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NOTATIONS 

The following symbols are used in this thesis and are defined where they first appear 

in the text. Some symbols have been assigned more than one meaning, but it will be 

clear from the context. 

A,M 

D 

D 

E 

I 

L=Ra 

L 

M 

M.Mt 

N 

R 

U 

a 

b 

c 

d 

i, ip 

area of pipe cross-section, change of area of pipe cross-section, mm2 

shell bending stiffness, N .mm 

outside diameter, nun 

Young's modulus, N/mm2 

Second moment are of cross-section, mm4 

Equivalent length of a straight pipe, mm 

length of straight tangent pipe, mm 

bending stress resultants, N.mm 

applied bending moment, applied torsion moment, N.mm 

in-plane bending, out-of-plane bending, N.mm 

stretching stress resultants, N/mm 

pipe bend radius, mm 

strain energy due to deformation of pipe cross-section 

pressure reduction on ovaiisation, flexibility, and stress-intensification 

a coefficient represents the dependence of k and ron radius ratio 

a coefficient represents the dependence of k and ron radius ratio 

distance from central axis of a pipe cross-section, mm 

inside diameter 

Stress-int factor without internal pressure, with internal pressure 

in-plane, out-of-plane, stress-intensification factor 

Flexibility factor without internal pressure, with internal pressure 

in-plane flexibility factor, out-of-plane flexibility factor 
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r 

t 

u 

v 

w 

e 

r 

rp 

9'I 

f/>J. 

A= tRI,J-

; 
8 

Bx,8y,~ 

p=Rlr 

0; ~x 

v 

z 
~, ~n 

~p 

'1/= pR2 I Ert 

pipe cross-section radius, mm 

thickness of pipe, mrn 

axial displacement 

tangential displacement 

radial displacement 

bend angle, changes of bend angle, deg 

rotation of end section of a curved pipe (pipe bend) 

rotation of end section of a straight pipe 

vertical bulging (contraction of in-plane diameter), mm 

horizontal flattening of the pipe cross-section, mm 

mid-surface stretching strain 

stress-intensification factor 

in-plane stress-intensification, out-of-plane stress-intensification 

rotation of end-section of a pipe bend 

rotation of section connection a pipe bend with loaded tangent 

rotation of section connection a pipe bend with fixed tangent 

pipe bend paramater, pipe factor 

circumferential (hoop) direction for a toroidal coordinate system 

longitudinal (axial) direction for a toroidal coordinate system 

rotation of the end section of a loaded tangent about X, Y, and Z-axis 

radius ratio 

stress, maximum stress, N/mm2 

nominal bending stress in a straight pipe, N/mm2 

axial stress, radial stress, N/mm2 

hoop stress, longitudinal stress, N/mm2 

Shear stress, N/mm2 

Poisson's ratio 

Curvature of the mid-surface 

ovalisation factor, nominal ovalisation 

ovalisation factor with internal pressure 

Pressure parameter 
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ABSTRACT 

The behaviour of piping elbows under bending and internal pressure is more 

complicated than expected. The main problem is that the coupling of bending and 

internal pressure is non-linear; stress and displacement cannot be added according to 

the principle of superposition. In addition, internal pressure tends to act against the 

effect caused by the bending moment. If bending moment ovalises the elbow cross­

section, with internal pressure acting against this deformation, then the deformed 

cross-section tries to deform back to the original circular shape. It is then introduced 

the term ''pressure reduction effect". Current design piping code treats the pressure 

reduction effect equally for in-plane (closing and opening) moment and out-of-plane 

moment. 

In this thesis, the pressure reduction effect is reassessed for in-plane closing moment 

through parametric study by performing detailed large deformation finite element 

analysis. The study is then extended to assess the pressure reduction effect for in­

plane opening moment and out-of-plane moment. Approximate formulae for 

ovalisation, flexibility, and stress-intensification factor are developed through a 

systematic analysis of the finite element generated data. Comparison of results 

presented in this thesis and the current ASME piping code for the pressure reduction 

effect under in-plane closing bending confirms that the ASME code formulae 

underestimates the pressure reduction for flexibility and stress-intensification. If the 

ASME formulae are applied for in-plane opening bending and out-of-plane bending, 

it overestimates the pressure reduction for the flexibility factor. If the AS ME 

formulae for the pressure effect on stress-intensification factor is applied, it 

underestimates the pressure reduction for closing bending and out-of-plane bending, 

but overestimates for opening bending. It is therefore proposed that different formula 

for different direction of bending load should be used and the results presented in this 

thesis should be useful for this purpose. 
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CHAPTER! 

INTRODUCTION 

This chapter introduces the concepts of flexibility and stress-intensification factors 

for a smooth curved pipe that are discussed in subsequent chapters. The background 

to the pressure reduction effect is also described. 

1.1 Background 

Piping systems are an indispensable feature of the petrochemical industry and power 

plant technology among many others. In such systems, straight tubes are dominant, 

but problems of plant layout, etc., obviously make it necessary for pipe runs to 

change direction. One way of getting the line of the pipe to change direction is by 

using piping elbows or bends. However, elbows are also introduced to absorb 

thermal expansion because of its greater flexibility compared to an equivalent 

straight pipe. 

The behaviour of a smooth piping elbow under simple mechanical loads such as 

bending and pressure is rather curious. Engineer's theory of beam bending for a 

straight pipe with circular cross section and the familiar equations for a pressurised 

thin pipe are perfectly satisfactory, very simple and describe the resulting stress 

systems accurately. Similarly the stress system in a solid curved beam under in-plane 

bending is a classical solution, familiar to all engineers, and again straightforward. 

So it comes as some surprise to most professional engineers that the behaviour of a 

curved beam with a thin-walled section (a pipe bend) under in-plane bending is not 

straightforward and further, that simple closed-form solutions are difficult. It is 

perhaps even more of a sutprise when it is realised that the combination of bending 

and internal pressure is very complex - indeed requiring a non-linear solution! 



However it was also well known in the first half of the last century that internal 

pressure was a complicating factor. The stresses from in-plane bending and internal 

pressure did not appear to be additive and the flexibility could be reduced in a non­

proportional manner. It was realised by several authors in the 1950's: Kafka and 

Dunn [29]\ Crandall and Dahl [27], Rodabaugh and George [30] and Reissner [33]­

that the source of the problem was a non-linear interaction between bending and 

pressure. Essentially the deformation and stress from combined bending and pressure 

could not be added. A simple explanation [67] can be based on the 'Haigh effect' 

[11], which in itself is not very well known by professional engineers working with 

pressurised equipment. In fact, it is documented in the Engineering Science Data 

Unit [39]. Any pipe, straight or curved, subject to internal pressure departs 

significantly from simple engineer's theory if the pipe cross section is not circular 

(say induced by manufacture). The magnitude of this effect depends upon the 

geometry of the pipe bend and loading acting on it. The problem is that the 

deformation of the pipe cross-section can no longer be assumed to be small, and 

subsequently the analysis is much more complex and non-linear (although of course 

still amenable to finite element analysis). There is in fact a large rotation of the shell 

wall. In a pipe bend, even if the cross section is initially circular, any applied bending 

will ovalise the cross section, and if pressure is present the Haigh effect will be 

important. The main result is that the coupling of bending and pressure in a pipe 

bend is non-linear. While the applied moment tends to flatten the cross section of the 

bend, the internal pressure tries to work against this - it tries to open up the bend (the 

Bourdon Effect). Modified flexibility and stress factors - known as the 'pressure 

reduction effect' - from the Rodabaugh and George analysis [30] in 1957 have been 

incorporated into the ASME B31.3 Process Piping code [120] and again are used to 

this day, virtually unchanged. The ASME B31.1 Power Piping code [114] does not 

specify the Rodabaugh & George modifications, but does allow modified flexibility 

and stress factors to be used. 

IReferences are ordered chronologically; for a publication year, alphabetically. 
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Simple flexibility and stress factors derived from simplified analyses in the 1950's, 

together with the approximate pressure reduction effect, continue to be used in 

routine piping system flexibility analysis. These factors were derived for the specific 

load case of pure in-plane closing moment and internal pressure and are used, usually 

without modification, for in-plane opening moments and out-of-plane loading. Apart 

from a detailed study by Boyle & Spence [57] on the nature of the non-linear effect 

and by Spence & Thomson [81, 85] on the influence of end effects (that is pure 

bending is not assumed, for example attached straight pipes and rigid flanges), which 

was previously developed by Thomson [73], very little has been reported on the 

pressure correction apart from ad hoc finite element analyses of specific piping 

elbow configurations. This is quite surprising when it is realised that a non-linear 

finite element analysis of a piping elbow under any bending mode and internal 

pressure can be carried out easily with modern commercial FEA software. 

1.2 Flexibility and Stress-Intensification Factors 

A piping elbow is introduced into a piping system to absorb thermal expansion, 

because it has greater flexibility under bending compared to a straight pipe. Straight 

pipe, in general, can be adequately represented by simple beams with circular cross­

section. However, the pipe bend is much more difficult to analyse, because in 

addition to undergoing the usual beam deformation, the cross-section of the pipe 

bend becomes oval in shape due to bending. Typical ovalisation of a circular cross­

section pipe bend under in-plane (closing and opening) and out-of-plane moment are 

shown in Fig.I.I. 
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(a) in-plane closing bending 

(c) out-of-plane bending 

Fig.t.t Cross-sectional ovalisation ofa pipe bend due to bending (a) in-plane closing 

bending, (b) in-plane opening bending, (c) out-of-plane bending 

4 



The dashed line in these figures (circular shape) is undeformed cross-section and the 

solid line (elliptical shape) is the deformed cross-section. Figure l.l(a) shows that 

cross-sectional ovalisation due to in-plane closing moment (decrease the radius of 

curvature) has a major axis perpendicular to plane of the bend. Under in-plane 

opening moment (increase the radius of curvature), the major axis of the deformed 

oval cross-section lies in the plane of the bend as shown in Fig. 1.1 (b). Figure 1.1 ( c) 

shows that a pipe bend under an out-of-plane moment deforms into oval shape with 

major axis inclined by about 45-deg from the plane of the bend. It seems that the 

direction (but not the magnitude) of cross-section ovalisation of a pipe bend under an 

out-of-plane moment is a different condition of in-plane closing and opening [13]. 

Due to cross-sectional ovalisation, the relation between bending and change in 

subtended angle for the in-plane bending of curved tube (Fig.1.2(a», can be 

calculated as follows [Kitching, 45]: 

M{I- y2 ) _ 1 1 aa ----
EI kR a 

where M= applied bending moment, N.mm 

y= Poisson's ratio 

E = Young's modulus, N/mm2 

[= Moment inertia of the cross-section, mm4 

R = Pipe bend radius, mm 

a, Ila = subtended angle, change of subtended angle, deg. 

k = flexibility factor 

(1-1) 

It is well known that the relation between applied bending moment and resulting 

angle of rotation of the end section ofa straight pipe having 'the equivalent' length L 

= Ra (Fig. 1.2(b» is: 

M{I-v
2

) = Ila =1- Ila 
EI L R a 

(1-2) 
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(b) 

deformed 

Aa 

M 

Fig.I.2 Pipe subjected to in-plane moment, (a) pipe bend, (b) equivalent straight pipe 

A measure of the additional flexibility of a curved pipe over equivalent straight pipe 

can be found by dividing the change in subtended angle of a curved pipe to the 

rotation of end section of an equivalent straight pipe due to the same bending 

moment. Hence, the 'flexibility factor' can be defined as: 

where ~lXc = the rotation of the end section of a curved pipe (pipe bend) 

~as = the rotation of the end section of a straight pipe 

(1-3) 
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The cross-sectional ovalisation also causes the stress distribution to be different from 

that computed by curved beam theory [32, 116]. The stress distribution in a curved 

pipe is also different from that computed by straight beam bending theory (a = My/I). 

In this sense, the maximum local stresses in curved pipe are larger than the maximum 

stresses in a corresponding straight pipe under equal bending moment. The 

maximum bending stress in a curved pipe could then be written as: 

where 'Y = 'stress-intensification factor' ('Y> 1) 

M= Applied bending moment, N.mm 

r = pipe cross-section radius, mm 

I = Moment inertia of the cross-section 

(1-4) 

Explanation to this phenomenon was first given mathematically by von Karman [2] 

in 1911 who introduced flexibility and stress-intensification factors using a simple 

analysis based on an energy method for in-plane bending. Based on some simplifying 

assumptions and taking only the first term of the trigonometric series for the radial 

displacement w, (Fig. 1.3), von Karman proposed the pioneering expression for 

flexibility factor as follows: 

k = 12A? +10 
12.-t2 +1 

where A = Pipe bend parameter or pipe factor, defined as 

where t = Pipe wall thickness, mm 

R = Pipe bend radius, mm 

(1-5) 

(1-6) 
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Fig.l.3 Displacement in a pipe bend; longitudinal u, tangential v, and radial w 

It was found later by Clark and Reissner [20] in 1951 that the simple von Karman 

formula, eqn (1-5), predicted the flexibility factor quite well for pipe bends having 

pipe factors of 0.5 and greater. For pipe bends of low pipe factors (A. < 0.5), it was 

necessary to take more than one term of the trigonometric series of the radial 

displacement. As a result, the analysis becomes more complicated. Clark and 

Reissner [20] then proposed an asymptotic solution to solve the differential equation 

of this problem and obtained the following simplified formula for flexibility and 

stress-intensification factors: 

1.89 r=-# 

Equations (1-7) and (1-8) have been obtained for Poisson's ratio v = 0.3. 

(1-7) 

(1-8) 
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The Clark and Reissner's flexibility factor, eqn (1-7) remains in the current design 

piping code, ASME B31.1 power piping code [114] and ASME B31. 3 process piping 

code [120]. In these piping codes, the maximum stress in a pipe bend is calculated 

as: 

.Mr a =1-
max I 

where i is stress-intensification factor adopted from the fatigue test of Markl [23) in 

1952, that is: 

. 0.9 
1=-

# 
(1-9) 

Equations (1-7) and (1-9) are applicable for pipe bend under moment loading only. 

The effect of internal pressure was not considered. In the presence of internal 

pressure, flexibility and stress-intensification factors would be reduced and the term 

"pressure reduction" was introduced. 

1.3 Pressure Reduction Effect 

In 1957, Rodabaugh and George [30] used a simple potential energy approach 

similar to that of von-Karman to analyse the effect of internal pressure for the case of 

pure in-plane bending under a closing moment. In this, the work done by the pressure 

is assumed to be a 'second-order' effect in changing the cross sectional area of the 

pipe. With the assumption of a 'long radius bend' they showed that the flexibility 

and stress factors not only depend on apipe bend parameter A. = Rtf';, where R is the 

radius of the bend, r the mean cross sectional radius of the pipe (assuming a thin 

section) and t the thickness, but also on a pressure parameter IfF, where 

pR2 
f//=­

Ert 
(1-to) 
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where p is internal pressure. They further formulated the pressure reduction effect on 

the flexibility and stress-intensification factors as follows : 

(1-11) 

i 

ip = (pJ(rJYz(RJ% 
1+3.25 E t -; 

(1- 12) 

where p is the internal pressure and E the elastic modulus. In the above, k and i are 

flexibility and stress-intensification factor respectively in the absence of internal 

pressure, adopted from the asymptotic solution of Clark and Reissner [20] for 

flexibility factor and fatigue test of Markl [23] for stress-intensification factor. The 

equations (1-11) and (1-12) appear in the ASME B3\.3 process piping code [120] as 

the pressure reduction effect on flexibility and stress, (but, interestingly, not in the 

ASME B31.1 [114 D. Figure 1.4 and 1.5 show flexibility and stres -intensification 

factors for typical pipe bend geometry according to equation (1-11) and (1-12) 

respectively. 
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Fig.l.4 Flexibility factor from Rodabaugh & George [30], eqn (1-11) 
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Fig.1.5 Stress-intensification factor from Rodabaugh & George [30] , eqn (1-12) 

The non-linear nature of the effect is apparent - this derives from the so-called 

'second-order' term in the work done by the pressure to change the cross sectional 

area of the pipe. In terms of deformation this is equivalent to including ' first-order' 

large deformation effects. The implication is that moderately large deformation in the 

form of afinite rotation of the shell wall has a significant effect on the flexibility of a 

pipe bend and therefore must be included to correctly represent the behaviour under 

combined load for this component [27, 33]. Again the Haigh effect gives a simple 

mechanical explanation. 

Clearly the pressure reduce the flexibility and tress factor - making the bend less 

flexible , but also reducing the 'high' stress levels resulting from applied bending, 

usually associated with flexible pipe bends. Internal pressure es entially ha the 

effect of strengthening (indeed reinforcing) the bend, but renders it les flexible . 
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1.4 Aim of the Thesis 

As mentioned in the foregoing, simple formula to include the pressure reduction 

effect on flexibility and stress factors which were derived from simplified analyses in 

the 1950's, continue to be used in routine piping system flexibility design and 

analysis today. These factors were derived for the specific load case of pure in-plane 

closing moment and internal pressure and are used, usually without modification, for 

in-plane opening moments and out-of-plane loading. In addition, the effect of 

internal pressure on elbows other than 90-deg subtended angle has not been 

considered. A better understanding of this non-linear behaviour and quantification of 

the effect of internal pressure on elbows of various bend angles could facilitate a 

better and safer design. 

The purpose of this thesis is to re-assess the pressure reduction equations using finite 

element analysis. Extensive study on the non-linear behaviour of piping elbows of 

various geometric configurations subject to in-plane (closing and opening) and out­

of-plane bending and internal pressure is presented in this thesis. Specifically the 

standard Rodabaugh & George non-linear pressure reduction equations for in-plane 

closing moment are checked in a systematic study. 

1.5 Structure of the Thesis 

The remaining of this thesis is organised as follows: A literature review of the 

behaviour of pipe bends under different types of loading is presented in Chapter 2. 

This begins with a summary of stress induced in a straight pipe under various types 

of loading. It is then followed by a short review on the membrane behaviour of pipe 

bends under internal pressure. The concepts of flexibility and stress-intensification 

factors are then reviewed with special attention to the available useful formulae. The 

final section to this Chapter is a review on the pressure reduction effects. 
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Chapter 3 presents a literature review of the behaviour of piping elbows. In this 

Chapter, the effect of end constraint and bend angle is reviewed, focusing on the 

numerical and finite element modelling for piping elbows analysis. Finite element 

modelling aspects include geometry modelling, selecting element type, boundary 

conditions, applying loads, and interpretation of results are discussed. 

In Chapter 4, detailed finite element modelling and analysis of piping elbows using 

ANSYS shell elements is presented. A detailed finite element convergence study to 

find the optimum number of elements is presented. In this chapter, path dependency 

of the structures is investigated to find the correct way for applying bending and 

pressure loading. 

Chapter 5 presents new results for in-plane closing bending load. Approximate 

formulae are presented for ovalisation, flexibility, and stress-intensification factors 

under both unpressurised and pressurised conditions. Approximate formulae for 

unpressurised condition follow the form of equation proposed by Fujimoto and Soh 

[133], while the derivation of approximate formula for pressurised condition follows 

the outlines of the work of Rodabaugh and George [37]. Chapter 6 presents similar 

results for in-plane opening bending. In the discussion to Chapter 6, flexibility and 

stress-intensification factor for S-shaped back-to-back 90-deg pipe elbows are 

presented in order to verify the accuracy of the approximate formula developed 

previously. 

Results of analysis for out-ofplane bending are presented in Chapter 7. 

Approximate formulae for flexibility and stress-intensification factors are given. The 

results for ovalisation factor are excluded, since there is some ambiguity as to the 

location of its maximum value, being strongly dependent on the geometry, especially 

on bend angle. Chapter 8 closes the thesis with a summary and concluding remarks 

along with some recommendations for future work. 
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CHAPTER 2 

BEHAVIOUR OF PIPE BENDS: FLEXIBILITY AND 

STRESS-INTENSIFICATION FACTORS 

Many investigators have carried out structural analysis of pipe bends theoretically 

and experimentally as well as numerically since the original work of von Karman. 

This chapter is intended to give a review or summary of the available theoretical and 

experimental work to date of the behaviour of piping elbow. Factors affecting the 

flexibility and stress-intensification are discussed. Of course, special attention is 

focused on the pressure reduction effect. However, to begin with an overview of the 

mechanical behaviour of pipework is presented. 

2.1 Stresses Induced in Straight Pipe 

During operation, piping systems experience a variety of loads. Boyle [115] 

classified the loads according to their effect as follows: 

(l) Internal (and external) pressure 

(2) Dead weigh effect of piping together with insulation and contained fluid 

(3) Thermal expansion and possibly through wall thermal gradient 

(4) Dynamic loading due to wind, earth quake or blast loading 

All these loads can induce stress in piping systems. In what follows, some basic 

features of the stresses induced by different types of loading on straight pipe are 

summarised: 



2.1.1 Pressure Stress 

It is well known from elementary strength of materials that the pressure stresses in 

long thin walled straight pipe (Fig.2.1) under internal pressure are given by: 

pr 
(7=-

x 2t 

pr 
(7=-

tP t 

------- ----

Fig.2.1 Pressure stress in a long thin-walled cylinder 

Axial stress (2 -1) 

Hoop stress (2 - 2) 

If the pipe IS thick-walled (Fig.2.2), the longitudinal (axial) and hoop 

(circumferential) stresses are given by Lame's equation: 

Or 

d 

D 

Fig.2.2 Pressure stress in a thick walled pipe 
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pd2 
(2 - 3) a = average 

x 4t(d+t) 

1 - p(D 2 +d
2

) a tp d - D 2 _d 2 
inner surface (2 - 4a) 

2pd 2 
outer surface (2- 4b) al -tp D - D 2 _d 2 

where D and d is outside and inside diameter of the cross-section respectively. The 

radial stress Or is - p at the inner surface and (r = d/2 ) and zero at the outer surface (r 

= D/2). 

2.1.2 Torsion Stress 

A thick walled pipe loaded by torsion Mr (Fig.2.3) will induce a shear stress 't: 

D 

Fig.2.3 Torsion stress in long thick walled pipe 

at the outermost fiber (2 -5) 
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where I is second moment of area of the pipe cross-section. 

(2-6) 

For thin-walled tubes, the shear stress due to torsion can be further simplified to the 

following: 

M 
T=-I 

2At 
(2 -7) 

where A = tYt is the enclosed area of the pipe centre line 

2.1.3 Bending Stress 

Euler's theory of bending makes two simplifying assumptions, which captures the 

essential behaviour of long slender straight or solid curved beam under bending: 

~ Plane cross-sections remain plane during bending 

~ The cross-section of the beam does not deform during bending 

With these assumptions, only longitudinal (axial) stress and strain are induced due to 

bending. For a long straight pipe under a bending moment M (Fig.2.4) the 

longitudinal stress 0" for a thin pipe (d = D) is: 

Mr 
(J =­

x I (2-8) 

For a thick-walled straight pipe, the bending stress at the outside surface is given as: 

(2-9) 
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D 

Fig.2.4 Bending stress in long straight pipe 

where I is moment of inertia of the cross-section; for thin and thick-walled pipes, I is 

given in equations (2-10) and (2-11) respectively: 

(2 -1 0) 

(2 -II) 

For a straight pipe under orthogonal bending (combined bending in plane of the 

paper Mi and bending out-of-plane of the paper Mo (Fig.2.S», the maximum stress at 

the outside surface of a thick-walled pipe having inside diameter d and outside 

diameter Dis: 

(2 -12) 
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Fig.2.5 Straight pipe under orthogonal bending 

2.2 Bending Load on a Pipe Bend 

Some important piping components can not be directly modelled usmg simple 

bending theory as in the above. In particular a ''pipe bend" (Fig.2.6) is more flexible 

than an equivalent straight pipe or solid curved beam since its cross-section becomes 

oval under bending moment. For a closing bending, the ovalisation of the cross­

section leads to increased flexibility and induces higher, and more complex, 

longitudinal and hoop stress distribution than those given above. This additional 

flexibility of the curved pipe is of course taken into account in the piping design 

codes using a flexibility Jactor. In addition, the stres level must also be modified 

using the concept of stress-intensification Jactor. 
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The bending load on a pipe bend can include three modes of bending: in-plane, Mi, 

out-of-plane, Mo, and torque, M, as shown in Fig.2.6. It should be noted that while in­

plane bending can be constant along the bend axis, both out-of-plane bending and 

torque will vary along the axis. The maximum longitudinal stress in curved pipe 

under combined in-plane and out-of-plane moment is then calculated from eqn (2-12) 

(2 -13) 

where M and Mo is the applied in-plane and out-of-plane bending respectively 

ii and io is in-plane and out-of-plane stress-intensification factors 

M, 

M, 

Fig.2.6 Moment component in a pipe bend 
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The stress-intensification factor i and flexibility factor k of a pipe bend under 

bending will be considered more detail in the third section of this chapter. In the 

section what follows, the behaviour of pipe bend under internal pressure is 

summarised. 

2.3 Pipe Bends Subjected to Internal Pressure: Membrane 
Behaviour 

The behaviour of a pipe bend of perfectly circular cross-section and uniform wall 

thickness under internal pressure alone can be approximated well by the membrane 

action (the flexure of the surface being ignored), which could result from the same 

loading on a toroidal shell of the same cross-section. 

A curved tube with a constant radius of curvature can be considered as a sector of a 

closed toroidal shell of revolution. For a circular cross-section toroidal shell under 

internal pressure (Fig.2.7), Flugge [50J showed that the longitudinal and 

circumferential stresses are: 

(j = pr 
8 21 

C1 = pr[2P+coS¢] 
; 21 p+cos¢ 

(2-14) 

(2 -15) 

where P = Rlr is radius ratio, and ¢ is circumferential angle measured from extrados 

toward intrados position (Fig.2.7). However, these equations are not completely 

satisfactory in that when the displacement are evaluated via the stress-strain relation, 

they give rise to singularities in displacement. Some progress for the determination 

of displacement was made by Dean [12] in 1939 using a method of successive 

approximation. He suggested that any acceptable stress solution would have to 

involve bending stress (plus the corresponding shear stress across the shell 
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thickness). A further analysis was carried out by Jordan [34] in 1962 who employed 

the ideal membrane theory but omitted some assumptions in the linear theory. 

The above equations are suitable for most purpose. Equation (2-14) indicates that the 

longitudinal stress in a pipe bend due to internal pressure is independent of the radius 

ratio p and circumferential position (J. This expression is exactly the same as for a 

pressurised straight pipe with closed ends, see eqn (2-1). In contrast, hoop stress due 

to internal pressure depends on both radius ratio p and circumferential position (J as 

given by equation (2-15). Membrane hoop stress on a pipe bend under an internal 

pressure p (PIE = 1.33E-05) is plotted in Fig.2.8 for typical pipe bend geometry (tlr = 
0.03). 

in'''''', \\ 
\ 
\ 

\ 
! 

Fig.2.7 Sector of toroidal shell loaded by internal pressure 
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Fig.2.8 Hoop stress distribution in a toroidal shell under internal pressure load 

It can be seen from Fig.2.8 that the maximum hoop stresses occurs at the intrados 

and the minimum at the extrados. The longitudinal and hoop stresses are 

differentiated by the term in the square bracket in eqn (2-15) as a function of radius 

ratio and circumferential position. Table 2.1 summarises this term for the extrados, 

crown and intrados position according to the following equation : 

2p +l 
for extrados 

p+l 
a¢ = pr F(p), 

21 
F(p)= 2 for crown (2 -16) 

2p - l 
for intrados 

p - l 
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Table 2.1 F(p) for extrados, crown, and intrados 

Rlr Extrados (cp = 0) Crown (cp = 90) Intrados (cp = 180) 

2 1.667 2.0 3.000 

3 1.750 2.0 2.500 

4 1.800 2.0 2.333 

5 1.833 2.0 2.250 

6 1.857 2.0 2.200 

7 1.875 2.0 2.167 

8 1.889 2.0 2.143 

9 1.900 2.0 2.125 

10 1.909 2.0 2.111 

It will be shown later how this membrane behaviour is modified for (nonlinear) 

bending behaviour. 

2.4 Pipe Bends Subjected to Bending: Flexibility and 
Stress-Intensification Factors 

A curved pipe (pipe bend) is known from the von Karman [2] analysis in 1911 to be 

more flexible in bending than an equivalent straight pipe of the same cross-section. 

Moreover, a thin walled curved pipe may be much more flexible than what is 

predicted by simple curved beam theory. According to von Karman, the increase in 

flexibility of a curved pipe under bending results from the ovalisation of the cross­

section. The effect of this ovalisation further produces a circumferential bending 

stress much larger than in an equivalent straight pipe, and also an increase in 

longitudinal stress in proportion to added flexibility. This section is intended to give 

a review or summary of the behaviour of pipe bends under bending moment. 
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2.4.1 In-Plane Bending of Pipe Bend 

According to Wahl [7], it was first demonstrated experimentally by Bantlin [1] in 

1910, that a curved pipe behaves differently under load from that predicted by 

ordinary beam theory. He made a series of tests on large pipe bends having thin walls 

made of seamless steel tubing, and found that the actual deflection was much greater 

than that calculated using the ordinary beam theory. 

The first mathematical explanation of this behaviour was developed by von Karman 

[2] in 1911. He analysed a pipe bend with circular cross-section and uniform wall 

thickness under in-plane bending. In developing his theory, the following 

assumptions were incorporated: 

(1) A plane section before bending remains so after bending (as in simple theory of 

beam bending) 

(2) The deformation would be small 

(3) The degree of ovalisation is uniform over entire length of the pipe (the 'pure 

bending' assumption) 

(4) The circumferential mid-surface is inextensible (in simple term, the cross-section 

deforms into an oval with constant perimeter). Based on this assumption, the 

maximum hoop stress at the inner surface would be equal in magnitude and 

opposite in sign to the maximum hoop stress at the outer surface. In addition, the 

hoop stress at the middle surface would be zero at the crown. 

(5) The bend radius is much larger than the pipe cross-section radius (the long radius 

assumption) 

The deformation of cross-section can be described mathematically using radial 

displacement, w and tangential displacement, v, (Fig.2.9). Von Karman expressed the 

radial displacement w as a trigonometric series, taking acount of the symmetry of 

deformation: 

w = a2 cos2fjJ + a4 cos 4fjJ + a6 cos6fjJ + ... + a211 cos2nfjJ, n = 1,2,3, ... (2 -17) 
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Based on assumption (4), the tangential and radial displacement is further related in 

simple form as follows: 

dv 
W=-

d¢ 
(2 -18) 

Von Karman used the theorem of minimum potential energy to determine the 

unknown coefficients of the equation (2-17). The total potential energy to be 

minimised is the strain energy due to deformation of the cross-section, U, and the 

work done by the applied bending moment, M, in changing the curvature of the 

centre line as represented by the change in subtended angle of the end section Aa: 

n=U-Mila (2 -19) 

von Karman defined the end rotation of smooth pipe bend under an in-plane moment 

loading as: 
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(2 - 20) 

However from the ordinary theory of beam bending, the end rotation of a straight 

pipe oflength L = Raunder in-plane bending is: 

(2-21) 

By dividing the equation (2-20) with equation (2-21), the flexibility factor k can be 

obtained using the following definition: 

k = the end rotation of a pipe bend under a given moment load 

the end rotation of an equivalent length of straight pipe under the same load 

For a pipe bend of long radius (assumption 5), sufficient accuracy was obtained by 

taking only the first term of the trigonometric series of the radial displacement (w = 

a2 cos 2~. For this approximation, von Karman obtained the flexibility factor as 

follows: 

k = 1212 +10 
1212 + 1 

(2-22) 

where Iv is a flexibility characteristic of the bend called 'pipe bend parameter', or 

'pipe factor', defined as: 

(2 - 23) 

The variation of flexibility factor with pipe bend parameter according to equation (2-

22) is shown in Fig.2.1 O. 
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The longitudinal and circumferential (hoop) stress factors (Fig.2.11) are also 

calculated: 

(2 - 24) 

er¢ [ ] 3 - = v kcost/J-k cos3 t/J ±-k A.cos2t/J er s 2 s 
n 

(2 - 25) 

where v is Poisson's ration and ern is the nominal bending stress in a straight pipe: 

and 

Mr M 
er =-=-­

n I 1T:r 2t 

k = 12 
s 12A? + 1 

(2 - 26) 

(2 - 27) 

There is no significant meaning of equation (2-27). It was introduced solely for the 

simplification of equations (2-24) and (2-25). 
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Fig.2.11 Longitudinal and hoop stresses in a pipe bend due to bending 

Typical longitudinal and hoop (circumferential) stress distributions are shown In 

Fig.2.12 and 2.13 respectively. 
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In 1922, Crocker and Sanford [3] investigated the problem of bending of curved 

tubes using the formula for bending of curved beam as well as carried out experiment 

of various types of pipe bends. The results of their investigation showed a good 

agreement between curved beam formula and experiment for some cases, but the 

bends was found to be more flexible than the formula indicated in other cases. These 

irregularities was believed to be caused by the distortion of the cross-section, which 

was not taken into account in their analysis. 

In a series of paper, Hovgaard [4, 5, 6] developed another solution for the bending of 

a pipe bend. By incorporating the same basic assumptions of von Karman but using a 

structural mechanics approach (rather than a strain energy approach), Hovgaard then 

reproduced the von Karman first approximation for the flexibility factor. In addition, 

Hovgaard gave more detail on the degree of ovalisation of the cross-section, in which 

the amount of vertical bulging (contraction of the in-plane diameter connecting 

extrados and intrados) of deformed pipe cross-section under in-plane bending, ~y 

(Fig.2.14) was given by the following: 
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Ay kMR( 120 ) 
-;:- = EI 120A? + 101 

where r is pipe cross-section radius, mm 

k = von Karman flexibility factor (eqn (2-22» 

M= applied bending moment, N.mm 

R = pipe bend radius, mm 

E = Young's modulus, N/nun2 

I = moment of inertia of the cross-section 
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Fig.2.14 Ovalisation of pipe bend cross-section showing vertical bulging Ay 

Using the assumption (5) of section 2.3.1, Wahl [7] in 1927 also determined the 

vertical bulging and arrived at a slightly different formula: 

(2- 29) 

In 1929, Shipman [8] used the 'Lorenz' formula for flexibility factor instead of 

Karman's formula for calculating reaction force and moment in pipeline due to 

expansion and internal pressure. In the discussion to Shipman's paper [8] Jenks 
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extended the von Karman analysis to include curved pipes of low pipe bend 

parameter (A. S 0.05). For all values of pipe bend parameter, the von Karman's 

flexibility factors could then be written as: 

k= 12A,z +10- j 
12A.2 +1- j 

(2 - 30) 

where j is a complicated function of A. varying from unity for A. = 0 to zero for A. = 
infinity, as tabulated below: 

A. j 
0.00 1.00000 
0.05 0.76250 
0.10 0.56840 
0.20 0.30740 
0.30 0.17640 
0.40 0.11070 
0.50 0.07488 
0.75 0.03526 
1.00 0.02026 

Figure 2.15 shows a comparison of the flexibility factors due to von Karman [2] and 

Jenks for typical pipe bend geometry. It can be seen that flexibility factor from the 

first approximation of von Karman is in good agreement with Jenks formula for pipe 

bend parameters greater than about 0.5. in which the stress factor could be 

represented by the following (see Fig.2.11): 

> Longitudinal stress at outer surface 

U 8 k[' AI 4k-4(VA. 1 . 3 )] -= stn.,,+-- -cos2¢--stn ¢ 
an k 2 3 

(2 - 31) 

> Hoop stress at outer surface 

U; [ 4k-4(A. 1 )] - = k vsin¢+ -cos2¢--vsin 3 ¢ 
un k 2 3 

(2 - 32) 
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~ Longitudinal stress at middle surface 

a e = k sin ¢[1 - 4k - 4 sin 2 ¢] 
an 3k 
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Fig.2.15 Flexibility factors under in-plane bending due to Karman [2] and Jenks [8] 

In 1948, Huber [18] presented a solution for bending of curved pipes of elliptical 

cross-section. The von Karman assumptions were used and the theory of minimum 

potential energy was also used. For the special case of circular cross-section, the 

flexibility factor was shown to be in the form: 

k=12;e + 5.45 

12A? +0.58 
(2 - 34) 

Until the 1950's, the Karman expression for flexibility factor was generally u ed in 

the design and analysis of piping systems. Wahl [7] in 1927 for example, used this 

formula to present formulas , tables, and diagrams for determining forces and couples 
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produced at the fixed ends of pipe bends of various standard forms when subjected to 

thermal expansion. Cope and Wert [9] in 1932 used the von Karman flexibility factor 

to calculate the end displacement of the free tangent of an L-shaped pipe elbow 

arrangement based on the so-called 'graph-analytical method' which uses an area­

moment diagram and the principle of superposition. The von Karman flexibility 

factor was also used by Hovgaard [10] in 1935 to analyse stress in three dimensional 

pipe bends. 

In 1949, Reissner [19] reconsidered the Karman problem from the point of view of 

the theory of symmetric thin elastic shells. Based on small deformation theory and 

the pure bending assumption, two simultaneous differential equations, which were 

used extensively by Reissner to analyse a variety of shell geometries, were 

developed. Reissner also derived a method of solving these equations using an 

'asymptotic' series method for various geometric parameters but did not present a 

solution for the pipe bend. 

In 1951, Clark and Reissner [20] did present solutions to Reissner's shell theory by 

treating pipe bends essentially as part of a toroidal shell. They obtained solution to 

the von Karman problem in terms of two independent shell variables; the rotation of 

tangent to the shell wall, ~ (Fig.2.16) and a stress function, 'JI, resulting in two 

differential equations. The ovalisation of an initially circular cross-section bend was 

assumed to be symmetrical about the tube diameter normal to its plane of curvature. 

They made a closed form mathematical analysis of the problem and obtained general 

trigonometric and asymptotic solutions for the stress and flexibility factors. These are 

summarised below: 

Using a trigonometric series solution, the flexibility and stress factors were obtained 

as given in the following equations: 

(2- 35) 
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(2 -36) 

(2- 37) 

Fig.2.16 Deformation of the middle surface of cross-section under bending 

Using an asymptotic solution, the following very much simpler formulae were 

obtained: 

(2 - 38) 

(2-39) 

0";/ -1.861 
(j n max = -(1--v-2 ~~;--#~3 (2 - 40) 
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Equations (2-39) and (2-40) indicated that the maximum stress factor (stress­

intensification factor) occurs in the hoop direction as a compressive stress. For v = 
0.3, the flexibility and stress-intensification factors can be further written as: 

k = 1.65 
A 

. 1.89 
1=--

ffi 

(2 - 41) 

(2- 42) 

Note that the notation 'i' has been used for stress-intensification factor and 'the 

minus sign' has been omitted for simplicity. 

Using the asymptotic solution, Clark and Reissner also produced a formula for the 

amount of flattening in the horizontal direction (Fig.2.17): 
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Fig.2.t 7 Amount of horizontal flattening under an in-plane moment 
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where v = Poisson's ratio 

r = pipe cross-section radius, mm 

t = wall thickness, mm 

E = Young's modulus, rnrn 

~ = Nominal bending stress in a straight pipe, eqn (2-26) 

(2 - 43) 

It can be seen from equation (2-43) that the amount of horizontal flattening 

(ovalisation) is independent on the pipe bend radius, R. 

In 1952, Marlel [23] performed an extensive series of fatigue tests on piping elbows 

following his previous similar test on piping elbows, which was compared to double­

mitred pipe bends [17]. From his experimental results, a flexibility factor identical to 

the equation (2-41) could be derived. In addition, the following stress-intensification 

factor for a pipe bend under in-plane bending was proposed: 

0.90 rl =---;:r ,v3 
(2 - 44) 

It can be seen that the stress-intensification factors proposed by MarIel [23] based on 

fatigue tests is almost exactly half of the asymptotic solution of Clark and Reissner 

[20]. 

The Clark & Reissner [20] and MarkI [23] formulae for flexibility and stress­

intensification factors, given by equations (2-41) and (2-44), formed the basis for the 

ANSI (American National Standards Institute) code for piping design and flexibility 

analysis. These remain in the code to this day! (ASME B31.1 power piping code 

[114] and ASME B31.3 process piping code (120)). 
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Nevertheless, various studies aimed at improving these formulae for the simple 'pure 

bending' problem have been published. Views which have resulted in useable 

formulae are described below: 

In 1977, Ohtsubo and Watanabe [59] used a novel fmite element 'ring' method to 

investigate the flexibility and stresses of pipe bends. In 1978, Ohtsubo and Watanabe 

[61] further employ the ring element for some typical example pipe bends, but did 

not produce a useful formula for flexibility and stresses. Summary of graphs were 

produced in their 1977 paper [59] from which they obtained the following formula 

for in-plane flexibility factor: 

1.53{1-0.1355~ J 
k = 1 +9.324.!.(1-1.347.!.J+-........:---..;...P~ 

p p A. 

It can be seen this formula includes the radius ratio p = Rlr 

(2- 45) 

In 1988, Calladine [91] used a novel complementary energy method based on a 

'new' simple formulation of shell theory to derive a simple formula for flexibility 

and stress-intensification factors for pipe bend subject to in-plane bending: 

(2 - 46) 

(2-47) 

(2 -48) 

It can in fact be seen that the hoop stress factor is close to the asymptotic solution of 

Clark and Reissner [20], while the flexibility factor is substantially different in form. 
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In 1988, Fujimoto and Soh [92] carried out a very detailed finite element analyses 

(using the MSCINASTRAN finite element program) to study the flexibility of thin­

walled, large diameter (rlt ~ 50), piping elbows under in-plane bending. A 

Parametric survey was performed with pipe bend parameters in the range of 0.01 sA. 

S 0.2 and with radius ratio Rlr equal 2 and 3. From their study, empirical formulae 

for the in-plane flexibility factor were proposed: 

k = 1.65 [0 876_1.89E -07J 
i ..t' J2.93 

k = 1.65 [0908 _ 2.63E -07J 
I ..t' ..t1.46 

R 
for-=2 

r 

R 
for-=3 

r 

(2- 49) 

(2- 50) 

It can be seen that this reduces almost to the classic Clark and Reissner [20] solution 

if the second term in the bracket is negligible. 

Apart from these studies, most other attempts to establish more realistic flexibility 

and stress-intensification factors have related to removing the assumption of pure 

bending. This requires including 'end effect' - tangent pipes and flanges - and 

possibly varying the bend angle. Such studies usually result in charts and tables from 

numerical (finite element) analysis rather than simple formulae. These will be 

reviewed in Chapter 3. 

2.4.2 Out-of-Plane Bending of a Pipe Bend 

In 1943, Vigness [13] presented an extensive analysis of three-dimensional pipe 

systems by considering the problem of out-of-plane bending on pipe bends. He used 

the same assumptions as those in von Karman analysis but represented the tangential 

displacement in cosine trigonometric series: 

v = c} cos2¢+c2 cos4¢+c3 cos6¢+ ... +cn cos2n¢, n = 1,2,3, ... (2 -51) 
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Equations (2-51) indicates that the tangential displacement is zero at the angle of 45-

deg from the neutral axis, which is the position of the major and minor axis of 

deformed cross-section under an out-of-plane bending. He considered only the first 

term of the series (v = c] cos 2;), and on condition of the inextensibility of the 

middle surface of the cross-section, the radial displacement is accordingly written as: 

w = -2c1 sin 2; (2-52) 

He further followed the procedure of von Karman analysis using the theory of 

minimum potential energy and arrived at the same expression for flexibility factor. 

He therefore concluded that the flexibility factor for pipe bend is the same under an 

in-plane and out-of-plane bending. It should be noted however that he considered 

only a small section of the cross-section da in order to apply pure bending 

assumption. This assumption produces small error in results for in-plane bending of 

pipe bends, but might produce great error for out-of-plane bending as there is a 

torsional component at every cross-section of the bend (section 2.2 & Fig.2.6). The 

torsional component however does not produce significant deformation to the cross­

section and that the flexibility increase only due to bending component. 

Vigness [13] further expressed the radial displacement, eqn (2-52) in the following 

form: 

w ( 12 )MR. 2 
-;: = 12A2 + 1 EI sm ; 

where w = radial displacement, mm 

r = cross-section radius, mm 

M= applied bending load, N.mm 

R = pipe bend radius, mm 

E= Young's modulus, N/mm2 

I = cross-section moment of inertia, mm4 

A. = pipe bend parameter 

(2 -53) 
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The radial displacement of the cross-section due to out-of-plane bending produces 

longitudinal and circumferential stresses as given by the following equation: 

U 8 = (12A? - 8 )cos ¢I + 12 cos3 ¢I 
un l2l2 +1 

(2 -54) 

(2 -55) 

where ¢ is circumferential position along the cross-section measured from central 

axis of the bend toward extrados (Fig.2.ll) 

Maximum longitudinal and circumferential stress (longitudinal and circumferential 

stress-intensification factor) can be obtained from equations (2-54) and (2-55) and 

are given in the following equations: 

~ 
1212 +4 

= 
un ;=0 1212 +1 

(2-56) 

~ 18 
= 

un r-4S 
1212 + I 

(2- 57) 

From Markl's 1952 [23] fatigue test on piping elbows discussed above, the stress­

intensification factor for out-of-plane bending was found to be: 

0.75 r. =-
°ffi 

while the flexibility factor remained the same. 

(2- 58) 

In 1970, Kitching [42] presented more detailed longitudinal and circumferential 

stress factors for pipe bends under out-of-plane bending as follows: 
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UfJ =~[±3VAaI Sin2¢+(1 + 301 )sin¢+EL sin3¢] 
Un 1- V 2 2 

(2- 59) 

U; = ~ [± 3Aal sin 2¢ + V{(1 + 301 
) sin ¢ + 5. sin 3tP}] 

un I-v 2 2 
(2- 60) 

where 

-3 a ---..,.... 
1 - 5+6,t2 

(2-61) 

In fact these simple results described above are almost all that are available for the 

problem of out-of-plane bending. However as described both Ohtsubo & Watanabe 

[59] and Fujimoto and Soh [92] derived useful formulae for out-of-plane bending 

form finite element analysis: 

From Ohtsubo and Watanabe [59] a flexibility factor for out-of-plane bending can be 

obtained as: 

2 r ( r) 1.56s(1-0.667 ;) 
k = -- + 32.89- 1-1.255- +-~------

v R R ,t 
(2 -62) 

From Fujimoto and Soh [92] empirical formula for out-of-plane flexibility factors 

can be obtained as: 

k = 1.65 [0 911- 5.55 x 10-
5 

] 
() ,t' ,t2.21 

k = 1.65 [0 931- 6.40 x 10-4 ] 
() ,t' ,t1.28 

R 
for-=2 

r 

R 
for-=3 

r 

(2-63) 

(2- 64) 
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2.5 Effect of Radius Ratio 

The classical linear theory for bending of a curved pipe developed by von Karman 

[2] was based on the long-radius assumption. On this assumption, the neutral axis 

was considered to be coinciding with the centreline. Based on this assumption, the 

radial displacement can be represented by only the first term of the trigonometric 

series solution, (see equation (2-17». This assumption leads to a poor approximation 

if applied to pipe bend of short radius. An additional geometric parameter is 

required: this seems out to be the 'radius ratio'. 

Refinement of long radius theory has been carried out by Beskin [14] in 1945. Von 

Karman's method of solution was adopted but additional Fourier terms for the radial 

displacement were used to make the method of solution applicable to pipe bends of 

short radius. In the third section of his paper, a study was made of the significance of 

omitting the term containing radius ratio p. He concluded that for the case of short­

radius bend, the flexibility factor remains fairly accurate but stress-intensification 

factor will not be correct, when the term lip (= rlR) is omitted in the analysis. For 

pipe bends of low pipe factor, Beskin' s flexibility factor closely follows the 

asymptotic solution of Clark and Reissner [20]. In the discussion to Beskin's paper 

[14J, Symonds and Vigness [15J suggested keeping more than one term of the 

trigonometric series when the pipe bend parameter A. is less than about 0.5. 

In 1952, Gross [24J and Gross and Ford [25] made static loading tests on smooth 

pipe bends of short radius having cross-section diameter ranging from 3 to 12-in. In 

these tests, measurement of stresses on both the inner and outer surface of the tube 

wall was made, together with measurement of flexibility and cross-section flattening. 

This experiment confirmed that the hoop tensile stress was larger than the 

longitudinal tensile stress on the outside surface. Gross established for the first time 

by experiment that the largest stress in pipe bends under bending occur on the inside 

surface in the hoop direction in the vicinity of crotch. 
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From measurement, Gross [24] found that for a pipe bend under in-plane bending the 

maximum hoop stress on the inside surface is considerably greater than the 

maximum hoop stress on the outer surface. Also, if the distribution of hoop stress is 

assumed linear, there is a compressive hoop stress at the middle surface at the crown. 

This indicated that the von Karman assumption on extensibility of the 

circumferential mid-surface is not justified. A simple method for calculating the 

hoop compressive stress was proposed to be used as correction by adding the value 

to the compressive hoop stress at the inside surface and subtracting it from tensile 

hoop stress at the outside surface. It was concluded that the stress and flexibility of a 

short-radius pipe bend (low pipe bend parameters) could be predicted with high 

accuracy if: 

(I) The von Karman analysis is extended to the third approximation for the 

trigonometric series solution of radial displacement. 

(2) The assumption of inextensibility of circumferential mid-surface is omitted by 

considering the effect of hoop compressive stress. 

Extension of the von Karman analysis to the second and third approximation for the 

trigonometric series of the radial displacement has also been done by Gross [24], 

where the flexibility factors is given in the following: 

k = 105 + 4136J2 + 4800J4 

2 3 + 536J2 + 4800;t 
(2- 65) 

k _ 252 + 73912J2 + 24461 76J4 + 2822400J6 

3 - 3 + 3280J2 + 329376J4 + 282400A6 
(2-66) 

Spence [43] called these approximations "lower bound' flexibility factors. 

Figure 2.18 shows the flexibility factors of pipe bends under in-plane bending for the 

first, second, and third approximation of the von Karman's solution. It can be seen 

from Fig.2.18 that the flexibility factor obtained from the first approximation of von 

Karman's solution is sufficient for a pipe bend having pipe bend parameter of 0.5 

and greater. 
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Fig.2.18 Flexibility factors of pipe bends obtained from the von Karman's solution 

In 1955, Vissat and Buono [26] reported strain gage investigations for in-plane 

bending of short-radius bends having radius ratio p equal to 3 for 180-deg return and 

equal to 2 for 90-deg bend. The A-values ranging from 0.0714 to 0.7404. However, 

they adopted an unusual definition for the flexibility factor, which included the 

flexibility of connected tangent pipes as given in the following follows : 

k = ~ 
2:rR2 (:rR + L) 
EI 4 

for 180 - deg elbows (2 - 67) 

k= ~ 
J[R 2 (J[R + LJ 
EI 4 

for 90 - deg elbows (2 - 68) 

where ~ is the measured deflection of the end of loaded tangent. 
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From their experimental result, they pointed out that the theory of long radius bends 

(p ~ 10) might be used to compute the value of k with a good agreement. For short 

radius elbows, the empirical expression below has been suggested for computing the 

flexibility factor: 

(2- 69) 

For calculating stress-intensification factor, they pointed out that the theory of long 

radius bends could not be used for short-radius bends. Instead, they suggested using 

the empirical formulation below for calculating the longitudinal and circumferential 

stress-intensification factor for short-radius bend: 

U 8 1.20 
= 10.67 

U" max A 

U~ 1.07 
= 10.78 

U" max A 

(2-70) 

(2-71) 

In general, the experimental results reported by Vissat and Buono validated Beskin's 

conclusion that (a) flexibility factor derived using long-radius theory should apply 

almost equally as well as to short-radius bend, and (b) stress-intensification factor 

calculated using the long-radius theory are not applicable to short-radius bend and 

elbows. 

