
A Vessel Crew Scheduling Problem:

Formulations and Solution Methods

Thesis for the degree of Doctor of Philosophy

Alexander Leggate

Department of Management Science, University of Strathclyde

July 12, 2016

This thesis is the result of the author’s original research. It has been composed by the

author and has not been previously submitted for examination which has led to the award

of a degree.

The copyright of this thesis belongs to the author under the terms of the United Kingdom

Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due acknowl-

edgement must always be made of the use of any material contained in, or derived from,

this thesis.

Signed:

Date:

Abstract

Crew scheduling problems have been well studied in a variety of areas within transporta-

tion and logistics; however, the application of mathematical modelling techniques within a

specifically maritime setting has received relatively little attention in the literature. This

research focusses on the crew scheduling problem faced by a large, global company provid-

ing support services in the offshore oil industry.

Starting with an introduction to crew scheduling and the maritime industry, this thesis

goes on to review literature in related areas before giving details of the broader business

context and the specific crew scheduling problem in which we are interested. With the

company currently using a manual method to update their crew schedules weekly on a

rolling basis, often under time pressure, we argue that there is scope for a decision support

tool to be introduced which will help the crew planners to find feasible, and potentially

good quality, schedules.

Two main formulations are presented - a Task-Based model, which makes simplifying

assumptions about crew contracts and working patterns, and a more realistic but more

complex Time-Windows model. Both of these models can be likened to the crew recovery

problems seen in other transportation scheduling literature, and can be solved with the

objective of minimizing either the number of changes from the existing schedule or the cost

of these changes.

While the Task-Based model proved relatively easy to solve, a number of solution

methods had to be considered for the Time-Windows problem. Ultimately, a heuristic

method was proposed to underpin the scheduling tool. This heuristic method finds an

initial solution with a low number of changes, before performing a neighbourhood search

which seeks to reduce the solution cost. Results however show there is still much room for

improvement, and the thesis concludes with ideas for further extending this research.

Contents

1 Introduction 6

1.1 Importance of Crew Scheduling Problems 6

1.2 Vessel Crew Scheduling . 7

1.3 Outline of the Thesis . 11

2 Literature Review 14

2.1 Transportation settings . 16

2.1.1 Scheduling for Air Crew . 16

2.1.2 Scheduling Literature for Bus and Train Crew 19

2.1.3 Crew Schedule Recovery Problems 20

2.2 Scheduling Problems in General . 21

2.2.1 Scheduling under Uncertainty . 23

2.3 The Maritime Industry . 24

2.3.1 Offshore Supply Vessels . 25

2.3.2 Other Shipping-related Literature 25

2.4 Sailor Assignment Problem . 26

2.5 Vessel Crew Scheduling . 28

2.5.1 Harbour Pilot Assignment Problem 28

2.5.2 Navy Crew Scheduling Problem . 28

2.5.3 Ferry Crew Scheduling Problem . 29

2.5.4 Cruise Crew Scheduling Problem . 29

2.6 Summary of Literature . 30

3 Research Methods 31

3.1 Research Approaches . 31

3.1.1 Potential Drawbacks . 32

3.2 Statistical Overview . 33

3.2.1 Hypothesis Testing . 34

3.2.2 Type I and Type II Errors . 35

1

3.2.3 Tests Used . 35

4 The Vessel Crew Scheduling Problem 38

4.1 Business Process . 38

4.2 Problem Description . 44

4.2.1 Detail of the Problem . 44

4.2.2 Current Approach to the Problem 47

4.2.3 Proposed Intervention . 48

5 A Task-Based Formulation 49

5.1 Basic Problem . 49

5.1.1 Definitions . 50

5.1.2 Calculating Overlapping Task sets 52

5.1.3 Formulation . 53

5.2 Recovery-type Problem . 55

5.2.1 Additional Definitions . 55

5.2.2 Formulation . 57

5.3 Minimizing the Number of Changes . 58

5.3.1 Additional Definitions . 58

5.3.2 Formulation . 61

5.4 Generating Data . 62

5.4.1 Procedure for Data Generation . 63

5.4.2 Dealing with Assumptions and Uncertainty 70

5.4.3 Datasets Generated . 71

5.5 Computational Results . 72

5.5.1 Test Conditions . 72

5.5.2 Result Details . 76

5.6 Practical Implications of Results . 103

5.6.1 Further Work . 105

6 Time-Windows Model 107

6.1 Problem Formulation . 108

6.1.1 Basic Problem Formulation . 108

6.1.2 Recovery-type Formulation . 115

6.1.3 A Change-minimization Formulation 119

6.1.4 A Note on the Relative Problem Sizes 124

6.2 Generating Time-Windows Data . 126

6.2.1 Procedure for Data Generation . 126

6.2.2 Dealing with Assumptions and Uncertainty 132

2

6.2.3 Datasets Generated . 133

6.3 Initial Computational Results . 133

6.3.1 Cost-minimization . 133

6.3.2 Change-minimization . 136

6.3.3 Summarising the Initial Results . 142

6.4 Using the Task-Based Formulation as an Approximation 143

6.4.1 Procedure for the Task-Based Approximation approach 143

6.4.2 Making use of the Task-Based Approximation solution 144

6.5 A Heuristic Algorithm . 144

6.5.1 Solution Representation . 144

6.5.2 The Neighbourhood . 145

6.5.3 Preliminary Versions of the Algorithm 149

6.5.4 Elements Selected for Formal Testing 173

6.5.5 Formal Test Version of the Algorithm 181

6.5.6 Possible Modification . 184

6.6 Using Heuristics to obtain an Initial Solution 189

6.6.1 Algorithm for a Heuristic Initial Solution 189

6.6.2 Implications for Testing Plans . 190

6.7 Possible Alternative - Column Generation 190

6.7.1 Proposed Approach . 190

6.7.2 Formulating the Master-Problem . 192

6.7.3 The Sub-Problem . 194

6.7.4 Future Work . 201

6.8 Further Computational Results . 201

6.8.1 Additional analysis of Initial Results 202

6.8.2 The Task-Based Approximation approach 206

6.8.3 The Heuristic Initial Solution approach 215

6.8.4 The Heuristic Algorithm . 227

6.8.5 Effect of Parameter Values on Results 279

6.9 Practical Implications of Results . 295

6.9.1 Comparison of Solution Methods . 295

6.9.2 Possible Implementation . 298

6.9.3 Future Work . 301

7 Conclusions 303

7.1 Conclusions for our Specific Problem . 303

7.2 Wider Implications . 305

7.2.1 Contributions to Knowledge . 307

3

7.3 Future Work . 308

A Business Process Maps 314

B Additional histograms for Task-Based results 318

B.1 Summary Histograms . 318

B.1.1 Cost-minimization results . 318

B.1.2 Change-minimization results . 323

B.1.3 Results comparisons . 327

B.2 Breakdown by parameters . 330

B.2.1 Relating to changes . 330

B.2.2 Relating to cost gaps . 332

B.2.3 Relating to cost comparisons . 341

B.2.4 Relating to running time . 346

C Additional details of procedures for the Time Windows problem 352

C.1 Description of Task-Based Approximation procedure 352

C.2 Flowcharts of the Time-Windows Heuristic procedure 365

C.3 Description of Heuristic algorithm . 370

C.3.1 Main programme . 370

C.3.2 Sub-Programmes . 370

C.4 Description of Heuristic Initial Solution algorithm 403

C.4.1 Main programme . 403

C.4.2 Sub-Programmes . 404

D Additional histograms for Time-Windows results 415

D.1 Relating to the Heuristic Initial solution approach 415

D.2 Relating to the main Heuristic algorithm . 425

D.2.1 Gap to the best known bound . 427

D.2.2 Gap to the best known solution . 432

D.2.3 Improvement on initial solution . 437

D.2.4 Number of changes . 442

D.2.5 Number of best solutions . 448

D.2.6 Number of iterations . 454

D.2.7 Time of best solution . 459

D.2.8 Effect of cutting off algorithm early 466

D.2.9 Results for recommended combination 478

D.3 Relating to the effect of data generating parameters 487

D.3.1 Breakdown of Initial Computational results 487

4

D.3.2 Breakdown of Task-Based Approximation results 506

D.3.3 Breakdown of Heuristic initial solution results 519

D.3.4 Breakdown of Heuristic algorithm results 534

E Code 554

E.1 For the Task-Based formulation . 554

E.1.1 Generating datasets . 554

E.1.2 Cost-minimization algorithm . 583

E.1.3 Change-minimization algorithm . 597

E.2 For the Time-Windows formulation . 620

E.2.1 Generating datasets . 620

E.2.2 Cost-minimization algorithm . 664

E.2.3 Change-minimization algorithm . 676

E.2.4 Task-Based Approximation algorithm 705

E.2.5 Heuristic algorithm . 755

E.2.6 Heuristic initial solution algorithm 1044

5

Chapter 1

Introduction

Crew scheduling problems have been studied in a variety of contexts within the field of

transportation and logistics. Numerous formulations have been proposed to solve the

problem under various sets of rules and with a number of differing objectives. Many

various solution methods have been proposed, ranging from exact solution methods to

approximation algorithms and heuristics. However, all these cases display a number of

similarities common to crew scheduling problems in any given setting.

These common characteristics of crew scheduling problems begin with the fact that

there will be a set of employees (the crew), and a set of tasks which should be carried

out. These tasks will generally have a defined time window in which they will be carried

out, and most likely a location or route on which they will be performed. The aim of the

crew scheduling problem is to allocate the crew to these tasks in the best possible way (as

defined by the objective function), subject to various legal and contractual requirements,

as well as physical constraints imposed by the geographical and temporal aspects of the

tasks.

1.1 Importance of Crew Scheduling Problems

There are a number of reasons why crew scheduling problems are important to study.

Firstly, for most of the transportation industry, crew costs are a large (if not the largest)

single cost element in their operations. With increasing global competition, there is a

constant motivation for companies to keep their costs as low as possible, and this can be

achieved through effective planning of operations. It is often the case that even a small

percentage saving in crew cost translates to a very significant amount in real terms.

There is also the matter of the difficulty in solving crew scheduling problems. Because

of the number and complexity of the constraints that are involved, finding even a feasible

schedule for the problem in question is often a non-trivial task. Any organisation currently

6

scheduling their crew by hand will therefore be focussed almost exclusively on finding a

feasible schedule, regardless of cost or any other requirement.

However, the complexity of the problem also means that even if the process is automated

then the computational time required to find good solutions can be longer than desirable.

This is especially true if a company requires schedules to be produced in real-time (or

near to real-time). There is therefore often a trade off between the time taken to find

solutions and the quality of these solutions. Consequently, there is still much interest from

the research community in developing algorithms which can find better solutions in shorter

time-frames, and so it is not surprising that a great deal of literature has been devoted to

this. In particular, the airline crew scheduling problem appears to be the most well studied,

although there have also been publications in the context of train and bus crew scheduling

(reviews by Ernst et al. (2004a,b) and more recently Van den Bergh et al. (2013) discuss

a variety of application areas).

Once the schedules have been drawn up, there is still the potential for them to require

change at a later date. In particular, it is likely that one of any number of incidents

could occur to disrupt a schedule as it is being executed, ranging from break-downs or

signal failures, to traffic jams or road accidents, to weather-related disruptions. Known as

the crew recovery problem (and sometimes referred to under the heading of “disruption

management”), this is a natural extension of the crew scheduling problem, and is also

subject to a great amount of discussion in the literature. It is often critical that solutions

are produced in real-time, and so there is an interest in innovations that will make the

problem easier to solve, for example techniques to reduce the size of the rescheduling

problem as used by Rezanova and Ryan (2010).

1.2 Vessel Crew Scheduling

It is interesting to note that, with all the importance that is attached to crew scheduling,

literature applying optimization techniques to crew scheduling for companies operating

fleets of ships appears to be extremely limited. This is surprising, since crew costs in

the maritime transport industry are no less significant than in other transportation areas.

Stopford (2009, pp. 226-229) for example states that crew costs, from basic wages through

to pension payments and travel costs, can account for up to half of a vessel’s operating

costs1, and so it is not clear why this should be the case.

In their overview to maritime transportation, Christiansen et al. (2007) discuss possible

reasons for the relative lack of papers concerning scheduling in general in a maritime

context, and suggest the following:

1Operating costs are defined by Stopford (2009) as the day-to-day running costs such as crew costs,
stores, regular maintenance, etc., but not including fuel costs.

7

• The fact that the shipping industry (in particular, cargo shipping) has a low visibility

as compared to road, rail or air.

• The fact that maritime transportation problems are varied and so decision support

systems require a higher degree of customization.

• The level of uncertainty in maritime operations, leading to a need for frequent re-

planning.

• The tradition in the shipping industry makes it less likely to be receptive to new

ideas.

While three of these points are consistent with our experiences in our case study, the

argument concerning high levels of uncertainty has a converse - frequent replanning can

be difficult or time-pressured, and could be greatly aided by some kind of decision support

system. This is discussed more fully in section 4.2.

In more general terms, it is also possible to identify some of the ways in which the crew

scheduling problem in the maritime context differs from other transportation settings.

Firstly we must consider the kind of company with which we are dealing, as there are

clearly many companies which fall under the description of maritime transportation. For

example, in terms of scale a company may operate local ferry services between groups of

islands, or at the other end of the range may operate on a global scale; meanwhile, in terms

of size the company may be a small independent company with a handful of vessels, right

up to a large multi-national business which owns a large fleet. For our purposes here, we

consider the case of a large company operating numerous vessels on a global scale, as this

is potentially the most interesting and most diverse from other settings in terms of crew

scheduling.

There are also numerous modes of operations in which a maritime company can be

engaged. Christiansen et al. (2013) discuss three broad areas for maritime transportation:

• Liner shipping, whereby ships run to a timetable on pre-determined routes, carry-

ing either goods (cargo liners) or people (passenger liners) which require or desire

transportation on that particular route.

• Tramp shipping, which generally involves cargo transportation on an ad hoc basis,

travelling from port to port in response to relevant supplies and demands with a view

to maximizing profit.

• Industrial shipping, which is similar to tramp shipping in that there are no pre-

defined routes, but with the difference that the vessel owner is transporting their

own cargo rather than transporting goods on behalf of third parties.

8

In addition to these, another category of vessel which cannot strictly be included within

these modes of maritime transportation is that of the Offshore Supply (or Service) Vessel

(OSV). The role of these vessels is to provide support services to offshore industries, such as

oil and gas production as well the construction and maintenance of offshore wind farms, all

of which are of significance in the UK at present. A brief introduction to OSVs is given by

Barrett (2008), listing tasks such as construction support, remote operated vehicle (ROV)

operations, surveying, diving support, and deep-water lifting and installation among those

performed by this type of vessel. All of these are undertaken by our case study company.

Whatever the specific line of business of these global-scale companies, they will have a

number of factors common to them which will impact on their crew scheduling. Not least

of these is the large number of employees on a company’s books. It may be the case that

crew will have regular working patterns with regular recurring assignments; however this

will not always be the case and complex crew scheduling problems may arise when these

normal working patterns are disturbed.

One of the reasons why the problem may be more complex in these cases is the length

of the planning horizon. A typical airline will schedule their crew on a monthly basis,

while a bus company might be able to break down their problem to single days at a time.

By contrast, a globally-operating shipping company will seek to draw up their schedules

several months in advance and will plan several months at a time. The need for this stems

partly from the length of the duty periods, which are in the order of weeks rather than

hours in other cases, and partly from the global nature of operations where such matters

as transportation and visas must be arranged well enough in advance for crew to be able

to carry out their duties.

In turn, the arrangement of transportation is more complex here than in, for example,

airline crew scheduling because of the relationship between crew, their home bases, and the

location of the tasks. Generally, airline crew will have their tasks combined into groups,

known as pairings, which start and finish at the hub airport where the crew are based. In

the event that a pairing cannot be formed with two (or more) working tasks, a dummy task

where an employee travels on a flight as a passenger rather than as crew can be included -

this kind of assignment is known as a deadhead (see for example Barnhart et al. 1995). By

contrast, normal practice in the global maritime sector is to employ crew from numerous

countries around the world, each of whom will have their own designated home port from

which the company will transport them to their assigned vessel. Deadheading in this case

is not an option, since even in the unlikely event that one of the company’s vessels is setting

sail from the employee’s home port the length of time taken to travel is significantly more

than if a flight is taken. Therefore transportation costs are an important part of the cost

of assigning a crew member to a task, and planning must be done sufficiently in advance

that this transportation can be booked.

9

Other issues arise because of the rules, both legal and contractual, which are imposed

on the problem. Some of these rules appear unique to vessel crew scheduling, while others

are commonplace in scheduling, but may have a different bearing in this case. Firstly, there

is the issue of maximum working period, which exists in all crew scheduling problems. In

air, bus or rail transport, this would usually restrict the number or cumulative duration of

tasks carried out within a working day, however in our vessel scenario it instead defines the

maximum length of a single duty (in terms of days). Therefore, rather than an employee

being allocated several consecutive tasks in this case, they are more commonly allocated

single ‘tasks’, or blocks of offshore work, alternating with rest periods (i.e. periods during

which they are not at sea).

Another consideration is the training and expertise of the employees, and whether they

are suitable for certain tasks. This can depend on a number of factors, for example the

type of vessel, the type of project it is carrying out, and the location of the vessel. It can

also depend on the specific crew role, of which there can many on board the vessel. For

example, an engineer may be qualified to work in the engine room of any ship in a company’s

fleet, whereas a deck foreman may require specialist skills depending on whether the ship

is engaged in a diving project, a surveying project, a deep-sea pipe-laying project, etc.

Comparing to other contexts, it appears that qualification constraints might be disregarded

in some settings - Huisman and Wagelmans (2006) for example assume that all their

bus drivers are identical. They do however arise in the airline context, as with a pilot’s

knowledge of a particular airport, as in Cappanera and Gallo (2004). It can be argued

though that there are more of these constraints to consider in the vessel setting, especially

when we also take into account another matter which could be counted as a qualification

constraint - that of crew nationality. This has several consequences: ships registered under

certain flags can only employ crew from certain countries, it may not be desirable for crew

of certain nationalities to work together, and certain locations where the vessel operates

may be nations that require work permits or visas for the crew working there.

A further element which complicates the vessel crew scheduling problem is the degree

of uncertainty on the demand side. This is perhaps less applicable in the case of liner

shipping, where routes and timings are clearly pre-defined, but in tramp shipping there

is by definition an uncertainty in the future locations of the vessels, which could in turn

make crew planning more difficult. In terms of our company in the OSV area of shipping,

the uncertainty arises from the nature of the contracts with client oil companies. Vessels

will be assigned to a particular project in a particular area, and these projects may require

specific crew expertise. In some cases, the vessel will operate in that area for a substantial

period of time. However, in some cases the vessel’s role in a particular project will be

relatively short term, as compared to the length of the planning horizon, and so when roles

are being assigned on that vessel it is not known with certainty that this role will eventu-

10

ally be required. Similarly, new projects might be arranged at short notice, and so even

after the initial scheduling has taken place, changes may need to be made. Consequently,

as is discussed in greater detail in section 4.2, these companies will schedule crew on a

rolling basis, initially scheduling assignments several months in advance, and updating the

uncertain tasks as more information becomes available.

1.3 Outline of the Thesis

In light of the importance of the crew scheduling problem to our company, and the dif-

ficulties which are often experienced in finding suitable solutions, this thesis sets out to

propose a framework for a decision support tool which could aid the planners in their deci-

sion making. The research process began by discussions with the client company in order

to further understand the problem. Based on these discussions, two model formulations are

proposed - a simplified “Task-Base” model, and a more realistic but more complex “Time-

Windows” model. As full real datasets were not available from the company, datasets

had to be generated at random within parameters provided by the company and based on

some assumptions. Using these datasets, various solution methods could be applied to the

two formulations, with the approaches being compared with respect to key metrics such as

solution time, solution quality, and number of solutions found. Statistical techniques were

later applied to determine whether the factors varied during data generation had a signif-

icant influence on the relative performances of the solution methods. The same statistical

methods were also applied when testing the heuristic solution method designed, in order

to determine the most suitable group of settings to use in this algorithm. Based on the

results from examining these solution methods, possible structures for a decision support

tool to aid the planers at the client company can be proposed.

In more detail, the thesis proceeds as follows. Firstly, in chapter 2 we examine relevant

and related literature in more detail. This includes crew scheduling literature from other

transportation settings such as airline or urban transit as well as scheduling in a more

general context. We will also see that there is a body of literature concerning optimization

problems in maritime settings, although there appears to be very little which can be termed

“vessel crew scheduling”. The chapter concludes with a discussion of those papers found

which can be categorised as considering a vessel crew scheduling problem. Following this,

chapter 3 outlines the methods used in this research, including an overview of some key

statistical concepts, before the detailed problem description is given in chapter 4. This sets

out the crew scheduling problem as it appears at our case study company, a large company

operating OSVs to provide services to the oil industry world-wide, including a discussion

of the company’s current approach and proposals for how a this could be improved upon.

The next two chapters present formulations and solution methods for Vessel Crew

11

Scheduling Problem. Firstly in chapter 5, a simplified formulation of the problem described

as a ‘Task-Based’ formulation is given. This formulation is shown not to be realistic enough

to be used directly on our particular problem, but is argued to still be relevant and to

provide a means of solving the Vessel Crew Scheduling Problem at a company where the

simplifying assumptions do hold. Two solution approaches using a commercial solver are

presented, one which returns the lowest cost solution found within a given time limit, and

the second which minimizes the number of changes from the current schedule. This change

minimization approach applies a cost limit which can be reduced iteratively, producing a

Pareto-optimal set of solutions rather than a single solution. Computational results for

both solution methods are given, along with a proposal for how these methods can be used

in practice at a company to support the solution of their Crew Scheduling problem.

Chapter 6 meanwhile presents a more realistic, but more complex, formulation for the

Vessel Crew Scheduling Problem, termed the ‘Time-Windows’ model. The methods used

to solve the Task-Based problem were far less effective on this more difficult problem, and

so other solution methods are proposed here, including using the Task-Based problem to

approximate the problem and Heuristic methods. A Column Generation approach is also

proposed although the effectiveness of this on the problem was not tested in this research.

Of the methods that were tested, the Heuristic approach appears to be the most useful in

providing multiple solutions of a reasonable quality in a short time, although it is noted

that improvements could still be made to the algorithm. As with the Task-Based problem,

proposals are given for how these methods can be used as part of a decision support tool

in practice.

In both chapters 5 and 6, ideas are also proposed for future work, and these are drawn

together as part of the conclusions given in chapter 7. In this final chapter, we also discuss

how the work fits in to the broader context of other scheduling literature as well as the

more specific implications for crew scheduling at our company and for others operating in

the maritime industry.

Overall, the contributions of this thesis are as follows. Firstly, it applies an optimization

approach to a crew scheduling problem which has not previously been discussed in the

literature. Indeed, while some authors have suggested that crew scheduling in this context

is not of interest, it is shown here that the company’s planners would in fact benefit

from assistance in finding suitable schedules and that potentially the company could make

considerable financial savings by employing such an approach. As discussed further in

chapter 7, we can also see that the models proposed here could be useful in other similar

settings.

Meanwhile, a more specific contribution is made by the development of a heuristic

algorithm for solving the crew scheduling problem. Some observations and conclusions

relating to the settings used here may also be relevant to solving similar problems by the

12

same approach. In particular, it is concluded that the heuristic algorithm is more effective

not when the search space is examined exhaustively at each iteration to find the best

possible new solution, but rather operates better when a subset of the neighbourhood is

considered with any improving solution accepted. In addition, it is concluded that the

random perturbations (“kick”) used to move the search away from local optima is more

likely to do harm than good. This is likely because the kick is not well enough defined for

the contour of the search space, where large numbers of local optima appear to exist, some

with much greater solution values than others. This lesson can be generalised to other

local search algorithms operating in similarly unpredictable search spaces.

13

Chapter 2

Literature Review

In this chapter we review literature from areas related to vessel crew scheduling, and

discuss what kind of bearing these ideas and problems can have on our problem. An idea

of the areas which may be of interest can be obtained from reviews of staff scheduling

applications, formulations and models such as that given by Ernst et al. (2004b).

Amongst other things, this paper discusses the crew ‘rostering’ process, which the

authors see as being divided into six modules (although not all models will consider all of

these, while others may consider modules in combination or concurrently). The modules

they discuss are:

1. Demand modelling;

2. Days off scheduling;

3. Shift scheduling;

4. Line-of-work construction;

5. Task assignment; and

6. Staff assignment.

Looking at demand modelling, which is a potential concern in our case, Ernst et al.

(2004b) divide this into task-based demand, flexible demand, and shift-based demand.

Flexible demand is the case where the “likelihood of future incidents are less well known”

and so forecasting / queuing theory techniques are used to predict what staffing might

be required. The other two forms of demand modelling come about when demand is well

known in advance, or the shift requirements are already laid out, e.g. for nursing.

It is also worth noting some of the comments on constructing lines of work. This stage

refers to the creation of rosters for each staff member over the planning horizon. It is

noted that this can be either cyclic (i.e. giving regular day-by-day or week-by-week shift

14

patterns), or acyclic (e.g. in a call centre where demand varies from day to day). Also

commented on here are the constraints that are present - there are “hard” constraints, and

“soft” constraints. The hard constraints must be satisfied, but the soft constraints can be

violated, although this is not desirable. In these cases, the soft constraints may be included

in the Objective Function, with an appropriate penalty cost coefficient.

The paper discusses several application areas, including transportation as well as others

such as call centres and financial services. Transportation is highlighted as being a diverse

area, but with two common features across all problems: the tasks have both temporal

and spatial dimensions, and all tasks are dictated by some kind of timetable. This is

interesting to note, as it highlights a potential difference between most transportation

crew scheduling problems and some shipping problems, for example in the case of a ‘tramp’

shipping company (discussed in more detail in section 2.3) where there is by definition no

timetable and the routes of the ships are not known in advance.

By contrast, in the call centre situation, exact details of tasks and demand are not

known in advance. Instead, it is only known that a certain number of staff are required at

any one time, and this information is obtained from forecast demand, and from queuing

models and simulation. However, there is also a difference between this situation and a

shipping company, in that all work is carried out at only one location - there is no ‘spatial

dimension’ to the tasks.

Finally, financial services provide an interesting application area in the form of audit

staff scheduling. Here, demand is not known well in advance, and staff have to travel

to various locations to carry out the work. There is also a mix of skill requirements on

audit jobs, much as there are on ships. According to Dodin et al. (1998), the lack of

advance knowledge of demand is dealt with in auditor scheduling by having a relatively

short planning horizon, i.e. planning is only carried out over such a horizon that demand

is known.

A final point to note from the review by Ernst et al. (2004b) is regarding computer

software which was available at time of writing. In particular they note that packages which

exist tend to be either too industry- or organisation-specific to be transferred to another

application area, or are too general to facilitate any automated roster generation. This

would suggest that any existing crew scheduling software would not be directly applicable

in our specific problem.

Having identified transportation settings as one of the key areas of interest, we begin

the body of this review by looking in section 2.1 at crew scheduling in non-maritime

transportation settings, before going on in section 2.2 to look at more general scheduling

literature which is relevant to our work. Next, section 2.3 looks at how optimization

techniques are applied in other maritime contexts, before section 2.4 discusses in particular

the related (but distinct) Sailor Assignment Problem, which occurs predominantly in naval

15

vessels. Finally, in section 2.5 we outline the few pieces of literature which discuss what

can be described as a vessel crew scheduling problem.

2.1 Transportation settings

As mentioned, it would appear that only a small amount of literature exists which discusses

crew scheduling in a maritime setting, and we discuss this later in the chapter. Firstly

however, we note that there is a large body of publications concerning the scheduling of

employees in other transportation settings. These predominantly concern crew scheduling

for airlines, although bus and train crew are also considered. In this section, we review

these two areas of the literature, and discuss the similarities and difference between the

problems tackled in these pieces of research and the problem with which we are concerned.

We also have a separate discussion of so-called ‘schedule recovery problems’, where the

objective is not to create a new schedule but to correct one which is no longer feasible, for

example because of a delayed flight.

2.1.1 Scheduling for Air Crew

The majority of transportation scheduling literature relates to airline crew, and it is sug-

gested by Christiansen et al. (2007) that “in many aspects aircraft are similar to ships”

(p.192), in terms of factors such as operational uncertainty, the international nature of their

routes, and the size of capital investment involved. It must therefore be considered that

scheduling of airline crew might have a bearing on how to approach vessel crew scheduling.

There are some aspects which are common to a large amount of crew scheduling lit-

erature in general, and airline crew scheduling literature in particular. For example, the

majority of researchers appear to use real-world problems and real-world data to model

their problems, with the collaboration of a company. In addition, a large number of models

which are produced seem to rely on a network flow formulation of some kind. However, as

can be seen in the remainder of this section, there are also some differences between the

ways the problem is approached.

Firstly, there is the question of the way in which the problem is modelled. One key

difference is that some models seek to schedule both crew and aircraft together, while others

will only focus on a particular stage of the overall problem. Generally, it is this second

option which is taken, with papers dealing specifically with the crew pairing problem (where

flights are grouped into pairings that start and end at the same base) or the crew rostering

problem (Kohl and Karisch 2004), or ignoring crew altogether and instead looking at the

aircraft assignment problem. However Papadakos (2009) for example suggests several ways

of integrating the problems so as to achieve a better overall solution. An obvious down

16

side of an integrated approach is that it makes for a much larger model, and therefore a

problem which is harder to solve. It would also make little sense to model in this way in a

situation where aircraft (or vessel) locations are pre-determined and therefore unaffected

by the requirements of the crewing problem. In these cases, it would probably be the crew

rostering problem which is the most comparable to the vessel crewing problem.

Secondly, while it seems common to develop a model which uses a network flow rep-

resentation, there are several different ways in which this can be applied. For example,

Cappanera and Gallo (2004) define a multicommodity network flow problem, with a net-

work to represent the tasks to be carried out, and the crew as commodities which must

flow through the network. A contrasting use of networks is that employed by Gamache

et al. (1999), who define a column generation method with the master-problem formulated

as a simple IP to select the best rosters from a set of possibilities, while the sub-problem

generates schedules for each employee which might be useful for improving the solution.

It is the sub-problem in this model which makes use of the network formulation, with

nodes representing time points, arcs representing tasks or rest periods, and arc costs being

allocated based on the reduced costs taken from the master-problem. Promising schedules

are therefore found by identifying the shortest path through the network.

Solution methods will also form a significant difference between different pieces of re-

search. Gamache et al. (1999) for example use a path-building algorithm for their sub-

problem, which makes use of ‘Resource Extension Functions’ (more detail on which can be

found in Irnich 2008). The master problem is solved using a variant on branch and bound,

where high fractional values are heuristically rounded up in order to reduce the search

space. Computational experiments in this case have shown that solution time is reduced

by a factor of at least 1,000 with this heuristic, while the solution obtained had a value in

the worst case that was still within 0.6% of the optimal linear relaxation solution.

Partially, based on the approach by Gamache et al. (1999), Butchers et al. (2001) use

a similar Resource Constrained Shortest Path (RCSP) method for roster generation for

their crew scheduling problem at Air New Zealand. Meanwhile, Kohl and Karisch (2004)

discuss a related column generation technique which applies a k-shortest path generator to

the RCSP. Rather than considering the roster rules during path construction, this method

works by finding the shortest path in terms of reduced cost and subsequently testing it for

feasibility - if the roster is infeasible, it looks for the next shortest path and so on until a

feasible roster is found.

An RCSP-type column generation approach is also used by Saddoune et al. (2011) for an

integrated crew pairing and scheduling problem. A difference here from the above papers is

the use of heuristics to created clusters of variables and constraints which can be aggregated

in the master problem. It would appear that the use of heuristic methods are a more recent

development in airline crew scheduling, with mention of heuristic techniques in a review

17

by Gopalakrishnan and Johnson (2005), which focusses mainly on papers published before

2000, largely restricted to such matters as branching strategies applied within a branch-

and-bound approach. More recently for example, Maenhout and Vanhoucke (2010) have

developed a hybrid scatter search heuristic, which is a form of evolutionary algorithm, for

solving the air crew rostering problem.

Others on the other hand have been less willing to compromise on optimality. Hoffman

and Padberg (1993) for example argue that because of the large amounts of money that

airlines spend on crew costs (they state that major US carriers may spend over $1.3bn per

year on crew, which would equate to around $2.2bn in today’s terms1), any percentage

saving, however small, will in fact mean a substantial monetary saving. They propose a

set partitioning problem formulation, which can be solved using a branch and cut method,

which includes the generation of valid inequalities, to give a provably optimal solution.

Clearly how researchers approach this speed-versus-optimality trade-off will depend very

much on the needs of the client company, assuming this is the format that the research

takes.

Another approach to the airline crew scheduling problem altogether is taken by Gamache

et al. (2007). Here instead of being concerned with the cost of the schedule, rosters are al-

located to crew based on their preferences. In order of seniority, each crew member in turn

is allocated their most favoured schedule provided it will still allow a feasible allocation

to the remainder of the employees. The feasibility test is formulated as a graph colouring

problem - nodes represent the tasks yet to be assigned, and two nodes are connected if

their associated tasks could not be performed by the same worker. If the minimum num-

ber of colours is greater than the number of employees still to be allocated a roster, then

the last schedule allocated does not leave a feasible solution for the remaining workers.

Clearly in the context of scheduling at an airline where such a preferential bidding system

is in operation, such a method would be acceptable. However, it should be obvious that

the overall satisfaction with the entire staff with the resulting schedule is likely to be far

from optimal, and therefore it could be argued that such a method would have no place

in a situation where costs, rather than preferences, are the priority. However, it should

be noted that this method will find a feasible solution within minutes, compared to hours

that an IP model might take to solve, and so a solution found using this method could

potentially be used to aid a branch and bound approach by providing an upper bound on

the solution value.

1The inflation rate of the US Dollar from 1993 to 2016 was ≈ 2.31%, meaning $1.3bn in 1993 would be
valued at approximately $2.197bn in 2016. This was calculated using Calculator.net (2016).

18

2.1.2 Scheduling Literature for Bus and Train Crew

There is also a smaller amount of literature on crew scheduling in other settings. An

example of a model used for rostering of bus crew is Haase et al. (2001). The approach

proposed here is simultaneous scheduling of both vehicles and drivers, which makes sense

since a bus requires a single driver and cannot travel without one. It is also argued by

the authors that “crew costs dominate vehicle costs”, and therefore it would make little

sense to first schedule the movement of buses, then find a driver schedule which would fit

with this - this would most likely lead to a sub-optimal solution over all. The planning

horizon is one day, since for the most part buses will return to the depot at the end of

each day. We can see that this does not hold much similarity with the possible problem of

global-scale vessel crew scheduling, but might have some relevance to smaller scale, short

distance services.

The problem is formulated as a set partitioning model with side constraints, with

a network designed with nodes representing points in time and space and linked by arcs

which represent travel or waiting periods. The solution methods suggested here are column

generation - where possible sets of duties for the crew are created - and branch and bound.

Perhaps the most interesting point about this particular model however is that it has been

built from a much more theoretical basis than the majority of crew scheduling literature

appears to have been. Many researchers will look to work with a company and build a

model based on that company’s specific problem, while Haase et al. (2001) have built a

model around a general vehicle and crew scheduling problem (VCSP). They have gone on

to test their model using data which has been randomly generated in such a way as to

represent a plausible real-world problem. For this reason, it could be argued that their

model is more robust since it has not been constructed for a specific company or scenario,

and so it could be a more generalisable and theoretically useful model. Conversely, it has

the disadvantage of not having been tested on an actual real-world instance of the problem.

Other existing work in the literature use a column generation approach similar to

Gamache et al. (1999) discussed for airline crew scheduling above. Both Jütte et al. (2011)

and Jütte and Thonemann (2012) use an RCSP formulation to generate rosters for their

railway crew scheduling problem, and use the similar dynamic programming algorithm to

find feasible reduced-cost rosters. A similar technique is also used to set equal to 1 certain

variables in the master problem in order to achieve quicker convergence to an integer

solution.

Heuristic approaches also feature in the scheduling literature for bus and rail transport.

Elizondo et al. (2010) for example developed an evolutionary algorithm, which is used to

construct partial schedules for crew in an underground rail network. Interestingly, in this

paper the new approach is compared with a tabu search algorithm and with a ‘greedy’

19

heuristic, using a mixture of real and randomly generated instances. The results were

mixed, with no method significantly outperforming the others. Meanwhile, Lourenço et al.

(2001) use heuristics to solve a bus driver scheduling problem. Their approach is different

to that of Haase et al. (2001) described above, with the problem being formulated as

a multi-objective problem rather than simply cost-based. For their problem, Lourenço

et al. (2001) have developed a metaheuristic approach, combining tabu search and genetic

algorithms to create their solution method.

2.1.3 Crew Schedule Recovery Problems

The above discussion of scheduling literature has been concerned with constructing a sched-

ule from scratch. However, as is discussed in detail in the problem description given in

chapter 4, the nature of our crew scheduling problem is that schedules are constructed on

a rolling basis, with assignments which are put in place perhaps later being updated or

amended. This has some similarities with the ‘recovery’ problem, which arises in other

transportation settings when disruption has occurred to the schedule which had been

planned. Therefore we will here outline some of the literature in this area.

An overview of some of the most recent methods of disruption management in the

airline industry is provided by Clausen et al. (2010). They observe that one of the key

goals of the recovery problem in this setting is to solve the problem quickly, leading to

techniques being developed to reduce the problem size. This can be done by reducing the

time window for which tasks are re-planned, as opposed to re-planning the entire day’s

tasks; also, the number of crew being re-assigned can be restricted to only the affected

crew plus a certain number of additional candidate crew.

Also observed in this overview is the different assumptions under which the airline

crew recovery problem can be formulated. For example, some authors might accept that

additional flights could be cancelled or delayed as part of the plan to bring crew operations

back on schedule. This however does not seem to tie in very well with the nature of the

vessel crew scheduling problem which we have investigated, since one of the key concerns for

the company (even over and above cost) is fulfilling the requirements of the clients without

crewing difficulties affecting operations. This seems more in line with those authors who

assume that the flight schedule has been fixed before the airline crew recovery problem is

solved.

There is also a difference in crew recovery models in the airline industry which is

highlighted by Nissen and Haase (2006) - the difference between the models designed for

European and for US airlines. The reason for the difference here is the way that crew are

paid in the two regions, with European airlines generally paying their crew fixed salaries,

and North American crew being paid according to the time they have worked. The authors

20

here argue that this changes the focus of the crew recovery models in each case - the North

American payment system leads to an emphasis on cost-minimization, which in turn means

that there is close reliance on pairings for the problem in this region, since they are the

main base units of costs. Conversely, it is suggested that with crew salaries fixed, the cost

implications of changing the schedule are reduced, and the main emphasis turns instead to

making the new schedule as close as possible to the previous, disrupted one. As a result,

the pairings are less important, and the rescheduling can be done based on the individual

duties to be carried out.

In terms of problem formulation, as with crew scheduling problems it appears that

networks are often used to represent the models. Nissen and Haase (2006) propose a

duty-period-based network model, while Wei et al. (1997) describe their model as having a

multi-commodity network flow formulation. Similarly, Rezanova and Ryan (2010) describe

a resource constrained shortest path problem to generate feasible new schedules for their

crew.

What distinguishes the Rezanova and Ryan (2010) models from the others discussed

here is that it is designed for the train driver recovery problem rather than for airlines.

However, it is worth noting that it still exhibits some of the same properties as the airline

models - as well as the network-based formulation that is present, the authors also make use

of the two techniques discussed by Clausen et al. (2010), reducing the size of the problem

by restricting the time over which duties are considered, and also the number of crew

considered. Also, the priority in this case is to return to the original schedule as quickly as

possible, similar to the European airline problem discussed by Nissen and Haase (2006).

An alternative approach to the railway crew recovery problem can be found in Potthoff

et al. (2010). In this case, the problem size is reduced by first considering the ‘core’ problem

- i.e. the subset of tasks or duties which must be carried out. Once an initial solution to

the core problem has been constructed, their algorithm improves the solution by examining

the possibility of adding in other duties from the ‘neighbourhood’. The neighbourhood in

this case is defined to include the duties and tasks which are not covered by the current

solution.

2.2 Scheduling Problems in General

Outside the area of transportation, there are various other settings where the scheduling of

crew or other personnel takes place, and indeed other problems where resources or activities

rather than employees must be scheduled. As well as the review by Ernst et al. (2004b)

discussed in the introduction to this chapter, there have been several papers reviewing

crew and personnel scheduling published in the past decade. One such recent review is by

Van den Bergh et al. (2013), which discusses over 300 papers in the area of across many

21

application areas. Their intention is to provide an up-to-date review of personnel scheduling

literature published since the review by Ernst et al. (2004b), an annotated bibliography by

Ernst et al. (2004a), and others. It is interesting to note here that there are no commercial

maritime applications mentioned, but there are some ‘military’ applications discussed.

These include shipboard manpower planning in the US Navy (Li and Womer 2009), which

is discussed in detail in section 2.3, and crew scheduling in the Royal Australian Navy (Horn

et al. 2007), which is discussed in detail in section 2.5 below. An interesting observation

made by Van den Bergh et al. (2013) relates to how personnel scheduling has changed

since first being introduced in the 1950s. They observe that “the relative importance of

satisfying employee needs in staffing and scheduling decision has grown” (p.367) - certainly

we know this to be the case at our company, and it has played an important part in how

we have approached solving the problem.

Looking towards other specific areas, there are several examples in the literature of

scheduling problems in the telecommunications industry, where tasks must be scheduled

or assigned to engineers or technicians. Tsang and Voudouris (1997) for example develop

two local search algorithms for scheduling engineers for British Telecom (BT), a ‘fast’ lo-

cal search and a ‘guided’ local search. Tests carried out show both algorithms compare

favourably, both in terms of solution quality and computational time, with genetic al-

gorithm and simulated annealing methods for this problem. Nguyen and Wright (2014)

meanwhile develop a variable neighbourhood search algorithm to solve the ‘workload bal-

ancing problem’ for a telecoms company. Here the problem is not necessarily to assign

the tasks to specific employees, but to balance the workload across time periods based on

anticipated demand. Imbalance is measured as the sum of squared deviations, a quadratic

expression, which must be minimized. The algorithm developed here is shown to generate

high quality solutions in a short computational time. The problem studied by Kovacs

et al. (2012) is to find a routing and schedule for service technicians, with the possibility

of non-covered tasks to be ‘outsourced’ in a comparable way to the ability to use ‘agency

crew’ in our problem (see problem description in chapter 4). Their solution method is

the ‘adaptive large neighbourhood search’, or ALNS, approach introduced by Ropke and

Pisinger (2006), in which heuristic operators are chosen for each iteration according to how

they have performed at previous iterations. This approach was shown to give around 10%

lower cost for real world instances compared to manually generated solutions.

An alternative application area for scheduling is that of sport. This can for example

concern fixture scheduling, such as that of an ice hockey league as studied by Nurmi et al.

(2014), or scheduling the Brazilian football league fixtures as discussed by Ribeiro and

Urrutia (2012). In both these cases, there are a number of ‘soft’ constraints which should

be satisfied where possible, and ‘hard’ constraints which must be satisfied at all times. In

both these papers, the authors take a multi-stage approach, breaking the problem down into

22

subsections - in the case of Nurmi et al. (2014), this begins with creating ‘minitournaments’

hosted by specific teams, while Ribeiro and Urrutia (2012) begin by creating feasible home-

away sequences. From here, a full fixture schedule can be built up in steps. A different

problem which is discussed by Wright (2007a) is that of allocating umpires to a set of

fixtures in the Devon Cricket League. A metaheuristic approach is developed to solve this

problem, although this paper is interesting in that it notes that the formulation of the

problem was much harder to achieve than the solution approach. The author notes that

this is in contrast to most academic literature on scheduling, which “tend to assume that

formulation is reasonably straightforward” (p.439). In the end, a formulation was arrived

at where the majority of constraints were treated as ‘preferences’, with an associated term

in the objective function which penalises violation of these preferences, in some cases in a

non-linear manner.

The problem studied by Wright (2007a) is also the motivation of some detailed heuristic

experiments in Wright (2007b). Here, an iterated local search (ILS) algorithm is applied

to the umpire scheduling problem. The paper sets out the key elements of a generic

ILS algorithm - an initial solution, a local improvement scheme, a perturbation or ‘kick’,

solution acceptance criteria and stopping criteria - but notes that some of the details of

the algorithm must be determined by experimentation. The author outlines a detailed

experiment to see the effect of varying such parameters as the number of iterations, the

nature of the kicks which are carried out, and the rules for accepting new solutions. The

rules for accepting non-improving solutions include a probabilistic settings, a simulated

annealing rule, and a threshold acceptance rule. By carrying out 100 runs with each

combination of settings, the author is able to draw a number of conclusions about the best

settings to use, although it is noted that this is only strictly applicable to the problem

instance in question, and that other experiments should be carried out.

2.2.1 Scheduling under Uncertainty

An important subset of the literature on scheduling problems is that regarding scheduling

under uncertainty. Discussed above were recovery problems in transportation areas, but

it is also worth considering how uncertainty affects other settings. Similarities can be

drawn between uncertainties in our problem and, for example, scheduling processes in

manufacturing or production, and it therefore seems useful to give a brief overview of the

approaches and terminology used here.

Lütjen and Karimi (2012) discuss the problem of controlling inventory and scheduling

for wind farm installation, and also present a general overview of scheduling under un-

certainty, which it is interesting to consider with comparison to our case study problem.

According to the authors, the three approaches to ‘dynamic’ scheduling are:

23

• The proactive scheduling approach, which attempts to create robust schedules which

can handle disruption, but requires information to be known about the uncertainties

and their distributions. This at present is not available at our company.

• The reactive scheduling approach, which works without an initial scheduling and

effectively makes decisions on a real-time basis. Since logistics planning is required,

and crew require advance notice of their postings, this would not be workable at our

company.

• The predictive-reactive scheduling approach is a hybrid of these, where an initial

schedule is created but is revised either periodically or in direct response to disrup-

tions (or a combination of both).

It is interesting that, even though this terminology originates in production scheduling, it

is applicable to our problem. As discussed in detail in chapter 4, the company’s current

approach to scheduling can be described as a predictive-reactive one, with revisions made

periodically on a weekly basis (and occasionally with event-driven changes made if the

disruption occurs very soon before the execution date). It is worth noting also that the

recovery problems discussed in section 2.1.3 also fall into the category of predictive-reactive

scheduling, with existing schedules being revised in response to disruptions.

More generally, there are several recent review papers in this area which may be of

interest. One by Li and Ierapetritou (2008) discusses some papers on reactive scheduling,

as well as giving an overview of preventative / proactive scheduling techniques including

stochastic optimization, robust optimization, fuzzy programming and sensitivity analy-

sis. A large amount of literature is also reviewed by Vieira et al. (2003) with regard to

predictive-reactive scheduling and rescheduling methods, in addition to some useful defini-

tions of terminology used in this area. Another survey has also been produced by Ouelhadj

and Petrovic (2009) and, while it seems to add little in terms of definitions or discussion

over and above the paper by Vieira et al. (2003), it does provide some more recent references

in the area.

2.3 The Maritime Industry

As noted earlier, literature regarding the scheduling of crew is very scarce in the area of

maritime transportation. However, operational research techniques in general, and opti-

mization in particular, in this sector are in fact quite well used. At least two journals have

devoted special issues to maritime transportation - see introductions by Psaraftis (1999)

and Christiansen and Fagerholt (2011) for details - although neither of these contained any

discussions of crew scheduling problems.

24

A large amount of shipping literature seems to relate to routing and scheduling. Chris-

tiansen et al. (2013) for example present a review of literature in this area, discussing

problems relating to liner, industrial and tramp shipping (definitions of these shipping

types can be found in section 1.2 above). This was the fourth in a series which had been

produced roughly every ten years since 1983, the next most recent being the review by

Christiansen et al. (2004), building on earlier ones by Ronen (1993, 1983).

A more general overview to maritime transportation is given by Christiansen et al.

(2007), which we observed in section 2.1.1 likened shipping to air transportation. The

paper also has the following to say about crew scheduling:

“Crew scheduling for deep-sea vessels is not a major issue. Crew members

spend months on the vessel and then get a long shore leave. For short-sea

vessels the crew may change frequently, and crew scheduling may be an issue.”

(pp.263-264)

It is interesting that, even though our company falls into the category of deep-sea shipping,

that our experience shows crew scheduling to be an important issue. We feel that this is

an important contribution of this research.

2.3.1 Offshore Supply Vessels

Another shipping type mentioned (but not particularly covered) by Christiansen et al.

(2013) is offshore supply vessel, or OSV. Barrett (2008) gives a brief introduction to this

kind of shipping, mentioning that the vessels cover tasks including providing construction

support, remote operated vehicle (ROV) operations, surveying, diving support, and deep-

water lifting or installation. All of these are carried out by our company, and this is clearly

the category into which our company falls.

A search of the literature related to the OSV area of shipping also reveals a focus

on routing or scheduling of the vessels, with no mention of the crew. Examples of this

include Gribkovskaia et al. (2008), Halvorsen-Weare et al. (2012) and Fagerholt and Lind-

stad (2000). A narrower definition of the offshore supply vessel seems to be used by Aas

et al. (2009), which focusses only on the actual supply of oil platforms rather than the

supplementary services mentioned above.

2.3.2 Other Shipping-related Literature

There are numerous other problems which have been studied connected to the shipping

industry. Fagerholt et al. (2010) for example outlined a simulation- and optimization-based

methodology for a strategic planning problem. This, it was proposed, could be used as a

decision support tool for routing and scheduling, contract analysis, and decisions around

25

the fleet size and mix problem. Other papers discuss offshore wind farms, with Scholz-

Reiter et al. (2010) proposing a MILP model for planning the installation of the wind

farms, taking into account the uncertain nature of the weather conditions, and Lütjen and

Karimi (2012) on the presenting a simulation-based model for controlling inventory and

scheduling wind farm installation.

Other papers discuss scheduling of on-shore operations linked to shipping. Legato and

Monaco (2004) for example discuss the scheduling of employees at a marine container

terminal. Interestingly, their problem like ours involves a large degree of uncertainty,

in this case primarily arising from the variable arrival times of vessels at the terminal.

However, unlike our problem crew only need to be present when a vessel is requiring

loading or unloading, and hence there are no “well defined ‘tasks’ to perform... with fixed

start and finish times” (p.770). In this case, the problem can be decomposed into a long-

term planning side, where working days are determined (since arrival days of vessels can

be known with accuracy), and a short-term planning stage where shift patterns are later

determined (since exact arrival times are not certain).

One paper which relates a little more closely to vessel crew scheduling is by Li and

Womer (2009). This paper deals with the shipboard manpower scheduling problem, with

the objective being to allocate crew duties during the course of a voyage, and to use a

minimal number of crew. A MILP formulation is presented, which can be solved using

a multi-phase decomposition method with the emphasis on finding a feasible solution.

Parallels can be drawn between this problem and the vessel crew scheduling problem. For

example, in both cases crew members can be multi-skilled (i.e. able to fulfil a number

of different roles on board a ship), but for any single journey or duty period they could

be allocated a single role or task. Also, in our problem we will have a number of roles

and time periods to which a crew member might be assigned, and there will be temporal

restrictions on these, similar to those present in Li and Womer (2009)’s model. However,

there will also be some differences, for example no consideration is given by Li and Womer

(2009) to the issue of transportation. In our problem, a significant consideration is the

cost of, and indeed time required to arrange, the transportation of a crew member to and

from the vessel to which they are assigned.

2.4 Sailor Assignment Problem

Another problem which is related, but distinct, from the crew scheduling problem is the

sailor assignment problem. This problem has been present in the literature for some

time. Liang and Thompson (1987) discuss the first implementable computer model for

the problem, but also note that some unsuccessful attempts at this were made in the

1960s. More recent descriptions of the sailor assignment problem include Blanco and

26

Hillery (1994), Holder (2005) and Garrett et al. (2007). From these papers, it is possible to

identify some similarities and also some key differences as compared to our crew scheduling

problem.

One of the similarities between the two problems is the time scale over which planning

is carried out, with Holder (2005) stating that the sailors must be assigned their new job

six to nine months in advance, as compared to the ideal of three to six months at our

company. The key difference however is that each sailor goes through a rotation roughly

every three years, and will carry out their new assignment until the time of their next

rotation.

Linked to this, it is worth noting that it is the sailor who contacts the detailer to look

for their next assignment, rather than the other way round. At this time, the detailer

will create a list of jobs from the current requisition list (i.e. the jobs that are due to be

assigned in six to nine months’ time) to offer to the sailor. There is a similarity here in

that, while our company does not offer a list of tasks to the employee, there is a degree

of discussion between planners and crew as to which tasks they are to be assigned. This

aspect of the process gives rise to a requirement that the optimisation must be done quickly,

as with at our company, since the list must be created while the sailor and detailer are in

conversation.

An interesting aspect is the role that time factors play. In the Navy’s assignment

problem as described by Holder (2005), the requisition list is updated with new jobs every

two weeks, while once a set of jobs has been offered to one sailor they cannot be offered

to a second until a choice has been made or a deadline reached. The list of tasks, as with

our problem, is therefore subject to change. Interestingly, Holder (2005) adopts a similar

approach to us with regard to this, in that they assume that the information is fixed at

the time of the model being run. However, a crucial difference is that no mention is made

of tasks being changed once they are assigned - so far as it appears from the literature,

once an assignment is made it is fixed.

In terms of the formulation of the problem, Blanco and Hillery (1994) mention “complex

eligibility rules, multiple objectives and nonstandard constraints”, but unfortunately do not

present these mathematically. Garrett et al. (2007) meanwhile state that there are “some

ninety goals and constraints”, although the main emphasis seems to be on the construction

of a fitness function which should be maximised in order to find the best solution. The

actual constraints of the mathematical formulation given are very simple - no sailor is

to be assigned more than one job, and to job is to be assigned to more than one sailor.

Similarly, Holder (2005) defines a cost function aggregating training suitability, location,

navy priority and the sailor’s geographical preference, subject to the same assignment

constraints.

In terms of solution methods, Holder (2005) proposes using a path-following-interior-

27

point algorithm to find all the jobs which can be assigned to the current sailor in an optimal

(or near optimal, if a longer list is required) solution to this assignment problem. Even

though the motives for requiring multiple optimal solutions are a little different from our

problem, it is interesting to note that they are not necessarily concerned with a single

solution to the mathematical formulation.

2.5 Vessel Crew Scheduling

As well as the numerous related papers discussed above, there is also a small group of papers

in the current literature which can be categorised as discussing a vessel crew scheduling

problem. All of these have a degree of similarity with our problem, but also have specific

differences in the problem setting or the approach identified as the best for modelling or

solving the problem. These papers are discussed, in turn, here.

2.5.1 Harbour Pilot Assignment Problem

The paper by Wermus and Pope (1994) is cited by Christiansen et al. (2007) as a “special

type of [short-sea] crew scheduling problem”, and discusses a simple heuristic for scheduling

pilots in a harbour. While this is near to our problem in terms of setting, the problem

definition is in fact quite different. The problem size for example is only seven or eight

employees, compared to the hundreds which our company may have to deal with at one

time. Also cost is not a concern in this case, with the objective being to allocate the

employees to working and standby days in a “fair and equitable” manner. Unfortunately,

no mathematical description of the problem is presented in the paper.

2.5.2 Navy Crew Scheduling Problem

As mentioned above (section 2.2), Horn et al. (2007) discuss a scheduling problem for

the Royal Australian Navy. The key difference between their problem and ours is that

theirs is an integrated vehicle and crew scheduling problem. However, it differs from other

integrated problems in that there is no fixed timetable for the vehicles to perform, only

a set of vessel assignments which must also be scheduled. It turns out that the crew side

of the problem is not as complex as in our case, as crews operate as a group with no

interchange between them - crew can therefore be assigned as a group to a vessel rather

than having to be considered individually. The problem however was still found to be too

complex to be solved using an ILP model, and so a simulated annealing procedure was

developed.

28

2.5.3 Ferry Crew Scheduling Problem

Another paper which relates very closely to our problem is by Ammar et al. (2013), which

discusses to the scheduling of crew on board ferries operating between Sfax and the Kerken-

nah islands in Tunisia. As with Horn et al. (2007) above, it appears that crew are allocated

in teams rather than as individuals. There is also a difference to our problem with respect

to timescales - being a short-distance ferry service, the crew are expected to work for pe-

riods in the order of hours, with restrictions on the number of hours between shifts and

the number of days on which they are permitted to work. The constraints imposed are

therefore similar to those present in airline or urban mass transit systems rather than the

long term nature of our problem. There is therefore not the issue of uncertainty associated

with long-term planning that we face in our problem.

2.5.4 Cruise Crew Scheduling Problem

Perhaps the most similar to our problem in terms of problem description is that studied

by Giachetti et al. (2013), who propose a “decision support system for crew scheduling in

the cruise industry”. The company under focus in this paper operates cruises in various

locations around the world, ranging from three nights to a month or more in length. In

terms of the global scale of the company, this is similar to our problem, but the key

difference is that as a cruise line the vessel schedules are drawn up well in advance and will

thereafter be unchanged. The scheduling problem is therefore not subject to the late-notice

changes to the vessel schedule (or requirements) that we face.

In terms of crew, there are again some similarities. For example, the crew are hired

internationally in both cases, and in both cases the company is subject to transportation

costs of getting the crew from their home port to their assignment (referred to by Giachetti

et al. (2013) as movement cost). There is however an additional complication for our

company regarding the crew, relating to their experience and their costs. The Giachetti

et al. (2013) problem is defined such that for each job category there is a set of crew who

are qualified to work in that role, all of whom have the same set of skills and experience,

and all of whom cost the same to employ. This is in contrast to our problem where in

certain crew roles there will be different required skill sets and different levels of experience

and where, depending on crew nationality and contract type, employees who are otherwise

equivalent in terms of ability will cost different amounts to utilise.

In terms of goals of the problem, the need to fill all assignments is key in both cases.

However, the means of doing this is different - our company aims to allocate an employee

to each role in each time period, while the cruise company anticipate potential no-shows

or other absences and overbook the number of crew on board in order that a PAR level of

service can be maintained. Other requirements of the cruise company’s process is that a

29

mix of nationalities and language skills are present on board each vessel. While this is not

in itself present in our problem, these requirements could be thought of as analogous with

the experience, or minimum aggregate skill level, constraints.

The proposed solution approach by Giachetti et al. (2013) involves a two-stage process.

The first stage is a demand planning module, which takes past data and uses it to predict no-

shows and thereby estimate the overbooking requirement for each vessel. This is in contrast

to our problem where vessel requirements are considered to be known (if changeable), and

so a demand model is not used in our case. The second stage is the crew scheduling

optimization module, which is formulated as a goal programming problem, although it is

not discernibly different from a mixed integer linear programme. In order to keep the

problem to manageable size, Giachetti et al. (2013) argue that different crew categories

are independent and therefore can be solved separately, although it is not clear how this

can be completely true since the nationality mix constraint appears to refer to all crew

on board rather than just crew in a given role. The principle however of decomposing the

problem by crew role is similar to the current approach by our company, where different

planners are responsible for different crew groups.

2.6 Summary of Literature

To summarise the literature discussed in this chapter, we have seen that there are a variety

of application areas which have a relationship to vessel crew scheduling. These include

scheduling problems in other contexts, particularly other transportation settings (such

as airline or rail) of crew scheduling problems, and also other maritime scheduling and

optimization problems. These have been solved by a number of approaches, including

column generation, branch-and-bound, branch-and-price, and numerous heuristic methods;

often, more than one of these approaches was combined to form the proposed solution

method.

In section 2.5, four types of problem were discussed which exist in the literature which

could be classified as ‘Vessel Crew Scheduling’. It was noted that while each of these had

similarities with the problem we have studied, each also has a number of differences which

set our problem apart. We argue that the crew scheduling problem faced by our case study

company is sufficiently distinct that it warrants separate study to understand, formulate

and solve in a manner which would be acceptable to the company.

30

Chapter 3

Research Methods

Before discussing the specific details of the problem (Chapter 4), this chapter briefly dis-

cusses the methods which are applied in this research. This begins in section 3.1 with an

outline of the general research approaches used, namely mathematical modelling and case

study, including the potential drawbacks of these. Then, in section 3.2 we give an overview

of some of the statistical methods used to analyse some of our results in the later chapters.

3.1 Research Approaches

The main approaches used in this research are modelling, specifically mathematical mod-

elling, and a case study. The first thing to note about these is that they are two very

different, contrasting approaches. In Operational Research, tools and methods are often

split into two groups - ‘hard’ OR and ‘soft’ OR. If we use these terms, it is easy to iden-

tify that modelling, especially mathematical modelling falls into the ‘hard’ category, while

case studies are more appropriate for dealing with the ‘soft’ side of a research project. In

this way, a combined modelling and case study approach can be seen as combining two

contrasting and complementary methods. To show this, we will first discuss each method

separately, before examining how they work in conjunction.

If we consider modelling, it is quite easy to argue that this is very much suited to the

study of the vessel crew scheduling problem, or for that matter any scheduling problem.

Indeed, it can be seen in Chapter 2 that virtually every scheduling problem discussed in

the literature is solved using some kind of mathematical modelling approach. Thinking of

the reasons for this, we can see that in scheduling problems the number of different possible

combinations of shift assignments increases exponentially with every extra staff member or

shift that is included, and so we must have some means of methodically choosing a good

(or preferably, the best) allocation. There is also the matter of not just having to find a

feasible allocation of duties, but requiring that some property, usually cost, is minimized.

31

It follows that if we can express all the relevant factors in the problem in mathematical

terms, we can use mathematical modelling to describe the problem and simplify it into a

form which can be understood and solved systematically.

In contrast, by using a case study to investigate crew scheduling within a company

we can gain a better understanding of the softer issues surrounding the problem. In

management science, the technique of problem structuring is often seen as an important

stage in any project. Pidd (2003) for example states

“soft approaches begin with the assumption that problem definition is not straight-

forward, but is itself problematic”

and this assumption is often found to be correct. Consequently, it is important to have

this stage in a project, where the client’s problem can be discussed, analysed and clarified.

Particularly, this is important in the case of Vessel Crew Scheduling when it can be seen

that there is very little current literature which is similar in definition to our problem. Only

once we know the true requirements of the problem can we proceed to trying to solve it.

Therefore it stands to reason that, before a model can be built, it would be required to find

out about the crew scheduling problem from a company who currently has experience of

this problem. In general, a case study would involve going to this company and finding out

about their crew scheduling problem - what their objective for the problem is, and what

constraints they face, for example rules and regulations about shift patterns, payment and

contract structures within the company, etc. This approach therefore ensures that the

problem being considered is one with practical relevance - a ‘real-world’ rather than purely

theoretical problem.

In this way, there is a complementarity between the mathematical modelling approach

and the case study approach. This can allow the creation not only of a theoretically useful

model, but also a practically useful one. This leads to the conclusion that one of the final

goals of this research should be to generate a model which can be applied in practice at

the case study company - this is discussed in more detail in section 4.2.3.

3.1.1 Potential Drawbacks

Outlined above are some of the arguments in favour of adopting the mathematical mod-

elling and case study research approaches. However, there are also some problems which

are inherent to each which must be acknowledged and, if possible, addressed.

Taking firstly modelling, it is well known that the purpose of a model is to simplify a

complex situation so that it can be better understood and analysed. The simplification idea

makes modelling very useful, but it should be considered that there is also a considerable

risk of problems with this process. With every simplifying assumption which is made

during the modelling process, there is a step away from the real-life situation. There is

32

therefore a balance to be attained - too few simplifying assumptions and we will have

an overly-complicated model; too many and we risk taking the model too far away from

the real-life situation such that it is no longer useful. This risk is particularly real for

mathematical or optimization models. As Pidd (2003) observes:

“the method guarantees that an optimum solution to a correctly formulated

model will be found, if it exists. ... [T]his does not guarantee that the optimum

solution to the model will be the best solution in practice. This can only be the

case if the model is a perfect fit to the system being modelled, which is unlikely.”

The need to find this balance in this particular case will become more evident in the

chapters 5 and 6, where first an easy to solve but over-simplified Vessel Crew Scheduling

model is presented, followed by a more complex but more realistic (and practically useful)

formulation. As will be seen, the over-simplistic model can still give useful insights into

how to tackle the more complex problem. Clearly, the problem of achieving the balance

between simplicity and realism can be partially addressed through the case-study part of

the process. By talking to a client with actual experience of the problem, we can better

understand which factors are important and which are difficult to account for, and based on

this can make an informed decision about what factors are most important to be included

in the model.

The case study approach also has its potential drawbacks, not least that it firstly

requires the buy-in of a client company. To this end, it can be necessary to visit a company

(or possibly several companies) and try to ‘sell’ this project to them, for example by

explaining the potential benefits that a new crew scheduling optimization model could

yield. There is also a potential problem of the case study approach with respect to the

research value of the output from the project. While it is certainly necessary to carry out

the research as a case study in order to show the model works in practice, there is the

associated implication that the model might only be applicable in the case study situation,

and not elsewhere. To try to address this problem, we will attempt at the modelling stage

(including formulating the problem and developing solution methods) to create a model

that, while taking into account the factors which are of importance to the client company,

leaves some room for flexibility which could allow the model to be more generalisable.

3.2 Statistical Overview

When evaluating some of the solution methods discussed in chapters 5 and 6, it will be

necessary to use some statistical analysis to carry out some comparisons. Here, we will

briefly overview the key concepts and methods used. This comprises discussion of what

is meant by hypothesis testing, Type I and Type II errors and the power of a test, along

33

with an outline of the tests used - the F-test for Analysis of Variance, the Kruskal-Wallis

test and Pearson’s correlation coefficient.

3.2.1 Hypothesis Testing

Hypothesis testing is a technique used in statistics to attempt to prove that a theory or

belief is correct. To begin with we must have two hypotheses - a null hypothesis and

an alternative hypothesis. The null hypothesis (H0) is usually the opposite of what we

hope to prove - for example, if we are testing to see if there is a difference between two

solution methods, the null hypothesis would be that there is no difference. The alternative

hypothesis (HA or H1) is then the theory or belief which we hope to prove, for example

that there is a difference between the two methods. The null hypothesis is assumed to be

true unless sufficient evidence can be found to disprove it - it is this evidence we are trying

to find by carrying out the hypothesis test.

Evidence is calculated in the form of a test statistic. The exact definition of the test

statistic varies according to the specific test being used, but it is a single value which is

calculated from the data. If we assume that the null hypothesis is true, then the value of

a test statistic calculated from a random sample of the data is expected to follow a known

distribution - which distribution will again depend on the statistical test being used. From

this, we can calculate the probability p of observing a test statistic of this value x or greater,

assuming the null hypothesis is true, as

P (X ≥ x) = p

This probability p is known as the p-value. If the p-value is less than a specified probability,

known as the significance level α and usually defined to be 5% (or 0.05), this means it is

highly unlikely to have obtained a test statistic at least as extreme as this if the null

hypothesis is correct. We therefore have sufficient evidence to reject the null hypothesis

and accept the alternative hypothesis instead. If the p-value is not less than α, we cannot

claim to have disproved the null hypothesis.

An equivalent way of looking at this is by considering a cut-off level X∗ for which

P (X ≥ X∗) = α

In this case, if the test statistic x takes a value x > X∗ then we also have sufficient evidence

to reject the null hypothesis and accept the alternative hypothesis instead.

There are various different types of statistical tests which can be carried out, depend-

ing on the kind of comparison which is being made and what assumptions can be made

about the population the data is drawn from. In particular, there are two kinds of tests

34

- parametric and non-parametric. Parametric tests depend on the assumption that the

distribution underlying the data comes from a Normal distribution, and will often require

the calculation of a variance to obtain the test statistic. Where this assumptions does not

hold, a non-parametric test which does not make assumptions about the distribution of the

underlying population can often be used instead. However, where possible it is preferable

to use a parametric test - as Pallant (2011) notes:

“Despite being less ‘fussy’, non-parametric statistics do have their disadvan-

tages. They tend to be less sensitive than their more powerful parametric

cousins, and may therefore fail to detect differences between groups than ac-

tually exist. If you have the ‘right’ sort of data, it is always better to use a

parametric technique if you can.” (p.213)

Note that power of a test is discussed in section 3.2.2 below.

3.2.2 Type I and Type II Errors

The significance level, α, described above describes the probability that we observe a test

statistic value at least as extreme as that calculated assuming the null hypothesis is correct.

In other words, it is the probability that we incorrectly reject the null hypothesis. This

kind of error is known as Type I error.

Conversely, a Type II error occurs when the test fails to reject the null hypothesis when

it is in fact false. This will happen with some probability β, and depends on a number

of factors including the sample size used, the size of the effect being tested for, and the

defined significance level α (Pallant 2011). For a larger sample size or a larger effect which

is being identified, the probability of not identifying a difference if one exists is reduced,

while as might be expected the values of α and β have an inverse relationship - decreasing

the significance level will make it less likely that the null hypothesis will be incorrectly

rejected, but will increase the probability of a Type II error.

The complement of the probability of a Type II error, (1 − β), or the probability of

rejecting the null hypothesis if it is indeed false, is known as the power of a test. As

described above, parametric tests depend on more assumptions, but for the same sample

size and effect size and the same significance level they will achieve a higher power (or

lower probability of Type II error) than their non-parametric equivalents.

3.2.3 Tests Used

There are two main kinds of tests used to analyse the results presented in chapters 5 and 6

of this thesis - tests for differences of output measures between different groups of inputs,

and tests for correlation. For the tests of differences between groups, both the parametric

35

and non-parametric tests are used, depending on whether or not the data appears to be

drawn from a distribution that is approximately Normal.

3.2.3.1 Analysis of Variance

The One-Way Analysis of Variance (ANOVA) is a parametric method, and can be used

when we are analysing a single continuous output variable, with cases which can be divided

into three or more categories (Pallant 2011). We can then use the ANOVA method to ex-

amine whether there is a difference in this output variable between the different categories,

with a null hypothesis that there is no difference between the groups.

The test statistic calculated is the F-statistic, which is a ratio of the total ‘between-

group variance’ divided by the ‘within-group variance’. In the F-test, the test statistic is

compared with the F-distribution with (K − 1), (N −K) degrees of freedom, where K is

the number of groups and N the total sample size, to obtain a p-value. A high value of

the ratio, indicating a large amount of between-group variance compared to that within

the groups, will return a small p-value which, if less than α will indicate that there is a

significant difference between the groups with respect to the output variable.

3.2.3.2 Kruskal-Wallis Test

The Kruskal-Wallis test is the non-parametric equivalent of an Analysis of Variance (Pal-

lant 2011), and can be used to determine the same information about the effect of different

groups on an output in the case where assumptions about an underlying Normal distribu-

tion do not hold.

Rather than using the variance, the Kruskal-Wallis test statistic is calculated based

on ranking the cases according to the values of the output variable. The calculation is

analogous however - while variance is calculated as the sum of the squared deviations of

each observation from the mean, here we calculate the sum of the squared deviations of

each observations rank from the mean rank. The test statistic is then the ratio of the total

between-group variance of rank divided by the within-group variance of rank. This test

statistic is compared to a χ2 distribution with K − 1 degrees of freedom, where K is the

number of groups, to obtain a p-value. As with the F-test above, a high value of this ratio

indicates a large amount of between-group variance compared to that within the groups

and will return a small p-value. As before, if this is less than α will indicate that there is

a significant difference between the groups with respect to the output variable.

It can be seen that the actual values of the dependant variable are not considered

here, except insofar as they determine the rankings. Consequently, information is being

discounted in this calculation as compared to the ANOVA calculation discussed above, and

so it can be seen that this test may be more likely to fail to identify a difference even if

36

one exists (i.e. commit a Type II error). Therefore, as discussed above, we should always

use the more powerful parametric form of a test, in this case the F-test, where possible.

3.2.3.3 Pearson’s Correlation

Correlation analysis can be carried out to determine whether there is a relationship between

variables. Specifically, here we will examine if there is a relationship between the values

of two continuous variables, for which we use Pearson’s “product-moment” correlation

(Pallant 2011). This returns a value between −1 and 1, with values close to −1 indicating

a strong inverse relationship between the variables, and values close to +1 indicating a

strong positive relationship. Values close to zero suggest there is little or no relationship

between the values of the variables. A p-value can be calculated to determine whether the

correlation coefficient found is sufficient indication of a significant difference.

The correlation coefficient is calculated as the ratio of the covariance of the two variables

(i.e. the product of the deviations from the variable means for each case, averaged across

all data points) divided by the sample variance of each of the two variables of interest. In

order to test whether or not this correlation is significant, we must transform the correlation

coefficient, which can be referred to as r, into a test statistic t. This is calculated as

t = r

√
n− 2

1− r2

where n is the sample size, or number of data pairs in the sample. This test statistic is

compared with a Student’s t-distribution with n − 2 degrees of freedom to obtain the p-

value, and if this is less than α this will indicate we should accept the alternative hypothesis

that the two variables are correlated. Note that the test statistic value increases as the

square root of the sample size, meaning that for larger samples a larger test statistic will

be obtained, and therefore suggesting (as might be expected) that we are more likely to

be certain that a correlation is significant when n is larger.

37

Chapter 4

The Vessel Crew Scheduling

Problem

This chapter sets out the formal description of the Vessel Crew Scheduling Problem as is

faced by the client company. However, before describing the specific details of the problem

we will set the problem in context by describing the wider business process within which

it fits.

4.1 Business Process

As indicated in section 2.3.1, the nature of the business is to provide services (such as

construction support, remote operated vehicle (ROV) operations, surveying, diving sup-

port, and deep-water lifting or installation) to companies in the offshore oil industry. Their

operations therefore are dictated by the needs of their client companies, and specified by

contracts agreed with clients on a project-by-project basis. Projects may be of various

lengths, from a matter of weeks to several years, and would normally be agreed well in

advance of the operational dates; however in some cases projects may be requested, or

changes to existing projects be negotiated, at relatively short notice.

Within the company, there are several groups which deal with each of the various

aspects as the company’s operations. These include Project Managers, Vessel Managers,

Planners and the Crewing group in terms of onshore staff, while Offshore Managers on

board vessels and individual crew members are also involved, as well as the client companies

and an external travel agent. The relationships between these within the process are

shown in Figure 4.1, which uses the principles of Business Process Modelling and Notation

(BPMN; more information can be found in Weske (2007), for example) 2.0 to show the

procedure as a business process map.

38

F
ig

u
re

4.
1:

B
u

si
n

es
s

P
ro

ce
ss

M
ap

sh
ow

in
g

cr
ew

sc
h

ed
u

li
n

g
p

ro
ce

ss
in

co
n
te

x
t

39

This diagram shows the process at a high level - a more detailed diagram, with all sub-

processes expanded to show their constituent tasks, can be seen in Figures A.1, A.2 and

A.3 in Appendix A.

As the diagram shows, the Project Managers are responsible for dealing directly with

the client companies, and determining what is required in order for the company to deliver

the project. This interaction is shown in more detail in Figure 4.2 below, including an

expansion of the sub-process of dealing with the client request.

Figure 4.2: Zoom in on detail of interaction between a client company and a Project
Manager

The Project Managers pass the new details to the Vessel Managers, who are responsible

for the assignment of the vessels to specific projects and also determining when vessels

should be brought into dock for maintenance. Figure 4.3 below shows the process followed

by the Vessel Managers to produce a weekly ‘Ship Schedule’ and to keep this up to date.

Figure 4.3: Zoom in on detail of interaction between Project Manager and Vessel Managers

This Ship Schedule is passed at the start of each planning week to the Planners, whose

responsibility it is to allocate crew to the vessels according to the vessels’ requirements and

to keep the crew schedule up to date for at least the coming 13 weeks (i.e. 3 months). If

any changes to the Ship Schedule fall within this 13 week planning period then the Vessel

Managers should send an additional update to the Planners so that the necessary crew

schedule changes can be made as soon as possible.

As described in more detail below (section 4.2), the Planners may be able to update

the crew schedules according to a ‘default’ plan which will see employees allocated their

regular assignments. However, in some cases it may be necessary to deviate from this

default plan, and when this happens the Planners must confirm the alterations with the

40

crew concerned, the Offshore Managers, and in cases where transport arrangements are

affected the Crewing group. This part of the process is shown in greater detail in Figure

4.4 below. In addition to updating the schedule at the start of the planning week, it is also

possible that new information relating to vessel requirements (from the Vessel Managers)

or crew availability during the planning period will arrive during the week and this will

necessitate further changes to the schedule. This part of the process is shown in greater

detail in Figure 4.5.

Figure 4.4: Zoom in on detail of process of updating or revising crew schedule

Figure 4.5: Zoom in on detail of action taken when Planner receives new information

The Crewing group, meanwhile, are responsible for making travel arrangements for the

crew. Each employee has a designated ‘home port’, to which it is their responsibility to

travel; however, it is the company’s responsibility to arrange their transfer to their assigned

vessel, or in some cases to another port which is the closest to the vessel. Bookings will be

made four weeks ahead of the crew change date, although Crewing may also be affected by

new information about employee availability or vessel requirements. If changes are needed

within four weeks, Crewing must be consulted to take into account new travel arrangements

- this interaction is show in more detail in Figure 4.6. Subsequently the Travel Agent must

again be contacted to change the bookings once the schedule changes are confirmed - this

sub-process is shown in expanded form in Figure 4.7.

41

Figure 4.6: Zoom in on detail of interaction between Planners and Crewing when changes
are required

In addition to dealing with changes to existing travel arrangements, over the course of a

week the Crewing group must book the new travel arrangements which now fall within their

four-week planning period. This sub-process is shown in expanded detail in Figure 4.8. The

schedules produced by the Planners specify the week-by-week assignments; however, the

specific day and time of the crew change is flexible and dependent on the itinerary of the

vessel that week. The Crewing employees must therefore contact the Offshore Managers

to arrange the specific crew change dates, before dealing with the external Travel Agent

in order to book the required transportation.

In terms of the offshore employees, the Offshore Manager is responsible for the ad-

ministrative tasks on board their respective vessels. As described above, with regard to

the scheduling process this involves consultation with Planners about changing the regular

schedules and confirming crew change dates with the Crewing personnel. In addition, when

transport arrangements are made or altered, the Offshore Managers will be informed of the

new arrangements. Details of this are not shown here in diagram form, but are contained

in the full process maps given in Appendix A.

The crew members meanwhile have several roles in the scheduling process (again not

detailed here - please see Appendix A). Perhaps the most important role, and the one

which must be instigated by the employee rather than the onshore staff, is to inform the

Planners if their availability changes (for example through illness, or if they wish to register

a vacation period). Another key role is to provide the planners with feedback when they

42

Figure 4.7: Zoom in on detail of sub-process of updating travel arrangements

Figure 4.8: Zoom in on detail of sub-process of making new travel arrangements

are asked to deviate from the default schedule. An employee’s willingness to change their

schedule may depend on the kind of change required, how near in the planning horizon

the affected week falls, and the general inclination of the employee to agree to alterations.

The remaining elements of the crew members’ involvement in the scheduling process is

simply that of receiving new information, either relating to updates to their schedule of

assignments, or relating to newly made or updated transport arrangements.

The final actor to consider in the scheduling process is the external travel agent, whose

role is simply to react to information sent to them by the Crewing group. Mainly, this

comprises details of the employees who require transport to be booked, along with the

required arrival dates and times in order for those employees to board their vessels; however,

it may also involve requests to change existing bookings, including amending arrival times,

changing the employee who is booked on a given route, or perhaps cancelling a booking

completely. The travel agent will make the necessary arrangements, and communicate

the details (in particular, the required rendezvous points for offshore crew) back to the

Crewing team. As with the offshore employees, a detailed diagram is not given here, but

43

is contained in the full process maps in Appendix A.

4.2 Problem Description

Having discussed the broader context of the scheduling process in section 4.1 above, we

can now look at the specific description of the crew scheduling problem. We now focus

in on the tasks in the process carried out by the Planners who, although having input

from various other actors in the broader process, have the final responsibility for the crew

schedules.

As described above, a key part of the Planners’ responsibilities is the sub-process of

finding suitable revisions to the crew schedule, as shown in Figure 4.4. It should be noted

that this process is iterative, and in some cases it may take several attempts to find a

revision that is acceptable to all parties. It can also be seen from the main process map

(Figure 4.1) that the sub-process as a whole may have to be carried out several times during

the planning week, depending on how many changes arise during that time. Because some

of these changes may relate to tasks to be carried out very soon, e.g. the next week, it

may also be the case that the determining of a suitable new schedule must be done very

quickly. It is for these reasons that this sub-process is a key part of the crew scheduling

process, and it is desirable that it should operate as efficiently and effectively as possible.

This section goes on to discuss in detail the main concerns for the Planners during this

sub-process and how it is currently approached. This allows us to identify potential for

improvements to the process.

4.2.1 Detail of the Problem

Clearly, the fundamental aim of any crew scheduling problem is to ensure that all of the

required tasks are assigned to one of the available employees. The ‘tasks’ in the case of

this problem are defined according to the crew roles which must be filled on board each of

the company’s vessels. The different crew roles are numerous, but can be divided into two

broad categories. The first, termed marine crew, includes roles such as ship’s captain, other

bridge crew, and engineering crew. These roles must be covered at all times regardless of

the nature of a vessel’s current assignment, and must even be covered when a vessel is

unassigned or undergoing maintenance. The requirements for the second category, termed

project crew, will vary depending on a vessel’s assignment, e.g. diving crew will only be

required when a vessel is engaged in a diving project. This category also includes crew

which work on deck (riggers, deck foremen, etc.) who will be required for most projects

but will not be required when a vessel is unassigned or undergoing maintenance.

The set of available crew is made up of employees of many nationalities, with the result

44

that legal and contractual restrictions on crew can vary from employee to employee. In

general, there are two kinds of crew, regular crew and agency crew, with regular crew

greatly outnumbering the agency crew employed in the majority of crew roles. Regular

crew are permanent employees of the company, and while contractual conditions will vary

these can again be split into two broad categories:

• Some of the regular crew are employed on fixed contracts, meaning they are paid

a salary and expected to work a certain number of days at sea per year. If they

work fewer than these guaranteed days, they will still be paid for them (and so the

company is wasting money), while if they work more than their guaranteed days over

the year they will be entitled to additional pay, usually pro-rata according to their

salary and with a possible overtime multiplier.

• The crew not on fixed contracts are referred to as day rate crew, since they are paid

per day that they work at sea. Their rate of pay will usually be higher that the fixed

contract crew, up to around 1.5 times the amount.

Agency crew on the other hand are not permanent employees of the company, but instead

are found by external agencies to work on a temporary contract. Because they are available

at short notice, agency crew are generally more expensive (up to twice the pay rate) per

day than the regular crew, although this is in part balanced out by the agency crew often

being local which leads to a slight saving on travel costs (as discussed below). In general,

the company will make use of regular employees where possible, but agency crew will be

utilised in a situation where there no regular crew are available, or are only available at a

very high cost.

Crew availability to carry out a task depends on a number of factors. Not least of these

are other commitments to which the employee might be subject, for example pre-arranged

holiday periods or training courses which they must attend. In addition, it is possible that

an employee might be unavailable due to illness or similar unforeseen circumstances. Also

affecting an employee’s ability to perform certain tasks is their training and experience.

This relates primarily to the project-specific crew - for example, if the vessel is on a pipe-

laying assignment, it will be desirable that at least one of the two deck foremen will have

a suitable level of previous experience of pipe-laying projects. However, it can also apply

to other crew - captains, for example, might be required to have previous experience of

commanding a vessel in a certain region or in certain conditions.

Availability of an employee for a certain task might also depend on their nationality.

For example, ships registered under certain flags are only permitted to employ crew from

certain countries, while some crew may require visas or work permits (which take time to

arrange, and at a cost) in order to work on vessels operating in certain regions. In addition,

45

it may not be considered desirable for crew of certain nationalities to work together if it

can be avoided.

Another set of restrictions on crew availability are the legal and contractual constraints

placed on working and resting periods. Each employee will have a maximum number of

weeks they can be assigned consecutively to work, and a minimum number of weeks they

must have free in between offshore assignments. We note here that a working ‘week’ for

the crew is a full seven day week. The exact restrictions on individual employees will

vary depending on their nationality and the specific details of their contract, for example

European Union nationals will have their contracts governed by legislation such as the

European Union Working Time Directive (see European Union 2003)). In general, these

requirements form the basis for a framework of regular working patterns which are used

at the company.

Staying with the example of crew from EU nations, the majority of these employees

will generally be assigned four weeks on board ship followed by a four week rest period

(termed four weeks on, four weeks off or 4-on-4-off), or sometimes 5-on-5-off in the case of

a vessel operating in a more remote region. On the other hand, crew of some nationalities

are restricted to 2-on-4-off working patterns, while others may regularly be assigned a

10-on-5-off pattern. It should be noted that crew changes take place each week on each

vessel, meaning that change-overs are staggered both with respect to the crew on board

each vessel, and all the crew of a given grade. In other words, while there are no restrictions

per se on the pattern of change overs, in reality only a subset of the crew on a vessel will

change each week, and only a subset of each crew of a given grade across the entire fleet

will change each week.

Because of the length of the employees’ duty periods, and the need to arrange trans-

portation for the crew in advance, the company has a much longer planning horizon than

would be expected in other transportation settings. The company aims to plan at least 13

weeks ahead, and will arrange the logistics for the crew changes up to four weeks before

the date. Note that the exact day of the crew change is only confirmed when the logistics

are arranged - during the planning process before this, it is assumed that all crew changes

happen on the same day every week.

The length of the duty periods and corresponding (comparatively) long planning hori-

zon lead to an element of uncertainty in the planning process. This is in part as a result of

changes in crew availability, with for example an employee falling ill at relatively short no-

tice, and partly because of the flexible nature of the company’s contracts with their clients

which can lead to changes in the vessels’ assignments, and therefore alterations to their

requirements for crew over time. It is worth noting here that factors such as weather or

traffic congestion which can cause significant disruption in air, bus or train crew scheduling

are actually less of a concern here. Barring highly exceptional large-scale travel disruption,

46

the delay will be in the order of hours for an employee to reach their vessel. While poten-

tially inconvenient in the short term, this is a small proportion of the duty period lengths

and therefore will not cause knock-on effects to the rest of the schedule.

As a result, the scheduling process is not simply carried out for a block of thirteen

weeks at a time; instead, the current schedule for the coming thirteen weeks is reviewed

on a weekly basis, with any necessary changes being made along with new tasks at the

far end of the planning horizon being assigned. This job, carried out by the Planners is

simplified by the existence of regular assignments, whereby when all else is equal crew will

generally have a vessel to which they are always assigned, and will share their role with

another employee working four-on-four-off (or five-on-five-off) in turn - this is termed as

working back-to-back.

The problem becomes more difficult when, as described earlier, deviations from these

regular back-to-backs are required. Because of the pressures involved with this stage of the

process (particularly finding feasible solutions, seeking agreement between all parties and

the possibility of requiring several iterations to achieve this), it is here that the Planners,

and indeed the company as a whole, would most benefit from a tool to support the decision

making. Firstly, we discuss below how the Planners currently approach this problem.

4.2.2 Current Approach to the Problem

Currently there is no optimization tool used to aid the decision making process. A visual-

isation software is used to show the current assignments of each individual crew member,

and using an alternative view the crew members (if any) currently assigned to each role

for each week that role is required. The Planners can also use this software to visualise the

effects of changing the current assignments, whether by changing the duration for which

an employee works in a certain role, or by removing and allocating employees from and

to entire blocks (i.e. a set of consecutive weeks) of work. They will also need to make

decisions about when it is necessary to cover a role which an agency employee rather than

one of their regular crew.

In some instances, the Planners will be under time pressure when trying to identify

solutions. However even when time is not a particular issue, it can be difficult for the

Planners to find solutions, given the contractual restrictions placed on assignments and the

potential issues surrounding unavailability or unwillingness of some employees to change

their assignments. Because of these difficulties, and the lack of an optimization tool to aid

decision making, the Planners’ primary concern in the current process is to obtain feasible

solutions, with even this objective often proving problematic.

47

4.2.3 Proposed Intervention

The Planners’ task could be greatly aided by the addition of an optimization tool, designed

to quickly and efficiently find feasible schedules for the current situation. Because of the

need for iteration and dialogue, such a tool would ideally allow the problem to be solved

multiple times, with small adjustments made to the constraints at each step to account as

necessary for any new information from communication with the employees.

Clearly, using an optimization tool an idea of quality of solution can also be brought

into consideration. This can best be judged on cost, which is of course of importance to

the company even if the planners cannot always take it into account. Costs of an employee

carrying out a task comprise their wages for that period in the case of day-rate and agency

crew, and the cost of transporting the employee from their home port to the vessel to

which they are assigned. Costs of fixed contract crew wages must be calculated differently

- we must take into account their working weeks over the year, and consider either the

extra payment due when the guaranteed days are exceeded, or the money wasted when

they have not been fully utilised.

We can therefore say that the goal of our optimization tool will be to propose feasible,

low-cost solutions for the crew scheduling problem. In order to do this, the problem had

to first be formulated based on the information given by the company, before investigation

could be carried out into how best to solve the problem in an efficient manner. The

subsequent chapters go on to discuss the different proposed formulations, and the details

and results of the investigations into these.

48

Chapter 5

A Task-Based Formulation

The first formulation constructed for the Vessel Crew Scheduling Problem made use of

some assumptions designed to simplify the problem and make it easier to model. This

Task-Based formulation assumed that the regular assignment pattern, as described in

section 4.2.1, is pre-determined and fixed for each vessel. Specifically, we assume that the

pattern follows that described for the majority of EU nationals, namely 4-on-4-off, and

5-on-5-off for vessels operating in a more distant region such as the South Atlantic. As

a consequence, we must also assume that all employees’ contracts require a minimum rest

period length of at most four weeks and permit a maximum working length of at least five

weeks.

Incorporating these assumptions leads to the formulations set out in this chapter.

Firstly, a formulation for a ‘basic’ scheduling problem is presented, which assumes that

there is no partial schedule at the start of the planning process. This assumption can

then be removed, allowing the Basic model to be modified into a ‘Recovery-type’ problem

which more accurately reflects the process in place at the company. We will also present

an adapted formulation which seeks to minimize the number of changes in the solution

rather than a cost function, before discussing the experience of computational work with

these models.

5.1 Basic Problem

As indicated at the beginning of this chapter, we firstly outline a version of the scheduling

problem which assumes no prior schedule (or partial schedule) exists at the start of the

planning process, meaning that all schedules are constructed from scratch. This assumption

allows us to set out the basics of our model in a simpler manner, before later extending to

take into account the recovery problem (see section 5.2). This simplified model may also

be useful in that it could be applicable in another vessel crew scheduling setting even if

49

not for the setting considered in this case.

5.1.1 Definitions

Before giving the formulation, we will define all the notation used in the model.

Sets

We begin by defining the set of employees and the set of tasks to which they must be

allocated within the given time period:

ER is the set of all regular employees, with |ER| = m.

E = ER ∪ {m+ 1} is the set of all employees, where m+ 1 is the index used to denote

agency employees.

G ⊆ ER is the set of fixed contract employees.

J is the set of tasks which are to be carried out, with |J | = nW .

N is a set of dummy rest tasks, with |N | = nR. These will be used to ensure employees’

minimum rest periods are respected.

J ∪N is the combined set of working and rest tasks, with |J ∪N | = nW + nR = n.

Main decision variables

We can now define the main decision variables as follows:

xij =

{
1 if employee i is allocated to task j ∈ J ∪N
0 otherwise

As discussed previously in section 4.2.1, an employee may not be qualified to perform a

given role, or may be unavailable in a given week (meaning they are ineligible for all tasks

which overlap that week). In order to reduce the problem size, a simple pre-processing

stage can be introduced which will define the decision variables dynamically. In the case of

working tasks, this will mean that xij will only exist where employee i is eligible to carry

out task j ∈ J . Similarly, given that each employee will be entitled to a minimum rest

period duration, we will say that xij is not defined for any rest task j ∈ N which is shorter

in duration than employee i’s minimum rest period entitlement.

50

Data

There are numerous pieces of data which are required by the model. These are as follows:

sj is the start time of task j.

dj is the duration of task j.

Cγ ⊆ J ∪N are sets of tasks which overlap in time, with γ ∈ Γ = {1, 2, . . . , γmax}. The

value of γmax and the contents of the sets Cγ can be determined using an algorithm

given in section 5.1.2 below.

K is the set of projects which require specialist knowledge, training or experience.

Pk ⊆ J is the set of tasks which comprise project k ∈ K.

eij is the experience score of employee i with respect to task j ∈
⋃
k∈K Pk.

εk is the minimum total experience required across the tasks in project k ∈ K.

b ∈ B is the chronologically ordered index of all tasks in J ∪ N , such that sb−1 ≤ sb

for all b ≥ 2.

cij is the cost to the company of assigning employee i to task j. Note that as well as

including financial costs (arranging visas, transportation, wages), the user may also

wish to include a non-financial penalty cost to account for, for example, when an

employee is asked to carry out a less desirable assignment. The exact value of this

penalty could be varied depending on the level of undesirability of the assignment.

ωi is the maximum permitted number of consecutive working days for employee i.

ρi is the minimum duration of a rest period that employee i must be allowed between

working periods.

wb is the work resource value of task b, such that

wb =

{
db for b ∈ J
−M for b ∈ N

where M is a large number which must satisfy M ≥ max
∀i∈E

ωi.

rb is the rest resource value of task b, such that

rb =

{
1 for b ∈ J
−1 for b ∈ N

51

Wi0 is the number of consecutive working periods to which employee i has been assigned

immediately prior to the start of the planning period.

Ri0 is an indication of whether employee i requires rest at the start of the planning period,

such that

Ri0 =

{
1 if employee i requires rest

0 otherwise

gi is the number of days which are guaranteed to employee i ∈ G.

W̄i is the number of days employee i ∈ G is expected to work during the year outwith

the current planning period.

µi is the effective rate of pay per day for employee i ∈ G, which can be considered an

under-time rate in the event that the employee works less than gi in the year.

φi is the daily rate at which overtime is paid to employee i ∈ G, in the event that the

employee works more than gi in the year.

Supplementary decision variables

Finally, there are several supplementary decision variables which are required to ensure

feasibility and to correctly calculate the cost of the schedule:

Wib is the accumulated work resource value for employee i once all tasks up to and

including the task indexed b have been considered.

Rib is the corresponding accumulated rest resource value.

ui is the number of days short of their guaranteed amount that employee i ∈ G is

expected to work during the year.

oi is the number of days over their guaranteed amount that employee i ∈ G is expected

to work during the year.

5.1.2 Calculating Overlapping Task sets

As described in section 5.1.1 above, this formulation makes use of sets Cγ to define tasks

which overlap in time. This is in order to allow us to create constraints which will forbid

any employee from being assigned two tasks which take place at the same time. One

possible way to do this would be to create a constraint for every pair of tasks (for every

employee), which could be constructed as follows:

M(xif + xig − 2) ≤ sg − (sf + df) ∀i, ∀f, g ∈ J s.t. sg ≥ sf (5.1)

52

where M is some large number such that M ≥
(

max
∀j∈J∪N

(sj + dj)

)
−
(

min
∀j∈J∪N

sj

)
. This

however would create 1
2n(n + 1) constraints for every employee i ∈ ER, i.e. a number of

constraints of order O
(
n2
)
. Since in reality a number of tasks will overlap for a given time

period, the number of constraints required can be greatly reduced by considering multiple

tasks in each constraint.

In order to do this, we first define an ordered list of time points tp, p = 0, 1, 2, . . . , pmax

such that each task start time sj and task end time sj +dj equate to a tp for all j ∈ J ∪N ,

and tp > tp−1 ∀p. Note that consequently, t0 = min j ∈ J ∪Nsj , i.e. the earliest start time

of all tasks in J ∪N ; and that tpmax = max j ∈ J ∪N (sj + dj), i.e. the latest end time of

all tasks. By examining the tasks which start and end at each of these time points, the

sets Cγ can be constructed and the value of γmax, where 0 ≤ γmax ≤ 1
2n(n + 1), can be

found. This is described in Algorithm 5.1.

Algorithm 5.1 Algorithm defining overlapping task sets Cγ
calculate all time points tp for the set of tasks J ∪N
set counters α = 0 and β = 0
set property constraint required to be false, and let the calculation set Cc = ∅
while α ≤ pmax do

if tα = sj + dj for some j ∈ J ∪N then
if constraint required is true then

set β = β + 1
set Cβ = Cc

reset constraint required to false
end if
for all j ∈ J ∪N such that tα = sj + dj , remove j from set Cc

end if
if tα = sj for some j ∈ J ∪N then

set constraint required to be true
for all j ∈ J ∪N such that tα = sj , add j to the set Cc

end if
if α = pmax then

set γmax = β
set Γ = {1, 2, . . . , γmax}

end if
set α = α+ 1

end while

5.1.3 Formulation

Having defined all the quantities required, we can now state this basic task-based formula-

tion of the vessel crew scheduling problem as follows:

53

min
∑
∀i,j

cijxij +
∑
i∈G

(µiui + φioi) (5.2)

subject to:

m+1∑
i=1

xij = 1 ∀j ∈ J (5.3)∑
j∈Cγ

xij ≤ 1 ∀i ∈ ER, γ ∈ Γ (5.4)

m+1∑
i=1

∑
∀j∈Pk

eijxij ≥ εk ∀k ∈ K (5.5)

Wi,b−1 + xibwb ≤Wib ∀b ∈ B, i ∈ ER (5.6)

0 ≤Wib ≤ ωi ∀b ∈ B, i ∈ ER (5.7)

Ri,b−1 + xibrb ≤ Rib ∀b ∈ B, i ∈ ER (5.8)

0 ≤ Rib ≤ 1 ∀b ∈ B, i ∈ ER (5.9)

ui ≥ gi −

W̄i +
∑
j∈J

djxij

 ∀i ∈ G (5.10)

oi ≥

W̄i +
∑
j∈J

djxij

− gi ∀i ∈ G (5.11)

xij ∈ {0, 1} ∀i, j s.t. xij is defined (5.12)

ui, oi ≥ 0 ∀i ∈ G (5.13)

The objective here, given by equation (5.2), is to minimise the total cost of the schedule.

This takes into account both the direct cost of assigning employees to each task, and also

the costs incurred relating to the guaranteed days specified for the fixed contract crew.

Constraint set (5.3) ensures that each task is covered, while set (5.4) ensures that no

employee can be assigned more than a single task from each overlapping task set Cγ ,

as described in section 5.1.2 above. Constraint set (5.5) meanwhile requires that the

experience constraints for certain specified projects are met. The maximum work period

lengths are covered by inequalities (5.6) and (5.7), with (5.8) and (5.9) similarly covering

the minimum rest period duration between tasks for each employee. Finally, (5.10) and

(5.11) allow for the calculation of the amount of under- or over-time that each fixed contract

employee will be expected to work during the year.

54

5.2 Recovery-type Problem

The formulation presented in the section 5.1 above could be useful in a situation where

planning is carried out in advance and the schedule can simply be implemented when the

time comes, with no need for revisions. However, as described, the nature of our particular

problem is that changes must frequently be made to the existing schedule in light of new

information about crew availabilities or vessel requirements. As a result, an approach more

akin to the recovery problems seen in other scheduling settings is more appropriate. The

formulation described above can be modified to take this into account.

5.2.1 Additional Definitions

In order to modify the problem, some additional definitions must be made. This involves

the existing schedule which is used as input data, new decision variables which are required,

and modifications to the cost coefficients and objective function.

The existing schedule

In section 5.1 we assumed that schedules were being constructed from scratch; however,

we know that in practice at the start of a given planning week we have a schedule which

was determined during the previous planning week. This schedule can be considered as a

binary (m+ 1)×nW matrix X∗ of assignments, which will become input data for the new

planning step. The elements of the matrix X∗ will take the following values:

x∗ij =

{
1 if employee i is allocated to task j

0 otherwise

for all employees i ∈ E and working tasks j ∈ J . It should be noted that X∗ will be a

sparse matrix.

Decision variables

As described in Chapter 4, new information may be available to the Planners at the start

of the new planning week which means some assignments in X∗ are no longer feasible. In

addition, any tasks which start in the final week of the planning horizon will not have been

considered in the previous planning week, and so these will be currently unassigned. The

problem is now therefore to find suitable modifications to X∗ such that all tasks are once

again covered, and all constraints are once again complied with. Our decision variables for

55

the Recovery-type problem can therefore be defined as follows:

yij =

{
1 if there is a change to employee i’s schedule with respect to task j

0 otherwise

These new yij decision variables can be combined with the x∗ij terms (i.e. individual

elements of X∗) to describe the resulting new schedule. For notational simplicity, we can

rewrite these combined terms by defining a new quantity zij which takes the following

values:

zij =

{
x∗ij − yij if x∗ij = 1

x∗ij + yij if x∗ij = 0

Note that alternatively zij could be represented as

zij = x∗ij + (1− 2x∗ij)yij

Cost coefficients

As the focus of our problem is now on making changes to an existing schedule, the cost

of assigning an employee to a given task is now less important. Instead, we must be

concerned with the cost of changing an employee’s assignment to a task, which will take

into account several elements, such as the amounts incurred or saved with respect to wage

and transportation costs.

We should note however that these savings will not be an exact reflection of the initial

costs, particularly with respect to transportation. As discussed earlier, four weeks in

advance of implementation, the transportation arrangements will be finalised and, while

efforts are made to make tickets transferable, this means that some money will not be

recovered if an employee is removed from a flight. In addition to these tangible costs, it

may be advisable to introduce a penalty element to these cost values to account for the

preference of the company to avoid unnecessary changes. This will particularly be the case

with respect to short-notice changes (i.e. within four weeks of the current date).

It is these factors that necessitate our new definition of solution quality, as clearly the

best solution in terms of pure costs will not necessarily be the cheapest to move to from the

starting solution X∗. We therefore define our new cost coefficients, as well as an equivalent

cost-of-change piece of data for fixed-contract crew, as follows:

c′ij is the cost (or saving, if negative) of changing the assignment of employee i with

respect to task j. Note that, as with the assignment cost cij for the basic problem,

this cost may include a penalty cost over and above the financial costs of making the

change. This penalty could, amongst other things, account for the disruption caused

by asking an employee to change their assignment, especially at short notice.

56

Ωi is the expected additional overtime or undertime costs for employee i ∈ G according

to the previous version of the schedule.

We note that generally there will be a positive value (i.e. cost) to c′ij where employee

i is not assigned to task j in solution X∗, while if x∗ij = 1 then c′ij will most likely be

negative (i.e. a potential saving). Consequently it is possible that the combined effects of

two changes will result in a net cost very close to zero, for example re-assigning employee i

from task j to task j′ when tasks j and j′ are both on board the same vessel or on different

vessels in the same region.

5.2.2 Formulation

The formulation of the Recovery-type problem is similar to that of the Basic problem given

in section 5.1.3, but incorporating the changes outlined above. Where the Basic problem

used the xij variables in the constraints (5.3 - 5.11) these are replaced by the new zij

variables, while the objective function is updated to reflect that we are now concerned

with the cost of changing assignments. The full formulation is as follows:

min
∑
∀i,j

c′ijyij +
∑
i∈G

(µiui + φioi − Ωi) (5.14)

subject to:

m+1∑
i=1

zij = 1 ∀j ∈ J (5.15)∑
j∈Cγ

zij ≤ 1 ∀i ∈ ER, γ ∈ Γ (5.16)

m+1∑
i=1

∑
∀j∈Pk

eijzij ≥ εk ∀k ∈ K (5.17)

Wi,b−1 + zibwb ≤Wib ∀b ∈ B, i ∈ ER (5.18)

0 ≤Wib ≤ ωi ∀b ∈ B, i ∈ ER (5.19)

Ri,b−1 + zibrb ≤ Rib ∀b ∈ B, i ∈ ER (5.20)

0 ≤ Rib ≤ 1 ∀b ∈ B, i ∈ ER (5.21)

ui ≥ gi −

W̄i +
∑
j∈J

djzij

 ∀i ∈ G (5.22)

oi ≥

W̄i +
∑
j∈J

djzij

− gi ∀i ∈ G (5.23)

zij = x∗ij + (1− 2x∗ij)yij ∀i, j s.t. yij is defined (5.24)

57

yij ∈ {0, 1} ∀i, j s.t. yij is defined (5.25)

ui, oi ≥ 0 ∀i ∈ G (5.26)

Notice that equations (5.24) have been added to define the link between the old sched-

ule, the changes, and the new schedule (i.e. quantity x∗ij and variables yij and zij respec-

tively); while (5.12), which previously gave the binary definition of xij , has been replaced

with (5.25), the equivalent for the new yij variables. In the same way as our basic schedul-

ing formulation, we consider yij and zij to be defined dynamically in a pre-processing stage,

meaning that they only exist where employee i is eligible to carry out task j ∈ J and where

the length of a rest task j ∈ N is at least as long as the minimum rest period entitlement

for employee i. Also, as discussed, the objective function (5.14) has been modified and

now states that we seek to minimize the total cost of the changes.

5.3 Minimizing the Number of Changes

An alternative approach to that outlined above would be to seek to minimise the number,

rather than the cost, of the changes. This might be particularly relevant if a planner were

seeking a solution which would be quick or easy to implement and which would require

minimal discussions with employees.

This could be achieved simply by setting c′ij = 1 for all i ∈ E and j ∈ J , and µi =

φi = Ωi = 0 for all i ∈ G in the formulation presented in section 5.2 above. However in

order to be of more use in practical terms, we argue that it is desirable to continue to use

the true values of these cost coefficients. This would allow the user, if desired, to set an

upper limit Λ on the cost of making these changes. We note however that because not all

changes have the same cost, and some may even incur a saving, there is no guarantee that

a solution with a smaller number of changes will also have a lower cost.

5.3.1 Additional Definitions

The changes which must be made include modifying the objective function, setting a cost

limit, and introducing new variables to ensure costs are calculated correctly.

Objective function

Firstly, the objective function must be updated to consider only the number of changes

and not their cost. The new objective is therefore given as:

min
∑
∀i,j

yij (5.27)

58

This is, as discussed above, the equivalent of setting c′ij = 1 for all i ∈ E and j ∈ J , and

µi = φi = Ωi = 0 for all i ∈ G, in the cost-minimization objective (5.14).

Cost limit

We can then modify the cost-minimizing objective to give a constraint which places an

upper limit Λ on the cost:∑
∀i,j

c′ijyij +
∑
i∈G

(µiui + φioi − Ωi) ≤ Λ (5.28)

We note here that in some cases a sensible upper limit may not be known, or may not be

desired when minimizing the number of changes is the only concern. In this case we can

set

Λ =
∑
∀i,j

∣∣c′ij∣∣+
∑
i∈G

(366 (|µi|+ |φi|) + |Ωi|) (5.29)

as this is the highest possible value of the cost function, given that under- and over-time

are calculated as number of days over a calendar year.

Additional variables

The need for additional variables arises from the need to ensure that undertime and over-

time variables ui and oi for i ∈ G take the correct values. As a reminder, ui should be

exactly equal to gi −

(
W̄i +

∑
j∈J

djzij

)
if this expression is positive, and should be zero

otherwise. Similarly, oi = max

{
0,

(
W̄i +

∑
j∈J

djzij

)
− gi

}
.

