to be conditionally independent given the
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rates. The marginal prior distributions of the rates are chosen to be Gamma as fol-

lows,

Λ j i ∼Gamma(α j ,β j ), j = 1,2, i = 1,2, · · · ,m

π(λ j i ) =
β
α j

j

Γ(α j )
λ
α j−1
j i e−β jλ j i , λ j i ,α j ,β j > 0.

We then use the Method of Moments (see Section 3.4) to estimate the parame-

ters of the prior distribution which are the Gamma parameters (α1,β1,α2,β2). After

obtaining the moment estimators, the prior distribution is updated. The final step

refers to the calculation of the mean of the posterior distribution. In this case, the

posterior distribution can be described by a well-known distribution function. Par-

ticularly, the posterior distribution is Gamma with the following density function,

π(λ j i |N j i ,α,β) =
(β+ ti )α+n j iλ

α+n j i−1
j i e−(β+ti )λ j i

Γ(α+n j i )
.

Finally, the empirical Bayes estimate of the rate of event, λ j i , is the expectation

of the posterior distribution and is defined as follows,

E(λ j i |N j i ) =
∞∫

0

λ j iπ(λ j i |N j i ,α,β) dλ j i

= α̂+n j i

β̂+ ti

= λ̂ j i

3.4 Method of Moments Estimators

This is a method to estimate model parameters by matching the average mo-

ments observed in the data with the theoretical moments from the model and solv-

ing for the unknown parameters. For the use of the method of moments, the first
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two moment of N j i are required,

E(N j i ) = Eλ j i

[
E(N j i |λ j i )

]= α j

β j
ti ,

E(N 2
j i ) = Eλ j i

[
E(N 2

j i |λ j i )
]
= α j

β j
ti +

α j (α j +1)

β2
j

t 2
i .

Having the moments of N j i , we obtain the moment estimates of the Gamma

marginal parameter as follows,

α j

β j

m∑
i=1

ti =
m∑

i=1
N j i

α j

β j

m∑
i=1

ti + α j (α j+1)

β2
j

m∑
i=1

t 2
i =

m∑
i=1

N 2
j i

⇒



α̂ j = U 2

W −U 2

β̂ j = U
W −U 2

where,

U =

m∑
i=1

N j i

m∑
i=1

ti

, W =

m∑
i=1

N 2
j i −

m∑
i=1

N j i

m∑
i=1

t 2
i

, for j = 1,2.

Notably, the moment estimators are consistent, which means as the sample size

increase towards infinity, the estimated parameters will converge with the true val-

ues, as presented by Quigley et al., 2013. Under the assumption that the Gamma

marginal distributions are identically distributed meaning that they have equal shape

and rate parameters, we consider the pool as one sample and calculate the moment

estimators as follows,

α
β

2m∑
i=1

ti =
2m∑
i=1

Ni

α
β

2m∑
i=1

ti + α(α+1)
β2

2m∑
i=1

t 2
i =

2m∑
i=1

N 2
i

⇒



α̂= U 2

W −U 2

β̂= U
W −U 2
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where,

U =

2m∑
i=1

Ni

2m∑
i=1

ti

, W =

2m∑
i=1

N 2
i −

2m∑
i=1

Ni

2m∑
i=1

t 2
i

, for j = 1,2.

3.5 Monte Carlo Simulation – Summation Method

The posterior distribution is not always analytically traceable. Therefore, nu-

merical integration methods are required for obtaining the empirical Bayes esti-

mates by computing the posterior expectations. In numerical integration methods,

we evaluate the integral over continuous function by computing the value of the

function a finite number of points. We can obtain the desired accuracy by increasing

the number of points, which in some situations can be computationally intensive.

Numerical integration methods, in general, are either stochastic and simulation-

based methods such as Monte Carlo, or deterministic such as many numerical inte-

gration methods like Simpson’s Rule (Gelman et al., 2013).

We propose a simulation – summation method for calculating the posterior ex-

pectations, which is based on generated random samples from the prior distribu-

tion. We denote that desired accuracy of the simulation can be achieved by gener-

ating more samples. Description of the proposed simulation – summation method

is presented below.

The empirical Bayes estimate of λ j i is the mean of the posterior distribution,

λ̂ j i = E(λ j i |N1i , N2i ), for j = 1,2 , i = 1,2, · · · ,m,
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where

E(λ j i |N1i , N2i ) =

∞∫
0

∞∫
0
λ j i × c(λ1i ,λ2i )×Poi s(λ1i )×Poi s(λ2i ) dλ1i dλ2i

∞∫
0

∞∫
0

c(λ1i ,λ2i )×Poi s(λ1i )×Poi s(λ2i ) dλ1i dλ2i

= I j i

NCi
.

The proposed simulation – summation method refers to the calculation of I j i

and NC j i as follows,

I j i =
∞∫

0

∞∫
0

[λ j i ×Poi s(λ1i )×Poi s(λ2i )]× c(λ1i ,λ2i ) dλ1i dλ2i

=1

k

k∑(
λ j k ×exp−λ1k ·λ

n1i
1k

n1i !
×exp−λ2k ·λ

n2i
2k

n2i !

)

=1

k

k∑
(λ j k ×Poi s(λ1k )×Poi s(λ2k ))

NCi =
∞∫

0

∞∫
0

[Poi s(λ1i )×Poi s(λ2i )]× c(λ1i ,λ2i ) dλ1i dλ2i

=1

k

k∑(
exp−λ1k ·λ

n1i
1k

n1i !
×exp−λ2k ·λ

n2i
2k

n2i !

)

=1

k

k∑
(Poi s(λ1i )×Poi s(λ2i ))

by simulating a large enough number of data (k) from the updated prior distribu-

tion.

Given that there is a pool of m bivariate Poisson Process data (n1i ,n2i ) and the

empirical Bayes estimates of the λ1i and λ2i is I1i /NCi and I2i /NCi , respectively.

The simulation algorithm of this method can be summarised by the following steps:

1. Generate k samples of (λ1,λ2)? from updated prior.
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2. For every pair (n1i ,n2i ) within the pool, calculate

λ j i ×Poi s(λ1i )×Poi s(λ2i )

Poi s(λ1i )×Poi s(λ2i ).

for all k pairs (λ1,λ2)?.

3. Calculate the average,

I j i = 1

k

∑(
λ j k ×Poi s(λ1k )×Poi s(λ2k )

)
NCi = 1

k

∑
(Poi s(λ1k )×Poi s(λ2k )) .

3.6 Summary

In this chapter, we specified the modelling context of this research. We defined

our proposed empirical Bayesian with Clayton copula model and the classic empir-

ical Bayesian model within the same context. We presented the method of Moment

estimation (MME) which will be used for estimating the Gamma marginal param-

eters, (αi ,βi ). Moreover, we discussed how challenging is to obtain the posterior

expectations analytically. Therefore, we proposed a Monte Carlo simulation - sum-

mation method to derive the posterior expectations. We also provided the simula-

tion algorithm of the method.

Finally, we addressed that estimating the dependence parameter of the Clayton

prior distribution can be challenging, as there is no relevant literature of methods

or techniques that can be used within this context. Hence, we create an estima-

tion method based on simulations for estimating Clayton’s copula Kendall’s tau. We

present our proposed method in detail in the next chapter.
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Chapter 4

Estimating Kendall’s Tau of the Prior

Clayton Copula

4.1 Introduction

In empirical Bayesian methodological framework, all prior parameters, i.e. the

Gamma marginal parameters and the dependence parameter of the Clayton copula,

need to be estimated by using the empirical data available. Well known methods

can be used for estimating the Gamma marginal parameters, e.g. MME and MLE.

In contrast, the estimation of the dependence parameter of the copula through

count Poisson process can be challenging. In our case where Clayton copula is be-

ing investigated, the dependence parameter θ and Kendall’s tau are associated by a

closed-form formula (Nelsen, 2007), τ= θ/(θ+2), so by estimating Kendall’s tau, the

dependence parameter can be obtained.

Therefore, we develop models for predicting Kendall’s tau of the prior Clayton

by using the empirical data available. We also aim to provide closed - form expres-

sions as a function of the count data realised from Poisson processes. Our findings

are derived from a simulation study conducted considering multiple scenarios and

relevant parameters, e.g. sample size, exposure time etc.
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In this chapter, we explicitly discuss the parametric forms of the proposed mod-

els (see Section 4.2), and present the analytical proposed expression for obtaining

an estimate of the Clayton Kendall’s tau (see Section 4.4). Analytical discussion of

our analysis of data and the simulation study is presented in Section 4.3. For further

discussion see Appendix A.

4.2 Parametric Form of the Model

This method incorporates copulas within an empirical Bayes context, which

aims to present and propose a new estimation method for the dependence parame-

ter of the Clayton copula using Poisson process data. We consider conditionally in-

dependent bivariate Homogeneous Poisson Processes given their underlying rates

but allow for dependency in the epistemic uncertainty of these rates as captured

through a Clayton copula with Gamma marginal distributions for the prior distri-

bution. This is discussed in Section 3.2.

Estimating the dependency between the underlying rates based on the observed

count data is challenging. The relationship between the rates is obscured by the

noise in the data introduced by the Poisson Process. Moreover, the dependency

exists between continuously distributed random variables describing the value of

the rates; however, the data, i.e. the number of events realised, are discrete and so

can be a poor discriminator between low rates which they are likely to result in zero

events with or without the presence of dependency.

There is a closed-form formula that describes the relationship between Kendall’s

tau and the dependence parameter of a bivariate Clayton copula (see Nelsen, 2007).

Therefore, we can estimate θ by estimating Kendall’s tau of the prior.

τ= θ

θ+2
⇒ θ = 2 ·τ

1−τ .
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The purpose of this study is to explicate the relationship between key statistics

from the data and Kendall’s tau from the Clayton copula. Under the assumption

that the Gamma marginals are identically distributed (E(Λ1) = E(Λ2) and V ar (Λ1) =
V ar (Λ2))based on findings derived empirically from the simulation study presented

in Section 4.3, the relationship between Kendall’s tau of Clayton copula and Poisson

process data can be described as follows,

τcopul a = f
(
τpoi sson

)+ε ⇒ τcopul a = A×τpoi sson +ε , ε∼ N (0, s)

where A = A(α̂, β̂,m, t ) is a function of the marginal parameter estimates (α̂, β̂), the

size of the pool (m) and the exposure time (t ). The proposed model considers all

parameters involved, so once one knows these parameters can substitute them into

the model and obtain an estimate of the dependence parameter of the Clayton cop-

ula.

According to our simulation study, function A has an affine relationship with

prior mean and can be expressed as, A(α̂, β̂) = a0 + b0 ·
(
α̂

β̂

)
where slope (b0) and

intercept (a0) can be expressed as (power) functions of prior variance,

b0 = a1 ·
(
α̂

β̂2

)b1

, a0 = 1+a2 ·
(
α̂

β̂2

)b2

.

Considering that pool size (m) and exposure time (t ) can be varied, we express the

above coefficients as follows,

a1 = d0 ·md1 · t d2 ,

a2 = c0 ·mc1 · t c2 ,

b1 = e0 ·me1 · t e2 ,

b2 = b2 (not significant change).
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Summarizing, function A can be expressed as a function of the prior marginal

estimates, size of the pool and exposure time, as follows,

A(α̂, β̂,m, t ) =a0 +b0 ·
(
α̂

β̂

)

=
1+a2 ·

(
α̂

β̂2

)b2
+

a1 ·
(
α̂

β̂2

)b1
 ·

(
α̂

β̂

)

=
1+ (c0 ·mc1 · t c2 ) ·

(
α̂

β̂2

)b2
+

(d0 ·md1 · t d2 ) ·
(
α̂

β̂2

)e0·me1 ·t e2
 ·

(
α̂

β̂

)

The non-linear model that predicts the Kendall’s tau of the Clayton copula con-

sidering the Kendall’s tau of the Poisson data, the prior marginal estimates, the pool

size and the exposure time is,

τcopul a =
1+ c0 ·mc1 · t c2 ·

(
α̂

β̂2

)b2

+d0 ·md1 · t d2 ·
(
α̂

β̂2

)e0·me1 ·t e2

·
(
α̂

β̂

)×τpoi sson +ε

where error, ε ∼ N (0, s), and b2,c0,c1,c2,d0,d1,d2,e0,e1,e2 are the unknown coeffi-

cients of the model.

The final step of this method involves the specification of the error, (ε). We define

error/residual as the difference between "real" and "predicted" value of Kendall’s

tau of Clayton copula. The residuals are normally distributed with zero mean and

standard deviation s. We define standard deviation, s, as the Root Mean Squared

Error (RMSE)of residuals,

RMSE =
√

1

n

n∑
i=1

(Residuali )2

=
√

1

n

n∑
i=1

(Reali −Predictedi )2

where n is the sample size. We aim to present a non-linear model that predicts

RMSE of residuals considering the prior marginal estimates, pool size and exposure
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time. RMSE can be expressed as,

RMSE = a ·
(
α̂

β̂

)e

·
(
α̂

β̂2

)d

·mb · t c +εR

where εR ∼ Normal distribution and it is defined as the difference between "real"

and "estimated" RMSE of the residuals.

4.3 Analysis of Data - Simulation Study for Estimating

Kendall’s Tau

4.3.1 Overview

In this section, we report the results of the simulation study conducted for esti-

mating Kendall’s tau of the Clayton copula. We aim to examine the relative accuracy

of the estimates obtained using the proposed non-linear model. Notably, we com-

pare the results obtained under different situations, considering all parameters of

the model, with which we distinguish cases where relatively more accurate results

are expected by identifying the best and worst-case scenarios. We initially examine

the model performance by using the theoretical marginal parameters which imply

the classic Bayes method; however, we then consider the empirical Bayes model by

substituting the prior marginal estimates obtained by using the method of moment

estimation.

The simulation process followed for this study can be summarised as follows. We

initially define the prior distribution with fixed Gamma marginal parameters (under

the assumption that both marginals are identically distributed) and a fixed depen-

dency parameter. We then simulate data from the fully defined prior distribution,

and, we simulate data from the Likelihood. The next step involves the calculation

of the moment estimators for the Gamma marginals. Knowing that the estimators
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have to be positive since α,β ∈ (0,∞), we need to check these values before we pro-

ceed. If they are positive, then the sample is accepted for further analysis. If not, the

sample is rejected as it shows data underdispersion, where the variance is smaller

than the mean. If the sample is accepted, we proceed to the final step, in which we

calculate Kendall’s tau of the prior and the Poisson data for further analysis. The

methodological framework followed for this study is presented in this chapter. Fig-

ure 4.3.1 illustrates a flowchart of the simulation study and presents step by step all

the stages followed throughout the process.
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Figure 4.3.1: Showing methodology followed for the simulation study conducted for esti-
mating the Kendall’s tau of Clayton copula.

In the following, we present the parameters chosen for the study, and we discuss

how different marginal choices may affect the relationship between Kendall’s tau

of the prior and the Poisson data. We also present the closed - form expressions

derived after fitting the proposed model using both theoretical and estimated prior
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parameters.

4.3.2 Chosen Parameters

Sixteen (16) different sets of parameters are chosen for the Gamma marginal dis-

tributions. These parameters are chosen based on different mean and variance val-

ues. We are investigating how the model performs in situations where the marginals’

mean is greater than its variance, the marginals’ variance is greater than its mean,

and both of the marginals have equal mean and variance. Also, we have six (6) dif-

ferent dependence parameters. Value 1 represents relatively weak dependency, and

value 30 shows relatively strong dependency. Moreover, we set nine (9) different

pool sizes and seven (7) different exposure times. We investigate the model perfor-

mance when the size of the pool and the exposure time are relatively small (only 20

observations and exposure time equal to 5), and when it is large enough with larger

exposure time (100 observations with an exposure time of 20). For every different

combination of parameters, we run the simulation process multiple times (1000).

All parameters chosen for this simulation study are presented in Table 4.3.1.

Runs: 1000
Pool size (m): 20, 30, 40, 50, · · · , 100

Exposure time (t): 5, 7.5, 10, 12.5, · · · , 20
Dependency (θ): 1, 2, 5, 10, 20, 30

Marginals:
Mean 5, 10, 20, 40

Variance 2, 5, 10, 20
Total Number of datasets: 16 × 63 = 1008 (for every θ)

Total Number of data: ' 6 000 000

Table 4.3.1: Chosen parameters for this simulation study.
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4.3.3 How Different Marginal Parameter Choices Affect the Rela-

tionship Between Kendall’s Tau of Prior and Poisson Data

To investigate how different marginal parameter choices affect the relationship

between Kendall’s tau of Prior and Poisson data, we use over 6000 different param-

eter combinations. These combinations consist of different mean and variance val-

ues of the Gamma marginals, different pool sizes, exposure times and dependence

parameters. Based on our simulation study, our findings show strong correlation

between Kendall’s tau of Prior and Poisson data when the variance is high, and the

mean is relatively low. Notably, we observe that the best/more prominent and al-

most perfect positive linear correlation occurs when the variance is 20, and the

mean is 5. We also note that this case is considered as the best-case scenario in

all different combinations of pool sizes and exposure times.