In 1957, Turner and Ford [31] gave a fairly extensive review of the various analytical 

methods for pipe bends and provided a detailed numerical analysis using shell 

theory. The so-called long-radius assumption was eliminated in their numerical 

analysis. In 1966, Findlay and Spence [35] made an experimental analysis for in­

plane bending of a 90-deg pipe bend and found that the theory by Turner and Ford 

[31 J gave the best comparison with the experimental results. However, it was 

impractical to solve for stresses without the aid of a computer. 
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In 1967, Jones [36J presented a theoretical analysis on in-plane bending of short 

radius pipe bend as a generalisation of the von Karman theory of pipe bend [2]. The 

theory of von Karman has been established on the basis of long radius bend in which 

the shifting of neutral axis toward the centre of curvature has been neglected. The 

theory developed by Jones for short radius elbow shows that there is a shifting of the 

neutral axis toward the centre of curvature. 

In 1967, Smith [37] followed the approach of Turner and Ford [31] to develop a 

numerical analysis for out-of-plane bending case. The basic assumptions were 

similar to those made by Turner and Ford [31], applying small deformation theory 

and omit the long radius assumption. The analysis by Turner and Ford [31] for in­

plane bending and by Smith [37] for out-of-plane bending formed the basis for 

BS806 [98] design curve for pipe bends. 

In 1968, Cheng and Thailer [40] presented a general solution of a curved tube under 

in-plane end-moment using thin shell theory. They derived the identical equilibrium 

and compatibility equation to those derived by Clark and Reissner [20]. By 

minimizing the complementary energy using the Rayleigh-Ritz method, they further 

show that their solution is valid for any value of radius ratio rfR. 

The most complete 'closed form' solution to this problem was developed by Cheng 

and Thailer [41] in 1970. Their solution was based on the two differential equations 

for equilibrium and compatibility due to Clark and Reissner [20], but without their 

simplifying assumption that the radius ratio 11 p would be small. The results from 

their modified solution for flexibility factor was in a very good agreement with the 

asymptotic solution derived by Clark and Reissner. For stress-intensification factor 

however, they pointed out that the asymptotic solution of Clark and Reissner [20] is 

theoretically valid only for radius ratio equal to zero. For 11 p different from zero, 

they suggested using the modified asymptotic solution given below: 

(1- v
2 
)[ 1,0 ] r = 1.986 2/ 0.495 \~ + 1 

A!3 P (l-v 2 r 6 

(2-72) 
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For v = 0.3, equation (2-71) can be approximately reduced to: 

_ 0.9 [1 ~JS 2] r-- -II,; + #P 
(2-73) 

If the term in the square bracket is neglected, the eqn (2-72) reduced to the fatigue 

test result of Markl [23 J. If only the radius ratio p is neglected, en (2-72) approached 

the asymptotic solution of Clark and Reissner [20]. 

The effect of radius ratio on flexibility and stress-intensification factors is more 

significant when bend angle and end constraints are also included. These effects will 

be reviewed in Chapter 3. 

2.6 Pressure Reduction Effect 

In section 2.4, it was mentioned that if a pipe bend is loaded by in-plane bending, this 

action tends to close the bend (decrease the radius of curvature) and its circular 

cross-section deforms into an approximately elliptical shape without appreciable 

change in 'perimeter'. Due to this mode of distortion of the cross-section, there will 

be a small change in the enclosed cross-section. It follows that if the pipe bend in this 

state of deformation is subjected to further internal pressure, the overall flexibility of 

the pipe must be expected to be somewhat smaller than in the absence of internal 

pressure, because the internal pressure tends to open the bend. 

A detailed 'closed form' analytical solution for combined bending and pressure load 

is very difficult unless it is carried out through numerical analysis. The reason for 

this is the so-called "Haigh effecf' [11]. The stresses in a pipe under internal pressure 

are essentially membrane, but any pipe, straight or curved, subjected to internal 

pressure departs significantly from simple bending theory, if the pipe cross-section is 
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not circular and secondary bending stresses occur in the region of geometric 

imperfection [115]. This large bending stress, induced by the tendency to become 

circular in cross-section, can be considered as being produced by incompatibility of 

deformation of membrane analysis [46]. The main reason is that the coupling of 

bending and pressure in the pipe bend is non-linear; while the applied moment tends 

to flatten the cross-section, the internal pressure works against this, trying to reduce 

the ovalisation and open up the bend, known as the Bourdon effect [16, 28]. The 

effect of internal pressure in an elastic curved pipe deforming due to in-plane closing 

bending is therefore to reduce its inherent flexibility. This effect is small for rather 

heavy pipe. For very thin pipe however, the effect of internal pressure can become 

pronounced, and cannot be neglected in flexibility and stress-intensification factors. 

The purpose of this section is to review the fundamental work to date on a pipe bend 

under combined bending and pressure. 

In 1927, Wahl [7] addressed a question whether the steam internal pressure would 

reduce the cross-sectional flattening of a pipe bend resulting from bending load. A 

simple formula was derived by minimisation of the total potential energy based on a 

small deformation assumption. The symmetry condition was taken into account by 

considering only a quadrant of the ring. Due to internal pressure p, the vertical 

bUlging ay of the deformed oval cross-section would be reduced by the amount, E 

(Fig.2.19) and can be calculated as follows: 

E _ ( 1 )pr3 

~y - I-v 2 3D 
(2 -74) 

where v = Poisson's ratio 

D = shell bending stiffness, as can be found in standard texts of shell theory: 

Et3 

D = -12-r(I-_-V ...... 2 ) 
(2 -75) 
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Fig.2.19 Effect of internal pressure on cross-sectional ovalisation 

Equation (2-74) indicated that the pressure reduction effect on cross-sectional 

ovalisation is independent on the pipe bend radius R. Wahl [7] did not produce a 

closed form solution for the pressure reduction effect on flexibility and stress­

intensification factors, only on the degree of ovalisation, E . 

The first theoretical approach to account for the effect of internal pressure on 

flexibility and stress factors was made by Kafka and Dunn [29] in 1956. The von 

Karman analysis for in-plane bending was extended to take the effect of internal 

pressure into account. In addition to the von Karman assumption, the following 

assumptions were incorporated in their theoretical development: 

(1) The tube centerline is the neutral axis. For in-plane bending, therefore, the 

deformed cross-section is considered symmetrical in the plane of the bend 

and perpendicular to the plane of the bend, from which it follows that the 

tangential displacement of nodes at crown, intrados, and extrados are zero. 

(2) The circumferential middle surface is inextensible, and a filament in this 

direction is distorted by pure bending only 

(3) The longitudinal middle surface is extensible, and a filament in this direction 

is distorted by normal force only. 
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As in von Karman's analysis, Kafka and Dunn used the principle of minimum 

potential energy. The total strain energy in the tube wall per unit length when an 

element of a pipe bend of the angle da is increased to da + Ma (Fig.2.20) was 

approximately given as follows: 

(2-76) 

defonned 8 
undefonned 

\, 
<.' 

M 

! 
Fig.2.20 Element of a pipe bend subjected to in-plane bending 

The first and second term in the right hand side of equation (2-76) is the strain 

energy due to normal force in the longitudinal direction and due to bending in the 
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circumferential direction respectively. The terms under the integral are the membrane 

force and bending moment in a shell of revolution, which are related to the strains of 

the middle surface and changes in curvature respectively in the following well­

known relations: 

where N = stretching stress resultants, N/rnm 

M = bending stress resultants, N.mm 

E = Young's modulus, N/mm2 

t = wall thickness, rnm 

v = Poisson's ratio 

D = shell bending stiffness, eqn (2-75) 

Z= shell curvature 

(2-77) 

(2 -7B) 

If a pipe bend is considered as part of a toroidal shell, the mid-surface stretching 

strains, £g, £;. and curvatures, Z9 Z; in the equations (2-77) and (2-7B) can be related 

to the tangential displacement, v, and radial displacement, was follows: 

£ =.!.(dv -wJ ; r d¢ 

£8 = sin¢ (vcot¢- w)+ p(8) 
R 

Z = _1 .!!..(v + dwJ 
; r2 d¢ dt/J 

Z8 = cos¢(v+ dwJ+V'{O) 
rR d¢ 

(2 -79a) 

(2 -79b) 

(2 -BOa) 

(2 - BOb) 
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The tenns p( 8) in eqn (2-79b) and vi{ 8) in eqn (2-80b) represent additional 

longitudinal strain and additional change in curvature respectively due to bending. 

On the assumption that the pipe centreline is the neutral axis, Kafka and Dunn gave 

the functions of p( 8) and vi{ 8) as follows: 

(fJ) _ rsin¢ &lfJ 
p -----

R dO 

(fJ) _ sin ¢ &lfJ 
l? --­

R dO 

The energy stored in the system, which must be minimised, is then: 

U'=U -p.1lA 

(2- 81) 

(2 -82) 

(2-83) 

where p.1lA is the elastic work done on the tube wall by the internal pressure during 

deformation of the cross-section, acting against the deformed condition caused by 

bending and M is the changes in pipe bore area (the area of quadrilateral ABB' A' in 

Fig.2.21). 

Based on assumption (l) of the above, Kafka and Dunn further expressed the 

tangential displacement in the fonn of a trigonometric sine series: 

(2-84) 

And from assumption (2), the radial displacement is obtained from eqn (2-79a): 

dv 
w=-

d9 
(2-85) 
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Fig.2.21 Distortion of an elemen of pipe cross-section 

They further expressed the changes of pipe bore area M as a function of the 

coefficients of the series of the tangential displacement, CK, as follows: 

M = -21ri:(4K4 
- K2 ~/ (2-86) 

t-l 

Using eqns (2-76) through (2-86), the total strain energy in eqn (2-83) then reduced 

to an equation as a function of the coefficients, CK'S. These coefficients are then 

determined by the minimisation of the total energy U': 

au' 
-=0 ac ' K 

K = 1,2,3, ... (2 -87) 
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Upon obtaining the CK's, the total strain energy U' can be then set to be equal to the 

work done by applied end moment (Fig.2.20) from the principle of virtual work 

(external work equals internal energy): 

U'= 1 MMa 
2 Rda 

(2-88) 

From eqn (2-88), the term (Mli)/(dli) can be found as a function of applied moment 

M This term can be further divided by similar term for a straight pipe to find the 

flexibility factor. 

For the first and second approximation to the trigonometric series of the tangential 

displacement, Kafka and Dunn obtained the following formula for flexibility factors: 

(2-89a) 

(2 -89b) 

In the above, A, H, and the term in the square bracket of equation (2-89b) are 

functions of geometry of the pipe bend and internal pressure, p. These functions are 

given in Appendix C2 

A stress-intensification factor, based on stress in the longitudinal direction, was also 

presented. For the first and second approximation to the series, the longitudinal 

stress-intensification factor was as follows: 

6B 
for-<r 

A 

6B 
for ->r 

A 

(2-90a) 
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/3 -1 4P2- 2PI 
2 - + --'--=------=-....:... for60P2 +r > 6PI 

r 

/32 =k2~[I- 2;1 _~2 (20Z-24Z 2
)} for60P2 +r < 6PI 

where 

z = 3PI +30P2 -~(3pl +30pzY -120rP2 

120P2 

(2-90b) 

(2-91) 

Kafka and Dunn did not produce the circumferential stress-intensification factor, but 

indicated that this stress-intensification factor might be derived from: 

(2-92) 

In 1957, Rodabaugh and George [30J revisited the work of Kafka and Dunn [29J, 

also using a potential energy approach. A theoretical analysis for flexibility and 

stress-intensification factor for a pipe bend under pure in-plane and out-of-plane 

bending combined with internal pressure was developed. The effect of internal 

pressure was considered by simply extending the energy method used by von 

Karman [2] for in~plane bending and the energy method used by Vigness (13) for 

out~of-plane bending. The pressure effect was included in the solution as in Kafka 

and Dunn [29): an extra potential energy term due to pressure acting on the change of 

area of the cross~section resulting from ovalisation due to bending. The equations 

were based on second~order approximation to thin shell theory and assumed the bend 

cross~section initially circular and that the end effects are negligible. It was shown 

that the flexibility factor not only depends on pipe bend parameter A, but also 

depends on internal pressure parameter 'V, where: 

pR2 

¥'=­
Ert 

(2-93) 
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The flexibility factors for a pressurised pipe bend was then finally expressed in the 

form: 

(2-94) 

where, k is flexibility factor in the absence of internal pressure taken from the 

asymptotic solution of Clark and Reissner [20]. The second term of the denominator 

in equation (2-94) is the pressure reduction effect on the flexibility factor (pressure 

stiffening effect). This term is a function of non-dimensional pressure piE, cross­

section to thickness ratio rlt, and radius ratio Rlr. 

For a pipe bend under in-plane bending with internal pressure, the longitudinal and 

circumferential stress factor were then expressed in the following form: 

(2 -95a) 

(2-95b) 

where d) is defined as: 

d = 3 
1 5+6A.2 +24f1 

(2-96) 

For a pipe bend subjected to out-of-plane bending and internal pressure the 

longitudinal and circumferential stress factors were given in the form: 
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_fJ =~ ±3dt vASm29+ 1+_1 COS9--! cos39 U k { . (3d) d } 
Un I-v 2 2 

(2-97a) 

U; = ~ {± 3d! A sin 29 + V[(1 + 3d! ) cos 9 _:!J.. cos 39]} 
Un 1- V 2 2 

(2 -97b) 

Stress-intensification factors may be derived from equation (2-95) and (2-97), by 

differentiating with respect to circumferential angle ;. These equations indicated that 

the maximum stress is obtained for in-plane bending and that it occurs in the hoop 

direction at the inner surface as compression stress for in-plane closing moment and 

tensile stress for in-plane closing moment. In a similar form to equation (2-94), the 

stress-intensification factors for combined loading of bending and internal pressure 

were given in the following form: 

r = r 
p (p y r)~(R)% 

1 + 3.25 E At -,: 
(2 -98) 

Equation (2-94) for flexibility factor and equation (2-98) for stress-intensification 

factor are adopted in the ASME code for power piping [114] and ASME code for 

process piping [120] to account for the pressure reduction effect. These equations are 

applied equally to account for the pressure reduction effect for both in-plane (closing 

and opening) and out-of-plane bending regardless the total angle of the bend, (it will 

be shown in this study using non-linear finite element analysis that the pressure 

reduction effect is not the same in magnitude for in-plane and out-of-plane bending. 

In addition, it will be shown that the pressure reduction effect for in-plane bending is 

different markedly for the closing and opening case). 

In 1956, Crandall and Dahl [27] presented an alternative approach to account for the 

pressure reduction effect by following the general outline of Clark and Reissner [20] 

for the problem of in-plane bending load by using the differential equations for large 

deflection of thin shell, but did not really present any useful results. Calladine [91] 

58 



inspected some of the asymptotic calculations done by Crandall and Dall [27] and 

arrived at the following expression for flexibility factor: 

(2-99) 

In 1959, Reissner [33] proposed a differential equation for the non-linear correction 

to originally curved tubes and introducing the effect of internal pressure on the 

bending of slightly curved tubes. The solution to this correction was given in the 

form of a trigonometric series: 

(2 -100) 

where P is a thin shell deformation variable being the rotation of the tangent to 

meridian of the cross-section. (Fig.2.l6). 

For the first and second approximation to this series, eqn (2-100), the flexibility 

factor can be expressed in the following form: 

(2-lOla) 

(2 -10lb) 

being the first (a) and second (b) approximation, where: 

59 



(2-102) 

When internal pressure p = 0, equation (2-101a) reduces to the formula given by von 

Karman. 

In 1972, Blomfield and Turner [47] updated the numerical analysis of Turner and 

Ford [31] to solve the problem of in-plane bending of a pipe bends combined with 

internal pressure. Design curves for pipe bend under bending and pressure were 

derived from Blomfield and Turner [47] and well documented in the ESDU 

No.74043 [52]. In these curve, flexibility factor was plotted against pipe bend 

parameter, A., for various values of internal pressure parameter, pR2/Ert. 

In 1972, Dodge and Moore [48] developed stress indices and flexibility factors of a 

pipe bend by modifying the minimum potential energy solution of Rodabaugh and 

George [30] to provide a more accurate approximation for the circumferential 

membrane stress and used it as a basis for a detailed stress index development. They 

used the experimental data obtained by Rodabaugh and George [30] for the case of 

in-plane bending as one problem and showed that the overall agreement for 

experimental stress is good for the inside and outside surface and especially good for 

maximum values. They concluded that the modified minimum potential energy 

solution to Rodabaugh and George [30] made by a correction on circumferential 

membrane stress was the most suitable analytical method for developing stress 

indices and flexibility factor for elbow and curved pipe. 

The modified solution was solved by numerical analysis (and a FORTRAN computer 

code was released into the public domain). A parameter survey using pipe bend 

parameter A, pressure parameter f/I, and radius ratio p, was carried out. Numerical 

values of kp(A, rIJ were obtained from the equation below: 
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1 
kp = 3 

l+ - d 2 I 

where d 1 is given in equation (2-96). 

(2 - 1 03) 

Figure 2.22 shows the fl exibility factor obtained by Dodge and Moore as a function 

of the pipe bend parameter A and internal pressure parameter If/. 
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Fig.2.22 Flexibility factor for pipe bends under bending and pressure 

From figure 2.22, Dodge and Moore further gave a closed form solution for 

flexibil ity factor of pressurised pipe bends: 

k = 1.66X I 

P 1+ 1. 7SA-~ exp( - 1.1 SIj/ -y.;) 
(2 -104) 
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Using this modified solution, Dodge and Moore further suggested using the 

following equations for circumferential stress factors of piping elbows under in-plane 

and out-of-plane bending respectively in place of equation (2-95b) and (2-97b) of 

Rodabaugh and George [30] formula: 

For in-plane bending: 

U; =~{+3dlA.COS2¢-..!..[(1+ 3d1)cos¢_ dl COS3¢]COS¢} 
U" I-v r 2 6 

(2 -105) 

For out-of-plane bending: 

U; =~{+3dlA.Sin2¢+.!..[(1+ 3d1)sin¢_ d1 sin 3¢] sin ¢} 
un I-v r 2 6 

(2-106) 

In 1980, Boyle and Spence [67J developed a simple elastic analysis for the behaviour 

of an oval cross-section pipe bend under in-plane bending and internal pressure as 

part of a study of out-of-round and variable thickness pipes. The problem was solved 

using the theorem of minimum potential energy of a ring section of unit length. For 

the special case of circular cross-section pipe bend under bending and internal 

pressure, a simplified flexibility factor was obtained as follows: 

(2-107) 

Finally, Orinyak [102] in 1997 developed a formula for determining the amount of 

'restoration' toward its original circular shape of an oval shape deformed cross­

section pipe bend due to in-plane bending. Referring to Fig.2.19, the formula 

proposed was as follows: 
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(2 -108) 

where ay is the vertical bulging of pipe bend cross-section due to in-plane bending as 

given by the following: 

(2-109) 

Unlike the formula shown by Wahl [7], eqn (2-74), the formula presented by Orinyak 

for the effect of internal pressure on cross-sectional ovalisation show a dependency 

on pipe bend radius R. 

The analytical solutions of Kafka and Dunn [29], Rodabaugh and George [30], 

Reissner [33], and finally Dodge and Moore [48] remarkably remain the few studies 

which aim to produce a simple explanation and analysis of the pressure reduction 

effect on the mechanics of pipe bend behaviour. As will be seen in the next chapter, 

the problem has not even been re-examined in much detail in the more recent 

literature. 

2.6 Summary 

A comprehensive review of the theoretical development of the flexibility and stress­

intensification factors of pipe bend has been presented. It should be noted that the 

main feature of the theories is that they involve some assumptions in order to 

simplify the problem. The 'long radius assumption' is probably the most difficult 

assumption to be omitted. With this assumption, the problem of the bending of a pipe 

bend become so simple and a closed form solution for the flexibility and stress­

intensification factor become possible to be developed. The 'inextensibiIity' 

assumption of the mid-surface in the circumferential direction is also hardly omitted 

in the theoretical analysis of the bending of pipe bend. AU the theoretical analysis 
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reviewed above ignore 'end effects' (and make the pure bending assumption). The 

pressure reduction effect on the flexibility and stress-intensification factors have 

been equally applied to both in-plane (closing and opening) and out-of-plane 

bending, regardless of the total angle of the bend. It is however expected that the 

pressure reduction effect should be different for these three directions of moment, as 

the stiffness of a pipe bend is different for in-plane closing and opening moment as 

well as out-of-plane moment. In addition, a pipe bend would tend to behave as a 

straight pipe as the total angle of the bend approaches hypothetically zero. Some 

investigators have tried to develop a theoretical analysis, taking the effect of bend 

angle into account, however, the analysis was not clear from the assumptions. Finite 

element analysis could be an alternative to carry out parametric studies in order to 

obtain closed form solution for the flexibility and stress-intensification factors of 

pipe bends. In the next chapter, an extensive review on finite element modelling and 

analysis of piping elbows is presented. Using finite element methods, the 'end 

effects' can be taken into account. 
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Appendix C2 

Equations in this appendix are taken from Kafka and Dunn [35] for calculation of 

flexibility and stress-intensification factor corresponding to Equations (2-89) through 

(2-91): 

A = 5 Etr + 36D(.!.+~)+12P 
2R2{I-v2) r2 r 15n:R 

(A2-1) 

B 3 Etr
2 

4Dv 
= 2 R2{I_v2)+ n:Rr 

(A2-2) 

Ee 
D = 12(I-v2 ) 

(A2-3) 

5 EJrtr 36.nD 144vD 
all = 2( 2)+-3-+ 2 +12nP 

2 R I-v r 15Rr 
(A2-4) 

5 Emr 96 vD 
al2 = 4 R2{I-v2 )+7 Rr2 

(A2-5) 

17 Etrtr 1fi) 1600 vD 
a22 = 2( 2)+3600-3 +---r+ 240nP 

2 R I-v r 7 Rr 
(A2-6) 

b 3 Emr
2 

4vD 
1=2R2 {1_v 2 )+ Rr 

(A2-7) 

b = 8vD 
2 Rr 

(A2-8) 

012b2 + °22bl 
PI = 2 

011022 - 012 

(A2-9) 

_ 012bl +01lb2 P2 - 2 
° 11022 -012 

(A2-1O) 
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CHAPTER 3 

HERA VIOUR OF PIPING ELBOWS: NUMERICAL 

AND FINITE ELEMENT ANALYSIS 

A comprehensive literature review on the theoretical development of the behavior of 

pipe bends has been presented in Chapter 2. The aim there was to focus on the 

development of useful simple design formulae. The main feature therefore was that 

these analyses involve simplifying assumptions in order to make the problem 

solveable in closed form. Therefore so-called 'end effect', and the 'bend angle' are 

usually ignored in the theoretical analysis especially for 'long radius bend'. 

Accordingly, the stress values at any cross-section can be assumed proportional to 

the moment acting at that cross-section and not a function of length of the bend (pure 

bending assumption). An alternative approach in which the assumptions are more 

fundamental but less restrictive is provided by the use of numerical analysis and in 

particular finite element method. As computer technology advances, more and more 

powerful finite element analysis (FEA) software becomes available with innovative 

finite element technology. Application of the finite element method for the solution 

of the piping elbow has grown intensively. The flexibility of a pipe bend can be 

easily determined using a modem nonlinear finite element analysis. The versatility 

and cost-effectiveness of the finite element analysis in practical use allows detailed 

parametric study on the nonlinear behavior of a pipe elbow. The purpose of this 

chapter is now to present a review or summary of the work to date on numerical and 

finite element analysis of the behavior of piping elbows. The review will be focused 

on the application of available finite element program software for analyzing the 

behavior of piping elbows. This should provide a clear idea for modeling piping 

elbows, using ANSYS, as will be given in the next chapter. The review is not 

intended to go in detail on the formulation of the finite element itself, but it is rather 

intended to review finite element analysis of piping elbows. 



3.1 Pipe Bends with End Constraints 

In a real piping system, pipe bend may be connected to adjacent straight pipe by 

smooth welded joints as shown schematically in Fig.3.l(a), or alternatively it may be 

connected by flanged joints, as shown in Fig.3.1(b). For this case, the von Karman 

assumption of constant deformation and stresses along the length of the bend and 

independent of the subtended angle of the bend is no longer appropriate. When a 

bend is part of the real piping system, the ovalisation is constrained by the 

connection. This affects the flexibility and stresses to a greater or lesser extent 

depending on the types of end constraint. The effect of end constraint is much 

influenced by the radius ratio as well as the total bend angle. 

(a) (b) 

Fig.3.1 (a) Pipe bend jointed smoothly (tangent) to straight pipes, (b) Pipe bend 

joined to straight pipes by flanges 
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In 1946, Symonds and Vigness [15] presented some experimental results, which 

demonstrated the importance of end effects. Both flanged and tangent pipe 

constraints were considered and they showed that the most severe form of end 

constraint is flanged. The general conclusion from these studies was that the 

dependence of flexibility on radius ratio p can be neglected, but the stress 

distribution was affected significantly by radius ratio p. 

In 1951, Pardue and Vigness [21] carried out experimental investigations on 90 and 

180-deg return bends, thin-walled and short-radius, to study the effect of end 

restraints. They tested a series of tube bends having radius ratio (P) equal three and 

thickness to cross-section radius ratio (fir) ranging from 0.015 to 0.044. They 

considered two main types of end constraint: (l) the tube bends were joined to 

straight tube at both ends of equal length greater than 5 times pipe diameter, typically 

as shown in Fig.3.l(a), and (2) the tube bend was terminated by flanges, typically as 

shown in Fig.3.l(b). It was found that elbows having radius ratio about two or three, 

were greatly affected by the length of the bends (total bend angle). As the angle of 

the bends decreased, the point of maximum stresses shifted toward the intrados, 

producing an increasing discrepancy between theory and experiment. 

In a study of end effects, Gross and Ford [25] in 1952 experimentally determined the 

variation of ovalisation along the bend with flanged tangents and demonstrated the 

progressive decrease away from the mid-section of the bend. In the discussion to this 

paper, Pardue and Vigness published further experimental results and pointed out 

that the maximum hoop stress factor shifted from its normal position on the crown 

toward the intrados as the bend length decreased and end-constraint became more 

rigid. 

In 1975, Natarajan and Blomfield [55] carried out finite element analysis to study the 

effect of end constraints on flexibility and stress factors of short-radius pipe bends 

under in-plane moment. For this analysis a doubly-curved thin shell element was 

formulated and used. The effect of flanges as well as straight tangents were 

considered. It was concluded that a flange does not have any effect on flexibility and 
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stresses of a pipe bend if it is located far from the bend-straight pipe junction. It was 

also found that the flexibility factors of a pipe bend with both ends of the tangent 

pipe tenninated by flanges were lower than with one end flanged. For a short radius 

pipe bend with both ends terminated by a tangent, it was found that the maximum 

stress occurred on the inside surface of the mid-section at around 95-deg from the 

extrados in the hoop direction. 

With regard to the arc length of the bends, the finite element analysis carried out by 

Natarajan and Blomfield [55] demonstrated that the relationship between flexibility 

factor and the bend angle could not be approximated as a linear relation. From a 

study of maximum stresses in pipe bends of different angles, but of same pipe bend 

parameters, it was found that the maximum stress occurred at the mid-section of the 

bend on the inside surface in the hoop direction for a 1 BO-deg pipe bend and moved 

toward the intrados at 105-deg from the extrados for a 30-deg pipe bend. If the bend 

angle was further reduced, the maximum stress moved to the intrados at the outside 

surface along the longitudinal direction, thus behaving like a straight pipe. 

In 1979, Findlay and Spence [63] presented a theoretical solution for the flexibility 

and of a pipe bend with end effects subjected to in-plane bending as an extension of 

the von-Karman analysis. The end restraint was rigid flanges at both ends of the bend 

as schematically shown in Fig3.2. The analysis was based on an energy method by 

representing the radial displacement, w, in the form of a Fourier series: 

(3 -1) 

where m = 1, 3, 5, ... , and n = 1,2,3, ... 

Eqn (3-1) indicated that some degree of ovalisation of the cross-section would be 

expected in the mid-section of the bend but the effect of the rigid flanges would be to 

retain the initial circularity at the ends. On the assumption of inextensibility of the 
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cross-section centerline on any longitudinal position, the corresponding tangential 

displacement becomes: 

+8 

+v 

+w 

Fig.3.2 Pipe bend investigated by Findlay and Spence [63] 

v= - LLCmn(_l )sin2n{pcos 2(m{P1Jl 
m n 2n af 

(3 -2) 

With the assumption of a 'long-radius bend', and that the wall thickness is 

sufficiently 'thin', minimization of the total potential energy leads to the following 

equation for the overall flexibility factor: 

k = (6a)EI = I-v
2 

a MRa U
min 

(3 - 3) 

Several useful graphs were produced, which showed that the flexibility of a pipe 

bend was greatly influenced by a rigid flange, being varied with pipe bend parameter, 

~ and the total angle of the bend, a Findlay and Spence [64] later presented a 

detailed experimental analysis together with a theoretical development for the 

stresses of the same problem. It was shown that the maximum stresses were greatly 

influenced by the flange constraints but the maximum stress for a 180-deg bend was 

not much different from the unconstrained Karman theory. 
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In 1979, Whatham and Thomson [66] presented an analysis of pipe bends with 

flanged tangents using the Novozhilov thin shell theory. Flexibility factors for 90 and 

180-deg pipe bends with various lengths of flange tangent, L, (Fig.3.3) under 

separated loading of in-plane bending and pressure loading were presented. They 

concluded that flanged tangents do not affect the flexibility or stresses in a smooth 

pipe bend if the tangents are more than one-pipe circumference in length. 

L 

Fig.3.3 Pipe elbow with end flanged investigated by Whatham and Thomson [66] 

In 1983, Spence and Thompson [83] presented an elastic analytical solution to obtain 

the maximum stress and flexibility factor of the flanged tangent smooth pipe bend 

under in-plane bending as investigated by Whatham and Thompson (Fig.3.2). The 

displacements were expressed in a trigonometric series and the displacement series 

coefficients were obtained by minimizing the total energy with respect to all of the 

unknown coefficients. It was shown that the flexibility of a pipe bend increased 

rapidly with increasing length of tangent until the tangent pipe length was 

approximately equal to the pipe circumference. The flexibility of bends connected to 
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tangent pipe was lower than predicted by theories ignoring end effects, particularly 

for pipe bends having angle less than 90-deg. It was noted that the difference in 

flexibility factor of bends with A. = 3 and A. = 2 was less than 6 percent for bend 

angles greater than 90-deg, but increased to 13 percent for 45-deg bends. The 

reduction of flexibility factor with bend angle was greater for a constant radius ratio, 

p. 

The variation of flexibility factor with pipe bend parameter was found to be 

approximately linear in log-log plots for all bend angles and radius ratio. Based on 

this finding, Spence and Thomson proposed a formula for flexibility factor as 

follows: 

k =.u 1.54 
A. 

for p =10 

k =.u 1.48 
A. 

for p = 3 (3 -4) 

k =.u 1.45 
A. 

for p =2 

where Ii is a correction factor whose values depend on radius ratio, p, and bend 

angle, a; as tabulated below: 

~ 90-deg 45-deg 20-deg 

10 0.96 0.88 0.66 

3 0.92 0.75 0.47 

2 0.89 0.68 0.41 

With regard to the maximum stress, it was found that maximum hoop stress factor 

occurs approximately at f/J = 95-deg from extrados. This angle increases with lower 

bend angle and smaller radius ratio. 
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In 1986, Hubner [88] used a semi-membrane theory and adopted the long radius 

assumption to study the effect of end flanges on flexibility, cross-sectional distortion, 

and stress distribution of a pipe bend under in-plane bending. The stresses in the 

longitudinal direction were assumed as membrane states, while in the circumferential 

direction were assumed to be bending stress states. The theory developed was based 

on the thin shell assumption, small displacements, and the long radius assumption. 

However, Hubner did not produce any useful graphs or closed form solutions for 

cross-sectional ovalisation, flexibility, and stress-intensification factors. 

In 2002, Orynyak [124] presented a theoretical study of the effect of end constraints 

on cross-sectional ovalisation of a pipe bend. Three special cases of end effect of 90-

deg pipe bends were considered: (1) rigid fixation at both ends as shown in 

Fig.3.4(a), (2) Fixation at both ends by thin rigid plate as shown in Fig.3.4(b), and (3) 

both ends are connected to straight pipe tangent to the bend as shown in Fig.3.4(c). 

The results were presented in the form of charts only for the circumferential 

displacement at the mid-section of the bends. 

(a) (b) 

--_._.-._.-._._._. '-'-'~.,., 

(c) 

..... 
". 

Fig.3.4 Types of end effects considered in Orinyak' analysis [124] 

\ 
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3.2 S-Shaped Back-to-Back Pipe Bends 

Natarajan and Blomfield [55] further extended their finite element analysis of end 

effects on flexibility and stress factors of pipe bends under in-plane moment to study 

the behaviour of 90-deg S-shaped back-to-back bends as shown in Fig.3.5. For this 

kind of bend connection under an in-plane moment as shown, the lower bend (bend 

A) is subjected to closing moment and the upper bend (bend B) is subjected to 

opening moment. It was found that the flexibility and stresses were reduced from the 

corresponding values of a single 90-deg bend. If they are connected to form an 180-

deg bend, these factors are increased. 

Fixed end 

Fig.3.5 S-shaped back-to-back 90-deg pipe bends 

In 1989, Glickstein and Schmitz [93] performed a further finite element study of the 

flexibility factor of S-shape back-to-back 90-deg pipe elbows with equal tangent as 

shown in Fig.3.5 as investigated by Natarajan and Blomfield [55]. The configuration 

of S-shaped elbow arrangement was further extended to include intermediate 

tangents. In their studies, the length of tangent was varied, and the bend angle 

consisted of 45 or/and 90-deg as shown in Fig.3.6. All the elbows analyzed had 

cross-section to thickness ratio of r/t = 32.5 and radius ratio p = 3.05. The thickness 

was 0.245-in and the maximum length of tangent was four times the cross-section 

radius. The pipe bend parameter A. was 0.0904. 
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Fig.3.6 S-shaped model of pipe bends investigated by Glickstein & Schmitz [93] 
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The bend arrangement of Fig.3.5 as investigated by Natarajan and Blomfield [55] 

was model 4 in the analysis of Glickstein and Schmitz [93J. For this elbow 

arrangement, they found that the flexibility factor was 25 percent lower than the 

asymptotic formula of Clark and Reissner [20J for a single 90-deg bend. The 

flexibility of the fixed bend in model 5 was 154% lower than corresponding bend in 

model 4. It is surprising that the results presented by Glickstein & Schmitz show 

elbows under closing moment stiffer than under opening moment. This might not be 

expected, however, it should be noted that the analysis of Glickstein and Schmitz 

does not take the large deformation effect into account. 

In 1991, Glickstein and Schmitz [96] presented a further analysis for this problem in 

regard of the maximum stresses. The main conc1usion from their studies was that the 

restraining effect of back-to-back elbows causes a significant reduction in the stress­

intensification factor. 

3.3 FE Modeling for Pipe Elbow Analysis 

This section is intended to present a brief review of finite element modeling in the 

analysis of piping elbows. This should provide a clear idea on the modeling aspects 

of piping elbow analysis for the studies carried out in the next chapter. 

3.3.1 Piping Elbow Subjected to Bending 

In 1974, Mello and Griffin [53] performed a series of inelastic (elastic-plastic) finite 

element analyses to determine the plastic collapse loads of 304 stainless steel, large 

diameter, long radius pipe elbows under in-plane closing moment. The analyses were 

based on nominal piping dimensions: the configurations of elbow consisted of 

straight tangent - quarter bend - straight tangent as shown in Fig.3.7. The speciaIJy 

developed constant bending, three-node, elbow element of the MARC Finite Element 
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Analysis program was used. In this special element, the end restraint of the straight 

pipe at the elbow intersection is neglected, assuming constant ovalisation of cross­

section over the entire length of the bend (the pure bending assumption). Beam 

elements were used for the straight tangent. The analysis accommodated material 

strain hardening, stress redistribution, and ovalisation of the elbow cross-section. 

They pointed out that more integration points around the pipe circumference would 

give better results. This is expected, as more integration points are needed to reduce 

gross discontinuities in stresses around the circumference of the elbow. 

Fig.3.7 Piping elbow consists of straight tangent - quarter bend - straight tangent 

In 1977, Kano et al [58] performed a three-dimensional finite element elastic analysis 

of a pipe elbow (Fig.3.7) under in-plane and out-of-plane moment. The elbow 

analyzed was thin-walled, large diameter and long radius, having 823.9 mm OD, 

1219.2 mm bend radius (R), and 11.1 mm thickness (t), corresponds to 0.08 pipe 

bend parameter (A.). One end of the tangent was fixed and the other end subjected to 

in-plane and out-of-plane moment. The following three different models of element 

were used: 
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(1) Quadrilateral thin-shell element in the ANSYS program (SHELL43). Using this 

element, the elbow part was divided into 32 element in the circumferential 

direction and 20 element in longitudinal direction. Straight tangent was divided 

into 12 element in the axial direction. 

(2) Quadrilateral high-order solid element in the ASKA program (HEXEC-27). 

Using this element, the number of element in the circumferential and longitudinal 

direction of the elbow was 16 and 10 respectively. The straight tangent was 

divided into 6 element in the axial direction. Only one element through the 

thickness of the elbow and straight tangent. 

(3) Combination of elbow and beam element in the MARC program (ELEMENT 17 

for the elbow and ELEMENT 14 for the straight tangent). The elbow part 

consisted of 32 integration points and 8 elements in the circumferential and 

longitudinal direction respectively. 

With respect to stress distribution, fairly good agreement was obtained between the 

shell element of the ANSYS and solid element of the ASKA. Computed stress by the 

elbow and beam element of the MARC program were relatively large compared with 

those obtained by the other two models. They pointed out that this difference is due 

to the fact that the elbow elements are joined with the adjacent element only via the 

central position of the section and the individual elbow element can ovalise 

independently, thereby causing a rather high degree of ovalisation. In contrast to the 

shell element, it was connected with one another and the ovalisation thus becomes 

continuous in the axial direction due to the restraint by all adjacent elements. 

In 1977, Sobel [60] used another special MARC pipe bend element (library element 

17) to investigate the in-plane bending behavior of piping elbow. This element is an 

axisymmetric isoparametric shell element that has been modified through the 

addition of 'beam-type' deformation mode. The element assumes that each elbow 

element deforms uniformly over the entire length of the bend with the amount of the 

deformation being dependent on the magnitude of the applied bending moment. It 

does not account for the stiffening effect (end effect) provided by straight portions of 

the piping structures. 
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The elbow configuration consists of an elbow with straight tangent attached at both 

ends as typically shown in Fig.3.7. The end of one tangent was fixed and the end of 

the other tangent subjected to in-plane closing moment. A finite element 

convergence study was performed to find the optimum number of elements. Because 

the MARC 17 element cannot account for non-uniform ovalisation of the elbow 

cross-section due to end effects, only the number of integration points in the hoop 

direction was refined during finite element convergence analysis. The finite element 

convergence study was based on the hoop and axial stresses. The optimum (upper 

bound) number of integration points in the hoop direction was proposed as follows: 

(,t < 3.5) (3 -5) 

It was concluded that the maximum stress in a 90-deg elbow under in-plane bending 

is the hoop stress located very close to the crown at the inside surface, and shifted in 

a very small distance toward intrados as the radius ratio p, and pipe bend parameter 

~ are decreased. This might also be true for a 180-deg pipe bend, but not for a pipe 

bend whose bend angle is smaller than 90-deg. 

In 1979, Kano et al [65] performed a detailed finite element analysis to study the 

behavior of L-shaped and U-shaped pipe elbow assemblies loaded by in-plane and 

out-of-plane moments. The analysis was carried out using a doubly curved 

quadrilateral thin-shell element (ELBOW6) of the FINAS computer program. The 

elbow analyzed was 316 stainless steel, thin-walled, large diameter and long radius, 

having 812.8 mm OD, 1219.2 mm bend radius (R), and 11.1 mm thickness (t), 

corresponds to 0.0842 pipe bend parameter (A.). The elbow configurations 

investigated were as follows (Fig.3.8): 

(1) L-shaped model: consists of straight pipe - quarter bend - straight pipe. 

(2) U -shaped model-I: consists of straight pipe - 180 bend - straight pipe. 

(3) U-shaped model-2: consists of straight pipe - quarter bend - straight pipe -

quarter bend - straight pipe. 
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<a) (b) 
(c) 

Fig.3.8 Piping elbow configuration considered by Kano et al [65] 

The length of all straight tangents was 10 times the cross-section radius, except the 

intermediate tangent in U-shaped model 2 was 2 times the radius of the cross-section. 

One end of the assemblies was fixed and the other end subjected to in-plane and out­

of-plane lateral load. 

Comparing the U-shaped model of Fig.3.8(a) and (b), they noticed that there was a 

significant reduction of the maximum stresses at the center section of the assembly 

(50%) if an intermediate short tangent is inserted between the two 90-deg bend, 

particularly for in-plane bending. In general, the flexibility factor and stresses 

obtained using the detailed finite element analysis were lower than those obtained 

using the ASME Code Section III. The difference was even bigger for out-of-plane 

moment, especially for U -shaped bend where torsional moment is dominant at the 

mid-section of the bend. 

In 1980, Dhalla [68J presented guidelines for selection of element size for a 

nonlinear finite element analysis of thin-walled piping elbows. The doubly curved 

rectangular isoparametric shell element of the MARC computer program was used. 

The length of straight tangent was eight times the cross-section radius. One end of 

the straight tangent was fully fixed and the other end subjected to an in-plane 
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moment. The moment loading was applied at a beam node located at the center of the 

end of the free tangent, schematically shown in Fig.3.9. 

- ---_ .. _---_ .. _._-_ .. _-_ .. _._-- .. ----_._ .. _---_._. .-.............. 
" 
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Fig.3.9 Pipe elbow considered by Dhalla [68] in a finite element study 

A finite element convergence study was performed for elastic analysis under in-plane 

moment loading to take advantage of the symmetry in geometry and deformation, 

and accordingly, only one-quarter of the model was analyzed. The element size in 

both hoop (circumferential) and longitudinal direction was refined independently 

based on the observed hoop and longitudinal stress distribution around the mid­

elbow cross-section. It was found that the longitudinal mesh refinement does not 

significantly influence either the overall deformation behavior or the maximum 

stresses (at the mid-section of the elbow). 
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In the study for the elastic-plastic collapse analysis, Dhalla further employed odd 

number of elements around the semi-circumference so that the center of one of the 

elements would be at the crown of the elbow where the maximum hoop stress is 

expected to be located at this position for a 90-deg pipe elbow. Large deformation 

effects were included in the analysis. Mesh refinement in the hoop direction was also 

performed in the plastic collapse analysis. It was concluded that the numerical 

accuracy of the plastic collapse load can be improved primarily by mesh refinement 

as well as load-step refinement, and not by the inclusion of large deformation effect. 

In 1980, Sobel and Newman [70] performed a simplified nonlinear finite element 

analysis for the plastic bending of 304 strainless steel, 16-in piping elbow loaded by 

in-plane moment, again using the library element 17 of the MARC finite element 

analysis program. The main aim was to find the correlation of in-plane collapse load 

between finite element analysis and experimental results. The elbow configuration 

consisted of straight tangent-quarter bend-straight tangent (Fig.3.10). Each straight 

portion was modeled using a beam element (library element 14). The elbow part 

consisted of one element in the longitudinal direction and 34 integration points in the 

circumferential direction. One end of the tangents was fixed and the other end was 

subjected to an in-plane closing moment modeled as rotation controlled. Geometric 

nonlinear effects (large deformation) were included in the analysis. The deformation 

variable considered was rotation of the loaded end section, vertical displacement of 

the loaded end and the hoop strain at the mid-section of the bend. It was found that 

the maximum strain in an elbow was a hoop strain at the mid-section of the elbow 

located between 90 and 100-deg from extrados. The position of the maximum hoop 

strain was closer to f/J =100-deg at the first load level and it progressively moved 

toward, and eventually became closer to, the crown with increasing load. This might 

be true also for elbow of 180-deg, but not for elbow whose bend angle is smaller than 

90-deg, as it tends to behave like a straight pipe when the bend angle hypothetically 

approaches zero. 
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Fig.3.1 0 Pipe Elbow investigated by Sobel and Newman [70] 

In 1982, Rodabaugh and Moore [77] presented the results of a finite element 

parametric study for short-radius elbows with long tangents under in-plane and out­

of-plane moments. The parameters of interest were p = 2 and 3, bend angle (ex) = 45. 

90, and 180-deg. Pipe bend parameters (A) were in the range of 0.05 S; A S; 1.5. 

Twenty-four models were analyzed for in-plane moment, Aft, and out-of-plane 

moment, Mo, using a finite element computer program EP ACA and thick shell 

element. The model consisted of a bend with straight tangents attached at both ends 

(Fig.3.tt). The boundary condition was fully fixed at one end of the tangent with the 

other tangent subjected to in-plane or out-of-plane moment. 
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Fixed end 

Fig.3.ll Pipe elbow configuration investigated by Rodabaugh and Moore [77] 

It was found that the maximum stress in most of the elbows considered for the in­

plane bending case occurred in the hoop direction on the inside surface located at the 

crown of the mid-section of the elbow. For some dimensions considered, the finite 

element results indicated inconsistency of the location of the maximum stress. The 

fundamental finding from their finite element study was that the maximum stresses 

for 90 and 180-deg elbows are not significantly affected by the straight long tangent. 

For 45-deg elbows, a significant reduction in maximum stress was apparent. They 

did not include elbows of bend angle less than 4S-deg in their analysis, but 

recommended a simple formula for the stress index with the assumption that the 

stress index would be equal 1 for bend angle approaching zero. For out-of-plane 

moment, the maximum stress was found to be less than those for in-plane bending as 

expected, approximately by the ratio of 0.88,42/3. 
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The finite element results also indicated that the flexibility factors of 180-deg elbows 

are about the same as for 90-deg elbows in the case of in-plane bending. With the 

judgment that the flexibility factors for l80-deg bends should be the same as given 

by the assumption of pure bending the following equations were recommended for 

the in-plane flexibility factors: 

k. = 1.65 
I A.' 

k = 1.30 
I A.' 

k = 1.10 
I A. 

kl = 1.00 

for a ~ 180 - deg 

for a = 90 - deg 

fora=45 - deg 

fora=O 

(3 -6) 

For out-of-plane bending, the equation below was proposed for flexibility factor 

valid for all values of bend angles: 

k = 1.25 
o A. (3 -7) 

Also in 1982, Thomas [78] applied the STAGSC fmite difference thin shell computer 

program to analyze flexibility factor and stress indices of 90-deg pipe elbows under 

in-plane and out-of-plane bending. The symmetry condition in geometry and 

deformation for in-plane bending case was taken into account using only half of the 

circumference. The 'element size' of the elbow part in the circumferential and 

longitudinal direction was 15-deg and 7.5 deg respectively. The length of straight 

tangent was chosen to be 6 times the nominal radius. Two elbow geometries were 

analyzed, both having wall thickness (I) of 12.7 mm and radius ratio (Rlr) of 3. The 

outside diameter was 610 mm and 914 mm which corresponds to pipe factors of 

0.1304 and 0.0857 respectively. One end of the tangent was fully fixed and the other 

and subjected to bending moment applied as a line loading varying linearly across 

the pipe diameter as shown in Fig.3.12. 
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Fig.3.12 Pipe Elbow investigated by Thomas [78] 
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The flexibility factor was computed by linearisation of the axial displacement of the 

nodes at the bend-straight pipe junction to obtain the angular end rotation as the 

slope of the straight line. Thomas found that a tangent length of six times the cross­

section radius was adequate to eliminate the end effect on ovalisation of the elbow 

cross-section. The elbow would be twice as stiff as an isolated elbow if a rigid flange 

was present at one end and a tangent pipe at the other end. The presence of a rigid 

flange near one end of the elbow shifted the maximum ovalisation from the mid­

section of the elbow towards the other end. It was shown that in-plane and out-of­

plane flexibility factors become nearly compararabJe if rigid flanges were attached at 

both ends of the elbow. 

86 



In 1986, Sobel and Newman [89] carried out simplified and detailed fmite element 

analysis of piping elbows under in-plane closing moment. The elbow configuration 

considered and finite element procedure were similar to their earlier work in [70). 

One end of the tangent was fixed and the other end subjected to an in-plane closing 

moment applied on the beam-node at the center of free end cross-section. In the 

simplified analysis, the special pipe bend element (MARC element 17) was again 

used to model the elbow part and the MARC beam element 14 was used to model the 

straight pipe portion. Consequently, the end effect provided by the straight pipe 

portion was neglected in this analysis. In the detailed analysis, an iso-parameteric, 

doubly-curved, quatrilateral shell element 4 was used for the entire component 

(elbow and straight tangent portion) which accounts for stress stiffening effect. The 

number of elements of the elbow part was 7 elements in the axial direction and 34 

elements in the hoop direction. The total number of elements and nodes was 133 and 

178 respectively. The deformation variables considered were the rotation of loaded 

end section, the vertical displacement of the center of this section, and the hoop 

strain at the crown for the outer surface. It was found that the moment-deformation 

curve predicted using the element 4 was in close agreement with the experimental 

moment-deformation curve. It was also shown that the element 17 analysis 

overestimated the experimental deformation, especially in the plastic region of the 

moment-deformation curve. 

In 1987, Dhalla [90] performed a detailed nonlinear finite element analysis of two 

experimentally tested 16-in elbows loaded by in-plane moment. The elbow 

configuration and boundary conditions were similar to the analysis of Sobel and 

Newman [89]. Average dimensions were used which came from the pretest report. 

The study used the MARC fully compatible doubly curved isoparametric thin shell 

(library element 4) taking account of both geometric and material nonlinearity. The 

stiffening effect of the straight tangent welded to the ends of the bend was included 

in the analysis. The element size was based on the finite element convergence study 

performed by Dhalla [68] leading to the number of elements and nodes of 140 and 

186 respectively. The analysis showed that the shell analysis predictions [90] were in 
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better agreement with the experimental results than the corresponding simplified pipe 

bend analysis since the latter neglects the end stiffening effect and elbow ovalisation. 

In 1988, Fujimoto and Soh [92] carried out finite element analysis of thin-walled 

piping elbows under in-plane and out-of-plane moments. The elbow configuration 

analyzed consisted of a 90-deg bend connected with straight tangents at both ends 

(Fig.3.12). The length of each tangent was 7r. where r is the cross-section radius. 

One end of the tangent was fixed and the other end was subjected to moment loading 

applied as shear loading. A parametric survey of pipe factors was performed in the 

region of 0.01 ~ A. ~ 0.2. The radius ratio p was set to be 2 or 3. The 4-node 

isoparametric shell element of the MSCINASTRAN fmite element program was used 

for modeling. A flexibility factor under in-plane bending k, was derived from the 

rotation Ox, of the end section of the loaded tangent (Fig.3.13). Accordingly. the 

flexibility factor was calculated as follows: 

-+---..-~-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. 

y 

7r 

Loaded point 

Fixe~end 

Fig.3.13 Pipe elbow investigated by Fujimoto and Soh [92] 
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where E= Young's modulus, N/mm2 

1= second moment of area, mm4 

~ = in-plane rotation of the end section of the loaded tangent, rad 

M;::: applied in-plane moment, N.mm 

L = length of loaded tangent, mm 

R = pipe bend radius, mm 

(3-8) 

A flexibility factor under out-of-plane bending ko was derived from the rotation ~ 

and B... of the end section of the loaded tangent. Accordingly, the flexibility factor 

was calculated as follows: 

(3-9) 

where kay and koz are the flexibility factors under an out-of-plane moment My and Mz 

respectively, calculated using the following formulae: 

EI8 
--y +O.6SR 

k =_M~o __ _ 
oy O.SR 

(3 -lOa) 

_EI_8_% _ 2.3L -l.021R 
k ::: _M---:;.o _____ _ 

0% 

O.78S4R 
(3 -lOb) 

where ~::: the rotation about Y-axis of the end section of the loaded tangent, rad 

B... = the rotation about Z-axis of the end section of the loaded tangent, rad 

Mo = applied out-of-plane moment, N.mm 
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It should be noted from the above formula that the flexibility of the straight tangents 

was included in the calculation of the flexibility factor for the pipe bend. Based on 

the above procedure, empirical formula for in-plane and out-of-plane flexibility 

factors was produced for radius ration p = 2 and 3 in the following form: 

(3 -11) 

where 0, h, and c are constants whose values depend on the radius ratio p. It was 

observed that the formula proposed by Fujimoto and Soh, only the first term in the 

square bracket is important, while the second term could be neglected without 

significant loss in accuracy. It should be noted that large deformation effects were 

not included in their analysis. This form of formula, as well as similar forms for 

stress-intensification factors, will be examined in the Chapter 5 and the remaider of 

the thesis. 