In the cost-minimizing formulation, inequalities (5.22) and (5.23) were sufficient to en-

sure this since ui and oi appear in the objective function (5.14) with positive coefficients

(note that a situation is not conceivable in practice where µi or φi would be non-positive).

However, the new minimum-change objective function (5.27) exposes the lack of upper

bound placed on the undertime and overtime variables. We therefore propose the intro-

duction of two additional variables for all employees i ∈ G:

ψui =

{
1 if the undertime value for employee i is non-negative

0 otherwise

ψoi =

{
1 if the overtime value for employee i is non-negative

0 otherwise

Using these, we can supplement inequality (5.22) with the following two expressions to

59

ensure proper definition of ui:

ui ≤ gi −

W̄i +
∑
j∈J

djzij

+Mψui ∀i ∈ G (5.30)

ui ≤M (1− ψui) ∀i ∈ G (5.31)

and similarly use the following two expressions to supplement inequality (5.23):

oi ≥

W̄i +
∑
j∈J

djzij

− gi +Mψoi ∀i ∈ G (5.32)

oi ≤M (1− ψoi) ∀i ∈ G (5.33)

Note that in the above expressions, M is a suitably large number which is greater than or

equal to the maximum possible value for the number of days of under- or over-time. Since

these are calculated on an annual basis, we can set M = 366.

An alternative representation of these constraints can be derived by noting that by

definition at most one of ui and oi can take a positive value for a given employee i. We

can therefore relate ψui and ψoi by saying that ψui + ψoi ≤ 1 for all employees i ∈ G. This

allows us to combine the two into a single variable ψi which, for a given employee i ∈ G,

will take the following values:

ψi =

1 if the overtime value for employee i is non-negative

0 if the undertime value for employee i is non-negative

0 or 1 if oi = ui = 0

Using this alternative definition, we can substitute ψi for ψoi in equations (5.32) and

(5.33) to give the following for the overtime values:

oi ≤

W̄i +
∑
j∈J

djzij

− gi +Mψi ∀i ∈ G (5.34)

oi ≤M (1− ψi) ∀i ∈ G (5.35)

and replace ψui with the expression (1 − ψi) in equations (5.32) and (5.33) to obtain the

following to calculate the undertime values:

ui ≤ gi −

W̄i +
∑
j∈J

djzij

+M (1− ψi) ∀i ∈ G (5.36)

ui ≤Mψi ∀i ∈ G (5.37)

60

5.3.2 Formulation

We can now update the formulation given in section 5.2 with the new information discussed

in section 5.3.1 above. This gives us the following formulation for the task-based problem

with an objective of minimizing the number of changes:

min
∑
∀i,j

yij (5.38)

subject to: ∑
∀i,j

c′ijyij +
∑
i∈G

(µiui + φioi − Ωi) ≤ Λ (5.39)

m+1∑
i=1

zij = 1 ∀j ∈ J (5.40)∑
j∈Cγ

zij ≤ 1 ∀i ∈ ER, γ ∈ Γ (5.41)

m+1∑
i=1

∑
∀j∈Pk

eijzij ≥ εk ∀k ∈ K (5.42)

Wi,b−1 + zibwb ≤Wib ∀b ∈ B, i ∈ ER (5.43)

0 ≤Wib ≤ ωi ∀b ∈ B, i ∈ ER (5.44)

Ri,b−1 + zibrb ≤ Rib ∀b ∈ B, i ∈ ER (5.45)

0 ≤ Rib ≤ 1 ∀b ∈ B, i ∈ ER (5.46)

ui ≥ gi −

W̄i +
∑
j∈J

djzij

 ∀i ∈ G (5.47)

oi ≥

W̄i +
∑
j∈J

djzij

− gi ∀i ∈ G (5.48)

ui ≤ gi −

W̄i +
∑
j∈J

djzij

+M (1− ψi) ∀i ∈ G (5.49)

oi ≤

W̄i +
∑
j∈J

djzij

− gi +Mψi ∀i ∈ G (5.50)

ui ≤Mψi ∀i ∈ G (5.51)

oi ≤M (1− ψi) ∀i ∈ G (5.52)

zij = x∗ij + (1− 2x∗ij)yij ∀i, j s.t. yij is defined (5.53)

yij ∈ {0, 1} ∀i, j s.t. yij is defined (5.54)

61

ui, oi ≥ 0 ∀i ∈ G (5.55)

ψi ∈ {0, 1} ∀i ∈ G (5.56)

The majority of the constraints are unchanged from the cost-minimizing formulation,

with inequalities (5.40 - 5.48) and constraints (5.53 - 5.55) being identical to expressions

(5.15 - 5.26) in section 5.2.2. As discussed however, the objective function (5.38) is now

different, with the objective being to minimize changes, and the previous objective function

expression has been incorporated into inequality (5.39) to allow a cost limit to be placed

on the solution. Also added to the problem are constraint sets (5.49 - 5.52), which allow

undertime and overtime values to be correctly evaluated; along with expression (5.56)

which gives the correct definition of new variable ψi.

5.4 Generating Data

Having formulated the cost-minimizing and change-minimizing problems as set out in the

preceding sections (5.2 and 5.3 respectively), the next desired step in the process was to

investigate potential solution methods for these problems. Ideally, this would be done using

real data as supplied by the company; however this was unfortunately not practical. Some

of the data relating to costs was thought to be too sensitive to release, but primarily the

issues arose from the data storage at the company, with different departments maintaining

different elements of the data and therefore making data collation difficult. In addition,

some of the required data items were not recorded by the company at all and would be

difficult to calculate or quantify.

Instead, key parameters were identified which would describe the make-up of a typical

data set and which the company was able to supply. These included:

• Outline crew data including role, nationality and contract type code.

• Number of vessels, and the numbers of each role normally required on board.

• An estimate of the absence rate due to sickness.

• A broad estimate of the daily cost of fixed contract, day rate and agency crew.

Using this information, and with some randomization introduced, it was possible to

generate datasets which while not being strictly ‘real’ would be realistic. This section goes

on to outline the procedure for doing this, as well as describing how uncertain elements

were accounted for.

62

5.4.1 Procedure for Data Generation

We now give a step-by-step outline of the process for generating the realistic datasets (note

that full details of the code implemented in FICO Xpress can be found in the appendix,

section E.1.1). Since full real datasets were not available, there was a degree of uncertainty

about how some of the data elements should be generated, and this lead to assumptions

having to be made. For example, while an average daily absence rate was available, patterns

of crew absence was not known, meaning assumptions had to be made about the length

and frequency of absence. Assumptions also had to be made in order to simplify the

situation in line with the Task-Based formulation. Section 5.4.2 below gives a discussion of

attempts to mitigate the possible effect of poor assumptions by generating datasets using

varying assumptions about some of the factors. In the step-by-step procedure below, all

assumptions are highlighted in bold within the relevant steps. Note that, as described

earlier, each crew group is distinct and currently scheduled independently from the other

groups - consequently, we consider the crew groups to be separate problems, and so the

data need only be generated for a single crew group at a time.

Step 1 - Set task lengths:

• Using the real crew data, count the number assigned to each contract type and

identify the dominant contract type.

• Assume all crew in group are contracted to this dominant type.

• Regular on/off patters will be decided accordingly:

– If predominantly on Norwegian contracts then 2 weeks on, 4 weeks off;

– If Singapore then 10 weeks on, 5 weeks off;

– If other, then 4-on-4-off or 5-on-5-off depending on vessel location.

Step 2 - Calculate total number of roles required:

• This is just the sum of the number of the role of interest required on board each

vessel.

Step 3 - Generate starting points for each vessel, and determine number of

tasks:

• From Step 1 above, will know the standard duration of task on board each vessel.

• Assume an even spread of crew change dates.

63

• If there is more than one of a role required on board a vessel, assume that

their change-over times are staggered.

• At random, assign a length of time each role has remaining on its initial task at the

start of the planning horizon.

• From this, we know the remaining length of the initial task for each vessel, and the

regular lengths of tasks thereafter.

• We can therefore calculate the number of tasks each role must be divided into, and

therefore the total number of tasks overall.

Step 4 - Assign crew to a regular vessel:

• Assume all crew have a regular vessel to which they will normally be

assigned.

• For each role, assign two (or, depending on crew-vessel ratio, three) crew to be a

regular in that role.

Step 5 - Assign task start times, and determine the standard assignments of

crew:

• For the crew assigned as regulars to each role, define an ordering indicating who will

work first and who will work second (and possibly third) in that role.

• The employee defined as being first will be assigned the initial task in that role.

• Can work along the timeline, defining the next task to begin at the appropriate time

and assigning the next regular employee in the sequence to that task.

• Assume that these regular patterns have also been observed immediately

prior to the planning horizon starting, which therefore allows a calculation

of the work resource and rest resource values at time zero.

• Assume that assignments for the final week of the planning horizon have

not yet been determined - if a task starts at this point, then it is assumed

to be unassigned.

• Assume that if there is not enough crew to cover all roles with two regular

employees, then agency employees will be used to fill any gaps.

64

Step 6 - Generate employee availabilities:

• From data given by the company, an employee is unavailable (due to sickness) on a

given day with probability 0.008.

• Assume that an employee’s availability on a given day is dependent on

their availability the previous day.

– We can say that if an employee is unavailable on a given day, then

they are unavailable the following day with probability p.

– Similarly, if they are available on a given day then they are unavailable

the following day with probability q.

– In order that their overall probability of being unavailable remains at

0.008, we require the following relationship between p and q:

0.008× p+ 0.992× q = 0.008 (5.57)

i.e. p = 1− (124× q), or q = (1− p)/124.

• Assume that unavailability is only known with this certainty for the first

four weeks of the planning horizon - the probability of being unavailable

can be reduced over the remainder of the planning period.

– This can be done on a straight-line basis, such that for a given day

index d > 28, the reduction factor r (d) by which the availability prob-

ability would be multiplied is calculated as:

r (d) =
(d− 28)

(n− 28)
(5.58)

where n is the number of days in the planning horizon. The result

would be that an employee is unavailable on a given day d with prob-

ability p × r (d) if they were unavailable the previous day; and with

probability q×r (d) if they were available the previous day. The overall

effect on the probability of unavailability over the planning period can

be illustrated graphically, as shown in Figure 5.1. Note that this assump-

tion has not been validated, therefore when generating datasets this property can

be switched off so that a comparison can be made.

• Generate at random each employee’s availability for day zero (immediately before

the planning period begins), given that they are unavailable with probability 0.008.

65

Figure 5.1: Graph showing effect of reduction factor over the planning period.

• Using appropriate values of p and q, randomly determine whether each employee is

available on each of the subsequent days up to the end of the planning horizon. Note

that the values of p and q should be varied across the datasets as the true values are

not known.

• Based on the day-by-day availabilities we can calculate each employee’s availability

for each task, since an employee is available for a task if and only if they are available

over all the days that the task covers.

Step 7 - Generate costs of changes for regular crew:

• This can be broken down into two main cost types - transport (i.e. the employee

boarding or leaving the vessel), and the actual cost of the employee working the given

task.

• With respect to transportation:

– Assume that this part of the cost will depend on where the crew are

normally based and where the vessel is usually operating:

∗ Crew are European, North American, Asian, Australasian or

other.

∗ Vessels operate in Europe, Africa, USA, Brazil, Asia-Pacific, or

other.

– Assume that if either the boarding or the departing are due to take

place after the first four weeks of the horizon then cost of making the

change is less severe - the estimated cost would therefore be halved.

– Assume that because of the cost associated with arranging for the

change to be made, any saving made by cancelling a flight will not

66

completely cover the cost of an otherwise identical employee being

booked in to take the same flight instead.

• With respect to the working costs:

– Assume that if employee is on a fixed contract then there is no addi-

tional cost directly associated with them working a particular task.

Otherwise, the cost of making the changes depends on the crew na-

tionality - Norwegian crew will have a higher day-rate cost.

• By adding these costs, this allows us to calculate the total cost of changing the

assignment. However, may also wish to consider an additional penalty cost associated

with making a change, which can be defined as some factor K. If cFij is the financial

cost of changing the assignment of employee i to task j, then the penalised cost c′ij
of this change can be calculated as:

c′ij =

{
K × cFij if cFij > 0

cFij/K if cFij < 0
(5.59)

Note that it is not clear what a sensible penalty factor should be in this case, therefore

we should generate numerous datasets with varying degrees of disruption factor. This

will include K = 1, which gives c′ij = cFij (i.e. only the financial cost is applied), as

well as other values of K > 1.

– Assume that there may be a greater penalty for disrupting assign-

ments within the first four weeks of the planning period, so will de-

fine to different K values to ensure this. These will be represented

by KN for the near-term disruption factor, and KL for the long-term

(i.e. after the first four weeks) disruption factor, and we will have

that KN ≥ KL.

Step 8 - Generate costs of changes for agency crew:

• This can be done in a similar way to the regular crew.

• Assume that all agency crew will be sourced (relatively) locally and so

the transportation costs will be low.

• Assume that there is no penalty factor associated with disrupting assign-

ments, as agency crew by definition should be available at short notice -

therefore the penalty costs mentioned above do not apply.

67

• However, may have a penalty arising from the undesirability of employing agency

crew, and this will be used in the same way as a multiplying or dividing factor as

appropriate. If we call this agency penalty KAG, and have a financial cost of cFm+1,jof

changing agency assignment to task j, then the penalised cost c′m+1,j used in the

formulations above can be calculated as:

c′m+1,j =

{
K × cFij if cFm+1,j > 0

cFm+1,j/K if cFm+1,j < 0
(5.60)

Note again that it is not clear what a sensible penalty factor should be, and therefore

we should generate numerous datasets with the penalty factor taking values KAG ≥ 1.

Step 9 - Generate terms of the fixed contracts:

• Under- and over-rates will depend of crew nationality / contract type, as certain

Norwegian contract types are much more expensive.

• Assume that all fixed-contract employees are contracted to work 26 weeks

in the year.

• Assume the initial solution (before any cancellations had to be made due

to absence / illness) had all fixed-contract employees fully utilised - i.e.

all were set to work 26 weeks in the current contractual year.

• Can therefore calculate the expected working time outwith the planning horizon.

• From this, can calculate the amount of working time to which crew are currently

assigned, taking into account that they cannot work tasks for which they are now

unavailable.

• Can therefore calculate how many weeks under- or over-time pay to which they

employee would be entitled under the current solution, taking into account unavail-

ability.

Step 10 - Finally, can write the required information into a data file:

• File heading, and an indication of the values of the parameters used (as discussed

above).

• Basic information, such as the number of days in the planning horizon and the number

tasks.

• Number of Projects:

68

– We will assume that for the majority of crew groups this will not be

relevant, and so can be given as zero. Note that this effectively removes

constraint (5.17) from the cost-minimization formulation and (5.42) from the

change-minimization formulation, as it means the project set K = ∅.

• Employee labels, and which of them are on fixed contracts (subset G in the above

formulation).

• Start time and durations of the tasks.

• The minimum rest and maximum working periods of the employees.

• The eligibility matrix, showing whether or not an employee is available to carry out

a task.

– Assume that if an employee is assigned to a task starting at time

zero then their eligibility = 1, regardless of what has been calculated

above.

– Assume that agency crew will be available and eligible to carry out

all tasks.

• Work and rest resource values at time zero (quantities Wi0 and Ri0 respectively in

the above formulation).

• The initial solution, allowing for availability data. This can be calculated by mul-

tiplying together the two binary values indicating the initial assignments and the

availabilities. Clearly for agency crew, this will just be a case of printing the initial

assignment value.

• Give the change costs (the cij values in the above formulation), as well as the con-

tractual information for the fixed-contract crew (i.e. under-rate, over-rate, current

excess, number of guaranteed days, expected working time - µi, φi, Ωi, gi and W̄i

respectively above).

• Project data:

– As above, assume that this is not relevant and so leave as blank.

– Note that this will be relevant to a small number of crew groups, although details

of this may be considered at a later date.

69

5.4.2 Dealing with Assumptions and Uncertainty

As noted in the above description, it was not always possible to validate the assumptions,

even if they appear intuitively sensible. Similarly, it was not certain what values should be

set for some of the parameters, such as the disruption penalties. Steps therefore had to be

taken to mitigate the potential effects of these choices. The best way of doing this was felt

to be to generate numerous data sets with different values of these uncertain parameters.

Results could then later be compared for these different groups to determine if the settings

made a significant difference to solution time, solution quality, etc.

Overall, four factors were identified which should be varied across datasets - these are

described below:

Availability probabilities

The probability that an employee is available on a given day was assumed to be dependant

on their availability the previous day, while the probability of an employee being unavailable

on a given day was estimated to be 0.008. Using p and q as defined in Step 6 of the above

procedure (section 5.4.1), and their relationship given in equation (5.57), it can be seen

that in order to maintain the overall probability of unavailability as 0.008 it follows that as

p increases q must decrease, and vice-versa. The true values of p and q are not known, but

it can be seen that a higher value of p would give rise to fewer longer-term absences, while

a lower value of p (and therefore higher value of q) would give rise to more but generally

shorter-term absences. To deal with this uncertainty of the values, it was decided to use

three different values of p and q when generating the datasets. These were:

1. p = 0.8 and q = 0.0016;

2. p = 0.5 and q = 0.004; and

3. p = 0.2 and q = 0.0065.

Probability reduction factor

The use of the probability reduction factor r (d), described in equation (5.58), is based on

the idea that while the overall absence rate might be 0.008 it is less likely that an employee’s

absence will be known two or three months in advance. This ties in with one of the initial

premises of the problem - that a schedule is drawn up, but that this schedule later becomes

infeasible because of changes to employee availability (and other factors). While this may

be a plausible argument in favour of the reduction factor, it has unfortunately not been

possible to validate its use, and therefore it was decided to generate data sets with the

following settings:

70

1. Reduce probabilities p and q by multiplying by reduction factor r (d); and

2. Do not use reduction factor r (d), and generate data using the unreduced values of p

and q.

Disruption penalty

The disruption penalty K defined in equation (5.59) was proposed to take into account a

penalty cost over and above the monetary cost of making changes to the schedule. It is

known that making changes is not desirable, but it is uncertain how undesirable the changes

are. Also, it is known that making a change within four weeks of the task taking place

is less desirable again, since this also entails disruption to travel arrangements. Therefore

the factor K is split into two factors - KN for activities in the near-term (i.e. within four

weeks), and KL for the activities taking place in the longer term.

Four different levels were defined for each penalty term, with KN ,KL ∈ {1, 2, 5, 10}.
The lowest level, KN = KL = 1, means only the financial costs of the changes are taken

into account; the highest level, KN = KL = 10, means positive costs are increased to ten

times their actual cost, and negative costs reduced to one tenth. Given that it does not

make sense for the long-term penalty to be greater than the near-term penalty, this gave

ten combinations of values for KN and KL which would be used when generating datasets:

1. KN = 1, KL = 1;

2. KN = 2, KL ∈ {1, 2};

3. KN = 5, KL ∈ {1, 2, 5}; and

4. KN = 10, KL ∈ {1, 2, 5, 10}.

Agency penalty

The agency penalty factor was proposed to take into account the fact that the use of agency

crew is also undesirable to the company. Like the disruption penalty, it is uncertain to

what extent this is true over and above the monetary cost of using agency crew. Therefore,

as with the disruption penalty, the values of KAG ∈ {1, 2, 5, 10} were used for the datasets

in order to judge the potential impact of adjusting this factor.

5.4.3 Datasets Generated

In order to fully take into account the different levels of the factors discussed in section

5.4.2 above, it was decided to generate a dataset using each of the possible combinations

of the above parameters. This gave 240 combinations in total.

71

It also had to be decided which crew group(s) data should be generated for, as each

crew group could be considered a separate problem. The Captains crew group was selected

as being a good example to test the formulation on. While each vessel may only require

one captain at any time, it is a role that is required by every vessel. The group therefore

has to fulfil roles on ships in various locations - giving a wider range of task lengths and

transportation costs - and still requires a considerable number of employees in the pool to

keep the roles covered.

The following section (5.5) discusses computational results with the 240 Captains

datasets generated.

5.5 Computational Results

Using the datasets generated as described in 5.4 above, the potential of the cost-minimization

(section 5.2) and change-minimization (section 5.3) models was tested. All test runs were

carried out on a Dell Optiplex 790 computer running Windows 7 32-bit, with an Intel Core

i5 3.10 GHz processor and 4GB RAM. The solution methods were varied as appropriate for

each case, although the overall principles for solving both formulations are the same. This

is described in section 5.5.1 below, before the results themselves are presented in section

5.5.2.

5.5.1 Test Conditions

As discussed in chapter 4, the main issue with the current procedure at the company is

that it can be difficult to find good (or at times even feasible) solutions within the short

time available, and this can be exacerbated by the need to confirm the changes with the

crew and possibly find an alternative if the changes cannot be agreed. We therefore say

that for a mathematical model to be of practical use, the company would require it to

solve in a relatively short space of time. Consequently, rather than investigating how long

the optimal solution would take to find, the aim of the computational tests was to discover

the number and quality of solutions which could be found within a reasonable time limit.

As indicated, the approach taken was different for the two models, and these are discussed

separately below.

5.5.1.1 Testing the Cost-minimization model

For the cost-minimizing formulation (as described in section 5.2), the aim was to obtain

a single high quality solution within a set time limit. As discussed, in practice it may

subsequently be required to run the model multiple times during one solution process. In

particular, this might be necessary if the first solution given proposes a solution which

72

violates one of the ‘implicit’ constraints such as two employees who do not get on being

asked to work together. If this occurs, an additional constraint could be added forbidding

this, and the model resolved.

For this model, it was decided to use the FICO Xpress software, making use of its inbuilt

solution methods. These consist of preliminary heuristics and cutting-plane phase, followed

by a branch-and-cut algorithm. Preliminary tests indicated that the default cutting plane

strategy of Xpress was insufficient for this model, and so the number of rounds of Cover and

Gomory cuts was increased from the default setting. In terms of a time limit, it was taken

into account that the planner may wish to run the model multiple times during a solution

cycle, and that they would therefore be unwilling to wait a large amount of time to obtain

a solution. With this in mind, two time limit settings were chosen, a two-minute limit and

a ten-minute limit, which were considered to be at the shorter and longer end respectively

of what would be a reasonable solution time. Settings were also altered with respect to the

acceptable optimality gap in the solution process. As stated, it is important to obtain high

quality solutions, but it is not necessary to obtain the exact optimum solution. This is

particularly true when we consider that the solution first proposed may not be acceptable

in practice. For this problem, the settings were changed such that the programme would

terminate when a solution within 5% of the optimal solution was found.

Bearing these considerations in mind, and based on some preliminary testing, two

groups of settings were chosen to test the solving of the Cost-minimization model:

1. Two-minute time limit; maximum rounds of Cover cuts = 30; maximum rounds of

Gomory cuts = 10; acceptable optimality gap = 5%.

2. Ten-minute time limit; maximum rounds of Cover cuts = 50; maximum rounds of

Gomory cuts = 10; acceptable optimality gap = 5%.

Other than altering these settings, Xpress was free to use its own methods to solve each

problem. As stated, this consists of some initial heuristics along with the cutting algorithm,

followed by a branch-and-cut search. The nature of branch-and-cut is that there are two

quantities to monitor - the value of the best solution found, which (for a minimization

problem) will approach the optimal value from above as the algorithm progresses; and the

value of the best bound, which will approach the optimal value from below. Only when

these two values are equal can optimality be proved. Since a time limit is being imposed

on the algorithm, there may not be time to find a provably optimal solution for every

instance. However, in some cases it is possible that the objective has reached its optimal

value and it is only the bound which has not been improved sufficiently to prove this. In

order to take this possibility into account, a third run was made for any instances for which

the optimal solution had not otherwise been found. This used the following settings:

73

3. Six-hour time limit; maximum rounds of Cover cuts = 1000; maximum rounds of

Gomory cuts = 1000; acceptable optimality gap = 0.0001% (the default value).

Results from this extended run allow us to comment in a more informed way on the quality

of the solutions found in the main test runs where the time limit has been reached before

optimality has been proven.

The full code implemented in FICO Xpress for these test runs can be found in the

appendix in section E.1.2.

5.5.1.2 Testing the Change-minimization model

The change-minimization model was also solved using the FICO Xpress software, but a

different approach was taken to do this. Preliminary tests in this case indicated that when

the cost limit Λ was set to a relatively high value, optimal solutions could be found in a

matter of seconds. However, the cost of the minimal-change solutions found under these

settings was found to be very high compared to the best known solution value for the

instance. This gave rise to the idea for an algorithm which would iteratively lower the

maximum cost of the solution while seeking to minimize the number of changes at each

iteration.

When setting a time limit for the algorithm, preliminary testing found that numerous

iterations could be carried out within a two minute time limit. In addition, it should

be remembered that that change-minimization would be intended for use when there was

particular time pressure on the Planner. Because of this, no tests were carried out using

a ten-minute time limit as had been the case for the cost-minimization problem - the

two-minute time limit only was used to test the algorithm for the change-minimization

problem. An outline of the procedure is given in Algorithm 5.2, while full detail of the

code implemented in FICO Xpress can be found in the appendix in section E.1.3.

In this algorithm, the initial value of π = 0.1 has been chosen in an attempt to strike

a balance between bringing the solution cost down quickly, and making the problem too

difficult to solve (or infeasible) before a reasonable range of solutions has been generated.

The lower setting of π = 0.05 means that in the event that the algorithm terminates before

the time limit τT is reached then, assuming the problem is feasible, we know we have a

solution with a cost within 5% of the optimal value. This mirrors the settings described

for the cost-minimization model above.

The algorithm differs from the cost-minimization approach, however, with respect to

the number of solutions which are generated. Here, a solution is produced at the majority

of iterations, and generally from one solution to the next the cost is decreasing while the

number of changes is non-decreasing. This produces a Pareto-optimal set of solutions with

respect to the two objectives of minimizing number and cost of changes. If used in practice,

74

Algorithm 5.2 Algorithm for solving the Change-minimization problem

set terminate = false, and set Λ at maximum value (see equation (5.29))
solve the problem with cost limit Λ and no time limit
if no feasible solution is found then

set terminate = true
else

set solution cost κ =
∑
∀i,j

c′ijyij +
∑
i∈G

(µiui + φioi − Ωi)

{Note that this is simply the value of the left hand side of constraint (5.39) in the
change-minimization formulation.}

end if
set initial proportion π = 0.1
set iteration time limit τI = 30 seconds, and overall time limit τT = 120 seconds
while terminate = false do

calculate new cost limit Λ =

−10 if κ = 0 and π = 0.1
−1 if κ = 0 and π = 0.05

κ− |πκ| otherwise
solve problem with cost limit Λ and time limit τI
calculate total running time τR
if τR ≥ τT then

set terminate = true
else if τR ≥ τT − τI then

set τI = bτT − τRc+ 1
else
τI remains unchanged

end if
if integer solution found at this iteration then

calculate solution cost κ
else if π = 0.05 then

set terminate = true
else

set π = 0.05
end if

end while

75

this would allow Planners to choose a solution which best satisfies their preferences in the

trade off. In addition, the Planners would be able to look out for violations of the hard-

to-model constraints, and may be able to select what they believe to be a truly feasible

solution at their first attempt, instead of having to add an extra constraint and resolve as

with the cost-minimization problem. The provision of multiple solutions and the practical

implications of this are discussed in more detail in sections 5.5.2 and 5.6 below.

5.5.2 Result Details

We now present the results of the tests, conducted as described in section 5.5.1 above. Note

that in order to control for the random elements which are present in the FICO Xpress

solution methods, the test runs were repeated and compared. In the cost-minimization

runs, all solution values were identical although there was a small variation in the values

of the bounds found. This had a small impact in the optimality gaps; however no instance

showed more than a 0.002 of a percentage point difference between the first and second

runs. There was a small change in the number of iterations achieved (±1) for four of the

instances when the change-minimization tests were re-run, but only in one case did this

allow an additional solution to be found. Overall, these difference were not considered

significant, and therefore for clarity all the results discussed in this section refer to a single

test rather than the combined results.

We begin the discussion of the results with the cost-minimization approach, before mov-

ing on to discuss the change-minimization formulation. Finally, we investigate the bearing

that the parameter values which were varied during instance generation (as discussed in

section 5.4.2) may have had on the results.

5.5.2.1 Cost-minimization results

The results of the tests on the Cost-minimization approach can be broken down in three

different ways. Firstly, Table 5.1 breaks down the results by apparent solution quality,

i.e. the quality of solution that FICO Xpress was able to prove in the time available

during the run itself. This analysis reflects only the gap from the solution value to the

best bound found during the time limit, and does not take into account the best known

solutions or bounds for an instance which have been found in other test runs. The table

indicates for both the two-minute and ten-minute test runs which instances could not be

solved to within 5% of the optimal solution (the gap set as acceptable, as described in

section 5.5.1 above), which could be solved to within 5%, and which were solved to proven

optimality. Note that the cases of those solved to optimality will have occurred by chance

- since the programme is set to terminate at the first solution found within 5% of the

optimal, it will be by luck rather than design if this first within-5% solution happens to

76

Table 5.1: Results of trial runs on Captains data, summarised by apparent solution quality
(i.e. gap to bound)

10-minute settings

2-minute settings P
ro

ve
n

op
ti

m
al

it
y

P
ro

ve
n

5%
g
a
p

N
ot

w
it

h
in

5
%

g
ap

TOTAL

Proven optimality 98 - - 98

Proven 5% gap 22 105 - 127

Not within
5% gap

- 3 12 15

TOTAL 120 108 12 240

be an optimum. The table shows that 98 instances (≈ 40.8% of the total) were solved to

proven optimality in the two-minute run, and 120 instances (50% of the total) were solved

to proven optimality in the ten-minute settings. Overall, only 15 instances (6.25%) could

not be provably solved to within 5% of the optimal solution within two minutes, with the

ten-minute settings solving 3 of these (1.25%) to within the 5% gap. For the 12 instances

which could not be solved to within a 5% gap by either setting, no pattern could be found

connecting these or distinguishing them from the other test instances.

It is of course possible that a good quality (or even optimal) solution has been found,

but that the time has been insufficient to improve the lower bound enough to prove this.

Therefore the second breakdown of results shown in Table 5.2 presents the results according

to the best known solution quality, using information on the best known bound gained from

all test runs (including the third group of settings where necessary) to judge the quality of

the solution regardless of what could be proved during the run itself. The table shows that

for 104 (≈ 43.3%) of the instances the optimal solution was found by both the two- and

ten-minute settings, while a further 21 instances (8.75%) had an optimal solution found

in one (but not both) of the two runs. We note that, as can be seen, for 2 instances

(≈ 0.83%) an optimal solution was found with the two-minute settings but not for the

ten-minute settings. While this may appear counter-intuitive, this can be put down to the

random element within the solution algorithms, meaning that in a case where neither the

two-minute nor ten-minute programmes were able to terminate at a near-optimal solution

(as was the case here) it will not always be the case that the ten-minute settings will obtain

the best solution. Meanwhile, it can also be seen that only 6 instances (2.5%) could not

be solved to within 5% of the best known bound by the two-minute settings, and only 5

77

Table 5.2: Results of trial runs on Captains data, summarised by best known quality of
the solution found

10-minute settings

2-minute settings O
p

ti
m

a
l

fo
u

n
d

W
it

h
in

5
%

o
f

o
p

ti
m

a
l

N
ot

w
it

h
in

5%
of

b
es

t
k
n

ow
n

b
o
u

n
d

TOTAL

Optimal found 104 2 - 106

Within 5% of optimal 19 109 - 128

Not within 5% of
best known bound

- 1 5 6

TOTAL 123 112 5 240

(≈ 2.08%) were not within 5% using the ten-minute settings.

As anticipated, there is a discrepancy between Table 5.1 and Table 5.2, indicating that

some solutions found are in fact of better quality that could be proven in the time available

in the run itself. This discrepancy can best be highlighted by Table 5.3, which combines the

information shown in the previous tables. Doing this allows us to categorise the solution

quality for each instance, under both the two-minute and ten-minute settings, with respect

to both apparent solution quality (i.e. what could be proved during the run in question)

and the best known bound for the instance. It can be seen that on the two-minute test run,

of the 15 instances which were not provably solved to within 5% of the optimal solution, 9

(60% of the 15) of them did in fact produce a solution which was within this level of quality.

The percentage is similar for the ten-minute settings, with 7 instances solving to within

5% of optimal out of the 12 for which this size of gap could not be proved (≈ 58.3%). This

is noteworthy because, while of course a proven level of solution quality is desirable, it is

more important for the company that the solution method consistently finds good quality

solutions.

The results for the cost-minimization approach can also be summarised in histograms,

showing the percentage gaps for each instance and each group of settings with respect to

both apparent and best known solution quality. These can be shown in Figure 5.2 for the

two-minute settings, and Figure 5.3 for the ten-minute settings. These histograms show

a different scale compared to the tables given earlier, with the count of instances which

solved to within 5% of the respective bound now grouped into single percentage blocks. In

all four charts, it can be seen that the most common size of gap for those instances which

78

Figure 5.2: Gaps found in two-minute cost minimization runs, as compared to both the
bound found during run (top) and the best known bound (bottom).

79

Figure 5.3: Gaps found in ten-minute cost minimization runs, as compared to both the
bound found during run (top) and the best known bound (bottom).

80

Table 5.3: Results of trial runs on Captains data, showing both apparent and best known
solution quality

10-minute settings
Optimal Soln found
solution within 5%
found of optimal

2-minute settings P
ro

ve
d

P
ro

ve
d

w
it

h
in

5
%

N
o
t

p
ro

v
ed

w
it

h
in

5%

P
ro

ve
d

N
o
t

p
ro

v
ed

N
ot

w
it

h
in

5
%

o
f

b
es

t
k
n

ow
n

b
ou

n
d

TOTAL

Optimal Proved 98 - - - - - 98
solution Proved within 5% 5 - - - - - 5
found Not proved within 5% - - 1 - 2 - 3

Soln found

within 5%
Proved 17 - - 105 - - 122

of optimal
Not proved - - 2 2 2 - 6

Solution not within 5% of

best known bound
- - - 1 - 5 6

TOTAL 120 0 3 108 4 5 240

solved to within 5% of optimal, but not to optimality, is to be within 1% of the respective

bound.

The graphs also give additional information about the size of the gaps for those in-

stances which could not be solved to within 5% of the respective bound. It can be seen

that for the two-minute settings (Figure 5.2), the majority of those which could not be

provably solved to within 5% during the run itself (9 out of the 15 instances) are con-

centrated at the lower end of the graph, with gaps less than or equal to 40%. When it

comes to the gap with respect to the best known bound, we again see that the majority of

instances which were not solved to within 5% of the best bound (5 out of the 6 instances)

are concentrated at the lower end, with two solving to within 10% of the best bound, and

three more being within 60% (in fact, the results show that these three are all within 45%

of the best known bound). The major outlier here is the single instance which was not

solved to within a 100% gap from the best known bound.

A similar pattern can be observed in Figure 5.3 for the ten-minute settings. We see 8

of the 12 instances which were not provably solved to within 5% of the bound found in the

run were solved to within 40%, while 4 of the 5 instances not solved to within 5% of the

81

best known bound were solved to within 60% (and indeed, as above, to within 45%) of the

best bound. Again, there is the single outlier which even for the ten-minute settings was

not solved to within a 100% gap of the best known bound.

Further investigation into this outlying instance revealed it to be one which has a

solution value and best bound unusually close to zero (as compared to the other test

problems). The ten-minute settings produced a solution with a cost of 20.5 units, while

the average solution cost across all instances was 12306.5 units; and the best known bound

for this instance is −50.515 units, while the average best bound across all instances was

12206.1 units. The gap therefore for this instance was 71.015 units, which is in fact smaller

than the average gap to best known bound across all instances of ≈ 100.43 (which includes

the 123 instances with a gap of exactly zero). However, because it is being divided by a

number much closer to zero than on average for the other instances, the size of the gap

in percentage terms is greatly magnified. We therefore feel that this particular instance of

what appears to be a very large optimality gap is not in fact a cause for concern.

5.5.2.2 Change-minimization results

We now go on to present the results for the change-minimization model. Since a different

approach is taken to solving this problem, the results should therefore also be presented in

a different manner. There are now two factors to consider - the cost of the solution found,

and the number of changes it entails. Firstly we recall from section 5.5.1 that, unlike the

cost-minimization approach, multiple solutions can be found in a single run of the solution

algorithm. This means the planner can be presented with several alternative solutions

which form a Pareto-optimal set between minimizing cost and number of changes. An

example of this for one of the datasets can be seen in Figure 5.4 below. In terms of how

this relates to the progression of the algorithm, it is the solution plotted furthest towards

the lower-right corner which would have been found first. The imposition of the decreasing

cost limits produces solutions progressively to the left of the previous solution. At first,

several solutions are found with the same (minimal) number of changes but increasingly

lower costs, until eventually the number of changes increases in order to find a solution

within the cost limit. The pattern in this example is typical of that found for other instances

using this algorithm, although we should not always expect the number of solutions found

to be as high as this.

The number of solutions found by the algorithm for each instance within the time can

be summarised in Figure 5.5 below. This histogram shows that the 34 solutions found for

instance R133 was in fact the highest for all instances. Overall, the distribution of the

number of solutions found follows a slightly skewed normal distribution, with a longer tail

to the right of the graph (the mean value of 13.3 changes being a little higher than the

82

Figure 5.4: Graph showing cost and number of changes for solutions to test set R133.

median of 12 and the mode of 11). All instances found at least 5 solutions within the two

minute time limit, demonstrating that in every one of these cases a Planner would have

been presented with at least some degree of choice.

Looking next at the quality of solutions produced, we will now consider the effectiveness

of the procedure set out in Algorithm 5.2 in producing low cost solutions. This is illustrated

in Figure 5.6, which shows the gap to the best known bound for the lowest cost solution

found for each instance (note that there is no bound generated during the run in this case,

except in a rare case where the reduction of the cost limit results in an infeasible problem).

Comparing this graph to the histograms in the lower halves of Figures 5.2 and 5.3, and to

Table 5.2, indicates that in terms of the lowest cost solution found for each instance this

cost-reducing change-minimization algorithm is reasonably competitive. It can be seen

that only 21 instances (8.75% of the total) resulted in the optimal solution being found,

compared to ≈ 44.17% and 51.25% of instances for the two-minute and ten-minute cost-

minimization respectively. However, 50 instances (≈ 20.83% of the total) were solved to

within a 1% gap to the best known bound and 57 instances (23.75%) were solved to within

2%, an improvement on the to ≈ 18.33% and ≈ 10.83% respectively for the two-minute,

and 18.75% and 10% respectively for the ten-minute settings. Considering the first six

83

Figure 5.5: Number of solutions found by each instance using algorithm for change-
minimization approach.

columns of the graph in combination, we see that 198 instances (82.5% of the total) were

solved to within 5% of the best known bound. This is fewer than for the cost-minimization

approach, but is quite close to the 97.5% and ≈ 97.92% observed respectively for the two-

minute and ten-minute settings. As with the cost-minimization results, a number of the

instances in the tail of the graph are focussed at the lower end, with 27 of the 42 instances

which were not solved to within 5% still resulting in a solution of cost within 40% of the

best known bound (and all these are in fact within 35%, as before).

However, there are considerably more instances for which the gap to the best known

bound is greater than 100%, with 11 instances (≈ 4.58% of the total) falling into this

category for the change-minimization, as compared to just a single instance for each of

the cost-minimization tests. Further investigation into this revealed that all 11 of these

instances shared a common factor of the best known bound being negative. This has the

effect of inflating the percentage measure of the gap as a positive solution cost decreases

towards zero. It could in fact be seen that numerically the size of the gap was not noticeably

larger for these instances than the average. The most likely reason for the increased number

of instances falling into this category is that the change-minimization algorithm does not

84

Figure 5.6: Gap to best bound for lowest-cost solutions found in two minute Change-
minimization run

provide sufficient opportunity for the solution cost to reach a negative value. In real terms,

the size of decrease of the cost limit becomes smaller as the solution cost approaches zero.

In contrast, the cost-minimization approach makes no distinction between positive and

negative costs, and will have no barrier to reaching negative cost values. This is something

which could be investigated further in the future, with a view to improving the ability

of the change-minimization algorithm to deal with small positive cost values which could

become negative.

An alternative comparison which may be of interest is to examine the difference between

the lowest cost solution found by the change-minimization procedure and the solution found

in the two-minute cost-minimization test. We can consider the amount by which the best

change-minimization solution is greater than the two-minute cost-minimization solution,

and represent this as a percentage of the cost-minimization solution, giving a gap value

which has a similar form to that of the optimality gap. The outcome of these calculations

can be summarised in Figure 5.7 below. The graph shown is encouraging, as it shows

that for 41 instances (≈ 17.08% of the total) the change-minimization approach finds a

solution with a value less that that of the cost-minimization solution, while for another

23 instances (≈ 9.58% of the total) the solution value found was identical. For a further

85

Figure 5.7: Increase in cost from two minute Cost-minimization solution to best Change-
minimization solution

59 instances (≈ 24.58 of the total), the best change-minimization solution was within 1%

of the two-minute cost-minimization solution; and a combined 144 instances (60% of the

total) had a lowest cost change-minimization within 5% of (but not equal to) two-minute

cost-minimization solution. As with similar graphs earlier, it can also be seen that 16 of the

32 remaining instances had a change-minimization solution within 40% (and also within

35%) of the cost-minimization solution, although 13 instances (≈ 5.42% of the total) were

not within 100% of the two-minute cost-minimization solution. Overall, the results shown

in this figure suggest that the ability of the change-minimization procedure to reduce cost

is quite close to that of the cost-minimization approach for a large majority of instances.

It should be noted that the results presented in Figure 5.7 refer to the best (i.e. lowest-

cost, and final) solution found by the change-minimization method. Solutions found earlier

in the process will, by their nature, have a much greater gap to the cost-minimization

solution. The first solution found by the process, i.e. the minimal-change solution with

no cost limit, was found to have a median gap of ≈ 398.4% to the two-minute cost-

minimization solution, equating to a cost of almost five times the magnitude. We also

recall, as exemplified in Figure 5.4, that other minimal-change solutions may be found

which have a lower cost. Therefore we also looked at the median gap from the cheapest

86

minimal-change solution found to the two-minute cost-minimization solution, and this was

found to be ≈ 223.0%, indicating a cost of over three times that of the cost-minimization

solution.

We next look at the results with respect to the number of changes in the solutions

found by the algorithm. We begin by discussing the results from the initial solving of the

change-minimization problem, i.e. the minimal number of changes for each instance. It

should be noted that for each of the 240 instances, FICO Xpress was able to solve the

non-cost-constrained problem to optimality in a fraction of a second (between 0.12 and

0.30 seconds for each instance). We therefore do not present the results with reference to

optimality gap, but instead show the actual numbers of changes in the optimal solutions -

this can be seen in Figure 5.8 below. Since all 240 datasets were based on the same basic

Figure 5.8: Number of changes in the minimal-change solution for each instance.

parameters, including number of roles, number of employees and the overall absence rate,

it can be expected that to a certain extent the minimal number of changes required to

make the schedule feasible should be similar. This can be seen to be the case, with all

instances requiring between 11 and 33 changes in the minimal-change solution. The mean

number of changes required was 20.95, with the median number equal to 21 and lower and

upper quartiles of 17 and 25 respectively. This indicates a relatively even spread of the

87

results across the range, although as the graph shows there is a degree of tapering in the

tails.

These results can be compared to the number of changes required to implement the

solutions found by the two-minute cost-minimization settings. In keeping with the results

shown in Figure 5.7 above, we subtract the number of changes in the cost-minimization

solution from the number in the minimal-change solution to give an ‘increase’ in the number

of changes that the change-minimization approach produces (although note that clearly

this cannot take a positive value). This can then be represented as a percentage of the

number of changes in the cost-minimization solution, and the results are summarised in

Figure 5.9 below. Given that the non-cost-constrained change-minimization problems were

Figure 5.9: Percentage ‘increase’ in number of changes to minimal-change solution from
two-minute cost-minimization solution.

all solved to optimality, it is clearly not possible that any of the cost-minimization solutions

would have fewer changes (and therefore give a positive increase to the minimal-change

solution). However, it can be seen from the graph that all 240 instances display a sizeable

decrease in the number of changes when change-minimization is used, with a decrease of

at least 35% when compared to the two-minute cost-minimization solution. Overall, the

decreases produce a histogram which follows a roughly Normal curve, with values between

a 36% and 89% decrease when the minimal-change solution can be found.

88

As well as examining the minimal number of changes for each instance, we can also

consider the number of changes required by the final solutions (i.e. the lowest cost) found

by the change-minimization algorithm. Similar to Figure 5.8 earlier, we can firstly show a

summary of the number of changes in the lowest cost solutions for each instances - this is

presented in Figure 5.10. As can be seen, there is a much wider range of solution values in

Figure 5.10: Number of changes in the lowest cost change-minimization solution for each
instance.

this case, from a minimum of 23 to a maximum of 73, and a more obvious bell shape to the

curve as compared to the minimal-change results. This could be related to a number of

factors such as the minimal number of changes for the instance, or the amount of restriction

placed by the cost limit which as it becomes more restrictive will be more likely to produce

a higher number of changes. The different cost patterns present in the instances, due to

different parameter settings or the random elements, could also have a bearing on pattern

observed here.

Overall, Figure 5.10 is probably less informative than its equivalent for the minimal-

change solutions. Perhaps more useful would be to compare the number of changes in the

minimal-change solution to the number of changes seen here for the lowest cost change-

minimization solutions. We therefore calculate the increase in changes for each instance

from the minimal-change to the lowest cost solution, and present two summaries of this in

89

Figure 5.11 - as a purely numerical value in the upper chart, and as a percentage of the

minimal-change solution in the lower chart. Perhaps the most interesting point to notice

about the upper chart is that all values are even numbers. While this at first may be

surprising, it is actually a natural consequence of the structure of the problem. Consider

that once a feasible solution has been found, it will contain a certain number of changes

which may be an odd or even number. However if you wish to alter this solution, if you

make an additional change by say removing employee i from task j, then you must make a

corresponding second change to ensure task j is still covered, say by employee i′. If i′ must

be removed from another task in order to do this, that other task must also be covered, and

so on. Looking at the pattern produced by the graph, it could be viewed as representing

a bi-modal distribution with peaks at 26 and 34 changes (the mean is an increase of 28.33

changes). The range of the results is quite large, with instances showing an increase of

between 4 and 52 changes from the minimal-change solution.

When these numbers are viewed as a percentage of the minimal-change solution (the

lower chart in Figure 5.11), we again find a distribution which appears bi-modal, with peaks

in the range between a 80% and 90% increase and between a 150% and 160% increase;

however, there is a much longer tail to the right here. Overall, the mean increase in the

number of changes is ≈ 145.92% of the minimal-change solution, i.e. around two-and-a-

half times the number of changes. Aggregating some of these percentages, 68 instances

(≈ 28.33% of the total) have an increase of up to 100%, i.e. up to double, while a majority

of instances (124, ≈ 51.67% of the total) have an increase of more than double but no

more than treble the minimal-change solution. Only 48 instances (20% of the total) show

an increase in the lowest cost change-minimization solution of more than 200% of the

minimal-change solution.

Finally, we can compare the number of changes in these lowest cost change-minimization

solutions to those in the two-minute cost-minimization solution. In a similar way to Figure

5.9 previously, we again subtract the number of changes in the cost-minimization solution

from the number in the lowest cost change-minimization solution to give an increase in the

number of changes (noting that unlike previously, this value may be positive). This can

once again be represented as a percentage of the number of changes in the cost-minimization

solution, with the results summarised in Figure 5.12 below. This graph shows that 4

instances (≈ 1.7% of total) have an increased number of changes in the lowest cost change-

minimization solution as compared to the two-minute cost-minimization approach. In

addition, the modal column includes 27 instances (≈ 11.3% of the total) where the number

of changes were the same, i.e. an increase of zero, along with 31 instances (≈ 12.9%

of the total) which had an ‘increase’ of less than zero but greater than −5%. Clearly

the majority of instances show a decreased number of changes even in the lowest cost

change-minimization solution as compared to the cost-minimization approach. Although

90

Figure 5.11: Increase in number of changes from minimal-change solution to lowest cost
change-minimization solution, shown as numerical value (top); and as a percentage of the
minimal-change solution (bottom).

91

Figure 5.12: Comparison of number of changes in cheapest cost-min. solution against
cheapest solution found by change-min. method

these decreases seem more likely to be a smaller percentage decrease, at the extreme the

largest decrease was found to be ≈ 59.6% of the cost-minimization solution, meaning in

that instance the final change-minimization solution still had less than half the number of

changes.

Summarising the implications of these results on the change-minimization approach, a

conclusion we can draw is that in general it should be preferable for the planners to make

use of this approach rather than cost-minimization to solve their crew scheduling problem.

As demonstrated, the cost of the solutions may at times not be as cheap; however, it does

have the advantages of finding solutions which will entail less disruption, and therefore will

be easier to implement, and will also more easily allow the proposal of multiple solutions

without a need to re-solve manually. Further details of how we envisage this working in

practice are discussed in section 5.6. Firstly however we must consider the potential impact

of the parameter values used in the generation of the test instances.

92

5.5.2.3 Effect of parameter values on results

As discussed in section 5.4.2, several parameters required for data generation were uncertain

and were therefore varied across a range when the datasets were being created. Having

done this, it was of course necessary to investigate whether changes to these parameter

values had any effect on the results, and consequently determine whether the company may

observe a different pattern of results in practice depending on the ‘true’ values of these

parameters.

Of particular interest was how these different parameter values would affect the perfor-

mance measures which are of primary concern to the company - the cost of solutions, and

the number of changes to the existing schedule that the solutions entail. Based on this,

several results from both the cost-minimization and change-minimization approaches, as

well as some comparisons between the two, were chosen to be examined. These were as

follows:

1. From the cost-minimization results:

• Running time, for both the two-minute and ten-minute time limits.

• Number of changes in the solution for the two-minute settings only.

• The gaps proven in the test runs, for both the two-minute and ten-minute

settings.

• An adjusted proven gap, with all values less than 5% taken to be equal to 5%,

for both the two-minute and ten-minute settings. This takes into account the

acceptable optimality gap which was set to 5%, and therefore we can consider

any solution within 5% of optimal to be as good as any other.

• The gap to the best known bound for each instance, for both the two-minute

and ten-minute settings.

• An adjusted gap to the best known bound, with all values less than 5% taken

to be equal to 5% as above, for both the ten-minute and two-minute settings.

2. For the change-minimization results:

• Running time.

• Number of iterations.

• Number of changes in the minimal-change solution and in the lowest cost solu-

tion.

• Percentage gap to the best known bound for the costs of the following:

– The first (i.e. non-cost-constrained) solution;

93

– The cheapest minimal-change solution;

– The lowest cost solution.

• An adjusted percentage gap for the lowest cost solution, with all values less than

5% taken to be equal to 5%.

3. For comparing the change-minimization results with the two-minute cost-minimization

results:

• The percentage increase in the number of changes for both the minimal-change

and lowest cost change-minimization solutions, with the two-minute cost-minimization

solution as the base of comparison.

• The percentage increase in cost for the non-cost-constrained, the cheapest minimal-

change and the lowest cost change-minimization solutions, with the two-minute

cost-minimization solution as the base of comparison.

This gave 24 sets of results to be examined, although 5 of these related to the ‘adjusted’

cost gaps.

Also to be decided was the kind of test to be used, and the Analysis of Variance

approach was identified as the preferred option. As detailed in section 3.2, an Analysis of

Variance tests the hypothesis that the data relating to different levels of a parameter in

fact come from different distributions, with the null hypothesis being that the distributions

are the same. The test used for this, the F-test, is the most powerful test for identifying

differences between groups; however it is only applicable where a number of assumptions

hold. One of the key assumptions is that the distribution underlying the data is a Normal

distribution, and this must hold for each of the parameter levels separately. This could be

judged from a visual inspection of histograms for each of the results being examined. The

19 histograms used for this are shown in Appendix B.1.

In some cases it was obvious from this histograms that the assumption of normally

distributed data did not hold. For these results, the non-parametric equivalent of the

ANOVA, the Kruskal-Wallis test, had to be used instead. This test is less powerful than

the F-test, meaning that there is a greater probability that it will fail to reject the null

hypothesis in a case where the distributions are in fact different (power is discussed in

more detail in section 3.2.2). However, since the F-test is not valid here, it is the best test

available.

The tests were carried out to determine whether seven parameter values had an influ-

ence on these outputs. These parameters, as described in section 5.4.2, are:

• Availability probabilities p and q;

• Whether or not the time reduction r (d) is used;

94

• The near- and long-term disruption factors, KN and KL respectively;

• An aggregated disruption factor K̂, calculated as a weighted average of the near- and

long-term factors such that

K̂ =
(4×KN) + (9×KL)

13

and

• The agency penalty factor KAG.

The p-values for the statistical tests (see section 3.2.1 for more information about p-values

and statistical tests) are reported in Table 5.4 for the parameters relating to availability

and Table 5.5 for the parameters relating to cost, with an indication given in each table of

which test was used. Note however that since the values of p and q are related by equation

(5.57), the influence of the value of q on the results is identical to that of p. For this reason,

results are only reported with respect to probability p. All values which are significant at

the 5% level, i.e. for which there is evidence to reject the null hypothesis and say that there

is a difference between the distributions for different levels of the parameter, are marked

with an asterisk.

It is also possible for those outputs which appear to come from an approximately

normal distribution to examine correlation. Specifically, for the six numerical parameters

(i.e. excluding the boolean parameter relating to the reduction factor r (d)) it is possible

to calculate a Pearson correlation coefficient - more detail on this can be found in section

3.2.3.3. A p-value can also be determined for this which will indicate if any of these

coefficients represent a significant correlation. For those which do, we will have information

additional to that provided by the Analysis of Variance which will show how the different

parameter values influence the outputs of interest. The Pearson correlation coefficients

(PCC) and their associated p-values are shown in Table 5.6. Note that as before, the results

for the parameters p and q are essentially identical, save that the correlation coefficients

are inverted (since p increases as q decreases and vice versa), and therefore only the results

for probability p are shown here. Again, all p-values which are significant at the 5% level

are marked with an asterisk.

Using the Analysis of Variance and the correlation results given here, we can make some

observations about how the true values of these parameters may influence the running of

the models in practice. We can look firstly at the factors which relate to crew availability,

namely the absence probabilities p and q and the time reduction factor r (d). As might be

expected, we can see from Table 5.4 that these appear to have a significant influence on

the number of changes required both for the two-minute cost-minimization approach and

for the minimal-change and lowest cost solutions for the change-minimization algorithm.

95

T
ab

le
5.

4:
R

es
u
lt

s
of

A
N

O
V

A
an

d
K

ru
sk

al
-W

al
li

s
te

st
s

fo
r

in
fl

u
en

ce
of

p
ar

am
et

er
s

u
se

d
in

in
st

an
ce

ge
n

er
at

io
n

-
P

ar
t

1

P
ar

am
et

er
O

u
tp

u
ts

of
in

te
re

st
T

es
t

p
U

se
r

(d
)?

2m
in

s
K

-W
0.

21
7

0.
35

1
R

u
n

n
in

g
ti

m
e

10
m

in
s

K
-W

0.
28

3
0.

13
7

N
o.

of
ch

an
ge

s
2m

in
s

(o
n

ly
)

F
0.

00
4*

<
0
.0

01
*

2m
in

s
K

-W
0.

70
1

0.
43

0

C
os

t-
P

ro
ve

n
%

ga
p

10
m

in
s

K
-W

0.
11

5
0.

38
3

m
in

im
iz

a
ti

o
n

A
d

ju
st

ed
2m

in
s

K
-W

0.
53

8
0.

82
5

se
tt

in
gs

p
ro

ve
n

%
ga

p
10

m
in

s
K

-W
0.

45
8

0.
57

6
%

ga
p

to
b

es
t

2m
in

s
K

-W
0.

34
1

0.
23

1
k
n

ow
n

b
ou

n
d

10
m

in
s

K
-W

0.
15

8
0.

15
2

A
d

ju
st

ed
b

es
t

2m
in

s
K

-W
0.

59
2

0.
97

5
k
n

ow
n

%
ga

p
10

m
in

s
K

-W
0.

43
4

0.
63

6

R
u

n
n

in
g

ti
m

e
K

-W
0.

10
1

0.
52

8
It

er
at

io
n

s
F

0.
00

1*
<

0
.0

01
*

N
u

m
b

er
of

M
in

im
al

-c
h

an
ge

F
<

0.
00

1*
0.

00
2*

C
h

an
g
e-

ch
an

ge
s

L
ow

es
t

co
st

so
l.

F
0.

00
2*

0.
00

2*
m

in
im

iz
a
ti

o
n

N
on

-c
os

t-
co

n
st

ra
in

ed
F

0.
28

0
0.

39
3

se
tt

in
gs

%
ga

p
to

b
es

t
C

h
p

st
m

in
-c

h
n

g
so

l.
F

0.
21

2
0.

19
8

k
n

ow
n

co
st

b
ou

n
d

L
ow

es
t

co
st

so
l.

K
-W

0.
18

7
0.

48
1

A
d

j.
lo

w
es

t
co

st
K

-W
0.

44
6

0.
84

6

%
in

cr
ea

se
in

n
u

m
b

er
M

in
im

al
-c

h
an

ge
F

<
0.

00
1*

0.
00

2*
C

om
p

ar
is

o
n

of
ch

an
ge

s
L

ow
es

t
co

st
so

l.
K

-W
0.

57
6

0.
83

0
w

it
h

m
in

co
st

N
on

-c
os

t-
co

n
st

ra
in

ed
K

-W
0.

43
9

0.
07

4
(2

m
in

se
tt

in
g
)

%
in

cr
ea

se
in

co
st

C
h

p
st

m
in

-c
h

n
g

so
l.

K
-W

0.
01

3*
0.

12
2

L
ow

es
t

co
st

so
l.

K
-W

0.
41

3
0.

67
6

96

T
ab

le
5.

5:
R

es
u
lt

s
of

A
N

O
V

A
an

d
K

ru
sk

al
-W

al
li

s
te

st
s

fo
r

in
fl

u
en

ce
of

p
ar

am
et

er
s

u
se

d
in

in
st

an
ce

ge
n

er
at

io
n

-
P

ar
t

2

P
ar

am
et

er

O
u

tp
u

ts
of

in
te

re
st

T
es

t
K
N

K
L

K̂
K
A
G

2m
in

s
K

-W
0.

00
3*

<
0
.0

01
*

<
0
.0

01
*

0.
00

8*
R

u
n

n
in

g
ti

m
e

10
m

in
s

K
-W

0.
00

6*
<

0
.0

01
*

<
0
.0

01
*

0.
20

1
N

o
.

o
f

ch
an

ge
s

2m
in

s
(o

n
ly

)
F

<
0.

00
1*

<
0
.0

01
*

<
0
.0

01
*

0.
96

0
2m

in
s

K
-W

0.
02

4*
<

0
.0

01
*

<
0
.0

01
*

0.
01

5*

C
o
st

-
P

ro
ve

n
%

ga
p

10
m

in
s

K
-W

0.
16

8
<

0
.0

01
*

0.
01

0*
0.

56
0

m
in

im
iz

at
io

n
A

d
ju

st
ed

2m
in

s
K

-W
0.

43
2

0.
01

1*
0.

10
4

0.
05

6
se

tt
in

g
s

p
ro

ve
n

%
ga

p
10

m
in

s
K

-W
0.

06
3

0.
07

4
0.

21
3

0.
20

8
%

g
ap

to
b

es
t

2m
in

s
K

-W
0.

16
9

<
0
.0

01
*

0.
00

1*
0.

10
6

k
n

ow
n

b
ou

n
d

10
m

in
s

K
-W

0.
22

7
0.

00
1*

0.
03

3*
0.

76
7

A
d

ju
st

ed
b

es
t

2m
in

s
K

-W
0.

15
8

0.
02

7*
0.

27
7

0.
10

1
k
n

ow
n

%
ga

p
10

m
in

s
K

-W
0.

04
9*

0.
05

4
0.

15
1

0.
03

2*

R
u

n
n

in
g

ti
m

e
K

-W
0.

04
5*

0.
00

1*
0.

02
3*

<
0.

00
1*

It
er

at
io

n
s

F
0.

00
3*

0.
12

5
0.

03
7*

<
0.

00
1*

N
u

m
b

er
of

M
in

im
al

-c
h

an
ge

F
0.

51
5

0.
80

8
0.

94
1

0.
78

0
C

h
an

g
e-

ch
an

g
es

L
ow

es
t

co
st

so
l.

F
0.

00
3*

0.
00

7*
0.

01
0*

0.
56

1
m

in
im

iz
at

io
n

N
on

-c
os

t-
co

n
st

ra
in

ed
F

0.
00

1*
0.

01
2*

0.
00

5*
<

0.
00

1*

se
tt

in
g
s

%
g
ap

to
b

es
t

C
h

p
st

m
in

-c
h
n

g
so

l.
F

0.
00

2*
0.

02
9*

0.
01

1*
<

0.
00

1*
k
n

ow
n

co
st

b
ou

n
d

L
ow

es
t

co
st

so
l.

K
-W

0.
01

0*
<

0
.0

01
*

<
0
.0

01
*

<
0.

00
1*

A
d

j.
lo

w
es

t
co

st
K

-W
0.

30
8

0.
00

1*
0.

01
8*

<
0.

00
1*

%
in

cr
ea

se
in

n
u

m
b

er
M

in
im

al
-c

h
an

ge
F

0.
00

8*
<

0
.0

01
*

<
0
.0

01
*

0.
86

8
C

om
p

ar
is

o
n

o
f

ch
a
n
g
es

L
ow

es
t

co
st

so
l.

K
-W

<
0.

00
1*

<
0
.0

01
*

<
0
.0

01
*

0.
41

3
w

it
h

m
in

co
st

N
on

-c
os

t-
co

n
st

ra
in

ed
K

-W
0.

00
2*

0.
09

3
0.

02
4*

<
0.

00
1*

(2
m

in
se

tt
in

g
)

%
in

cr
ea

se
in

co
st

C
h

p
st

m
in

-c
h

n
g

so
l.

K
-W

0.
00

8*
0.

06
4

0.
03

2*
<

0.
00

1*
L

ow
es

t
co

st
so

l.
K

-W
0.

18
1

0.
01

4*
0.

16
8

<
0.

00
1*

97

T
a
b

le
5
.6

:
C

o
rr

el
at

io
n

an
al

y
si

s
fo

r
in

fl
u

en
ce

of
p

ar
am

et
er

s
u

se
d

in
in

st
an

ce
ge

n
er

at
io

n

P
ar

am
et

er

O
u

tp
u

ts
of

in
te

re
st

p
K
N

K
L

K̂
K
A
G

N
o
.

o
f

2m
in

s
P

C
C

-0
.2

11
-0

.3
97

-0
.4

36
-0

.4
84

-0
.0

23
C

o
st

-m
in

ch
a
n

ge
s

(o
n

ly
)

p
-v

al
u

e
0.

00
1*

<
0
.0

01
*

<
0
.0

01
*

<
0.

00
1*

0.
72

3

P
C

C
-0

.2
36

-0
.2

22
-0

.1
53

-0
.2

04
-0

.4
13

It
er

at
io

n
s

p
-v

al
u

e
<

0.
00

1*
0.

00
1*

0.
01

8*
0.

00
2*

<
0
.0

01
*

M
in

im
al

-
P

C
C

-0
.5

80
-0

.0
72

-0
.0

36
-0

.0
57

-0
.0

05
N

o
.

o
f

ch
an

ge
p

-v
al

u
e

<
0.

00
1*

0.
26

3
0.

57
4

0.
38

2
0.

93
8

ch
a
n

ge
s

L
ow

es
t

P
C

C
-0

.2
27

-0
.2

39
-0

.1
75

-0
.2

27
-0

.0
75

C
h

an
g
e-

m
in

co
st

so
l.

p
-v

al
u

e
<

0.
00

1*
<

0
.0

01
*

0.
00

7*
<

0.
00

1*
0.

24
6

%
ga

p
N

on
-c

os
t-

P
C

C
-0

.0
96

-0
.2

60
-0

.2
04

-0
.2

57
-0

.4
43

to
b

es
t

co
n

st
ra

in
ed

p
-v

al
u

e
0.

13
7

<
0
.0

01
*

0.
00

1*
<

0.
00

1*
<

0
.0

01
*

k
n

ow
n

co
st

C
h

p
st

m
in

-
P

C
C

0.
11

1
-0

.2
43

-0
.1

79
-0

.2
31

-0
.4

11
b

o
u

n
d

ch
n

g
so

l.
p

-v
al

u
e

0.
08

6
<

0
.0

01
*

0.
00

6*
<

0.
00

1*
<

0
.0

01
*

%
in

cr
in

n
o.

M
in

im
al

-
P

C
C

-0
.3

76
0.

21
5

0.
30

0
0.

30
9

0.
01

1
C

o
m

p
a
ri

so
n

of
ch

an
ge

s
ch

an
ge

p
-v

al
u

e
<

0.
00

1*
0.

00
1*

<
0
.0

01
*

<
0.

00
1*

0.
86

2

98

Specifically, from Table 5.6 we see that there is a significant negative correlation between

all three of these change measures and the availability probability p, meaning that for

higher values of p (and therefore lower values of q, i.e. longer but fewer absences) we

expect to see a decrease in the number of changes required in the respective solutions.

Intuitively this is sensible, as is the apparent influence of the reduction factor r (d), with

investigation showing that on average more changes are required for instances where the

reduction factor is not used (i.e. the probabilities remain constant throughout) than when

it is. These averages are as follows:

• For (two-minute) cost-minimization: average of ≈ 55.76 changes for instances using

r (d); average of ≈ 60.18 changes for the instances not using r (d).

• For the minimal-change solution: average of ≈ 19.16 changes for instances using

r (d); average of ≈ 22.74 changes for the instances not using r (d).

• For lowest cost change-minimization: average of ≈ 47.43 changes for instances using

r (d); average of ≈ 51.14 changes for the instances not using r (d).

There is also a significant negative correlation between the value of p and the percentage

difference in the number of changes between the two-minute cost-minimization solution

and the minimal-change solution, suggesting that for higher values of p (i.e. longer but

fewer absences) we would expect a greater decrease in number of changes, and therefore a

greater advantage to using the cost-minimization approach if this were the case in reality.

As shown in Table 5.4, there is also a significant influence by factor r (d) on this measure,

with investigation of the means showing an average of a ≈ 64.91% decrease when r (d) is

used, and an average of a ≈ 61.21% decrease when it is not. Note that there is no significant

influence or correlation for either of these factors with respect to the other difference in

changes measure, between the two-minute cost-minimization solution and the lowest cost

change-minimization solution.

The parameters p, q and r (d) also display a significant influence on the number of

iterations carried out by the change-minimization algorithm. Table 5.6 shows there is a

negative correlation with the value of p, indicating that for higher values of p (i.e. fewer,

longer absences) we would expect fewer iterations to be carried out within the time limit

(and potentially fewer solutions found). With regard to the reduction factor, examining

the means shows that ≈ 13.23 iterations are carried out on average for instances where

r (d) has been used, while ≈ 15.29 are carried out on average for instances where it has

not.

Meanwhile, the disruption and penalty factors KN , KL, K̂ and KAG, i.e. the factors

relating to costs, can be seen in both Table 5.5 and Table 5.6 to have a considerably

wider influence. This is especially true of the three parameters relating to the disruption

99

penalty for the regular crew - near-term disruption parameter KN , long-term disruption

parameter KL, and the weighted average of these K̂. It can be seen in Table 5.6 that

these disruption penalties have no correlation with the number of changes in the minimal-

change solution (which is to be expected, as cost has no bearing at that stage of the solution

algorithm), but that there is significant correlation with the number of changes required in

the two-minute cost-minimization and lowest cost change-minimization solutions, as well

as with the comparison between the cost-minimization and minimal-change solutions. For

both the cost-minimization and change-minimization final solutions, the correlations are

negative which indicates that the number of changes will be lower for higher values of the

disruption factor (whether KN , KL or K̂). Consistent with this is the positive correlation

which exists between the disruption factor values and the percentage difference in number

of changes, which indicates that there is a smaller decrease in the number of changes

from the cost-minimization result to the minimal-change result (i.e. the cost-minimization

number of changes is nearer to the the minimal number of changes) when the disruption

factor values are higher.

As well as giving significant correlations, these outputs also have significant F-test

p-values with respect to the disruption factors, as given in Table 5.5. This table also

shows that the factors KN , KL and K̂ all have a significant influence on the comparison

between the changes in the two-minute cost-minimization solution and the lowest-cost

change-minimization solution. This could not be analysed for correlation because the

normality assumption did not hold, but examination of the histograms (see appendix B.2)

showed that higher values of the disruption factor tended to give instances which had a

smaller percentage gap between the number of changes. Note here that the agency penalty

factor KAG appears to have no significant influence or correlation with any of the change-

related outputs.

The table of correlations (Table 5.6) also shows a significant relationship between all

four penalty factors and the number of iterations performed by the change-minimization

algorithm. Curiously, the result of the F-test to determine whether the long-term disruption

factor KL has an influence on the number of iterations is not significant (see Table 5.5) even

though the correlation coefficient is. All the penalty parameters have a negative correlation,

indicating that for higher values of the penalty factor there will be fewer iterations (and

consequently fewer solutions) achieved within the time limit.

With regard to costs, we can see that all four of the penalty parameters have a signif-

icant correlation with the percentage gap to the best cost bound for both the non-cost-

constrained and the cheapest minimal-change change-minimization solutions (see Table

5.6). That the influence of these parameter levels also produces a significant result from

the Kruskall-Wallis test for the lowest cost change-minimization using both the true values

and the adjusted values, with the exception of near-term penalty value KN which does

100

not appear to have a significant impact on the adjusted percentage gap. The correlations

shown for the gaps for both the non-cost-constrained and the cheapest minimal-change

solutions are all negative, indicating that for higher values of the penalty factors we would

expect a smaller gap to the best known bound for the problem, i.e. it will be solved to a

value closer to the optimum. No correlation test was available for the gap to the lowest

cost change-minimization solution, but examination of the histograms (see appendix B.2)

showed a similar general pattern for the disruption factors KN , KL and K̂ with higher

values being morel likely to result in optimal solutions and lower values more likely to

result in solutions with larger gaps to the best known bound. The pattern for the agency

penalty KAG (see Figure B.23 in Appendix B.2) was a little different, with instances with

lower values seemingly more likely to solve to optimal rather if they were solved to within

a 5% gap, while instances with higher values were more likely to solve to within a 5% gap

overall but less likely to result in an optimal solution.

There were no further cost-related outputs tested for correlation with these factors;

however, as can be seen in Table 5.5 there are a number of other significant interac-

tions between the penalty values and cost-related outputs according to the results of the

Kruskall-Wallis tests. Looking first at the gap to the best bound for the cost-minimization

approach, we see that each of the four penalty factors have a significant effect on either the

adjusted or unadjusted gaps for the ten-minute settings; while only the long-term penalty

KL and combined penalty K̂ have any kind of influence on the gaps for the two-minute

settings. Looking at the histograms for these (see appendix B.2), a pattern can be seen.

For parameters KN and KAG, the graphs suggest that higher values of these parameters

are more likely to produce instances which will solve to within 5% of optimal in the ten-

minute settings. Meanwhile for parameters KL and K̂, for both the two- and ten-minute

settings, we see that higher values are more likely to produce instances which will solve to

optimal if they solve to within 5%, but that lower values of these penalty factors are more

likely to see solutions solving to within 5% in general.

A similar pattern can be seen for the gaps which are able to be proven during the

two-minute and ten-minute cost-minimization test runs. In this case, it is for the two-

minute settings that all four of the penalty parameters have a significant influence on at

least one of the adjusted and unadjusted gaps; while for the ten-minute settings only the

long-term penalty KL and combined penalty K̂ have any kind of influence on the proven

gaps. Looking at the histograms for these (see appendix B.2), it would appear that for

parameters KN and KAG higher values produce instances which will more likely solve

to optimal if they solve to within 5%, but that lower values of these penalty factors are

more likely to see solutions solving to within 5% in general. For parameters KL and K̂,

it similarly appears that for both the two- and ten-minute settings the higher values of

the parameters are more likely to solve to optimal rather than just to within 5% but that

101

lower values are more likely to be solved to within 5% in general.

As well as the costs for the two separate approaches, we can also see from Table

5.5 that there are some significant interactions between the four penalty parameters and

the results of cost comparisons between the two approaches. Histograms for the relevant

breakdowns of results can be seen in appendix section B.2. Only the agency penalty

factor KAG has a significant influence on all three of the cost comparisons (the increase in

cost from the two-minute cost-minimization solution to the non-cost-constrained solution,

the cheapest minimal-change solution, and the lowest cost change-minimization solution),

with the histograms showing a pattern suggesting that higher values of KAG give instances

which show a smaller percentage increase in cost, and in particular that no additional

penalty (i.e. setting KAG = 1) leads to much larger differences in all three of the cost

comparisons. The near-term and combined disruption penalties, KN and K̂ show a similar

influence on the non-cost-constrained and cheapest minimal-change solution comparisons,

with larger values tending to give instances which can be solved to values much closer

to the two-minute cost-minimization solution. This can also be seen for the long-term

disruption penalty KL when comparing the two-minute cost-minimization and lowest cost

change-minimization solutions.

The final group of Kruskal-Wallis test results to discuss from Table 5.5 are those relating

to running time, which can be seen to be subject to a significant interaction from all four

of the penalty factors, with the exception of the agency penalty factor KAG which does

not appear to have a significant impact on the running time for the ten-minute cost-

minimization settings. Examination of the histograms for these (see appendix B.2) shows

a general pattern that for higher values of the penalty factors, instances are likely to

terminate more quickly under both the two- and ten-minute cost-minimization settings as

well as with the change-minimization algorithm.

5.5.2.4 Summarising the effect of parameter values

To summarise the discussion on the effect of parameter values above (section 5.5.2.3), we

can say a number of things about how the suggested approaches may operate in practice

depending on the true values of our uncertain parameters. Firstly, looking at the factors

which affect crew availability, we have seen that if in reality crew absences tend to be

longer but less frequent, then we would expect to see fewer changes being found in the

two-minute cost-minimization and in the change-minimization solutions, and a greater gap

between the non-cost-constrained solution and the cost-minimization solution in terms of

number of changes. In this case, we would also expect a smaller number of iterations to be

required in the change-minimization algorithm. A similar pattern might be observed if the

time reduction of the absence probability proved to be a reasonable assumption in reality.

102

Meanwhile, the factors which relate to costs influence considerably more of the output

statistics. If the company wishes to apply disruption factors in order to penalise making

changes to the schedule, then in general we could expect the effects to be the following:

shorter running times in both approaches, and fewer iterations for the change-minimization

approach; fewer changes in the two-minute cost-minimization and lowest cost change-

minimization solutions; a greater percentage decrease in changes for both minimal-change

and lowest cost change-minimization solutions as compared to the cost-minimization so-

lution; and smaller cost gaps both for the individual cost- and change-minimization ap-

proaches and when comparing the two. The additional penalty for using agency crew KAG

has a similar influence with regard to running time, iterations and gaps with respect to

cost, but has no significant effects on the number of changes. It should be noted that those

instances for which the KAG = 1 (i.e. there is no additional penalty for agency crew) dis-

played particularly long running times and particularly large percentage gaps with respect

to cost.

5.6 Practical Implications of Results

As noted during this chapter, the assumptions upon which the Task-Based version of the

model is based are not realistic for our case study company; however, these assumptions

of pre-determined regular working patterns (‘tasks’) and homogeneous contractual restric-

tions may well hold at another company. The results given in section 5.5.2 allow us to

suggest how, in such a situation, our solution methods for the Task-Based formulation of

the Vessel Crew Scheduling problem might be applied in practice.

The proposal here involves the implementation of a decision support tool which would

be used as part of an iterative process, with solutions being proposed which can be checked

for acceptability by the Planners. When judging acceptability, Planners may take into

account the optimality gap, both in percentage terms and real terms, and the number

of changes that the solution entails. They may also consider constraints which are not

recorded explicitly by the company, such as a desire not to change the assignments for a

particular employee or to avoid having two or more particular employees assigned to the

same vessel at the same time, but which will be implicitly known by the Planners. Our

proposed structure for the iterative process can be seen in Figure 5.13.

As discussed in section 5.5.2.2, the cost-minimization approach will usually produce

the cheapest solutions; however, the change-minimization approach will produce solutions

which cause less disruption to the current schedule, and will be able to propose multiple

solutions to the Planners. Therefore we propose that the first stage in the solution process

should be to solve the problem using the two-minute change-minimization settings. The

Planner would then be presented with a Pareto-optimal set (in terms of cost and number

103

Figure 5.13: Flowchart showing the process for using the proposed planning tool for the
Task-Based problem.

104

of changes, as illustrated in Figure 5.4) of solutions, including the minimal-change solution,

and has a number of options as to how to proceed. The most straightforward option is to

accept one of the proposed solutions, in which case the process can terminate. Whether or

not this is a desirable option will depend on whether the implicit constraints are satisfied,

whether the cost of the solution is acceptable (note that at this stage, no bound will yet

have been generated on the solution cost), and whether the Planner has time to carry out

further computations.

If the implicit constraints have not been satisfied, the Planner can add these and re-

run the change-minimization process. The implicit constraints can either be treated as

additional ‘hard’ constraints which must be satisfied, or a penalty can be introduced for

violating them - the most suitable way of handling these can be discussed with a company

if this is being implemented in practice. Alternatively, if there are concerns over cost, the

cost-minimization programme can be called upon, firstly with the two-minute settings and

subsequently if necessary and if time permits using the ten-minute settings. This would

have the benefit of generating a bound on the solution cost, and therefore have a means of

judging the quality of the solutions with regard to cost.

Note that we recommend that if implicit constraints are added (or, at a subsequent

stage are thought to be too restrictive and removed), the process should revert to the

change-minimization solution algorithm. This is because changing the implicit constraints

essentially creates a new problem, and so the benefits of the change-minimization such as

generating multiple solutions should be made use of. The process can carry on as long as

necessary, or as long as time permits, to allow the Planner to find an acceptable solution.

It may be the case that the Planner experiments with adding implicit constraints but

finds that no improvement can be made on a solution found earlier in the process - if this

happens at any time, the Planner can of course terminate the process.

5.6.1 Further Work

There are a number of future research steps which could be taken based on the work in this

chapter. Not least of these would be to implement in practice the decision support tool

which has been proposed above. This will required additional software engineering skills

which were not available when this research was carried out, in order to design a suitable

user interface and integrate the programme with the company systems. Clearly it will also

be necessary to identify a suitable company at which to implement this model, since as we

have highlighted it is based on overly-simplifying assumptions about the problem faced by

our current client company.

Another piece of further research arises from the discussion of the change-minimization

algorithm in section 5.5.2.2. Here it was noted that it may be the case that the method

105

presented in Algorithm 5.2 does not cope well with negative or near-zero costs. This arises

from the fact that the sequential reduction of costs is carried out as a percentage, meaning

that while the cost is small positive value the decrease of the cost limit will become smaller

and smaller. A possible solution to this would be to introduce an additional condition to

the cost limit calculation such that once the cost is reduced to a certain value there is a

fixed amount by which it is reduced, allowing the reduction to continue and a negative-

cost solution to potentially be found. Further investigation would have to be carried out

to determine the size of this fixed amount and the point at which it should come into force.

Finally, a clear next step arising from the work on the Task-Based problem is to ex-

tend it such that it becomes more relevant to the problem faced by our client company.

Discussion of research into this can be seen in Chapter 6 which follows.

106

Chapter 6

Time-Windows Model

The previous chapter discussed the simplified Task-Based formulation of the Vessel Crew

Scheduling Problem, which made use of several assumptions. These assumptions however

were not realistic for the problem at our company (although they may hold, and therefore

be useful, for the scheduling problem at another company). Specifically, there were the

assumptions that all roles could be divided up into pre-determined task lengths, and that all

employees were allowed to work a pattern which was consistent with these pre-determined

tasks. In reality, crew work to various different contracts with their own maximum working

and minimum resting periods specified, meaning they cannot all fit to the same pattern

of work. In addition, these fixed work patterns were not realistic as it did not account for

the flexibility which is available to the Planners in practice, whereby they may wish to ask

an employee to work one additional week on board a vessel - increasing the assignment

beyond the usual length, but still within their maximum legal or contractual limit.

Removing these assumptions which were required for the Task-Based formulation of

the problem allows us to create a more complex but more realistic formulation which we

call the Time-Windows version of the problem. Here, we make use of the principle that

crew changes happen on a weekly basis, and we consider crew roles as being divided into

one-week windows. This means that rather than being assigned a single task and then

resting before their next assignment, crew will be assigned multiple windows in the same

role consecutively, subject to their contractual obligations.

As with Chapter 5, we begin this chapter by setting out the formulations for this

problem, firstly with the ‘basic’ formulation which assumes there is no partial schedule at

the start of the planning process before extending this to the ‘Recovery-type’ formulation.

We then go on to discuss generation of data for this problem and our initial computational

results using similar methods to those used for the Task-Based problem. However, due

to the increased size and complexity of the Time-Windows problem it will be seen that

these results are not particularly promising in terms of what can be used in practice; we

107

therefore discuss alternative solution methods and examine whether some of these may be

more useful for solving this more realistic problem.

6.1 Problem Formulation

As indicated at the beginning of this chapter, we will start by describing the formulation

of the Time-Windows problem. Firstly, in section 6.1.1 we set out a description of the

so-called ‘basic’ scheduling problem which assumes there is no partial schedule and that all

planning is done from scratch. This gives a stepping stone to the more realistic ‘recovery-

type’ formulation which is set out in section 6.1.2.

6.1.1 Basic Problem Formulation

As with the Task-Based formulation, we begin by setting out a ‘basic’ scheduling formula-

tion for the problem which assumes all scheduling is done from scratch. This allows us to

set out the key aspects of the model in a simpler manner, before extending to the recovery-

type problem in section 6.1.2 below. We begin by defining the sets, data and decision

variables which are necessary here. Note that some of these are identical to those given in

section 5.1.1 for the Task-Based problem; however, some of the notation has altered and

has a different meaning to that used for the Task-Based problem.

Sets

The following sets and indices are used in the Basic Time-Windows model:

t ∈ {1, . . . , T} is the index for the week-long time windows in the planning horizon of

length T weeks.

ER is the set of all regular employees, with |ER| = m.

E = ER ∪ {m+ 1} is the set of all employees, where m+ 1 is the index used to denote

agency employees.

G ⊆ ER is the set of fixed contract employees.

K is the set of vessels which are being planned for during the planning period.

J is the set of all roles being planned for over the planning period, with |J | = n.

Vk ⊆ J is the set of roles being planned for which take place on board vessel k ∈ K,

with
⋃
∀k
Vk = J and with Vk ∩ Vk′ = ∅ for k′ 6= k.

λ is an index used when counting an employee’s number of consecutive working weeks.

108

Data

We define the data items required by the model as follows:

Ωi is the estimated number of weeks that employee i ∈ G will work this financial year

outwith the current planning horizon.

gi is the number of guaranteed weeks specified by employee i’s contract, i ∈ G.

cUi is the effective rate of pay per week for employee i ∈ G, which can be considered an

under-time rate in the event that the employee works less than gi weeks in the year.

cOi is the weekly rate at which overtime is paid to employee i ∈ G, in the event that the

employee works more than gi weeks in the year.

cBikt is the cost of employee i boarding vessel k prior to working on board in period t.

cDikt is the cost of employee i departing vessel k prior to period t (i.e. having completed

an assignment on board in period t− 1).

cWijt is the cost directly associated with employee i carrying out role j in period t (i.e.

ignoring travel costs, under-/over-time payments, etc.).

cLλijt is the additional cost (either actual cost, or a theoretical penalty cost) of employee i

carrying out role j for at least a λth consecutive week in period t.

ajt is an indicator of whether role j requires an employee assigned to it in period t, such

that

ajt =

{
1 if role j requires to be covered in period t

0 otherwise

eijt is an indicator of whether an employee is eligible and available to carry out role j in

period t;

eijt =

{
1 if employee i can be assigned to role j in period t

0 otherwise

wmaxi is the legal / contractual upper limit on the number of consecutive weeks at sea to

which employee i ∈ ER can be assigned.

αmaxj is the legal / contractual upper limit on the number of consecutive weeks that an

individual agency employee can be assigned to role j.

ρi is the minimum length (in weeks) of the rest period to which employee i ∈ ER is

entitled following an assignment offshore.

109

sik is used to indicate the location of employee i ∈ ER at the start of the planning period,

such that

sik =

{
1 if employee i is aboard vessel k immediately prior to period 1

0 otherwise

σj is used to indicate the assignments of agency employees at the start of the planning

period, such that

σj =

{
1 if an agency employee is assigned to role j immediately prior to period 1

0 otherwise

sm+1,k is the number of agency employees who are on board vessel k immediately prior to

period 1. Note that this means sm+1,k =
∑
j∈Vk

σj for all vessels k ∈ K.

wi0 is the number of consecutive weeks work offshore that employee i ∈ ER has been

assigned prior to period 1.

αj0 is the number of consecutive weeks an agency employee has been assigned to role j

prior to period t.

ri0 is the number of consecutive weeks without offshore work to which employee i ∈ ER
is entitled prior to period 1.

Decision variables

There are a number of decision variables which are required for the Time-Windows problem.

These are as follows:

xijt is the main decision variable, indicating each employee’s assignment, such that

xijt =

{
1 if employee i is allocated to role j during time period t

0 otherwise

ui is the number of weeks short of their guaranteed amount that employee i ∈ G is

expected to work during the year.

oi is the number of weeks over their guaranteed amount that employee i ∈ G is expected

to work during the year.

110

bikt indicates employee i ∈ ER boarding a vessel, such that

bikt =

 1
if employee i boards vessel k

prior to an assignment in period t

0 otherwise

bm+1,kt is the number of agency employees which board vessel k prior to performing an

assignment in period t.

βjt indicates agency crew boarding a vessel to carry out a specific role j, such that

βjt =

{
1 if an agency employee begins to carry out role j in period t

0 otherwise

dikt indicates employee i ∈ ER departing from a vessel, such that

dikt =

 1
if employee i departs vessel k prior to period t

(i.e. having completed duties there in period t− 1)

0 otherwise

dm+1,kt is the number of agency employees which depart vessel k prior to period t, i.e. having

completed duties on board in period t− 1.

δjt indicates agency crew departing after carrying out a specific role j, such that

δjt =

 1
if an agency employee has finished carrying out role j prior to period t

(i.e finishes carrying out the role in period t− 1)

0 otherwise

wit is the number of consecutive weeks of offshore work that employee i ∈ ER has been

assigned up to and including week t.

αjt is the number of consecutive weeks that an agency employee has been assigned to

role j up to an including week t.

rit is number of consecutive weeks without offshore work to which employee i ∈ ER is

entitled after week t; for example, if rit = 2 this means that employee i is entitled to

weeks t+ 1 and t+ 2 without any offshore work.

111

lλijt indicates if employee i is working at least a λth consecutive week in role j;

lλijt =

 1
if the carrying out of role j in period t is at least

the λth consecutive working week for employee i

0 otherwise

Formulation

Using these quantities defined above, we can now give our basic Time-Windows formulation

the crew scheduling problem as follows:

min
∑
∀i,k,t

(
cBiktbikt + cDiktdikt

)
+
∑
∀i,j,t

(
cWijtxijt +

∑
∀λ

cLλijtlλijt

)
+
∑
i∈G

(
cUi ui + cOi oi

)
(6.1)

subject to: ∑
∀i∈E

eijtxijt = ajt ∀j, t (6.2)∑
j∈J

xijt ≤ 1 ∀t, i ∈ ER (6.3)

bik1 ≥
∑
j∈Vk

xij1 − sik ∀k, i ∈ ER (6.4)

bikt ≥
∑
j∈Vk

xijt −
∑
j∈Vk

xij,t−1 ∀k, i ∈ ER, t ∈ {2, . . . , T} (6.5)

dik1 ≥ sik −
∑
j∈Vk

xij1 ∀k, i ∈ ER (6.6)

dikt ≥
∑
j∈Vk

xij,t−1 −
∑
j∈Vk

xijt ∀k, i ∈ ER, t ∈ {2, . . . , T} (6.7)

βj1 − δj1 = xm+1,j1 − σj ∀j (6.8)

βjt − δjt = xm+1,jt − xm+1,j,t−1 ∀j, t ∈ {2, . . . , T} (6.9)

bm+1,kt ≥
∑
j∈Vk

βjt ∀k, t (6.10)

dm+1,kt ≥
∑
j∈Vk

δjt ∀k, t (6.11)

ui ≥ gi −

Ωi +
∑
j∈J

T∑
t=1

xijt

 ∀i ∈ G (6.12)

oi ≥

Ωi +
∑
j∈J

T∑
t=1

xijt

− gi ∀i ∈ G (6.13)

112

wit ≥ wi,t−1 +
∑
j∈J

xijt − wmaxi

1−
∑
j∈J

xijt

 ∀t, i ∈ ER (6.14)

wmaxi lλijt ≥ wi,t−1 − wmaxi (1− xijt) + xijt − (λ− 1)
∀j, t, i ∈ ER,

λ ∈ {1, . . . , wmaxi }
(6.15)

αjt ≥ αj,t−1 + xm+1,jt − αmaxj δjt ∀j, t (6.16)

αjt ≥ xm+1,jt ∀j, t (6.17)

αmaxj lλ,m+1,jt ≥ αjt − (λ− 1) ∀j, t, λ ∈
{

1, . . . , αmaxj

}
(6.18)

rit ≥ ri,t−1 −

1−
∑
j∈J

xijt

 ∀t, i ∈ ER (6.19)

rit ≥ (ρi − 1)
∑
k∈K

dikt ∀t, i ∈ ER (6.20)

ρi

1−
∑
j∈J

xijt

 ≥ ri,t−1 ∀t, i ∈ ER (6.21)

xijt ∈ {0, 1} ∀i, j, t (6.22)

lλijt ∈ {0, 1} ∀i, j, t, λ ∈ {1, . . . , wmaxi } (6.23)

bikt, dikt ∈ {0, 1} ∀k, t, i ∈ ER (6.24)

βjt, δjt ∈ {0, 1} ∀j, t (6.25)

bm+1,kt, dm+1,kt ≥ 0 and integer ∀k, t (6.26)

ui, oi ≥ 0 ∀i ∈ G (6.27)

wit, rit ≥ 0 ∀i, t (6.28)

αjt ≥ 0 ∀j, t (6.29)

The objective, given by equation (6.1) is to minimize the total cost of all assignments,

including travel costs and over- and under-utilization of fixed contract crew. In a similar

way as constraints (5.3) and (5.4) for the Task-Based problem, constraints (6.2) and (6.3)

ensure respectively that all roles are covered when they are required to be, and that em-

ployees cannot be assigned to two different roles at the same time. Note that as before,

the multiple assignment constraint does not apply to the agency employee m + 1, as we

assume that multiple agency crew are available if required in a given time period.

Constraints (6.4) and (6.5) ensure correct definition of the ‘boarding’ variables bikt for

the regular employees i ∈ ER by linking them to the changes in an employees working

location from one time period to the next, while constraint sets (6.6) and (6.7) perform the

corresponding role for the departure decision variables. The board and depart variables for

agency crew are handled jointly by constraints (6.8) and (6.9), which allows us to ensure

113

that if agency crew are assigned to a role in two consecutive weeks but should be carried

out by two different people (e.g. because of working period length restrictions), then the

appropriate boarding and departing costs are incurred for this crew change. Inequalities

(6.10) and (6.11) define the number of crew respectively boarding and departing the vessel

based on the boarding and departing for the individual roles. Note that these constraints

have no equivalent in the Task-Based problem, since there the boarding of and departure

from vessels was contained implicitly within each task.

The subsequent constraints ensure that legal and contractual obligations are met, start-

ing with inequalities (6.12) and (6.13) which in the same way as (5.10) and (5.11) for the

Task-Based problem deal with the respective estimated number of weeks under- or over-

utilized each fixed contract employee will be in the year. In place of constraints (5.6) and

(5.7) in the Task-Based problem, constraint (6.14) calculates the amount of consecutive

work done by each employee from one period to the next. Constraint set (6.15) meanwhile

determines how many consecutive weeks an employee has spent at sea, in order to (poten-

tially) apply an appropriate penalty cost. The parameter wmaxi on the left hand side of

this inequality acts as a big-M to ensure that cumulative working length wit never exceeds

its legal limit for any employee. Similarly, constraint set (6.16) calculates the amount of

consecutive work done by the agency employees from one period to the next, but on a

role-by-role basis, while inequality (6.17) is required to ensure the tracking variable αjt

takes the correct value in the case when a new agency employee joins the role immedi-

ately following the departure one. The number of consecutive weeks worked by an agency

employee is then linked to the possible penalty costs by constraints (6.18).

In place of (5.8) and (5.9) in the Task-Based formulation, obligations with regard to rest

periods are dealt with by inequalities (6.19), calculating the decrease in rest time required

by an employee if they do not work in that period, and (6.20) resetting the rest time

requirement whenever an employee leaves a vessel, ensuring the legal amount of resting

time after finishing a spell of offshore work is respected. Constraint (6.21) ensures that an

employee cannot work in a period if it is indicated in the previous period that they were

still due some rest time. Finally, expressions (6.22-6.29) ensure the correct definition of all

variables.

Note that no equivalent of the experience constraint (5.5) from the Task-Based formu-

lation appears here. The constraint was dropped in order to simplify the problem, and

because it was found that it was too difficult to quantify experience mathematically. In-

stead, it will now be treated as one of the ‘implicit’ constraints discussed in Chapter 5,

which can be applied by Planners using their personal knowledge of their employees when

choosing between proposed solutions.

114

6.1.2 Recovery-type Formulation

As before, the basic formulation given above could used in a situation where planning is

done in advance with no need for modifications once assignments have been made. However,

we now require to extend this formulation to the recovery-type problem, to account for the

need in our case to change and update the existing schedule in response to new information

on a regular basis. In order to do this, we must first give some additional definitions, before

the formulation is given below.

The existing schedule

Firstly, in a similar way to that described in Section 5.2, we must consider the partial

schedule which is known at the start of the planning step, having been decided in the

previous planning step. This can be described by the final values of the decision variables

discussed in section 6.1.1, denoted as: x∗ijt, u
∗
i , o
∗
i , b
∗
ikt, β

∗
jt, d

∗
ikt, δ

∗
jt, w

∗
it, α

∗
jt, r

∗
it and l∗λijt.

These are now input data for the current planning phase, and will be used to help evaluate

the changes which are required to be made to the schedule.

Decision variables

We next need to define a corresponding new set of decision variables which will represent

the new schedule which is to be created in the current week. We denote these as: x̂ijt,

ûi, ôi, b̂ikt, β̂jt, d̂ikt, δ̂jt, ŵit, α̂jt, r̂it and l̂λijt. Clearly, the new schedule must be feasible

according to these new variables.

While a new feasible schedule is the main goal for this problem, what is of interest to

the planners is the changes which must be made in order to make the transition to this

new schedule. We will must therefore define additional decision variables to represent these

changes. Taking for example the main assignment variable for the new schedule, x̂ijt, we

can define a new variable x±ijt such that

x±ijt =

{
1 if there is a change to employee i’s schedule in week t with respect to role j

0 otherwise

We can use this to link the previous week’s schedule, represented by x∗ijt, and the new

schedule, represented by x̂ijt, as follows:

x±ijt =

{
x̂ijt if x∗ijt = 0

xijt − x̂ijt if x∗ijt = 1

115

A more compact (but mathematically equivalent) way of expressing this is as

x̂ijt = x∗ijt + (1− 2x∗ijt)x
±
ijt ∀i, j, t (6.30)

Similarly, we can also define decision variables to represent changes to the other factors

as follows: b±ikt, β
±
jt, d

±
ikt, δ

±
jt and l±λijt. These can be linked to their respective corresponding

previous schedule values and new schedule variables using the following expressions:

b̂ikt = b∗ikt + (1− 2b∗ikt)b
±
ikt ∀k, t, i ∈ ER (6.31)

β̂jt = β∗jt + (1− 2β∗jt)β
±
jt ∀j, t (6.32)

d̂ikt = d∗ikt + (1− 2d∗ikt)d
±
ikt ∀k, t, i ∈ ER (6.33)

δ̂jt = δ∗jt + (1− 2δ∗jt)δ
±
jt ∀j, t (6.34)

l̂λijt = l∗λijt + (1− 2l∗λijt)l
±
λijt ∀λ, i, j, t (6.35)

Since under-time and over-time are not binary variables, the changes to these can be

calculated differently. For these, we define change variables u±i and o±i which will be linked

to the previous and new schedule values using the following expressions:

u±i = ûi − u∗i i ∈ G (6.36)

o±i = ôi − o∗i i ∈ G (6.37)

Note that by these definitions, u±i and o±i could take negative values if there is a decrease

in under- or over-time.

Note that as there is no cost directly associated with the consecutive working periods

(for regular and agency crew) or resting periods (for regular crew only), and no arrange-

ments to be made directly concerning these, we do not track the changes. Therefore there

is no need to define or to use the corresponding variables w±it , α
±
jt and r±it .

Cost coefficients

As with the recovery-type Task-Based problem previously (see section 5.2.1), the focus

for our more realistic recovery-type Time-Windows formulation must be on the cost of

changing the assignments of the crew. As before, these costs may comprise the purely

financial cost (or saving) of making a change, such as wage payments or transportation

costs, or may also include penalty costs in order to reflect the undesirable nature of some

options (e.g. changing an assignment at very short notice).

In general, we can say that the following cost elements (whether real or incorporating

an intangible element) will be required in the cost calculation of our recovery-type model:

116

φWijt is the cost of changing whether or not employee i ∈ E works in role j in period t.

φBikt is the cost of changing whether or not employee i ∈ ER boards vessel k in advance

of period t.

φDikt is the cost of changing whether or not employee i ∈ ER leaves vessel k in advance of

period t.

φBAjt is the cost of changing whether or not an agency employee must board in order to

carry out role j in period t.

φDAjt is the cost of changing whether or not an agency employee will depart a vessel having

carried out role j in period t− 1.

φLλijt is the cost of changing whether or not employee i ∈ E works for at least a λth

consecutive week by carrying out role j in period t.

Formulation

Using the quantities defined above, and with other quantities remaining as defined in

section 6.1.1 earlier, we can formulate the recovery-type Time-Windows problem as follows:

min
∑
i∈ER

∑
∀k,t

(
φBiktb

±
ikt + φDiktd

±
ikt

)
+
∑
∀j,t

(
φBAjt β

±
jt + φDAjt δ

±
jt

)
+
∑
∀i,j,t

(
φWijtx

±
ijt +

∑
∀λ
φLλijtl

±
λijt

)
+
∑
i∈G

(
cUi u

±
i + cOi o

±
i

) (6.38)

subject to: ∑
∀i∈E

eijtx̂ijt = ajt ∀j, t (6.39)∑
j∈J

x̂ijt ≤ 1 ∀t, i ∈ ER (6.40)

b̂ik1 ≥
∑
j∈Vk

x̂ij1 − sik ∀k, i ∈ ER (6.41)

b̂ikt ≥
∑
j∈Vk

x̂ijt −
∑
j∈Vk

x̂ij,t−1 ∀k, i ∈ ER, t ∈ {2, . . . , T} (6.42)

d̂ik1 ≥ sik −
∑
j∈Vk

x̂ij1 ∀k, i ∈ ER (6.43)

d̂ikt ≥
∑
j∈Vk

x̂ij,t−1 −
∑
j∈Vk

x̂ijt ∀k, i ∈ ER, t ∈ {2, . . . , T} (6.44)

β̂j1 − δ̂j1 = x̂m+1,j1 − σj ∀j (6.45)

β̂jt − δ̂jt = x̂m+1,jt − x̂m+1,j,t−1 ∀j, t ∈ {2, . . . , T} (6.46)

117

ûi ≥ gi −

Ωi +
∑
j∈J

T∑
t=1

x̂ijt

 ∀i ∈ G (6.47)

ôi ≥

Ωi +
∑
j∈J

T∑
t=1

x̂ijt

− gi ∀i ∈ G (6.48)

ŵit ≥ ŵi,t−1 +
∑
j∈J

x̂ijt − wmaxi

1−
∑
j∈J

x̂ijt

 ∀t, i ∈ ER (6.49)

wmaxi l̂λijt ≥ ŵi,t−1 − wmaxi (1− x̂ijt) + x̂ijt − (λ− 1)
∀j, t, i ∈ ER,

λ ∈ {1, . . . , wmaxi }
(6.50)

α̂jt ≥ α̂j,t−1 + x̂m+1,jt − αmaxj δ̂jt ∀j, t (6.51)

α̂jt ≥ x̂m+1,jt ∀j, t (6.52)

αmaxj l̂λ,m+1,jt ≥ α̂jt − (λ− 1) ∀j, t, λ ∈
{

1, . . . , αmaxj

}
(6.53)

r̂it ≥ r̂i,t−1 −

1−
∑
j∈J

x̂ijt

 ∀t, i ∈ ER (6.54)

r̂it ≥ (ρi − 1)
∑
k∈K

d̂ikt ∀t, i ∈ ER (6.55)

ρi

1−
∑
j∈J

x̂ijt

 ≥ r̂i,t−1 ∀t, i ∈ ER (6.56)

x̂ijt = x∗ijt + (1− 2x∗ijt)x
±
ijt ∀i, j, t (6.57)

b̂ikt = b∗ikt + (1− 2b∗ikt)b
±
ikt ∀k, t, i ∈ ER (6.58)

d̂ikt = d∗ikt + (1− 2d∗ikt)d
±
ikt ∀k, t, i ∈ ER (6.59)

β̂jt = β∗jt + (1− 2β∗jt)β
±
jt ∀j, t (6.60)

δ̂jt = δ∗jt + (1− 2δ∗jt)δ
±
jt ∀j, t (6.61)

l̂λijt = l∗λijt + (1− 2l∗λijt)l
±
λijt ∀i, j, t, λ ∈ {1, . . . , w

max
i } (6.62)

u±i = ûi − u∗i i ∈ G (6.63)

o±i = ôi − o∗i i ∈ G (6.64)

x̂ijt, x
±
ijt ∈ {0, 1} ∀i, j, t (6.65)

l̂λijt, l
±
λijt ∈ {0, 1} ∀i, j, t, λ ∈ {1, . . . , w

max
i } (6.66)

b̂ikt, b
±
ikt, d̂ikt, d

±
ikt ∈ {0, 1} ∀k, t, i ∈ ER (6.67)

β̂jt, β
±
jt, δ̂jt, δ

±
jt ∈ {0, 1} ∀j, t (6.68)

ûi, ôi ≥ 0 ∀i ∈ G (6.69)

ŵit, r̂it ≥ 0 ∀i, t (6.70)

118

α̂jt ≥ 0 ∀j, t (6.71)

u±i , o
±
i are unrestricted ∀i ∈ G (6.72)

Here, the objective (6.38) states that the total cost of all changes should be minimized.

Note that the agency boarding and departing variables for individual tasks (β±jt and δ±jt) are

used rather than those counting the total number of agency crew boarding and departing

as in (6.1) previously. This is to account for the possibility that an agency employee is

added to one role on a vessel, but an agency assignment is cancelled for another role on

the vessel. This would give a net change for the vessel of zero, and hence this step must be

taken to ensure that the costs associated with each change are still included in the solution.

Meanwhile, constraints (6.39-6.56) fulfil essentially the same purpose as constraints

(6.2-6.21) in the basic formulation, ensuring the feasibility of the schedule and linking the

primary assignment decision variables with the boarding, departing, and work and rest

resource variables. The difference in this formulation is that we now use the new schedule

variables (with the •̂ notation) to replace the basic scheduling variables. Notice however

that because the boarding and departing of agency crew is now dealt with on a role-by-role

basis in the objective, there is no need for an equivalent to constraints (6.10) and (6.11).

As described earlier, this formulation introduces equations (6.57-6.64) to deal with the

linking between the values representing the current schedule (denoted by •∗), and the

sets of decision variables representing the new schedule (denoted by •̂) and the differences

between the two (denoted by •±). Finally, (6.65-6.72) ensure the correct definition of all

variables, as (6.22-6.29) did for the basic Time-Windows formulation.

6.1.3 A Change-minimization Formulation

As with the Task-Based problem, we will also generate an alternative approach to the

cost-minimization problem with the objective to minimize the number of changes in the

solution. In this case, we will consider a ‘change’ to take place when there is a change

directly to the schedule of employee i ∈ E at week t with respect to role j - we will not

count changes to the other aspects such as boarding, departing and working durations, as

these will only change as a consequence of the assignment changes.

Similarly to the Task-Based problem, this could be achieved simply by setting φWijt =

1 for all i ∈ E, j ∈ J and for all t in the planning horizon, and by setting all other

cost coefficients φBikt = φDikt = φBAjt = φDAjt = φLλijt = cUi = cOi = 0 for the formulation

presented in section 6.1.2 above. However, we again want this formulation to be more

useful in practical terms and therefore propose to continue to use the true values of the

cost coefficients, thereby allowing the setting of an upper limit Λ on the cost of the changes.

As before, we note that there is no guarantee that a solution with a smaller number of

119

changes will also have a lower cost.

We will first discuss the various modifications which must be made to the recovery-type

formulation, before presenting the change-minimization formulation.

Objective function

The objective is now to minimize the number of changes, which as stated above takes into

account only the direct changes to the assignment and not the knock-on effects to transport

arrangements or working durations. We therefore state the new objective function as:

min
∑
∀i,j,t

x±ijt (6.73)

This is, as discussed above, the equivalent of setting φWijt = 1 for all i ∈ E, j ∈ J and for

all t in the planning horizon, and by setting all other cost coefficients φBikt = φDikt = φBAjt =

φDAjt = φLλijt = cUi = cOi = 0 in the cost-minimization objective (6.38).

Cost limit

We can then modify the cost-minimizing objective to give a constraint which places an

upper limit Λ on the cost:

∑
i∈ER

∑
∀k,t

(
φBiktb

±
ikt + φDiktd

±
ikt

)
+
∑
∀j,t

(
φBAjt β

±
jt + φDAjt δ

±
jt

)
+
∑
∀i,j,t

(
φWijtx

±
ijt +

∑
∀λ
φLλijtl

±
λijt

)
+
∑
i∈G

(
cUi u

±
i + cOi o

±
i

)
≤ Λ

(6.74)

As with the Task-Based problem, there will be cases where a sensible upper limit will

not be known, or may not be desired when minimizing the number of changes is the only

concern. We can therefore if required set Λ equal to the highest possible value of the cost

function as follows:

Λ =
∑
∀i,j,t

(∣∣∣φWijt∣∣∣+
∑
∀λ

∣∣∣φLλijt∣∣∣)+
∑
i∈ER

∑
∀k,t

(∣∣φBikt∣∣+
∣∣φDikt∣∣)

+
∑
∀j,t

(∣∣∣φBAjt ∣∣∣+
∣∣∣φDAjt ∣∣∣)+

∑
i∈G

(
366

(∣∣cUi ∣∣+
∣∣cOi ∣∣)) (6.75)

Additional constraints

As with the Task-Based formulation, the need for additional constraints arises from the

need to ensure that undertime and overtime variables ûi and ôi for i ∈ G take the correct

values. We must therefore introduce new constraints to supplement inequalities (6.47) and

120

(6.48). To do this, we introduce a new variable ψi, defined for all i ∈ G as follows:

ψi =

1 if the overtime value for employee i is non-negative

0 if the undertime value for employee i is non-negative

0 or 1 if ûi = ôi = 0

Note that we could alternatively introduce two new variables, ψui and ψoi , which would

equal 1 if respectively undertime and overtime were non-negative, and equal zero otherwise.