Moreover, we expect that the model produces more accurate results when the

marginal variance is high, and the marginal mean is low. We understand that as

we increase the variability within a dataset, is becoming easier to observe the data

and the individuals, and consequently to capture the dependency between the vari-

ables. On the other hand, as we have already addressed, Clayton copula focuses on

left tail dependency. So, we are interested in the dependency of the lower rates,

which occurs when the prior mean has relatively low values, i.e. low rates of occur-

rences. Figure 4.3.2 shows how different marginal parameters affect the correlation

between Kendall’s tau of Prior and Poisson data. There is a strong positive linear

correlation for marginal mean 5 and marginal variance 20; however, when the prior

variance decreases and the mean increases, the correlation is less clear and distinct.

For the latter, the noise in the data introduced by the Poisson Process obscures the

relationship between Kendall’s tau of the prior and the data.
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Figure 4.3.2: Showing the effect of different marginal choices on the correlation between
Kendall’s tau of Prior and Poisson data, with pool size of 50 and exposure time of 10. Differ-
ent colors represent different dependence parameters.

According to the simulation results, the exposure time parameter also affects the

relationship between the two measures. Notably, as the exposure time increases, the

correlation between Kendall’s tau of Prior and Poisson data is becoming more dis-

tinct, and less noise appears in the data. Figure 4.3.3 shows the best-case scenario

where the prior mean is low (mean = 5), the prior variance is high (variance = 20),

and the size of the pool is large (100 observations). Figure 4.3.4 presents the worst-

case scenario where the prior mean is high (mean = 40), the prior variance is low

(variance = 2), and the pool size is relatively small (20).
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Figure 4.3.3: Showing how different values of exposure time t affect the correlation between
Kendall’s tau of Prior and Poisson data. We show the best-case scenario where mean=5, vari-
ance=20 and pool size=100. Different colors represent different dependence parameters.

Figure 4.3.4: Showing how different values of exposure time t affect the correlation between
Kendall’s tau of Prior and Poisson data. We show our worst-case scenario where mean=40,
variance=2 and pool size=20. Different colors represent different dependence parameters.
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Moreover, we denote the influence of the pool size on the correlation between

Kendall’s tau of Prior and Poisson data. As the size of the pool increases the linear

correlation between Kendall’s tau of Prior and Poisson data becomes more distinct,

compared to smaller pool sizes. Figures 4.3.5, 4.3.6 show the effect of the pool sizes

and present the best-case and worst-case scenario, respectively.

Figure 4.3.5: Showing how different pool sizes m affect the correlation between Kendall’s
tau of Prior and Poisson data. We show the best-case scenario where mean=5, variance=20
and exposure time=20. Different colors represent different dependence parameters.
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Figure 4.3.6: Showing how different pool sizes m affect the correlation between Kendall’s
tau of Prior and Poisson data. We show the worst-case scenario where mean=40, variance=2
and exposure time=5. Different colors represent different dependence parameters.

Summarizing, we have explored how different combinations of prior marginal

mean and variance values, pool sizes and exposure times affect the relationship be-

tween Kendall’s tau of prior and Poisson data. We now conclude that all models’

parameters influence the relationship between the two measures differently. In par-

ticular, we expect more accurate results in cases where the prior variance, the pool

size and the exposure time are large and the prior mean is small. In contrast, in

cases where the prior variance is small and the prior mean is large, more noise is

expected in the count data which will result in less accurate estimates of the prior

Kendall’s tau. Table 4.3.2 identifies best and worst-case scenarios across the study.
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Cases
Worst Best

Mean High ↗ Low ↙
Variance Low ↙ High ↗
Pool Size Low ↙ High ↗

Exposure Time Low ↙ High ↗

Table 4.3.2: Showing best and worst case scenario considering all model parameters.

4.3.4 Model Fit

We now examine how the proposed non-linear model discussed in Section 4.2

performs in different situations. Firstly, we fit the model by using the theoretical

marginal parameters and then using the estimates. By doing so, we imply the clas-

sic Bayesian model as opposed to the empirical Bayes model. The main difference

between the two models, empirical and classic Bayes, is that for the latter we are not

using any observed data for estimating and updating the prior distribution; instead,

we are using the already known and fixed marginal parameters. Therefore, we com-

pare both model fits. In the following, we present the model fit results and discuss

the significance of the model coefficients, the overall error and the residuals.

Tables 4.3.3, 4.3.4 summarise the results of the model fit and present the esti-

mated coefficients. We denote that the proposed model performs significantly well.

The residual standard error is 0.1379, 24 iterations needed to convergence, and all

coefficients are significant with a p-value less than 2e−16. It is also worth noting that

coefficient d0 has a relatively small value, therefore ignoring it does not significantly

affect the outcome of the model. However, we decide to keep all parameters in this

study.
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Formula: t au.cop ∼
(
1+ c0 ·mc1 · t c2 ·

(
a

b2

)b2+

+d0 ·md1 · t d2 ·
(

a
b2

)e0·me1·t e2

· (a
b

))×
×t au.poi s

Residual standard error: 0.1379
Number of iterations to convergence: 24

Table 4.3.3: Model fit results.

Estimate Std. Error t value Pr(> |t |)
c0 4.53 0.06 77.62 0.00
c1 -0.13 0.00 -46.61 0.00
c2 -0.79 0.00 -258.11 0.00
b2 -0.79 0.00 -368.26 0.00
d0 0.06 0.00 129.15 0.00
d1 0.42 0.00 262.57 0.00
d2 -0.58 0.00 -367.50 0.00
e0 -0.27 0.00 -166.45 0.00
e1 0.18 0.00 149.60 0.00
e2 0.11 0.00 94.66 0.00

Table 4.3.4: Coefficients of model fit.

Figures 4.3.7, 4.3.8 show a comparison of Kendall’s tau predictions against the

actual prior Kendall’s tau for the worst-case and best-case scenario, respectively. We

acknowledge that there are predictions which exceed the upper and lower limit of

Kendall’s tau range, while τ ∈ (0,1). Therefore, we suggest all values exceeding this

range to be considered as 0 and 1, respectively.

69



Chapter 4. Estimating Kendall’s Tau of the Prior Clayton Copula

Figure 4.3.7: Showing the ’Actual’ and ’Predicted’ values of Kendall’s tau in the worst-case
scenario, where pool size is only 20 (m = 20) and exposure time t = 5. Different colours
represent different values of the dependency.

Figure 4.3.8: Showing the ’Actual’ and ’Predicted’ values of Kendall’s tau in the best-case
scenario, where pool size is 100 (m = 100) and exposure time t = 20. Different colours rep-
resent different values of the dependency.
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Regarding the residuals, which are defined as the difference between real and es-

timated Kendall’s tau values, we create QQ-plots against Normal distribution for all

different sets of parameters chosen. Figures 4.3.9, 4.3.10 show that the model resid-

uals are normally distributed even in the worst-case scenario (mean= 40, variance=
2, m = 20 and t = 5).

Figure 4.3.9: Showing that residuals are normally distributed, even in the worst-case sce-
nario where mean= 40, variance= 2, m = 20 and t = 5.
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Figure 4.3.10: Showing that residuals are normally distributed. Best-case scenario where
mean= 40, variance= 2, m = 20 and t = 5.

Additionally, we compare the distributions of the residuals between the best and

worst case scenarios. Figures 7.3.5, 7.3.6 present the box-plots of residuals for the

best and worst case of this study. In both cases, we notice that as the variance in-

creases, the residuals’ mean approximates zero, and the standard deviation of the

estimate errors decreases, which indicates more certain estimates.
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Figure 4.3.11: Multiple box-plots showing the distribution of residuals for the worst-case
scenario, where mean= 40, variance= 2, m = 20 and t = 5.

Figure 4.3.12: Multiple box-plots showing the distribution of residuals for the best-case sce-
nario, where mean= 40, variance= 2, m = 20 and t = 5.
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4.3.5 Comparison Between Classic and Empirical Bayes Model Fit

Within the empirical Bayesian methodology, we estimate and update the prior

by using the observed Poisson process data; however, this is not the case for the

classic Bayes method. We initially explore how the proposed model performs using

the theoretical priors, which implies the full Bayesian model, and further investi-

gate the empirical case in which the prior estimates replace the theoretical settings.

This is particularly important, as making use of the Poisson process data available

for estimating the copula dependence parameter is one of the motivations for this

study.

To examine the performance of the proposed model using the estimated prior

parameters of each sample obtained from the Method of Moments, we substitute

the theoretical mean and variance values with the estimations. The overall resid-

ual standard error is 0.1384, the number of iterations needed to convergence is 27,

and all coefficients are significant with p-value less than e2−16, suggesting that the

model performs significantly well. Table 4.3.5 summarizes information relevant to

the model performance.

Estimate Std. Error t value Pr(> |t |)
c0 3.08 0.03 91.24 0.00
c1 -0.02 0.00 -7.53 0.00
c2 -0.82 0.00 -305.94 0.00
b2 -0.73 0.00 -470.67 0.00
d0 0.02 0.00 139.80 0.00
d1 0.49 0.00 333.18 0.00
d2 -0.41 0.00 -279.38 0.00
e0 -0.12 0.00 -153.24 0.00
e1 0.27 0.00 210.62 0.00
e2 0.24 0.00 207.82 0.00

Table 4.3.5: Non-linear model fit results using prior marginal estimated parameters.

We now compare the model fit results obtained from the classic and empirical

Bayes. Table 4.3.6 compares both models by summarising the coefficient parame-
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ters, the residuals standard error and the number of iterations needed for conver-

gence. We notice that both models produce similar results. Specifically, regarding

the model coefficients, all are significant for both models; the residual standard er-

rors and the number of iterations needed to convergence are also similar. Findings

suggest that by making use of the empirical data available, we are able to obtain

accurate estimates of the Kendall’s tau for the Clayton copula formed as a prior dis-

tribution within an empirical Bayesian framework.

Classic Bayes Empirical Bayes
Coef. Estimate Coef. Estimate

c0 4.53 3.08
c1 -0.13 -0.02
c2 -0.79 -0.85
b2 -0.79 -0.73
d0 0.06 0.02
d1 0.42 0.49
d2 -0.58 -0.41
e0 -0.27 -0.12
e1 0.18 -0.27
e2 0.11 0.24

Residual Standard Error: 0.1379 0.1384
Iterations to convergence: 24 27

Table 4.3.6: Comparison between classic and empirical Bayes model fit.

4.4 Model Formula

In this section, we present the analytical expressions one can use to estimate

Kendall’s tau of the Clayton copula with Gamma marginals (bivariate case) when

dealing with count data assuming that are generated from Poisson processes. All

parameters needed for this formula can be easily obtained by using only the Poisson

data at hand. Detailed discussion about the analysis of data, along with relevant

results and conclusions can be found in Section 4.3 and Appendix A. Our proposed

formula along with all parameters needed are as follows.
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τClayton =
{

1+3.08 ·m−0.02 · t−0.85 ·
(

â

b̂2

)−0.73

+

+ 0.02 ·m0.49 · t−0.41 ·
(

â

b̂2

)−0.12·m−0.27·t 0.24

·
(

â

b̂

)}
× τpoisson +ε

where,

ε : Error, ε∼ N (0, s),

s = 1.17 ·m−0.41 · t−0.53 ·
(

â

b̂

)0.52

·
(

â

b̂2

)−0.53

,

m : pool size,

t : exposure time,

â : shape parameter estimate of the Gamma marginals,

b̂ : rate parameter estimate of the Gamma marginals.

4.5 Summary

In this chapter, we defined our proposed non - linear regression model for pre-

dicting Kendall’s tau of the prior Clayton. We also presented a non - linear regression

model for predicting the Root Mean Squared Error of the predictions, ensuring that

our model proposed is accurate even in the worst-case scenario. We discussed our

methodology and presented the parametric form of the model addressing all pa-

rameters available, i.e. the exposure time, the pool size, and the Gamma marginal

parameters. We discussed our analysis of data and presented relevant findings de-

rived from a simulation study conducted considering multiple possible scenarios

and parameters. Further discussion of the simulation study in relation to the model

fit can be found in Appendix A.
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Our findings suggest an affine relationship between Kendall’s tau of the prior

and the Poisson data. We observe a strong relationship in cases where the marginal

variance, the pool size and the exposure time are large and the marginal mean is

small. In contrast, a weak relationship occurs in cases where the marginal vari-

ance is small and the marginal mean is large, as more noise is introduced in the

count data. From this relationship, expressions have been derived to enable the

dependency measure of the Clayton copula on a prior to be estimated from Pois-

son process data. These expressions will be used in the next chapter for obtaining

an estimate for the Clayton dependence parameter. Particularly, in Chapter 5, we

will present our simulation and benchmarking studies for evaluating the empirical

Bayesian with Clayton model.
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Inference Methods and Evaluation

5.1 Intoduction

An empirical Bayesian inference method combined with Clayton copula is de-

veloped for estimating multiple correlated event rates. To examine our proposed

model’s relative accuracy and investigate how good the assessments of mean event

rates are when using a moment-based inference approach, we conduct a simula-

tion study. Doing so allows us to assess the impact of different parameter choices,

i.e. weak or strong dependency between rates, size of the pool and exposure time;

and explore cases where relatively more accurate results are expected. Moreover,

to support comparison between our proposed model and existing theory, we con-

sider the classic empirical Bayes method assuming that the prior distributions of the

rates are Gamma. We also investigate what happens if we choose to ignore depen-

dency and perform a classic empirical Bayes method (Poisson - Gamma probability

model); and what are the consequences, if there are any. We then identify cases

where the consequences of our choice are more significant than others.

This chapter presents the simulation and benchmarking studies conducted for

evaluating the empirical Bayes model proposed. The remainder of this chapter is

structured as follows. Section 5.2 details the simulation study. In particular, Section
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5.2.1 discusses the design of the study, Section 5.2.2 explains the algorithm, and Sec-

tion 5.2.3 discusses the simulation results. Section 5.3 provides a detailed discussion

of the benchmarking study. Section 5.4 summarizes this chapter.

5.2 Simulation Study

We design and conduct a simulation study to examine the relative accuracy of

the model discussed in Section 3.2 and investigate how good the assessments of

mean rates are when using a moment-based inference approach within an empir-

ical Bayes method assuming dependency between the rates. The simulation study

allows us to assess the impact of different parameter choices, i.e. weak or strong

dependency between the rates, for a selection of different pool sizes and exposure

times. Moreover, we simulate data from the empirical Bayes with Clayton copula

model with known parameters. This will allow us to see how well the model approx-

imates the real correlated rates in each case and more importantly, in which cases

the model performs relatively better.

5.2.1 Simulation Design

Sixteen (16) different sets of parameters were chosen for the Gamma marginal

distributions. These parameters were chosen based on different mean and variance

values. We are interested to investigate how the model performs in situations where

the marginal mean is greater than the variance, the marginal variance is higher than

the mean, and both of the marginals have equal mean and variance. Also, we choose

to have six (6) different values for the dependence parameter θ. Value 1 represents

weak dependency, and value 30 shows strong dependency. Moreover, we set five (5)

different pool size values and seven (7) different exposure time values. We are in-

terested to see how our model performs when the size of the pool is relatively small

(only 20 observations) and when it is large enough (100 observations). Finally, for
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every combination of parameters discussed above, we run the simulation process

1000 times. All parameters chosen for this simulation study are presented in tables

5.2.1 and 5.2.2.

Runs: 1000
Pool size (m): 20, 40, 60, 80, 100

Exposure time (t): 5, 7.5, 10, 12.5, · · · , 20
Dependency (θ): 1, 2, 5, 10, 20, 30

Marginals:
Mean 5, 10, 20, 40

Variance 2, 5, 10, 20
Total Number of sets: 16 × 35 = 560 (for every θ)

Table 5.2.1: Chosen parameters for the simulation study.

Prior Mean
5 10 20 40

Prior variance

2 (12.5, 2.5) (50, 5) (200, 10) (800, 20)
5 (5, 1) (20,2) (80, 4) (320, 8)

10 (2.5, 0.5) (10, 1) (40, 2) (160, 4)
20 (1.25, 0.25) (5, 0.5) (20, 1) (80, 2)

Table 5.2.2: Chosen Gamma marginal parameters (shape, rate) for the simulation study.

The simulation process adopted for this study can be described as follows. Ini-

tially, we define the prior distribution with the chosen Gamma marginal parame-

ters (under the assumption both marginals are identically distributed) and a fixed

dependency parameter. We set the size of the pool and the exposure time. We then

generate data from the fully defined prior distribution and the Likelihood (HPP).