In 1989, Suzuki and Nasu [94] performed a nonlinear finite element analysis of 12-in 

and 24-in outside diameter but-welded elbows subjected to in-plane bending. The 

elbow configuration consisted of a 90-deg bend having radius ratio p equal 3 

connected to straight tangents at both ends. The bends and straight pipes were 

modeled using the four-node flat shell element of the ADINA finite element analysis 

program having five degree-of-freedom per node. The main aim was to verify the 

accuracy of this element in comparison with the experimental data. The number of 

elements in the longitudinal direction of the elbow part was 20. The number of 

elements in the circumferential direction was 24 elements around the semi­

circumference. The element size in the hoop direction was finer around the crown 

(30-deg toward intrados and extrados), being 5-deg per element. The element size of 

the remaining 12 segments was 10-deg per element. Both geometric and material 

non-linearity were included in the analysis. It was found in general that the finite 

element results were in good agreement with the experimental load-displacement 

curve, cross-sectional ovalisation, and strain distribution. However, the element size 
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used in the circumferential direction was too fine which could be reduced using a 

non-flat (curve) shell element. 

In 1993, Hose and Kitching [99] presented a series of finite element analyses using 

ABAQUS of pipe bends of laminated composite loaded by in-plane and out-of-plane 

moment. The main aim was to assess the effect of straight tangent on flexibility and 

stress-intensification factor. The nominal cross-section radius (r), radius ratio (Rlr), 

and pipe bend parameter (l) were 128.5 mm, 1.94 and 0.144 respectively. The pipe 

bend was connected to straight pipe at both ends (Fig.3.14) having length of over 10 

times the cross-section radius. The S8R shell element with quadratic displacement 

was used. Symmetry condition in geometry and deformation under in-plane bending 

was taken into consideration by modeling only one-fourth of the structure. The 

element size of the elbow part in circumference and longitudinal direction was 11.25 

and 7.5-deg respectively. The number of elements in the axial direction of the 

attached tangent was 13. 

L= 1350mm 

u 

11 
~i 
>'1 

; 

-Et~-
intrad9s 

; 
i ~ 
; 

SECTION A-A 

y 

z 

Fixed tangent 

Fig.3.14 Geometry of the pipe elbow investigated by Hose and Kitching [99] 
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For in-plane bending load, symmetry conditions were imposed on the model 

boundary plane: z = 0 and y = x, where XY -plane is the plane of the bend in which a 

90-deg elbow divided into two of 45-deg elbow by the line y = x (as shown in 

Fig.3.14). For out-of-plane bending, symmetry was imposed on the plane y = x, but 

antisymmetry on the plane z = O. The end flange of the straight tangent was modeled 

as a rigid body using a multi-point constraint (not shown in Fig.3.14). This was done 

by connecting each of the nodes on the perimeter of the flange to the node at the 

tangent pipe axis to which in-plane moment of 2.119 kN.mm was applied. The 

flexibility factor under in-plane bending was calculated from the rotation of end 

flange (q» using the following formula: 

where E= Young's modulus, N/mm2 

1= second moment of area of the pipe cross-section, mm4 

rp = rotation of the end section of the loaded tangent about X -axis, rad 

Mt = applied in-plane moment, N.mm 

L = length of the loaded tangent, mm 

R = pipe bend radius, mm 

a= total bend angle, rad 

(3 -12) 

Elbows of bend angle 60 and 180-deg were also investigated for in-plane bending. It 

was shown that the maximum stress (hoop stress) was located at the crown for the 

180-deg bend, and moved progressively toward the intrados for the smaller bend 

angle. This trend was also reported by Pardue and Vigness in their discussion to the 

paper by Gross and Ford [25]. It was reported that the reduction in flexibility factor 

for 90 and 60-deg elbows compared to 180-deg elbow was 8% and 17% respectively. 

The flexibility factor for a 90-deg pipe elbow under an out-of-plane moment, Mo, 

was calculated using the following equation: 
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(3-13) 

where rp is the out-of-plane rotation of the end section of the loaded tangent (about 

the Y-axis) due to an out-of-plane moment Mo (=~). It can be seen that the length of 

the tangent was included in the calculation of the flexibility factor. It was reported 

that the out-of-plane flexibility factor was 11 % lower than those computed under the 

pure bending assumption (ignoring end effects). 

In 1998, Matzen and Yu [104] performed a set of nonlinear finite element analyses to 

determine the ASME Code B2 stress indices for 304 stainless steel, seamless, pipe 

elbows under in-plane and out-of-plane bending. The nominal radius (r), thickness 

(I), and radius ratio (P) were 1.1105 in, 0.154 in, and 3 respectively. The 

corresponding pipe bend parameter (A.) is then 0.375. The elbow was connected to 

straight pipes at both ends having ten times the radius of the cross-section in length. 

Symmetry conditions in geometry and deformation under in-plane bending were 

taken into account by modeling only one-quarter of the structure. The SHELlA3 

element of the ANSYS v5.1 finite element analysis program was used. This is a four­

noded flat shell element with six degrees of freedom at each node: translations in the 

nodal x, y, and z directions and rotations about the nodal x, y, and z axes. The 

element size of the elbow section in the longitudinal and circumferential direction 

was 11.25-deg and 22.5-deg respectively; the number of elements in the axial 

direction of the straight tangent was 10 elements. For in-plane bending loading, one 

end of the model was pinned and the in-plane moment was applied as a prescribed 

displacement along the line connecting the two ends as shown in Fig.3.15. For out­

of-plane moment loading, one end of the model was fixed and the other end was 

subjected to bending applied as a transverse displacement at the free end. Geometric 

nonlinearity was included in the analysis. 
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Fig.3.lS Pipe Elbow investigated by Matzen and Yu [104] 

Matzen and Yu [104] found that in general that the stress indices obtained from the 

finite element analysis were about 50% smaller than those obtained using the ASME 

Code. They did not mention the source of this difference, but they were confident 

about the analytical procedure they used. It is observed that the B2 stress index values 

they produced indicated that the indices under out-of-plane bending was greater than 

those under in-plane opening moment, but smaller than those under in-plane closing 

moment; this might not be expected. It could be that the element size they used was 

too coarse, especially since they used a flat shell element. 

In 1998, Shalaby and Younan [105] performed nonlinear finite element analysis of a 

90-deg, 16-in nominal diameter pipe elbow under in plane bending. The radius ratio 

(P) and wall thickness (1) of the elbow were 3 and 0.41 in respectively, 
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corresponding to a pipe bend parameter (A) of 0.1615. The special pipe bend element 

ELBOW31B of the ABAQUS finite element computer program was used in the 

analysis . The element was based on a model which assumes that the ovalisation of 

the cross-section is constant over the axial length of the element with the amount of 

ovalisation being dependent on the magnitude of applied moment. The number of 

elements was 12 elements in the longitudinal direction with the number of 

integration point around the pipe cross-section and across the thickness of 20 and 7 

respectively (Fig.3.16b) The elbow analyzed was neither connected to straight 

tangent pipe nor terminated by flanges (Fig.3.l6a). One end of the elbow was fixed 

but the radial displacement was allowed to eliminate end stiffening on cross-sectional 

ovalisation. The other end was subjected to an in-plane moment applied as rotation 

controlled. Geometric nonlinearity was included in the analysis. 

extrados 
!11 

, . .---,- -- -- -

16 

(a) 
(b) 

Fig.3.16 Typical ABAQUS ELBOW element used by Shalaby and Younan [105] 

Shalaby and Younan found that the maXImum equivalent stre s under in-plane 

closing moment was located at the crown. The stress and strain distribution in the 

elastic range was found to be the same between in-plane closing and opening 

moment but with opposite igns. In the plastic range, it was found that, as expected, 

the elbow under opening moment was stiffer than under closing moment. 

In 1999, Liu et al [107] carried out a detailed linear ela tic finite element analysi to 

determine the ASME Code B2 and C2 stress indices for feeder type pipe bends. The 
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8-node SOLID45 element of the ANSYS v5.3 was used. The feeder bends were 

connected to straight tangents having a length of 10 times the cross-section radius. 

The element size in the circumferential and longitudinal direction of the elbow part 

was 10-deg and 11.25-deg respectively. The number of elements across the thickness 

was 3 elements. At the end of each straight tangent pipe, 36 beam elements 

(BEAM4) were used to connect the node at center of the cross-section to the nodes at 

the circumference of the loaded end section, as typically shown in Fig.3.9 [DhaUa, 

68]. They found that in general the B2 and C2 stress indices were lower than those 

calculated using the AS ME Boiler & PV Code. It was also found for in-plane 

bending that only the closing mode exhibits an actual collapse load, while the 

opening mode shows the stiffening trend. They argue for this difference that the 

cross-sectional ovalisation in the bend region reduces the stiffness for the closing 

bending and increase the stiffness for opening bending. 

In 1999, Yu and Matzen [109] extended their previous analysis of B2 stress indices of 

2-in nominal diameter of pipe elbows [104] to include elbows having 4, 6, and 8-in 

nominal diameters and various wall thicknesses loaded by an in-plane moment. 

Finite element modeling and analysis was carried out again using the SHELL43 

element of the ANSYS finite element analysis program. The effect of tangent length 

was studied under three modes of moment loading: in-plane closing, in-plane 

opening and out-of-plane moment. The study of length of tangent was performed by 

including geometric nonlinearity, leading to a final value of length of tangent of ten 

times the cross-section radius. The results showed that elbows under in-plane 

opening moment exhibit structural hardening behaviour, while elbows under in-plane 

closing moment exhibit structural softening behaviour. The effect of flange location 

from the elbow-straight tangent junction on the B2 stress index was also studied. It 

was found that the B2 stress indices were slightly reduced as the flange is placed 

closer to the junction. 

In 2000, Ohtaki [112] investigated the elastic stresses of 90-deg pipe bends under 

out-of-plane bending using finite element analysis. The analysis was based on the 

displacement method using a special 4-node toroidal shell element. A parametric 
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study for two values of radius ratio (P) and five values of pipe factor (A.) was carried 

out. The pipe bend was discretisized into toroidal shell elements. The number of 

elements in the longitudinal and circumferential directions were 6 and 16 

respectively. The total number of degree of freedom was 1344. One end of the elbow 

was clamped and the other end was subjected to out-of-plane moment applied as 

rotation controlled. Geometric nonlinearity was included in the analysis. The 

unknown displacement was obtained by minimizing the total potential energy. 

Stresses distributions for the mid-section of the bend were produced which showed 

that the maximum stress occurred in the hoop direction at the inside surface and has 

the opposite sign to the maximum stress at the outside surface. For the same pipe 

factor, A, with different radius ratio, p, the results show that a pipe bend of long 

radius produces greater maximum stress. 

In 2001, Kumar and Saleem [117] used ANSYS v5.3 to investigate the effect of bend 

angle (a) on the B2 and C2 stress indices. The parameter of bend angle was 15,30, 

45, 60, 75, and 90-deg. The other parameters of interest were as follows: nominal 

radius (r) in the range of 2.5 to 20 in, thickness (I) in the range of 0.203 to 1.031 in, 

radius ratio (P) in the range of2.6 to 3.0, and pipe bend parameter (A.) in the range of 

0.18 to 0.62. The finite element model was generated using the SHELL63 element of 

ANSYS v5.3. This is a flat shell element having both bending and membrane 

capabilities with six degrees of freedom at each node: translations in the nodal x, y, 

and z directions and rotations about the nodal x, y, and z-axes. The element size in 

the longitudinal and circumferential direction was 3 and 10-deg respectively. The 

number of elements in the axial direction of the tangent was 15. The elbows were 

connected to straight pipes of lOr in length at both ends (as shown in Fig.3.17). One 

end of the tangent was fully fixed and the other end subjected to applied moment. A 

moment load of 1000 lb-in was applied at the central node of the end section of the 

loaded tangent. This node was connected to all nodes around the circumference of 

the end section of loaded tangent, following Dhalla [68], as schematically shown in 

Fig.3.9. The results show that the values of B2 and C2 increase as the bend angle 

increases with the rate of increase reducing as the bend angle increases. They found 

that in general the B2 and C2 stress indices produced by their analysis were much 
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lower than those calculated using the ASME Code. For bend angles 90-deg and 

lower, the dependence of the B2 and C2 on the bend angle was found to be of the 

fonn: 

B, = 1.0+( ~ -1.0 }in 0;" 1.0 

C, =1.5+(~ -1.5 )sinO;" 1.5 

M 

d -

Fixed end 

Fig.3.17 Pipe elbows investigated by Kumar and Saleem [117] 

(3 -14a) 

(3 -14b) 

In 2002, Kumar and Saleem [122] later extended their previous analysis [117] to 

elbows with large-angle bend. The bend angles considered were 90, 105, 120, 135, 

150, 165, and 180-deg. It was found for all directions of moment loading that the B2 
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and C2 stress indices produced in their analyses were much lower than those 

calculated using the ASME Code. For bend angles in the range of 90 and IBO-deg, 

the dependence of the B2 and C2 on the bend angle was found to be of the form: 

B2 = 1.1 +0.2s~(a -90) ~ 1.0 
l3 

B2 = 1.~ ~1.5 
A!3 

(3 -15a) 

(3 -ISb) 

It should be noted that large defonnation effects were not included in their analysis, 

and also that the results were found to be conservative. The reason for not including 

large deformation effects in their analysis is not clear, but might be because they 

used the SHELL63 element. In the preliminary study by the author of this thesis, it 

was found that the SHELL63 element was not suitable for modeling curved members 

when the large deformation effect included, because the element would be much 

distorted in the curved region. For small defonnation analysis, SHELL63 element of 

the ANSYS would be acceptable to model curved members. 

In 2002, Tan and Matzen [125] simulated an in-plane bending test of an L-shape pipe 

bend using the SHELL181 element of the ANSYS finite element program. This 

element is a four-node flat (non-curved) shell element with six degrees of freedom at 

each node: translations in the x, y, and z directions, and rotations about the x, y, and 

z-axes. The length of the straight tangent was approximately ten times the cross­

section radius. A quarter model was used with doubly-symmetric boundaries. 

Average measured thickness was used in both the elbow portion and straight tangent 

portion. The elbow portion consisted of 8 and 16 elements along the longitudinal and 

circumferential directions respectively. To simulate the end fixture of the 

experiment, a stiff thick plate was used; the in-plane moment was applied as 

displacement control at the node located at the center of the rigid flat. Rigid body 

motion was prevented by constraining the intrados nodes (this should not be 

necessary if a half model was used, rather than a quarter model). Large deformation 

and active stress stiffening was included in the solution control. It was found that the 
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FEA results for the cross-sectional ovalisation and strains were not in good 

agreement with the test results. They did not address the reason for this poor 

agreement, but it could be due to the element size. It should be noted that the 

element size in the longitudinal direction was 11.25-deg and the element size in the 

hoop direction (responsible for the ovalisation) was 22.5-deg. This element size 

might be too coarse together with the fact that a flat (non-curve) shell element was 

used, resulting in a large amount of discretization error associated with the lack of 

coupling between membrane and bending actions within individual elements. Cook 

[113] suggested that the element size of a flat shell element should be no more than 

roughly 10-deg in the hoop direction. 

In 2002, Tan et al [126) simulated an out-of-plane bending test for the elbow 

configuration investigated by Tan and Matzen [125]. In this simulation, the 

SHELlA3 and SHELL181 of the ANSYS 5.6 were used. The shell element S8R5 

and the elbow element ELBOW31 of the ABAQUS finite element package were also 

used to simulate the test. In all cases, large deformation and stress stiffening were 

included in the analysis. They discovered that there was a lack of convergence with 

the shell analysis they used. In regard to the load-strain curve, it was found that the 

agreement between FEA and experimental results was poor. Again, they did not 

address the source of this problem. In fact, they used the same element size as used 

by Tan and Matzen [125] and it was mentioned previously that the element size they 

used was simply too coarse for a flat shell element. 

3.3.2 Piping Elbows Subjected to Bending and Pressure 

In this sub-section, finite element modeling of piping elbows under bending and 

internal pressure is reviewed. In the remainder of the thesis, the term 'pressure' will 

be simply used for 'internal pressure' 

In 1983, Natarajan and Mirza [80] used a doubly curved quadrilateral shell element 

to study the effect of internal pressure on the stress-intensification factor of short-
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radius pipe elbows with end constraints and various bend angles loaded by in-plane 

bending. One end of the tangents was fixed and the other end subjected to consistent 

nodal force corresponding to an in-plane moment. The value of moment M and 

internal pressure p was taken to be 197663 N.m and 0.184 MPa respectively. In their 

finite element analysis, internal pressure along with in-plane moment were applied at 

the same time and stress-distribution and maximum stress at the mid-section of the 

bend is calculated. It was found that the moment load predominated: the pressure 

load does not change the pattern of the stress distribution and the location of 

maximum stress at the mid-section of the elbow from those distributions obtained 

under an in-plane moment loading. This trend might be changed if the level of 

internal pressure increased beyond a certain level [Boyle & Spence, 57]. For 90-deg 

pipe elbows, it was shown that the pressure reduction effect on the stress­

intensification factor was greater for elbows of low pipe factor. The relation between 

stress-intensification factor and the bend angle was found to be non-linear for 

combined bending and pressure load. 

In their study of the B2 stress indices using a finite element analysis, Yu and Matzen 

[109] investigated the effect of internal pressure on the B2 stress indices of pipe 

elbows under in-plane moment. An internal pressure of 100 psi and a displacement 

controlled load associated with in-plane closing or opening moment were applied. 

Incremental internal pressure was applied as a first load step and incremantal in­

plane moment was appJied as the second load step. From the load versus end­

deformation curve, it was found that internal pressure tends to make the elbow 

stiffer, with the stiffening changes under closing moment greater than those under 

opening moment. 

In 1998, Shalaby and Younan [106] performed nonlinear analysis to investigate the 

effect of internal pressure on the limit moment of pipe elbows under in-plane closing 

moment. The radius ratio and nominal diameter of the elbow was similar to their 

previous paper [105], but with various thickness parameter (pipe schedule). Ten 

values of wall thickness (t) ranging from 0.165 to 1.031 in., corresponding to pipe 

bend parameters (A.) between 0.0632 and 0.4417 were used. The number of elements 
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and integration points was similar to the previous paper (105]. Also as in their 

previous paper [105] one end of the elbow was fully fixed and the other end 

subjected to an in-plane closing moment. Internal pressure load was applied as the 

first load-step in one step, and an in-plane moment as the second load step was 

incremented in several sub-steps. The closed end condition was simulated by 

applying edge pressure of the intensity of prl2t at the free end of the elbows. In-plane 

bending was applied in a similar manner to the previous paper [105]. Both geometric 

and material nonlinearity were included in the analysis. It was shown using a 

moment-end rotation curve that internal pressure increased the limit moment. They 

addressed this trend as a result of increasing the elbow cross-section stiffness due to 

internal pressure. The stiffening effect of the internal pressure was shown to be 

dependent on the cross-section to thickness ratio (rlt), being more pronounced for a 

higher value of (rlt). It was concluded that the stiffening effect of internal pressure 

was directly associated with the geometric nonlinearities by showing that neglecting 

the large displacements in the analysis results in a decrease to the limit moment. 

In 1999, Shalaby and Younan [108] used the same finite element modeling procedure 

as in their previous analysis [106] to carry out a similar analysis to study the effect of 

internal pressure on in-plane opening limit moment. As in their previous paper, only 

90-deg elbows were included in the study. From the moment-end rotation curve, it 

was shown for zero internal pressure that limit moments were higher in the case of an 

opening moment as compared to the case of a closing moment, but the overall 

behaviour in the elastic regime was the same under both closing and opening 

bending. When internal pressure was included, it was shown that internal pressure 

increased the limit moments for closing case, but decreased them for opening case. It 

was shown also that the effect of internal pressure on the in-plane limit moment 

depends on the value of pipe bend parameter, A.; it was more pronounced at low 

value of A and high value of (rlt). 

In 2000, Chattopadhyay et al [lllJ used a general-purpose finite element program 

NISA to investigate the collapse moment of pressurised pipe elbows. The elbow 

configuration consisted of 90-deg bend connected with straight tangents at both ends 
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having 6 times the cross·section radius in length. The radius ratio p was 3 with cross­

section radius to thickness rlt in the range of 5 to 12.5, corresponding to pipe bend 

parameters A. in the range of 0.24 to 0.6. A twenty-node solid element was used to 

model the structures. Symmetry in geometry and deformation was taken into account 

by modeling only one-fourth of the structures. The total number of elements and 

nodes were 195 and 1508 respectively, consisting of 15 elements in the 

circumferential direction, 13 elements in the longitudinal direction, and one element 

across the thickness. One end of the tangent was fully fixed and the end of the other 

tangent was subjected to in.plane moment and edge pressure to simulate the closed 

end condition (Fig.3.l8a). A multi point constraint was used at the end of loaded 

tangent. 

Loading on the free end: 

pr 
2t 

.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.--.~ 

u 

(b) 

Loaded tangent 

Me 
I 

Fixed end 

(a) 

Fig.3.18 Pipe elbow loaded by in-plane moment and internal pressure 

A constant internal pressure was applied as first load step and incremental in-plane 

bending as the second load step. The minimum and maximum load step for in-plane 
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moment was 10.2 and 102 kN.mm respectively. The closed end condition for the 

internal pressure load was simulated by applying axial edge pressure of intensity 

prl2t at the end of the loaded tangent. The bending moment was simulated as a 

triangularly varying edge pressure with a value obtained from: 

Me 
(1=-

I 
(3 -16) 

where M is applied moment, c is distance from the neutral axis (-r ~ c~r), and I is 

the second moment of area of the cross-section. 

Both geometric and material nonlinearity was included in the analysis. The end 

rotation was derived from the finite element generated data using the following 

formula: 

(3 -17) 

where UJ and U2 are the axial displacements of nodes at the extrados and intrados 

positions respectively of the section connecting elbow with the loaded tangent 

(Fig.3.18b). It should be noted that equation (3-18) assumes zero of vertical bulging 

at the bend-straight pipe junction. In fact, there will be a small vertical bulging &y at 

this section, and if this effect were taken into account, equation (3-1 7) would 

become: 

rp=tan-t (Ut -U2 ) 
2r+&y 

(3 -18) 

From the moment-end rotation curve, they showed that for zero internal pressure the 

elastic response of the pipe elbows were almost the same for in-plane closing and 

opening moment. Based on this elastic trend. they concluded that geometric non­

linearity was not significant in the elastic response, but could be significant in the 
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plastic response. It was shown for in-plane closing bending load that internal 

pressure stiffens the elbow in the direction of applied moment, being more 

significant for thinner elbows (higher value of (rlt». A simple expression for the 

effect of internal pressure on the limit moment was proposed: 

M 1.122 0.175p 0508 2 
L=t§+ A -. p for in - plane closing bending (3 -19) 

M = 1.047 O.l24p -0568 2 
L 1/ + 1/ • P 

A,/3 A(2 
for in - plane opening bending (3-20) 

h . d' . I P r were p IS a Imenslon ess pressure: p =--
(jy t 

and (jy is the yield stress, MPa. 

Equations (3-19) and (3-20) were found to be applicable for the value of pipe bend 

parameter A. in the range of 0.24 to 0.6, and the value of non-dimensional pressure, p 

in the range of 0.0 to 1.0. By examining these equations, it can be shown that internal 

pressure has a stiffening effect for A. < 0.344 and a weakening effect for A. > 0.344 for 

the case of a closing moment. For the opening bending case, internal pressure has a 

stiffening effect for A. < 0.281, and a weakening effect for A. >0.281. 

In 2001, Mourad and Younan [118] performed non-linear analyses of pressurized 

304 stainless steel 90-deg pipe elbows subjected to out-of-plane bending, mainly to 

determine the out-of-plane limit moment. The bends were of short- radius having 

radius ratio equal to three, where the cross-section radius was 8 in. All the geometry 

considered was similar to those studied in [105]. The special elbow element 

ELBOW32 of the ABAQUS finite element analysis program was used. This element 

allows continuous displacement across element boundaries, uses Fourier 

interpolation in the circumferential direction and quadratic polynomial interpolation 

in the circumferential direction. The number of longitudinal elements was taken as 

12 with the number of integration point in the circumferential direction and across 

the thickness being 20 and 7 respectively, see Fig.3.15. One end of the elbow was 
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fixed and the other end subjected to an out-of-plane moment loading applied as 

rotation controlled. Internal pressure was incremented as the first load step and out­

of-plane moment as the second load step. Both internal pressure and moment loading 

were ramped to their maximum value taking both geometric and material 

nonlinearity into account. The closed end condition was simulated by applying edge 

axial pressure with an intensity of prllt at the free end. It was found that internal 

pressure tends to reduce the ovalisation of the cross-section. It was found also that 

the critical cross-section was found to be located at the loaded end of the elbow. This 

might be expected if the applied out-of-plane moment produced pure bending at the 

loaded end and pure torsion at the fixed end (for a 90-deg bend). The maximum 

ovalisation was also expected to occur in this section. 

In 2002, Mourad and Younan [123] extended their previous analysis [118J to cover 

pipe bends with different pipe bend parameters. The radius ratio, p, was similar to 

the previous paper [118] but the wall thickness, t, varied from 0.165-in to l.031-in, 

corresponding to pipe bend parameters in the range of 0.0632 to 0.4417. The material 

model, element type, and element size, was similar to the previous paper [118]. One 

end of the elbow was fully fixed, but the cross-section at this section was allowed to 

defonn, to eliminate end effects. The pressure and bending load were applied in a 

similar manner to their previous study [118J. They found that internal pressure 

increased the limit moment and that the limit moment was higher for pipe bends of 

high pipe bend parameters, but the effect of internal pressure were found to be more 

pronounced with elbows of low pipe bend parameters (smaller wall thickness). 

Comparing the results to the case of in-plane bending, they also found that the 

difference in limit moment was very small between in-plane and out-of-plane closing 

moment, being larger in the case of out-of-plane moment. They concluded that 

internal pressure tends to maintain the roundness of the cross-section, thereby 

increasing the stiffness and strength of the bend as a whole in both in-plane and out­

of-plane bending. 
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3.4 Summary 

Application of the fmite element method to study the behavior of piping elbows 

began some thirty years ago. Solid elements, shell elements, and specially developed 

pipe bend elements have been used. Some researchers have shown that the finite 

element results are in close agreement for models using solid and shell elements. The 

results obtained using specially developed pipe bend elements are usually slightly 

higher. The reason for this difference is that the ovalisation is continuous across the 

element boundary for shell and solid elements, while in the case of pipe bend 

element, the ovalisation is not continuous because the element is connected only at 

the element 'centre'. Current pipe bend elements have accounted for the continuity of 

displacement across the element boundary, however the usual assumptions are still 

adopted in the element formulation. The shell element is believed to be the best 

choice to model pipe elbow structures with almost no assumptions involved other 

than the 'thin-shell' assumptions. However, as will be seen in the rest of the thesis, 

care must be taken in deriving the flexibility factor from the nodal displacement: this 

issue should not be a problem if a computer with high performance is available. 

Apart from ad hoc finite element analysis of specific elbow configurations to find the 

pressure reduction effect on the limit moment, it is apparent from the foregoing 

review that the 'pressure reduction effect' on flexibility and stress-intensification 

factors has never been completely examined in the available modem commercial 

finite element analysis software and computer technology. The remainder of this 

thesis aims to reassess the pressure reduction effects on the elastic flexibility and 

stress-intensification factors by performing a non-linear finite element analysis using 

ANSYS. Finite element modeling and analysis procedures will be fully described in 

the next Chapter. 
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CHAPTER 4 

FE MODELING OF PIPING ELBOWS USING ANSYS 

A fairly comprehensive review on finite element modeling in elbow analysis using 

various finite element software packages has been presented in Chapter 3. Some 

researchers have used special pipe bend elements with certain limitations in 

accuracy. Other researchers have used solid elements suitable for thick-walled pipe, 

and shell element for thin-walled pipe. In this chapter, finite element modeling and 

analysis using ANSYS shell elements is presented. In the preliminary studies of this 

thesis, ANSYS v5.6 [110] was used. Most of the data used in the derivation of the 

empirical fonnula has been generated using ANSYS v5. 7 [113] and later using 

ANSYS v6.1 [119]. In what follows, all the ANSYS versions used in this study will 

be simply quoted as ANSYS. Throughout, the APDL (ANSYS Parametric Design 

Language) based on FORTRAN code has been extensively used to develop 

parametric models and to carry out a series of analyses automatically: all required 

data (geometric value, and stresses) are written into files during each analysis and 

generated graphically and numerically immediately afterwards. However these will 

only be reported in the Appendices. 

4.1 Geometry 

The piping elbow configuration used in this study is of a typical straight tangent 

pipe--bend-straight tangent pipe as typically shown in Fig.4.1. The length of each of 

the tangent pipes was taken as fifteen times the radius of the pipe cross-section. This 

length of tangent was so chosen that it is proportional to the length of elbow for 



radius a ratio equal to 10, the maximum radius ratio used in this study. This length 

of tangent might look disproportional for a short radius elbow, but overall, conforms 

to the minimum length of tangent suggested recently by Matzen and Yu [104] of ten 

times the cross-section radius, r, in order for the elbow to be unaffected by the end 

condition. The ESDU Item No.75014 [54] suggested that the length of straight 

tangent should be greater than 6r. The effect of using adjacent straight tangent less 

than 6r wil1 be to reduce both flexibility and maximum stress. Throughout a 

convergence analysis using finite element method, Dhal1a [68] also suggested that 

the length of tangent pipe of 6r might be adequate to eliminate the end effect on 

cross-sectional ovalisation. 

15r 

I~ 

Fig.4.1 Typical elbow configuration considered shown with attached equal tangent 
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In the present study, the ends of the straight tangents are not terminated by flanged. 

The introduction of flanges closer than 6r will reduce the flexibility and maximum 

stress [54J. The effect of flanges becomes marked as the bend angle becomes 

smaller. General solution for the effect of flange on a ISO-deg pipe bend under an in­

plane bending can be found in a paper by Thailer and Cheng [44] which was 

developed using the principle of minimum potential energy. Other general solution 

for the effect of flange on in-plane bending behaviour of pipe bend can be found in 

[49, 76, 79, 82]. Finite element code was used by Natarajan and Mrza [75] to study 

the effect of flange on out-of-plane behaviour of pipe bends. The finite element code 

was further used by Natarajan and Mirza [87] to carry out a similar study to that 

conducted by Thomson [73] and to study the effect of flange on behaviour of 90-deg 

pipe elbow [95J. The ESDU NO.81041 [74] provide useful graphs for flexibility and 

stresses for flanged pipe bend with various bend angle under in-plane bending which 

was derived from Thomson [73] based on small deformation elastic thin shell theory 

using the minimum total potential energy. An excellent survey on the end effect in 

piping elbow can be found in a paper by Thomson and Spence [86]. 

Parameter survey has been based on a range of typical pipe geometies: 

The bend angles considered were 30, 45, 60, 90, and ISO-deg. The nominal radius (r) 

is 6-in. It is assumed that the cross-section of the pipe is perfectly circular. 

Theoretical analysis for pipe bend of non-circular (elliptical or oval) cross-section 

can be found in [22, 45, 46]. The radius ratio (p = Rlr) ranging from short to long 

radius. Recall that Rodabaugh and George [30] assumed a long radius bend, where R 

is very much bigger than r. The curvature of the bend is assumed constant over the 

entire length of the bend. For analysis of pipe bend in which the curvature along the 

length of the bend is not uniform can be found in a paper by Kwee [69]. The pipe 

schedule (wall thickness, t) was chosen in the range for a thin shell (tlr < 0.1). It is 

further assumed that the thickness is uniform over the entire of the structures 

although it is usually expected that thickening at the intrados and thinning at the 

extrados could result from bending process during manufacturing of a pipe bend. For 

studies of the effect of variation in wall thickness on flexibility and stresses in a pipe 

bend can be found in many published paper. Spence and Findlay [71], Kitching and 
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Hose [97], and recently Chemiy [127] developed a theoretical analysis of in-plane 

bending of pipe bend with variable thickness under in-plane bending. The effect of 

variation in wall thickness on flexibility and stresses in a pipe bend was also 

analyzed by Thomas [72] using STAGS finite element program and by Natarajan and 

Mirza [84] using a specially developed doubly-curved shell element. Most of the 

analyses represent the variation in wall thickness in trigonometric form such that 

produces thickening at the intrados and thinning at the extrados, while thickness 

remain unchanged at the crown. 

Eight values of wall thickness (t) were used which ranged from 3.9624 mm to 

14.2748 mm, representing pipe schedule, from sch.5s to sch.60. Corresponding pipe 

bend parameters A. are given in Table 4.1. 

Table 4.1 Geometry of pipe elbows to be considered, r = 152.4 mm (6-in) 

I, mm p=Rlr 

2 3 5* 6 10 

3.9624 0.0520 0.0780 0.1300 0.1560 0.2600 
4.5720 0.0600 0.0900 0.1500 0.1800 0.3000 
6.3500 0.0833 0.1250 0.2083 0.2500 0.4167 
8.3820 0.1100 0.1650 0.2750 0.3300 0.5500 
9.5250 0.1250 0.1875 0.3125 0.3750 0.6250 

10.3125 0.1353 0.2030 0.3383 0.4060 0.6767 
12.7000 0.1667 0.2500 0.4167 0.5000 0.8333 
14.2748 0.1873 0.2810 0.4683 0.5620 0.9367 

For in-plane closing moment and bend angle (a) of 30, 45, and 60-deg, the analysis 

was performed for radius ratios (P) equal to 2, 3, 5, and 10. For other moments, the 

analysis was performed for p = 2, 3, 6, and 10. Table 4.2 summarizes the matrix of 

bend angle (a) and radius ratio (P) considered in this study for in-plane (closing and 

opening) moment, and out-of-plane moment. For every direction of bending, the 

number of analyses were 160 (=5 values for bend angle (a) x 4 values for radius ratio 

(P) x 8 values for thickness (I). To follow closely the form of the pressure reduction 

effect proposed by Rodabaugh and George [30] as given in equations (2-94) and (2-
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98), the parameters of interest were radius ratio (R/r) and pipe cross-section to 

thickness ratio (rlt). The results for the same value of pipe factor A were not therefore 

presented. 

Table 4.2 Parameter of bend angle, a, radius ratio, p, and direction of moment 

Bend angle p=R/r 

2 3 5 6 10 

30-deg Closing Closing Closing Closing 

Opening Opening Opening Opening 

Out Out Out Out 

45-deg Closing Closing Closing Closing 

Opening Opening Opening Opening 

Out Out Out Out 

60-deg Closing Closing Closing Closing 

Opening Opening Opening Opening 

Out Out Out Out 

90-deg Closing Closing Closing Closing 

Opening Opening Opening Opening 

Out Out Out Out 

180-deg Closing Closing Closing Closing 

Opening Opening Opening Opening 

Out Out Out Out 

Referring to Table 4.2, there is no specific reason why some cases were not 

investigated. In the early parametric study for closing bending, R/r = 2, 3, 5, and 10 

were investigated. However, it seems that there is a big gap from Rlr = 5 to 10 

compared to the gap from 2 to 3, and then to 5. And then for 90 and ISO-deg bend, 

Rlr = 6 were investigated rather than Rlr = 5. For the rest of parametric study for 

opening bending and out-of-plane bending, Rlr = 5 has been replaced by R/r = 6. For 

similarity, it was planned to go back investigating R/r = 6 for closing bending for 

bend angle of 30,45, and 60-deg. But because of limitation oftime, this analysis was 

abandoned. However the derived formula might not be significantly affected. 
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Since only elastic analyses will be carried out in this study, the only material 

properties required in this study are Young's modulus E, and Poisson's ratio v. The 

nominal values for E and vwere taken to be 207000 N/mm2 and 0.3 respectively. 

4.2 Element Type and Meshing 

The element type used to represent the elbow section and tangent pipe is the 8-node 

high-order SHELL93 elastic element. This is a curve (non-flat) shell element with six 

degrees of freedom at each node: translations in the nodal x, y, and z directions and 

rotations about the nodal x, y, and z-axes. The deformation shapes are quadratic in 

both in-plane directions. The curve shell element was chosen instead of a flat shell 

element, mainly to avoid large discretization error, and thus, to make the results of 

analysis more reliable, compared to an analysis using the same element size of a flat 

shell element. Solid elements may also be used, but as shown by Matzen and Yu 

[104] for typical elbow geometries, using solid elements did not improve the detail of 

the result. This is probably caused by ill-conditioned finite element equations when 

the wall thickness becomes very small compared with the other dimensions. Another 

reason for not using solid elements is that the model will consist of an excessive 

number of elements should the number of elements across the thickness be more than 

one. As reported in the previous chapter, the ANSYS solid element, however, has 

been used by Liu et al [107] to determine the B2 and C2 stress indices for feeder type 

bends. ANSYS solid element was also used by Wei~ et al [101] to study carrying 

capacity of a pipe bend under pressure cycling. 

The bend part was modeled in a toroidal co-ordinate system and the straight tangent 

pipes were modeled in cylindrical co-ordinate systems. Two different geometry 

models were created, one for in-plane bending, in which a-half model was used due 

to symmetrical nature of deformation, and a complete model for the out-of-plane 

bending case. As reported in the previous Chapter, some investigators have modeled 

the elbow configuration by only one-quarter of the model, taking the doubly 
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symmetric condition into consideration, see for example, Dhalla [68], Hose and 

Kitching [99], Matzen and Yu [104], and Tan and Matzen [125]. However, it was 

noticed that rigid body motion has to be prevented by constraining the intrados node 

[Tan and Matzen, 125], resulting in a high stress concentration. For this reason, the 

elbow configuration was modeled as a half, with the plane of the bend being the 

plane of symmetry. 

The element size in the longitudinal direction of the elbow part was chosen as 3° for 

each element; the number of elements in the axial direction of each tangent pipe was 

then taken to be 15 elements. The element size in the tangent pipe had no significant 

influence on the general behavior of the model, provided that the transition is 

sufficiently smooth and the maximum aspect ratio is maintained. To achieve this, the 

element size in each tangent was generated in such a way that a smooth transition of 

the element size is maintained in the elbow-straight pipe junction. The element size 

in the hoop direction was chosen after performing finite element convergence 

analysis. Details of the finite element convergence study are described in the 

following: 

4.3 Finite Element Convergence Study 

It is usually necessary to perform a finite element convergence study to find the 

optimum number of elements. As shown by Sobel [60], a finer mesh does not always 

give an accurate result. He showed that with a certain number of elements, the 

stresses converge to some value and as the number of elements increase, the stresses 

become divergent. In short, the solution could become inaccurate if the element size 

is too fine. In what follows, a finite element convergence study is performed to 

establish the optimum number of elements. 

In this study, the element size in the axial direction (3° for each element) was 

maintained constant while the element size in the hoop direction was refined. The 

finite element convergence analysis was performed under in-plane closing bending 
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for a typical geometry of elbow configuration: a = 90°, p = 3, and tlr = 0.03 . The cut 

end of the vertical tangent is fully fixed and bending load is applied at the cut end of 

the horizontal tangent. The vertical and horizontal tangents are further quoted as 

''fixed tangent' and "loaded tangent' respectively for the remainder of the thesis. 

The convergence analysis was based on the amount of flattening and the stresses at 

the crown of mid section of the elbows, the amount of rotation of the section 

connecting the bend and straight tangent, and the displacements of the loaded end 

section. 

Figure 4.2 shows the amount of horizontal flattening of the crown node at the mid­

section of the elbow plotted against the number of shell element along the semi­

circumference of the bend. It can be seen that as the number of elements increases 

beyond 18 along the semi-circumference, the amount of horizontal flattening does 

not increase significantly. It might be concluded, based on the flattening of the cro s­

section that the optimum element size in the circumferential direction is 10-deg. 
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Fig.4.2 FE convergence analysis based on the amount of horizontal flattening 
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Figure 4.3 and 4.4 show the longitudinal and hoop stress factor respectively at the 

crown of the mid-section of the bend plotted against the number of elements along 

the semi circumference. Stress factor is defined as the stress obtained from finite 

element result normalized by the nominal bending stress (eqn 2-26» . Again, it can be 

seen that the accuracy does not increase significantly as the number of elements 

increases beyond 18 element along the semi circumference. 

Figure 4.5 shows the rotation of the pipe section at the connection between the elbow 

and the loaded tangent (end rotation of the elbow). It can be seen that the end rotation 

of the elbow again does not increase significantly as the number of elements along 

the semi circumference increases beyond 18 elements. 

Figure 4.6 and 4.7 show the amount of x-displacement and downward y­

displacement respectively of the loaded end section. Again, it can be een that the 

accuracy does not increase significantly as the number of elements increases beyond 

18 element along the semi circumference. 
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Fig.4.3 FE convergence analysis based on longitudinal stress factor 
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Fig.4.6 FE convergence analysis based on the x-displacement of loaded end section 
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So, from the finite element convergence analysis as shown in these figures, the 

element size in the hoop direction was chosen to be 10-deg. The total number of shell 

elements and associated nodes are given in Table 4.3. Typical finite element mesh is 

shown in Fig.4.8. 

Table 4.3 Total number of shell elements and nodes 

Bend angle Number of shell elements Number of associated nodes 

In-plane Out-of-Plane In-Plane Out-of-Plane 

30-deg 720 1440 2277 4392 

45-deg 810 1620 2557 4932 

60-deg 900 1800 2837 5472 

90-deg 1080 2160 3397 6552 

135-deg 1350 2700 4237 8172 

ISO-deg 1620 3240 5077 9792 
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(a) (b) 

(c) (d) 

(e) 

Fig.4.8 Typical finite element mesh for piping elbows subjected to bending: (a) in-

plane bending, (b) out-of-plane bending 
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4.4 Loading - Path Dependency 

The loading to be applied is bending moment, M, and internal pressure, p. Bending 

and pressure load might be applied in three different ways: the first is by applying 

bending as the first load-step and pressure as the second load-step. The second is by 

applying pressure as the first load-step followed by bending as the second load-step. 

Alternatively, bending and pressure might be applied at the same time. 

Bending moment might be simulated as triangularly varying gradient edge pressure 

at the free end, see for example, Chattopadhyay et al [111] and Chattopadhyay [121]. 

The value of the edge pressure can be obtained from simple beam theory as: 

Me 
(fb =-

I 
(4-1) 

where c is the distance from central axis (equal to r at extrados and -r at intrados), I 

is the second moment area of the cross-section. (ANSYS allows doing so by using 

the SFGRAD command before the edge pressure is applied). 

Internal pressure at the closed end might be applied as an edge pressure acting on the 

lines of the free end. The edge pressure to be applied can be obtained from the 

following equation: 

or 

(f = pr 
p 21 

(4- 2) 

The edge pressure (eqn (4-2» should be applied as 'follower load'. Fortunately, the 

ANSYS program always treats the pressure as a follower load. Pressure load is 

considered as a surface load, and in ANSYS, surface load always act normal to the 

deflected element surface. See section 8.1.2.3 of the ANSYS on-line help [119]. 
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If internal pressure with a closed end condition is applied as the first load step and 

bending moment as the second, the bending moment may be simulated as 

triangularly varying edge pressure, as explained by Chattopadhyay et al [Ill]. If 

bending and edge pressure loads are applied at the same time in proportional way, 

the bending can also be simulated as varying edge pressure with the magnitude of the 

algebraic sum of the bending and edge pressure as shown in Fig.4.9. (The ANSYS 

SFGRAD command, however, cannot be used if the bending moment is applied as 

the first load step and internal pressure with closed end condition as the second, 

because all subsequent edge pressure after the SFGRAD command would follow this 

gradient). 

Me 

I 

+ = 
44----~-------------------~·--~ 

pr 

2t 

Me pr 
-+-

I 2t 

Fig.4.9 Bending and closed end pressure are applied as single edge pressure 

To avoid this problem if any order of loading is required the bending load should be 

applied on a node at the centre of the free end. This node was connected to all nodes 

at the circumference of the free end using beam element having the same material 

properties as the shell element but with relatively higher stiffness than the shell 

element. For this purpose, the ANSYS BEAM4 element having six degrees of 

freedom, the same number degree of freedom as the SHELL93 element, is used, as 

shown in Fig.4.10. Another advantage of using the beam element to simulate the 

rigid link at one end of the tangent is the possibility of obtaining the end reaction 

force and moment should the piping bend configuration be subjected to thermal 

loading. Using the ANSYS BEAM4 element to simulate the rigid link at the loaded 

end section was also implemented by Liu et al [107). However, how many times the 

BEAM4 element was made stiffer than the shell element was not mentioned in their 

paper. 
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BEAM4 element 

Central node to which moment loading is applied 

Fig.4.10 BEAM4 element is used at the free end ofloaded tangent 

Square beam element having dimension of 12mm x 12mm has been chosen and its 

Young' s modulus was determined through a convergence analysis : 

The convergence analysis for determining the stiffness of the beam element in the e 

figures has been performed for 90-deg elbows having radius ratio (P) = 3 and 

thickness to cross-section radius ratio (t/r) = 0.03 loaded by in-plane closing bending. 

The convergence analysis was checked for stresses and horizontal flattening at crown 

of the mid-section of the elbow (section A-A), rotation of section at elbow-loaded 

tangent junction (section B-B), and displacements and rotation of the central node of 

loaded end section (section C-C) as shown in Fig.4.11. The effect of (Ebean,lEshell) for 

an out-of-plane bending were not investigated. It probably would make a difference 
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SInce there would be some coupling bending and axial stiffness due to the 

deformation of the end section. This effect, however, might not be large. 
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Fig.4.11 Sections of a pipe elbow used for stiffness convergence analysis 
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(a) longitudinal stress, (b) hoop stress 
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FigA.14 Stiffness convergence analysis for BEAM4 element based on end rotation 
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From numerical point of view, it probably would not produce a significant error if 

the elasticity of the beam element has the same value as the elasticity of the shell 

element. However, from the trends of these graphs al always concerning in a 

convergence analysis, it is clear that the stiffness of the BEAM4 element should be 

greater than the stiffness of the shell element. From these figures, the Young's 

modulus of the beam element has been chosen as 1.00E+03 times the Young's 

modulus of the shell element. 

The accuracy of using the beam element as a rigid link and applying the bending 

moment at the beam node was tested for a straight pipe cantilever (Fig.4.17) where 

the theoretical results are available in any standard engineering mechanics textbook. 

The results are given in Table 4.4 for the nodal downward displacement of the loaded 

end section and the axial stress at half-length of the pipe. The results were compared 

with the results produced if the bending is applied as gradient edge pressure. 

11t---.~ X 
N2 745 

.-.-.-.-.-.-.-.-.~.-.-.-.-.-.-.-.-.-.-.-.. " 

L 
.... ... M 

Fig.4.17 Straight pipe cantilever under bending moment 

Table 4.4 Straight pipe cantilever under bending load 

End displacement, mm OX (MPa) 

N745 Nl N218 N2 N404 

Theory 1.5393 --- --- --- --- 10.791 

FE (BEAM4) 1.5586 1.5586 1.5586 1.5586 1.5586 10.783 

FE (SFGRAD) --- 1.6449 1.6449 1.5977 1.5977 11.281 
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Table 4.4 has been obtained using a bending moment of 3.6 x 106 N.mm for straight 

cantilever pipe having dimensions and Young's modulus as follows: 

L =3000 rnm 

r= 152.4 mm 

t = 4.572 rnm (sch.1 Os) 

E = 207000 MPa 

The maximum axial stress in Table 4.4 is calculated according to Equation (4-1) and 

maximum displacement is calculated by the following small deformation formula: 

(4- 3) 

It can be seen from Table 4.4 that there is a small cross-section distortion if the 

bending load is applied as a gradient edge pressure. This is indicated by inequality of 

downward displacement between nodes at the neutral axis and nodes at most distance 

from the neutral axis at the loaded end. The cross-section distortion, in turn, rises the 

maximum axial stress. Conversely, it is clearly seen that there is no cross-sectional 

distortion, if beam element is used as rigid constraint and bending is acted on beam 

node at the centre of loaded end. It should be noted that the results in Table 4.4 were 

obtained under small deformation analysis. Under this condition, it is usually 

expected that the finite element results (marked as BEAM4 and SFGRAD in Table 

4.4) produce the same maximum stresses and deflection. The difference in Table 4.4 

probably caused by the edge pressure, in which ANSYS always treats the pressure 

load as follower load even in a small deformation. It is therefore suggested to 

activate the large deformation effect if pressure load included in an analysis. In what 

follows, the moment will be applied at the beam node and the beam elements are 

used to simulate rigid link at the loaded end. 

The loading consists of bending moment, M, and internal pressure, p. There is no 

specific guidance for determining the level of loading. In this analysis, the level of 

bending moment, M, and internal pressure, p, were establish based on a large 
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deformation analysis of a 90-deg thin-wall pipe bend of short radius. Referring to 

Table 4.1, the dimension used for establishing the load are: 

Bend angle (a) = 90-deg 

Radius ratio (p= Rlr) = 3 

Thickness to cross-section radius ratio (tlr) = 0.026 

If non-linear solution in a large deformation analysis convergence to the bending 

moment Mfor (t/r) = 0.026, it should also converge to the same moment Mfor (tlr) > 

0.026. 

The procedure to establish the level of loads is as follows: A high level of in-plane 

bending is applied. The load for the final converged solution is recorded and the 

maximum von-Mises stress at the mid-section of the bend is recorded. And then 

internal pressure alone is applied and the maximum stress at every load step is 

recorded. Internal pressure that gives the same maximum von-Mises stress at the 

mid-section of the bend is then chosen for the rest of the analysis. This procedure 

leads to the following loads: 

M= 2.0E+07 N.mm 

p = 2.756 M.Pa (400 psi). 

Referring to Table 4.1, the nominal bending and pressure stresses corresponds to the 

loads applied are given in Table 4.5. The nominal bending and pressure stress is 

given by equation (2-26) and (2-14) respectively. 

Now that the bending and internal pressure loading can be applied in any order 

without any difficulty, it needs to be checked how the order of loading influences the 

behaviour. In what follows, the system under consideration is checked for typical 

geometry before performing a parametric study whether the system is conservative or 

non-conservative. An analysis of a conservative system is path-independent: load can 

usually be applied in any order and in any number of increments without affecting 
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the end result. Conversely, an analysis of a non-conservative system is path­

dependent: the actual load-response history of the system must be followed closely to 

obtain accurate results. Path dependent problems usually require the loads to be 

applied slowly, by dividing the load steps into many load sub-steps. 

Table 4.5 Nominal bending and pressure stresses 

t,mm I, mm4 Nominal stresses, N/mm'" 

Bending Pressure 

3.9624 44061887 69.17543 53 
4.5720 50840638 59.95204 45.93333 
6.3500 70611998 43.16547 33.072 
8.3820 93207837 32.70111 25.05455 
9.5250 1.06E+08 28.77698 22.048 

10.3125 1.15E+08 26.57946 20.36433 
12.7000 1.41E+08 21.58273 16.536 
14.2748 1.59E+08 19.20172 14.71174 

4.5 Non-linear Solution 

In a non-linear problem, the relation between applied load and resulting displacement 

ceases to be linear. The fundamental characteristic of non-linear structure behaviour 

is a changing structural stiffness. Large displacement and rotation (i.e., not negligible 

compared with initial dimensions) is a source of non-linearity. This type of non­

linearity is called "geometric non-linearity". Another type of non-linearity is 

"material non-linearity" arising from non-linear stress-strain relation. Only the 

former type of non-linearity is considered in this study. 