However, as before we note that by definition at most one of ûi and ôi can take a positive

value for a given employee i, allowing us to use the single variable ψi for each employee

i ∈ G to indicate their overtime or undertime status.

Using this variable ψi we can supplement inequality (6.47) with the following two

expressions to ensure proper definition of ûi:

ûi ≤ gi −

Ωi +
∑
j∈J

T∑
t=1

x̂ijt

+M (1− ψi) ∀i ∈ G (6.76)

ûi ≤Mψi ∀i ∈ G (6.77)

and similarly use the following two expressions to supplement inequality (6.48):

ôi ≤

Ωi +
∑
j∈J

T∑
t=1

x̂ijt

− gi +Mψi ∀i ∈ G (6.78)

ôi ≤M (1− ψi) ∀i ∈ G (6.79)

Note that in the above expressions, M is a suitably large number which is greater than or

equal to the maximum possible value for the number of days of under- or over-time. Since

these are calculated on an annual basis, we can set M = 366.

Formulation

We can now update the formulation given in section 6.1.2 with the new information given

above. This gives us the following formulation for the Time-Windows problem with an

objective of minimizing the number of changes:

min
∑
∀i,j,t

x±ijt (6.80)

121

subject to:

∑
i∈ER

∑
∀k,t

(
φBiktb

±
ikt + φDiktd

±
ikt

)
+
∑
∀j,t

(
φBAjt β

±
jt + φDAjt δ

±
jt

)
+
∑
∀i,j,t

(
φWijtx

±
ijt +

∑
∀λ
φLλijtl

±
λijt

)
+
∑
i∈G

(
cUi u

±
i + cOi o

±
i

)
≤ Λ

(6.81)

∑
∀i∈E

eijtx̂ijt = ajt ∀j, t (6.82)∑
j∈J

x̂ijt ≤ 1 ∀t, i ∈ ER (6.83)

b̂ik1 ≥
∑
j∈Vk

x̂ij1 − sik ∀k, i ∈ ER (6.84)

b̂ikt ≥
∑
j∈Vk

x̂ijt −
∑
j∈Vk

x̂ij,t−1
∀k, i ∈ ER,
t ∈ {2, . . . , T}

(6.85)

d̂ik1 ≥ sik −
∑
j∈Vk

x̂ij1 ∀k, i ∈ ER (6.86)

d̂ikt ≥
∑
j∈Vk

x̂ij,t−1 −
∑
j∈Vk

x̂ijt
∀k, i ∈ ER,
t ∈ {2, . . . , T}

(6.87)

β̂j1 − δ̂j1 = x̂m+1,j1 − σj ∀j (6.88)

β̂jt − δ̂jt = x̂m+1,jt − x̂m+1,j,t−1 ∀j, t ∈ {2, . . . , T} (6.89)

ûi ≥ gi −

Ωi +
∑
j∈J

T∑
t=1

x̂ijt

 ∀i ∈ G (6.90)

ûi ≤ gi −

Ωi +
∑
j∈J

T∑
t=1

x̂ijt

+M (1− ψi) ∀i ∈ G (6.91)

ûi ≤Mψi ∀i ∈ G (6.92)

ôi ≥

Ωi +
∑
j∈J

T∑
t=1

x̂ijt

− gi ∀i ∈ G (6.93)

ôi ≤

Ωi +
∑
j∈J

T∑
t=1

x̂ijt

− gi +Mψi ∀i ∈ G (6.94)

ôi ≤M (1− ψi) ∀i ∈ G (6.95)

ŵit ≥ ŵi,t−1 +
∑
j∈J

x̂ijt − wmaxi

1−
∑
j∈J

x̂ijt

 ∀t, i ∈ ER (6.96)

wmaxi l̂λijt ≥ ŵi,t−1 − wmaxi (1− x̂ijt) + x̂ijt − (λ− 1)
∀j, t, i ∈ ER,

λ ∈ {1, . . . , wmaxi }
(6.97)

α̂jt ≥ α̂j,t−1 + x̂m+1,jt − αmaxj δ̂jt ∀j, t (6.98)

122

α̂jt ≥ x̂m+1,jt ∀j, t (6.99)

αmaxj l̂λ,m+1,jt ≥ α̂jt − (λ− 1)
∀j, t,

λ ∈
{

1, . . . , αmaxj

}(6.100)

r̂it ≥ r̂i,t−1 −

1−
∑
j∈J

x̂ijt

 ∀t, i ∈ ER (6.101)

r̂it ≥ (ρi − 1)
∑
k∈K

d̂ikt ∀t, i ∈ ER (6.102)

ρi

1−
∑
j∈J

x̂ijt

 ≥ r̂i,t−1 ∀t, i ∈ ER (6.103)

x̂ijt = x∗ijt + (1− 2x∗ijt)x
±
ijt ∀i, j, t (6.104)

b̂ikt = b∗ikt + (1− 2b∗ikt)b
±
ikt ∀k, t, i ∈ ER (6.105)

d̂ikt = d∗ikt + (1− 2d∗ikt)d
±
ikt ∀k, t, i ∈ ER (6.106)

β̂jt = β∗jt + (1− 2β∗jt)β
±
jt ∀j, t (6.107)

δ̂jt = δ∗jt + (1− 2δ∗jt)δ
±
jt ∀j, t (6.108)

l̂λijt = l∗λijt + (1− 2l∗λijt)l
±
λijt

∀i, j, t,
λ ∈ {1, . . . , wmaxi }

(6.109)

u±i = ûi − u∗i i ∈ G (6.110)

o±i = ôi − o∗i i ∈ G (6.111)

x̂ijt, x
±
ijt ∈ {0, 1} ∀i, j, t (6.112)

l̂λijt, l
±
λijt ∈ {0, 1}

∀i, j, t,
λ ∈ {1, . . . , wmaxi }

(6.113)

b̂ikt, b
±
ikt, d̂ikt, d

±
ikt ∈ {0, 1} ∀k, t, i ∈ ER (6.114)

β̂jt, β
±
jt, δ̂jt, δ

±
jt ∈ {0, 1} ∀j, t (6.115)

ψi ∈ {0, 1} ∀i ∈ G (6.116)

ûi, ôi ≥ 0 ∀i ∈ G (6.117)

ŵit, r̂it ≥ 0 ∀i, t (6.118)

α̂jt ≥ 0 ∀j, t (6.119)

u±i , o
±
i are unrestricted ∀i ∈ G (6.120)

The majority of the constraints are unchanged from the cost-minimizing formulation,

with constraints (6.82 - 6.90), (6.93), (6.96 - 6.115) and (6.117 - 6.120) being identical

to expressions (6.39 - 6.72) in section 6.1.2 above. As discussed however, the objective

function (6.80) is now different, with the objective being to minimize changes, and the

123

previous objective function expression has been incorporated into inequality (6.81) to allow

a cost limit to be placed on the solution. Also added to the problem are constraint sets

(6.91), (6.92), (6.94) and (6.95), which allow undertime and overtime values to be correctly

evaluated; along with expression (6.116) which gives the correct definition of new variable

ψi.

6.1.4 A Note on the Relative Problem Sizes

Having set out the formulation of the Time-Windows problem, it is perhaps worthwhile

to discuss how the size of this problem compares to that of the Task-Based version. This

discussion can be made with respect to any crew group, but for simplicity we will deal

specifically with the Captains crew group, as this relates directly to the results discussed

both earlier in section 5.5 and later in section 6.3.

Firstly we review a number of values required in this discussion:

• There are m regular employees to be scheduled, plus the agency employees with index

m+ 1.

• There are n roles which must be covered. Note that for the Captain crew group there

will be only one role per vessel, and therefore there are also n vessels to be covered;

however, the number of vessels is not important in this discussion.

• For the Task-Based model, these roles will be divided up into tasks of predetermined

length. In Chapter 5 we defined the total number of tasks to be carried out as nW ;

however, for clarity here we will redefine this number as ν here.

• The planning period is T weeks long.

• Each employee has a contractually specified longest working time - the maximum of

these over all employees is Wmax
i .

• Since, as noted in section 5.4, the projects do not relate to the Captains crew group,

and since as noted in section 6.1.1 the experience constraints are ignored in the formal

description of the Time-Windows model, we will disregard the number of projects

and their requirements from this calculation.

Using these values, it can be seen from the formulation given in section 5.2 that the

maximum number of variables in the Task-Based problem can be given by the expression

2m+ 2ν (T + 1) (2m+ 1) (6.121)

124

while the maximum number of constraints in the problem can be expressed as

m+ ν + 6mν (T + 1) (6.122)

Clearly both of these expressions are of order O (mνT).

Meanwhile, from the formulation given in section 6.1.2 it can be calculated that the

number of variables in the Time-Windows problem is at most

nT + 2m (T + 2) + 2nT (m+ 1) (Wmax
i + 3) (6.123)

while the number of constraints will be at most

4m+ 6nT + 5mT (n+ 1) + 2nTWmax
i (m+ 1) (6.124)

Both of these expressions are of the order O (mnTWmax
i).

These expressions can be more readily compared if it is noted that there is a relationship

between the number of roles n and the number of tasks ν. In the data generating algorithm

laid out in section 5.4, we assumed that the number of tasks into which any one role can be

divided depends on an estimate of the maximum working time value across all employees,

which we will call W ave here. In this case, we can say that the number of tasks which will

be derived from a single role will be either
⌈

T
Wave

⌉
or
⌈

T
Wave

⌉
+ 1, meaning that ν will lie

in the range

n

⌈
T

W ave

⌉
≤ ν ≤ n

(⌈
T

W ave

⌉
+ 1

)
Using this expression, we would say that the size of the Task-Based problem is of order

O
(
mn T 2

Wave

)
.

Considering the extreme values of W ave, clearly the minimum value of the estimated

maximum working time is one week. This would mean each role divided into T tasks, and

give a total number of tasks ν = nT . Alternatively, if W ave ≥ T then this would make

it possible for each role to comprise only a single task over the T weeks of the planning

period, giving a total number of tasks ν = n. Therefore, removing the unknown W ave

term we can say that ν will lie in the range

n ≤ ν ≤ nT

As a result, we can now say that this size of the Task-Based problem is in the best case of

order O (mnT), and in the worst case is of order O
(
mnT 2

)
.

Comparing the expressions for the size of the problems, can say that the Time-Windows

problem is between O
(
Wmax
i
T

)
and O (Wmax

i) times the size of the Task-Based problem.

125

Alternatively, in terms of the estimated maximum working time W ave we can say that the

Time-Windows problem is O
(
Wmax
i ×Wave

T

)
times the size.

It is interesting to note from this that the size of the Time-Windows problem is not

necessarily greater than that of the Task-Based problem - in cases where the value of

W ave, and consequently also Wmax
i , is close to 1 and T is a standard length (i.e. around

13 weeks) then the fraction
Wmax
i
T will be less than 1, indicating that the Time-Windows

problem will be smaller than the Task-Based. However, for data which contains values of

W ave and Wmax
i which are larger (and in particular, are a larger proportion of T), the

Time-Windows problem will clearly be larger than the Task-Based formulation. This is of

course tempered by the benefit of the Time-Windows formulation giving a more realistic

representation of the problem, and therefore opening up the possibility of better solutions

being found.

6.2 Generating Time-Windows Data

As with the Task-Based problem, before investigating solution methods for the formulations

described in Sections 6.1.2 and 6.1.3, datasets had to be created. The datasets generated

for the Task-Based model as outlined in section 5.4 were not suitable to be used directly

here, since they were constructed on the assumption that all crew had the same contractual

conditions, and also since the costs of work and transport were aggregated together into

one single task change cost. Instead, the algorithm used to generate these datasets had to

be adapted to generate suitable Time-Windows data, based on the same key parameters

as before.

As with the Task-Based data, using these parameters along side some randomization,

datasets were generated which which while not being strictly ‘real’ would be realistic.

Here we go on to outline the procedure for doing this, as well as describing how uncertain

elements were once again accounted for.

6.2.1 Procedure for Data Generation

As in section 5.4.1, we now give a step-by-step outline of the process for generating the

realistic datasets for the Time-Windows formulation, while full details of the Xpress code

used can be seen in the appendix in section E.2.1. As before, there was a degree of

uncertainty about how some of the data elements should be generated, and this lead to

assumptions having to be made. Some of these assumptions are similar to that which were

made for the Task-Based data, while some are specific to the Time-Windows problem.

Section 6.2.2 below gives a discussion of the assumptions in more detail, while all the

assumptions made are also highlighted in bold within the relevant steps of the procedure.

126

Note that as before, data is only generated for a single crew group at a time.

Step 1 - Calculate number of roles:

• This is simply the sum of the number required on board each vessel (as per the data

given by the company).

Step 2 - Assign vessels regular crew and standard working pattern:

• Count the number of crew assigned to the various contract types

– Norwegian contracts will normally work 2 weeks on, 4 weeks off;

– Singapore contracts will normally work 10 weeks on, 5 weeks off;

– Otherwise, will be either 4-on-4-off or 5-on-5-off depending on vessel location.

• Assume that all crew assigned to a given vessel will be of the same contract

type (to ensure balance of regular back-to-back working).

– Norwegian contracts imply three employees are required to cover each role;

– Singapore contracts imply three employees can cover every two roles;

– Otherwise, two employees will be required to cover each role.

• Assume also that there are no other constraints on which contract type

will be assigned to which vessel (or which location).

• Assume that if there is not enough crew to cover all roles with the required

number regular employees, then agency employees will be assigned as

regulars to fill any gaps.

Step 3 - Determine standard crew-change times and standard assignments:

• Based on the contract type for the regular crew, will know the standard duration for

working in each role.

• Assume an even spread of crew change dates.

• If there is more than one of a role required on board a vessel, assume that

their change-over times are staggered.

• At random, assign a length of time each role has remaining on its initial assignment

at the start of the planning horizon.

• At random, assign one of the regular employees (as defined above) for each role to

be in that role at the start of the planning horizon.

127

• From here, can work along the timeline, assigning each employee to their regular role

for a period of time, with crew-change points as appropriate to the contract type.

• Assume that these regular patterns have also been observed immediately

prior to the planning horizon starting, which therefore allows a calculation

of the work resource and rest resource values at time zero.

• Assume that assignments for the final week of the planning horizon have

not yet been determined.

Step 4 - Generate employee availabilities:

• This will be done in the same way as in section 5.4, defining quantities p and q as

before and linking them through equation (5.57) - as a reminder, this states

0.008× p+ 0.992× q = 0.008

Day-to-day availabilities can be generated as before, potentially applying the reduc-

tion factor r (d) as defined in equation (5.58) as

r (d) =
(d− 28)

(n− 28)

and illustrated in Figure 5.1. Note that, as before, the values of the p and q are not

known, and the use of the reduction factor has not been validated, and therefore these

should be subject to the same variation across the datasets as for the Task-Based

data.

• Based on the day-by-day availabilities we can calculate each employee’s availability

for each week, since an employee is available for a week if and only if they are available

over all the days of that week.

Step 5 - Generate costs of changes for regular crew:

• In this case there are four cost types. These relate to: crew boarding a vessel; crew

departing a vessel; crew working on a specific role for a period of time; and crew

working longer than usual in a given role (known as extension cost).

• With respect to boarding and departing:

– Assume that these costs will depend on where the crew are normally

based and where the vessel is usually operating:

128

∗ Crew are European, North American, Asian, Australasian or

other.

∗ Vessels operate in Europe, Africa, USA, Brazil, Asia-Pacific, or

other.

– Assume that if either the boarding or the departing are due to take

place after the first four weeks of the horizon then cost of making the

change is less severe - the estimated cost would therefore be halved.

– Assume that because of the cost associated with arranging for the

change to be made, any saving made by cancelling a flight will not

completely cover the cost of an otherwise identical employee being

booked in to take the same flight instead.

• With respect to the working costs:

– Assume that if an employee is on a fixed contract and the assign-

ment is within the next four weeks that there is a small penalty /

admin cost associated with changing this. However, otherwise there

is no additional cost directly associated with them working during a

particular week.

– Assume if the employee is not fixed contract then the cost of making

the changes depends on the crew nationality - Norwegian crew will

have a higher day-rate cost.

• With respect to extension costs:

– Note: this will only be relevant to crew on other contracts on vessels based in

Europe, who would normally work four weeks on but could legally work for five.

– Assume that the penalty associated with an employee working a

longer than usual period on board the vessel is half the working cost

(i.e. equivalent to paying time-and-a-half).

• May also wish to consider the additional penalty cost as defined previously in equation

(5.59):

c′ij =

{
K × cFij if cFij > 0

cFij/K if cFij < 0

This can be applied in exactly the same manner as described in section 5.4. Note

that again it is not clear what a sensible penalty factor should be here, and hence it

should again be varied across the generated datasets.

129

Step 6 - Generate costs of changes for agency crew:

• Again, this can be done in a similar way to the regular crew.

• Assume that all agency crew will be sourced (relatively) locally and so

the transportation costs will be low.

• Assume that extension costs will not apply to agency crew.

• Assume that there is no penalty factor associated with disrupting assign-

ments, as agency crew by definition should be available at short notice -

therefore the penalty costs mentioned above do not apply.

• However, as in section 5.4 we may have a penalty arising from the undesirability of

employing agency crew. This was described in equation (5.60) as

c′m+1,j =

{
K × cFij if cFm+1,j > 0

cFm+1,j/K if cFm+1,j < 0

Note that as before it is not clear what a sensible penalty factor should be, and there-

fore the value should be varied across the generated datasets.

Step 7 - Generate terms of fixed contracts:

• Under- and over-rates will depend of crew nationality / contract type, as certain

Norwegian contract types are much more expensive.

• Assume that all fixed-contract employees are contracted to work 26 weeks

in the year.

• Assume the initial solution (before any cancellations had to be made due

to absence / illness) had all fixed-contract employees fully utilised - i.e.

all were set to work 26 weeks in the current contractual year.

• Can therefore calculate the expected working time outwith the planning horizon.

• From this, can calculate the amount of working time to which crew are currently

assigned, taking into account that they cannot work weeks for which they are now

unavailable.

• Can therefore calculate how many weeks under or over their guaranteed number an

employee is in line for under the current solution, taking into account any unavail-

ability.

130

Step 8 - Write the required information into a data file:

• File heading, and an indication of the values of the parameters used (as discussed

above).

• The number of weeks in the planning horizon.

• Employee details:

– Employee labels.

– Which of them are on fixed contracts (subset G in the formulation given in

section 6.1.2).

– Details for the fixed contract crew (i.e. under-rate, over-rate, number of guar-

anteed days, expected working time - cUi , cOi , gi and Ωi respectively in the given

formulation).

– The minimum rest and maximum working periods of the employees.

• Vessel and role details:

– The vessel labels.

– The roles which are to be performed on board each vessel.

– The time windows during which each role is required.

∗ Assume all roles are required at all times.

• The eligibility matrix, showing whether or not an employee is available each week.

– Assume that agency crew will be available and eligible to carry out

all tasks.

• Work and rest resource values at time zero (quantities ŵi0 and r̂i0 respectively in the

formulation).

• The initial solution, allowing for availability data. This can be calculated by mul-

tiplying together the two binary values indicating the initial assignments and the

availabilities. Clearly for agency crew, this will just be a case of printing the initial

assignment value.

• The change costs, comprising:

– The boarding change cost (the quantities φBikt for regular crew and φBAjt for

agency crew in the formulation).

– The departing change cost (quantities φDikt and φDAjt).

131

– The working change cost (φWijt).

– The extension change cost(φLλijt).

6.2.2 Dealing with Assumptions and Uncertainty

As before, there were several assumptions which could not be validated, even though they

appear intuitively sensible, and several values whose true value was uncertain. The same

approach was taken to tackle this, namely to generate numerous data sets with different

values of these uncertain parameters. As before, four factors were identified which should

be varied across datasets:

• The values of availability probabilities p and q;

• Whether or not to use the probability reduction factor r (d);

• The values of the disruption penalty factor K; and

• The values of the agency penalty factor KAG.

No reason was seen to change the values of these parameters from those which had

been used to generate the Task-Based data, and therefore the following groups of values

were again used:

• For the availability probabilities p and q, the following pairs of values:

1. p = 0.8 and q = 0.0016;

2. p = 0.5 and q = 0.004; and

3. p = 0.2 and q = 0.0065.

• For the probability reduction factor r (d), either:

1. Reduce probabilities p and q by multiplying by r (d); or

2. Do not use reduction factor r (d), and generate data using the unreduced values

of p and q.

• For the disruption penalty K, this would again be broken down into KN for disrup-

tions in the near-term and KL for disruptions in the longer-term, with KN and KL

taking the following combinations of values:

1. KN = 1, KL = 1;

2. KN = 2, KL ∈ {1, 2};

3. KN = 5, KL ∈ {1, 2, 5}; and

4. KN = 10, KL ∈ {1, 2, 5, 10}.

• For the agency penalty KAG, this would take values in the set {1, 2, 5, 10}.

132

6.2.3 Datasets Generated

As with the Task-Based data, the method given here was first used to generate datasets

for the Captain crew group. As well as being a good crew group for testing, for the reasons

outlined in section 5.4.3, this will also make possible some direct comparisons between the

test results for the Task-Based and Time-Windows formulations.

Datasets were generated using each of the 240 different possible combinations of the

parameter values described in section 6.2.2 above.

6.3 Initial Computational Results

As noted in section 6.1.4, it was expected that the Time-Windows problem would be much

larger than the Task-Based formulation for the equivalent data, and therefore be much

more difficult to solve to an acceptable level of accuracy within a reasonable amount of

time. However, this could not be assumed to be the case and so tests were carried out to

investigate the performance on the Time-Windows model of the solution approaches used

on the Task-Based formulation, as discussed in section 5.5.1.

6.3.1 Cost-minimization

As with the Task-Based data sets, the FICO Xpress software was used here, utilising its

inbuilt solution methods. As described previously, these comprise solving the LP relaxation

of the problem, followed by a heuristics and cutting-planes phase, and then a branch-and-

cut procedure. Full details of the code used can be found in appendix section E.2.2.

Preliminary tests were again carried out, which indicated that as anticipated the prob-

lem was larger and much more difficult to solve. This was seen in the solution time for

the LP relaxation, which for the selected Time-Windows data sets took around 30 to 50

seconds to run; in contrast, the LP relaxations for the Task-Based problem could be solved

in under 5 seconds. This indicated that, consequently, at each cutting iteration it would

also take significantly longer to evaluate the new solution value. In addition, the cuts and

heuristics themselves seemed largely ineffective at producing good integer solutions or good

lower bounds on the problem. As a result it was decided to run the programme on the

most basic settings - default cutting strategy, and default tolerance of the optimality gap

(i.e. within 0.0001%).

Figure 6.1 below shows the percentage gaps to the best known bound (from all test

runs) when these settings were carried out with a two-minute time limit. It can be seen

that for the majority of instances (135, or 56.25%, of the 240), the gap between the best

known bound and best solution found was between 95% and 100% of the solution value;

and for another 62 instances (25.83% of the total) the gap was between 90% and 95% of

133

Figure 6.1: Histogram of percentage gaps to best bounds for ‘direct’ solution of Time-
Windows instances using FICO Xpress, 2 minute time limit.

the solution value. Only 42 instances (17.5% of the total) solved even to within 90% of

the best bound, while only 5 instances were solved to optimality and 4 others to within

5% of optimal. This can be compared to Figure 5.2 for the two-minute settings of the

Task-Based problem. The contrast is obvious, given that the vast majority of the Task-

Based instances were solved to optimality (98 instances, ≈ 40.83% of the total) or at least

provably to within 5% of the bound (127 instances, ≈ 52.92% of the total) within two

minutes, as shown in the upper ‘Gap in run’ chart of the figure. For the Task-Based

problem almost all instances were solved to a good level of optimality within two minutes;

for the Time-Windows problem hardly any instances could be solved to an acceptable level.

Investigation was also made into an ‘extended’ run, similar to that used for the Task-

Based problem for particularly difficult problem instances. For this, the time limit was set

to one hour (i.e. 3600 seconds); the other settings were however left at their default values.

Figure 6.2 below illustrates the gaps to the best known bound (again taking into account

all test runs) for the best solutions found within the one hour time limit. We see from this

graph that there is a more even spread of gaps across the range, although there is still a

greater occurrence of larger gaps, with the most common sizes of gap being between 90%

134

Figure 6.2: Histogram of percentage gaps to best bounds for ‘direct’ solution of Time-
Windows instances using FICO Xpress, 1 hour time limit.

and 95% (41 instances, ≈ 17.08% of the total) and between 85% and 90% (39 instances,

16.25% of the total). It can be seen that with the one hour time limit, more instances

solve to within 5% of optimal than with the two minute time limit. In Figure 6.2 we see 17

instances (≈ 7.09% of the total) are solved to optimality for the one-hour settings, while

a further 11 (≈ 4.58% of instances) were solved to within 5% of the best bound; this is

compared to 5 instances and 4 instances respectively with the two-minute settings.

While clearly there is an improvement in the results for the one-hour approach discussed

here, it is still noticeable that the level of accuracy to which these Time-Windows instances

can be solved is poor compared to the results for the Task-Based problem. Note that in light

of this, it was felt that it would not be particularly informative to carry out an equivalent

of the ten-minute settings that were used for the Task-Based problem. The conclusion we

can draw from these results is that the ‘direct’ cost-minimization solution method is not

suitable for solving the Time-Windows problem in practice, especially when we consider

that Planners are often operating under time pressure and consequently waiting even ten

minutes let alone an hour is not really feasible. Instead, it would appear that a more

tailored solution method is needed to find good quality solutions in a reasonable amount

135

of time. The subsequent sections of this chapter discuss ideas and results of other solution

methods, starting with section 6.4.

6.3.2 Change-minimization

There was also a need to test the change-minimization approach devised for the Task-

Based problem on the Time-Windows data sets. Preliminary tests however indicated that

the procedure described in Algorithm 5.2 below could not be used here without some

modifications. Firstly, while the non-cost-constrained problem solved extremely quickly

for the Task-Based formulation, the equivalent for the Time-Windows problem was harder

to solve and in some cases could take longer than the usual two-minute time limit to solve

to optimality; therefore a time limit had to be placed on this non-cost-constrained problem

where none had been used in Algorithm 5.2.

Also requiring to be altered was the way the cost limit was lowered. Because the

problem was more difficult to solve, it appeared that fewer iterations could be achieved

within the time limit and that therefore a greater initial cost reduction might be desir-

able in order to bring about a faster initial decrease in the cost. The potential issue with

larger percentage reductions was that it would force the cost limit below the minimal value

for the instance, making the problem infeasible, and so a more flexible way of reducing

the percentage also had to be found. In order to monitor potential infeasible cost lim-

its, this algorithm records a lower bound Λmin on the cost. The algorithm used for the

change-minimization approach can be seen in Algorithm 6.1, with full detail of the code

implemented in FICO Xpress given in the appendix in section E.2.3.

Note that the algorithm states that the initial value of Λmin should be set equal to

the negative of the initial value of Λ. This can be done since the initial value of Λ is an

aggregation of all the absolute values of all the costs, i.e. a value that the cost cannot

exceed, and therefore the negative of this will put a simple lower bound on the solution

cost. The value of this however is very likely to be a considerable distance from the true

minimum possible value for the problem. We note also that the means of calculating κ is

not given in the algorithm, for the purposes of simplicity. For the Time-Windows problem,

this can be done in a similar way to that discussed in Algorithm 5.2 - using the left hand

side values of constraint (6.81) in the Time-Windows change-minimization formulation, we

can calculate the cost of the solution as

κ =
∑
i∈ER

∑
∀k,t

(
φBiktb

±
ikt + φDiktd

±
ikt

)
+
∑
∀j,t

(
φBAjt β

±
jt + φDAjt δ

±
jt

)
+

∑
∀i,j,t

(
φWijtx

±
ijt +

∑
∀λ
φLλijtl

±
λijt

)
+
∑
i∈G

(
cUi u

±
i + cOi o

±
i

) (6.125)

In terms of results for this, we will firstly look at the number of solutions found by

136

Algorithm 6.1 Algorithm for solving the Time-Windows problem using Change-
minimization

set iteration time limit τI = 30 seconds, and overall time limit τT = 120 seconds
set Λ at maximum value (see equation (6.75)), and set initial lower bound Λmin = −Λ
set terminate = false
solve the problem with cost limit Λ and time limit τI
if no feasible integer solution is found then

set terminate = true
else

calculate solution cost κ (see equation (6.125))
end if
set initial proportion π = 0.81, and set Λ0 = −10, which will be the cost limit if κ = 0
while terminate = false do

repeat

calculate new cost limit Λ =

{
Λ0 if κ = 0

κ− |πκ| otherwise

if new cost limit Λ < Λmin then
set π ← 2

3 × π
end if

until Λ ≥ Λmin

solve problem with cost limit Λ and time limit τI
if problem is infeasible then

set lower bound Λmin = Λ
else if no feasible integer solution is found then

if π < 0.06 then
set terminate = true

else
set π ← 2

3 × π
set Λ0 = −1

end if
else

set Λ0 = −10
calculate solution cost κ (see equation (6.125))

end if
calculate total running time τR
if τR > τT then

set terminate = true
else if τR > τT − τI then

set τI = bτT − τRc+ 1
else
τI remains unchanged

end if
end while

137

Algorithm 6.1 for each instance. This can be summarised in Figure 6.3 below. As can be

Figure 6.3: Number of solutions found by each instance using algorithm for change-
minimization approach.

seen, the number of solutions found is far fewer than for the Task-Based problem, as shown

in Figure 5.5. Whereas for the Task-Based algorithm, all instances were provided with at

least 5 solutions, for the Time-Windows problem we see that 5 solutions the maximum

number that any achieves within the two-minute time limit. Even then, there is only a

single instance for which this was possible, with the majority of instances (140 of the 240,

≈ 58.33%) resulting in only three solutions. The mean number of solutions found was less

than this, at only ≈ 2.74 solutions for the average instance. This indicates that for the

Time-Windows problem, if the change-minimization procedure was used then the choice

of solutions available to the Planner would be a limited one.

Connected with this, it is interesting to consider the number of iterations carried out

for each instance - this is summarised in Figure 6.4. From this, it can be seen that all

instances saw five iterations of the algorithm carried out, while the majority of instances

(143, i.e. ≈ 59.58% of the total) had 6 iterations of the algorithm. At a maximum, there

were 11 iterations carried out for two of the instances, with the average being ≈ 6.62.

Clearly there is an inconsistency between the number of iterations of the algorithm

138

Figure 6.4: Number of iterations of change-minimization algorithm carried out for each
instance.

carried out and the number of solutions found for each instance. This arises from the time

restriction placed on the algorithm, which means many iterations are terminated before

any integer solution can be found. A breakdown of the iterations across all 240 instances

can be seen in Table 6.1 below. The table distinguishes between iterations (combined

across all instances) for which an optimal solution was found, for which the problem was

found to be infeasible, and for which the programme was terminated before it could be

completed. For these unfinished iterations, a small number found an integer solution in

the time available while the majority did not. As well as being given for all iterations, this

breakdown is also given ignoring the results for the non-cost-constrained solution. This

is done because for all instances, the non-cost-constrained problem solved to optimality

in a matter of seconds; therefore removing these 240 ‘optimal’ instances gives a further

indication of how the algorithm performs for instances which have a cost limit set on them.

The table shows that only ≈ 40.55% of instances found an optimal solution, with a further

≈ 0.82% finding a solution before terminating the search early. Discounting the non-cost-

constrained solutions, only ≈ 30.93% of iterations resulted in an integer solution, while

over half the cost-constrained iterations (≈ 50.22%) were terminated before any solution

could be found (or infeasibility proved). This accounts for the discrepancy between the

139

Table 6.1: Breakdown of iterations in Change-minimization approach to Time-Windows
problem

Optimal Unfinished; Unfinished; Problem
solution integer no integer infeasible TOTAL
found soln found soln found

All Count 644 13 677 254 1588
iterations % 40.55% 0.82% 42.63% 15.99% 100%

Ignore non- Count 404 13 677 254 1348
cost-constr % 29.97% 0.96% 50.22% 18.84% 100%

number of iterations carried out and the number of solutions obtained for the instances.

We can also consider the gaps to the best known bound for the solutions found by the

change-minimization procedure. Figure 6.5 shows a summary of these gaps (to the best

bound found during the ‘direct’ cost-minimization test runs) for the lowest-cost solutions

found by the change-minimization procedure for each instance. The chart shows quite a

spread of gap sizes for these solutions, ranging from one instance for which the optimal

solution was found, to another instance where the gap between best solution and best

bound was over 100% (i.e. the solution value was more than double the gap value). The

tendency is towards instances having gaps of over 55%, with the gaps of from 65% to 70%

and from 85% to 90% having the most occurrences (26 instances, ≈ 10.83% of the total, in

each bracket). On average, the gap between the best bound and lowest cost solution was

≈ 59.78%.

It is interesting to compare this graph with the equivalent results for Algorithm 5.2

for the Task-Based problem, as shown in Figure 5.6. In that case, 198 instances (82.5% of

the total) were solved to within at most 5% of the best known bound, and for 21 (8.75%

of the total) of these the optimal solution was found; for the Time-Windows results given

here, the numbers were 8 instances and 1 instance respectively. This again highlights the

difficulty of solving the Time-Windows problem, with the change-minimization approach

struggling much as the cost-minimization approach does to achieve the same level of results

for this as for the Task-Based problem.

Perhaps a fairer comparison however is between the cost-minimization and change-

minimization results for the Time-Windows problem. If we look at the two figures given

above summarising the gaps to the best bound in the two-minute and one-hour cost-

minimization runs (Figures 6.1 and 6.2 respectively), we see that the results shown in Fig-

ure 6.5 demonstrate a much better performance in two minutes by the change-minimization

than by the cost-minimization approach. The comparison with the one-hour cost-minimization

setting is more equal, with the change-minimization results showing fewer instances being

solved to optimal or very near to optimal, but also fewer with gaps of 80% or higher.

140

Figure 6.5: Gap to best bound for lowest-cost solutions found in two minute Change-
minimization test run for the Time-Windows formulation.

Therefore, while the change-minimization approach may appear less successful for the

Time-Windows problem than for the Task-Based, it is still more successful that the cost-

minimization approach at producing lower cost solutions for the Time-Windows problem

in a short time frame.

Another set of results which can be shown is the quality of the first, i.e. non-cost-

constrained, solution which is found by the change-minimization algorithm. These results

can be summarised in Figure 6.6 below. As can be seen, the size of gap is over 80% for

all instances, with almost all instances falling into the categories of either between 90%

and 95% (105 instances, 43.75% of the total) or between 95% and 100% (115 instances,

≈ 47.92% of the total) gap to the best bound. Interestingly, to an extent even this non-

cost-constrained solution seems to outperform the two-minute cost-minimization approach

for solving the Time-Windows problem. As can be seen in Figure 6.1, the two-minute

cost-minimization approach solved 26 instances (≈ 10.83% of the total) to within 80% of

the best bound while the change-minimization solution had no instances achieving this;

however, the 151 instances (≈ 62.92%, of the 240) which resulted in a gap of between

95% and 100% is a greater number than in this category for the non-cost-constrained

change-minimization solutions. While this out-performance is not particularly large, it

141

Figure 6.6: Gap to best bound for the non-cost-constrained solutions found in two minute
Change-minimization test run for the Time-Windows formulation.

still demonstrates that the change-minimization approach in itself yields solutions of a

reasonable quality as compared to the two-minute cost-minimization settings. One possible

explanation for this when it was not observed for the Task-Based problem, is that the

Time-Windows data represents a stronger link between cost and number of changes.

6.3.3 Summarising the Initial Results

To summarise the results given in sections 6.3.1 and 6.3.2 above, we have seen that neither

the cost-minimization nor change-minimization approaches used for the Task-Based prob-

lems are as effective when applied to the more complex Time-Windows formulation of the

problem. The change-minimization approach is more successful than the cost-minimization

over a short time limit at producing lower cost solutions; however it does not produce nu-

merous solutions to the same extent as when applied to the Task-Based problem because

of the time required in some iterations to produce a solution. This would have the conse-

quence that Planners could not be presented with a good range of solution options if using

the change-minimization algorithm.

The implications of these results are that other solution methods should be investigated

142

to find other approaches which may be able to produce a greater number of solutions,

solutions of a higher quality, or solutions in a shorter time frame than those approaches

used for the Task-Based problem. The remainder of this chapter discusses some alternative

solution methods. Sections 6.4 to 6.7 outline possible solution approaches to the problem,

with further computational results described and discussed in sections 6.8 and 6.9.

6.4 Using the Task-Based Formulation as an Approximation

The first alternative solution method considered for the Time-Windows problem involved

turning attention back to the simpler Task-Based formulation. As has been discussed, the

Task-Based formulation has a clear disadvantage of lacking flexibility and is a less accurate

representation of the true nature of the problem than the Time-Windows formulation.

However, as shown by our initial computational results in section 6.3 above it had an

advantage over the Time-Windows problem of being easier and therefore quicker to solve.

This gave rise to the idea that the Task-Based formulation could be used to quickly

find a solution to the Time-Windows problem. It was clear that assumptions would have

to be made, in particular with respect to task lengths, in order for the Time-Windows

problem data to be fed into a Task-Based formulation. Once a solution had been found

(in our case, this was done using the cost-minimization approach outlined in section 5.5.1;

however, this could also be done using the change-minimization approach or indeed some

other method not considered here), this could be translated back into the Time-Windows

problem variables, with role assignments being derived from the task assignments and the

other auxiliary variables being calculated from these. With correct assumptions during

the process, the solution space for this Task-Based Approximation should be a subset of

the Time-Windows problem it represents, and therefore any solutions to this Task-Based

problem should be feasible for the original Time-Windows formulation and should have

the same objective function value.

6.4.1 Procedure for the Task-Based Approximation approach

The procedure is divided into four parts: converting the data into the Task-Based format,

solving the problem, converting the solution to the Time-Windows format, and checking

the feasibility. For simplicity, details are not not given here; instead, a description of the

procedure, including all assumptions needed to ensure the Task-Based solution will be

feasible in the Time-Windows formulation, can be found in the appendix in section C.1.

Note that full details of the algorithm as implemented in FICO Xpress can also be found

in the appendix, section E.2.4.

143

6.4.2 Making use of the Task-Based Approximation solution

Analysis of the results produced by this Task-Based Approximation approach is given later

in this chapter, in section 6.8. However, even before results were known some thought was

given to how useful this approach might be in solving the Time-Windows problem.

When first proposed, it was not known how good the solutions found in this way

would be. It was believed a solution could be found quickly, but because of the level of

simplification needed to adapt the problem to the Task-Based format it was not expected

to provide particularly high quality solutions. A plan was therefore devised that once a

solution had been found it would be improved by a heuristic algorithm which would seek

to reduce the cost. As well as improving solution quality, this type of approach could

result in a system which could provide multiple solutions to the Planners, which would

be desirable since the Task-Based Approximation approach described here produces only

a single solution which may not be acceptable with regard to implicit constraints. The

approach taken to developing the heuristics used are discussed in section 6.5 below.

6.5 A Heuristic Algorithm

As discussed above (section 6.4), the Task-Based formulation can be used as an approxima-

tion of the Time-Windows formulation, and can be used to quickly find feasible solutions

to this more realistic problem. The quality of this solution, however, is unlikely to be high

since the solution space has been limited in the approximation process. It would therefore

seem reasonable to investigate ways to improve this solution once it has been found, and

so a heuristic algorithm has been designed.

The design of this algorithm was an iterative process, with versions being tested, mod-

ified, and re-tested in order to find the most useful procedure. In total, eight distinct

prototype versions of the heuristic algorithm were created, with the most promising ele-

ments of each being selected for inclusion in the formal testing of the programme. This

section proceeds as follows: firstly, sections 6.5.1 and 6.5.2 describe the basic principles

of the heuristic, followed by an outline of the eight prototype algorithms in section 6.5.3.

Finally, the elements of the final testing version of the algorithm are discussed in sections

6.5.4 and 6.5.5, along with an outline of a possible improvement in section 6.5.6.

6.5.1 Solution Representation

The basic principle of this heuristic is that of a neighbourhood search, where a solution is

defined by a set of rosters (i.e. list of assignments). For each regular employee i ∈ ER,

there is a roster Υi containing T elements, representing the assignment of employee i in

each time window t ∈ {1, . . . , T} under this solution. We will say that the element in Υi

144

representing time t has the value jit . If employee i is assigned a task j ∈ J at time t then

jit = j; if employee i is unassigned then jit is given the label rest. It is assumed that any

role j which cannot be covered by regular crew at time t will be covered instead by agency

crew. However, because there may be multiple agency crew required at a given time t, we

cannot define a roster for agency crew; instead, we should define a separate set Θj for each

role j ∈ J . Set Θj is defined such that if an agency employee is required in role j at time

t, then t will be an element in Θj . If no agency employees are required in role j across the

planning period, then Θj = ∅.
Using the information contained in the rosters Υi, along with the input data such

as initial working time wi0 and starting location indicator sik, it is possible to infer all

‘new schedule’ decision variables of the main formulation (as given in section 6.1.2) for

employee i ∈ ER: x̂ijt, ôi, ûi, b̂ikt, d̂ikt, ŵit, r̂it and l̂λijt. Since more than one agency

employee could be assigned to a role during the planning horizon, and it is possible that

two agency employees could work back-to-back in a role, it is necessary to store additional

information about the crew change times for agency crew. In addition to the set Θj , we

therefore also define a set Ξj which will contain all time periods t in advance of which an

agency employee either boards or departs role j ∈ J . Using this additional information, as

well as the corresponding input data such as initial working time αj0 and starting location

indicator σj we can now similarly infer all ‘new schedule’ decision variables for agency

crew: x̂m+1,j,t, β̂jt, δ̂jt, α̂jt, and l̂λ,m+1,j,t. If the new schedule variables can be inferred

from this information, then it follows that by comparing with the existing schedule, we

can determine which elements have changed under this new solution, and therefore which

costs could be applied. We therefore say that describing any solution using the rosters Υi

and sets Θj and Ξj gives enough information to evaluate that solution for feasibility and

objective function value.

6.5.2 The Neighbourhood

Using this ‘roster’ representation of the solution, it is then possible to define the neigh-

bourhood as the solutions created by making changes to these rosters. The basic changes

which can be made are to increase or decrease the amount of consecutive time an employee

works on a particular vessel, or to swap an assignment or group of assignments from one

employee to another. In order to facilitate the detailed definition of these changes, we first

define the concept of a block of work, which is a set of consecutive time periods during

which an employee is assigned to the same role.

145

6.5.2.1 Defining blocks of work

We can divide these blocks into two types: a planned block starts during the planning

period, i.e. in or after week 1; a current block is one which is already in progress when

planning is taking place, i.e. it has started in or before week zero and is due to finish at

some point after week zero. Formally, we can say a planned block of length λB ≥ 2 is a

group of elements in roster Υi which satisfies the following conditions:

jitS = jitS+1 = . . . = jitS+λB−1 6= rest (6.126)

and, if tS > 1, then

jitS−1 6= jitS (6.127)

or, if tS = 1, then for the vessel k ∈ K such that ji
tS
∈ Vk

sik = 0 (6.128)

and, if tS + λB − 1 < T , then

jitS+λB−1 6= jitS+λB (6.129)

We say that this block starts in period tS and ends in week (tS + λB − 1). An isolated

single period of assignment ji
tS
6= rest is also considered to be a block of length λB = 1 if

it satisfies condition (6.129) and either condition (6.127) or condition (6.128) above.

A current block by definition takes place at least partially (and possibly wholly) before

the planning period, and therefore cannot be identified purely by examining roster Υi.

Instead we must recognise that an employee i working up to and including week zero will

have a non-zero work resource value a time zero (i.e. wi0 > 0) and will have a non-zero

value for one of the starting indicator variables (i.e. sik > 0) for the vessel k ∈ K on

board which the block of work takes place. For some employee i such that wi0 > 0, we

can identify the start time of the block as week tS = (1− wi0). Given that the block is of

length λB ≥ wi0, we say that the block ends following week (λB − wi0). Therefore for an

employee i ∈ ER to have a current block under a given solution, the following conditions

must be satisfied:

wi0 > 0 (6.130)

and, if λB = wi0, then for the vessel k such that sik > 0

ji1 /∈ Vk (6.131)

146

otherwise, if λB > wi0, then for the vessel k such that sik > 0

ji1 ∈ Vk (6.132)

and, if λB > wi0, then

ji1 = . . . = jiλB−wi0 (6.133)

and, if 0 < λB − wi0 < T , then

jiλB−wi0 6= jiλB−wi0+1 (6.134)

With these blocks identified, the algorithm explores the neighbourhood by making

alterations to these blocks either by making an extension, or making a swap.

6.5.2.2 Extending the blocks

A block can be extended by adding additional working periods such that it either ends

later (termed backward extension) or begins sooner (termed forward extension). Clearly a

current block cannot be extended forwards, since it has already begun during the planning

week zero; however if we consider a current block of length λB < T − wi0 in role role j

appearing on roster Υi, we can extend it backwards by 0 < λE ≤ T − (λB − wi0) periods

by setting

jiλB−wi0+1 = . . . = jiλB−wi0+λE = j (6.135)

Note that the upper limits on λB and λE here ensure that we are only dealing with weeks

within the planning period. Similarly, if roster Υi contains a planned block in role j

starting at time tS of length λB ≤ T − t, then we can extend this block backwards by

0 < λE ≤ T − (tS + λB − 1) periods by setting

jitS+λB = . . . = jitS+λB+λE−1 = j (6.136)

Where the upper limits on λB and λE again ensure that we are only dealing with weeks

within the planning period. There is no necessity to place an upper limit on λB for carrying

out forward extension. In this case, provided the planned block described starts at time

tS > 1, it can be extended forwards by 0 < λE ≤ tS − 1 periods by setting

jitS−λE = . . . = jitS−1 = j (6.137)

It should be noted that whenever a block is extended, another block should be short-

ened. This block may correspond to another employee i′ ∈ ER working back-to-back with

employee i in role j, or may be a part of the set of agency tasks Θj . Since it is not possible

147

for more than one employee to work in a role in a given week (see constraint (6.39) in sec-

tion 6.1.2), the relevant roster Υi′ or set Θj must also therefore be amended to maintain

feasibility.

It should also be noted that the extensions described here while being technically

possible will not necessarily produce a feasible solution to the problem. In particular,

constraints described in section 6.1.2 above relating to working period ((6.50) for i ∈ ER
and (6.53) for agency crew) and rest period (i.e. (6.54), (6.55) and (6.56)) lengths may

not be satisfied. If we wish to maintain feasibility throughout the running of the heuristic

algorithm, and discount any infeasible solutions from the neighbourhood, we must check

that the proposed extension does not violate these constraints before carrying it out.

It can be seen that no definition is given here for extending blocks of work for agency

crew. This is due to the cost structure of the problem, with agency employees typically

costing up to double that of regular crew to employee in a role. This makes it highly

unlikely that an increase to the amount of agency crew utilised will result in a reduction

in the overall cost of the solution, and it was therefore deemed not an efficient use of

computational time to examine this option in the algorithm.

6.5.2.3 Swapping blocks

A swap involves exchanging a block of work on one employee’s roster for a block occurring

at a similar time on another employee’s roster. Because this involves altering a whole block,

the fixed elements of a current block prevent it from being used in swap. Alternatively, if

we have identified a planned block on roster Υi in role j, starting at time tS and ending at

time (tS+λB−1), then this can be swapped with a different planned block of role j′ on the

roster of employee i′, starting at time t′S and of length λ′B, which satisfies the following:

t′S ≥ tS − 1 (6.138)

and

(t′S + λ′B − 1) ≤ (tS + λB − 1) + 1 (6.139)

Note that condition (6.139) can equivalently be stated as (t′S + λ′B) ≤ (tS + λB) + 1.

Together, these conditions require the swapping block to start not more than one period

before and end not more than one period after the initially selected block. To carry out

the swap, we simply transfer the elements of each block from one employee’s roster to the

other. However, as with the extensions described above, while this may give a technically

valid solution in terms of the solution representation, there are also feasibility concerns

to be addressed. Therefore we must check for violations of the working and rest period

148

constraints (i.e. (6.50) for i ∈ ER and (6.53) for agency crew; and (6.54), (6.55) and (6.56)

respectively).

In the case of a swap, it is also possible to exchange the selected block with a block of

agency work. To search for a block of agency work in a role j we examine set Θj along

with the additional crew change information in set Ξj . We say that set Θj contains a

block of length λB ≥ 1, starting at time tS , if it contains elements satisfying the following

conditions:

t ∈ Θj for all tS ≤ t ≤ (tS + λB − 1) (6.140)

and, if tS > 1, then

(tS − 1) /∈ Θj or tS ∈ Ξj (6.141)

and, if tS + λB − 1 < T , then

(tS + λB) /∈ Θj or (tS + λB) ∈ Ξj (6.142)

Note that agency crew blocks are only considered to be planned blocks - if tS = 1 then

this is taken to be the block start time regardless of the value of σj .

An agency block can be examined for swapping with the selected block if it satisfies

conditions (6.138) and (6.139) as for a regular crew block, i.e. if it starts not more than

one period before and ends not more than one period after the selected block. Also as with

the regular crew block, it is necessary to make additional checks to ensure that feasibility

is maintained when carrying out a swap with agency crew.

6.5.3 Preliminary Versions of the Algorithm

Having described the basic building blocks of the heuristic algorithm in the preceding

sections, we can now describe the various intermediate steps taken towards the creation of

the final test version. As might be expected, the development of the heuristic algorithm was

an iterative process, with various ideas being implemented, and then modified in response

to preliminary test results. This section outlines this process, giving details of what was

implemented in each of the eight preliminary versions of the heuristic algorithm, and an

outline of the preliminary results. Note that while the final version of the algorithm was

coded and tested using C++, it was more expedient to implement these earlier versions

of the algorithm using the FICO Xpress-MP software. While the structure and substance

of the algorithm is unaffected by this difference, it is clear that C++ results in a more

time-efficient algorithm. Therefore, while the preliminary results reported in this section

149

are comparable to each other, there is little comparison which can be made between these

and the final results given later in section 6.8.

6.5.3.1 Version 1

This first version of the algorithm provided the basis from which the others were developed.

The algorithm begins by reading in an initial solution and calculating the cost. It then

proceeds with an iteration by taking each employee i ∈ ER in turn, according to a random

ordering, and searching for blocks on roster Υi in chronological order from t = 1 to t = T .

When a block of work in role j is found, it is considered firstly for backward extension,

then for forward extension, and finally for a swap. The extension length in this first version

of the algorithm is limited to λE = 1.

As indicated previously (section 6.5.2), the aim is to maintain feasibility at every step.

Repairs can be made to some infeasibilities which might be caused by an extension. In

particular, it is possible that an extension will shorten a rest period between two blocks

such that it is less than ρi, the minimum rest period required for employee i. In this case,

the first element of the subsequent block (for backward extensions), or the final element

of the preceding block (forwards extension) can be re-labelled as rest, and the role in

that time period can be assigned to an agency employee instead. This cannot be done for

all restrictions however - those relating to working period lengths or involving fixed data

such as an employee’s status at time zero (location, rest resource value) must be obeyed.

Therefore, before any extension is carried out, in addition to checking the technical criteria

(conditions (6.135), (6.136) and (6.137) above), we must also confirm that the following

are satisfied:

• The block length is less than the employee’s maximum permitted working time, i.e.

λB < wmaxi (6.143)

• That role j is required in the period in question, and the employee is eligible to be

assigned to the role in that, i.e. for a backward extension:

aj,tS+λB = 1 and ei,j,tS+λB = 1 (6.144)

or, for a forward extension:

aj,tS−1 = 1 and ei,j,tS−1 = 1 (6.145)

• The extension period does not interfere with any rest periods required by the em-

150

ployee at the start of the planning period, i.e. for a backward extension:

tS + λB > 1 or ri0 = 0 (6.146)

or, for a forward extension:

tS − 1 > ri0 (6.147)

• For a forwards extension, must also account for possible rest period requirements

relating to the employee i’s location at the start of the planning period. This involves

checking that if
∑

k∈K:j /∈Vk
sik = 1 then

tS − 1 > ρi (6.148)

or, if
∑

k∈K:j∈Vk
sik = 1, then

tS − 1 > ρi or tS ≤ 2 (6.149)

When considering this block for a swap, a second block must be found meeting criteria

(6.138) and (6.139) described earlier. To do this, firstly all agency task sets Θj′ for j′ 6= j

are examined to find a suitable block - this block would start at time t′S and be of length

λ′B. As with the extension procedure, it is necessary to make checks to ensure feasibility

is maintained. An agency block is only acceptable for a swap if it satisfies the following,

which relate to infeasibility which cannot be repaired:

• The agency employee must be eligible to be assigned the selected block of work, i.e.

em+1,j,t = 1 for all tS ≤ t ≤ (tS + λB − 1) (6.150)

• The selected employee i must similarly be eligible to be assigned the agency block of

work, i.e.

eij′t = 1 for all t′S ≤ t ≤ (t′S + λ′B − 1) (6.151)

• The agency block must be no longer than the maximum working period of employee

i, i.e.

λ′B < wmaxi (6.152)

• The block must not interfere with the rest period required by employee i from the

151

start of the planning period, i.e.

t′S > ri0 (6.153)

Repairable infeasibility may arise from the fact that employee i requires a rest period of

length ≥ ρi weeks either side of this block which has been swapped into roster Υi. Any

non-rest assignments which must be displaced by this requirement can be assigned to an

agency employee.

Having examined the agency sets for swappable blocks, the rosters of regular employees

i′ 6= i are now examined. This is done in the same random order as is being used to find

selectable blocks above. As with the agency blocks, once we find a regular employee block

in role j′ starting at time t′S and of length λ′B there are certain criteria which must be

satisfied in order to avoid unrepairable infeasibility. These comprise criteria (6.151), (6.152)

and (6.153) from above, and also the following:

• Similar to condition (6.150) above, the swapping employee i′ must be eligible to be

assigned the originally selected block, i.e.

ei′jt = 1 for all tS ≤ t ≤ (tS + λB − 1) (6.154)

• Similar to condition (6.152) above, the originally selected block length must not

exceed the maximum working time of swapping employee i′, i.e.

λB < wmaxi′ (6.155)

• Similar to condition (6.153) above, the originally selected block must not interfere

with the rest periods due to employee i′ at the start of the planning period, i.e.

tS > ri′0 (6.156)

• As with the forwards extension, the addition of role j to roster Υi′ in the required

time periods must not violate any rest period requirements relating to the location

of employee i′ at the start of the planning period. In this case, we require that if∑
k∈K:j /∈Vk

si′k = 1 then

tS > ρi′ (6.157)

or, if
∑

k∈K:j∈Vk
si′k = 1, then

tS > ρi′ or tS = 1 (6.158)

152

Infeasibility which can be repaired again relates to the need for minimum-length rest pe-

riods to be observed at either side of the blocks. In this case, as well as ensuring that

employee i has a rest period of length ≥ ρi weeks either side of this block which has been

swapped into their roster, we must similarly ensure employee i′ has a rest period of length

≥ ρi′ weeks either side of the originally selected block, which now appears on their roster

Υi′ . As before, any non-rest assignments which must be displaced in order to achieve this

will be assigned to the relevant agency set.

Having described the mechanics of extensions and swaps in this version of the algorithm,

we can now return to discussing its overall operation. As stated earlier, the algorithm

examines each block it finds firstly for backward extension, then for forward extension,

and finally for a swap. When a solution is found within the neighbourhood, its objective

function value (i.e. cost) is then calculated. This is done by inferring the relevant variable

values, as described in section 6.5.1 and using them to evaluate the objective function

quantity expressed in (6.38). Note that this step includes finding the optimal elements of

the sets Ξj to minimize the cost of crew changes for each agency allocation set Θj . As

well as calculating cost, the solutions feasibility is also checked - using the inferred variable

values, the left and right hand sides of constraints (6.39 - 6.64) can be compared. If the

solution found is feasible, its cost is compared with that of the solution at the start of the

iteration (referred to as the current solution) - if the new solution cost is an improvement

on the current solution, then this new solution is accepted, the iteration ends, and a new

one begins with a new search for blocks of work. The old solution is stored on a tabu list

(of length 1) so that it cannot be returned to at the next iteration.

If the solution does not improve on the current solution cost, then the algorithm contin-

ues to look for the next extension or swap, or if it has exhausted all possibilities with this

block then to look for the next block. At all times during the iteration, the non-improving,

non-tabu solution with the lowest cost will be stored - this is referred to as the candidate

solution for this iteration. Note that in order to check if a solution is tabu, all rosters Υi

and agency sets Θj are compared between the two solutions. If at the end of the iteration

(i.e. with all blocks in rosters Υi for all i ∈ ER examined) no improving solution has been

found, the candidate solution is accepted as the new solution, and a new iteration can

begin, with the previous solution being recorded as tabu.

This process continues until one of the stopping criteria is reached. These are:

1. no usable block can be found during an iteration; or

2. 20 iterations have been carried out; or

3. the cumulative running time at the end of an iteration exceeds 600 seconds.

The resulting programme was very slow to run, with an average of approximately

153

8.66 iterations being achieved within the time limit in the preliminary tests on 82 of the

datasets. In the vast majority (76 instances, ≈ 92.3% of those tested) the algorithm was

able to find some kind of improvement on the initial solution found using the Task-Based

Approximation, but only 26 of these (≈ 31.7% of tested instances) achieved better than a

5% improvement when taken as a percentage of the best known bound for the instance.

There were also a small number of occurrences of infeasible solutions being proposed which

were highlighted by the feasibility check subroutine. All these findings were used to inform

changes made to the programme in future versions, as discussed below.

6.5.3.2 Version 2

The first revised version of the algorithm was on the whole very similar to Version 1.

However there were some changes in response to the findings described above. One of the

main changes was to examine only a quarter of all employees’ rosters (selected randomly)

for usable blocks at each iteration. It was hoped that improving solutions could still be

found, but that this would save time at each iteration that would otherwise have been

largely wasted. The acceptance criteria were also modified, with a solution only being

accepted automatically if it improved on the best solution found so far, rather than just

improving on the current solution. This was brought in to encourage the algorithm to find

better improvements following the acceptance of a non-improving solution, as under the

improve-on-current rule it may otherwise take several iterations to see another improvement

on the best solution found so far. Note that while this may lead to more employees having

to be examined at each iteration, the effect of this should be mitigated by the reduction

in the number of employees to be examined during the iteration.

In addition to these changes, the feasibility check procedure was updated in an attempt

to improve efficiency. In this version, a constraint set would be checked if and only if

no infeasibility had been detected in the preceding constraint sets. This would prevent

the programme carrying out unnecessary checks once a solution had been found to be

infeasible. Related to this, the infeasibilities detected in the Version 1 test runs were found

to stem from a missing check which should take place when the programme is looking for

blocks to swap in to employee i’s roster. Similar to conditions (6.157) and (6.158), it is

necessary to ensure that employee i can be assigned to role j′ at the required times without

compromising rest period requirements arising from the starting location of employee i.

This means we require that if
∑

k∈K:j′ /∈Vk
sik = 1 then

t′S > ρi (6.159)

154

or, if
∑

k∈K:j′∈Vk
sik = 1, then

t′S > ρi or t′S = 1 (6.160)

With the exception of this addition, all conditions described in section 6.5.2 and for Version

1 above are applied as before.

Overall, these changes were expected to decrease the time taken for each iteration, and

therefore the stopping criterion for number of iterations was increased from 20 to 50. The

other two stopping criteria remained unchanged from Version 1.

Test runs were carried on on 99 of the problem instances, with small improvements

being shown as compared to Version 1. The algorithm now completed an average of

approximately 16.35 iterations within the time limit, and although it appeared that there

was a substantial increase in the number of candidate solutions being accepted (an average

of 9.1 per instance, up from an average of 1.4), there was also an increase in the percentage

of instances for which the heuristics made some improvement (94 of the 99 instances,

which is ≈ 94.9% of those tested, up from ≈ 92.3%). The scale of improvement from the

initial solution was lower however, with only 23 instances (≈ 23.2% of those tested) seeing

an improvement of greater than 5%, taking the improvement as a percentage of the best

known bound for the instance. With regard to infeasibility, the additional checks appeared

to have been successful as no infeasible solutions were detected for any of the test runs.

6.5.3.3 Version 3

The main focus of the modifications made to create Version 3 was increasing the efficiency

of the algorithm by cutting out unnecessary calculations. The main method of doing this

was to record which employees and roles were affected by the movement from the current

solution to one of its neighbours. Since all costs relate in some way to an employee (regular

or agency), we can break down the cost of the current solution according to each employee

i ∈ ER, and further break down the agency crew cost according to the roles j ∈ J and

record these separately. Essentially this means each roster Υi and each pair of agency sets

Θj and Ξj have an individual cost associated with them. This allows us, when a neighbour

solution is found, to recalculate only the costs relating to the rosters and sets which have

been altered in that move. Since only a maximum of two regular employees plus the agency

employees can be changed during an extension or swap, it was anticipated that this would

save a large amount of unnecessary calculation time.

Similarly, noting which rosters and agency sets have changed allows some streamlining

of the feasibility check procedure. All constraints in the set (6.39), ensuring that all roles

are covered when they are required to be, will be checked. However, constraints in the

155

other sets will only be checked if they relate to an employee or an agency role which has

been altered; otherwise, they will be assumed to have the same values as in the current

solution, and therefore still be feasible. The constraints which still must be checked are:

• If the roster of employee i ∈ ER has been changed then for that employee we should

check overlapping task constraint (6.40), boarding and departing constraints (6.41 -

6.44), undertime and overtime constraints (6.47) and (6.48), work and rest resource

constraints (6.49 - 6.50) and (6.54 - 6.56), constraints linking the old and new sched-

ules (6.57 - 6.59) and (6.62 - 6.64) and constraints defining the domain of the variables

(6.65 - 6.67) and (6.69 - 6.70)

• If the allocation set for agency employees for role j ∈ J has changed then for that role

(and, where applicable, for i = m+1) we should check agency boarding and departing

constraints (6.45) and (6.46), working time constraints (6.51 - 6.53), constraints

linking the old and new schedules (6.57) and (6.60 - 6.62) and constraints defining

the domain of the variables (6.65 - 6.66) and (6.68).

Some modifications were also made to the way that possible swaps were searched for.

In order to cut down the number of calculations carried out in an iteration, Version 3 of

the algorithm was set up to record when an employee had been examined to be a swapping

employee for a given selected employee. This combination was then ruled out from being

examined again until there was a change to the schedule of one or other of these employees.

While this may have the effect of missing out a small number of possible swaps, the overall

effect should be to prevent a substantial number of swaps being unnecessarily investigated

at each iteration.

The swap procedure was also modified in order to increase the size of the neighbour-

hood, in the hope that this would increase the scope for good solutions to be found. In this

version, it is now permissible to ‘swap’ the selected block (that is, employee i’s assignment

to role j for λB periods starting at time TS) with a rest period to which another employee

(agency or regular crew) is currently assigned. In the agency crew case, this amounts to

assigning the block to agency set Θj , which cannot by definition contain any assignment

for the duration of the block if the current solution is feasible with respect to role covering

constraints (6.39). Assuming the technical criteria (section 6.5.2) are satisfied, this possi-

bility will be examined following examination of sets Θj′ for j′ 6= j. As with swaps with

other agency crew, condition (6.150) needs to be satisfied in order to avoid unrepairable

infeasibility, but note that no repairable infeasibilities can arise from this swap.

A swap with a resting regular employee i′ will be examined after the search for a

swapping block on roster Υi′ has been completed. The swap can only be carried out if

156

there are no working assignments on roster Υi′ for the duration of the block, that is if

ji
′
t = rest for all tS ≤ t ≤ (tS + λB − 1) (6.161)

The other conditions described above for a swapping employee (conditions (6.154), (6.155),

(6.156), (6.157) and (6.158)) must also be satisfied, along with the technical criteria. The

swap can then be carried out by setting ji
′
t = j and jit = rest for all t such that tS ≤ t ≤

(tS + λB − 1). Repairable infeasibility may arise from assigning role j to employee i′ in

this time period - in order to correct this, we must ensure that employee i′ is allowed their

minimum rest period ρi′ either side of the block, with any displaced tasks being assigned

to agency crew.

Three additional relatively minor changes were also made for Version 3 of the algorithm.

The order of precedence for solution acceptance was changed, so that a neighbour would

have to pass the tabu check before it could be accepted on the grounds of solution value.

While this would have no bearing on accepting a solution which improved on the best

solution found (since this cannot by definition be tabu), this would have an impact if the

rule was changed back to accepting a solution which improved on the current solution.

In that case, by performing the tabu check first, the possibility of cycling around a local

optimum might be reduced.

The other two minor changes were in response to the streamlining of the algorithm. As

each iteration should now be much faster to run, the proportion of employees searched for

usable blocks at each iteration was increased from a quarter to a third, in order to again

increase the search space. The overall time limit was reduced for the test runs however,

being set now at 300 rather than 600 seconds.

The test runs for this version were carried out on 198 instances, with marked improve-

ments being shown in terms of the time efficiency of the algorithm. Despite the halving

of the time limit, the programme completed an average of ≈ 29.87 iterations for each

instance, almost double that of Version 2 and meaning an average iteration was taking

just over 10 seconds to run. One instance reached the iteration limit of 50 iterations and

terminated after 284 seconds, taking an average of under 6 seconds per iteration. Only

one of the 198 instances saw the heuristics achieve no improvement on the initial solution,

while 93 instances (≈ 47.0% of those tested) now achieved an improvement of at least 5%

and 37 instances (≈ 18.7% of those tested) an improvement of at least 10%, taking the

improvement as a percentage of the best bound for that instance.

The best solution for an average instance was found just before the 25th iteration,

indicating that the ability to carry out more iterations in the time limit was of benefit

here. However, on average just over 5 iterations were carried out after the best solution

was found, and in some cases this was much greater, with 6 instances being worked on

157

for 20 iterations or more without further improvement. This indicated that the algorithm

may still be getting stuck in local optima, and that further diversification or an expansion

of the neighbourhood was required. In addition, it was observed that for one instance, six

infeasible solutions had been proposed, showing that the conditions on feasibility set out

for the three versions so far were not exhaustive.

6.5.3.4 Version 4

The primary improvement made for this version was the introduction of a means of diver-

sifying the search, by bringing in a random kick which under certain circumstances would

try to move the search to another area of the solution space. The kick would be activated

if there had been no improvements to the best solution for eight or more iterations and

either

• A kick had previously been carried out and it was ten or more iterations ago; or

• The current cost was equal to the best cost found so far; or

• There had been five or more iterations where the current solution (irrespective of

how close to the best solution it is) has not been reduced.

If any of these conditions were met, then for the next iteration the solution acceptance

criteria were altered. Tabu solutions were still ruled out, and any solution which improved

on the best found so far would still be accepted; but otherwise, each solution generated

from the neighbourhood would be accepted with probability 0.7 regardless of its value. It

was understood that this might lead to some large increases in the cost, but it was hoped

that a kick would provide scope to descend to a better solution in a different area of the

solution space. It should be noted that, under this definition, an iteration in which a ‘kick’

solution was accepted is included in the iteration count.

In order to increase the diversity further, during a ‘kick’ iteration the recording of

which swapping employees had been examined with respect to the selected employees was

suspended - all employees would be examined (in turn) at this point. In addition, another

attempt to increase diversification of the search was made by increasing the size of the

tabu list. Now, in addition to the immediately previous solution, all solutions found which

have a value equal to the best solution value would be recorded as tabu.

The infeasibilities detected during the test runs of Version 3 were dealt with by a

modification to condition (6.158), relating to the location of swapping employee i′ at the

start of the planning period. In the case that
∑

k∈K:j∈Vk
si′k = 1, we should now specify that

if the selected block starts at time tS = 1 then we require

λB + wi′0 ≤ wmaxi′ (6.162)

158

and otherwise (i.e. if tS > 1) we require that

tS > ρi′ (6.163)

Note that the counterpart condition to this, (6.157) which applies if
∑

k∈K:j /∈Vk
si′k = 1, has

been left unaltered.

Small changes were also made to the stopping criteria for the test runs on this version,

with the time limit being increased by 30 seconds to 330 seconds and the iteration limit

being increased from 50 to 100 iterations. The resulting Version 4 of the algorithm was

tested on 113 problem instances.

The results showed that the average time spent on an iteration was slightly higher

at a little under 13 seconds, as might be expected given the extra potential for tabu

solutions and the increased number of tabu checks. The level of improvement on the initial

solution was similar to Version 3, with 3 instances (≈ 2.65% of those tested) showing no

improvement, 52 instances (≈ 46.0% of those tested) showing an improvement of 5% or

more as a percentage of the best bound for the instance, and 19 instances (≈ 16.8% of

those tested) showing an improvement of 10% or more. This would indicate that the added

kick procedure was being largely ineffective.

Indeed, it was seen that in 73 instances (≈ 64.6% of those tested), the kick was not

used. In those for which it was implemented, the best solution seemed to be found before

the kick took place in most cases, suggesting that the kick did not enable better solutions

to be found in most cases. Further investigation showed that in some instances the kick

produced large increases in cost, as was expected. The algorithm was subsequently able

to reduce the solution cost back towards the best known, but not below it.

This was supported by the recording of the number of solutions found which were equal

to the best known - over the 113 instances tested, the average was just over 4 solutions;

however, in 28 instances where one kick took place the average was ≈ 5.57, and for 12

instances where two kicks were used the average was exactly 7, with four of these instances

having as many as 10 distinct best solutions. One possible explanation was that the kick

solution was too similar to the solutions around it, which is reasonable given that it comes

from the neighbourhood. It was therefore decided that a more effective kick would see a

greater random element applied, so that the new solution following the kick was not in the

neighbourhood of the current solution.

6.5.3.5 Version 5

As indicated above, it was felt necessary based on the preliminary tests of Version 4 to

update the kick procedure in the algorithm. This is the main update carried out for

159

Version 5. The new method for shifting the search into a new area of the solution space is

to generate a random block of work, defined by randomly selecting a role j, a start time

tS and a duration λB. This random block is then inserted into the roster of a randomly

selected employee i′ ∈ ER if this can be done feasibly; if it cannot, or the resulting solution

is tabu, a new (j, tS , λB, i′) combination is generated, and this is repeated until a feasible

and non-tabu combination is found.

The role j and employee i′ are generated such that there is an equal probability of

selecting any element of sets J and ER respectively. The duration cannot exceed the

maximum working time of employee i′, and therefore takes an integer value such that

1 ≤ λB ≤ wmaxi′ with equal probability. The start time must then be generated such that

the block does not extend beyond the end of the planning horizon, and therefore tS will

be assigned a random integer value which satisfies 1 ≤ tS ≤ (T − λB + 1) with equal

probability.

In order to be feasible, the proposed block must pass certain checks which will avoid

any unrepairable infeasibility. These checks are very similar to those described for Versions

1 and 4 for inserting a block into swapping employee i′’s roster when carrying out the swap

procedure. Specifically we must ensure:

• Employee i′ is eligible to be assigned the generated block, which is exactly condition

(6.154);

• The block does not interfere with rest periods due to employee i′ at the start of the

planning horizon, which is exactly condition (6.156); and

• The block does not interfere with rest periods due to employee i′ arising from their

location at time zero, which is exactly conditions (6.157), (6.162) and (6.163).

If these conditions are satisfied, we can proceed to reconfiguring the rosters to include

this new block. Any assignments which appear on roster Υi within the duration of the

block must be assigned to the agency set, clearing space to assign the block to the selected

employee. This may cause several infeasibilities which can and should be repaired. Firstly,

the block of work must be removed from the employee(s) to whom it was previously assigned

- if this was to a regular employee, we replace j with the rest label for the duration of the

block; if it was assigned to agency, we can simply remove the relevant time periods from the

set Θj (note that the crew change set Ξj will be re-evaluated when the cost is calculated).

We must also ensure, similar to the swap procedure, that the rest period requirements of

employee i are met. This means ensuring a minimum of ρi′ periods of rest either side of the

newly inserted block on roster Υi′ , with any displaced assignments being assigned instead

to agency crew.

160

Once these updates have been carried out, a tabu check is carried out, the cost is cal-

culated, and a final feasibility check is conducted. If the tabu and feasibility checks are

passed, the ‘kick’ solution is accepted as the new current solution, and the algorithm con-

tinues as before; otherwise, a new random block for a random employee must be generated.

Note that a kick solution is not necessarily part of the neighbourhood, and that applying

the kick no longer constitutes an iteration as it did under the terms of Version 4.

Some other smaller modifications to the programme were also made, not least to the

rules for implementing a kick. We now apply the kick if there has been no improvement to

the best solution for four or more iterations (down from eight or more in Version 4) and

either

• A kick has not yet been carried out (new rule from Version 4); or

• A kick had previously been carried out and it was twelve or more iterations ago (up

from ten or more in Version 4); or

• The current cost was equal to the best cost found so far (no change from Version 4);

or

• There had been five or more iterations where the current solution (irrespective of

how close to the best solution it is) has not been reduced (no change from Version

4).

It was hoped that these new rules would allow the kick to be activated sooner when it was

required, but subsequently allow the algorithm sufficient time to explore the new are of

the solution space before applying it again.

There was also a redefinition of the tabu list for this version, with the equal best

solutions still being recorded but again being allowed to be repeated. This was with the

intention of cutting down on unnecessary comparisons, as the kick procedure should be

more useful in diversifying the search. Meanwhile, the iteration limit remained at 100,

although note that this now does not include kicks, with the time limit being set to 240

seconds for the test runs on this version.

In this instance, time was available to test Version 5 on all 240 problem instances

available. The average time taken per iteration was reduced again, to a little over 11

seconds, but so too was the percentage of instances for which the heuristics made no

improvement - 13 of the 240 instances, ≈ 5.42%, fell into this category. The overall

improvement on solutions appeared to have reduced, with now only 81 instances (= 33.75%

of those tested, down from ≈ 46.0% for Version 4) achieving an improvement of 5% or

more, and only 23 instances (≈ 9.6% of those tested, down from ≈ 16.8%) achieving an

improvement of 10% or more, as a percentage of the best known bound for the instance.

161

One possible conclusion for this is that the kick is not being as successful as anticipated,

although alternatively it could be that the size of the neighbourhood is not adequate to

allow for solutions to be improved sufficiently.

In terms of the kick implementation rules, the results were in line with the reasoning

behind the changes to these. The kick was implemented in over half of the instances (124

instances, ≈ 51.67% of the total), but far fewer instances activated the kick more than once

(9 of the 240, 3.75%, compared with 12, ≈ 10.62%, of the 113 instances tested for Version

4). Additionally, having had no infeasible solutions proposed for Version 4, this version

saw an average of one infeasible solution proposed for every 5 instances. Investigation

revealed this to be due to some missing calculations with respect to the kick procedure,

when removing the role from the employee to whom it was assigned in the current schedule.

6.5.3.6 Version 6

For Version 6 it was decided to expand the definition of the neighbourhood to increase

the likelihood of finding improving solutions. While in all previous versions, extensions

were examined of length λE = 1 only, this version saw the neighbourhood expanded to

allow multi-period extensions. The technical criteria for extension set out in section 6.5.2

(i.e. conditions (6.135), (6.136) and (6.137)) must still be adhered to, but the feasibility

conditions (6.143) to (6.149) discussed earlier for λE = 1 must now be revised. Instead

we now set out conditions which will allow us to determine a maximum number of periods

ΛE ≥ 0 for which a given block can be extended in the given direction, such that the

extension will be feasible for all (integer) values of λE in the range 0 ≤ λE ≤ ΛE . The

quantity ΛE will be the largest non-negative integer which satisfies the following conditions:

• The length of the extended block (i.e. block length λB plus extension length λE)

must not exceed the employee i’s maximum permitted working time. We therefore

replace condition (6.143) with

ΛE ≤ max
{
wmaxi − λB, 0

}
(6.164)

• The role j must be required, and employee i must be eligible to be assigned to the

role, for all extending periods. For clarity, we will replace the earlier conditions

(6.144) and (6.145) with separate conditions for requirement of the role and the

employee eligibility respectively. Firstly, for requirement of the role, we must have

for a backward extension that

ΛE ≤ max
0≤γ≤T−(tS+λB−1)

{
γ :

γ∑
λE=0

aj,(tS+λB+λE−1) = γ + 1

}
(6.165)

162

and for a forward extension that

ΛE ≤ max
0≤γ≤(tS−1)

{
γ :

γ∑
λE=0

aj,(tS−λE) = γ + 1

}
(6.166)

Similarly, for employee eligibility, we require for a backward extension that

ΛE ≤ max
0≤γ≤T−(tS+λB−1)

{
γ :

γ∑
λE=0

ei,j,(tS+λB+λE−1) = γ + 1

}
(6.167)

and for a forward extension that

ΛE ≤ max
0≤γ≤(tS−1)

{
γ :

γ∑
λE=0

ei,j,(tS−λE) = γ + 1

}
(6.168)

• The extension period must not interfere with any rest periods required by the em-

ployee at the start of the planning period. For a backward extension we can restate

condition (6.146) as

ΛE ≤

{
0 if tS + λB = 1 and ri0 > 0

T − (tS + λB − 1) otherwise
(6.169)

and for a forward extension, we can replace condition (6.147) with

ΛE < tS − ri0 (6.170)

• As before, for a forwards extension there are limits to be placed on ΛE relating to

the possible rest period requirements connected to the location of employee i at the

start of the planning period. As before, we break this down into two parts, and say

that if
∑

k∈K:j /∈Vk
sik = 1 then in place of condition (6.148) we require

ΛE < tS − ρi (6.171)

or, if
∑

k∈K:j∈Vk
sik = 1, then in place of condition (6.149) we require

ΛE ≤ max
0≤γ≤(tS−1)

{
γ : tS − λE > ρi or tS − λE ≤ 1 for all 0 ≤ λE ≤ γ

}
(6.172)

If ΛE = 0 this indicates that the block cannot be extended in the specified direction;

otherwise, all possible extensions to the block are examined, starting from the maximum

value λE = ΛE and decreasing to λE = 1. The reasoning behind this was the anticipation

163

that a multi-period extension has the potential to improve the solution by a greater amount

than a single period extension, and therefore it would be advantageous to examine the

higher values of λE first. Note that, as before, repairable infeasibility may arise from a

multi-period extension if the gap between two blocks of work is fewer than ρi periods.

In this case, elements of the subsequent (for backwards extension) or previous (forwards

extension) may be displaced (i.e. re-labelled as rest) and re-assigned to agency crew in

order to ensure rest requirements are satisfied.

Some other minor adjustments were made to the algorithm from Version 5. A small

efficiency improvement was made to the tabu check and best solution comparison functions,

allowing the check to finish as soon as any difference between the compared solutions was

found rather than having to compare all crew rosters and agency sets. In addition, the

acceptance criterion has been changed back to an improvement on the current, as opposed

to best, solution. It was hoped that this would lead to faster improvements, especially

following the implementation of the random kick procedure.

The implementation rules for the kick procedure were also modified again, with the

kick now being applied if the best solution was found four or more iterations ago and

• A kick has not yet been carried out (no change from Version 5); or

• A kick had previously been carried out and it was twenty or more iterations ago (up

from twelve or more in Version 5); or

• The current cost was equal to the best cost found so far (no change from Version 4);

or

• There had been four or more iterations where the current solution (irrespective of

how close to the best solution it is) has not been reduced (down from five or more in

Version 5).

It was hoped that this modification would allow the algorithm more time to improve on

the solution value following a kick, but would also activate more quickly if the algorithm

became trapped in a local optimum.

Finally, a correction had to be made to the way in which rosters were updated following

a kick. Specifically, repairable infeasibilities which had not been accounted for would be

created when a kick block was generated starting at time tS = 1 in role j, where an

employee i was currently assigned to the role and would already be on board the vessel at

time zero. In this case, removing role j from roster Υi at time 1 necessitates the clearing of

a minimum rest period of length ρi at the start of the planning period. In general, further

steps were taken to ensure correct rest period lengths were given either side of any working

tasks remaining on roster Υi after the kick block had been removed, with any displaced

assignments going to agency crew.

164

Version 6 of the heuristics was tested on 229 problem instances, with results broadly

similar to those for Version 5. Again, 13 instances (≈ 5.68% of those tested) saw no im-

provement on the initial solution, while 71 instances (≈ 31.0% of those tested, down from

33.75%) showed an improvement of 5% or more and 24 instances (≈ 10.5% of those tested,

up from ≈ 9.6%) saw an improvement of 10% or more, as a percentage of the best known

bound for the instance. The average time per iteration was reduced slightly to ≈ 10.9 sec-

onds, probably as a result of the change to the acceptance rule described above. However,

clearly this was balanced out by the need to examine additional extension lengths when

searching the neighbourhood. Interestingly, a number of these multi-period extensions

were accepted as improving solutions, even though the overall degree of improvement does

not seem significantly better.

The kick meanwhile was implemented in more instances than previously - 139 of those

tested, ≈ 60.7% of the total (up from ≈ 51.67% for Version 5) - and in fact saw more

instances in which the kick was activated more than once (17, ≈ 7.42%, of those tested,

up from 3.75% for Version 5). This was unexpected, as the new kick implementation rules

were designed to reduce the frequency of a second kick. However, these results may show

that in some instances the kick quickly lead to another local optimum and was therefore

required again for this reason. Finally, no infeasible solutions were proposed for any of the

instances, suggesting the steps described above to deal with repairable infeasibility had

been successful.

6.5.3.7 Version 7

The main alteration carried out for Version 7 was to attempt an improvement to the

extensions which, it was hoped, would allow better solutions to be generated. As discussed

previously, it may for some extensions be necessary to remove other assignments from the

extending employee’s roster, roster Υi, in order to maintain feasibility with respect to rest

period lengths. Up until now, any assignments displaced from Υi for this reason were

assigned instead to agency crew. However, as agency crew are generally more expensive

it may be more economical to re-assign the displaced assignments to an employee who is

already carrying out that role during an adjacent time period.

Taking for example a backwards extension, if there are any non-rest assignments in the

period from t = (tS + λB + ρi) to t = (tS + λB + ρi + λE − 1), i.e. following the extended

block, then these elements must be re-labelled as rest and the roles reassigned. Note that

elements in the period from t = (tS + λB) to t = (tS + λB + ρi − 1), i.e. immediately

following the block before it was extended, will already be labelled rest assuming roster Υi

is feasible in the current solution. Any non-rest assignments in this period will therefore

constitute the beginning of the subsequent block on employee i’s roster, which begins at

165

time t′S , and we will say the number of weeks of this block which are disrupted is λD. If

we say that these assignments are to a role j′, then we can say that previously these time

periods would have been placed in set Θj′ . However, we now search for an employee i′

who is assigned to role j′ at time (t′S − 1) and in chronological order assign as many of the

displaced periods as possible to them.

In the case that i′ = m+ 1, i.e. it is agency crew that is assigned to to role j′ at time

(t′S − 1), then all relevant time periods from t = t′S to t = (t′S + λD − 1) can simply be

allocated to the set Θj′ . However, if i′ ∈ ER, then certain conditions must be checked in

order to avoid creating unrepairable infeasibility. Before we can do this, we must identify

the details of the block on roster Υi′ which we are, effectively, looking to extend. As stated

above, the block will be in role j′ and will end at time (t′S − 1), and we will say that it is

of length λ′B (and therefore begin at time t′S − λ′B). The approach then becomes similar

to that described for Version 6 with regard to multi-period extensions - we must find the

maximum number of displaced assignments which can be extended onto the block of work

of employee i′. We will call this number Λ′E , which must lie in the range 0 ≤ Λ′E ≤ λD,

and which will take the largest integer value satisfying the following:

• Similar to condition (6.164) earlier, the total length of the extended block (i.e. block

length λ′B plus extension length Λ′E) must not exceed the maximum permitted

working time of employee i′. I.e.

Λ′E ≤ max
{
wmaxi′ − λ′B, 0

}
(6.173)

• The employee i′ must be eligible to be assigned the role in all relevant time periods,

i.e. equivalently to condition (6.167) earlier we require that

Λ′E ≤ max
0≤γ≤λD

{
γ :

γ∑
λE=0

ei′,j′,(t′S+λE−1) = γ + 1

}
(6.174)

Note that there is no requirement to check that the role is required, since it is assumed

that the role would not have appeared on roster Υi if it were not required. There is

therefore no equivalent of condition (6.165) in this case.

It is of course possible that extending the adjacent employee’s block will, in turn, create

infeasibility with respect to their minimum rest periods. In this case, the infeasibility can

be repaired by again removing subsequent assignments which interfere with the rest period

- these will be assigned to agency crew instead. It was considered to continue the process

of attempting to assign these displaced assignments to a more suitable employee; however,

it appeared that benefit of this would be small compared to the effort of coding and the

computational time required to find the correct employee and calculate the new rosters.

166

Clearly, the equivalent case can be defined for the forwards extension. In this case, it

is the period before the extended block on employee i’s schedule which we must examine.

The elements in the period from t = (tS − ρi) to t = (tS − 1), i.e. immediately preceding

the block before it was extended, will already be labelled as rest assuming roster Υi is

feasible in the current solution. However, any non-rest assignments in the period from

t = (tS − λE − ρi) to t = (tS − λE − 1), such that t > 0, must be reassigned. These

assignments constitute the end of the previous block on employee i’s roster, which we will

say ends at time tF . As above, we say that the number of disrupted weeks is λD and that

the role involved is j′. We therefore in this case search for an employee i′ who is assigned to

role j′ at time (t′F + 1), and in reverse chronological order assign as many of the displaced

periods as possible to them.

As before, it may be the case that i′ = m + 1, i.e. agency crew, meaning all relevant

time periods from t = (t′F − λD + 1) to t = t′F can simply be allocated to the set Θj′ .

However, if i′ ∈ ER, then certain conditions must again be satisfied in order to avoid

creating unrepairable infeasibility. We can identify the details of the block on roster Υi′

which we are going to extend forwards - as stated, it takes place in role j′ and starts at

time (t′F +1), and we will say that it is of length λ′B, and therefore ends at time (t′F +λ′B).

We then must find the maximum number of displaced assignments which can be added

to the start of the block - again, we call this number Λ′E , which must lie in the range

0 ≤ Λ′E ≤ λD, and which will take the largest integer value satisfying the following:

• As above, the total block length must not exceed wmaxi′ , and so condition (6.173)

applies here as well as to the backward extension.

• Similar to condition (6.174) for the backward extension, and equivalent to condition

(6.168) earlier, we require that i′ is eligible to be assigned the role in all relevant time

periods, i.e.

Λ′E ≤ max
0≤γ≤λD

{
γ :

γ∑
λE=0

ei′,j′,(t′F−λE+1) = γ + 1

}
(6.175)

Note that as with the backward extension there is no requirement to check that role

j′ is required in these time periods, and therefore no equivalent of condition (6.166)

in this case.

• For the forwards extension, we must also ensure the periods being added to the

adjacent block do not interfere with rest periods required by the employee at the start

of the planning period. Therefore, similar to condition (6.170) earlier, we require that

Λ′E ≤ t′F − ri′0 (6.176)

167

• There is also the requirement to check the rest period requirements relating to the

location of employee i′ at the start of the planning period. Equivalent to condition

(6.171) earlier, if
∑

k∈K:j′ /∈Vk
si′k = 1 then we require

Λ′E ≤ t′F − ρi′ (6.177)

or, if
∑

k∈K:j′∈Vk
si′k = 1 then, equivalent to condition (6.172) earlier, we require

Λ′E ≤ max
0≤γ≤λD

{
γ : t′F − λE ≥ ρi′ or t′F − λE < 1 for all 0 ≤ λE ≤ γ

}
(6.178)

As with the backward extension, it may be that that extending the adjacent employee’s

block forwards will create infeasibility with respect to their minimum rest periods. As

discussed above, this is repaired be removing prior assignments which interfere with the

rest period, and instead assigning them to agency crew.

No other changes were made to the algorithm, except to make some small changes

to the termination criteria. For this version, two different criteria were used. Firstly, a

maximum of 100 iterations or 240 seconds was applied, in order to give a direct comparison

with Versions 5 and 6 - this was termed Version 7a. In addition to this, it was also decided

to investigate the performance of the algorithm over a longer period of time, and therefore

a Version 7b test run was made with a limit of 1000 iterations and 600 seconds per instance.

For both settings, all 240 problem instances were tested.

The results for Version 7a showed a slight improvement on some of the metrics as

compared to Version 6, with only 10 instances (≈ 4.17% of those tested, down from≈ 5.68%

in Version 6) showing no improvement in the solution value through application of the

heuristics. For those that did show improvement, 79 instances (≈ 32.9% of those tested,

up from ≈ 31.0% in Version 6) achieved a 5% improvement or better, and 26 instances

(≈ 10.8% of those tested, up from ≈ 10.5% in Version 6) achieved an improvement of

10% or better (as a percentage of the best known bound for the instance). As would be

expected with more time available, these measurements were better for Version 7b, with 8

instances (≈ 3.33% of the total) showing no improvement, 99 instances (= 41.25% of the

total) showing an improvement of 5% or better, and 45 instances (= 18.75% of the total)

an improvement of 10% or better.

Interestingly, there appeared to be more high-valued improvements for the Version 7

runs than had been achieved by Version 6, with a maximum improvement of ≈ 45.25%,

and five other instances with an improvement of 20% or better for Version 7a. A possible

conclusion of this is that, while the new neighbourhood settings have only helped improve a

small number of the instances, in a handful of cases it has allowed significant improvement

168

to be achieved. Also interesting was the variation observed when the level of improvement

for Versions 7a and 7b were compared pairwise for each instance. Here it was found that

while overall the the longer time limit achieved better results, there were in fact 78 instances

(= 32.5% of the total) for which the shorter time limit achieved a better solution. This

may indicate that the random element of the programme has a more significant influence

than anticipated.

Finally, some infeasible solutions were again proposed during both the Version 7 runs.

Investigation showed that this related to some checks which had been omitted from the

backwards extension which had, for some reason, not become apparent previously. One

possible explanation for them not having shown up before is that different solution areas

were being explored under the Version 7 settings than previously, because of the new

settings for block extensions. As discussed below, these checks would be included in Version

8.

6.5.3.8 Version 8

As indicated above, there were some infeasible solutions proposed during some of the test

runs of Version 7. It emerged that this was due to an anomaly created when certain blocks

were extended backwards by λE ≥ ρi, meaning that the extended block would run into

the subsequent block. It was therefore necessary to check that this new combined block

did not have length exceeding wmaxi , and if it did then to remove any assignments over the

maximum length from roster Υi with a view to assigning them to the adjacent employee

as described above.

While this correction was important to make, the main alteration for this version of the

algorithm was to the order in which employees were examined when searching for selectable

blocks or employee able to take part in a swap. In all previous versions the ordering was

random, but in light of the apparent variation caused by this randomness, it was decided to

attempt to encourage the algorithm to focus on a specific area of the neighbourhood where

appropriate. In order to achieve this, the algorithm now records the iteration at which

each employee’s schedule was last changed, with all employees’ schedules considered to

have changed following a kick. At the start of the first iteration, or immediately following

a kick, the employee list is sorted at random. However, if neither of these conditions are

true then the following is done:

• If the last iteration improved on the current solution value (irrespective of the best

solution value found so far), priority is given to those employees whose schedules

have changed most recently, with any ties broken at random. This should mean that

while the solution value is improving the algorithm will intensify the search in the

area where improvement is being found.

169

• If however no improving solution can be found at a given iteration, the algorithm

will order the employees such that those whose schedule has changed least recently

appear first in the list, again with any ties broken at random. This means that

when the benefit of the intensification appears to have diminished, the algorithm will

diversify again to look for improvements which may have been neglected previously.

It was hoped that this would bring a greater stability to the performance of the algorithm,

and would overall allow better solutions to be found.

In addition to these changes, the kick implementation rules were once again modified

slightly, having been the same in Versions 6 and 7. Previously, one of the implementation

conditions stated the kick would be implemented if “the current cost is equal to the best

cost found so far”. This however implies that the kick would be implemented as soon this

equal-best solution was reached, and so the rule is therefore updated to state

• The current cost is equal to the best cost found so far and at least one non-

reducing iteration has just been carried out.

This allows the algorithm a single iteration to improve the current solution beyond the best

found so far before deciding that a local optimum appears to have been reached. Other

than this change, the kick implementation rules remained the same as in Version 6 and 7.

As with Version 7, two different termination criteria were used to test Version 8 - a

Version 8a used a maximum of 100 iterations and 240 seconds, in order to compare with

Version 5, 6 and 7a; Version 8b used a maximum of 1000 iterations and 600 seconds,

the same settings as Version 7b and giving an indication of longer-term performance. In

addition, in order to gain a better understanding of the effects of randomness on the

performance, both Versions 8a and 8b were run twice each. All 240 instances were tested

in the first run of both versions; however, due to time constraints the second test run had

to be cut short, resulting in 219 instances being tested on the second run of Version 8a,

and 218 instances on the second run of Version 8b.

Overall, there was a noticeable improvement both in terms of the number of instances

for which the initial solution was improved upon, and the amounts by which this improve-

ment was achieved. The two shorter time limit runs saw 5 and 8 instances respectively

(≈ 2.08% and ≈ 3.65% of those tested, respectively) for which there was no improvement,

down from ≈ 4.17% for Version 7a, while the longer time limit runs both resulted in 7

instances (≈ 2.92% and ≈ 3.21% of those tested, respectively), down from ≈ 3.33% in Ver-

sion 7b. In terms of degree of improvement, the shorter Version 8a found a 5% or better

improvement on the initial solution for 36.25% of instances for the first run, and ≈ 39.7%

of instance for the second, up from ≈ 32.9% for Version 7a. Similarly, an improvement

of 10% of better was found respectively in ≈ 15.4% and ≈ 14.2% of instances tested, up

from ≈ 10.8% in Version 7a. The longer Version 8b runs achieved an improvement of 5%

170

or better in ≈ 42.1% and ≈ 45.9% of instances respectively, up from 41.25% for Version

7b; and an improvement of 10% or better in ≈ 22.1% and ≈ 21.1% of instances for the two

respective runs, up from 18.75% in Version 7b.

The random element seems less of a factor here, with a large majority of instances

displaying a similar percentage improvement in solution value when comparing both the

two Version 8a runs and the two Version 8b runs. Comparing the Version 8a with the

Version 8b results, these appear more consistent with the pattern of having broadly similar

results for the two settings, but with a better level of improvement gained from the longer

time and iteration limits. This suggests that using the more specialised ordering of the

employees not only leads to better solutions being found, but also leads to more consistency

of results.

There were still a small number of infeasible solutions found on the four test runs.

However, these were small in number and so it was decided not to expend additional

effort investigating these and adding additional code to prevent these infeasible solutions

being proposed. Even if these infeasible proposals could be eliminated, it would still be

necessary to run the feasibility checking procedure in case of any other omissions, therefore

any benefit of adding further checks in the calculation steps would be marginal.

6.5.3.9 Summary of equations used

It may be noted that there are numerous equations set out here in section 6.5.3 which are

used to check the feasibility of extensions and swaps. It can be seen that some of those in

place for earlier versions of the algorithm are modified and superseded by equations used

in later versions. We therefore provide a list of all those which are relevant to being taken

forward to the formal testing phase of the heuristic development (discussed in more detail

in sections 6.5.4 and 6.5.5 below.

This list does not include any of the technical criteria set out in section 6.5.2, as these

were unchanged through the preliminary process and must hold at all times. However, the

feasibility conditions which had evolved through the preliminary process amounted to the

following by the time Version 8 was developed:

• To check maximum extension length of a block, must find the largest value of ΛE

which satisfies the following:

– Block length: condition (6.164).

– Role is required: condition (6.165) for a backward extension; condition (6.166)

for a forward extension.

– Employee eligible: condition (6.167) for a backward extension; condition (6.168)

for a forward extension.

171

– Initial rest periods: condition (6.169) for a backward extension; condition (6.170)

for a forward extension.

– Rest periods relating to employee’s location at time zero (forward extension

ONLY): conditions (6.171) and (6.172).

• For the adjacent employee disrupted by the extension, to check the maximum length

of the knock-on extension must find the largest value of Λ′E ≤ λD which satisfies the

following:

– Block length: condition (6.173).

– Employee eligible: condition (6.174) for a backward extension; condition (6.175)

for a forward extension.

– Initial rest periods (forward extension ONLY): condition (6.176).

– Rest periods relating to employee’s location at time zero (forward extension

ONLY): conditions (6.177) and (6.178).

• To check if a working block can be placed into selected employee’s schedule during a

swap:

– Eligible: condition (6.151).

– Length of swapping block: condition (6.152).

– Rest period at time zero: condition (6.153).

– Rest periods relating to employee’s location at time zero: conditions (6.159) and

(6.160).

• To check if a rest block can be placed into selected employee’s schedule during a

swap:

– Roster contains only rest periods in period of interest: condition (6.161).

• To check if a working block can be inserted into the swapping or kicked employee’s

schedule:

– Eligible: condition (6.154).

– Length of selected block (for swap ONLY): condition (6.155).

– Rest period at time zero: condition (6.156).

– Rest periods relating to employee’s location at time zero: conditions (6.157),

(6.162) and (6.163).

• To check if a working block can be placed into the agency employees’ schedule:

– Eligible: condition (6.150).

172

6.5.4 Elements Selected for Formal Testing

Having set out in section 6.5.3 the different settings and other elements of the algorithm

examined during the design process, we can now describe those taken forward to be coded

in C++ for the formal testing. The preliminary tests described above, as well as some

calibrating runs carried out in C++, gave an indication of what may or may not be

useful, but could not be considered to be a rigorous investigation into the settings which

should be used to achieve the best results in practice. Therefore elements which appeared

promising during preliminary tests were selected in order that combinations of these could

be examined in conjunction.

In all, the aspects of the design process discussed in section 6.5.3 can be broken down

in twelve distinct categories which were altered across the eight preliminary versions of

the algorithm. Not all of these give rise to different test settings, with some categories

demonstrating one clear setting (or group of settings) which outperforms all others exam-

ined. However for completeness, and in order to provide a clear summary of the different

preliminary versions, all twelve categories are discussed below. In addition, it is known

that the initial solution can have an impact on the performance of a heuristic algorithm;

therefore it was also decided to vary the initial solution which was input into the algorithm

- this is also discussed in more detail below.

6.5.4.1 Number of employees to examine per iteration

Version 1 of the heuristic examined all employees at each iteration, which appeared to

involve wasted effort, while Version 2 cut this to one quarter of all employees, which may

have been too restrictive. The majority of the preliminary versions examined a third of all

employees at each iteration, which appeared to be suitable in that it allowed the algorithm

to explore useful areas of the neighbourhood without taking an unreasonable amount of

time. Early experience with C++ highlighted the speed at which the algorithm runs on

this platform as opposed to with FICO Xpress, and indicated that useful results may in fact

be obtainable if all employees were examined at each iteration. Therefore it was decided

to use this setting as a comparison with this reduced number, meaning the two settings

used for this category were:

1. All employees.

2. One third of all employees.

6.5.4.2 Order in which to examine the employees

The default setting for the majority of test runs with regard to this was a random order.

However, as described for Version 8, an alternative ordering method was designed which

173

would assist intensification and diversification of the search, as appropriate. This more

helpful ordering did indeed appear to give a benefit in terms of results, although there

is no proper evidence which would allow us to say this with certainty. The formal tests

therefore use two settings for this category:

1. Random.

2. The more tailored ordering, as follows:

• if a kick has just been carried out or we are at the first iteration, sort at random;

• else, if the last iteration improved the current solution value, sort employees

with those most recently changed first (with any ties broken at random);

• else, sort employees with those who have been changed least recently first (with

any ties broken at random).

Note that we should consider all employees’ schedules to have changed following a

kick.

6.5.4.3 Definition of the neighbourhood - extensions

The definition of an ‘extension’ to a block evolved considerably during the development

of the algorithm. Initially, the algorithm would only examine a single period extension

either forwards or backwards, but this was later adapted to allow multi-period extensions

to blocks. If any later or earlier blocks (respectively for backward or forward extensions)

had to be disrupted to maintain feasibility, then initially these disrupted assignment weeks

were allocated to agency crew; however, this was later updated to try to allocate the tasks

to a more suitable employee, i.e. one who was assigned to an ‘adjacent’ block in the current

solution.

Results of the preliminary tests seem consistent with the intuitive belief that the later

developments in this area allow more promising changes to be explored. Specifically, the

multi-period extension setting also includes the possibility of a single period extension,

while allocating a role to an ‘adjacent’ employee will in general be more cost-effective

than allocating to agency crew. Clearly the more complex definitions of the extension will

take more time to run; however this appears to be outweighed by the benefit in terms of

promising solutions. Therefore, the only definition used in the formal testing from this

category was:

1. Examine each possible length of extension, starting with the maximum, for both

backward and forward directions. Any earlier / later blocks which must be disrupted

from ‘extending’ employee’s schedule should be used to ‘extend’ other employees’

174

working periods where possible (with any tasks being removed as a knock-on effect

being allocated to agency crew).

6.5.4.4 Definition of the neighbourhood - swaps

The definition of a swap move was also altered during the development of the algorithm,

but to a lesser extent than for extensions. Initially, a selected block could only be swapped

with another block which started no more than one period before it and ended no more than

one period after it. This definition was subsequently extended to also include examining

a swap with an employee who had no assignment during the period of interest (be that a

regular or agency employee). As with the extensions, there seems to be a benefit of the

inclusion of the unoccupied employees, while the additional computational time needed in

this case is negligible. Therefore there is again only one option used for formal testing:

1. Find block to swap which starts no more than one period before and ends no more

than one period after the selected block, or swap with unoccupied employee (either

regular or agency).

6.5.4.5 Solution acceptance criteria

Two specific criteria were experimented with during the development of the algorithm.

Firstly, the question of whether to accept the first solution which improves on the current

solution or improves on the best found so far; and secondly, whether or not a tabu check

should be carried out at this stage, with any tabu solution being rejected regardless of

the improvement it gives. the combination of these gave four different settings which were

examined in the preliminary versions of the algorithm.

With regard to the second question, results so far suggest that the tabu check is nec-

essary in order to ensure the algorithm does not cycle, and is generally effective in doing

this. However, the answer to the question of improvement on current versus improvement

on best is less clear. The two rules are equivalent when the current cost is equal to the best

found so far, but will cause the algorithm to act differently if the current cost is higher.

Under these circumstances, the ‘improve on best’ rule will take longer to find an acceptable

change but will ensure either a new best solution will be found, or the best available change

is carried out otherwise. On the other hand, the ‘improve on current’ rule will generally

lead to iterations being carried out more quickly, although more iterations might be needed

to bring the solution value back down to the best found so far. Preliminary tests suggested

that the ‘improve on current’ rule is overall better than the ‘improve on best’, but it was

decided to test them formally against each other. Therefore the two options chosen for the

formal testing were:

175

1. First non-tabu solution which improves on best solution value.

2. First non-tabu solution which improves on current solution value.

6.5.4.6 Action if no solution accepted by end of iteration

The only option used during the development process was to accept the best non-tabu

solution found during the iteration if no solution meeting the acceptance criteria had been

found by the end of that iteration. Intuitively this also appears sensible, and therefore the

only option in this category used for formal testing was:

1. Select best non-tabu solution found otherwise.

6.5.4.7 Definition of tabu solutions

Throughout the eight preliminary versions of the algorithm set on in section 6.5.3, two

different definitions have been used for the tabu list - the immediate previous solution

only, and the immediate previous solution along with all solutions of equal value to the

best found so far. This inclusion of the equal-best solutions was intended to encourage

diversification in the search and to rule out the possibility of cycling almost completely.

However, preliminary results appeared to show that this was unnecessary - Version 3 for

example, which treats only the immediate previous solution as tabu, outperforms Version

4 overall - and suggest that the additional comparisons required may be a waste of compu-

tational time. It was therefore decided to use only one setting in this category for formal

testing:

1. Immediate previous solution only.

6.5.4.8 Definition of the random kick

The random kick took two general forms in the preliminary versions of the algorithm.

Initially, the ‘kick’ took the form of accepting a non-tabu, non-improving solution with a 0.7

probability, in order to move the search away from a local optimum. However, this was later

changed to redefine the ‘kick’ as a solution from (most likely) outwith the neighbourhood,

by selecting at random an employee, role, start time and duration and inserting this into

the schedule. This updated version of the kick appeared to be more useful that the initial

definition, and was intuitively more sensible with regard to the objective of the kick -

to move the search away from the current neighbourhood. Interestingly, Version 3 of the

algorithm had no random kick in operation yet still has competitive results against some of

the later preliminary versions. With this in mind, two settings with respect to the random

kick were taken forward to the formal testing phase:

176

1. No kick used.

2. Randomly select employee, role, start time and duration which can be inserted into

schedule while maintaining feasibility and giving a non-tabu solution. Note, this

means that change is not necessarily part of the neighbourhood. ‘Kick’ done between

iterations, so does not add to iteration count.

6.5.4.9 Activation of the random kick

Overall, four different activation settings for the random kick were used in the preliminary

tests, in addition to the versions where no kick was used at all. These activation settings

were:

• If best solution was found eight or more iterations ago, and a) a kick has already

been carried out and it was ten or more iterations ago; or b) the current cost is equal

to the best cost found so far; or c) there have been five or more iterations where

the current solution (irrespective of how close to the best solution it is) has not been

reduced.

• If best solution was found four or more iterations ago, and a) no kick has yet been

carried out; or b) a kick has already been carried out and it was twelve or more

iterations ago; or c) the current cost is equal to the best cost found so far; or d) there

have been four or more iterations where the current solution (irrespective of how

close to the best solution it is) has not been reduced.

• If best solution was found four or more iterations ago, and a) no kick has yet been

carried out; or b) a kick has already been carried out and it was twenty or more

iterations ago; or c) the current cost is equal to the best cost found so far; or d) there

have been four or more iterations where the current solution (irrespective of how

close to the best solution it is) has not been reduced.

• If best solution was found four or more iterations ago, and a) no kick has yet been

carried out; or b) a kick has already been carried out and it was twenty or more

iterations ago; or c) the current cost is equal to the best cost found so far and this is

not an improvement on the previous iteration; or d) there have been four or more

iterations where the current solution (irrespective of how close to the best solution

it is) has not been reduced.

The structure of the activation rules has changed little across the different versions, with

the main alterations being with regard to the numbers of iterations (as highlighted above).

The results appear to support the belief that the added ‘no kick has yet been carried out’

177

rule ensures that we do not have to wait too long for the first kick when it is required.

Similarly, it appears that the ‘and this is not an improvement on the previous iteration’

addition to the current cost equal to best cost clause should allow (at least to an extent)

for the possibility that this new equal best solution is not in fact a local minimum and

gives the algorithm a chance to explore this possibility.