The next step involves the calculation of the moment estimators of the Gamma

marginal parameters considering the observed data at hand; in our case, these are

generated Poisson process data. Considering that the Gamma parameters, shape

and rate, are defined to be positive, thus the moment estimators of these parame-

ters need to be positive. If the moment estimators are positive, then the sample is
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considered accepted. However, if any of the estimated parameters is negative, the

sample is considered rejected. In this situation, we are unable to use the moment

estimators to update the prior and calculate the empirical Bayes estimates through

the Posterior, as the generated sample shows data underdispersion, where the vari-

ance is smaller than the mean. Thus, our best guess for the rate of event is the aver-

age of the number of events realised for each ith event. Nevertheless, if the sample

is accepted, we estimate the dependence parameter of the sample, and we proceed

to the following step, which includes the prior and posterior specification. Finally,

we calculate the empirical Bayes estimates of the rates of events through the pos-

terior distribution using the simulation – summation method discussed in Section

3.5. Figure 5.2.1 illustrates the simulation process discussed.

We consider that the simulated data from the empirical Bayes with Clayton cop-

ula model along with the known parameters, which represent the ’real’ event rates

and the ’real’ prior parameters, respectively. We are interested to see how well the

empirical Bayes with Clayton copula model approximates the ’real’ rates and how

close our moment estimators of the Gamma marginals are to the ’real’ parameters.

As measures of accuracy, we consider the behaviour of the error and squared error.

We know that the occurrence rate is λ j i and the prediction is λ̂ j i , so we are inter-

ested in the following quantities,

e j i =λ j i − λ̂ j i and e2
j i = (λ j i − λ̂ j i )2.
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Figure 5.2.1: Diagram showing methodology followed for this simulation study.
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5.2.2 Simulation Algorithm

In this section, we present the simulation algorithm adopted for this study. The

simulation algorithm can be summarised in the following steps:

1. Set m (pool size), t (exposure time) and θ,α,β (prior parameters).

2. Generate (Λ1,Λ2)m from Clayton copula (Prior).

3. Generate (N1, N2)m from Poisson (Λ1 · t ,Λ2 · t ) (Likelihood).

4. Calculate Moment estimators α̂, β̂.

5. Calculate the dependence parameter estimator θ̂.

6. If α̂, β̂< 0, calculate rate estimates λ̂ j i = (n1i +n2i )/2.

7. If α̂, β̂> 0, calculate the Empirical Bayes estimates (Λ̂1,Λ̂2)m .

8. Calculate e j i and e2
j i .

9. Repeat for specific number of realisations (n in 1 : 1000).

10. Calculate the following quantities (Bias and Mean Squared Error),

Bi as = 1

n ×2×m

n∑
h=1

2∑
j=1

m∑
i=1

e j i
(h),

MSE = 1

n ×2×m

n∑
h=1

2∑
j=1

m∑
i=1

e2
j i

(h)
.

5.2.3 Simulation Results

5.2.3.1 Overview

The simulation study is organised as 16 separate blocks. Each block corresponds

to a different combination of Gamma marginal parameters (Set 1 to Set 16). Each
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one of these combinations is examined with different pool sizes, exposure times and

dependence parameters as described previously.

In the following, we examine how the number of accepted samples is affected by

all different parameter combinations, we evaluate the prior marginal expectations

and the empirical Bayes with Clayton copula model errors. As measures of accuracy

we consider the bias, the Mean Squared Error (MSE), the Root Mean squared Error

(RMSE) and the Root Mean Squared Relative Error (RMSRE) of the errors.

5.2.3.2 Number of accepted samples

We repeat the simulation process over 1000 times for every different combina-

tion of parameters chosen. Notably, the number of iterations can be adjusted ac-

cordingly to the desired accuracy. In every iteration of the process, we check if the

sample is accepted or rejected (due to underdispersion), so we are interested to see

how many rejections occur over 1000 iterations and how different pool sizes and

exposure times may affect the number of rejected samples. Figure 5.2.3 shows that

when the true mean increases, we observe more rejected samples, and as the pool

size and exposure time increase, fewer rejections are observed. Particularly, when

the true variance is 2, we observe that as the true mean increases from 5 to 40, the

number of rejected samples increases dramatically (see Figure 5.2.2). The smallest

percentage of accepted samples occurs when the prior mean is relatively high and

the prior variance is relatively low. This is not unreasonable. As already mentioned,

the Gamma distribution is shifted towards or approximates the shape of the Normal

distribution when its mean is relatively large. On the other hand, if the variance is

relatively small, it is becoming much harder to identify the individuals within the

pool. The individuals are close to each other, suggesting that all have similar rates.

Consequently, capturing the dependence between them is becoming even more dif-

ficult resulting in the rejection of the sample.
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Figure 5.2.2: Showing how different pool sizes, exposure times and marginal mean choices
affect the number of accepted samples, where true variance is 2.
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Figure 5.2.3: Showing how different pool sizes, exposure times, mean and variance choices
affect the number of accepted samples.

5.2.3.3 Prior mean evaluation

Considering that identically distributed Gamma marginals with known parame-

ters, we are investigating if the moment estimators of the prior mean is approximat-

ing the true mean. This is evaluated by calculating the errors between the ’true/real’

mean and the estimation for every different combination of parameters. We con-

sider the bias and the Mean Squared Error (MSE) of the mean errors as measures of

accuracy. Figures 5.2.4, 5.2.5, 5.2.6, 5.2.7 show the Bias of prior mean errors of differ-

ent pool size, exposure time, prior mean and dependence parameter combinations
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when the real variance is 2, 5, 10 or 20, respectively. Visuals show that bias in all

cases is relatively small (range from -0.05 to 0.1) indicating the moment estimators

are very close to the real values. Notably, bias approximates zero, especially when

pool size and exposure time increase. We also notice that when the true variance is

smaller (true variance = 2), the bias is relatively smaller rather than when the true

variance is getting larger (true variance = 20).

Figure 5.2.4: Showing bias results of the prior mean, when the true variance is 2.
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Figure 5.2.5: Showing bias results of the prior mean, when the true variance is 5.
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Figure 5.2.6: Showing bias results of the prior mean, when the true variance is 10.
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Figure 5.2.7: Showing bias results of the prior mean, when the true variance is 20.

Figures 5.2.8,5.2.9, 5.2.10, 5.2.11 show the MSE results of the prior mean errors. It

is clear that MSE decreases as the pool size increases. We also observe that when the

true variance is relatively small (true variance = 2), the MSE is significantly smaller

than when the true variance is larger (true variance = 20). Moreover, we notice that

in every block of four sets (i.e. when the true variance is 2 and true mean is 5, 10, 20,

40 and so on) the MSE slightly increases when the pool size and exposure time are

relatively small. However, there is no significant difference between the sets within

the blocks when the exposure time increases.
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Figure 5.2.8: Showing MSE results of the prior mean, when the true variance is 2.
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Figure 5.2.9: Showing MSE results of the prior mean, when the true variance is 5.
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Figure 5.2.10: Showing MSE results of the prior mean, when the true variance is 10.
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Figure 5.2.11: Showing MSE results of the prior mean, when the true variance is 20.

Figure 5.2.12 shows the MSE of the prior mean when the exposure time is set to

be 5. In this particular case, we distinguish two different cases. Firstly, the smaller

the prior variance, the smaller the MSE; and secondly the larger the pool size, the

smaller the MSE. Moreover, we notice that when the prior mean increases, MSE also

increases.
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Figure 5.2.12: Showing the MSE of the prior mean when the exposure time is 5.

5.2.3.4 Empirical Bayes with Clayton prediction errors evaluation

In this section, we present the results from the simulation study conducted for

evaluating the prediction rates errors. Errors are defined as the difference between

the ’real’ and the estimated event rates. Considering that the simulated data repre-

sent the ’real’ event rate, we are investigating how well the proposed empirical Bayes

with Clayton copula model approximates the ’real’ rates. As measures of accuracy,

we consider the Bias, the Mean Squared Error (MSE), the Root Mean Squared Error

(RMSE) and the Root Mean Squared Relative Error (RMSRE) of the errors.

Figure 5.2.13 shows Bias, MSE, RMSE and RMSRE results of the errors when the

true variance is 2, the true mean is 5 for all different combinations of pool sizes,

exposure times and dependence parameter values. We observe that when the expo-

sure time increases the MSE, RMSE and RMSRE of the errors decrease. Moreover,
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MSE, RMSE and RMSRE show a similar trend for all dependence parameter values.

Particularly, the stronger the dependency between the rates, the lower the errors.

However, we do not notice significant decrease when the pool size increases (MSE

decreases from 0.65 to 0.6 for θ = 2, pool size = 20 and exposure time = 5). Regarding

the bias, we observe that when the pool size is smaller, the bias of errors are approx-

imating zero as exposure time increases. However, when the pool size increases, we

observe that bias is producing more negative values. Similar figures showing Bias,

MSE, RMSE, RMSRE results for all different sets of parameters chosen can be found

in Appendix B.1.1.

Figure 5.2.13: Showing how different pool sizes and exposure times affect BIAS, MSE, RMSE
and RMSRE of EB with Clayton prediction errors, when true variance is two and true mean
is five.

Figure 5.2.14 shows Bias results of the prediction errors for all different parame-

ter combinations when the size of the pool is 20. As the true variance and true mean

increase, bias shows negative values, indicating that the predicted rates of events

are overestimated. Considering this case where the pool size is 20, the worst-case
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scenarios are presented where the mean is relatively large (mean of 20 and 40), and

the variance is also large (variance of 10 and 20). When using Bayesian models for

estimating event rates in general, we prefer having large enough prior variance so

that the rates can be distinct within the pool, but not too large as in this case the

event rates are considered totally diffident to being part of the same pool. Moreover,

we also notice that when are strongly dependent (with relatively larger real theta),

results suggest that predicted event rates are overestimated (appears more strongly

when the pool size increases, see figure 5.2.15). That is because of how sensitive the

inverse Kendall’s tau formula is, especially for rank correlation values close to 1. We

remind that if the prior Kendall’s tau tends to 1, then the dependence parameter

tends to infinity.

τ= θ

θ+2
⇒ θ = 2 ·τ

1−τ therefore, as τ→ 1, then θ→∞

If there is indication of a strong rank correlation, e.g. τ = 0.95,0.98or0.99, then the

dependence parameter θ will be 38, 98 and 198, respectively. Values of θ will range

from 38 to 198, which shows how sensitive the inverse Kendall’s tau formula is even

for small decimal differences. To avoid this variability, an upper bound could be set

for the dependence parameter θ, for rank correlation values over a certain value, e.g.

θ could be considered 38, for all τ over 0.95. While this is reasonable in both cases,

we recognise that may be an issue which needs careful consideration.
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Figure 5.2.14: Showing how different exposure times, mean and variance choices affect bias
of EB with Clayton prediction errors, while the pool size is 20.
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Figure 5.2.15: Showing how different pool sizes, exposure times, mean (5, 10, 20, 40) and
variance (2, 5, 10, 20) choices affect bias of EB with Clayton prediction errors.

Figure 5.2.16 shows RMSE results of the prediction errors for all different param-

eter combinations of prior mean and variances, when the pool size is 20. It is clear

that as the exposure time increases, RMSE decreases. We also notice that RMSE in-

creases as the true mean increases. Similar decreasing trends are shown for all dif-

ferent variance values. Moreover, when the mean and variance are relatively large,

RMSE results are shown more distinct in relation to the dependence parameter. The

stronger the dependence, the lower the RMSE of the errors. On the other hand, we

observe no significant difference between cases when the pool size increases. Fig-

ure 5.2.17 shows RMSE results of the prediction errors for all different parameter

combinations considered for this study.
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Figure 5.2.16: Showing RMSE results of the prediction errors for all different parameter
combinations of prior mean and variances, when the pool size is 20.
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Figure 5.2.17: Showing how different pool sizes (20, 40, 60, 80, 100) (rows), exposure times,
variance (2, 5, 10, 20) (first column label) and mean (5, 10, 20, 40) (second column label)
choices affect RMSE of EB with Clayton prediction errors.

5.3 Benchmarking Study

5.3.1 Overview

To examine the relative accuracy of estimates obtained using the empirical Bayes

with Clayton copula model (Model A) in Section 3.2 compared to the classic empir-

ical Bayes model (Model B) and the Maximum Likelihood estimates (Model C) de-

scribed in Section 3.3, respectively, we report the results from the simulation study

conducted. We are investigating how the classic empirical Bayes model and Maxi-

mum Likelihood Estimates of the rates (without pooling) perform when the event

rates are dependent. Practically, what happens if we choose to ignore the under-

lying dependency on the rates? Also, in which situations, if there are any, these

models perform better compared to the empirical Bayes with Clayton copula model
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when having different selections of pool sizes, exposure times, dependence param-

eter and Gamma marginal parameters.

We simulate data from the empirical Bayes with Clayton copula model with known

parameters, which represent the true rates of events. We choose to have the same

parameters as presented in Section 5.2.1. Ignoring dependency between the rates,

we then use Models B and C for estimating the rates of events. This will allow us

to see how well we are recovering the true rates in each case and which of the three

models used produces more accurate results which approximate the actual rates. As

measures of accuracy, we consider the behaviour of the error and squared error. In

table 5.3.1 we present the simulation process followed for this benchmarking study.

Figure 5.3.1 illustrates our methodology and described Models A, B and C.
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1. Set pool size m.

2. Set exposure time t .

3. Set Prior parameters θ, α1, β1, α2, β2.

4. Generate (Λ1,Λ2)m from Clayton copula.

5. Generate (N1, N2)m from Poisson(λ1t ,λ2t ).

Using the same correlated data

Model A Model B Model C

EB with Clayton Classic EB No pool

Consider dependency between

the rates. Use Moment Esti-

mators to update the prior and

calculate the Empirical Bayes

estimates.

Ignore dependency between

the rates and consider them

as independent. Use Moment

Estimators to update Gamma

prior and calculate the Empir-

ical Bayes estimates.

Use the generated sam-

ples without pooling. The

estimates of the rates are

(N1, N2)m .

The EB Estimates are,

λ̂ j i = E(λ j i |N1i , N2i ) = I j i

NCi
,

j = 1,2 , i = 1, · · · ,m

The EB Estimates are,

λ̂ j i = E(λ j i |N j i ) = α̂+n j i

β̂+ti
,

j = 1,2 , i = 1, · · · ,m

The estimates are,

λ̂ j i = n j i ,

j = 1,2 , i = 1, · · · ,m

Table 5.3.1: Shows simulation process followed to compare Model A: Empirical Bayes with
Clayton copula model with Model B: Classic Empirical Bayes and Model C: Rate Estimates
without pooling.
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Figure 5.3.1: Diagram showing the methodology of the simulation process followed to com-
pare Model A: Empirical Bayes with Clayton copula, Model B: Classic Empirical Bayes and
Model C: Maximum Likelihood Estimators (without pooling).

5.3.2 Benchmarking Results

Considering that the occurrence rate is λ j i and the prediction is λ̂ j i , we are in-

terested in the quantities, e j i = λ j i − λ̂ j i and e2
j i = (λ j i − λ̂ j i )2 for every model. To

measure the accuracy and compare Models A, B and C, we consider the Bias, the
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Mean Squared Error (MSE) and the Root Mean Squared Error (RMSE) of the errors.

Figures 5.3.2, 5.3.3, 5.3.4, 5.3.5 show the Bias results of the errors for different

combinations of exposure times and prior variance values for Models A, B and C

when the pool size is 20 and the the real prior mean is 5, 10, 20 and 40, respectively.

According to results presented in figure 5.3.2, we observe that Models A, B and C

produce similar results, very close to zero, suggesting that all models perform signif-

icantly well. The only distinct difference occurs when the prior variance is relatively

small (variance = 2), and the prior mean increases. In this case, Bias of Model B in-

creases especially when the exposure time is relatively low, suggesting that Model

B underestimates the rates of events. Particularly, we notice that Bias of Model B

increases from 0.4 to 2.8, when the real mean increases from 10 to 20, and reaches

Bias of 10 when the real variance increases to 40 (for real variance = 2 and exposure

time = 5). Analytical visuals showing how the bias of Models A, B and C is affected

by all parameters can be found in Appendix B.2.1.

Figure 5.3.2: Showing how different pool sizes, exposure times, dependence parameters
and prior variance values (2, 5, 10, 20) affect Bias for Models A, B and C, when the true prior
mean is 5 and pool size is 20.
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Figure 5.3.3: Showing how different pool sizes, exposure times, dependence parameters
and prior variance values (2, 5, 10, 20) affect BIAS for Models A, B and C, when the true prior
mean is 10 and pool size is 20.

Figure 5.3.4: Showing how different pool sizes, exposure times, dependence parameters
and prior variance values (2, 5, 10, 20) affect BIAS for Models A, B and C, when the true prior
mean is 20 and pool size is 20.
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Figure 5.3.5: Showing how different pool sizes, exposure times, dependence parameters
and prior variance values (2, 5, 10, 20) affect BIAS for Models A, B and C,when the true prior
mean is 40 and pool size is 20.