Geometric non-linearity arises when deformations are large enough to significantly 

alter the way load is applied or the way load is resisted by structures. Large rotation 

also causes pressure loads to change in direction, and also to change in magnitude if 

there is a significant change in the area to which the pressure load applied. This is 

expected for the case of bending of a pressurised pipe bend. 
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There has been some debate on the order of bending and pressure loading in a real 

piping system. Some suggested that internal pressure should be applied in an initial 

step and subsequently held constant. The rationale behind keeping pressure constant 

is that internal pressure generally does not increase during service, whereas bending 

moment may increase significantly in an accidental condition [111]. Some suggested 

that bending moment could be an initial loading and internal pressure is the 

subsequent loading. Some suggested that bending and internal pressure could rise at 

the same time. To end this debate, preliminary studies are carried out on typical 

geometry of pipe bend: 

An elbow of 90-deg bend angle, radius ratio (P) = 3, and thickness to cross-section 

radius ratio (tlr) = 0.03 is investigated. Large deformation effect of course is included 

in the analysis. 

The non-linear problem which results is solved in a sequence of linear steps. ANSYS 

solves the non-linear problem using the Newton-Raphson method by dividing the 

load into several sub-steps in a series of load increments. (A full description of this 

method and the modified Newton-Raphson method can be found in a standard text­

book by Cook [100]). By default the convergence criteria in ANSYS was based on 

force and moment. Because internal pressure produced tensile membrane and tensile 

membrane stress increases the bending stiffness for pipes of sufficiently thin, non­

linear option "stress stiffening" was included in the analysis. Other non-linear 

options included in ANSYS are ''predicted corrector" method and "bisection" 

method. 

For confirmation of the path-dependency, the graph of the rotation of the pipe section 

connecting the elbow and the loaded tangent is developed in Fig.4.18. The graph of 

horizontal flattening plotted as radial displacement of node at the crown of the mid­

section of the bend is shown in Fig.4.19. Figure 4.20 shows the hoop stress factor 

plotted for node at the crown of the mid-section. It can be seen from these figures 

that the final results are not affected by the order of loading applied. In short, the 

system under consideration is a conservative system (path-independent). 
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Fig.4.20 Hoop stress factor plotted against loading shows path-dependency 

The value of the abscissa in these figures should be easy to read . For example, if 

bending load, M, followed by internal pres ure, p, the value of 0.5 means M = 0.5 x 

2.0E+07 N.mm, and the value of 1.5 means p = (1.5-1) x 2.756 M.Pa. If internal 

pressure, p, followed by bending load, M, the value of 0.5 means p = 0.5 x 2.756 

M.Pa, and the value of 1.5 means M = (1.5-1) x 2.0E+07 N.mm. [f bending and 

internal pres ure ri e at the same time, the value of 1.2 mean M = 0.6 x 2.0E+07 

MPa and p = 0.6 x 2.756 M.Pa. 

It i interesting to note that if internal pressure is applied sub equent to bending load, 

the structural response in the second load step shows a non-linear trend. The reason 

for this could be explained by the "Haigh effect" The non-linearity could al 0 be 

seen if bending and internal pressure load ari e at the same time in a proportional 

manner. The non-linearity can hardly be seen when internal pressure is the first load 

step and internal pres ure is the subsequent loading. 
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4.6 Summary 

The details of the finite element modelling procedure to be used in this study have 

been described, this includes a finite element convergence analysis and a path­

dependency study in line with the non-linear problem. It has been found that the 

system under consideration is a path-independent structure. Accordingly, the bending 

and internal pressure can be applied in any order without affecting the final results. 

Since an objective of this thesis is to find the pressure reduction effect, it is intended 

to apply bending moment as a first load step followed by internal pressure as a 

second load step. By doing so the effect of internal pressure on reducing flexibility 

and stresses can be evaluated for every sub-step of the analysis. This is beneficial, 

because solution time is reduced as compared to the case where the pressure is a first 

load step and bending is the subsequent loading. 

The main results which will be presented in this work are cross-sectional ovalisation, 

flexibility factors, and stress-intensification factors for in-plane bending load. 

However for out-of-plane bending load, the results which will be presented are 

flexibility and stress-intensification factors. The reason for this difference is that the 

location of maximum radial displacement changes for every bend angle and radius 

ratio, and sometimes its location also change for different values of wall thickness. 

The ANSYS general post-processor (the !POSTI) and the ANSYS time-history post­

processor (the IPOST26) are used to obtain the stresses and displacement. Results for 

in-plane closing and opening moment will be presented in Chapter 5 and Chapter 6 

respectively. The result of analysis for out-of-plane bending will be presented in 

Chapter 7. 
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CHAPTERS 

IN-PLANE CLOSING BENDING 

A distinct feature of piping elbow deformation is the ovalisation of its cross-section 

under the action of external bending moment. The ovalisation makes the elbow more 

flexible than an equivalent length and cross-section of straight pipe. The presence of 

internal pressure further reduces the ovalisation and stiffens the elbows in the 

direction of applied bending. The purpose of this chapter is to evaluate the pressure 

reduction effect on cross-sectional ovalisation, end-rotation (flexibility factors) and 

stress-intensification factors resulting from the action of in-plane closing bending. 

The results from the action of bending alone will be first established and formulae 

for ovalisation, flexibility, and stress-intensification factors are derived. The pressure 

reduction effect is then evaluated and formulae developed. The effect of bend angle 

on results from both the action of bending alone and the internal pressure is also 

studied. 

S.1 Ovalisation Factor 

Under in-plane closing moment, the cross-section deforms into an oval shape with its 

major axis perpendicular to the plane of the bend. This type of deformation is here 

called ''positive jlattenini'. Positive flattening is evaluated as diameter expansion 

from crown to crown at the mid-section of the bend. 



Typical positive flattening for a 90-deg bend is shown in Fig.5.l. This figure is 

plotted for radius ratio p = 3, and thickness to cross-section radius tlr = 0.026 under 

an in-plane closing moment M= 2.0E+07 N.mm. 

a = 90-deg, p = 3, tlr = 0.026 

100 

so 

-1 00 -50 50 100 

-so 

-100 

Fig.5.l Typical cross-sectional ovalisation under in-plane closing bending 

Recall the asymptotic solution of Clark and Reissner [24], the amount of flattening in 

the horizontal direction (here defined as 'positive flattening') was proposed in a non­

dimensional form in eqn (2-43): 

(5 -]) 

It can be noticed that the positive flattening proposed by Clark and Reissner is 

independent of the pipe bend radius, R, and was related to the nominal bending stress 

in a straight pipe, on. Equation (5-1) might be used for calculation of the amount of 

flattening in a straight pipe under bending. Because it was related to the nominal 

bending stress in a straight pipe, eqn (5-1) will be further defined as ' nominal 

ovalisation ' . 
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[n this section, an ovalisation factor for pIpmg elbows under in-plane closing 

moment and internal pressure will be developed, and formula for design purpose will 

be proposed. Ovalisation factor, 4, is defined as positive flattening obtained from 

finite element analysis (typically shown in Fig.5.1) divided by the nominal 

ovalisation (eqn.4-1): 

(5 - 2) 

where 4n is nominal ovalisation, as given in eqn (5-1). 

Figure 5.2 shows a typical moment vs. positive flattening curve plotted for a 90° 

elbow under in-plane closing moment. The ordinate in Figure 5.2 is non-dimensional 

moment m = MID, where M is applied bending moment and D is the shell bending 

stiffness as given in equation (2-75). It can be seen from Fig.5.2 that a pipe elbow 

under in-plane closing bending exhibits a structural softening behaviour, but the 

magnitude of non-linearity is essentially small. 

a = 90-deg, Rlr = 3, tlr = 0.026 
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Y = 6.1171x + 0.2657 1-"-FE I 

R2 = 0.9994 .- Unear (FE) . 
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~ 9r-----------~~------------~ 
e 
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O+-----~~----~------~------~------~----~ 
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Fig.5.2 Typical moment versus positive flattening under in-plane closing bending 
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Figure 5.3 shows the ovalisation factor of 90-deg pipe elbows plotted again t pipe 

bend parameter, /L, for various radius ratio, p. It can be clearly seen that the 

ovalisation factor very much depends on pipe bend parameter A and radius ratio p. 

As shown in Fig.5.3, the relation of ovalisation factor, q, and pipe bend parameter, A, 

is essentially linear in a log-log plot, especially for elbows of short radius bend. 

Accordingly, the relation can be expressed in the following form: 
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Fig.5.3 Ovalisation factor under in-plane closing bending for 90-deg pipe elbow 

By the method of curve fitting, formulae for the ovali ation factor can be derived 

from these figure . Taking the effect of radiu ratio into account, the ovali ation 

factors for 90-deg pipe elbow are given in the following equation: 
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~= 0.6324 R 
(5 - 4) for-=2 

,to.3642 r 

~ = 0.714 R (5 -5) for-=3 ,to.3S4 r 

~= 0.6823 R 
(5 -6) for- =6 "to.4S63 r 

~ = 0.5648 R (5 -7) for- =10 "to.671S r 

In can be seen from equations (5-4) through (5-7) that the ovalisation factor is not 

only function of pipe bend parameter, A., but also function of radius ratio Rlr. These 

equation are not in suitable form for design purposes. However these equation can be 

expressed in the following form: 

~ = 0.565 [r{,t)] 
;X 

(5 -8) 

where j{"A.) represents the dependence of ovalisation factor on radius ratio, (Rlr). This 

results inj{"A.) be different for every radius ratio. It should be noted that eqn (5-8) was 

expressed based on the ovalisation factor for a long radius bend, (R/r) = 10. 

Following the procedure of Fujimoto and Soh [92], equations (5-4) through (5-7) can 

be written in the following form 

~ = 0.~5 [0.9501 + 0.1682In{"t)] R (5 -9) for-=2 
,A; 3 r 

0.565 R ~ = -X[1.1179+0.21771n(,t)] for-=3 (5 -10) 
J3 r 

0.565 R ~ = %[1.1781 + 0.1966In(,t)] for-=6 (5 -11) 
,A; 3 r 

0.565 R ~ = --x [0.9996 + 0.000 lln(,t)] for-=lO (5-12) 
,A; 3 r 
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In the above formulae, the effect of radius ratio wa taken into account with a 

reference to the ovalisation factor for pipe elbows of radius ratio equal 10 (long 

radius bend). In equation (5-12) therefore, the term in the square bracket could be 

neglected without any significant loss in accuracy. Figure 5.4 shows the ovalisation 

factor obtained from finite element (FE), equations (5-4) through (5-7), and 

equations (5-9) through (5-11). It can be seen that the proposed equation fit well the 

results from finite element. 
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Fig.5.4 Comparison for ovalisation between derived formula and FE re ults 

The form of formulae proposed by Fujimoto and Soh [92] for flexibility factor wa 

followed here for ovalisation factor. It can be een that the dependence of ovali ation 

factor on radius ratio is represented by logarithmic functions of pipe bend 

parameter, A. Whereas Fujimoto and Soh [92] found that the dependence of 

flexibility factor on radius ratio represented by a power function of A.., see equation 

(2-49) and (2-50) . Thi difference will be considered more detail in Section 5.2 

(Flexibility Factors) 
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5.1.1 Effect of Bend Angle on Ovalisation Factor 

To account for the effect of bend angle on ovalisation factor other than 90-deg, pipe 

elbows having bend angle of 30, 45, 60, and 180-deg has been studied. Figure 5.5 

through 5.8 show graphs for ovalisation factor plotted against pipe bend parameter. It 

can be seen from these graphs that the relation between ovalisation factor and pipe 

bend parameter is essentially linear in log-log graph for all bend angles considered, 

especially for elbows of short-radius bend. For long radius elbows, the graph is not 

exactly linear, especially for large angle bend (90-deg and greater), but this deviation 

is not significant from the practical point of view for the purpose of development a 

simple formula. 
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Fig.5.5 Ovalisation factor under in-plane cIo ing bending for 30-deg pipe elbow 
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in-plane closing moment, a = 45-deg 
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Fig.5 .6 Ovalisation factor under in-plane closing bending for 45-deg pipe elbows 
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Fig.5 .? Ovalisation factor under in-plane closing bending for 60-deg pipe elbows 

143 



in-plane closing moment, a = 180-deg 
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Fig.5 .8 Ovalisation factor under in-plane closing bending for 180-deg pipe elbows 

Using the procedure described above, the ovalisation factor of pipe elbows for the 

bend angles considered, can be expressed by the following approximate formula: 

0.565 
~ = 2T[a + bIn (A. )] 

A,73 
(5 -1 3) 

where a, and b are functions of radius ratio p, as given in Table.5.l and Table.5.2 

re pectively. 
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Table 5.1 The value of coeffecient "a" in equation (5-12) for various bend angles 

p Bend angle 

30-deg 45-deg 60-deg 90-deg 180-deg 

2 0.4434 0.6346 0.7722 0.9501 1.1437 

3 0.5395 0.7603 0.9193 1.1179 1.2303 

4 0.6006 0.8293 0.9936 1.1430 1.2145 

5 0.6577 0.8922 1.0509 1.1651 1.1801 

6 0.6897 0.9050 1.1024 1.1781 1.1247 

7 0.7235 0.9279 1.1187 1.1907 1.0705 

8 0.7528 0.9454 1.1096 1.1542 1.0362 

9 0.7787 0.9593 1.0751 1.0915 1.0074 

10 0.7968 0.9554 1.0115 0.9996 0.9669 

Table 5.2 The value of coefficient "b" in equation (5-12) for various bend angles 

p Bend angle 

30-deg 45-deg 60-deg 90-deg 180-deg 

2 0.0543 0.0954 0.1266 0.1682 0.2156 

3 0.0686 0.1219 0.1635 0.2177 0.2463 

4 0.0756 0.1356 0.1802 0.2251 0.2352 

5 0.0800 0.1414 0.1866 0.2161 0.2182 

6 0.0816 0.1418 0.1812 0.1966 0.1806 

7 0.0792 0.1326 0.1625 0.1705 0.1599 

8 0.0732 0.1152 0.1310 0.1261 0.1196 

9 0.0636 0.0896 0.0867 0.0673 0.0703 

10 0.0526 0.0539 0.0324 0.0001 0.0151 

It can be seen from these Figures and Tables that the ovalisation factor is also very 

much affected by bend angle. Tables 5.1 and 5.2 indicated that the ovalisation factor 

is directly proportional to the bend angle for elbows of short radius. As shown in 

Fig.5.9, the curves are parallel for short-radius bends. Figure 5.10 shows that the 

ovalisation factor for elbows of long radius is directly proportional to the bend angle 
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for elbows of 90-deg and smaller. Figure 5.10 shows that the oval isation factor for 

l80-deg elbows can be considered less than those for 90-deg elbows but greater than 

those for 45-deg elbows. 

short-radius elbows. p = 3 
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Fig.5.9 Ovalisation factor for short-radius pipe elbows with various bend angles 

long radius elbows. p = 10 
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5.1.2 Pressure Reduction Effect 

When internal pressure is applied to the ovalised elbows resulting from in-plane 

bending load, it tries to push the deformed cross-section back to its original circular 

shape. This phenomenon is typically shown in Fig.5.11 . 

80 

40 

a = 90-deg, p = 3, Vr = 0 

-120 -80 40 

40 

-80 

40 80 o 

Fig.5.11 Typical pressure reduction effect on cross-sectional ovalisation 

To assess the pressure reduction effect on the ovalisation factor, attention has been 

focused on the radial displacement of the crown node at the mid-section of the bend, 

where the maximum value is expected to be located. Fig.5.12 shows a typical 

pressure - ovalisation factor curve plotted for a 90-deg bend under in-plane closing 

moment. 
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Fig.5 .12 Pressure - ovali ation factor curve under an in-plane clo ing bending 

In Fig 5.12, the abscissa value of 0.0 represents the final load step of the moment 

loading, and the start of subsequent internal pressure loading. It can be clearly seen 

that the relation between internal pressure loading and positive flattening is non­

linear. This figure shows the "Haigh effect' [12] where non-linearity i present 

whenever internal pressure acts on a pipe of non-circular cross-section. In this study, 

the internal pre sure load wa applied to elbows of oval cro -section re ulting from 

an in-plane closing moment. 

Fig.5 .13 through 5.16 show the ovalisation factor of 90-deg pipe elbow plotted 

against pipe bend parameter, A, for variou radiu ratio, p. The e figures how clearly 

that the presence of internal pre ure reduce the ovali ation factor re ulting from in­

plane closing moment loading. The pressure reduction i more pronounced for thin 

walled piping elbows (low pipe bend parameter). It i intere ting to note from these 

figure that internal pre sure does not always reduce the ovali ation factor, but it can 

also increa e the ovalisation factor, depending on the thickness to cro - ection 

radiu ratio. In this section, the pressure reduction effect on the ovalisation factor i 

148 



evaluated and empirical formulae are developed and proposed. The procedure of 

Rodabaugh and George [30] is followed. 

in-plane closing moment, a = 90-deg, Rlr = 2 
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Fig.5 .13 Pressure reduction on ovali ation factor for 90-deg elbows: Rlr = 2 

in-plane closing moment, a = 90-deg, Rlr = 3 
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Fig.5. 14 Pressure reduction on ovalisation factor for 90-deg elbow: Rlr = 3 
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in-plane closing moment, a = 90-deg, Rlr = 6 
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Fig.S .15 Pre ure reduction on ovalisation factor for 90-deg elbows: Rlr = 6 
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Fig.S .16 Pressure reduction on ovalisation factor for 90-deg elbows: Rlr = 10 
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In the above figures, pmax is the maximum internal pressure applied in this study 

(pmax = p = 2.756 M.Pa) and p is the portion of pressure load. If internal pressure 

load is divided into ten sub-steps, the graphs in the above figures represent the 2nd, 

4th, 6th, 8th, and 10th sub-step. The terms p and pmax are only used in graphs, but it 

should be understood from the context. 

When internal pressure is included, the ovaIisation factor can be expressed in the 

following form: 

q = ~ 
P (p r R) I+X - --

W E't'r 

(5 -14) 

where q represent the ovalisation factor in the absence of internal pressure as given 

in equation (5-3). The second term in the denominator represents the pressure 

reduction effect: it is a function of non-dimensional pressure piE, non-dimensional 

thickness rlt, and radius ratio Rlr. 

To develop an expression for the pressure reduction effect, equation (5-14) is further 

written in the following form: 

1..-1 = x~(p ,!:.., R) 
~P E t r 

(5 -15) 

The left-hand side of equation (5-15) for 90-deg elbows is obtained from finite 

element generated data as shown in Fig.5.13 through 5.16. This quantity is plotted 

against piE and rlt for constant radius ratio Rlr, and against piE and Rlr for constant 

non-dimensional thickness rlt. The procedure is described as follows: 

From figure 5.14 for Rlr = 3, the pressure reduction as given by equation (5-15) can 

be plotted against piE and rlt as shown in figure 5.17(a) and (b). 
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Figure 5.17(a) reveals that internal pressure reduces the ovalisation factor for rlt 

greater than certain value, but increases the ovalisation for rlt smaller than this value. 

Figure 5.17(b) reveals that internal pressure reduce the ovalisation for rlt > 13.33, but 

increases the ovalisation for rl t < 13.33. 

By plotting the pressure reduction as given by equation (5-15), similar trend was 

found for Rlr = 2, 6, and 10. Surprisingly, the point where the reduction effect of 

internal pressure become increasing effect is identical for all radius ratio, at a value 

of rl t about 13.33 . 

Figure 5.18 and 5.19 shows the pressure reduction effect plotted againstpl£ and Rlr 

respectively for tlr = 0.03. 
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Fig.5.19 Pressure reduction for a constant rlt plotted against Rlr 

To follow the procedure of Rodabaugh and George [30], it is necessary to plot the 

pressure reduction in a log-log plot. Figure 5.20 shows a log-log plot corresponding 

to Fig.5 .17 for a constant radius ratio. Pressure reduction in a log-log for a constant 

thickness corresponding to Fig.5.18 and 5.19 is shown in Fig.5.21. 

It should be noted that negative values could not be plotted in log-log graph. 

Referring to Table 4.1, the values of thickness of 12.7 and 14.2748 are therefore not 

plotted in Fig.5.20. 
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Similar log-log plots for the pressure reduction (eqn (5-15» to Fig.5.20 and 5.21 

were plotted for all values of Rlt and rit. For brevity, those plots are not shown in this 

thesis, but can be easily derived (plotted) from Fig.A5.4 of Appendix AC5 (a= 90°). 

From Fig.5.20 and 5.21, it can be seen that linear relationships are obtained. There is 

a slight deviation from linearity if the pressure reduction plotted against rit and p, but 

this deviation is small. For all plots for different values of Rlr and rit, it has been 

found that the trends of all curves are similar. From all graphs, it has been found that 

the indices ofpiE, rit, and R1r are approximately 1, 3.33, and 0.464. Careful study of 

Fig.5.20 and 5.21 along with Fig.5.13 through 5.19 leads to the following equation 

for ovalisation factor of 90-deg elbows: 

r 
for- > 13.333 (5 -16) 

t 

The value of the coefficient 0.205 was obtained based on R1r = 10, p/pmax = 1.0, and 

rit = 38.461. The condition where equation is valid (for rit> 13.33) were established 

based on Fig.5.13 through 5.17 and similar plots for all radius ratio (not shown). 

5.1.3 Effect of Bend Angle on Pressure Reduction 

Equation (5-16) is valid for assessing the pressure reduction effect for elbows having 

90-deg bend angle. In this section, the effect of bend angle on pressure reduction is 

studied and simple formulae proposed. 

The Ovalisation factor for in-plane closing moment for various bend angles is shown 

in Fig.AS.1 through A5.5 in Appendix AC5. By constructing similar graphs to Fig. 

5.20 and 5.21 for various bend angles, approximately straight lines have again been 

obtained to develop an expression for pressure reduction in term of non-dimensional 

pressure piE, non-dimensional thickness rit, and radius ratio Rlr. A formula for 
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ovalisation factor is then derived based on the procedures described above for 90-deg 

elbows and the results are summarised in the following equations: 

{

a= 30-deg 

for r 
- > 14.485 
t 

{

a = 45 -deg 

for r 
- > 13.75 
t 

{

a = 60-deg 

for r 
- > 13.447 
t 

{

a=lSO-deg 

for r 
- > 13.333 
t 

(5 -17) 

(5 -IS) 

(5-19) 

(5 -20) 

The conditions of validity of the above equations were based on Fig.A5.1 through 

AS.5 of Appendix AC5. For a bend angle, ~ it is interesting to note that the value of 

r/t where equations are valid does not depend on radius ratio, Rlr, (consequently, also 

not depend on pipe bend parameter, A). From these figures, it can be noticed for all 

radius ratios, that the pressure reduction (eqn (5-15» becomes negative at the same 

value of pipe bend parameter. 

Equations (5-16) through (5-20) can be expressed in an alternative form by noting 

that: 
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Using this relation, the following expressions for ovalisation factor are also obtained 

with the above limitation for the values of rlt: 

: = : 
P {pr3 X 1 )K(R)O.S30 1+0.11 - - -

3D A r 

for a = 30 - deg (5-21) 

~ = : 
P (pr3X 1 )K(R)O.670 

1+0.085 - - -
3D A r 

fora=45-deg (5 -22) 

~ = ~ 
P (pr3 Xl )K(R)O.76S 1+0.070 - - -

3D A r 

fora=60-deg (5 - 23) 

~ = ~ 
P (pr3 Xl )K(R)O.860 1+0.055 - - -

3D A r 

for a=90 - deg (5 - 24) 

~ = ~ 
P (pr3 Xl )K(R)O.970 1+0.045 - - -

3D A r 

for a = 180 - deg (5 - 25) 

where D is the shell bending stiffness that can be found in any textbook of shell 

theory as given in equation (2-75). 

5.2 Flexibility Factors 

The flexibility factor is defined as the ratio of end rotation of a pipe bend to the end 

rotation of an equivalent length, and cross-section, of a straight pipe under the same 

moment loading. There is consequently a need to calculate the end rotation of the 

pipe bend end section. In what follows, the procedure to do so is described. 
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5.2.1 End Rotation 

Under in plane bending load, the end of a bend at the junction with the loaded 

tangent will rotate through an angle <PI , and the end of a bend at the junction with the 

fixed tangent will rotate through an angle <P2, where <P I > <1'2 . The relative end rotation 

is obtained as the difference in rotation of the e ends. The deflection of a piping 

elbow showing these end rotations under in-plane closing moment is shown in 

Fig.5 .22. 

Loaded end Loaded tangent Junction-I 

-"'-~ ......... 

.• '.' ... , ... ~ undeformed 

... Fixed tangent 

"-"-... ~., 

Fixed end 

2 

Fig.5.22 deflection of a pipe elbow under in-plane closing bending 

The rotation of both ends can be obtained in the finite element analy i from the axial 

di placement of the nodes at each end of the bend- traight pipe junction. The nodal 

co-ordinate system of node at the junction ha to be in a cylindrical co-ord inate 

sy tern associated with the co-ordinate system of each tangent. This method of 

finding the end rotation was implemented by Thoma [78). 
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Axial displacement of node at junction-l in Fig. 5.22 is plotted in Fig.5.23 for a 

typical case (a = 90-deg, Rlr = 3, Il r = 0.03). The di placement is plotted a the 

abscissa and the position from the central axis is plotted as the ordinate. It can be 

seen that the variation of axial displacement acros the section is essentially linear. A 

very small amount of warping (plane sections do not remain plane) can be seen, but 

it is clear that the end sections rotate in an approximately planar manner. The linear 

relationship between the axial displacement of nodes at the junction of the bend with 

the loaded tangent written as : 

(5 - 26) 

where y is position from central axis, x is nodal axial displacement, and ml and C l are 

con tant coefficients. 
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Fig.5 .23 Typical axial displacement at junction of bend with loaded tangent plotted 

for a = 90-deg, Rlr = 3, and Il r = 0.03 . 
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The axial displacement of the nodes at junction-2 in Fig.5.22 is plotted in Fig.5.24. 

A similar linear equation to equation (5-26) which represents the axial displacement 

of nodes at the junction of the bend with the fixed tangent is: 

e: e: 

( 6 

(5 - 27) 
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Fig.5.24 Typical axial displacement at junction of bend with fixed tangent plotted for 

a = 90-deg, Rlr = 3, and fi r = 0.03 . 

The relative end rotation can then be finally obtained from the trigonometric tangent 

formula as follows: 

(5 - 28) 

The foregoing procedure for obtaining the end rotations was implemented by 

Thomas [78]. This procedure, however, might be expensive in a non-linear finite 
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element analysis, because the linear equations of the axial nodal displacement, eqns 

(5-26) and (5-27), must be constructed for every load step to find the gradient: get 

the axial displacement using the ANSYS general processor (the IPOSTl), put the 

data into EXCEL spreadsheet, graph the data, fit the data into a linear equation, and 

finally find the end rotation from the gradient of this equation. 

The dashed line in Fig.5.23 and 5.24 is a straight line connecting two opposite nodes 

along an in-plane diameter at the bend junction with the loaded tangent and the fixed 

tangent respectively. It can be seen that the equation for this line has nearly the same 

gradient as the gradient of the straight line obtained from linearisation of axial 

displacement of all nodes, especially for nodes at the junction with the loaded 

tangent. There is slightly greater difference in gradient (more warping) at the 

junction-2, however the rotation at this end is very small compared with the other 

end of the elbow (the scale is different in both Fig.5.23 and 5.24). Examination of 

Fig.5.23 and 5.24 reveals that by considering only the axial displacement of two 

opposite extrados and intrados nodes, produced only very small difference in relative 

rotation compared to the relative rotation obtained by considering the axial 

displacement of all nodes at the junction. For the sake of simplicity, it is therefore 

concluded that it is sufficient to obtain the equivalent rotation from the axial 

displacement of only two opposite nodes along the in-plane diameter. In this sense, 

the end rotation of the loaded and the fixed tangent is obtained from: 

(5 - 29a) 

(5 -29b) 

where, dz is the difference in axial displacement of extrados and intrados nodes 

dy is diameter contraction from extrados to intrados nodes. 
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The relative end rotation is then obtained by subtraction of equation (5-29b) from 

equation (5-29a). In the following, the end rotation will be calculated by means of 

equation (5-29). 

The latter procedure to obtain the end rotation as described above was implemented 

by Chattopadhyay [111], but did not include the diameter contraction from extrados 

to intrados: the second term of the denominator in the equation (5-29) was neglected 

as shown in eqn (3-17). 

A typical moment-end rotation curve is shown in Fig.5.25. This is plotted for a bend 

angle (a) of 90-deg, radius ratio (Rlr) equal to 3, and thickness to pipe cross-section 

radius ratio (fir) equal to 0.026. It can be seen from the moment-end rotation curve 

that elbows under in-plane closing moment exhibit a structural softening behaviour 

but the non-linearity is essentially small. 
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Fig.5.25 Typical moment - end rotation curve under in-plane closing bending 
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The end rotation ila of a straight pipe is calculated from the modified bending 

formula [43]: 

(5 -30) 

where Mis the applied moment, L is the length of pipe, and I = nYt 

For a solid curved beam with circular cross-section and bend angle a (L = Ra), the 

end rotation can be written as: 

(5-31) 

Because of the cross-sectional ovalisation, the end rotation of a pipe bend is then: 

(5 - 32) 

where k is the required flexibility factor. The flexibility factor is therefore obtained 

from equation (5-32) using the end rotation of the bend, iluJa, obtained from finite 

element analysis using the linearisation procedure described in the above. All other 

variables in equation (5-32) are known. 

Figure 5.26 shows the flexibility factor of 90-deg pipe elbows plotted against pipe 

bend parameter, A, for various values of radius ratio, p. It can be clearly seen that the 

flexibility factor is dependent on pipe bend parameter, A, and radius ratio, p, but its 

dependency on the radius ratio seems to be not significant. As shown in Fig.5.26, the 

relation between flexibility factor, k, and pipe bend parameter, A, is approximately 

linear in a log-log graph. Accordingly, the relation can be expressed in the following 

approximation form: 
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Fig.5 .26 Flexibility factors under in-plane closing bending for 90-deg pipe elbows 

Figure 5.26 shows that the flexibility factor for 90-deg pipe elbows can almost be 

represented by a single curve for various radius ratios, p, indicating that the 

flexibility factor can be expres ed as a function of a single parameter, A., with little 

dependency on radius ratio, p. 

In this thesis an attempt is made to obtain empirical formulae for flexibility factors 

from finite element generated data. As u ual, flexibility factors depend on pipe bend 

parameter, A.: high flexibility factor is obtained for smaller pipe bend parameters. By 

curved fitting and taking the effect of radius ratio into account, expressions for the 

flexibility factor for 90-deg pipe elbows under in-plane closing moment can be 

obtained: 
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k = 1.213 R 
(5 - 34) for-=2 A.1.l60 r 

k = 1.342 R 
(5 - 35) for-=3 A.1.139 r 

k = 1.466 R (5 - 36) for-=6 
A.U3l r 

k = 1.632 R (5 -37) for-=lO A.1.074 r 

In can be seen from equations (5-34) through (5-37) that the flexibility factor is not 

only function of pipe bend parameter, A, but also function of radius ratio Rlr. These 

equation are not in suitable form for design purposes. However these equation can be 

expressed in the following form: 

(5 -38) 

where j('A,) represents the dependence of flexibility factor on radius ratio, (Rlr). This 

results inj('A,) be different for every radius ratio. It should be noted that eqn (5-38) 

was expressed based on the asymtotic solution of Clark and Reissner [20], see 

equation (2-41 ). 

Following the procedure of Fujimoto and Soh [92], equations (5-34) through (5-37) 

can be written in the following form: 

k= 11
5 

[0.6715-0.l716In(A.)] for p=2 (5 - 39) 

k = 1.1
5 

[0.7800-0. 1485 In (A.)] for p=3 (5 - 40) 

k = 11
5 

[0.8775 - 0.1364In(A)] for p=6 (5-41) 

k = 11
5 

[0.988-0.0774In(A.)] for p=lO (5 - 42) 
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In the above equations, the term outside of the square bracket is the asymptotic 

solution of Clark and Reissner [20] as adopted in the current design piping code 

[114, 120]. It can be seen that for pipe elbows of long radius, as indicated in equation 

(5-42), the term in the square bracket might be neglected without any significant loss 

in accuracy. The above form of equation for in-plane flexibility factor of 90-deg pipe 

elbows was first proposed by Fujimoto and Soh [92] , but the results were only 

presented for p = 2 and 3, as given in equations (2-49) and (2-50) . In the formulae 

proposed by Fujimoto and Soh, the second term in the square bracket was expressed 

in 'power equation form' (not in ' logarithm form'), and seems that this term might be 

totally omitted. It should be noted, however, that the large deformation effects were 

not included in their analysis. 

Figure 5.27 shows the flexibility factor obtained from finite element (FE), in 

comparison to those calculated using equations (5-34) through (5-37), and equations 

(5-39) through (5-42). It can be seen that the proposed equations fit well the results 

from finite element. 
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5.2.2 Effect of Bend Angle on Flexibility Factor 

It can be visualised that as the bend angle of pipe elbows approaches 'hypotheticals' 

zero, it tends to behave as a straight pipe. To account for the effect of bend angle on 

flexibility factor other than 90-deg, pipe elbows having bend angle of 30, 45, 60, and 

180-deg have been studied. Figure 5.28 through 5.31 show graphs for flexibility 

factor plotted against pipe bend parameter. It can be seen from these graphs that the 

relation between flexibility factor and pipe bend parameter is again essentially linear 

in log-log plot for all bend angles considered. 
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Fig.5.29 Flexibility factors under in-plane closing bending for 45-deg pipe elbows 
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Using the procedure described in section 5.1 for determining ovalisation factor, the 

flexibility factor for pipe elbows can be expressed by the following approximate 

formulae: 

k = 1.65 [a - bln(A)] 
A 

(5 - 43) 

where coefficient a and b are functions of radius ratio, p, a summarised in Table 5.3 

and 5.4 respectively. 
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Table 5.3 Values for coefficient 'a' in equations (5-43) for various bend angles 

p a 

30-deg 45-deg 60-deg 90-deg 180-deg 

2 0.3340 0.5120 0.5237 0.6715 0.7090 

3 0.4545 0.6110 0.6990 0.7800 0.8290 

4 0.5659 0.6734 0.7659 0.8133 0.8692 

5 0.6280 0.7380 0.8010 0.8551 0.8950 

6 0.7097 0.7853 0.8453 0.8775 0.9090 

7 0.7644 0.8325 0.8679 0.9183 0.9470 

8 0.8118 0.8757 0.8850 0.9433 0.9607 

9 0.8536 0.9157 0.8982 0.9654 0.9714 

10 0.9028 0.9470 0.9130 0.9880 0.9990 

Table 5.4 Values of coefficient 'b' in equations (5-43) for various bend angles 

p a 

30-deg 45-deg 60-deg 90-deg 180-deg 

2 0.2142 0.1866 0.1911 0.1716 0.1812 

3 0.2000 0.1744 0.1593 0.1485 0.1624 

4 0.1707 0.1565 0.1520 0.1560 0.1499 

5 0.1558 0.1486 0.1421 0.1450 0.1397 

6 0.1177 0.1201 0.1240 0.1364 0.1278 

7 0.0912 0.1019 0.1120 0.1230 0.1180 

8 0.0647 0.0837 0.1012 0.1120 0.1089 

9 0.0382 0.0655 0.0914 0.1010 0.1005 

10 0.0074 0.0433 0.0820 0.0774 0.0901 

It can be seen from these equations that the flexibility factor is very much influenced 

by the bend angle. As can be inferred from the Tables, both terms in the square 

bracket could be neglected for elbows of large angle bend (90-deg and greater) and 

long radius bends. For all bend angles considered, and long radius, the second term 
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in the square bracket could also be neglected. (t can be concluded that the asymptotic 

solution of Clark and Reissner [20] can be used only for elbows of large angle bend 

and long radius. 

5.2.3 Pressure Reduction Effect 

It was already shown in section 1 of this chapter that internal pressure reduces the 

ovalisation factor resulting from an in-plane closing bending loading. As a 

consequence, it also 'opens up' the bend. This phenomenon is known as the Bourdon 

Effect [Boyle, 115]. The theory of the Bourdon tube can be found in the paper of 

Wolf [16] and Jennings [28]. 

Typical pressure-end rotation plots are shown in Fig.5 .32, plotted for a 90-deg pipe 

elbow and radius a ratio equals three. The abscissa value of 0.0 represent the final 

load step of moment loading and the start of the subsequent internal pressure loading. 
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It can be seen that the relation between internal pressure and end rotation is non­

linear. Figure 5.32 shows the "Haigh effect" [11]: non-linearity is present whenever 

internal pressure acts on pipe of noncircular cross-section, (in this case, internal 

pressure acts on oval cross-section pipe bend due to in-plane bending). 

Figure 5.33 through 5.36 show the flexibility factors of 90-deg pipe elbows plotted 

against pipe bend parameter, It, for various radius ratio, p, under in-plane closing 

moment. It can be clearly seen that internal pressure acts to reduce the flexibility 

factor (open up the bend). The reduction is more pronounced for thin walled piping 

elbows (low pipe bend parameter) . In the following, the effect of internal pressure on 

end rotation (flexibility factor) is evaluated and formulae developed. The procedure 

of Rodabaugh and George [30] is followed . 
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in-plane closing bending. a = 90-deg. Rlr = 10 
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Fig.5 .36 Pressure reduction on flexibility factor for 90-deg pipe elbows: Rlr = 10 

When internal pressure IS included, the flexibility factor can be written III the 

following form : 

k 
k = ---;----,-

P (p r R) l+X - - -
k E' t ' r 

(5 - 44) 

where, k is the flexibility factors in the absence of internal pressure, as given by 

Equations (5-43) and Table 5.3 and 54. The second term in the denominator 

represents the pre sure reduction effect on the flexibility factor. It is a function of 

non-dimensional pressure piE, non-dimensional thickness tlr, and radius ratio p. 

To develop the expression for Xk, equation (5-44) is rewritten in the following form: 

~ -1 = X (E !:. R) k k E' , 
P t r 

(5 - 45) 
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The left-hand side of equation (5-45) is obtained from finite element generated data 

as shown in Fig.5.33 through 5.36 for 90-deg pipe elbows. This quantity is plotted 

against piE and rlt for a constant radius ratio p, and against piE and p for a con tant 

non-dimensional thickness tlr. 

A typical pressure reduction effect on flexibility of 90-deg pipe elbows is plotted as a 

log-log graph in Fig.5.37 and 5.38 for a constant radius ratio and in Fig.5.39 and 5.40 

for a constant thickness. Again linear relations are obtained if the pressure reduction 

is plotted against non-dimensional pressure piE. Linear relations are also obtained if 

the pressure reduction is plotted against radius ratio p. Deviation from linearity can 

be seen if the pressure reduction is plotted against rlt. In this analysis, the pressure 

reduction coffcient, X k , will be represented as straight lines and the error introduced 

in doing so will be discussed at the end of this chapter. 
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Similar log-log plots for the pressure reduction (eqn (5-45» to Fig.5.37 through 5.40 

were obtained for all values of Rlt and rlt. For brevity, again, tho e plots are not 

shown in this thesis, but can be ea ily derived (plotted) from Fig.A5 .9 of Appendix 

AC5 for a = 90°. For all plots for different values of Rlr and rlt, it has been found 

that the trends of all curves are similar. From all graphs, it has been found that the 

indice of piE, rlt, and Rlr are approximately I, 2.25, and 0.31. Study of Fig.5.37 

through 5.40 along with Fig.5.33 through 5.36, suggests the following equation for 

flexibility factor of 90-deg pipe elbows under in-plane bending and internal pressure: 

k = k 

p ( )()l{ 03 1 
1+11.75 ; ~ 4(~) ' 

(5 - 46) 

where k is flexibility factor in the ab ence of internal pre ure as given by equation 

(5-43) and Table 5.3 and 5.4. The value of the coefficient of 11.75 in equation (5-45) 

was obtained based on Rlr = ] 0, p/pmax = 1, and tlr = 0.026. Equation (5-46) can be 

directly compared with the equation propo ed by Rodabaugh and George [30] a 

adopted in the current design piping code [114, 120]. It can be een that equation (5-
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46) produces greater pressure reduction - marked by the coefficient 11.75 rather than 

6 in equation (2-94). 

5.2.4 Effect of Bend Angle on Pressure Reduction 

It has been shown in section 5.2.1 that the flexibility factor in the absence of internal 

pressure is very much influenced by the bend angle. In this section, the effect of bend 

angle on the pressure reduction effect is studied and simple formulae proposed. 

The same procedure is applied: by constructing log-log graphs for pressure reduction 

using the data of Fig.A5.6 through AS.10 of Appendix CS, the flexibility factor 

including internal pressure for various bend angles can be derived: 

k 
kp = ~ 

( X J 
4(RJO.096 

1+18.S ~ 7 -;: 
(5 -47) 

k = k 

p ( J( )~( )0177 1 + 15.65; 7 4 : . 

fora=4S0 (5 - 48) 

k = k 

p (pXrJ~(R)0'247 1+13.5 - - -
E I r 

(5 - 49) 

k = k 
p (pXr)~(R)0.412 1+9.2S - - -

E I r 

fora=1800 (S -50) 

The pressure reduction coefficients in equation (S-46) through (5-S0) are expressed 

in term of non-dimensional pressure piE, non-dimensional thickness rll, and radius 

ratio Rlr. An alternative is to express the coefficient in term of the pipe bend 

parameter, A., by noting that: 
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Using this relation, flexibility factors under the action of in-plane closing bending 

and internal pressure can then be written in the following form: 

k = k 
P j 3 ) ()0.654 

1+5.1,\ ~; ~ ~ 
fora=30-deg (5-51) 

k = k 
P j 3 J ()0.573 

1+4.3vl ~; ~ ~ 
fora=45 -deg (5 - 52) 

k = k 
p j 3 J ()0.503 

1+3.7,\ ~; ~ ~ 
fora=60-deg (5-53) 

kp = (3
k

J ()0.440 
1+3.25 ~; ~ ~ 

fora=90-deg (5-54) 

k = k 
p (3 J ()0.338 

1+2.55 ~; ~ ~ 
fora=180-deg (5-55) 

where, D is the shell bending stiffness that can be found in any textbook of shell 

theory: see equation (2-75). 

It can be seen from these equations that the contribution of the non-dimensional 

thickness r/t to the pressure reduction effect is not significantly influenced by the 

bend angle. 

Equation (5-46) through (5-55) might be further simplified to find the general 

formula for other bend angles, however the range of bend angle considered in this 

study cover pipe elbows in practical usage. 
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S.3 Stress-Intensification Factors 

In the foregoing sections of this chapter, the pressure reduction effect on ovalisation 

factor and flexibility factors (end rotation) has been studied and formulae have been 

developed. It has long been known that the cross-sectional ovalisation results in a 

stress distribution wholly different from that found in simple beam theory «(J = My/!). 

Von Karman [2] suggested that the maximum bending stress in a pipe bend could be 

written as: 

(5 - 56) 

where 'Y is defined as the stress-intensification factor. 

In this section the formula for stress-intensification factor under the action of 

bending alone will be first developed. The pressure reduction effect is then evaluated 

and formulae developed. The effect of bend angle is also investigated. 

Typical stress contour plots for piping elbows under in-plane closing bending are 

shown in Fig.5.41 for longitudinal stress and in Fig.5.42 for hoop (circumferential) 

stress. These are obtained for a 90-deg elbow having a radius ratio, p = 3, and 

thickness to cross-section radius ratio, tlr = 0.026. 

It can be seen from these plots that the maximum stresses in a piping elbow under in­

plane closing bending occur at the mid-section of the elbow in the hoop direction. It 

is a compressive stress at the inner surface. In what follows, the hoop stresses at the 

mid-section of the elbow and the location of their maximum value in the 

circumferential direction is evaluated. 

182 



I/ODAL SOLUTIOI/ 

STI!:P-1 
SUB -11 
TnIE-1 
/EXPANDED 
SY (AVG ) 
TOP 
RSYS-11 
DHX -25.35 
S!!N --453.346 
SHX -506.335 

J\N 

-453.346 -240.084 - 26 .821 186 .441 399 .704 
-346.715 - 133.452 79.81 293 .073 506.335 

NODAL SO LUTION 

STEP-1 
SUB -11 
Tm-1 
/ EXPAJlDED 
SY (AVG) 
BOTTOM 
RSYS-11 
DI!lX -25.35 
SI'!N --403.35 
SI!lX - 251. 625 

x 

-403.35 -257 .8 
-330.575 

(a) 

-39.475 106. 075 251. 625 

(b) 

Fig.5.41 Typical longitudinal tre contour plot under in-plane clo ing moment for 

a = 90-deg, RJr = 3, and tlr = 0.026 plotted for (a) outer surface, (b) inner urface 
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deg, Rlr = 3, and tlr = 0.026 plotted for (a) outer surface, (b) inner surface 
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5.3.1 Stress Factors 

Typical longitudinal and hoop stress distributions at the mid-section of the elbow are 

plotted for a 90-deg elbow in Fig.5.43 . The stresses are plotted from the extrados to 

the intrados. The stresses have been normalized with respect to the nominal bending 

stress (in a straight pipe) calculated from simple beam bending: 
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Fig.5.43 Stress distribution at mid-section of a 90-deg elbow due to closing bending 

It can be clearly seen from Fig.5.43 that the maximum stress in a piping elbow is 

several times in magnitude greater than that predicted using equation (5-57) . The 

maximum stress no longer occurs in the longitudinal direction, but in the hoop 

direction and is compressive under in-plane closing moment. The maximum stress 

also changes position from the furthest point from neutral axis, eqn (5-57) to a 

position near the neutral axis . 
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Figure 5.43 shows that the maximum compressive hoop stres for a 90-deg elbow 

located between 90 and 100-deg in the circumferential direction, mea ured from the 

extrados. For simplicity, the maximum stress factor (stress-intensification factor) will 

be evaluated at 90-deg position (crown) for 90-deg pipe elbows. Figure 5.44 hows a 

moment - stress (hoop) plot for an elbow subjected to in-plane closing moment 

plotted for a 90-deg elbow having Rl r = 3 and fi r = 0.026. 

a = 90-deg, Rlr = 3, tlr = 0.026 
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Fig.5.44 Moment - stress (hoop) plot for a 90-deg pipe elbow due to closing bending 

The moment - stress plot in Fig 5.44 shows that a pipe elbow ubjected to in-plane 

closing moment exhibits a structural softening behaviour. Fig 5.44 was plotted for a 

relatively thin-walled pipe to how the nonlinearirty. It can be seen that the 

nonlinearity is e sentially small. 

Figure 5.45 shows the tre -intensification factor for 90-deg pipe elbows ubjected 

to in-plane closing bending. It can be clearly een that the tress-inten ification factor 

not only depends on the ingle parameter, A., but also depend on the radius ratio, Rlr. 
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Fig.5.45 Stress-intensification factor for 90-deg pipe elbows due to closing bending 

Figure 5.45 shows that the stress-intensification factor for 90-deg pipe elbow cannot 

be represented by a single function of pipe bend parameter, 2, but shows that the 

stress-intensification factor is also a function of radius ratio, Rlr. As shown in 

Fig.5.45, the relation of stress-intensification factor, y, and pipe bend parameter, 2, is 

essentially linear in a log-log plot. Accordingly the relation can be expressed in the 

following form: 

- p 
y- Aq (5 - 58) 

In this thesis an attempt is agam made to obtain empirical formulae for stress­

inten ification factors from finite element generated data. As shown in Fig.5.45, 

stress-intensification factors depend on pipe bend parameter, A: higher tress­

intensification factor is obtained for maIler pipe bend parameters. Taking the effect 

of radius ratio into account, expressions for the stress-intensification factor of 90-deg 

pipe elbows subjected to in-plane closing bending are obtained: 
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1.240 R 
(5- 59) r= Ao.866 ; for-=2 

r 

1.534 R 
(5- 60) r= Ao.818 ; for-=3 

r 

1.786 R 
(5 - 61) r = Ao.792 ; for-=6 

r 

1.672 R 
(5 -62) r= AO.867 ; for-=l0 

r 

Equations (5-59) through (5-62) show that the stress-intensification factor as a 

function of pipe bend parameter, A, is also depending on radius ratio, Rlr. However, 

the above equations are not in suitable form for design purposes. It is intended to 

follow the suggestion of Fujimoto and Soh [92] to express the stress-intensification 

factor in term of the asymptotic solution of Clark and Reissner [20J as given in the 

following form: 

(5 -63) 

In equation (5-63), the term outside the square bracket is the asymptotic solution of 

Clark and Reissner [20J and the term inside the square bracket represents the 

dependence of stress-intensification factor on radius ratio (the function in the square 

would be different for every radius ratio). 

Following the procedure of Fujimoto and Soh [92] as described in the previous 

sections, equations (5-59) through (5-62) can be rewritten in the following form: 

r = 1.~ [0.5617 - 0.2092 In (,i)] R (5-64) for-= 2 
A;3 r 

r = l.~ [0.7715 -O.l650In(A)] R (5- 65) for-=3 
A;3 r 

r= l.~ [0.9342 -0.1 390 In (,i)] R (5 - 66) for-=6 
A;) r 
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r = 1.~ [0.8785 - 0.2054In(A.)] 
AI) 

R 
for - = 10 

r 
(5 - 67) 

As shown in Fig.5.45, the stress-intensification factor is directly proportional to the 

inverse of radius ratio, but the first term in the square bracket in equation (5-67) for 

Rlr = lOis smaller than the corresponding term in equation (5-66) for Rlr = 6. Figure 

5.46 shows the stre s-inten ification factor obtained from finite element (FE), in 

comparison to those calculated using equations (5-59) through (5-62), and equations 

(5-64) through (5-67). It can be seen that the proposed equations fit well the results 

from finite element. In addition, the plot for the propo ed design formulae, I.e. , 

equations (5-64) through (5-67) coincide with those calculated using equation (5-

59) through (5-62). 
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5.3.2 Effect of Bend Angle on Stress-Intensification Factors 

It can be seen once more that as the bend angle of a pipe elbow approaches a 

hypothetical zero, it tends to behave as a straight pipe. The location of maximum 

stress might be shifted from the crown toward the furthest location from the central 

axis as in a straight pipe. To account for the effect of bend angle on stress­

intensification factor other than 90-deg, pipe elbows having bend angle of 30, 45, 60, 

and 180-deg has been studied. 