The main uncertainty remaining from the preliminary tests is how many iterations

should be allowed to pass before implementing a kick - too few and the chance to move

to a more promising solution might be lost; too many and time is wasted. Therefore, in

addition to the setting where no kick is used at all, two settings have been selected for

formal testing. The first of these reflects the best options seen during the preliminary

tests, while a second contained an increase in the number of iterations in order to reflect

the additional number which would be achieved by C++ implementation of the algorithm

over a similar length of time. Including the option of no kick being implemented, the

settings chosen for formal testing are:

1. No kick used.

2. If best solution was found four or more iterations ago, and a) no kick has yet been

carried out; or b) a kick has already been carried out and it was twenty or more

iterations ago; or c) the current cost is equal to the best cost found so far and this is

not an improvement on the previous iteration; or d) there have been four or more

iterations where the current solution (irrespective of how close to the best solution

it is) has not been reduced.

3. If best solution was found eight or more iterations ago, and a) no kick has yet been

carried out; or b) a kick has already been carried out and it was forty or more

iterations ago; or c) the current cost is equal to the best cost found so far and this

is not an improvement on the previous iteration; or d) there have been eight

or more iterations where the current solution (irrespective of how close to the best

solution it is) has not been reduced.

6.5.4.10 Recording of best solutions

Even though the consideration of the equal-best solutions was rejected in the discussion

of the tabu check above, it is still necessary to question whether or not they should be

recorded at all. Some of the preliminary versions of the algorithm recorded only the first

solution found with this ‘best’ value, while others recorded all solutions found with that

value. Clearly, recording all solutions of a given value takes more computational time,

but given that one of the objectives of the problem overall is to provide multiple useful

178

solutions to the planners there is an obvious benefit to doing this. Therefore for the formal

testing stage the only setting used for this category was

1. Record all solutions found of that value.

6.5.4.11 Stopping criteria

Numerous stopping criteria were applied over the course of the preliminary test, ranging

from a maximum of 20 up to a maximum of 1000 iterations and a time limits ranging

from 240 to 600 seconds, as well as the condition that the algorithm should terminate if

no usable block is found during an iteration. It should be noted that the ‘no usable block’

criterion is redundant except in the most extreme of circumstances, and is increasingly

unlikely to be required when the neighbourhood definition is expanded; however it does no

harm to leave it in place just in case these circumstances arise. The iteration limits were

similarly redundant in the preliminary test run, since they were deliberately set higher

than the programme would be expected to reach in the time available; it was therefore

decided for the formal testing to remove the iteration limit altogether. In terms of the

time limit, it was decided to test the programme over a realistic time that could be of

benefit to the company. Originally, this was considered to be 5 or 10 minutes; however,

the speed at which C++ is able to run compared to FICO Xpress lead us to believe a 2

minute time limit should be able to produce useful results. In order to monitor results

available at earlier times, solution values after 1 minute were also recorded. The setting

used for the formal testing was therefore:

1. No usable block found; or 120 seconds. No limit on iterations. Solution value after

60 seconds recorded to monitor progress and to give comparison at an earlier time

point.

6.5.4.12 Efficiency of the algorithm

It should be acknowledged that the early preliminary versions of the algorithm were not as

efficient as they might have been. This was then improved by reducing the computations

required for the cost calculation and feasibility check, and recording the examined swaps

to reduce occurrences of re-examination. Subsequently, improvements were also made to

reduce the effort needed to compare solutions with the tabu list or the repeated best

solutions. Clearly all possible efficiency savings should be included in the formal testing,

and so we say the setting used for this category in the formal tests is

1. Efficiency improved for cost calculation, feasibility checks, and re-examining for swaps

and tabu and repeat of best checks.

179

6.5.4.13 Initial solution

All the preliminary versions of the algorithm were tested using the Task Based Approx-

imation as the initial solution, as discussed above at the start of section 6.5. However,

a later development discussed below in section 6.6 was to use a heuristic method to cre-

ate an initial solution, based on similar principles to the heuristic described here. It was

was therefore decided to carry out the formal testing using this heuristic initial solution

in addition to the Task Based Approximation, giving two sets of inputs to the heuristic

testing:

1. Task Based Approximation as initial solution.

2. Heuristic initial solution

6.5.4.14 Overall plan

The settings described throughout this section give the following variations for the formal

testing phase:

• Two options for the number of employees to examine at each iteration:

1. All employees.

2. One third of all employees.

• Two options for orderings in which to examine employees:

1. Random.

2. The more tailored ordering, as described in section 6.5.4.2.

• Two options for solution acceptance criteria:

1. First non-tabu solution which improves on best solution value.

2. First non-tabu solution which improves on current solution value.

• Three options for random kick settings:

1. No kick used.

2. Two different sets of kick activation criteria, as described in section 6.5.4.9.

• Two options for initial solutions:

1. Task Based Approximation as initial solution.

2. Heuristic initial solution

180

A full-factorial combination of these settings were carried out for the formal test runs,

giving a total of 48 combinations for each test instance. The matter of repetition was

also considered, given the random variation which would be present in the running of the

programme. However, it was decided that the effect of random variation would be reduced

by the repetition inherent in the full-factorial test design, and so a single run of each

combination for each instance would be acceptable. One concern in this decision was the

overall running time of the tests, with a single non-repeating run taking a total of 48 x 240

x 2 minutes = 384 hours of computational time.

This section concludes with a description of the complete procedure used in the for-

mal testing, as well as an idea for a modification which could make the algorithm more

generalisable to other settings. Results of the test runs are discussed later, in section 6.8.

6.5.5 Formal Test Version of the Algorithm

Having set out the various components comprising the heuristic algorithm throughout

section 6.5, as well as the process followed to develop it, it would seem sensible to draw

this together into a summary of the algorithm used in the formal testing phase. In this

section we will lay out the specific components of the programme and describe the function

of each, referencing where appropriate conditions and other criteria described above.

Firstly, we present the algorithm in diagram form, split between Figures 6.7 and 6.8.

The flowchart shows the outline of the algorithm, with the detail of procedures such as

‘Evaluate backwards’, ‘Evaluate forwards’ or ‘Random kick’ hidden for simplicity.

Detail of these hidden procedures and an expanded version of this flowchart are given in

the appendix, section C.2.

It can be seen that the main part of the programme begins at the top left of Figure 6.7,

progressively entering each of the three main loops of the algorithm: starting a new iteration

with a newly sorted employee list; taking each of these employees in turn; and examining

each block on the employee’s schedule in turn. The ‘Evaluate block’ procedure can be

seen to work progressively through checking for backwards extensions, forward extensions

and swaps in turn, and breaking off to implement a new solution if one is found which

meets the automatic acceptance criteria. At the end of the iteration, if any solutions have

been found which do not meet the automatic acceptance criteria, then the best of these (the

‘candidate’) is implemented. Termination criteria are then checked, and if the algorithm

continues then the kick implementation criteria are also checked before moving onto the

next iteration.

A detailed step-by-step description of the algorithm, starting with the main programme

and moving deeper into the sub-programmes used, can be found in the appendix in section

C.3, while the full code of the algorithm as implemented in C++ can be found in appendix

181

Figure 6.7: Flowchart outlining the formal test version of the heuristic algorithm - upper
section.

182

Figure 6.8: Flowchart outlining the formal test version of the heuristic algorithm - lower
section.

183

section E.2.5. Note that while this formal test version is a product of the development

process described above, the actual coding of this algorithm into C++ was carried out by

fellow PhD student Seda Sucu.

6.5.6 Possible Modification

The elements of the heuristics selected for testing, as discussed in sections 6.5.4 and 6.5.5

above, were believed to be the best known for the problem and for the available data. How-

ever, after the testing phase had taken place, it was realised that some small modifications

could be made which would make the problem more generalisable.

Specifically, this related to the stopping criterion discussed in section 6.5.4 that the

programme should terminate if no usable block was found. As noted in the discussion of

this element of the programme, the chance of this occurring with our company’s data is

negligible. This is because of the possible swap which is considered for all blocks whereby

an unoccupied agency employee is assigned the block (and the selected employee gains

a rest period in return). The nature of the problem description is such that an agency

employee will almost certainly be available for every block, and indeed in the data that

was generated for the Time-Windows problem it was assumed that agency crew would be

available and eligible to carry out all tasks (see Step 8 of the procedure given in section

6.2.1).

However, while it is true that if even one of the examined blocks can be worked by an

agency employee then this stopping criterion will not be activated, it was realised that it was

still theoretically possible for the criterion to be required. This could occur if the problem

description at this company changes, or indeed if this algorithm were to be generalised to

another setting where it may be the case that agency employees are less readily available.

In addition, it was considered that terminating under these conditions may not be as

sensible as first believed. Originally, this criterion was used in the belief that if no usable

block was found then it meant the algorithm was at an optimum and could be terminated

with a good solution. However, we later realised the possibility that this optimum would

be a local one only, and for that matter in cases where only a fraction of employees are

being examined at each iteration it was possible that a potential improvement had been

missed.

In light of this, we propose a modification to the algorithm discussed above, with

relation to the action taken if no usable block can be found during an iteration. This

modification has not been investigated as part of this work, but is given as a suggestion for

future work which can be carried out either with new data, or with an entirely other com-

pany at which the problem circumstances are different. In order to improve the algorithm

under these new circumstances, we propose to make the following changes to the algorithm

184

as described in section 6.5.5 above and set out in detail in section C.3 of the appendix:

1. We introduce a new list of employees which we will call the ‘examination list’. At

the start of a new iteration, this examination list will be assigned the contents of the

‘short’ list. This will be done in a new step in the ‘Main programme’, inserted

between Step 3(b) and Step 3(c).

2. The ‘Find usable block’ procedure will then proceed through all the employees on

the examination list, rather than all those on the short list - this means an alteration

to the beginning of Step 2 of this procedure.

These first two modifications can also be illustrated in the flowchart, with the step

‘Get next employee e in short list’ replaced as shown in Figure 6.9 below.

Figure 6.9: Detail of modified flowchart, showing addition of ‘examination list’.

3. If once all employees on the examination list have been considered there has been no

solution automatically accepted, this is no longer necessarily the end of the iteration.

Instead, we will add a new step ahead of Step 3 of the ‘Find usable block’

procedure which will state:

185

“if no update has been done and no ‘candidate’ solution exists, then if the examina-

tion list does not contain all regular employees extend the list to include all regular

employees; for each as yet unexamined employee i in the examination list, repeat

Step 2.”

The programme would then progress to Step 3 as before. This change can be

illustrated in Figure 6.10 below, which shows how the flowchart would be modified

to take account of this alteration.

Figure 6.10: Detail of modified flowchart, showing other effects of adding ‘examination
list’.

4. At the end of the iteration, having considered all regular employees if necessary and

potentially having made no update, the ‘Find usable block’ procedure ends and

we return to the main programme to check the termination criteria (Step 3(e) of

the ‘Main programme’). We propose to remove ‘no usable block found’ from the

stopping criteria, as set out in section 6.5.4.

5. Instead, we will add ‘no usable block found’ as one of the kick activation criteria

checked for in Step 3(f) of the ‘Main programme’.

These changes will mean that, if the programme reaches a point where no usable block

is found, then additional time is given to enable it to find an improving solution. If none

can still be found, we would no longer accept that no further improvement is possible, and

instead ‘kick’ the programme to another part of the search space and continue to attempt

to improve the solution while the time limit permitted. These changes can also be shown

in diagram form, updating the flowcharts shown in Figures 6.7 and 6.8 earlier - details of

this are split between Figures 6.11 and 6.12.

186

Figure 6.11: Proposed flowchart outlining modified heuristic algorithm - upper section.

187

Figure 6.12: Proposed flowchart outlining modified heuristic algorithm - upper section.

188

6.6 Using Heuristics to obtain an Initial Solution

Having developed the heuristic procedure as described in section 6.5 above, it became

apparent that a mechanism based on the same principles could be used to find an initial

solution to the problem. As with using the Task-Based formulation as an approximation

(section 6.4), it could not be predicted in advance the quality of these initial solutions;

however, it may have the advantage over the Task-Based Approximation approach in that

it could be readily programmed in an open-source language such as C++, rather than

relying on commercial solvers such as FICO Xpress.

Below we set out our proposed procedure for finding an initial solution using heuristics,

before going on to discuss how this new algorithm fits in with the testing scheme described

in section 6.5.4 above. Note that the full code of the algorithm as implemented in FICO

Xpress can be found in appendix section E.2.6.

6.6.1 Algorithm for a Heuristic Initial Solution

As a reminder, there are two situations in which the scheduling process will be required

in our problem. The first of these is at the start of a new planning week, when planners

will have in place a partial schedule covering the first 12 weeks of the 13-week planning

horizon, which will have been created during the previous planning week. The problem in

this case is to update the schedule to cover all required roles in Week 13, as well as fixing

any other infeasibilities which may have arisen in the meantime. Alternatively, after the

scheduling process has been carried out for the planning week, new information may arrive

which makes the current schedule infeasible. In this case, the problem is only to fix these

infeasibilities.

This procedure uses some of the definitions and principles of the heuristic algorithm

described in section 6.5 earlier, and attempts to strike a balance between making the

smallest number of changes, and not making expensive changes. The algorithm identifies

vacancies, which can be considered to exist in blocks, and looks to fill these. The cheapest

way to do this is often to extend an employee’s assignment backwards or forwards from

before or after the vacant block if this is possible. If this is not possible, the algorithm

will seek to fill the gap with another employee. However, as it is rarely cost effective to

have employees working in short blocks (because of the transportation costs), if the vacant

block is particularly short then efforts may be made to clear a larger block which will be

cheaper to fill, even if this creates more changes. Agency crew will generally only be used

as a last resort, unless it is clearly the cheapest option for that vacancy.

As with the main heuristic algorithm, the details of the algorithm are not given here.

Instead, a step-by-step procedure, starting with the main programme and working inwards,

can be found in the appendix in section C.4, while full details of the FICO Xpress code

189

used can be found in appendix section E.2.6.

6.6.2 Implications for Testing Plans

The heuristic method described above provides an alternative solution method for the

Time-Windows problem, and the quality of these solutions will be assessed as part of the

results given in section 6.8. The primary contribution of the above algorithm is however

that it provides an alternative method of finding an initial solution which can be used in

the main heuristic algorithm.

Before testing was carried out it was not known how the quality of these initial solutions

would compare to those found by the Task-Based Approximation approach, and in any

case a better quality initial solution is no guarantee of better solutions being found by the

heuristic algorithm. Therefore as indicated in section 6.5.4.13 above, we propose to use this

heuristic initial solution as well as the Task-Based Approximation, and as a result double

the number of permutations which would otherwise have been tested for each dataset.

6.7 Possible Alternative - Column Generation

An alternative approach to those discussed in sections 6.3 to 6.6 for solving the Time-

Windows formulation is to use Column Generation. This is a widely used technique in

the literature on crew scheduling and crew recovery problems, especially when applied

to airline crew problems, and essentially operates by considering only a section of the

problem at a time. This has the advantage of reducing the problem size, freeing memory

space and reducing the amount of time needed to search for optimal solutions as compared

to the branch-and-cut approach used by the default FICO Xpress approach (as discussed

in section 6.3). It is also an exact method, and the algorithm if allowed to do so will

eventually find the true optimal solution to the problem.

There are also potential drawbacks to the approach. In particular, depending on the

problem such an approach can still be time consuming to run, which may preclude it from

being applied in our problem setting, or may at least necessitate modifications. It was also

considered that the time needed to code and fine-tune a Column Generation algorithm

would be prohibitive within the time limits of this PhD project. Therefore the solution

approach presented here is given as a suggestion for future work, rather than as a method

which has been implemented and tested.

6.7.1 Proposed Approach

Column generation operates by breaking down the problem into numerous sub-problems,

linked together by a master-problem. Often for crew scheduling applications, the sub-

190

problems are solved to find rosters for individual employees which will potentially be helpful

for minimizing the objective function - these are termed reduced cost rosters and in more

general Linear Programming terms can be thought of as reduced-cost columns. The role of

the master-problem in this case is to select a subset of the available rosters such that roles

are covered and the objective is minimized. The algorithm is iterative, with new reduced-

cost rosters being searched for after each solution of the master-problem, and terminating

with an optimal solution when no reduced-cost rosters can be found.

As stated earlier, there may be concerns with the running time of a Column Generation

algorithm, which is of particular interest in our case when we are looking to find solutions

quickly. Attention has however been given in the literature to the need to speed up the

solution processes. For example, when solving a train driver recovery problem Rezanova

and Ryan (2010) use the technique of initially considering a reduced problem, focussing

only on affected time points and crew members and those who may be useful in the solution.

In their case, if no solution can be found for the restricted problem then other time windows

or other employees can be added to the problem. Note that in our case, since agency crew

are (almost) always available, it is highly unlikely that no solution will be found; therefore,

to use this technique we would require a different criterion to trigger expansion of the

problem, such as a cost limit for example. This technique is not explored further here, but

is left as a suggestion for future work.

Alternatively, Gamache et al. (1999) propose an algorithm for an airline crew scheduling

problem which speeds up the solution process by only solving the LP relaxation of the

master problem at each iteration, and periodically running a branch-and-bound heuristic

to fix some variable values and reduce the problem size. This can be seen in Algorithm

6.2 below. While this may speed up the solution process, the technique of fixing certain

Algorithm 6.2 Outline solution algorithm for Gamache et al. (1999)

define an initial set of columns (i.e. rosters)
repeat

repeat
solve an LP relaxation of the master-problem
use the sub-problem to search for reduced cost columns

until no reduced cost columns are identified
use a branch-and-bound-type heuristic to fix the values of certain variables {this re-
duces the size of the master problem}
eliminate any columns rendered incompatible

until an integer solution is found

variable values does prevent the algorithm from finding a guaranteed optimal solution.

This however is not a serious problem in our setting, as discussed previously. In addition,

the method described also leaves open the possibility of producing multiple solutions from

191

one run of the algorithm, and therefore the Column Generation approach we propose here

will adapt the ideas of the Gamache et al. (1999) approach.

6.7.2 Formulating the Master-Problem

Using the ideas set out above, we will now discuss how a master-problem could be created

from the formulation presented for the Recovery-Type Time-Windows problem as given

in section 6.1.2. We must begin by giving some additional definitions, before given the

formulation.

6.7.2.1 Additional definitions

Firstly, since we are concerned with allocating rosters rather than individual weeks in a

given task, the allocation decision variables x̂ijt are no longer appropriate. Instead, we

will say that at a given stage of the algorithm we have a current set P of rosters being

considered. Then for all employees i ∈ E and rosters p ∈ P , we can define a new decision

variable yip which should take the following values:

yip =

{
1 if employee i is assigned to roster p

0 otherwise

For the purposes of ensuring all costs are accounted for, we must also identify some subsets

of P to relate rosters specifically to agency crew. We must ensure that all roles to which

agency crew are assigned at time zero are assigned a roster (even if this is an empty roster),

in order that this employee’s departure from the role is taken into account. Therefore, for

all j ∈ J such that σj = 1 we say that there is a set of rosters Pj where Pj ⊆ P .

In addition, we must also define some data about these rosters. These would be calcu-

lated either as part of the sub-problem or as a subsequent step before the next solution of

the master-problem, as discussed below. Firstly, we must have a cost of assigning employee

i to roster p, which we will define as cRip. Secondly, to know whether all roles are covered

as required, we must know which roles each roster covers, which is given by

z∗pjt =

{
1 if roster p includes performing role j in time period t

0 otherwise

for all rosters p ∈ P , roles j ∈ J and times t ∈ {1, . . . , T}. Finally, we need to identify

which employees can be assigned to a given roster:

εip =

{
1 if employee i is eligible to be assigned to roster p

0 otherwise

192

which is defined for all employees i ∈ E and rosters p ∈ P . Note that by definition

εm+1,p = 1 for all rosters p belonging to one of the sets Pj .

6.7.2.2 Formulation

Using these values, and with other quantities as defined in sections 6.1.1 and 6.1.2 previ-

ously, we can state the formulation of the master problem as follows:

min
∑
∀i,p

cRipyip (6.179)

subject to: ∑
∀i,p

εipz
∗
pjtyip = ajt ∀j, t (6.180)

∑
p∈P

yip ≤ 1 ∀i ∈ ER (6.181)

∑
p∈Pj

ym+1,p = σj ∀j such that σj = 1 (6.182)

yip ∈ {0, 1} ∀i, p (6.183)

Where the objective function (6.179) looks to minimize the overall cost of assigning the

rosters to the employees, with all costs (transportation costs, working costs, penalty costs,

and undertime and overtime costs) embedded in the new cRip cost coefficients. Equations

(6.180) ensures all roles are covered when they require to be, in much the same way

as equations (6.39) in the recovery-type cost-minimization problem; while constraint set

(6.181) ensures that each employee can be assigned at most one roster in a similar way

to forbidding the assignment of overlapping tasks with constraints (6.40) previously. Note

that we assume employee m+1 (i.e. the agency employee) can be assigned multiple rosters

- this is because we assume that multiple agency crew are available, and hence more than

one can be brought in if more than one is required in a given time period.

Constraint set (6.182) has no equivalent in the recovery-type formulations given earlier,

and has been added to ensure that each agency employee present in the schedule at the

start of the planning period is assigned a roster. This is necessary even if the agency

employee is departing ahead of the first week and has no further assignments, since this

departure must be taken into account in the cost calculation. Finally, constraints (6.183)

ensure the correct definition of decision variables.

193

6.7.3 The Sub-Problem

The aim of the sub-problem is to find rosters which firstly are feasible, and which can

be added to set P to potentially allow a better solution to be found when the master-

problem is next solved. The mathematical formulation of the sub-problem will comprise

the constraints not covered by the master-problem, i.e. those pertaining to roster feasibility;

however, we will only consider one employee at a time, reducing the number of constraints

and therefore the problem size. Firstly however we must give some additional definitions.

6.7.3.1 Additional definitions

We must firstly define new decision variables for the sub-problem. The decision is now not

(directly) whether an employee works in a role, boards a vessel, etc. at time t, but whether

the roster under construction involves working, boarding, etc. Therefore, for a new roster

p′ we will have:

zWp′jt as the allocation decision variable, indicating the assignments contained in roster p′,

such that

zWp′jt =

{
1 if roster p′ entails working in role j at time t

0 otherwise

zBp′kt indicates whether roster p′ involves boarding a vessel, such that

zBp′kt =

 1
if roster p′ requires employee to board vessel

k prior to an assignment in period t

0 otherwise

zDp′kt similarly indicates whether roster p′ involves departing a vessel, such that

zDp′kt =

 1
if roster p′ requires employee to depart vessel k prior to period t

(i.e. having completed duties there in period t− 1)

0 otherwise

6.7.3.2 Formulation for feasible rosters

We can now set out the constraints which describe a feasible roster. The feasibility con-

ditions however will be different for a regular employee i ∈ ER as opposed to an agency

employee i = m+ 1. For a regular employee i ∈ ER a new roster p′ is feasible if it satisfies

the following:

194

∑
j∈J

zWp′jt ≤ 1 ∀t (6.184)

∑
k∈K

(zBp′kt + zDp′kt) ≤ 1 ∀t (6.185)

sik + zBp′k1 = zDp′k1 +
∑
j∈Vk

zWp′j1 ∀k (6.186)

∑
j∈Vk

zWp′j,t−1 + zBp′kt = zDp′kt +
∑
j∈Vk

zWp′jt (6.187)

ŵit ≥ ŵi,t−1 +
∑
j∈J

zWp′jt − wmaxi

1−
∑
j∈J

zWp′jt

 ∀t (6.188)

wmaxi l̂λijt ≥ ŵi,t−1 − wmaxi (1− zWp′jt) + zWp′jt − (λ− 1) ∀j, t, λ ∈ {1, . . . , wmaxi }(6.189)

r̂it ≥ r̂i,t−1 −

1−
∑
j∈J

zWp′jt

 ∀t (6.190)

r̂it ≥ (ρi − 1)
∑
k∈K

zDp′kt ∀t (6.191)

ρi

1−
∑
j∈J

zWp′jt

 ≥ r̂i,t−1 ∀t (6.192)

zWp′jt ∈ {0, 1} ∀j, t (6.193)

zBp′kt, z
D
p′kt ∈ {0, 1} ∀k, t (6.194)

l̂λijt ∈ {0, 1} ∀j, t, λ ∈ {1, . . . , wmaxi }(6.195)

ŵit, r̂it ≥ 0 ∀t (6.196)

Where constraint set (6.184) ensures that the roster cannot contain more than one assign-

ment at the same time point, and in conjunction with constraints (6.181) in the master-

problem above, ensuring that employees cannot be given overlapping assignments as ex-

pressions (6.40) did in the recovery-type problem given in section 6.1.2. Constraints (6.185

- 6.187) are a rewritten form of constraints (6.41 - 6.44) in the original formulation, which is

necessary to ensure that the board and depart variables zBp′kt and zDp′kt take exactly correct

values rather than being greater than or equal it. Meanwhile, the other constraints (6.188

- 6.192) perform the same function as constraints (6.49), (6.50) and (6.54 - 6.56) in the

original formulation. Finally, expressions (6.193-6.196) ensure the correct definition of all

variables.

Meanwhile, a roster for agency crew must satisfy similar equations. However, in order

to make correct calculations of working times, and therefore costs, it will be necessary to

195

consider agency crew rosters on a role-by-role basis. Therefore, we say that a new agency

crew roster p′ relating specifically to role j′ (which takes place on board vessel k′, with

j′ ∈ Vk′) will be feasible if it satisfied the following:

zBp′k′1 − zDp′k′1 = zWp′j′1 − σj′ (6.197)

zBp′k′t − zDp′k′t = zWp′j′t − zWp′j′,t−1 ∀t ∈ {2, . . . , T} (6.198)

α̂j′t ≥ α̂j′,t−1 + zWp′j′t − αmaxj′ zDp′k′t ∀t (6.199)

α̂j′t ≥ zWp′j′t ∀t (6.200)

αmaxj′ l̂λ,m+1,j′t ≥ α̂j′t − (λ− 1) ∀t, λ ∈
{

1, . . . , αmaxj′

}
(6.201)

zWp′j′t ∈ {0, 1} ∀t (6.202)

zBp′k′t, z
D
p′k′t ∈ {0, 1} ∀t (6.203)

l̂λ,m+1,j′t,∈ {0, 1} ∀t, λ ∈
{

1, . . . , αmaxj′

}
(6.204)

α̂j′t ≥ 0 ∀t (6.205)

Where constraints (6.197 - 6.201) perform essentially the same role as (6.45), (6.46) and

(6.51 - 6.53) in the recovery-type formulation in section 6.1.2, save that they relate to a

specific role j′. Meanwhile, expressions (6.202 - 6.205) ensure the correct definition of all

variables. Note that for the role j′ to which roster p′ relates, if σj′ = 1 then we should add

this new roster to the set Pj′ , as defined earlier, as well as to set P when we return to the

master-problem; if σj′ = 0 then the roster should only be added to the main roster set P .

6.7.3.3 Calculating roster costs

As discussed above (section 6.7.2), there will be a cost cRip associated with assigning em-

ployee i ∈ E to roster p ∈ P . Note that we do not include the cost calculation as part of the

sub-problem solution process directly, and can instead calculate cRip′ once a new roster p′

has been constructed. This can be done because the rosters generated in the sub-problem

need to be useful for the master-problem, and therefore some consideration other than

cost must be taken in order to generate a suitable range of feasible rosters. A suggested

solution method is discussed in section 6.7.3.4 below.

Before that, however, we can show how the cost of a newly constructed rosters p′ can

be calculated for employee i ∈ E. This must be divided into three separate calculations:

for a day-rate employee i ∈ {ER \G}; for a fixed contract employee i ∈ G; and for an

agency employee i = m+ 1.

Firstly, for a day-rate employee i ∈ {ER \G} (i.e. a regular employee who is not on

a fixed contract), we can use the values of the decision variables found for roster p′ which

satisfy equations (6.184 - 6.196) above. We will refer to the values found for this particular

196

roster using the •∗ notation, i.e. as zW∗p′jt, z
B∗
p′kt, z

D∗
p′kt and l̂∗λijt. These values can be used to

evaluate the ‘change’ variables (denoted by •±) using the following equations:

zW∗p′jt = x∗ijt + (1− 2x∗ijt)x
±
ijt ∀j, t (6.206)

zB∗p′kt = b∗ikt + (1− 2b∗ikt)b
±
ikt ∀k, t (6.207)

zD∗p′kt = d∗ikt + (1− 2d∗ikt)d
±
ikt ∀k, t (6.208)

l̂∗λijt = l∗λijt + (1− 2l∗λijt)l
±
λijt ∀j, t, λ ∈ {1, . . . , w

max
i } (6.209)

which have been adapted from equations (6.57 - 6.59) and (6.62) in the recovery-type

formulation given earlier. Using the values of x±ijt, b
±
ikt, d

±
ikt and l±λijt calculated from these

equations, we can evaluate the cost cRip′ of assigning employee i to roster p′ as:

cRip′ =
∑
∀k,t

(
φBiktb

±
ikt + φDiktd

±
ikt

)
+
∑
∀j,t

(
φWijtx

±
ijt +

∑
∀λ

φLλijtl
±
λijt

)
(6.210)

which has been adapted from the cost-minimization objective (6.38) given previously.

The necessary calculations are similar for fixed contract crew i ∈ G, except that we

have an additional step of calculating undertime and overtime and the associated cost.

Taking the values of the allocation variable zW∗p′jt which satisfies equations (6.184 - 6.196)

above, we can use the following equations to calculate the undertime or overtime which

would be applicable if employee i was assigned to rosters p′:

ûi = max

gi −
Ωi +

∑
j∈J

T∑
t=1

zW∗p′jt

 , 0

 (6.211)

ôi = max

Ωi +

∑
j∈J

T∑
t=1

zW∗p′jt

− gi, 0
 (6.212)

Note that these have been adapted from equations (6.47) and (6.48) in the recovery-type

formulation. The values calculated for ûi and ôi can then be used in equations (6.63) and

(6.64) to calculate the undertime and overtime change, i.e.:

u±i = ûi − u∗i (6.213)

o±i = ôi − o∗i (6.214)

Then, using equations (6.206 - 6.209) from above to calculate x±ijt, b
±
ikt, d

±
ikt and l±λijt in

the same way as for day-rate crew, we can calculate the cost cRip′ of assigning employee i

197

to roster p′ as:

cRip′ =
∑
∀k,t

(
φBiktb

±
ikt + φDiktd

±
ikt

)
+
∑
∀j,t

(
φWijtx

±
ijt +

∑
∀λ

φLλijtl
±
λijt

)
+
(
cUi u

±
i + cOi o

±
i

)
(6.215)

which, similarly to equation (6.210) for day-rate crew, has been adapted from the cost-

minimization objective (6.38).

Meanwhile, for agency crew the calculation steps are a little different. In this case,

we will have found a set of values zW∗p′j′t, z
B∗
p′k′t, z

D∗
p′k′t and l̂∗λ,m+1,j′t which define a roster

p′ (for a given role j′ and vessel k′) by satisfying equations (6.197 - 6.205). These values

can be used to calculate the ‘change’ variable (denoted by •±) values, using the following

equations:

zW∗p′j′t = x∗m+1,j′t + (1− 2x∗m+1,j′t)x
±
m+1,j′t ∀t (6.216)

zB∗p′k′t = β∗j′t + (1− 2β∗j′t)β
±
j′t ∀t (6.217)

zD∗p′k′t = δ∗j′t + (1− 2δ∗j′t)δ
±
j′t ∀t (6.218)

l̂∗λ,m+1,j′t = l∗λ,m+1,j′t + (1− 2l∗λ,m+1,j′t)l
±
λ,m+1,j′t ∀t, λ ∈

{
1, . . . , αmaxj′

}
(6.219)

which have been adapted from equations (6.57) and (6.60 - 6.62) above. As with the regular

crew, we can then use the values of x±m+1,j′t, β
±
j′t, δ

±
j′t and l±λ,m+1,j′t calculated from these

equations to calculate the cost cRm+1,p′ of assigning an agency employee i = m+ 1 to roster

p′ as follows:

cRm+1,p′ =
∑
∀t

(
φBAj′t β

±
j′t + φDAj′t δ

±
j′t

)
+
∑
∀t

(
φWm+1,j′tx

±
m+1,j′t +

∑
∀λ

φLλm+1,j′tl
±
λm+1,j′t

)
(6.220)

which, as before, is adapted from the cost-minimization objective (6.38).

Therefore, using the method set out above we can calculate the cost of assigning any

employee i ∈ E to any newly generated roster p′ for which they are eligible to be assigned.

6.7.3.4 Solving the sub-problem

There are several potential approaches to solving the sub-problem. For example, a MIP

solver such as FICO Xpress could be applied directly to the formulation (with a suitable

objective) to find rosters. This however could potentially run into the same problems as

were faced when trying to apply the cost-minimization approach as described earlier (sec-

tion 6.3.1), with each roster taking a length of time to find which is prohibitive especially

when considering that the sub-problem must be run multiple times during the solution

process. Instead, in a manner again similar to that used by Gamache et al. (1999), we sug-

198

gest using a network representation, and generating rosters using a resource-constrained

shortest path problem.

For this network representation, we must introduce arcs which will represent roles to

which an employee can be assigned during a time window, as well as the boarding or

departing of an employee to a vessel at a particular point in time. Note that these arcs will

be directed arcs. The nodes meanwhile represent time-vessel points, meaning that there

will be a node for each vessel k ∈ K at each time point during the planning horizon. There

will also be a dummy rest node at each time point, used when an employee is going onto

or coming out from a rest period. These will be connected by rest arcs, allowing a path

through the network if there are time periods for which the roster contains no working

tasks. A path through the network therefore will represent a roster. More formally, we

can construct the network as follows:

1. Create a source node θR and a sink node θS .

2. Create the time-vessel points:

(a) If we are constructing a roster for regular crew i ∈ ER, then for all vessels k ∈ K
and all time points t ∈ {0, . . . , T}, create a node θkt.

(b) If we are constructing a roster for agency crew i = m + 1, then for all time

points t ∈ {0, . . . , T}, create a single node θk′t.

3. For all time points t ∈ {0, . . . , T} also create a dummy rest node θ0t.

4. Create the working arcs:

(a) If we are constructing a roster for regular crew i ∈ ER, then for each time period

t ∈ {1, . . . , T} and each vessel k, create an arc (θk,t−1, θkt) for each task j ∈ Vk
such that ajt = 1 and eijt = 1 (i.e. such that the role is required in time period

t, and employee i is eligible to carry it out).

(b) If we are constructing a roster for agency crew i = m+1, then for each time pe-

riod t ∈ {1, . . . , T} create an arc
(
θk′,t−1, θk′t

)
corresponding to role j′ provided

aj′t = 1 and em+1,j′t = 1 (i.e. such that the role is required in time period t,

and agency employees are eligible to carry it out).

Selection of one of these arcs during construction of a path through the network will

correspond to setting zWp′jt = 1 for the roster p′ being considered.

5. Similarly, create a dummy rest arc (θ0,t−1, θ0t) for all times t ∈ {1, . . . , T}.

6. Create boarding arcs:

199

(a) If we are constructing a roster for regular crew i ∈ ER, then for each time period

t ∈ {0, . . . , T − 1} and each vessel k, create an arc (θ0t, θkt) corresponding to

the employee boarding a vessel prior to carrying out a task in period t+ 1.

(b) If we are constructing a roster for agency crew i = m + 1, then for each time

period t ∈ {0, . . . , T − 1}, create an arc (θ0t, θk′t) corresponding to an agency

employee boarding vessel k′ prior to carrying out a task in period t+ 1.

Selection of one of these arcs during construction of a path will correspond to setting

zBp′k,t+1 = 1 for the roster p′ being considered. Note the offset of the time period

indices between the network representation and the IP variables.

7. Similarly, create departure arcs:

(a) If we are constructing a roster for regular crew i ∈ ER, then create an arc

(θkt, θ0t) for each time t ∈ {0, . . . , T − 1} and each vessel k.

(b) If we are constructing a roster for agency crew i = m + 1, then create an arc

(θk′t, θ0t) for each time t ∈ {0, . . . , T − 1}.

These arcs correspond to the roster requiring an employee departing vessel k ahead

of time period t+1, and therefore selecting such an arc during construction of a path

will correspond to setting zDp′k,t+1 = 1 for the roster p′ being considered.

8. Create starting point arcs from the source node θR:

(a) If we are constructing a roster for regular crew i ∈ ER, then if sik = 1 for some

vessel k create an arc
(
θR, θk0

)
; or, if sik = 0 for all k ∈ K then create an arc(

θR, θ0,0
)
.

(b) If we are constructing a roster for agency crew i = m + 1, then if σj′ = 1 then

create an arc
(
θR, θk′0

)
; or, if σj′ = 0 then create an arc

(
θR, θ0,0

)
.

9. Finally, create ending arcs to the sink node θS :

(a) If we are constructing a roster for regular crew i ∈ ER, then for each vessel

k ∈ K, create an arc
(
θkT , θ

T
)
, and also create an arc

(
θ0T , θ

T
)
.

(b) If we are constructing a roster for agency crew i = m + 1, then create an arc(
θk′T , θ

T
)

and an arc
(
θ0T , θ

T
)
.

Having constructed the network in this way, we must assign a cost value to each of

these arcs. Using the dual values from the current master-problem solution, it is possible

to calculate a dual cost associated with each arc. Details of this are not given here, but

can be found in the paper by Gamache et al. (1999). The objective of the problem can

200

then be stated as minimizing the sum of the dual costs of the selected arcs, such that the

arcs form a path through the network from source to sink and the corresponding roster is

feasible. The sum of these dual costs represent the ‘reduced cost’ of the roster.

For regular crew, the formation of a path is covered by equations (6.184 - 6.187), while

for agency crew, this is covered by equations (6.197) and (6.198). Of greater concern are

the constraints governing feasibility rules of the roster - equations (6.188 - 6.196) for regular

crew; or (6.199 - 6.205) for agency crew. This can be dealt with by considering working

length and rest requirements as ‘resources’ which can be aggregated along the selected

path, and must take values within a certain range at all times. Paths can be constructed

dynamically from the source node, ensuring these resources constraints are satisfied at all

points. Such an algorithm could potentially be used to construct multiple reduced-cost

rosters at a time for each employee.

6.7.4 Future Work

As indicated earlier, this section is given as an outline for possible future work. A possible

reformulation has been given which could allow the recovery-type Time-Windows problem

to be solved using a Column Generation approach. A solution method for both the master-

problem and sub-problem has been proposed, but we acknowledge there may be other more

efficient ways to approach this. Future work here could involve examining other potential

decompositions of the problem, as well as more in-depth analysis and testing of possible

solution methods to determine whether Column Generation can be applied here in an

efficient, useful manner.

6.8 Further Computational Results

We now present the results of the computational tests on the Task-Based Approximation

approach, the Heuristic algorithm, and the Heuristic Initial Solution approach discussed

respectively in sections 6.4, 6.5 and 6.6. In this section, we discuss and compare the

performance of the two different initial solution methods, which can of course be used

as solution methods in themselves, in terms of the key measures of solution quality and

running time. We also examine the test runs involving the Heuristic algorithm, and discuss

the relative merits of the various settings used including the influence of the different initial

solutions. Finally, in section 6.8.5 we examine the effects of the parameter values used

during data generation, as in section 5.5.2.3 for the Task-Based problem.

We begin however with some additional results relating to the initial computations pre-

sented in section 6.3, which will allow more detailed comparisons between the approaches

used.

201

6.8.1 Additional analysis of Initial Results

Carrying out the computational tests as described in sections 6.4, 6.5 and 6.6, as well as

the preliminary tests involved in developing these approaches, created numerous solutions

for each instance in addition to those found in the initial computational tests. This allows

for a measure of solution quality to be introduced as an alternative to the gap to the

best known bound - the gap to the best known solution across all solution approaches

used. This may be a more informative measure, since it is possible that the optimality

gaps observed in the ‘direct’ test runs arise not because a better solution has not been

found but because enough of the branch-and-bound tree has not been explored in the time

available to sufficiently improve the best known bound. The gap to best known solution

measure allows us to make a more practical judgement of solution quality, by measuring

the solution found against the best which was actually achievable across all approaches.

We can begin by looking at the gap to the best known solution from the solutions found

by the ‘direct’ solution approaches as described in section 6.3.1. Similar to the gap to best

bound results presented in Figure 6.1 and Figure 6.2 for the two-minute and one-hour

settings respectively, these results can be summarised in histograms as shown in Figure

6.13. We can see from the upper graph in the figure that even when compared to the

best known solution rather than best bound, the two-minute settings obtain solutions with

large gaps from the possible optimum. In this case, we see that 65 instances (≈ 27.08% of

the total) had a solution with a gap of between 95% and 100% of the solution value away

from the best known solution. Another 65 instances were found to have a gap of between

90% and 95%, meaning a majority of instances (130, or ≈ 54.17% of the total) have a gap

of over 90% from the best known solution. By comparison, the results with respect to the

best known bound (Figure 6.1) had shown 135 instances (56.25% of the total) with a gap

of between 95% and 100% of the solution value, and 62 instances (25.83% of the total)

with a gap of between 90% and 95%. At the other end of the graph, it can be seen that the

two-minute approach achieved the best known solution (i.e. a gap of zero) for 6 instances

(2.5% of the total), although from Figure 6.1 it was already known that 5 of the instances

had solved to optimality.

The lower graph in Figure 6.13 meanwhile shows the performance of the one-hour

settings with reference to the best known solutions. As can be seen, 53 instances (≈ 22.08%

of the total) achieved their best known solution in this test run, with 17 of these (≈ 7.09%

of the total; and nearly one third of the 53) known to be optimal from the comparison with

the best known bound in Figure 6.2. Of the instances which did not find the best known

solution in the one-hour ‘direct’ test run, we see that there are more results towards the

upper end of the graph with 119 instances (≈ 49.58% of the total) having a gap of between

45% and 85%. However, the spread can be considered to be quite even when we see that

202

Figure 6.13: Histogram of percentage gaps to best known solution for ‘direct’ solution of
Time-Windows instances using FICO Xpress, 2 minute time limit (top) and 1 hour time
limit (bottom).

203

the most frequently occurring gap (other than the 53 instances with a gap of zero) is from

60% to 65% which accounts for only 18 instances (7.5% of the total).

We can also look at the gap to the best known solution for the solutions found using

the change-minimization approach, as discussed in section 6.3.2. In that section, we gave

results for the gap to the best known bound for the lowest cost solution found by the

change-minimization approach (Figure 6.5); correspondingly, we can summarise the gaps

to the best known solution for the lowest cost solutions in Figure 6.14. We can see from this

Figure 6.14: Gap to best known solution for lowest-cost solution found in two minute
Change-minimization test run for the Time-Windows formulation.

graph that 22 of the instances (≈ 9.17% of the total) achieved their best known solution

under this method, of which only one of these is known to be an optimal solution from the

comparison to the best known bound. While the tendency when comparing to the best

known bound was to have gaps towards the upper end of the scale, we see that the sizes

of gaps to the best known solution tend to be at the lower end of the scale. Including

those with a gap of zero, nearly half of the instances (114, i.e. 47.5% of the total) had a

lowest cost solution within a 25% gap of the best known solution. Exactly 100 instances

(≈ 41.67% of the total) saw a gap of between 25% and 50%, while only 26 instances

(≈ 10.83% of the total) saw a gap greater than 50%, with the largest value being a gap of

204

≈ 87.53%.

Finally, we can show the gap between the non-cost-constrained solution found by the

change-minimization method and the best known solution overall. These can be sum-

marised in Figure 6.15. As might be expected, and similar to the gap to the best bound

Figure 6.15: Gap to best known solution for non-cost-constrained solution found in two
minute Change-minimization test run for the Time-Windows formulation.

results shown in Figure 6.6, the gaps displayed in this graph are all very large. The smallest

gap between the non-cost-constrained solution and the best known solution is ≈ 60.56%,

while the mean value is ≈ 88.00%. We can see that 39 instances (16.25% of the total)

fall into the category of a 95% to 100% gap, while the most common category is a gap of

90% to 95% which accounts for 66 instances (27.5% of the total), closely followed by 62

instances (≈ 25.83% of the total) in the 85% to 90% category.

6.8.1.1 Summary of additional analysis

In summary, there are no especially significant implications of these additional comparisons

in themselves; instead, these mainly provide a basis for additional comparison with the

results presented in the remainder of section 6.8. It is worth noting however that the

two-minute cost-minimization and non-cost-constrained change-minimization solutions are

205

in general a long way from the best solution values obtained across all methods. Of the

four results given here, the one-hour cost-minimization approach produces the highest

number of instances obtaining their best known solution; however, the lowest cost change-

minimization solutions have a higher number of instances which are closer to the best

known solution suggesting it is actually performing with more consistency with regard to

this measure.

6.8.2 The Task-Based Approximation approach

We can now move on to discussing the results of the further computational tests themselves.

We first discuss the results of using the Task-Based formulation to simplify and solve the

Time-Windows problem, as discussed in section 6.4. We can judge the success of this

approach using similar measures to those used previously - the gaps between the solution

and the best known bound and best known solution for the instance; the improvement

in solution cost relative to the ‘direct’ and change-minimization approaches; the running

time; and the number of changes. Also discussed for other solution methods is the number

of solutions found; however for this particular approach, only one solution was generated

for each instance and therefore no further results are given for this measure. We do note

though that in principle this solution approach could be adapted so that it could produce

multiple solutions.

The first measure we discuss is the gap to the best known bound for each instance,

which is summarised in a histogram in Figure 6.16. It can be seen that the results are

grouped towards the upper end of the graph, with over half the instances (124 out of the

240, i.e. ≈ 51.67%) showing a gap to the best bound greater than 85%. We note that

there is a single instance which has a gap of greater than 100%, which correspondingly is

the only instance for which the best bound found (in the one-hour direct run, as discussed

in section 6.3.1) was negative. Only 12 instances (5% of the total) found a solution with a

gap to the best bound not greater than 50%, with the smallest gap being ≈ 16.20%. The

mean gap size was ≈ 81.25%, with the median quite close to this at ≈ 85.23%.

Similar to this, as discussed in section 6.8.1 we can also judge the solution cost in

terms of the gap to the best known solution for each instance. This can be summarised in

a histogram as in Figure 6.17. This graph still has the instances mainly towards the upper

end, but less so than when comparing to the best known bound. We need to take into

account gaps down to over 65% before we cumulatively have included more than half the

instances (125, or ≈ 52.08% of the total). A total of 20 instances (≈ 8.33% of the total)

found a solution with a gap of less than 50% to the best known solution, with the smallest

gap being ≈ 11.81%. Calculating the average gap sizes for this measure gave a mean gap

of ≈ 65.54% and a median of ≈ 65.66%.

206

Figure 6.16: Histogram of percentage gaps to best known bounds for solutions found using
the Task-Based formulation as an approximation.

To put these gaps into context, we can compare the solution values found using the

Task-Based Approximation to those using the methods discussed in section 6.3. Firstly,

we compare with the solutions found using ‘direct’ solution approach, with both the two-

minute and one-hour settings. This comparison can be considered in terms of the improve-

ment shown by the Task-Based Approximation solution, i.e. subtracting the Task-Based

Approximation solution value from the ‘direct’ approach solution value, and represented

as a percentage of the respective direct approach solution value. A summary of these

percentage improvements can be seen in the histograms in Figure 6.18. The upper graph

shows that for the majority of instances (216 out of the 240, i.e. 90%), the Task-Based

Approximation approach found a solution which was an improvement on the two-minute

direct approach solution. In fact, for exactly half of the instances (i.e. 120 out of 240), the

solution found using the Task-Based Approximation improved on the two-minute direct

solution by over 70%. Meanwhile, 23 of the instances (≈ 9.58%) show a negative improve-

ment, implying that the value of the Task-Based Approximation solution was greater than

that found by the two-minute direct approach. Over half of these (12 instances, 5% of the

total) had an ‘improvement’ of less than −100%, which shows the Task-Based Approxima-

207

Figure 6.17: Histogram of percentage gaps to best known bounds for solutions found using
the Task-Based formulation as an approximation.

tion solution value was more than double the two-minute direct approach value. Finally,

at the centre of the x-axis it can be seen that a single instance resulted in the identical

solution value for both approaches.

As might be expected, a much different pattern is observed in the lower histogram

of Figure 6.18, comparing the Task-Based Approximation solution value to the solution

found by the ‘direct’ approach when given a one-hour time limit. Here, only 67 instances (≈
27.92% of the total) show a positive improvement, with smaller percentage improvements

having a greater frequency than large improvements (for example, 47 of the 67 instances

which show positive improvement have an improvement of less than 50%). The remainder

of the instances result in a negative improvement, showing that for the most part the Task-

Based Approximation solution has a higher value than that found by the one-hour direct

approach. For 92 instances (≈ 38.33% of the total, and over half of the 173 which have

a negative improvement) the improvement is less than −100%, indicating that for these

instances the value of the Task-Based Approximation solution is more than twice that of

the solution found using the one-hour direct approach.

We should also compare the Task-Based Approximation solutions with the solutions

208

Figure 6.18: Histograms summarising improvement in the solution for each instance using
the Task-Based Approximation approach compared to the solution cost for the two-minute
(top) and one-hour (bottom) ‘direct’ approach, shown as a percentage of the respective
direct approach solution value.

209

found by the change-minimization approach, again as discussed in section 6.3. Similarly to

above, we can calculate an improvement shown by the Task-Based Approximation approach

by subtracting its solution value from the (two-minute) change-minimization solution value

for each instance. Dividing by the change-minimization value gives a percentage improve-

ment for each instance, which can be summarised in Figure 6.19. The image here is even

Figure 6.19: Histogram summarising improvement in the solution for each instance using
the Task-Based Approximation approach compared to the solution cost for the two-minute
change-minimization approach, shown as a percentage of the change-minimization solution
value.

more extreme than that shown by the lower graph of Figure 6.18, with only 10 instances

(≈ 4.17% of the total) where the Task-Based Approximation approach was able to find a

solution which improved on that found by the change-minimization approach. Of these, 7

of the instances resulted in an improvement of less than 10%. Of the other instances, only

42 (17.5% of the total) show an improvement of greater than −50%, i.e with the value of

the Task-Based Approximation solution no more than half as much again (or one-and-a-

half times) the value of the change-minimization solution; while 58 instances (≈ 24.17% of

the total) show an improvement of between −50% and −100%. The majority of instances

however (130 instances, ≈ 54.17% of the total) show an improvement of less than −100%,

indicating that for over half the instances the Task-Based Approximation solution has a

210

cost more than double that of the change-minimization solution.

The results relating to the solution cost indicate that while the Task-Based Approxi-

mation tends to outperform the ‘direct’ solution approach with a two-minute time limit, it

is in turn largely outperformed by the change-minimization approach. It also tends to find

inferior solutions to the one-hour direct approach setting, although this is of less concern

since a one-hour time limit is not of use in practice. An advantage to the Task-Based

Approximation approach can be seen however when running time is taken into account.

The running times for each instance, including the time to convert the problem into the

Task-Based format and convert the solution back to the Time-Windows representation, can

be summarised in Figure 6.20. Note the jump in the scale of the graph at the upper end of

Figure 6.20: Histogram summarising total running time to find a Task-Based approxima-
tion solution for each instance, including conversion time.

the x-axis. As can be seen, for only 2 instances did the solver require the full two-minute

time limit; for nearly half of the instances (117, 48.75% of the total), the entire solution

process was completed within 1.5 seconds, and an additional 73 instances (≈ 30.42% of

the total) were solved within 2 seconds. All instances other than the two which required

the full time limit were converted, solved, and converted back within 8 seconds. This is

noteworthy as it shows the potential of the Task-Based Approximation approach to find

211

solutions very quickly, even if the quality of the solutions (in terms of cost) is inferior to

the change-minimization approach.

In an attempt to understand the outlying results, further investigation was carried out

into the two datasets which took the full two-minute time limit. This revealed that for

both instances the FICO Xpress solved had been terminated before an optimal solution

to the Task-Based version of the problem had been found - instead, there was still a gap

of ≈ 0.24% and ≈ 1.74% respectively between the best solution found and the best bound

calculated for the Task-Based formulation of the problem. Clearly these gaps are relatively

small, and indeed had there been an acceptable optimality gap of 5% (or even 2%) set for

this approach rather than the default of 0.0001% then these instances would have been

considered solved to within tolerance of optimality. It is also possible that the solutions

found for these instances were the optimal for the formulation, and that the apparent

failure to find the optimal solution was instead a result of the bound not being sufficiently

increased.

Looking at the time the solutions were found revealed that they were found after

approximately 2 seconds and approximately 24 seconds respectively, meaning the solver

spent respectively around 118 seconds and around 96 seconds attempting to find cheaper

solutions. The fact that it failed to do this in the time available in either case adds weight to

the suggestion that these solutions may be the optimal for the Task-Based Approximation

of these instances. Regardless of whether or not a better solution exists in the Task-Based

representation for either of these instances, it is interesting to note the gaps between the

solutions found by this method and the best known bound for these instances overall (i.e.

in the Time-Windows representation) are respectively ≈ 66.85% and ≈ 78.45%, i.e. below

the average (both mean and median) gap across all 240 instances, as discussed in Figure

6.16. Similarly, these solutions have a gap to the best solution found by any method of

respectively of ≈ 38.41% and ≈ 57.00% which is also below the mean and median gaps

discussed at Figure 6.17 above.

Finally, it may be interesting to look at the number of changes proposed by the Task-

Based Approximation solutions. Here there are two measures of numbers of changes: the

number of tasks for which changes are required in the Task-Based version of the solution;

and the number of weeks for which an employee has a change to their assigned role under

the Time-Windows version of the solution. The count of these can be summarised in the

two histograms in Figure 6.21. The upper of the two histograms shows the number of

changes in the Task-Based representation of the solution. It can be seen that the values

range from a minimum of 13 to a maximum of 71, and follow a roughly Normal-shaped

curve over this range. The modal value is 37 changes, with 15 instances (6.25% of the total)

obtaining this result, while the mean is ≈ 40.36 and the median value is 40 changes. It is

interesting to compare this chart to Figure 5.10 which discusses the number of changes in

212

Figure 6.21: Histograms summarising the number of changes in the Task-Based represen-
tation (top) and Time-Windows representation (bottom) of the solution for each instance.

213

the lowest-cost solution to the Task-Based problem found using the change-minimization

approach. The results shown here in Figure 6.21 have a slightly larger range, but have

a similar maximum and a similar shape to the histogram. Recall that, although the

datasets for the Task-Based and Time-Windows problems were generated separately and

are therefore different, they do depend on similar underlying assumptions and the same

basic parameters. Therefore there is some merit to observing the similarities in these plots,

and to observe that while the Task-Based change-minimization approach actively aims to

reduce changes, the Task-Based Approximation of the Time-Windows problem does not.

Hence we can argue that it has achieved a (broadly) similar number of changes without

this being the explicit goal, which adds weight to the suggestion made in section 6.3.2 that

the Time-Windows problem may have a stronger link between the number of changes and

the cost of the solution.

The lower plot meanwhile shows the number of changes in the solution when represented

in the Time-Windows format. The graph displays a similar shape to that Task-Based

representation, although it has a more bi-modal appearance and covers a much larger

range of between 58 and 355 changes. The wider range is not unexpected, since each task

equates to multiple weeks, with an average task length across all tasks and all instances

of ≈ 4.24 weeks. The most common numbers of changes are 171 to 180 (19 instances,

≈ 7.92% of the total) and 211 to 220 (21 instances, 8.75% of the total), while the mean

number is ≈ 192.30 changes and the median is 191 changes.

6.8.2.1 Summary of Task-Based Approximation results

We now summarise the results relating to the Task-Based Approximation of the Time-

Windows problem. In terms of solution cost, the values have a large gap from both the

best known bound and best known solution, with mean gaps of ≈ 81.25% and ≈ 65.54%

respectively. Comparing the solution values to the two-minute ‘direct’ solution approach

showed that the Task-Based Approximation method achieved a better solution for the vast

majority (90%) of instances. The Task-Based Approximation was however only able to

beat the one-hour direct solution in ≈ 27.92% of the instances, while comparison to the

lowest cost change-minimization solution indicated that the Task-Based Approximation

method obtained a cost of more than double the change-minimization solution for over

half (≈ 54.17%) of the instances. It is worth noting however than in all three of these

comparisons, there were at least some instances where the Task-Based Approximation

found a better solution and at least some where the solution was worse, indicating that no

one approach is better than the other in all cases.

One of the clear advantages of the Task-Based Approximation approach is its speed,

with nearly half of the instances (48.75%) being solved within 1.5 seconds. Two outlying

214

instances required the full two-minute time limit, but investigation revealed that these

could have terminated much earlier if a more generous optimality gap had been applied

(e.g. 2% rather than the default of 0.0001%), or that the solution value would have been

the same if the solver had terminated after say 30 seconds rather than 120 seconds. This

means that, while the solution quality may not be the best in terms of cost, the method

could be very useful in practical terms by giving a result very quickly. Connected with

this, we observed that only one solution was produced by the method as implemented

here; however, the approach could be adapted to output multiple results, a process which

could potentially be aided by the fast running time allowing multiple solution runs to be

carried out. This work has not been carried out during this research project and is left as

a suggestion for future work.

Finally, in terms of numbers of changes we observed that the Task-Based representation

of the solution, with range of 13 to 71 changes, mode of 37 changes, mean of ≈ 40.36

and median of 40 changes produces a graph of quite similar range and shape to that for

the lowest-cost change-minimization solutions obtained for the Task-Based problem. The

changes in the Time-Windows representation unsurprisingly cover a much larger range of

between 58 and 355 changes, with a mean of ≈ 192.30 changes and a median 191 changes.

This graph appeared to have two modes, in the ranges of 171 to 180 changes and 211 to 220

changes. The significance of the numbers of changes in the Time-Windows representation

will be more clear when we compare them to results from the Heuristic initial solution and

general Heuristic methods below.

6.8.3 The Heuristic Initial Solution approach

We now go on to look at the results obtained by using a heuristic algorithm to generate

initial solutions for the Time-Windows problem, as discussed in section 6.6. As with

the Task-Based Approximation approach, we use the following measures to evaluate the

solutions: the gaps between the solution and the best known bound and best known solution

for the instance; the improvement in solution cost relative to the ‘direct’ and change-

minimization approaches; the running time; and the number of changes. In addition,

we can also look at the number of iterations performed by the Heuristic initial solution

algorithm on each instance.

The results presented in this section refer to the Heuristic initial solutions which were

used in the testing of the main Heuristic algorithm, discussed in section 6.8.4 below. How-

ever, since running times were found to be relatively fast for this approach, it was felt

there was an opportunity to look into the effect of the randomized elements involved in

the algorithm, specifically the ordering of the employee list and role list as described in the

procedure in sections C.4.2.3 and C.4.2.4. Therefore, as well as the results of the single run

215

reported in this section, ten further randomized runs were carried out for each instance.

From these, it was possible to calculate a minimum, maximum and average value for each

of the metrics discussed here. A non-randomized run was also carried out, keeping the

employees and roles in the same order as they appear in the datasets.

Results for these additional runs suggested that we would not expect to see a large vari-

ation in the outputs due to the randomization, and that the single randomized run results

were representative of the other runs carried out. We therefore do not report the multiple

randomized run or non-randomized run results here. Instead, for completeness, for each

of the figures presented for the single randomized run below, there are two corresponding

figures to be found in Appendix D:

1. One first showing the single randomized run results for the metric in question, along

side the average of that metric across the ten random runs and the result for the

non-randomized run.

2. A second showing the counts for that metric for its minimum and maximum values

across the ten randomized runs.

It should also be noted that the multiple randomized runs produced numerous different

solutions for most instances, but that unfortunately it was not possible to say precisely

how many distinct solutions were generated. Since as with the Task-Based Approximation

approach each individual test run only produces a single solution, we can as before give

no further results with regard to number of solutions generated. However, we note that

this approach could be adapted to produce multiple solutions, either by multiple random

runs or perhaps some other means, and flag this as something which may potentially be

investigated as future work.

In terms of the results for this single randomized run, we first look at the gap to the best

known bound for each instance, which can be summarised in Figure 6.22. We can see that

the results are grouped towards the upper end of the graph, with nearly half of the instances

(111 out of the 240, i.e. 46.25%) showing a gap to the best bound greater than 85%. As

before, we note that there is a single instance which has a gap of greater than 100%, being

the only instance for which the best known bound was negative. It is noticeable that this

graph is very similar to Figure 6.16 shown for the Task-Based Approximation solution, and

indeed as with that graph we see here that 12 instances (5% of the total) found a solution

with a gap to the best bound not greater than 50%. The smallest gap however is lower

for this approach, with one instance only ≈ 1.38% away from the best known bound. The

mean gap size was ≈ 79.81% and the median ≈ 83.85%, only a little lower than the figures

for the Task-Based Approximation approach (≈ 81.25% and ≈ 85.23% respectively).

We can also look at the quality of the solution cost in relation to the best known

solution, from all test runs carried out, for each instance. The gaps between the Heuristic

216

Figure 6.22: Histogram of percentage gaps to best known bounds for solutions found using
the Heuristic initial solution approach.

initial solution cost and the best known solution for each instance are summarised in Figure

6.23. As with the Task-Based Approximation results, the gaps displayed here are still

mainly towards the upper end of the scale but are clearly smaller than the gaps observed

when comparing the solution to the best known bound. There are 115 instances (≈ 47.92%

of the total) for which the gap to the best known solution was over 65%, compared to 125

instances (≈ 52.08% of the total) for the Task-Based Approximation solution, as shown in

Figure 6.17. For the Heuristic initial solution, we see that 48 instances (20% of the total)

had a solution within a 50% gap of the best known solution, including one instance which

was solved to within 5% and one for which the best known solution was actually achieved

by this approach. The mean gap to the best known solution was ≈ 64.00% while the

median was ≈ 63.51%, as compared to ≈ 79.81% and ≈ 83.85% respectively for the gap

to the best bound. These gaps are slightly less than the average gaps to the best known

solution for the Task-Based Approximation, which had a mean of ≈ 65.54% and median

≈ 65.66%.

We will next compare the costs of the solutions found using the Heuristic initial solution

approach to those using the ‘direct’ approach set out in section 6.3. As before, we consider

217

Figure 6.23: Histogram of percentage gaps to best known bounds for solutions found using
the Heuristic initial solution approach.

the improvement achieved by the Heuristic initial solution method by subtracting this

solution value from the direct approach value and representing it as a percentage of this

‘direct’ value. These percentage improvements are summarised for both the two-minute

and one-hour settings of the direct approach in Figure 6.24. In the upper graph, we see that

for the vast majority of instances (215 out of the 240, i.e. ≈ 89.58%), the Heuristic initial

solution value was an improvement on that found using the two-minute direct approach.

For over half of the instances (132, i.e. 55%), the Heuristic initial solution value was

a better than 70% improvement on the two-minute direct solution; for the Task-Based

Approximation approach as discussed in Figure 6.18, this count was 120 instances (i.e.

50%). Meanwhile, it can be seen that 25 instances (≈ 10.42% of the total) show a negative

improvement indicating the Heuristic initial solution value was in fact larger than that

found by the two-minute direct approach. Of these, 10 instances (≈ 4.17% of the total)

have an improvement of less than −100%, i.e. have a Heuristic initial solution value more

than double that of the two-minute direct approach value. We note that these values

are quite similar to those seen for the Task-Based Approximation results, which had 23

instances with negative improvement and 12 instances with improvement less than −100%.

218

Figure 6.24: Histograms summarising improvement in the solution for each instance using
the Heuristic initial solution approach compared to the solution cost for the two-minute
(top) and one-hour (bottom) ‘direct’ approach, shown as a percentage of the respective
direct approach solution value.

219

The pattern of the graph overall is also quite similar to the equivalent chart in Figure 6.18.

Meanwhile, an entirely different pattern is observed in the lower histogram of Figure

6.18, which shows the improvement made by the Heuristic initial solution on the solution

value found by the one-hour setting of the direct approach. Here, 76 instances (≈ 31.67%

of the total) show a positive improvement, with most of the improvements in the lower

range of percentages - for example, 40 instances (≈ 16.67% of the total) have a positive

improvement of 10% or less. The remaining 164 instances (≈ 68.33% of the total) show

a negative improvement, but the vast majority of these (143 instances, i.e. ≈ 59.58% of

the 240 total instances) show a negative improvement not less than −10%, which can be

interpreted as the Heuristic initial solution value being within a 10% increase of the one-

hour direct solution value. There are however still ten instances with an improvement of

less than −100%, i.e. where the Heuristic initial solution value is more than double the

one-hour direct solution value. This is a noticeable contrast to the lower graph of Figure

6.18 for the Task-Based Approximation, for which 92 instances (≈ 38.33% of the total)

showed an improvement of less than −100%, and with numbers fairly evenly spread across

the range of percentages otherwise. Instead, we find here that a large number of Heuristic

initial solution values are relatively close to the one-hour direct solution values, with 183

instances (76.25% of the total) having a Heuristic initial solution value that is within ±10%

of the one-hour direct solution cost.

The final cost-related comparison is to compare the Heuristic initial solution value

to the lowest-cost change-minimization results, as discussed in section 6.3. As with the

comparison to the ‘direct’ solution approach, we make the comparison as an improvement

calculated by subtracting the Heuristic initial solution value from the (two-minute) change-

minimization solution value for each instance, and representing this as a percentage of the

change-minimization solution value. These percentage improvements can then be sum-

marised in a histogram, as shown in Figure 6.25. The graph shown here is more in keeping

with what we observed for the Task-Based Approximation in Figure 6.19, with only 6 in-

stances (2.5% of the total) showing a positive improvement by the Heuristic initial solution

approach on the solution found by the change-minimization method. Only 40 instances

(≈ 16.67% of the total) which have a negative improvement have an improvement greater

than −50%, i.e. where the Heuristic initial solution cost is no more than one-and-a-half

times the change-minimization solution value. This is very similar to the 42 instances in

this category for the Task-Based Approximation approach. In keeping with the Task-Based

Approximation comparison with the change-minimization approach, and in contrast to the

comparison with the one-hour direct solution approach shown in Figure 6.24, we see in

Figure 6.25 that over half the instances (125, ≈ 52.08% of the total) show an improvement

of less than −100% from the change-minimization solution to the Heuristic initial solution.

We next turn our attention to the running time of the Heuristic initial solution ap-

220

Figure 6.25: Histogram summarising improvement in the solution for each instance using
the Heuristic initial solution approach compared to the solution cost for the two-minute
change-minimization approach, shown as a percentage of the change-minimization solution
value.

proach. This can be summarised in Figure 6.26. We see the shape of this graph is roughly

Normal, with perhaps a slightly longer tail towards the upper values. The running time

range from ≈ 7.44 seconds to ≈ 39.28 seconds, with the mean ≈ 20.32 seconds and the

median ≈ 19.66 seconds. It can be noted that only two instances (≈ 0.83% of the total)

were solved within 8 seconds, the upper limit on the running time of the Task-Based Ap-

proximation approach for all but the two outlying instances. However, while not as fast

as the Task-Based Approximation it should also be noted that all instances were solved

within 40 seconds, which still makes this method potentially useful in practical terms when

a solution is required quickly.

It is important also to recognise here that for expediency in obtaining the Heuris-

tic initial solution results for use in the main Heuristic algorithm, running time was not

of primary importance during these test runs. Therefore, rather than implementing the

procedure described in section 6.6.1 in C++ these tests were carried out using the FICO

Xpress software. It would be anticipated that if implemented in the more efficient C++ (or

similar) programming language, the time taken to find a Heuristic initial solution for any

221

Figure 6.26: Histogram summarising total running time of the Heuristic initial solution
algorithm for each instance.

instance would be greatly reduced, thus improving the expected usefulness of this approach

in terms of solution time. We would not however expect the change of implementation lan-

guage to affect any of the other metrics discussed here. A re-coding and re-testing of

the Heuristic initial solution algorithm is a potential avenue for future research, perhaps

in conjunction with a project to implement a practical decision support tool within the

company.

Linked to the running time is the number of iterations required by the algorithm to

find the initial solution. This is summarised for each instance in Figure 6.27. The number

of iterations required will depend on a number of factors, such as the number of vacancies

in the current schedule, or whether vacant blocks must be increased in size to make them

more cost-effective to cover. Since more than one vacancy can potentially be filled at each

iteration, the order in which roles and employees are considered in the algorithm may also

have a bearing. We can see from the graph here that there are 2 instances (≈ 0.83% of the

total) which are solved in a single iteration, while at the other extreme 1 instance requires

8 iterations to solve. Between this, the graph follows a roughly normal curve, with 100

instances (≈ 41.67% of the total) taking the median and modal value of 4 iterations. The

222

Figure 6.27: Histogram summarising the number of iterations carried out by the Heuristic
initial solution algorithm for each instance.

mean was slightly higher than this, at ≈ 4.24.

Finally, we can look at the number of changes to the current schedule in the solutions

found using the Heuristic initial approach. Unlike the changes in the Task-Based Approx-

imation solutions, we only have one measure for changes for the Heuristic initial solutions.

This relates to the number of changes in the Time-Windows version of the solution, as

shown previously in the lower chart of Figure 6.21, found by summing the assignment

change variables x±ijt across all employees i ∈ ER, roles j ∈ J and all times t. The number

of changes for this solution approach is summarised in Figure 6.28. It is noticeable that

the number of changes shown in this chart is much less than in the Task-Based Approxi-

mation solution - here the range goes from a minimum of 25 changes to a maximum of 134,

compared to a range of 58 to 355 in the results in the previous section. That there is a dif-

ference is not surprising, although the scale of the difference might not have been expected,

when we consider the contrasting approaches used. The Heuristic initial solution approach

focusses on making a small number of changes provided that very expensive changes can

largely be avoided; on the other hand, the Task-Based Approximation, by grouping the

assignments into tasks, will be almost certain to require more changes since making a

223

Figure 6.28: Histogram summarising the number of changes in the Heuristic initial solution
for each instance.

change to a single task affects multiple assignments in the Time-Windows representation.

The graphs shown in the lower half of Figure 6.21 and in Figure 6.28 may have different

scales, but do seem to have a similar bi-modal shape, with the Heuristic initial solution

results having a peak of 42 instances (17.5% of the total) reporting 81 to 90 changes, with

a slightly lower second peak at 51 to 60 changes accounting for 36 instances (15% of the

total). The mean number of changes here was ≈ 71.60 changes, with the median equal to

70 changes; this is compared to a mean of ≈ 192.30 changes and median of 191 changes

for the Task-Based Approximation solutions.

6.8.3.1 Summary of Heuristic Initial Solution results

We can now summarise the results presented in section 6.8.3 relating to finding an initial

solution to the Time-Windows problem using a Heuristic approach. In terms of solution

cost, the gaps from the Heuristic initial solutions to the best known bound and best known

solution were generally large, averaging ≈ 79.81% and ≈ 64.00% respectively. However,

the method performed well on these measures for a small number of instances, with one

instance achieving a gap of just ≈ 1.38% to the best bound, and equalling the best known

224

solution during this test run. Comparing the solution values to the initial computational

results showed that the Heuristic initial solution approach was able to achieve a better

solution than the two-minute ‘direct’ approach on ≈ 89.58% of instances, but was able

to improve on the two-minute change-minimization solution in only 2.5% of cases. It was

interesting to see that the Heuristic initial solutions were in general quite close to the one-

hour ‘direct’ solution values, with 76.25% of instances recording a solution within ±10%

of the one-hour direct cost. As with the Task-Based Approximation approach, it should

be noted that in all three of these comparisons there were both positive and negative

improvements observed for at least some instances, indicating that there are no guarantees

that the Heuristic initial approach will always be better or worse that the ‘direct’ or

change-minimization approaches.

In terms of running time, instances were solved in between ≈ 7.44 seconds and ≈ 39.28

seconds, with an mean time of ≈ 20.32 seconds. While this could in itself be fast enough

for the company’s needs, we noted that these results were produced using FICO Xpress

and that for this kind of algorithm an implementation in a language such as C++ would be

more efficient. Such an implementation would also be more useful in practice if it were done

in an open source software, and could pave the way for a more time-efficient adaptation of

the algorithm such that multiple solutions could be generated. An investigation into this

is left as a proposal for future work.

Linked to running time, the number of iterations required for each instance ranged

between 1 and 8, with a median and mode of 4 iterations (accounting for 100 instances,

≈ 41.67% of the total) and a mean of ≈ 4.24 iterations. Meanwhile, the number of changes

recommended in the solutions found were notably fewer than those in the Task-Based

Approximation, with a range of 25 to 134 changes in contrast to 58 to 355 as shown in the

previous section. The mean number of changes was ≈ 71.60, but the shape of the graph

seemed consistent with a bi-modal distribution with peaks in the 81 to 90 changes range

(17.5% of instances) and the 51 to 60 changes range (15% of instances).

We note that these results relate only to the single randomized test run, the results

from which were used as the initial solutions in the testing of the main Heuristic algorithm.

However, some additional test runs (ten randomized and a single non-randomized) were

carried out, with graphical results given in Appendix D which correspond to those results

shown above in Figures 6.22 to 6.28.

6.8.3.2 Comparing the Heuristic Initial and Task-Based Approximation solu-

tions

We will also look further at the results given in section 6.8.3.2 with respect to how they

compare to those for the Task-Based Approximation solution. In terms of the solution

225

cost, it was observed that the gaps to the best known bound and best known solution

were in general lower for the Heuristic initial solution (Figures 6.22 and 6.23) than for

the Task-Based Approximation (Figures 6.16 and 6.17). Similarly, the Heuristic initial

solution appeared to compare a little more favourably with the two-minute direct and

change-minimization results, although the broad conclusion was the same as for the Task-

Based Approximation: that it was generally superior to the two-minute direct approach,

and generally inferior to the change-minimization method.

The most significant difference between the two came when comparing to the one-

hour direct approach solutions, where the Heuristic initial solutions appeared to be on the

whole quite close to the one-hour solutions, while the Task-Based Approximation solutions

saw a number of negative improvements of less than −100%. The best way to evaluate

the two solutions however is to compare the two directly, and therefore we calculate the

improvement that the Heuristic initial solution makes on the Task-Based Approximation

solution. Representing this as a percentage of the Task-Based Approximation solution

value, we can summarise these percentage improvements in Figure 6.29. Note that graphs

Figure 6.29: Histogram summarising improvement in the solution for each instance using
the Heuristic initial solution approach compared to the solution cost for the Task-Based
Approximation solution, shown as a percentage of the Task-Based Approximation solution
value.

226

corresponding to this for the additional randomized and the non-randomized run are shown

in Figure D.9 in Appendix D. As can be seen from the graph here, there is a certain

amount of variation, with 134 instances (≈ 55.83% of the total) having a better solution

from the Heuristic initial solution method, but the remainder seeing a lower cost solution

from the Task-Based Approximation approach. The percentage changes appear to be

grouped towards zero and taper towards the extremities of the graph, with 50 instances

(≈ 20.83% of the total) showing a Heuristic initial solution value within ±10% of the Task-

Based Approximation cost and a further 42 instances (17.5% of the total) within ±20%.

Therefore we can say that, while across the 240 test instances the Heuristic initial solution

produces cheaper solutions than the Task-Based Approximation, variations from instance

to instance mean that it is not consistently outperforming in terms of cost.

In terms of number of changes however, the Heuristic initial solution method appears

to greatly outperform the Task-Based Approximation approach. As mentioned above, this

is to an extent expected given the nature of the two methods, with the Heuristic initial

solution approach being explicitly designed to try to limit the number of changes while

trying to avoid single expensive alterations to the existing schedule. Meanwhile, in terms of

running time, it would appear that both methods are capable of finding a solution within a

relatively short length of time, although the Task-Based Approximation approach appears

to be faster from the results given here. However, it is believed that a more efficient

implementation of the Heuristic initial solution algorithm would be possible which would

most likely negate the advantage seen here and make the two methods similar in terms of

running time (at least to a practical level of comparison).

The overall conclusion of this comparison therefore is that the Heuristic initial solution

approach is superior to the Task-Based Approximation approach in terms of the solutions

it can produce. However, since neither were designed to be the source of a final solution to

the Time-Windows problem, it remains to be seen which can lead to better solutions when

the main Heuristic algorithm is applied. As discussed previously, both initial solutions were

used in the Heuristic algorithm test runs, and below in section 6.8.4 we examine whether

the choice of initial solution has any significant bearing on the final result or on the level

of improvement the algorithm is able to make.

6.8.4 The Heuristic Algorithm

We can now examine the detailed results of tests on the Heuristic algorithm itself. As

outlined in section 6.6.2, these Heuristics take as their initial solution either the Task-

Based Approximation solution or the Heuristic initial solution and seek to improve them

using the methods discussed in section 6.5. As a reminder, the plan given in that section

was to test various settings in the heuristic algorithm, which gave rise to 48 different

227

combinations (including the two alternative initial solutions). In this results section we

not only present, as before, various metrics of solution quality, but also analyse these

metrics to determine whether the different settings have any influence on the performance

of the algorithm. Please see section 6.8.4 for a summary of these results.

6.8.4.1 Gap to the best known bound

We begin, as before, by looking at the gaps between the solutions found and the best known

bound for each instance. As stated in section 6.5.4.11, solution details were recorded after

one minute of the test run as well as at the end of the two-minute running time. Therefore,

we present two graphs here for the gaps to the best known bound, summarising the gaps

for all instances and all combinations of settings for both the solutions found within one

minute and that found after two minutes. This is given in Figure 6.30.

Perhaps the most striking observation to be made about the two charts shown here is

that they are very similar in shape, suggesting that there is a degree of similarity between

the quality of solutions found within one minute and those found in two minutes. In

general, the tendency is towards large gaps, with only 821 of the 11520 total test runs

(≈ 7.13%) finding a solution within 40% of the best known bound within one minute, and

only 823 test runs (≈ 7.14% of the total) concluding after two minutes with a solution

within 40% of the best bound. Similarly, within one minute only 1458 test runs (≈ 12.66%

of the total), and within two minutes only 1482 test runs (≈ 12.86% of the total), found

a solution that was within 50% of the best known bound. There is then a jump in both

graphs, with a large number of test runs resulting in solutions with a gap which is greater

than 50% and within 80% - these numbers are 5319 (≈ 46.17% of the total) for the one-

minute results, and 5346 (≈ 46.41% of the total) for the two-minute. The highest single

category in both charts is a gap greater than 90% and up to 95%, which accounts for 1780

test runs (≈ 15.45% of the total) for the one-minute gaps, and 1745 test runs (≈ 15.15%

of the total) for the two-minute results. Calculation of the average gaps showed the means

to be ≈ 71.02% for the one-minute and ≈ 70.84% for the two-minute results, while median

gaps were ≈ 74.65% for the one-minute and ≈ 74.48% for the two-minute results.

These results can be compared to the initial computational results given in section

6.3 earlier. Looking first at the direct solution approaches, it can be seen by comparing

with Figure 6.1 that overall the Heuristic methods perform much better than the two-

minute direct approach, which saw 135 of the 240 instances (i.e. 56.25%) with a gap

to the best known bound of between 95% and 100%, although this direct approach did

also find (and prove) the optimal solution for 5 instances. The comparison with the one-

hour direct approach results given in Figure 6.2 is more even, with a similar proportion of

instances falling into the most common categories of a gap between 90% and 95% and a gap

228

Figure 6.30: Gap to the best known bound from the solution found after one minute (top)
and two minutes (bottom), across all test instances and all combinations of settings.

229

of between 85% and 90%. The one-hour direct solution had proportionately many more

instances at the lower end of the scale, with ≈ 7.09% of instances being solved to optimality

and a further ≈ 4.58% to within a 5% gap of the best known bound. Comparing with the

lowest-cost change-minimization results given in Figure 6.5, we see that in general the

change-minimization approach is outperforming the heuristics, with a smaller percentage

of instances with results at the higher end of the chart and a mean gap of ≈ 59.78%. The

overall pattern of the results is similar however, with the majority of the instances being

solved with a gap of greater than 50% to the best known bound. The comparison with

the non-cost-constrained change-minimization solution, shown in Figure 6.6, is however

much more clear cut. While the Heuristic results above show 6777 test runs (≈ 58.83%

of the total) for the one-minute and 6828 test runs (≈ 59.27% of the total) for the two-

minute results solving to within 80% of the best known bound, the non-cost-constrained

change-minimization had no instances which fell into these categories.

Having discussed the combined results for all heuristic settings, we now examine whether

there is an influence made by the setting choices, as described in section 6.5.4.14, on the

quality of the solutions produced. We do this using a similar approach to that used in sec-

tion 5.5.2.3 to examine the effect of the values of the data generation parameters. It is clear

that the graphs shown in Figure 6.30 are not consistent with the assumption of the data

being Normally distributed; therefore, we must use the non-parametric Kruskal-Wallis test

rather than the F-test to investigate the influence of the settings. The p-values obtained

from these tests are shown in Table 6.2, with those significant at the 5% level marked

with an asterisk. As can be seen, neither the order in which employees are examined (a

Table 6.2: Influence of heuristic settings on gap to best known bound (Kruskal-Wallis test).

p-value for p-value for
Setting type

one-minute result two-minute result

Employees to examine 0.058 0.015*
Employee order 0.662 0.540

Acceptance criteria 0.841 0.653
Kick settings 0.047* 0.006*

Initial solution < 0.001* < 0.001*

random order or the ‘smarter’ ordering) nor the difference in acceptance criteria used have

a significant influence on the gap to the best known bound found by the algorithm. Mean-

while, the number of employees examined at each iteration appears to have a significant

bearing on the gap to best bound for the solutions found after two minutes, but not with

relation to the solutions found after one minutes. Significant for both the one-minute and

two-minute results are both the kick settings and the type of initial solution used.

We cannot, however, determine from these values alone the manner of the influences

230

and which settings produce more favourable results. Examination of graphs showing the

breakdown by the influencing factors reveals that the results follow approximately the same

pattern for each of the subgroups (these graphs are not given here, but instead appear in

the appendix in section D.2.1). Here, we consider only the central measures of mean and

median for each of these subgroups. Looking first at the breakdown of the two-minute

results by the number of employees to examine at each iteration, we have that

• When all employees are examined, the mean gap is ≈ 71.22% and the median is

≈ 74.93%;

• When only one third are examined, the mean gap is ≈ 70.46% and the median is

≈ 73.97%.

This shows that a narrower gap is achieved when only one third of employees are examined

at each iteration. This could be explained by the fact that this option shortens the iteration

length, allowing more iterations to be carried out within the time available. If this is the

case, it would suggest there is more value to carrying out a greater number of iterations

rather than searching for the best possible improvement at each step, and this would be

consistent with the statistical insignificance of the changing acceptance criteria.

Looking next at the breakdown by the kick activation setting used, for the one-minute

results we have that

• When no kick is used, the mean gap is ≈ 70.41% and the median is ≈ 73.87%;

• When the kick is activated after 4 or more iterations without improvement, the mean

gap is ≈ 71.58% and the median is ≈ 75.46%;

• When the kick is activated after 8 or more iterations without improvement, the mean

gap is ≈ 71.07% and the median is ≈ 74.58%.

Meanwhile, for the two-minute results we have that

• When no kick is used, the mean gap is ≈ 70.03% and the median is ≈ 73.55%;

• When the kick is activated after 4 or more iterations without improvement, the mean

gap is ≈ 71.51% and the median is ≈ 75.37%;

• When the kick is activated after 8 or more iterations without improvement, the mean

gap is ≈ 70.97% and the median is ≈ 74.51%.

This shows that, contrary to what might be expected and to the intention of the kick

procedure, it is in fact the test runs which do not employ a kick which appear to find the

best solutions. Of those which do, it appears to be more beneficial to wait longer before

231

applying a kick as the 8-or-more-iteration setting seems to result in a lower gap on average

than the 4-or-more-iteration setting. Some further investigation into this suggested that

in those test runs where a kick was applied, the best solution was often found before the

kick was applied, meaning that the kick was not providing a means of reaching better

solutions as hoped. A possible explanation for this is the amount of time allowed for the

algorithm to improve on the solution after a kick has been carried out. As a large number

of iterations are possible, there is perhaps scope to increase the length of time without

improvement before a kick is activated, which may provide the time the algorithm requires

to improve toward a new best solution. Increasing this setting is therefore suggested as a

future improvement which could be investigated further.

Finally, if we break down the results according to the initial solution, for the one-minute

results we have that

• When the Task-Based Approximation is used, the mean gap is ≈ 73.80% and the

median is ≈ 77.40%;

• When the Heuristic initial solution is used, is ≈ 68.24% and the median is ≈ 71.25%.

Meanwhile, for the two-minute results we have that

• When the Task-Based Approximation is used, the mean gap is ≈ 73.59% and the

median is ≈ 77.18%;

• When the Heuristic initial solution is used, is ≈ 68.08% and the median is ≈ 71.08%.

This demonstrates a clear difference between the gaps to the best bound for the two cate-

gories, with the test runs starting from the heuristic initial solution achieving a markedly

smaller gap. This is not surprising, since as discussed in section 6.8.3.2 the heuristic initial

solutions tend to have a lower cost that the solutions found using the Task-Based Approx-

imation method. A more interesting question arising from this would be whether the final

solution quality relates directly to the initial solution quality, or whether the algorithm is

able to make better improvements on one type of initial solution than the other. This is

discussed in section 6.8.4.3, where we examine in detail the improvements made by the

algorithm on the initial solution.

6.8.4.2 Gap to the best known solution

Linked to the analysis of the gaps to the best known bound, we now turn our attention

to the gap between the solutions found and the best known solution for each instance.

As discussed in section 6.8.1 previously, this takes into account the solutions found by all

the approaches described in this chapter (including preliminary testing), and gives a more

232

practical indication of solution quality. As above, we begin by presenting two graphs which

summarise the gaps to the best known solution overall for all instances and all combinations

of settings for both the solutions found within one minute and within two minutes. This

is given in Figure 6.31.

Firstly, we note as before that the two charts shown are very similar in shape, which

is consistent with the observation about Figure 6.30 that there is probably a degree of

similarity between the quality of solutions found within one minute and those found in two

minutes. It can be seen that the size of gaps here are more evenly spread than the gaps to

the best known bound, with values a little more clustered towards the centre and reducing

towards the tails. The most common category in both charts is that of a gap greater than

35% and within 40%, accounting for 904 test runs (≈ 7.85% of the total) for the one-minute

and 907 test runs (≈ 7.87% of the total) for the two-minute results. This is followed by the

greater than 50% and within 55% category, containing 880 items (≈ 7.64% of the total)

for the one-minute and 875 (≈ 7.60% of the total) for the two-minute results. Combining

the counts between these two categories, we have that the (approximate) centre of each

graph with gaps of over 35% but within 55% of the best known solution account for 3365

(≈ 29.21%) of the one-minute and 3359 (≈ 29.16%) of the two-minute results. In terms

of particularly good solutions, we see that within one minute 91 test runs (≈ 0.79% of the

total) equalled the best known solution, while a further 232 (≈ 2.01% of the total) found a

solution within 5% of the best known; for the two-minute time limit, these numbers increase

to 112 results (≈ 0.97%) equalling the best known solution, and a further 243 (≈ 2.11%)

within 5% of it. Calculation of the average gaps showed the means to be ≈ 46.45% for the

one-minute and ≈ 46.04% for the two-minute results; median gaps were quite similar, at

≈ 45.68% for the one-minute and ≈ 45.22% for the two-minute results.

As above, we can compare these results to the supplemental results given in section

6.8.1 for the initial solution methods. We first compare with the direct solution approach

results given in Figure 6.13. It would seem clear that the Heuristic methods perform much

better than the two-minute direct approach (top graph in Figure 6.13), where the majority

of instances (130 out of the 240, i.e. ≈ 54.17%) had a gap to the best solution of over

90%. However, the two-minute direct method also equalled the best known solution on 6

instances, which as 2.5% of the 240 test runs is a better percentage than the Heuristics

were able to achieve. Comparing with the one-hour direct approach (bottom graph in

Figure 6.13), we are reminded that 53 instances (≈ 22.08% of the total) were solved to

their best known solution by this method. However, for those instances which did not the

peak category was a gap of 60% to 65%, which is greater than the majority of heuristic

results. This would suggest that the direct approach is more volatile that the heuristics -

potentially finding better solutions, but not capable of doing so consistently. Comparing

with the lowest-cost change-minimization results given in Figure 6.14 is consistent with the

233

Figure 6.31: Gap to the best known solution overall from the solution found after one
minute (top) and two minutes (bottom), across all test instances and all combinations of
settings.

234

comparison of the gaps to the best known bound, suggesting that in general the change-

minimization approach is outperforming the heuristics. Nearly half the instances (114, i.e.

47.5% of the total) had a lowest cost change-minimization solution within a 25% gap of

the best known solution, compared to 2539 test runs (≈ 22.04%) for the one-minute and

2617 test runs (≈ 22.72%) for the two-minute heuristic results. Finally, comparing with

the non-cost-constrained change-minimization solution shown in Figure 6.15 shows that

better results are clearly achieved by the heuristics. The non-cost-constrained results have

minimum gap of ≈ 60.56% and a mean gap of ≈ 88.00% to the best known solution; the

majority of test runs achieve a gap of under 60% for the heuristics, with the mean gap

almost half that of the non-cost-constrained change-minimization solutions.

The above paragraphs have discussed the combined results for all heuristic settings;

however we now investigate whether the different settings used, as described in section

6.5.4.14, have an influence on the gaps to the best known solutions. It is believed that

the distributions of the data shown in the graphs in Figure 6.31 approximate sufficiently

to a Normal distribution that we can perform our Analysis of Variance in this case using

the F-test. The p-values obtained from these tests are shown in Table 6.3, with those

significant at the 5% level marked with an asterisk. As with the gap to best known bound,

Table 6.3: Influence of heuristic settings on gap to best known solution (F-test).

p-value for p-value for
Setting type

one-minute result two-minute result

Employees to examine 0.004* < 0.001*
Employee order 0.541 0.410

Acceptance criteria 0.780 0.503
Kick settings 0.001* < 0.001*

Initial solution < 0.001* < 0.001*

neither the order in which employees are examined nor the acceptance criteria used have a

significant influence on the gap to the best known solution. The three other settings - the

number of employees to examine at each iteration, the kick settings and the initial solution

used - on the other hand all have a statistically significant influence on the size of the gap

to the best known solution. For all three of these settings, the influence is significant for

both the one-minute and the two-minute results.

In order to determine the manner of these influences, we must again look in detail at

the breakdown of the results for the different values of these settings. Graphs of these

breakdowns are shown in the appendix in section D.2.2, and can be seen to follow roughly

the same pattern for each subgroup. Here, we again give only the central measures of mean

and median for each subgroup in order to evaluate the nature of the influence. Looking

first at the gaps to the best known solution broken down by the number of employees to

235

examine at each iteration, we have for the one-minute results that

• When all employees are examined, the mean gap is ≈ 47.09% and the median is

≈ 46.63%;

• When only one third are examined, the mean gap is ≈ 45.81% and the median is

≈ 45.07%.

And for the two-minute solutions, we have that

• When all employees are examined, the mean gap is ≈ 46.88% and the median is

≈ 46.13%;

• When only one third are examined, the mean gap is ≈ 45.19% and the median is

≈ 44.61%.

This shows that solutions tend to be found nearer to the best known solution when only

one third of employees are examined at each iteration, which is consistent with the findings

relating to the gap to the best known bound. As before, this could be attributed to the

shorter iteration length possible when examining a reduced number of employees, which in

turn may provide more opportunity for the algorithm to find better solutions.

Looking next at the breakdown according to the kick activation setting used, for the

one-minute results we have that

• When no kick is used, the mean gap is ≈ 45.39% and the median is ≈ 44.88%;

• When the kick is activated after 4 or more iterations without improvement, the mean

gap is ≈ 47.49% and the median is ≈ 46.91%;

• When the kick is activated after 8 or more iterations without improvement, the mean

gap is ≈ 46.48% and the median is ≈ 45.46%.

And for the gaps after two minutes, we have that

• When no kick is used, the mean gap is ≈ 44.58% and the median is ≈ 44.07%;

• When the kick is activated after 4 or more iterations without improvement, the mean

gap is ≈ 47.33% and the median is ≈ 46.62%;

• When the kick is activated after 8 or more iterations without improvement, the mean

gap is ≈ 46.20% and the median is ≈ 45.03%.

This shows the same pattern as was observed for the gap to the best known bound -

the best solutions appear to be found when a kick is not applied at all, while the 8-or-

more-iterations rule gives better results on average than then a kick can be applied after

236

4-or-more iterations without improvement. As suggested above, further investigation into

kick settings may be desirable, with a longer time perhaps being required after a kick to

make improvement before the next one is applied. This is left as a proposal for future

research into improvements.

Finally, breaking down the results according to the initial solution used, we have for

the one-minute gaps that

• When the Task-Based Approximation is used, the mean gap is ≈ 51.19% and the

median is ≈ 50.81%;

• When the Heuristic initial solution is used, is ≈ 41.72% and the median is ≈ 40.24%.

And for the two-minute results, we have that

• When the Task-Based Approximation is used, the mean gap is ≈ 50.73% and the

median is ≈ 50.52%;

• When the Heuristic initial solution is used, is ≈ 41.34% and the median is ≈ 39.78%.

The difference here is even more marked than for the gaps to the best known bounds,

with the test runs starting from the Heuristic initial solution achieving an average gap to

the best known solution of around 10 percentage points better than those runs using the

Task-Based Approximation as the initial solution. The question remains however as to

whether this can be attributed solely to the Heuristic initial solution itself having a lower

cost than the Task-Based Approximation solution, or whether the type of initial solution

has a bearing on the amount of improvement achieved by the algorithm. This is discussed

in section 6.8.4.3, which follows.

6.8.4.3 Improvement on initial solution

Having discussed in sections 6.8.4.1 and 6.8.4.2 above the quality of the solutions produced

by the heuristic algorithm, we now examine the amount of improvement achieved by the

algorithm from the initial solution through to the solution found after one and two minutes.

The reduction in cost achieved can be represented as a percentage of the cost of the

initial solution, and is summarised in histograms for both the one-minute and two-minute

solutions for all instances and all combinations of settings as shown in Figure 6.32.

As may be expected having seen the results with regard to the gap to the best known

bound and best known solution, it can be seen here that the two graphs are very similar,

again showing a similarity between the level of improvement possible within one minute

compared to within two minutes. Both charts are roughly Normal in shape, with a peak in

the category of over 35% and up to 40% improvement on the initial solution, which accounts

237

Figure 6.32: Improvement on the initial solution achieved within one minute (top) and
two minutes (bottom) given as a percentage of the initial solution value, across all test
instances and all combinations of settings.

238

for 1692 test runs (≈ 14.69% of the total) in the one-minute results and 1671 test runs

(≈ 14.51% of the total) in the two-minute results. The mean improvements lie just outwith

this category, being ≈ 34.18% for the one-minute and ≈ 34.69% for the two-minute results;

however, the median improvement percentages do lie within the central range, at ≈ 35.33%

and ≈ 35.90% for the one-minute and two-minute results respectively. The concentration

of data points around the central category is high, with nearly two-fifths of the test runs

showing an improvement in the central three categories - 4563 results (≈ 39.61% of the

total) for the one-minute runs and 4558 (≈ 39.57% of the total) for the two-minute lie in

the range of greater than 30% and up to 45% improvement on the initial solution. The

maximum improvement achieved was ≈ 88.08% in both the one-minute and two-minute

time limits, while at the other end of the scale it can be seen that the algorithm was able

to find no improvement on the initial solution within one minute in 138 cases (≈ 1.20% of

the total), with 134 of these (≈ 1.16% of the total) achieving no improvement within two

minutes either.

We now turn to the question of whether the different settings used (as described in

section 6.5.4.14) have an influence on the degree of improvement that the algorithm is able

to achieve. Looking at the graphs in Figure 6.32, it would appear that the distribution of

the data is sufficiently close to Normal that the F-test can be used for the Analysis of Vari-

ance. The p-values obtained from these tests are shown in Table 6.4, with those significant

at the 5% level marked with an asterisk. As might be expected given the analysis of the

Table 6.4: Influence of heuristic settings on improvement on initial solution (F-test).

p-value for p-value for
Setting type

one-minute result two-minute result

Employees to examine < 0.001* < 0.001*
Employee order 0.142 0.077

Acceptance criteria 0.548 0.169
Kick settings < 0.001* < 0.001*

Initial solution < 0.001* < 0.001*

gaps to the best known bound and the best known solution, both the number of employees

to examine at each iteration and the kick settings used display a significant influence on

the amount of improvement achieved over both one and two minutes. As before, the order

in which employees are ordered and the acceptance criteria used have no significant effect

on the improvement for either set of results. Interestingly, the initial solution used has

a statistically significant influence on the amount of improvement achieved over both one

minute and two minutes. While a potential explanation for the significance of the initial

solution on the gaps (Tables 6.2 and 6.3) was the difference in initial solution values, the

improvement measure controls for this. Therefore, this finding would suggest that there

239

is some alternative explanation. This will become more clear below when we examine the

results breakdown.

Turning now to the breakdown of the results according to these settings, we again

present graphs of these breakdowns in the appendix in section D.2.3, while here we will

give only the central measures of mean and median for each subgroup. Looking first at

the improvement achieved broken down by the number of employees to examine at each

iteration, we have for the one-minute results that

• When all employees are examined, the mean improvement is ≈ 33.31% and the

median is ≈ 34.38%;

• When only one third are examined, the mean improvement is ≈ 35.05% and the

median is ≈ 36.05%.

And for the two-minute solutions, we have that

• When all employees are examined, the mean improvement is ≈ 33.63% and the

median is ≈ 35.04%;

• When only one third are examined, the mean improvement is ≈ 35.74% and the

median is ≈ 36.67%.

Consistent with the findings relating to the gap measures, this shows that those test runs

where only one third of employees are examined at each iteration are able to make a greater

improvement on the initial cost than those tests run using the ‘all employees’ setting.

The similar pattern is observed in the breakdown according to the kick activation

settings. For the one-minute results we have that

• When no kick is used, the mean improvement is ≈ 35.33% and the median is ≈
36.39%;

• When the kick is activated after 4 or more iterations without improvement, the mean

improvement is ≈ 32.92% and the median is ≈ 33.88%;

• When the kick is activated after 8 or more iterations without improvement, the mean

improvement is ≈ 34.27% and the median is ≈ 35.63%.

While for the improvement after two minutes, we have that

• When no kick is used, the mean improvement is ≈ 36.20% and the median is ≈
37.23%;

• When the kick is activated after 4 or more iterations without improvement, the mean

improvement is ≈ 33.16% and the median is ≈ 34.09%;

240

• When the kick is activated after 8 or more iterations without improvement, the mean

improvement is ≈ 34.70% and the median is ≈ 36.07%.

As before, we see that on average the best improvements are achieved when no kick is

applied, while in those cases where the kick is used it appears more beneficial to allow a

longer time between each kick. As discussed previously, it is believed that this allows the

algorithm more time to improve after each kick, and that future work could be carried out

to determine whether an even longer time between kicks could in fact be beneficial.

Finally, we break down the improvement measure according to the initial solution used.

For the one-minute results we have that

• When the Task-Based Approximation is used, the mean improvement is ≈ 29.85%

and the median is ≈ 30.33%;

• When the Heuristic initial solution is used, the mean improvement is ≈ 38.50% and

the median is ≈ 39.17%.

And for the two-minute results, we have that

• When the Task-Based Approximation is used, the mean improvement is ≈ 30.51%

and the median is ≈ 31.05%;

• When the Heuristic initial solution is used, the mean improvement is ≈ 38.86% and

the median is ≈ 39.63%.

It can be seen here that there is markedly better improvement in the instances which begin

from the Heuristic initial solution as opposed to the Task-Based Approximation solution.

Bearing in mind that the Heuristic initial solutions have, in general, a lower cost than the

Task-Based Approximation solutions this is particularly notable, since the improvement

is therefore a greater percentage of a smaller cost. This can perhaps be attributed to

the nature of the Heuristic initial solution method, whereby solutions are created which

make as far as possible a small number of changes to the existing schedule; the Task-

Based Approximation approach on the other hand creates more disruption by artificially

imposing ‘tasks’ on the schedule. Consequently, it may be easier for the algorithm to modify

the Heuristic initial solution such that costs are reduced but that the solution overall is

still fairly similar to the existing schedule. This conjecture can be examined further by

considering the number of changes in the solutions found, as discussed in section 6.8.4.4

below.

6.8.4.4 Number of changes

Having discussed in detail in the quality of the solutions found in terms of cost, we now

present the results with regard to the number of changes in the solutions found. Clearly,

241

multiple solutions are generated in each running of the heuristic algorithm; here however

we focus on the number of changes in the lowest-cost solution found by the algorithm, and

specifically in cases where more than one distinct solution was found with this value we give

the result relating to the first solution found with this value. It is believed that this gives

a reasonable representation of the number of changes given the closer relationship which

appears to be present between cost and number of changes in the Time-Windows version

of the problem (see section 6.3.2). As before, we present two graphs for the number of

changes in the first-found lowest-cost solution within one minute and within two minutes,

summarised for all instances and all combinations of settings. This is given in Figure 6.33.

As with the cost graphs in Figure 6.30 and Figure 6.31, we notice that the two graphs

shown here are very similar; this is not particularly surprising, given that we know the costs

of the solutions found after one and two minutes are similar, and that we believe number

of changes to be closely linked to cost. We can see from these graphs that a small number

of the first-found lowest-cost solutions (16 of the solutions (≈ 0.14% of the total) found

within one minute, and 15 of the solutions (≈ 0.13% of the total) within two minutes)

entail 20 or fewer changes. There is then a considerable jump in both of the graphs, with

a large number of cases having a number of changes in the next seven categories - 9403

test runs (≈ 81.62% of the total) for the one-minute results and 9268 cases (≈ 80.45% of

the total) for the two-minute results have a number of changes greater than 20 and less

than 160. This comes to a peak in the greater than 80 and up to 100 changes category,

which accounts for 1594 one-minute results (≈ 13.84% of the total) and 1522 two-minute

results (≈ 13.21% of the total). Both graphs exhibit a long tail, with maximum values of

318 changes for the one-minute and 308 changes for the two-minute results. This can be

seen to have the effect of pulling the mean upwards to a higher value than the median -

calculating these, we have that the mean number of changes is ≈ 109.22 for the one-minute

and ≈ 111.79 for the two-minute results, while the median number of changes is 104 for

the one-minute and 107 for the two-minute solutions.

It would seem clear from the graphs in Figure 6.33 that the distribution of the number

of changes is not a Normal one. We therefore cannot use the Analysis of Variance, and

must instead use the non-parametric equivalent Kruskal-Wallis test to investigate what

influence the different settings used (as described in section 6.5.4.14) have on the number

of changes in the first-found lowest-cost solution. The p-values from these tests are shown

in Table 6.5, with those which are significant at the 5% level marked with an asterisk.

The results here are similar to those with relating to cost above, with three of the settings

- number of employees to examine at each iteration, kick setting and initial solution -

having a statistically significant influence on the number of changes in the solution of

interest. Meanwhile, acceptance criteria once again shows no significant effect. In contrast

242

Figure 6.33: Number of changes in the first solution found with lowest cost as at one
minute (top) and two minutes (bottom), across all test instances and all combinations of
settings.

243

Table 6.5: Influence of heuristic settings on number of changes in first solution found with
lowest cost (Kruskal-Wallis test).

p-value for p-value for
Setting type

one-minute result two-minute result

Employees to examine < 0.001* < 0.001*
Employee order 0.168 0.035*

Acceptance criteria 0.417 0.169
Kick settings < 0.001* < 0.001*

Initial solution < 0.001* < 0.001*

to previous results however, we see that the order in which the employees are examined

at each iteration does have a significant influence on the number of changes in the first

lowest-cost solution found within two-minutes. It does not though have an influence with

respect to the one-minute results.

As before, we now give details of the results breakdown with reference to these signif-

icant settings. Graphs of these can be found in the appendix in section D.2.4. In some

cases, particularly Figure D.26 relating to the initial solution used, the broken down results

display quite marked differences; therefore as well as reporting the mean and median as

for previous measures we also where relevant give the minimum and maximum values and

comment separately on the distribution of the results.

Looking first at the number of changes in the first lowest-cost solution found broken

down by the number of employees to examine at each iteration, we have for the one-minute

results that

• When all employees are examined, the number of changes ranges from 0 to 306, with

mean ≈ 106.63 and median 101;

• When only one third are examined, the number of changes ranges from 0 to 318,

with mean ≈ 111.08 and median 107.

While for the solutions found after two minutes, we have that

• When all employees are examined, the number of changes ranges from 0 to 308, with

mean ≈ 108.43 and median 103;

• When only one third are examined, the number of changes ranges from 0 to 307,

with mean ≈ 115.16 and median 110.

This indicates that on average a smaller number of changes are found in the solutions when

all employees are examined at each iteration. This is in contrast to the findings relating to

cost, which found that cheaper solutions could be found when only one third of employees

244

were examined at each iteration. A possible explanation for this is that examining all

employees allows the best possible neighbourhood solution to be found at each iteration,

which will be unlikely to entail a greater number of changes than the solution which would

be implemented if only one third of employees had been considered. This difference at

each iteration will cause the number of changes in the ‘current’ solutions to diverge as the

algorithm progresses, causing the difference seen here. This is supported by the observation

that the difference in means and difference in medians are both greater in the two-minute

results breakdown than in the one-minute results.

We next look at the breakdown of changes according to the ordering of employees at

each iteration. This is only significant for the results after two minutes, and for these we

have that

• When employees are ordered at random, the number of changes ranges from 0 to

307, with mean ≈ 110.53 and median 105;

• When the tailored ordering rule is used, the number of changes ranges from 0 to 308,

with mean ≈ 113.06 and median 108.

This shows that the ‘smarter’, more tailored ordering rule actually leads on average to

an increased number of changes in the first lowest-cost solution. This is an unintended

consequence, since the objective of this rule had been to focus in on specific employees which

could enable a greater cost saving to be made. In the event, a possible explanation is that by

focussing on employees for which there have already been changes, the algorithm becomes

more likely to choose a solution which increases the number of changes for that employee

and therefore the number of changes overall. It should also be noted that while the objective

of the tailored ordering was to help reduce solution cost, there was no significant difference

(as shown in Tables 6.2, 6.3 and 6.4) in cost between test runs which used this and those

which ordered the employees purely at random.

Looking next at the breakdown according to the kick activation setting used, for the

one-minute results we have that

• When no kick is used, the number of changes ranges from 0 to 310, with mean

≈ 105.27 and median 99;

• When the kick is activated after 4 or more iterations without improvement, the

number of changes ranges from 2 to 300, with mean ≈ 113.29 and median 108;

• When the kick is activated after 8 or more iterations without improvement, the

number of changes ranges from 0 to 318, with mean ≈ 109.08 and median 104.

And for the two-minute change results we have that

245

• When no kick is used, the number of changes ranges from 0 to 306, with mean

≈ 105.92 and median 101;

• When the kick is activated after 4 or more iterations without improvement, the

number of changes ranges from 3 to 308, with mean ≈ 117.59 and median 112;

• When the kick is activated after 8 or more iterations without improvement, the

number of changes ranges from 1 to 307, with mean ≈ 111.87 and median 106.

The results here are more in keeping with the cost-related results, with the test runs

involving no kick resulting in a lower number of changes on average. This is more in line

with what is to be expected, since by its nature the application of kick is likely to produce

a new solution with a greater number of changes; even if the algorithm is then able to

reduce the cost to find a new best solution, the number of changes is unlikely to return

to its pre-kick level. The cases which apply the kick after 4 or more iterations without

improvement will have potential for carrying out more kicks in the available time than

those which use the 8-or-more-iterations rule, and it is likely to be the effect of this which

means the 4-or-more-iteration cases have the higher average number of changes.