Figures 5.3.6, 5.3.7, 5.3.8, 5.3.9 show the MSE results of the errors for different

combinations of exposure times and prior variance values for Models A, B and C

when the pool size is 20, and the real prior mean is 5, 10, 20 and 40, respectively. All

visuals suggest that MSE decreases as exposure time increases. However, the larger

the prior mean, the higher the MSE. Comparing Models A and B, figure 5.3.6 shows

that both models have similar MSE when the dependence parameter is relatively

small. However, when the dependence between the rates is becoming stronger, we

observe that Model A performs better than Model B when the prior variance in-

creases. Particularly when the exposure time is 5, and the dependence parameter

is 30 (figure 5.3.9), the MSE of Model A is almost 33% less than the MSE of Model

B, and almost 50% less than the MSE of Model C. Moreover, Model C is considered

inferior compared to Models A and B. MSE of Model C increases significantly when

the prior mean increases. Regarding Models A and B, we observe that when the

prior variance increases the MSE of Model A is significantly smaller than the MSE
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of Model B, especially for large dependence parameters and low exposure times.

Worth noticing that when the prior variance is large (prior variance = 20), the MSE

of Model A is slightly larger than the MSE of Model B, for small dependence param-

eters indicating that may be worth ignoring the (weak) underlying dependence on

the rates. Explicit visuals showing how different pool sizes, exposure times, depen-

dence parameters and marginal parameters may affect the MSE of Models A, B, and

C can be found in Appendix B.2.2.
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Figure 5.3.6: Showing how different exposure times, dependence parameters and prior vari-
ance values (2, 5, 10, 20) affect MSE for Models A, B and C, when the true prior mean is 5
and the pool size is 20.
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Figure 5.3.7: Showing how different exposure times, dependence parameters and prior vari-
ance values (2, 5, 10, 20) affect MSE for Models A, B and C, when the true prior mean is 10
and the pool size is 20.
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Figure 5.3.8: Showing how different exposure times, dependence parameters and prior vari-
ance values (2, 5, 10, 20) affect MSE for Models A, B and C, when the true prior mean is 20
and the pool size is also 20.
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Figure 5.3.9: Showing how different exposure times, dependence parameters and prior vari-
ance values (2, 5, 10, 20) affect MSE for Models A, B and C, when the true prior mean is 40
and the pool size is 20.

Figure 5.3.10 shows the MSE results of the errors for different combinations of

exposure times, pool sizes and prior mean values for Models A, B and C when the

real prior variance is 20. According to this plot, we observe that the MSE increases as

the prior mean increases. Model A performs better than Models B and C when the

dependence parameter increases. However, for smaller dependence parameters, we
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notice that the MSE of Model A is larger than the MSE of Model B, especially when

the pool size increases.

Figure 5.3.10: Showing how different pool sizes (20, 40, 60, 80, 100), exposure times, depen-
dence parameters and prior mean values (5, 10, 20, 40) affect MSE for Models A, B and C,
when the true prior variance is 20.

5.3.3 Comparison Between EB with Clayton Model and Classic EB

Model

Comparing the empirical Bayes with Clayton copula model (Model A) to the

classic empirical Bayes model (Model B) and the Maximum Likelihood Estimators

method (Model C) (see Section 5.3.2), we conclude that there are cases where both

Model A and B perform similarly well. However, there are cases where Model A out-

performs and cases where class EB outperforms suggesting that may be worth ig-

noring dependency. We have also noticed that there are no cases where Model C

outperforms Models A and B. Therefore, our goal is twofold. We initially provide
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further comparative analysis between the two models considering all parameters

chosen for this study by identifying cases in which the proposed empirical Bayes

with Clayton copula model is expected to outperform the classic Bayesian model;

and, secondarily, to provide an answer to the following question: In which cases is

it worth ignoring the underlying dependence on the event rates?

Doing so, we present analysis which aims at comparing proposed Model A with

Model B. We consider cases across all different combinations of pool sizes, exposure

times, dependence parameters and prior parameter combinations in which Models

A and B are evaluated. We evaluate both models performance by comparing their

MSE of errors. Particularly, we are interested in calculating the difference between

the MSE of Model A and the MSE of Model B, as follows,

Difference of MSE = MSEModel A −MSEModel B .

If the difference of their MSE is close to zero, then we suggest that both mod-

els perform similarly. However, if the difference of greater than zero, then Model B

performs relatively better compared to Model A, indicating that may be worth ig-

noring prior dependency. Lastly, if the difference between their MSE of errors is

smaller than zero, we suggest that the proposed Model A performs relatively better

than Model B. Summarising what is being discussed, Table 5.3.2 shows all expected

cases.

EB with Clayton Classic EB
Cases (Model A) (Model B)

MSE Model A −MSE Model B = 0 Similar Similar
MSE Model A −MSE Model B > 0 Worse Better
MSE Model A −MSE Model B < 0 Better Worse

Table 5.3.2: Showing all possible cases.

Cases with a difference of MSE close to zero are defined with white colour, ar-

eas with a difference greater than zero with red and areas with difference lower than
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zero with green. Figures 5.3.11, 5.3.12, 5.3.13, 5.3.14, 5.3.15, 5.3.16 show cases with

green, red and white gradient colour areas. White coloured areas suggest that both

models perform similarly as they have similar MSE. Red coloured areas suggest that

Model A has higher MSE than Model B, indicating that the classic EB model assum-

ing independent event rates might be a better option. Lastly, green coloured areas

suggest that Model A has lower MSE than Model B, indicating that the proposed

Model A outperforms classic EB model. The cases are presented with respect to

different prior mean and variance values, different pool sizes, exposure times and

dependence parameters.

Concluding that the proposed empirical Bayes with Clayton copula model out-

performs the classic empirical Bayes model in cases where the underlying depen-

dence between event rates is moderate to strong, and the prior mean and variance

are relatively large. In contrast, the classic EB model is suggested in cases where

weak dependence between the rates occurs. Notably, in cases where the prior mean

and variance are relatively large; and the size of the pool is large.
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Figure 5.3.11: Compare Clayton (Model A) and Classical (Model B). Present cases of better
and worse performance on 16 different combinations of prior mean and variance values.
Sample size m = 20, 40, 60, 80, 100 (columns) and exposure time t = 5, 7.5, ..., 20 (rows).
Green areas suggest the Clayton Model. Red areas suggest the classic EB model assuming
independence.
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Figure 5.3.12: Compare Clayton (Model A) and Classical (Model B). Present cases of better
and worse performance on 16 different combinations of prior mean and variance values.
Sample size m = 20, 40, 60, 80, 100 (columns) and exposure time t = 5, 7.5, ..., 20 (rows).
Green areas suggest the Clayton Model. Red areas suggest the classic EB model assuming
independence.

117



Chapter 5. Inference Methods and Evaluation

Figure 5.3.13: Compare Clayton (Model A) and Classical (Model B). Present cases of better
and worse performance on 16 different combinations of prior mean and variance values.
Sample size m = 20, 40, 60, 80, 100 (columns) and exposure time t = 5, 7.5, ..., 20 (rows).
Green areas suggest the Clayton Model. Red areas suggest the classic EB model assuming
independence.
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Figure 5.3.14: Compare Clayton (Model A) and Classical (Model B). Present cases of better
and worse performance on 16 different combinations of prior mean and variance values.
Sample size m = 20, 40, 60, 80, 100 (columns) and exposure time t = 5, 7.5, ..., 20 (rows).
Green areas suggest the Clayton Model. Red areas suggest the classic EB model assuming
independence.
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Figure 5.3.15: Compare Clayton (Model A) and Classical (Model B). Present cases of better
and worse performance on 16 different combinations of prior mean and variance values.
Sample size m = 20, 40, 60, 80, 100 (columns) and exposure time t = 5, 7.5, ..., 20 (rows).
Green areas suggest the Clayton Model. Red areas suggest the classic EB model assuming
independence.
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Figure 5.3.16: Compare Clayton (Model A) and Classical (Model B). Present cases of better
and worse performance on 16 different combinations of prior mean and variance values.
Sample size m = 20, 40, 60, 80, 100 (columns) and exposure time t = 5, 7.5, ..., 20 (rows).
Green areas suggest the Clayton Model. Red areas suggest the classic EB model assuming
independence.
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5.4 Summary

In this chapter, we detailed the simulation and benchmarking studies conducted

for evaluating the empirical Bayesian with Clayton copula model proposed. We pre-

sented the design of the study, the methodological framework followed and all rel-

evant results. In particular, we discussed how the number of accepted samples was

affected by all different parameter combinations. Our findings showed that when

the true prior mean increases, more samples were rejected due to underdispersion,

and as the pool size and exposure time increase, fewer rejections were observed. We

also evaluated the prior marginal expectations and identified two different cases.

Firstly, the smaller the prior variance, the smaller the MSE of the prior mean; and

secondly the larger the pool size, the smaller the MSE of the prior mean.

Moreover, we evaluated the empirical Bayesian with Clayton copula model er-

rors. Based on our simulation results, we observed that when the exposure time

increases the MSE, RMSE and RMSRE of the errors decrease. We also identified a

similar trend regarding the different dependence parameter values chosen. Particu-

larly, the stronger the dependency between the rates, the lower the errors. However,

we identified a less significant decrease when the pool size increases.

Finally, we reported the results of the benchmarking study conducted for com-

paring the empirical Bayesian with Clayton copula model (Model A) to the classic

empirical Bayesian model (Model B) and the estimates of the rates obtained with-

out pooling (Model C). Our findings showed that the MSE decreases as exposure

time increases. However, the larger the prior mean, the higher the MSE of the rates.

Comparing Models A and B, we observed similar results regarding the MSE when the

dependence parameter is relatively small. However, when the dependence between

the rates is becoming stronger, we observed that Model A performs significantly bet-

ter than Model B when the prior variance increases. Lastly, Model C was considered

inferior to Models A and B in most cases.
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In the next chapter, we further investigate the impact of not accounting for de-

pendency by providing an application of the proposed methods. Particularly, we

will discuss methods for ranking in supply chain area with focus on methods for

supplier ranking under uncertainty.
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Methods for Ranking

6.1 Introduction

The development of methods for evaluating the quality of organisations and

providing quantitative comparative assessments between organisations has been

a concern in various sectors, both public and private. Goldstein and Spiegelhalter

(1996) discussed the need of establishing appropriate measures, known as ’perfor-

mance indicators’, and interpreting with care and sensitivity apparent differences,

and the need of considering model-based uncertainty when making quantitative

comparisons. A performance indicator can be characterised as ’a summary statis-

tical measurement on a system which is indented to be related to the ’quality’ of

its functioning’ (Goldstein & Spiegelhalter, 1996). There may be multiple indicators

that describe different aspects of the system and correspond to different objectives.

If we consider a ranking problem from the supply chain context, a supplier perfor-

mance indicator can be the number of on-time deliveries that indicates the delivery

performance or the number of non-conforming items that indicates the quality per-

formance.

Hierarchical models have been proposed for quantitative comparisons between

organisations (see Raudenbush & Bryk, 2002). In particular, Goldstein and Spiegel-
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halter (1996) discussed the statistical issues involved in providing comparisons be-

tween institutions in the area of health and education, and suggested rankings based

on confidence intervals of the random effects associated with organisations. How-

ever, as they state, ’an overinterpretation of a set of rankings where there are large

uncertainty intervals can lead both to unfairness and inefficiency and unwarranted

conclusions about changes in ranks’ (Goldstein & Spiegelhalter, 1996). Therefore,

careful consideration is required in situations where a single model is not sufficient

and not able to capture all the variability. To this extent, Minotti and Vittadini (2010)

proposed a two - step approach so - called the Local Multilevel (Hierarchical) model

which aimed to capture the local behaviour by combining the Cluster - Weighted

modelling with the Hierarchical modelling. They argued that non - homogeneity

and non - linearity may appear in the individual - level relationships; and thus,

choosing a single model which fails to capture such relationships will may cause a

large loss of information. Therefore, with their two - step approach, firstly, the indi-

vidual - level relationships (if exist or whenever they are) are captured and modelled,

and secondly, the differences between organisations are locally identified.

Hierarchical models have also been proposed in areas closely related to organi-

zational comparisons. In the supply chain area, various methods and models have

been proposed for supplier ranking (De Boer et al., 2001; Chai et al., 2013). Walls et

al. (2016) present a novel modelling suite using relevant historical data for support-

ing the analysis of risk in different stages of supplier life. They proposed an empir-

ical Bayes method for ranking Poisson count data with heterogeneous exposure to

risk. However, their comparative assessments stand only under the assumption of

independence. To our knowledge, there is a gap in the literature about methods for

ranking correlated event rates, and therefore we shall focus on this area. Although

much of our discussion is relevant to ranking on event rates, we shall concentrate on

the area of supplier ranking. We believe that the methods we discuss are generally

applicable whatever measures (in our case, supplier key performance indicators)
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are chosen and for whatever purpose.

Supplier ranking models exist in the literature only as of the final phase of the

supplier selection process (Chai & Ngai, 2020). More broadly, in the supplier se-

lection process, multiple possible suppliers are of consideration with the ultimate

goal of selecting one or more best-performing suppliers. All possible suppliers are

initially evaluated and then ranked based on prespecified criteria. In contrast, the

supplier ranking process that we intend to focus on is based on already existing

suppliers within the organisation; and it requires the existence of relevant historical

data with the goal of ranking already selected suppliers. Therefore, we choose to fol-

low the supplier selection process, mainly focusing on the final phase, the supplier

ranking. For further discussion about the supplier selection process in the supply

chain management area see Appendix C.

Ranking under uncertainty can be a complicated process, and the final rankings

may be affected by various factors. There are inevitable limitations that need to be

considered when dealing with rankings. First, ’we should exert caution when apply-

ing statistical models to make comparisons between institutions, treating results as

suggestive rather than definitive’ (Goldstein & Spiegelhalter, 1996). Secondly, ’mea-

surement of outcomes for research purposes is useful to help organisations to detect

trends and spot extreme outliers’ (Lilford, Mohammed, Spiegelhalter, & Thomson,

2004).

6.2 Motivation

This study has been motivated by the challenges supply chain managers face

in several manufacturing companies. These challenges are all related to supplier

evaluation and ranking problems. It is known that for several manufacturing com-

panies, a high percentage of parts and subassemblies needed are outsourced from

suppliers globally (Bag, 2018). Thus, maintaining close relationships with suppli-
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ers is essential, as their performance depends on theirs. Monitoring, developing,

maintaining or exiting the relationship with the suppliers are several of the respon-

sibilities that supply managers have. For the manufacturing companies, the set of

suppliers frequently changes, as new suppliers are being added and/or existing ones

are being exited. Additionally, the volume of work for each supplier is different and

varies over time, depending on the company’s workload and needs. Considering

that manufacturers produce customised products along with the limited holding

space and resource, it is impossible to keep a spare for every component type, so

orders are placed as needed.

On-time delivery of parts to the required quality standard is necessary for the

production line of the company. However, not on - time (early or late) deliveries

of parts or non - conforming parts may cause disruption and production delays.

Even if the supply managers theoretically understand the causes of supplier fail-

ure to deliver parts on - time to the expected quality which eventually affect their

performance, they do not have analytical models to provide evidence about fac-

tors that drive supply risk. Such factors are directly connected with the supplier’

performance and consequently shape and describe each supplier. Evaluating every

supplier within the pool is becoming essential for the managers. Performance pro-

files and ranking systems of all suppliers under consideration are of need, to help

the managers identify the position of each supplier within the pool and take action.

Best performing suppliers will get all the credit, but for the poor performing ones

further investigation will be of need. Therefore, analytical models that would aid

better risk management and provide evidence about the suppliers’ performance to

support decision making are required.
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6.3 Purpose of Risk Analysis

Empirical data, including supplier characteristics and performance records, can

be available. This study shows how we can make use of such data to initially better

understand and analyse each supplier, and further provide a robust comparative

assessment of supplier performance and present various ranking systems, which

are mostly focused on delivery and quality performance measures. Multiple sup-

plier ranking systems have been considered for this study, which aim primarily to

present a holistic view of different ranking approaches and perspectives, and fur-

ther highlight how different modelling choices, from choosing the pool of suppli-

ers to adopting a particular ranking method, may affect the rankings and produce

different outcomes. To manage operations and schedule production, the manufac-

turing companies keep records of every supplier activity. We also show how this

kind of data can be exploited to provide more insight into the supply process, and

summarised so that they can be used in such applications.

We propose a method for ranking correlated event rates, which in this case are

supplier performance rates. The exact value on which we intend to rank is un-

known, but we have a prior distribution describing the uncertainty on the rates.

However, how do we rank distributions? There are various ranking methods such as

mean or median ranks, ranks based on the cumulative distribution function of the

ranks etc. Every method may result in different conclusions about the position of

each supplier within the pool showing that there is no absolute right or wrong an-

swer, but multiple perspectives of ranks even under the same conditions/circum-

stances. Moreover, different modelling choices may lead to entirely different con-

clusions about the position of each supplier within the pool. For example, selecting

the pool of suppliers is an essential factor in the ranking process. Considering this

factor, more questions arise which make the process even more complicated. For

example, should we use one pool with all suppliers or create smaller pools, how the
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size of the pool affects the position of the individuals within the pool, which is the

most appropriate variable to be chosen as exposure time etc. Understanding that

supplier ranking is a complicated process, and the final ranking result is affected by

many factors, we aim to investigate several ranking methods and perspectives, and

discuss possible similarities and/or dissimilarities.