Figure 5.47 through 5.50 show the stress distribution at the mid-section of a pipe 

elbows subjected to in-plane closing moment. These figures show that the maximum 

stress for the elbow again occurs in the hoop direction, but its position moves by 10-

deg from crown toward intrados for elbow having bend angle of 30, 45, and 60-deg, 

while the location of maximum stress remain at the crown for a 180-deg pipe elbow. 

c 
b 
b 

a = 30-deg, Rfr = 3, tlr = 0.0417 

4 - --

~~~!/~~~~~f~\~ 3 

2 

1 

0 

-1 

-2 

-3 

-4 

-5 

// \ \ ~~ ..,4 / /~ 

\ I 

\~.-

; , deg 

\ I 
II I '. 
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a = 45-deg , Rlr = 3, tlr = 0.0417 
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a = 180-deg, Rlr = 3, tlr = 0.0417 
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Fig.5.50 Stress-distribution for 180-deg pipe elbow under in-plane closing bending 

In what follows, the maximum compressive hoop stress at the inner surface, defined 

as the 'stress-intensification Jactor', is evaluated at any circumferential position, 

depending on bend angle. For the bend angles considered in this study, the locations 

of maximum stresses measured from the extrados are tabulated below: 

Bend angle (a), deg 30 45 60 90 180 

Position from extrados (¢), deg 100 100 100 90 90 

Figure 5.51 through 5.54 show the stress-intensification factor for various bend 

angles of pipe elbows under in-plane closing moment. It can be seen that the stre -

intensification factor not only depends on single parameter, A, but also depend on 

radius ratio, Rlr. The dependency of stress-intensification factor on radiu ratio i 

more pronounced for pipe elbows of small angle and less significant for large bend 

angle. 
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Fig.5.54 Stress-intensification factors for 1800 pipe elbow 

It can be seen from Fig.5.51 through 5.54 that as the bend angle becomes greater, the 

dependence of stresses on radius ratio becomes smaller. Figure 5.54 shows that the 

stress-intensification factor for 180-deg pipe elbows is less dependent on radiu ratio. 
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The stress-intensification could be represented by a single line dependent only on 

pipe bend parameter. 

An expression for the stress-intensification factors for pipe elbows under in-plane 

closing bending are obtained from these figures: 

Y= 1.~ [a -bln(J)] 
A!3 

(5 -68) 

where the coefficient 'a' and 'b' are functions of radius ratio Rlr as given in Table 

5.5 and 5.6 respectively for various bend angles. 

Table 5-5 Values of coefficients 'a' in equation (5-68) for different bend angle 

Rlr Bend angle 

30-deg 45-deg 60-deg 90-deg 180-deg 

2 0.2558 0.4175 0.5823 0.5617 0.7706 

3 0.3932 0.5748 0.7312 0.7715 0.8953 

4 0.4866 0.6576 0.7897 0.8617 0.9126 

5 0.5476 0.7318 0.8287 0.9241 0.9087 

6 0.6032 0.7620 0.8547 0.9342 0.8944 

7 0.6414 0.7948 0.8733 0.9150 0.8826 

8 0.6716 0.8203 0.8872 0.9019 0.8723 

9 0.6961 0.8407 0.8980 0.9018 0.8633 

10 0.7215 0.8410 0.9067 0.8785 0.8537 
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Table 5-6 Values of coefficients 'b' in equation (5-68) for different bend angle 

Rlr Bend angle 

30-deg 45-deg 60-deg 90-deg 180-deg 

2 0.1333 0.1637 0.1540 0.2092 0.2145 

3 0.1256 0.1437 0.1276 0.1650 0.1674 

4 0.1218 0.1298 0.1106 0.1550 0.1508 

5 0.1180 0.1210 0.1010 0.1500 0.1427 

6 0.1158 0.1128 0.0952 0.1390 0.1440 

7 0.1137 0.1103 0.0977 0.1516 0.1501 

8 0.1118 0.1118 0.1070 0.1656 0.1607 

9 0.1102 0.1173 0.1231 0.1884 0.1636 

10 0.1092 0.1311 0.1501 0.2054 0.1711 

It is interesting to note that the stress-intensification factors for 180-deg elbows are 

less than stress-intensification factors for 90-deg elbows. This is contrary to the 

flexibility factors where 90-deg elbows are stiffer than 180-deg elbows. The 

variation of flexibility and stress-intensification factors with respect to total bend 

angle is given in Table 5.7. The values in Table 5.7 are factored by the flexibility and 

stress-intensification factors of90-deg elbows. 

Table 5.7 Summary of the effect of bend angle on flexibility and stresses 

Bend angle, ex kik(90) 1/1(90) 

30-deg <1 <1 

45-deg <1 <1 

60-deg <1 <1 

90-deg =1 =1 

180-deg >1 <1 
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5.3.3 Pressure Reduction Effect 

For combined loading of bending and internal pressure, the total stresses from the 

finite element analysis results include the toroidal membrane pressure tresse. 

Recall that the definition of 'stress-intensification factor' adopted here is the 

maximum stress in a pipe bend (in the hoop direction) divided by the nominal 

bending stress in a straight pipe as given by equation (5-57). Because the stresses are 

factored by the nominal bending stress, the membrane stresses due to internal 

pressure as given in equation (2-15) should be subtracted from the total stresse 

obtained from finite element analy is (Fig.5.55). In the theoretical analysis developed 

by Rodabaugh and George [30], the toroidal membrane tresses resulting from 

internal pressure load were also excluded in calculation of the stress-intensification 

factor. 
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Fig.5.55 Hoop stre s di tribution under bending and internal pres ure 
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Figure 5.55 shows the total hoop stress at the mid-section of an elbow under in-plane 

clo ing bending and internal pressure, plotted for a = 90-deg, Rl r = 3, and fi r = 

0.0417. It can be seen that internal pressure increases the total stress. Jt can bee seen 

from Fig.5.55 that internal pressure reduces the magnitude of compressive stres and 

increase the magnitude of tension stress due to bending alone. 

Figure 5.56 shows the effect of internal pressure on stress-intensification factor of a 

pipe elbow under in-plane closing moment. Figure 5.56 was obtained by subtracting 

the toroidal hoop stress (eqn (2-15) from hoop stress in Fig.5.55 . It can be clearly 

seen that the effect of internal pressure is to reduce the bending stres es. Figure 5.56 

also shows that the system is bending dominated: this is indicated by the same 

characteristics of stress distribution under both unpressurized and pressurized 

condition. This trend was also found by Imamasa and Uragami [51] in their 

experimental analysis for pipe bends. It might be expected however that this 

characteristic would change if the internal pressure increased beyond a certain level 

[57]. 
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A typical pressure - stress (hoop) plot is shown in Fig.5.57, plotted for a 90-deg pipe 

elbow and a radius ratio equals three. The abscissa value of 0.0 repre ents the final 

load step of moment loading and the starting of the subsequent internal pressure 

loading. It can be seen that the relation between internal pressure and maximum hoop 

stress i non-linear. Figure 5.57 shows the ' Haigh effect ' [11]: pipe subjected to 

internal pressure departs significantly from linear behaviour if the pipe cros -section 

is not circular. In Fig.5.57, internal pressure acts on oval cross- ection pipe elbow 

due to applied bending moment. 
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9 

Stress-intensification factors for 90-deg pipe elbows loaded by in-plane clo ing 

moment i shown in Fig.5.58 through 5.61 for various radiu ratio. It can be clearly 

seen that the pre ence of internal pressure i to reduce the tre -in ten ification 

factor. The reduction is more pronounced for elbows having low pipe bend 

parameter, A, (small thickne and hort radiu bends) . In thi ection, the effect of 

internal pres ure on reducing tres -intensification factor is evaluated, and empirical 
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formulae for stress-intensification are proposed. The same procedure used in ection 

5.2.3 is followed . 

In-plane closing bending, a = 90-deg, RI, = 2 
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In-plane closing bending, a = 90-deg, RI, = 3 
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in-plane closing bending, a = 90-deg, Rlr = 6 
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Fig.5.60 Pressure reduction on stress-intensification for 90° pipe elbow: Rlr = 6 

In-plane closing bending, a = 90-deg, Rlr = 10 
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Fig.5 .61 Pressure reduction on stres -inten ification for 90° pipe elbow: Rlr = 10 

When internal pressure is included, the stre s-intensification factor can be expre ed 

in the following form: 
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r = r 
P (p r R) l+X. - --

I E' t' r 

(5 - 69) 

where, 'Y and 'Yp are stress-intensification factors with and without internal pressure 

respectively. 

To obtain the pressure reduction, i.e., the second term in the denominator, equation 

(5-69) is rewritten as: 

(5-70) 

The left-hand side of equation (5.70) is obtained from finite element generated data 

as given in Fig.5.58 through 5.61 for 90-deg pipe elbows, and the right hand side is 

the incremental pressure load and geometric parameter. 

A typical pressure reduction effect on stress-intensification is plotted as a log-log 

graph in Fig.5.62 for constant radius ratio RJr and in Fig.5.63 for constant non­

dimensional thickness rlt. These plots are obtained for 90-deg pipe elbows extracted 

from Fig.5.58 through 5.61. The pressure reduction effect is plotted as the ordinate 

and incremental internal pressure and geometric parameter are plotted as the 

abscissa. 

It can be seen from these figures that straight lines are obtained if the pressure 

reduction is plotted against the non-dimensional pressure piE. There is a slight 

deviation from a straight line if the pressure reduction is plotted against geometric 

parameter r/t and Rlr. In this analysis, the pressure reduction will be fitted as straight 

lines and the error introduced will be discussed at the end of this chapter. 
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a = 90-deg, tlr = 0.026 
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Similar log-log plots for all geometry (radius ratio and thickness) was constructed, 

Again for brevity, these plots are not shown in this thesis, but it should be easily 

constructed from Fig.A5.14 of Appendix C5. From all the plots, it has been found 

that the index of piE, rlf, and Rlr is approximately equal to 1, 2.33, and 0.435 

respectively. 

From a careful observation of Fig.5.62 and 5.63 and similar plots for all geometry 

considered along with Fig.5.58 through 5.61, the following expression is proposed 

for stress-intensification factors of 90-deg elbows under in-plane closing moment 

and internal pressure: 

r - r 
p - ( X )X( )O.43S 

1+10.25; 7 3 ~ 
(5 - 71) 

where ris stress-intensification factor in the absence of internal pressure as given by 

equation (5-53) and Table 5.7 and 5.8. The value of coefficient of 10.25 in equation 

(5-71) was established based on Rlr = 10, fir = 0.026, and p/pmax = 1.0. Eqn (5-71) 

can be directly compared with the equation proposed by Rodabaugh and George 

[30]. It can be seen that equation (5-56) produces greater pressure reduction -

marked by the coefficient 10.25 rather than 3.25 in equation (2-98). 

5.3.4 Effect of Bend Angle on Pressure Reduction 

It has been shown in section 5.3.2 that the stress-intensification factor for 

unpressurized pipe elbows is very much influenced by the total angle of the bend. In 

this section the effect of bend angle on pressure reduction is studied and formulae 

again derived: 

The same procedure can be applied for different bend angles. By constructing log-log 

graphs for pressure reduction for all geometry using the data from Fig.AS .11 through 
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A5.15 of Appendix C5, flexibility factors of pressurized elbows under in-plane 

closing moment are proposed as follows: 

Yp = r fora=30-deg (5 -72) 

{PX't(R)"'" 1+16.9 - - -
E t r 

Yp = r fora=45 - deg (5 -73) 

{pX't(Rf" 1+12.5 - - -
E t r 

Yp = r for a=60 - deg (5 -74) 

( Xt(Rf 1 + 10.25 ~ 7 -;: 

Yp = r fora=180-deg (5 -75) 

{ptftr 1+7.5 - - -
E t r 

The pressure reduction in Equations (5-71) through (5-75) are expressed in terms of 

non-dimensional pressure piE, non-dimensional thickness rlt, and radius ratio Rlr. 

Again, an alternative can be obtained by noting that: 

Using this relation, the stress-intensification factors of piping elbows subjected to 

combined bending and in-plane closing moment can be written as: 

y _ r 
p - (3 ) ()0.47 

1 +4.65 ~; AX ~ 
fora=300 (5 -76) 

y _ r 
p - (3 ) ()0.35 

1+3.45 ~; ffi ~ 
fora=4S0 (5 -77) 
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r - r 
p - (3 J (JO.26 

1+2.82 ~~ ;.% ~ 
fora=600 (5 -78) 

r - r 
P - j 3 J ()0.23 

1 + 2.8,\ ~~ ;.% ~ 
fora=900 (5 -79) 

r - r 
P - (3 J ()0.10 

1+2.05 ~~ ;.% ~ 
for a= 180° (5 -80) 

The formulae in equations (5-71) through (5-80) if necessary can be further 

simplified into the following form: 

The simplification of the formulae aims to find the coefficient A and B, and the 

power m and n as a function of bend angle, a. This simplification will not be 

processed any further here as the bend angles considered in this study have covered 

pipe elbows dimension in practical usage. 

5.4 Discussion 

In the previous sections of this chapter, formulae for ovalisation, flexibility, and 

stress-intensification factors of piping elbows under in-plane closing moment have 

been developed. The pressure reduction effect corresponding to the work of 
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Rodabaugh and George [30] has also been developed. The formulae have been 

derived through simple curve fitting. Of course some error will be introduced, since 

the coefficient of the pressure reduction effects were obtained from one particular 

data set geometry and generalised for the whole data. The indices of piE, rlt, and Rlr 

were based on long radius bend (Rlr = 10), thin pipe (tlr = 0.026), and p = 400 psi. 

The error introduced as a result of these approximations will be discussed in this 

section. 

In developing the formula for unpressurised pipe elbows, the effect of radius ratio 

has been taken into account. In many theoretical developments, for example the work 

of von Karman [2], Rodabaugh and George [30] and others, the radius of the bend 

was assumed to be much greater than the cross-section radius and the result obtained 

then applied even to bends of short radius. As has been shown in the foregoing 

sections, there is a great influence of radius ratio on ovalisation, flexibility, and 

stress-intensification factors. 

It is well known that an elbow's enhanced flexibility and stress-intensification arises 

from the cross-sectional ovalisation due to bending. However, the effect of various 

geometric parameters on ovalisation, flexibility, and stress-intensification factor is 

not necessarily identical either in trend or magnitude. 

5.4.1 Unpressurized Conditions 

For in-plane closing bending alone (without internal pressure), the ovalisation, 

flexibility, and stress-intensification factors have been expressed in the following 

form: 

q = 0.565 [a + b In(A)] 
;,% 

k = 1.65 [a - bln(J)] 
J 

(5-81) 

(5 -82) 
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r= l.~[a-bln(A)] 
AT3 

(5 - 83) 

where a and b are coefficients describing the dependence of ovalisation, flexibility 

and stress-intensification factors on the radius ratio, p: they are different for different 

bend angle for ovalisation, flexibility and stress-intensification factors. The tenn 

outside the square bracket for ovalisation factor was established based on the 

ovaIisation for long-radius bend (Rlr = 10), while the terms outside the square 

bracket for flexibility and stress-intensification factors are the asymptotic solution of 

Clark and Reissner [20]. 

It has been shown in the foregoing sections that a plot of ovalisation and stress­

intensification factors against pipe bend parmeter, A, show higher dependency on 

radius ratio, p, especially for large angle bends, compared to a similar plot for 

flexibility factor. The reason for this difference arises from the normalisation. 

Flexibility factor was obtained as the ratio of end rotation of a pipe bend to the end 

rotation of an equivalent straight pipe under the same bending load, as given by 

equation (5-31). It can be seen that the parameter R appears in equation (5-31) 

resulting in the flexibility factor being less dependent on radius ratio. The ovalisation 

and stress-intensification factor was obtained using equations (5-1) and (5-57) 

respectively for normalisation. It can be seen that there is no dependence on the 

parameter R in both equations and it has been defined as nominal ovalisation and 

nominal stress respectively. However for large angle bends (90-deg and greater), the 

effect of radius ratio on ovalisation, flexibility, and stress-intensification factors 

become less significant. This is expected since the difference of length between the 

extrados and the intrados become smaller. 

Figure 5.64 shows the flexibility factor of 90-deg pipe elbows obtained from the 

present analysis as given by equation (5-40) for radius ratio p = 3, in comparison 

with the available theoretical results. It can be seen that the result from the present 

analysis is relatively higher than the asymptotic solution of Clark and Reissner [20] 

as adopted in the ASME B31.1 [114] and ASME B31.3 [120] and higher than the 
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von Karman third approximation. This is probably caused by the large deformation 

effect activated in the present analysis. The theoretical results in Fig.5.64 have been 

derived based on small deformation assumptions. The other sources of discrepancies 

are believed to result from the assumptions involved in the theoretical development. 

a = 90-deg, Rlr = 3 
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Fig.5 .64 Flexibility factors for 90-deg pipe elbows under in-plane closing bending 

Figure 5.65 shows the stress-intensification factor for 90-deg pipe elbow obtained 

from the present analysis as given by equation (5-65) for radius ratio p = 3, in 

comparison with the result of Marlel' fatigue test as adopted in ASME B31.1 [114] 

and ASME B31.3 [120]. The figure also shows the stress-intensification factor 

obtained by Clark and Reis ner [20] using the asymptotic solution. It can be seen that 

the result from the fatigue test due to Mark I [23] is approximately half of the 

asymptotic solution of Clark and Rei sner [20]. The results from the pre ent finite 

element analysis using ANSYS are higher than the asymptotic olution of Clark and 

Reissner [20] for elbows of low pipe factor but slightly lower for elbow of high 

pipe factors. Again, it is argued that this discrepancy re ult from the large 
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deformation effect included in the present analysis, whereas small deformation 

assumption was made in the asymptotic solution of Clark and Reissner [20]. 
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Fig.5.65 Stress-intensification factors for 90-deg pipe elbows under closing bending 

5.4.2 Pressurized Conditions 

In developing the formulae for the pressure reduction effect, the following approach 

has been applied: 

(1) The relation of pressure reduction and nondimensional pressure piE, 

nondimensional thickness rl t, and radius ratio Rlr is linear in a log-log graph. 

Accordingly, the pressure reduction can be expressed as a power law. 

(2) The index of non-dimensional pressure, piE, non-dimen lonal thickne , rlr and 

radius ratio, Rlr has been based on one-particular geometry. 
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Using this approach and taking the effect of bend angle into account, the following 

formula has been developed: 

Ovalisation factor: 

(S -84a) 

(S - 84b) 

Flexibility factor: 

k 
kp = % 

(pXrJ 4(RJm l+A E t -; 
(S -8Sa) 

(S - 8Sb) 

Stress-intensification factor: 

(S -86a) 

r - r 
P - j 3J ()" 

l+ul ~~ ffi ~ 
(S - 86b) 

where A, B, m, and n are a function of bend angle, a, as summarised in Table 5.8, 

S.9, and 5.10 for ovalisation, flexibility, and stress-intensification respectively. 

Notice these values are different for ovalisation, flexibility, and stress-intensification 

factors. 
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Table 5.8 Values for A, B, m, and n in equation (5-84) for ovalisation factor 

Bend angle, a A B m N 

30-deg 0.405 0.110 0.165 0.530 

45-deg 0.305 0.085 0.275 0.670 

60-deg 0.255 0.070 0.355 0.765 

90-deg 0.205 0.055 0.465 0.860 

180-deg 0.155 0.045 0.590 0.970 

Table 5.9 Values for A, B, m, and n in equation (5-85) for flexibility 

Bend angle, a A B m N 

30-deg 18.50 5.10 0.096 0.654 

45-deg 15.65 4.30 0.177 0.573 

60-deg 13.50 3.70 0.247 0.503 

90-deg 11.75 3.25 0.310 0.440 

180-deg 9.25 2.55 0.412 0.338 

Table 5.10 Values for A, B, m, and n in equation (6-86) for stress-intensification 

Bend angle, a A B m N 

30-deg 16.90 4.65 0.197 0.47 

45-deg 12.50 3.45 0.318 0.35 

60-deg 10.25 2.82 0.407 0.26 

90-deg 10.25 2.80 0.435 0.23 

180-deg 7.50 2.05 0.567 0.10 

Equation (5-84) applicable for pipe elbows of thin-walled. Equation (5-84) need to 

be modified for thick-walled pipe bends. This is subjected to further research. Figure 

AS.1 through A5.5 of Appendix C5 (appendix to this Chapter) shows roughly the 

value of rlt at which equation (5-84) applicable. 

213 



It is worth investigating the error introduced as a result of the two approaches used 

here. The error is calculated here as a percentage: 

Err = 1 - fd IXIOO';" 
Ie 

(5 -87) 

where Id represents either ovalisation, flexibility, or stress-intensification obtained 

using the derived formula, andle is data obtained directly from finite element results. 

Using this definition, the maximum error in percent is given in Table 5.11; 5.12; and 

5.13 for ovalisation, flexibility, and stress-intensification respectively: 

Table 5.11 Maximum error for ovalisation 

a E",% 

Rlr=2 Rlr=3 Rlr=5 Rlr=6 Rlr= 10 

30-deg 10.6 8.1 8.6 --- 10.2 

45-deg 4.9 4.6 4.3 --- 6.4 

60-deg 5.2 4.6 4.3 --- 7.7 

90-deg 5.0 4.5 --- 4.0 7.6 

180-deg 5.0 5.5 6.9 8.8 

Table 5.12 Maximum error for flexibility 

a Err, % 

Rlr=2 Rlr=3 Rlr= 5 Rlr=6 Rlr= 10 

30-deg 7.6 5.9 4.2 --- 6.1 

45-deg 4.3 3.7 2.0 --- 5.4 

60-deg 3.2 3.0 1.9 --- 5.1 

90-deg 3.6 2.6 --- 1.6 4.3 

180-deg 4.5 3.5 3.8 4.7 
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Table 5.13 Maximum error stress-intensification 

a Err, % 

Rlr=2 Rlr=3 Rlr=5 Rlr=6 Rlr= 10 

30-deg 2.5 3.9 4.5 --- 4.7 

45-deg 2.7 3.7 4.2 --- 4.5 

60-deg 2.9 4.1 4.5 --- 4.5 

90-deg 4.6 5.7 --- 6.3 5.0 

lS0-deg 4.5 5.9 2.9 4.9 

It can be seen from these Tables that the error is relatively small from the practical 

point of view. Larger errors result from the formulae for ovalisation and flexibility 

can however be seen for elbow of short-radius bend. The error for stress however is 

very small. This is because the stresses were depicted directly from the ANSYS 

generated data without needing for any further derivation. Whereas, the flexibility 

factor was derived from the displacement of the extrados and intrados node in which 

plane cross-section before bending was assumed to remain plane after bending. 

Figure 5.66 shows a comparison for flexibility factor between the result from the 

present analysis and the theoretical result due to Rodabaugh and George [30]. Figure 

5.66 shows that in general the detailed finite element results lead to higher values 

than those of the simple Rodabaugh & George solution, but as the pressure increases, 

the latter results are (perhaps surprisingly) quite accurate. That the flexibility factor 

from a detailed finite element analysis is higher than the simple pure bending 

analysis may not be expected: it is usually argued that the presence of end effects 

should reduce the flexibility from a pure bending analysis [57, 84] even with long 

attached straight pipes. However it should be recalled that the present study includes 

large deformation effects - this is observed with small values of pipe bend parameter 

(that is large diameter, thin pipe) and it can also be argued that the attached straight 

pipes will have some flexibility close to the junction from a thin shell finite element 

analysis. The magnitude of the reduction due to pressure is not easy to compare since 

the basic flexibility factors for in-plane bending alone in the absence of internal 

pressure also differ. However it can be seen that the present results infer that the 
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pressure has a greater stiffening effect than obtained from the Rodabaugh and 

George analysis. 
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Fig.5.66 Flexibility factors for 90-deg elbows: (a) present analysi ,(b) ASME B31 .3 
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Recall the formula for flexibility factor for 90-deg pipe elbows from the present 

finite element analysis developed in equation (5-46): 

Also recall the formula developed by Rodabaugh & George [30] in equation (2-94): 

The form of equation (2-94) and (5-46) are the same but the values of the indices of 

(rl/) and (Rlr) slightly differ. What is more marked is the coefficient (11.75 rather 

than 6) - this infers a greater pressure effect. (It should be noted these coefficients 

should be written in terms of (1-V), but this factor is known to haunt the derivation 

of flexibility factors [43] and has been omitted here). 

Figure 5.67 shows a comparison of stress-intensification factors for 90-deg pipe 

elbows obtained from the present analysis and the result of the Rodabaugh and 

George analysis [30]. Recall the formula developed in the present analysis, equation 

(5-71): 

r - r 
p - ((:K 0435 

1 + 10.25 ;) ~) 3 ( ~ r 
And again recall the formula developed by Rodabaugh and George [30] as adopted in 

the ASME B31.3 process piping code [120], equation (2-98): 

r = r 
p (p)(r)7{(R)M 1+3.25 E t -;: 
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Fig.5.67 Stress-intensification factors of90-deg elbows under in-plane closing 

moment, (a) pre ent analy is, (b) ASME B31 .3 
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Figure 5.73 shows that the present results predict a considerably more marked 

pressure reduction effect at lower values of pipe bend parameter. Again it may be 

expected that large deformations, couple with large diameter, have an effect. An 

exact comparison can not be seen clearly from Fig.5.67 since the basic stress­

intensification factors for in-plane bending alone (in the absence of internal pressure) 

also differ. 

5.4.3 Comparison with Other Theoretical and Experimental Results 

To verify the accuracy of the formulae developed in this chapter, comparisons are 

made with theoretical and experimental results from other previous investigators. 

In 1957, Turner and Ford [31] made attempt to eliminate some assumptions and 

approximation in the previous theories for in-plane bending without internal 

pressure. Using small deformation analysis, the long radius assumption was omitted. 

The theoretical analysis developed by Turner and Ford was considered as a more 

exact analysis at that time. Table 5.14 compares the hoop stress-intensification factor 

for typical pipe bend geometry: (,4 = 0.269 and Rlr = 2.84)*. It can be seen that the 

present result for short radius bend and thick-walled pipe predicts a lower stress­

intensification factor compared to the theoretical analysis of Turner and Ford [31] 

and the asymptotic solution of Clark and Reissner [20] 

Table 5.14 Comparison of stress-intensification factor with Turner and Ford [31] 

Present analYSis, Eqn (5-65) r=4.476 

Turner and Ford [31], theory r=4.750 

Clark and Reissner [20], theory y=4.535 

*Values from Turner and Ford [31] were read from graphs and not calculated fonn fonnulae 

In 1966, Findlay and Spence [35] carried out an experimental analysis of 9ft 9in pipe 

elbow under in-plane bending. The geometry used is as follows: 
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a= 90-deg 

r = 39.725 in 

R=117in 

1= 1.45 in 

Ilr = 0.036 

Rlr=2.94 

A= 0.107 

For this particular geometry, the comparison for flexibility and stress-intensification 

factors are given in Table 5.15 and 5.16 respectively. These tables also present 

results from other investigateor [2, 20, 24, 31]· 

Table 5.15 Comparison for flexibility factor with theoretical and experimental results 

Present analysis, Eqn (5-40) 17.12 

Findlay and Spence (35], experiment 12.8 

1 st Karman [2], theoretical 8.93 

2na Karman [2], theoretical 15.64 

3ro Karman [2), theoretical 16.15 

Clark & Reissner [20] theoretical 15.42 

Turner and Ford [31, theoretical 15.5 

·Values in Table 5.15 were quoted from Findlay and Spence [35] and not calculated from a formulae 

Table 5.16 Comparison for stress-intensification factor with theory and experiment 

Present analysis, Eqn (5-65) 9.562 

Findlay and Spence (35), experiment 8.43 

Gross [24], experiment 8.54 

Clark & Reissner [20] theoretical 9.47 

Turner and Ford [31, theoretical 8.73 

·Values in Table 5.16 were quoted from Findlay and Spence [35] and not calculated from a formulae 
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It can be seen from Table 5.15 and 5.16 that the present result predicts higher 

flexibility and stress-intensification factor for a pipe bend of short-radius and thin­

walled. This probably caused by large deformation effect especially for thin-walled 

pipe bend. 

In 1975, Vrillon et al [56] carried out an in-plane bending test on a 180-deg pipe 

bends of short radius. Straight tangents pipe was attached at both ends of the bend 

but there was no specific information about its length. The geometry of the test is as 

follows: 

a= 180-deg 

t= 12 mm 

r=507mm 

R= 762 rnrn 

t/r = 0.024 

Rlr= 1.5 

.4=0.036 

For this particular geometry, comparison for flexibility factor is given in Table 5.17 

Table 5.17 Comparison for flexibility factor with ref [20] and [56] 

Present analysis, eqn (5-43) and Table 60.0 

5.3 and 5.4 

Vrillon et al [56], experiment 10.4 

Clark Reissner [20], theoretical 45.8 

The experimental result obtained by Vrillon et al [56] should be doubted as it is 

about 400 percent lower than the asymptotic solution of Clark and Reissner [20]. It 

can be again seen from Table 5.17 that the present result produces higher flexibility 

for short-radius and thin-walled pipe bend. The explanation for this different is the 

large deformation effect which is more pronounced in thin-walled pipe. 

221 



In 1979, Brouard et al [62] carried out in-plane and out-of-plane bending test on 

carbon steel pipe bend without internal pressure. The geometry of pipe bend 

considered is as follows: 

a = 90 and 180-deg 

t= 7.1 mm 

r= 125 mm 

R=190mm 

tlr = 0.057 

Rlr = 1.52 

A=0.087 

L = 565.7 mm (for ex = 90-deg) 

L = 895 mm (for ex = 180-deg) 

For this particular geometry, comparison for flexibility factor is given in Table 5.18 

Table 5.18 Comparison for flexibility factor with references [20] and [56] 

a= 180-deg a=90-deg 

Present analysis, eqn (5-43) and Table 21.82 20.67 

5.3 and 5.4 

Brouard et al [62], experiment 5.1 2 

Clark & Reissner [20], theoretical 18.96 18.96 

The experimental result obtained by Brouard et al [62] again should be doubted as it 

is about 400 percent lower than the asymptotic solution of Clark and Reissner [20] 

for ISO-deg bend. The difference is bigger for 90-deg bend. It can be again seen 

from Table 5.18 that the present result produces higher flexibility for short-radius 

and thin-walled pipe bend. The explanation for this different is again due to the large 

deformation effect, which is more pronounced in thin-walled pipe. 
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In 1972, Blomfield and Turner [47] updated a thin shell theory previously developed 

by Turner and Ford [31] to account for the pressure reduction effect on in-plane 

bending behaviour of pipe bends. Some numerical comparison was made with 

respect to the experimental result of Gross and Ford [25] and Rodabaugh and George 

[30]. The geometry for their numerical example is as follows: 

Ilr = 0.035 

Rlr= 3.05 

..t= 0.1068 

p =400 psi 

For this particular geometry and pressure loading, the flexibility factor is given in 

Table 5.19* 

Table 5.19 Comparison for flexibility factor with theoretical and experimental 

p=o P =400 psi (kIkp)-1 

Present analysis 17.1 12.12 0.41 

Blomfield & Turner [47] theoretical 15.5 12.54 0.24 

Gross & Ford [25J, experiment 15.0 11.0 0.36 

Rodabaugh & George [20], experiment 15.5 12.0 0.29 

·Values In Table 5.19 were quoted from Blomfield & Turner [47] 

The numerical values in Table 5.19 shows that the present results produce greater 

pressure reduction. Large deformation effect could be an explanation for this 

difference. 

S.S Summary 

Detailed non-linear large deformation finite element analysis of symmetric piping 

elbows of various geometry under in-plane closing moment and internal pressure 

have been carried out to derive a closed form solution of the cross-sectional 
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ovalisation, flexibility, and stress-intensification factors. The parametric results 

confirm the broad characteristics of the pressure reduction effect reported by 

Rodabaugh and George [30] for this simple loading case. Increased flexibility and 

stress-intensification factors are found for small values of pipe bend parameter. It has 

also been found that the broad format of the simple equation derived by Rodabaugh 

and George is acceptable, although there are differences in the values of various 

parameters. Although the Rodabaugh & George pressure reduction equations, widely 

used in piping design, have been broadly verified, the main problem is that the same 

equations are used for in-plane opening moment, and, with slight modification for 

out-of-plane bending. In the following chapter, a similar detailed finite element study 

is carried out for in-plane opening moment. Closed form solution of cross-sectional 

ovalisation, flexibility, and stress-intensification factors is presented. The difference 

structural behaviour of opening moment from closing moment is discussed. 
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Appendix CS 

This appendix presented Figures obtained for in-plane closing bending. The 

approximate formulae presented in this Chapter have been obtained from these 

Figures: 

Fig.A5.1 - AS.5: for Ovalisation factor 

Fig.A5.6 - AS.lO: for Flexibility factor 

Fig.A5.II - AS.15: for Stress-intensification factor 

Continue to the nextpages ... ~ 

225 



in-plane closing moment, a = 30-deg, Rfr = 2 
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Fig.AS.! Ovalisation factor under in-plane clo ing moment for bend angle of 30-deg: 
(a) Rlr = 2, (b) Rlr = 3 
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in-plane closing moment, a = 30-deg, Rlr = 5 

1.2 

1.0 \ 
~ 
~ +- ----0.8 
~ '-- - p/pmax = 0.0 

.r' 
/ 

60---~ ~ - +- . p/pmax = 0.2 --
~ 0.6 

, '-
~, 

:l---- - p/pmax = 0.4 

~ " 
-.. ~ - 09 - p/pmax = 0.6 

/J. .......- p/pmax 0.8 

0.4 - ~- p/pmax = 1.0 

0.2 

0.0 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

A. 

(c) 

in-plane closing moment, a = 30-deg, Rlr = 10 

1.2 

1.0 
'"\ 

0.8 ~ 
+- ~ 

- p/pmax = 0.0 --- .... - "- ·p/pmax=0.2 
...... --~ ~ 0.6 ./' 6o ---=- - p/pmax = 0.4 

v:: ~--- - - 09 - p/pmax = 0.6 , '-
,~' (J 

.......- p/pmax = 0.8 /,;: 11'" ~ 
0.4 - ~- p/pmax = 1.0 

0.2 

0.0 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

A. 

(d) 

Fig.AS .l Ovalisation factor under in-plane closing moment for bend angle of 30-deg: 
(c) RJr = 5, (d) RJr = 10 
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in-plane closing moment, a = 45-deg, Rlr = 2 
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Fig.A5 .2 Ovalisation factor under in-plane closing moment for bend angle of 45-deg: 
(a) Rlr = 2, (b) Rlr = 3 
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in-plane closing moment, a = 45-deg, Rlr = 5 
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Fig.A5.2 Ovalisation factor under in-plane closing moment for bend angle of 45-deg: 
(c) RJr = 5, (d) Rlr = 10 
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in-plane closing moment, a = 60-deg, Rlr = 2 
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Fig.AS .3 Ovalisation factor under in-plane clo ing moment for bend angle of 60-deg: 
(a) Rlr == 2, (b) Rlr = 3 
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in-plane closing moment, a = 60-deg, R/r = 5 
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Fig.AS.3 Ovalisation factor under in-plane closing moment for bend angle of 60-deg: 
(c) Rlr == 5, (d) Rlr == 10 
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in-plane closing moment, a = 90-deg, Rlr = 2 
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Fig.A5.4 Ovalisation factor under in-plane closing moment for bend angle of90-deg: 
(a) Rlr = 2, (b) Rlr = 3 
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in-plane closing moment, a = 90-deg, Rlr = 6 
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Fig.A5.4 Ovalisation factor under in-plane closing moment fo r bend angle of90-deg: 
(c) Rlr = 6, (d) Rlr = 10 
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in-plane clos ing moment, a = 180-deg, Rlr = 2 
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Fig.AS.S Ovalisation factor under in-plane cIo ing moment for bend angle of 180-
deg: (a) Rlr = 2, (b) Rlr = 3 
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in-plane clos ing moment, a = 180-deg, Rlr = 6 
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Fig.A5 .5 Ovalisation factor under in-plane closing moment for bend angle of 180-
deg: (c) Rlr = 6, (b) Rlr = 10 
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In-plane c los ing moment, a = 30-deg , Rlr = 2 
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Fig.A5 .6 Flexibility factor of pipe elbows under in-plane clo ing moment for bend 

angle of 30-deg: (a) Rlr = 2, (b) Rlr = 3 
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In-plane closing moment, a = 30-deg, Rlr = 5 
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Fig.A5.6 Flexibility factors of pipe elbows under in-plane clo ing moment for bend 

angle of 30-deg: (c) RJr = 5, (d) RJr = 10 
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In-pl ane closing moment, a = 45-deg, R/, = 2 
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In-plane closing moment, a = 45-deg, Rlr = 5 
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Fig.A5 .7 Flexibility factors of pipe elbows under in-plane closing moment for bend 

angle of 45-deg: (c) Rlr = 5, (d) Rlr = 10 
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In-plane closing moment, a = 60-deg, Rlr = 2 
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Fig.AS .8 Flexibility factors of pipe elbows under in-plane clo ing moment for bend 

angle of 60-deg: (a) Rlr = 2, (b) Rlr = 3 
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In-plane closing moment, a = 60-deg, Rlr = 5 
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In-plane closing bending, a = 90-deg, Rlr = 2 
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In-plane closing bending, a = 90-deg, Rlr = 6 
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Fig.A5 .9 Flexibility factor of pipe elbow under in-plane clo ing moment for bend 

angle of 90-deg: (c) Rlr = 6, (d) Rlr = 10 
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In-plane closing moment, a = 180-deg, Rlr = 2 
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Fig.AS .10 Flexibility factors of pipe elbows under in-plane closing moment for bend 

angle of 180-deg: (a) Rlr = 2, (b) R/r = 3 
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In-plane closing moment, a = 180-deg, Rlr = 6 
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In-plane closing bending, a = 30-deg, Rlr = 2 
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Fig.AS.lI Stress-intensification factor of 30-deg pipe elbows under in-plane closing 

moment: (a) Rlr = 2, (b) Rlr = 3 
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In-plane closing bending, a = 30-deg, Rlr = 5 
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Fig.A5 .11 Stress-intensification factor of 30-deg pipe elbow under in-plane closing 

moment: (c) Rlr = 5, (d) Rlr = 10 
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In-plane closing bending, a = 45-deg, Rlr = 2 
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In-plane clos ing bending. a = 45-deg . Rlr = 5 
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Fig.A5 .12 Stress-intensification factor of 45-deg pipe elbow under in-p lane clo ing 

moment: (c) Rlr = 5, (d) Rlr = 10 
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In-plane closing bending, a = 60-deg, Rlr = 2 
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Fig.AS.13 Stress-intensification factor of 60-deg pipe elbow under in-p lane clo ing 

moment: (a) Rlr = 2, (b) Rlr = 3 
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Inplane closing bending. a = 60-deg. Rlr = 5 
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In-plane closing bending, a = 90-deg, Rlr = 2 
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Fig.A5 .14 Stress-intensification factor of90-deg pipe elbows under in-plane c10 ing 

moment: (a) Rlr = 2, (b) Rlr = 3 
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Fig.A5 .14 Stress-intensification factor of 90-deg pipe elbows under in-plane closing 

moment: (c) Rlr = 6, (d) Rlr = 10 
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In-plane closing moment, a = 180-deg, Rlr = 2 
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In-plane closing bending, a = 180-deg, Rlr = 6 
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Fig.A5 .15 Stress-intensification factor of 180-deg pipe elbows under in-plane closing 

moment: (c) Rlr = 6, (d) Rlr = 10 
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CHAPTER 6 

IN-PLANE OPENING BENDING 

The behaviour of piping elbows subjected to in-plane closing moment combined with 

internal pressure has been analysed in Chapter 5. The new formulae for 

unpressurised and pressurised piping elbows for ovalisation, flexibility, and stress­

intensification factors have been developed. In this chapter, the behaviour of piping 

elbows under combined loading of in-plane opening moment and internal pressure is 

analysed. To the writer's knowledge, this loading case has been rarely studied in the 

literature. As has been done in Chapter 5 for in-plane closing moment, formulae 

suitable for incorporation in conventional piping design and analysis software for 

cross-sectional ovalisation, flexibility and stress-intensification are developed. 

6.1 Ovalisation Factors 

Under the action of an in-plane opening moment, the cross-section deforms into an 

oval shape with major axis lying on the plane of the bend. This type of deformation 

is called "negative flattening". Negative flattening is defined as the diameter 

contraction from crown to crown at the mid-section of the bend. 

Typical negative flattening of a cross-section is shown in Fig.6.1. This figure is 

plotted for a 90-deg elbow having radius ratio Rlr = 3 and a thickness to cross­

section radius ratio fir = 0.026. 

Figure 6.2 shows a typical moment vs. negative flattening curve plotted for the same 

geometry as figure 6.1. It can be seen that the moment - negative flattening curve is 

represented well by a straight line. It can also be seen from the curve that piping 



elbows exhibit a 'structural hardening' behaviour under an in-plane moment, 

contrary to the 'structural softening' when subjected to in-plane closing moment. 

a = 90-deg, Rlr = 3, tlr = 0.026 

Fig.6.1 Typical cross-sectional ovalisation under in-plane opening bending 

a = 90-deg, Rlr = 3, tJr = 0.026 
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Fig.6.2 Typical moment - flattening (negative) curve under opening bending 
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Ovali arion factor for an in-plane opening moment ha the same definition a for an 

in-plane closing moment, but they are different in ign (positive for clo ing bending 

and negative for opening bending). Since negative values cannot be plotted in a 

logarithm curve, the minus sign will be omitted. 

Figure 6.3 shows the ovalisation factor for 90-deg pipe elbows plotted against pipe 

bend parameters, A., for various radius ratios, p: it wa plotted in a emi log graph. At 

first, an attempt was made to plot the ovalisation factor in a log-log graph, but a 

straight line was not obtained. Accordingly, the ovalisation factor as a function of 

pipe bend parameter cannot be accurately expres ed by a power relation, a given by 

equation (5-3). Instead, straight lines were obtained for the relation between 

ovalisation factor and pipe bend parameter in a semi-log graph as shown in Fig.6.3. 

in-plane opening moment, a = 90-deg 
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Fig.6.3 Ovalisarion factor for 90-deg pipe elbows under in-plane opening bending 
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According to Fig.6.3, the ovalisation factor can be expressed in the following form: 

~ = pexp(-qA.) (6-1) 

where p and q are coefficients to be determined. 

By curve fitting to, ovalisation factor for 90-deg pipe elbows due to in-plane opening 

bending can be expressed as follows: 

~ = 1. 730exp(- 2.142A.) 
~ = 1.701exp(-1.533A.) 

~ = 1.696exp(-1.221A.) 

~ = 1.656exp(-1.175..l) 

for p =2 
for p = 3 

for p =6 
for p =10 

(6-2) 

(6-3) 

(6-4) 

(6-5) 

The above equations are not suitable for design purpose. Based on ovalisation factor 

for a long radius bend (Rlr = 10), equations (6-2) through (6-5) can be expressed in 

the following form: 

~ = 1.656exp(-1.175..l)(J(..l)] (6-6) 

where j(2) represents the dependence of ovalisation factor on radius ratio, Rlr. This 

function would be different for every radius ratio. Following the procedure of 

Fujimoto and Soh [92], equations (6-2) through (6-5) can be expressed in the 

following form: 

~ = 1.656exp(-1.175A.Xl.0393 -0.9026,l] for p = 2 

~ = 1.656exp(-1.1752X1.0254-0.34522] for p = 3 

~ = 1.656exp(-1.175..lXl.0239-0.04666,l] for p = 6 

~ = 1.656exp(-1.175A.Xl.O-0.OOO2A.] for p = 10 

(6-7) 

(6-8) 

(6-9) 

(6-10) 
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Figure 6.4 shows the ovali ation factor obtained directly from finite element (FE), 

using equation (6-2) through (6-5) and using equation (6-7) through (6-10) . It can be 

een that the proposed equation fit well to the results from finite element. 
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Fig.6.4 Comparison for ovalisation factor between derived formulae and FE re ults 

6.1.1 Effect of Bend Angle on Ovalisation Factor 

To account for the effect of bend angle on ovali ation factor due to in-plane opening 

bending, pipe elbow of bend angle 30, 45 , 60, 90, and 180-deg have been 

investigated. It i expected that the effect of bend angle on ovali ation factor i of 

ignificance, since it would tend to behave a a straight pipe a the bend angle 

approaches hypothetically zero . Figure 6.5 through 6.8 show the ovali ation factor 

for pipe elbows of various bend angles : 
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in-plane opening moment, a = 30-deg 
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Fig.6.S Ovalisation factor for 30-deg pipe elbows due to in-plane opening bending 

in-plane opening moment, a = 45-deg 
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Fig.6.6 Ovalisation factor for 4S-deg pipe elbows due to in-p lane opening bending 
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in-plane opening moment, a = 60-deg 
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Fig.6.7 Ovalisation factor for 60-deg pipe elbows due to in-plane opening bending 

in-plane opening moment, a = 180-deg 
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Fig.6.8 Ovalisation factor for] 80-deg pipe elbows due to in-plane opening bending 
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From these figures, the ovalisation factor for various bend angles can be expressed in 

the following form: 

~ = 1.656exp(-1.175AXa -bA] (6 -11) 

It can be seen from equation (6-11) that the dependence of ovalisation factor on 

radius ratio can be represented by a linear relation in terms of pipe bend parameter, 

A, with a and b the coefficients of the straight lines with their values given in Table 

6.1 and 6.2 respectively: 

Table 6.1 Values of coefficient "a" in equation (6-11) for various bend angles 

Rlr Bend angle, a 

30-deg 45-deg 60-deg 90-deg I80-deg 

2 0.7216 0.8675 0.9507 1.0393 1.1102 

3 0.7194 0.8624 0.9421 1.0254 1.0557 

4 0.7172 0.8602 0.9406 1.0244 1.0280 

5 0.7140 0.8580 0.9414 1.0242 1.0035 

6 0.7108 0.8561 0.9425 1.0239 0.9882 

7 0.7076 0.8547 0.9435 1.0147 0.9676 

8 0.7044 0.8533 0.9445 1.0105 0.9538 

9 0.7012 0.8522 0.9453 1.0062 0.9417 

10 0.6954 0.8513 0.9469 1.0000 0.9291 
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Table 6.2 Values of coefficient "b" in equation (6-11) for various bend angles 

Rlr Bend angle, a 

30-deg 45-deg 60-deg 90-deg I BO-deg 

2 1.5307 1.4318 1.2443 0.9026 0.4071 

3 0.8669 0.7529 0.5938 0.3452 0.1146 

4 0.5185 0.4516 0.3747 0.1502 0.1075 

5 0.3144 0.2582 0.2086 0.0535 0.0557 

6 0.1998 0.1229 0.0644 0.0466 0.0553 

7 0.0811 0.0372 0.0188 0.0068 -0.0034 

8 0.0082 -0.0319 -0.0405 0.0024 -0.0219 

9 -0.0485 -0.0856 -0.0866 0.0009 -0.0363 

10 -0.1149 -0.1142 -0.1236 0.0002 -0.0431 

It can be inferred from these Tables that the terms in the square bracket must be 

taken into account except for 90-deg pipe elbows of long radius bend. 

6.1.2 The Pressure Reduction Effect 

When internal pressure acts on an ovalised cross-section resulting from in-plane 

bending load, it tries to push the deformed cross-section back to its original circular 

shape. However, the deformed cross section of pipe elbows under an in-plane 

opening bending is again in oval shape but with the major axis lying on the plane of 

the bend. Subsequent internal pressure loading will decrease the length of the major 

axis. This type of deformation is shown in Fig.6.9: 
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a = 90-deg, Rlr = 3, tlr = 0.026 

Fig.6.9 Typical pressure reduction effect on cross-sectional negative flattening 

Similar to the positive flattening exhibited in Chapter 5, pressure reduction is 

evaluated here on the radial displacement of the crown node at the mid-section of the 

bend, where the maximum value is expected to be located. Figure 6.10 shows a 

typical pressure - negative flattening curve plotted for 90-deg elbow under in-plane 

opening moment. 

In Fig.6.1 0, the abscissa of 0.0 represents the final load tep of moment loading and 

the start of subsequent internal pressure load. It can be seen that the relation between 

internal pressure loading and negative flattening is non-linear. Thi graph again 

shows the «Haigh effect" [11] where non-linearity is pre ent whenever internal 

pressure load acts on straight or curved pipe of noncircular cross- ection. fn thi 

study, internal pressure was applied to pipe elbows with oval cm s- ection resulting 

from an in-plane opening moment. 

265 



in-plane opening bending, a = 90-deg, Rlr = 3, tlr = 0.026 
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Fig.6.10 Pressure - flattening (negative) curve for a 90-deg pipe elbow 

Figure 6.11 through 6.14 show the ovalisation factor for 90-deg pipe elbows plotted 

against pipe bend parameters for various radius ratios. These figures again show 

clearly that the effect of the presence of internal pressure is to reduce the ovalisation 

factor resulting from the in-plane opening moment. The pressure reduction is more 

pronounced in thin walled piping elbows (low pipe bend parameter) . In what foJlow , 

the pressure reduction effect on negative ovalisation factor is comprehensively 

evaluated and empirical formulae are developed and proposed. The procedure of 

Rodabaugh and George [30] followed in Chapter 5 is again adopted in this ection. 
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in-plane opening bending, a = 90-deg, Rlr = 2 
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Fig.6.11 Pressure reduction effect for 90-deg pipe elbows: Rlr = 2 

in-plane opening bending, a = 90-deg, Rlr = 3 