Finally we can break down the results according to which type of initial solution was

used. For the one-minute results we have that

• When the Task-Based Approximation is used, the number of changes ranges from 6

to 318, with mean ≈ 136.28 and median 136;

• When the Heuristic initial solution is used, the number of changes ranges from 0 to

263, with mean ≈ 82.15 and median 79.

And for the number of changes in the solution after two minutes, we have that

• When the Task-Based Approximation is used, the number of changes ranges from 4

to 308, with mean ≈ 138.38 and median 139;

• When the Heuristic initial solution is used, the number of changes ranges from 0 to

275, with mean ≈ 85.20 and median 82.

The graphs given in Figure D.26 show that there is a considerable difference in the distri-

butions of the numbers of changes depending on the initial solution used. For those which

use the Heuristic initial solution, the distribution is similar in appearance to the overall

graphs of Figure 6.33 although with a much lower mean and median, and a much shorter

tail (and consequently much lower maximum value). On the other hand, the results for

those test runs which use the Task-Based Approximation as the initial solution a distri-

bution more approximating to Normal, centred around a much higher average value (with

mean and median very similar) and with a wider range of values overall.

246

In light of this discrepancy between the results obtained when the different initial

solutions are used, it is interesting to compare the number of changes in the one- and two-

minute Heuristic approach solutions with the number of changes in the initial solutions

themselves. Looking at the number of changes in the Task-Based Approximation solutions,

given in the lower graph of Figure 6.21, we see that the number of changes here range from

58 to 355 changes, with a mean of ≈ 192.30 and a median of 191 changes. The number of

changes described above for when these solutions are improved using heuristics is around

55 changes fewer on average, showing that the algorithm does indeed reduce the number

of changes as well as the cost. The number of changes in the Heuristic initial solution

meanwhile are shown in Figure 6.28, and can be seen to cover a much smaller range of

25 to 134 changes, with a mean of ≈ 71.60 and median equal to 70 changes. Notably,

this indicates that for the average case the number of changes will in fact increase when

the cost is improved using the heuristic algorithm, although only by around 12 changes.

This is perhaps explained by the fact that the Heuristic initial solution is designed to be

a low-change solution, and therefore additional changes may be required in order to make

savings and reduce the cost.

6.8.4.5 Number of best solutions

One of the other key considerations is the number of solutions which are produced by the

algorithm. In particular, the heuristic algorithm is likely to produce multiple solutions

which have the same cost value but which may be distinct in terms of certain hard-to-

model considerations that the Planner may wish to apply. We count the number of equal-

best solutions found after one minute and after two minutes, and summarise them for all

instances and all combinations of settings in Figure 6.34.

As with all the previous combined graphs, it is noticeable that the one-minute and

two-minute results follow a very similar pattern. This is perhaps less surprising than for

the costs, since costs are meant to reduce over time. With equal-best solutions, there is no

particular reason to believe that the number will be dependent on time; rather, it is more

likely to depend on the length of time between the first lowest-cost solution being found

and the time that the algorithm terminates. It can be seen that the best solution after

one minute is unique in 1213 cases (≈ 10.53% of the total), and in 1173 cases (≈ 10.18%

of the total) the best solution after two minutes is unique. The most common value is two

equal-best solutions, which accounts for 2623 of the one-minute test runs (≈ 22.77% of the

total), and 2554 test runs (≈ 22.17% of the total) in the two-minute results. More generally,

the data can be seen to be grouped predominantly towards the lower end of the charts,

with 8027 (≈ 69.68% of the total) of the one-minute and 7879 (≈ 68.39% of the total)

of the two-minute cases resulting in 5 or fewer equal-best solutions, and 2037 (≈ 17.68%

247

Figure 6.34: Number of distinct solutions with equal-best cost found within one minute
(top) and two minutes (bottom), across all test instances and all combinations of settings.

248

of the total) of the one-minute and 2064 (≈ 17.92% of the total) of the two-minute test

runs producing between 6 and 9 equal-best solutions. Only 1456 of the one-minute cases

(≈ 12.64% of the total) produced 10 or more equal-best solutions, with the maximum

being 55; similarly, 1577 of the two-minute test runs (≈ 13.69% of the total) resulted in

10 or more equal-best solutions, with the maximum here being 59. Curiously, both graphs

display a high number of cases producing exactly 53 distinct solutions of equal-best value

- 124 cases (≈ 1.08% of the total) for the one-minute results, and 461 (≈ 4.00% of the

total) of the two-minute results. Overall, the mean number of equal-best solutions after

one minute was mean ≈ 6.74, with the median equal to 4; after two minutes, the mean

was a little higher at ≈ 7.96, with the median still equal to 4.

We can now look at the possible effect on the number of equal-best solution of the

different settings used, as described in section 6.5.4.14. It is very clear from Figure 6.34

that the data is not Normally distributed in this case, and therefore we must use the

Kruskal-Wallis test. The p-values obtained from these tests are shown in Table 6.6, with

those which are significant at the 5% level marked with an asterisk. It can be seen that

Table 6.6: Influence of heuristic settings on number of equal-best solutions (Kruskal-Wallis
test).

p-value for p-value for
Setting type

one-minute result two-minute result

Employees to examine < 0.001* < 0.001*
Employee order < 0.001* < 0.001*

Acceptance criteria 0.826 0.941
Kick settings < 0.001* < 0.001*

Initial solution < 0.001* < 0.001*

this measure is influenced in both the one-minute and two-minute results by four of the

five setting types. The number of employees examined at each iteration, the order in

which employees are examined, the kick settings and the initial solution used all have a

statistically significant effect. The acceptance criteria however does not have any significant

influence.

As with our other results, graphs showing the breakdown of the number of equal-best

solutions according to these settings are given in the appendix in section D.2.5. Here, we

give the basic descriptive information such as mean and median, along with brief discussion

of the graphs where appropriate. Looking first at the number of employees to examine at

each iteration, we have for the one-minute results that

• When all employees are examined, the mean number of equal-best solutions is ≈ 7.87

and the median is 5;

249

• When only one third are examined, the mean number of equal-best solutions is ≈ 5.62

and the median is 3.

While for the two-minute test runs, we have that

• When all employees are examined, the mean number of equal-best solutions is ≈ 9.09

and the median is 5;

• When only one third are examined, the mean number of equal-best solutions is ≈ 6.83

and the median is 3.

This shows that when all employees are examined at each iteration, the algorithm is more

likely to find more distinct equal-best solution. This is not surprising, as the more em-

ployees are examined the wider the search area becomes. Note though that these equal

best solutions are achieved at the expense of solution cost - as we saw in section 6.8.4.2,

examining all employees (as opposed to only one third) tends to lead to solutions further

away from the best known solution cost.

Looking next at the breakdown of the occurrence of equal-best solutions by the em-

ployee ordering used, we have for the one-minute results that

• When employees are ordered at random, the mean number of equal-best solutions is

≈ 8.29 and the median is 5;

• When the tailored ordering rule is used, the mean number of equal-best solutions is

≈ 5.19 and the median is 3.

And for the two-minute results that

• When employees are ordered at random, the mean number of equal-best solutions is

≈ 10.24 and the median is 5;

• When the tailored ordering rule is used, the mean number of equal-best solutions is

≈ 5.68 and the median is 3.

Here, we see that the random ordering of employees leads to a much higher number of

equal-best solutions on average than using the ‘smarter’ tailored ordering rule. This might

be explained by the diversification element of the tailored ordering, which encourages the

search to move away from local optima when these are found. In other words, when a new

best solution is found and then repeated, it then selects a new ordering and focusses on a

new group of employees for examination, thereby moving to a different part of the search

space. This might explain the prevalence of cases with exactly two solutions of equal-best

value.

Next, breaking the results according to the kick activation settings gives some clear

distinctions. For the one-minute results we have that

250

• When no kick is used, the mean number of equal-best solutions is ≈ 12.12, the median

is 5, and the maximum is 57;

• When the kick is activated after 4 or more iterations without improvement, the mean

number of equal-best solutions is ≈ 3.49, the median is 4, and the maximum is 9;

• When the kick is activated after 8 or more iterations without improvement, the mean

number of equal-best solutions is ≈ 4.62, the median is 4, and the maximum is 12.

And for the number of equal-best solutions after two minutes, we have that

• When no kick is used, the mean number of equal-best solutions is ≈ 15.75, the median

is 6, and the maximum is 59;

• When the kick is activated after 4 or more iterations without improvement, the mean

number of equal-best solutions is ≈ 3.51, the median is 4, and the maximum is 9;

• When the kick is activated after 8 or more iterations without improvement, the mean

number of equal-best solutions is ≈ 4.63, the median is 4, and the maximum is 12.

It can be clearly seen that the effect of having no kick procedure is to produce far more

equal-best solutions on average. It is particularly relevant to observe the maximum values,

which show that across all test runs which do make use of the kick the maximum number

of equal-best solutions was just 12. All values greater than this are attributable to the

‘no kick’ group. This is probably because of the effect of the kick to move the search

away from a local optimum but in general fail to allow suitable opportunity to return to

a value near to this. This is supported by the observation that the cases where longer

is allowed for the solution to improve after a kick - i.e. the 8-or-more-iteration setting -

have on average and at a maximum a greater number of equal best solutions than those

which use the 4-or-more-iteration setting. This adds further weight to the call above for

further investigation into a longer gap between kicks to allow the algorithm more time for

improvements.

Finally, we can see the breakdown of numbers of equal-best solutions according to the

initial solution type. For the one-minute results we have that

• When the Task-Based Approximation is used, the mean number of equal-best solu-

tions is ≈ 6.88 and the median is 4;

• When the Heuristic initial solution is used, the mean number of equal-best solutions

is ≈ 6.60 and the median is 4.

And for the two-minute results we have that

251

• When the Task-Based Approximation is used, the mean number of equal-best solu-

tions is ≈ 8.37 and the median is 4;

• When the Heuristic initial solution is used, the mean number of equal-best solutions

is ≈ 7.55 and the median is 4.

We see that while there is a difference between means, the difference is small compared

to the differences caused by the other settings. Those test runs which made use of the

Task-Based Approximation as the initial solution show a slightly higher average number

of equal-best solutions than those which use the Heuristic initial solution. As with the

employees examined at each iteration, this is in contrast to the findings with regard to

solution cost which indicated the Heuristic initial solution allowed the algorithm to find

lower-cost solutions. We can perhaps conclude that at times there is a trade-off between

finding lower-cost solutions, and finding multiples of these.

6.8.4.6 Number of iterations

Linked to the number of equal-best solutions found is the number of iterations carried

out. While the number of distinct solutions found overall was not able to be recorded,

it is reasonable to suppose that in general the more iterations that are carried out, the

more solutions have been found. Some of these, while not being equal in cost to the best

solution found may be close. Therefore we look at the number of iterations carried out by

the algorithm both within one minute and within two minutes, and can summarise these

for all instances and all combinations of settings in Figure 6.35.

It is noticeable that these two charts follow a similar pattern of a large number of cases

towards the lower end, but not at the extreme, and tapering off to the right. The scale

however is obviously different, with the two-minute results more spread out and with a

lower peak than the top graph showing the one-minute results. For the one-minute results,

we see the most common number of iterations is in the range of 51 to 75, accounting for

2959 test runs (≈ 25.69% of the total); for the two-minute results, the range of 101-125

iterations is the most common, with 1943 cases (≈ 16.87% of the total) contained in it.

A high proportion of the test runs, 8932 of the 11520 or ≈ 77.53%, record 150 or fewer

iterations with one minute; doubling this, we find 9609 cases (≈ 83.41% of the total) for

which up to 300 iterations are recorded within two minutes. Overall, the maximum number

of iterations within one minute is 341, with the mean equal to ≈ 114.05 and a median of

107 iterations; for the two-minute results, the maximum number of iterations is 661, while

the mean is ≈ 204.10 and the median is 186. It is noticeable that the number of iterations

performed in two minutes appears less than double that of the one-minute value. A possible

reason for this is that as the algorithm progresses, it becomes harder to find improving

252

Figure 6.35: Number of iterations carried out by the algorithm within one minute (top)
and two minutes (bottom), across all test instances and all combinations of settings.

253

moves, meaning that more employees must be examined before a change is accepted. This

would mean an increase in the iteration length as the algorithm progressed.

Looking now at the influence that the different settings used (as described in section

6.5.4.14) may have on the number of iterations, we note that the graphs in Figure 6.35 do

not conform to the assumptions about Normality which are required to utilise the F-test.

Instead, we use the Kruskal-Wallis test. The p-values obtained from this are shown in

Table 6.7, with those significant at the 5% level marked with an asterisk. The significant

Table 6.7: Influence of heuristic settings on number of iterations carried out (Kruskal-Wallis
test).

p-value for p-value for
Setting type

one-minute result two-minute result

Employees to examine < 0.001* < 0.001*
Employee order < 0.001* < 0.001*

Acceptance criteria < 0.001* < 0.001*
Kick settings 0.381 < 0.001*

Initial solution 0.051 0.394

settings here are different from those identified for other measures. For the first time, we

have that the initial solution type does not have a significant influence at all, while the kick

settings appear significant for the number of iterations carried out within two minutes but

not within one minute. The acceptance criteria show a significant influence on both one-

and two-minute results here having not previously done so for cost gaps, improvement or

equal-best solutions. As before, we also have that both the number of employees examined

and the order in which this is done have a significant effect on the number of iterations.

We will now look to break down the results given in Figure 6.35 according to the

different settings. Graphs showing the breakdown are given in the appendix in section

D.2.6, while here we will give relevant summary information about the data. Looking

first at the number of employees to examine at each iteration, we have for the one-minute

results that

• When all employees are examined, the mean number of iterations is ≈ 76.94 and the

median is 73, with a range of 35 to 171 iterations;

• When only one third are examined, the mean number of iterations is ≈ 151.16 and

the median is 145, with a range of 67 to 341 iterations.

While for the two-minute time limit we have that

• When all employees are examined, the mean number of iterations is ≈ 132.96 and

the median is 127, with a range of 59 to 271 iterations;

254

• When only one third are examined, the mean number of iterations is ≈ 275.25 and

the median is 267, with a range of 120 to 661 iterations.

It is unsurprising to see that a greater number of iterations can be achieved when only

one third of employees are examined at each iteration rather than all of them. It may

be expected that examining one third of the employees would allow three times as many

iterations to be carried out, but this ignores considerations about the lengths of the it-

erations. The more employees are examined, the more likely it is that a solution will be

found which meets the acceptance criteria before the maximum number of employees have

been considered; when fewer employees are examined, it is more likely that no solution will

meet the automatic acceptance criteria, and the iteration will end with the best available

candidate being accepted instead. Hence while the difference here is clear and statistically

significant, it is not the case that number of employees and number of iterations are directly

proportionate.

Looking next at the order in which employees are examined, we see for the one-minute

data that

• When employees are ordered at random, the mean number of iterations is ≈ 108.04

and the median is 106, with a range of 35 to 228 iterations;

• When the tailored ordering rule is used, the mean number of iterations is ≈ 120.06

and the median is 108, with a range of 36 to 341 iterations.

While for the two-minute results we have that

• When employees are ordered at random, the mean number of iterations is ≈ 194.04

and the median is 185, with a range of 63 to 414 iterations;

• When the tailored ordering rule is used, the mean number of iterations is ≈ 214.17

and the median is 187, with a range of 59 to 661 iterations.

We see from this data that more iterations are carried out when the ‘smarter’ tailored

ordering is used than when the ordering is purely random. Looking further into this,

we see that the median and minimal values are similar for each group, but looking at

the maximum values we have that the large numbers of iterations are achieved by those

cases where the tailored ordering is used. This is perhaps a benefit of the diversification

introduced by the smarter ordering, and that by encouraging the search to move away

from the current optimum towards a less recently explored area we allow the algorithm to

find new improvements. This would lead to more iterations (and therefore, it would be

expected, more solutions) since once an acceptable solution is found the algorithm moves

to the next iteration.

255

Considering the acceptance criteria used by the algorithm, for the one-minute results

we have that

• When requiring improvement on the current solution, the mean number of iterations

is ≈ 131.40 and the median is 124, with a range of 40 to 341 iterations;

• When requiring improvement on the best solution, the mean number of iterations is

≈ 96.69 and the median is 91, with a range of 35 to 261 iterations.

While for the numbers of iterations within two minutes, we have that

• When requiring improvement on the current solution, the mean number of iterations

is ≈ 236.81 and the median is 218, with a range of 70 to 661 iterations;

• When requiring improvement on the best solution, the mean number of iterations is

≈ 171.40 and the median is 156.5, with a range of 59 to 487 iterations.

It can be seen here that accepting the first non-tabu solution which improves on the current

solution allows significantly more iterations to be carried out than waiting for a solution

which improves on the best found so far. This is reasonable, since it would be expected

that a solution which improves only on the current solution would be easier to find than

one which improves on the best so far - although of course this does not apply for those

iterations where the current solution is equal to the best found so far. Note also that

any solution which improves on the best solution will by definition improve on the current

solution as well.

Finally, we break down the number of iterations according to the kick setting used.

This was only significant for the two-minute results, for which we have that

• When no kick is used, the mean number of iterations is ≈ 214.54 and the median is

181.5, with a range of 69 to 661 iterations;

• When the kick is activated after 4 or more iterations without improvement, the mean

number of iterations is ≈ 197.57 and the median is 187, with a range of 59 to 485

iterations;

• When the kick is activated after 8 or more iterations without improvement, the mean

number of iterations is ≈ 200.20 and the median is 185, with a range of 62 to 473

iterations.

It can be seen that there is little difference between the two groups which make use of kicks

with the varying activation rules. However, the cases for which no kick was used result in

clearly more iterations being carried out on average, and this group has a higher minimum

and higher maximum than either of the other groups. Curiously however, the median is

256

lower, and examination of the graphs given in Figure D.35 show that while the distribution

for the no-kick group has a longer tail to the right, it also has higher counts in the 101-125

and 126-150 iteration categories. This makes it harder to draw a consistent conclusion,

although it can be said that while a higher number of iterations can be achieved when no

kick is used, this also leads to less consistency in the number of iterations carried out.

6.8.4.7 Time of best solution

In light of the results with respect to cost showing little difference between the solutions

found within one minute and after two minutes (for example, as seen in Figure 6.30 or

Figure 6.31), it would seem appropriate to look in detail at the point in the algorithm at

which the best solution was found. The point at which a solution with the best cost value

was first found was recorded for each test run as an iteration number, but not as a time;

as shown above, iteration numbers were greatly variable over all the runs, and therefore

some manipulation firstly had to be carried out to make this measure comparable across

all test runs.

It was discussed for Figure 6.35 above that iteration lengths in the second minute appear

to be different than those in the first. However, in the absence of further information, it

was assumed that iteration lengths were uniform across each of the two individual minutes

of the run. Based on this, and using the iteration and running time information available,

it was possible to estimate a time for the finding of the best solution as follows:

1. We say that T1 is the exact time at which the one-minute results were recorded, and

T2 is the total running time of the two-minute test run;

2. We say that I1 and I2 are the total number of iterations carried out within one minute

and within two minutes respectively;

3. We say that B1 and B2 are the iteration numbers at which the best solution was

found as at the one-minute cut-off and after the full two minutes respectively.

4. The time at which the best solution within one minute was found can then be esti-

mated as a proportion of the running time as follows(
B1

I1

)
× T1

5. If B2 = B1, then the estimated time at which the best solution within two minutes

was found is the same as for the one-minute results; otherwise, it can be estimated

as

T1 +

(
(B2 − I1)
(I2 − I1)

× (T2 − T1)
)

257

i.e. as a proportion of time over and above the first minute of the test run.

Having calculated these estimated times, they can be summarised in histograms for all

instances and all combinations of settings, for both the one-minute and two-minute results.

These graphs are shown in Figure 6.36.

Firstly, we note that in both charts there are a small number of cases which appear

to have found the best solution after the end of their respective time limits (263 of the

one-minute results, ≈ 2.28% of the total; and 40 of the two-minute results, ≈ 0.35% of the

total). This can be explained partially by the set-up time of the programme which appears

to extend the running time by around one second, and also with the fact that the algorithm

terminates at the completion of the first iteration after the time limit has been reached,

meaning that the one-minute cut-off and two-minute time limits will actually be timed at

approximately 61 seconds and 121 seconds respectively. At the other end of the chart, we

see 138 of the one-minute cases (≈ 1.20% of the total) and 134 of the two-minute cases

(≈ 1.16% of the total) for which the best solution is the initial solution, and therefore

the time of the best solution being found is zero seconds. These correspond exactly to

the instances in the lowest category of Figure 6.32 which were recorded as making no

improvement on the initial solution.

Looking in more detail at the top chart, for the best solution found within one minute,

we see that the largest number of solutions are found approximately between 5 and 10

seconds into the algorithm. This category accounts for 1558 cases (≈ 13.52% of the total);

this is closely followed by the neighbouring category of 10 to 15 seconds, which contains

1539 cases (≈ 13.36% of the total). Nearly half of the test runs (5659, i.e. ≈ 49.44% of the

total) find the best solution within approximately the first 20 seconds of the test run, with

the frequencies getting progressively smaller as the time increases. The mean time of the

best solution within one minute is ≈ 23.61 seconds, while the median is ≈ 20.28 seconds.

It can be seen that the lower graph, showing the approximate time of the best solutions

found within two minutes, is actually quite similar in shape. Again, the largest number

of solutions (1497 cases, ≈ 12.99% of the total) are found after between approximately

5 and 10 seconds, with the 10 to 15 second category again with the next highest count

(1473, ≈ 12.79% of the total). Close to half of the test runs (5450, ≈ 47.31% of the total)

still have a best solution which is found within the first 20 seconds of the test run, with

only 1629 test runs (≈ 14.14% of the total) finding the best solution after 60 seconds of

the run. This fits with the results shown for costs in Figures 6.30, 6.31 and 6.32 which

showed very little difference in cost gaps and improvement levels between the one-minute

and two-minute results. Overall, the mean time at which the best solution is found is

≈ 30.50 seconds, clearly pulled up by the fact that some solutions are now found between

60 and 125 seconds; the median however is very close to the one-minute median, at ≈ 21.28

258

Figure 6.36: Estimated time at which the best solution within one minute (top) and
within two minutes (bottom) was first found, across all test instances and all combinations
of settings.

259

seconds for the two-minute results.

We can now look at how these times of the best solution are influenced by the different

settings used for the heuristics, as described in section 6.5.4.14. It is clear from Figure

6.36 that the data does not represent a Normal distribution, and therefore we must carry

out the Kruskal-Wallis test rather than the F-test. The p-values from these are shown in

Table 6.8, with those which are significant at the 5% level marked with an asterisk. It

Table 6.8: Influence of heuristic settings on time that best solution is found (Kruskal-Wallis
test).

p-value for p-value for
Setting type

one-minute result two-minute result

Employees to examine 0.611 < 0.001*
Employee order 0.016* 0.072

Acceptance criteria < 0.001* < 0.001*
Kick settings < 0.001* < 0.001*

Initial solution 0.047* < 0.001*

can be seen that all five settings have a significant influence on at least one of the two

sets of results, with the acceptance criteria, kick settings and initial solution showing a

significant effect with respect to both the one-minute and two-minute results. The number

of employees examined at each iteration has a bearing on the two-minute results, but not

on the time of the best solution found within one minute; conversely, the order in which

employees are examined have a significant influence on the one-minute results but not on

the two-minute time of the best solution.

Based on these test results, we now break down the time of best solution results ac-

cording to the settings which show a significant influence. We will only discuss summary

statistics here, with more detail given in graphs in the appendix in section D.2.7. We look

first at the number of employees to examine at each iteration, which was only significant

for the two-minute results. For these two-minute results, we have that

• When all employees are examined, the mean time for the best solution is ≈ 26.85

seconds and the median is ≈ 21.35 seconds;

• When only one third are examined, the mean time for the best solution is ≈ 34.15

seconds and the median is ≈ 21.06 seconds.

This shows that on average, the best solution is found later when only one third of em-

ployees are examined, and as can be seen from Figure D.36 this subset of the data has a

greater number of test runs falling into each category greater than 55 seconds. However,

we also see that the median time is slightly greater when all employees are examined,

highlighting that there are also fewer very low values in this subgroup, with the data more

260

closely grouped around the mean. The discovery that best solutions are on average found

earlier when all employees are examined can be balanced against the results discussed in

section 6.8.4.1 where it was shown that this group also produces a larger gap to the best

known bound than when only one third of employees are examined.

We next look at the order in which employees are examined. This was only significant

for the one-minute results, for which we have

• When employees are ordered at random, the mean time for the best solution is

≈ 23.73 seconds and the median is ≈ 20.77 seconds;

• When the tailored ordering rule is used, the mean time for the best solution is ≈ 23.50

seconds and the median is ≈ 19.72 seconds.

There is little difference between the means here, but the medians show that those test

runs which use the ‘smarter’ ordering are more likely to reach their best solution earlier.

It can be seen in Figure D.37 that the smarter ordering has more cases in the 0 to 5 second

and 5 to 10 second categories, as well as accounting for more of the test runs for which no

improvement on the initial solution was made. From above, the examination order had no

significant impact on the cost gaps or the improvement achieved, but significant influences

were found on the number of changes (section 6.8.4.4) and number of equal-best solutions

(section 6.8.4.5). These differences were attributed to the intensification and diversification

which takes place under the tailored ordering setting; this could also be the case here, with

the tailored ordering in some cases allowing the best solution to be found more quickly

through the focussing in on certain ‘promising’ employees. It was also shown in section

6.8.4.6 that test runs which used the smarter ordering generally carried out more iterations

than those which were randomized - this leads to a possible explanation that in terms of

iterations, both groups find the solutions at around the same time, but because of the

shorter iterations this equates to the tailored ordering group finding the best solutions

earlier.

We next look at the breakdown according to the acceptance criteria used. For the

one-minute results we have that

• When requiring improvement on the current solution, the mean time for the best

solution is ≈ 21.49 seconds and the median is ≈ 17.39 seconds;

• When requiring improvement on the best solution, the mean time for the best solution

is ≈ 25.74 seconds and the median is ≈ 23.14 seconds.

While for the time of the best solution found within two minutes we have that

• When requiring improvement on the current solution, the mean time for the best

solution is ≈ 27.36 seconds and the median is ≈ 18.04 seconds;

261

• When requiring improvement on the best solution, the mean time for the best solution

is ≈ 33.64 seconds and the median is ≈ 24.56 seconds.

It can be seen from these results that requiring improvement on the current solution causes

the best solution to be found earlier than waiting for a solution which improves on the best

found so far. This can be linked to the findings in section 6.8.4.6 above which discussed that

accepting a non-tabu solution which improved on the current solution lead to a significantly

higher number of iterations to be carried out. It would seem reasonable to suggest that the

main reason that the improve-on-current setting finds solutions more quickly is because

it carries out its iterations more quickly. Since the acceptance rule had no significant

influence on the quality of the solution found, either in terms of cost or number of changes,

we can conclude from this that forcing the algorithm to wait for a solution which improves

on the best so far is a waste of time - we can find equally good solutions more quickly with

the improve-on-current setting.

Looking next at the breakdown of results according to the kick setting used, we have

for the one-minute results that

• When no kick is used, the mean time for the best solution is ≈ 29.07 seconds and

the median is ≈ 26.87 seconds;

• When the kick is activated after 4 or more iterations without improvement, the mean

time for the best solution is ≈ 19.01 seconds and the median is ≈ 15.44 seconds;

• When the kick is activated after 8 or more iterations without improvement, the mean

time for the best solution is ≈ 22.76 seconds and the median is ≈ 19.74 seconds.

While for the solution after two minutes we have that

• When no kick is used, the mean time for the best solution is ≈ 42.47 seconds and

the median is ≈ 30.71 seconds;

• When the kick is activated after 4 or more iterations without improvement, the mean

time for the best solution is ≈ 21.51 seconds and the median is ≈ 15.69 seconds;

• When the kick is activated after 8 or more iterations without improvement, the mean

time for the best solution is ≈ 27.52 seconds and the median is ≈ 20.53 seconds.

The results here show that the best solution is found on average much later when no kick is

carried out, while the longer gap between kicks imposed by the 8-or-more-iterations setting

appears to lead to a later average time than the 4-or-more-iterations setting. Looking at

the graphs in Figures D.39 and D.40 in the appendix it can also be seen that the best

solution times when no kick is used are much more uniformly spread across the running

262

time, rather than being clustered towards the lower end as in the graphs for the settings

where a kick is used. We can read into this that when no kick is used, the algorithm is

more likely to continue to find improvements on the best solution found so far, whereas the

kick in general is more likely to move away from the best solution and not subsequently be

able to match it. This would be consistent with the findings in, for example, section 6.8.4.1

where it was seen that the test runs which used no kick found solutions with a smaller gap

to the best known bound.

Finally, we have the breakdown according to the initial solution type used. Here, for

the one-minute results we have that

• When the Task-Based Approximation is used, the mean time for the best solution is

≈ 24.18 seconds and the median is ≈ 20.79 seconds;

• When the Heuristic initial solution is used, the mean time for the best solution is

≈ 23.05 seconds and the median is ≈ 19.81 seconds.

While for the two-minute results we have that

• When the Task-Based Approximation is used, the mean time for the best solution is

≈ 32.21 seconds and the median is ≈ 22.23 seconds;

• When the Heuristic initial solution is used, the mean time for the best solution is

≈ 28.80 seconds and the median is ≈ 20.50 seconds.

Here we see that the best solution tends to be found later when the Task-Based Approxima-

tion is used as the initial solution compared to when the Heuristic initial solution is used.

It is worth noting however that in the Figure D.41 it can be seen that the Task-Based Ap-

proximation shows more cases in the up-to-5-second category than for the Heuristic initial

solution; in the averages though this is negated by the lower counts in the other earlier-time

categories. This contrast is interesting since it is not attributable to the different itera-

tion lengths (Table 6.7 showed that the initial solution had no significant influence on the

number of iterations carried out), nor is it attributable to a poorer quality final solution

being found since the Heuristic initial solution actually leads to lower cost solutions (see

sections 6.8.4.1 and 6.8.4.2) and a better improvement on the initial solution (as discussed

in section 6.8.4.3). We must therefore conclude that the Heuristic initial solution, as well

as allowing better improvement, also allows faster improvement towards the best solution

which can be found. This may be as a result of the lower number of changes and lower level

of disruption to the existing schedule which is created when the Heuristic initial solution

is generated, as compared to the Task-Based Approximation solution.

263

6.8.4.8 Effect of cutting off algorithm early

A theme which has been constant throughout the results presented above is the similarities

between the one-minute and two-minute solutions for the majority of test runs. This was

particularly evident when discussing the gaps to the best known bound or best known

solution (sections 6.8.4.1 and 6.8.4.2), and the improvement on the initial solution (section

6.8.4.3). It could also be seen in section 6.8.4.7 that a large number of the best solutions

available after two minutes were actually found within 60 seconds, and in many of these

cases even earlier. From these results, it could be suggested that the algorithm could be

run for just one minute rather than two, without significant detriment to the quality of

the results obtained.

This gives rise to the question of what the effect may be if the algorithm were to

be cut short, before even the one-minute cut-off used in the test runs. The solutions

available at exact time points (other than the one-minute cut-off) were unfortunately not

recorded; however, the best solution value after each iteration was recorded, and therefore

the solution at a given time point can be estimated using the same approach used above for

estimating the time of the best solution. Using the assumption that all iterations within

the first minute are of the same length, we can obtain an iteration number as a proportion

of the number of one-minute iterations, according to the number of seconds within the

first minute we are interested in. If the number calculated is a fraction, it is rounded up

to the nearest integer, in recognition of the fact that the algorithm would cut off at the

end of the iteration once the time limit had been reached. Once we have the estimated

solution value at the given cut-off time, we can calculate the gap between this and the final

(i.e. two-minute) solution value, and represent this as a percentage of the early cut-off

value. These gaps are summarised in histograms for all instances and all combinations

of settings for four different cut-off times. Figure 6.37 shows the gap to the two-minute

solution from the one-minute solution and from the estimated 30-second solution; Figure

6.38 summarised the gaps to the two-minute solution from the estimated solution after 20

seconds and after 10 seconds.

Looking first at the top graph of Figure 6.37, showing the gap between the one-minute

and two-minute solutions, we see that 9994 test runs (≈ 86.75% of the total) have no

difference in best solution cost after two minutes compared to after one minute. Of the

small number of test runs which do have a non-zero gap, most of these are at the lower end

of the scale with the count tapering off towards the right - we see 901 of the one-minute

solutions (≈ 7.82% of the total) are within 5% of the the two-minute solution, while the

maximum is ≈ 54.73%. Clearly, with more than half the cases having an gap of zero, the

median gap between the two solutions is also zero; the mean is ≈ 0.80%.

The estimated effect of a 30-second cut-off is shown in the bottom graph of Figure 6.37.

264

Figure 6.37: Gap to two-minute solution value from one-minute solution (top) and from
estimated 30-second solution (bottom), across all test instances and all combinations of
settings.

265

Figure 6.38: Gap to two-minute solution value from estimated 20-second solution (top)
and estimated 10-second solution (bottom), across all test instances and all combinations
of settings.

266

As can be seen, more than half of the test runs (6955 cases, ≈ 60.37% of the total) still

have no difference in cost compared to the two-minute solution. There is again a tapering

of the counts towards the higher percentage gaps, with 1863 cases (≈ 16.17% of the total)

having a non-zero gap to the two-minute cost of within 5%, and a further 967 test runs

(≈ 8.39% of the total) which have a gap of 10% or lower. The maximum is much larger

for the 30-second cut-off than for the one-minute solutions, at ≈ 78.38%, and the mean is

a little higher at ≈ 3.88%; the median is of course again zero.

Turning now to the upper graph of Figure 6.38, we see the estimated effect of termi-

nating after 20 second is not all that dissimilar from the 30-second cut-off. Here, 5129 test

runs (≈ 44.52% of the total) still have the same solution value as the final (i.e. two-minute)

solution, with 1923 cases (≈ 16.69% of the total) having a non-zero gap of up to 5% and

a further 1171 (≈ 10.16% of the total) having a gap of up to 10%. The median for the 20-

second cut-off is now non-zero, although it is close to zero at ≈ 0.42%; the mean is roughly

double that of the 30-second value at ≈ 7.30% while the maximum gap of ≈ 78.38% is the

same as above.

Finally, we can look at the possible effect of cutting off the algorithm after 10 seconds,

as shown in the lower graph of Figure 6.38. We see the shape of this is a little different

from the preceding graphs, with only 2682 test runs (≈ 23.28% of the total) having by

this stage found the best solution value they will achieve within two minutes. There are

1624 cases which have not yet reached their two-minute solution value but are within 5%

of it, but the spread of gaps is much more even beyond this up to around a 30% gap with

around 1000 cases (≈ 8.68% of the total) in each category. The mean and median are

much higher for the 10-second cut-off as compared to the longer time limits, at ≈ 15.15%

and ≈ 11.92% respectively; the maximum however is very similar, at ≈ 78.51%. We note

by way of comparison that if we were to consider a cut-off of zero seconds, we would

be looking at the gap between the initial solution and the two-minute solution - this is

essentially the improvement achieved by the two-minute time limit, as shown in the lower

graph of Figure 6.32. This is shown again, with the y-axis rescaled to match Figure 6.38,

in Figure 6.39. This allows us to see that, while the 10-second cut-off produces solutions

considerably inferior to even the 20-second cut-off, it still manages to make a considerable

improvement as compared to the initial solution. As a reminder, the median improvement

on the initial solution (i.e. gap between the initial and two-minute solution) was ≈ 35.90%,

with 4558 cases (≈ 39.57% of the total) in the range of a gap greater than 30% and up to

45%. The maximum gap was ≈ 88.08%, compared to ≈ 78.51% for the 10-second cut-off.

As with the other results in this section, we can also investigate whether the different

settings used for the heuristics (as described in section 6.5.4.14) have an influence on the

gap between the early cut-off solutions and the final (i.e. two-minute) solutions. It is clear

that the gaps shown in Figures 6.37 and 6.38 do not come from a Normal distribution,

267

Figure 6.39: Improvement on the initial solution achieved within two minutes given as a
percentage of the initial solution value, across all test instances and all combinations of
settings (rescaled graph).

and therefore we should use the Kruskal-Wallis test. The p-values from these tests, carried

out on the data for all four cut-off times, are shown in Table 6.9, with those which are

significant at the 5% level marked with an asterisk. It can be seen that all five settings

have a degree of significant influence on the gaps to the final solution. Three of the settings

- the number of employees examined at each iteration, the acceptance criteria and the kick

settings - have a significant effect on the size of gap for all four of the cut-off times. The

order in which employees are examined is significant only for the one-minute cut-off, while

the initial solution used has a significant effect on the one-minute, 30-second and 10-second

cut-off gaps, but not on the gap with respect to the 20-second cut-off solution. This can

be compared to the results in Table 6.4, showing the significance of the settings on the

improvement (i.e. gap) between the initial solution and the two-minute solution. There,

the F-test indicated that it was the number of employees examined, the kick settings and

the initial solution which had a significant effect on the gap.

As before, we will now break down the results in order to investigate further the settings

which are highlighted as significant. Summary statistics are given here, while more detail

can be seen in the graphs in appendix section D.2.8. As we have four sets of results to

268

Table 6.9: Influence of heuristic settings on gap to final solution from early cut-off solution
(Kruskal-Wallis test).

p-value for p-value for p-value for p-value for
Setting type

one-min result 30-sec cut-off 20-sec cut-off 10-sec cut-off

Employees to examine < 0.001* 0.003* < 0.001* < 0.001*
Employee order < 0.001* 0.102 0.767 0.159

Acceptance criteria < 0.001* < 0.001* < 0.001* < 0.001*
Kick settings < 0.001* < 0.001* < 0.001* < 0.001*

Initial solution < 0.001* < 0.001* 0.935 < 0.001*

give here (the four different cut-off times), we present our breakdown of results in tabular

form. We begin with the number of employees to examine at each iteration, which had

a significant influence at all four cut-off points. Table 6.10 shows the mean, median and

maximum gap values for each setting at each time limit, as well as the number of cases

for which the gap is zero and the proportion of cases in this subgroup this represents. It

Table 6.10: Breakdown of gaps to final solution from early cut-off solutions, according to
number of employees to examine at each iteration.

Cut-off time Statistic Examine all employees Examine one third

mean ≈ 0.47% ≈ 1.13%
median 0% 0%

one minute maximum ≈ 51.48% ≈ 54.73%
count zero gap 5339 4655

% zero gap ≈ 92.69% ≈ 80.82%

mean ≈ 3.91% ≈ 3.85%
median 0% 0%

30 seconds maximum ≈ 78.38% ≈ 73.50%
count zero gap 3583 3372

% zero gap ≈ 62.20% ≈ 58.54%

mean ≈ 8.22% ≈ 6.37%
median ≈ 0.83% ≈ 0.20%

20 seconds maximum ≈ 78.38% ≈ 73.74%
count zero gap 2489 2640

% zero gap ≈ 43.21% ≈ 45.83%

mean ≈ 17.08% ≈ 13.21%
median ≈ 15.35% ≈ 9.04%

10 seconds maximum ≈ 78.38% ≈ 78.51%
count zero gap 1230 1452

% zero gap ≈ 21.35% ≈ 25.21%

can be seen from this table that on average, the one-minute solutions have a smaller gap

to the final solution, and more cases with no gap at all, when all employees are examined

269

compared to when one third of employees are examined at an iteration. This distinction

is less clear at the 30-second cut-off point, where examining all employees still gives more

cases with zero gap to the final solution, but there is a slightly lower average gap and

slightly lower maximum gap where the examine one third setting is used. For the 20-

second cut-off, it is estimated that the examination of just one third of the employees at

each iteration achieves solutions closer to the final solution, in terms of mean and median,

as well as number of cases with a gap of zero. This is also true of the 10-second cut-off,

with the difference being more pronounced - in particular, the median gap to the final

solution is ≈ 15.35% when all employees are examined, but is just ≈ 9.04% when one third

of employees are examined. These results can be linked to the findings for best solution

time (section 6.8.4.7), where it was found that examining one third of employees would on

average lead to the best solution being found later, but would also have a greater number

of cases which found the best solution at a relatively early stage. This would tie in with

the ‘examine one third’ setting having lower gaps to the final solution for earlier cut-offs,

but being overtaken by the examine all setting by the one-minute cut-off point.

We next look at the order in which employees are examined at each iteration. This

was only found to have a significant influence on the gap between the one-minute and two-

minute solutions. Table 6.11 shows the mean, median and maximum gap values for the two

settings, as well as the number and proportion of cases for which the gap is exactly zero.

We see here that for the more tailored (or ‘smarter’) ordering, there is a slightly higher

Table 6.11: Breakdown of gaps to final solution from early cut-off solutions, according to
order in which employees are examined at each iteration.

Cut-off time Statistic Random ordering More tailored ordering

mean ≈ 0.72% ≈ 0.89%
median 0% 0%

one minute maximum ≈ 46.15% ≈ 54.73%
count zero gap 5092 4902

% zero gap ≈ 88.40% ≈ 85.10%

mean gap between the one-minute and two-minute solutions, although it is in either case

less than 1%, and also a larger maximum gap between the two solutions. It can also be

seen that there are fewer cases for the smarter ordering which have a gap of zero compared

to the number of randomly ordered cases. This implies that more of the cases which use

smarter ordering would be yet to find their best solution if the algorithm was cut off after

one minute. However, from the Kruskal-Wallis test results in Table 6.9 there would appear

to be no significant difference between the groups in terms of gaps if the algorithm was to

be terminated at any of the earlier cut-off times.

Looking at the breakdown of the acceptance criteria used, we recall that this was

270

found to have a significant effect on the gaps for all four of the early cut-off solutions. The

selected statistics for these groups for each cut off are shown in Table 6.12. We see that

Table 6.12: Breakdown of gaps to final solution from early cut-off solutions, according to
solution acceptance criteria.

Cut-off time Statistic Improvement on current Improvement on best

mean ≈ 0.63% ≈ 0.98%
median 0% 0%

one minute maximum ≈ 54.73% ≈ 51.48%
count zero gap 5115 4879

% zero gap ≈ 88.80% ≈ 84.70%

mean ≈ 2.93% ≈ 4.82%
median 0% 0%

30 seconds maximum ≈ 65.61% ≈ 78.38%
count zero gap 3853 3102

% zero gap ≈ 66.89% ≈ 53.85%

mean ≈ 5.75% ≈ 8.84%
median 0% ≈ 3.06%

20 seconds maximum ≈ 67.56% ≈ 78.38%
count zero gap 2958 2171

% zero gap ≈ 51.35% ≈ 37.69%

mean ≈ 13.11% ≈ 17.18%
median ≈ 8.61% ≈ 15.22%

10 seconds maximum ≈ 78.36% ≈ 78.51%
count zero gap 1620 1062

% zero gap ≈ 28.13% ≈ 18.44%

the general pattern here is for the those test runs which look for an improvement on the

current solution will have a smaller mean gap to the final solution than those which require

an improvement on the best found so far. This pattern is also followed by the median gaps

values for the 20-second and 10-second cut-off; the one-minute and 30-second cut-offs have

a median gap of zero for both settings. In keeping with this, we also see that the number

of cases with a gap of zero is greater for the group which uses the current solution as the

acceptance criterion; the difference between the groups is far less for the one-minute cut-off

than it is for the three earlier cut-off times. This is in keeping with the findings earlier

which showed that the improve-on-current setting was related to the best solution value

being found earlier (see section 6.8.4.7), most likely as a result of iterations being carried

out more quickly.

We next look at the effect of the kick settings on the gaps to the best solution at the

earlier cut-off times. Again, these were shown to be significant for all four cut-off times,

and we give summary information about the effects on each of the cut-off solutions in Table

6.13. It is clear from this table that the mean gaps to the final solution are much larger

271

Table 6.13: Breakdown of gaps to final solution from early cut-off solutions, according to
kick settings used.

No improvement No improvement
Cut-off time Statistic No kick used

after 4+ iters after 8+ iters

mean ≈ 1.43% ≈ 0.35% ≈ 0.62%
median 0.00% 0.00% 0.00%

one minute maximum ≈ 54.73% ≈ 40.17% ≈ 51.48%
count zero gap 2854 3646 3494

% zero gap ≈ 74.32% ≈ 94.95% ≈ 90.99%

mean ≈ 5.18% ≈ 2.89% ≈ 3.57%
median ≈ 0.08% 0.00% 0.00%

30 seconds maximum ≈ 73.50% ≈ 78.38% ≈ 57.06%
count zero gap 1770 2798 2387

% zero gap ≈ 46.09% ≈ 72.86% ≈ 62.16%

mean ≈ 8.94% ≈ 5.86% ≈ 7.08%
median ≈ 3.79% 0.00% ≈ 3.13%

20 seconds maximum ≈ 73.74% ≈ 78.38% ≈ 70.51%
count zero gap 1194 2177 1758

% zero gap ≈ 31.09% ≈ 56.69% ≈ 45.78%

mean ≈ 16.88% ≈ 13.44% ≈ 15.11%
median ≈ 14.97% ≈ 8.60% ≈ 11.95%

10 seconds maximum ≈ 78.51% ≈ 78.38% ≈ 75.10%
count zero gap 605 1151 926

% zero gap ≈ 15.76% ≈ 29.97% ≈ 24.11%

at the cut-off points when no kick is carried out, while the 4-or-more-iteration kick setting

produces smaller gaps on average than the 8-or-more-iteration setting. This same pattern

can be seen in the median values for 30-second, 20-second and 10-second cut-offs, and also

when looking at the number of cases in each category which have zero gap. In this case,

we must bear in mind the results in sections 6.8.4.1 and 6.8.4.2, which showed that using

no kick lead to a better solution in terms of cost, and the results in section 6.8.4.7 which

showed that the best solution was found much later when no kick was carried out. It can

be seen therefore that while the no kick setting has a larger gap to the best solution, this

will be largely because it is being measured against a lower cost solution, and so an early

cut-off to the algorithm when no kick is used may not be too much of a disadvantage.

Finally we come to the effect of the initial solution which is used. This was significant

for three of the four cut-off times: one-minute, 30-second and 10-second, but not for the

20-second cut-off solution. The selected statistics, broken down by initial solution type,

for these three cut-off times are shown in Table 6.14. We see from this table that for the

one-minute and 30-second cut-off points, the group which uses the Heuristic initial solution

has a smaller mean and smaller maximum gap to the final solution, and also has a greater

272

Table 6.14: Breakdown of gaps to final solution from early cut-off solutions, according to
initial solution.

Cut-off time Statistic Task-Based Approx. Heuristic Initial

mean ≈ 0.98% ≈ 0.62%
median 0% 0%

one minute maximum ≈ 54.73% ≈ 43.94%
count zero gap 4863 5131

% zero gap ≈ 84.43% ≈ 89.08%

mean ≈ 4.15% ≈ 3.61%
median 0% 0%

30 seconds maximum ≈ 78.38% ≈ 61.92%
count zero gap 3363 3592

% zero gap ≈ 58.39% ≈ 62.36%

mean ≈ 13.88% ≈ 16.41%
median ≈ 9.59% ≈ 14.41%

10 seconds maximum ≈ 78.51% ≈ 75.10%
count zero gap 1398 1284

% zero gap ≈ 24.27% ≈ 22.29%

percentage of cases which have zero gap to the final solution. This is different however

from the 10-second cut off, for which it is the group using the Task-Based Approximation

as an initial solution which has the smaller mean and smaller median gap to the final

solution, and a slightly greater percentage of cases with a gap of zero. This gives a degree

of explanation to the results in Table 6.9 with respect to the 20-second cut-off gaps - as

the Heuristic initial solution brings smaller gaps for the one-minute and 30-second cut-offs,

but the Task-Based Approximation gives smaller gaps for the 10-second cut-off, we can

surmise that the 20-second cut-off falls in the region where the ‘cross-over’ takes place, and

where there is no significant difference between the groups. This ties in with the results

for the best solution time discussed in section 6.8.4.2, where it was shown that using the

Task-Based Approximation as an initial solution tended to see solutions found later, but

also had more cases where the best solution was found within approximately the first 5

seconds, hence the smaller gaps to the final solution for the 10-second cut-off point.

6.8.4.9 Summary of results for Heuristics

Having discussed the performance of the Heuristic algorithm with respect to a number

of measures in the preceding sections (6.8.4.1 to 6.8.4.8), and shown the influence of the

setting choices on these results, we now summarise these findings.

Firstly, in terms of general measures of the performance of the algorithm, we have seen

that it generates solutions with a gap to the best known bound of on average ≈ 71.02%

within one minute and ≈ 70.84% in two minutes, while the mean gap to the best known

273

solution across all test runs was ≈ 46.45% in one minute and ≈ 46.04% in two minutes. The

cost gaps achieved by the heuristic algorithm were seen to be better than those achieved by

the two-minute settings of the direct approach, and far better than the non-cost-constrained

solutions found by the change-minimization method; however the comparison with the

one-hour direct approach was more even, with it appearing that the heuristics were more

consistent in performance although not as likely to find really good solutions. Meanwhile,

the final change-minimization results were in general better than the combined heuristic

results. The costs were seen to be an average of ≈ 34.18% improvement within one minute

and ≈ 34.69% improvement within two minutes on the initial solution, and it was noted

that there was very little additional improvement evident in the second minute of most

test runs. A little over 1% of the test runs achieved no improvement at all.

Other measures examined included the number of changes, which were shown to range

from fewer than 20 up to more than 300 and averaged ≈ 109.22 for the one-minute and

≈ 111.79 for the two-minute results, and the number of solutions found with cost equal

to the best, which ranged from single unique solutions to 59 distinct equal solutions and

averaged ≈ 6.74 for the one-minute and ≈ 7.96 for the two-minute results. The number of

iterations, which can be serve as an indication of the number of solutions which it may be

possible to find, took a wide range of values - modal ranges were 51 to 75 iterations in one

minute and 101 to 125 iterations in two minutes, while the respective means were ≈ 114.05

and ≈ 204.10 and maximum values were as high as 341 in one minute and 661 iterations

in two minutes. Comparing the numbers of iterations within one and two minutes seemed

to suggest an increase in iteration length in the second minute of the test runs.

The time of the best solution was also investigated, and it was found that nearly half

of the test runs found their best solution within 20 seconds, even when the programme ran

for two minutes. Indeed, for the two-minute time limit less than 15% of the test runs found

the best solution after the 60-second mark. These findings lead to calculations of expected

solution values if the programme was terminated early. This found that the mean gap

which the algorithm would have from the final solution was ≈ 0.80% if terminated after

one minute, and ≈ 3.88% if terminated after 30 seconds; the median gaps for these cut-off

were however zero given the number of cases which found their best solutions earlier than

this. These figures were similar for a 20-second cut-off, with a mean gap of ≈ 7.30% and

median of just ≈ 0.42%; but the estimated gaps for a 10-second cut-off were much higher,

with a mean of ≈ 15.15% and median gap of ≈ 11.92%. This gap however was shown

to still be a lot closer to the final (i.e. two-minute) solution than the initial solutions on

average were.

Having looked at these measures in general terms, some analysis was carried out into

the effects of the settings used in the heuristic algorithm, which we now summarise. We

begin with the number of employees examined at each iteration, which was shown to have a

274

degree of influence on all of the measures discussed. In terms of solution cost, it was found

that the test runs which examined only one third of employees at each iteration achieved

a better improvement on the initial solution, and found solutions with a smaller gap to

the best known bound and the best known solution. This group of test runs also carried

out more iterations in the time available, but on average had a greater number of changes

in the best solution and a later mean time for finding that solution. The median time

of finding the best solution was lower however than when all employees were examined,

suggesting there were more best solutions found early when only one third of employees

were examined. In terms of earlier cut-offs, the cases where all employees were examined

were closer to the final solution value after one minute; however, this group on average gave

larger gaps from the final solution for the 30-second, 20-second and 10-second cut-offs. On

balance, it would appear more beneficial to use the setting of examining only one third of

employees at each iteration rather than examining all employees.

Looking next at the order in which employees were examined, we found that this choice

had no significant impact on the solution cost measures of gap to best known bound, gap

to best known solution, or the improvement on the initial solution. This setting was also

found to have no influence on the number of changes in the one-minute solution; however,

for the two-minute solution it was found that the tailored (or ‘smarter’) ordering actually

lead on average to a greater number of changes in the first lowest-cost solution found. The

random ordering was also superior in terms of numbers of equal-best solutions found on

average, but the tailored ordering achieved a greater average number of iterations, and in

terms of the results found within one minute these were more likely to be found earlier

than under the random ordering. In terms of the earlier cut-offs, the employee order had

no significant influence on the 30-second, 20-second or 10-second gaps to the final solution;

for the one-minute results, the smarter ordering demonstrates a slightly higher mean gap

and fewer cases which have a gap of exactly zero. Overall, it would appear that the tailored

ordering was not particularly successful, and that the random ordering would be the better

option to choose for this setting.

Next we consider the influence of the solution acceptance criteria during the test runs.

This setting had less impact on the results, with no significant influence on the gaps to best

bound or best solution, the improvement on the initial solution, the number of changes or

the number of equal-best solutions. It does however have a clear influence on the number

of iterations carried out, with the test runs which will accept the first non-tabu solution

which improves on the current solution performing roughly a third more iterations on

average. This appeared to have an impact on the time that the best solution would be

found, with the quicker iterations allowing the group looking for an improvement on the

current solution to find their best solution earlier. This also had the effect of meaning

the improve-on-current test runs have on average a smaller difference between the earlier

275

cut-off solutions and the final solution. Overall there appears to be no reason why we

would choose to improve on the best solution found so far, so we must conclude that the

improvement on the current solution should be chosen here.

Summarising the findings relating to the settings used for the random kick procedure,

this was found to have a significant influence on every measure investigated, although

not in the way originally intended. In terms of the gaps to the best bound and best

solution, and the improvement on the initial solution, it was found that those test runs

which implemented no kick achieved the best results; the 8-or-more-iteration setting was

on average superior to the 4-or-more-iteration setting on these measures. It was also found

that having no kick meant the average test run had a solution with a lower number of

changes, had a much higher number of equal-best solutions, and had a greater number of

iterations carried out. It was hypothesised that the effect of the kick was, in general, to push

the search away from the best solution so far and often not allowing the algorithm chance

to sufficiently improve the solution. This was seemingly confirmed by the observation that

the test runs with no kick found their best solution on average much later than with the

other settings. (This also had the effect of creating a larger gap between the early cut-off

and final solutions when no kick was used; although it was noted that the final solutions

for this group were themselves of lower cost.) It was therefore recommended as future

research that the kick implementation rules could be amended to allow a longer gap before

a kick was carried out, which would take into account the number of iterations which

are possible within two minutes (or even one minute) in the C++ implementation of the

algorithm. However, with the algorithm as it currently stands it is clear that it is better

not to implement a kick at all.

Finally, in terms the initial solution, this had a substantial influence on a number of

measures. Not least, it was found that starting from the Heuristic initial solution allowed

the algorithm to find solutions with on average much smaller gaps to the best known bound

and the best known solution. While this was in part attributable to the Heuristic initial

solutions having a lower cost to begin with, it was also found that these initial solutions

actually facilitated a better average improvement over the running time of the programme

than was achieved using the Task-Based Approximation solution. In terms of numbers of

changes, the test runs which used the Heuristic initial solution had far fewer on average,

although this was seen to be a small increase on the number of changes in the initial

solution; by contrast, the heuristic algorithm was able to reduce the number of changes on

average when starting from the Task-Based Approximation solution. The choice of initial

solution had no significant influence on the number of iterations carried out, and had a

small (but not insignificant) influence on the number of equal-best solutions found, with

those cases starting from the Task-Based Approximation solution finding on average more

equal-best solutions. Finally, in terms of times of finding the solutions, it was seen that

276

the Task-Based Approximation initial solution lead to more cases where the best solution

was found in the first 5 seconds, but on average saw the best solutions found later in the

test runs. As a result, the test runs using the Heuristic initial solution had a larger gap

to the final solution at the 10-second cut-off point but, while the 20-second cut-off had no

significant different between the groups, the 30-second and one-minute cut-offs recorded

smaller average gaps to the final solution when the Heuristic initial solution was used.

It would therefore seem clear that the Heuristic initial solution is the better option for

selection here.

Drawing together the recommendations here for the settings which should be used, we

have the following selection:

1. Examine one third of all employees at each iteration;

2. Examine employees in a random order;

3. Accept the first non-tabu solution which improves on the current solution value;

4. Do not use the random kick; and

5. Use the Heuristic initial solution.

From Table D.2 in the appendix, this combination of settings has been labelled as Com-

bination #26. We can also say that in terms of time limit, it is unlikely that running

the algorithm for a full two minutes would be beneficial - terminating the algorithm after

one minute is likely to give close to the same results. It may even be possible that the 30

seconds is an adequate time limit; however, this is based on estimated results and should

be investigated further before a final decision is made. Histograms for Combination #26

only relating to the measures discussed above are given in section D.2.9 of the appendix;

here, we can give an outline of the key points of these results.

Firstly, in terms of the gap to the best known bound (Figure D.53), this combination

gives a mean gap of ≈ 67.22% for the one-minute and ≈ 66.81% for the two-minute results,

with medians slightly higher at ≈ 70.52% and ≈ 70.09% respectively. There are 2 instances

(≈ 0.83% of the total) for which both the one-minute and two-minute results are within 5%

of the best known bound; no instances were solved to known optimality. Comparing the

results for Combination #26 with the best known solution (Figure D.54), we have that the

mean gap is ≈ 39.67% for the one-minute and ≈ 38.60% for the two-minute results, around

seven percentage points less than the overall average for all heuristic settings; the medians

are ≈ 37.14% and ≈ 36.25% respectively. It should also be noted that the shape of the

graphs are a little different to those shown in Figure 6.31, with a clearer bias towards gaps

at the lower (i.e. left hand) end of the x-axis. In terms of improvement (Figure D.55),

Combination #26 gives a mean of ≈ 40.36% within one minute and ≈ 41.29% within

277

two minutes, around seven percentage points better than the average across all heuristic

settings. There are still 2 instances (≈ 0.83% of the total) for which no improvement is

made, although this is a smaller percentage than across all heuristic settings (≈ 1.16% of

the total for two-minute results).

Looking at other quality measures, we see that the number of changes in the first lowest-

cost solution (Figure D.56) has a different shape to the data than for all settings combined,

with the greatest proportion of the cases falling into the 21-40 changes category. The mean

number of changes was ≈ 76.18 for the cheapest one-minute solutions, and ≈ 77.08 for the

two-minute solutions; just over two-thirds of the combined average for all settings. The

maxima were also around two-thirds of the overall values, at 230 and 232 for the one-

minute and two-minute results respectively. We also see that this combination offers a

better selection of results than the average for all heuristics (Figure D.57), with a mean

≈ 17.05 and median 9 equal-best solutions for the one-minute results, and a mean ≈ 21.73

and median 12 equal-best solutions in two minutes. More solutions will also be generated

because of the higher number of iterations (Figure D.58), with a mean of ≈ 145.22 being

carried out in one minute, and ≈ 279.89 carried out within two minutes. The number

of iterations can also be seen to be more closely grouped and more normally distributed

round the central mean than for the overall results given in Figure 6.35.

Finally, turning attention to the time the best solution is found (Figure D.59), we have

that over half of the best solutions found within one minute are in fact found within 30

seconds - the median is ≈ 29.96 seconds, with the median for the two-minute solutions

being ≈ 36.03 seconds; the mean times are a little higher, at ≈ 30.43 seconds and ≈ 45.23

seconds respectively. There are however some instances for which the best solution is found

very close to the time limit of the test run (11 instances (≈ 4.58% of the total) find the

best one-minute solution in over 60 seconds; 1 instance has the best two-minute solution

found in over 120 seconds). All this means that an early cut-off to the algorithm (Figure

D.60) could potentially result in quite small gaps from the final solution. Terminating after

one-minute would leave the solution a mean of ≈ 1.54% from the two-minute solution, with

173 instances (≈ 72.08% of the total) here having the same solution. Similarly, a cut-off

after 30-seconds is estimated to give a mean gap of ≈ 5.01% to the two-minute solution,

with 94 instances (≈ 39.17% of the total) having a gap of zero. For the 20-second and

10-second cut-offs, the mean estimated gaps are ≈ 7.22% and ≈ 14.66% respectively. From

this, we can suggest that cutting off the algorithm after one minute or even 30 seconds

would not be to the serious detriment of the quality of the solution; terminating after 20

seconds however would seem less beneficial, with additional cost reductions being lost for

the gain of only a very short amount of time.

278

6.8.5 Effect of Parameter Values on Results

Having given various computational results in sections 6.3 and 6.8 above, we must look

at the potential effects of the parameters which had to be varied when the data was

generated as described in section 6.2.2. This investigation takes broadly the same form as

in section 5.5.2.3 for the Task-Based problem, where an Analysis of Variance is carried out

on measures for which the required Normality assumption holds, and the Kruskal-Wallis

test otherwise. As a reminder, there are seven parameter values which were varied and

which may have influenced the outputs of interest. These are:

• Availability probabilities p and q;

• Whether or not the time reduction r (d) is used;

• The near- and long-term disruption factors, KN and KL respectively;

• An aggregated disruption factor K̂, calculated as a weighted average of the near- and

long-term factors such that

K̂ =
(4×KN) + (9×KL)

13

and

• The agency penalty factor KAG.

As before, we note that the values of p and q are directly related as described by equation

(5.57), and therefore results of tests for the influence of the values of q are identical to

those for the parameter p. As a result, in this section we do not explicitly report results

relating to the parameter q.

In this section we discuss the effect of the parameter values firstly on the results of the

initial computational approaches presented in section 6.3 and the further analysis of these

given in section 6.8.1. We then focus on the further computational results, discussing in

turn the Task-Based Approximation results given in section 6.8.2, the Heuristic initial so-

lution approach discussed in section 6.8.3, and the results for the main Heuristic algorithm

as set on in section 6.8.4.

6.8.5.1 Effect of parameter values on Initial Computational results

We firstly look at the effect of the parameter values on the initial computational results,

and the associated further analysis of the gaps to the best known bound. As a reminder, the

results given in sections 6.3 and 6.8.1 related both to the ‘direct’ solution approach, run over

a two-minute time limit and a one-hour time limit, and a change-minimization algorithm

279

which used a two-minute time limit only. The results reported, and their corresponding

histogram, were:

• For the direct solution approach:

– Gap to best known bound, as percentage of direct solution value - see Figure

6.1 for the two-minute time limit, and Figure 6.2 for the one-hour time limit;

– Gap to best known solution, as percentage of direct solution value - see Figure

6.13 for both time limits.

• For the change-minimization approach:

– Number of solutions found - see Figure 6.3;

– Number of iterations carried out - see Figure 6.4;

– Gap to best known bound for lowest cost solution, as percentage of lowest cost

solution - see Figure 6.5;

– Gap to best known bound for non-cost-constrained solution, as percentage of

non-cost-constrained solution - see Figure 6.6;

– Gap to best known solution for lowest cost solution, as percentage of lowest cost

solution - see Figure 6.14;

– Gap to best known solution for non-cost-constrained solution, as percentage of

non-cost-constrained solution - see Figure 6.15.

From examination of the histograms relating to these outputs, it could be seen that

none of them were suitable for the F-test to be carried out; instead, the Kruskal-Wallis

test was used to test for influence of these parameters. Note that because the assumption

of an approximately normal distribution did not hold, it would also not have been valid

to carry out any analysis of correlations between the parameter values and these outputs.

The results of the Kruskal-Wallis tests are presented in Table 6.15 in the form of p-values

for each output for each parameter. Those which are significant at the 5% level, and which

thereby provide evidence that the parameter value influences the distribution of the given

output, are marked with an asterisk.

Examining this table, we see that outputs for the ‘direct’ solution approach are affected

much more by the parameter values than the change-minimization approach. Particularly,

the disruption factors (KN , KL and K̂) and the agency penalty factor (KAG) - i.e. the

cost-related parameters - seem to have a much larger influence on the direct approach

results than for the change-minimization; the main influences on change minimization are

the availability parameter p and the agency penalty factor KAG. The Kruskal-Wallis test

can only tell us that a parameter has an influence; it cannot give information as to the

280

T
a
b

le
6
.1

5:
R

es
u

lt
s

o
f

K
ru

sk
al

-W
al

li
s

te
st

s
fo

r
in

fl
u

en
ce

of
p

ar
am

et
er

s
u

se
d

in
in

st
an

ce
ge

n
er

at
io

n
on

In
it

ia
l

co
m

p
u

ta
ti

on
al

re
su

lt
s.

P
ar

am
et

er

O
u

tp
u

ts
o
f

in
te

re
st

T
es

t
p

U
se
r

(d
)?

K
N

K
L

K̂
K
A
G

G
a
p

to
b

es
t

tw
o-

m
in

K
-W

0.
30

6
0.

99
4

0.
01

1*
<

0
.0

01
*

<
0.

00
1*

<
0
.0

01
*

D
ir

ec
t

so
lu

ti
o
n

k
n

ow
n

b
ou

n
d

on
e-

h
ou

r
K

-W
<

0
.0

01
*

0.
12

7
0.

00
1*

<
0
.0

01
*

<
0.

00
1*

<
0
.0

01
*

ap
p

ro
a
ch

G
a
p

to
b

es
t

tw
o-

m
in

K
-W

<
0
.0

01
*

0.
09

9
0.

00
4*

<
0
.0

01
*

<
0.

00
1*

<
0
.0

01
*

k
n

ow
n

so
lu

ti
o
n

on
e-

h
ou

r
K

-W
0.

12
8

0.
56

3
<

0
.0

01
*

<
0
.0

01
*

<
0.

00
1*

0.
07

2

N
o.

of
so

lu
ti

on
s

K
-W

<
0
.0

01
*

0.
01

7*
0.

89
7

0.
58

4
0.

95
8

0.
88

7
N

o.
of

it
er

at
io

n
s

K
-W

<
0
.0

01
*

0.
78

6
0.

26
3

0.
04

1*
0.

30
1

0.
11

9
C

h
an

g
e-

m
in

G
a
p

to
b

es
t

lo
w

es
t

co
st

so
l

K
-W

<
0
.0

01
*

0.
24

4
0.

70
4

0.
37

5
0.

77
6

<
0
.0

01
*

A
p

p
ro

ac
h

k
n

ow
n

b
ou

n
d

n
on

-c
os

t-
co

n
st

r.
K

-W
0.

98
7

0.
93

8
0.

17
5

0.
03

1*
0.

30
4

<
0
.0

01
*

G
a
p

to
b

es
t

lo
w

es
t

co
st

so
l

K
-W

0.
47

0
0.

05
8

0.
78

7
0.

10
9

0.
33

1
0.

23
6

k
n

ow
n

so
lu

ti
o
n

n
on

-c
os

t-
co

n
st

r.
K

-W
<

0
.0

01
*

0.
00

5*
0.

87
0

0.
61

9
0.

92
9

<
0
.0

01
*

281

nature of this influence. To see this, we must look in greater detail at a breakdown of each

output by the relevant significant parameters. Only a summary of these details are given

here, with breakdown histograms given in the appendix in section D.3.1.

Looking at these histograms it can be seen that in general the higher values of the

disruption factors (KN , KL and K̂) have a higher incidence of achieving lower gaps to the

best bound or best solution in the direct runs. For the agency penalty (KAG) on the other

hand, the higher penalty values seem to lead to greater variability - more high valued gaps

as well as a greater count of low-value gaps. The higher values of the probability p (which

indicate fewer but longer absences for the crew) give rise to much smaller gaps to the best

bound for the one-hour settings; however, when compared to the best known solution, the

higher values of p appear to give a greater number of very large gaps as well as a higher

count of lower-valued gaps.

The graphs for the change-minimization results meanwhile show that more iterations

and more solutions can be achieved in cases where a higher value of p was used. More

iterations could also be carried out when high long-term disruption penalties (KL) were

applied, and more solutions were found in the cases where the time reduction r (d) was

not used. In terms of the cost gaps, the lowest cost solution had a smaller gap to the

best known bound when there were higher values of absence probability p and when there

were lower values of the Agency penalty factor KAG. The non-cost-constrained solution

was affected for both the gap to best known bound and the gap to best known solution,

with these both being lower when a smaller agency penalty factor was applied. The gap

to best bound also was reduced by having larger penalties for long-term disruption, while

the gap to the best known solution was smaller in cases where there was a lower value of

probability p and where the time reduction factor r (d) was not used.

6.8.5.2 Effect of parameter values on Task-Based Approximation results

We next can look at the effect the data generating parameters have on the Task-Based

Approximation results discussed in section 6.8.2. As a reminder, this approach produced

one single solution for each instance, which could be analysed in a number of ways. The

results which were given, listed here with reference to the corresponding histograms, were

as follows:

• Gap to best known bound, as percentage of Task-Based Approximation solution -

see Figure 6.16;

• Gap to best known solution, as percentage of Task-Based Approximation solution -

see Figure 6.17;

• Improvement on two-minute and one-hour direct solution approach, as percentage of

282

respective direct solution values - see Figure 6.18;

• Improvement on change-minimization best solution, as percentage of change-minimization

best solution - see Figure 6.19;

• Running time - see Figure 6.20;

• Number of changes, according to both Task-Based and Time-Windows versions of

the solution - see Figure 6.21.

Examining the histograms relating to these outputs it could be seen that the number

of changes, both in the Task-Based and Time-Windows representations of the solution,

followed an approximately Normal distribution. Therefore it was possible to carry out

the Analysis of Variance to test for the effect of the data generation parameters using the

F-test for these two outputs; for the other outputs, the Kruskal-Wallis test was used. The

p-values from these tests, with those which are significant at the 5% level marked with an

asterisk, are shown in Table 6.16. Since the two measures of numbers of changes satisfied

the Normality assumption, it was also possible to examine correlations relating to these.

Table 6.17 shows the Pearson correlation coefficients (PCC) and their associated p-values

for five of the numerical parameters - note that correlation cannot be carried out on the

boolean reduction factor r (d), while correlation with probability q is equal but opposite

to that for probability p and therefore not given here. As before, all p-values which are

significant at the 5% level are marked with an asterisk.

From Table 6.16, we see that the availability parameter p affects all aspects of the

Task-Based Approximation results with the exception of the running time, while the use of

the time reduction factor r (d) is completely irrelevant. The cost-related parameters have

some influence on the gaps and improvements, but not on the number of changes. For

the number of changes, which follows an approximately normal distribution, we have the

additional correlation information in 6.17. This tells us that the significant influence of

probability p on the number of changes has a negative correlation - i.e. for higher values of

p, which correspond to longer but fewer employee absences, we would expect to see a lower

number of changes in the Task-Based Approximation solution. For those outputs which

were tested using Kruskal-Wallis, these tables cannot provide any information about the

nature of the significant influences. Instead, we must look in greater detail at a breakdown

of each output by the relevant significant parameters. Histograms showing this are given

in appendix section D.3.2, while here we will simply give a summary of the findings.

Taking first the cost gaps, we have the instances which implement greater penalties

for using agency crew, i.e. larger KAG values, tend towards larger gaps to both the best

bound and the best solution. Higher values of the parameter p lead to smaller gaps to the

best known bound, but larger gaps to the best known solution, suggesting that perhaps

283

T
a
b

le
6
.1

6:
R

es
u

lt
s

of
F

-t
es

ts
an

d
K

ru
sk

al
-W

al
li

s
te

st
s

fo
r

in
fl

u
en

ce
of

p
ar

am
et

er
s

u
se

d
in

in
st

an
ce

ge
n

er
at

io
n

on
T

as
k
-B

as
ed

A
p

p
ro

x
im

at
io

n
re

su
lt

s.

P
ar

am
et

er

O
u

tp
u

ts
o
f

in
te

re
st

T
es

t
p

U
se
r

(d
)?

K
N

K
L

K̂
K
A
G

b
es

t
k
n

ow
n

b
ou

n
d

K
-W

<
0
.0

01
*

0.
75

5
0.

57
6

0.
40

9
0.

83
2

<
0.

00
1*

G
ap

to
b

es
t

k
n

ow
n

so
lu

ti
on

K
-W

0.
00

1*
0.

06
6

0.
61

0
0.

68
0

0.
56

8
<

0.
00

1*

on
tw

o
-m

in
d

ir
ec

t
K

-W
<

0
.0

01
*

0.
78

6
0.

00
9*

<
0
.0

01
*

<
0
.0

01
*

0.
66

9
Im

p
ro

ve
m

en
t

o
n

o
n

e-
h

ou
r

d
ir

ec
t

K
-W

0.
00

8*
0.

13
3

0.
06

4
<

0
.0

01
*

<
0
.0

01
*

<
0.

00
1*

on
ch

a
n
g
e-

m
in

im
iz

e
K

-W
0.

00
2*

0.
62

5
0.

47
1

0.
93

7
0.

49
2

<
0.

00
1*

R
u

n
n

in
g

ti
m

e
K

-W
0.

53
8

0.
97

7
0.

03
2*

0.
03

0*
0.

06
7

0.
79

9

N
u

m
b

er
of

T
as

k
-B

as
ed

re
p

re
s.

F
<

0
.0

01
*

0.
93

1
0.

51
0

0.
14

3
0.

37
3

0.
51

8
ch

a
n

ge
s

T
im

e-
W

in
d

ow
re

p
re

s.
F

<
0
.0

01
*

0.
19

6
0.

76
4

0.
30

7
0.

65
3

0.
34

1

284

Table 6.17: Correlation analysis for influence of parameters used in instance generation on
Task-Based Approximation results.

Parameter

Outputs of interest p KN KL K̂ KAG

PCC -0.495 -0.066 -0.100 -0.100 0.061
Number Task-Based repres.

p-value < 0.001* 0.305 0.123 0.121 0.345
of

PCC -0.644 -0.062 -0.092 -0.093 0.093
changes Time-Window repres.

p-value < 0.001* 0.337 0.155 0.150 0.150

for larger probability p we will tend to have better ‘best known’ solutions across all the

approaches. In terms of improvement on the direct and change-minimization methods, we

have that higher values of the parameter p give a larger improvement on the two-minute

direct approach, but are more likely to see highly negative improvements compared to the

one-hour direct or change-minimization methods. The disruption factors KN and KL do

not have a consistent influence on the improvement on the two-minute direct solution, with

lower values tending to give a smaller improvement, but the largest values (K = 10) giving

poorer results. This is also reflected in the fact that instances with the highest values of

K̂ are most likely to have a negative improvement on the two-minute direct solution.

The effects are more consistent on improvements on the other initial approaches, with

higher values of both the long- and near-term disruption factors more likely to see negative

improvement on the one-hour direct solution, and higher values of the agency penalty

factor KAG more likely to result in negative improvement on both the one-hour direct and

the change-minimization solution costs. Disruption factors KN and KL also impact the

running time, with higher values of the factors more likely to result in a quicker running

time.

6.8.5.3 Effect of parameter values on Heuristic initial solution results

We now look into the effect the data generating parameters have on the results for our

other initial solution method - the Heuristic initial solution approach, for which the results

are given in section 6.8.3. As with the Task-Based Approximation approach, this method

produces a single solution for each instance, although multiple runs were carried out to

give some indication of variability of the approach. Here we will take the results of the

run which generated the initial solutions used in the main heuristic algorithm (the single

run also referred to in the results in section 6.8.3) as being representative of the multiple

runs which were carried out, and for simplicity only provide analysis of the parameter

values with reference to this single run. As a reminder, the results which were presented

previously, and the corresponding histograms for them, were as follows:

285

• Gap to best known bound, as percentage of Heuristic initial solution value - see

Figure 6.22;

• Gap to best known solution, as percentage of Heuristic initial solution value - see

Figure 6.23;

• Improvement on two-minute and one-hour direct solution approach, as percentage of

respective direct solution values - see Figure 6.24;

• Improvement on change-minimization best solution, as percentage of change-minimization

best solution - see Figure 6.25;

• Running time - see Figure 6.26;

• Number of iterations carried out - see Figure 6.27;

• Number of changes in the solution - see Figure 6.28;

• Improvement on Task-Based Approximation solution, as percentage of the Task-

Based Approximation solution value - see Figure 6.29.

As with the initial computational results, visual inspection of the histograms for these

outputs indicated that the assumption of a Normal distribution did not hold. It was

therefore not possible to preform the Analysis of Variance, or to carry out any correlation

analysis on these outputs. Instead, the Kruskal-Wallis test was used to test for any influence

of the data generating parameters on the results. The p-values emerging from these tests

are given in Table 6.18, with those which are significant at the 5% level marked with an

asterisk.

From the table, we see that of the cost-related parameters only the agency penalty

factor KAG has an influence on the cost gaps of the solutions found, with the gap to the

best bound also influenced by the value of absence probability p and whether or not these

probabilities are multiplied by the time reduction factor. The improvements on the direct

solution results (for the two-minute and one-hour settings) are influenced by the three

disruption factors KN , KL and K̂, which ties in with the results in Table 6.15 above which

showed these factors to have an influence on the direct solution cost. The improvement

on the two-minute direct solution is also influenced by the value of parameter p, while the

one-hour direct comparison value has a significant link with the agency penalty factor. The

agency penalty factor also has an effect on the improvement on the change-minimization

solution, the only factor to do this. In terms of other measures, we have that the absence

probability p has an influence on the running time and the numbers of iterations carried

out and of changes in the solution; the use of the reduction factor r (d) also influences

running time and number of changes, but has no significant link with number of iterations.

286

T
a
b

le
6.

18
:

R
es

u
lt

s
o
f

K
ru

sk
al

-W
al

li
s

te
st

s
fo

r
in

fl
u

en
ce

of
p

ar
am

et
er

s
u

se
d

in
in

st
an

ce
ge

n
er

at
io

n
on

H
eu

ri
st

ic
in

it
ia

l
so

lu
ti

on
re

su
lt

s.
P

ar
am

et
er

O
u

tp
u

ts
of

in
te

re
st

T
es

t
p

U
se
r

(d
)?

K
N

K
L

K̂
K
A
G

G
ap

to
b

ou
n

d
K

-W
<

0
.0

01
*

0.
03

8*
0.

62
5

0.
63

4
0.

90
3

<
0.

00
1*

b
es

t
k
n

ow
n

..
.

so
lu

ti
on

K
-W

0.
17

9
0.

58
8

0.
74

0
0.

65
4

0.
86

4
<

0.
00

1*

tw
o
-m

in
d

ir
ec

t
K

-W
<

0
.0

01
*

0.
05

1
0.

00
4*

<
0
.0

01
*

<
0
.0

01
*

0.
10

6
Im

p
ro

ve
m

en
t

on
..

.
o
n
e-

h
ou

r
d

ir
ec

t
K

-W
0.

33
9

0.
85

8
0.

00
1*

<
0
.0

01
*

<
0
.0

01
*

0.
03

9*
ch

a
n

ge
-m

in
im

iz
e

K
-W

0.
17

4
0.

09
1

0.
44

6
0.

78
3

0.
90

9
<

0.
00

1*

R
u

n
n

in
g

ti
m

e
K

-W
<

0
.0

01
*

0.
00

3*
0.

81
3

0.
77

9
0.

83
5

0.
10

1

N
u

m
b

er
o
f

it
er

a
ti

o
n

s
K

-W
<

0
.0

01
*

0.
09

0
0.

89
7

0.
31

6
0.

75
2

0.
74

6

N
u

m
b

er
of

ch
a
n

ge
s

K
-W

<
0
.0

01
*

0.
00

3*
0.

91
5

0.
79

4
0.

99
1

0.
82

4

Im
p

ro
ve

m
en

t
on

T
as

k
-B

as
ed

A
p

p
ro

x
.

K
-W

0.
06

2
0.

01
5*

0.
20

9
0.

47
3

0.
20

3
0.

00
2*

287

The use of the reduction factor also has a significant effect on the improvement compared

to the Task-Based Approximation solution, as does the value of the agency penalty factor.

As above, the Kruskal-Wallis test results only highlight which parameters have a signif-

icant influence on the outputs, and can give no further information about the nature of this

influence. For more insight, histograms have been created for each significant parameter

for each output - a summary of the findings is given here, with the histograms themselves

available in appendix section D.3.3. Firstly, with respect to the cost gaps, we have that a

smaller gap to the best known bound is observed when there are higher values of parameter

p (corresponding to longer absences less often) and when the time reduction factor r (d)

is applied. Higher values of the agency penalty factor increases the size of the gaps, both

with respect to the best bound and the best known solution.

Comparing the Heuristic initial solution results to the direct approach, we have that

higher values of p tend to give a better improvement compared to the two-minute results,

although those instances which show negative improvement are more likely to be highly

negative. Higher values of the disruption penalty factors mean that the improvement

is more likely to be negative (i.e. the direct result is better than the Heuristic initial

solution) both with respect to the two-minute and one-hour direct approaches. Similarly,

lower values of the agency penalty KAG are more likely to result in a positive improvement

on the one-hour direct solution, while high values of KAG are more likely to give a highly

negative (i.e. < −100%) ‘improvement’ on the Change-minimization solution.

For the other measures, it can be seen that the algorithm will likely run faster and

require fewer iterations to solve when the value of p is higher. Instances where the time

reduction factor is applied also run faster in general, and we have that the final solution will

entail fewer changes when p is larger and when the reduction factor r (d) is used. Finally,

comparing the results to the Task-Based Approximation, we have that instances where the

reduction factor is used or which have a higher value for the agency penalty KAG are more

likely to show a positive improvement on the Task-Based Approximation solution.

6.8.5.4 Effect of parameter values on Heuristic algorithm results

Finally, we can examine the effect of the parameter values on the results for the main heuris-

tic algorithm, as discussed in section 6.8.4. In particular, we will examine the parameter

value influences on the results for Combination #26, which was identified in section 6.8.4.9

as the setting combination which gave the best results across all the heuristic settings. As a

reminder, the results which were reported, listed along with their corresponding histograms

(note that these can be found in appendix section D.2.9), were as follows:

• Gap to best known bound (for both the one-minute and two-minute solutions), as

percentage of heuristic solution value - see Figure D.53;

288

• Gap to best known solution (for both the one-minute and two-minute solutions), as

percentage of heuristic solution value - see Figure D.54;

• Improvement made on cost of the initial solution (for both the one-minute and two-

minute solutions), as percentage of initial solution value - see Figure D.55;

• Number of changes in the first solution found with lowest cost (for both the one-

minute and two-minute results) - see Figure D.56;

• Number of distinct solutions found with cost equal to the lowest cost (for both the

one-minute and two-minute results) - see Figure D.57;

• Number of iterations carried out (for both one-minute and two-minute time limits) -

see Figure D.58;

• Estimated time at which the first solution with the lowest cost value was found (for

both one-minute and two-minute time limits) - see Figure D.59;

• Gap to final (i.e. two-minute) solution if early cut-off (one-minute, 30-second, 20-

second and 10-second time limits) was implemented - see Figure D.60.

Examining the histograms for setting Combination #26, it could be seen that the

majority of outputs do not conform to the Normality assumption and therefore had to be

analysed using the Kruskal-Wallis test. However, it could been seen that the improvement

on the initial solution for both the one-minute and two-minute results, as well as the

number of iterations carried out within two-minutes only, do follow an approximately

Normal distribution - these outputs could therefore be analysed using the F-test. Table

6.19 gives the p-values relating to the tests to determine if the data generation parameters

have a significant influence on the outputs; those which are significant at the 5% level are

marked with an asterisk. For the improvement on the initial solution (for both one-minute

and two-minute results) and the number of iterations carried out within two minutes, we

also test for correlation with the generating parameter values. This could only be done

for the numerical parameter values; it is not a valid analysis for the boolean variable

indicating whether or not the reduction factor r (d) is used. The Pearson correlation

coefficients (PCC) between these outputs and parameters along with their associated p-

values are shown in Table 6.20, with those p-values significant at the 5% level highlighted

with an asterisk. Note that the correlations for availability probability q are identical but

opposite to those for probability p, and so for simplicity are not included here.

From Table 6.19, we see that the absence probability p has a significant influence on

the values of virtually every output examined. The only exceptions to this are the number

of equal-best solutions found, for which the results appear to be completely independent

289

T
a
b

le
6.

19
:

R
es

u
lt

s
o
f

F
-t

es
ts

a
n

d
K

ru
sk

al
-W

al
li

s
te

st
s

fo
r

in
fl

u
en

ce
of

p
ar

am
et

er
s

u
se

d
in

in
st

an
ce

ge
n

er
at

io
n

on
H

eu
ri

st
ic

al
go

ri
th

m
re

su
lt

s
(C

o
m

b
in

at
io

n
#

26
o
n

ly
).

P
ar

am
et

er

O
u

tp
u

ts
o
f

in
te

re
st

T
es

t
p

U
se
r

(d
)?

K
N

K
L

K̂
K
A
G

G
a
p

to
b

es
t

on
e-

m
in

K
-W

<
0
.0

01
*

0.
10

6
0.

86
9

0.
72

6
0.

96
9

<
0.

00
1*

k
n

ow
n

b
ou

n
d

tw
o-

m
in

K
-W

<
0
.0

01
*

0.
10

2
0.

85
6

0.
74

8
0.

96
9

<
0.

00
1*

G
a
p

to
b

es
t

on
e-

m
in

K
-W

0.
00

6*
0.

59
5

0.
97

9
0.

16
6

0.
68

8
<

0.
00

1*
k
n

ow
n

so
lu

ti
on

tw
o-

m
in

K
-W

0.
00

3*
0.

51
8

0.
98

5
0.

09
7

0.
50

8
<

0.
00

1*

Im
p

ro
ve

m
en

t
o
n

o
n

e-
m

in
F

0.
01

5*
0.

05
1

0.
06

6
0.

80
5

0.
31

5
0.

00
4*

in
it

ia
l

so
lu

ti
on

tw
o-

m
in

F
0.

00
5*

0.
04

3*
0.

07
5

0.
61

7
0.

24
0

0.
01

7*

N
u

m
b

er
o
f

on
e-

m
in

K
-W

<
0
.0

01
*

0.
06

4
0.

69
9

0.
98

1
0.

99
6

0.
58

2
ch

an
g
es

tw
o-

m
in

K
-W

<
0
.0

01
*

0.
03

0*
0.

89
9

0.
97

4
>

0.
99

9
0.

46
9

N
u

m
b

er
of

eq
u

al
-

o
n

e-
m

in
K

-W
0.

22
2

0.
64

3
0.

10
8

0.
97

9
0.

26
2

0.
48

5
b

es
t

so
lu

ti
o
n

s
tw

o-
m

in
K

-W
0.

40
3

0.
66

3
0.

24
5

0.
34

2
0.

32
9

0.
31

1

N
u

m
b

er
o
f

on
e-

m
in

K
-W

0.
13

2
0.

82
3

0.
13

4
0.

82
5

0.
38

6
0.

02
9*

it
er

at
io

n
s

tw
o-

m
in

F
0.

00
1*

0.
41

4
0.

03
0*

0.
22

0
0.

09
4

0.
06

8

E
st

.
ti

m
e

of
on

e-
m

in
K

-W
<

0
.0

01
*

0.
01

9*
0.

18
7

0.
62

4
0.

78
5

0.
08

0
b

es
t

so
lu

ti
o
n

tw
o-

m
in

K
-W

<
0
.0

01
*

0.
03

2*
0.

27
1

0.
60

7
0.

67
0

0.
95

2

G
a
p

to
fi

n
a
l

o
n

e-
m

in
K

-W
0.

03
7*

0.
66

2
0.

70
5

0.
62

4
0.

87
0

0.
53

4
so

lu
ti

on
if

30
-s

ec
K

-W
0.

00
2*

0.
01

4*
0.

40
7

0.
42

4
0.

76
8

0.
29

0
al

go
ri

th
m

is
2
0-

se
c

K
-W

<
0
.0

01
*

0.
01

1*
0.

47
5

0.
91

4
0.

95
9

0.
41

5
cu

t
o
ff

ea
rl

y
10

-s
ec

K
-W

<
0
.0

01
*

0.
00

7*
0.

22
9

0.
58

0
0.

58
8

0.
59

9

290

Table 6.20: Correlation analysis for influence of parameters used in instance generation on
Heuristic algorithm results (Combination #26 only).

Parameter

Outputs of interest p KN KL K̂ KAG

PCC -0.186 0.001 -0.058 -0.042 0.153

Improvement on
one-min

p-value 0.004* 0.983 0.374 0.522 0.017*
initial solution PCC -0.205 -0.003 -0.076 -0.057 0.153

two-min
p-value 0.001* 0.960 0.239 0.378 0.018*

Number of PCC 0.237 -0.036 0.024 0.003 0.028

iterations
two-min

p-value < 0.001* 0.576 0.709 0.968 0.671

of any of the data generating parameters, and the number of iterations in one minute.

Other influences which show up as significant include the agency penalty factor KAG on

the three cost-related outputs (gaps to best known bound and best known solution, and

improvement on the initial solution), and the use of the time reduction factor which is found

to be significant on the best solution time and early cut-off results. Disruption penalties KL

and K̂ appear to have no significant bearing on any of the outputs, while near-term penalty

KN is only highlighted as significant in relation to the two-minute number of iterations.

This is one of the outputs for which correlation was also carried out, although curiously in

Table 6.20 we see that no significant correlation for this interaction was found. The number

of iterations in two minutes does however have a significant positive correlation with the

parameter p, indicating that more iterations will be carried out if the problems have fewer,

longer absences. We can also see the significant correlations for the improvement on the

initial solution with both the probability p, which are negatively correlated, and the agency

penalty KAG, which are positively correlated. From this we can say that problems with

shorter but more frequent absences and with higher agency penalty costs can be expected

to return better improvements on the initial solution value.

For those interactions for which correlation analysis was not possible, or in the case of

the influence of parameter KN on the two-minute number of iterations where it was not

informative, we can look in detail at histograms showing the breakdown of the outputs by

the significant parameters. These histograms are given in the appendix in section D.3.4,

with their findings summarised here. Looking first at the cost-related outputs, we see that

in cases where a higher value of p is used we have a greater spread of gaps to best bound

and of improvement on the initial solution, but that the gaps are also more likely to be

smaller and the improvements lesser; by contrast, higher values of p seem to imply larger

gaps to the best known solution. As might be expected, all three of these cost measures

seem to increase with the agency penalty KAG, with the larger values of KAG also causing

a greater spread of the improvement as well as a greater number of large improvements.

291

We also see that, for the two-minute results, the improvement on the initial solution is

smaller when the time reduction factor r (d) is used.

Looking at the other outputs, we see that larger values of probability p are associated

with a lower number of changes, as is the use of the time reduction factor for the two-

minute results. Higher values of p are also associated with more iterations being carried

out within two minutes, while the effects of the disruption factor KN and agency penalty

KAG on the number of iterations are less clear - for the two-minute results, KN = 1 appears

to give the highest mean number and has much less dispersion of data points, with KN = 5

giving the lowest mean, and KN = 2 and KN = 10 giving similar averages. Meanwhile,

for the one-minute results KAG = 5 and KAG = 10 appear to give similar outputs, while

KAG = 2 gives a lower median number and smaller spread of data, and KAG = 1 results

in the largest median number of iterations. Looking at the best solution time, we see that

this is earlier in cases where the value of p is higher and where the time reduction factor

is used. Similarly, the gaps to the final solution are more likely to be smaller (or indeed

zero) when there are longer but fewer absences and when the time reduction factor has

been implemented. Note however that this cannot be stated with certainty for the use of

r (d) for the one-minute gap to the final solution, as this was not a statistically significant

influence.

6.8.5.5 Summary of effect of parameter values

We now summarise the results discuss throughout section 6.8.5 above. To do this, we will

take each of the data generating parameters in turn and outline the effects observed when

these values are varied.

Taking firstly the absence probabilities, we recall that this was varied because while

the daily absence rate was known the patterns of absence was not. Therefore some data

sets have greater probability of shorter more frequent absences (lower value of p; higher

value of q) and some are more likely to have longer but fewer absences (higher p; lower

q). In this way, we can judge how the solution methods may perform depending on the

true absence pattern. From the results above, we would expect for higher values of p (and

therefore lower values of q) to see all the solution approaches resulting in smaller gaps to

the best known bound in terms of cost, except for the two-minute direct approach which

is not significantly affected. By contrast, in these conditions we would expect to see a

larger gap to the best known solution for the non-cost-constrained change-minimization

and Task-Based Approximation solutions, as well as for the solutions found by Combina-

tion #26 of the heuristic algorithm; the Heuristic initial solution approach was not affected

on this measure. Comparing costs between the approaches, we see that with higher val-

ues of p we would expect the Heuristic initial and Task-Based Approximation solutions to

292

make better improvements on the two-minute direct solution, although the Heuristic initial

comparison may see a higher number of extreme negative improvements; the Task-Based

Approximation would be expected to have more negative improvements in comparison to

the one-hour direct and the change-minimization results. The Heuristic algorithm Combi-

nation #26 meanwhile would give a greater variety of improvements on the Heuristic initial

solution, but in general these improvements would be lessened. Other effects of the true

value of p being high would be that more iterations and more solutions would be produced

by the change-minimization approach, while more iterations would also be carried out by

the main Heuristic algorithm and the best solution possible within the time limit would

be found earlier (and an early cut-off would be less likely to increase the cost greatly;

conversely, the heuristic initial approach would require fewer iterations and therefore solve

in less time. Finally, a greater likelihood of fewer, longer employee absences would be

expected to result in a lower number of changes in the solutions found by the Task-Based

Approximation, Heuristic initial and Heuristic Combination #26 approaches.

The absence probabilities can be multiplied by a time reduction factor r (d), which

takes into account the possible scenario that future absences are not always known at

the present time. However, since it was not known if this multiplication was valid, data

sets were generated both with and without the reduction factor being used, and we would

expect those which use r (d) to contain fewer crew absences and be easier to solve. From

the results in section 6.8.5, we see that the use of the time reduction factor has in fact

no significant influence on either the direct solution approach (two-minute or one-hour)

or the Task-Based Approximation, while the effect of using the time reduction factor

appears to be a negative one on the change-minimization results, with those data sets

which use the time reduction factor finding fewer solutions and having a larger gap to the

best known solution. The time reduction factor has a more positive effect on the cost of

the heuristic initial solution, causing a smaller gap to the best known bound, and this is

possibly linked to the fact that these instances also appear to have a poorer improvement

by the heuristic algorithm (Combination #26) on this initial solution - note that this factor

has no significant influence either way on the cost gaps for the main heuristic algorithm.

In addition, we would see the heuristic initial solution as more likely to show a positive

improvement on the Task-Based Approximation solution. We also see positive implications

of the time reduction factor with respect to number of changes, which would be expected

to be lower in both the Heuristic initial and main Heuristic solutions. If this factor is

applicable, we would also expect the Heuristic initial approach to solve more quickly, and

the main Heuristic algorithm to find its best solution more quickly. As a consequence,

the 30-second, 20-second and 10-second cut-off solutions will have a smaller gap to the

two-minute Heuristic solution in cases where r (d) is used.

The disruption penalty factors were introduced to account for the fact that making

293

changes is in general undesirable, and in particular making changes to the schedule after

transport will have been arranged (i.e. within four weeks). It was not clear what values

would be appropriate for these near-term and long-term penalty values, KN and KL, and

so a variety were chosen during generation of the datasets, including setting KN = KL = 1

which implies no penalty other than the ‘true’ cost. The value of K̂ was later calculated

as an aggregated, or weighted average, penalty factor. It may have been anticipated that

these penalty values would influence the cost measures of the solution methods, and also

the number of changes. However, the effects described through section 6.8.5 do not seem

as wide-ranging as expected, with the neither the gaps to best bound and best solution nor

the number of changes being significantly influenced by these parameter values in the Task-

Based Approximation, the Heuristic initial, or the Heuristic Combination #26 approaches.

We do however have that the direct solution approaches achieve lower gaps to the best

known solution and to the best known bound when higher values of the disruption factors

are applied, while higher values of KL specifically will reduce the gap to best bound of the

non-cost-constrained change-minimization solution. Linked to this, the highest values of

the disruption factors give the smallest improvement by the Task-Based Approximation on

the two-minute and one-hour direct results, while the improvements made by the Heuristic

initial on the direct solution are also more likely to be negative in these conditions. Other

effects of higher values of the disruption penalty factors comprise more iterations being

carried out by the change-minimization approach, and a faster running time of the Task-

Based Approximation algorithm.

The agency penalty factor performs the same role as the disruption penalties, except

that it penalises the use of agency crew rather than making changes. Again, data sets were

generated using various values of this, including setting KAG = 1 which gave no penalty

over and above the financial cost of the agency crew. The high values of the agency penalty

seemed to have more impact on results than the disruption penalties, with these giving

rise to a greater number gaps towards the extremes both to best bound and best solution

for the direct approach, and smaller gaps for non-cost-constrained change-minimization

solution. The lowest cost change-minimization solutions however have a larger gap to

the best known bound when KAG is increased, and larger gaps to best bound and best

known solution are also observed for the Task-Based Approximation, Heuristic initial and

Heuristic Combination #26 approaches. Comparing costs across the methods, this means

that higher values of KAG are more likely to give negative improvements by both the

Task-Based Approximation and Heuristic initial approaches on the one-hour direct and the

change-minimization solutions. On the other hand, the Heuristic initial approach is more

likely to outperform the Task-Based Approximation for cost under these circumstances,

while Heuristic Combination #26 would be expected to produce better improvements on

the Heuristic initial solution. One of the few non-cost-related influences of KAG, we finally

294

have that the number of Heuristic algorithm iterations is expected to be highest when the

agency penalty is equal to 1.

6.9 Practical Implications of Results

This chapter has set out a more realistic model for the Vessel Crew Scheduling Problem

than that discussed in Chapter 5. This model is also more complicated and harder to

solve, and therefore several different solution methods had to be developed and tested in

an attempt to solve the problem to a reasonable degree of quality in a suitable amount

of time. In this section, we review the results of these solution methods and evaluate

the relative merits of each. This will then allow us to propose how best the methods

discussed here can be used to practical benefit by our client company, or others with

similar scheduling problems. We then conclude this chapter with an outline of future work

which could be carried out to extend the research discussed here.

6.9.1 Comparison of Solution Methods

In total, five solution approaches were developed and tested for the Time-Windows model:

a ‘direct’ cost-minimization approach; a change-minimization algorithm; solving a Task-

Based Approximation of the Time-Windows problem; a fast, low-change Heuristic ‘initial’

solution; and a Heuristic algorithm for improving on a known solution. When developing

the Heuristic algorithm a number of different settings were investigated, with one particular

combination, referred to as Combination #26, emerging as giving the best results across

all combinations of settings.

The ‘direct’ solution approach was tested using both one-hour and two-minute time

limits, implemented using the FICO Xpress software. The one-hour results produced the

most best known solutions for instances across all solution methods; however there were

still a number of instances which had a large gap to the best solution, and in general the

gaps to the best known bound were high. In terms of applicability, the one-hour time

limit cannot be used in practice, while the two-minute time limit would be a much more

acceptable running time. However, the solutions obtained within this time limit were a

long way from the best solutions obtained by other methods, with both the Task-Based

Approximation approaches and the Heuristic initial solution method each achieving better

solutions for ≈ 90% of instances.

The change minimization approach was also implemented in FICO Xpress, using the

in-built solver and applying the process set out in Algorithm 6.1. In terms of costs, this

approach seems to produce the best solutions of all the methods studied, with better gaps

to the best known solution on average compared to the two-minute Direct, Task-Based

295

Approximation, Heuristic initial solution and Heuristic Combination #26 approaches (al-

though the comparison with regard to the latter is much closer). Even though the one-hour

direct solution approach found more best known solutions, change-minimization produced a

lower gap on average, and across all instances appears to be more consistent. This solution

method does however have the disadvantage in terms of number of solutions it produces

- because of the difficulty of solving the problem at each iteration, far fewer solutions are

produced than when this method was applied in the Task-Based problem previously. Con-

sequently, it is unable to produce the variety of solutions available from other methods,

especially the Heuristic algorithm. The fact that it requires the FICO Xpress software, or

other commercial solver, may also be a barrier to implementation in practice.

The Task-Based Approximation approach was very quick to solve, with all but two

instances solving within 8 seconds (compared to two minutes for the change-minimization

algorithm) using FICO Xpress, including the time to convert to and from the Task-Based

representation. While only one solution was found in the tests carried out, a proposal

for future work in light of this quick solution time was to adapt the approach to allow

the proposal of multiple solutions. Unfortunately, while solutions were found quickly the

quality was not particularly good, with solutions in general being more expensive than

those from the change-minimization and one-hour direct approaches (although they were

largely an improvement on the two-minute direct solutions). In addition, the artificial

divisions of roles into ‘tasks’ for the approximation was found to lead to a much greater

number of changes in these solutions.

The quality of the Heuristic initial solutions tended to be better than the Task-Based

Approximation results, with changes in particular being considerably fewer while the cost

comparisons were more varied but on average and improvement. This approach however

could only improve on the change-minimization solution cost in a handful of instances,

although it was found that three quarters of instances resulted in a Heuristic initial solution

with cost within ±10% of the one-hour direct cost; this is impressive when we consider

that all Heuristic initial solutions were found within 40 seconds. The tests for this solution

method were carried out using FICO Xpress, although it makes no use of the in-built

solution methods and could therefore be implemented in another language such as C++

without loss of functionality and potentially with a considerable improvement in solution

time. A shorter solution time would also open up the possibility for multiple solutions to

be proposed from this method, and this is left as a suggestion for future work.

The last solution method developed was the Heuristic algorithm, for which it was found

that Combination #26 (which uses the Heuristic initial solution as its starting point) pro-

vided the best results of the combinations tested. Some questions were raised however,

in particular with regard to the implementation of the random kick procedure which it is

believed warrants further investigation in light of the test results - this is however left for

296

future work. Combination #26 of the Heuristic algorithm was found on average to have

more expensive solutions than the change-minimization approach; however, these differ-

ences were not as large as for the other solution approaches, with Heuristic Combination

#26 achieving a median ≈ 70.09% gap to best bound and ≈ 38.60% gap to best known

solution, compared to medians of ≈ 64.29% and ≈ 27.15% respectively for the lowest cost

change-minimization solution. Comparing to other solution methods, it was found that

Combination #26 made on average ≈ 41% improvement on the Heuristic initial solution

cost, while there was a small increase in the number of changes although the number was

still much lower than the changes entailed in the Task-Based Approximation solution.

The Heuristic algorithm, and Combination #26 in general, also has a number of ad-

vantages over the change-minimization approach. The main attribute in its favour is that

it has already been implemented in C++ and does not require a commercial solver or

any in-built optimization solvers. This means that the cost of implementation should be

reduced, and the ease of integration with other company systems increased, making it a

more attractive proposal in practice. There is also the advantage of being able to terminate

the algorithm early - while the change-minimization procedure requires a full two minutes

to obtain its best solutions, we find that Combination #26 would on average be only ≈ 5%

from the final solution for that instance if it was terminated after 30 seconds. This means

that faster solutions can more readily be found, meaning that there is less restriction on

the number of times a Planner can re-run the programme if an iterative approach is re-

quired. Finally, we have the number of iterations which are carried out by the Heuristic

algorithm. Combination #26 was found to carry out a mean of ≈ 145.22 iterations within

the first minute of the run, meaning that a large number of solutions will be found. While

the number of high quality solutions is uncertain and should receive further attention, it is

clear that more solutions will generally be proposed than from the change-minimization ap-

proach (the median number of equal-best solutions from Combination #26 in one minute is

9; the maximum number of solutions from a change-minimization run is 5). The Heuristic

algorithm therefore presents the Planner with more choice of solutions. For these reasons

it is believed that of the solution methods examined, Heuristic Combination #26 is the

most suitable for a practical implementation.

This assessment is unlikely to be affected by concerns about the true values of the

parameters used in data generation. Larger values of the parameter p (and therefore lower

of q) for example were found to improve the gaps to the best bounds for all approaches,

while more iterations would be carried out and more solutions would be found by both

the change-minimization and Heuristic Combination #26 methods. If the time reduction

factor r (d) is indeed a valid assumption then we would see fewer solutions and a larger gap

to the best solution for the change-minimization approach, while Combination #26 would

find the best solution more quickly and have fewer changes. If the company decided to have

297

larger penalty values for using agency crew (i.e. increased KAG), we would have larger cost

gaps for all approaches, and the increased negative improvements of the Heuristic initial on

the change-minimization solutions would be mitigated by the better improvement on the

initial solution made by Combination #26. Finally, changing the values of the disruption

penalty factors KN , KL and K̂ would have no significant impact on gaps for either the

change-minimization or Heuristic solution approaches.

6.9.2 Possible Implementation

The findings set out in this chapter, and summarised in section 6.9.1 above, allow us to

put together a proposal for an implementation which could be of benefit to our client

company in practice. Our proposed implementation would take the form of a planning

tool, with the methods discussed above underpinning the solution process. We note that

this would require work in terms of software development to create a user interface for the

tool, particularly with a view to giving the solution output in a clear and user-friendly

manner, and to integrate the tool with other company systems to allow the required data

to be accessed. This is left as proposed future work for someone with the requisite skill

set; here we will simply present an outline of how we envisage the tool being used.

Firstly, we note that it is at present uncertain what additional penalty ‘costs’ the com-

pany may want to apply either for disruptions or for using agency crew. While these have

been shown to have little significant effect on the number of changes in the proposed solu-

tions, and the disruption penalties have no significant impact on the Heuristic performance

with respect to cost, it is still important that the company can define the problem in the

way that is most appropriate for them. Indeed, it may be that the company believes the

best option is to leave decisions such as this to the individual Planners, perhaps to be varied

in accordance with the situation. We therefore suggest that as an initial step, the plan-

ning tool could allow the Planners to indicate on a scale their level of aversion to making

near-term and long-term changes, and to using agency crew. Translating these aversions

into the penalty factors KN , KL and KAG, these could be used to modify the allocation

change costs in the problem in a similar way to the generated costs were modified when

creating our randomised realistic data sets (see section 6.2.1, Step 5).

After this initial step, it is envisaged that the solution process could take an iterative

form, allowing the Planner to view and evaluate the available solutions, and if required

make changes to the problem. A flowchart detailing the proposed procedure is given in

Figure 6.40. As shown in this diagram, the first step of solving the problem is to apply the

Heuristic initial solution method. As discussed, this is unlikely to give the best solution

in terms of cost, but should find a low-change solution which does not have excessive cost

and it is anticipated, if implemented in a language such as C++, should do so in a very

298

Figure 6.40: Flowchart showing the process for using the proposed planning tool for the
Time-Windows problem.

299

short amount of time. As noted in the above discussion, a C++ implementation of this

algorithm should be investigated further, and could potentially open up the possibility of

multiple solutions being supplied at this stage, allowing the Planner a choice.

It is possible that the Planner may be happy to accept this solution, especially if they

wish a solution which requires a small number of changes, in which case the process can

terminate now. Alternatively, they may wish to impose an additional constraint (for ex-

ample if they do not wish a particular employee to be disrupted or to be allocated a certain

role at a certain time), or to alter the penalty preferences set earlier. If this is the case,

they could make these adjustments and find a new Heuristic initial solution. Otherwise,

there is the option to improve on the initial solution using the Heuristic algorithm and

specifically, based on the settings tested here, using setting Combination #26. Test results

show that within a two minute time limit on average an ≈ 41% improvement on the initial

solution cost will be achieved with only a net increase of two changes, and we also know

that on average solutions found within 30 seconds have only a ≈ 5% gap to this two-minute

solution. Therefore we propose that the Heuristic Combination #26 could be applied for

30 seconds during this implementation.