Our goal is to develop analytical models that support analysis of risk for suppli-

ers and provide a comparative performance analysis of the suppliers considering

multiple ranking approaches/methods, using mainly two performance measures,

the number of late deliveries and the number of non-conforming parts. Discussion

about the differences among the methods proposed and relative results is also pro-

vided.

6.4 Distinctiveness of Approach

We ground our model in the theory and methods of stochastic processes, to de-

velop sound ways of making use of historical data available in enterprise planning

systems to support decision making on supplier ranking and selection issues. Our

work relates to the broader literature of ranking on event rates. More particularly,

our methodology relates to methods for analysing count data generated from Pois-

son processes, see e.g. Walls et al., 2016 and Quigley, Bedford, & Walls, 2007b. Walls

et al. (2016) present a novel modelling suite using relevant historical data for sup-

porting the analysis of risk in different stages of supplier life. They proposed an em-

pirical Bayes method for ranking Poisson count data with heterogeneous exposure

to risk, which focuses on late delivery rate and non – conformance rate. However,

their analysis stands only under the assumption of independence, which makes

our proposed model distinct from theirs. As in many cases, when dealing with real

data applications, the dependency between performance rates exists and therefore

needs to be considered.
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Our model is based on the empirical Bayes method taking into consideration the

underlying dependency between two key performance indicators, the late delivery

rate and the non – conformance rate. The dependency is modelled using a Clay-

ton copula function with Gamma marginal distributions. In the remainder, we dis-

cuss the methodological framework followed for the development of the proposed

method for ranking based on supplier event rates and present the models devel-

oped. Even if we concentrate on ranking supplier event rates, we believe that the

methods we propose are generally applicable whatever measures (event rates) are

chosen and for whatever purpose.

6.5 Methodology for Ranking Supplier Event Rates

Our methodological framework is presented in Figure 6.5.1. It illustrates the re-

lations between the empirical data (inputs), the modelling components and the

ranking methods, as well as the related management decisions. Table 6.5.1 sum-

marises the scientific method used and discusses more explicitly the modelling choices

and management decisions associated.
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Supplier Ranking System

Method: • Empirical Bayes inference

Modelling Choices: • Select the pool of suppliers.
• Select the appropriate variable which will best describe the
exposure time.
• Select a specific ranking method for ranking the suppliers.

Decision Support: • Identify the position of a supplier within a pool of suppliers.
• Identify the best and worst performing suppliers.
• Compare suppliers based on Late delivery and Non - confor-
mance rankings.
• Compare the position of a supplier within the pool of suppli-
ers between different ranking methods.

Table 6.5.1: Summary of the Supplier Ranking System developed and the related modelling
choices and decisions.
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Figure 6.5.1: Methodological framework.

6.5.1 Supplier Ranking Criteria

According to the literature, several supplier selection criteria have been consid-

ered important over the years (see Appendix C.2). In particular, previous researches

have shown that the most important criteria are the delivery performance and the

price; however, recent studies show that quality has also reached a high ranking

(Bharadwaj, 2004). For this particular study, two performance measures, delivery
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and quality, have been selected for supplier evaluation and ranking. Not on-time

deliveries (early or late) directly affect the production line and might cause from

a minor inconvenience, such as new production schedule and more workload (for

late deliveries) or extra inventory cost (for early deliveries), to major late penalty

charges from the end customer if the final product is not finished as expected. No-

tably, there are numerous factors, from both supplier and manufacturer parties or

externally, that influence the delivery performance of a supplier. From the supplier

perspective, for example, consider the situation where, during the production, there

may occur machine failures that resulted in unanticipated rework or raw material

problems. Also, during transportation from the supplier to the manufacturer, delays

may occur because of the logistics company failure to pick up the parts on time or

due to weather issues. Consider also the case where there may be miscommunica-

tion between the two parties due to data management systems problems, or where

the manufacturer may be delayed in sending precise specifications of a newly de-

signed part and so hold up progress at the supplier.

On the other hand, deliveries of non-conforming parts may also affect the pro-

duction of the final product, and cause from minor inconvenience through to signif-

icant late penalty charges from the end customer if the final product is not finished

at the expected time, but now due to the delay caused by the non-conforming parts

delivered. Again, numerous factors, internal or external, may influence on the qual-

ity performance of a supplier. From the supplier perspective, for example, consider

the situation where during the production, there may be machine failures resulting

in unexpected non-conforming parts. Also, during transportation from the supplier

to the manufacturer, quality issues may occur due to improper handling of the parts

by the logistics company.

Therefore, evaluating the delivery and quality performance of a supplier is of

key importance. We understand that the delivery and quality performances of a

supplier represent a highly complex relationship between numerous internal and
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external factors. However, it is not always possible to consider every possible fac-

tor, and even if we wanted to, there is no sufficient historical data for all companies

involved. The manufacturing companies keep delivery records with information

relevant to the delivery and quality performance for every supplier. Each record

represents one delivery and contains related information about the order, for ex-

ample, supplier name (ID), part specification, ordered date, expected delivery date,

order quantity, rejected quantity and so on. So, in this study, we focus on evaluating

and ranking the suppliers under consideration using historical delivery and quality

records available in every manufacturing company.

6.5.2 Bayes with Clayton Copula Method

The delivery and quality performance of a set of suppliers can be assessed based

on simple statistical ratios. Knowing the number of orders of each supplier and the

number of the late deliveries, the late delivery rate for each supplier can be obtained

by calculating the ratio of the number of late deliveries over the total number of or-

ders. Accordingly, the non – conformance can be obtained by calculating the ratio of

the number of non-conforming parts over the total number of parts ordered. Then,

rankings are given to each supplier based on their performance rates, and thus, all

suppliers within the pool can be compared based on the rankings on both perfor-

mance measures. However, by doing this, careful consideration is not being made

about factors that as we have already mentioned are highly variable between suppli-

ers. For example, the number and volume of the orders may vary for each supplier.

Also, the two performance rates are considered as independent, which is not always

the case, especially when dealing with real data. By ignoring the underlying depen-

dency between the rates may mislead to incorrect conclusions about the position

of a supplier within the pool which consequently can be financially costly for the

manufacturing company. Therefore, the exposure of each supplier to risk needs to

be considered when choosing a pool of suppliers for ranking purposes, as well as
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the underlying dependency between the two performance rates.

A Bayesian method for supplier ranking under uncertainty has been developed.

We model the dependency between the two rates by using a Clayton copula, which

describes cases with strong left-tail dependence. If we consider our motivation for

this study, the Clayton copula seems appropriate for supplier ranking problems. As

already mentioned, we consider the underlying dependence on the rates and not

the correlation on the realisations of events (Poisson process data), implying that

the underlying dependence on the rates is driven by the operations within organ-

isations rather than the occurrence of rare or extreme events. Considering then

this situation, we claim that when a supplier performs well on delivery, it usually

performs well on quality as well; and when a supplier has a poor performance on

one measure, it is uncertain how it would perform on the other, as other factors af-

fect their operations within the organisation. Several studies in the literature agree

with our assumption addressing that correlation exists between operations within

organizations. Kang et al. (2016) define key performance indicators (KPIs) as ’a set

of metrics which reflect the operation performance’ and are considered critical for

manufacturing operation management and continuous improvement. They also

state that KPIs in a manufacturing system are not independent, and they may have

intrinsic mutual relationships. Therefore, they introduce a multi - level hierarchical

structure for identifying and analysing KPIs and their relationships in production

systems. Note also that the exposure time is assumed to be the same for all suppli-

ers within the pool.

We now discuss the methodology followed for this method. A more detailed de-

scription of the empirical Bayes with Clayton copula model can be found in Section

3.2. We denote the variable N j i as the number of events that are realised over the

time interval, ti , for the jth performance measure and ith supplier. The distribution
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of N j i is Poisson and has the following probability density function,

N j i ∼ Poi sson(λ j i ti ) , j = 1,2, i = 1, · · · ,m

P (N j i = n j i |λ j i ) = (λ j i ti )n j i e−λ j i ti

n j i !
, λ j i > 0, ti > 0, n j i = 0,1, · · · ,

where m represents the size of the pool. The prior distribution considering the un-

derlying dependency of the rates represented by a Clayton copula (bivariate case)

with Gamma marginal distributions is now presented. We denote the variableΛ j i ∼
G(α j ,β j ) as the rate of events for the ith supplier and jth performance rate. The

prior distribution is as follows,

c(λ1,λ2) = c(F (λ1),F (λ2)) · f (λ1) · f (λ2)

where F (·) is the cumulative distribution function of the Gamma distribution, f (·) is

the Gamma density probability function and c(u, v) is the probability density func-

tion of the Clayton copula which has the following form,

c(u, v) = (θ+1)(uv)−(θ+1)(u−θ+ v−θ−1)−(2θ+1)/θ, θ ∈ (0,∞).

Following the Bayesian method, we define the predictive and posterior distribu-

tions, as follows,

PPred(λ j i |N1i , N2i ) =
∫ ∞

0

∫ ∞

0
c(λ1i ,λ2i )·Pois(N1i = n1i |λ1i )·Pois(N2i = n2i |λ2i )dλ1dλ2

and,

PPost(λ j i |N1i , N2i ) = c(λ1i ,λ2i ) ·Pois(N1i = n1i |λ1i ) ·Pois(N2i = n2i |λ2i )∫ ∞
0

∫ ∞
0 c(λ1i ,λ2i ) ·Pois(N1i = n1i |λ1i ) ·Pois(N2i = n2i |λ2i )dλ1dλ2

.

Since the prior distribution is Clayton copula with Gamma marginals, the posterior
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distribution cannot be obtained in a closed - form function or described as other

well - known distribution functions. However, an empirical distribution of the rates

for each supplier within the pool can be evaluated through simulations. The algo-

rithm describing the simulation process for evaluating the posterior distribution is

presented in Section 6.5.5.

6.5.3 Classic Bayes Method

In this section, we present the classic Bayesian model, where no underlying cor-

relation on the rates is considered. The prior distributions of both rates are chosen

to be Gamma as follows,

Λ1i ∼Gamma(α1,β1),

Λ2i ∼Gamma(α2,β2), i = 1,2, · · · ,m ,

with the following probability distribution function,

π(λ j i ) =
β
α j

j

Γ(α j )
λ
α j−1
j i e−β jλ j i , λ j i ,α j ,β j > 0 , j = 1,2.

The number of events that are realised over time interval t is denoted by the

variables N1i , N2i . The distributions of N1i , N2i are Poisson and have the following

probability density functions,

N1i ∼ Poi sson(λ1i t ), N2i ∼ Poi sson(λ2i t ) , i = 1, · · · ,m

P (N j i = n j i |λ j i ) = (λ j i t )n j i e−λ j i t

n j i !
, λ j i > 0, t > 0, n j i = 0,1, · · · , j = 1,2.

Then, the posterior distribution can be described by a well - known function, a

137



Chapter 6. Methods for Ranking

Gamma distribution, as follows,

Λ j i |N j i ∼Gamma(α̂ j +n j i , β̂ j + t ),

π(λ j i |N j i = n j i ) =
(β̂ j + t )α̂ j+n j iλ

α̂ j+n j i−1
j i e−(β̂ j+t )λ j i

Γ(α̂ j +n j i )
.

6.5.4 Empirical Distribution of the Ranks

Summarising, we have structured the ranking problem from a Bayesian perspec-

tive. Mainly, we have a likelihood to explain the variability in observation given and

inherent rate of interest, and a prior distribution to describe the uncertainty on the

rates. We wish to rank on the inherent rate, but we have different amounts of un-

certainty about each across the pool. As such, the rank, i.e. that which would be

revealed if we knew the event rate for certain, is also uncertain.

Ranking under uncertainty is not a simple problem. We can express the proba-

bility distribution of the ranks for each rate, as follows,

P (Ri = k) =∑
S

∫ ∞

0

[
k−1∏
x=1

Πsx (λ|n∼, t∼)

][
m∏

x=k+1

(
1−Πsx (λ|n∼, t∼)

)]
·πi (λ|n∼, t∼) dλ ,

k = 1,2, · · · ,m,

where we denote,

•
∏k−1

x=1Πsx (λ|n∼, t∼): k −1 supplier better than supplier i

•
∏m

x=k+1

(
1−Πsx (λ|n∼, t∼)

)
: m −k suppliers worse than supplier i.

However, the probability distributions of the ranks have bi - modal or multi -

modal shapes even for simple prior distributions. As such, we require Monte Carlo

methods for obtaining the empirical distribution of the ranks, as described in Sec-

tion 6.5.5.
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Although we have obtained the distributions of the ranks, what would be an ap-

propriate measure to rank on? There is no straightforward answer, as we are deal-

ing with much uncertainty. Instead, we present three statistical criteria for ranking

showing that there is no absolute right or wrong analysis but different perspectives

and approaches, which eventually better inform decision making.

• Ranking by the mean of the distribution of ranks: E(λ j i |N1i , N2i ). This ap-

proach corresponds to a loss function the squared difference between the true

and estimated rank.

• Ranking by the median of the distribution of ranks. With this approach, we

consider a loss function the absolute difference between the actual and esti-

mated ranks.

• Ranking by the cumulative distribution function (CDF) of the ranks: Ranking

by the probability that i supplier belongs to the top k1 or bottom k2 suppliers,

P (Ri ≤ k1) and P (Ri ≥ k2), respectively.

6.5.5 Simulation Algorithm

The posterior distribution cannot be expressed in closed - form, but can be

evaluated through simulations. The simulation algorithm for obtaining the empir-

ical posterior distribution of the rates of event can be summarised by the following

steps:

1. Input (N1i , N2i )m : Number of late deliveries and number of non - conforming

parts.

2. Input t1i , t2i : Exposure time (set to be the same for all suppliers within the

pool)

3. Estimate Prior parameters.
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4. Update Prior and define the posterior distribution.

5. Generate k pairs from the updated Prior, (λ1k ,λ2k )k

6. For each supplier i = 1,2, · · · ,m within the pool, calculate:

• The acceptance probability, c(i ) = Pois(n1i |λ1k ) ·Pois(n2i |λ2k ).

• Normalize the acceptance probability, c(i )
norm = c(i )

k /
k∑

h=1
c(i )

h .

7. Sample (λ1,λ2)(i )
s , s ≤ k from the empirical distribution with the associated

probabilities c(i )
norm.

8. For every sample s = 1,2, · · · , s, transform rates into ranks R(i )
s .

9. Calculate mean rank for each supplier, R(i ) =
s∑

s=1
R(i )

s /s.

6.6 Summary

In this chapter, we discussed methods for ranking. We discussed the motiva-

tion and the distinctiveness of our approach. We also explained the methodological

framework followed for the study. Although much of our discussion was relevant

to ranking on event rates, we only concentrated on ranking supplier event rates.

However, we believe that the methods we discussed are generally applicable when

dealing with unknown event rates.

In particular, we developed a Bayesian method for ranking event rates under un-

certainty. Our proposed model is based on the empirical Bayes method considering

the underlying dependence between two performance measures, the late delivery

rate and the non – conformance rate. We modelled the dependency between the

two rates by using a Clayton copula, which describes cases with strong left-tail de-

pendence.

Ranking under uncertainty can be challenging. Careful consideration needs to

be made on multiple modelling choices. This will be investigated in the following
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chapter where we present examples of analysis and model applications using de-

sensitised real data from the prime manufacturer considering multiple situations.
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Chapter 7

Empirical Evaluation of Ranking

Methods Based on Historical Supplier

Data

7.1 Overview

In this chapter, we illustrate the application of the methods and models dis-

cussed in Chapter 6, and discuss the choices made throughout the modelling pro-

cess. Note that we follow the empirical Bayes methodology, where the prior pa-

rameters need to be estimated before defined the predictive and posterior distribu-

tions using the observed data available. Specifically, the marginal Gamma param-

eters can be estimated through Moment estimation method; and the dependence

parameter through the non-linear model (closed form expressions) proposed and

discussed in Chapter 4. The analysis of data is also presented by describing the na-

ture of data available and discussing the data preparation process. Note that the

data used are ’real’ de-sensitised data, and all analysis is aligned with an industry

problem related to the supplier ranking. Discussion about the data available, data

cleaning and preparation process is following.
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7.2 Description of the Data Available

The data set under consideration originates from a prime manufacturer and in-

cludes records of purchase orders from multiple suppliers within five years. Every

entry of the data set corresponds to a specific supplier delivery record of a partic-

ular type of product. Note that there are cases where multiple delivery entries are

filed under the same purchase order; however, we consider every entry individually.

These entries consist of relevant information about the delivery, including the sup-

plier account, the date of the order was placed, the requested date, the delivery date,

the specification of the type of part ordered; the ordered, delivered, rejected quan-

tity and the relevant order price. The variables available are limited, considering the

nature of our study; however, new variables can be defined using the existing ones.

For example, covariates capturing the supplier delivery performance such as the

number of days that an order is delivered early, on-time or late. We then consider

the quality of the data available and proceed to the cleaning process. Records with

missing values or invalid details (for example, negative lead time which indicates in-

correct order or delivered date) in variables under consideration are removed from

the data set.