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Fig.6.12 Pressure reduction effect for 90-deg pipe elbows: Rlr = 3 
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In-plane opening bending, a = 90-deg, R/r = 6 
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Fig.6.13 Pressure reduction effect for 90-deg pipe elbows: Rlr = 6 

in-plane opening bending, a = 90-deg, R/r = 10 
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Fig.6.14 Pressure reduction effect for 90-deg pipe elbows: R/r = 10 
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Figure 6.15 and 6.16 show typical pressure reduction effects on the ovalisation factor 

of 90-deg pipe elbows under in-plane opening moment. These figures are constructed 

using the relation in equation (5-15) where the pressure reduction effect is written as 

a function of nondimensionl pressure piE, nondimensional thickness rlt, and radius 

ratio Rlr. 

It can be seen from Fig.6.15 and 6.16 that straight lines in log-log graphs are 

obtained if the pressure reduction is plotted against non-dimensional pressure piE. 

There is a slight departure from linearity if the pressure reduction is plotted against 

nondimensional thickness rlt and radius ratio Rlr. In this study, the pressure 

reduction effect is approximated by a linear relationship and any error introduced as 

a result will be assessed and discussed at the end of this chapter. Following careful 

study of Fig.6.15 and 6.16 and similar plots for all radius ratio and wall thickness 

(not shown) along with Fig.6.11 through 6.14, the following equation is proposed for 

the negative ovalisation factor for 90-deg pipe elbows under in-plane opening 

moment: 

~ = ~ 
P (p)(r)X(R)O.S70 1+76 - - -

E t r 

fora=90-deg (6 -12) 

Equation (6-12) can be directly compared with the corresponding equation for in­

plane closing moment as given by equation (5-16) for 90-deg pipe elbows. It can be 

seen that these equations are markedly different from one to another. They are also 

markedly different in the coefficient of the pressure reduction - 76 rather than 0.205. 

Of course, they are also different in the index for rlt and Rlr. By comparing Fig.6.11 

through 6.14 with corresponding figures for in-plane closing moment, it can be 

quickly noted that the magnitude of pressure reduction is bigger for in-plane closing 

moment. 

269 



a = 90-deg, Rlr = 3 
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a = 90-deg, tlr = 0.03 
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Fig.6.16 Pressure reduction for constant radius ratio plotted against (a) piE, (b) Rlr 
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6.1.3 Effect of Bend Angle on Pressure Reduction 

The pressure reduction effect on the ovalisation factor for pipe elbows with different 

bend angles other than 90-deg can be derived from Fig.A6.1 through A6.5 of 

Appendix C6. By constructing similar log-log graphs, the following formulae for 

negative flattening of elbow cross section are proposed: 

~ - ~ 
p - (X J% 0.206 

1+175; 7 3(~J 
fora=30-deg (6-13) 

~ = ~ 
p (PXrJ%(R)0.333 1+126 - - -

E t r 

fora=45 -deg (6-14) 

~ = ~ 
p (pXrJ%(R)0.430 1+100 - - -

E t r 

fora=60-deg (6 -15) 

~ = ~ 
P (PXr)%(R)o.ns 1+52 - - -

E t r 

fora= 180-deg (6 -16) 

Equations (6-12) through (6-16) can be expressed in an alternative form by noting 

that: 

Using this relation, the negative ovalisation factor of pipe elbows under in-plane 

opening and internal pressure can be approximated as: 
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j: - ~ 
"p - j 3J ()1.I25 

1+48.,\ ~; ~ ~ 
for a = 30 - deg (6 -17) 

j: - ~ 
., p - (3 J ()l.oo5 

1+34.5 ~; ~ ~ 
fora=45 -deg (6 -18) 

~ - ~ 
p - (3 J ()0.905 

1+27.5 ~; ~ ~ 
fora=60-deg (6 -19) 

~ - ~ 
P - j 3 J ()0.765 

1+21.Vl~; ~ ~ 
for a = 90 - deg (6 - 20) 

~ - ~ 
P - (3 J ()0.61O 

1 +14.5 ~~ AX ~ 
fora=180-deg (6-21) 

Equations (6-12) through (6-21) if necessary might be further simplified with the 

aims to find the coefficient and the power of radius ratio of the denominator. This 

simplification will not be processed any further here, since the bend angles 

considered in this study have covered the need in practical usage. 

6.2 Flexibility Factors 

The procedure for determining the flexibility factors of piping elbows under in-plane 

opening moment is similar to those used for in-plane closing moment. The end 

rotation is obtained from the axial displacement of the extrados and the intrados 

nodes at the junctions of the bends with the loaded tangent and the fixed tangent. The 

end rotation of an elbow at the junction with the loaded tangent is defined again as <PI 

and the end rotation of an elbow at the junction with fixed tangent is defined as <P2. 

Typical deflection of piping elbows showing end rotation under in-plane opening 

moment is shown in Fig.6.l7. 
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Fig.6.17 Deflection of a pipe elbow under in-plane opening bending 

The procedure for determining the end rotation of an elbow under in-plane moment 

has been fully described in chapter 5. The total end rotation is obtained by 

subtracting the rotation of section-2 as given by equation (5-29b) from the rotation of 

section-las given by equation (5-29a). Typical moment-end rotation curve of an 

elbow under in-plane opening moment is shown in Fig.6.18. 
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a = 90·deg, Rlr = 3, tlr = 0.026 
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Fig.6.18 Typical moment end rotation curve under in-plane opening bending 

Fig.6.18 shows that an elbow subjected to in-plane opening moment exhibits the 

behaviour of non-linear 'hardening' structures. This figure can be directly compared 

with Fig.5.25 of chapter 5, where an elbow subjected to an in-plane closing moment 

exhibits the behaviour of non-linear 'softening' structures. 

The flexibility factor is further determined using equation (5-32). Figure 6.19 shows 

the flexibility factors for 90-deg pipe elbows under an in-plane opening bending. It 

can be seen from Fig.6.l9 that the relation between flexibility factor, k, and pipe 

bend parameter, A, is essentially linear in a log-log plot. Accordingly the flexibility 

factor for in-plane opening bending can be expressed in form of equation (5-33). 

Figure 6.19 also shows that the flexibility factor can be represented accurately by a 

single curve as only a function of pipe bend parameter, A, and less dependent on 

radius ratio, Rlr. 
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In-pl ane opening bending, a = 90-deg 
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Fig.6.19 Flexibility factor for 90-deg pipe elbows under in-plane opening bending 

An expression for the flexibility factor of90-deg pipe elbows under in-plane opening 

moment can be derived from Fig.6.19. By curve fitting, the flexibility factor for 90-

deg pipe elbows under an in-plane opening moment can be approximated by: 

k = 1.82 
..1.0.94 for p = 2 (6 - 22) 

k = 1.75 
;to.95 for p = 3 (6 - 23) 

k = 1.62 
;to.99 for p = 6 (6 - 24) 

k = 1.66 
;to.96 for p = 10 (6 - 25) 

Equations (6-22) through (6-25) are not suitable for design purposes. However these 

equations can be expressed in form of equation (5-38). Following the procedure of 

Fujimoto and Soh [92] , equations (6-22) through (6-25) can be written in the 

following form: 
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k = 1'1
5 

[1.0926 + 0.0584 In (;L)] for p = 2 (6 - 26) 

k = 11
5 

[1.058 + 0.0475 In (A)] for p = 3 (6 - 27) 

k = 11
5 

[0.98+0.0077In(A)] for p = 6 (6 - 28) 

k = 11
5 

[1.0084 + 0.03851n(A)] for p = 10 (6 - 29) 

The term outside the square bracket is the asymptotic solution of Clark and Reissner 

[20] as adopted in the current design piping code [114, 120], while the terms in the 

square bracket show the dependency of flexibility factor on radius ratio . It can be 

quickly noted from these equations that the term in the square bracket for 90-deg 

pipe elbow is not significant. Figure 6.20 shows plots of flexibility factor obtained 

from finite element in comparison with the derived formulae . It can be seen that the 

proposed equations fit well the results from finite element. 
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Fig_6.20 Comparison for flexibility factor between the derived formulae and FE 
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6.2.1 Effect of Bend Angle on Flexibility Factors 

To account for the effect of bend angle on flexibility factor due to in-plane opening 

bending, pipe elbows of bend angles 30, 45, 60, 90, and 180-deg have been 

investigated. It is expected that the effect of bend angle on flexibility factor is of 

significance, since a pipe elbow would tend to behave as a straight pipe as the bend 

angle approaches hypothetically zero. Figure 6.21 through 6.24 show the flexibility 

factor for pipe elbows of various bend angles: 

In-plane open ing bending . a = 30-deg 

100 I---
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Fig.6.21 Flexibility factor for 30-deg pipe elbows under in-plane opening bending 
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In-plane opening bending. a = 45-deg 
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Fig.6.22 Flexibility factor for 45-deg pipe elbows under in-plane opening bending 

In-plane opening bending. a = 6O-deg 
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Fig.6.23 Flexibility factor for 60-deg pipe elbows under in-p lane opening bending 

279 



in-plane opening bending , a = 180-deg 
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Fig.6.24 Flexibility factor for 180-deg pipe elbows under in-plane opening bending 

Approximate formulae for flexibility factors can now be obtained from these figures 

by curve fitting and the results are given in the following form: 

k = 1.65 [a-bln(.-l)] 
.-l 

(6 - 30) 

where the coefficient 'a' and ' b' are a functions of radius ratio Rlr as summarised in 

Table 6.3 and 6.4 respectively. 
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Table 6.3 Values for coefficient 'a' in equation (6-30) for various bend angles 

Rlr Bend angle, a 

30-deg 45-deg 60-deg 90-deg ISO-deg 

2 0.5483 0.8000 0.9438 1.0926 1.2190 

3 0.6131 0.8140 0.9352 1.0580 1.1480 

4 0.6797 0.8360 0.9268 1.0217 1.0931 

5 0.7307 0.8566 0.9250 0.9980 1.0497 

6 0.7690 0.8735 0.9280 0.9800 1.0215 

7 0.8149 0.8993 0.9358 0.9770 1.0007 

8 0.8509 0.9214 0.9484 0.9797 0.9951 

9 0.8840 0.9440 0.9658 0.9912 1.0021 

10 0.9220 0.9700 0.9900 1.0084 1.0266 

Table 6.4 Values for coefficient 'b' in equation (6-30) for various bend angles 

Rlr Bend angle, a 

30-deg 45-deg 60-deg 90-deg lS0-deg 

2 0.0961 0.0286 -0.0135 -0.0584 -0.0970 

3 0.0865 0.0304 -0.0076 -0.0475 -0.0750 

4 0.0613 0.0300 0.0009 -0.0261 -0.0466 

5 0.0391 0.0247 0.0029 -0.0156 -0.0290 

6 0.0305 0.0120 0.0020 -0.0077 -0.0144 

7 -0.0053 0.0039 -0.0051 -0.0096 -0.0124 

8 -0.0275 -0.0116 -0.0151 -0.0141 -0.0134 

9 -0.0497 -0.0305 -0.0291 -0.0236 -0.0206 

10 -0.0719 -0.0581 -0.0472 -0.0385 -0.0316 

It can be inferred from these Tables that the terms in the square bracket of equation 

(6-30) could be neglected for pipe elbows of large angle and long radius bend 

without any significant loss in accuracy. 
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6.2.2 Pressure Reduction Effect 

It has been shown in Chapter 5 that pipe elbows subjected to in-plane closing 

moment exhibit non-linear structural 'softening' behaviour. The pressure reduction 

effect was studied and various formulae developed. It has also been shown earlier in 

this chapter that pipe elbows subjected to in-plane opening moment exhibit non­

linear structural 'hardening' behaviour. It is expected that the pressure reduction 

effect would be different for the in-plane closing and opening cases. In this section, 

the pressure reduction effect on the flexibility factor for pipe elbows subjected to 

opening moment is studied and once more approximate formulae developed. The 

same procedure as in previous sections for assessing the pressure reduction effect is 

also followed. 

A typical pressure-end rotation curve is shown in Fig.6.25 . It has been plotted for a 

90-deg pipe elbow having a radius ratio of three. The abscissa of 0.0 represents the 

final load step of opening moment loading and the start of the subsequent internal 

pressure loading. 

ex = 90-deg, Rlr = 3, tlr = 0.026 
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Fig.6.25 Typical pressure - end rotation curve under in-plane opening moment 
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It can be seen from Fig.6.25 that the relation between internal pres ure and end 

rotation is again non-linear. This figure clearly shows the Haigh effect [11] where 

high non-linearity apparent when internal pressure acts on a pipe of noncircular cross 

section. In this case, the internal pressure loading has been applied to an elbow 

ovalised due to in-plane opening moment. 

Figure 6.26 through 6.29 show the flexibility factor for 90-deg pipe elbows plotted 

against pipe bend parameters for various radius ratios. Once more it can be seen that 

internal pressure reduces the flexibility factor (stiffening effect) for thin-walled pipe 

elbows and increasing the flexibility factors (weakening effect) for thick-walled pipe 

elbows. 

In-plane opening bending, a = 90-deg, RJr = 2 
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Fig.6.26 Flexibility factor with internal pressure for 90-deg pipe elbow : Rlr = 2 
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In-plane opening moment, a = 90-deg, Rlr = 3 
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Fig.6.27 Flexibility factor with internal pressure for 90-deg pipe elbows : Rlr = 3 

In-plane opening moment, a = 90-deg, Rlr = 6 
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Fig.6.28 Flexibility factor with internal pres ure for 90-deg pipe elbow : Rlr = 6 
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In-plane opening moment, a = 9O-deg, Rlr = 10 
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Fig.6.29 Flexibility factor with internal pressure for 90-deg pipe elbows: Rlr = 10 

Pressure reduction effect in line with equation (5-45) can be obtained from Fig.6.26 

through 6.29. If the pressure reductions are plotted against piE and rlt for a constant 

radius ratio, similar plots to Fig.5.17 will be obtained. For certain value of thickne s 

to cross-section radius ratio, equation (5-45) produce negative values. 

A typical plot of flexibility factor against pressure, in line with equation (5-45) is 

shown for 90-deg pipe elbows using a log-log graph in Fig.6.30 for con tant radiu 

ratio and in Fig.6.31 for constant thickness. Straight lines are again obtained. Linear 

relations are also obtained for the plot of pressure reduction effect against radiu 

ratio, Rlr. A small deviation from linearity can be een if the pressure reduction i 

plotted against rlt. It should be noted that only positive values produced by equation 

(5-45) are plotted in these Figures, because negative value cannot be plotted in a 

log-log graph. As indicated by Fig.6.26 through 6.29, there is a value of rlt where 

internal pressure no longer reduces the flexibility factor but increases it, produce a 

negative value of equation (5-45). For 90-deg pipe elbows as shown in Fig.6.26 

through 6.29, the values of rlt where internal pres ure effect on flexibility factor 

changes from reduction effect to increa ing effect is at about 12.35. 
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a = 90-deg. Rlr = 3 
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Fig.6.30 Pressure reduction for constant radius ratio plotted again t (a) piE, (b) r/t 
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Study of Fig.6.30 and 6.31 and similar plots for all radius ratio and thickness (not 

shown) along with Fig.6.26 through 6.29, suggests the following formula for the 

flexibility factors for 90-deg pipe elbows under in-plane opening moment: 

k = k 

p ( X )1.%'( )0.376 
1+0.145; 7 3 ~ 

r 
for-> 12.35 

t 
(6-31) 

where k is flexibility factor in the absence of internal pressure as given by equation 

(6-30) forin-plane opening moment. The limitation of equation (6-31) obtained from 

Fig.6.26 through 6.29. Equation (6-31) need to be modified for values of r/t less than 

12.35. This will be subjected to further research. 

6.2.3 Effect of Bend Angle on Pressure Reduction 

It has been shown in Chapter 5 that the pressure reduction effect on flexibility factors 

is very much influenced by the angle of the bend for the case of in-plane closing 

moment. This effect is investigated as before for in-plane opening moment. 

The same procedure is applied for all bend angles. By constructing log-log graphs for 

pressure reduction corresponding to equation (5-45) using the data of Fig.A6.6 

through A6.10 of Appendix C6, flexibility factors which include internal pressure 

effect for various bend angles are proposed as follows: 

k = k 

P o(pXr)I.%'(R)0'037 1+0.30 - - -
E t r 

k = k 

p ( X )1%( 0174 
1+0.225; 7 3 ~r 

{

a=30-deg 

for r 
- > 13.11 
t 

{

a=45-deg 

for r 
- > 12.47 
t 

(6-32) 

(6-33) 
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k 
kp = 1% 

( X ) 
3(R)0.266 

1 + 0.185; 7 -; 
k = k 

p ( X )1% )0481 
1+0.115; 7 3(: . 

{

a = 60-deg 
for r 

- >12.42 
t 

{

a = 180-deg 
for r 

- > 12.22 
t 

As previously, an alternative expression can be obtained by noting that: 

(6- 34) 

(6- 35) 

Using this relation, flexibility factors for piping elbows under the action of bending 

and internal pressure can be further written in the following form: 

k = k for r 
{

a=30-deg 

P (pr3 Xl ).K(R)0.370 - > 13.11 
1+0.084 - - - t 

3D A. r 

k = k 
P {pr3 X 1 )X(R)O'S07 1+0.06 - - -

3D A. r 

k = k 

p (pr3 XI ).K(R)0.599 1+0.051 - - -
3D A. r 

k = k 
P {pr3 X 1 ).K(R)0.709 1+0.04 - - -

3D A. r 

k = k 

P (pr 3 J( 1 J.K(R)0.814 1+0.031 - - -
3D A. r 

{

a=4S-deg 
for r 

- > 12.47 
t 

{

a = 60-deg 
for r 

- > 12.42 
t 

{

a = 90-deg 
for r 

-> 12.35 
t 

{

a=180-deg 
for r 

- > 12.22 
t 

(6- 36) 

(6-37) 

(6-38) 

(6- 39) 

(6 - 40) 
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The formulae in equation (6-22) through (6-31) if necessary, can be further 

simplified into the following forms: 

where A, H, m, and n are a function of bend angle a. This simplification will not be 

processed further here, as the bend angles considered have covered the pipe elbows 

in practical usage. 

6.3 Stress-Intensification Factors 

Stress-intensification factors for unpressurized and pressurized pipe elbows under in­

plane closing moment have been studied in chapter 5 and simple design formulae 

were developed. In this section, similar formulae for stress-intensification factor for 

pipe elbows under in-plane opening moment are derived. The nature of the pressure 

reduction effect is then assessed. The effect of bend angle on stress-intensification 

factors of unpressurized and pressurized elbows is once more specifically examined. 

Typical stress contour plots of pipe elbows under in-plane opening moment are 

shown in Fig.6.32 for longitudinal stress and Fig.6.33 for circumferential (hoop) 

stress. These figures are obtained for a 90-deg pipe elbow having radius ratio Rlr 

equals three and thickness to cross-section radius ratio tlr equal to 0.026. 
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Fig.6.32 Typical longitudinal tress contour plot of piping elbow under in-plane 

opening moment, (a) outer surface, (b) inner urface 
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Fig.6.33 Typical circumferential stress contour plot of piping elbows under in-plane 

opening moment, (a) outer urface, (b) inner surface 
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Figure 6.32 shows that the maximum longitudinal stress occurs at the outer surface 

of the elbow. It is a compressive stress at the mid-section of the elbow. This can be 

compared to the case of an in-plane closing moment where the maximum 

longitudinal stress also occurs at the outer surface but it is in tension. 

Figure 6.33 shows that the maximum circumferential stress occurs at the inner 

sutface of the elbow. It is a tensile stress also at mid section of the bend. Again, this 

can be directly compared to the case of an in-plane closing moment where the 

maximum circumferential stress also occurs at the inner surface of the elbow, but is a 

compressive stress. 

It can be seen from Fig.6.32 and 6.33 that the maximum stresses in piping elbows 

under an in-plane opening moment is the circumferential stress at the inner surface. 

In what follows, the maximum hoop stresses at the mid-section of the bend and its 

location in the circumferential direction is studied. 

Typical longitudinal and hoop stress distributions at mid-section of a 90-deg pipe 

elbow is shown in Fig.6.34. The stresses are plotted from the extrados toward the 

intrados. The stresses have been normalised with the nominal bending stress 

calculated from the theory of beam bending as given by equation (5-57). 

It again can be clearly seen from Fig.6.34 that the maximum stress in a pipe elbow 

subjected to bending is several times greater than predicted using the theory of beam 

bending. The maximum stress no longer occurs in the longitudinal direction but 

occurs in the hoop direction. It is tensile stress under in-plane opening moment. The 

maximum stress also changes position from the most distant from the neutral axis 

according to the beam bending theory to a position close to the neutral axis in the 

present analysis. Figure 6.34 also shows that the maximum compressive hoop stress 

for a 90-deg pipe elbow is located at crown (90-deg circumferentially measured from 

the extrados). This stress will be evaluated as stress-intensification factor. 
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a = 90-deg, Rlr = 3, tlr = 0.026 
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Fig.6.34 Stress distribution for a 90-deg pipe elbow under in-plane opening bending 

Figure 6.35 shows a typical moment - stress (hoop) curve for a pipe elbow ubjected 

to an in-plane opening moment plotted for a 90-deg pipe elbow with Rlr and tlr equal 

3 and 0.26 respectively. 

[t can be seen from Fig.6.35, that a pipe elbow subjected to an in-plane opening 

moment again exhibit non-linear structural hardening behaviour. Figure 6.35 wa 

plotted for a relatively thin-walled pipe to how the non-linearity. It can be een from 

Fig.6.35 that the non-linearity is e entially small. 

Figure 6.36 shows the stress-inten ification facto r for 90-deg pipe elbow with 

variou radius ratios subjected to in-plane opening moment. It can be seen that tre -

intensification factor depend on pipe bend parameter A. - higher value are obtained 

fo r small pipe bend parameter. Figure 6.36 al 0 show that tre s-inten ification 

factor i not very influenced by radius ratio - the straight lines almo t coincide with 

each other. 
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a = 90· deg, Rlr = 3, tlr = 0.026 
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Fig.6.35 Moment - stress (hoop) plot for a 90° pipe elbow due to opening bending 
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Fig.6.36 Stress-intensification factor for 90-deg pipe elbows due to opening bending 
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As shown in Fig.6.36, the relation between stress-intensification factor, r, and pipe 

bend parameter, A, is essentially linear in a log-log plot. Accordingly, the relation can 

be expressed in the form of equation (5-58). By curve fitting, expressions for the 

stress-intensification factor for 90-deg pipe elbows subjected to in-plane opening 

moment are obtained: 

2.463 R (6- 41) Y= .l0.536 ; for-=2 
r 

2.307 R (6-42) r= .l0.56 ; for-=3 
r 

2.006 R (6-43) r= A,0.632 ; for-=6 
r 

1.717 R (6 - 44) r = A,0.74 ; for-=1O 
r 

These equations are not suitable for design purposes. Following the procedure of 

Fujimoto and Soh [92J, equations (6-41) through (6-44) can be written in form of 

equation (5-63): 

r = 1.~ [1.2553 + 0.1259In(A)] 
R (6 -45) for-=2 

.(3 r 

r = 1.~ [1.1992 + 0.1 062 In (A )] R (6- 46) for-=3 
.(3 r 

r = l.~ [1.0606 + 0.0355 In (A)] R (6-47) for-=6 
A;3 r 

r = 1.~ [0.9078 - 0.0706In(.l)] 
R (6-48) for- =10 

A;3 r 

In the above equations, the term outside the square bracket is the asymptotic solution 

of Clark and Reissner [20] and the term in the square bracket represents the 

dependence of stress-intensification factor on radius ratio. Figure 6.37 shows the 

stress-intensification calculated using the derived formula in comparison with those 

obtained from finite element. It can be seen that the plots for the proposed design 
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formulae, i.e., equations (6-45) through (6-48) coincide with those calculated using 

equations (6-41) through (6-44). 
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Fig.6.37 Comparison for stress-intensification factor between the derived formulae 

and finite element results 

6.3.1 Effect of Bend Angle on Stress-Intensification Factor 

It can be generally understood that as the bend angle of a pipe elbow becomes 

smaller, it tends to behave as a straight pipe. The location and direction of maximum 

stress might be shifted from crown toward the furthest location from the neutral axis. 

To account for the effect of bend angle on stress-intensification factor pipe elbow 

having bend angle of 30, 45, 60, as well as 180-deg subjected to opening bending 

have been studied. Figure 6_38 through 6.41 show the stress-distributions at the mid­

section of the bend for pipe elbows of different bend angle subjected to in-plane 

opening moment 
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a = 30-deg, Rlr = 3, tlr = 0.026 
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Fig.6.38 Stress-distribution for 30-deg pipe elbows subjected to opening bending 
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a = 60-deg, Rlr = 3, fir = 0.026 
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a = 180-deg, Rlr = 3, fir = 0.026 
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Fig.6.41 Stress-distribution for 180-deg pipe elbow subjected to opening bending 

It is intere ting to note that the maximum tensile hoop tres occur at the inner 

urface of the wall, located at the crown (90-deg from extrado ), for pipe elbow 

having bend angle of 180-deg as hown in Fig.6.41. For pipe elbows of bend angle 

299 



30,45, and 60-deg, the maximum hoop stress is located at 100-deg from the extrados 

towards the intrados as shown in Fig.6.38, 6.39, and 6.40. It might be concluded that 

the maximum hoop stress in the circumferential direction is located at the crown for 

pipe elbows of bend angle 90-deg and greater and shifted by 10-deg from the crown 

toward the intrados for bend angles less than 90-deg and greater than 30-deg. In what 

follows, the maximum tensile hoop stress at the inner surface of the pipe wall is 

evaluated at any circumferential position, depending on the bend angle. For the 

elbows considered in this study, the location of maximum stress is tabulated below: 

Bend angle (a), deg 30 45 60 90 180 

Position from extrados «(j), deg 100 100 100 90 90 

Figure 6.42 through 6.45 show plots of stress-intensification factors for various bend 

angles under in-plane opening moment. It can be seen that the stress-intensification 

factor for 30, 45, and 60-deg pipe elbows not only depends on the parameter, ~ but 

also depends on the radius ratio: as the bend angle becomes greater, the dependence 

of stress-intensification factor on radius ratio becomes smaller. Figure 6.45 shows 

that the stress-intensification factor for l80-deg pipe elbows is less dependent on 

radius ratio. 
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Expres ions for the tre -intensification factor can be derived a an approximation 

from the e figure by means of a curve fitting. The tre -intensification factor for 

pipe elbows subjected to in-plane opening moment can be written in a imilar form 

to equation (5-68). 
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r= l.~[a-bln(A.)] 
AT3 

(6- 49) 

As in equation (5-68), the tenn outside the square bracket is the asymptotic solution 

of Clark and Reissner [20]. The tenn in the square bracket represents the dependence 

of stress-intensification factor on pipe bend parameter as well as on radius ratio: the 

coefficient 'a' and 'b' are functions of radius ratio as given in Table 6.5 and 6.6 

respectively for various bend angles. 

Table 6.5 Approximate values for coefficient "a" in equation (6-49) 

Rlr a 

30-deg 45-deg 60-deg 90-deg l80-deg 

2 0.4320 0.7277 0.9776 1.2553 1.4185 

3 0.5314 0.7992 1.0033 1.1992 1.3031 

4 0.6005 0.8266 1.0045 1.1541 1.1765 

5 0.6422 0.8452 1.0017 1.1085 1.1033 

6 0.6685 0.8692 0.9931 1.0606 1.0413 

7 0.6934 0.8666 0.9861 1.0227 1.0014 

8 0.7102 0.8733 0.9699 0.9823 0.9636 

9 0.7236 0.8785 0.9481 0.9435 0.9314 

10 0.7400 0.8826 0.9217 0.9078 0.9029 
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Table 6.6 Approximate values for coefficient "b" in equation (6-49) 

Rlr a 

30-deg 45-deg 60-deg 90-deg 180-deg 

2 0.0380 -0.0052 -0.0616 -0.1259 -0.1389 

3 0.0283 -0.0140 -0.0638 -0.1062 -0.1182 

4 0.0246 -0.0166 -0.0627 -0.0802 -0.0896 

5 0.0220 -0.0181 -0.0573 -0.0555 -0.0651 

6 0.0203 -0.0155 -0.0476 -0.0355 -0.0330 

7 0.0191 -0.0139 -0.0345 -0.0061 -0.0161 

8 0.0182 -0.0082 -0.0171 0.0186 0.0084 

9 0.0175 -0.0001 0.0043 0.0433 0.0329 

10 0.0169 0.0129 0.0309 0.0706 0.0539 

It is not easy to draw a comprehensive conclusion from these Tables unless the 

results are checked for some extreme values of A. and Rlr. The reason for this is that 

if the stress intensification factors are expressed in form of equation (5-58), the 

corresponding value of 'index q' in some cases is greater than 2/3, but smaller than 

2/3 in other cases. Consequently, if the term outside the square bracket of equation 

(5-63) is the asymtotic solution of Clark and Reissner (q = 2/3), the sign of the 

second term in the square bracket could be positive and negative. In addition, the 

sign of the second term in the square bracket will further depend on the value of A, 

whether it is greater or smaller than 1. The mixing sign of the second term in the 

square bracket (value of coefficient b in Table 6.6) however can be avoided by 

changing the term outside the square bracket, but the results can not be directly 

compared to the results of in-plane closing bending case. More discussion of this 

problem and comparison with the closing bending case will be presented at the end 

of this Chapter. 
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6.3.2 The Pressure Reduction Effect 

The pressure reduction effect on ovalisation (negative flattening) and flexibility 

factors of piping elbows under in-plane opening moment has been examined in the 

previous sections of this chapter. In this section, the pressure reduction effect on the 

stress-intensification factor is studied and simple formulae in a similar way to 

previous Chapter is derived. 

Figure 6.46 shows a typical hoop stress distribution at the mid-section of an elbow 

under an in-plane opening bending. It can be seen that the maximum hoop stress 

occurs at the inner surface as tension stresses. In Fig.6.46, the toroidal membrane 

stress due to internal pressure is included in the total stresses for pre surized 

condition. Because the stresses are factored by nominal bending stres (to obtained 

stress-intensification factor), the membrane stress due to internal pressure as given 

by equation (2-15) should be subtracted from finite element result (Fig.6.46) 
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Figure 6.47 shows stress-intensification factor for pipe elbows under combined in­

plane opening moment and internal pressure. It can be clearly seen that the effect of 

internal pressure is to reduce the stress. Figure 6.47 also shows that the elbow under 

consideration is bending dominated. This is indicated by the same trend of stress 

distributions and location of maximum stress under unpressurized and pressurized 

conditions. It is expected that this tendency would change if the internal pressure 

increased beyond a certain level [57]. 
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Fig.6.4 7 Typical pressure reduction effect on hoop stress distributions 

A typical pressure - stress (hoop) plot is shown in Fig. 6.48, plotted for a 90-deg 

piping elbow having radius ratio Rlr = 3. The abscissa of 0.0 represent the final load 

step of moment loading and the starting of the subsequent internal pressure loading. 

It can be seen that the relation between internal pressure and maximum hoop stress is 

non-linear. Figure 6.48 again shows the ' Haigh effect ' [11]: pipe subjected to 

internal pressure departs significantly from linear behaviour if the pipe cross-section 

is not perfectly circular. In Fig.6.48, internal pressure acts on an oval cro -section 

due to applied in-plane opening moment. 
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Fig.6.48 Typical pre ure - stress plot for in-plane opening bending 

Figure 6.49 through 6.52 show the tress-intensification factor for 90-deg pIpe 

elbows for various radius ratios loaded by an in-plane opening moment and internal 

pres ure. It can be again clearly een that internal pres ure reduce the tre -

intensification factor for piping elbows under in-plane opening moment. The 

magnitude of the reduction i more pronounced for elbows having low pipe factor A.. 

307 



In-plane opening moment, a = 90-deg, Rlr = 2 
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In-plane opening moment, a = 90-<1eg, Rlr = 6 
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In-plane opening moment, a = 90-<1eg, Rlr = 10 
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Fig.6.52 Stre -inten ification factor with internal pressure for 90° elbows: p = 10 

Pressure reduction for the tre -inten ification factor (equation 5-70)) fo r 90-deg 

pipe elbows can be derived from Fig.6.49 through 6.52. It is plotted as a log-log 

graph in Fig.6.53 for constant radiu ratio Rlr and in Fig.6.54 for constant non­

dimensional thickne rlt. 
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a = 90-deg, Rlr = 3 
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It can be seen from these figures that the relation between pressure reduction and 

non-dimensional pressure pIE is once more linear in a log-log plot. There is a small 

deviation from linearity if the pressure reduction is plotted against geometric 

parameter rlt and Rlr. Again the development of the approximate design formula will 

be based on this linear relation. 

Examination of Fig.6.53 and 6.54 together with Fig.6.49 through 6.52 leads to the 

following approximate expression for the stress-intensification factors for 90-deg 

piping elbows under in-plane opening moment and internal pressure: 

(6- 50) 

where 'Y is stress-intensification factor in the absence of internal pressure as given by 

equation (6-49) and along with Table 6.5 and 6.6. Equation (6-50) can be directly 

compared with equation (5-71) for closing bending case. Comparison also can be 

made with the equation proposed by Rodabaugh and George [30]. The difference 

will be clearer if the comparison is made using numerical data. This will be checked 

later in the discussion to this chapter. 

6.3.3 Effect of Bend Angle on Pressure Reduction 

It has been shown in Section 6.3.1 that the stress-intensification factor for 

unpressurized piping elbows is very much influenced by the bend angle. This is 

investigated further here for the current loading cases. 

By constructing log-log graphs for pressure reduction (eqn. (5-70» using the data of 

Fig.A6.11 through A6.15 of Appendix C6, stress-intensification factors for 

pressurised piping elbows under in-plane opening moment are obtained: 
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for a = 30 - deg (6-51) 

fora=45 -deg (6- 52) 

Yp = ___ ----"r!......--:-::-:--__ 

1+0018\;nr(~r'' 
fora= 60-deg (6 - 53) 

Yp = r 
1 + Oo12{; n )1% ( ~ r'" fora=180-deg (6- 54) 

Using the relation: 

E . quation (6-50) through (6-54) . can be further written as: 

Yp = r 
1+0009{~~X~n~rn 

fora=30- deg (6-55) 

Yp = r 
1 + Oo06{ ~~ x~t (~r" 

fora=45 - deg (6-56) 

Yp = r 
1 +OoOS{ ~~ x~t (~ rus 

fora=60-deg (6- 57) 

fora=90-deg (6-58) 
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r = y 
p {pr3 XI )X(R)1.019 1+0.03 - - -

3D A. r 

for a = 180 - deg (6- 59) 

Equations (6-50) through (6-59) if necessary can be further simplified to: 

rp 
= (p)(Yr)l%(R)m(a) 

I+A(a - - -
E t r 

Yp = (pr 3 X
Y 

1 )X(R),,(a) 
I+H{a - - -

3D A. r 

where A, H, m, and n are functions of bend angle a. However as the bend angle 

considered in this study have covered the most general requirements in practice, this 

simplification will not be processed any further. 

6.4 Discussion 

In this chapter, alternative design formulae have been developed for cross-sectional 

ovalisation, flexibility, and stress-intensification factors for unpressurised piping 

elbows under an in-plane opening moment. The pressure reduction effect following 

Rodabaugh and George [30] has also been re-examined. All the formulae developed 

here have been obtained by curve fitting. Of course errors are introduced during this 

approximation. It will be seen however that the errors introduced are surprisingly 

small from a practical point of view. 
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A comparison of results between in-plane closing bending and some fundamental 

theoretical development has been made in Chapter 5. In the present discussion for in­

plane opening bending, comparisons will not be made with respect to the theoretical 

development as reviewed in Chapter 2, because most of the theoretical development 

refers to closing bending. Throughout the following discussion, comparison will be 

made for results between in-plane closing bending as have been developed in 

Chapter 5 and in-plane opening bending as developed in the present Chapter. 

6.4.1 Unpressurized Conditions 

In developing the formulae for unpressurised piping elbows, the effect of radius ratio 

has been taken in to account. In many theoretical developments, for example the 

initial work of von Karman [2], Rodabaugh and George [30] and others, the radius of 

the bend was assumed to be much greater than the cross-section radius - a long 

radius assumption. Flexibility and stress-intensification factors for short-radius pipe 

bends has been developed theoretically by Gross and Ford [25] and also by Cheng 

and Thailer [41]. As will be seen in what follows, there is a substantial influence of 

radius ratio on cross-section ovalisation, flexibility, and stress-intensification factors. 

It is well known that the flexibility and stress-intensification factors are modified due 

to cross-sectional ovalisation. However the effects of the various geometric 

parameter on cross-sectional ovalisation, flexibility and stresses are not identical 

either in trend or in magnitude. 

Ovalisation, flexibility, and stress-intensification factors have been expressed in the 

following forms: 

~ = 1.656exp(-1.175..t)[a -b..t] 

k = 1.65 [a -bln(..t)] 
..t 

(6-6) 

(6 -30) 
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(6 - 49) 

In the above equations, the term in the square bracket represents their dependence on 

pipe bend parameter, A, as well as on radius ratio : the coefficient a and b are 

functions of radius ratio. 

Figure 6.55 shows ovalisation factor for sort radius pipe elbow under in-plane 

opening bending calculated using equation (6-6). It can be seen that for short radius 

piping elbows, the ovalisation factors are directly proportional to the bend angle. 

in-plane opening bending, Rlr = 3 
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Fig.6.55 Ovalisation factor for short radius piping elbows under opening bending 

Figure 6.56 shows ovalisation factor for long radius piping elbows. It can be een 

that the ovalisation factors are directly proportional to the bend angle for bend angle 

Ie s than 90-deg. It can be een that the ovalisation factor for 90-deg pipe elbow of 

high pipe bend parameter, lies between the value for 45 and 60-deg pipe elbow , but 

over the value for 60-deg for low pipe bend parameter. Figure 6.56 how that the 
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ovalisation factors for 180-deg pipe elbows are less than those for 60 and 90-deg, but 

greater than those for 45-deg. 
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Fig.6.56 Ovalisation factor for long radius piping elbows under opening bending 

Figure 6.57 shows a comparison of ovalisation factor between in-plane closing and 

opening bending, plotted for pipe elbows having radius ratio equals three. It can be 

seen overall that the ovalisation factor under closing bending is greater than under 

opening bending, especially for low pipe bend parameter. The difference in 

ovalisation between closing and opening bending mode is not significant for pipe 

elbows of high pipe bend parameter. 
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Fig.6.57 Comparison of ovalisation factor between closing and opening bending 

Figure 6.58 shows flexibility factor for short-radius piping elbows under in-plane 

opening bending calculated using equation (6-30) in compari on with the flexibility 

factor for piping elbows under in-plane closing bending. Figure 6.58 shows that 

flexibility factors for piping elbows are not in the same magnitude for in-plane 

closing and opening moment, but lower for opening case e pecially for low pipe 

bend parameters. This trend can be found for small and large angle bend piping 

elbows. This difference arises from the structural behaviour, where piping elbow 

exhibits the behaviour of non-linear structural 'softening ' under in-plane closing 

moment and non-linear structural 'hardening' under opening moment. Experimental 

investigation by Smith and Ford [38] also shows that pipe bends are more flexible 

under closing bending than under opening bending. 
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Fig.6.58 Flexibility factors for short-radius piping elbows under in-plane bending 

Figure 6.59 shows the flexibility factor for long-radius piping elbows under in-p lane 

opening bending calculated using equation (6-30) in comparison with the flexibility 

factor for piping elbows under in-plane closing bending. It can be een again for long 

radius piping elbows that the flexibility factor under in-plane opening bending is 

lower than those for in-plane closing bending especially for low pipe bend 

parameters. This trend can be found for small and large angle bend piping elbows. 
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Fig.6.59 Flexibility factor for long-radius piping elbows under in-plane bending 

Figure 6.60 shows the stress-intensification factor for short-radius piping elbows 

subjected to in-plane opening bending in comparison with those under in-plane 

closing bending. It can be seen from this figure that the tre s-intensification factor 

of piping elbows under in-plane opening moment is lower than those for in-plane 

closing moment for elbows of low pipe bend parameter. The Stres -inten ification 

factor under in-plane opening bending is slightly higher than those for in-plane 

closing bending for high pipe bend parameter. 
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Fig.6.60 Stress-intensification factor for short-radius piping elbows under in-plane 

bending 

Figure 6.61 shows the stress-intensification factor for long-radius plpmg elbows 

subjected to in-plane opening bending in comparison with those under in-plane 

closing bending. Again it can be seen that the stress-intensification factor of piping 

elbows under in-plane opening moment is much lower than those for in-plane closing 

moment for elbows of low pipe bend parameter, but slightly greater for high pipe 

bend parameter and large angle bend. 
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Fig.6.61 Stress-intensification factor for long-radiu piping elbow under in-plane 

bending 

6.4.2 Pressu rized Conditions 

In developing the formulae for the pres ure reduction effect, the following 

approximations have been made: 

(1) The pressure reduction is related linearly to the non-dimen ional pre ure 

paremater, piE, nondimen jonal thicknes r//, and radiu ratio Rlr in a log-log 

plot. Accordingly, the pressure reduction effect can be approximated by a power 

law. 

(2) The index in the power law for non-dimen ional pres ure, piE, non-dimen ional 

thickne s, r/t, and radius ratio, Rlr, ha been ba ed on re ult for the following 

particular data: p = Pmax, Rlr = 2, tlr = 0.026. 
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Based on these observations, the following formulae have been developed: 

Ovalisation factor 

(6- 60a) 

(6 - 60b) 

Flexibility factor 

k 
kp = 1% 

(pXr) 3(R)m 
l+A E t -;: 

(6-61a) 

k = k 

p (
pr3Xl)K(r)/I I+B - - -
3D A R 

(6-61b) 

Stress-intensification factor 

(6 - 62a) 

r = r 
p (pr3X 1 )K( r)/I I+B - - -

3D A R 

(6- 62b) 

where A, B, m, and n are functions of the bend angle and are summarised in the 

following Tables. The values are different for ovalisation, flexibility and stress­

intensification factors. 

323 



Table 6.7 Values for A, B, m, and n in equation (6-60) for ovalisation factor 

Bend angle (a) A (a) B(a) m(a) n(a) 

30-deg 175 48.0 0.206 1.125 

45-deg 126 34.5 0.333 1.005 

60-deg 100 27.5 0.430 0.905 

90-deg 76 21.0 0.570 0.765 

IS0-deg 52 14.5 0.725 0.610 

Table 6.S Values for A, B, m, and n in equation (6-61) for flexibility factor 

Bend angle (a) A (a) B(a) m(a) n(a) 

30-deg 0.300 0.084 0.037 0.370 

45-deg 0.225 0.062 0.174 0.507 

60-deg 0.185 0.051 0.266 0.599 

90-deg 0.145 0.040 0.376 0.709 

180-deg 0.115 0.031 0.481 0.814 

Table 6.9 Values of A, B, m, and n in eqn (6-62) for stress-intensification factor 

Bend angle (a) A (a) B(a) m(a) n(a) 

30-deg 0.330 0.091 0.245 0.578 

45-deg 0.236 0.063 0.393 0.726 

60-deg 0.183 0.050 0.502 0.835 

90-deg 0.172 0.047 0.546 0.879 

ISO-deg 0.124 0.034 0.685 1.019 

It is worthwhile examining the error introduced as a result of the two approximations 

described above. The percentage is calculated here as: 

Err = 1- fdlxlOO'Io 
fo 
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where fd represents either ovalisation, flexibility, or stress-intensification factor 

obtained using the derived formula andle represents the data obtained directly from 

the fmite element analyses. 

Using this definition of error, the maximum percentage is summarised in the 

following Tables: 

Table 6.10 Maximum error for ovalisation factor, % 

Bend angle (a) Rlr=2 Rlr = 3 Rlr=6 Rlr = 10 

30-deg 9.9 11.3 13.0 13.4 

45-deg 8.0 9.9 12.6 13.4 

60-deg 7.4 9.3 12.6 13.7 

90-deg 6.1 8.5 13.0 14.4 

180-deg 6.2 6.1 9.3 13.5 

Table 6.11 Maximum error for flexibility factor, % 

Bend angle (a) Rlr =2 Rlr= 3 Rlr=6 Rlr = 10 

30-deg 7.1 7.5 7.7 6.7 

45-deg 5.8 6.4 6.5 6.7 

60-deg 5.1 5.2 6.5 6.7 

90-deg 5.1 5.0 7.1 6.8 

180-deg 4.1 5.6 8.6 7.0 

Table 6.12 Maximum error for stress-intensification factor, % 

Bend angle (a) Rlr =2 Rlr= 3 Rlr=6 Rlr = 10 

30-deg 6.9 7.2 7.4 7.8 

45-deg 6.2 6.3 7.3 7.9 

60-deg 5.7 5.4 6.9 8.2 

90-deg 5.5 5.2 7.0 8.3 

180-deg 5.2 5.1 8.7 8.7 
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It can be seen from these Tables that there is a relatively large error in the 

approximate equations as compared to the finite element results, especially for the 

ovalisation factor. As indicated previously, this error results from the two 

approximations used. This error could be reduced by trial-and error curve fitting to 

find more appropriate indices for rlt and Rlr. However the maximum error for 

flexibility and stress-intensification factor from Table 6.11 and 6.12 is less than 10% 

and deemed appropriate for design purposes. 

Figure 6.62 shows a comparison of ovalisation factor between in-plane opening and 

closing bending for short-radius 90-deg pipe elbows. Recalling the formulae for 

ovalisation factor for short-radius (Rlr = 3), 90-deg pipe elbows: 

~ = ~ 
p {pXr)X(R)O.S7 1+7 - - -

E t r 

~ = 1.656exp(-1.175,t)[1.0254 - 0.3452,t] 

~p = ~ 1,% ; for!: > 13.33 

( X ) 
3(R)0.464 t 

1 + 0.205; 7 -;: 
0.565 

~ = 2T [1.1179 + 0.2177In(,t)] 
A!3 

in - plane opening bending 

in - plane closing bending 

It can be seen from Fig.6.62 that there is a marked difference for the pressure 

reduction effect on ovalisation factor between in-plane opening and closing bending. 

Overall it can be seen that the magnitude of the pressure reduction is higher for in­

plane opening bending, even for relatively thick-walled pipe, whereas internal 

pressure increases the ovalisation factor for thick-walled pipes. 
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Fig.6.62 Pressure reduction effect for ovali ation factor of piping elbow under in­

plane bending: (a) opening mode, (b) clo ing mode 
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Figure 6.63 shows a comparison of flexibility factor for short-radius 90-deg pipe 

elbows under in-plane opening and closing bending obtained from the present 

analysis. Recalling the formulae for flexibility factor of short-radius (Rlr = 3), 90-deg 

pipe elbows under in-plane bending obtained in the present analysis: 

r 
for- > 12.35 

t 

in - plane opening bending 

k = k 

p 1+11.7{;nftr in -plane closing bending 

k = 115 
[O.78-0.1485In(A)] 

It can be seen from these equations that the index of rlt and Rlr of the pressure 

reduction are bigger for opening bending, but the coefficient of the pressure 

reduction is bigger for closing bending. In addition there is a marked difference in 

the coefficient - much lower for opening bending. Overall, the magnitude of the 

pressure reduction for flexibility factor is bigger for closing bending as shown in 

Fig.6.63. 
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in-plane opening bending, a = 90-deg, Rlr = 3 
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Fig.6.63 Flexibility factors for hort-radiu 90-deg pipe elbow under in-plane 

bending: (a) opening bending, (b) clo ing bending 
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Figure 6.64 shows a comparison of stress-intensification factor for short-radius, 90-

deg pipe elbows under in-plane opening and closing bending calculated using the 

derived formula. 

Recalling the formulae for stress-intensification factor of short-radius (Rlr = 3), 90-

deg pipe elbows under in-plane bending obtained previously: 

r - r 
P - I,%' 0.546 

1 +0.172(; Xf) 3( :) 
r = l.~ [1.1992 + 0.1 062In(l)] 

A,73 

r - r 
p - ( X )u( )0.435 

1+10.25 ~ 7 3 ~ 

r= 1.~[0.7715-0.165In(A)J 
A!3 

in - plane opening bending 

in - plane closing bending 

Again it can be seen that the indices are very different, being much bigger for 

opening bending and again followed by a significant difference in the coefficient 

(0.172 for opening bending and 10.25 for closing bending). It can be seen from 

Fig.6.64 that the magnitude of the pressure reduction is much bigger for closing 

bending, implying that pipe elbows under opening bending are stiffer than under 

closing bending. 
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In-plane opening bending, a = 90-deg, Rlr = 3 
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Fig.6.64 Stre -intensification factor hort-radiu , 90-deg pipe elbow under in-plane 

bending: (a) pening bending, (b) clo ing bending 
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6.4.3 S-Sbaped Back-to-Back 90-deg Piping Elbows 

Having established approximate formulae for flexibility and tress-intensification 

factors for piping elbows with straight tangents, flexibility and stress-intensification 

factors for closely-spaced thin-walled piping elbows are briefly examined in order to 

verify their accuracy. 

For this purpose, (model 2, model 3, model 4, and model 5) elbow configurations 

used by Glickstein and Schmitz [93, 96] are checked. The ba ic configuration 

consists of two-90-deg elbows with various lengths of tangent and is arranged in an 

S-shape. One end of the model is fixed and another end is loaded by an in-plane 

moment. The in-plane moment is applied such that elbow-A (lower quarter bend) is 

subjected to a closing bending and elbow-B (upper quarter bend) i subjected to an 

opening moment. This configuration is shown in Fig.6.65 