As described above, the Heuristic algorithm will in most cases generate a large number

of solutions, and the planning tool will be able to present the Planner with a selection of

these, allowing them to choose between their preferred options. If none of these solutions

are acceptable and the Planner has time to carry out additional solution iterations, it would

be possible to adjust the penalty preferences or add additional constraints and re-run the

heuristics from the same initial solution. Alternatively, the process could be re-started from

scratch with new preferences or new constraints, finding a new Heuristic initial solution

before applying the Heuristics again.

It is important to note that at this stage we do not know how the quality of schedules

which will be implemented as a result of this method would compare to the schedules found

by the current process (as described in Chapter 4). Indeed, it is not known how any of

the solution methods described compare to the current approach used by the Planners.

This was unavoidable during the research process, with data being difficult to access or

not stored, and some information being commercially sensitive. Clearly it would be of

benefit to have real, as opposed to randomly generated realistic, data sets on which to

test these solution methods, and particularly useful to have access to the solutions found

by the Planners in these cases as a benchmark. This information might turn out to be a

benefit resulting from a project to implement this decision support tool, perhaps involving

carrying out trials of the new support tool against the current scheduling approach.

300

6.9.3 Future Work

We conclude this chapter with a summary of the proposals for future work and other

questions arising from the work discussed. There were a number of these raised throughout

the chapter, and these were as follows:

1. Adapting the Task-Based Approximation approach to produce multiple results.

While it has been found that the Task-Based Approximation does not produce the

best results in terms of cost or indeed number of changes, it does have the benefit of

producing results quickly. There is still therefore the chance that producing multiple

possible schedules will be of benefit to the company. As part of this, some variations

to the solution method (note that it is currently solved using the FICO Xpress solver)

or the approximation procedure could be tried.

2. Implementing the Heuristic initial solution approach in C++ (or similar).

This piece of future research could prove to be important in implementing the decision

support tool described in section 6.9.2 above. The algorithm itself should not require

any significant modification, but implementation in a more efficient language should

allow substantial time savings to be made. In conjunction with this, and similar to

above, the chance would then arise to generate multiple solutions via this method in

a more structured way, thereby presenting the Planner with a greater choice when

using the planning tool.

Note that at time of writing, fellow PhD student Seda Sucu had started work on this

avenue of further research.

3. New implementation rules for the ‘random kick’ procedure in the Heuristic algorithm.

As discussed in section 6.8.4.9, the best results across the heuristic settings tested

were achieved when no kick was implemented. However, indications were that imple-

menting a kick after a longer waiting time was more beneficial than with a shorter

waiting time. The suggested here was therefore to investigate new kick implementa-

tion rules which would force a longer wait than what has been tested here, thereby

allowing the algorithm to better improve the solution before the next kick is carried

out. Note that if this proves successful then a new group of Heuristic settings could

be used in the proposed planning tool described in section 6.9.2 above.

4. Implementing the planning tool described above.

Perhaps the key piece of future work arising from this research is to use the methods

tested to implement a planning tool which can be of benefit to the company in

practice. As noted above, this will require the development of a user interface and

integration with the company’s current scheduling and data storage systems. We

301

also recommend a small update to the Heuristic algorithm to allow a number of

solutions with cost close to the best found to be stored, as well as those with equal-

best cost. A degree of flexibility will have to be considered here, for example to allow

for modifications to the Heuristic algorithm if any promising results are found from

the new kick implementation settings as proposed above.

5. Obtaining real data instances and real solutions.

Above, we highlighted the importance of being able to test these solution methods

on real data sets and, in particular, being able to compare the solutions we have

obtained against the solutions the Planners would find by their current scheduling

approach. As noted in section 6.9.2, this may be something which arises from the

work to implement the proposed planning tool.

6. The Column Generation approach.

As well as the methods which were tested (‘direct’ cost-minimization, minimizing

number of changes, Task-Based Approximation, Heuristic initial solution and the

main Heuristic algorithm), section 6.7 outlined a way in which a Column Generation

solution method could be applied. Unfortunately it was not possible to implement

and test all possible solution methods on this problem; however, given that Column

Generation is one of the recognised solution methods for scheduling problems it would

be interesting to see how this approach compares to the methods tested here.

Note that at time of writing, fellow PhD student Seda Sucu has started work re-

lated to this on a Benders’ Decomposition approach for solving the Time-Windows

problem.

302

Chapter 7

Conclusions

This chapter draws to a conclusion the research discussed in this document. The conclu-

sions are, broadly, of two types. Firstly, in section 7.1 we summarise the conclusions given

in the previous chapters which focus specifically on the problem studied in this research.

We then in section 7.2 go on to discuss the wider implications of the findings, with reference

to the literature discussed in chapter 2 and to the generalisability of the work described

here. In addition to this, section 7.3 summarises the future work which it is envisaged

could arise from this research.

7.1 Conclusions for our Specific Problem

Our specific problem was described in chapter 4. Not only were the constraints of and

current approach to the problem explained, but in section 4.2.3 we discussed the ways in

which an optimization intervention may be able to make the problem easier to solve. The

key aim was to develop a basis for an optimization tool, which would allow the identification

of multiple feasible schedules in a short space of time, and which would be able to bring

such quality measures as cost and number of proposed changes into consideration when

doing this.

The first formulation presented in chapter 5 for the problem made some simplifying

assumptions. It was assumed that there was a pre-determined and fixed regular assignment

pattern for each vessel, and that consequently all employees’ contracts permitted the min-

imum rest and maximum working periods that this pattern would entail. Consequently,

while it was found that the change-minimization approach (described in Algorithm 5.2) was

useful in quickly producing a Pareto-optimal set of numerous solutions to this Task-Based

formulation, the formulation itself was found not to be a sufficiently accurate representa-

tion of the real problem faced in our case study company to be applicable here. However,

we can still say that this would provide a possible solution approach for a different company

303

where assumptions of fixed tasks and homogeneous crew group do hold.

A more realistic ‘Time-Windows’ formulation was presented in chapter 6, which re-

laxed the simplifying assumptions. The model was much more complex, and as a result

the solution approaches used for the Task-Based problem were far less useful for solving

the problem. Several solution methods were discussed, including using the Task-Based

formulation to approximate the Time-Windows problem, and Heuristic methods both for

finding an initial solution and for improving a known solution. A Column Generation

approach was also proposed, although there was not the opportunity to test this method

and this is therefore left as a suggestion for future work. Of the methods that were tested,

the change-minimization approach was found to provide the cheapest solutions within a

two-minute time limit, but was seen to have two main disadvantages - firstly that it would

produce only a very small number of solutions, and secondly that it relied on the FICO

Xpress software for its implementation which may present a barrier financially to its use

in a practical setting.

On the other hand, the Heuristic algorithm developed was found to obtain solutions

with costs not too much higher than those from the change-minimization algorithm. In

addition, the Heuristic approach was found to have a number of advantages over change-

minimization - it does not require specialist software such as FICO Xpress, making it a

more attractive proposal for a company to use in practice; it can return a far greater

number of solutions; and it can be terminated early, e.g. after 30 seconds, without sig-

nificant loss of solution quality. We can therefore say that it is able to meet the goals of

recommending multiple solutions of reasonable quality in a short space of time. We believe

this still holds true when we consider that the data used to test the solution methods was

randomly generated using realistic parameters, with analysis of the results indicating that

the Heuristic method proposed would still be the most suitable of those tested regardless

of fluctuations of the true parameter values within the bounds used.

In light of these findings, the chapter concluded in section 6.9.2 with a proposal for

a planning tool which could be used by our case study company in practice. It was

proposed that the Heuristic initial solution method and improvement algorithm which were

developed would underpin an iterative process within the planning tool. The process would

see an initial solution found and proposed to the Planners, who would then be able impose

additional constraints (e.g. to guarantee or preclude the assignment of an employee to a

particular role) or perhaps modify the penalties for disruption or for using agency crew. If

the problem was modified it could be re-solved, and otherwise it could be improved upon

using the Heuristic algorithm. This process of modification and improvement could be

repeated for as long as the Planner required, until one of the multiple solutions provided

was found to be acceptable.

We feel that this approach has the potential to greatly improve the crew scheduling

304

process at the company, both with regards to time taken and to the quality of the schedules.

However, as was noted earlier it was not possible during this research to evaluate the time

taken and the solution quality for the company’s current approach. It is hoped that a

future research step may be taken to design and implement the proposed scheduling tool

in practice, in which case an opportunity should arise to collect data which during this

project proved to be difficult to access or locate, if it was stored at all. This would in

turn also provide the opportunity to test the solution methods on real rather than just

randomly generated realistic data.

7.2 Wider Implications

When considering the contribution of the work discussed here, we should consider the

relevance to the wider scheduling literature as well as to our specific problem. To do this,

we will consider some of the other work discussed in chapter 2. As with the literature

review, we will firstly consider the other transportation literature and general scheduling

literature, before looking at how our findings fit within the more specifically maritime

literature and along side other vessel crew scheduling problems. We will conclude with

some remarks about the overall generalisability of our results.

Looking firstly at the transportation literature, we note that a majority of the work

discussed here do not use heuristic methods. However, we see that some papers have

proposed heuristic algorithms for solving crew scheduling problems, albeit different kinds

of heuristic methods from that proposed here. For example, Maenhout and Vanhoucke

(2010) for the air crew rostering problem and Elizondo et al. (2010) for underground rail

crew propose evolutionary algorithms, while Lourenço et al. (2001) have developed a tabu

search and genetic algorithm metaheuristic for bus crew scheduling.

Some interesting parallels with our work can be drawn with the work done by Haase

et al. (2001), and specifically with the fact that their model was tested on randomly

generated data designed to represent a plausible real-world problem. While it can be

argued that this means the model has not been proven to be useful and relevant to an

actual real world problem, it can also be argued that the fact that the model has not been

constructed for a specific company or scenario, and does not rely on the structure or layout

of a particular set of routes, makes their approach more robust. This can be compared

with comments made by Gamache et al. (1999) for example, who point out that the success

of their model can be attributed, in part, to some of the peculiarities of the crew rostering

system at Air France.

It is also interesting to note comments by Nissen and Haase (2006) on recovery prob-

lems in European and North American airlines. According to them, in Europe crew are

generally paid fixed salaries, and so the emphasis is on making the fewest changes from

305

the existing schedule and the rescheduling is done based on individual duties. Conversely,

in North America crew are paid according to working time, and so the emphasis is on

cost-minimization and the recovery problem relies heavily on ‘pairings’. This can be linked

to our problem, where we have applied both a cost-minimization and change-minimization

approach. We recall that for the Task-Based problem these seemed to be very much com-

peting objectives, whereas with the Time-Windows formulation there appeared more of a

link between minimizing costs and minimizing changes.

Recalling the discussion of more general scheduling literature, there were a number

of papers mentioned here where heuristics were found to be the best solution approach.

This covered a variety of methods, with Tsang and Voudouris (1997) proposing local search

algorithms for scheduling engineers at BT, Nguyen and Wright (2014) using variable neigh-

bourhood search for the workload balancing problem, Kovacs et al. (2012) using adaptive

large neighbourhood search (ALNS) for scheduling service technicians, and Wright (2007a)

developing a metaheuristic for cricket umpire scheduling. The problem discussed by Wright

(2007a) gave rise to the detailed heuristic experiments discussed by Wright (2007b), and

parallels can be drawn between this and the experiments that we have carried out (see

description in section 6.5.4 and results in section 6.8.4). While clearly there is a difference

in terms of the kinds of setting alterations which were tested, there is a similarity in the

sense that both involve multiple runs to determine which settings are most effective. It

can be argued that our experiments are not as rigorous, with Wright (2007b) carrying out

100 identical runs on each combinations of settings; however, as noted in that paper the

experiments were carried out on a single problem instance. By contrast, ours were tested

on 240 different data sets, albeit these all followed the same overall problem structure,

and it can perhaps be argued that these results give a better indication of the algorithm’s

performance on similar problem instances.

Looking now at the other maritime literature, we recall the quote that was drawn from

Christiansen et al. (2007):

“Crew scheduling for deep-sea vessels is not a major issue. Crew members

spend months on the vessel and then get a long shore leave. For short-sea

vessels the crew may change frequently, and crew scheduling may be an issue.”

(pp.263-264)

Based on our experiences dealing with the case study company, we argue that this is an

important issue. Certainly our company could be termed a “deep-sea vessels” operating

company in the respect that crew members spend many weeks and at times months on

board the vessel, with standard shore leave being upwards of four weeks. Despite this,

the company’s crew scheduling still causes some problems, especially when there is the

requirement to reschedule in response to changes being made. From our results, we have

306

also seen that this can be a difficult problem to formulate in a realistic way and yet still

be able to solve in an efficient manner, given the time pressures usually placed on the

Planners. As discussed in section 2.5, some similarities can be seen between our problem

and those studied by Wermus and Pope (1994) (harbour pilot scheduling), Horn et al.

(2007) (navy crew scheduling), Ammar et al. (2013) (ferry crew scheduling) and Giachetti

et al. (2013) (cruise line crew scheduling); however, there are also some clear distinctions

between the problems and also the solution approaches employed.

7.2.1 Contributions to Knowledge

Following from the discussion above, we believe one of the key contributions to knowledge

from this work is to demonstrate an application of crew scheduling modelling which has not

previously appeared in the literature. As discussed above, crew scheduling in the sector in

which our company operates is not generally considered an important problem; however,

it has been shown here to be a useful and interesting problem for two main reasons.

Firstly, we have demonstrated that the scheduling problem faced by the company is a key

part of the business process which must be carried out multiple times, and that it is not

always straightforward for planners to find a good solution or indeed a feasible solution. In

addition, the difficulties shown in finding good results using optimization methods indicate

that this is not a simple problem to solve. Related to this, we can also see there is a potential

for substantial financial savings for the company by using an optimization approach. While

we unfortunately have no real data instances on which we can test our methods against the

solutions implemented by the planners, we can for example compare the lowest-cost and

non-cost-constrained solutions found by the change-minimization approach (see Figures 6.5

and 6.6 respectively) to see the range of possible solution costs available for each instance.

Therefore, we can say that any method which produces solutions of a cost close to the

lowest-cost change-minimization or setting combination #26 of the Heuristics is likely to

produce lower cost solutions than the solution found by the planners, as this will be more

akin to a minimal-change solution.

In addition, there is a contribution relating to the overall generalisability of the results

seen here. Clearly the problem has been formulated, and the solution methods tested,

specifically to meet the needs of our case study company; however, it would be expected

that the proposals here would also be relevant in another case where the company needs

and the problem description were very similar (or, as noted about the Task-Based model

in section 7.1 above, at a company where the assumptions made can be seen to hold true).

It is more likely however that another company would have slightly different requirements

and, particularly, a different problem specification. In a case such as this, we can say

that broadly the methods proposed may still be appropriate. In particular, the Heuristic

307

algorithm developed here relies on testing certain rules and criteria for feasibility, and it

would not significantly affect the overall algorithm if some of these rules were modified or

new ones added. Similarly, if our company were to find itself subject to new contractual

rules or new laws, the programme could be adapted to meet these without having to create

a new mathematical formulation of the problem. However, by making changes to the

algorithm’s rule we do not know how this would affect its operation - it is possible that

some re-testing of the settings, or experimentation with new settings, may be necessary.

We can also take note of contributions to knowledge relating directly to the heuristic

algorithm, as some of the results from the tests carried out may be applicable in other

problems where a heuristic algorithm is applied. In particular, it was observed that there

was an advantage to reducing the search space (and time) by taking such steps as limiting

the number of employees examined at each iteration, and accepting the first improving

solution rather than waiting for an improvement on the best solution yet found. This

had the effect of increasing the number of iterations, which in turn appeared to allow

more opportunity for the algorithm to find better solutions. The effectiveness of this may

be attributable to the fact that, while the crew group is not homogeneous, there are a

large number of crew with similar if not identical availability and cost, thus rendering an

exhaustive search unnecessary. We can therefore say that this approach may be useful in

similar situations where there are numerous similar (or effectively identical) employees in

the crew group.

An additional observation to from the heuristic tests was the ineffectiveness of the

“random kick” applied to move the search away from local optima. Indeed, it appeared

that poorer results were found when these were applied. A possible explanation is that,

given the structure of the search space with relation to cost, the kick moves the search

too far away from a good solution and in some cases to an area with a much higher local

optimum. Given then number of potential solutions available, it can be seen why this is

likely. Possible remedies for this would be to adjust the activations settings for the kick,

so that more time is allowed for the algorithm to bring the solution cost back down to a

more acceptable level; or to alter the kick itself to prevent such drastic moves away from

the current schedule. It is believed that this lesson too can also be generalised to other

problems on which local search is applied, where the structure of the cost function means

there are a large number of very expensive solutions available.

7.3 Future Work

Finally, we will summarise the future work which we see potentially arising from the

research discussed here. The majority of this relates to the work on the Time-Windows

formulation of the problem; however, as discussed in section 5.6.1 the Task-Based model

308

may also give rise for further research opportunities. Ideas relating to this comprised

the implementation of the proposed support tool at a suitable company, and looking to

make further improvements to the change-minimization algorithm given in Algorithm 5.2,

particularly with respect the cost limit as it approaches zero.

Meanwhile, a number of further avenues of research were suggested in section 6.9.3

based on the findings for the Time-Windows version of the problem. This included ideas

to improve the existing solution methods, such as adapting the Task-Based Approximation

approach to produce multiple results, developing a faster and more efficient implementation

of the heuristic initial solution approach in C++ (or a similar language), and investigating

new activation rules for the ‘random kick’ in the Heuristic algorithm. In addition to this,

it was also suggested that future work could see the planning tool recommended in section

6.9.2 being implemented in practice, with the additional possibility of taking the oppor-

tunity to obtain real data instances and real solutions for further testing and comparison

purposes. There is also the interesting possibility of other solution methods being used on

the Time-Windows problem. A possible column generation approach was outlined in sec-

tion 6.7, given that this is another method which is often applied to scheduling problems.

It was noted that fellow PhD student Seda Sucu is, related to this, currently exploring a

Benders’ Decomposition approach to solving the problem.

In addition to this, we recall that it was noted in section 2.2.1 that there were sev-

eral categories of approach which could be taken to scheduling under uncertainty. Lütjen

and Karimi (2012) discussed three categories: proactive, reactive, and predictive-reactive

scheduling. We identified our company’s current approach to crew scheduling as a predictive-

reactive, and sought to develop solution methods which would fit with this approach. We

also noted that robust scheduling (i.e. the proactive approach) required further information

about the uncertainties and their distributions, which was currently not available at the

company. However, it is possible that a robust optimization approach would be beneficial

to the company if it allowed robust schedules to be produced, requiring less disruption and

rescheduling at a later date. In addition to the work on Benders’ Decomposition, Seda

Sucu is also currently working on this idea.

309

Bibliography

Aas, B., O. Halskau, S.W. Wallace. 2009. The role of supply vessels in offshore logistics. Maritime

Economics & Logistics 11(3) 302–325.

Ammar, M.H., M. Benaissa, H. Chabchoub. 2013. Grasp for seafaring staff scheduling: Real

case. M. Abed, M. Benaissa, eds., 2013 International Conference on Advanced Logistics and

Transport . Ieee, New York., 427–433.

Barnhart, C., L. Hatay, E.L. Johnson. 1995. Deadhead selection for the long-haul crew pairing

problem. Operations Research 43(3) 491–499.

Barrett, D. 2008. The offshore supply boat sector. Marine and Commerce 36–41.

Blanco, T.A., R.C. Hillery. 1994. A sea story - implementing the navy personnel assignment system.

Operations Research 42(5) 814–822.

Butchers, E.R., P.R. Day, A.P. Goldie, S. Miller, J.A. Meyer, D.M. Ryan, A.C. Scott, C.A. Wallace.

2001. Optimized crew scheduling at air new zealand. Interfaces 31(1) 30–56.

Calculator.net. 2016. Inflation calculator. Webpage: http://www.calculator.net/inflation-

calculator.html. Accessed on 22nd February 2016.

Cappanera, P., G. Gallo. 2004. A multicommodity flow approach to the crew rostering problem.

Operations Research 52(4) 583–596.

Christiansen, M., K. Fagerholt. 2011. Some thoughts on research directions for the future: Intro-

duction to the special issue in maritime transportation. Infor 49(2) 75–77.

Christiansen, M., K. Fagerholt, B. Nygreen, D. Ronen. 2007. Maritime transportation. C. Barnhart,

G. Laporte, eds., Handbook in OR & MS , vol. 4. Elsevier B.V., 189–284.

Christiansen, M., K. Fagerholt, B. Nygreen, D. Ronen. 2013. Ship routing and scheduling in the

new millennium. European Journal of Operational Research 228(3) 467–483.

Christiansen, M., K. Fagerholt, D. Ronen. 2004. Ship routing and scheduling: Status and perspec-

tives. Transportation Science 38(1) 1–18.

Clausen, J., A. Larsen, J. Larsen, N.J. Rezanova. 2010. Disruption management in the airline

industry - concepts, models and methods. Computers & Operations Research 37(5) 809–821.

Dodin, B., A.A. Elimam, E. Rolland. 1998. Tabu search in audit scheduling. European Journal of

Operational Research 106(2-3) 373–392.

Elizondo, R., V. Parada, L. Pradenas, C. Artigues. 2010. An evolutionary and constructive approach

to a crew scheduling problem in underground passenger transport. Journal of Scheduling 16

575–591.

310

Ernst, A.T., H. Jiang, M. Krishnamoorthy, B. Owens, D. Sier. 2004a. An annotated bibliography

of personnel scheduling and rostering. Annals of Operations Research 127(1-4) 21–144.

Ernst, A.T., H. Jiang, M. Krishnamoorthy, D. Sier. 2004b. Staff scheduling and rostering: A review

of applications, methods and models. European Journal of Operational Research 153 3–27.

European Union. 2003. Directive 2003/88/EC of the European Parliament and of the Council of

4 November 2003 concerning certain aspects of the organisation of working time. Official

Journal of the European Union L299(46) 9–19.

Fagerholt, K., M. Christiansen, L. Magnus Hvattum, T.A.V. Johnsen, T.J. Vabø. 2010. A decision

support methodology for strategic planning in maritime transportation. Omega 38(6) 465–

474.

Fagerholt, K., H. Lindstad. 2000. Optimal policies for maintaining a supply service in the norwegian

sea. Omega 28(3) 269–275.

Gamache, M., A. Hertz, J.O. Ouellet. 2007. A graph coloring model for a feasibility problem in

monthly crew scheduling with preferential bidding. Computers & Operations Research 34(8)

2384–2395.

Gamache, M., F. Soumis, G. Marquis, J. Desrosiers. 1999. A column generation approach for

large-scale aircrew rostering problems. Operations Research 47(2) 247–263.

Garrett, D., D. Dasgupta, J. Vannucci, J. Simien. 2007. Applying hybrid multiobjective evo-

lutionary algorithms to the sailor assignment problem. L.C. Jain, V. Palade, D. Srinivasan,

eds., Advances in Evolutionary Computing for System Design, vol. 66. Springer-Verlag Berlin,

Berlin., 269–301.

Giachetti, R.E., P. Damodaran, S. Mestry, C. Prada. 2013. Optimization-based decision support

system for crew scheduling in the cruise industry. Computers & Industrial Engineering 64(1)

500–510.

Gopalakrishnan, B., E. Johnson. 2005. Airline crew scheduling: State-of-the-art. Annals of Opera-

tions Research 140(1) 305–337.

Gribkovskaia, I., G. Laporte, A. Shlopak. 2008. A tabu search heuristic for a routing problem

arising in servicing of offshore oil and gas platforms. Journal of the Operational Research

Society 59(11) 1449–1459.

Haase, K., G. Desaulniers, J. Desrosiers. 2001. Simultaneous vehicle and crew scheduling in urban

mass transit systems. Transportation Science 35(3) 286–303.

Halvorsen-Weare, E.E., K. Fagerholt, L.M. Nonas, B.E. Asbjornslett. 2012. Optimal fleet composi-

tion and periodic routing of offshore supply vessels. European Journal of Operational Research

223(2) 508–517.

Hoffman, K.L., M. Padberg. 1993. Solving airline crew scheduling problems by branch-and-cut.

Management Science 39(6) 657–682.

Holder, A. 2005. Navy personnel planning and the optimal partition. Operations Research 53(1)

77–89.

Horn, M., H. Jiang, P. Kilby. 2007. Scheduling patrol boats and crews for the royal australian navy.

Journal of the Operational Research Society 58(10) 1284–1293.

311

Huisman, D., A.P.M. Wagelmans. 2006. A solution approach for dynamic vehicle and crew schedul-

ing. European Journal of Operational Research 172(2) 453–471.

Irnich, S. 2008. Resource extension functions: properties, inversion, and generalization to segments.

OR Spectrum 30(1) 113–148.

Jütte, S., M. Albers, U.W. Thonemann, K. Haase. 2011. Optimizing railway crew scheduling at db

schenker. Interfaces 41(2) 109–122.

Jütte, S., U.W. Thonemann. 2012. Divide-and-price: A decomposition algorithm for solving large

railway crew scheduling problems. European Journal of Operational Research 219(2) 214–223.

Kohl, N., S.E. Karisch. 2004. Airline crew rostering: Problem types, modeling, and optimization.

Annals of Operations Research 127(1-4) 223–257.

Kovacs, A.A., S.N. Parragh, K.F. Doerner, R.F. Hartl. 2012. Adaptive large neighborhood search

for service technician routing and scheduling problems. Journal of Scheduling 15(5) 579–600.

Legato, P., M.F. Monaco. 2004. Human resources management at a marine container terminal.

European Journal of Operational Research 156(3) 769–781.

Li, H.T., K. Womer. 2009. A decomposition approach for shipboard manpower scheduling. Military

Operations Research 14(3) 67–90.

Li, Z.K., M. Ierapetritou. 2008. Process scheduling under uncertainty: Review and challenges.

Computers & Chemical Engineering 32(4-5) 715–727.

Liang, T.T., T.J. Thompson. 1987. A large-scale personnel assignment model for the navy. Decision

Sciences 18(2) 234–249.

Lourenço, H.R., J.P. Paix ao, R. Portugal. 2001. Multiobjective metaheuristics for the bus driver

scheduling problem. Transportation Science 35(3) 331–343.

Lütjen, M., H.R. Karimi. 2012. Approach of a port inventory control system for the offshore

installation of wind turbines. Proceedings of the Twenty-second International Offshore and

Polar Engineering Conference. 502–508.

Maenhout, B., M. Vanhoucke. 2010. A hybrid scatter search heuristic for personalized crew rostering

in the airline industry. European Journal of Operational Research 206(1) 155–167.

Nguyen, T.-H., M. Wright. 2014. Variable neighborhood search for the workload balancing problem

in service enterprises. Computers & Operations Research 52 282–290.

Nissen, R., K. Haase. 2006. Duty-period-based network model for crew rescheduling in european

airlines. Journal of Scheduling 9(3) 255–278.

Nurmi, K., D. Goossens, J. Kyngäs. 2014. Scheduling a triple round robin tournament with mini-

tournaments for the finnish national youth ice hockey league. Journal of the Operational

Research Society 65 1770–1779.

Ouelhadj, D., S. Petrovic. 2009. A survey of dynamic scheduling in manufacturing systems. Journal

of Scheduling 12(4) 417–431.

Pallant, J. 2011. SPSS Survival Manual: A step by step guide to data analysis using SPSS . 4th ed.

McGraw-Hill, Maidenhead.

Papadakos, N. 2009. Integrated airline scheduling. Computers & Operations Research 36(1) 176–

195.

312

Pidd, M. 2003. Tools for Thinking: Modelling in Management Science. 2nd ed. Wiley, Hoboken,

N.J.

Potthoff, D., D. Huisman, G. Desaulniers. 2010. Column generation with dynamic duty selection

for railway crew rescheduling. Transportation Science 44(4) 493–505.

Psaraftis, H.N. 1999. Foreword to the focused issue on maritime transportation. Transportation

Science 33(1) 1–2.

Rezanova, N.J., D.M. Ryan. 2010. The train driver recovery problem - a set partitioning based

model and solution method. Computers & Operations Research 37 845–856.

Ribeiro, C.C., S. Urrutia. 2012. Scheduling the brazilian soccer tournament: Solution approach

and practice. Interfaces 42(3) 260–272.

Ronen, D. 1983. Cargo ships routing and scheduling: Survey of models and problems. European

Journal of Operational Research 12(2) 119–126.

Ronen, D. 1993. Ship scheduling: The last decade. European Journal of Operational Research

71(3) 325–333.

Ropke, S., D. Pisinger. 2006. An adaptive large neighborhood search heuristic for the pickup and

delivery problem with time windows. Transportation Science 40 455–472.

Saddoune, M., G. Desaulniers, I. Elhallaoui, F. Soumis. 2011. Integrated airline crew scheduling:

A bi-dynamic constraint aggregation method using neighbourhoods. European Journal of

Operational Research 212 445–454.

Scholz-Reiter, B., M. Lütjen, J. Heger, A. Schweizer. 2010. Planning and control of logistics for

offshore wind farms. Proceedings of the 12th WSEAS international conference on Mathematical

and computational methods in science and engineering . 242–247.

Stopford, M. 2009. Maritime Economics. 3rd ed. Routledge, New York.

Tsang, E., C. Voudouris. 1997. Fast local search and guided local search and their application to

british telecom’s workforce scheduling problem. Operations Research Letters 20(3) 119–127.

Van den Bergh, J., J. Beliën, P. De Bruecker, E. Demeulemeester, L. De Boeck. 2013. Personnel

scheduling: A literature review. European Journal of Operational Research 226(3) 367–385.

Vieira, G.E., J.W. Herrmann, E. Lin. 2003. Rescheduling manufacturing systems: A framework of

strategies, policies, and methods. Journal of Scheduling 6(1) 39–62.

Wei, G., G. Yu, M. Song. 1997. Optimization model and algorithm for crew management during

airline irregular operations. Journal of Combinatorial Optimization 1(3) 305–321.

Wermus, M., J.A. Pope. 1994. Scheduling harbor pilots. Interfaces 24(2) 44–52.

Weske, M. 2007. Business Process Management: Concepts, Languages, Architectures. Springer,

Berlin.

Wright, M. 2007a. Experiments to shed light on the best way to use iterated local search for a

complex combinatorial problem. Lancaster University Management School Working Paper

Series. 2007/037.

Wright, M. B. 2007b. Case study: problem formulation and solution for a real-world sports schedul-

ing problem. Journal of the Operational Research Society 58(4) 439–445.

313

Appendix A

Business Process Maps

The diagrams here (Figures A.1, A.2 and A.3) show an expanded version of the Business

Process Map given in Figure 4.1 (in section 4.1). They follow the same principles of

Business Process Modelling and Notation (BPMN) 2.0.

314

Figure A.1: Full detail of Business Process Map showing crew scheduling process in context
- Part 1 of 3

315

Figure A.2: Full detail of Business Process Map showing crew scheduling process in context
- Part 2 of 3

316

Figure A.3: Full detail of Business Process Map showing crew scheduling process in context
- Part 3 of 3

317

Appendix B

Additional histograms for

Task-Based results

Here we present histograms used to illustrate the discussion in 5.5.2 regarding which pa-

rameters varied during data generation had an impact on the results. This is divided

into two sections - section B.1 shows the summary histograms, while section B.2 shows a

selection of histograms breaking down the data by parameter values.

B.1 Summary Histograms

Here we present the histograms discussed in section 5.5.2 with reference to determining

whether the assumptions of the data following a normal distribution hold. As described in

the section 5.5.2.3 on the effect of parameter values, there are 19 outputs plotted, although

note that for five of these the values less than or equal to 5% can be aggregated to give an

adjusted output to be examined. Plots of these adjusted results are not given here.

B.1.1 Cost-minimization results

The histograms in this section represent the relevant results for the cost-minimization

approach. This comprises:

• Running time, for both the two-minute (Figure B.1) and ten-minute (Figure B.2)

time limits.

• Number of changes in the solution for the two-minute settings only (Figure B.3).

• The gaps proven in the test runs, for both the two-minute (Figure B.4) and ten-

minute (Figure B.5) settings.

318

• The gap to the best known bound for each instance, for both the two-minute (Figure

B.6) and ten-minute (Figure B.7) settings.

Note that of these, only the number of changes in the two-minute cost-minimization setting

(Figure B.3) can be considered to follow an approximately normal distribution.

Figure B.1: Running time for the cost-minimization approach with two-minute time limit.
Normality assumption not considered to hold here.

319

Figure B.2: Running time for the cost-minimization approach with ten-minute time limit.
Normality assumption not considered to hold here.

Figure B.3: Number of changes in the solution for the cost-minimization approach with
two-minute time limit. Follows an approximately normal distribution.

320

Figure B.4: Proven cost gap (i.e. to bound found during run) for the two-minute cost-
minimization run. Normality assumption not considered to hold here.

Figure B.5: Proven cost gap (i.e. to bound found during run) for the ten-minute cost-
minimization run. Normality assumption not considered to hold here.

321

Figure B.6: Gap to best known cost bound for the two-minute cost-minimization run.
Normality assumption not considered to hold here.

Figure B.7: Gap to best known cost bound for the two-minute cost-minimization run.
Normality assumption not considered to hold here.

322

B.1.2 Change-minimization results

The histograms in this section represent the relevant results for the change-minimization

approach. This comprises:

• Running time (Figure B.8).

• Number of iterations (Figure B.9).

• Number of changes in the minimal-change solution (Figure B.10) and in the lowest

cost solution (Figure B.11).

• Percentage gap to the best known bound for the costs of the following:

– The first (i.e. non-cost-constrained) solution (Figure B.12);

– The cheapest minimal-change solution (Figure B.13);

– The lowest cost solution (Figure B.14).

Note that the majority of these appear to follow an approximately normal distribution,

with the exceptions of running time (Figure B.8) and the cost gap for the lowest cost

solution (Figure B.14) for which the normality assumption does not appear to hold.

Figure B.8: Running time for the change-minimization algorithm (with two-minute time
limit). Normality assumption not considered to hold here.

323

Figure B.9: Number of iterations carried out by change-minimization algorithm. Follows
an approximately normal distribution.

Figure B.10: Minimal number of changes as found in the (first) change-minimization solu-
tion. Follows an approximately normal distribution.

324

Figure B.11: Number of changes in the lowest cost change-minimization solution. Follows
an approximately normal distribution.

Figure B.12: Gap to best known cost bound for non-cost-constrained change-minimization
solution. Follows an approximately normal distribution.

325

Figure B.13: Gap to best known cost bound for the cheapest minimal-change change-
minimization solution. Follows an approximately normal distribution.

Figure B.14: Gap to best known cost bound for the lowest cost change-minimization
solution. Normality assumption not considered to hold here.

326

B.1.3 Results comparisons

The histograms in this section represent the comparisons between the change-minimization

and the two-minute cost-minimization results. This comprises:

• The percentage increase in the number of changes for both the minimal-change (Fig-

ure B.15) and lowest cost change-minimization (Figure B.16) solutions.

• The percentage increase in cost for the non-cost-constrained (Figure B.17), the cheap-

est minimal-change (Figure B.18) and the lowest cost change-minimization (Figure

B.19) solutions.

Note that of these, only the comparison of changes with the minimal-change solution

(Figure B.15) can be considered to follow an approximately normal distribution.

Figure B.15: Increase in number of changes for the minimal-change solution, with the two-
minute cost-minimization solution as baseline for comparison. Follows an approximately
normal distribution.

327

Figure B.16: Increase in number of changes for the lowest cost change-minimization solu-
tion, with the two-minute cost-minimization solution as baseline for comparison. Normality
assumption not considered to hold here.

Figure B.17: Increase in cost for the non-cost-constrained change-minimization solution,
with the two-minute cost-minimization solution as baseline for comparison. Normality
assumption not considered to hold here.

328

Figure B.18: Increase in cost for the cheapest minimal-change solution, with the two-
minute cost-minimization solution as baseline for comparison. Normality assumption not
considered to hold here.

Figure B.19: Increase in cost for the lowest cost change-minimization solution, with the
two-minute cost-minimization solution as baseline for comparison. Normality assumption
not considered to hold here.

329

B.2 Breakdown by parameters

Here we present selected histograms which can aid our understanding of the F-test and

Kruskall-Wallis test results given in Tables 5.4 and 5.5. These show the same results as in

section B.1 above, but broken down according to the values of the relevant parameter. This

is further divided up into subsections, according to the graphs which relate to changes, cost

gaps, cost comparisons, and to running time respectively.

B.2.1 Relating to changes

The following graphs relate to the breakdown of the comparison of number of changes be-

tween the two-minute cost-minimization solution and the lowest cost change-minimization

solution.

Figure B.20: Increase in number of changes for the lowest cost change-minimization solu-
tion, with the two-minute cost-minimization solution as baseline for comparison, broken
down by values of the near-term disruption penalty KN .

330

Figure B.21: Increase in number of changes for the lowest cost change-minimization solu-
tion, with the two-minute cost-minimization solution as baseline for comparison, broken
down by values of the long-term disruption penalty KL.

Figure B.22: Increase in number of changes for the lowest cost change-minimization solu-
tion, with the two-minute cost-minimization solution as baseline for comparison, broken
down by values of the weighted average disruption penalty K̂.

331

B.2.2 Relating to cost gaps

The following graphs relate to the breakdown of the gaps to the best cost bound for the

lowest cost change-minimization solution, and for both gaps (i.e. to best bound and proven

during the run) for the two- and ten-minute cost-minimization approaches.

Figure B.23: Gap to best known cost bound for the lowest cost change-minimization
solution, broken down by values of the near-term disruption penalty KN .

332

Figure B.24: Gap to best known cost bound for the lowest cost change-minimization
solution, broken down by values of the long-term disruption penalty KL.

Figure B.25: Gap to best known cost bound for the lowest cost change-minimization
solution, broken down by values of the weighted average disruption penalty K̂.

333

Figure B.26: Gap to best known cost bound for the lowest cost change-minimization
solution, broken down by values of the agency penalty factor KAG.

Figure B.27: Gap to best known cost bound for the two-minute cost-minimization run,
broken down by values of the long-term disruption penalty KL.

334

Figure B.28: Gap to best known cost bound for the two-minute cost-minimization run,
broken down by values of the weighted average disruption penalty K̂.

Figure B.29: Gap to best known cost bound for the ten-minute cost-minimization run,
broken down by values of the near-term disruption penalty KN .

335

Figure B.30: Gap to best known cost bound for the ten-minute cost-minimization run,
broken down by values of the long-term disruption penalty KL.

Figure B.31: Gap to best known cost bound for the ten-minute cost-minimization run,
broken down by values of the weighted average disruption penalty K̂.

336

Figure B.32: Gap to best known cost bound for the ten-minute cost-minimization run,
broken down by values of the agency penalty factor KAG.

Figure B.33: Proven cost gap (i.e. to bound found during run) for the two-minute cost-
minimization run, broken down by values of the near-term disruption penalty KN .

337

Figure B.34: Proven cost gap (i.e. to bound found during run) for the two-minute cost-
minimization run, broken down by values of the long-term disruption penalty KL.

Figure B.35: Proven cost gap (i.e. to bound found during run) for the two-minute cost-
minimization run, broken down by values of the weighted average disruption penalty K̂.

338

Figure B.36: Proven cost gap (i.e. to bound found during run) for the two-minute cost-
minimization run, broken down by values of the agency penalty factor KAG.

Figure B.37: Proven cost gap (i.e. to bound found during run) for the ten-minute cost-
minimization run, broken down by values of the long-term disruption penalty KL.

339

Figure B.38: Proven cost gap (i.e. to bound found during run) for the ten-minute cost-
minimization run, broken down by values of the weighted average disruption penalty K̂.

340

B.2.3 Relating to cost comparisons

The following graphs relate to the breakdown of the comparisons between the cost of

the two-minute cost-minimization solution and the three cost outputs from the change-

minimization algorithm - the non-cost-constrained, the cheapest minimal-change and the

lowest cost solution.

Figure B.39: Increase in cost for the non-cost-constrained change-minimization solution,
with the two-minute cost-minimization solution as baseline for comparison, broken down
by values of the near-term disruption penalty KN .

341

Figure B.40: Increase in cost for the non-cost-constrained change-minimization solution,
with the two-minute cost-minimization solution as baseline for comparison, broken down
by values of the weighted average disruption penalty K̂.

Figure B.41: Increase in cost for the non-cost-constrained change-minimization solution,
with the two-minute cost-minimization solution as baseline for comparison, broken down
by values of the agency penalty factor KAG.

342

Figure B.42: Increase in cost for the cheapest minimal-change solution, with the two-
minute cost-minimization solution as baseline for comparison, broken down by values of
the near-term disruption penalty KN .

Figure B.43: Increase in cost for the cheapest minimal-change solution, with the two-
minute cost-minimization solution as baseline for comparison, broken down by values of
the weighted average disruption penalty K̂.

343

Figure B.44: Increase in cost for the cheapest minimal-change solution, with the two-
minute cost-minimization solution as baseline for comparison, broken down by values of
the agency penalty factor KAG.

Figure B.45: Increase in cost for the lowest cost change-minimization solution, with the
two-minute cost-minimization solution as baseline for comparison, broken down by values
of the long-term disruption penalty KL.

344

Figure B.46: Increase in cost for the lowest cost change-minimization solution, with the
two-minute cost-minimization solution as baseline for comparison, broken down by values
of the agency penalty factor KAG.

345

B.2.4 Relating to running time

The following graphs relate to the breakdown of the comparisons between the cost of

the two-minute cost-minimization solution and the three cost outputs from the change-

minimization algorithm - the non-cost-constrained, the cheapest minimal-change and the

lowest cost solution.

Figure B.47: Running time for the cost-minimization approach with two-minute time limit,
broken down by values of the near-term disruption penalty KN .

346

Figure B.48: Running time for the cost-minimization approach with two-minute time limit,
broken down by values of the long-term disruption penalty KL.

Figure B.49: Running time for the cost-minimization approach with two-minute time limit,
broken down by values of the weighted average disruption penalty K̂.

347

Figure B.50: Running time for the cost-minimization approach with two-minute time limit,
broken down by values of the agency penalty factor KAG.

Figure B.51: Running time for the cost-minimization approach with ten-minute time limit,
broken down by values of the near-term disruption penalty KN .

348

Figure B.52: Running time for the cost-minimization approach with ten-minute time limit,
broken down by values of the long-term disruption penalty KL.

Figure B.53: Running time for the cost-minimization approach with ten-minute time limit,
broken down by values of the weighted average disruption penalty K̂.

349

Figure B.54: Running time for the change-minimization algorithm (with two-minute time
limit), broken down by values of the near-term disruption penalty KN .

Figure B.55: Running time for the change-minimization algorithm (with two-minute time
limit), broken down by values of the long-term disruption penalty KL.

350

Figure B.56: Running time for the change-minimization algorithm (with two-minute time
limit), broken down by values of the weighted average disruption penalty K̂.

Figure B.57: Running time for the change-minimization algorithm (with two-minute time
limit), broken down by values of the agency penalty factor KAG.

351

Appendix C

Additional details of procedures

for the Time Windows problem

Here we give additional details of some of the procedures discussed in chapter 6 relating

to the Time-Windows formulation of the problem. These details include:

• In section C.1, a detailed description of the Task-Based Approximation procedure.

• In section C.2, additional details of the flowcharts for the Heuristic algorithm.

• In section C.3, a detailed description of the Heuristic algorithm.

• In section C.4, a detailed description of the Heuristic Initial Solution algorithm.

C.1 Description of Task-Based Approximation procedure

Here we detail the step-by-step procedure for using the Task-Based Approximation ap-

proach to solve the Time-Windows problem. As noted in section 6.4.1, this is dived into

four parts: converting the data into the Task-Based format, solving the problem, convert-

ing the solution to the Time-Windows format, and checking the feasibility. All assumptions

needed to ensure the Task-Based solution will be feasible in the Time-Windows formula-

tion are given within the procedure. Note that full details of the algorithm implemented

in FICO Xpress are given in appendix section E.2.4.

Part 1 - Convert to the Task-Based data format

1. Read in the Time-Windows data.

2. The following Time-Windows quantities are simple to translate into their Task-Based

equivalents:

352

• The set of employees E is identical, as is the set G of fixed contract employees.

• The planning horizon length T is identical, except that it is defined in days for

the Task-Based problem as opposed to weeks.

• The maximum working and minimum resting periods for regular employees

(wmaxi and ρi respectively in the Time-Windows problem; ωi and ρi respectively

in the Task-Based formulation) are identical. Note that the agency maximum

working period αmaxj is not required in the Task-Based formulation.

• The fixed contract details, i.e. under-time and over-time rates, number of guar-

anteed days and expected working time, are also identical with the proviso

that they should be defined in days rather than weeks. For the Time-Windows

problem these are defined respectively as cUi , cOi , gi and Ωi; for the Task-based

formulation these are labelled as µi, φi, gi and W̄i respectively.

• Current excess, denoted as Ωi for the Task-Based model and which we will de-

note as ΩTB
i here, can be calculated using the under-time and over-time values,

defined in days, in the existing Time-Windows schedule (u∗i and o∗i respectively).

To do this, we will set

ΩTB
i = (µiu

∗
i) + (φio

∗
i) (C.1)

• The work resource values at time zero for regular crew, defined as wi0 for the

Time-Windows problem and Wi0 for the Task-Based, are identical. Note that

the agency work resource values at time zero αj0 are not required in the Task-

Based formulation.

3. Calculate the number of ‘tasks’ for the Task-Based version of this problem. Note

that this must be done before the further information on these tasks can be defined.

This can be done as follows:

• Assume that all tasks for a given role will be of the same length.

• Deal with each role j ∈ Vk in turn for each vessel k ∈ K.

• Using existing schedule data, can identify the employee in this role at time zero

(being the employee i ∈ ER for which sik = 1 for this vessel, or agency crew if

σj = 1 for the role j. Viewing this employee’s work resource value at time zero

(wi0 for i ∈ ER, or αj0 for agency crew) we know the length of time they have

been in this role up to time zero.

• If the employee is a regular employee and has a maximum working time ωi equal

to two or ten weeks, then this implies either a ‘Norway’ or ‘Singapore’ contract,

and can set this as the standard working length for the role j. Otherwise, should

examine the boarding and departing values of the existing schedule (b∗ikt, β
∗
jt,

353

d∗ikt and δ∗jt) for this vessel k and role j, with the values of t for which these

variables are equal to one indicating a standard length of task for this role.

• We now know the standard length of task for this role, and also the number of

weeks into a task that this role is at time zero. From this, we can determine the

number of tasks into which the role can be divided during planning period T .

• Once all roles have been considered, the number of tasks for each role can be

aggregated to give the number of tasks nW in total.

4. The start times and durations of the tasks can now be calculated as follows:

• As with Step 3 above, deal with each role j ∈
⋃
∀k
Vk in turn.

• From Step 3 above, we know the initial length of time which has been worked

by the employee in the role at time zero, and we also have a standard duration

for the tasks relating to this role. We can therefore assign a duration dj to

the first task j in this role, which is simply the length of time remaining of the

standard duration. The start time of this task is clearly sj = 0.

• We can then work chronologically along the timeline, assigning start times sj

and durations dj for each task j of this role. We will consider the final task for

the role to end at the end of the planning horizon, and so therefore the duration

of this task may be less than the standard duration for the role.

• For each task j which has been defined, should record the role to which it

corresponds. This information is not required for the Task-Based problem, but

will be necessary when translating the Task-Based solution back into the Time-

Windows representation (see Part 3 of this procedure).

5. Once the tasks have been defined, we can evaluate the eligibility matrix and the

initial assignments:

• Assume that if an employee is ineligible for any part of a task then

they are ineligible for the entire task.

• For each employee i ∈ E, look at their availability over each of the time pe-

riods that each task spans. If the employee is available, i.e. eijt = 1, for the

corresponding role j in question during all the relevant time periods t, they are

available for the task; otherwise they are not eligible to carry it out. Recall that

there were no explicit indicator data for this in the Task-Based problem; instead,

the decision variables for allocating an employee (i.e. change variables yij and

new schedule variables zij) were simply not defined if they were unavailable for

a given task.

354

• For the current schedule, can examine the starting positions of the employees

(sik and σj for regular and agency respectively), the period-by-period existing

assignments (x∗ijt values), and the currently planned crew movements (indicated

by b∗ikt and β∗jt for regular and agency crew boarding, and d∗ikt and δ∗jt for reg-

ular and agency crew departures) to determine which employees are currently

scheduled to be in each role for the duration of each task. In the Task-Based

problem, the current schedule is denoted by the binary data values x∗ij , for each

employee i and task j.

6. The rest resource values at time zero must be set, and more generally it must be

ensured that required rest periods at the start of the planning period are respected.

Recall that the rest resource values ri0 for the Time-Windows problem are integers,

indicating the number of weeks rest still required by the employee at time t; while

the values Ri0 for the Task-Based problem are binary, indicating whether or not a

rest is due. Therefore we do the following:

• If ri0 is equal to the minimum rest period ρi required by employee i, then we

set Ri0 = 1.

• If ri0 = 0, then Ri0 = 0.

• If 0 < ri0 < ρi, i.e. employee i is in the middle of a required resting period at

time zero, then we set Ri0 = 0 for the Task-Based problem. However, in order

to ensure the remaining required resting period is respected, we must alter the

eligibility of employee i such that they can be assigned no tasks during the first

ri0 weeks of the planning period. We therefore denote employee i as ineligible

for any task j which starts at a time sj < ri0.

• If an employee i is in the middle of an assignment at the start of the planning

period, then they will have ri0 = 0 (and so, from above, we will set Ri0 = 0).

However, we must account for the possibility that they will be required to vacate

this role at time zero (i.e. be de-assigned from the task which represents that

role and which starts at time zero). In this case, they would be required to take

a rest period prior to being assigned another task. We therefore must alter their

eligibility such that with the exception of the initial task in their current role

(i.e. the continuation of their current assignment), employee i is unavailable for

all tasks j which start at time sj < ρi.

7. Finally we can calculate the cost of changing each employee’s assignment to each

task. In general, this can be done by aggregating the relevant boarding, departing,

working and consecutive working (also termed ‘long working’ or ‘extension’) change

costs, but there are some exceptions to this. Also, the assumptions of the Task-Based

355

formulation may entail some changes being pre-determined during this conversion

process - these ‘pre-assignment costs’ are also calculated and recorded in this step.

We will discuss the process for regular employees firstly, and for each employee i ∈ ER
and for each task j we do the following:

• First we note that it is possible, because of the way eligibility is defined (see

Step 5) that an employee will be assigned to a task according to the current

schedule for which they are not eligible. If for the employee i and task j currently

under consideration, we have that i is not eligible to carry out task j but x∗ij = 1

then we must correct this inconsistency. This can be done as follows:

– Cancel the employee’s assignment to this task, i.e. set x∗ij = 0. This is what

we call a ‘pre-assigned’ change to the schedule, and the existing schedule

which is fed into the Task-Based solver will already incorporate this change.

The cost of it will therefore not influence the Task-Based solution process;

however, in order to maintain and be able to check consistency between the

Task-Based and Time-Windows versions of this problem, we must calculate

the cost of pre-assigning this change.

– If this task begins at sj = 0 and the employee starts on board the associated

vessel k then they must depart the vessel if they are no longer to work the

task, and so we must add departing change cost φDik1 to the cost of this

pre-assignment. If sj > 0 or the employee does not start on board vessel k

then we must cancel their boarding of the vessel at time t = 0, and so we

add boarding change cost φBik1 to the pre-assignment cost.

– For each week t which task j covers we must add the work change cost

φWij′t (where j′ is the role associated with task j) to the pre-assignment

cost. We should also calculate the consecutive working period entailed by

task j (taking into account initial work resource value wi0 if task j starts

at time sj = 0), and add the consecutive work change costs φLλij′t to the

pre-assignment cost for all affected values of consecutive work index λ.

– If the employee is on a fixed contract (i.e. i ∈ G) then these changes will

affect their current over- or under-time excess. In order to ensure this is

accounted for properly, the changes must be calculated for each week t that

the task covers in turn, with the following being carried out for each t:

∗ If the employee currently has overtime in the existing schedule, i.e. if

o∗i > 0, then there is a saving of one unit of overtime. Reduce the value

of o∗i by one unit, and reduce the current excess Ωi by one unit of the

weekly overtime rate φi. The cost of the pre-assignment should also be

reduced by the value of φi.

356

∗ Otherwise, we need to add one unit of under-time to the employee.

Increase the value of u∗i by one unit, increase the current excess Ωi by

one unit of the undertime rate µi, and also add a cost of µi to the cost

of the pre-assignment.

– Finally we must consider cancelling the employee’s departure from the role.

Note that in the existing Time-Windows solution, departures ahead of the

final week of the planning horizon (i.e. at t = T) will not have been set, and

therefore if the task ends at or after this point there will be no departure to

cancel. Therefore if the task ends at a time t = sj + dj < T − 1, we should

add the departure change cost φDikt to the pre-assignment cost; otherwise,

no cost is added.

• Alternatively, if the employee i is eligible for task j (irrespective of whether

they are assigned to it in the current schedule), we must calculate their change

cost c′ij for this task. As above, there may be some changes which must be pre-

assigned to remain consistent with the Task-Based formulation of the problem.

We begin by initially setting c′ij = 0, then proceed as follows:

– If this task begins at sj = 0 and the employee starts on board the associated

vessel k then changing the employee’s assignment to the task will involve

changing their departure from the vessel, and so we must add departing

change cost φDik1 to the task change cost c′ij . Otherwise (i.e. if sj > 0 or the

employee does not start on board vessel k) we must add boarding change

cost φBik1 to c′ij .

– For each week t for which the task operates, providing t is not the final

week of the planning horizon, add the work change cost φWij′t to the change

cost c′ij . We must also take into account the consecutive working periods

entailed by task j (taking into account initial work resource value wi0 if

task j starts at time sj = 0), and add the consecutive work change costs

φLλij′t to change cost c′ij for all affected values of consecutive work index λ.

– If the task covers the role in the final week of the planning horizon, but the

employee is not assigned to the task in the current schedule (i.e. x∗ij = 0),

then we can add the work and long work change costs φWij′t and φLλij′t to the

task change cost c′ij in the same way as above.

– If the task is operating in the final week and the employee is initially as-

signed to the task, then this is slightly more complicated. Assuming the

final week assignments have not been decided in the initial Time-Windows

solution, we must pre-assign the employee to this role in this week. We

therefore add work and extension change costs φWij′t and φLλij′t to the pre-

357

assignment cost, and subtract these costs from the task change cost c′ij
(i.e. to cancel out this pre-assignment cost in the event that the employee

is removed from this task in the new schedule). If the employee is on a

fixed contract (i.e. if i ∈ G), then we must also recalculate the under- and

over-time costs as follows:

∗ If employee i currently has under-time in the existing schedule, i.e. if

u∗i > 0, then we must reduce the value of u∗i by one unit. The current

excess Ωi should be reduced by one unit of the weekly under-time rate

µi, and the pre-assignment cost should also be reduced by the value of

µi.

∗ Otherwise, we need to add one unit of over-time to the employee. In-

crease the value of o∗i by one unit, increase the current excess Ωi by

one unit of the overtime rate φi, and also add a cost of φi to the pre-

assignment cost.

– Finally we must consider the cost of the employee departing vessel k after

the task. As before, note that in the existing Time-Windows solution de-

partures ahead of the final week of the planning horizon (i.e. at t = T)

will not have been set. Similarly, any departures after the final week of

the planning horizon will not be considered here. There are three different

scenarios to consider for this calculation:

∗ If employee i is not currently assigned to task j (i.e. if x∗ij = 0) and the

task ends before the final week of the planning period (i.e. at a time

t = sj + dj < T) then simply add departure change cost φDikt to change

cost c′ij .

∗ If x∗ij = 1 and the task finishes two or more weeks before the end of the

planning period (i.e. at a time t = sj + dj < T − 1), then we can add

the departure change cost φDikt to change cost c′ij .

∗ If however x∗ij = 1 and the task ends at a time t = sj + dj = T − 1,

then the departure must be pre-assigned since it was not considered in

the existing Time-Windows schedule. Add departure change cost φDikt
to the pre-assignment cost, and subtract φDikt from the task change cost

c′ij (which will cancel out the cost of the pre-assignment in the event

that the employee is removed from task j in the new schedule).

8. In a similar manner to the regular employees, we can lastly calculate the change

costs for the agency employees. Notice that we have assumed for these datasets that

eligibility is never an issue for agency crew, and therefore this calculation is a little

simpler. We firstly set c′m+1,j = 0 as an initial value, and then for each task j proceed

358

as follows:

• Because there can be more than one agency employee assigned at a time, or

performing back-to-back operations, the calculation at the start of the task is

slightly more complex. There are four scenarios to consider:

– If the task starts after time zero, or if an agency employee does not start in

the role, then we can simply add the agency boarding change cost φBAj′t to

the task change cost c′m+1,j .

– Otherwise, we know from the initial working length calculated in Step 5

above whether this task is a ‘new’ task or a ‘continuing’ task (i.e. whether

it actually starts at sj = 0, or if it essentially started before this). If the

task is a ’new’ task, then we can again simply add the agency boarding

change cost φBAj′t to the task change cost c′m+1,j .

– If it is a ‘continuing’ task then if the agency employee is already assigned to

the task in the existing schedule, or if they are due to leave ahead of week

1, then we should add the departing change cost φDAj′t to the task change

cost c′m+1,j .

– Otherwise, we must pre-assign the departure of the agency employee ahead

of week 1. To do this, add the departure change cost φDAj′t to the pre-

assignment cost, and modify the task change cost c′m+1,j by subtracting

φDAj′t from it.

• Next, for each week t in which the task operates, providing t is not the final

week of the planning horizon, we must add the work change cost φWm+1,j′t to the

change cost c′m+1,j for this task. We must also take into account the consecutive

working periods (bearing in mind the initial work resource value αj0 if this task

starts at time zero) and add the consecutive work change costs φLλ,m+1,j′t to

change cost c′m+1,j for all affected values of consecutive work index λ.

• If the task covers the role in the final week of the planning horizon, but the

agency employee is not assigned to the task in the current schedule (i.e. x∗m+1,j =

0), then we can add the work and long work change costs φWm+1,j′t and φLλ,m+1,j′t

to the task change cost c′m+1,j in the same way as above.

• If the task is operating in the final week and the agency employee is initially

assigned to the task, then we must pre-assign the agency employee to this role

in this week. We therefore add work and extension change costs φWm+1,j′t and

φLλ,m+1,j′t to the pre-assignment cost, and subtract these costs from the task

change cost c′m+1,j (i.e. to cancel out this pre-assignment cost in the event that

the agency employee is removed from this task in the new schedule).

359

• Finally we must consider the cost of the agency employee departing role j′ after

the task. As with the regular employees, there are three different scenarios to

consider for this calculation:

– If the agency employee is not currently assigned to task j then (i.e. if

x∗m+1,j = 0) and the task ends before the final week of the planning period

(i.e. at a time t = sj + dj < T) then simply add departure change cost φDAj′t
to change cost c′m+1,j .

– If x∗m+1,j = 1 and the task finishes two weeks or more before the end of the

planning period (i.e. at a time t = sj + dj < T − 1), then we can again add

the relevant departing change cost φDAj′t to task change cost c′m+1,j .

– If however x∗m+1,j = 1 and the task ends at time t = sj + dj = T − 1,

then the departure must be pre-assigned since it was not considered in the

existing Time-Windows schedule. Add departure change cost φDAj′t to the

pre-assignment cost, and subtract φDAj′t from the task change cost c′m+1,j

(which will cancel out the cost of the pre-assignment in the event that the

employee is removed from task j in the new schedule).

Part 2 - Set up and solve the Task-Based formulation

1. We must next carry out the usual procedure to turn the Task-Based data calculated

in Part 1 into the quantities necessary to define the actual Task-Based formulation.

Firstly, we must define the set N of rest tasks:

• Define a set of rest task lengths which contains each value of minimum rest

period ρi across the set of regular employees i ∈ ER.

• For each time point for which a working task ends, we must define a rest task

corresponding to each of the determined rest task lengths (provided the task

would end before the end of the planning period).

2. Define the work resource content wj and rest resource content rj for each work ‘arc’

(i.e. task) j ∈ J and rest ‘arc’ j ∈ N :

• For j ∈ J , wj = dj , the task duration, and rj = 1.

• For j ∈ N , wj = −T , i.e. the length of the planning horizon, and rj = −1

3. Define the sets Cγ of overlapping tasks:

• Use Algorithm 5.1 set out in section 5.1.2.

4. Define the chronologically ordered set B of all the tasks in J ∪N :

360

• This is necessary for defining the work and rest resource tracking constraints.

• As described in section 5.1.1, the ordering is defined such that for all b ∈ B such

that b ≥ 2 we have that sb−1 ≤ sb.

5. Ensure correct definition of the ‘change’ variables yij and ‘new schedule’ variables zij

for all employees i ∈ E for both work and rest tasks:

• For work tasks j ∈ J , the variables are defined only for tasks for which the

employee is eligible to work.

• For rest tasks j ∈ N , the only permitted assignments are for regular employees

i ∈ ER to those rest tasks whose lengths dj correspond to their contractual

minimum resting period ρi.

6. Define the problem formulation, as described in section 5.2.2 earlier. The objective

function (5.14) should be modified to include the pre-assigned costs in addition to the

change and over- and under-time costs - this should have no bearing on the solution

process, but will be useful when checking equivalence between the Task-Based and

Time-Windows versions of the solution. The constraints on the problem (expressions

(5.15 - 5.26)) are used in the same way as given in section 5.2.2.

7. The Task-Based version of the problem can now be solved. Note that preliminary

tests indicated that a two-minute time limit is sufficient to solve virtually all test

instances to optimality, and no additional specifications on the cutting or heuristic

strategy were made.

Part 3 - Convert the solution back to the Time-Windows format

1. We can use the new schedule given from the Task-Based formulation to determine

the working, boarding, departing and long working values for the Time-Windows

version of the new schedule (variables x̂ij′t, b̂ikt and β̂j′t, d̂ikt and δ̂j′t, and l̂λij′t

respectively). These variables are all taken to equal zero unless this Step calculates

them otherwise. For this, we take each role j′ in turn and work through each task j

relating to that role. For each of these tasks j, work through each employee i ∈ E
and do the following:

• If the task j starts at time zero and the employee starts on board the vessel,

and if the employee assigned to the task in the new solution (i.e. zij = 1), then:

– For each period t in the duration of the task, the employee is assigned to

that task in the Time-Windows solution, and we set x̂ij′t = 1.

361

– At the start of the task, the employee’s working period has been wi0 (or αj′0

for agency crew). For each period t in the duration of the task, increment

this consecutive working period value by one, and set l̂λij′t = 1 for all values

of λ less than or equal to this cumulative value.

– If the task ends at some time t = sj+dj < T (i.e. it does not end in the final

week of the planning horizon), then denote the employee as departing once

the task is complete by setting d̂ik,t+1 = 1 for regular crew, or δ̂j′,t+1 = 1

for agency crew.

• If the task starts at time zero and the employee starts on board the vessel, but

the employee is not assigned to the task in the new solution (i.e. i.e. zij = 0),

then the employee must depart the vessel ahead of the first week of the planning

period. In this case we set d̂ik1 = 1 for regular crew, or δ̂j′1 = 1 for agency crew.

• If the task does not start at time zero, or if the employee does not start on

board the vessel, and if zij = 1 then:

– For each period t in the duration of the task, the employee is assigned to

that task in the Time-Windows solution, and we set x̂ij′t = 1.

– At the start of the task, the employee’s working period has been wi0 (or αj′0

for agency crew). For each period t in the duration of the task, increment

this consecutive working period value by one, and set l̂λij′t = 1 for all values

of λ less than or equal to this cumulative value.

– If the task ends at some time t = sj+dj < T (i.e. it does not end in the final

week of the planning horizon), then denote the employee as departing once

the task is complete by setting d̂ik,t+1 = 1 for regular crew, or δ̂j′,t+1 = 1

for agency crew.

2. From the new schedule calculated in Step 1 above, we can calculate the new over-

and under-time values ôi and ûi for the fixed contract employees. For each i ∈ G,

we simply look at the expecting working time outwith the planning period Ωi plus

the number of working weeks assigned to the employee during the planning period,

i.e.
∑
j∈J

T∑
t=1

x̂ijt. Examining the difference between this total working time and the

employee’s number of guaranteed weeks gi, do the following:

• If the expected work time is less than gi, then set ûi equal to the (absolute value

of) the difference, and set ôi = 0.

• If the expected work time is greater than gi, then set ôi equal to the (absolute

value of) the difference, and set ûi = 0

• If there is no difference, then set ôi = ûi = 0

362

3. We can now calculate the change variables values, indicating work change (x±ij′t),

boarding and departing change (b±ikt and d±ikt for regular crew; β±j′t and δ±j′t for agency

crew), consecutive work change (l±λij′t) and under- and over-time change (u±i and o±i).

This can be done using equations (6.30 - 6.37) given in section 6.1.2 earlier.

4. From this, we can calculate the cost of the solution according to the Time-Windows

variables. The values calculated above, along with the cost coefficients for the

changes, can be used to evaluate the Time-Windows objective function, as given

in 6.38.

Part 4 - Check for feasibility, and print the solution

1. If the conversion has been done correctly, all the constraints of the Time-Windows

formulation should be satisfied by the Task-Based solution given. In order to check

this, we can feed the values calculated in Part 3 into the Time-Windows constraints

and check that they are satisfied. Firstly, three further values must be calculated:

• The work resource values at each time point for the regular crew (ŵit). This

can be done for each time point t in order, by evaluating the right hand side

of constraint (6.49) of the Time-Windows formulation, and setting ŵit equal to

the maximum of this value or zero.

• The work resource values at each time point for the agency crew (α̂jt). This can

be done by evaluating the right hand sides of constraints (6.51) and (6.52) of

the Time-Windows formulation, and setting α̂jt equal to the maximum of these

two values.

• The rest resource values at each time point for the regular crew (r̂it). This can

be done by evaluating the right hand sides of constraints (6.54) and (6.55) of

the Time-Windows formulation, and setting r̂it equal to the maximum of these

two values.

2. We can now check the remaining constraints to see if they are satisfied. All values

should now be known and both sides of all expressions should now calculable. We

check the following:

• All roles are covered for all time periods for which cover is required, as per

constraints (6.39) in the Time-Windows formulation;

• No regular employee is assigned to two roles in the same time period, using

expression (6.40);

• The boarding and departing of regular crew is in line with their assignments, as

required by constraints (6.41 - 6.44);

363

• The boarding and departing of agency crew is in line with their assignments,

according to equations (6.45) and (6.46);

• Under-time and over-time are calculated correctly, using inequalities (6.47) and

(6.48);

• The consecutive working variables are calculated correctly and the maximum

working periods are respected for all employees, using expressions (6.50) and

(6.53);

• Regular employees are not expected work when they are still due rest, as per

constraint (6.56);

• All change variables link correctly between the initial and new schedules, as

described by equations (6.57 - 6.64);

• All variables are correctly defined (binary, non-negativity, etc. as required), as

described by expressions (6.65 - 6.72).

3. Finally, we can also check the objective values. We compare the Task-Based cost

as found when the problem was solved (including the pre-assignment costs), and

the Time-Windows objective value as calculated in Step 4 of Part 3 above. If

the conversions have been done and pre-assignment costs tracked and calculated

correctly, then these should be identical.

4. If the solution is feasible, it can be printed out in the required format to be imple-

mented, or improved using heuristics.

364

C.2 Flowcharts of the Time-Windows Heuristic procedure

Here we expand on the flowcharts given in Figures 6.7 and 6.8 in section 6.5.5 describing

the heuristic procedure developed for the Time-Windows problem (section 6.5).

Firstly Figure C.1 shows an expansion of the ‘Initialise’ step given in Figure 6.7 previ-

Figure C.1: Detail of flowchart, showing expansion of ‘Initialise’ step.

ously. In the expanded form, we now see that it includes evaluating the cost of the initial

solution, and ensuring this current solution cost is also recorded as the best found so far.

Next, Figure C.2 shows the detail of the ‘Evaluate backwards’ procedure. This takes

Figure C.2: Detail of flowchart, showing detail of the ‘Evaluate backwards’ procedure.

the user through the steps of evaluating the new schedule, performing feasibility and tabu

checks and deciding whether to accept the solution outright, store as a new ‘candidate’

solution, or simply move on. As can be seen, a loop is included to ensure this is done

for all possible extension lengths if required. This can be compared to Figure C.3 which

shows the expanded detail of the ‘Evaluate forwards’ procedure. In essence, the steps

of this procedure are identical to those of the ‘Evaluate backwards’ routine, with the

only difference being the way in which the new schedules are defined.

365

Figure C.3: Detail of flowchart, showing detail of the ‘Evaluate forwards’ procedure.

The detail of the ‘Evaluate swap’ procedure is shown in Figure C.4. This can be

Figure C.4: Detail of flowchart, showing detail of the ‘Evaluate swap’ procedure.

seen to perform similarly to the main loops of the programme, in that it searches each

employee in turn, and for each employee it examines each block on their schedule. One

key difference is that agency crew are now also considered. When a block is found which

can be used in a swap, the ‘Swap calculation’ procedure is called, which is shown in

Figure C.5. This part of the programme performs similarly to the ‘Evaluate backwards’

and ‘Evaluate forwards’ procedures, except that there is no loop for examining multiple

extension lengths. In addition, if the solution evaluated is not accepted outright then rather

than going back to the ‘Evaluate block’ stage, the programme returns to the ‘Evaluate

swap’ procedure to search for other potential swaps.

Finally, Figure C.6 gives detail of the ‘Random kick’ procedure. Unlike the other

solution-generating procedures described, there is no check of acceptance criteria. In this

case, feasibility is the only criterion required for a ‘kick’ to be accepted, and as can be seen

the programme will continue to generate random employee-block pairs until a feasible kick

is found. Once this has been done, it is simply a case of evaluating the new schedules and

the cost of these, plus checking that there is not a new best solution, before the programme

366

Figure C.5: Detail of flowchart, showing detail of the ‘Swap calculation’ procedure.

Figure C.6: Detail of flowchart, showing detail of the ‘Random kick’ procedure.

can move on.

In order to see how these expanded procedures described in Figures C.1 to C.6 fit in to

the overall algorithm, a full flowchart containing all the expanded procedures is also given.

This can be seen split between Figures C.7 and C.8.

367

F
ig

u
re

C
.7

:
E

x
p

an
d
ed

fl
ow

ch
ar

t
ou

tl
in

in
g

th
e

h
eu

ri
st

ic
al

go
ri

th
m

-
u

p
p

er
se

ct
io

n
.

368

F
ig

u
re

C
.8

:
E

x
p

an
d

ed
fl

ow
ch

ar
t

ou
tl

in
in

g
th

e
h

eu
ri

st
ic

al
go

ri
th

m
-

lo
w

er
se

ct
io

n
.

369

C.3 Description of Heuristic algorithm

Here we describe the formal test version of the Heuristic algorithm, as outlined in section

6.5.5, in more detail. Note that the full code of the algorithm as implemented in C++ can

be found in the appendix in section E.2.5. Note also that while this formal test version is

a product of the development process described above, the actual coding of this algorithm

into C++ was carried out by fellow PhD student Seda Sucu.

C.3.1 Main programme

1. Declare all variables required by the algorithm, and read in the data.

2. Call ‘Initialisation’ procedure (page 370).

3. While termination criteria are not satisfied, repeat the following:

(a) Increment iteration count.

(b) Set employee ordering parameter for this iteration, according to rules defined in

section 6.5.4, and call ‘Sort employee list’ procedure (page 371).

(c) Call ‘Find usable block’ procedure (page 382).

(d) If an intermediate time point has been reached, record details of the best solution

so far.

(e) Check termination criteria, according to rules defined in section 6.5.4.

(f) If termination criteria are not satisfied then check kick implementation rules, as

defined in section 6.5.4. If a kick if required then call ‘Random kick’ procedure

(page 399).

4. Record details of best solution found, and details of the test run overall.

5. End of algorithm.

C.3.2 Sub-Programmes

The sub-procedures used for the Heuristics are detailed here, approximately following the

order that the algorithm would require them during execution.

C.3.2.1 Initialisation

1. Translate the initial solution into rosters Υi for all regular employees i ∈ ER and

agency sets Θj for all roles j ∈ J . Record these as comprising both the ‘current’

solution, and the ‘best’ solution found so far.

370

2. Add all employees i ∈ ER and all roles j ∈ J to the respective sets of employees and

roles which have had their schedules changed since the last iteration.

3. Set calculation parameter to ‘current’, and call ‘Calculate cost’ procedure (page

372).

4. Set transfer parameters as ‘from: current; to: best’, and call ‘Transfer solution’

procedure (page 372).

5. Initialise counting parameters:

• Number of best solutions found = 1;

• Number of forwards extension, backwards extension, swap and best alternative

candidate solutions = 0;

• Number of kicks carried out and number of non-reducing iterations = 0;

• Number of tabu and infeasible solutions found = 0;

• Termination criteria are not satisfied;

• Current iteration, time last kick carried out, and time of finding best solution

= 0; and

• Last iteration at which employee i’s schedule changed = 0 for all i ∈ ER.

C.3.2.2 Sort employee list

1. If the ordering parameter value is not a valid one (i.e. ‘latest changed first’, ‘earliest

changed first’ or ‘random’), then set the parameter to be ‘random’.

2. Clear ordered list of employees and short ordered list of employees.

3. Generate a random number in the range [0, 1) to associate with each employee.

4. Repeat the following m times:

(a) Select an employee who has not yet been added to the ordered list.

(b) For each of the other employees i not yet added to the ordered list, do the

following:

i. If the ordering parameter is not ‘random’, then compare the last recorded

time that employee i’s rosters was changed with the last time the selected

employee’s roster was changed. If the ordering parameter is ‘latest changed

first’, select the employee with the (strictly) latest time changed; if the

ordering parameter is ‘earliest changed first’, select the employee with the

(strictly) earliest time changed.

371

ii. If the order parameter is ‘random’, or the employees are tied for the time

last changed, then select the one with the lowest associated random number.

(c) Add the selected employee to the ordered list of employees.

(d) If the length of the short ordered list is still less than the required fraction of m,

as defined in section 6.5.4, then add the selected employee to the short ordered

list of employees.

C.3.2.3 Transfer solution

1. Check that both the ‘from’ and ‘to’ transfer parameters are valid solution types. If

not, then end this procedure now; otherwise, continue.

2. Copy the values of the solution designated by the ‘from’ transfer parameter and

allocate them to the solution designated by the ‘to’ transfer parameter. The values

to be copied are as follows:

• The total cost of the solution.

• Decision variable values for allocation (x̂ijt) and consecutive working (l̂λijt) for

all employees i ∈ E including agency.

• Rosters Υi and their associated cost, and decision variable values for boarding

the departing vessels (b̂ikt and d̂ikt) for regular crew i ∈ ER.

• Decision variable values for overtime and undertime (ôi and ûi) for fixed contract

employees i ∈ G.

• Agency allocation sets Θj and crew change sets Ξj , and their associated costs,

for all roles j ∈ J .

• Decision variable values for agency crew boarding and departing from roles (β̂jt

and δ̂jt) for all roles j ∈ J .

3. Clear the values of the ‘from’ and ‘to’ transfer parameters.

C.3.2.4 Calculate cost

1. Check that the calculation parameter is a valid solution type. If not, then end this

procedure now; otherwise, continue.

2. Take rosters Υi and sets Θj associated with the solution type designated by the calcu-

lation parameter, and transfer them to the corresponding rosters and sets designated

for ‘evaluating’.

3. Set total cost of ‘evaluating’ solution to zero.

372

4. To calculate the regular employee costs, for each employee i ∈ ER do the following:

(a) If i’s schedule is not in the set of those changed since the last iteration then copy

relevant solution values designated for ‘current’ solution to those designated for

‘evaluating’ solution:

• Decision variable values for allocation (x̂ijt), consecutive working (l̂λijt),

boarding and departing the vessels (b̂ikt and d̂ikt), and if i is a fixed contract

employee then overtime and undertime (ôi and ûi).

• The change cost associated with roster Υi.

And move onto next employee. Otherwise, carry out remainder of this step.

(b) Clear the recorded cost for roster Υi in the ‘evaluating’ solution, and set the

initial consecutive work count parameter equal to wi0.

(c) For each time point t from t = 1 to t = T , do the following:

i. For all j ∈ J set the allocation variable x̂ijt = 0, and set the consecutive

working variables l̂λijt = 0 for all λ.

ii. If jit ∈ J , i.e. the tth element in the ‘evaluating’ roster Υi is a working task

then:

A. Set x̂i,jit ,t = 1;

B. Increment the consecutive work count by one; and

C. Set l̂λ,i,jit ,t = 1 for all λ less than or equal to the consecutive work count

value.

iii. If jit = rest then reset the consecutive work count parameter to zero.

(d) For each vessel k ∈ K, do the following:

i. If for this ‘evaluating’ solution,
∑
j∈Vk

x̂ij1 < sik then set d̂ik1 = 1; otherwise

set d̂ik1 = 0.

ii. Similarly, if
∑
j∈Vk

x̂ij1 > sik then set b̂ik1 = 1; otherwise set b̂ik1 = 0.

iii. For each time point t from t = 2 to t = T , do the following:

A. If
∑
j∈Vk

x̂ijt <
∑
j∈Vk

x̂ij,t−1 then set d̂ikt = 1; otherwise set d̂ikt = 0.

B. If
∑
j∈Vk

x̂ijt >
∑
j∈Vk

x̂ij,t−1 then set b̂ikt = 1; otherwise set b̂ikt = 0.

(e) If i ∈ G then calculate under- and over-time costs, as follows:

i. If Ωi +
∑
j∈J

T∑
t=1

x̂ijt < gi then set ûi = gi −

(
Ωi +

∑
j∈J

T∑
t=1

x̂ijt

)
and ôi = 0;

else, set ôi =

(
Ωi +

∑
j∈J

T∑
t=1

x̂ijt

)
− gi and ûi = 0.

373

ii. Using the input data of the overtime and undertime values for the previous

week’s solution, i.e. o∗i and u∗i respectively, infer the change of overtime and

undertime for this ‘evaluating’ solution. This is done by setting o±i = ôi−o∗i
andu±i = ûi − u∗i respectively.

iii. Using the undertime and overtime cost rates (cUi and cOi respectively), add

the cost of this change to the cost of employee i’s roster.

(f) Infer the change variables under this ‘evaluating’ solution for allocation (x±ijt),

boarding and departing (b±ikt and d±ikt) and consecutive working l±λijt, and add

the associated costs to the cost of roster Υi in this ‘evaluating’ solution.

5. To calculate the agency employee costs, for each role j ∈ J do the following:

(a) If role j is not in the set of those whose agency allocation set Θj has changed

since the last iteration, then copy relevant solution values designated for ‘cur-

rent’ solution to those designated for ‘evaluating’ solution:

• Decision variable values for allocation (x̂m+1,j,t), consecutive working (l̂λ,m+1,j,t)

and boarding and departing the vessels (β̂jt and δ̂jt).

• The associated crew change set Ξj .

• The change cost of set Θj in conjunction with set Ξj .

And move onto next role. Otherwise, carry out remainder of this step.

(b) Clear the recorded cost for the combination of sets Θj and Ξj in the ‘evaluating’

solution, and record whether an agency employee starts in role j (i.e. the value

of σj).

(c) As set Θj has changed since the last iteration, we need to re-evaluate the con-

tents of set Ξj . There are two kinds of time points of interest: those at which

a crew change will definitely take place, and those at which a crew change will

possibly take place. We will ensure the contents of both the ‘definite’ set and

the ‘possible’ set are cleared.

(d) For each time point t from t = 1 to t = T , do the following:

i. If t ∈ Ξj then set x̂m+1,j,t = 1 for this ‘evaluating’ solution; otherwise, set

x̂m+1,j,t = 0.

ii. If agency crew allocation to the role at time t is different from that at time

t − 1 (i.e. if x̂m+1,j,t 6= x̂m+1,j,t−1 for t ≥ 2, or if x̂m+1,j,t 6= sigmaj for

t = 1), then add t to the set of ‘definite’ crew change points.

iii. If agency crew is allocated to role j at both time t and t−1 (i.e. if x̂m+1,j,t =

x̂m+1,j,t−1 = 1 for t ≥ 2, or if x̂m+1,j,t = sigmaj = 1 for t = 1), then add t

to the set of ‘possible’ crew change points.

374

(e) If we are not calculating the cost of the initial solution, compare the set Θj

for this ‘evaluating’ solution with that for the best solution found so far. If

their contents are identical, then set the contents of set Ξj for the ‘evaluating’

solution equal to the crew change set Ξj in the best solution.

(f) Otherwise, if the calculation parameter is not set to ‘current’, and the set Θj

for this ‘evaluating’ solution is identical to the set Θj for the ‘current’ solution,

then set the contents of set Ξj for the ‘evaluating’ solution equal to the crew

change set Ξj in the ‘current’ solution.

(g) Otherwise, if there have been no ‘possible’ crew change point identified, define

the crew change set Ξj for the ‘evaluating’ solution as comprising (only) the

‘definite’ crew change points identified above.

(h) Otherwise, there are 2x possibilities to consider, where x is the number of time

points identified for a ‘possible’ crew change. Each number from 1 to 2x can

be represented as an x-digit binary number, with each of the x digits being

associated with a different one of the ‘possible’ crew change points. Using this

principle, for each number from 1 to 2x, do the following:

i. Set the cost of this permutation to zero, set the consecutive work counter

equal to αj0, and assume the current permutation is feasible.

ii. For each ‘possible’ crew change point, if the associated binary digit of the

current number is 1 then this crew change will take place under this per-

mutation; if the digit = 0 then the crew change will not take place in this

permutation.

iii. For each time t from t = 1 to t = T , do the following:

A. If time t is a ‘possible’ crew change which is to take place under this

permutation then denote this time point as having a possible board

and possible departure of an employee and reset the consecutive work

counter to zero; otherwise denote no possible boarding or departing at

this time point.

B. If time t is a ‘possible’ crew change (whether it is to take place or not

in this permutation), then use the possible board and possible depart

quantity denoted in the previous step to infer the possible changes to the

agency board and depart if this permutation were to be accepted, and

add the cost of these possible changes to the cost of the permutation.

C. If x̂m+1,j,t = 1 for the ‘evaluating’ solution then: increment the consec-

utive work value by 1; if this new value exceeds αmaxj then denote this

permutation as infeasible; if the consecutive work value is not greater

than αmaxj then record the possible long work indicator (analogous with

375

l̂λ,m+1,j,t) equal to 1 for all work lengths less than or equal to the con-

secutive work value, and set the possible indicator equal to zero for all

other lengths.

D. If x̂m+1,j,t = 0 for the ‘evaluating’ solution then reset the consecutive

work counter to zero, and set the possible long work indicator equal to

zero for all lengths.

E. For all lengths, compare the possible long work indicators described and

compare with the input data values l∗λ,m+1,j,t. If there are any changes,

denote these as possible changes and add the cost of these possible

changes to the cost of this permutation.

iv. If this permutation is feasible and we have not yet found a feasible crew

change pattern, then define the crew change set Ξj for the ‘evaluating’

solution as comprising exactly the ‘possible’ crew changes which are to

take place under this permutation plus the ‘definite’ crew change points

identified, and record the cost of this permutation.

v. Otherwise, if the permutation is feasible and we have already allocated val-

ues to the set Ξj for the ‘evaluating’ solution, then look at the recorded

cost of the set Ξj . If that cost is greater than the cost of the current per-

mutation, then replace the contents of Ξj with the ‘possible’ crew changes

for this permutation, plus the ‘definite’ crew change points, and update the

recorded cost.

(i) Having now identified the optimal contents of Ξj for the ‘evaluating’ solution,

we can recalculate the change cost of set Θj in conjunction with set Ξj . Firstly,

set the consecutive work counter equal to αj0.

(j) For each time t from from t = 1 to t = T , do the following:

i. Set the agency boarding and departing variable (β̂jt and δ̂jt) for this ‘eval-

uating’ solution equal to zero.

ii. If t ∈ Ξj then reset the consecutive work counter to zero.

iii. If t ∈ Ξj and agency crew is allocated to the role in the preceding period

(i.e. if x̂m+1,j,t−1 = 1 for t ≥ 2, or if sigmaj = 1 for t = 1) then set δ̂jt = 1

for the ‘evaluating’ solution.

iv. If t ∈ Ξj and x̂m+1,j,t = 1 then set β̂jt = 1 for the ‘evaluating’ solution.

v. If x̂m+1,j,t = 1 then increment the consecutive work counter by 1; set

l̂λ,m+1,j,t = 1 for all λ less than or equal to the consecutive work count

value, and set it equal to zero for all other values of λ. If x̂m+1,j,t = 0 then

reset the consecutive work counter to zero.

376

vi. Infer the change variables under this ‘evaluating’ solution for allocation

(x±m+1,j,t), boarding and departing (β±jt and δ±jt) and consecutive working

l±λ,m+1,j,t, and add the associated costs to the change cost of set Θj in

conjunction with set Ξj in this ‘evaluating’ solution.

6. We can now define the cost of this ‘evaluating’ solution to be the sum of the costs

associated with each roster Υi for all i ∈ ER, and each combination of sets Θj and

Ξj for all j ∈ J .

7. Set transfer parameters as ‘from: evaluating; to: the calculation parameter value’,

and call ‘Transfer solution’ procedure (page 372).

8. If the calculation parameter refers to a ‘backward’, ‘forward’, ‘swap’ or ‘kick’ solution

then call ‘Check feasibility’ procedure (page 377).

C.3.2.5 Check feasibility

1. Assume the ‘evaluating’ solution is feasible.

2. For the values associated with the ‘evaluating’ solution, for all roles r required at each

time t (i.e. all role-time pairs for which ajt > 0), check that job cover constraints

(6.39) are satisfied. If the left and right hand sides are not equal for any of the

equations, then the ‘evaluating’ solution is infeasible.

3. If the solution is still believed to be feasible, then for all regular employees i ∈ ER
whose roster has changed from the current solution and for all time points t check

the overlapping task constraints (6.40) are satisfied. If, using the values for the

‘evaluating’ solution,
∑
j∈J

x̂ijt > 1 for any of the equations, then the ‘evaluating’

solution is infeasible.

4. If the solution is still believed to be feasible, then for all vessels k ∈ K and all regular

employees i ∈ ER whose roster has changed from the current solution we will check

that the constraints on employees boarding the vessels are satisfied. This involves

two checks:

(a) For t = 1, we should check constraints (6.41) for all employees whose roster has

been changed. If, using the values for the ‘evaluating’ solution, the evaluated left

and right hand sides do not satisfy an inequality, then the ‘evaluating’ solution

is infeasible.

(b) For all t > 1, we should check constraints (6.42) for all employees whose roster

has been changed. If, using the values for the ‘evaluating’ solution, the evaluated

377

left and right hand sides do not satisfy an inequality, then the ‘evaluating’

solution is infeasible.

5. If the solution is still believed to be feasible, then for all vessels k ∈ K and all

regular employees i ∈ ER whose roster has changed from the current solution we will

check that the constraints on employees departing the vessels are satisfied. This also

involves two checks:

(a) For t = 1, we should check constraints (6.43) for all employees whose roster has

been changed. If, using the values for the ‘evaluating’ solution, the evaluated left

and right hand sides do not satisfy an inequality, then the ‘evaluating’ solution

is infeasible.

(b) For all t > 1, we should check constraints (6.44) for all employees whose roster

has been changed. If, using the values for the ‘evaluating’ solution, the evaluated

left and right hand sides do not satisfy an inequality, then the ‘evaluating’

solution is infeasible.

6. If the solution is still believed to be feasible, then for all roles j ∈ J which have had

their agency allocation set changed from the current solution we will check that the

agency boarding and departing constraints are satisfied. Similarly, this involves two

checks:

(a) For t = 1, we should check constraints (6.45) for all roles where the agency

allocation set has changed. If, using the values for the ‘evaluating’ solution, the

evaluated left and right hand sides are not equal for any of the equations, then

the ‘evaluating’ solution is infeasible.

(b) For all t > 1, we should check constraints (6.46) for all roles where the agency

allocation set has changed. If, using the values for the ‘evaluating’ solution, the

evaluated left and right hand sides are not equal for any of the equations, then

the ‘evaluating’ solution is infeasible.

7. If the solution is still believed to be feasible, then for all fixed contract employees

i ∈ G whose roster has changed from the current solution, check that the undertime

calculation (6.47) constraints are satisfied. If, using the values for the ‘evaluated’

solution, the calculated left and right hand sides do not satisfy an inequality, then

the ‘evaluating’ solution is infeasible.

8. If the solution is still believed to be feasible, then for all fixed contract employees

i ∈ G whose roster has changed from the current solution, check that the overtime

calculation (6.48) constraints are satisfied. If, using the values for the ‘evaluated’

378

solution, the calculated left and right hand sides do not satisfy an inequality, then

the ‘evaluating’ solution is infeasible.

9. If the solution is still believed to be feasible, then for all regular employees i ∈ ER
whose roster has changed from the current solution, check that the consecutive work

constraints are satisfied. This is done as follows:

(a) For each time point t, calculate a value for the variable ŵit. This can be done

by assigning ŵit the lowest non-negative integer value which satisfies inequality

(6.49) when calculated using the input data and the values for the ‘evaluating’

solution.

(b) For each time point t, all roles j ∈ J and work length value λ ≤ wmaxi , check

that the work duration constraints (6.50) are satisfied. If, using the values for

the ‘evaluated’ solution and the values of ŵit from above, the calculated left and

right hand sides do not satisfy an inequality, then the ‘evaluating’ solution is

infeasible.

10. If the solution is still believed to be feasible, then for all roles j ∈ J which have had

their agency allocation set changed from the current solution, check that the agency

consecutive work constraints are satisfied. This is done as follows:

(a) For each time point t, calculate a value for the variable α̂jt. Firstly, making use

of constraints (6.51), and using the relevant values for the ‘evaluating’ solution,

set

α̂jt = α̂j,t−1 + x̂m+1,jt − αmaxj δ̂jt

Then, in order to satisfy constraints (6.51), if α̂jt < x̂m+1,jt then we set α̂jt =

x̂m+1,jt.

(b) For each time point t and work length value λ ≤ αmaxj , check that the work

duration constraints (6.53) are satisfied. If, using the values for the ‘evaluated’

solution and the values of α̂jt from above, the calculated left and right hand

sides do not satisfy an inequality, then the ‘evaluating’ solution is infeasible.

11. If the solution is still believed to be feasible, then for all regular employees i ∈ ER
whose roster has changed from the current solution, check that the rest constraints

are satisfied. This is done as follows:

(a) For each time point t, calculate a value for the variable r̂it. Firstly, making use

of constraints (6.54), and using the relevant values for the ‘evaluating’ solution,

379

set

r̂it = r̂i,t−1 −

1−
∑
j∈J

x̂ijt

Then, in order to satisfy constraints (6.55), if this calculated value of r̂it is less

than (ρi − 1)
∑
k∈K

d̂ikt then we set

r̂it = (ρi − 1)
∑
k∈K

d̂ikt

(b) For each time point t, check that the constraints linking work and rest duration

(6.56) are satisfied. If, using the values for the ‘evaluated’ solution and the

values of r̂it from above, the calculated left and right hand sides do not satisfy

an inequality, then the ‘evaluating’ solution is infeasible.

12. If the solution is still believed to be feasible, then check that the constraints linking

the new schedule and the changes required to create it under the ‘evaluating’ solution

with the data of the previous weeks’ schedule are satisfied. This is done as follows:

(a) For each employee i ∈ ER whose roster has changed from the current solution

and all roles j ∈ J and time t, and for agency employees for all roles j ∈ J which

have had their agency allocation set changed from the current solution and all

time points t, check the allocation variable constraints (6.57). If the values

from the ‘evaluating’ solution do not satisfy an equation, then the solution is

infeasible.

(b) For each employee i ∈ ER whose roster has changed from the current solution

and all vessels k ∈ K and all time points t, check the boarding variable con-

straints (6.58) and departing variable constraints (6.59). If the values from the

‘evaluating’ solution do not satisfy an equation, then the solution is infeasible.

(c) For each role j ∈ J which has had its agency allocation set changed from

the current solution and all time points t, check the agency boarding variable

constraints (6.60) and agency departing variable constraints (6.61). If the values

from the ‘evaluating’ solution do not satisfy an equation, then the solution is

infeasible.

(d) For each employee i ∈ ER whose roster has changed from the current solution

and all roles j ∈ J , times t and consecutive work values λ; and for agency

employees for all roles j ∈ J which have had their agency allocation set changed

from the current solution and all time points t and consecutive work values λ,

check the consecutive work variable constraints (6.57). If the values from the

380

‘evaluating’ solution do not satisfy an equation, then the solution is infeasible.

(e) For each fixed contract employee i ∈ G whose roster has changed from the

current solution, check the undertime variable constraints (6.63) and overtime

variable constraints (6.64). If the values from the ‘evaluating’ solution do not

satisfy an equation, then the solution is infeasible.

13. If the solution is still believed to be feasible, then check that the variable values

conform to the definitions given in the formulation. This is done as follows:

(a) For each employee i ∈ ER whose roster has changed from the current solution

and all roles j ∈ J and time t, and for agency employees for all roles j ∈ J which

have had their agency allocation set changed from the current solution and all

time points t, check that the allocation variables x̂ijt and x±ijt satisfy condition

(6.65). If any of these variables under the ‘evaluating’ solution is not ∈ {0, 1},
then the solution is infeasible.

(b) For each employee i ∈ ER whose roster has changed from the current solution

and all roles j ∈ J , times t and consecutive work values λ; and for agency

employees for all roles j ∈ J which have had their agency allocation set changed

from the current solution and all time points t and consecutive work values λ,

check that the consecutive work variables l̂λijt and l±λijt satisfy condition (6.66).

If any of these variables under the ‘evaluating’ solution is not ∈ {0, 1}, then the

solution is infeasible.

(c) For each employee i ∈ ER whose roster has changed from the current solution

and all vessels k ∈ K and all time points t, check that the boarding variables

b̂ikt and b±ikt and departing variables d̂ikt and d±ikt satisfy condition (6.67). If

any of these variables under the ‘evaluating’ solution is not ∈ {0, 1}, then the

solution is infeasible.

(d) For each role j ∈ J which has had its agency allocation set changed from the

current solution and all time points t, check that the agency boarding variables

β̂jt and β±jt and agency departing variables δ̂jt and δ±jt satisfy condition (6.68).

If any of these variables under the ‘evaluating’ solution is not ∈ {0, 1}, then the

solution is infeasible.

(e) For each fixed contract employee i ∈ G whose roster has changed from the

current solution, check that the undertime variables ûi and overtime variables ôi

satisfy condition (6.69). If any of these variables under the ‘evaluating’ solution

are < 0, then the solution is infeasible.

(f) For each employee i ∈ ER whose roster has changed from the current solution

and all time points t, check that the calculated work resource values hatwit and

381

rest resource values r̂it satisfy condition (6.70). If any of these quantities have

been calculated to be < 0, then the solution is infeasible.

14. If the ‘evaluating’ solution is now considered to be infeasible, then increment the

number of infeasible solutions found by one.

C.3.2.6 Find usable block

1. Record that no update has yet been done and no ‘candidate’ solution has yet been

found, and clear the set of employees changed for the ‘candidate’ solution.

2. For each regular employee i on the short ordered list of employees, do the following:

(a) If no update has yet been done, then clear the record of selected employee and

details of block (i.e. role, start time, end time and length), and record that no

block has yet been found.

(b) If no update has yet been done then for each vessel k ∈ K, look for whether

employee i starts on board the vessel. If so, then record a block as having been

found. This is a current block, as defined in section 6.5.2, for selected employee

i with start time tS = (1−wi0) and an as yet unknown duration. It takes place

on vessel k, although the role is not yet known. Also, denote the earliest time

at which a swapping block can start as time = 1.

(c) While no update has yet been done, for each time t from t = 1 to t = T , do the

following:

i. Record that no new block has been found.

ii. If no block has yet been found and in roster Υi in the current solution

element jit 6= rest then record a new block as having been found. This is

a planned block, as defined in section 6.5.2, for selected employee i in role

jit (and hence the vessel on board which it takes place is also known), with

start time tS = t and an as yet unknown duration. The earliest start time

for a block to be swapped with this one is t if t = 1 or if (t − 1) ≤ ri0 (as

per condition (6.153)); and (t− 1) otherwise.

iii. Otherwise, if a block has already been found and in roster Υi in the current

solution element jit 6= rest then must check this is part of the same block.

If jit is the same role as that of the block already found, then no action

need be taken; however, if jit is not equal to the role of the block found,

then should check whether these roles take place on the same vessel k, and

proceed as follows:

382

A. If the roles do take place on the same vessel, then consider these to be

the same block, and denote jit as the role of the block.

B. If they do not come from the same vessel, then identify (t − 1) as the

end time of the block, calculate block length, and denote t − 1 also as

the latest time that a swapping block can end. If the role for this block

is known, then call ‘Evaluate block’ procedure (page 384); if only the

vessel is known then if the block length is less than wmaxi then for all

roles j ∈ Vk set j as the role for the block and call ‘Evaluate block’

procedure (page 384). A new planned block is also starting, so record

the details of this block as being for selected employee i in role jit (and

hence the vessel on board which it takes place is also known), with start

time tS = t and earliest start time for a block to be swapped also time

t. End time and length are as yet unknown, so clear the record of these.

iv. Otherwise, if a block has already been found and in roster Υi in the current

solution element jit = rest, then record (t− 1) as the end time of the block,

calculate block length, and denote time t as the latest time that a swapping

block can end. If the role for this block is known, then call ‘Evaluate

block’ procedure (page 384); if only the vessel is known then if the block

length is less than wmaxi then for all roles j ∈ Vk set j as the role for the

block and call ‘Evaluate block’ procedure (page 384). Finally, reset record

of block start time, end time and duration, selected employee and role and

vessel; and record that no block has been found at this stage.

v. If a new block is recorded as having been found, then update record to

reflect that a block has been found and that no new block has been found.

vi. If t = T and a block has been found, then record this block as ending at

time T , calculate block length, and also denote time T as the latest time

that a swapping block can end. If the role for this block is known, then call

‘Evaluate block’ procedure (page 384); if only the vessel is known then if

the block length is less than wmaxi then for all roles j ∈ Vk set j as the role

for the block and call ‘Evaluate block’ procedure (page 384).

(d) If no update has been done, then for all regular employees i′ ∈ ER such that

i′ 6= i, add employee i′ to the set of those who have been examined for swapping

blocks with current employee i.

3. If no update has been done, and a ‘candidate’ solution exists, then do the following:

(a) Record the rosters Υi for all i ∈ ER and agency sets Θj for all j ∈ J for the

‘current’ solution as now being the ‘tabu’ solution.

383

(b) If the cost of this ‘candidate’ solution is less than that of the ‘current’ solution,

then reset the number of non-reducing iterations to zero; otherwise increase the

number of non-reducing iterations by one.

(c) Set transfer parameters as ‘from: candidate; to: current’, and call ‘Transfer

solution’ procedure (page 372). Record than an update has now been done,

and increase by one the count of candidate solutions used.

(d) Call ‘Compare to best’ procedure (page 402).

(e) Denote the set of employees to be updated as the set of employees changed

in this candidate solution, and call ‘Update swaps and changes’ procedure

(page 403)

C.3.2.7 Evaluate block

1. Reset costs of backward extension, forward extension and swap to zero; and note

that at this stage no backward extension, forward extension or swap is to be carried

out.

2. Find the maximum extension length ΛE for a backwards extension, i.e. the largest

non-negative integer value which satisfies conditions (6.164), (6.165), (6.167) and

(6.169), relating respectively to block length, requirement, eligibility and initial rest

periods. If ΛE > 0 for the backwards extension then call ‘Evaluate backwards’

procedure (page 385).

3. If a backward extension is not to be carried out, then find the maximum extension

length ΛE for a forwards extension, i.e. the largest non-negative integer value which

satisfies conditions (6.164), (6.166), (6.168) and (6.169), relating respectively to block

length, requirement, eligibility and initial rest periods, and also conditions (6.171)

and (6.172) relating to rest periods and the employee’s location at time zero. If

ΛE > 0 for the backwards extension then call ‘Evaluate forwards’ procedure (page

388).

4. If neither a backward nor forward extension is to be carried out, and if the selected

block has start time tS > 0, then call ‘Evaluate swap’ procedure (page 392).

5. If a backward extension is to be carried out, set the transfer parameter as ‘from:

backward’ and increase by one the count of backward extensions implemented; oth-

erwise, if a forward extension is to be carried out, set the transfer parameter as ‘from:

forward’ and increase by one the count of forward extensions implemented; otherwise,

if a swap is to be carried out, set the transfer parameter as ‘from: swap’ and increase

by one the count of swaps implemented.

384

6. If one of a backward extension, forward extension or swap is to be carried out, then

do the following:

(a) Record the rosters Υi for all i ∈ ER and agency sets Θj for all j ∈ J for the

‘current’ solution as now being the ‘tabu’ solution.

(b) Set transfer parameters as ‘to: current’ and call ‘Transfer solution’ procedure

(page 372). Record than an update has now been done.

(c) Call ‘Compare to best’ procedure (page 402).

C.3.2.8 Evaluate backwards

1. Set extension length equal to calculated maximum, i.e. set λE = ΛE .

2. Clear the list of employees whose rosters have changed and the list of roles which

have had their agency assignments changed from the current solution.

3. Copy all rosters Υi′ for all i′ ∈ ER such that i′ 6= i and agency sets Θj for all j ∈ J
from the ‘current’ solution into those designated for the ‘backward’ solution.

4. For selected employee i, clear the contents of roster Υi for the ‘backward’ solution,

and add i to the set of employees whose roster has changed from the current solution.

5. Set the initial count of rest periods to zero, and the initial working length count equal

to wi0, and clear the list of role-time pairs which are being held ‘in reserve’.

6. For each time t from t = 1 to t = T , do the following:

(a) If t is not greater than the block end time, i.e. t ≤ (tS + λB − 1), then jit is

assigned the same value for this ‘backward’ solution as it takes for the ‘current’

solution. If jit = rest then reset the length count to zero; otherwise, increase its

value by one.

(b) Otherwise, if t is within the period of extension of the block, i.e. t ≤ (tS +

λB + λE − 1), then jit for this ‘backward’ solution is assigned the role of the

extending block and the length count value is increased by one. If jit for the

‘current’ solution is not a rest task and is not the extending role, then add the

‘current’ role of jit at time t to the reserve list.

(c) Otherwise t > (tS + λB − 1), and if the jit 6= rest in the ‘current’ solution and

either the rest count is less than ρi or the length count is greater than wmaxi ,

then set jit = rest for this ‘backward’ solution. Add the ‘current’ role of jit at

time t to the reserve list, increase the rest count value by one, and reset the

length count to zero.

385

(d) Otherwise, jit is assigned the same value for this ‘backward’ solution as it takes

in the ‘current’ solution. If jit = rest then increase the rest count by one and

reset the length count to zero; otherwise increase the length count by one.

7. Set the count of conflicting tasks found to zero.

8. For each time t from t = (tS +λB) to t = (tS +λB +λE−1), look for whether t ∈ Θj ,

where j is the role of the selected block. If t is in this set, then remove it for this

‘backward’ solution, record j as a role that has had its agency assignment changed

from the current solution, and increase the number of conflicting tasks found by one.

9. For each role j ∈ J which has time periods on the reserve list, do the following:

(a) For each time point t > 1 on the reserve list for role j, look for whether time (t−
1) ∈ Θj in this ‘backward’ solution. If so, then add t to set Θj for the ‘backward’

solution, record j as a role that has had its agency assignment changed from

the current solution, and remove time t for role j from the reserve list.

10. For each employee i′ ∈ ER such that i′ is not selected employee i, do the following:

(a) If the number of conflicting tasks found is equal to λE and there are no remaining

role-time pairs on the reserve list, then proceed to the next employee; otherwise,

continue with this loop.

(b) Clear the contents of roster Υi′ for this ‘backward’ solution and set the initial

length count equal to wi′0, and clear the record of the next role to be added. If

wi′0 is non-zero, then record that there is a previous working period and set the

initial rest count to zero; otherwise, record that there is no previous working

period, and set the initial rest count equal to (ρi′ − ri′0).

(c) For each time t from t = 1 to t = T , do the following:

i. If t is not greater than the block end time, i.e. t ≤ (tS + λB − 1), then ji
′
t

is assigned the same value for this ‘backward’ solution as it takes for the

‘current’ solution. If ji
′
t = rest then reset the length count to zero, increase

the rest count by one, and record that there is no previous working period;

otherwise, reset the rest count to zero, increase the length count by one,

and record that there is a previous working period.

ii. Otherwise, if ji
′
t = rest in the ‘current’ solution then do the following:

A. If there is a record of a next role j′ to be added, then set jti′ = j′ for the

‘backward’ solution, remove j′ at time t from the reserve list, and add

employee i′ to the list of employees whose roster has changed from the

current solution. Increase the value of the length count by one, record

386

that this a previous working task, and reset the rest count to zero. If

t = T or the length count is ≥ wmaxi′ or employee i′ is not eligible to

perform role j′ in period (t+ 1) or role j′ at time (t+ 1) is not on the

reserve list, then clear the record of the next role to be added.

B. If there is not a record of a next role to be added, then set jti′ = rest,

reset the length count to zero, increase the rest count value by one, and

record that there is no previous working task.

iii. Otherwise (i.e. if ji
′
t 6= rest in the ‘current’ solution) then do the following:

A. If ji
′
t is the same role as the extended block and t is within the period of

extension of the block (i.e. t ≤ (tS+λB+λE−1)), then set ji
′
t = rest for

this ‘backward’ solution, increase the number of conflicting tasks found

by one, and add i′ to the set of employees whose roster has changed from

the current solution. Reset length count to zero, increase the value of

the rest count by one, and record that there is not a previous working

task.

B. Otherwise, if there is not a previous working task and the rest count

value is less than ρi′ then set ji
′
t = rest for this ‘backward’ solution, and

add time period t to the relevant agency employee set instead. record

this role (the value of ji
′
t in the ‘current’ solution) as having had its

agency assignments changed from the current solution, and increase

the rest count value by one.

C. Otherwise, ji
′
t is assigned the same value for this ‘backward’ solution as

it takes in the ‘current’ solution. Increase the value of the length count

by one, reset the rest count to zero, and record that there is a previous

working task. If t = T or the length count is ≥ wmaxi′ or employee i′ is

not eligible to perform role ji
′
t in period (t+ 1) or role ji

′
t at time (t+ 1)

is not on the reserve list, then clear the record of the next role to be

added; otherwise, record role ji
′
t as the next role to be added.

11. For each role j ∈ J which still has time periods on the reserve list, add these time

periods to agency set Θj , and record role j as having had its agency assignments

changed from the current solution.

12. Set tabu check parameter to ’backward’ and call ‘Check tabu’ procedure (page

401).

13. If this ‘backward’ solution is found to be tabu, increase the count of tabu solutions

by one; otherwise, do the following:

387

(a) Set calculation parameter to ‘backward’, and call ‘Calculate cost’ procedure

(page 372).

(b) If the solution is not feasible, skip to the final step of this procedure; otherwise,

continue.