Prime Manufacturer Data
No of Entries: 27772
No of Variables: 23

No of Suppliers: 238
Subsets No. Orders No. Suppliers No. Entries

1 [1,10] 146 492
2 (10,20] 32 466
3 (20,50] 21 701
4 (50,100] 17 1189
5 (100,500] 10 1801
6 (500,∞) 12 23123

Table 7.2.1: The prime manufacturer data available after the cleaning process.

After the data preparation and cleaning process, the data set consists of 27772
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purchase orders and 23 variables of 238 suppliers in total. In table 7.2.1, we iden-

tify the total number of suppliers who have relatively low (less than 10) or relatively

high (over 500) volume of orders within the pool of 238 suppliers. Table 7.2.2 shows

standard summary statistics of key variables for randomly selected suppliers. Our

intention is to provide a clear view of the raw data available (Table 7.2.3) and how

they can be transformed and used in the ranking system.

Supplier
ID

No of
Orders

Mean
Lead Time

Mean
Late Del.

Mean
Order Qty

Mean
Rej. Qty

A13 502 25.66 2.34 15.12 0.08
A16 609 25 3 13.54 0.09
A18 178 26.04 1.96 19.88 0.16
A19 192 25.10 2.90 29.61 0.64
B13 286 5.70 1.30 68.21 0.55
H13 619 25.94 2.06 429.97 13.84
M13 279 26.59 1.41 21.47 0.24
R11 580 25.68 2.32 3.45 0.02
V10 681 26.20 1.80 6.12 0.10

Table 7.2.2: Showing standard summary statistics of selected suppliers.

P. O. Supplier Order Order Delivery Required Rejected
Acct Qty Date Date Date Qty

1 | 300101 B10 19 2011-09-09 2011-10-07 2011-10-07 0
2 | 300101 B10 7 2011-09-09 2011-10-07 2011-09-27 0
3 | 300101 B10 5 2011-09-09 2011-10-07 2011-10-07 0
4 | 300102 A16 100 2011-09-09 2011-10-07 2011-10-07 0
5 | 300102 A16 70 2011-09-09 2011-10-07 2011-10-02 0

Table 7.2.3: Extracted from raw data from prime manufacturer.

7.3 Supplier Ranking Applications

We present an illustration of the proposed supplier ranking method (see Section

6.5), applied on several selection sets of suppliers over different periods. The em-

pirical data, discussed in Section 7.2, have been transformed into count numbers

as the method requires. New variables consist of aggregated data that represent the
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total number of late deliveries and the total number of non - conforming parts (re-

jected quantity) have been defined. Note that the ranking method can be applied

in any time horizon of interest and supplier rankings would correspond accordingly

in each time frame (e.g. monthly, quarterly or yearly). However, we choose to have

the same exposure time for all suppliers within the selected pool. For example, all

suppliers within a selected pool have been tested by the manufacturer for the same

time period (e.g. number of months) and had an approximately similar volume of

orders and ordered quantity. Figure 7.3.1 shows the selected applications for this

study. All four selected applications consist of different pools of suppliers within

different periods (exposure times). Particularly sets 1 and 2 have the same exposure

time, but the pool size differs. In set 2, the pool of suppliers under consideration

is smaller than in set 1. Set 3 includes the largest pool across all applications; how-

ever, the exposure time is now set to 12 months. Lastly, set 4 has the same exposure

time with set 3, but its pool size is significantly smaller than in set 3. All selected

applications will be analysed and compared later on.

Figure 7.3.1: Selected supplier ranking applications.
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As already mentioned, we follow the empirical Bayes method and thus we need

to estimate the prior parameters. The marginal Gamma parameters are obtained by

using the method of moments (see Quigley et al., 2007b). We also need to provide

an estimate for the dependence parameter (see Chapter 4). The proposed formula

takes as input the size of the pool (m), the exposure time (t ), the estimated prior

mean (â/b̂) and variance (â/b̂2) assuming that both marginals are identically dis-

tributed, and the Kendall’s tau between the observed data. However, when dealing

with real data, this might not be the case, as the marginals could have different pa-

rameters. For this case, we propose to use uninformative prior for the prior Kendall’s

tau. We summarise the simulation process in the following steps.

Uninformative prior for obtaining an estimate of the prior Kendall’s

Tau, when having different marginals

Algorithm Steps

1. Set the Gamma marginal parameters (a,b), exposure time (t ) and pool size

(m).

2. Define uninformative Kendall’s tau prior function (τ ∈ (0,1)),π(τ) = 1 ∼ U (0,1).

3. Generate τ from prior π(τ).

4. For i = 1,2, · · · , N .

5. Define the likelihood by using the function f (τ f ;τ) (see Section 4.4).

6. Calculate τ(i )
f from f (τ f ;τ).

7. Go to Step 4 and repeat.

8. Go to Step 3 and repeat.
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9. Update and define the posterior distribution,

π(τ|τ f ) = f (τ f ;τ) ·π(τ)∫ 1
0 f (τ f ;τ) ·π(τ) dτ f

.

10. Given the data (and by using the function f (τ f |τ) ), we observe τ f = τobs, so

π(τ|τ f = τobs) =π(τ|τ f = τobs ±ε).

11. An estimate of the prior Kendall’s tau is the mean of the distribution,

τ? = E
[
π(τ|τ f = τobs)

]
.

Moreover, we evaluate the suitability of the Clayton copula by using the para-

metric bootstrap method (Carlin & Louis, 2008), with which we create confidence

intervals of Kendall’s tau for the Clayton copula ensuring the existence of a rank

correlation between the rates. The parametric bootstrap method simply mimics the

simulation process of the empirical Bayes with Clayton model, by generating data.

The process of the ’parametric’ bootstrap is entirely generated from the prior rates,

rather than by resampling (with or without replacement) from the observed data it-

self (’non-parametric bootstrap’). Mainly, we initially set the prior parameters, the

exposure time and the sample size according to the observed data available, we then

generate samples from the prior and the likelihood, estimate the prior dependence

parameter and repeat.

In the following, we present the results of the applications of the proposed sup-

plier ranking considering that the ranks are extracted from the empirical posterior

distribution of the Late - delivery and Non - conformance rates. We show and com-

pare rankings obtained using the mean, the median and the cumulative distribution

function of the empirical distribution of the ranks. We also show that the position
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of each supplier may change if we choose a different pool or exposure time. We

finally compare the suppliers’ mean rankings obtained using the empirical Bayes

with Clayton copula model to the Classic empirical Bayes method assuming no un-

derlying dependency on the rates.

7.3.1 Transformed - Aggregated Real Data

Four (4) different selection sets have been chosen to illustrate the application

of the proposed Supplier Ranking. We intend to provide a comparative analysis of

supplier rankings across different settings, e.g. different exposure time and pool

size. Selection sets 1 and 2 have the same exposure time, but different pool size. Se-

lection set 3 has different exposure time and larger pool size compared to set 1; and

lastly, the selection set 4 have different exposure time and smaller pool size com-

pared to set 1. As already discussed, we use real de-sensitised prime manufacturer

data which have been transformed into aggregate data, including the number of late

deliveries and the number of non-conforming parts. Tables 7.3.1, 7.3.2, 7.3.3, 7.3.4

show the aggregate data used for the applications.
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ID E.T. L.D. N.C.
1 A13 24 132 25
2 A15 24 24 32
3 A16 24 80 9
4 A18 24 35 3
5 A19 24 74 122
...

55 S32 24 2 0
56 T13 24 1 0
57 U10 24 50 13
58 V10 24 54 23
59 W13 24 5 0

Table 7.3.1: Selection Set 1 - Transformed
data. Showing the number of late deliveries
and non - conformance parts of each sup-
plier within a period of 2 years (24 months).

ID E.T. L.D. N.C.
1 A13 24 132 25
2 A15 24 24 32
3 A16 24 80 9
4 A18 24 35 3
5 A19 24 74 122
...

35 S10 24 573 443
36 S11 24 7 0
37 S20 24 24 14
38 U10 24 50 13
39 V10 24 54 23

Table 7.3.2: Selection Set 2 - Transformed
data. Showing the number of late deliveries
and non - conformance parts of each sup-
plier within a period of 2 years (24 months).

ID E.T. L.D. N.C.
1 A12 12 1 0
2 A13 12 77 0
3 A15 12 24 32
4 A16 12 50 9
5 A18 12 33 3
...

109 T25 12 4 0
110 U10 12 35 13
111 V10 12 36 12
112 W10 12 2 0
113 W13 12 1 0

Table 7.3.3: Selection Set 3 - Transformed
data. Showing the number of late deliveries
and non - conformance parts of each sup-
plier within a year (12 months).

ID E.T. L.D. N.C.
1 A13 12 77 0
2 A15 12 24 32
3 A16 12 50 9
4 A18 12 33 3
5 A19 12 36 1
...

39 S11 12 6 0
40 S20 12 4 0
41 T13 12 1 0
42 U10 12 35 13
43 V10 12 36 12

Table 7.3.4: Selection Set 4 - Transformed
data. Showing the number of late deliveries
and non - conformance parts of each sup-
plier within a year (12 months).

7.3.2 Model Set Up

After choosing the selection sets, we need to check and set up the model pa-

rameters before proceeding with the application of the proposed empirical Bayes
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with Clayton copula model. Considering the Gamma marginal distributions, the

moment estimates of the prior parameters need to be estimated by using the ob-

served count data and thus have to be positive. Table 7.3.5 shows that all Gamma

prior parameter estimates by using the Moment Estimation method are positive.

However, the Gamma priors for the selected sets do not have the same parameters.

Hence, we follow the process described in Section 7.3 for obtaining an estimate of

Clayton Kendall’s tau. As starting points, we choose Kendall’s tau values between

0 and 1 (τ ∈ {0.1,0.11, · · · ,0.94,0.95}). Figure 7.3.2 shows the distribution of Clayton

Kendall’s tau, given that the observed prior dependence is already known. Table

7.3.6 shows the observed Kendall’s tau along with the updated tau and theta esti-

mates obtained by using the uninformative prior.

P.S. E.T. â1 b̂1 â2 b̂2 â1/b̂1 â1/b̂2
1 â2/b̂2 â2/b̂2

2
Selection Set 1 59 24 0.20 0.09 0.10 0.13 2.22 24.07 0.81 6.30
Selection Set 2 39 24 0.32 0.10 0.16 0.13 3.24 33.30 1.22 9.05
Selection Set 3 113 12 0.10 0.06 0.04 0.08 1.67 28.24 0.49 5.93
Selection Set 4 43 12 0.27 0.07 0.11 0.09 4.18 64.02 1.27 14.61

Table 7.3.5: Showing the model parameters; exposure time (E.T.), size of pool (P.S.), Gamma
parameter estimates, estimated prior mean and variance for Late delivery rate and Non -
conformance rate.

Initial Updated
Predictions Predictions
τi ni t θi ni t τpr ed θpr ed

Selection Set 1 0.62 3.26 0.67 3.98
Selection Set 2 0.54 2.31 0.53 2.25
Selection Set 3 0.53 2.24 0.69 4.35
Selection Set 4 0.50 1.99 0.51 2.07

Table 7.3.6: Showing the initial and updated (using an uninformative prior) Kendall’s tau
predictions.
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Figure 7.3.2: Kendall’s tau distribution for all selection sets.

Since we have now fully defined all model parameters; the prior marginals and

dependence parameter, the exposure time and the size of the pool, we demonstrate

the suitability of the Clayton copula with the selected sets of data. As already ad-

dressed, we use the parametric bootstrap method to ensure the existence of rank

correlation on the prior. The distributions of the prior Kendall’s tau obtained from

the bootstrap method are shown in figure 7.3.3. We observe that the rank correlation

coefficient is not zero, which indicates dependence between the rates.
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Figure 7.3.3: Bootstrap Kendall’s tau predictions for all selection sets.

7.3.3 Mean and Median Ranking Results

We present different visualisations of the data analysis from the application of

the proposed supplier ranking using the empirical Bayes model with Clayton cop-

ula on different data sets. We note that the ranks are based on the empirical distri-

bution of the posterior distribution. Each supplier is presented by their code name

(i.e. A13, A15, A16, etc.), as in the original data set. The distributions of the ranks in

such applications cannot be expressed in closed-form formulas or well-known dis-

tribution functions, even if we choose the simplest priors. Hence, the distributions

of the ranks for each supplier within the pool are expected to have shapes such as

bi - modal or multi - modal. Figure 7.3.4 presents the probability distribution of the

late delivery ranks for a selection of suppliers. We show how different the distribu-

tions of ranks are for each supplier, which make the ranking more interesting and

challenging.
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Figure 7.3.4: Probability distribution of late delivery ranks for Suppliers B23, G12, H14 and
P20 from selection set 1.

Figures 7.3.5, 7.3.6, 7.3.7, 7.3.8 show the empirical distribution of the ranks for

both rates and all four applications after sampling 1000 generated data out of 10000

generated data from the empirical posterior distribution of the rates. The distribu-

tion of the ranks is given for each one of the selected suppliers within each pool,

where the red point denotes the mean rank. Information about the variation of the

ranks for each supplier and the expected mean ranks are also shown through the

boxplots. Figure 7.3.5 shows that the distribution of the ranks on both rates for some

suppliers has less variation compared to others. We also observe that the distribu-

tion of the ranks on one rate has less variation compared to the other rate for some

suppliers. For example, consider Suppliers A28 and A31 (set selection 1) whose dis-

tribution of the late delivery ranks has less variation compared to the non – confor-

mance; this situation indicates that we are more confident about the rankings on

late delivery rather than on non – conformance.
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Figure 7.3.5: Multiple boxplots showing the empirical distribution of the late delivery and
non - conformance ranks for all suppliers within the pool of selection set 1.

Figure 7.3.6: Multiple boxplots showing the empirical distribution of the late delivery and
non - conformance ranks for all suppliers within the pool of selection set 2.
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Figure 7.3.7: Multiple boxplots showing the empirical distribution of the late delivery and
non - conformance ranks for all suppliers within the pool of selection set 3.

Figure 7.3.8: Multiple boxplots showing the empirical distribution of the late delivery and
non - conformance ranks for all suppliers within the pool of selection set 4.
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We also show how the distribution of the ranks for individuals within different

pool selection may change. For example, we compare the distribution of the ranks

of Supplier A13 across all four applications. Figure 7.3.9 shows how the distribution

of the ranks of Supplier A13 differs between measures and applications. We observe

that non – conformance ranks have more variation compared to the late delivery

ranks; and especially when the pool size increases, as in Set 3 where the pool con-

sists of 113 suppliers.

Figure 7.3.9: Empirical distribution of the ranks for both rates across applications of Sup-
plier A13.

Figures 7.3.10, 7.3.11 show the mean ranks for all suppliers within the pool for

both measures across all four applications. We compare the mean late delivery

rank to the mean non - conformance rank of every supplier. According to the vi-

suals, a relatively distinct left tail dependency between the non – conformance and
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late delivery mean ranks appears across all applications. We observe that the lower

mean ranks appear more strongly dependent compared to the higher mean ranks,

and the further we move to higher rankings, the more scattered the mean ranks ap-

pear. Clear discrimination of best and worst-performing suppliers across the pool

is achieved, and thus we provide a comparative analysis of all suppliers within each

pool. For example, we conclude that for the second application (set selection 2),

Suppliers F10 and R11 consider as the best and second best-performing suppliers

within the pool; Supplier S10 the worst and Suppliers A19, J10, H12 and J11 the sec-

ond worst, according to the results presented in figure 7.3.10 (right part).

Figure 7.3.10: Showing the mean ranks of late delivery and non - conformance for all sup-
pliers within the pool.
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Figure 7.3.11: Showing the mean ranks of late delivery and non - conformance for all sup-
pliers within the pool.

Apart from the mean ranks, we provide rankings obtained by the median of the

distribution of the ranks for all suppliers within each selected pool. Figures 7.3.12

show that the median rankings are almost identical with the mean rankings for both

late delivery and non – conformance measures across all applications. There are

only a few exceptions where the median ranks are not the same as the mean ranks,

but again they do not differ significantly, i.e. the late delivery mean and median

ranks of selection set 3.
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Figure 7.3.12: Comparison between mean and median rankings across applications.