L, 

Fixed end Fixed cnd 

M~ z 

Fixed end Fixed end 

Fig.6.65 Glicstein & Schmitz's model elbow configuration 
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Key to Fig.6.65: 

Wall thickness (t) = 0.245 in = 6.223 mm 

Cross-section radius (r) = 7.96 in = 202.25 mm 

Radius ratio (R/r) = 3.05 

Thickness ratio (rlt) = 32.5 

Pipe bend parameter (A.) = 0.0904 

Length of tangents: Model 2: Ll = L3 = 32 in, L2 = 64 in 

Model 3: L1 =L2 =L3 = 32 in 

Model 4: L1 = L3 = 32 in, L2 = 0 

ModelS: L1 = L2 = 0, L3 = 32 in 

Glickstein and Schmitz [93, 96] analysis these model using ABAQUS finite element 

program. The elbow and pipe tangents were modelled using the S8R quadratic 8-

node thick shell element. Geometry and finite element modelling was described in 

section 3.2. In-plane bending was applied as concentrated force to simulate a linear 

stress distribution in the pipe due to in-plane bending. The end rotation was 

determined from the axial displacement of nodes at the ends of the elbows as 

described in section 5.2.1 of this thesis. This procedure was also implemented by 

Thomas [78]. 

Table 6.13 gives a summary of flexibility factors from the present analysis in 

comparison with the result presented by Glickstein & Schmith in their original paper. 

The appropriate approximate formulae for unpressurised pipe elbows derived in this 

study are: 

(a) In-plane closing moment: 

k = 115 
[0.78 - 0.1485In(A.)] (5 - 40) 

(b) In-plane opening moment: 
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k = 11
5 

[1.058 + 0.0475In(A)] 

(c) The asymptotic solution of Clark and Reissner [20]: 

k = 1.65 
A 

(6-27) 

For the geometries considered in Glickstein and Schmitz's study (A. = 0.0904), the 

flexibility factor is: 

klc = 20.75 

klo = 17.22 

kC&R = 18.25 

(in - plane closing moment) 

(in - plane opening moment) 

(Clark and Reissner) 

Table 6.13 Summary of flexibility factors for S-shaped pipe bends 

Elbow model (see Flexibility factor, k 

figures) ANSYS G&S [93] Formulae 

2A (closing moment) 18.33 16.24 20.75 

2B (opening moment) 12.83 17.33 17.22 

3A (closing moment) 18.32 16.24 20.75 

3B (opening moment) 11.47 17.33 17.22 

4A (closing moment) 14.19 12.96 20.75 

4B (opening moment) 5.67 13.87 17.22 

SA (closing moment) 5.59 5.11 20.75 

5B (opening moment) 3.15 13.87 17.22 

C&R [20] 

18.25 

18.25 

18.25 

18.25 

In Table 6.13 the results under the column heading marked as ANSYS is obtained 

from a new finite element solution. Comparison of results for model-2 and -3 

between FE result (ANSYS) and those calculated using the derived formulae 

indicated that the length of tangent (L = 4r) was not sufficiently long enough to 

eliminate end effect. For an S-shaped pipe bends without intermediate tangent 
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(model -4 and -5), the flexibility factor reduces significantly. The results from Table 

6.13 confirm the major conclusion of Glickstein & Schmitz [93] that the restraining 

effect of an S-shaped back-to-back piping elbow results in a significant reduction in 

flexibility. 

It is interesting to note from Table 6.13 that the result from the present analysis is 

consistent: the flexibility factor under closing moment is always larger than under 

opening. Recall the reason for this is that elbows under in-plane closing moment 

exhibit non-linear softening structural behaviour, while elbows loaded by in-plane 

opening moment exhibit non-linear hardening structural behaviour. This is contrary 

to the results presented by Glickstein & Schmitz [93] where elbows under closing 

moment are stiffer than under an opening moment. The reason for this difference is 

probably caused by the large deformation effect. It should be noted that the analysis 

of Glickstein and Schmitz [93] does not take large deformation effects into account, 

while in the present analysis does. 

Table 6.14 summarises the comparison for stress-intensification factor, their 

direction, surface and location. The location is expressed as (e, t/i), where 8 and (J are 

the longitudinal and circumferential directions respectively. The longitudinal position 

is measured from the junction with the fixed tangent for elbows-A (closing moment) 

and from the junction with the loaded tangent for elbows-B (opening moment). The 

circumferential position is measured from the extrados. 
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Table 6.14 Summary of stress-intensification factors, their direction, surface, and 

locations 

Model present analysis Glickstein & Schmitz 

SIFs Dir Surf Loc SIFs Dir Surf Loc 

2A 9.83 Hoop Inner 51, 100 8.26 Hoop Inner 60,80 

2B 9.13 Hoop Inner 51,100 9.83 Hoop Inner 45,80 

3A 10.12 Hoop Inner 48, 100 9.45 Hoop Inner 50, 100 

3B 9.41 Hoop Inner 48, 100 10.28 Hoop Inner 50,80 

4A 9.3 Hoop Inner 33,100 6.83 Hoop Inner 30, 100 

4B 9.7 Hoop Inner 33, 100 8.88 Hoop Inner 60,80 

5A 7.14 Long Outer 0,0 5.40 Hoop Inner 0,80 

5B 8.01 Hoop Inner 33,100 8.13 Hoop Inner 60,80 

Recalling the formulae developed for stress-intensification factor for 90-deg pipe 

elbows having Rlr = 3 with long tangents: 

(a) In-plane closing moment: 

r= 1.~ [0.7715 -0.165In(A)] 
AT3 

(b) In-Plane opening moment: 

r= 1.~ [1.1992 + 0.1062 In (A)] 
AT3 

From the asymptotic solution of Clark and Reissner [20]: 

1.892 0.48 r=--+-
;,% ~ 

(5 - 65) 

(6 -46) 
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and from the fatigue test result of Madd [23] 

0.9 r=-# 

For the geometries considered in Glickstein & Schmitz's [96] analysis, the stress­

intensification factors are: 

Yc!ose = 12.22 

Yopen = 9.87 

YC&R = 10.46 

YMark! = 4.4 7 

(in-plane closing moment) 

(in-plane opening moment) 

(Clark and Reissner's asymptotic solution) 

(Markl's fatigue test) 

These values can now be compared with Table 6.14 obtained directly from a new 

finite element solution. 

Comparison using the formulae derived here and the results in Table 6.14 once more 

confirms the conclusion of Glickstein & Schmitz [96J that the restraining effect of an 

S-shaped back-to-back elbow causes a significant reduction in stress-intensification. 

It is interesting to note that the results given by Glickstein & Schmitz for stress­

intensification of all the models considered is higher under in-plane opening moment 

than under in-plane closing moment. Contrary, the present analysis shows that the 

stress-intensification factor is higher under a closing moment than under an opening 

moment if there is intermediate tangent present between two elbows (model-2 & 

model-3). If there is no intermediate tangent between the two elbows, the maximum 

stress is higher under an opening moment than under a closing moment. The reason 

for this difference again believed to be caused by large deformation effects, which 

are not included by Glickstein & Schmitz. 

The pressure reduction effect was not included in both Glickstein and Schmitz' paper 

[93, 96J. This effect is now considered here, focusing on how the pressure reduction 
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is influenced by the spacing tangent. The various formulae developed in the previous 

section summarising: 

» Flexibility factors: 

k 

kp = ( X )%(R)O.31 
1 + 11.75; ~ -; 

closing bending (5 -46) 

kp = k 1% ; for!' > 12.35, opening bending 

1 + 0.14s(; )( ~) 3 ( : T37 

t 

(6-31) 

» Stress-intensification factors: 

closing bending (5-71) 

opening bending (6- 50) 

Using these equations and the value for unpressurized elbows from Table.6.l3 and 

6.14, the pressure reduction effect on flexibility and stress-intensification is shown in 

Fig.6.66 and 6.67 respectively. 
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Elbows-A subjected to closing moment 
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Fig.6.66 Flexibility factors for (a) Elbow-A under clo ing moment, (b) Elbow-B 

under opening moment 
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Elbows-A subjected to closing moment 
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Fig.6.67 Stress-intensification factors for (a) Elbow-A under clo ing moment, (b) 

Elbow-B under opening moment 
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It can be seen from these figures that the pressure reduction effect on flexibility and 

stress-intensification developed in the present analysis has the same trend as that for 

model-2 and model-3 in the Glickstein and Schmitz study [93, 96] if an intermediate 

tangent is present between the two elbows. There is a significant difference in the 

pressure reduction effect if the two elbows are connected together without an 

intermediate tangent between them. Overall, it can be concluded that attachment of 

straight tangent at both ends of a pipe bend should be sufficiently length to eliminate 

its restraining effects. 

6.5 Summary 

Detailed non-linear large deformation finite element analysis of symmetrical piping 

elbows of various geometries under in-plane opening moment and internal pressure 

have been carried out to develop approximate formulae for the cross-sectional 

ovalisation, flexibility, and stress-intensification factor. It has been found that a 

piping elbow is stiffer under opening moment than under closing moment. The 

explanation to this phenomena is that an elbow subjected to an opening moment 

exhibits non-linear hardening structural behaviour (geometric stiffening), whereas an 

elbow subjected to a closing moment exhibits a non-linear softening structural 

behaviour (geometric weakening). The accuracy of the formulae developed in 

Chapter 5 for in-plane closing bending and in Chapter 6 for in-plane opening bending 

are checked for piping elbow configuration of type S-shaped back-to-back 

arrangement where closing and opening mode are exhibited under an in-plane 

bending. Comparison of results for unpressurised conditions obtained directly from 

finite element analysis and the derived formulae confirm the major conclusion drawn 

by Glickstein and Schmitz [93, 96] that the restraining effect of an S-shaped back-to­

back piping elbow result in a significant reduction in flexibility and stress­

intensification. However, the study carried out-out-by Glickstein and Schmitz show 

that elbows are stiffer under in-plane closing bending than under in-plane opening 

bending, whereas the present analysis give a contradict conclusion. The reason for 

this contradiction is caused by large deformation effects, which were not included in 
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Glickstein and Schmitz's study. Now that the pressure reduction effect is found to be 

different for in-plane closing and opening moment, it is of interest to investigate the 

pressure reduction effect for elbows subjected to out-of-plane bending. The 

following Chapter will dealt with this problem. 
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Appendix C6 

This appendix present Figures for in-plane opening bending. All the approximate 

formula presented in this Chapter have been derived from these Figures: 

Fig.A6.l - A6.5: for Ovalisation factor 

Fig.A6.6 - A6.1 0: for Flexibility factor 

Fig.A6.11 - A6.15: for Stress-intensification factor 

Continue to the next pages ... ~ 
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in-plane opening bending, a = 30-deg, Rlr = 2 
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Fig.A6.1 Ovalisation factor for 30-deg pipe elbows under in-plane opening bending: 

(a) Rlr = 2, (b) Rlr = 3 

344 



1.0 

0.9 

0.8 

0.7 

0.6 

~ 0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

in-plane opening bending, a = 30-deg, Rlr = 6 

" "'" .... .' ---- ............. .... ", t'-.. 
/' r-- -t$ ~ ... - ~-- - r-. 

/: --b--~ ~ ~ 
, 

~--- ~ ~ 
, 

(J 

/,' /' 
'~ FI 

0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.54 0.60 

1.0 

0.9 

0.8 

0.7 

0.6 

~ 0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

A. 

(c) 

in-plane opening bending, a = 30-deg, Rlr = 10 

... 
"I~ 

" ~ 
• -, .." .... ~ I.a 

~ 
----

~--- ::::: ~ ~ , 
~, ... ~--- -..... -- r~ ~ ~ g CJ 

/ ---- - , 
-," --, Pi If. 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

A. 

(d) 

- p/pmax = 0.0 
- .. - ·p/pmax = 0.2 

- p/pmax = 0.4 
- ~- p/pmax = 0.6 
--*- p/pmax = 0.8 
- -4- ' I max = 1.0 

- p/pmax = 0.0 
- .. - . p/pmax = 0.2 

p/pmax = 0.4 
- -8 - p/pmax = 0.6 

pIp max = 0.8 
- -4- I max = 1.0 
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345 



in-plane opening bending, a = 4S-deg, R/r = 2 
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in-plane opening bending, a = 45-deg, Rlr = 6 
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in-plane opening bending, a = 60-deg, Rlr = 2 
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Fig.A6.3 Ovalisation factor for 60-deg pipe elbow under in-plane opening bending: 

(a) Rlr = 2, (b) Rlr = 3 
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in-plane opening bending. a = 60-deg. Rlr = 6 
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in-plane opening bending, a = 90-deg, Rfr = 2 
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in·plane opening bending, a = 90·deg, Rlr = 6 
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in-plane opening bending, a = 180-deg, Rlr = 2 

1.8 

1.6 --+--- - ... --- ?t::: .' ~ ~ ~ e--- -~-- ~ ........ 1.4 " 
~, 

,Jr-- - .-e--- r&-~ ~ ~ ~ " --- -<'/ "./ --
1.2 -.' -+- p/pmax = 0.0 , 

11 - .. - . p/pmax = 0.2 
1.0 

Co -+-p/pmax = 0.4 

"'" - -& - p/pmax = 0.6 
0.8 

"""-p/pmax = 0.8 

0.6 - -6- ·p/pmax= 1.0 

0.4 

0.2 

0.0 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 

A. 

(a) 

in-plane opening bending, a = 180-deg, Rlr = 3 

1.8 

1.6 -"--!::-1.4 r-... .... r:::- ~--~ ~ ~ 
e- - - -~--

~ 1.2 ~ - - ..;!;--- --
~ 

V,."" ,,; I"'" ----~ PI -+- pIp max = 0.0 --,," - .. - ·p/pmax = 0.2 
1.0 , 

i-+- p/pmax = 0.4 Co 11 

"'" - -& - p/pmax = 0.6 
0.8 

"""- p/pmax = 0.8 

0.6 - -6- p/pmax = 1.0 

0.4 

0.2 

0.0 
0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30 

A. 

(b) 
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in-plane opening bending, a = 180-deg, Rlr = 6 

1.4 

1.2 

1.0 

0.8 
a. 
~ 

......, 
~ t-.. .----- .............. 

~ ~---
La t-.... 

--- t- :!"--
,/ e---

-~--

~ ~ ~ ,- r;--- --Jr-- R ----~ G -- r--

/,. "' -~ ~ .-
I 

0.6 
oS 

0.4 

0.2 

0.0 
0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.54 0.60 

A. 

(c) 

in-plane opening bending, a = 180-deg, Rlr = 10 

1.4 

1.2 

1.0 

0.8 
a. 
~ 

0.6 

0.4 

" ~ .- --- .... ~ 
" t'-.. 

~ --ti2 ~ ,,-- &- ---
-~-- ~ ~/' 

-------
L!r-- ~ 

~ 
.-- -"" --Z" ~ ~ ~ 

,.- ---- - ----
I! 

0.2 

0.0 
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

A. 

(d) 

-+-- p/pmax = 0.0 
- .. - . p/pmax = 0.2 
-+-- p/pmax = 0.4 
- 09 - pIp max = 0.6 
-+- p/pmax = 0.8 
- -6 - . I max= 1.0 

-+-- p/pmax = 0.0 
- .. - p/pmax = 0.2 

pIp max = 0.4 
- 09 - p/pmax = 0.6 

-+- p/pmax = 0.8 
--6- I max = 1.0 

Fig.A6.5 Ovalisation factor for 180-deg pipe elbows under in-plane opening 

bending: (c) Rlr= 6, (d) Rlr= 10 

353 



In-plane o pening bending, a = 3G-deg, Rlr = 2 
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Fig.A6.6 Flexibility factor for 30-deg pipe elbows subjected to in-plane opening 

bending: (a) Rlr = 2, (b) Rlr = 3 
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In-plane opening bending, a = 30-deg, Rlr = 6 
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Fig.A6.6 Flexibility factor fo r 30-deg pipe elbow ubjected to in-p lane opening 
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In-p lane opening bending, a = 45-deg, R/r = 2 
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Fig.A6.7 Flexibility factor for 45-deg pipe elbows ubjected to in-plane opening 
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In-plane opening moment, a = 45-deg, Rlr = 6 

10 

\ 
~, 

~ 
1--

, 

....... 
~ 

......, 
~ ~ a - ---

~ '- - ~ ........... 
""""--r...... .... 

8 

6 

4 

2 

o 
0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.54 0.60 

..t 

(c) 

In-plane open ing moment, a = 45-deg, Rlr = 10 
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Fig.A6.7 Flexibility factor for 45-deg pipe elbow ubjected to in-plane op ning 

bending: (c) Rlr = 6, (d) Rlr = 10 
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In-plane openIng bendIng, a = 60-deg, Rlr = 2 
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In-plane opening bending, a = 60-deg, Rlr = 6 
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In-plane opening bending, a = 90-deg, Rlr = 2 

32 

• - 1---~~ -
.,\ , r'\. 

~ ~~ 
b-

~ ~ '" 
-.... 
~ ~ - r---~ ~ 

28 

24 

20 

.;cD. 16 

12 

8 

4 -

o 
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 

A. 

0.16 0.18 0.20 

(a) 

In-plane opening bending, a = 90-deg, Rlr = 3 

20 ~---r---'r---.----.---.----'----r---'----r---' 

16 

12 

8 

4T----+----r_--~--_4----+_--_+----r_--~--~--__i 

0 +---~--_+--~~--+_--4_--~--_+--~~--+_--~ 

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30 

A. 

(b) 

__ pIp max = 0.0 

-.- p/pmax = 0.2 
p/pmax = 0.4 

- . - pIp max = 0.6 
-.- pIp max = 0.8 
- -6- I max = 1.0 

--pIp max = 0.0 
- . - pIp max = 0.2 

p/pmax = 0.4 
- . - pIp max = 0.6 

p/pmax = 0.8 
- .. - I max = 1.0 
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In-plane opening bending, ex = 90-deg, Rlr = 6 
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Fig.A6.9 Flexibility facto r for 90-deg pipe elbow ubjected to in-plane opening 

bending: (c) Rlr = 6, (d) Rlr = 10 
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In-plane opening bending, a = 180-deg, Rlr = 2 
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Fig.A6.10 Flexibility factor for 180-deg pipe elbows ubjected to in-p lane opening 

bending: (a) Rlr = 2, (b) Rlr = 3 
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In-plane opening bending, a = 180-deg, Rlr = 6 
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Fig.A6.10 Flexibility factor for 180-deg pipe elbow ubjected to in-plane opening 

bending: (c) Rlr = 6, (d) Rlr = 10 
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In-plane opening bending, a = 30-deg, Rlr = 2 

8~---'----.----r----r----.---.----'----'----.---~ 

7 -+----l-- ~-+----+-- -- -- --

2+---_+----+_--~----~--~--~----~--_+----+_--~ 

--+-- -1-------1----+----+----+ - -- -t-

O+---_r--~----r_--~--_r--~--~~--+_--~--~ 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 

-\ 

(a) 

In-plane opening bending, a = 30-deg, Rlr = 3 

7~---r--_.----r_--,---_r--_.----r_--r_--_,--_, 

6 -" 
5 

4 -I--

3 

O +---~---+--~~--+---~---+--~~--T---~---; 
0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30 

-\ 

(b) 

--p/pmax = 0.0 
- +- p/pmax = 0.2 

I--p/pmax = 0.4 
- + - p/pmax = 0.6 
- pIp max = 0.8 
- -t.- 2kmax = 1.0 

--pIp max = 0.0 
- + - p/pmax = 0.2 

p/pmax = 0.4 

- 4 - p/pmax = 0.6 
p/pmax = 0.8 

- -t.- I max = 1.0 
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opening bending: (a) Rlr = 2, (b) Rlr = 3 

364 



In-plane opening bending, a = 30-deg, Rlr = 6 
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opening bending: ( c) Rlr = 6, (d) Rlr = 10 
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In-plane opening bending, a = 45-deg, Rlr = 2 
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Fig.A6.12 Stress-intensification factor for 45-deg pipe elbow ubjected to in-plane 

opening bending: (a) Rlr = 2, (b) Rlr = 3 
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In-plane opening bending, a = 45-deg, Rlr = 6 
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In-plane opening bending, a = 45-deg , Rlr = 10 
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Fig.A6.12 Stress-intensification factor for 45-deg pipe elbow ubjected to in-plane 

opening bending: (c) Rlr = 6, (d) Rlr = 10 

367 



in-plane o pening bending, a = 60-deg, Rlr = 2 
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Fig.A6.13 Stress-intensification factor for 60-deg pipe elbow ubjected to in-plane 

opening bending: (a) Rlr = 2, (b) Rlr = 3 
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In-plane opening bending, a = 60-deg, R/r = 6 
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In-plane opening bending, a = 60-deg, R/r = 10 
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Fig.A6.l3 Stress-intensification factor for 60-deg pipe elbow ubjected to in-plane 

opening bending: (c) RJr = 6, (d) RJr = 10 

369 



In-plane opening bending, a = 90-deg, Rlr = 2 
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Fig.A6.14 Stress-intensification factor for 90~deg pipe elbow ubjected to in-plane 

opening bending: (a) Rlr = 2, (b) Rlr = 3 
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In-plane opening bending, a = 90-deg, Rlr = 6 
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In-plane opening bending, a = 90-deg, Rlr = 10 
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Fig.A6.14 Stress-intensification factor for 90-deg pipe elbow ubjected to in-plane 

opening bending: (c) Rlr = 6, Cd) Rlr = 10 
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In-plane opening bending, a = 180-deg, Rlr = 2 
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In-plane opening bending, a = 180-deg, Rlr = 3 
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Fig.A6.] 5 Stress-intensification factor for 90-deg pipe elbow ubjected to in-p lane 

opening bending: (a) Rlr = 2, (b) Rlr = 3 
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In-plane opening bending, a = 180-deg, Rlr = 6 
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In-plane open ing bending , a = 180-deg, Rlr = 10 

5 

4 ~ - -

,~ + - -+- pip max = 0.0 ..... .... .... .... ~ 3 - - .. - pip max = 0.2 ... A ~ -+- pip max = 0.4 
~ - --- -

IY~" 

~-- Ir - --~ - 4 - pip max = 0.6 

~ 
--,...--

2 -- - -+- pip max = 0.8 
It' -. - . - p/pmax = 1.0 

1 

0 
0.00 0.10 0.20 0 .30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

A. 

(d) 

Fig.A6. 15 Stress-intensification factor for 90-deg pipe elbow ubjected to in-plane 

opening moment: (c) Rlr = 6, (d) Rlr = 10 
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CHAPTER 7 

OUT-OF-PLANE BENDING 

In the previous two chapters, the cross-sectional ovalisation, flexibility and stresses 

for piping elbows under in-plane bending have been studied. Approximate formulae 

for unpressurised and pressurised piping elbows were developed. In this chapter, a 

similar study of unpressurised and pressurised piping elbows under out-of-plane 

bending is developed. A formula for cross-sectional ovalisation is not presented here, 

since there is some ambiguity about the location of its maximum, being strongly 

dependent on the geometry of the pipe elbow. 

7.1 Flexibility Factors 

In the previous study of in-plane bending, the flexibility factor was derived from the 

axial and radial displacement of the extrados and intrados nodes at the junction of the 

elbow with the straight tangent, see equation (5-29). The definition of a flexibility 

factor used for in-plane bending is also adopted here for out-of-plane bending, i.e., 

through the concept of end rotation, although there may be alternatives. For the case 

of out-of-plane bending, the out-of-plane rotation will be derived from the 

displacement of the crown nodes at the elbow-straight pipe junction. 

An out-of-plane bending load, Mo, is applied on the free end of the loaded tangent 

about an axis perpendicular to the tangent of the bend as shown in Fig.7.1. Under this 

load, end of the elbow at junction-l will be subjected to pure bending, and the other 

end at junction-2 will be subjected to bending and torsion, depending on the bend 

angle. Definition of junction-l and junction-2 is shown in Fig. 7 .2. For bend angles of 

90 and 180-deg, the end of the elbow at junction-2 (corresponding to Fig.7.2) is 



subjected to pure torsion and pure bending respectively. For other bend angle, thi 

end is subjected to both bending and torsion. 

(a) 

Crowns 

(b) (c) (d) (e) 

Fig.7.l Piping elbows subjected to an out-of-plane bending 

My 
Loaded tangent 

x 

Junction-I 

._-_._-_._._. ._.-....... , 

View from top 

junction-l 

x 

'''''' \ 
\ 
\ 
i 

Fixed tungent 

FIxed end 

Fig.7.2 Typical cross-sectional rotation at the junction with loaded tangent 
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The out-of-plane rotation of section-l is obtained from the axial and radial 

displacement of crown nodes. Accordingly, the rotation of this end is obtained from 

the following relation: 

fIJI = tan -I ( dzl J 
2r+dlj 

(7 -1) 

The rotation of section-2 is obtained in a similar way from the following: 

tan -I ( dz2 J flJ2 = 
m 2r+dr2 

(7 -2) 

Section-2 is also subjected to torsion. The angle of twist is obtained from the 

tangential and radial displacement of crown nodes at this section. Accordingly, the 

angle of twist is obtained as: 

flJ2t = tan -I( dy2 J 
2r+dr2 

(7 -3) 

It should be noted that for a Cartesian co-ordinate system, the rotation of section-2 

according to equation (7-2) occurs in YZ-plane and the axis of twist in equation (7-3) 

is the axis of the ftxed tangent. The total end rotation about an axis perpendicular to 

the loaded tangent is therefore obtained from the following geometric relation: 

fIJ = fIJI - flJ2m cos a - '2t sin a (7 -4) 

A typical moment - end rotation (3a'a) curve is shown in Fig.7.3 using the equation 

(7-4). It can be seen that the relationship between bending and out-of-plane rotation 

is linear. The flexibility factor is fmally obtained by dividing the derived end rotation 

produced by the end rotation of an equivalent straight pipe as given by eqn (5-31). 
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a = 90-deg, Rlr = 3, tlr = 0.026 
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Fig.7.3 Typical moment - end rotation curve under out-of-plane bending 

Figure 7.4 shows the flexibility factor for 90-deg piping elbow plotted against pipe 

bend parameter, A, for various value of radius ratios, Rlr. It can be een that a high 

value of flexibility factor is obtained for a small value of pipe bend parameter. Figure 

7.4 also shows a dependency of flexibility on radiu ratio. A shown in Fig.7.4 the 

relationship between flexibility factor k, and pipe bend parameter, A, i 

approximately linear in a log-log plot. Accordingly, the relation can be expre ed in 

form of equation (5-33) . 

As before, it is required to obtain approximate formulae for the flexibility factor from 

finite element generated data. It can be een from Fig.7.4 that th flexibility factor 

under out-of-plane bending depend on the pipe bend parameter as well a on radiu 

ratio . By curve fitting, flexibility factor for 90-deg piping elbow under out-of-plane 

bending are summarised in the following equation : 
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k = 2.605 . R 
(7 - 5) for- = 2 A°.57 ' r 

k = 2.39 . R 
(7 - 6) for-= 3 A°.59 ' r 

k = 2.19 . R 
(7 -7) for- =6 Ao.58 ' r 

k = 2.11. R 
(7 - 8) for- = 10 Ao.53 ' r 

a = 90-deg 

100 
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r--- .. Rlr = 3 

ole 10 ~ 
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'-e b ...... 
f6~ 'it-It--
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A. 

Flg.7.4 Flexibility factor for 90-deg piping elbows under out-of-plane bending 

As has been done for in-plane bending ca e, the derivation of flexibility factor 

following the form of equations proposed by Fujimoto and oh [92], where the 

flexibility factor is expre ed in term of the a ymptotic olution of lark and 

Reissner [20] and mUltiplying it with a factor repre enting thc dependence of 

flexibility factor on pipe bend parameter, A, a well as on radiu ratio, RJr. Equation 

(7-5) through (7-8) can be further written in the following form : 
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k = ] 15 
[] .176 + 0.2521n(A)] R = 2 (7 - 9) 

r 

k = 115 
[1.]93 + 0.2727In(A)] R =3 (7 - 10) 

r 

k = 115 
[1.218+0.33411n(A)] R =6 (7 -11) 

r 

k = 115 
[1.244+0.43481n(A)] R =10 (7 -] 2) 

r 

It can be inferred from these equations that the flexibility factor under an out-plane 

bending is much smaller than the asymptotic solution of Clark and Reissner [20] a 

adopted in current design piping code [114, ]20]. Fig.7.5 shows the flexibility factor 

calculated using the formulae of Equations (7-9) through (7-12) in compari on with 

the finite element results . It can be seen that the proposed formulae fit the re ults 

obtained from finite element, but not as good a for in-plane bending ca e. 
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Fig.7.5 Comparison for flexibility factor between derived formulae and FE 
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7.1.1 Effect of Bend Angle on Flexibility Factor 

As has been done for in-plane bending case, the effect of bend angle on flexibility 

factor under out-of-plane bending will continue be taken into account. For thi s 

purpose, piping elbows of bend angle 30, 45 , 60, and 180-deg have been tudied . 

Figure 7.6 through 7.9 show plots of flexibility factor again t pipe bend parameter. It 

can be seen from these plots that the relationship between flexibility factor and pipe 

bend parameter is once more approximately linear in log-log plot for all the bend 

angles considered. 
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Fig.7.6 Flexibility factor for 30-deg pipe elbow under out-of-plane bending 
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a = 45-deg 
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Fig.7.7 Flexibility factor for 45-deg pipe elbows under out-of-plane bending 
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Fig.7.8 Flexibility factor for 60-deg pipe elbow under out-of-plane bending 

3 I 



a = 180-deg 
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Fig.7.9 Flexibility factor for 180-deg pipe elbows under out-of-plane bending 

By curve fitting, flexibility factors for piping elbow under out-of-plane bending can 

now be derived as before and the results are expressed in form : 

k = 1.65 [a + bln(A.)] 
A. 

(7 -13) 

where the coefficient a and b are functions ofradiu ratio, Rir, and bend angle, a, 

and are summarised in Table 7.1 and 7.2 respectively. 
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Table 7.1 Values of coefficient "a" in equation (7-13) for various bend angles 

Rlr Bend Angle, a 

30-deg 45-deg 60-deg 90-deg 180-deg 

2 0.8110 1.0880 1.2427 1.1760 0.4617 

3 0.8650 1.1224 1.2618 1.1930 0.5860 

4 0.9181 1.1440 1.2714 1.2039 0.6468 

5 0.9570 1.1633 1.2772 1.2132 0.7037 

6 0.9890 1.1850 1.2800 1.2180 0.7480 

7 1.0187 1.1930 1.2840 1.2272 0.7894 

8 1.0443 1.2050 1.2861 1.2328 0.8234 

9 1.0674 1.2157 1.2877 1.2378 0.8535 

10 1.0910 1.2322 1.2900 1.2440 0.8788 

Table 7.2 Values of coefficient "b" in equation (7-13) for various bend angles 

Rlr Bend Angle, a 

30-deg 45-deg 60-deg 90-deg 180-deg 

2 0.1320 0.2001 0.2510 0.2520 0.0020 

3 0.1603 0.2300 0.2800 0.2727 0.0346 

4 0.1871 0.2404 0.2967 0.2904 0.0552 

5 0.2143 0.2636 0.3179 0.3107 0.0818 

6 0.2424 0.3000 0.3385 0.3341 0.1062 

7 0.2687 0.3100 0.3603 0.3558 0.1350 

8 0.2959 0.3332 0.3815 0.3807 0.1616 

9 0.3231 0.3564 0.4027 0.4074 0.1882 

10 0.3501 0.3880 0.4242 0.4348 0.2146 

Figure 7.10 and 7.11 show flexibility factor for various bend angles calculated using 

equation (7-13) and Table 7.1 and 7.2. It can be seen for both short radius and long 

radius piping elbows that the flexibility factor is directly proportional to the bend 

angle for bend angle between 30 and 60-deg. There is a significant drop in value of 
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flexibility for 90-deg bend angle compared to the flexibility for 60-deg elbow . It can 

be seen that the flexibility factor for 90-deg elbows lying between the value for 45 

and 60-deg for high pipe bend parameter and between the value for 30 and 45-deg 

for low pipe bend parameter. For short-radius 180-deg piping elbow , the flexibility 

factor is less than the value for 30-deg for high pipe bend parameter but 

approximately equal to the flexibility for 90-deg for low pipe bend parameter. Figure 

7.11 shows that the flexibility factor for long radius 180-deg piping elbow i Ie 

than the value for 30-deg pipe elbows. 
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Fig.7. IO Flexibility factor for short-radius piping elbow under out-of-plane bending 
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Fig.7.11 Flexibility factor for long-radius piping elbow under out-of-plane bending 

7.1.2 Pressure Reduction Effect 

It was confirmed in the previous chapters that internal pre ure reduce the flexibility 

of piping elbows under in-plane bending. In this section the pre sure reduction effect 

on flexibility for piping elbows under out-of-plane bending i examined. 

The closed-end effect of internal pre ure i modelled in u ual way, i.e., acting on the 

edge of the loaded end as shown in Fig.7. 12. A a family of urface load, AN Y 

always treats the pressure (either it acting on a urface or on an edge) a follower 

force. See ANSYS on-line help ection 8.1 .2 .3 [119]. 
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a = prl2t --. 

Fig. 7.12 Piping elbow subjected to out-of-plane bending and internal pre ure 

As usual a typical pressure - end rotation curve is hown in Fig. 7. 13 plotted for a 90-

deg elbow having radiu ratio equal three where the ab ci a 0.0 repre ent the final 

load step of moment loading and the tart of the ub equent internal pre ure load ing. 

1t ean be seen that the relation between internal pre ure and the end rotation i non­

linear as compared to the linear relation in the moment - end rotation curve. 

Figure 7.14 through 7.17 show the flexibility factor for 90-deg pipe elbow plotted 

again t pipe bend parameter for variou radiu ratio . Once more it can b clearly 

een that internal pres ure reduce the flexibility and the reduction i more 

pronounced for thin walled piping elbow (elbow of low pipe factor ). The pre ure 

reduction effect corre ponding to equation (5-45) can be further derived from the e 

Figure . 
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o ut-of-pla ne moment, a = 90-deg , Rlr = 3 
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Fig. 7.15 Pressure reduction on flexibility factor for 90-deg pipe elbow : Rlr = 3 

out-of-plane moment, a = 90-deg , Rlr = 6 
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Fig. 7.16 Pressure reduction on flexibility factor for 90-deg pipe e lbows: Rlr = 6 
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out-of-plane moment, a = 90-deg, Rlr = 10 
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Fig. 7 .17 Pressure reduction on flexibility factor for 90-deg pipe elbows: Rlr = 10 

Again, a typical example of the pressure reduction effect on out-of-plane flexibility 

for 90-deg pipe elbows is shown as a log-log plot in Fig.7.18 and 7.19, and it can be 

seen that the relations are linear. There is a small deviation from linearity for the 

relation between pressure reduction and radius ratio (Rlr) . Throughout the 

development of approximate formula in what follow , thi linear behaviour will 

again be adopted as the basis for approximation. 
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a = 90-deg , Rlr = 3 
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a = 90-deg, tlr = 0.03 
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Fig.7.] 9 Pressure reduction for constant thicknes plotted again t (a) piE, (b) Rlr 
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Examination of Fig. 7.18 and 7.19 together with Fig. 7.14 through 7.17 results in the 

following approximate equation is proposed for the flexibility 90-deg pipe elbows 

under out-of-plane moment: 

k = k 

p ( X )'%( )0322 1+0.175; 7 6: (7 -14) 

where k is flexibility factor in the absence of internal pressure as given by equation 

(7-13) and Table 7.1 and 7.2. A comparison with equation (6-31) for in-plane closing 

bending shows roughly that the pressure reduction in both equations are not 

markedly different in magnitude. 

7.1.3 Effect of Bend Angle on Pressure Reduction 

It has been shown elsewhere in this thesis that the flexibility for unpressurised piping 

elbows under out-of-plane moment is very much influenced by the bend angle. It has 

been found however that the flexibility is not directly proportional to the bend angle 

if the bend angle approached 90-deg and greater. In what follows, the effect of bend 

angle on the pressure reduction effect is examined. 

Using the data of Fig.A7.1 through A7.5 in Appendix C7, flexibility factors for 

pressurised piping elbows under out-of-plane bending can be derived as before: 

k = k 

p 1+0.385(;nt(~r" 
fora=30-deg (7 -15) 

k = k 

p 1+0.295(;nt(~r49 
fora=45-deg (7 -16) 
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fora=60-deg (7 -17) 

fora=180-deg (7 -18) 

Noting that: 

can be wntten as: equations (7-14) through (7-18) . 

kp = k 

I+O·lO{~~x~t(~r~ 
fora=30-deg (7 -19) 

kp = __ --;_.::k ___ --

I+O.08{~~nt(~rl6 
fora=45 - deg (7 -20) 

fora=60-deg (7 - 21) 

for a = 90 - deg (7 - 22) 

for a = 180 - deg (7 - 23) 
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It can be seen from these equations that for elbows having bend angle of 90-deg and 

smaller, the pressure reduction effect is directly proportional to bend angle. 

Following previous practice, equations (7-14) through (7-19) if required can be 

further simplified: 

where A, B, m, and n are function of bend angle, a. This simplification will not be 

processed further. 

7.2 Stress-Intensification Factors 

The formulae for the stress-intensification factor for unpressurised and pressurised 

piping elbows under in-plane moment have been developed in Chapters 5 and 6 for 

closing and opening bending respectively, where it was found that the cross-section 

deformed into an oval shape with major axis perpendicular to the plane of the bend 

for the closing case and lying in the plane of the bend for the opening case. For the 

out-of-plane bending case, ovalisation occurs close to an axis inclined at about 45-

deg to the plane of the elbow and is maximum at a section between the junction with 

the loaded tangent at the mid-section of the bend. Due to this behaviour different 

flexibility and stress factors will be expected. 

Figure 7.20 shows a typical cross-sectional ovalisations of a pipe elbow under out-of­

plane bending for a radius ratio equal Rlr equal to 3 and thickness to cross-section 

radius tlr equal to 0.03 (pipe schedule lOs). These are plotted for ovalisation at the 
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junction with the loaded tangent, at a section where the hoop tre ha it maxImum 

value, and at mid-section of the bend. The re ult are approximately anti- ymmetric 

with respect to the elbow plane of symmetry. It can be een that the maximum radial 

displacement (ovalisation) does not occur at the ection where the tre e are 

maximum. It is understood that the cross-sectional ovalisation i due to bending and 

the maximum bending along the elbow is at the junction of the elbow with the loaded 

tangent. Recall that the out-of-plane moment is applied about an axi perpendicular 

to the loaded tangent as shown in Fig.7.1 (M = My). In this en e, the moment 

loading diminishes as we move toward the junction with the fixed tangent. For a 90-

deg elbow, the loading at the junction with the fixed tangent i pure tor ion and there 

no 'ovalisation ' occurs at thi ection. 
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~ 

-t- -- _\ V ~ 
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57-deg section 

o -6- 45-d section 

Fig.7.20 Typical radial di placement under out-of-plane moment 

Figure 7.21 and 7.22 respectively how typical longitudinal and circumfl r ntial 

tress contour plots plotted for a 90-deg pipe elbow. It can be een from the e figure 

that the location of the maximum tre s in a pipe elbow under an out-of-p lane 

moment Occurs not at rnid- ection of the bend, but between the mid- ection and th 

junction of the elbow with the loaded tangent; it i a compre ive tre at the inn r 

urface of the wall. 
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NODAL SOLUTION 

STEP·1 
SUB ·11 
TIME ·1 
SY (AVG) 
TOP 
RSYS · 11 
DHX . 9.148 
SIm ·-317.232 
SHX .114.304 

x 

-317 . 232 -221.335 

NODAL SO LUTION 

STE p·1 
SUB .11 
TIME·1 
SY (AVG) 
BO'ITOI! 
RSYS·11 
DHX ·9.148 
SMN . - 207.473 
SI'IX .139.674 

-269.284 

x 

-207 .473 -130.329 
-168 . 901 -91 . 757 

(a) 

-14.614 

(b) 

AN 
OCT 25 2003 

09:26:19 

66.356 
18.407 114.304 

62.53 

AN 
OCT 25 2003 

09:33:09 

101.102 
139.674 

Fig.7.2 1 Typical longitudinal stre s contour plot under out-of-plane b nding (a) outer 

surface, (b) inner surface 
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NODAL SOLUTION 

STEP-1 
SUB -11 
TIME-1 
S2 (AVG) 
TOP 
RSYS-11 
DIIX -9.22 
SlIN --260.504 
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-260.504 -129 . 617 1.27 

NODAL SO LUTI ON 

STEP- 1 
SUB - 11 
TnIE-1 
SZ (AVG) 
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(a) 
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151.995 299.446 

Fig.7.22 Typical circumferential stres contour plot under out-of-plane bending (a) 

outer surface, (b) inner surface 
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Figure 7.23 shows typical longitudinal stres factor at the loaded end (90-deg 

section), 57-deg section where the hoop stress is maximum, and at the mid- ection of 

the elbow. It can be seen that the maximum longitudinal tre occur at the outer 

surface as compressive stresses; the circumferential location of maximum 

longitudinal stress is at about 10-deg from the crown toward the intrado . 

Rlr = 3, tlr = 0.03, outer surface 
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Fig.7.23 Typical longitudinal stress factor for a 90-deg pipe elbow under out-of­

plane bending (a) outer surface, (b) inner surface 
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Figure 7.24 shows typical circumferential stres factor at the loaded nd ection, 57-

deg section where the stresses are maximum and at mid- ection of the bend. It can be 

seen that the maximum hoop stress occurs at the inner urface as compre ive tre ; 

the circumferential location of maximum hoop stre s i at about 30-deg from the 

crown toward the intrados. 
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Fig.7.24 Typical circumferential tre factor for a 90-deg pipe elbow undcr out-of­

plane bending (a) outer surface, (b) inner surface 
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Overall, it has been found that the maximum stre for elbows having bend anglc of 

30-deg and greater occurs in the hoop direction a compre ive tre e at the inner 

surface. Its location is not always at the same location for all pipe bend parameters, 

but depends on bend angle, radius ratio and wall thickne . In what follow , the 

maximum hoop stress is evaluated regardless of it location longitudinally and 

circumferentiall y. 

Figure 7.25 shows a typical moment-stress curve for a piping elbow under out-of­

plane bending for a 90-deg elbow having radius of 3 and thickness to cross-section 

radius ratio of 0.026. It can be clearly seen that the relation of applied bending and 

resulting stress is essentially linear. It will be een that this i not the ca e when 

internal pressure is further applied and the pre sure reduction included. 

a = 90·deg, Rfr = 3, tlr = 0.026 
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Fig.7.25 Typical moment - tre s (hoop) curve under out-plane moment 
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Figure 7.26 shows the stress-intensification factor for 90-deg piping elbow plotted 

for various radius ratios. It can be seen that high stress-intensification factor is 

obtained for low pipe bend parameter. Figure 7.26 also show that the tre s­

intensification factor is influenced by radius ratio. Figure 7.26 again show that the 

relationship between stress-intensification factor, y, and pipe bend parameter, A, i 

approximately linear in a log-log plot and can be expressed in form of equation (5-

58). 

a = 90-deg 

10 

N , 
:-.:: 

'>0. ., 

~~ 
"'-;. 
~ 

--'-Rlr = 2 
+ Rlr = 3 

l-.. 'I) ~. --R/r= 6 '.It , - ...t. - Rlr= 10 

--A. 
' ~' A 

1 
0.01 0.1 1 

I 

Fig.7.26 Stress-intensification factor for 90° pipe elbows under out-of-plane bending 

Approximate formula for stress-intensification factor for 90-deg piping elbow under 

an out-of-plane bending can be derived from Fig.7.26: 

1.50 R 
(7 - 24) r= AD.58 ; for - = 2 

r 

1.60 R 
(7 - 25) r = AD.59 ; for- = 3 

r 
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1.61 R 
(7 - 26) r= Ao.59 ; for-= 6 

r 

1.52 R 
(7 - 27) r= Ao.67 ; for-=lO 

r 

Following the procedure of Fujimoto and Soh [92], equations (7-24) through (7-27) 

can be written in form of equations (5-63): 

r = 1.~ [0.6726 + 0.0236 In (A)] 
Af3 

r = 1.~ [0.7818 + 0.0573 In (A)] 
A73 

r = 1.~ [0.8509 + 0.061ln(A)] 
Al3 

r = 1.~ [0.8065 - 0.00291n(2)] 
A73 

R 
for-=2 

r 

R 
for-=3 

r 

R 
for-=6 

r 

R 
for-=10 

r 

(7 -28) 

(7 - 29) 

(7 -30) 

(7 - 31) 

In the above equations, the term outside the square bracket again is the asymptotic 

solution of Clark and Reissner [20] and the term inside the square bracket represents 

the dependence of stress-intensification on pipe bend parameter, A, as well as on 

radius ratio, RJr. The change in sign for the second term in the square bracket implies 

that the value of 'index q' corresponding to equation (5-58) could be either smaller 

or greater than 2/3. 

Figure 7.27 shows plots for stress-intensification factor for 90-deg pipe elbows 

calculated using the derived formulae in comparison with those obtained directly 

from finite element solution. It can be seen that the proposed equation fit well the 

result from finite element solution. In addition, plots for the proposed formulae, i.e., 

equations (7-28) through (7-31) coincide with those calculated using equation (7-24) 

through (7-27). 
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Fig_7.27 Comparison for stress-intensification factor between derived fprmulae and 

finite element solution 

7.2.1 Effect of Bend Angle on Stress-Intensification Factor 

As before, the effect of bend angle on stres -inten ification factor i again con idered 

here. For this purpose, pipe elbows having bend angle of 30, 45, 60, 90, and 180-

deg have been studied. Figure 7.28 through 7.31 how tre s-inten ification factor for 

out-of-plane bending. It can be seen again that straight line are obtained in a log-log 

graph for all bend angles can idered_ The e Figure how that the tre -

intensification factor not only depends on the parameter, A, but al a depend on the 

radius ratio, Rlr: as the bend angle become greater, th dependence of tre -

intensification on radius ratio becomes smaller. Figure 7.31 how that the tre -

intensification factor for 180-deg pipe elbow les dependent on radius ratio . 
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Fig.7.28 Stress-intensification factor for 30° pipe elbow due to out-of-plane bending 
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Fig.7.29 Stress-intensification factor for 45° pipe elbow due to out-of-plane bending 
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a = 60-deg 
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Fig.7 .30 Stress-intensification factor for 600 pipe elbows due to out-of-plane bending 

a = 180-deg 
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Fig.7.31 Stress-inten ification for 1800 pipe elbows due to out-of-plane bending 

Approximate formula can be derived from the above figure and written In the 

following form: 
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r= 1.~ [a +bln{A)] 
A,73 

(7 - 32) 

where coefficients 'a' and 'b' a functions of radius ratio and are summarised in Table 

7.3 and 7.4 respectively:. 

Table 7.3 Values of coefficient "a" in equation (7-32) for various bend angles 

Rlr Bend angle, ex 

30-deg 45-deg 60-deg 90-deg 180-deg 

2 0.4749 0.5725 0.6331 0.6726 0.7468 

3 0.5473 0.6564 0.7074 0.7818 0.7964 

4 0.5965 0.7227 0.7707 0.8229 0.8159 

5 0.6343 0.7578 0.8168 0.8297 0.8352 

6 0.6793 0.8096 0.8494 0.8509 0.8461 

7 0.6913 0.8100 0.8622 0.8276 0.8486 

8 0.7140 0.8136 0.8615 0.8248 0.8427 

9 0.7339 0.8244 0.8452 0.8219 0.8284 

10 0.7424 0.8332 0.8167 0.8065 0.8081 

Table 7.4 Values of coefficient "b" in equation (7-32) for various bend angles 

Rlr Bend angle, ex 

30-deg 45-deg 60-deg 90-deg l80-deg 

2 -0.0031 -0.0217 -0.0163 0.0236 0.0143 

3 0.0038 -0.0049 0.0001 0.0573 0.0239 

4 0.0103 0.0239 0.0335 0.0650 0.0353 

5 0.0145 0.0390 0.0491 0.0648 0.0403 

6 0.0176 0.0493 0.0620 0.0610 0.0404 

7 0.0175 0.0494 0.0551 0.0554 0.0383 

8 0.0163 0.0447 0.0455 0.0408 0.0313 

9 0.0133 0.0334 0.0275 0.0196 0.0203 

10 0.0099 0.0114 0.0041 -0.0029 0.0005 
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It can be seen from these Tables that values of coefficient ' b' given in Table 7.4 is 

small and the second term in the square bracket in of equation (7-32) can be 

neglected without significant loss in accuracy. Figure 7.32 shows plot of tre -

intensification factor for short radius pipe elbows and various bend angles. Similar 

plot for long-radius pipe elbows is shown in Fig.7.33. 
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Fig.7.32 Stress-intensification factor for short-radius piping elbows under out-of­

plane bending 
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Fig. 7 .33 Stress-intensification factor for long-radius piping elbows under out-of­

plane bending 

It can be seen from Fig.7.32 and 7.33 that stre -intensification i not directly 

proportional to the bend angle for out-of-plane bending ca e. Table 7.5 below 

summarises the trend of stress-intensification factor with re pect to the tre -

intensification for 90-deg pipe elbows: 

Table 7.5 Trend of stress-intensification under out-of-plane bending 

a ')1')<)0 

Short-radius elbows Long-radiu elbow 

30-deg < 1 > I 

45-deg > 1 > 1 

60-deg > 1 > 1 

90-deg = 1 = 1 

lS0-deg > 1 "" I 

40 



It can be inferred from Table 7.5 that the stress-intensification for 90-deg pipe 

elbows is smaller than for other bend angle, except for short-radius and small bend 

angle. It can be said that stress states in 90-deg elbows is very different from those 

for other bend angle. A 90-deg elbow under out-of-plane bending produced smallest 

ovalisation leading to smallest flexibility and stresses, because the loading in one end 

becomes pure torsion where no ovalisation occurs. It is interesting to note from Table 

7.5 that the stress-intensification factor for 90 and ISO-deg pipe elbows are about 

level for long-radius bends. 

7.2.2 The Pressure Reduction Effect 

Previously, it has been found that the internal pressure always reduces the maximum 

stresses for all pipe bend parameters. It has long been known that the cross-sectional 

distortion of a pipe bend under out-of-plane bending is different from that of in-plane 

bending. It is expected that the pressure reduction effect will also be different. 

Figure 7.34 shows typical hoop stress distribution under unpressurized and 

pressurized condition plotted for a 90-deg elbow having Rlr = 3 and tlr = 0.03. 

Figure 7.34 is plotted at 23-deg section from junction with loaded tangent (refer to 

Fig. 7 .2) where maximum stress located at this section. 

To obtain stress-intensification factor under bending and internal pressure, the 

toroidal membrane hoop stress (eqn (2-15» must be subtracted from the total hoop 

stress for the pressurized condition in Fig.7.34. Figure 7.35 shows typical pressure 

reduction on hoop stress factors under an out-of-plane bending after subtracting the 

toroidal stress (eqn(2-15» from the stresses for unpressurized condition in Fig.7.34. 

It can be seen that internal pressure reduce the stress. Figure 7.35 also shows that the 

system under consideration is bending dominated, characterised by the same location 

of maximum stresses under unpressurised and pressurised condition. It is however 

expected that the tendency for this stress distribution to change if internal pressure 

load increase beyond a certain level [57J. 
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A typical pressure - stress (hoop) plot is shown in Fig.7.36, plotted for the arne 

elbow geometry as Fig.7.34. The abscissa 0.0 repre ents the final load tep of 

bending load and the start of the subsequent internal pres ure load. It can be een that 

the relationship between the internal pressure and hoop tre in non-linear. Figure 

7.36 can be directly compared with Fig.7.252, where the relation hip between 