(c) Calculate the cost difference between this solution and the current solution.

(d) If the total cost of this solution is less than that of the solution type defined in

section 6.5.4, then note that a backward extension should be carried out, and

reset the number of non-reducing solutions to zero. Denote the set of employees

to be updated as the set of employees changed from the current solution, and

call ‘Update swaps and changes’ procedure (page 403).

(e) Otherwise, if no ‘candidate’ solution exists or the cost of the ‘backward’ solution

is less than that of the existing candidate then record that a candidate solution

now does exist. Set transfer parameters as ‘from: backward; to: candidate’,

and call ‘Transfer solution’ procedure (page 372). Store the cost of this new

candidate solution, and add each emloyee changed from the current solution

in this ‘backward’ solution to the set of employees changed in the ‘candidate’

solution.

14. If no backward extension is to be carried out and λE > 1, reduce value of λE by one

and return to Step 2 of this procedure; otherwise end this procedure.

C.3.2.9 Evaluate forwards

1. Set extension length equal to calculated maximum, i.e. set λE = ΛE .

2. Clear the list of employees whose rosters have changed and the list of roles which

have had their agency assignments changed from the current solution.

3. Copy all rosters Υi′ for all i′ ∈ ER such that i′ 6= i and agency sets Θj for all j ∈ J
from the ‘current’ solution into those designated for the ‘forward’ solution.

4. For selected employee i, clear the contents of roster Υi for the ‘forward’ solution, and

add i to the set of employees whose roster has changed from the current solution.

5. Set the initial count of rest periods to zero and clear the list of role-time pairs which

are being held ‘in reserve’.

6. For each time t in reverse order from t = T to t = 1, do the following:

(a) If t is not less than the block start time, i.e. t ≥ tS , then jit is assigned the same

value for this ‘forward’ solution as it takes for the ‘current’ solution.

388

(b) Otherwise, if t is within the period of extension of the block, i.e. t ≥ (tS − λE ,

then jit for this ‘forward’ solution is assigned the role of the extending block. If

jit for the ‘current’ solution is not a rest task and is not the extending role, then

add the ‘current’ role of jit at time t to the reserve list.

(c) Otherwise t < (tS − λE), and if the jit 6= rest in the ‘current’ solution and the

rest count is less than ρi, then set jit = rest for this ‘forward’ solution. Add the

‘current’ role of jit at time t to the reserve list, increase the rest count value by

one, and reset the length count to zero.

(d) Otherwise, jit is assigned the same value for this ‘forward’ solution as it takes in

the ‘current’ solution. If jit = rest then increase the rest count by one.

7. Set the count of conflicting tasks found to zero.

8. For each time t (in reverse chronological order) from t = (tS − 1) to t = (tS − λE),

look for whether t ∈ Θj , where j is the role of the selected block. If t is in this set,

then remove it for this ‘forward’ solution, record j as a role that has had its agency

assignment changed from the current solution, and increase the number of conflicting

tasks found by one.

9. For each role j ∈ J which has time periods on the reserve list, do the following:

(a) For each time point t < T on the reserve list for role j, look for whether time

(t+1) ∈ Θj in this ‘forward’ solution. If so, then add t to set Θj for the ‘forward’

solution, record j as a role that has had its agency assignment changed from

the current solution, and remove time t for role j from the reserve list.

10. For each employee i′ ∈ ER such that i′ is not selected employee i, do the following:

(a) If the number of conflicting tasks found is equal to λE and there are no remaining

role-time pairs on the reserve list, then proceed to the next employee; otherwise,

continue with this loop.

(b) Clear the contents of roster Υi′ for this ‘forward’ solution and set the initial

length count to zero, and clear the record of the next role to be added. Record

that there is no previous working period and set the initial rest count equal to

ρi′).

(c) For each time t in reverse order from t = T to t = 1, do the following:

i. If t is not earlier than the block start time, i.e. t ≥ (tS + λB − 1), then

ji
′
t is assigned the same value for this ‘forward’ solution as it takes for the

‘current’ solution. If ji
′
t = rest then reset the length count to zero and

389

record that there is no previous working period; otherwise, increase the

length count by one and record that there is a previous working period.

ii. Otherwise, if ji
′
t = rest in the ‘current’ solution then do the following:

A. If there is a record of a next role j′ to be added, then set jti′ = j′ for

the ‘forward’ solution, remove j′ at time t from the reserve list, and

add employee i′ to the list of employees whose roster has changed from

the current solution. Increase the value of the length count by one,

record that this a previous working task, and reset the rest count to

zero. Under the following criteria, clear the record of the next role to

be added:

• If t = 1 or the length count is ≥ wmaxi′ ; or

• If employee i′ is not eligible to perform role j′ in period (t− 1), or if

role j′ at time (t− 1) is not on the reserve list, or if (t− 1) ≤ ri′0; or

• If (t− 1) ≤ ρi′ and
∑

k∈K:j′ /∈Vk
si′k = 1; or

• If (t− 1) ≥ 2 and (t− 1) ≤ ρi′ and
∑

k∈K:j′∈Vk
si′k = 1.

B. If there is not a record of a next role to be added, then set jti′ = rest,

reset the length count to zero, increase the rest count value by one, and

record that there is no previous working task.

iii. Otherwise (i.e. if ji
′
t 6= rest in the ‘current’ solution) then do the following:

A. If ji
′
t is the same role as the extended block and t is within the period

of extension of the block (i.e. t ≥ (tS − λE), then set ji
′
t = rest for this

‘forward’ solution, increase the number of conflicting tasks found by

one, and add i′ to the set of employees whose roster has changed from

the current solution. Reset length count to zero, increase the value of

the rest count by one, and record that there is not a previous working

task.

B. Otherwise, if there is not a previous working task and the rest count

value is less than ρi′ then set ji
′
t = rest for this ‘forward’ solution, and

add time period t to the relevant agency employee set instead. Record

this role (the value of ji
′
t in the ‘current’ solution) as having had its

agency assignments changed from the current solution, and increase

the rest count value by one.

C. Otherwise, ji
′
t is assigned the same value for this ‘forward’ solution as

it takes in the ‘current’ solution. Increase the value of the length count

by one, reset the rest count to zero, and record that there is a previous

working task. Under the following criteria, clear the record of the next

390

role to be added:

• If t = 1 or the length count is ≥ wmaxi′ ; or

• If employee i′ is not eligible to perform role j′ in period (t− 1), or if

role j′ at time (t− 1) is not on the reserve list, or if (t− 1) ≤ ri′0; or

• If (t− 1) ≤ ρi′ and
∑

k∈K:j′ /∈Vk
si′k = 1; or

• If (t− 1) ≥ 2 and (t− 1) ≤ ρi′ and
∑

k∈K:j′∈Vk
si′k = 1.

Otherwise, record role ji
′
t as the next role to be added.

11. For each role j ∈ J which still has time periods on the reserve list, add these time

periods to agency set Θj , and record role j as having had its agency assignments

changed from the current solution.

12. Set tabu check parameter to ’forward’ and call ‘Check tabu’ procedure (page 401).

13. If this ‘forward’ solution is found to be tabu, increase the count of tabu solutions by

one; otherwise, do the following:

(a) Set calculation parameter to ‘forward’, and call ‘Calculate cost’ procedure

(page 372).

(b) If the solution is not feasible, skip to the final step of this procedure; otherwise,

continue.

(c) Calculate the cost difference between this solution and the current solution.

(d) If the total cost of this solution is less than that of the solution type defined

in section 6.5.4, then note that a forward extension should be carried out, and

reset the number of non-reducing solutions to zero. Denote the set of employees

to be updated as the set of employees changed from the current solution, and

call ‘Update swaps and changes’ procedure (page 403).

(e) Otherwise, if no ‘candidate’ solution exists or the cost of the ‘forward’ solution

is less than that of the existing candidate then record that a candidate solution

now does exist. Set transfer parameters as ‘from: forward; to: candidate’, and

call ‘Transfer solution’ procedure (page 372). Store the cost of this new

candidate solution, and add each employee changed from the current solution

in this ‘forward’ solution to the set of employees changed in the ‘candidate’

solution.

14. If no forward extension is to be carried out and λE > 1, reduce value of λE by one

and return to Step 2 of this procedure; otherwise end this procedure.

391

C.3.2.10 Evaluate swap

1. Assume that an agency swap is permitted.

2. As per condition (6.150), check that agency crew are eligible to be assigned the block

of work. If not, then an agency swap is not permitted.

3. If an agency swap is permitted, then for all roles j′ ∈ J such that j′ 6= j (the role of

the selected block), do the following:

(a) If a swap is not yet to be carried out, clear the record of the swapping block

details (i.e. employee, role, start and end time, and duration), and record that

no block has been found, a block has not been found that starts too early, and

that a swap is currently allowed.

(b) For each time t from t = 1 to t = T while no swap is to be carried out, do the

following:

i. Record that no new block has yet been found.

ii. If no block has yet been found and t ∈ Θj′ in the ‘current’ solution and t

is not greater than the latest time that a swapping block can end, then do

the following:

A. If t is earlier than the noted earliest time that the swapping block can

start, record that the block is too early.

B. Check conditions (6.159) and (6.160) relating to the selected employee’s

location at time zero. If these are not satisfied, then record than the

block is too early.

C. As per eligibility condition (6.151), if selected employee i cannot per-

form role j′ at time t then record that a swap is not allowed.

D. Record that a new block has been found, and that this is an agency

block starting at time t and in role j′.

iii. Otherwise, if a block has been found and t ∈ Θj′ in the ‘current’ solution,

then do the following:

A. If t ∈ Ξj′ in the ‘current’ solution, then record the block as ending at

time t − 1 and calculate the length λ′B. If the block is not too early

and the swap is allowed then, in accordance with condition (6.152) if

λ′B ≤ wmaxi then call ‘Swap calculation’ procedure (page 396).

B. Also if t ∈ Ξj′ in the ‘current’ solution, then if t is not greater than the

latest time that a swapping block can end and a swap is not yet to be

carried out, update the found block details to be role j′ and starting

at time t and clear the record of block end time and length. If t is

392

earlier than the noted earliest time that the swapping block can start,

or conditions (6.159) and (6.160) relating to the selected employee’s

location at time zero are not satisfied, then record the block as too

early. If selected employee i cannot perform role j′ at time t (as per

eligibility condition (6.151)), then record that the swap is not allowed.

C. If t ∈ Ξj′ in the ‘current’ solution but t is later than the latest time a

swapping block can end or if a swap is already to be carried out, then

record that no block has been found.

D. If t /∈ Ξj′ in the ‘current’ solution, then if t is later than the latest

time a swapping block can end record that no block has been found. If

t is earlier (or equal to) this time, then if selected employee i cannot

perform role j′ at time t (as per eligibility condition (6.151)), record

that the swap is not allowed.

iv. Otherwise, if a block has been found and t /∈ Θj′ in the ‘current’ solution,

then do the following:

A. Record the block as ending at time t− 1 and calculate the length λ′B.

If the block is not too early and the swap is allowed then, in accordance

with condition (6.152) if λ′B ≤ wmaxi then call ‘Swap calculation’

procedure (page 396).

B. Record again that no block has been found.

C. If no swap is yet to be carried out, then reset the record of the swapping

block details (i.e. employee, role, start and end time, and duration), and

record that a block is not too early and that the swap is allowed.

(c) If a new block has been found, then record that a block has been found, and

reset to say that another new block has not yet been found.

(d) If t = T and a block has been found, then do the following:

i. As per eligibility condition (6.151), if selected employee i cannot perform

role j′ at time t then record that a swap is not allowed.

ii. Record the block as ending at time t and calculate the length λ′B. If the

block is not too early and the swap is allowed then, in accordance with

condition (6.152) if λ′B ≤ wmaxi then call ‘Swap calculation’ procedure

(page 396).

4. If the agency swap is permitted, and no swap is yet to be carried out, then record

details of a rest block: the employee is agency, the role is j′ = rest, and the start

and end times are identical to those of the selected block. Call ‘Swap calculation’

procedure (page 396).

393

5. For each regular employee i′ ∈ ER, do the following:

(a) Assume that employee i′ can be the swapping employee in this case.

(b) If i′ = i, then i′ is the selected employee so cannot also be the swapping em-

ployee.

(c) Check conditions (6.154), (6.155) and (6.156), relating respectively to eligibil-

ity, block length and required resting period at time zero, and also conditions

(6.157), (6.162) and (6.163) relating to the starting location of employee i′. If

any of these are not satisfied, then employee i′ cannot be the swapping employee.

6. For each regular employee i′ ∈ ER such that employee i′ is permitted to be the

swapping employee and i′ is not in the set of employees who have already been

examined for swapping with selected employee i, do the following:

(a) If a swap is not yet to be carried out, clear the record of the swapping block

details (i.e. employee, role and vessel, start and end time, and duration), and

record that no block has been found, a block has not been found that starts too

early, that a swap is currently allowed, and that the block found is so far a rest

block.

(b) For each time t from t = 1 to t = T while no swap is to be carried out, do the

following:

i. If ji
′
t 6= rest in the ‘current’ solution and t is not earlier than the earliest

time the swapping block can start and t is not later than the latest time a

swapping block can end, then record that the block is not a rest block.

ii. Record that no new block has yet been found.

iii. If no block has yet been found and ji
′
t 6= rest in the ‘current’ solution and t

is not greater than the latest time that a swapping block can end, then do

the following:

A. If t is earlier than the noted earliest time that the swapping block can

start, record that the block is too early.

B. Check conditions (6.159) and (6.160) relating to the selected employee’s

location at time zero. If these are not satisfied, then record than the

block is too early.

C. As per eligibility condition (6.151), if selected employee i cannot per-

form role j′ at time t then record that a swap is not allowed.

D. Record that a new block has been found, currently worked by employee

i′, starting at time t and in role j′ = ji
′
t (and the therefore the vessel is

also known).

394

iv. Otherwise, if a block has been found and ji
′
t 6= rest and ji

′
t 6= j′ in the

‘current’ solution, then should check whether roles ji
′
t and j′ take place on

the same vessel k, and proceed as follows:

A. If the roles do take place on the same vessel, then can consider this to

be the same block. If t is later than the latest time a block can end,

denote that no block has been found; otherwise, if employee i is not

eligible to carry out role ji
′
t at time t then record that this swap is not

allowed; otherwise, denote ji
′
t as the role of the block.

B. If they do not come from the same vessel, then identify (t − 1) as the

end time of the block and calculate block length. If the block length

is not greater than wmaxi and the block found does not start too early

and the swap is allowed, then call ‘Swap calculation’ procedure (page

396).

C. If they do not come from the same vessel, and t is not later than the

latest time a block can end, and we are not yet to carry out a swap,

then should record details of the new block starting. Record the new

role as j′ = ji
′
t (and herefore the vessel is also known) and start time t,

and clear the record of end time and block length. If t is earlier than

the noted earliest time that the swapping block can start, record that

the block is too early; otherwise, check conditions (6.159) and (6.160)

relating to the selected employee’s location at time zero and if these

are not satisfied, then record than the block is too early; otherwise the

block is not too early. As per eligibility condition (6.151), if selected

employee i cannot perform role j′ at time t then record that a swap is

not allowed; otherwise, the block is allowed.

D. If they do not come from the same vessel, but either t is later than the

latest end time or we now have a swap to carry out, then record than

no block has been found.

v. Otherwise, if a block has been found and ji
′
t = j′ in the ‘current’ solution,

then do the following:

A. If t is later than the latest time the swapping block can end, then record

that no block has been found.

B. Otherwise, if the swap is currently allowed and selected employee i

cannot perform role j′ at time t (as per eligibility condition (6.151)),

record that the swap is not allowed.

vi. Otherwise, if a block has been found and ji
′
t = rest in the ‘current’ solution,

then do the following:

395

A. Record the block as ending at time t− 1 and calculate the length λ′B.

If the block is not too early and the swap is allowed then, in accordance

with condition (6.152) if λ′B ≤ wmaxi then call ‘Swap calculation’

procedure (page 396).

B. Record again that no block has been found.

C. If no swap is yet to be carried out, then reset the record of the swapping

block details (i.e. employee, role and vessel, start and end time, and

duration), and record that a block is not too early and that the swap is

allowed.

vii. If a new block has been found, then record that a block has been found,

and reset to say that another new block has not yet been found.

viii. If t = T and a block has been found, then do the following:

A. As per eligibility condition (6.151), if selected employee i cannot per-

form role j′ at time t then record that a swap is not allowed.

B. Record the block as ending at time t and calculate the length λ′B. If

the block is not too early and the swap is allowed then, in accordance

with condition (6.152) if λ′B ≤ wmaxi then call ‘Swap calculation’

procedure (page 396).

(c) If no swap is yet to be carried out and there has been a rest block found, then

record block details as a rest block on the roster of employee i′, starting and

ending at the same time as the selected block, and call ‘Swap calculation’

procedure (page 396).

C.3.2.11 Swap calculation

1. Clear the list of employees whose rosters have changed and the list of roles which

have had their agency assignments changed from the current solution.

2. Copy all rosters Υi′′ for all i′′ ∈ ER and agency sets Θj′′ for all j′′ ∈ J from the

‘current’ solution into those designated for the ‘swap’ solution.

3. For selected employee i, clear the contents of roster Υi for the ‘swap’ solution, and

add i to the set of employees whose roster has changed from the current solution.

4. For each time t from t = 1 to t = T , do the following:

(a) If t is earlier than the start of both the selected block and swapping block, i.e.

t < tS and t < t′S , then do the following:

396

i. If t′S < tS and t ≥ (t′S−ρi) and jit 6= rest in the ‘current’ solution, then set

jit = rest in the ‘swap’ solution, add time t to agency set Θjit
, and record role

jit as having had its agency assignments changed from the current solution.

ii. Otherwise, jit takes the same value in the ‘swap’ solution as for the ‘current’

solution.

(b) Otherwise, if t is within the time of the swapping block, i.e. if t′S ≤ t ≤
(t′S + λ′B − 1), then set jit = j′ in the ‘swap’ solution. If jit 6= rest in the

‘current’ solution and either t < tS or t > (tS + λB − 1), i.e. it is outwith the

limits of the originally selected block, then add time t to agency set Θjit
, and

record role jit as having had its agency assignments changed from the current

solution.

(c) Otherwise, if t is within the time of the selected block, i.e. if tS ≤ t ≤ (tS +

λB − 1), then set jit = rest in the ‘swap’ solution.

(d) Otherwise, if (t′S + λ′B − 1) > (tS + λB − 1) and t ≤ (t′S + λ′B − 1) + ρi and

jit 6= rest in the ‘current’ solution, then set jit = rest in the ‘swap’ solution, add

time t to agency set Θjit
, and record role jit as having had its agency assignments

changed from the current solution.

(e) Otherwise, jit takes the same value in the ‘swap’ solution as for the ‘current’

solution.

5. If the swapping employee i′ is not an agency employee, then clear the contents of

roster Υi′ for the ‘swap’ solution, and add i′ to the set of employees whose roster has

changed from the current solution. Then,

6. If the swapping employee i′ is not an agency employee, then for each time t from

t = 1 to t = T , do the following:

(a) If t is earlier than the start of both the selected block and swapping block, i.e.

t < tS and t < t′S , then do the following:

i. If t ≥ (tS − ρi′) and ji
′
t 6= rest in the ‘current’ solution, and either tS < t′S

or j′ = rest, then set ji
′
t = rest in the ‘swap’ solution, add time t to agency

set Θ
ji

′
t

, and record role ji
′
t as having had its agency assignments changed

from the current solution.

ii. Otherwise, ji
′
t takes the same value in the ‘swap’ solution as for the ‘current’

solution.

(b) Otherwise, if t is within the time of the selected block, i.e. if tS ≤ t ≤ (tS +

λB − 1), then set ji
′
t = j in the ‘swap’ solution. If ji

′
t 6= rest in the ‘current’

solution and either t < t′S or t > (t′S + λ′B − 1), i.e. it is outwith the limits of

397

the swapping block, then add time t to agency set Θ
ji

′
t

, and record role ji
′
t as

having had its agency assignments changed from the current solution.

(c) Otherwise, if t is within the time of the swapping block, i.e. if t′S ≤ t ≤
(t′S + λ′B − 1), then set ji

′
t = rest in the ‘swap’ solution.

(d) Otherwise, if t ≤ (tS + λB − 1) + ρi′ and ji
′
t 6= rest in the ‘current’ solution and

either (tS + λB − 1) > (t′S + λ′B − 1) or j′ = rest, then set ji
′
t = rest in the

‘swap’ solution, add time t to agency set Θ
ji

′
t

, and record role ji
′
t as having had

its agency assignments changed from the current solution.

(e) Otherwise, ji
′
t takes the same value in the ‘swap’ solution as for the ‘current’

solution.

7. If swapping employee i′ is an agency employee, then do the following:

(a) For all time points in the selected block, i.e. for all t from t = tS to t =

(tS + λB − 1), add time point t to the agency set Θj .

(b) Record role j as having had its agency assignments changed from the current

solution.

(c) If j′ 6= rest, then for all time points in the swapping block, i.e. for all t from

t = t′S to t = (t′S + λ′B − 1), remove time point t from the agency set Θj′ , and

record role j′ as having had its agency assignments changed from the current

solution.

8. Set tabu check parameter to ’swap’ and call ‘Check tabu’ procedure (page 401).

9. If this ‘swap’ solution is found to be tabu, increase the count of tabu solutions by

one; otherwise, do the following:

(a) Set calculation parameter to ‘swap’, and call ‘Calculate cost’ procedure (page

372).

(b) If the solution is not feasible, end this procedure; otherwise, continue.

(c) Calculate the cost difference between this solution and the current solution.

(d) If the total cost of this solution is less than that of the solution type defined

in section 6.5.4, then note that this swap should be carried out, and reset the

number of non-reducing solutions to zero. Denote the set of employees to be

updated as the set of employees changed from the current solution, and call

‘Update swaps and changes’ procedure (page 403).

(e) Otherwise, if no ‘candidate’ solution exists or the cost of the ‘swap’ solution is

less than that of the existing candidate then record that a candidate solution

398

now does exist. Set transfer parameters as ‘from: swap; to: candidate’, and call

‘Transfer solution’ procedure (page 372). Store the cost of this new candidate

solution, and record the employees changed in the ‘candidate’ solution as the

selected employee i along with the swapping employee i′ if this is not an agency

employee.

C.3.2.12 Random kick

1. Record that no update has yet been done.

2. Clear the list of employees whose rosters have changed and the list of roles which

have had their agency assignments changed from the current solution.

3. Select at random a regular employee i′ ∈ ER and a role j ∈ J , with each employee

and role having equal probability of being selected.

4. Select a block length λB from the range (1, wmaxi), with an equal probability of

selecting any integer value in that range.

5. Select a block start time tS from the range (1, (T−λB+1)), with an equal probability

of selecting any integer value in that range.

6. The block end time can therefore be calculated as being (tS + λB − 1).

7. Check that kick feasibility conditions (6.154) and (6.156), relating respectively to

eligibility and initial rest periods, and also conditions (6.157), (6.162) and (6.163)

relating to rest periods and the employee’s starting location, are satisfied. If any of

the conditions are not satisfied (i.e. the proposed kick is infeasible), skip to the final

step of this procedure; otherwise, continue.

8. Copy all agency sets Θj′ for all j′ ∈ J from the ‘current’ solution into those designated

for the ‘kick’ solution.

9. For each time t from from t = tS to t = (tS +λB − 1), if t is in the set Θj (where j is

the role selected for the kick) for the ‘kick’ solution then remove it from the set and

record role j as having the agency assignment changed from the current solution.

10. For each employee i ∈ ER such that i 6= i′, do the following:

(a) Clear the contents of roster Υi for the ‘kick’ solution.

(b) If employee i starts on board the vessel on which the selected role j takes place,

then set the initial rest count equal to ρi; otherwise set the initial rest count to

zero.

399

(c) For each time t from from t = 1 to t = T , do the following:

i. If t = tS − 1 and in the ‘current’ solution jti = j, then set jti for the ‘kick’

solution also equal to j and set the rest count equal to ρi.

ii. Otherwise, if t = tS then, if in the ‘current’ solution jti = j then set jti = rest

for the ‘kick solution’, record employee i as having had their roster changed

from the current solution, and reduce the rest count value by one; otherwise

(i.e. if jti 6= j in the ‘current’ solution), jti takes the same value in the ‘kick’

solution as the ‘current’ solution, and the rest count should be reset to zero.

iii. Otherwise, if t is within the generated block, i.e. tS < t ≤ (tS + λB − 1),

then if in the current solution jti = j or jti = rest then set jti = rest for the

‘kick’ solution and reduce the rest count value by one, and if jti = j in the

current solution then also record employee i as having been changed from

the current solution. If jti has a different value in the current solution then

if the rest count value is non-zero, then set jti = rest, add time t to agency

set Θjti
and record this role as having changed from the current solution,

and reduce the rest count value by one; otherwise, jti takes the same value

for the ‘kick’ solution as for the ‘current’ solution.

iv. Otherwise, if t > (tS + λB − 1) and jti 6= rest in the ‘current’ solution and

the rest count value is non-zero, then set jti = rest, add time t to agency

set Θjti
and record this role as having changed from the current solution,

and reduce the rest count value by one.

v. Otherwise, jti takes the same value for the ‘kick’ solution as for the ‘current’

solution.

11. For the employee selected for the kick, i′, do the following:

(a) Clear the contents of roster Υi′ for the ‘kick’ solution.

(b) For each time t from from t = 1 to t = T , do the following:

i. If t is more than the minimum rest period earlier than the start of the block,

i.e. if t < tS − ρi′ , then jti′ takes the same value for the ‘kick’ solution as

for the ‘current’ solution.

ii. Otherwise, if t < tS then jti′ = rest for the ‘kick’ solution. If jti′ 6= rest

in the ‘current’ solution, then add t to the agency set Θjt
i′

for the ‘kick’

solution and record role jti′ as having its agency allocation changed from

the current solution.

iii. Otherwise, if t ≤ (tS +λB−1) then jti′ takes the value of the generated role

j for the ‘kick’ solution. If jti′ 6= rest and jti′ 6= j in the ‘current’ solution,

400

then add t to the agency set Θjt
i′

for the ‘kick’ solution and record role jti′

as having its agency allocation changed from the current solution.

iv. Otheriwse, if t ≤ (tS+λB−1)+ρi′ then set jti′ = rest for the ‘kick’ solution.

If jti′ 6= rest in the ‘current’ solution, then add t to the agency set Θjt
i′

for

the ‘kick’ solution and record role jti′ as having its agency allocation changed

from the current solution.

v. Otherwise, jti′ takes the same value for the ‘kick’ solution as for the ‘current’

solution.

12. Set tabu check parameter to ’kick’ and call ‘Check tabu’ procedure (page 401).

13. If this ‘kick’ solution is found to be tabu, increase the count of tabu solutions by one;

otherwise, do the following:

(a) Set calculation parameter to ‘kick’, and call ‘Calculate cost’ procedure (page

372).

(b) If the solution is not feasible, skip to the final step of this procedure; otherwise,

continue.

(c) Record the rosters Υi for all i ∈ ER and agency sets Θj for all j ∈ J for the

‘current’ solution as now being the ‘tabu’ solution.

(d) Set transfer parameters as ‘from: kick; to: current’, and call ‘Transfer solu-

tion’ procedure (page 372).

(e) Record the last time a kick was carried out as being the current iteration, record

than an update has been done, and reset the number of non-reducing solutions

to zero.

(f) Call ‘Compare to best’ procedure (page 402).

(g) Denote the set of employees to be updated as the set of employees changed from

the current solution, and call ‘Update swaps and changes’ procedure (page

403).

14. If no update has been done, return to Step 2 of this procedure; otherwise end this

procedure.

C.3.2.13 Check tabu

1. Assume that the solution to be checked is tabu.

2. If the tabu check parameter does not refer to a valid solution type, then end this

procedure now; otherwise, continue.

401

3. For each regular employee i ∈ ER while the solution is still considered tabu, do the

following:

(a) Compare roster Υi for the solution type referred to by the tabu check parameter

against the equivalent roster for the ‘tabu’ solution. If there is any difference

between these rosters, then the solution is not tabu.

4. For each role J ∈ J while the solution is still considered tabu, do the following:

(a) Compare agency allocation set Θj for the solution type referred to by the tabu

check parameter against the equivalent set for the ‘tabu’ solution. If there is

any difference between these sets, then the solution is not tabu.

C.3.2.14 Compare to best

1. If the cost of the ‘current’ solution is equal to that of the ‘best’ solution found so far,

then do the following:

(a) Assume that this is a new best solution.

(b) While this is still considered to be a new best solution, for each of the equal

best solutions found so far, do the following:

i. Assume that the ‘current’ solution is the same as the equal best solution

under consideration.

ii. For each regular employee i ∈ ER while these solutions are still considered

to be the same, do the following:

A. Compare roster Υi for the ‘current’ solution against the equivalent roster

for the equal best solution under consideration. If there is any difference

between these rosters, then these solutions are not the same.

iii. For each role J ∈ J while these solutions are still considered to be the same,

do the following:

A. Compare agency allocation set Θj for the ‘current’ solution against the

equivalent set for the equal best solution under consideration. If there

is any difference between these sets, then these solutions are not the

same.

iv. If the ‘current’ solution is the same as the equal best solution under con-

sideration, then it is not a new best solution.

(c) If the ‘current’ solution is a new best solution then increase by one the count

of equal best solutions found, and store all rosters Υi and sets Θj from the

‘current’ solution as describing an additional equal best solution.

402

2. Otherwise, if the cost of the ‘current’ solution is less than the cost of the best recorded

solution found so far, do the following:

(a) Set transfer parameters as ‘from: current; to: best’, and call ‘Transfer solu-

tion’ procedure (page 372).

(b) Reset the number of equal best solutions found to 1, and store all rosters Υi

and sets Θj from the ‘current’ solution as describing this equal best solution.

(c) Record the iteration number as the time at which the best solution was found.

C.3.2.15 Update swaps and changes

1. For all regular employees i ∈ ER which are in the set of employees to be updated, do

the following:

(a) Clear the list of employees who have been examined for swapping blocks with

employee i.

(b) For all regular employees i′ ∈ ER who are not in the set of employees to be

updated, if employee i is in the set of employees who have been examined for a

swap with employee i′ then remove employee i from this set.

2. If the time of the last kick is the current iteration time (i.e. a kick has just been

carried out), then for employees i ∈ ER denote the last time employee i’s schedule

changed as the current iteration; otherwise, for all employees i in the set of employees

to be updated denote the last time their schedule has been changed as the current

iteration.

C.4 Description of Heuristic Initial Solution algorithm

Here we give a step-by-step procedure for the Heuristic Initial Solution algorithm, as intro-

duced in 6.6.1. Note that the full code of the algorithm as implemented in FICO Xpress

can be found in appendix section E.2.6.

C.4.1 Main programme

1. Declare all required variables, and read in the data (including the existing schedule).

2. Call ‘Initialisation’ procedure (page 404).

3. Set calculation parameter to ‘initial’, and call ‘Calculate cost’ procedure (page

406). Note that this cost is for reference purposes only.

403

4. Set transfer parameter as ‘from: initial; to: current’, and call ‘Transfer solution’

procedure (page 406).

5. Call ‘Initial feasibility check’ procedure (page 405).

6. Call ‘Sort employee list’ procedure (page 405).

7. Call ‘Sort role list’ procedure (page 406).

8. Set iteration count equal to zero. While iteration count ≤ 20 and number of vacancies

< 0, do the following:

(a) Call ‘Find vacancies’ procedure (page 407)

(b) Increment iteration count.

9. Set checking parameter as ‘current’, and call ‘Check feasibility’ procedure (page

414).

10. If the solution is infeasible, the user may wish to re-run the programme from Step 6

above (i.e. with re-randomized lists); or if the infeasibility arises because of unfilled

vacancies, the user may wish to resolve these by allocating agency crew to all vacant

positions (possibly resulting in an expensive solution).

11. Output the details of the solution found, and for testing purposes details of the test

run.

12. End of algorithm.

C.4.2 Sub-Programmes

The sub-procedures used are detailed here, approximately following the order that the

algorithm would require them during execution.

C.4.2.1 Initialisation

1. Initially, assume all roles are vacant - set vacancy indicator = 1 for all roles at all

times; and record that no assignments of the solution are yet ‘fixed’.

2. For each employee i ∈ E, role j ∈ J and time t ∈ {1, . . . , T} do the following:

(a) If i is assigned to j at time t in the existing schedule and is still eligible to

carry this out, then record this assignment as part of the ‘initial’ and ‘current’

solutions for this algorithm, and record that role j at time t is not vacant;

otherwise, record that i is not assigned to role j at time t in either the ‘initial’

or ‘current’ solutions.

404

(b) If i is not eligible to perform role j at time t, then record that their assignment

(or ‘non-assignment’) to this role at this time is ‘fixed’.

3. Count the number of role-time pairs which are vacant in the current solution.

4. Record all employees i ∈ ER and all roles j ∈ J as having had their schedules changed

since the last iteration.

C.4.2.2 Initial feasibility check

1. Clear the list of employees whose rosters have changed and the list of roles which

have had their agency assignments changed since the last cost calculation.

2. Examine the starting indicator sik for all employees i ∈ ER and vessels k ∈ K. If

i starts on board vessel k, must ensure that rest periods which may relate to this

starting position are respected. Therefore for each i and k such that sik = 1, do the

following:

(a) Repeat for all j ∈ J .

(b) If j /∈ Vk, or if j ∈ Vk and i is not eligible to perform role j at time t = 1 (i.e.

eij1 = 0), then must ensure the minimum rest period length for employee i is

kept clear. Therefore, for all times t such that 1 ≤ t ≤ ρi, do the following:

i. If employee i is assigned to role j at time t, then: remove this assignment

from the current solution; record role j at time t as vacant; increase the

count of vacancies by one; and record employee i as having their schedule

changed.

ii. Fix the assignment (or ‘non-assignment’) of employee i to role j at time t.

3. If any employee’s schedule has been changed, then set calculation parameter to ‘cur-

rent’, call ‘Calculate cost’ procedure (page 406), and then call ‘Show updates’

procedure (page 414).

C.4.2.3 Sort employee list

This procedure is essentially the same as that used for the main heuristic algorithm (see

page 371), with the order parameter set to ‘random’. The only exception is that the short

ordered list is not required by this algorithm, therefore we can disregard mention of it (in

Step 2 and Step 4(d) of the procedure).

405

C.4.2.4 Sort role list

This procedure performs the same function for roles as the ‘Sort employee list’ procedure

(above) for employees. We therefore do not give details here, and simply observe that this

procedure can be carried out by substituting ‘roles’ for ‘employees’, and index j for index

i, in the ‘Sort employee list’ procedure above. Note that full details of the FICO Xpress

code used can be found in the appendix in section E.2.6.

C.4.2.5 Transfer solution

This procedure is virtually identical to the that used for the main heuristic algorithm (see

page 372), except that in addition to the quantities listed in Step 2, we record the number

of changes associated with each roster Υi and agency allocation set Θj which must be

copied along with the associated cost.

C.4.2.6 Calculate cost

This procedure is largely the same as that used in the main heuristic algorithm (see page

372), however the following modifications must be made in this case:

• At Step 4(a) we must also copy the number of changes associated with roster Υi,

as well as the cost.

• At Step 4(b) we must also clear the number of changes associated with roster Υi,

as well as the cost.

• We must add a Step 4(g), where we should sum the values of the change variables

for allocation (x±ijt), and record this as the number of changes associated with roster

Υi in this ‘evaluating’ solution.

• At Step 5(a) we must also copy the number of changes associated with allocation

set Θj , as well as the cost.

• At Step 5(b) we must also clear the number of changes associated with set Θj , as

well as the cost.

• We should disregard Step 5(e) and Step 5(f) for this algorithm.

• We must add a Step 5(j) vii., where we should add the value of the change variable

for allocation (x±m+1,jt) to the number of changes associated with allocation set Θj

in this ‘evaluating’ solution.

406

• At Step 6 in addition to defining the total cost, we should also define the total

number of changes in this ‘evaluating’ solution to be the sum of the number of

changes associated with each roster Υi for all i ∈ ER and each agency allocation set

Θj for all j ∈ J .

• Note that Step 8 is now redundant, since there are no ‘backward’, ‘forward’, ‘swap’

or ‘kick’ solutions for this algorithm, and so this step can be disregarded.

Note that full details of the new procedure as implemented in FICO Xpress can be found

in the appendix in section E.2.6.

C.4.2.7 Find vacancies

1. Select the next role j on the randomized list of roles.

2. Clear the record of any previously identified block (i.e. role, vessel, start time, end

time and length), record that no block has yet been found, and record that no

modification has yet been made.

3. For each time t from t = 1 to t = T , do the following:

(a) Record that no new block has been found.

(b) If no modification has yet been made, no block has yet been found, and role j

is vacant at time t, then record a new block as having been found. Record the

task j, the associated vessel k, and the start time tS = t of this block.

(c) Otherwise, if no modification has yet been made, a block has already been found

and role j is not vacant at time t, then we have identified the end of a block.

Record (t− 1) as the end time of the block, calculate block length λB = t− tS

and call ‘Repair vacancies’ procedure (page 408). Record that a modification

has now been made, reset the records of the block (i.e. start time, end time,

length, role and vessel), and record that no block has been found at this stage.

(d) If a new block is recorded as having been found, then update record to reflect

that a block has been found and that no new block has been found.

(e) If t = T , no modification has yet been made, and a block has been found, then

record this block as ending at time T and calculate block length λB = T−tS+1.

Call ‘Repair vacancies’ procedure (page 408), and record that a modification

has now been made.

4. If all roles have been examined, end this procedure; otherwise, return to Step 1.

407

Note that this procedure is similar to the ‘Find usable block’ procedure in the main

heuristic algorithm (see page 382), except that it looks for blocks which are not currently

assigned to any employee rather than blocks on an employee’s roster. Since it deals with

only one role at a time, it is a little less complex than the ‘Find usable block’ procedure.

C.4.2.8 Repair vacancies

1. Record that no update has yet been done.

2. We must identify the employees who are assigned to the role j immediately before

and after the vacant block. Firstly clear any previous record of these, and then for

all employees i ∈ E do the following:

(a) If tS > 1, then if x̂ij,(tS−1) = 1 then record employee i as employee ib who works

in role j before the vacant block.

(b) If tS + λB − 1 < T , then if x̂ij,(tS+λB) = 1 then record employee i as employee

ia who works in role j after the vacant block.

3. Clear the list of employees whose rosters have changed and the list of roles which

have had their agency assignments changed since the last cost calculation, and record

that we have not decided to allocate the block to the employees assigned to the role

immediately before or after the block.

4. If λB = T (i.e. the block is the length of the entire planning horizon), then should

assign the block to agency crew. For all t ∈ {1, . . . , T}, assign agency crew to role

j in the current solution and denote this assignment as fixed. Record that role j is

no longer vacant at any time t, and for each t reduce the count of vacancies by one.

Finally, add role j to the list of roles whose agency assignments have changed, record

that an update has been done.

5. Otherwise, if the block ends at the end of the planning horizon (i.e. tS +λB−1 = T)

and an employee ib has been identified as working before the block, then look at

feasibility of assigning this employee to the vacant block. If the employee before is

agency, then record that we should assign this employee; otherwise, must check that

the following are satisfied:

• The block length is less than the maximum working period of employee ib, i.e.

λB < wmax
ib

.

• Employee ib can perform the vacant block without working a longer consecu-

tive period that their permitted maximum, which can be checked by ensuring

l̂(wmax
ib
−λB+1),ib,j,(tS−1) = 0 in the current solution.

408

• The employee is not assigned to any other role for the duration of the block,

i.e. x̂ib,j′,t) = 0 in the current solution for all j′ ∈ J and t such that tS ≤ t ≤
(tS + λB − 1).

• Employee ib is eligible to carry out role j for every period t during the block,

and their assignment (or ‘non-assignment’) to this role at these times has not

previously been fixed.

If these conditions are all satisfied, then record that we should assign this employee.

6. Otherwise, if tS = 1 and an employee ia has been identified as working immediately

after the vacant block, then look at the feasibility of assigning this employee to the

vacant block. If this is an agency employee, then record that we should assign this

employee; otherwise, must check that the following are satisfied:

• The rest period required by ia at the start of the planning period is ria,0 = 0.

• The employee is not assigned to any other role for the duration of the block,

i.e. x̂ia,j′,t) = 0 in the current solution for all j′ ∈ J and t such that tS ≤ t ≤
(tS + λB − 1).

• Employee ia is eligible to carry out role j for every period t during the block,

and their assignment (or ‘non-assignment’) to this role at these times has not

previously been fixed.

If these conditions are all satisfied, then record that we should assign this employee.

7. Otherwise, the vacant block is at neither the very start nor very end of the planning

horizon, potentially with employees both before and after who could be assigned to

it. In this case, we must proceed as follows:

(a) If an employee ib has been identified as working before the block, and this is not

an agency employee, then should carry out the same checks as described in Step

5. If these are all satisfied, then record that we should assign this employee.

(b) If we have not recorded that we should assign employee ib and we have identified

an agency employee ia = m+ 1 as working after the block then record that we

should assign this employee to the vacant block. If we have not recorded that

we should assign employee ib and we have identified an employee ia ∈ ER as

working after the block then (similarly to Step 6) we should check the following:

• Either the block start time is tS ≤ ρia and tS > ria,0, and x̂ia,j′,t) = 0 in

the current solution for all j′ ∈ J and t such that 1 ≤ t ≤ (tS + λB − 1); or

block start time is tS > ρia and x̂ia,j′,t) = 0 in the current solution for all

j′ ∈ J and t such that (tS − ρia) ≤ t ≤ (tS + λB − 1).

409

• Employee ia is eligible to carry out role j for every period t during the block,

and their assignment (or ‘non-assignment’) to this role at these times has

not previously been fixed.

If these conditions are all satisfied, then record that we should assign this em-

ployee.

(c) If we have not recorded that we should assign employee ia, and the employee

working before the block is an agency employee (i.e. ib = m + 1), then record

that we should assign employee ib.

8. If the vacant block is at neither the very start nor very end of the planning horizon,

and we have not during Step 7 recorded that either the employee before or the

employee after should be assigned to the block, then may wish to remove employee

ib or ia from their assignment. Proceed as follows:

(a) Starting immediately after the vacant block, i.e. at time t = (tS + λB), count

the number of consecutive periods λBa for which employee ia is assigned to role

j and that this assignment is not fixed. Once a time t ≥ (tS +λB) is found such

that x̂ia,j,t) = 0 in the current solution, or that the assignment of ia to role j at

time t is fixed, the count should be stopped.

(b) Starting immediately before the vacant block, i.e. at time t = (tS − 1), count

the number of consecutive periods λBb for which employee ib is assigned to role

j and that this assignment is not fixed. Once a time t ≤ (tS − 1) is found such

that x̂ib,j,t) = 0 in the current solution, or that the assignment of ib to role j at

time t is fixed, the count should be stopped.

(c) If λB ≤ 2 or λBb ≤ 2 or λBa ≤ 2 or (λB + λBb) ≤ 4 or (λB + λBa) ≤ 4, then

continue with this step; otherwise, move on to Step 9.

(d) If λBb < λBa , and λBb > 0, then we will remove the assignment of employee ib

before the vacant block (this creates a larger vacant block which will be more

cost-effective to assign to another employee). To do this, do the following:

i. For all t such that (tS − λBb) ≤ t ≤ (tS − 1), set x̂ib,j,t) = 0 for the current

solution and record this assignment (or ’non-assignment’) as fixed. Record

role j as vacant during each of these time periods, and for each t increase

the count of vacancies by one.

ii. For all t such that t ≤ rib,0 and if tS−λBb all t ≤ ρib , look at the assignment

of employee ib to any role. If x̂ib,j′,t) = 1 in the current solution for any

j′ ∈ J for any of these t, then set x̂ib,j′,t) = 0 and record this as fixed, record

role j′ as vacant at time t and increment the count of vacancies by one.

410

iii. Add employee ib to the set of employees whose schedules have been changed,

and record that at update has now been done.

(e) Otherwise, if λBa > 0, then we will remove the assignment of employee ia after

the vacant block as follows:

i. For all t such that (tS +λB) ≤ t ≤ (tS +λB +λBa −1), set x̂ia,j,t) = 0 for the

current solution and record this assignment (or ’non-assignment’) as fixed.

Record role j as vacant during each of these time periods, and for each t

increase the count of vacancies by one.

ii. Add employee ia to the set of employees whose schedules have been changed,

and record that at update has now been done.

9. If we have indicated that employee ib should be assigned the vacant block, then we

should implement this change as follows:

(a) For all time points t during the vacant block, i.e. in tS ≤ t ≤ (tS + λB − 1), set

x̂ib,j,t) = 1 for the current solution and record this assignment as fixed. Record

that role j is no longer vacant at time t, and for each of these times t reduce

the count of vacancies by one.

(b) If ib = m+ 1 (i.e. it is an agency employee), then add role j to the set of roles

for which the agency assignments have changed.

(c) Otherwise, add employee ib to the set of employees whose schedules have been

changed, and ensure that the employee’s minimum rest period after the block

is respected. This means that for all weeks t in the range (tS + λB) ≤ t ≤
(tS + λB + ρib,0) such that t ≤ T , we must clear any assignments of employee

ib. If x̂ib,j′,t) = 1 in the current solution for any j′ ∈ J for any of these t, then

set x̂ib,j′,t) = 0 and record this as fixed, record role j′ as vacant at time t and

increment the count of vacancies by one.

10. Otherwise, if we have indicated that employee ia should be assigned the vacant block,

then we should implement this change as follows:

(a) For all time points t during the vacant block, i.e. in tS ≤ t ≤ (tS + λB − 1), set

x̂ia,j,t) = 1 for the current solution and record this assignment as fixed. Record

that role j is no longer vacant at time t, and for each of these times t reduce

the count of vacancies by one.

(b) If ia = m+ 1 (i.e. it is an agency employee), then add role j to the set of roles

for which the agency assignments have changed.

(c) Otherwise, add employee ia to the set of employees whose schedules have been

changed, and ensure that the employee’s maximum working period is respected.

411

To do this, set the consecutive working count equal to λB, and then for each

time t in the range (tS + λB) ≤ t ≤ T do the following:

i. If x̂ia,j,t) = 1 in the current solution and the consecutive work count is less

than wmaxia
, then increase the consecutive working count by one.

ii. Otherwise, if x̂ia,j,t) = 1 in the current solution and the consecutive work

count is equal to wmaxia
, then must set x̂ib,j,t) = 0, record this as fixed, record

role j as vacant at time t, and increment the count of vacancies by one.

iii. Otherwise, we should reset the consecutive work count to zero.

11. Otherwise, if no update has yet been done we must look at the possibility of assigning

some other employee. This should be done as follows:

(a) Record that no candidate yet exists and clear the cost and record of employee

ic associated with this candidate solution.

(b) For all employees i in the ordered list, such that i 6= ib and i 6= ia, do the

following:

i. Clear the list of employees whose rosters have changed and the list of roles

which have had their agency assignments changed since the last cost calcu-

lation.

ii. Set quantity ‘earliest’ equal to the maximum of (tS − ρi) and 1.

iii. Set quantity ‘latest’ equal to the minimum of (tS + λB + ρi − 1) and T .

iv. Check whether the following are true:

• Employee i has no assignments from the ‘earliest’ period until the end

of the vacant block in the current solution.

• Employee i is eligible to carry out the vacant block in all periods t

from tS ≤ t ≤ (tS + λB − 1), and their current assignment (or ‘non-

assignment’) to this role in these periods has not been fixed.

• Block length λB ≤ wmaxi , and block start tS > ri0.

• Either:

– tS > 1, and either sik = 0 for all vessels k ∈ K or tS > ρi; or

– wi0 ≤ (wmaxi − λB), and sik = 0 for all vessels k ∈ K such that the

vacant role j /∈ Vk.
• Either ‘latest’ = T , or the employee i has no assignments from the end

of the vacant block until the week ‘latest’ to which their assignment is

fixed.

If these statements all hold, then continue with this step for employee i; oth-

erwise, this is the end of Step 11(b) for this employee. If these statements

412

all hold, then evaluate the cost of assigning the vacant block employee i as

follows:

A. Set transfer parameter as ‘from: current; to: trial’, and call ‘Transfer

solution’ procedure (page 406).

B. For all time points t during the block, i.e. in tS ≤ t ≤ (tS + λB − 1),

assign employee i to role j by setting x̂ijt) = 1 in this trial solution.

C. For all time points t within the minimum rest period after the block,

i.e. in (tS + λB) ≤ t ≤ (tS + λB + ρi − 1), set x̂ij′t) = 0 in this trial

solution for all roles j′ ∈ J .

D. Add employee i to the set of employees whose schedules have been

changed, set calculation parameter to ‘trial’ and call ‘Calculate cost’

procedure (page 406).

E. If a candidate does not currently exist, record that a candidate now

does exist, store employee i as associated candidate employee ic and

store the cost of this trial solution as the candidate cost.

F. Otherwise, if this trial solution has a lower cost than the current can-

didate cost, then store employee i as the candidate employee ic and

replace the existing candidate cost with the cost of this trial solution.

(c) If no candidate yet exists, record that a candidate now does exist and set ic =

m+ 1, i.e. agency crew.

(d) Otherwise, must evaluate the cost of assigning agency crew as follows:

i. Set transfer parameter as ‘from: current; to: trial’, and call ‘Transfer

solution’ procedure (page 406).

ii. Clear the list of employees whose rosters have changed and the list of roles

which have had their agency assignments changed since the last cost calcu-

lation.

iii. For all time points t during the block, i.e. in tS ≤ t ≤ (tS + λB − 1), assign

agency crew to role j by setting x̂m+1,j,t) = 1 in this trial solution.

iv. Add role j to the set of roles for which the agency assignments have changed,

set calculation parameter to ‘trial’ and call ‘Calculate cost’ procedure

(page 406).

v. If the trial solution has a lower cost than the current candidate cost, then

set candidate employee ic = m+ 1 and replace the existing candidate cost

with the cost of this trial solution.

(e) Clear the list of employees whose rosters have changed and the list of roles which

have had their agency assignments changed since the last cost calculation.

413

(f) For all time points t during the block, i.e. in tS ≤ t ≤ (tS + λB − 1), assign the

candidate employee ic to role j by setting x̂ijt) = 1 in the current solution and

denote this assignment as fixed. Record that that role j is no longer vacant at

time t, and reduce the count of vacancies by one for each week of the block.

(g) If ic = m + 1, add role j to the set of roles for which the agency assignments

have changed.

(h) Otherwise, add employee ic to the set of employees whose schedules have been

changed, and clear any assignments employee ic may have within the minimum

rest period after the block has finished. To do this, search for any time t in

(tS + λB) ≤ t ≤ (tS + λB + ρic − 1) and any role j′ ∈ J such that x̂ic,j′,t) = 1 in

the current solution. If any are found, set x̂ic,j′,t) = 0 in the current solution,

record role j′ as vacant in period t, and increase the count of vacancies by one.

12. Set calculation parameter to ‘current’, call ‘Calculate cost’ procedure (page 406),

and then call ‘Show updates’ procedure (page 414).

C.4.2.9 Check feasibility

This procedure is almost identical to that used in the main heuristic algorithm (see page

377). Two minor modifications must be made for this algorithm:

• Because the ‘Check feasibility’ procedure can be called independently of the ‘Cal-

culate cost’ procedure in the heuristic initial solution algorithm, we must add a

Step 1A between Step 1 and Step 2 to determine whether the checking parameter

is a valid solution type. If it is not, then should end this procedure now; otherwise,

continue.

• We can disregard Step 14, as this is no longer required.

C.4.2.10 Show updates

This procedure gives output showing which assignments have been updated at the most

recent step. No quantities are calculated here and no schedule modifications are made,

therefore no details are given here. The code implemented in FICO Xpress can be found

in the appendix in section E.2.6.

414

Appendix D

Additional histograms for

Time-Windows results

Here we give additional histograms relating to the results of tests on the solution meth-

ods for the Time-Windows formulation of the problem, as discussed in section 6.8. This

comprises section D.1 with additional histograms relating to the Heuristic Initial solution

approach, and section D.2 which gives a more detailed breakdown of the results for the

main Heuristic algorithm.

D.1 Relating to the Heuristic Initial solution approach

As discussed in section 6.8.3, in addition to the results reported for the single randomized

Heuristic initial solution test run there were two further test carried out. One of these

comprised ten further randomized runs, while the other was a non-randomized solution

which was obtained by examining all employees and roles in the order they appeared in

the datasets. For each graph shown for the single randomized run (Figures 6.22 to 6.29),

here we present two corresponding graphs. In each of Figures D.1 to D.9, the upper chart

presents the single randomized run measure along side the given metric averaged across

the ten additional randomized runs and for the singe non-randomized run; in the lower

chart, the minimum and maximum values across the ten randomized runs are given.

415

Figure D.1: Histograms of percentage gaps to best known bounds for solutions found using
the Heuristic initial solution approach. Results are shown for the single randomized run,
the average across the ten randomized runs, and the non-randomized run (top); and for
the minimum and maximum across the ten randomized runs (bottom).

416

Figure D.2: Histograms of percentage gaps to best known bounds for solutions found using
the Heuristic initial solution approach. Results are shown for the single randomized run,
the average across the ten randomized runs, and the non-randomized run (top); and for
the minimum and maximum across the ten randomized runs (bottom).

417

Figure D.3: Histograms summarising improvement in the solution for each instance using
the Heuristic initial solution approach compared to the solution cost for the two-minute
‘direct’ approach, shown as a percentage of the direct approach solution value. Results are
shown for the single randomized run, the average across the ten randomized runs, and the
non-randomized run (top); and for the minimum and maximum across the ten randomized
runs (bottom).

418

Figure D.4: Histograms summarising improvement in the solution for each instance using
the Heuristic initial solution approach compared to the solution cost for the one-hour
‘direct’ approach, shown as a percentage of the direct approach solution value. Results are
shown for the single randomized run, the average across the ten randomized runs, and the
non-randomized run (top); and for the minimum and maximum across the ten randomized
runs (bottom).

419

Figure D.5: Histograms summarising improvement in the solution for each instance using
the Heuristic initial solution approach compared to the solution cost for the two-minute
change-minimization approach, shown as a percentage of the change-minimization solu-
tion value. Results are shown for the single randomized run, the average across the ten
randomized runs, and the non-randomized run (top); and for the minimum and maximum
across the ten randomized runs (bottom).

420

Figure D.6: Histograms summarising total running time of the Heuristic initial solution
algorithm for each instance. Results are shown for the single randomized run, the average
across the ten randomized runs, and the non-randomized run (top); and for the minimum
and maximum across the ten randomized runs (bottom).

421

Figure D.7: Histograms summarising the number of iterations carried out by the Heuristic
initial solution algorithm for each instance. Results are shown for the single randomized
run, the average across the ten randomized runs, and the non-randomized run (top); and
for the minimum and maximum across the ten randomized runs (bottom).

422

Figure D.8: Histograms summarising the number of changes in the Heuristic initial solution
for each instance. Results are shown for the single randomized run, the average across
the ten randomized runs, and the non-randomized run (top); and for the minimum and
maximum across the ten randomized runs (bottom).

423

Figure D.9: Histograms summarising improvement in the solution for each instance using
the Heuristic initial solution approach compared to the solution cost for the Task-Based
Approximation approach, shown as a percentage of the Task-Based Approximation solu-
tion value. Results are shown for the single randomized run, the average across the ten
randomized runs, and the non-randomized run (top); and for the minimum and maximum
across the ten randomized runs (bottom).

424

D.2 Relating to the main Heuristic algorithm

Here we show graphs to further illustrate the breakdown of results given in section 6.8.4.

This is done for each of the metrics discussed in that results section, for each of the factors

which are shown statistically to have a significant influence on that metric. Firstly, for

reference purposes, Tables D.1 and D.2 shows settings used and the corresponding index

for each combination of settings for the heuristic algorithm.

Table D.1: Settings used under each combination for the heuristic algorithm - Part 1.

Combination Employees Employee Accept if Kick if no Initial
number to examine order improve on improv. in solution

#1 1/3 smarter current (no kick) Task-Based
#2 1/3 random current (no kick) Task-Based
#3 1/3 smarter current 4+ iters Task-Based
#4 1/3 random current 4+ iters Task-Based
#5 1/3 smarter current 8+ iters Task-Based
#6 1/3 random current 8+ iters Task-Based

#7 1/3 smarter best (no kick) Task-Based
#8 1/3 random best (no kick) Task-Based
#9 1/3 smarter best 4+ iters Task-Based
#10 1/3 random best 4+ iters Task-Based
#11 1/3 smarter best 8+ iters Task-Based
#12 1/3 random best 8+ iters Task-Based

#13 all smarter current (no kick) Task-Based
#14 all random current (no kick) Task-Based
#15 all smarter current 4+ iters Task-Based
#16 all random current 4+ iters Task-Based
#17 all smarter current 8+ iters Task-Based
#18 all random current 8+ iters Task-Based

#19 all smarter best (no kick) Task-Based
#20 all random best (no kick) Task-Based
#21 all smarter best 4+ iters Task-Based
#22 all random best 4+ iters Task-Based
#23 all smarter best 8+ iters Task-Based
#24 all random best 8+ iters Task-Based

425

Table D.2: Settings used under each combination for the heuristic algorithm - Part 2.

Combination Employees Employee Accept if Kick if no Initial
number to examine order improve on improv. in solution

#25 1/3 smarter current (no kick) Heuristic
#26 1/3 random current (no kick) Heuristic
#27 1/3 smarter current 4+ iters Heuristic
#28 1/3 random current 4+ iters Heuristic
#29 1/3 smarter current 8+ iters Heuristic
#30 1/3 random current 8+ iters Heuristic

#31 1/3 smarter best (no kick) Heuristic
#32 1/3 random best (no kick) Heuristic
#33 1/3 smarter best 4+ iters Heuristic
#34 1/3 random best 4+ iters Heuristic
#35 1/3 smarter best 8+ iters Heuristic
#36 1/3 random best 8+ iters Heuristic

#37 all smarter current (no kick) Heuristic
#38 all random current (no kick) Heuristic
#39 all smarter current 4+ iters Heuristic
#40 all random current 4+ iters Heuristic
#41 all smarter current 8+ iters Heuristic
#42 all random current 8+ iters Heuristic

#43 all smarter best (no kick) Heuristic
#44 all random best (no kick) Heuristic
#45 all smarter best 4+ iters Heuristic
#46 all random best 4+ iters Heuristic
#47 all smarter best 8+ iters Heuristic
#48 all random best 8+ iters Heuristic

426

D.2.1 Gap to the best known bound

As shown in Table 6.2 in section 6.8.4.1, three of the heuristic settings had a significant

influence on the gap to the best known bound from the solutions found. Here we show the

following graphs in relation to this:

• A breakdown of the two-minute results according to the number of employees to

examine at each iteration (Figure D.10);

• A breakdown according to the kick activation rules used, for both the one-minute

results (Figure D.11) and the two-minute results (Figure D.12); and

• A breakdown according to the type of initial solution used, for both the one-minute

and two-minute results (shown together in Figure D.13).

427

Figure D.10: Gap to best known bound from solutions found after two minutes, broken
down by whether one third of employees are examined at each iteration (top) or all em-
ployees are examined (bottom).

428

Figure D.11: Gap to best known bound from solutions found after one minute, broken
down by whether no kick was used (top), the kick was activated if no improvement was
found after 4 or more iterations (middle), or activated if no improvement was found after
8 or more iterations (bottom).

429

Figure D.12: Gap to best known bound from solutions found after two minutes, broken
down by whether no kick was used (top), the kick was activated if no improvement was
found after 4 or more iterations (middle), or activated if no improvement was found after
8 or more iterations (bottom).

430

F
ig

u
re

D
.1

3
:

G
a
p

to
b

es
t

k
n

ow
n

b
ou

n
d

fr
om

so
lu

ti
on

s
fo

u
n

d
af

te
r

on
e

m
in

u
te

(t
op

)
a
n

d
tw

o
m

in
u

te
s

(b
o
tt

o
m

),
b

ro
ke

n
d

ow
n

b
y

w
h

et
h

er
th

e
T

a
sk

-B
a
se

d
A

p
p

ro
x
im

at
io

n
(l

ef
t

h
an

d
si

d
e)

or
H

eu
ri

st
ic

(r
ig

h
t

h
an

d
si

d
e)

in
it

ia
l

so
lu

ti
on

w
a
s

u
se

d
.

431

D.2.2 Gap to the best known solution

As shown in Table 6.3 in section 6.8.4.2, three of the heuristic settings had a significant

influence on the gap to the best known solution from the solutions found. Here we show

the following graphs in relation to this:

• A breakdown according to the number of employees to examine at each iteration, for

both the one-minute and two-minute results (shown together in Figure D.14);

• A breakdown according to the kick activation rules used, for both the one-minute

results (Figure D.15) and the two-minute results (Figure D.16); and

• A breakdown according to the type of initial solution used, for both the one-minute

and two-minute results (shown together in Figure D.17).

432

F
ig

u
re

D
.1

4
:

G
a
p

to
b

es
t

k
n

ow
n

so
lu

ti
on

ov
er

al
l

fr
om

so
lu

ti
on

s
fo

u
n

d
af

te
r

on
e

m
in

u
te

(t
op

)
an

d
tw

o
m

in
u

te
s

(b
o
tt

o
m

),
b
ro

k
en

d
ow

n
b
y

w
h

et
h

er
o
n

e
th

ir
d

o
f

em
p

lo
ye

es
ar

e
ex

am
in

ed
at

ea
ch

it
er

at
io

n
(l

ef
t

h
an

d
si

d
e)

o
r

al
l

em
p

lo
y
ee

s
a
re

ex
a
m

in
ed

(r
ig

h
t

h
a
n

d
si

d
e)

.

433

Figure D.15: Gap to best known solution overall from solutions found after one minute,
broken down by whether no kick was used (top), the kick was activated if no improvement
was found after 4 or more iterations (middle), or activated if no improvement was found
after 8 or more iterations (bottom).

434

Figure D.16: Gap to best known solution overall from solutions found after two minutes,
broken down by whether no kick was used (top), the kick was activated if no improvement
was found after 4 or more iterations (middle), or activated if no improvement was found
after 8 or more iterations (bottom).

435

F
ig

u
re

D
.1

7
:

G
a
p

to
b

es
t

k
n

ow
n

so
lu

ti
on

ov
er

al
l

fr
om

so
lu

ti
on

s
fo

u
n

d
af

te
r

on
e

m
in

u
te

(t
op

)
an

d
tw

o
m

in
u

te
s

(b
o
tt

o
m

),
b
ro

k
en

d
ow

n
b
y

w
h

et
h

er
th

e
T

as
k
-B

as
ed

A
p

p
ro

x
im

at
io

n
(l

ef
t

h
an

d
si

d
e)

or
H

eu
ri

st
ic

(r
ig

h
t

h
an

d
si

d
e)

in
it

ia
l

so
lu

ti
o
n

w
a
s

u
se

d
.

436

D.2.3 Improvement on initial solution

As shown in Table 6.4 in section 6.8.4.3, three of the heuristic settings had a significant

influence on the improvement on the initial solution achieved by the algorithm. Here we

show the following graphs in relation to this:

• A breakdown according to the number of employees to examine at each iteration, for

both the one-minute and two-minute results (shown together in Figure D.18);

• A breakdown according to the kick activation rules used, for both the one-minute

results (Figure D.19) and the two-minute results (Figure D.20); and

• A breakdown according to the type of initial solution used, for both the one-minute

and two-minute results (shown together in Figure D.21).

437

F
ig

u
re

D
.1

8
:

Im
p

ro
v
em

en
t

on
th

e
in

it
ia

l
so

lu
ti

on
ac

h
ie

ve
d

w
it

h
in

on
e

m
in

u
te

(t
op

)
an

d
tw

o
m

in
u

te
s

(b
o
tt

o
m

)
g
iv

en
a
s

a
p

er
ce

n
ta

g
e

of
th

e
in

it
ia

l
so

lu
ti

o
n

va
lu

e,
b

ro
ke

n
d

ow
n

b
y

w
h

et
h

er
on

e
th

ir
d

of
em

p
lo

ye
es

ar
e

ex
am

in
ed

at
ea

ch
it

er
a
ti

o
n

(l
ef

t
h

a
n

d
si

d
e)

o
r

a
ll

em
p

lo
ye

es
a
re

ex
a
m

in
ed

(r
ig

h
t

h
an

d
si

d
e)

.

438

Figure D.19: Improvement on the initial solution achieved within one minute given as a
percentage of the initial solution value, broken down by whether no kick was used (top),
the kick was activated if no improvement was found after 4 or more iterations (middle), or
activated if no improvement was found after 8 or more iterations (bottom).

439

Figure D.20: Improvement on the initial solution achieved within two minutes given as a
percentage of the initial solution value, broken down by whether no kick was used (top),
the kick was activated if no improvement was found after 4 or more iterations (middle), or
activated if no improvement was found after 8 or more iterations (bottom).

440

F
ig

u
re

D
.2

1
:

Im
p

ro
v
em

en
t

on
th

e
in

it
ia

l
so

lu
ti

on
ac

h
ie

ve
d

w
it

h
in

on
e

m
in

u
te

(t
op

)
an

d
tw

o
m

in
u

te
s

(b
o
tt

o
m

)
g
iv

en
a
s

a
p

er
ce

n
ta

g
e

of
th

e
in

it
ia

l
so

lu
ti

o
n

va
lu

e,
b

ro
ke

n
d

ow
n

b
y

w
h

et
h

er
th

e
T

as
k
-B

as
ed

A
p

p
ro

x
im

at
io

n
(l

ef
t

h
an

d
si

d
e)

or
H

eu
ri

st
ic

(r
ig

h
t

h
a
n

d
si

d
e)

in
it

ia
l

so
lu

ti
on

w
a
s

u
se

d
.

441

D.2.4 Number of changes

As shown in Table 6.5 in section 6.8.4.4, four of the heuristic settings had a significant

influence on the number of changes in the first lowest-cost solution found. Here we show

the following graphs in relation to this:

• A breakdown according to the number of employees to examine at each iteration, for

both the one-minute and two-minute results (shown together in Figure D.22);

• A breakdown of the two-minute results according to the order in which employees

are examined at each iteration (Figure D.23);

• A breakdown according to the kick activation rules used, for both the one-minute

results (Figure D.24) and the two-minute results (Figure D.25); and

• A breakdown according to the type of initial solution used, for both the one-minute

and two-minute results (shown together in Figure D.26).

442

F
ig

u
re

D
.2

2
:

N
u

m
b

er
o
f

ch
an

ge
s

in
th

e
fi

rs
t

lo
w

es
t-

co
st

so
lu

ti
on

fo
u

n
d

w
it

h
in

on
e

m
in

u
te

(t
o
p

)
an

d
tw

o
m

in
u

te
s

(b
o
tt

o
m

),
b

ro
ke

n
d

ow
n

b
y

w
h

et
h

er
o
n

e
th

ir
d

o
f

em
p

lo
ye

es
ar

e
ex

am
in

ed
at

ea
ch

it
er

at
io

n
(l

ef
t

h
an

d
si

d
e)

o
r

al
l

em
p

lo
y
ee

s
a
re

ex
a
m

in
ed

(r
ig

h
t

h
a
n

d
si

d
e)

.

443

Figure D.23: Number of changes in the first lowest-cost solution found within two min-
utes, broken down by whether random ordering (top) or more tailored ‘smarter’ ordering
(bottom) of employees is used at each iteration.

444

Figure D.24: Number of changes in the first lowest-cost solution found within one minute,
broken down by whether no kick was used (top), the kick was activated if no improvement
was found after 4 or more iterations (middle), or activated if no improvement was found
after 8 or more iterations (bottom).

445

Figure D.25: Number of changes in the first lowest-cost solution found within two minutes,
broken down by whether no kick was used (top), the kick was activated if no improvement
was found after 4 or more iterations (middle), or activated if no improvement was found
after 8 or more iterations (bottom).

446

F
ig

u
re

D
.2

6
:

N
u

m
b

er
o
f

ch
an

ge
s

in
th

e
fi

rs
t

lo
w

es
t-

co
st

so
lu

ti
on

fo
u

n
d

w
it

h
in

on
e

m
in

u
te

(t
o
p

)
an

d
tw

o
m

in
u

te
s

(b
o
tt

o
m

),
b

ro
ke

n
d

ow
n

b
y

w
h

et
h

er
th

e
T

as
k
-B

as
ed

A
p

p
ro

x
im

at
io

n
(l

ef
t

h
an

d
si

d
e)

or
H

eu
ri

st
ic

(r
ig

h
t

h
an

d
si

d
e)

in
it

ia
l

so
lu

ti
o
n

w
a
s

u
se

d
.

447

D.2.5 Number of best solutions

As shown in Table 6.6 in section 6.8.4.5, four of the heuristic settings had a significant

influence on the number of solutions found with equal-best cost. Here we show the following

graphs in relation to this:

• A breakdown according to the number of employees to examine at each iteration, for

both the one-minute and two-minute results (shown together in Figure D.27);

• A breakdown according to the order in which employees are examined at each it-

eration, for both the one-minute and two-minute results (shown together in Figure

D.28);

• A breakdown according to the kick activation rules used, for both the one-minute

results (Figure D.29) and the two-minute results (Figure D.30); and

• A breakdown according to the type of initial solution used, for both the one-minute

and two-minute results (shown together in Figure D.31).

448

F
ig

u
re

D
.2

7:
N

u
m

b
er

of
so

lu
ti

on
s

fo
u

n
d

w
it

h
eq

u
al

-b
es

t
co

st
af

te
r

on
e

m
in

u
te

(t
op

)
an

d
a
ft

er
tw

o
m

in
u

te
s

(b
o
tt

o
m

),
b

ro
ke

n
d

ow
n

b
y

w
h

et
h

er
on

e
th

ir
d

o
f

em
p

lo
y
ee

s
ar

e
ex

am
in

ed
at

ea
ch

it
er

at
io

n
(l

ef
t

h
an

d
si

d
e)

or
al

l
em

p
lo

y
ee

s
a
re

ex
a
m

in
ed

(r
ig

h
t

h
a
n

d
si

d
e)

.

449

F
ig

u
re

D
.2

8:
N

u
m

b
er

of
so

lu
ti

on
s

fo
u

n
d

w
it

h
eq

u
al

-b
es

t
co

st
af

te
r

on
e

m
in

u
te

(t
op

)
an

d
a
ft

er
tw

o
m

in
u

te
s

(b
o
tt

o
m

),
b

ro
ke

n
d

ow
n

b
y

w
h

et
h

er
ra

n
d

o
m

o
rd

er
in

g
(l

ef
t

h
an

d
si

d
e)

or
m

or
e

ta
il

or
ed

‘s
m

ar
te

r’
or

d
er

in
g

(r
ig

h
t

h
an

d
si

d
e)

o
f

em
p

lo
y
ee

s
is

u
se

d
a
t

ea
ch

it
er

at
io

n
.

450

Figure D.29: Number of solutions found with equal-best cost after one minute, broken
down by whether no kick was used (top), the kick was activated if no improvement was
found after 4 or more iterations (middle), or activated if no improvement was found after
8 or more iterations (bottom).

451

Figure D.30: Number of solutions found with equal-best cost after two minutes, broken
down by whether no kick was used (top), the kick was activated if no improvement was
found after 4 or more iterations (middle), or activated if no improvement was found after
8 or more iterations (bottom).

452

F
ig

u
re

D
.3

1:
N

u
m

b
er

of
so

lu
ti

on
s

fo
u

n
d

w
it

h
eq

u
al

-b
es

t
co

st
af

te
r

on
e

m
in

u
te

(t
op

)
an

d
a
ft

er
tw

o
m

in
u

te
s

(b
o
tt

o
m

),
b

ro
ke

n
d

ow
n

b
y

w
h
et

h
er

th
e

T
a
sk

-B
a
se

d
A

p
p

ro
x
im

at
io

n
(l

ef
t

h
an

d
si

d
e)

or
H

eu
ri

st
ic

(r
ig

h
t

h
an

d
si

d
e)

in
it

ia
l

so
lu

ti
o
n

w
a
s

u
se

d
.

453

D.2.6 Number of iterations

As shown in Table 6.7 in section 6.8.4.6, four of the heuristic settings had a significant

influence on the number of iterations carried out by the algorithm. Here we show the

following graphs in relation to this:

• A breakdown according to the number of employees to examine at each iteration, for

both the one-minute and two-minute results (shown together in Figure D.32);

• A breakdown according to the order in which employees are examined at each it-

eration, for both the one-minute and two-minute results (shown together in Figure

D.33);

• A breakdown according to the solution acceptance criteria used, for both the one-

minute and two-minute results (shown together in Figure D.34);

• A breakdown of the two-minute results according to the the kick activation rules used

(Figure D.35).

454

F
ig

u
re

D
.3

2
:

N
u

m
b

er
of

it
er

a
ti

on
s

ca
rr

ie
d

ou
t

b
y

th
e

al
go

ri
th

m
w

it
h

in
on

e
m

in
u

te
(t

op
)

a
n

d
w

it
h

in
tw

o
m

in
u

te
s

(b
o
tt

o
m

),
b

ro
ke

n
d

ow
n

b
y

w
h

et
h

er
o
n

e
th

ir
d

o
f

em
p

lo
ye

es
ar

e
ex

am
in

ed
at

ea
ch

it
er

at
io

n
(l

ef
t

h
an

d
si

d
e)

o
r

al
l

em
p

lo
y
ee

s
a
re

ex
a
m

in
ed

(r
ig

h
t

h
a
n

d
si

d
e)

.

455

F
ig

u
re

D
.3

3
:

N
u

m
b

er
of

it
er

a
ti

on
s

ca
rr

ie
d

ou
t

b
y

th
e

al
go

ri
th

m
w

it
h

in
on

e
m

in
u

te
(t

op
)

a
n

d
w

it
h

in
tw

o
m

in
u

te
s

(b
o
tt

o
m

),
b

ro
ke

n
d

ow
n

b
y

w
h

et
h

er
ra

n
d

om
or

d
er

in
g

(l
ef

t
h

an
d

si
d

e)
or

m
or

e
ta

il
or

ed
‘s

m
ar

te
r’

or
d

er
in

g
(r

ig
h
t

h
a
n

d
si

d
e)

o
f

em
p

lo
y
ee

s
is

u
se

d
a
t

ea
ch

it
er

at
io

n
.

456

F
ig

u
re

D
.3

4
:

N
u

m
b

er
of

it
er

a
ti

on
s

ca
rr

ie
d

ou
t

b
y

th
e

al
go

ri
th

m
w

it
h

in
on

e
m

in
u

te
(t

op
)

a
n

d
w

it
h

in
tw

o
m

in
u

te
s

(b
o
tt

o
m

),
b

ro
ke

n
d

ow
n

b
y

w
h

et
h

er
al

g
or

it
h

m
a
cc

ep
ts

fi
rs

t
n

on
-t

ab
u

so
lu

ti
on

w
h

ic
h

im
p

ro
v
es

on
th

e
b

es
t

so
lu

ti
o
n

so
fa

r
(l

ef
t

h
a
n

d
si

d
e)

o
r

o
n

th
e

cu
rr

en
t

so
lu

ti
o
n

(r
ig

h
t

h
a
n

d
si

d
e)

.

457

Figure D.35: Number of iterations carried out by the algorithm within two minutes, broken
down by whether no kick was used (top), the kick was activated if no improvement was
found after 4 or more iterations (middle), or activated if no improvement was found after
8 or more iterations (bottom).

458

D.2.7 Time of best solution

As shown in Table 6.8 in section 6.8.4.7, all five of the heuristic settings had a significant

influence on the estimated time at which the algorithm found the best solution. Here we

show the following graphs in relation to this:

• A breakdown of the two-minute results according to the number of employees to

examine at each iteration (Figure D.36);

• A breakdown of the one-minute results according to the order in which employees

are examined at each iteration (Figure D.37);

• A breakdown according to the solution acceptance criteria used, for both the one-

minute and two-minute results (shown together in Figure D.38);

• A breakdown according to the kick activation rules used, for both the one-minute

results (Figure D.39) and the two-minute results (Figure D.40); and

• A breakdown according to the type of initial solution used, for both the one-minute

and two-minute results (shown together in Figure D.41).

459

Figure D.36: Estimated time at which the best solution within two minutes was first found,
broken down by whether one third of employees are examined at each iteration (top) or
all employees are examined (bottom).

460

Figure D.37: Estimated time at which the best solution within one minute was first found,
broken down by whether random ordering (top) or more tailored ‘smarter’ ordering (bot-
tom) of employees is used at each iteration.

461

F
ig

u
re

D
.3

8
:

E
st

im
at

ed
ti

m
e

at
w

h
ic

h
th

e
b

es
t

so
lu

ti
on

w
it

h
in

on
e

m
in

u
te

(t
op

)
an

d
w

it
h

in
tw

o
m

in
u

te
s

(b
o
tt

o
m

)
w

a
s

fi
rs

t
fo

u
n

d
,

b
ro

ke
n

d
ow

n
b
y

w
h

et
h

er
a
lg

o
ri

th
m

ac
ce

p
ts

fi
rs

t
n

on
-t

ab
u

so
lu

ti
on

w
h

ic
h

im
p

ro
ve

s
on

th
e

b
es

t
so

lu
ti

on
so

fa
r

(l
ef

t
h

a
n

d
si

d
e)

o
r

o
n

th
e

cu
rr

en
t

so
lu

ti
o
n

(r
ig

h
t

h
a
n

d
si

d
e)

.

462

Figure D.39: Estimated time at which the best solution within one minute was first found,
broken down by whether no kick was used (top), the kick was activated if no improvement
was found after 4 or more iterations (middle), or activated if no improvement was found
after 8 or more iterations (bottom).

463

Figure D.40: Estimated time at which the best solution within two minutes was first found,
broken down by whether no kick was used (top), the kick was activated if no improvement
was found after 4 or more iterations (middle), or activated if no improvement was found
after 8 or more iterations (bottom).

464

F
ig

u
re

D
.4

1
:

E
st

im
at

ed
ti

m
e

at
w

h
ic

h
th

e
b

es
t

so
lu

ti
on

w
it

h
in

on
e

m
in

u
te

(t
op

)
an

d
w

it
h

in
tw

o
m

in
u

te
s

(b
o
tt

o
m

)
w

a
s

fi
rs

t
fo

u
n

d
,

b
ro

ke
n

d
ow

n
b
y

w
h

et
h

er
th

e
T

as
k
-B

as
ed

A
p

p
ro

x
im

at
io

n
(l

ef
t

h
an

d
si

d
e)

or
H

eu
ri

st
ic

(r
ig

h
t

h
a
n

d
si

d
e)

in
it

ia
l

so
lu

ti
o
n

w
a
s

u
se

d
.

465

D.2.8 Effect of cutting off algorithm early

As shown in Table 6.9 in section 6.8.4.8, all five of the heuristic settings had a significant

influence on the gap between the estimated early cut-off solutions and the final (i.e. two-

minute) solution. Here we show the following graphs in relation to this:

• A breakdown according to the number of employees to examine at each iteration, for

the one-minute and estimated 30-second cut-off solutions (shown together in Figure

D.42) and for the estimated 20-second and estimated 10-second cut-off solutions

(shown together in Figure D.43);

• A breakdown of the one-minute cut-off solutions according to the order in which the

employees are examined at each iteration (Figure D.44);

• A breakdown according to the solution acceptance criteria used, for the one-minute

and estimated 30-second cut-off solutions (shown together in Figure D.45) and for

the estimated 20-second and estimated 10-second cut-off solutions (shown together

in Figure D.46);

• A breakdown according to the kick activation rules used, for the one-minute cut-

off solutions (Figure D.47), the estimated 30-second cut-off solutions (Figure D.48),

the estimated 20-second cut-off solutions (Figure D.49) and the estimated 10-second

cut-off solution (Figure D.50); and

• A breakdown according to the type of initial solution used, for the one-minute and

estimated 30-second cut-off solutions (shown together in Figure D.51) and for the

estimated 10-second cut-off solutions (shown together in Figure D.52).

466

F
ig

u
re

D
.4

2:
G

a
p

to
tw

o
-m

in
u

te
so

lu
ti

on
va

lu
e

fr
om

on
e-

m
in

u
te

so
lu

ti
on

(t
op

)
an

d
fr

o
m

es
ti

m
a
te

d
3
0
-s

ec
o
n

d
so

lu
ti

o
n

(b
o
tt

o
m

),
b

ro
ke

n
d

ow
n

b
y

w
h

et
h

er
o
n
e

th
ir

d
of

em
p

lo
y
ee

s
ar

e
ex

am
in

ed
at

ea
ch

it
er

at
io

n
(l

ef
t

h
a
n

d
si

d
e)

or
a
ll

em
p

lo
ye

es
a
re

ex
a
m

in
ed

(r
ig

h
t

h
a
n

d
si

d
e)

.

467

F
ig

u
re

D
.4

3:
G

a
p

to
tw

o-
m

in
u

te
so

lu
ti

on
va

lu
e

fr
om

es
ti

m
at

ed
20

-s
ec

on
d

so
lu

ti
on

(t
o
p

)
a
n

d
fr

o
m

es
ti

m
a
te

d
1
0
-s

ec
o
n

d
so

lu
ti

o
n

(b
ot

to
m

),
b

ro
ke

n
d

ow
n

b
y

w
h

et
h

er
on

e
th

ir
d

of
em

p
lo

ye
es

ar
e

ex
am

in
ed

at
ea

ch
it

er
at

io
n

(l
ef

t
h

an
d

si
d

e)
o
r

a
ll

em
p

lo
ye

es
a
re

ex
am

in
ed

(r
ig

h
t

h
a
n

d
si

d
e)

.

468

Figure D.44: Gap to two-minute solution value from one-minute solution, broken down by
whether random ordering (top) or more tailored ‘smarter’ ordering (bottom) of employees
is used at each iteration.

469

F
ig

u
re

D
.4

5:
G

a
p

to
tw

o
-m

in
u

te
so

lu
ti

on
va

lu
e

fr
om

on
e-

m
in

u
te

so
lu

ti
on

(t
op

)
an

d
fr

o
m

es
ti

m
a
te

d
3
0
-s

ec
o
n

d
so

lu
ti

o
n

(b
o
tt

o
m

),
b

ro
ke

n
d

ow
n

b
y

w
h

et
h

er
a
lg

o
ri

th
m

ac
ce

p
ts

fi
rs

t
n

on
-t

ab
u

so
lu

ti
on

w
h

ic
h

im
p

ro
ve

s
on

th
e

b
es

t
so

lu
ti

on
so

fa
r

(l
ef

t
h

a
n

d
si

d
e)

o
r

o
n

th
e

cu
rr

en
t

so
lu

ti
o
n

(r
ig

h
t

h
a
n

d
si

d
e)

.

470

F
ig

u
re

D
.4

6:
G

a
p

to
tw

o-
m

in
u

te
so

lu
ti

on
va

lu
e

fr
om

es
ti

m
at

ed
20

-s
ec

on
d

so
lu

ti
on

(t
o
p

)
a
n

d
fr

o
m

es
ti

m
a
te

d
1
0
-s

ec
o
n

d
so

lu
ti

o
n

(b
ot

to
m

),
b

ro
ke

n
d

ow
n

b
y

w
h

et
h
er

al
go

ri
th

m
ac

ce
p

ts
fi

rs
t

n
on

-t
ab

u
so

lu
ti

on
w

h
ic

h
im

p
ro

v
es

on
th

e
b

es
t

so
lu

ti
o
n

so
fa

r
(l

ef
t

h
a
n

d
si

d
e)

o
r

o
n

th
e

cu
rr

en
t

so
lu

ti
o
n

(r
ig

h
t

h
an

d
si

d
e)

.

471

Figure D.47: Gap to two-minute solution value from one-minute solution, broken down by
whether no kick was used (top), the kick was activated if no improvement was found after
4 or more iterations (middle), or activated if no improvement was found after 8 or more
iterations (bottom).

472

Figure D.48: Gap to two-minute solution value from estimated 30-second solution, broken
down by whether no kick was used (top), the kick was activated if no improvement was
found after 4 or more iterations (middle), or activated if no improvement was found after
8 or more iterations (bottom).

473

Figure D.49: Gap to two-minute solution value from estimated 20-second solution, broken
down by whether no kick was used (top), the kick was activated if no improvement was
found after 4 or more iterations (middle), or activated if no improvement was found after
8 or more iterations (bottom).

474

Figure D.50: Gap to two-minute solution value from estimated 10-second solution, broken
down by whether no kick was used (top), the kick was activated if no improvement was
found after 4 or more iterations (middle), or activated if no improvement was found after
8 or more iterations (bottom).

475

F
ig

u
re

D
.5

1:
G

a
p

to
tw

o
-m

in
u

te
so

lu
ti

on
va

lu
e

fr
om

on
e-

m
in

u
te

so
lu

ti
on

(t
op

)
an

d
fr

o
m

es
ti

m
a
te

d
3
0
-s

ec
o
n

d
so

lu
ti

o
n

(b
o
tt

o
m

),
b

ro
ke

n
d

ow
n

b
y

w
h

et
h

er
th

e
T

as
k
-B

as
ed

A
p

p
ro

x
im

at
io

n
(l

ef
t

h
an

d
si

d
e)

or
H

eu
ri

st
ic

(r
ig

h
t

h
a
n

d
si

d
e)

in
it

ia
l

so
lu

ti
o
n

w
a
s

u
se

d
.

476

Figure D.52: Gap to two-minute solution value from estimated 10-second solution, bro-
ken down by whether the Task-Based Approximation (top) or Heuristic (bottom) initial
solution was used.

477

D.2.9 Results for recommended combination

It is discussed in section 6.8.4.9 that the combination of settings labelled as Combination

#26 (see Table D.2) is the most likely to produce good quality results, taking into account

considerations such as solution cost, number of changes, number of (good) solutions, and

the possibility of terminating the algorithm earlier than the two-minute time limit. Here,

we give results for the measures of interest for Combination #26 only, which comprises

summary histograms of the following:

• The gap to the best known bound, for both the one-minute and two-minute solutions

(shown together in Figure D.53);

• The gap to best known solution, for both the one-minute and two-minute solutions

(shown together in Figure D.54);

• Improvement made on the cost of the initial solution, for both the one-minute and

two-minute solutions (shown together in Figure D.55);

• Number of changes in the first solution found with the lowest cost, both within one

minute and within two minutes (shown together in Figure D.56);

• Number of distinct solutions found with solution value equal to the best cost, both

within one minute and within two minutes (shown together in Figure D.57);

• Number of iterations carried out by the algorithm, for both the one-minute and

two-minute results (shown together in Figure D.58);

• Estimated time at which the first solution with the best cost value was found, for

both the one-minute and two-minute results (shown together in Figure D.59); and

• Estimated gap to the final (i.e. two-minute) solution if the algorithm was terminated

after one minute, 30 seconds, 20 seconds or 10 seconds (shown together in Figure

D.60).

478

Figure D.53: Gap to best known bound from solutions found after one minute (top) and
after two minutes (bottom), for setting combination #26 only.

479

Figure D.54: Gap to best known solution overall from solutions found after one minute
(top) and two minutes (bottom), for setting combination #26 only.

480

Figure D.55: Improvement on the initial solution achieved within one minute (top) and two
minutes (bottom) given as a percentage of the initial solution value, for setting combination
#26 only.

481

Figure D.56: Number of changes in the first lowest-cost solution found within one minute
(top) and two minutes (bottom), for setting combination #26 only.

482

Figure D.57: Number of solutions found with equal-best cost after one minute (top) and
after two minutes (bottom), for setting combination #26 only.

483

Figure D.58: Number of iterations carried out by the algorithm within one minute (top)
and within two minutes (bottom), for setting combination #26 only.

484

Figure D.59: Estimated time at which the best solution within one minute (top) and within
two minutes (bottom) was first found, for setting combination #26 only.

485

F
ig

u
re

D
.6

0:
G

a
p

to
tw

o
-m

in
u

te
so

lu
ti

on
va

lu
e

fr
om

on
e-

m
in

u
te

so
lu

ti
on

(t
op

le
ft

),
es

ti
m

a
te

d
3
0-

se
co

n
d

so
lu

ti
o
n

(t
o
p

ri
g
h
t)

,
es

ti
m

a
te

d
20

-s
ec

on
d

so
lu

ti
o
n

(b
ot

to
m

le
ft

)
an

d
es

ti
m

at
ed

10
-s

ec
on

d
so

lu
ti

on
(b

ot
to

m
ri

g
h
t)

,
fo

r
se

tt
in

g
co

m
b

in
a
ti

o
n

#
2
6

o
n

ly
.

486

D.3 Relating to the effect of data generating parameters

Section 6.8.5 gave results of Analysis of Variance tests for the influence of the values

of the parameters used in data generation on each of the solution approaches tested for

the Time-Windows formulation. This section gives histograms showing the breakdown of

the outputs by those parameters which have a significant influence. This is divided into

subsections in the same way as section 6.8.5, according to the types of results which are

being analysed. Firstly, section D.3.1 shows the breakdown of significant parameters for

the initial computational results (and the associated further analysis) which is discussed

in section 6.8.5.1; then in sections D.3.2 and D.3.3 we look at the details of the influence

of parameters on the two initial solution approaches as determined in sections 6.8.5.2

for the Task-Based Approximation approach and section 6.8.5.3 for the heuristic initial

solution approach respectively. Finally, details of the parameter value influence on the main

heuristic algorithm, both for the aggregated results for all settings and for Combination

#26 specifically, as discussed in section 6.8.5.4, are given in section D.3.4.

D.3.1 Breakdown of Initial Computational results

Here we present selected histograms which can aid our understanding of the Kruskall-Wallis

test results given in Table 6.15. These show the same Initial computational results as in

sections 6.3 and 6.8.1, but broken down according to the values of the parameters which

this table highlights as having a significant influence.

D.3.1.1 Relating to ‘direct’ gap to best known bound

We begin with breakdowns of the gap to the best known bound for the ‘direct’ solution

approach:

487

Figure D.61: Histogram of percentage gaps to best bounds for ‘direct’ solution of Time-
Windows instances using FICO Xpress, 2 minute time limit, broken down by values of the
near-term disruption penalty KN (top) and by values of the long-term disruption penalty
KL (bottom).

488

Figure D.62: Histogram of percentage gaps to best bounds for ‘direct’ solution of Time-
Windows instances using FICO Xpress, 2 minute time limit, broken down by values of the
weighted average disruption penalty K̂ (top) and by values of the agency penalty factor
KAG (bottom).

489

Figure D.63: Histogram of percentage gaps to best bounds for ‘direct’ solution of Time-
Windows instances using FICO Xpress, 1 hour time limit, broken down by values of avail-
ability probability p (probability employee unavailable given they were unavailable the
previous day).

490

Figure D.64: Histogram of percentage gaps to best bounds for ‘direct’ solution of Time-
Windows instances using FICO Xpress, 1 hour time limit, broken down by values of the
near-term disruption penalty KN (top) and by values of the long-term disruption penalty
KL (bottom).

491

Figure D.65: Histogram of percentage gaps to best bounds for ‘direct’ solution of Time-
Windows instances using FICO Xpress, 1 hour time limit, broken down by values of the
weighted average disruption penalty K̂ (top) and by values of the agency penalty factor
KAG (bottom).

492

D.3.1.2 Relating to ‘direct’ gap to best known solution

The following describe breakdowns of the gap to the best known solution for the ‘direct’

solution approach:

Figure D.66: Histogram of percentage gaps to best known solution for ‘direct’ solution of
Time-Windows instances using FICO Xpress, 2 minute time limit, broken down by values
of availability probability p (probability employee unavailable given they were unavailable
the previous day).

493

Figure D.67: Histogram of percentage gaps to best known solution for ‘direct’ solution of
Time-Windows instances using FICO Xpress, 2 minute time limit, broken down by values
of the near-term disruption penalty KN (top) and by values of the long-term disruption
penalty KL (bottom).

494

Figure D.68: Histogram of percentage gaps to best known solution for ‘direct’ solution of
Time-Windows instances using FICO Xpress, 2 minute time limit, broken down by values
of the weighted average disruption penalty K̂ (top) and by values of the agency penalty
factor KAG (bottom).

495

Figure D.69: Histogram of percentage gaps to best known solution for ‘direct’ solution of
Time-Windows instances using FICO Xpress, 1 hour time limit, broken down by values
of the near-term disruption penalty KN (top) and by values of the long-term disruption
penalty KL (bottom).

496

Figure D.70: Histogram of percentage gaps to best known solution for ‘direct’ solution of
Time-Windows instances using FICO Xpress, 1 hour time limit, broken down by values of
the weighted average disruption penalty K̂.

497

D.3.1.3 Relating to change minimization - solutions and iterations

The following describe breakdowns of the number of solutions and number of iterations for

the change-minimization approach:

498

Figure D.71: Number of solutions found by each instance using algorithm for change-
minimization approach, broken down by values of availability probability p (probability
employee unavailable given they were unavailable the previous day) (top) and by whether
or not time reduction factor r (d) was used (bottom).

499

Figure D.72: Number of iterations of change-minimization algorithm carried out for each
instance, broken down by values of availability probability p (probability employee unavail-
able given they were unavailable the previous day) (top) and by values of the long-term
disruption penalty KL (bottom).

500

D.3.1.4 Relating to change minimization - cost gaps

The following describe breakdowns of the gap to the best known bound and best known

solution for the change-minimization solutions:

Figure D.73: Gap to best bound for lowest-cost solutions found in two minute Change-
minimization test run for the Time-Windows formulation, broken down by values of avail-
ability probability p (probability employee unavailable given they were unavailable the
previous day)

501

Figure D.74: Gap to best bound for lowest-cost solutions found in two minute Change-
minimization test run for the Time-Windows formulation, broken down by values of the
agency penalty factor KAG.

502

Figure D.75: Gap to best bound for the non-cost-constrained solutions found in two minute
Change-minimization test run for the Time-Windows formulation, broken down by values
of the long-term disruption penalty KL (top) and by values of the agency penalty factor
KAG (bottom).

503

Figure D.76: Gap to best known solution for non-cost-constrained solution found in two
minute Change-minimization test run for the Time-Windows formulation, broken down
by values of availability probability p (probability employee unavailable given they were
unavailable the previous day) (top) and by whether or not time reduction factor r (d) was
used (bottom).

504

Figure D.77: Gap to best known solution for non-cost-constrained solution found in two
minute Change-minimization test run for the Time-Windows formulation, broken down by
values of the agency penalty factor KAG.

505

D.3.2 Breakdown of Task-Based Approximation results

Here we present selected histograms which can aid our understanding of the F-test and

Kruskall-Wallis test results given in Table 6.16. These show the same Task-Based Ap-

proximation results as in section 6.8.2, but broken down according to the values of the

parameters which this table highlights as having a significant influence.

D.3.2.1 Relating to cost gaps

We begin with breakdowns of the gaps to the best known bound and best known solution:

Figure D.78: Histogram of percentage gaps to best known bounds for solutions found using
the Task-Based formulation as an approximation, broken down by values of availability
probability p (probability employee unavailable given they were unavailable the previous
day).

506

Figure D.79: Histogram of percentage gaps to best known bounds for solutions found
using the Task-Based formulation as an approximation, broken down by values of the
agency penalty factor KAG.

507

Figure D.80: Histogram of percentage gaps to best known bounds for solutions found using
the Task-Based formulation as an approximation, broken down by values of availability
probability p (probability employee unavailable given they were unavailable the previous
day) (top) and by values of the agency penalty factor KAG (bottom).

508

D.3.2.2 Relating to improvements

The following describe breakdowns of the improvement the Task-Based Approximation

makes on the direct and change-minimization approaches:

Figure D.81: Histogram summarising improvement in the solution for each instance using
the Task-Based Approximation approach compared to the solution cost for the two-minute
‘direct’ approach, shown as a percentage of the two-minute direct approach solution value,
broken down by values of availability probability p (probability employee unavailable given
they were unavailable the previous day).

509

Figure D.82: Histogram summarising improvement in the solution for each instance using
the Task-Based Approximation approach compared to the solution cost for the two-minute
‘direct’ approach, shown as a percentage of the two-minute direct approach solution value,
broken down by values of the near-term disruption penalty KN (top) and by values of the
long-term disruption penalty KL (bottom).

510

Figure D.83: Histogram summarising improvement in the solution for each instance using
the Task-Based Approximation approach compared to the solution cost for the two-minute
‘direct’ approach, shown as a percentage of the two-minute direct approach solution value,
broken down by values of the weighted average disruption penalty K̂.

511

Figure D.84: Histograms summarising improvement in the solution for each instance using
the Task-Based Approximation approach compared to the solution cost for the one-hour
‘direct’ approach, shown as a percentage of the one-hour direct approach solution value,
broken down by values of availability probability p (probability employee unavailable given
they were unavailable the previous day) (top) and by values of the long-term disruption
penalty KL (bottom).

512

Figure D.85: Histograms summarising improvement in the solution for each instance using
the Task-Based Approximation approach compared to the solution cost for the one-hour
‘direct’ approach, shown as a percentage of the one-hour direct approach solution value,
broken down by values of the weighted average disruption penalty K̂ (top) and by values
of the agency penalty factor KAG (bottom).

513

Figure D.86: Histogram summarising improvement in the solution for each instance using
the Task-Based Approximation approach compared to the solution cost for the two-minute
change-minimization approach, shown as a percentage of the change-minimization solution
value, broken down by values of availability probability p (probability employee unavailable
given they were unavailable the previous day) (top) and by values of the agency penalty
factor KAG (bottom).

514

D.3.2.3 Relating to running time

The following describe breakdowns of the running time of the Task-Based Approximation

approach:

515

Figure D.87: Histogram summarising total running time to find a Task-Based approxima-
tion solution for each instance, including conversion time, broken down by values of the
near-term disruption penalty KN (top) and by values of the long-term disruption penalty
KL (bottom).

516

D.3.2.4 Relating to number of changes

The following describe breakdowns of the number of changes in the Task-Based Approxi-

mation solutions:

Figure D.88: Histograms summarising the number of changes in the Task-Based represen-
tation of the solution for each instance, broken down by values of availability probability
p (probability employee unavailable given they were unavailable the previous day).

517

Figure D.89: Histograms summarising the number of changes in the Time-Windows repre-
sentation of the solution for each instance, broken down by values of availability probability
p (probability employee unavailable given they were unavailable the previous day).

518

D.3.3 Breakdown of Heuristic initial solution results

Here we present selected histograms which can aid our understanding of the Kruskall-Wallis

test results given in Table 6.18. These show the same Heuristic initial solution results as in

section 6.8.3, but broken down according to the values of the parameters which this table

highlights as having a significant influence.

D.3.3.1 Relating to cost gaps

We begin with breakdowns of the gaps to the best known bound and best known solution:

Figure D.90: Histogram of percentage gaps to best known bounds for solutions found using
the Heuristic initial solution approach, broken down by values of availability probability p
(probability employee unavailable given they were unavailable the previous day).

519

Figure D.91: Histogram of percentage gaps to best known bounds for solutions found using
the Heuristic initial solution approach, broken down by whether or not time reduction
factor r (d) was used (top) and by values of the agency penalty factor KAG (bottom).

520

Figure D.92: Histogram of percentage gaps to best known solution for solutions found
using the Heuristic initial solution approach, broken down by values of the agency penalty
factor KAG.

521

D.3.3.2 Relating to improvements

The following describe breakdowns of the improvement the Heuristic initial solution makes

on the direct and change-minimization approaches:

Figure D.93: Histograms summarising improvement in the solution for each instance using
the Heuristic initial solution approach compared to the solution cost for the two-minute
‘direct’ approach, shown as a percentage of the two-minute direct approach solution value,
broken down by values of availability probability p (probability employee unavailable given
they were unavailable the previous day).

522

Figure D.94: Histograms summarising improvement in the solution for each instance using
the Heuristic initial solution approach compared to the solution cost for the two-minute
‘direct’ approach, shown as a percentage of the two-minute direct approach solution value,
broken down by values of the near-term disruption penalty KN (top) and by values of the
long-term disruption penalty KL (bottom).

523

Figure D.95: Histograms summarising improvement in the solution for each instance using
the Heuristic initial solution approach compared to the solution cost for the two-minute
‘direct’ approach, shown as a percentage of the two-minute direct approach solution value,
broken down by values of the weighted average disruption penalty K̂.

524

Figure D.96: Histograms summarising improvement in the solution for each instance using
the Heuristic initial solution approach compared to the solution cost for the one-hour
‘direct’ approach, shown as a percentage of the one-hour direct approach solution value,
broken down by values of the near-term disruption penalty KN (top) and by values of the
long-term disruption penalty KL (bottom).

525

Figure D.97: Histograms summarising improvement in the solution for each instance using
the Heuristic initial solution approach compared to the solution cost for the one-hour
‘direct’ approach, shown as a percentage of the one-hour direct approach solution value,
broken down by values of the weighted average disruption penalty K̂ (top) and by values
of the agency penalty factor KAG (bottom).

526

Figure D.98: Histogram summarising improvement in the solution for each instance using
the Heuristic initial solution approach compared to the solution cost for the two-minute
change-minimization approach, shown as a percentage of the change-minimization solution
value, broken down by values of the agency penalty factor KAG.

527

D.3.3.3 Relating to running time

The following describe breakdowns of the running time of the Heuristic initial solution

approach:

528

Figure D.99: Histogram summarising total running time of the Heuristic initial solution
algorithm for each instance, broken down by values of availability probability p (probability
employee unavailable given they were unavailable the previous day) (top) and by whether
or not time reduction factor r (d) was used (bottom).

529

D.3.3.4 Relating to numbers of iterations and changes

The following describe breakdowns of the number of iterations and number of changes in

the Heuristic initial solutions:

Figure D.100: Histogram summarising the number of iterations carried out by the Heuristic
initial solution algorithm for each instance, broken down by values of availability probability
p (probability employee unavailable given they were unavailable the previous day).

530

Figure D.101: Histogram summarising the number of changes in the Heuristic initial so-
lution for each instance, broken down by values of availability probability p (probability
employee unavailable given they were unavailable the previous day) (top) and by whether
or not time reduction factor r (d) was used (bottom).

531

D.3.3.5 Relating to improvement on the Task-Based Approximation

The following describe breakdowns of the improvement the Heuristic initial solution makes

on the Task-Based Approximation approach:

Figure D.102: Histogram summarising improvement in the solution for each instance using
the Heuristic initial solution approach compared to the solution cost for the Task-Based
Approximation solution, shown as a percentage of the Task-Based Approximation solution
value, broken down by whether or not time reduction factor r (d) was used.

532

Figure D.103: Histogram summarising improvement in the solution for each instance using
the Heuristic initial solution approach compared to the solution cost for the Task-Based
Approximation solution, shown as a percentage of the Task-Based Approximation solution
value, broken down by values of the agency penalty factor KAG.

533

D.3.4 Breakdown of Heuristic algorithm results

Here we present selected histograms which can aid our understanding of the F-test and

Kruskall-Wallis test results given in Table 6.19. These show the same results as in section

D.2.9 for the Heuristic algorithm using setting Combination #26, but broken down ac-

cording to the values of the parameters which this table highlights as having a significant

influence.

D.3.4.1 Relating to cost measures

We begin with breakdowns of the gaps to the best known bound and best known solution,

and the improvement made on the initial solution:

534

Figure D.104: Gap to best known bound from solutions found after one minute (top) and
after two minutes (bottom), for setting combination #26 only, broken down by values of
availability probability p (probability employee unavailable given they were unavailable the
previous day).

535

Figure D.105: Gap to best known bound from solutions found after one minute (top) and
after two minutes (bottom), for setting combination #26 only, broken down by values of
the agency penalty factor KAG.

536

Figure D.106: Gap to best known solution overall from solutions found after one minute
(top) and two minutes (bottom), for setting combination #26 only, broken down by values
of availability probability p (probability employee unavailable given they were unavailable
the previous day).

537

Figure D.107: Gap to best known solution overall from solutions found after one minute
(top) and two minutes (bottom), for setting combination #26 only, broken down by values
of the agency penalty factor KAG.

538

Figure D.108: Improvement on the initial solution achieved within one minute (top) and
two minutes (bottom) given as a percentage of the initial solution value, for setting combi-
nation #26 only, broken down by values of availability probability p (probability employee
unavailable given they were unavailable the previous day).

539

Figure D.109: Improvement on the initial solution achieved within two minutes given as a
percentage of the initial solution value, for setting combination #26 only, broken down by
whether or not time reduction factor r (d) was used.

540

Figure D.110: Improvement on the initial solution achieved within one minute (top) and
two minutes (bottom) given as a percentage of the initial solution value, for setting com-
bination #26 only, broken down by values of the agency penalty factor KAG.

541

D.3.4.2 Relating to numbers of changes and iterations

The following describe breakdowns of the number of changes in the solution and the number

of iterations carried out by the algorithm:

542

Figure D.111: Number of changes in the first lowest-cost solution found within one minute
(top) and two minutes (bottom), for setting combination #26 only, broken down by values
of availability probability p (probability employee unavailable given they were unavailable
the previous day).

543

Figure D.112: Number of changes in the first lowest-cost solution found within two minutes,
for setting combination #26 only, broken down by whether or not time reduction factor
r (d) was used.

544

Figure D.113: Number of iterations carried out by the algorithm within two minutes,
for setting combination #26 only, broken down by values of availability probability p
(probability employee unavailable given they were unavailable the previous day).

545

Figure D.114: Number of iterations carried out by the algorithm within two minutes, for
setting combination #26 only, broken down by values of the near-term disruption penalty
KN (top) and by values of the agency penalty factor KAG (bottom).

546

D.3.4.3 Relating to solution time

The following describe breakdowns of the estimated time to the best solution and the

estimated gaps to the final solution if the algorithm is terminated early:

547

Figure D.115: Estimated time at which the best solution within one minute (top) and
within two minutes (bottom) was first found, for setting combination #26 only, broken
down by values of availability probability p (probability employee unavailable given they
were unavailable the previous day).

548

Figure D.116: Estimated time at which the best solution within one minute (top) and
within two minutes (bottom) was first found, for setting combination #26 only, broken
down by whether or not time reduction factor r (d) was used.

549

Figure D.117: Gap to two-minute solution value from one-minute solution (top) and es-
timated 30-second solution (bottom), for setting combination #26 only, broken down by
values of availability probability p (probability employee unavailable given they were un-
available the previous day).

550

Figure D.118: Gap to two-minute solution value from estimated 20-second solution (top)
and estimated 10-second solution (bottom), for setting combination #26 only, broken down
by values of availability probability p (probability employee unavailable given they were
unavailable the previous day).

551

Figure D.119: Gap to two-minute solution value from estimated 30-second solution, for
setting combination #26 only, broken down by whether or not time reduction factor r (d)
was used.

552

Figure D.120: Gap to two-minute solution value from estimated 20-second solution (top)
and estimated 10-second solution (bottom), for setting combination #26 only, broken down
by whether or not time reduction factor r (d) was used.

553

Appendix E

Code

This chapter gives the code used for the computational tests carried out on both the Task-

Based formulation (as described in chapter 5) and the Time-Windows formulation (as

described in chapter 6) of the problem, as well as the code used to run the data-generating

algorithms for each formulation.

E.1 For the Task-Based formulation

Here we give the code used for generating the Task-Based datasets and for testing the

cost-minimization and change-minimization approaches to solving the problem.