7.3.4 Mean Ranks Comparison Across Applications

We have already chosen four (4) different selection sets/pools of suppliers with

different exposure time and number of participants (as described in Section 7.3),

and presented a comparative analysis of suppliers using the mean of the empirical

distribution of the ranks (see Section 7.3.3). We now compare the mean rankings

of selected suppliers across all four applications. We are interested in investigat-

ing how the position of a particular supplier may be affected by different pool size

and/or different exposure time. For this particular comparison study, we identify

and compare the position of 35 suppliers who participate in all four selection sets.
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Figure 7.3.13 shows the late delivery and non – conformance mean ranks of all 35

suppliers across all four applications. We remind that the set 1 consists of 59 suppli-

ers, set 2, set 3 and set 4 consist of 39, 113 and 43 suppliers, respectively. According

to the visuals, we notice that all suppliers in sets 1, 2 and 4 show common trend and

their rankings are similarly distributed within each pool. However, this is not the

case in set 3; we observe that all selected 35 suppliers are shifted towards the higher

rankings. This indicates that, even if some these suppliers have relatively good/low

rankings in sets 1, 2 and 3, when choosing a different size pool (larger in this case)

their ranking scores show that they do not perform as good as in the other pools. No-

tably, 34 out of 35 suppliers are considered to be in the worst 50% suppliers within

the pool. We also notice that supplier F10 has been ranked 1st in sets 2 and 4, and

6th in set 1 for both measures, but in set 3 has achieved a mean rank of 32 on late

delivery and 46 on non – conformance.

Figure 7.3.13: Showing the late delivery and non – conformance mean ranks of selected 35
suppliers across all four applications.

We also investigate which of the selected suppliers are ranked in the top or bot-

tom 25% suppliers across all four selection sets. The top 25% suppliers are getting all
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the credit, but for the bottom 25% suppliers decisions need to be made about their

fate in the company. Our intention is to provide multiple perspectives of the final

mean rankings and show that different conclusions may be drawn under different

situations and settings. Figure 7.3.14 shows the distinction of the selected 35 suppli-

ers in top and bottom 25% suppliers within each set. As already addressed, none of

the selected 35 suppliers is ranked in the to 25% suppliers in set 3, instead 28 suppli-

ers are ranked in the bottom 25%. Suppliers F10, R11 and S11 are ranked in the top

25% suppliers in the sets 1, 2 and 4. On the other hand, we observe that supplier S10

considers the worst-performing supplier across all sets. Multiple comparisons can

be made using such visuals which will eventually better inform the decision-maker

by providing multiple perspectives of rankings across different applications.

Figure 7.3.14: Showing the distinction of the selected 35 suppliers in top and bottom 25%
suppliers within each set.
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7.3.5 CDF Ranking Results

In this section, we propose another approach / method for supplier ranking by

using the cumulative distribution function (CDF) of the ranks. For this method, an

upper and a lower bound need to be set for obtaining the rankings at those specific

bounds. For this particular study, we chose those bounds to represent the bottom

and top 25% suppliers within each selection set. Figures 7.3.15 show the cumula-

tive distribution function of both late delivery and non – conformance ranks for all

four applications. Different coloured lines correspond to each supplier within the

pool. According to the visuals, we notice different patterns across measures and

applications. For instance, considering the non – conformance ranks of set 3, we

notice distinct clusters of suppliers indicated by the similarity of their cumulative

distribution functions. We also expect the suppliers who compose those clusters to

have similar, if not the same, rankings. Worth noticing that by choosing different

upper or lower bound, we also expect different ranking results. Figures 7.3.16 show

the cumulative distribution ranks of late delivery and non – conformance ranks for

the top and bottom 25% suppliers across all four applications. As expected, mul-

tiple suppliers across applications have similar rankings, appearing as overlapping

points. That is reasonable considering the nature of the ranking method (ranking

by the cumulative distribution function). For example, consider the case when two

suppliers have similarly low ranks, and their empirical distributions of ranks have

small variation, we expect that their cumulative distribution functions will quickly

reach 1 with a similar trend. Thus, those two suppliers will eventually have the CDF

ranking.
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Figure 7.3.15: Showing the cumulative distribution function of late delivery and non - con-
formance ranks across applications. Vertical dashed lines represent the lower and upper
bound.
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Figure 7.3.16: Showing the CDF ranks of late delivery and non - conformance for the top
and bottom 25% suppliers across applications.
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7.4 Empirical Bayes with Clayton Copula Vs Classic Em-

pirical Bayes Rankings

In this section, we compare the empirical Bayes with Clayton copula model with

the classic empirical Bayes model. Considering the classic empirical Bayes model,

we assume that the late delivery and non – conformance rates are independent, and

therefore we ignore any potential underlying dependency between them. However,

how different the ranking results would be if we choose to ignore dependency. We

intend to investigate the differences between the two models by analysing and com-

paring the position of individuals within the selected pools. We are mostly focusing

on the distribution of the ranks and the mean rankings obtained using the classic

empirical Bayes model (see Section 6.5.3).

We present different visuals aimed to compare the proposed supplier ranking

using the empirical Bayes model with Clayton copula to the classic empirical Bayes

model. Figure 7.4.1 shows the empirical distribution of the ranks for both rates and

models. Again, the distribution of the ranks is given for all suppliers within each

pool, where the red point denotes the mean rank. Comparing the distributions of

the ranks of both models, we observe similar variations between rates and models,

but there are differences, especially on the lower ranks. For example, consider the

Supplier B36, its non – conformance mean rank is three (3) on the Clayton model,

but around fourteen (14) on the classic empirical Bayes model, with more varia-

tion. Figure 7.4.2 identifies significant differences between methods and perfor-

mance measures for suppliers B36 and D10. Similar comparative visuals for sets 2,

3 and 4 can be found in Figures D.1.1, D.1.2 and D.1.3.
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Figure 7.4.1: Multiple boxplots showing the empirical distribution of the late delivery and
non - conformance ranks for all suppliers within the pool of selection set 1. Comparison
between classic empirical Bayes and empirical Bayes with Clayton copula.
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Figure 7.4.2: Showing the empirical distribution of the late delivery (LD) and non - confor-
mance (NC) ranks for suppliers B38 and D10 within the pool of selection set 1. Comparison
between classic empirical Bayes and empirical Bayes with Clayton copula.

Figure 7.4.3 show the mean ranks for all suppliers within the pool of set selec-

tion 1 for both models. We compare the mean late delivery rank to the mean non

- conformance rank of every supplier. According to the visuals, a relatively distinct

left tail dependency between the non – conformance and late delivery mean ranks

appears on the Clayton model, whereas on the classic empirical Bayes model no def-

inite trend or dependence is observed. We also observe that the lower mean ranks

appear more strongly dependent compared to the higher mean ranks on the Clay-

ton model; however, this is not the case for the classic empirical Bayes model. With

the Clayton model, we achieve clear discrimination of best and worst-performing

suppliers across the pool, but the distinction is not that clear for the classic model.

We also notice differences between the mean ranks of the two model, especially on

the lower ranks (best-performing suppliers). For example, for the Clayton model,

Suppliers B36, D10 and P20 consider as the best, second and third best-performing

suppliers within the pool. However, for the classic empirical Bayes model, Suppli-
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ers P20 and S32 consider as the best and second - best performing suppliers. The

two models agree on the mean rankings of the worse performing supplier within

the pool; specifically, both models consider Supplier S10 the worst and Suppliers

A19, J10, H12 and J11 the second worst. Similar differences can be found across

applications (see figure 7.4.4).

Figure 7.4.3: Comparing the mean ranks of late delivery and non - conformance for all sup-
pliers within the pool of selection set 1 obtained by the classic empirical Bayes with the
mean ranks obtained by the empirical Bayes with Clayton.
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Figure 7.4.4: Comparing the mean ranks of late delivery and non - conformance for all sup-
pliers within the pool of selection set 2, 3 and 4, obtained by the classic empirical Bayes with
the mean ranks obtained by the empirical Bayes with Clayton.
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Chapter 8

Conclusions and Future Work

8.1 Research Summary and Contribution

An inference method is developed for accounting for dependency between mul-

tiple unknown event rates using copulas. Our proposed method incorporates the

underlying dependence on the rates, modelled using Clayton copula, into the Bayesian

modelling framework, which primarily ensures coherent and theoretically sound

rates estimates, and further, allows the rates estimates to be informed based on in-

formation for multiple events. Figure 8.1.1 illustrates the research aim, objectives

and specific research questions answered in this research.

Our proposed empirical Bayes model captures both aleatory and epistemic un-

certainties. Epistemic uncertainty is represented by the prior distribution. In par-

ticular, we used Clayton copula with Gamma marginals to describe the dependence

between the rates, assuming that event rates realised from a homogeneous Pois-

son process capturing the pure inherent randomness in the observations, i.e. the

aleatory uncertainty. Clayton copula specifies left tail dependence, where lower

rates are considered highly correlated compared to higher. We capture the underly-

ing dependence on the rates and not the correlation on the realisations of events

(Poisson process data), implying that the underlying dependence on the rates is
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Figure 8.1.1: Diagram showing the research aim, objectives and research questions.

driven by the operations within organisations rather than the occurrence of rare

or extreme events. Method of moment estimators was used for estimating the prior

marginal distributions, and the analytical expression proposed in chapter 4 for es-

timating the dependence parameter θ of the Clayton copula. The posterior distri-

bution is not analytically traceable in our case. Therefore, numerical integration

methods are of need for obtaining the empirical Bayes estimates by computing the

posterior expectations, which can be computationally intensive. Thereby, we pro-

posed a simulation - summation method for calculating the posterior expectations,

which is based on generated random samples from the updated prior distribution.

R.Q. How to estimate the dependence parameter of the Clayton copula with Gamma
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marginals using only empirical data realized from Poisson processes?

Following the empirical Bayesian methodological framework, all prior parame-

ters including the dependence parameter of the copula need to be estimated. How-

ever, estimating the dependence parameter of the Clayton copula using only the

empirical count data realized form Poisson processes can be challenging. There-

fore, we conducted a simulation study in order to investigate, initially, if there is a

relationship between the Poisson process data and the Clayton dependence param-

eter, and secondly, how such a relationship can analytically be explicated within this

context.

According to our simulations, we identified a distinct relationship between the

parameters available from the empirical data and the Kendall’ s tau of the prior Clay-

ton. knowing also that there is a closed - form formula that describes the depen-

dence parameter θ in relation to the Kendall’ s tau τ, of the Clayton copula (Nelsen,

2007), we focused on defining that relationship.

Therefore, we propose a new model for estimating the Kendall’s tau of the Clay-

ton copula with Gamma marginal distributions (bivariate case) using only the Pois-

son process data. Particularly, we developed a non - linear regression model for

predicting Kendall’s tau of the prior Clayton. Another non-linear regression model

is also developed for predicting the Root Mean Squared Error of the predictions, en-

suring that the model proposed is accurate even in the worst - case scenario.

A simulation study is conducted considering multiple possible situations and

parameters, for example the exposure time, the sample size, and the marginal Gamma

parameters. Our findings suggest that there is an affine relationship between the

Kendall’ s tau of the prior and the Poisson data, which in some cases, it is obscured

by the noise in the data introduced by the Poisson Process. We conclude that all

models’ parameters affect the relationship between the two measures differently.

Notably, we consider best - case scenarios cases where the exposure time, the pool
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size and the marginal variance are relatively high; and the marginal mean is low.

To support further comparison, we compared the model fit results obtained from

the application of full Bayesian model to the empirical Bayesian model. We dis-

cussed how the proposed models perform using the theoretical settings and how

when the estimated prior parameters are used indicating empirical Bayes method.

Our findings suggest that both models perform significantly well and produce sim-

ilar results. At last, we provide analytical expressions for obtaining an estimate of

the dependence parameter of the Clayton copula in relation to the empirical data

available. The dependence estimate obtained from this model is necessary and is

used as an input to the main empirical Bayesian model of this research.

R.Q. How good are the assessments of mean rates when using a moment - based in-

ference approach within an Empirical Bayes method assuming dependency be-

tween the rates?

We conducted a simulation study to examine the relative accuracy of our pro-

posed model, provide an answer to this research question, and further investigate

what is the impact of choosing to ignore dependency. We considered multiple dif-

ferent parameters, including the size of the pool, the exposure time, the marginal

Gamma parameters and levels of dependence (from relatively weak to strong). Our

findings indicate that our proposed model provides accurate estimates of the prior

rates. Notably, as the exposure time increases, the RMSE of the prediction errors

decreases significantly. We also identified cases considering the Gamma marginal

mean and variance, where the model is expected to perform relatively better com-

pared to other situations. In particular, the smaller the marginal mean, the smaller

the RMSE of the errors. We further evaluated the empirical Bayes with Clayton cop-

ula model in comparison with the classic empirical Bayes model by conducting a

benchmarking study in which data were simulated from the Clayton prior and fur-
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ther from the Poisson distribution.

We compared the empirical Bayes estimates obtained using our proposed model

to the estimates obtained from the classic empirical Bayes model by ignoring the

underling dependence; and the estimates obtained without pooling. Our findings

suggest that there are no cases where estimates obtained without pooling are more

accurate compared to our proposed model and the classic empirical Bayes.

To provide further comparative analysis between the two models considering all

parameters chosen for this study by identifying cases in which the proposed empiri-

cal Bayes with Clayton copula model is expected to outperform the classic Bayesian

model; and, further,investigate in which cases, it is worth ignoring the underlying

dependence on the event rates, we conducted a benchmarking study. Our findings

indicate the proposed empirical Bayes with Clayton copula model outperforms the

classic empirical Bayes model in cases where the underlying dependence between

event rates is moderate to strong, and the prior mean and variance are relatively

large. In contrast, the classic EB model is suggested in cases where weak depen-

dence between the rates occurs. Particularly, in cases where the prior mean and

variance are relatively large; and the size of the pool is large.

R.Q. What is the impact of accounting for dependency in the context of ranking

based on correlated event rates?

We developed a method for ranking event rates under uncertainty. We struc-

tured the ranking problem from a Bayesian perspective as follows. We have a like-

lihood to explain the variability in observations given and inherent rate of interest,

and a prior distribution to describe the uncertainty on the rates of events. We are

interested in ranking on the inherent rate, but we have different amounts of uncer-

tainty about each across the pool. As such, the rank, i.e. that which would be re-

vealed if we knew the true rate for certain, is also uncertain. We were able to express
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the probability distribution of the ranks, but unusual bi-modal or even multi-modal

distributions were created even for simple prior distributions. As such, we require

Monte Carlo methods for obtaining the empirical distributions of the ranks.

Ranking under uncertainty can be challenging. Careful consideration needs to

be made on multiple modelling choices. For example, how do we rank distribu-

tions? What would be an appropriate measure to rank on? There is no straightfor-

ward answer, as we are dealing with much uncertainty. Instead, we presented three

statistical criteria for ranking; ranking by the mean, the median and the cumula-

tive distribution of ranks, showing that there is no absolute right or wrong analysis

but different perspectives and approaches, which eventually better inform decision

making. Furthermore, what would be an appropriate pool to choose? Again, there

is no straightforward answer.

To further investigate the impact of not accounting for dependency and pro-

vide an answer to the research question, we provide an application that focuses on

supplier ranking. For this study, we used data for two supplier key performance in-

dicators. In particular, our proposed model is based on the empirical Bayes method

considering the underlying dependence between the late delivery rate and the non

– conformance rate. We modelled the dependency between the two rates by using a

Clayton copula, which describes cases with strong left-tail dependence. Consider-

ing our motivation for this study, the Clayton copula seems appropriate for supplier

ranking problems. We consider the underlying dependence on the rates and not

the correlation on the realisations of events (Poisson process data), implying that

the underlying dependence on the rates is driven by the operations within organi-

sations rather than the occurrence of rare or extreme events. Within this context, we

can say that when a supplier performs well on delivery, it usually performs well on

quality as well; and when a supplier has a poor performance on one measure, it is

uncertain how it would perform on the other, as other factors affect their operations

within the organisation.
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We presented several examples of analysis and model applications using de -

sensitised real data from the prime manufacturer considering multiple situations.

For example, what happens if we select different size pools within the same time

of exposure; or different exposure time and different pool size. We have also pre-

sented the analysis of data by describing the nature of data available and discussing

the data preparation process. Furthermore, we have compared the proposed model

with the classic empirical Bayes model, which assumes that the event rates are con-

ditionally independent. Our findings suggest that mean and median rankings pro-

vide similar results. However, when comparing the proposed model with the classic

EB model, the final rankings were not the same. A relatively distinct left tail depen-

dency between the non – conformance and late delivery mean ranks appears on the

Clayton model, whereas on the classic empirical Bayes model, no clear discrimina-

tion of the best - performing suppliers is observed.

With our proposed method considering dependency, we achieved a clear dis-

crimination of best and worst - performing suppliers across the pool, but this is

not the case for the classic empirical Bayesian model. Therefore, considering de-

pendency can clarify the ranking as we provide more information into the analysis.

On the other hand, if we choose to ignore the underlying dependency between the

rates may mislead to incorrect conclusions about the position of a supplier within

the pool which consequently can be financially costly for the company.

8.2 Research Limitations and Future Work

This research involves several limitations that can be turned into motivation for

future work. Firstly, creating methods that consider the underlying dependence be-

tween multiple event rates and making use of the count data available have mo-

tivated this study. We understand that estimating copulas’ dependence parame-

ter using count data can be challenging. However, we have provided analytical ex-
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pressions that can be used for obtaining an estimate of Kendall’s tau of the Clayton

copula with Gamma marginals when dealing with count data realized from Poisson

processes. The proposed methods and conclusions are based on simulation stud-

ies conducted this research. Although we select a wide range of parameters, it is

almost impossible to consider all possible scenarios. Therefore, an aspect for future

work is to extend the study of simulations and analytically examine the asymptotic

performance of the proposed method.