moment and hoop stress is linear. Again, Fig. 7 .36 shows the 'Haigh effect' as a 

result of applying internal pressure on ovalized cross-section piping elbow. 

a = 90-deg, Rlr = 3, t/r = 0.03 

0.0025 -y--------------------------, 

0.0020 t-~"'"------------L-----.::=~:....=.LJ.----__i 

0.0015 +----------':.........;""'-0;;::-----------------1 
y = -0.0002x + 0,0021 

R2 = 0.9867 

0.0010 +------------------=.,:,~..:_-------_I 

0.0005 +--------------------------=-_1 

0.0000 +---r------,~-__r--__r--_r_--..,_--T"'""--r-----1 

o 2 3 4 5 6 7 8 9 

Fig.7.36 Typical pres ure - stress plot for a pipe elbow due to out-of-plane bending 

Figure 7.37 through 7.40 show stress-intensification factor for 90-deg pipe elbow 

for various radius ratios loaded by out-of-plane bending and internal pre ure. It can 

be seen that the effect of internal pre ure i to reduce the tre -inten ification . A 

before, the reduction is more pronounced in elbow having low pipe bend parameter 

(smaII thickness and short-radius bend). 
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Fig.7.37 Stress-intensification with internal pres ure for 90-deg pipe elbow : Rlr = 2 
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Fig_7.38 Stress-intensification with internal pre ure for 90-dcg pipe elbow : Rlr = 3 
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out-of-plane moment, a = 90-deg, Rlr = 6 
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Fig.7.39 Stress-inten ification with internal pre sure for 90-deg pipe elbow: Rlr = 6 

out-of-plane moment, a = 90-deg, R/r = 10 
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Fig.7.40 Stre s-intensification with internal pre ure for 900 pipe elbow : Rlr = 10 

Pressure reduction for stress-in ten ification factor corre ponding to equation (5-70) 

for 90-deg piping elbow can be derived from Fig.7.37 through 7.40. It i plotted a 

log-log graph in Fig.7.41 for con tant value of R/,. and in Fig.7.42 for can tant value 

of rlt. 
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It can be seen from Fig.7.41 and 7.42 that linear plots are again obtained for the 

relation between pressure reduction, non-dimensional pressure, piE, non-dimensional 

thickness, rlt, and radius ratio, Rlr. There is actually a very small deviation from 

straight lines, especially for the relation between pressure reduction and geometric 

parameters. 

From Fig.7.41 and 7.42 together with Fig.7.37 through 7.40, the following 

approximate expression is proposed for calculating stress-intensification factors for 

90-deg pipe elbows under out-of-plane bending and internal pressure: 

r = r 
p (pXr)X(R)0,426 1+9.25 - - -

E t r 

(7 - 33) 

where ris stress-intensification factor in the absence of internal pressure as given by 

equation (7-32) and Table 7.3 and 7.4. Equation (7-33) can be directly compared 

with equation (5-71) for closing bending and equation (6-50) for opening bending. It 

can be seen that the coefficient and the index of the pressure reduction for out-of­

plane bending is comparable with that for closing bending, but markedly different 

from opening bending. 

7.2.3 Effect of Bend Angle on Pressure Reduction 

It has been shown in section 7.2.1 that stress-intensification factor of unpressurised 

elbows is influenced by the bend angle. It has been found also that the stress- state is 

different markedly for different bend angles. In this section, the effect of bend angle 

on pressure reduction is studied and approximate formulae again proposed. 

By constructing log-log plots for pressure reduction using the data of Fig.A 7.6 

through A 7.1 0 of Appendix C7, stress-intensification factors for pressurised pipe 

elbows under out-of-plane bending can be written as: 
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r = r 
p {pXr)%(R)O.l20 1+1 - - -

E t r 

fora=30- deg (7 -34) 

r = r 
p (PXr)%(R)O.290 1+12.3 - - -

E t r 

fora=45 -deg (7 - 35) 

r = r 
p (PXr)%(R)O.394 1+9.7 - - -

E t r 

for a = 60 - deg (7 -36) 

r = r 
p (pXr)"(R)O.466 1+8.3 - - -

E t r 

for a = 180 - deg (7 - 37) 

Again noting that: 

Stress-intensification factors for piping elbows under combined out-of-plane moment 

and internal pressure can be written in the alternative form: 

r p = r for a = 30 - deg (7 -38) 

( ') (r" 1+5.22 ~; # ~ 

rp = r for a = 45 - deg (7 - 39) { ') (r 1+3.4 ~~ # ~ 

Yp = r fora=60-deg (7 -40) ( ') (r 1+2.67 ~; # ~ 
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r - r 
p - 'l( 3J (JO

.
240 

1 +2.5"\ ~; # ~ 
fora=90-deg 

r - r 
p - (3 J (JO

.
201 

1+2.29 ~; # ~ 
for a = 180 - deg 

which can be further simplified as: 

r - r 
p - (X JU(R)m I+A;;: -; 
r - r 

P - J 3J ()/I 1+~l~; ih ~ 

(7 - 41) 

(7 -42) 

where A, B, m, and n are functions of bend angle, a. This simplification will not be 

processed any further. 

7.3 Discussion 

Throughout this chapter, various approximate formulae for unpressurised and 

pressurised piping elbows under an out-of-plane bending have been developed. All 

the formulae have been obtained by curve fitting. While errors are expected in this 

approximation, it will be seen that the error is essentially small. 

Comparisons of results obtained from the present Chapter for out-of-plane bending 

will be made with respect to the results for in-plane closing and opening bending. 

Comparison with the current design piping code will also be made. The discussion 

will be divided into two main sections: unpressurised and pressurised condition. 
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7.3.1 Unpressurised Conditions 

In developing the formulae for unpressurised piping elbows, the effect of radius ratio 

has been taken into account. The dependency of flexibility and stresses on radius 

ratio is represented by the term in the square bracket for the following equations: 

k = 115 [a+bln(A)] 

r= 1·~[a+bln(A.)] 
Al3 

(7 -13) 

(7 - 32) 

Equations (7-13) and (7-32) have been developed following the form of equation 

proposed by Fujimoto and Soh [92]. In the above equations, the term outside the 

square bracket is the asymptotic solution of Clark and Reissner [20] for in-plane 

bending. The second terms in the square bracket as a constant multiplied by the 

logarithm of pipe bend parameter, are different from the equation due to Fujimoto 

and Soh [92], where these terms were expressed in a power law as given in equation 

(2-63) and (2-64) for flexibility factor. The reason for this difference might be caused 

by the large deformation effects, the effects which were not considered in Fujimoto 

and Soh's analysis. 

Figure 7.43 shows flexibility factor for short-radius piping elbows under out-of-plane 

bending (OPB) calculated using equations (7-13) in comparison with the flexibility 

factor for in-plane opening (IPO) and closing (IPC) bending. It can be seen that the 

out-of-plane flexibility is much smaller than the in-plane flexibility. It can be noticed 

that the flexibility factor for unpressurised piping elbows loaded by an out-of-plane 

bending is not directly proportional to the bend angle. With reference to the way the 

out-of-plane bending is applied, i.e., about an axis perpendicular to tangent of the 

bend at the free end of the loaded tangent, the amount of bending (and ovalisation) at 

the junction of the bends with the fixed tangent is different for every bend angle. For 

90-deg elbows, this end is subjected to pure torsion and no ovalisation occurs. For 

lSO-deg elbows, this end is subjected to pure bending. For other bend angles, this 
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end is subjected to bending and torsion. As can be seen from Fig.7 .43, there i an 

increasing value of flexibility factor for increasing a = 30-deg to a = 45-deg, but it 

decreases for 90-deg pipe elbows and further decrea es for 180-deg pipe elbow 

compared to the flexibility of 45-deg pipe elbows. 
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Fig.7.43 Flexibility factor for short-radius piping elbow ubjected to bending 

Figure 7.44 shows a comparison of flexibility factor for long-radiu piping elbow 

under out-of-plane and in-plane bending. Figure 7.44 how that for mall angle 

piping elbows (a~ 90-deg), the flexibility under out-of-plane bending i bigger than 

under in-plane bending for high pipe bend parameter , but mailer for low pipe bend 

parameters. For large angle bend (a = 180-deg), the out-of-plane flexibility i mailer 

than the in-plane flexibility for all pipe bend parameters a expected. 
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Fig.7.44 Flexibility factor for long-radiu piping elbow ubjected to bending 

Figure 7.45 shows comparison of stres -inten ification factor for hort-radiu pIping 

elbows under in-plane and out-of-plane bending. The re ult calculated u ing the 

formula of Markl [23] as adopted in the ASME Proces Piping Code [1 20] i al 0 

included in the graphs. It should be note that the A ME formula for tre -

intensification factor produces values mailer than unity if it i applied to pipe bend 

oflarge A, but it is usually as unity. It can be een from Fig.7.45 that the out-of-plane 

stress-intensification i maller than the in-plane tre -inten ification a expected. 

The difference for stre s-intensification between out-of-plane and in-plane become 

greater as the bend angle becomes larger. Overall, it can be een that the formula 

used in the ASME B31.3 [120] produce a much lower tre -inten ification factor 

compared to the result from the pre ent analy i . 
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Fig.7.45 Stress-intensification factor for short-radiu piping elbow under bending 

Figure 7.46 shows comparison of stress-intensification factor for long-radiu plptng 

elbows under in-plane and out-of-plane bending. Again the re ult calculated u ing 

the formula in the ASME Process Piping Code [120] i al 0 included in the graph . It 

can be seen from Fig.7.46 that the out-of-plane stre -intensification is smaller than 

the in-plane stress-intensification, becau e elbows are stiffer under out-of-plane 

bending than under in-plane bending. The difference for tre -inten ification 

between out-of-plane and in-plane becomes greater as the bend angle become 

larger. In addition, it can be seen that the formula u ed in the A ME B31 .3 [120] 

produces a much lower tress-inten ification factor compared to the re ults from the 

present analysis. Table 7.6 below ummarise the compari on of the formula in 

ASME B31.3 and the results from the pre ent analy i . The percentage in Table 7.6 

are calculated as: 

OPB[ASME] percentage = ] - ---'----.::.. 
OPB[ANSYS] 
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where OPB is the out-of-plane stress-intensification factor. For A ME B3 1.3, the 

OPB is adopted from the fatigue tests conducted by MarkJ [27] as given by equation 

(2-58). For the present analysis, OPB i calculated from equation (7-24) and Table 

7.3 and 7.4. 
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Fig.7.46 Stress-intensification factor for long-radius piping elbow under bending 

Table 7.6 Comparison of stress-intensification factor between ASME B31 .3 and the 

present FEA results 

a Short-radius (Fig. 7 .39) Long-radiu (Fig.7.40) 

Low A High A Low A High A 

30-deg 26% 27% 45% 46% 

45-deg 41% 40% 51% 52% 

90-deg 28% 36% 44% 44% 

180-deg 38% 41 % 44% 44% 
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It can also be inferred from Table 7.6 that stress-intensification factor for 9O-deg 

piping elbows is lower than 180-deg for short-radius piping elbows, but become level 

for long-radius piping elbows. Table 7.6 also shows that the stress-intensification 

factor under out-of-plane bending is not directly proportional to the bend angle. 

7.3.2 Pressurised Conditions 

In developing formulae to represent the pressure reduction effect, the following 

approximations have been made: 

(1) The relation between pressure reduction and nondimensional pressure piE, 

nondimensional thickness rlt and radius ratio Rlr is linear in log-log graph. 

Accordingly, the pressure reduction has been expressed in a power law. 

(2) The index of the term piE, rlt, and RlT has been based on one-partiCUlar data of 

one-particular geometry. 

Based on this approach and taking the effect of bend angle into account, the 

following formula has been obtained: 

Flexibility factor: 

(7 -43a) 

(7 - 43b) 
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Stress-intensification factor: 

r - r 
P - j 3J ()n 

l+ul ~~ ;X ~ 

(7 -44a) 

(7 -44b) 

where A, B, m, and n are functions of bend angle, ~ summarised in Table 7.7 and 7.8 

for flexibility and stress-intensification factors respectively. 

Table 7.7 Values of A, B, m, and n in equation (7-43) for flexibility factor 

Bend angle A B m N 

30-deg 0.385 0.106 0.033 0.199 

45-deg 0.295 0.080 0.149 0.316 

60-deg 0.225 0.062 0.244 0.411 

90-deg 0.175 0.048 0.322 0.489 

180-deg 0.300 0.057 0.231 0.554 

Table 7.8 Values of A, B, m, and n in equation (7-44) for stress-intensification factor 

Bend angle A B m n 

30-deg 19.00 5.22 0.119 0.548 

45-deg 12.30 3.40 0.289 0.378 
60-deg 9.70 2.67 0.394 0.273 
90-deg 9.25 2.53 0.426 0.241 
180-deg 8.30 2.29 0.466 0.201 
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As before, the percentage error is defined as: 

Err = 1- fdr1OO% 
Ie 

where fd represents either flexibility or stress-intensification factor obtained from the 

derived formula and Ie is the data directly taken from finite element results.Using 

this definition, the maximum error in percent is given in table 7.9 and 7.10: 

Table 7.9 Maximum error for flexibility, % 

a Rlr=2 Rlr=3 Rlr=6 Rlr-l0 

30-deg 8.5 8.5 7.7 6.3 

45-deg 7.3 6.7 6.7 7.3 

60-deg 7.0 6.2 6.8 6.5 

90-deg 6.3 6.8 6.8 6.4 

180-deg 9.1 7.7 8.9 7.1 

Table 7.10 Maximum error for stress-intensification, % 

a Rlr=2 Rlr=3 Rlr-6 Rlr-lO 

30-deg 8.5 8.7 5.8 4.7 

45-deg 4.1 4.5 4.8 4.3 

60-deg 4.9 3.3 3.9 4.3 

90-deg 5.7 5.7 4.7 4.5 

180-deg 4.4 3.9 3.6 4.1 

It can be seen from Table 7.9 that the maximum error for the approximate flexibility 

factor is less than 10%. It should be noted that the flexibility factor has been derived 

based on the concept of end rotation and end rotation has been derived from the 

displacement of crown nodes at the elbow-straight tangent junction. Based on this 

concept, it was assumed that the plane cross-section remains plane after bending and 
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there no warping occurs. However, the error in the approximate equation is 

acceptable from the practical point of view being less than 10%. 

In the case of the stress-intensification factor, the error introduced compared to the 

direct finite element result is not significant from a practical point of view, except 

perhaps for elbows of small bend angle (30-deg and below) and short radius. 

The are not many theoretical results concerning the pressure reduction effect on 

flexibility and stress-intensification factors. In the ASME 831.3 Process Piping code 

[120], the pressure reduction proposed by Rodabaugh and George [30] has been 

applied equally to pipe bends subjected to any direction of moment, and the 

flexibility and stress-intensification factors for unpressurised out-of-plane bending 

have been taken from the asymptotic solution of Clark and Reissner [20] for in-plane 

bending and the fatigue tests ofMarkl [20] for out-of-plane bending. 

Figure 7.47 shows a comparison of out-of-plane flexibility factor for short-radius 

(Rlr = 3), 90-deg pipe elbows obtained from the present analysis and the Rodabaugh 

and George [30] solution as adopted in the AS ME 831.3 Process Piping code. The 

pressure reduction for in-plane flexibility factor is also shown in Fig. 7.47. Recall the 

formula for the out-of-plane flexibility factor of90-deg piping elbows: 

k = k 
p ( X 1% 0322 

1 + 0.175; 7) 6 ( ~) . 

k = 11
5 

[1.193 + 0.2727ln(A)] 

k = k 

p 1+{;nn:t 
k = 1.65 

A. 

where k is flexibility factors in the absence of internal pressure. 

present analysis 

ASME 831.3[120] 
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It can be seen from the above equations that the index of (r/t) i much bigger in the 

present analysis, but the index of (R/r) is more or les the amc in magnitude. Thi i 

followed by the marked difference in coefficient (0.175 rather than 6) - much lower 

in the present analysis . It can be seen from Fig. 7.4 7 that the pre ure reduction effect 

is more pronounced for low pipe bend parameter (thin-walled elbow). Figure 7.48 

extracted from Fig. 7.4 7 shows that the magnitude of pres ure reduction repre ented 

by equation (5-45) is smaller for out-of-plane bending and bigger for closing 

bending, while it level for opening bending and the ASME code. 
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Flg.7.47 Comparison of pressure reduction for flexibility factor under bending 
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Rlr = 3, fir = 0.026 
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Fig.7.48 Pressure reduction on flexibility for a short-radius thin-walled pipe elbow 

Figure 7.49 shows a comparison of stress-in ten ification factor of 90-deg pipe 

elbows under out-of-plane bending and internal pressure obtained from the pre ent 

analysis and the result of the Rodabaugh and George [30] analy i . The re ult for 

closing and opening bending are also included in the graph . Again reca ll the 

formula for stress-intensification factor of pipe e lbow loaded by an out-of-planc 

bending: 

r = r 
P (p)(r)X(R)O'426 1+9.25 - - -

E t r 

r= 1.~ [0.7818 + 0.0573In(A)] 
A,73 

rp - ( p )r( r)~( R)X 
1+3.25 E I -; 

0.75 r=-
ffi 

pre ent analy i 

A M 8 3 1. [ 120] 
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It can be seen from the above equations that the index of r/r and R/r from the pre ent 

analysis is considerably smaller than the ASME code, but the coefficient of the 

pressure reduction is bigger in the present analysi . 

As can be seen from Fig.7.49, the pressure reduction effect is more pronounced for 

low pipe bend parameter (thin-walled elbows). The graph in Fig.7.49 are not ea y to 

compare since they have different stress-intensification factor for the unpre uri ed 

conditions. For A = 0.078 (the lowest pipe bend parameter in Fig.7.49), the pre ure 

reduction corresponding to equation (5-70) can be extracted from Fig.7.49 and it i 

shown in Fig.7.50. It can be seen from Fig.7.50 that the magnitude of the pres ure 

reduction for out-of-plane bending is lower than in-plane clo ing bending, but greater 

than opening bending and the ASME code [120]. 
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a = 90-deg, ), = 0.078 
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Fig.7.50 Pressure reduction on stress-intensification for a thin-walled piping elbow 

7.4 Summary 

Detailed non-linear large deformation finite element of piping elbow under out-of­

plane bending and internal pressure has been carried out. Approximate formulae 

which could be used in design for flexibility and tress-in ten ification factor have 

been developed. It has been found that the flexibility and tre -inten ification 

factors for unpres urised pipe elbows are not directly proportional to the bend angle. 

It has been also discovered that the pre ure reduction effect i not directly 

proportional to the bend angle. ]t is therefore not po ible to further implify the 

formula for other bend angles, but it i ugge ted that a parameter urvey be carried 

out if required. However, the bend angle considered in the pr ent analy i cover 

practical bend angle . In general, it ha been found that pipe elbow under out-of­

plane bending are much tiffer than under in-plane bending. It follow that the tr 

intensification factor is much smaller than tho e produced by in-plane bending load. 
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Appendix C7 

This appendix present Figures and Tables for out-of-plane bending. All the 

approximate formulae presented in this Chapter have been derived from these 

Figures: 

Fig.A7.1-A7.5: for Flexibility factor 

Fig.A8.6 - A8.1 0: for Stress-intensification factor 

The end of this Appendix presented Table for the location of maximum stress under 

out-of-plane bending. 

Continue to the next pages ... ~ 
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out-ot-p lane bending, a = 30-deg, Rlr = 2 
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Fig.A 7.1 Flexibility factor fo r 30-deg pipe elbow ubjected to out-of-plan bending: 

(a) Rlr = 2, (b) Rlr = 3 
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out-of-plane bending, a = 30-deg , Rlr = 6 
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Fig.A 7.1 Flexibility factor for 30-deg pipe elbow ubjected to out-of-p l n b nding: 

(c) RJr = 6, (d) RJr = 10 
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out-of-plane bending, a = 45-deg, Rlr = 2 

18 

16 • -- ~ -
~\ 

14 

~ ~~ 
-

12 
b 'SS ~ ~ 10 

Q, -~~ ~ ~ 

8 -6 

4 

2 - .-

0 
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 

,.t 

(a) 

out-of-plane bending, a = 45-deg, Rlr = 3 
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Fig.A 7.2 Flexibility factor for 45-deg pipe elbow ubjected to out-of-planc bending: 

(a) Rlr = 2, (b) Rlr = 3 
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out-of-plane bending. a = 45-deg. R/, = 6 
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5 

\ 
"-4 r---- .. -

......., ~ ~- b --p/pmax = 0.0 ...-. 
3 -- - - .. - pIp max = 0.2 

I~-:::> ~ 1-- p/pmax = 0.4 Q. 

ole - 4 - pIp max = 0.6 -- 1-.- p/pmax = 0.8 2 -
- -6- pIp max = 1.0 

1 

0 
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

A 

(d) 

Fig.A 7.2 Flexibility factor fo r 45-deg pipe elbow ubj ccted to out-of-p lane bendi ng: 

(c) Rlr = 6, (d) Rlr = 10 
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out-of-plane bending, a = 60-deg, Rlr = 2 
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out-of-plane bending, a = 60-deg , Rlr = 3 
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Fig.A 7.3 Flexibility factor for 60-deg pipe elbow ubjected to out-of-plane b nding: 

(a) Rlr = 2, (b) Rlr = 3 
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out-of-plane bending, a = 60-deg, Rlr = 6 
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out-of-plane bending , a = 60-deg, Rlr = 10 
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F ig.A 7.3 Flexibility fac tor fo r 60-deg pipe elbow ubjected to out-of-plan bending: 

(c) Rlr = 6, (d)Rlr = 10 
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out-of-plane bending, a = gO-deg , Rlr = 2 
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out-of-plane bending, a = 90-deg , Rlr = 3 
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Fig.A 7.4 Flexibility factor for 90-deg pipe elbow ubj ccted to out-of-plane b nding: 

(a) Rlr = 2, (b) Rlr = 3 
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out-of-plane bending, a = 90-deg, Rlr = 6 
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Fig.A 7.4 Flexib ility factor for 90-deg p ipe elbow ubject d to out-of-p lane bending: 

(c) Rlr = 6, (d) Rlr = 10 
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out-of-plane bending, a = 180-deg, Rlr = 2 
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Fig.A 7.5 Flexibility factor for lS0-deg pipe elbow ubjected to out-of-plane 

bending: (a) Rlr = 2, (b) Rlr = 3 
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out-of-plane bending. a = iS0-deg. Rlr = 6 
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Fig.A 7.5 F lexib ility facto r for 1 BO-deg pipe elbow ubjected to out-of-p lan 

bending: (c) Rlr :::: 6, (d) Rlr ::: 10 
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out-of-plane bending, a = 30-deg, Rlr = 2 
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Fig.A 7.6 Stress-intensification factor for 30-deg pipe elbow ubjected to out-of­

plane bending: (a) Rly = 2, (b) R/r = 3 
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Fig.A 7.6 Stress-intensification factor for 30-deg pipe elbow ubjected to out-of­

plane bending: (c) Rlr = 6, (d) R/r = 10 
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out-of-plane bending, a = 45-deg, Rlr = 2 
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Fig.A 7.7 Stress-intensification factor for 45-deg pipe elbow ubjected to out-of­

plane bending: (a) Rlr = 2, (b) Rlr = 3 
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out-of-plane bending. a = 45-<:1eg . Rlr = 6 
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Fig.A 7.7 Stress-intensification factor for 45-deg pipe elbow ubjected to out-of­

plane bending: (c) Rlr = 6, (d) Rlr = 10 
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out-of-plane bending, a = 60-deg, Rlr .. 6 
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Fig.A 7.8 Stress-intensification factor for 60-deg pipe elbow ubjected to out-of­

plane bending: (c) Rlr = 6, (d) Rlr = 10 
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out-of-plane bending. IX .. 90-deg . Rlr .. 2 
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Fig.A 7.9 Stress-intensification factor fo r 90-deg pipe elbow ubjected to out-of­

plane bending: (a) Rlr = 2, (b) Rir = 3 
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out-of-plane bending , a = 90-deg , Rlr = 6 
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Fig.A 7.9 Stress-inten ification factor for 90-deg pipe elbow ubjected to out-of­

plane bending: (c) Rlr = 6, (d) Rlr = 10 
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out-of-plane bending, a = 180-deg, Rfr = 2 
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Fig.A 7.10 Stress-intensification factor for 180-deg pipe elbow ubjected to out-of­

plane bending: (a) Rlr = 2, (b) Rlr = 3 
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out-of-plane bending, a = 180-deg, Rlr = 6 
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Fig.A 7.10 Stress-intensification factor for] 80-deg pipe elbow ubjected to out-of­

plane bending: (c) Rlr = 6, (d) Rlr = 10 
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Appendix C7 (Continued) 

The following Tables summarise the location of maximum stress for out-of-plane 

bending. The location is expressed as (0, ¢), where f) is longitudinal position 

measured from the junction of the bend and the fixed tangent and ; is circumferential 

position measured from the crown toward the intrados. 

Continue to the next pages ... -+ 
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Table 7 A-I Location of maximum stress (e, ~ for a= 30-deg 

Rlr=2 Rlr=3 RIr=6 RIr= 10 

tlr-0.0260 (15,30) (15,30) (15,45) (15,45) 

tlr-0.0300 (15,30) (15,45) (15,45) (15,45) 

tlr = 0.0417 (15,45) (15,45) (15,45) (15,45) 

tlr=O.0550 (15,45) (15,45) (15,45) (15,45) 

tlr=0.0625 (15,45) (15,45) (15,45) (15,45) 

tlr=0.0677 (15,45) (15,45) (15,45) (15,45) 

tlr = 0.Oa33 (15,45) (15,45) (15,45) (15,45) 

tlr=0.0937 (15,45) (15,45) (15,45) (15,45) 

Table 7 A-2 Location of maximum stress (8, ¢J) for a= 45-deg 

Rlr=2 Rlr=3 RIr=6 R/r= 10 

tlr=0.0260 (24,30) (24,30) (24,30) (24,45) 

tlr -0.0300 (24,30) (24,30) (24,45) (24,45) 

tlr - 0.0417 (24,30) (24,30) (24,45) (24,45) 

tlr-0.0550 (24,45) (24,45) (24,45) (24,45) 

tlr-0.0625 (24,45) (24,45) (24,45) (24,45) 

tlr-0.0677 (24,45) (24,45) (24,45) (24,45) 

tlr-0.Oa33 (24,45) (24,45) (24,45) (24,45) 

tlr- 0.0937 (24,45) (24,45) (24,45) (24,45) 

Table 7A-3 Location of maximum stress (8, ¢J) for a= 6O-deg 

Rlr=2 Rlr=3 R/r=6 R/r= 10 

tlr-0.0260 (30,30) (30,30) (33,30) (39,45) 

tlr -0.0300 (30,30) (30,30) (33,30) (39,45) 

tlr - 0.0417 (30,30) (30,30) (36,45) (39,45) 

tlr- 0.0550 (30,30) (33,45) (36,45) (39,45) 

tlr-0.0625 (30,30) (33,45) (36,45) (39,45) 

tlr - 0.0677 (30,45) (33,45) (36,45) (39,45) 

tlr· 0.0833 (30,45) (33,45) (36,45) (39,45) 

tlr= 0.0937 (30,45) (33,45) (36,45) (39,45) 
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Table 7A-4 Location of maximum stress (8, ;) for a= 9O-deg 

Rlr=2 Rlr=3 M=6 M= 10 

tlr-0.0260 (45,20) (57,30) (63,30) (66,45) 

tlr- 0.0300 (45,30) (57,30) (66,45) (66,45) 

tlr - 0.0417 (48,30) (60,30) (66,45) (66,45) 

tlr = 0.0550 (48,30) (63,45) (66,45) (66,45) 

tlr = 0.0625 (48,30) (63,45) (66,45) (69,45) 

tlr = 0.0677 (51,30) (63,45) (66,45) (69,45) 

tlr = 0.0833 (57,45) (63,45) (66,45) (69,45) 

tlr =0.0937 (57,45) (63,45) (66,45) (69,45) 

Table 7A-5 Location of maximum stress (8, ;) for a= 180-deg 

Rlr=2 Rlr=3 M=6 M= 10 

tlr=0.0260 (153, 10) (153,30) (153,30) (159,45) 

tlr=0.0300 (153,30) (153,30) (153,30) (159,45) 

tlr =0.0417 (153,30) (153,30) (153,45) (159,45) 

tlr=0.0550 (153,30) (153,30) (153,45) (159,45) 

tlr-0.0625 (156,45) (153,45) (153,45) (159,45) 

tlr = 0.0677 (156,45) (153,45) (153,45) (159,45) 

tlr = 0.0833 (156,45) (153,45) (153,45) (159,45) 

tlr-0.0937 (156,45) (153,45) (153,45) (159,45) 
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CHAPTERS 

CONCLUSIONS AND RECOMMENDATIONS 

Detailed non-linear elastic large deformation finite element analyses of the behaviour 

of pressurised piping elbows have been carried out The main aim was to reassess the 

pressure reduction effect on flexibility and stress-intensification factors, but it was 

extended to obtain similar results for the ovalisation factor. The combined loading of 

internal pressure with separated in-plane closing moment, in-plane opening moment, 

and out-of-plane bending has been considered. Approximate formulae for 

ovalisation, flexibility and stress-intensification factors have been obtained. Prior to 

develop approximate formulae for the pressure reduction effect, formulae for 

bending load only was first established. 

8.1 Conclusions 

Detailed finite element study carried out in Chapter 4 shows that their structural 

behaviour is a conservative system (path-independent structure). Accordingly, the 

order of the bending and internal pressure is applied does not affect the final results 

for stresses and deformations. 

The following concluding remarks apply for unpressurised conditions: 

(1) The general behaviour of piping elbows depends on its geometry: bend angle a; 

thickness to cross-section radius ratio, tlr, radius ratio, Rlr, and pipe bend 

parameter, A.. 



(2) The behaviour of a pipe elbow under in-plane bending in term of ovalisation is 

different between closing and opening mode. Ovalisation factor for closing mode 

can be expressed in a power law, while ovalisation factor for opening mode can 

be expressed in an exponential law. Overall, the ovalisation factor under closing 

mode is bigger than under opening mode for low pipe bend parameters, but 

become level for high pipe bend parameter. 

(3) For in-plane closing bending, the ovalisation factor is directly proportional to the 

bend angle for short-radius pipe elbows. For long radius pipe elbows, the 

ovalisation factor is directly proportional to the bend angle only for bend angle 

less than 90-deg. 

(4) For in-plane opening bending, the ovalisation factor is directly proportional to the 

bend angle for short radius. For long radius pipe elbows, the ovalisation factor is 

directly proportional to the bend angle for 90-deg bend angle and smaller. 

(5) Flexibility factors can be expressed as the asymptotic solution of Clark and 

Reissner [20] multiplied by a factor obtained from a linear equation in logarithm 

of pipe bend parameter, A. for each radius ratio, Rlr. 

(6) Flexibility factor for in-plane closing bending obtained from the present analysis 

is bigger than the ASME code [120] for bend angle of 45-deg and greater. It is 

expected that the difference result from the large deformation effects. 

(7) Flexibility factor under in-plane bending is directly proportional to the bend 

angles regardless the magnitude of radius ratio. Flexibility factor for out-of-plane 

bending is not directly proportional to the bend angle. The reason for this is that 

the pure bending assumption can not be applied for this case. If the bending load 

is applied such that one end of the bend is subjected to pure bending, the other 

end of the bend is subjected to bending and torsion, in which the amount of 

bending and torsion at this end being strongly depends on the bend angle. For 90-

deg pipe bend, this end is subjected to pure torsion, while for ISO-deg bend, this 

end is subjected to pure bending. However, for bend angle less than 60-deg 

(probably less than 90-deg), the flexibility factor is directly proportional to bend 

angle. Overall, the flexibility factor under in-plane bending is bigger than under 

out-of-plane bending. For in-plane bending, flexibility factor under closing mode 

is bigger than under opening mode bending. 
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(8) The maximum stress at the outer and inner surfaces are opposite in sign, but 

different in magnitude. This fact violates the in-extensibility assumption adopted 

in many theoretical developments. 

(9) For in-plane bending, the maximum stress was located at crown for 180 and 90-

deg elbows and moves progressively toward the intrados as the bend angle 

becomes smaller 

(10) For out-of-plane bending, the location of maximum stress in the longitudinal 

direction is at the mid-section for small bend angle and between the mid-section 

and the junction with the loaded tangent for large bend angle. The location of 

maximum stress in the circumferential direction is generally at 45-deg from the 

crown toward the intrados, except for short radius, thin-walled, large angle bend. 

(II) Stress-intensification factor under in-plane bending is bigger than under out­

of-plane bending. For in-plane bending, stress-intensification factor under closing 

mode is bigger than under opening mode. 

Of course, the reader will now be all too aware that a simple piping elbow under 

straightforward loading exhibits very complex stress and deformation behaviour: the 

preceding represents only a summary of the main features. 

Finally, the following concluding remarks apply for pressurised conditions: 

(1) The effect of internal pressure on ovalisation is different for in-plane closing and 

opening bending perhaps as expected, but not quantified previously in the 

literature. For closing mode, there are limitations for value of rlt where the 

formulae developed can be applied. If the value of rlt below certain limit, the 

effect of internal pressure is no longer reduce the ovalisation, but increase the 

ovalisation. As a result, the corresponding formulae need to be modified. 

(2) For in-plane bending, the effect of internal pressure on flexibility is the opposite 

of the preceding conclusion. Internal pressure reduces the flexibility for closing 

bending for all pipe bend parameters. For opening mode, internal pressure 

reduces the flexibility for thin-walled pipe but increases the flexibility for thick­

walled pipe. Again, the formulae for the pressure reduction on flexibility factor 
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need to be modified for opening bending. For out-of-plane bending. internal 

pressure always reduces the flexibility factor. 

(3) For both in-plane and out-of-plane bending, internal pressure always reduces the 

stress-intensification factor for thin and thick-walled pipe. 

(4) The effect of internal pressure on flexibility and stress-intensification is more 

pronounced for smaller wall thickness 

8.2 Recommendations for Design Formulae 

The approximate formulae proposed for design purposes are summarised for 

convenience in Appendix A for unpressurised conditions and in Appendix B for 

pressurised conditions. It is clear that the structural behaviour of piping elbows is 

completely different for in-plane and out-of-plane bending. In addition, the 

behaviour of piping elbows under in-plane bending are different under closing and 

opening mode. 

The formulae given in the Appendices are recommended for using in piping design 

as an alternative to the current piping code [120]. It can be seen from the Appendix 

for unpressurised conditions that the flexibility factor under in-plane closing bending 

for 90-deg bend and larger is very close to the current ASME Code for long-radius 

bends. This fact validated the assumption involved in most theoretical development 

that the radius of the bend is much bigger than the radius of pipe cross-section. 

Formulae for various bend angle and radius ratio developed in this study show that 

different formulae should be used for different bend angle, radius ratio. and direction 

of bending load. 

Design formulae for pressurised conditions summarised in Appendix B are further 

recommended for design purposes. For the flexibility factor, the magnitude of the 

pressure reduction used in the ASME code [120] is significantly smaller than the 

proposed formula developed in this study. However, if the ASME formula is applied 

for in-plane opening bending and out-of-plane bending, the pressure reduction is 
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much bigger than the proposed formulae. It is clear that different formulae for 

pressure reduction on flexibility should also be used for different bend angle and 

direction of bending load. 

The formula in the ASME code for pressure reduction on stress-intensification is 

considerably smaller than the present analysis for in-plane closing bending and out­

of-plane bending. However, if the ASME code is applied to in-plane opening 

bending, it overestimates the pressure reduction obtained from the present analysis. It 

is again recommend that different formulae for pressure reduction on stress­

intensification should be used for different bend angle and direction of bending load. 

8.3 Recommendations for Further Study 

The work and analysis conducted in this study has identified several areas where 

further research might be required: 

(1) A further parameter survey for other large bend angle (120 and ISO-deg) to refine 

the formulae obtained from the present analysis in order to further simplify the 

formula for the pressure reduction effect in term of bend angle. 

(2) A study to obtain the end rotation for in-plane bending from the axial 

displacement of all nodes at the bend-straight pipe junction rather than from the 

axial displacement of only extrados and intrados node at that cross-section. 

(3) A review of the concept of end rotation to define the flexibility of a pipe bend 

subjected to out-of-plane bending. The concept of end rotation is more suitable 

for in-plane bending where the pure bending assumption can be tolerated. For 

out-of-plane bending, the pure bending assumption is not truly applicable for out­

of-plane bending. The concept of strain energy might be applied as alternative 
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APPENDIXG: 

DESIGN FORMULAE FOR UNPRESSURISED CONDITIONS 

This appendix summarises approximate formulae and Tables for ovalisation, 

flexibility, and stress-intensification factors for bending load. The approximate 

formulae for the pressure reduction effect are given in Appendix H. 

Continue to the next p8ges ... ~ 
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(1) Ovalisation factof fOf in-plane closing bending 

~ = 0.5~5 [a+bln(Jt)] 
A!3 

in - plane closing bending (0-1) 

Table G I-a VaIue of coeffecient "a" in equation (G-l) for in-plane closing bending 

R/,. Bend angle 

30-deg 45-deg 60-deg 9O-deg lSO-deg 

2 0.4434 0.6346 0.7722 0.9501 1.1437 

3 0.5395 0.7603 0.9193 1.1179 1.2303 

4 0.6006 0.8293 0.9936 1.1430 1.2145 

5 0.6577 0.8922 1.0509 1.1651 1.1801 

6 0.6897 0.9050 1.1024 1.1781 1.1247 

7 0.7235 0.9279 1.1187 1.1907 1.0705 

8 0.7528 0.9454 1.1096 1.1542 1.0362 

9 0.7787 0.9593 1.0751 1.0915 1.0074 

10 0.7968 0.9554 1.0115 0.9996 0.9669 

Table G I-b VaIues of coefficient "b" in equation (0-1) for in-plane closing bending 

R/,. Bend angle 

30-deg 45-deg 6O-deg 9O-deg lSo-deg 

2 0.0543 0.0954 0.1266 0.1682 0.2156 

3 0.0686 0.1219 0.1635 0.2177 0.2463 

4 0.0756 0.1356 0.1802 0.2251 0.2352 

5 0.0800 0.1414 0.1866 0.2161 0.2182 

6 0.0816 0.1418 0.1812 0.1966 0.1806 

7 0.0792 0.1326 0.1625 0.1705 0.1599 

8 0.0732 0.1152 0.1310 0.1261 0.1196 

9 0.0636 0.0896 0.0867 0.0673 0.0703 

10 0.0526 0.0539 0.0324 0.0001 0.0151 
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(2) Ovalisation factor for in-plane opening bending 

~ = 1.656 exp( -1.1752 Xa -b2) in -plane openng bending (0-2) 

Table G2-a Value of coeffecient "a" in equation (G-2) for in-plane opening bending 

RI,. Bend angle 

30-deg 4S-deg 60-deg 90-deg 180-deg 

2 0.7216 0.8675 0.9507 1.0393 1.1102 

3 0.7194 0.8624 0.9421 1.0254 1.0557 

4 0.7172 0.8602 0.9406 1.0244 1.0280 

5 0.7140 0.8580 0.9414 1.0242 1.0035 

6 0.7108 0.8561 0.9425 1.0239 0.9882 

7 0.7076 0.8547 0.9435 1.0147 0.9676 

8 0.7044 0.8533 0.9445 1.0105 0.9538 

9 0.7012 0.8522 0.9453 1.0062 0.9417 

10 0.6954 0.8513 0.9469 1.0000 0.9291 

Table G2-b Values of coefficient "b" in equation (0-2) for in-plane opening bending 

Rlr Bend angle 

30-deg 4S-deg 60-deg 9O-deg 180-deg 

2 1.5307 1.4318 1.2443 0.9026 0.4071 

3 0.8669 0.7529 0.5938 0.3452 0.1146 

4 0.5185 0.4516 0.3747 0.1502 0.1075 

5 0.3144 0.2582 0.2086 0.0535 0.0557 

6 0.1998 0.1229 0.0644 0.0466 0.0553 

7 0.0811 0.0372 0.0188 0.0068 -0.0034 

8 0.0082 -0.0319 -0.0405 0.0024 -0.0219 

9 -0.0485 -0.0856 -0.0866 0.0009 -0.0363 

10 -0.1149 -0.1142 -0.1236 0.0002 -0.0431 
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(3) Flexibility factor for in-plane closing bending 

k = 1.65 [0 - b In(,t)] 
,t in - plane closing bending (0-3) 

Table 03-a Value of coeffecient "a" in equation (0-3) for in-plane closing bending 

Rlr Bend angle 

30-deg 4S-deg 60-deg 90-deg ISO-deg 

2 0.3340 0.5120 0.5237 0.6715 0.7090 

3 0.4545 0.6110 0.6990 0.7800 0.8290 

4 0.5659 0.6734 0.7659 0.8133 0.8692 

5 0.6280 0.7380 0.8010 0.8551 0.8950 

6 0.7097 0.7853 0.8453 0.8775 0.9090 

7 0.7644 0.8325 0.8679 0.9183 0.9470 

8 0.8118 0.8757 0.8850 0.9433 0.9607 

9 0.8536 0.9157 0.8982 0.9654 0.9714 

10 0.9028 0.9470 0.9130 0.9880 0.9990 

Table 03-b Values of coefficient "b" in equation (0-3) for in-plane closing bending 

Rlr Bend angle 

30-deg 4S-deg 60-deg 90-deg ISO-deg 

2 0.2142 0.1866 0.1911 0.1716 0.1812 

3 0.2000 0.1744 0.1593 0.1485 0.1624 

4 0.1707 0.1565 0.1520 0.1560 0.1499 

5 0.1558 0.1486 0.1421 0.1450 0.1397 

6 0.1177 0.1201 0.1240 0.1364 0.1278 

7 0.0912 0.1019 0.1120 0.1230 0.1180 

8 0.0647 0.0837 0.1012 0.1120 0.1089 

9 0.0382 0.0655 0.0914 0.1010 0.1005 

10 0.0074 0.0433 0.0820 0.0774 0.0901 
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(4) Flexibility factor for in-plane opening bending 

k = 1.65 [a-bln(..t)] 
..t 

in - plane opening bending (0-4) 

Table 04-a Value of coeffecient "a" in equation (0-4) for in-plane opening bending 

R/I' Bend angle 

30-deg 4S-deg 60-deg 9O-deg 180-deg 

2 0.5483 0.8000 0.9438 1.0926 1.2190 

3 0.6131 0.8140 0.9352 1.0580 1.1480 

4 0.6797 0.8360 0.9268 1.0217 1.0931 

5 0.7307 0.8566 0.9250 0.9980 1.0497 

6 0.7690 0.8735 0.9280 0.9800 1.0215 

7 0.8149 0.8993 0.9358 0.9770 1.0007 

8 0.8509 0.9214 0.9484 0.9797 0.9951 

9 0.8840 0.9440 0.9658 0.9912 1.0021 

10 0.9220 0.9700 0.9900 1.0084 1.0266 

Table 04-b Values of coefficient "b" in equation (0-4) for in-plane opening bending 

R/I' Bend angle 

30-deg 4S-deg 60-deg 9O-deg 18O-deg 

2 0.0961 0.0286 -0.0135 -0.0584 -0.0970 

3 0.0865 0.0304 -0.0076 -0.0475 -0.0750 

4 0.0613 0.0300 0.0009 -0.0261 -0.0466 

5 0.0391 0.0247 0.0029 -0.0156 -0.0290 

6 0.0305 0.0120 0.0020 -0.0077 -0.0144 

7 -0.0053 0.0039 -0.0051 -0.0096 -0.0124 

8 -0.0275 -0.0116 -0.0151 -0.0141 -0.0134 

9 -0.0497 -0.0305 -0.0291 -0.0236 ·0.0206 

10 ·0.0719 -0.0581 ·0.0472 -0.0385 ·0.0316 
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(5) Flexibility factor for out-of-plane bending 

k = 115 [a+bln(A)] out - of -plane bending (0-5) 

Table 05-a Value of coeffecient "a" in equation (0-5) for out-of-plane bending 

Rlr Bend angle 

30-deg 4S-deg 60-deg 90-deg 180-deg 

2 0.8110 1.0880 1.2427 1.1760 0.4617 

3 0.8650 1.1224 1.2618 1.1930 0.5860 

4 0.9181 1.1440 1.2714 1.2039 0.6468 

5 0.9570 1.1633 1.2772 1.2132 0.7037 

6 0.9890 1.1850 1.2800 1.2180 0.7480 

7 1.0187 1.1930 1.2840 1.2272 0.7894 

8 1.0443 1.2050 1.2861 1.2328 0.8234 

9 1.0674 1.2157 1.2877 1.2378 0.8535 

10 1.0910 1.2322 1.2900 1.2440 0.8788 

Table G5-b Values of coefficient oW' in equation (G-5) for out-of-plane bending 

Rlr Bend angle 

30-deg 4S-deg 60-deg 90-deg 180-deg 

2 0.1320 0.2001 0.2510 0.2520 0.0020 

3 0.1603 0.2300 0.2800 0.2727 0.0346 

4 0.1871 0.2404 0.2967 0.2904 0.0552 

5 0.2143 0.2636 0.3179 0.3107 0.0818 

6 0.2424 0.3000 0.3385 0.3341 0.1062 

7 0.2687 0.3100 0.3603 0.3558 0.1350 

8 0.2959 0.3332 0.3815 0.3807 0.1616 

9 0.3231 0.3564 0.4027 0.4074 0.1882 

10 0.3501 0.3880 0.4242 0.4348 0.2146 
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(6) Stress-intensification factor for in-plane closing bending 

k= 1.89 [a-bln(A)) 
ffi 

in - plane closing bending (0-6) 

Table 06-a Value of coeffecient "a" in equation (0-6) for in-plane closing bending 

Rlr Bend angle 

30-deg 4S-deg 60-deg 90-deg 180-deg 

2 0.2558 0.4175 0.5823 0.5617 0.7706 

3 0.3932 0.5748 0.7312 0.7715 0.8953 

4 0.4866 0.6576 0.7897 0.8617 0.9126 

5 0.5476 0.7318 0.8287 0.9241 0.9087 

6 0.6032 0.7620 0.8547 0.9342 0.8944 

7 0.6414 0.7948 0.8733 0.9150 0.8826 

8 0.6716 0.8203 0.8872 0.9019 0.8723 

9 0.6961 0.8407 0.8980 0.9018 0.8633 

10 0.7215 0.8410 0.9067 0.8785 0.8537 

Table G6-b Values of coefficient "b" in equation (0-6) for in-plane closing bending 

Rlr Bend angle 

30-deg 4S-deg 60-deg 90-deg 180-deg 

2 0.1333 0.1637 0.1540 0.2092 0.2145 

3 0.1256 0.1437 0.1276 0.1650 0.1674 

4 0.1218 0.1298 0.1106 0.1550 0.1508 

5 0.1180 0.1210 0.1010 0.1500 0.1427 

6 0.1158 0.1128 0.0952 0.1390 0.1440 

7 0.1137 0.1103 0.0977 0.1516 0.1501 

8 0.1118 0.1118 0.1070 0.1656 0.1607 

9 0.1102 0.1173 0.1231 0.1884 0.1636 

10 0.1092 0.1311 0.1501 0.2054 0.1711 
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(7) Stress-intensification factor for in-plane opening bending 

k= 1.89 [a-bln(Ii)] 
# 

in - plane opening bending (0-7) 

Table G7 -a Value of coeffecient "a" in equation (0-7) for in-plane opening bending 

R/I' Bend angle 

30-deg 4S-deg 60-deg 90-deg 180-deg 

2 0.4320 0.7277 0.9776 1.2553 1.4185 

3 0.5314 0.7992 1.0033 1.1992 1.3031 

4 0.6005 0.8266 1.0045 1.1541 1.1765 

5 0.6422 0.8452 1.0017 1.1085 1.1033 

6 0.6685 0.8692 0.9931 1.0606 1.0413 

7 0.6934 0.8666 0.9861 1.0227 1.0014 

8 0.7102 0.8733 0.9699 0.9823 0.9636 

9 0.7236 0.8785 0.9481 0.9435 0.9314 

10 0.7400 0.8826 0.9217 0.9078 0.9029 

Table 07-b Values of coefficient "b" in equation (0-7) for in-plane opening bending 

RlI' Bend angle 

30-deg 4S-deg 60-deg 90-deg 180-deg 

2 0.0380 -0.0052 -0.0616 -0.1259 -0.1389 

3 0.0283 -0.0140 -0.0638 -0.1062 -0.1182 

4 0.0246 -0.0166 -0.0627 -0.0802 -0.0896 

5 0.0220 -0.0181 -0.0573 -0.0555 -0.0651 

6 0.0203 -0.0155 -0.0476 -0.0355 -0.0330 

7 0.0191 -0.0139 -0.0345 -0.0061 -0.0161 

8 0.0182 -0.0082 -0.0171 0.0186 0.0084 

9 0.0175 -0.0001 0.0043 0.0433 0.0329 

10 0.0169 0.0129 0.0309 0.0706 0.0539 
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(8) Stress-intensification factor for out-of-plane bending 

k= l.~[a+bln(A)] 
A!3 

out - of - plane bending (0-8) 

Table 08-a Value of coeffecient "a" in equation (0-8) for out-of-plane bending 

R/,. Bend angle 

30-deg 45-deg 60-deg 90-deg 180-deg 

2 0.4749 0.5725 0.6331 0.6726 0.7468 

3 0.5473 0.6564 0.7074 0.7818 0.7964 

4 0.5965 0.7227 0.7707 0.8229 0.8159 

5 0.6343 0.7578 0.8168 0.8297 0.8352 

6 0.6793 0.8096 0.8494 0.8509 0.8461 

7 0.6913 0.8100 0.8622 0.8276 0.8486 

8 0.7140 0.8136 0.8615 0.8248 0.8427 

9 0.7339 0.8244 0.8452 0.8219 0.8284 

10 0.7424 0.8332 0.8167 0.8065 0.8081 

Table 08-b Values of coefficient "b" in equation (0-8) for out-of-plane bending 

R/,. Bend angle 

30-deg 45-deg 60-deg 90-deg 180-deg 

2 -0.0031 -0.0217 -0.0163 0.0236 0.0143 

3 0.0038 -0.0049 0.0001 0.0573 0.0239 

4 0.0103 0.0239 0.0335 0.0650 0.0353 

5 0.0145 0.0390 0.0491 0.0648 0.0403 
6 0.0176 0.0493 0.0620 0.0610 0.0404 
7 0.0175 0.0494 0.0551 0.0554 0.0383 

8 0.0163 0.0447 0.0455 0.0408 0.0313 

9 0.0133 0.0334 0.0275 0.0196 0.0203 

10 0.0099 0.0114 0.0041 -0.0029 0.0005 
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APPENDIXH: 

DESIGN FORMULA FOR PRESSURISED CONDITIONS 

This appendix tabulated approximate formulae for pressure reduction for ovalisation, 

flexibility, and stress-intensification factors. 

Continue to the next pages ... ~ 
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Table Hl.l Ovalisation factor 

a,deg In-plane closing bending In-plane opening bending Out-of-plane bending 
30 

qp = ~ ~p = ~ 

{ P X' t( R )'''' ( t(Rt 1±0.40 - - - 1+175 -;- -; 
E t r 

45 
~p = ~ ~p = 

q 

{ X t( )"" {P1't(R)"" 1±0.30 i 7 ~ 1+12 - - -
E t r 

60 
~p = 

q 
~p = 

q ! 

I±O.25{~ n )"\ ~ )"" o{p1'tn'" 1+1 - - -
E t r 

90 
~p = 

~ 
~p = 

4 

I±O·20{~nt(~r'" {p1't(Rr 1+7 - - -
E t r 

180 
~p = 

q 
qp = ~ 

1% 00590 {p1't(Rf I±0.15{~X;) 3(~) 1+5 - - -
E t r 

- --- - ---- -
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Table H 1.2 Ovalisation factor (Continuied) 

a,deg In-plane closing bending In-plane opening bending Out-of-plane bending 
30 

~p = 
~ qp = 

q 

{pr'X1)(Rf' { ') (r~ 1+48. ~; AX ~ 1±0.11 - - -
3D A. r 

45 
~p = 

q qp == 
q 

{pr'tt(Rf { ') (r 1+34. ~; AX ~ 1±0.08 - - -
3D A. r 

60 
~p = 

~ ~p == 
~ 

{pr'X 1 t(R)'''' { '}( r 1+27. ~~ ~ ~ 1±0.07 - - -
3D A. r 

90 
~p = 

~ ~p == 
~ 

I±O.05{~x~t(~r { '}( r 1+21. ~~ ~ ~ 
180 

~p = 
~ 

~p == 
~ 

{pr' X I t( R)''' { '} (r 1+14. ~~ ~ ~ 1±0.04 - - -
3D A. r 

- - - --- ---
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Table H2.1 Flexibility factor 

a,deg In-plane closing bending In-plane opening bending Out-of-plane bending 
30 

k = k 
k = k 

k = k 
p 

{ X )'\Rr'" 
p 

~pX't(Rr37 
p 

( X t(Rf' 1+18. ; 7 -;: 1±0.3 - - - 1 +0.385; 7 -;: 
E t r 

45 
k = k 

k = k 
k = k 

p {pX')'\R)'m p 

( X t(Rr" 
p 

( X t(Rf 1+15.6 - - - 1±0.225; 7 -;: 1+0.295; 7 -;: E t r 
60 

k = k 
k = k 

k = k 
p 

( X )r.(RJ''' 
p 

I±O.18{;n)"\~r 
p 

( X t(R)'2« 1 + 13.5; 7 -;: 1 +0.225; 7 -;: 
90 

k = k 
k = k 

k = k 
p 

{ Xt(Rf' 
p 

{pX't(RT" 
p 

{ X t(Rr 1+11.7 ~ 7 -;: 1±0.14 - - - 1+0.17 ; 7 -;: 
E t r 

180 
k = k 

k = k 
k = k 

p 

{PX't(R)"''' 
p { X )'%(R)"''' p 

~ X )'y.( )"''' 1+9.2 - - - 1±0.11 ~ 7 -;: 1+0.3 ~ ~ 6 ~ 
E t r 

-------
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Table H2.2 Flexibility factor (Continuied) 

a,deg In-plane closing bending In-plane opening bending Out-of-plane bending 
30 

k = k 
k = k 

k = k 
p {}( r p s{prTt(Rf' p {pr'tt(R)"" 1+5.1 ~~ ~ ~ 1±0.0 - - - 1+0.10 - - -

3D A. r 3D A. r 

45 
k = k 

k = k 
k = k 

p { }( r p 

{pr'tt(Rr 
p {pr'ty:(Rr" 1+4.3 ~~ ~ ~ 1±0.06 - - - 1+0.08 - - -

3D A. r 3D A. r 

60 
k = k 

k = k 
k = k 

p { }( r p { 'Xt(r" p {pr'X l t(R)"" 1+3.7 ~~ ~ ~ 1±0.05 ~~ ~ ~ 1+0.06 - - -
3D A. r 

90 
k = k 

k = k 
k = k 

p 

1+3.2{~~r(;r 
p 

~pr'tytr~ 
p {pr'tt(Rr" 1±0. - - - 1+0.04 - - -

3D A. r 3D A. r 

180 
k = k 

k = k 
k = k 

p 

{}()"" 
p {pr'tt(R)'''' p (pr't t( Rf" 1+2.5 ~~ ~ ~ 1±0.03 - - - 1+0.057 - - -

3D A. r 3D A. r 
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Table H3.1 Stress-intensification factor 

a,deg In-plane closing bending In-plane opening bending Out-of-plane bending 
30 r r r 

Y = 

t{ X t(Rf 
Yp = 

t{ X t(R)"''' 
Yp = 

t{pX'yt)"" 
p 

1+16.9 ; ~ -; 1+0.33 ~ 7 -; 1+19. - - -
E t r 

45 r r r Y = t{ p X' )Y. ( R)"" 
Yp = 

t{PX't(R)"" 
Yp = 

( xt(Rr 
p 

1+12.5 - - - 1+0.23 - - - 1+12.3; ~ -; E t r E t r 
60 r r r Yp = 

{ X t(Rr~ 
Yp = 

{PX't(R)"'" 
Yp = 

(PX't(R)"" 1+10.2 ; 7 -; 1+0.18 - - - 1+9.7 - - -
E t r E t r I 

90 r r r Yp = 
{PX't(R)"" 

Yp = 

{ X t(Rr 
Yp = 

{pX't(Rf" 1+10.2 - - - 1+0.17 ~ ~ -; 1+9.2 - - -
E t r E t r 

180 r r r Yp = 
t{pX't(Rf 

Yp = z{pX')'%(Rf Yp = 

( X t(Rr'" 1+7.5 - - - 1+0.1 - - - 1+8.3; ~ -; E t r E t r 
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Table H3.2 Stress-intensification factor (Continuied) 

a,deg In-plane closing bending In-plane opening bending Out-of-plane bending 
30 r r r Yp = { '} (r Yp = 

(pr'X1 t(r)"" 
Yp = { ') (r 1+4.6 ~~ % ~ 1+5.2 ~~ # ~ 1+0.091 - - -

3D A R 
45 r r r Yp = { ') (r Yp = (pr'Xl )y,(r)'m Yp = , ') (r 1+3.4 ~~ # ~ 1+3. ~~ # ~ 1+0.063 - - -

3D A R 
60 r r r Yp = 

1+2.8{~r(~r 
Yp = 

{pr'Xl t(r)'''' 
Yp = ( ') (r 1+2.67 ~~ # ~ 1+0.05 - - -

3D A R 
90 r r r 

Yp = 

1+2·~~~r(~r 
Yp = 

(pr'rt(r )"" 
Yp = 

1 + 2.S\ ~ }tM(~r'" 1+0.047 - - -
3D A R 

180 r r r Yp = 
{ '} (r' 

Yp = {pr'Xlt(r)"" Yp = 
{ '} ()""' 1+2.0 ~~ % ~ 1+2.2 ~~ % ~ 1+0.03 - - -

3D A R 
- _._-_._-
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