The need for creating methods that consider dependency between multiple event

rates and provide flexibility in terms of marginal choice and dependence structure

has also motivated this research. Although copulas are considered a powerful tool

for modelling complex dependency, copulas combined with Poisson process data

have not yet been explored within this context, i.e. prior copula. We account that

the choice of the marginal distributions, the marginal parameters and the depen-

dence structure could be considered restricted and challenging in situations where

other marginal distributions would be more appropriate or when the dependence

structure is different. However, copulas can provide such flexibilities. Therefore, ex-

ploring different copula families for identifying hidden relationships between prior

copulas and Poisson process data and modelling complex dependence structures

within Bayesian inference can be turned into motivation for future work. This re-

search investigates the bivariate case of the Clayton copula where only two per-

formance measures are under consideration. Another aspect for future work is to

extend this method and explore higher - dimensional dependence modelling using

vine copulas.
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Appendix A

Analysis of Data - Simulation Study for

Estimating Kendall’s Tau

A.1 Residual RMSE Model Fit

We are interested in the Root Mean Square Error (RMSE) of residuals. Figure

A.1.1 shows the RMSE of residuals for all different sets of parameters, in which colours

represent different marginal variance values and symbols represent different marginal

mean values. We observe that RMSE is affected by the size of the pool, the expo-

sure time and the marginal parameters. Particularly, as the pool size and exposure

time increase, the RMSE always decreases. However, not in all cases, the decrease

is equally significant. The marginal distributions contribute to the final form of the

RMSE. For example, the highest RMSE appears when low variance, high mean, rel-

atively small pool size and exposure time are set.
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Figure A.1.1: Showing RMSE of residuals for all different sets of parameters. Colours rep-
resent different marginal variance values and symbols represent different marginal mean
values.

Since RMSE is affected by all model parameters, we build a non-linear model

that describes this relationship, as shown in Section 4.2. Tables A.1.1, A.1.2 sum-

marise the results of the model fit. According to the results, the model performs

relatively well. All coefficients are significant; the overall residual standard error is

minimal (close to zero), and only 13 iterations needed to convergence.

Formula: r mse ∼ a ·mb · t c ·
(

a
b2

)d · (a
b

)e

Residual standard error: 0.00537
Number of iterations to convergence: 13

Table A.1.1: RMSE model fit results.

Estimate Std. Error t value Pr(> |t |)
a 1.17 0.01 85.45 0.00
b -0.41 0.00 -189.75 0.00
c -0.53 0.00 -215.15 0.00
d -0.53 0.00 -315.36 0.00
e 0.52 0.00 279.51 0.00

Table A.1.2: Coefficients of RMSE model fit.

Figure A.1.2 shows the comparison between predicted and actual RMSE values.

Indicates that the predicted values of the model are very close to the actual RMSE
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values. Regarding the residuals of RMSE fit, we note that they follow Normal distri-

bution (See figure A.1.3).

Figure A.1.2: Showing a comparison between the predicted RMSE values and the actual
RMSE values.

Figure A.1.3: Residuals of RMSE model follow Normal distribution.
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Appendix B

Inference Methods and Evaluation

Visuals

B.1 Simulation Study Visuals

B.1.1 Empirical Bayes with Clayton Model Prediction Errors
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Appendix B. Inference Methods and Evaluation Visuals

Figure B.1.1: Showing how different pool size, exposure time, mean and variance choices
affect BIAS, MSE, RMSE and RMSRE of EB with Clayton prediction errors, when true vari-
ance is 5 and true mean is 5.

189



Appendix B. Inference Methods and Evaluation Visuals

Figure B.1.2: Showing how different pool size, exposure time, mean and variance choices
affect BIAS, MSE, RMSE and RMSRE of EB with Clayton prediction errors, when true vari-
ance is 10 and true mean is 5.
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Figure B.1.3: Showing how different pool size, exposure time, mean and variance choices
affect BIAS, MSE, RMSE and RMSRE of EB with Clayton prediction errors, when true vari-
ance is 20 and true mean is 5.
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Figure B.1.4: Showing how different pool size, exposure time, mean and variance choices
affect BIAS, MSE, RMSE and RMSRE of EB with Clayton prediction errors, when true vari-
ance is 2 and true mean is 10.
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Figure B.1.5: Showing how different pool size, exposure time, mean and variance choices
affect BIAS, MSE, RMSE and RMSRE of EB with Clayton prediction errors, when true vari-
ance is 5 and true mean is 10.
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Figure B.1.6: Showing how different pool size, exposure time, mean and variance choices
affect BIAS, MSE, RMSE and RMSRE of EB with Clayton prediction errors, when true vari-
ance is 10 and true mean is 10.
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Figure B.1.7: Showing how different pool size, exposure time, mean and variance choices
affect BIAS, MSE, RMSE and RMSRE of EB with Clayton prediction errors, when true vari-
ance is 20 and true mean is 10.

195



Appendix B. Inference Methods and Evaluation Visuals

Figure B.1.8: Showing how different pool size, exposure time, mean and variance choices
affect BIAS, MSE, RMSE and RMSRE of EB with Clayton prediction errors, when true vari-
ance is 2 and true mean is 20.
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Figure B.1.9: Showing how different pool size, exposure time, mean and variance choices
affect BIAS, MSE, RMSE and RMSRE of EB with Clayton prediction errors, when true vari-
ance is 5 and true mean is 20.
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Appendix B. Inference Methods and Evaluation Visuals

Figure B.1.10: Showing how different pool size, exposure time, mean and variance choices
affect BIAS, MSE, RMSE and RMSRE of EB with Clayton prediction errors, when true vari-
ance is 10 and true mean is 20.
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Figure B.1.11: Showing how different pool size, exposure time, mean and variance choices
affect BIAS, MSE, RMSE and RMSRE of EB with Clayton prediction errors, when true vari-
ance is 20 and true mean is 20.
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Figure B.1.12: Showing how different pool size, exposure time, mean and variance choices
affect BIAS, MSE, RMSE and RMSRE of EB with Clayton prediction errors, when true vari-
ance is 2 and true mean is 40.
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Figure B.1.13: Showing how different pool size, exposure time, mean and variance choices
affect BIAS, MSE, RMSE and RMSRE of EB with Clayton prediction errors, when true vari-
ance is 5 and true mean is 40.
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Figure B.1.14: Showing how different pool size, exposure time, mean and variance choices
affect BIAS, MSE, RMSE and RMSRE of EB with Clayton prediction errors, when true vari-
ance is 10 and true mean is 40.
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Figure B.1.15: Showing how different pool size, exposure time, mean and variance choices
affect BIAS, MSE, RMSE and RMSRE of EB with Clayton prediction errors, when true vari-
ance is 20 and true mean is 40.
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B.2 Benchmarking Study Visuals

B.2.1 Bias Results

Figure B.2.1: Showing how different pool sizes, exposure times, dependence parameters
and prior variance values affect BIAS for Models A, B and C, when the true prior mean is
five.
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Figure B.2.2: Showing how different pool sizes, exposure times, dependence parameters
and prior variance values affect BIAS for Models A, B and C,when the true prior mean is ten.
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Figure B.2.3: Showing how different pool sizes, exposure times, dependence parameters
and prior variance values affect BIAS for Models A, B and C,when the true prior mean is
twenty.
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Figure B.2.4: Showing how different pool sizes, exposure times, dependence parameters
and prior variance values affect BIAS for Models A, B and C,when the true prior mean is
forty.
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B.2.2 MSE Results

Figure B.2.5: Showing how different pool sizes, exposure times, dependence parameters
and prior variance values affect MSE for Models A, B and C,when the true prior mean is five.
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Figure B.2.6: Showing how different pool sizes, exposure times, dependence parameters
and prior variance values affect MSE for Models A, B and C,when the true prior mean is ten.
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Figure B.2.7: Showing how different pool sizes, exposure times, dependence parameters
and prior variance values affect MSE for Models A, B and C,when the true prior mean is
twenty.
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Figure B.2.8: Showing how different pool sizes, exposure times, dependence parameters
and prior variance values affect MSE for Models A, B and C, when the true prior mean is
forty.

211



Appendix C

Literature Review on Supplier

Selection / Ranking Process

In this chapter, we present a literature review on the supplier selection process.

Even if the supplier selection process seems distinct from supplier ranking, they are

closely related. Mainly, the latter is part of the supplier selection process. In the

supplier selection process, multiple possible suppliers are of consideration with the

ultimate goal of selecting one or more best-performing suppliers. All possible sup-

pliers are initially evaluated and then ranked based on prespecified criteria. In con-

trast, the supplier ranking process is based on already existing suppliers within the

organisation; and it requires the existence of relevant historical data with the goal

of ranking already selected suppliers. Therefore, we choose to follow the supplier

selection process, mainly focusing on the final phase, the supplier ranking. We ini-

tially present different supplier selection frameworks along with relevant supplier

selection criteria proposed in the past and then discuss the methods and models

used for supplier selection and ranking in the supply chain management area. For

further discussion see De Boer et al., 2001; Chai et al., 2013 and Chai & Ngai, 2020.
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C.1 Supplier Selection Framework

The supplier selection process involves various phases; thus, it is essential to

consider all these phases and not to concentrate only to the final step which refers

to the supplier selection/ranking (De Boer et al., 2001). According to De Boer et

al. (2001), the supplier selection process can be divided into four decision-making

phases; the problem formulation, the formulation of criteria, the qualification and

the final selection. We initially need to identify the purpose of the supplier selection

process and then define the evaluation criteria. Considering the different purchas-

ing situations is also essential, and as De Boer et al. (2001) propose, these categories

could be (a) first time buys, (b) modified rebuys (leverage items), (c) straight re-

buys (routine items) and (d) straight rebuys (strategic items). The authors argue

that ’situational factors as the number of the suppliers available, the importance of

the purchase and/or the supplier relationship and the amount and nature of the un-

certainty present, are far more determinative for the suitability of a certain decision

method in a particular situation’ (De Boer et al., 2001). Consequently, they suggest

only two determinant factors, importance and complexity.

Many authors in the past have examined complexity in the supplier selection

process, for example Robinson et al. (1967) proposed three categories of purchasing

situations a) the new task situation, b) the modified rebuy and c) the straight rebuy.

A detailed description of the categorisation by Robinson et al. (1967) is presented

in Table C.1.1. Kraljic presented another approach to the supplier selection area in

1983 (Kraljic, 1983). In his so-called Kraljic’ s portfolio approach, importance and

complexity are both examined based on two specific factors, the profit impact and

the supply risk. Description of all characteristics of the approach is also presented

in Table C.1.2.
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New task situation • Entirely new product/service; no previous experience
• No (known) suppliers
• High level of uncertainty with respect to the specification
• Extensive problem solving; group decision - making

Modified rebuy • New product/service to be purchased from known suppliers
• Existing (modified) products to be purchased from new suppliers
• Moderate level of uncertainty with respect to specification
• Less extensive problem solving

Straight rebuy • Perfect information concerning specification and supplier
• Involves placing an order within existing contracts and agreements

Table C.1.1: Categorization of purchasing situations by Robinson et al. (1967).

Low-supply risk High-supply risk

Low-profit
impact

Routine items Bottleneck items

• Many suppliers • Monopolistic supply market
• Rationalise purchasing procedures • Long-term contracts
• Systems contracting • Develop alternatives (internally)
• Automate/delegate • Contingency planning

High-profit
impact

Leverage items Strategic items

• Many suppliers available • Few suppliers
• Competitive bidding • Medium/long-term contracts
• Short-term contracts • Supplier development/partnership
• Active sourcing • Continuous review

Table C.1.2: Kraljic (1983) portfolio approach

Following Kraljic (1983) portfolio approach and Robinson et al. (1967), De Boer

et al. (2001) proposed a new supplier selection framework that aims to provide the

purchaser with a clear distinction among the supplier selection situations, consid-

ering the four phases of the process discussed previously. The first distinction refers

to the type of supplier selection, mainly, the distinction between the first time and

repeated selection is considered. Summary of De Boer’s supplier selection frame-

work (De Boer, van der Wegen, & Telgen, 1998) is presented in Table C.1.3. We
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note that the proposed framework by De Boer et al. (1998) is closely related to the

Kraljic’s portfolio approach (Kraljic, 1983). Precisely, both approaches describe and

distinguish the supplier selection situations based on leverage, routine and bottle-

neck/strategic items; and based on the impact of relationships between companies.

In both approaches, the importance of the relationship between buyer and seller,

which indicates that the final selection/choice may differ if two companies have

close relationships, is also addressed.

New task Modified rebuy Straight rebuy Straight rebuy

(leverage items) (routine items) (strategic/bottleneck)

Problem

definition

Use a supplier or

not?

Use more, fewer

or other suppli-

ers?

Replacing the

current supplier?

How to deal with

the supplier?

Varying impor-

tance

Moderate/high

importance

Low/moderate

importance

High importance

One-off decision Repeating deci-

sion

Repeating deci-

sion

Repeating evalu-

ation

Formulation

of criteria

No historical

data on suppli-

ers available

Historical data

on suppliers

available

Historical data

on suppliers

available

Historical data

on suppliers

available, yet

very few actual

selections

No previously

used criteria

available

Previously used

criteria available

Previously used

criteria available

Previously used

criteria available

Varying impor-

tance

Qualification Small initial set

of suppliers

Large set of ini-

tial suppliers

Large set of ini-

tial suppliers

Very small set of

suppliers
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Sorting rather

than ranking

Sorting as well as

ranking

Sorting rather

than ranking

Sorting rather

than ranking

No historical

records available

Historical data

available

Historical data

available

Historical data

available

Choice Small initial set

of suppliers

Small to moder-

ate set of initial

suppliers

Small to moder-

ate set of initial

suppliers

Very small set of

suppliers (often

only one)

Ranking rather

than sorting

Ranking rather

than sorting

Ranking rather

than sorting

Historical data

available

Many criteria Also: how to allo-

cate volume?

Fewer criteria Evaluation

rather selec-

tion

Much interac-

tion

Fewer criteria Less interaction Sole sourcing

No historical

records available

Less interaction Historical data

available

Varying impor-

tance

Historical data

available

Model used

again

Model used once Model used

again

Single sourcing

rather than mul-

tiple sourcing

Table C.1.3: De Boer’ s supplier selection framework (1998)

C.2 Supplier Selection Criteria

In this section, we discuss the initial phase of the supplier selection process,

which involves the establishment of the ranking/evaluation criteria. Before we rank

and finally select the suppliers, we need to define the purpose and determine the

criteria on which the evaluation will be based. Over the years, the decision crite-
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ria vary due to the needs of every period. Previous researches have shown that the

most important criteria are the delivery performance and the price; however, recent

studies show that quality has also reached a high ranking (Bharadwaj, 2004).

Many studies focused on finding what and how many evaluation criteria are of

need in the supplier selection process. For example, Stamm and Golhar (1993) iden-

tified thirteen (13) evaluation criteria, Ellram (1990) proposed eighteen (18) criteria

and Rao and Kiser (1980) suggested sixty (60) criteria. Most of the evaluation criteria

are quantitative, such as cost and delivery; however, Ellram (1990) proposed qualita-

tive criteria in his supplier selection approach. The compatibility of management,

the consistency of goal and the suppliers’ strategy are some of his recommended

qualitative evaluation criteria. Also, Dickson (1966) proposed a set of twenty-three

(23) criteria suggesting that quality and delivery are two of the most critical factors.

The performance history follows in third place in the ranking table. We also notice

that price takes sixth place in the table, which indicates that it is not so relevant

compared to the quality and delivery factors. Table C.2.1 shows the first ten criteria

with the highest ranking, as mentioned by Dickson (1966).

Rank Factor Mean Rating
1 Quality 3.508
2 Delivery 3.417
3 Performance History 2.998
4 Warranties and Claim Policies 2.849
5 Production Facilities Capacity 2.775
6 Price 2.758
7 Technical Capability 2.545
8 Financial Position 2.514
9 Procedural Compliance 2.488

10 Communication System 2.426

Table C.2.1: Dicksons’ supplier selection criteria (Weber et al. 1991)
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Empirical Evaluation of Ranking

Methods Based on Historical Supplier

Data

D.1 Visual Comparison of Distribution of Ranks Between

Classic EB and EB with Clayton Models.
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Figure D.1.1: Multiple boxplots showing the empirical distribution of the late delivery and
non - conformance ranks for all suppliers within the pool of selection set 2. Comparison
between classic empirical Bayes and empirical Bayes with Clayton copula.
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Figure D.1.2: Multiple boxplots showing the empirical distribution of the late delivery and
non - conformance ranks for all suppliers within the pool of selection set 3. Comparison
between classic empirical Bayes and empirical Bayes with Clayton copula.
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Supplier Data

Figure D.1.3: Multiple boxplots showing the empirical distribution of the late delivery and
non - conformance ranks for all suppliers within the pool of selection set 4. Comparison
between classic empirical Bayes and empirical Bayes with Clayton copula.
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