E.1.1 Generating datasets

Here we give the code used to generate the Task-Based datasets, as described in section

5.4. This was implemented using the FICO Xpress software.

model ModelName

uses "mmxprs", "mmsystem"; !gain access to the Xpress-Optimizer solver

! use the following when generating multiple data sets:

!parameters

! PROJECTS = FALSE

! INSTANCELIST = "Task-Based - Captains - Instance List.txt"

! DATAFILE = "SS7 real data - Captains.txt"

!end-parameters

!

!declarations

! NO_OF_INSTANCES: integer

! OUTFILE: string

554

!end-declarations

!

!initialisations from INSTANCELIST

! NO_OF_INSTANCES

!end-initialisations

!

!declarations

! INSTANCES = 1..NO_OF_INSTANCES

! instance_name: array(INSTANCES) of string

! ill_given_ill: array(INSTANCES) of real

! ill_given_fit: array(INSTANCES) of real

! use_TR: array(INSTANCES) of boolean

! DF_near: array(INSTANCES) of real

! DF_long: array(INSTANCES) of real

! AG_pen: array(INSTANCES) of real

!end-declarations

!

!initialisations from INSTANCELIST

! instance_name

! ill_given_ill

! ill_given_fit

! use_TR

! DF_near

! DF_long

! AG_pen

!end-initialisations

!

!

!

!declarations

! ! Parameters to be varied for various data sets:

! ill_given_prev_fit: real

! ill_given_prev_ill: real

!

! use_time_reduction: boolean

!

! disruption_factor_near: real

! disruption_factor_long: real

! agency_penalty: real

!

!end-declarations

!---

555

! NOTE - Above section used when generating multiple data sets

! Alternatively, use section as given below:

parameters

OUTFILE = "Task-Based - Captains - Trial runs.txt"

DATAFILE = "SS7 real data - Captains.txt"

PROJECTS = FALSE

! Parameters to be varied for various data sets:

ill_given_prev_fit = 0.004

ill_given_prev_ill = 0.5

use_time_reduction = TRUE

disruption_factor_near = 1

disruption_factor_long = 1

agency_penalty = 1

end-parameters

! Notes on Parameters:

!--

! Probabilities of being ill or fit to work given previous day condition:

! Firstly, assume that the probability of being ill on a given day is 0.8% (=

0.008)

! Then, can use the following pairs of data:

! Prob(ill | ill on previous day) Prob(ill | fit on previous day)

! 0.8

0.0016

! 0.75 0.002

! 0.7

0.0024

! 0.65 0.0028

! 0.6

0.0032

! 0.55 0.0036

! 0.5

0.004 --> currently selected

! 0.45 0.0044

! 0.4

0.0048

556

! 0.35 0.0052

! 0.3

0.0056

! 0.25 0.0061

! 0.2

0.0065

!--

! Time reduction can be used to reduce the above probabilities for times further

in the future than 4 weeks.

! For a given day index d > 28, the time reduction is calculated as

! time_reduction := (d-28)/((7*no_of_weeks)-28)

!

! The probabilities are then multiplied by (1 - time_reduction)

! It may be useful to vary the use of the time reduction to see if there is a

significant impact on results

!--

! Disruption factors and agency penalty are used to penalise the making of

changes in the schedule

! --> Disruption factors are multipliers applied to the cost of changing the

assignment if the cost is

! positive, and used as a divisor if the cost is negative. They are

defined differently for tasks which

! start within the first four weeks (assumed to be penalised more

harshly if any penalty is applied),

! and those which start after this time. There is no disruption

factor for assignments made in the final

! week of the horizon.

! --> Similarly, a penalty is defined as a multiplier for positive or a divisor

for negative costs of

! changing the assignment of Agency crew, over and above the actual

costs involved.

!--

!--

! Declarations for data to be read in:

declarations

no_of_crew: integer

no_of_vessels: integer

no_of_weeks: integer

end-declarations

557

initialisations from DATAFILE

no_of_crew no_of_vessels no_of_weeks

end-initialisations

declarations

crew = 1..no_of_crew

crew_label: array(crew) of string

contract_type: array(crew) of string

legal_entity: array(crew) of string

crew_continent: array(crew) of string

crew_nation: array(crew) of string

vessel = 1..no_of_vessels

vessel_name: array(vessel) of string

vessel_label: array(vessel) of string

required: array(vessel) of integer

vessel_location: array(vessel) of string

! operation_type: array(vessel) of string

end-declarations

initialisations from DATAFILE

crew_label vessel_name

contract_type legal_entity crew_continent crew_nation

vessel_label required vessel_location

! operation_type

end-initialisations

procedure MAIN_PROG

!--

! Declarations for data to be calulated / generated for this instance:

declarations

no_of_tasks: integer

Norway_emps, Singapore_emps, Other_emps: integer

max_work, min_rest: integer

vessel_max_work: array(vessel) of integer

vessel_roles: array(vessel) of set of integer

558

role_tasks: integer

task_no, time_count: integer

rand_no: real

end-declarations

!--

! Calculations:

! First, need to know task lengths:

Norway_emps := 0

Singapore_emps := 0

Other_emps := 0

forall(c in crew) do

if(legal_entity(c) = "Subsea7 Contr (Norway) AS") then Norway_emps

:= Norway_emps +1

elif(legal_entity(c) = "Subsea 7 (Sing) PTE-GEC") then

Singapore_emps := Singapore_emps +1

else Other_emps := Other_emps +1

end-if

end-do

if(Singapore_emps > Norway_emps) then

if(Singapore_emps > Other_emps) then

! writeln("Singapore employees are the dominant contract type

(",Singapore_emps,", vs ",Norway_emps," Norway and ",Other_emps," others)")

max_work := 10

min_rest := 5

else

! writeln("Other employees are the dominant contract type (",

Other_emps,", vs ",Norway_emps," Norway and ",Singapore_emps," Singapore)")

max_work := 5

min_rest := 4

end-if

else

if(Norway_emps > Other_emps) then

! writeln("Norway employees are the dominant contract type (",

Norway_emps,", vs ",Singapore_emps," Singapore and ",Other_emps," others)")

max_work := 2

559

min_rest := 4

else

! writeln("Other employees are the dominant contract type (",

Other_emps,", vs ",Norway_emps," Norway and ",Singapore_emps," Singapore)")

max_work := 5

min_rest := 4

end-if

end-if

! Next need to calculate the number of roles required in total

role_no := 0

forall(v in vessel | required(v) > 0) do

vessel_roles(v) := {}

forall(r in 1..required(v)) do

role_no := role_no + 1

vessel_roles(v) += {role_no}

end-do

end-do

declarations

roles = 1..role_no

start_duration: array(roles) of integer

end-declarations

! Can now determine the starting points for all vessel tasks

no_of_tasks := 0

! writeln

! writeln("At start, tasks on board vessels have the following lengths

remaining:")

forall(v in vessel | required(v) > 0) do

if(max_work = 5 and vessel_location(v) = "Europe") then

vessel_max_work(v) := 4

else

vessel_max_work(v) := max_work

end-if

forall(r in vessel_roles(v)) do

start_duration(r) := integer(vessel_max_work(v)*random)

if(start_duration(r) = 0) then

560

if(10*integer(no_of_weeks/vessel_max_work(v)) = 10*(

no_of_weeks/vessel_max_work(v))) then

! write("\tCase 1: ",10*(integer(no_of_weeks/

vessel_max_work(v)))," = ",10*(no_of_weeks/vessel_max_work(v)))

role_tasks := integer(no_of_weeks/

vessel_max_work(v))

else

! write("\tCase 2: ",10*integer(no_of_weeks/

vessel_max_work(v))," <> ",10*(no_of_weeks/vessel_max_work(v)))

role_tasks := integer(no_of_weeks/

vessel_max_work(v)) +1

end-if

else

if(10*integer((no_of_weeks - start_duration(r))/

vessel_max_work(v)) = 10*(no_of_weeks -

start_duration(r))/vessel_max_work(v)) then

! write("\tCase 3: ",10*integer((no_of_weeks -

start_duration(r))/vessel_max_work(v))," = ",10*(no_of_weeks - start_duration

(r))/vessel_max_work(v))

role_tasks := integer((no_of_weeks -

start_duration(r))/vessel_max_work(v)) +1

else

! write("\tCase 4: ",10*integer((no_of_weeks -

start_duration(r))/vessel_max_work(v))," <> ",10*(no_of_weeks -

start_duration(r))/vessel_max_work(v))

role_tasks := integer((no_of_weeks -

start_duration(r))/vessel_max_work(v)) +2

end-if

end-if

no_of_tasks := no_of_tasks + role_tasks

! writeln("\tVessel ",v,"\t Role ",r,":\t",start_duration(r),"

weeks (out of ",vessel_max_work(v)," weeks)\tAnd so has ",role_tasks," tasks

in total.")

end-do

end-do

!--

! Generate regular assignments:

declarations

active_roles: integer

561

regular_vessel: array(crew) of integer

no_of_regulars_vessel: array(vessel) of integer

regular_role: array(crew) of integer

no_of_regulars_role: array(roles) of integer

assigned_crew: array(roles) of integer

assigned_role: integer

extra, spare: integer

end-declarations

active_roles := 0

forall(v in vessel) do

active_roles := active_roles + required(v)

no_of_regulars_vessel(v) := 2*required(v)

forall(r in vessel_roles(v)) no_of_regulars_role(r) := 2

end-do

! writeln

! writeln

! writeln("Number of active roles:\t",active_roles)

! writeln("Number of crew available:\t",no_of_crew)

! writeln("\t... so number of crew per role:\t",no_of_crew/active_roles)

if(no_of_crew/active_roles > 2) then

if(no_of_crew/active_roles > 3) then

spare := no_of_crew - (3*active_roles)

else

spare := 0

end-if

extra := 0

while(extra < (no_of_crew - (2*active_roles) - spare)) do

rand_no := (active_roles*random) +1

if(no_of_regulars_role(integer(rand_no)) < 3) then

no_of_regulars_role(integer(rand_no)) :=

no_of_regulars_role(integer(rand_no)) +1

extra := extra +1

end-if

end-do

end-if

562

assigned_role := 0

forall(c in crew) regular_vessel(c) := 0

forall(c in crew) regular_role(c) := 0

forall(r in roles) assigned_crew(r) := 0

while(assigned_role < (no_of_crew - spare)) do

forall(c in crew | regular_role(c) = 0) do

rand_no := (active_roles*random) +1

if(assigned_crew(integer(rand_no)) < no_of_regulars_role(

integer(rand_no))) then

regular_role(c) := integer(rand_no)

assigned_crew(integer(rand_no)) := assigned_crew(

integer(rand_no)) +1

assigned_role := assigned_role +1

end-if

end-do

end-do

forall(v in vessel) do

no_of_regulars_vessel(v) := 0

forall(r in vessel_roles(v)) do

forall(c in crew) do

if(regular_role(c) = r) then

regular_vessel(c) := v

end-if

end-do

no_of_regulars_vessel(v) := no_of_regulars_vessel(v) +

no_of_regulars_role(r)

end-do

end-do

! writeln

! forall(v in vessel | required(v) > 0) do

! write("Vessel ")

! if(v < 10) then write(" "); end-if

! write(v," is assigned the following as regulars:\t")

! forall(c in crew | regular_vessel(c) = v) do

563

! if(c < 10) then write(" "); end-if

! write(c," ")

! end-do

! write("\n")

! end-do

! writeln

! writeln

! forall(r in roles) do

! write("Role ")

! if(r < 10) then write(" "); end-if

! write(r," is assigned the following as regulars:\t")

! forall(c in crew | regular_role(c) = r) do

! if(c < 10) then write(" "); end-if

! write(c," ")

! end-do

! write("\n")

! end-do

! writeln

!--

! And so can determine the tasks in terms of start / end times, and the

initial assignments to these

declarations

tasks = 1..no_of_tasks

task_vessel: array(tasks) of integer

task_role: array(tasks) of integer

task_start, task_duration: array(tasks) of integer

shipcrew: array(1..3) of integer

initial: array(crew, tasks) of integer

ag_initial: array(tasks) of integer

previous: integer

more_previous: integer

back_count: integer

start_in_role: array(roles) of integer

work_resource_zero: array(crew) of integer

rest_resource_zero: array(crew) of integer

initial_rest_required: array(crew) of integer

end-declarations

forall(c in crew) do

564

forall(t in tasks) initial(c,t) := 0

work_resource_zero(c) := 0

rest_resource_zero(c) := 0

initial_rest_required(c) := 0

end-do

forall(t in tasks) ag_initial(t) := 1

task_no := 0

forall(v in vessel) do

forall(r in vessel_roles(v)) do

forall(i in 1..3) shipcrew(i) := 0

forall(c in crew | regular_role(c) = r) do

if(no_of_regulars_role(r) = 2) then

if(shipcrew(1) = 0 and shipcrew(2) = 0) then

rand_no := random

if(rand_no < 0.5) then

shipcrew(1) := c

else

shipcrew(2) := c

end-if

else

if(shipcrew(1) = 0) then

shipcrew(1) := c

else

shipcrew(2) := c

end-if

end-if

else

if(shipcrew(1) + shipcrew(2) + shipcrew(3) =

0) then

rand_no := random

if(rand_no < (1/3)) then

shipcrew(1) := c

else

if(rand_no < (2/3)) then

shipcrew(2) := c

else

shipcrew(3) := c

end-if

end-if

else

565

if(shipcrew(1) + shipcrew(2) +

shipcrew(3) = 1) then

rand_no := random

if(rand_no < 0.5) then

if(shipcrew(1) = 0) then

shipcrew(1) := c

else

shipcrew(2) := c

end-if

else

if(shipcrew(3) = 0) then

shipcrew(3) := c

else

shipcrew(2) := c

end-if

end-if

else

forall(i in 1..3 | shipcrew(i)

= 0) shipcrew(i) := c

end-if

end-if

end-if

end-do

! write("The ’shipcrew’ for role ",r,", in order, are:\t")

! forall(i in 1..3) write(shipcrew(i)," ")

! write("\n")

time_count := 0

previous := 0

start_in_role(r) := 0

if(start_duration(r) > 0) then

task_no := task_no +1

task_start(task_no) := 0

task_duration(task_no) := start_duration(r)

task_vessel(task_no) := v

task_role(task_no) := r

previous := previous +1

start_in_role(r) := shipcrew(previous)

if(shipcrew(previous) > 0) then

566

work_resource_zero(shipcrew(previous)) := (

vessel_max_work(v) - start_duration(r))

initial(shipcrew(previous), task_no) := 1

ag_initial(task_no) := 0

end-if

time_count := time_count + start_duration(r)

else

previous := previous +1

start_in_role(r) := shipcrew(previous)

if(shipcrew(previous) > 0) then

work_resource_zero(shipcrew(previous)) :=

vessel_max_work(v)

end-if

end-if

! Calculate the backwards-worked rest periods required...

more_previous := previous

if(start_duration(r) = 0) then

if(shipcrew(more_previous) > 0) then

rest_resource_zero(shipcrew(more_previous))

:= 1

end-if

end-if

back_count := vessel_max_work(v) - start_duration(r)

while(back_count < min_rest) do

if(more_previous = 1) then

more_previous := no_of_regulars_role(r)

else

more_previous := more_previous - 1

end-if

if(shipcrew(more_previous) > 0) then

initial_rest_required(shipcrew(more_previous)

) := min_rest - back_count

end-if

back_count := back_count + vessel_max_work(v)

end-do

567

while(time_count < no_of_weeks) do

task_no := task_no +1

task_start(task_no) := time_count

if(time_count + vessel_max_work(v) < no_of_weeks)

then

task_duration(task_no) := vessel_max_work(v)

else

task_duration(task_no) := no_of_weeks -

time_count

end-if

task_vessel(task_no) := v

task_role(task_no) := r

if(previous = no_of_regulars_role(r)) then

previous := 1

else

previous := previous +1

end-if

if(shipcrew(previous) > 0) then

if(task_start(task_no) < no_of_weeks-1) then

initial(shipcrew(previous), task_no)

:= 1

end-if

ag_initial(task_no) := 0

end-if

time_count := time_count + vessel_max_work(v)

end-do

end-do

end-do

! writeln

! writeln("Total number of tasks is ",no_of_tasks)

! writeln("... and the set of tasks are as follows:")

! forall(t in tasks) do

! if(t < 10) then

! write("Task ",t,": ")

! else

568

! write("Task ",t,":")

! end-if

!

! if(task_vessel(t) < 10) then

! write(" Vessel ",task_vessel(t)," ")

! else

! write(" Vessel ",task_vessel(t)," ")

! end-if

!

! if(task_role(t) < 10) then

! write(" Role ",task_vessel(t)," (")

! else

! write(" Role ",task_vessel(t)," (")

! end-if

!

!

! write(vessel_label(task_vessel(t)),")\tStart: ",task_start(t),"\

tDuration: ",task_duration(t),"\tEnd: ",task_start(t)+task_duration(t),"\t\

tInitially assigned: ")

! forall(c in crew | initial(c,t) = 1) do

! write(crew_label(c))

! end-do

! write("\n")

!

! end-do

! writeln

! writeln

!--

! Generate employee availabilities:

declarations

days = 0..(7*no_of_weeks)

available_day: array(crew,days) of integer

available_task: array(crew,tasks) of integer

available_sum: integer

! ill_given_prev_fit: real

! ill_given_prev_ill: real

time_reduction: real

end-declarations

569

forall(c in crew) do

rand_no := random

if(rand_no < 0.008) then

available_day(c,0) := 0

else

available_day(c,0) := 1

end-if

forall(d in days | d > 0) do

time_reduction := 0

if(use_time_reduction = TRUE) then

if(d > 28) then

time_reduction := (d-28)/((7*no_of_weeks)-28)

end-if

end-if

rand_no := random

if(available_day(c,d-1) = 1) then

if(rand_no < ill_given_prev_fit*(1-time_reduction))

then

available_day(c,d) := 0

else

available_day(c,d) := 1

end-if

else

if(rand_no < ill_given_prev_ill*(1-time_reduction))

then

available_day(c,d) := 0

else

available_day(c,d) := 1

end-if

end-if

end-do

forall(t in tasks) do

available_sum := 0

forall(d in ((7*task_start(t))+1)..(7*(task_start(t) +

task_duration(t)))) do

available_sum := available_sum + available_day(c,d)

end-do

570

if(available_sum = (7*task_duration(t))) then

available_task(c,t) := 1

else

available_task(c,t) := 0

end-if

end-do

! Must also factor in the ’initial rest periods’ required

! - no employee can be eligible for a task in the first r

periods of the planning horizon

if(initial_rest_required(c) > 0) then

forall(t in tasks | task_start(t) <= initial_rest_required(c

)) do

available_task(c,t) := 0

end-do

end-if

end-do

!--

! Generate costs and fixed-contract terms:

declarations

change_cost: array(crew, tasks) of real

ag_change_cost: array(tasks) of real

board_addition: real

depart_addition: real

working_addition: real

disruption_factor: real

under_rate, over_rate: array(crew) of real

current_excess, exp_worktime: array(crew) of real

current_worktime: array(crew) of real

g_weeks: real

end-declarations

571

forall(t in tasks) do

forall(c in crew) do

board_addition := 0

if(initial(c,t) = 0) then

if(crew_continent(c) = "European") then

if(vessel_location(task_vessel(t)) = "Europe

") then board_addition := 3

elif(vessel_location(task_vessel(t)) = "

Africa" or vessel_location(task_vessel(t)

) = "USA") then board_addition := 6

else board_addition := 8

end-if

elif(crew_continent(c) = "North American") then

if(vessel_location(task_vessel(t)) = "USA")

then board_addition := 4

elif(vessel_location(task_vessel(t)) = "

Brazil" or vessel_location(task_vessel(t)

) = "Europe") then board_addition := 6

else board_addition := 9

end-if

elif(crew_continent(c) = "Asian" or crew_continent(c

) = "Australasian") then

if(vessel_location(task_vessel(t)) = "AsiaPac

") then board_addition := 4

else board_addition := 9

end-if

else board_addition := 9

end-if

else

if(task_start(t) > 0) then

if(crew_continent(c) = "European") then

if(vessel_location(task_vessel(t)) = "

Europe") then board_addition := -2

elif(vessel_location(task_vessel(t)) =

"Africa" or vessel_location(

task_vessel(t)) = "USA") then

board_addition := -5

else board_addition := -7

end-if

elif(crew_continent(c) = "North American")

then

572

if(vessel_location(task_vessel(t)) = "

USA") then board_addition := -3

elif(vessel_location(task_vessel(t)) =

"Brazil" or vessel_location(

task_vessel(t)) = "Europe") then

board_addition := -5

else board_addition := -8

end-if

elif(crew_continent(c) = "Asian" or

crew_continent(c) = "Australasian") then

if(vessel_location(task_vessel(t)) = "

AsiaPac") then board_addition :=

-3

else board_addition := -8

end-if

else board_addition := -8

end-if

if(task_start(t) < 5) then

board_addition := board_addition/2

end-if

end-if

end-if

depart_addition := 0

if(initial(c,t) = 0) then

if(crew_continent(c) = "European") then

if(vessel_location(task_vessel(t)) = "Europe

") then depart_addition := 3

elif(vessel_location(task_vessel(t)) = "

Africa" or vessel_location(task_vessel(t)

) = "USA") then depart_addition := 6

else depart_addition := 8

end-if

elif(crew_continent(c) = "North American") then

if(vessel_location(task_vessel(t)) = "USA")

then depart_addition := 4

elif(vessel_location(task_vessel(t)) = "

Brazil" or vessel_location(task_vessel(t)

) = "Europe") then depart_addition := 6

else depart_addition := 9

end-if

573

elif(crew_continent(c) = "Asian" or crew_continent(c

) = "Australasian") then

if(vessel_location(task_vessel(t)) = "AsiaPac

") then depart_addition := 4

else depart_addition := 9

end-if

else depart_addition := 9

end-if

else

if(crew_continent(c) = "European") then

if(vessel_location(task_vessel(t)) = "Europe

") then depart_addition := -2

elif(vessel_location(task_vessel(t)) = "

Africa" or vessel_location(task_vessel(t)

) = "USA") then depart_addition := -5

else depart_addition := -7

end-if

elif(crew_continent(c) = "North American") then

if(vessel_location(task_vessel(t)) = "USA")

then depart_addition := -3

elif(vessel_location(task_vessel(t)) = "

Brazil" or vessel_location(task_vessel(t)

) = "Europe") then depart_addition := -5

else depart_addition := -8

end-if

elif(crew_continent(c) = "Asian" or crew_continent(c

) = "Australasian") then

if(vessel_location(task_vessel(t)) = "AsiaPac

") then depart_addition := -3

else depart_addition := -8

end-if

else depart_addition := -8

end-if

if((task_start(t)+task_duration(t)) < 5) then

depart_addition := depart_addition/2

end-if

end-if

working_addition := 0

if(contract_type(c) = "Permanent") then

574

working_addition := 0

else

if(crew_nation(c) = "NORWAY") then

if(task_duration(t) < vessel_max_work(

task_vessel(t)) and task_start(t) +

task_duration(t) = 7*no_of_weeks) then

if(initial(c,t) = 1) then

working_addition := -90*

vessel_max_work(task_vessel

(t))

else

working_addition := 100*

vessel_max_work(task_vessel

(t))

end-if

else

if(initial(c,t) = 1) then

working_addition := -90*

task_duration(t)

else

working_addition := 100*

task_duration(t)

end-if

end-if

else

if(task_duration(t) < vessel_max_work(

task_vessel(t)) and task_start(t) +

task_duration(t) = 7*no_of_weeks) then

if(initial(c,t) = 1) then

working_addition := -60*

vessel_max_work(task_vessel

(t))

else

working_addition := 70*

vessel_max_work(task_vessel

(t))

end-if

else

if(initial(c,t) = 1) then

working_addition := -60*

task_duration(t)

else

575

working_addition := 70*

task_duration(t)

end-if

end-if

end-if

end-if

change_cost(c,t) := board_addition + depart_addition +

working_addition

if(task_start(t) < 5) then

if(change_cost(c,t) > 0) then

change_cost(c,t) := disruption_factor_near*

change_cost(c,t)

elif(change_cost(c,t) < 0) then

change_cost(c,t) := (1/disruption_factor_near

)*change_cost(c,t)

end-if

elif(task_start(t) < (no_of_weeks-1)) then

if(change_cost(c,t) > 0) then

change_cost(c,t) := disruption_factor_long*

change_cost(c,t)

elif(change_cost(c,t) < 0) then

change_cost(c,t) := (1/disruption_factor_long

)*change_cost(c,t)

end-if

end-if

end-do

board_addition := 0

if(ag_initial(t) = 0) then

board_addition := 2

else

if(task_start(t) > 4) then

board_addition := -2

elif(task_start(t) > 0) then

board_addition := -1

end-if

end-if

576

depart_addition := 0

if(ag_initial(t) = 0) then

depart_addition := 2

else

if((task_start(t) + task_duration(t)) > 4) then

depart_addition := -2

else

depart_addition := -1

end-if

end-if

working_addition := 0

if(task_duration(t) < vessel_max_work(task_vessel(t)) and

task_start(t) + task_duration(t) = 7*no_of_weeks) then

if(ag_initial(t) = 0) then

working_addition := 200*vessel_max_work(task_vessel(

t))

else

working_addition := -180*vessel_max_work(task_vessel

(t))

end-if

else

if(ag_initial(t) = 0) then

working_addition := 200*task_duration(t)

else

working_addition := -180*task_duration(t)

end-if

end-if

ag_change_cost(t) := board_addition + depart_addition +

working_addition

if(ag_change_cost(t) > 0) then

ag_change_cost(t) := agency_penalty*ag_change_cost(t)

elif(ag_change_cost(t) < 0) then

ag_change_cost(t) := (1/agency_penalty)*ag_change_cost(t)

end-if

end-do

577

forall(c in crew | contract_type(c) = "Permanent") under_rate(c) := 70

forall(c in crew | contract_type(c) = "Permanent") do

if(legal_entity(c) = "Subsea7 Contr (Norway) AS") then over_rate(c)

:= 500

elif(legal_entity(c) = "Subsea 7 Norway") then over_rate(c) := 500

elif(crew_nation(c) = "Norway") then over_rate(c) := 120

else over_rate(c) := 70

end-if

end-do

g_weeks := 26

forall(c in crew | contract_type(c) = "Permanent") do

exp_worktime(c) := 26 - sum(t in tasks)(initial(c,t)*task_duration(

t))

end-do

forall(c in crew | contract_type(c) = "Permanent") do

current_worktime(c) := exp_worktime(c) + sum(t in tasks)(initial(c,

t)*task_duration(t)*available_task(c,t))

end-do

forall(c in crew | contract_type(c) = "Permanent") do

current_excess(c) := 0

if(current_worktime(c) < 26) then

current_excess(c) := under_rate(c)*(26-current_worktime(c))

end-if

if(current_worktime(c) > 26) then

current_excess(c) := over_rate(c)*(current_worktime(c)-26)

end-if

end-do

!--

! Print dataset into output file:

fopen(OUTFILE, F_OUTPUT)

writeln("! Dataset generated for task-based formulation based on

real data on Subsea 7 Captains.")

writeln

578

writeln("! Parameters used:")

writeln

writeln("! -> Probability employee ill given previously fit:\t",

ill_given_prev_fit)

writeln("! -> Probability employee ill given previously ill:\t",

ill_given_prev_ill)

if(use_time_reduction = TRUE) then writeln("! -> Time-reduction of

probabilities:\t\t\tON")

else writeln("! -> Time-reduction of probabilities:\t\t\tOFF")

end-if

writeln

writeln("! -> Disruption factor for near tasks:\t\t\t",

disruption_factor_near)

writeln("! -> Disruption factor for more distant tasks:\t\t",

disruption_factor_long)

writeln("! -> Agency crew penalty:\t\t\t\t",agency_penalty)

writeln

writeln("!---")

writeln

writeln

writeln("Max_OF: 1000000")

writeln("Max_Sol: 15")

writeln

writeln("DAYS_TO_PLAN: ",no_of_weeks*7)

writeln

writeln("JOBS_TO_PLAN: ",no_of_tasks)

writeln("LINKED_SETS: 0")

writeln

if(PROJECTS = FALSE) then

writeln("PROJECT_NUMBER: 0")

! else

! will have to calculate number of projects, not required here

end-if

writeln

write("EMP : [")

forall(c in crew) write(" ’",crew_label(c),"’ ")

write("] \n")

writeln

write("GUARANTEED: [")

579

forall(c in crew | contract_type(c) = "Permanent") write(" ’",

crew_label(c),"’")

write("] \n")

writeln

write("start_time: [")

forall(t in tasks) write(" ",7*task_start(t))

write("] \n")

write("duration: [")

forall(t in tasks) write(" ",7*task_duration(t))

write("] \n")

writeln

write("linked_matrix: [")

forall(t in tasks) write(" 0")

write("] \n")

writeln

write("min_rest: [")

forall(c in crew) write(" ",min_rest)

write("] \n")

write("max_work: [")

forall(c in crew) write(" ",max_work)

write("] \n")

writeln

writeln("eligible: [")

forall(c in crew) do

forall(t in tasks) do

if(task_start(t) = 0 and initial(c,t) = 1) then

write(" 1")

else

write(" ",available_task(c,t))

end-if

end-do

write("\n")

end-do

write("] \n")

writeln

write("AG_eligible: [")

forall(t in tasks) write(" 1")

writeln("]")

writeln

writeln

580

write("work_resource_zero: [")

forall(c in crew) write(" ",work_resource_zero(c))

writeln("]")

write("rest_resource_zero: [")

forall(c in crew) write(" ",rest_resource_zero(c))

writeln("]")

writeln

writeln

writeln("initial: [")

forall(c in crew) do

forall(t in tasks) write(" ",initial(c,t)*available_task(c,t

))

write("\n")

end-do

writeln("]")

writeln

writeln("AG_initial: [")

forall(t in tasks) write(" ",ag_initial(t))

writeln("]")

writeln

writeln

writeln("change_cost: [")

forall(c in crew) do

forall(t in tasks) write(change_cost(c,t),"\t")

write("\n")

end-do

writeln("]")

writeln

writeln("AG_change_cost: [")

forall(t in tasks) write(ag_change_cost(t),"\t")

writeln("]")

writeln

writeln

write("under_rate:\t[")

forall(c in crew | contract_type(c) = "Permanent") write(round(

under_rate(c)/7),"\t")

write("]\nover_rate:\t[")

forall(c in crew | contract_type(c) = "Permanent") write(round(

over_rate(c)/7),"\t")

581

write("]\ncurrent_excess:\t[")

forall(c in crew | contract_type(c) = "Permanent") write(

current_excess(c),"\t")

write("]\ng_days:\t\t[")

forall(c in crew | contract_type(c) = "Permanent") write(g_weeks

*7,"\t")

write("]\nexp_worktime:\t[")

forall(c in crew | contract_type(c) = "Permanent") write(

exp_worktime(c)*7,"\t")

write("]\n")

writeln

writeln

write("project_matrix: [")

forall(t in tasks) write(" 0")

write("]\n")

writeln

write("experience: [")

forall(c in crew) do

forall(t in tasks) write(" 0")

write("\n")

end-do

writeln("]")

writeln

write("AG_experience: [")

forall(t in tasks) write(" 0")

writeln("]")

writeln

writeln("min_experience: [0]")

writeln

fclose(F_OUTPUT)

end-procedure

!---

!forall(ins in INSTANCES) do

!

! OUTFILE := instance_name(ins)

!

582

! ! Parameters to be varied for various data sets:

! ill_given_prev_fit := ill_given_fit(ins)

! ill_given_prev_ill := ill_given_ill(ins)

!

! use_time_reduction := use_TR(ins)

!

! disruption_factor_near := DF_near(ins)

! disruption_factor_long := DF_long(ins)

! agency_penalty := AG_pen(ins)

!

MAIN_PROG

!

!end-do

end-model

E.1.2 Cost-minimization algorithm

Here we give the code used to solve the Task-Based problem using the Cost-Minimization

approach described in section 5.5.1.1. This was implemented using the FICO Xpress soft-

ware.

model ModelName

uses "mmxprs", "mmsystem"; !gain access to the Xpress-Optimizer solver

! Model for the Subsea 7 problem, using formulation as set out in 2nd Year Review

document

! This program aims to solve the problem directly from this formulation

parameters

DATE = "10-02-14"

PARAMETERFILE = "batch-input-parameters.dat"

end-parameters

declarations

InstanceName: string

end-declarations

initializations from PARAMETERFILE

InstanceName

end-initializations

583

DATAFILE := InstanceName+"\\Task-Based - Captains - "+InstanceName+".txt"

LOGFILE := InstanceName+"\\Logfile - TB 2min - "+InstanceName+" - "+DATE+".txt"

SUMMARYFILE := "Results - TB 2min - "+DATE+".txt"

! Set parameters relating to running time and acceptable optimality gap:

setparam("XPRS_maxtime", -120)

setparam("XPRS_miprelstop",0.05)

! Set parameters for numbers of Cover and Gomory cuts to apply:

setparam("XPRS_covercuts",30)

setparam("XPRS_gomcuts",10)

!

! Use the above settings for the two-minute time limits.

!

! For ten-minute time-limits, use the following:

! setparam("XPRS_maxtime", -600)

! setparam("XPRS_miprelstop",0.05)

! setparam("XPRS_covercuts",50)

! setparam("XPRS_gomcuts",10)

!

! ... or for the extended settings, use the following:

! setparam("XPRS_maxtime", -21600)

! (note - do not adjust parameter XPRS_miprelstop from the default)

! setparam("XPRS_covercuts",1000)

! setparam("XPRS_gomcuts",1000)

prog_starttime := gettime ! get the time so that at the end, running

time can be calculated

declarations

EMP: set of string ! Employee names / numbers

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

DAYS_TO_PLAN: integer

JOBS_TO_PLAN: integer

PROJECT_NUMBER: integer

status: array({XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH}) of string !

Used to indicate the solution status of the problem

end-declarations

584

initializations from DATAFILE

EMP GUARANTEED DAYS_TO_PLAN JOBS_TO_PLAN PROJECT_NUMBER

end-initializations

if(PROJECT_NUMBER = 0) then THEORETIC_PROJECTS := 1

else THEORETIC_PROJECTS := PROJECT_NUMBER

end-if

declarations

JOB = 1..JOBS_TO_PLAN

PROJECT = 1..THEORETIC_PROJECTS

eligible: array(EMP, JOB) of real ! = 1 if employee can carry out a job,

0 otherwise

AG_eligible: array(JOB) of real ! eligibility of agency crew

change_cost: array(EMP, JOB) of real ! The cost of an employee carrying

out a job

AG_change_cost: array(JOB) of real ! Cost details for agency crew

start_time, duration: array(JOB) of real

rest_duration_list: set of real

REST_NUMBER: integer

initial: array(EMP, JOB) of real ! = 1 if employee is currently

allocated to a task, 0 otherwise

AG_initial: array(JOB) of real

under_rate, over_rate, current_excess, g_days, exp_worktime: array(

GUARANTEED) of real

project_matrix: array(PROJECT, JOB) of integer

project_set: array(PROJECT) of set of integer

experience: array(EMP, JOB) of real

AG_experience: array(JOB) of real

min_experience: array(PROJECT) of real

min_rest: array(EMP) of real

max_work: array(EMP) of real

undertime, overtime: array(GUARANTEED) of mpvar

change: dynamic array(EMP, JOB) of mpvar

AG_change: dynamic array(JOB) of mpvar

new_sched: dynamic array(EMP, JOB) of mpvar

AG_new_sched: dynamic array(JOB) of mpvar

end-declarations

initializations from DATAFILE

585

eligible AG_eligible change_cost AG_change_cost start_time duration

initial AG_initial

under_rate over_rate current_excess g_days exp_worktime

project_matrix experience AG_experience min_experience min_rest max_work

end-initializations

!--

! Define the change and new_sched (ie y and z) variables ONLY for the

! tasks for which each crew member is eligible

!writeln("Define ’change’ and ’new sched’ variables:")

forall(j in JOB) do

forall(i in EMP) do

if eligible(i,j) = 1 then

! writeln("Create variables for task ",j," for ",i)

create(change(i,j))

create(new_sched(i,j))

end-if

end-do

if AG_eligible(j) = 1 then

! writeln("Create variables for task ",j," for agency")

create(AG_change(j))

create(AG_new_sched(j))

end-if

! writeln

end-do

!--

! Define ’rest’ tasks such that they start directly after each work task has

ended

! (subject to them finishing before the time-window ends)

!writeln("Create rest tasks:")

rest_duration_list := {}

forall(i in EMP) rest_duration_list += {7*min_rest(i)}

!forall(i in EMP) writeln(i," requires a minimum rest period of length ",min_rest

(i))

!writeln

declarations

rest_start_list: array(rest_duration_list) of set of real

end-declarations

586

REST_NUMBER := 0

forall(j in JOB, r in rest_duration_list) do

if start_time(j) + duration(j) < (DAYS_TO_PLAN - r + 1) then

rest_start_list(r) += {start_time(j) + duration(j)}

! writeln("Task ",j," ends at time ",start_time(j) + duration(j),",

and we can add a rest task of length ",r," starting at this time")

end-if

end-do

!writeln

!writeln("The ’rest start list’ contains the following:")

!forall(r in rest_duration_list) writeln("Of duration ",r,", starting at: ",

rest_start_list(r))

forall(r in rest_duration_list) REST_NUMBER := REST_NUMBER + getsize(

rest_start_list(r))

!writeln("... and so REST_NUMBER = ",REST_NUMBER)

!writeln

declarations

REST = 1..REST_NUMBER

rest_start_time, rest_duration: array(REST) of real

rest_new_sched: dynamic array(EMP, REST) of mpvar

work_content_work_arc, rest_content_work_arc: array(JOB) of real

work_content_rest_arc, rest_content_rest_arc: array(REST) of real

end-declarations

index := 0

forall(r in rest_duration_list) do

forall(s in rest_start_list(r)) do

index := index + 1

rest_start_time(index) := s

rest_duration(index) := r

! writeln("Rest task ",index," starts at time ",rest_start_time(index

)," and is of length ",rest_duration(index))

end-do

end-do

!writeln

! Note that employees can only be assigned a rest task of length equal to their

required minimum rest period

forall(r in REST, i in EMP) do

587

if(rest_duration(r) = 7*min_rest(i)) then

create(rest_new_sched(i,r))

! writeln("Rest task: ",r,"\tDuration: ",rest_duration(r),"\tEmployee

: ",i,"\tMinRest: ",min_rest(i),"\t=> Create variable")

end-if

end-do

!--

! Can now define work and rest content for work and rest arcs

!writeln("Define work and rest contents:")

forall(j in JOB) do

work_content_work_arc(j) := duration(j)

rest_content_work_arc(j) := 1

! rest_content_work_arc(j) := (duration(j))/14

! writeln("For task ",j,", work content = ",work_content_work_arc(j)," and

rest content = ",rest_content_work_arc(j))

end-do

forall(r in REST) do

work_content_rest_arc(r) := -DAYS_TO_PLAN

rest_content_rest_arc(r) := -1

! writeln("For rest task ",r,", work content = ",work_content_rest_arc(r),"

and rest content = ",rest_content_rest_arc(r))

end-do

!writeln

!--

! Next we will generate the sets C_beta of overlapping tasks

!writeln("Define the sets of overlapping tasks:")

declarations

beta: integer

time_points: set of real

time_points_ordered: list of real

NUMBER_OF_POINTS: integer

min_time: real

beta_index: range

overlap_set_work, overlap_set_rest: dynamic array(beta_index) of set of

integer

current_set_work, current_set_rest: set of integer

end-declarations

588

time_points := {}

forall(j in JOB) do

time_points += {start_time(j)}

time_points += {start_time(j) + duration(j)}

end-do

forall(j in REST) do

time_points += {rest_start_time(j)}

time_points += {rest_start_time(j) + rest_duration(j)}

end-do

!writeln("The set of time points is as follows:",time_points)

time_points_ordered := []

NUMBER_OF_POINTS := getsize(time_points)

forall(i in 1..NUMBER_OF_POINTS) do

min_time := DAYS_TO_PLAN

forall(p in time_points) do

if(p < min_time) then min_time := p; end-if

end-do

time_points_ordered += [min_time]

time_points -= {min_time}

end-do

!writeln("Giving the following ordered set:",time_points_ordered)

!writeln

!writeln("Running algorithm:")

current_set_work := {}

current_set_rest := {}

beta := 1

constraint_required := FALSE

add_constraint := FALSE

forall(t in time_points_ordered) do

! writeln("\t dealing with time point ",t)

! check to see if another constraint is required

forall(j in JOB | start_time(j) + duration(j) = t) add_constraint := TRUE

! forall(j in JOB | start_time(j) + duration(j) = t) writeln("\t\t job ",j,"

ends at time ",t)

forall(j in REST | rest_start_time(j) + rest_duration(j) = t)

add_constraint := TRUE

! forall(j in REST | rest_start_time(j) + rest_duration(j) = t) writeln("\t\

t rest task ",j," ends at time ",t)

! if so, we create an ’overlap set’ and add the current contents to it

if(constraint_required = TRUE AND add_constraint = TRUE) then

589

create(overlap_set_work(beta))

create(overlap_set_rest(beta))

overlap_set_work(beta) := current_set_work

overlap_set_rest(beta) := current_set_rest

! writeln("\t\t... so we create the overlap set for beta = ",beta)

! writeln("\t\t\t containing working tasks ",overlap_set_work(beta),"

and rest tasks ",overlap_set_rest(beta))

beta := beta + 1

add_constraint := FALSE

constraint_required := FALSE

end-if

! remove these tasks from the current set

forall(j in JOB | start_time(j) + duration(j) = t) current_set_work -= {j}

forall(j in REST | rest_start_time(j) + rest_duration(j) = t)

current_set_rest -= {j}

! if there are new tasks starting at this point, add them to the current

set and

! indicate that a contraint will now be required again

forall(j in JOB | start_time(j) = t) do

constraint_required := TRUE

current_set_work += {j}

! writeln("\t\t Task ",j," starts at time ",t,", so add it to the

current set")

end-do

forall(j in REST | rest_start_time(j) = t) do

constraint_required := TRUE

current_set_rest += {j}

! writeln("\t\t Rest task ",j," starts at time ",t,", so add it to

the current set")

end-do

end-do

!writeln

!--

! Define project_sets from project_matrix data

forall(p in PROJECT) do

project_set(p) := {}

forall(j in JOB) do

if(project_matrix(p,j) = 1) then project_set(p) += {j}; end-if

590

end-do

end-do

! writeln("Define the project sets:")

! forall(p in PROJECT) writeln("Project ",p," contains tasks ",project_set(p

))

! writeln

!--

! Define Ordered Task Set B (of ALL tasks - work, rest)

!writeln("Define the ordered task set of ALL tasks")

declarations

order_index = 1..(JOBS_TO_PLAN + REST_NUMBER)

ordered_task_number: array(order_index) of integer

ordered_task_work, ordered_task_rest: array(order_index) of integer

work_resource, rest_resource: array(EMP, order_index) of mpvar

work_resource_zero, rest_resource_zero: array(EMP) of real

work_unproc, rest_unproc: set of integer

work_proc, rest_proc: set of integer

b: integer

end-declarations

initializations from DATAFILE

work_resource_zero rest_resource_zero

end-initializations

forall(j in JOB) work_unproc += {j}

forall(j in REST) rest_unproc += {j}

! writeln("List of unprocessed tasks (in terms of ordering):")

! writeln("Work tasks: ",work_unproc)

! writeln("Rest tasks: ",rest_unproc)

! writeln

b := 0

forall(i in 1..(JOBS_TO_PLAN + REST_NUMBER)) do

min_time := DAYS_TO_PLAN

forall(j in work_unproc) do

if(start_time(j) < min_time) then min_time := start_time(j); end-if

end-do

forall(j in rest_unproc) do

591

if(rest_start_time(j) < min_time) then min_time := rest_start_time(

j); end-if

end-do

! writeln("Earliest start time is ",min_time)

work_proc := {}

forall(j in work_unproc) do

if(start_time(j) = min_time) then

b := b+1

! writeln(b," - WORK")

ordered_task_number(b) := j

ordered_task_work(b) := 1

ordered_task_rest(b) := 0

work_proc += {j}

! writeln("\t Work task ",j," starts at time ",min_time," -

assign this as task number ",b)

end-if

end-do

work_unproc -= work_proc

! writeln("\t\t The following work tasks have now been processed: ",

work_proc)

! writeln("\t\t ... leaving the following still to be processed: ",

work_unproc)

rest_proc := {}

forall(j in rest_unproc) do

if(rest_start_time(j) = min_time) then

b := b + 1

! writeln(b," - REST")

ordered_task_number(b) := j

ordered_task_work(b) := 0

ordered_task_rest(b) := 1

rest_proc += {j}

! writeln("\t Rest task ",j," starts at time ",min_time," -

assign this as task number ",b)

end-if

end-do

rest_unproc -= rest_proc

! writeln("\t\t The following rest tasks have now been processed: ",

rest_proc)

! writeln("\t\t ... leaving the following still to be processed: ",

rest_unproc)

592

end-do

!--

! Now that all quantities have been defined, we can state all the contraints:

declarations

TOTAL_COST: linctr

job_cover_constr: array(JOB) of linctr

overlap_constr: array(EMP,beta_index) of linctr

experience_constr: array(PROJECT) of linctr

work_resource_constr_1, rest_resrouce_constr_1: array(EMP) of linctr

work_resource_constr_b, rest_resource_constr_b: array(EMP, order_index) of

linctr

work_resource_bound_constr, rest_resource_bound_constr: array(EMP,

order_index) of linctr

undertime_constr, overtime_constr: array(GUARANTEED) of linctr

new_sched_constr: array(EMP, JOB) of linctr

AG_new_sched_constr: array(JOB) of linctr

end-declarations

! Objective:

TOTAL_COST := sum(i in EMP, j in JOB)(change_cost(i,j) * change(i,j)) + sum(j in

JOB)(AG_change_cost(j) * AG_change(j)) + sum(i in GUARANTEED)((over_rate(i) *

overtime(i)) + (under_rate(i) * undertime(i)) - current_excess(i))

! Other constraints:

forall(j in JOB) job_cover_constr(j) := sum(i in EMP)(new_sched(i,j)) +

AG_new_sched(j) = 1

forall(i in EMP, a in beta_index) overlap_constr(i,a) := sum(j in

overlap_set_work(a))(new_sched(i,j)) + sum(j in overlap_set_rest(a))(

rest_new_sched(i,j)) <= 1

forall(k in PROJECT) experience_constr(k) := sum(i in EMP, j in project_set(k))(

experience(i,j) * new_sched(i,j)) + sum(j in project_set(k))(AG_experience(j)

* AG_new_sched(j)) >= min_experience(k)

forall(i in EMP) do

! Revised version of inner part of this loop:

!---

forall(o in order_index) do

593

if(o = 1) then

if(ordered_task_work(1) = 1) then

work_resource_constr_b(i,o) := 7*work_resource_zero(

i) + (new_sched(i,ordered_task_number(1)) *

work_content_work_arc(ordered_task_number(1))) <=

work_resource(i,1)

rest_resource_constr_b(i,o) := rest_resource_zero(i)

+ (new_sched(i,ordered_task_number(1)) *

rest_content_work_arc(ordered_task_number(1))) <=

rest_resource(i,1)

end-if

if(ordered_task_rest(1) = 1) then

work_resource_constr_b(i,o) := 7*work_resource_zero(

i) + (rest_new_sched(i,ordered_task_number(1)) *

work_content_rest_arc(ordered_task_number(1))) <=

work_resource(i,1)

rest_resource_constr_b(i,o) := rest_resource_zero(i)

+ (rest_new_sched(i,ordered_task_number(1)) *

rest_content_rest_arc(ordered_task_number(1))) <=

rest_resource(i,1)

end-if

else

if(ordered_task_work(o) = 1) then

work_resource_constr_b(i,o) := work_resource(i,(o-1)

) + (new_sched(i,ordered_task_number(o)) *

work_content_work_arc(ordered_task_number(o))) <=

work_resource(i,o)

rest_resource_constr_b(i,o) := rest_resource(i,(o-1)

) + (new_sched(i,ordered_task_number(o)) *

rest_content_work_arc(ordered_task_number(o))) <=

rest_resource(i,o)

end-if

if(ordered_task_rest(o) = 1) then

work_resource_constr_b(i,o) := work_resource(i,(o-1)

) + (rest_new_sched(i,ordered_task_number(o)) *

work_content_rest_arc(ordered_task_number(o))) <=

work_resource(i,o)

rest_resource_constr_b(i,o) := rest_resource(i,(o-1)

) + (rest_new_sched(i,ordered_task_number(o)) *

rest_content_rest_arc(ordered_task_number(o))) <=

rest_resource(i,o)

end-if

end-if

594

work_resource_bound_constr(i,o) := work_resource(i,o) <= 7*max_work

(i)

rest_resource_bound_constr(i,o) := rest_resource(i,o) <= 1

end-do

end-do

forall(i in GUARANTEED) undertime_constr(i) := undertime(i) >= g_days(i) - (

exp_worktime(i) + sum(j in JOB)(duration(j) * new_sched(i,j)))

forall(i in GUARANTEED) overtime_constr(i) := overtime(i) >= (exp_worktime(i) +

sum(j in JOB)(duration(j) * new_sched(i,j))) - g_days(i)

forall(i in EMP, j in JOB | eligible(i,j) = 1) do

if(initial(i,j) = 1) then new_sched_constr(i,j) := new_sched(i,j) =

initial(i,j) - change(i,j); end-if

if(initial(i,j) = 0) then new_sched_constr(i,j) := new_sched(i,j) =

initial(i,j) + change(i,j); end-if

change(i,j) is_binary

end-do

forall(j in JOB | AG_eligible(j) = 1) do

if(AG_initial(j) = 1) then AG_new_sched_constr(j) := AG_new_sched(j) =

AG_initial(j) - AG_change(j); end-if

if(AG_initial(j) = 0) then AG_new_sched_constr(j) := AG_new_sched(j) =

AG_initial(j) + AG_change(j); end-if

AG_change(j) is_binary

end-do

split_time := gettime ! Get the time so that set up time and actual

running time can be calculated separately

!--

! Now solve the problem and print the results:

fopen(LOGFILE, F_APPEND)

writeln

writeln("Instance: ",DATAFILE)

writeln("---")

writeln

setparam("XPRS_verbose",true)

minimize(TOTAL_COST)

595

writeln

writeln("---")

writeln

fclose(F_APPEND)

prog_endtime := gettime

prog_setup_time := split_time - prog_starttime

prog_runtime := prog_endtime - split_time

total_time := prog_endtime - prog_starttime

status::([XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH])["Optimum found","

Unfinished","Infeasible","Unbounded","Failed"]

! Calculate some stats about the current instance

a := 0 ! number of tasks covered by agency in initial schedule

u := 0 ! number of un-covered tasks in the initial schedule

changes_to_reg := 0 ! number of changes to regular employees in the (

best) solution

changes_to_AG := 0 ! number of changes to agency employees in the (best

) solution

number_of_AG := 0 ! number of times agency employees are utilised in

the (best) solution

forall(j in JOB) do

x := 0

forall(i in EMP) do

if(initial(i,j) = 1) then

x := x + 1

end-if

changes_to_reg := changes_to_reg + round(getsol(change(i,j)))

end-do

if(AG_initial(j) = 1) then

x := x + 1

a := a + 1

end-if

changes_to_AG := changes_to_AG+ round(getsol(AG_change(j)))

number_of_AG := number_of_AG+ round(getsol(AG_new_sched(j)))

if(x = 0) then

u := u + 1

596

end-if

end-do

fopen(SUMMARYFILE, F_APPEND)

write(InstanceName)

write("\t",prog_setup_time,"\t",prog_runtime,"\t",total_time)

write("\t",status(getprobstat))

write("\t",JOBS_TO_PLAN,"\t",u,"\t",a)

write("\t",getobjval,"\t",getparam("XPRS_bestbound"))

write("\t",changes_to_reg,"\t",changes_to_AG,"\t",number_of_AG)

write("\n")

fclose(F_APPEND)

end-model

E.1.3 Change-minimization algorithm

Here we give the code used to solve the Task-Based problem using the Change-Minimization

algorithm described in section 5.5.1.2. This was implemented using the FICO Xpress

software.

model ModelName

uses "mmxprs", "mmsystem"; !gain access to the Xpress-Optimizer solver

! Model for the Subsea 7 problem, using formulation as set out in 2nd Year Review

document

! This program aims to solve the problem directly from this formulation

! NOTE - This version aims to minimise the number of changes rather than the cost

parameters

DATE = "09-10-14"

PARAMETERFILE = "batch-input-parameters.dat"

end-parameters

declarations

InstanceName: string

end-declarations

597

initializations from PARAMETERFILE

InstanceName

end-initializations

DATAFILE := InstanceName+"\\Task-Based - Captains - "+InstanceName+".txt"

LOGFILE := InstanceName+"\\Logfile - TB min changes and reduce cost - "+

InstanceName+" - "+DATE+".txt"

SUMMARYFILE := "Results - TB min changes and reduce cost - "+DATE+".txt"

! Set parameters relating to running time and acceptable optimality gap:

setparam("XPRS_verbose",true)

setparam("XPRS_maxtime", -30)

!setparam("XPRS_miprelstop",0.05)

! Set parameters for numbers of Cover and Gomory cuts to apply:

setparam("XPRS_covercuts",30)

setparam("XPRS_gomcuts",10)

prog_starttime := gettime ! get the time so that at the end, running

time can be calculated

declarations

EMP: set of string ! Employee names / numbers

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

DAYS_TO_PLAN: integer

JOBS_TO_PLAN: integer

PROJECT_NUMBER: integer

status: array({XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH}) of string !

Used to indicate the solution status of the problem

end-declarations

initializations from DATAFILE

EMP GUARANTEED DAYS_TO_PLAN JOBS_TO_PLAN PROJECT_NUMBER

end-initializations

if(PROJECT_NUMBER = 0) then THEORETIC_PROJECTS := 1

else THEORETIC_PROJECTS := PROJECT_NUMBER

end-if

598

declarations

JOB = 1..JOBS_TO_PLAN

PROJECT = 1..THEORETIC_PROJECTS

eligible: array(EMP, JOB) of real ! = 1 if employee can carry out a job,

0 otherwise

AG_eligible: array(JOB) of real ! eligibility of agency crew

change_cost: array(EMP, JOB) of real ! The cost of an employee carrying

out a job

AG_change_cost: array(JOB) of real ! Cost details for agency crew

start_time, duration: array(JOB) of real

rest_duration_list: set of real

REST_NUMBER: integer

initial: array(EMP, JOB) of real ! = 1 if employee is currently

allocated to a task, 0 otherwise

AG_initial: array(JOB) of real

under_rate, over_rate, current_excess, g_days, exp_worktime: array(

GUARANTEED) of real

project_matrix: array(PROJECT, JOB) of integer

project_set: array(PROJECT) of set of integer

experience: array(EMP, JOB) of real

AG_experience: array(JOB) of real

min_experience: array(PROJECT) of real

min_rest: array(EMP) of real

max_work: array(EMP) of real

undertimevar, overtimevar: array(GUARANTEED) of mpvar

undertime, overtime: array(GUARANTEED) of real

change: dynamic array(EMP, JOB) of mpvar

AG_change: dynamic array(JOB) of mpvar

new_sched: dynamic array(EMP, JOB) of mpvar

AG_new_sched: dynamic array(JOB) of mpvar

best_change: dynamic array(EMP, JOB) of integer

best_AG_change: dynamic array(JOB) of integer

best_new_sched: dynamic array(EMP, JOB) of integer

best_AG_new_sched: dynamic array(JOB) of integer

end-declarations

initializations from DATAFILE

eligible AG_eligible change_cost AG_change_cost start_time duration

initial AG_initial

599

under_rate over_rate current_excess g_days exp_worktime

project_matrix experience AG_experience min_experience min_rest max_work

end-initializations

!--

! Define the change and new_sched (ie y and z) variables ONLY for the

! tasks for which each crew member is eligible

!writeln("Define ’change’ and ’new sched’ variables:")

forall(j in JOB) do

forall(i in EMP) do

if eligible(i,j) = 1 then

! writeln("Create variables for task ",j," for ",i)

create(change(i,j))

create(new_sched(i,j))

create(best_change(i,j))

create(best_new_sched(i,j))

end-if

end-do

if AG_eligible(j) = 1 then

! writeln("Create variables for task ",j," for agency")

create(AG_change(j))

create(AG_new_sched(j))

create(best_AG_change(j))

create(best_AG_new_sched(j))

end-if

! writeln

end-do

!--

! Define ’rest’ tasks such that they start directly after each work task has

ended

! (subject to them finishing before the time-window ends)

!writeln("Create rest tasks:")

rest_duration_list := {}

forall(i in EMP) rest_duration_list += {7*min_rest(i)}

!forall(i in EMP) writeln(i," requires a minimum rest period of length ",min_rest

(i))

!writeln

declarations

rest_start_list: array(rest_duration_list) of set of real

600

end-declarations

REST_NUMBER := 0

forall(j in JOB, r in rest_duration_list) do

if start_time(j) + duration(j) < (DAYS_TO_PLAN - r + 1) then

rest_start_list(r) += {start_time(j) + duration(j)}

! writeln("Task ",j," ends at time ",start_time(j) + duration(j),",

and we can add a rest task of length ",r," starting at this time")

end-if

end-do

!writeln

!writeln("The ’rest start list’ contains the following:")

!forall(r in rest_duration_list) writeln("Of duration ",r,", starting at: ",

rest_start_list(r))

forall(r in rest_duration_list) REST_NUMBER := REST_NUMBER + getsize(

rest_start_list(r))

!writeln("... and so REST_NUMBER = ",REST_NUMBER)

!writeln

declarations

REST = 1..REST_NUMBER

rest_start_time, rest_duration: array(REST) of real

rest_new_sched: dynamic array(EMP, REST) of mpvar

work_content_work_arc, rest_content_work_arc: array(JOB) of real

work_content_rest_arc, rest_content_rest_arc: array(REST) of real

end-declarations

index := 0

forall(r in rest_duration_list) do

forall(s in rest_start_list(r)) do

index := index + 1

rest_start_time(index) := s

rest_duration(index) := r

! writeln("Rest task ",index," starts at time ",rest_start_time(index

)," and is of length ",rest_duration(index))

end-do

end-do

!writeln

601

! Note that employees can only be assigned a rest task of length equal to their

required minimum rest period

forall(r in REST, i in EMP) do

if(rest_duration(r) = 7*min_rest(i)) then

create(rest_new_sched(i,r))

! writeln("Rest task: ",r,"\tDuration: ",rest_duration(r),"\tEmployee

: ",i,"\tMinRest: ",min_rest(i),"\t=> Create variable")

end-if

end-do

!--

! Can now define work and rest content for work and rest arcs

!writeln("Define work and rest contents:")

forall(j in JOB) do

work_content_work_arc(j) := duration(j)

rest_content_work_arc(j) := 1

! rest_content_work_arc(j) := (duration(j))/14

! writeln("For task ",j,", work content = ",work_content_work_arc(j)," and

rest content = ",rest_content_work_arc(j))

end-do

forall(r in REST) do

work_content_rest_arc(r) := -DAYS_TO_PLAN

rest_content_rest_arc(r) := -1

! writeln("For rest task ",r,", work content = ",work_content_rest_arc(r),"

and rest content = ",rest_content_rest_arc(r))

end-do

!writeln

!--

! Next we will generate the sets C_beta of overlapping tasks

!writeln("Define the sets of overlapping tasks:")

declarations

beta: integer

time_points: set of real

time_points_ordered: list of real

NUMBER_OF_POINTS: integer

min_time: real

beta_index: range

overlap_set_work, overlap_set_rest: dynamic array(beta_index) of set of

integer

602

current_set_work, current_set_rest: set of integer

end-declarations

time_points := {}

forall(j in JOB) do

time_points += {start_time(j)}

time_points += {start_time(j) + duration(j)}

end-do

forall(j in REST) do

time_points += {rest_start_time(j)}

time_points += {rest_start_time(j) + rest_duration(j)}

end-do

!writeln("The set of time points is as follows:",time_points)

time_points_ordered := []

NUMBER_OF_POINTS := getsize(time_points)

forall(i in 1..NUMBER_OF_POINTS) do

min_time := DAYS_TO_PLAN

forall(p in time_points) do

if(p < min_time) then min_time := p; end-if

end-do

time_points_ordered += [min_time]

time_points -= {min_time}

end-do

!writeln("Giving the following ordered set:",time_points_ordered)

!writeln

!writeln("Running algorithm:")

current_set_work := {}

current_set_rest := {}

beta := 1

constraint_required := FALSE

add_constraint := FALSE

forall(t in time_points_ordered) do

! writeln("\t dealing with time point ",t)

! check to see if another constraint is required

forall(j in JOB | start_time(j) + duration(j) = t) add_constraint := TRUE

! forall(j in JOB | start_time(j) + duration(j) = t) writeln("\t\t job ",j,"

ends at time ",t)

forall(j in REST | rest_start_time(j) + rest_duration(j) = t)

add_constraint := TRUE

! forall(j in REST | rest_start_time(j) + rest_duration(j) = t) writeln("\t\

t rest task ",j," ends at time ",t)

603

! if so, we create an ’overlap set’ and add the current contents to it

if(constraint_required = TRUE AND add_constraint = TRUE) then

create(overlap_set_work(beta))

create(overlap_set_rest(beta))

overlap_set_work(beta) := current_set_work

overlap_set_rest(beta) := current_set_rest

! writeln("\t\t... so we create the overlap set for beta = ",beta)

! writeln("\t\t\t containing working tasks ",overlap_set_work(beta),"

and rest tasks ",overlap_set_rest(beta))

beta := beta + 1

add_constraint := FALSE

constraint_required := FALSE

end-if

! remove these tasks from the current set

forall(j in JOB | start_time(j) + duration(j) = t) current_set_work -= {j}

forall(j in REST | rest_start_time(j) + rest_duration(j) = t)

current_set_rest -= {j}

! if there are new tasks starting at this point, add them to the current

set and

! indicate that a contraint will now be required again

forall(j in JOB | start_time(j) = t) do

constraint_required := TRUE

current_set_work += {j}

! writeln("\t\t Task ",j," starts at time ",t,", so add it to the

current set")

end-do

forall(j in REST | rest_start_time(j) = t) do

constraint_required := TRUE

current_set_rest += {j}

! writeln("\t\t Rest task ",j," starts at time ",t,", so add it to

the current set")

end-do

end-do

!writeln

!--

! Define project_sets from project_matrix data

forall(p in PROJECT) do

project_set(p) := {}

forall(j in JOB) do

604

if(project_matrix(p,j) = 1) then project_set(p) += {j}; end-if

end-do

end-do

! writeln("Define the project sets:")

! forall(p in PROJECT) writeln("Project ",p," contains tasks ",project_set(p

))

! writeln

!--

! Define Ordered Task Set B (of ALL tasks - work, rest)

!writeln("Define the ordered task set of ALL tasks")

declarations

order_index = 1..(JOBS_TO_PLAN + REST_NUMBER)

ordered_task_number: array(order_index) of integer

ordered_task_work, ordered_task_rest: array(order_index) of integer

work_resource, rest_resource: array(EMP, order_index) of mpvar

work_resource_zero, rest_resource_zero: array(EMP) of real

work_unproc, rest_unproc: set of integer

work_proc, rest_proc: set of integer

b: integer

end-declarations

initializations from DATAFILE

work_resource_zero rest_resource_zero

end-initializations

forall(j in JOB) work_unproc += {j}

forall(j in REST) rest_unproc += {j}

! writeln("List of unprocessed tasks (in terms of ordering):")

! writeln("Work tasks: ",work_unproc)

! writeln("Rest tasks: ",rest_unproc)

! writeln

b := 0

forall(i in 1..(JOBS_TO_PLAN + REST_NUMBER)) do

min_time := DAYS_TO_PLAN

forall(j in work_unproc) do

if(start_time(j) < min_time) then min_time := start_time(j); end-if

end-do

forall(j in rest_unproc) do

605

if(rest_start_time(j) < min_time) then min_time := rest_start_time(

j); end-if

end-do

! writeln("Earliest start time is ",min_time)

work_proc := {}

forall(j in work_unproc) do

if(start_time(j) = min_time) then

b := b+1

! writeln(b," - WORK")

ordered_task_number(b) := j

ordered_task_work(b) := 1

ordered_task_rest(b) := 0

work_proc += {j}

! writeln("\t Work task ",j," starts at time ",min_time," -

assign this as task number ",b)

end-if

end-do

work_unproc -= work_proc

! writeln("\t\t The following work tasks have now been processed: ",

work_proc)

! writeln("\t\t ... leaving the following still to be processed: ",

work_unproc)

rest_proc := {}

forall(j in rest_unproc) do

if(rest_start_time(j) = min_time) then

b := b + 1

! writeln(b," - REST")

ordered_task_number(b) := j

ordered_task_work(b) := 0

ordered_task_rest(b) := 1

rest_proc += {j}

! writeln("\t Rest task ",j," starts at time ",min_time," -

assign this as task number ",b)

end-if

end-do

rest_unproc -= rest_proc

! writeln("\t\t The following rest tasks have now been processed: ",

rest_proc)

! writeln("\t\t ... leaving the following still to be processed: ",

rest_unproc)

606

end-do

!--

! Now that all quantities have been defined, we can state all the contraints:

declarations

! TOTAL_COST: linctr

TOTAL_COST: real

PREV_COST: real

COST_LIMIT: real

cost_constr: linctr

NO_CHANGES_BEST: real

CHANGE_LIMIT: real

iteration: integer

terminate: boolean

percentage: real

integral: boolean

Big_M: real

iter_time_limit: integer

! UTreq, OTreq: array(GUARANTEED) of mpvar

OTind: array(GUARANTEED) of mpvar

undertime_second_constr, overtime_second_constr: array(GUARANTEED) of

linctr

undertime_third_constr, overtime_third_constr: array(GUARANTEED) of linctr

NO_CHANGES: linctr

job_cover_constr: array(JOB) of linctr

overlap_constr: array(EMP,beta_index) of linctr

experience_constr: array(PROJECT) of linctr

work_resource_constr_1, rest_resrouce_constr_1: array(EMP) of linctr

work_resource_constr_b, rest_resource_constr_b: array(EMP, order_index) of

linctr

work_resource_bound_constr, rest_resource_bound_constr: array(EMP,

order_index) of linctr

undertime_constr, overtime_constr: array(GUARANTEED) of linctr

new_sched_constr: array(EMP, JOB) of linctr

AG_new_sched_constr: array(JOB) of linctr

end-declarations

607

Big_M := 366

iter_time_limit := 30

! Objective:

!TOTAL_COST := sum(i in EMP, j in JOB)(change_cost(i,j) * change(i,j)) + sum(j in

JOB)(AG_change_cost(j) * AG_change(j)) + sum(i in GUARANTEED)((over_rate(i)

* overtime(i)) + (under_rate(i) * undertime(i)) - current_excess(i))

NO_CHANGES := sum(i in EMP, j in JOB)(change(i,j)) + sum(j in JOB)(AG_change(j))

! Other constraints:

forall(j in JOB) job_cover_constr(j) := sum(i in EMP)(new_sched(i,j)) +

AG_new_sched(j) = 1

forall(i in EMP, a in beta_index) overlap_constr(i,a) := sum(j in

overlap_set_work(a))(new_sched(i,j)) + sum(j in overlap_set_rest(a))(

rest_new_sched(i,j)) <= 1

forall(k in PROJECT) experience_constr(k) := sum(i in EMP, j in project_set(k))(

experience(i,j) * new_sched(i,j)) + sum(j in project_set(k))(AG_experience(j)

* AG_new_sched(j)) >= min_experience(k)

forall(i in EMP) do

! Revised version of inner part of this loop:

!---

forall(o in order_index) do

if(o = 1) then

if(ordered_task_work(1) = 1) then

work_resource_constr_b(i,o) := 7*work_resource_zero(

i) + (new_sched(i,ordered_task_number(1)) *

work_content_work_arc(ordered_task_number(1))) <=

work_resource(i,1)

rest_resource_constr_b(i,o) := rest_resource_zero(i)

+ (new_sched(i,ordered_task_number(1)) *

rest_content_work_arc(ordered_task_number(1))) <=

rest_resource(i,1)

end-if

if(ordered_task_rest(1) = 1) then

work_resource_constr_b(i,o) := 7*work_resource_zero(

i) + (rest_new_sched(i,ordered_task_number(1)) *

work_content_rest_arc(ordered_task_number(1))) <=

work_resource(i,1)

rest_resource_constr_b(i,o) := rest_resource_zero(i)

+ (rest_new_sched(i,ordered_task_number(1)) *

608

rest_content_rest_arc(ordered_task_number(1))) <=

rest_resource(i,1)

end-if

else

if(ordered_task_work(o) = 1) then

work_resource_constr_b(i,o) := work_resource(i,(o-1)

) + (new_sched(i,ordered_task_number(o)) *

work_content_work_arc(ordered_task_number(o))) <=

work_resource(i,o)

rest_resource_constr_b(i,o) := rest_resource(i,(o-1)

) + (new_sched(i,ordered_task_number(o)) *

rest_content_work_arc(ordered_task_number(o))) <=

rest_resource(i,o)

end-if

if(ordered_task_rest(o) = 1) then

work_resource_constr_b(i,o) := work_resource(i,(o-1)

) + (rest_new_sched(i,ordered_task_number(o)) *

work_content_rest_arc(ordered_task_number(o))) <=

work_resource(i,o)

rest_resource_constr_b(i,o) := rest_resource(i,(o-1)

) + (rest_new_sched(i,ordered_task_number(o)) *

rest_content_rest_arc(ordered_task_number(o))) <=

rest_resource(i,o)

end-if

end-if

work_resource_bound_constr(i,o) := work_resource(i,o) <= 7*max_work

(i)

rest_resource_bound_constr(i,o) := rest_resource(i,o) <= 1

end-do

end-do

forall(i in GUARANTEED) do

undertime_constr(i) := undertimevar(i) >= g_days(i) - (exp_worktime(i) +

sum(j in JOB)(duration(j) * new_sched(i,j)))

undertime_second_constr(i) := undertimevar(i) <= g_days(i) - (exp_worktime

(i) + sum(j in JOB)(duration(j) * new_sched(i,j))) + Big_M*(1-OTind(i)

)

undertime_third_constr(i) := undertimevar(i) <= Big_M*OTind(i)

! undertime_second_constr(i) := undertimevar(i) <= g_days(i) - (exp_worktime

(i) + sum(j in JOB)(duration(j) * new_sched(i,j))) + Big_M*UTreq(i)

! undertime_third_constr(i) := undertimevar(i) <= Big_M*(1-UTreq(i))

! UTreq(i) is_binary

609

overtime_constr(i) := overtimevar(i) >= (exp_worktime(i) + sum(j in JOB)(

duration(j) * new_sched(i,j))) - g_days(i)

overtime_second_constr(i) := overtimevar(i) <= (exp_worktime(i) + sum(j in

JOB)(duration(j) * new_sched(i,j))) - g_days(i) + Big_M*OTind(i)

overtime_third_constr(i) := - Big_M*(1-OTind(i))

! overtime_second_constr(i) := overtimevar(i) <= (exp_worktime(i) + sum(j in

JOB)(duration(j) * new_sched(i,j))) - g_days(i) + Big_M*OTreq(i)

! overtime_third_constr(i) := - Big_M*(1-OTreq(i))

! OTreq(i) is_binary

OTind(i) is_binary

end-do

forall(i in EMP, j in JOB | eligible(i,j) = 1) do

if(initial(i,j) = 1) then new_sched_constr(i,j) := new_sched(i,j) =

initial(i,j) - change(i,j); end-if

if(initial(i,j) = 0) then new_sched_constr(i,j) := new_sched(i,j) =

initial(i,j) + change(i,j); end-if

change(i,j) is_binary

end-do

forall(j in JOB | AG_eligible(j) = 1) do

if(AG_initial(j) = 1) then AG_new_sched_constr(j) := AG_new_sched(j) =

AG_initial(j) - AG_change(j); end-if

if(AG_initial(j) = 0) then AG_new_sched_constr(j) := AG_new_sched(j) =

AG_initial(j) + AG_change(j); end-if

AG_change(j) is_binary

end-do

!--

! Calculate some stats about the current instance

a := 0 ! number of tasks covered by agency in initial schedule

u := 0 ! number of un-covered tasks in the initial schedule

forall(j in JOB) do

x := 0

forall(i in EMP) do

if(initial(i,j) = 1) then

x := x + 1

end-if

end-do

610

if(AG_initial(j) = 1) then

x := x + 1

a := a + 1

end-if

if(x = 0) then

u := u + 1

end-if

end-do

!--

split_time := gettime ! Get the time so that set up time and actual

running time can be calculated separately

prog_setup_time := split_time - prog_starttime

fopen(SUMMARYFILE, F_APPEND)

write(InstanceName)

write("\t",JOBS_TO_PLAN,"\t",u,"\t",a)

write("\t",prog_setup_time)

fclose(F_APPEND)

!--

!--

!--

! Now solve the problem and print the results:

fopen(LOGFILE, F_APPEND)

writeln

writeln("Instance: ",DATAFILE)

writeln("---")

writeln

setparam("XPRS_maxtime", -iter_time_limit)

minimize(NO_CHANGES)

writeln

writeln("---")

writeln

status::([XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH])["Optimum found","

Unfinished","Infeasible","Unbounded","Failed"]

611

integral := true

forall(i in EMP, j in JOB | exists(change(i,j))) do

if(isintegral(change(i,j)) = false) then integral := false; end-if

if(isintegral(new_sched(i,j)) = false) then integral := false; end-

if

end-do

forall(j in JOB | exists(AG_change(j))) do

if(isintegral(AG_change(j)) = false) then integral := false; end-if

if(isintegral(AG_new_sched(j)) = false) then integral := false; end

-if

end-do

writeln(status(getprobstat))

if(integral = false) then writeln("No integer solution found"); end-if

writeln

fclose(F_APPEND)

iter_endtime := gettime

iter_runtime := iter_endtime - split_time

total_time := iter_endtime - prog_starttime

fopen(SUMMARYFILE, F_APPEND)

write("\t",iter_runtime,"\t",total_time)

write("\t",status(getprobstat))

fclose(F_APPEND)

if(getprobstat = XPRS_OPT OR (getprobstat = XPRS_UNF and integral = true)) then

TOTAL_COST := sum(i in EMP, j in JOB)(change_cost(i,j) * getsol(change(i,j

))) + sum(j in JOB)(AG_change_cost(j) * getsol(AG_change(j))) + sum(i

in GUARANTEED)((over_rate(i) * getsol(overtimevar(i))) + (under_rate(i

) * getsol(undertimevar(i))) - current_excess(i))

NO_CHANGES_BEST := getobjval

! CHANGE_LIMIT := 2*getobjval

forall(i in EMP, j in JOB | exists(change(i,j))) do

if(getsol(change(i,j)) > 0.7) then best_change(i,j) := 1

612

else best_change(i,j) := 0; end-if

if(getsol(new_sched(i,j)) > 0.7) then best_new_sched(i,j) := 1

else best_new_sched(i,j) := 0; end-if

end-do

forall(j in JOB | exists(AG_change(j))) do

if(getsol(AG_change(j)) > 0.7) then best_AG_change(j) := 1

else best_AG_change(j) := 0; end-if

if(getsol(AG_new_sched(j)) > 0.7) then best_AG_new_sched(j) := 1

else best_AG_new_sched(j) := 0; end-if

end-do

fopen(SUMMARYFILE, F_APPEND)

write("\t",getobjval,"\t",getparam("XPRS_bestbound"))

write("\t",TOTAL_COST)

fclose(F_APPEND)

else

fopen(SUMMARYFILE, F_APPEND)

write("\t\t\t")

fclose(F_APPEND)

end-if

!--

iteration := 1

terminate := false

percentage := 0.1

while(terminate = false) do

if(getprobstat = XPRS_OPT OR (getprobstat = XPRS_UNF and integral = true))

then

fopen(LOGFILE, F_APPEND)

writeln("\tThe total number of changes is: ",getobjval)

writeln("\tand the total cost of this solution is ",

TOTAL_COST)

writeln

PREV_COST := TOTAL_COST

613

if(PREV_COST > 0) then

COST_LIMIT := (1-percentage)*PREV_COST

elif(PREV_COST < 0) then

COST_LIMIT := (1+percentage)*PREV_COST

else

COST_LIMIT := -10

end-if

writeln("Set cost limit to ",COST_LIMIT)

cost_constr := sum(i in EMP, j in JOB)(change_cost(i,j) *

change(i,j)) + sum(j in JOB)(AG_change_cost(j) *

AG_change(j)) + sum(i in GUARANTEED)((over_rate(i) *

overtimevar(i)) + (under_rate(i) * undertimevar(i)) -

current_excess(i)) <= COST_LIMIT

writeln("... and re-solve")

writeln

writeln("---")

writeln

setparam("XPRS_maxtime", -iter_time_limit)

minimize(NO_CHANGES)

writeln

writeln("---")

writeln

integral := true

forall(i in EMP, j in JOB | exists(change(i,j))) do

if(isintegral(change(i,j)) = false) then integral :=

false; end-if

if(isintegral(new_sched(i,j)) = false) then integral

:= false; end-if

end-do

forall(j in JOB | exists(AG_change(j))) do

if(isintegral(AG_change(j)) = false) then integral

:= false; end-if

if(isintegral(AG_new_sched(j)) = false) then

integral := false; end-if

end-do

writeln(status(getprobstat))

if(integral = false) then writeln("No integer solution found

"); end-if

writeln

fclose(F_APPEND)

614

iter_starttime := iter_endtime

iter_endtime := gettime

iter_runtime := iter_endtime - iter_starttime

total_time := iter_endtime - prog_starttime

fopen(SUMMARYFILE, F_APPEND)

write("\t",iter_runtime,"\t",total_time)

write("\t",status(getprobstat))

fclose(F_APPEND)

if(getprobstat = XPRS_OPT OR (getprobstat = XPRS_UNF and integral =

true)) then

TOTAL_COST := sum(i in EMP, j in JOB)(change_cost(i,j) *

getsol(change(i,j))) + sum(j in JOB)(AG_change_cost(j) *

getsol(AG_change(j))) + sum(i in GUARANTEED)((over_rate

(i) * getsol(overtimevar(i))) + (under_rate(i) * getsol(

undertimevar(i))) - current_excess(i))

NO_CHANGES_BEST := getobjval

forall(i in EMP, j in JOB | exists(change(i,j))) do

if(getsol(change(i,j)) > 0.7) then best_change(i,j)

:= 1

else best_change(i,j) := 0; end-if

if(getsol(new_sched(i,j)) > 0.7) then best_new_sched

(i,j) := 1

else best_new_sched(i,j) := 0; end-if

end-do

forall(j in JOB | exists(AG_change(j))) do

if(getsol(AG_change(j)) > 0.7) then best_AG_change(j

) := 1

else best_AG_change(j) := 0; end-if

if(getsol(AG_new_sched(j)) > 0.7) then

best_AG_new_sched(j) := 1

else best_AG_new_sched(j) := 0; end-if

end-do

fopen(SUMMARYFILE, F_APPEND)

write("\t",getobjval,"\t",getparam("XPRS_bestbound")

)

615

write("\t",TOTAL_COST)

fclose(F_APPEND)

else

fopen(SUMMARYFILE, F_APPEND)

write("\t\t\t")

fclose(F_APPEND)

end-if

iteration := iteration + 1

else

if(iteration = 1 or percentage = 0.05) then

terminate := true

else

fopen(LOGFILE, F_APPEND)

writeln

writeln("No solution found")

percentage := 0.05

if(PREV_COST > 0) then

COST_LIMIT := (1-percentage)*PREV_COST

elif(PREV_COST < 0) then

COST_LIMIT := (1+percentage)*PREV_COST

else

COST_LIMIT := -1

end-if

writeln("Set cost limit to ",COST_LIMIT)

cost_constr := sum(i in EMP, j in JOB)(change_cost(i

,j) * change(i,j)) + sum(j in JOB)(AG_change_cost

(j) * AG_change(j)) + sum(i in GUARANTEED)((

over_rate(i) * overtimevar(i)) + (under_rate(i) *

undertimevar(i)) - current_excess(i)) <=

COST_LIMIT

writeln("... and re-solve")

writeln

writeln

("---")

writeln

setparam("XPRS_maxtime", -iter_time_limit)

616

minimize(NO_CHANGES)

writeln

writeln

("---")

integral := true

forall(i in EMP, j in JOB | exists(change(i,j))) do

if(isintegral(change(i,j)) = false) then

integral := false; end-if

if(isintegral(new_sched(i,j)) = false) then

integral := false; end-if

end-do

forall(j in JOB | exists(AG_change(j))) do

if(isintegral(AG_change(j)) = false) then

integral := false; end-if

if(isintegral(AG_new_sched(j)) = false) then

integral := false; end-if

end-do

writeln(status(getprobstat))

if(integral = false) then writeln("No integer

solution found"); end-if

writeln

fclose(F_APPEND)

iter_starttime := iter_endtime

iter_endtime := gettime

iter_runtime := iter_endtime - iter_starttime

total_time := iter_endtime - prog_starttime

fopen(SUMMARYFILE, F_APPEND)

write("\t",iter_runtime,"\t",total_time)

write("\t",status(getprobstat))

fclose(F_APPEND)

if(getprobstat = XPRS_OPT OR (getprobstat = XPRS_UNF and

integral = true)) then

TOTAL_COST := sum(i in EMP, j in JOB)(change_cost(i,

j) * getsol(change(i,j))) + sum(j in JOB)(

AG_change_cost(j) * getsol(AG_change(j))) + sum(i

in GUARANTEED)((over_rate(i) * getsol(

617

overtimevar(i))) + (under_rate(i) * getsol(

undertimevar(i))) - current_excess(i))

NO_CHANGES_BEST := getobjval

forall(i in EMP, j in JOB | exists(change(i,j))) do

if(getsol(change(i,j)) > 0.7) then

best_change(i,j) := 1

else best_change(i,j) := 0; end-if

if(getsol(new_sched(i,j)) > 0.7) then

best_new_sched(i,j) := 1

else best_new_sched(i,j) := 0; end-if

end-do

forall(j in JOB | exists(AG_change(j))) do

if(getsol(AG_change(j)) > 0.7) then

best_AG_change(j) := 1

else best_AG_change(j) := 0; end-if

if(getsol(AG_new_sched(j)) > 0.7) then

best_AG_new_sched(j) := 1

else best_AG_new_sched(j) := 0; end-if

end-do

fopen(SUMMARYFILE, F_APPEND)

write("\t",getobjval,"\t",getparam("

XPRS_bestbound"))

write("\t",TOTAL_COST)

fclose(F_APPEND)

else

fopen(SUMMARYFILE, F_APPEND)

write("\t\t\t")

fclose(F_APPEND)

end-if

end-if

end-if

current_time := gettime

fopen(LOGFILE, F_APPEND)

writeln

writeln("Iterations: ",iteration)

writeln("Total run time: ",current_time - prog_starttime)

618

writeln

if(current_time - prog_starttime >= 120) then

terminate := true

writeln("Running time > 120 seconds --> terminate")

writeln

elif(current_time - prog_starttime > 90) then

iter_time_limit := floor(120 - (current_time -

prog_starttime))+1

writeln("Time limit approaching - set next iteration time

limit to ",iter_time_limit," seconds.")

writeln

end-if

! if(integral = true and getparam("XPRS_bestbound") >= CHANGE_LIMIT)

then

! terminate := true

! writeln("Number of changes has doubled from initial value

--> terminate")

! writeln

! end-if

fclose(F_APPEND)

end-do

!--

! Calculate some stats about the final solution

changes_to_reg := 0 ! number of changes to regular employees in the (

best) solution

changes_to_AG := 0 ! number of changes to agency employees in the (best

) solution

number_of_AG := 0 ! number of times agency employees are utilised in

the (best) solution

forall(j in JOB) do

forall(i in EMP) do

changes_to_reg := changes_to_reg + best_change(i,j)

end-do

changes_to_AG := changes_to_AG + best_AG_change(j)

number_of_AG := number_of_AG + best_AG_new_sched(j)

end-do

619

! Calculate costs

forall(i in GUARANTEED) do

undertime(i) := g_days(i) - (exp_worktime(i) + sum(j in JOB)(duration(j) *

best_new_sched(i,j)))

overtime(i) := (exp_worktime(i) + sum(j in JOB)(duration(j) *

best_new_sched(i,j))) - g_days(i)

if(undertime(i) < 0) then undertime(i) := 0; end-if

if(overtime(i) < 0) then overtime(i) := 0; end-if

end-do

TOTAL_COST := sum(i in EMP, j in JOB)(change_cost(i,j) * best_change(i,j)) + sum(

j in JOB)(AG_change_cost(j) * best_AG_change(j)) + sum(i in GUARANTEED)((

over_rate(i) * overtime(i)) + (under_rate(i) * undertime(i)) - current_excess

(i))

current_time := gettime

total_time := current_time - prog_starttime

fopen(SUMMARYFILE, F_APPEND)

write("\t",TOTAL_COST)

write("\t",changes_to_reg,"\t",changes_to_AG,"\t",number_of_AG)

write("\t",iteration)

write("\t",total_time)

write("\n")

fclose(F_APPEND)

end-model

E.2 For the Time-Windows formulation

Here we give the code used for generating the Time-Windows datasets and for testing the

various solution approaches for the problem.

E.2.1 Generating datasets

Here we give the code used to generate the Time-Windows datasets, as described in section

6.2. This was implemented using the FICO Xpress software.

model ModelName

620

uses "mmxprs", "mmsystem"; !gain access to the Xpress-Optimizer solver

! use the following when generating multiple data sets:

!parameters

! INSTANCELIST = "Time-windows - Captains - Instance List.txt"

! DATAFILE = "SS7 real data - Captains.txt"

!end-parameters

!

!declarations

! NO_OF_INSTANCES: integer

! OUTFILE: string

!end-declarations

!

!initialisations from INSTANCELIST

! NO_OF_INSTANCES

!end-initialisations

!

!declarations

! INSTANCES = 1..NO_OF_INSTANCES

! instance_name: array(INSTANCES) of string

! ill_given_ill: array(INSTANCES) of real

! ill_given_fit: array(INSTANCES) of real

! use_TR: array(INSTANCES) of boolean

! DF_near: array(INSTANCES) of real

! DF_long: array(INSTANCES) of real

! AG_pen: array(INSTANCES) of real

!end-declarations

!

!initialisations from INSTANCELIST

! instance_name

! ill_given_ill

! ill_given_fit

! use_TR

! DF_near

! DF_long

! AG_pen

!end-initialisations

!

!

!

!declarations

! ! Parameters to be varied for various data sets:

! ill_given_prev_fit: real

621

! ill_given_prev_ill: real

!

! use_time_reduction: boolean

!

! disruption_factor_near: real

! disruption_factor_long: real

! agency_penalty: real

!

!end-declarations

!---

! NOTE - Above section used when generating multiple data sets

! Alternatively, use section as given below:

parameters

OUTFILE = "Time-windows - Captains - Trial runs.txt"

DATAFILE = "SS7 real data - Captains.txt"

! Parameters to be varied for various data sets:

ill_given_prev_fit = 0.004

ill_given_prev_ill = 0.5

use_time_reduction = TRUE

disruption_factor_near = 1

disruption_factor_long = 1

agency_penalty = 1

end-parameters

! Notes on Parameters:

!--

! Probabilities of being ill or fit to work given previous day condition:

! Firstly, assume that the probability of being ill on a given day is 0.8% (=

0.008)

! Then, can use the following pairs of data:

! Prob(ill | ill on prev day) Prob(ill | fit on prev day)

! 0.8 0.0016

! 0.75 0.002

! 0.7 0.0024

! 0.65 0.0028

622

! 0.6 0.0032

! 0.55 0.0036

! 0.5 0.004

--> currently selected

! 0.45 0.0044

! 0.4 0.0048

! 0.35 0.0052

! 0.3 0.0056

! 0.25 0.0061

! 0.2 0.0065

!--

! Time reduction can be used to reduce the above probabilities for times further

in the future than 4 weeks.

! For a given day index d > 28, the time reduction is calculated as

! time_reduction := (d-28)/((7*no_of_weeks)-28)

!

! The probabilities are then multiplied by (1 - time_reduction)

! It may be useful to vary the use of the time reduction to see if there is a

significant impact on results

!--

! Disruption factors and agency penalty are used to penalise the making of

changes in the schedule

! --> Disruption factors are multipliers applied to the cost of changing the

assignment if the cost is

! positive, and used as a divisor if the cost is negative. They are

defined differently for tasks which

! start within the first four weeks (assumed to be penalised more

harshly if any penalty is applied),

! and those which start after this time. There is no disruption

factor for assignments made in the final

! week of the horizon.

! --> Similarly, a penalty is defined as a multiplier for positive or a divisor

for negative costs of

! changing the assignment of Agency crew, over and above the actual

costs involved.

!--

!--

! Declarations for data to be read in:

declarations

no_of_crew: integer

623

no_of_vessels: integer

no_of_weeks: integer

end-declarations

initialisations from DATAFILE

no_of_crew no_of_vessels no_of_weeks

end-initialisations

declarations

crew = 1..no_of_crew

crew_label: array(crew) of string

contract_type: array(crew) of string

legal_entity: array(crew) of string

crew_continent: array(crew) of string

crew_nation: array(crew) of string

vessel = 1..no_of_vessels

vessel_name: array(vessel) of string

vessel_label: array(vessel) of string

required: array(vessel) of integer

vessel_location: array(vessel) of string

end-declarations

initialisations from DATAFILE

crew_label vessel_name

contract_type legal_entity crew_continent crew_nation

vessel_label required vessel_location

end-initialisations

procedure MAIN_PROG

!--

! Declarations for data to be calulated / generated for this instance:

declarations

no_of_tasks: integer

vessel_max_work: array(vessel) of integer

vessel_roles: array(vessel) of set of integer

role_tasks: integer

task_no, time_count: integer

624

rand_no: real

rand_int: integer

end-declarations

!--

! Calculations:

! First need to calculate the number of roles required in total

role_no := 0

forall(v in vessel | required(v) > 0) do

vessel_roles(v) := {}

forall(r in 1..required(v)) do

role_no := role_no + 1

vessel_roles(v) += {role_no};

! writeln("Role ",role_no,"\tis on board vessel ",v)

end-do

end-do

declarations

roles = 1..role_no

role_on_vessel: array(roles) of integer

end-declarations

! to indicate on board which vessel a role takes place

forall(v in vessel | required(v) > 0) do

forall(r in vessel_roles(v)) do

role_on_vessel(r) := v

end-do

end-do

!--

! Generate regular assignments:

declarations

Norway_emps, Singapore_emps, Other_emps: integer

Remaining_emps: set of integer

Norway_cover, Singapore_cover, Other_cover: real

Min_cover, Max_cover: integer

active_roles: integer

625

Norway_roles, Singapore_roles, Other_roles: integer

Norway_set, Singapore_set, Other_set, Remaining_set: set of integer

Set_int, Cover_int: integer

regular_vessel: array(crew) of integer

no_of_regulars_vessel: array(vessel) of integer

regular_role: array(crew) of integer

no_of_regulars_role: array(roles) of integer

assigned_crew: array(roles) of integer

assigned_role: integer

extra, spare, number: integer

extra_roles, spare_roles: integer

Norway_groups, Singapore_groups, Other_groups: integer

end-declarations

! Number of employees on each contract:

Norway_emps := 0

Singapore_emps := 0

Other_emps := 0

forall(c in crew) do

if(legal_entity(c) = "Subsea7 Contr (Norway) AS") then Norway_emps

:= Norway_emps +1

elif(legal_entity(c) = "Subsea 7 (Sing) PTE-GEC") then

Singapore_emps := Singapore_emps +1

else Other_emps := Other_emps +1

end-if

end-do

! writeln

! writeln("Number on Norway contracts: \t",Norway_emps)

! writeln("Number on Singapore contracts:\t",Singapore_emps)

! writeln("Number on Other contracts: \t",Other_emps)

! writeln("Total number of employees: \t",no_of_crew)

! writeln

626

! number of roles which can be covered by each contract type:

Norway_cover := (Norway_emps / 3);

! writeln("Norway cover:\t\t",Norway_cover)

Singapore_cover := (Singapore_emps * 2/3);

! writeln("Singapore cover:\t",Singapore_cover)

Other_cover := (Other_emps / 2);

! writeln("Other cover:\t\t",Other_cover); writeln

Min_cover := integer(Norway_cover) + integer(Singapore_cover) + integer(

Other_cover)

Max_cover := Min_cover

if(Norway_cover > integer(Norway_cover)) then Max_cover := Max_cover +1;

end-if

if(Singapore_cover > integer(Singapore_cover)) then Max_cover := Max_cover

+1; end-if

if(Other_cover > integer(Other_cover)) then Max_cover := Max_cover +1; end

-if

! Number of roles which could be assigned to each contract type:

Norway_roles := integer(role_no * (Norway_cover / (Norway_cover +

Singapore_cover + Other_cover)));

! writeln("There are ",Norway_roles,"\tNorway-operated roles")

Singapore_roles := integer(role_no * (Singapore_cover / (Norway_cover +

Singapore_cover + Other_cover)));

! writeln("There are ",Singapore_roles,"\tSingapore-operated roles")

Other_roles := integer(role_no * (Other_cover / (Norway_cover +

Singapore_cover + Other_cover)));

! writeln("There are ",Other_roles,"\tOther-operated roles")

spare_roles := role_no - (Norway_roles + Singapore_roles + Other_roles);

! writeln("There are ",spare_roles,"\troles yet to be determined");

writeln

! Divide roles between the different contract types:

Remaining_set := {}

forall(r in roles) do

Remaining_set += {r};

! writeln("Add role ",r," to the set of remaining tasks")

end-do

extra_roles := spare_roles;

! writeln

while(getsize(Norway_set) < Norway_roles) do

627

rand_int := integer(random*role_no + 1)

if(rand_int in Remaining_set) then

Norway_set += {rand_int};

! writeln("Add role ",rand_int," to the set of Norway-

operated tasks")

Remaining_set -= {rand_int};

! writeln("\tRemove role ",rand_int," from the set of

remaining tasks")

if((getsize(Norway_set) - 1) + required(role_on_vessel(

rand_int)) <= Norway_roles + extra_roles) then

forall(r in vessel_roles(role_on_vessel(rand_int)) |

r in Remaining_set) do

Norway_set += {r};

! writeln("Add role ",r," to the set of

Norway-operated tasks")

Remaining_set -= {r};

! writeln("\tRemove role ",r," from the set

of remaining tasks")

end-do

end-if

end-if

end-do

! writeln; writeln("\t\tRemaining set now contains:\t",Remaining_set)

extra_roles := extra_roles + Norway_roles - getsize(Norway_set);

! writeln; writeln("\t\tRoles still to be allocated:\t",extra_roles);

writeln

while(getsize(Singapore_set) < Singapore_roles) do

rand_int := integer(random*role_no + 1)

if(rand_int in Remaining_set) then

Singapore_set += {rand_int};

! writeln("Add role ",rand_int," to the set of Singapore-

operated tasks")

Remaining_set -= {rand_int};

! writeln("\tRemove role ",rand_int," from the set of

remaining tasks")

if((getsize(Singapore_set) - 1) + required(role_on_vessel(

rand_int)) <= Singapore_roles + extra_roles) then

628

forall(r in vessel_roles(role_on_vessel(rand_int)) |

r in Remaining_set) do

Singapore_set += {r};

! writeln("Add role ",r," to the set of

Singapore-operated tasks")

Remaining_set -= {r};

! writeln("\tRemove role ",r," from the set

of remaining tasks")

end-do

end-if

end-if

end-do

! writeln; writeln("\t\tRemaining set now contains:\t",Remaining_set)

extra_roles := extra_roles + Singapore_roles - getsize(Singapore_set);

! writeln; writeln("\t\tRoles still to be allocated:\t",extra_roles);

writeln

while(getsize(Other_set) < Other_roles) do

rand_int := integer(random*role_no + 1)

if(rand_int in Remaining_set) then

Other_set += {rand_int};

! writeln("Add role ",rand_int," to the set of Other-

operated tasks")

Remaining_set -= {rand_int};

! writeln("\tRemove role ",rand_int," from the set of

remaining tasks")

if((getsize(Other_set) - 1) + required(role_on_vessel(

rand_int)) <= Other_roles + extra_roles) then

forall(r in vessel_roles(role_on_vessel(rand_int)) |

r in Remaining_set) do

Other_set += {r};

! writeln("Add role ",r," to the set of Other

-operated tasks")

Remaining_set -= {r};

! writeln("\tRemove role ",r," from the set

of remaining tasks")

end-do

end-if

end-if

end-do

! writeln; writeln("\t\tRemaining set now contains:\t",Remaining_set)

629

extra_roles := extra_roles + Other_roles - getsize(Other_set);

! writeln; writeln("\t\tRoles still to be allocated:\t",extra_roles);

writeln

if(extra_roles > 0) then

forall(r in Remaining_set) do

rand_no := random;

! writeln("Try to allocate role ",r,"..."); writeln("\

tRandom number = ",rand_no)

if(rand_no < (Norway_cover / (Norway_cover + Singapore_cover

+ Other_cover))) then

Norway_set += {r};

! writeln("\tAdd role ",r," to the set of Norway-

operated tasks"); writeln("\tRemove role ",r,"

from the set of remaining tasks")

Norway_roles := Norway_roles + 1

elif(rand_no < 1 - (Other_cover / (Norway_cover +

Singapore_cover + Other_cover))) then

Singapore_set += {r};

! writeln("\tAdd role ",r," to the set of Singapore-

operated tasks"); writeln("\tRemove role ",r,"

from the set of remaining tasks")

Singapore_roles := Singapore_roles + 1

else

Other_set += {r};

! writeln("\tAdd role ",r," to the set of Other-

operated tasks"); writeln("\tRemove role ",r,"

from the set of remaining tasks")

Other_roles := Other_roles + 1

end-if

end-do

Remaining_set := {}

end-if

! writeln; writeln("----------------------------------"); writeln

! Identify how many working ’groups’ there need to be for each contract

type

! For the ’Norway’ and ’Other’ cases, there will be as many groups as

tasks to be covered

!... while for the ’Singapore’ case there can be as many groups as cover

can be given for

630

Norway_groups := getsize(Norway_set);

! writeln("Will have ",Norway_groups,"\tNorway-operated groups")

Set_int := integer(getsize(Singapore_set)/2)

if(getsize(Singapore_set)/2 > Set_int) then

Singapore_groups := Set_int +1

!; writeln(getsize(Singapore_set)/2," > ",Set_int," =>

Singapore_groups := ",Set_int," +1")

else

Singapore_groups := Set_int

!; writeln(getsize(Singapore_set)/2," <= ",Set_int," =>

Singapore_groups := ",Set_int)

end-if

if(Singapore_cover/2 > Singapore_groups*2) then

Singapore_groups := Singapore_groups*2

elif(Singapore_cover/2 > Singapore_groups) then

Cover_int := integer(Singapore_cover/2)

if(Singapore_cover/2 > Cover_int) then

Singapore_groups := Cover_int +1

else

Singapore_groups := Cover_int

end-if

end-if

! writeln("Will have ",Singapore_groups,"\tSingapore-operated groups\t(No

of tasks in set: ",getsize(Singapore_set),"; No of tasks can cover: ",

Singapore_cover,")")

Other_groups := getsize(Other_set);

! writeln("Will have ",Other_groups,"\tOther-operated groups"); writeln

! Define the ’groups’ and assign the roles and employees into these groups

declarations

group = 1..(Norway_groups + Singapore_groups + Other_groups)

crew_in_group: array(group) of set of integer

roles_in_group: array(group) of set of integer

group_type: array(group) of string

end-declarations

Remaining_set := Norway_set;

! writeln; writeln("\t\tNorway tasks to be allocted to groups: (",

Norway_roles,")",Remaining_set)

631

if((3*Norway_groups) > Norway_emps) then extra := (3*Norway_groups) -

Norway_emps

else extra := 0

end-if

Remaining_emps := {}

forall(c in crew) do

if(legal_entity(c) = "Subsea7 Contr (Norway) AS") then

Remaining_emps += {c}

end-if

end-do

! writeln("\t\tNorway employees to be allocted to groups: (",Norway_emps

,")",Remaining_emps); writeln("\t\t plus ",extra," AGECNY crew to be

allocated"); writeln

forall(g in 1..Norway_groups) do

group_type(g) := "Norway"

added := FALSE

while(added = FALSE) do

rand_int := integer(random*role_no +1)

if(rand_int in Remaining_set) then

roles_in_group(g) += {rand_int};

! writeln("Add role ",rand_int," to group ",g," (

Norway group)")

Remaining_set -= {rand_int};

! writeln("\tRemove role ",rand_int," from the set

of roles to be allocated")

added := TRUE

end-if

end-do

number := 0

while(number < 3) do

rand_no := random

if(rand_no < (extra / (extra + getsize(Remaining_emps))))

then

number := number +1;

! writeln("* Add an AGENCY employee to group ",g," (

Norway group)")

extra := extra - 1

else

added := FALSE

while(added = FALSE) do

632

rand_int := integer(random*no_of_crew +1)

if(rand_int in Remaining_emps) then

crew_in_group(g) += {rand_int};

! writeln("Add employee ",rand_int,"

to group ",g," (Norway group)")

Remaining_emps -= {rand_int};

! writeln("\tRemove employee ",

rand_int," from the set of crew to

be allocated")

added := TRUE

end-if

end-do

number := number + 1

end-if

end-do

end-do

Remaining_set := Singapore_set;

! writeln; writeln("\t\tSingapore tasks to be allocted to groups: (",

Singapore_roles,")",Remaining_set)

if((2*Singapore_groups) > Singapore_roles) then extra_roles := (2*

Singapore_groups) - Singapore_roles

else extra_roles := 0

end-if

if((3*Singapore_groups) > Singapore_emps) then extra := (3*

Singapore_groups) - Singapore_emps

else extra := 0

end-if

Remaining_emps := {};

! writeln("\t\t plus ",extra_roles," DUMMY roles to be allocated")

forall(c in crew) do

if(legal_entity(c) = "Subsea 7 (Sing) PTE-GEC") then Remaining_emps

+= {c}

end-if

end-do

! writeln("\t\tSingapore employees to be allocted to groups: (",

Singapore_emps,")",Remaining_emps); writeln("\t\t plus ",extra,"

AGECNY crew to be allocated"); writeln

forall(g in (Norway_groups +1)..(Norway_groups + Singapore_groups)) do

group_type(g) := "Singapore"

633

number := 0

while(number < 2) do

rand_no := random

if(rand_no < (extra_roles / (extra_roles + getsize(

Remaining_set)))) then

number := number +1;

! writeln("* Add a DUMMY role to group ",g," (

Singapore group)")

extra_roles := extra_roles - 1

else

added := FALSE

while(added = FALSE) do

rand_int := integer(random*role_no +1)

if(rand_int in Remaining_set) then

roles_in_group(g) += {rand_int};

! writeln("Add role ",rand_int," to

group ",g," (Singapore group)")

Remaining_set -= {rand_int};

! writeln("\tRemove role ",rand_int,"

from the set of roles to be

allocated")

second_added := FALSE

if(number = 0 and required(

role_on_vessel(rand_int)) > 1)

then

forall(r in vessel_roles(

role_on_vessel(rand_int)) |

r <> rand_int) do

if(second_added = FALSE

and r in

Remaining_set) then

roles_in_group(g

) += {r};

! writeln("Add

role ",r," to

group ",g,"

(Singapore

group)")

Remaining_set -=

{r};

! writeln("\

tRemove role

634

",r," from

the set of

roles to be

allocated")

second_added :=

TRUE

end-if

end-do

end-if

if(second_added = TRUE) then number :=

number +2

else number := number +1

end-if

added := TRUE

end-if

end-do

end-if

end-do

number := 0

while(number < 3) do

rand_no := random

if(rand_no < (extra / (extra + getsize(Remaining_emps))))

then

number := number +1;

! writeln("* Add an AGENCY employee to group ",g," (

Singapore group)")

extra := extra - 1

else

added := FALSE

while(added = FALSE) do

rand_int := integer(random*no_of_crew +1)

if(rand_int in Remaining_emps) then

crew_in_group(g) += {rand_int};

! writeln("Add employee ",rand_int,"

to group ",g," (Singapore group)")

Remaining_emps -= {rand_int};

! writeln("\tRemove employee ",

rand_int," from the set of crew to

be allocated")

added := TRUE

635

end-if

end-do

number := number +1

end-if

end-do

end-do

Remaining_set := Other_set;

! writeln; writeln("\t\tOther tasks to be allocted to groups: (",

Other_roles,")",Remaining_set)

if((2*Other_groups) > Other_emps) then extra := (2*Other_groups) -

Other_emps

else extra := 0

end-if

Remaining_emps := {}

forall(c in crew) do

if(legal_entity(c) <> "Subsea7 Contr (Norway) AS" and legal_entity(

c) <> "Subsea 7 (Sing) PTE-GEC") then

Remaining_emps += {c}

end-if

end-do

! writeln("\t\tOther employees to be allocted to groups: (",Other_emps,")

",Remaining_emps); writeln("\t\t plus ",extra," AGECNY crew to be

allocated"); writeln

forall(g in (Norway_groups + Singapore_groups +1)..(Norway_groups +

Singapore_groups + Other_groups)) do

group_type(g) := "Other"

added := FALSE

while(added = FALSE) do

rand_int := integer(random*role_no +1)

if(rand_int in Remaining_set) then

roles_in_group(g) += {rand_int};

! writeln("Add role ",rand_int," to group ",g," (

Other group)")

Remaining_set -= {rand_int};

! writeln("\tRemove role ",rand_int," from the set

of roles to be allocated")

added := TRUE

end-if

end-do

636

number := 0

while(number < 2) do

rand_no := random

if(rand_no < (extra / (extra + getsize(Remaining_emps))))

then

number := number +1;

! writeln("* Add an AGENCY employee to group ",g," (

Other group)")

extra := extra - 1

else

added := FALSE

while(added = FALSE) do

rand_int := integer(random*no_of_crew +1)

if(rand_int in Remaining_emps) then

crew_in_group(g) += {rand_int};

! writeln("Add employee ",rand_int,"

to group ",g," (Other group)")

Remaining_emps -= {rand_int};

! writeln("\tRemove employee ",

rand_int," from the set of crew to

be allocated")

added := TRUE

end-if

end-do

number := number +1

end-if

end-do

end-do

! writeln

! writeln("Group summary:")

! forall(g in group) do

! write("Group ")

! if(g < 10) then write(" "); end-if

! write(g," (",group_type(g),")")

! write("\tRoles:\t",roles_in_group(g))

! write("\t\tCrew: \t",crew_in_group(g),"\n")

! end-do

! writeln; writeln("----------------------------------"); writeln

!--

637

! Next, determine the appropriate crew-change times, and initial

assignments to the roles

declarations

weeks = 1..no_of_weeks

! tasks = 1..no_of_tasks

! task_vessel: array(tasks) of integer

! task_role: array(tasks) of integer

! task_start, task_duration: array(tasks) of integer

shipcrew: array(1..3) of integer

allocated: integer

initial: array(crew, roles, weeks) of integer

ag_initial: array(roles, weeks) of integer

board, depart: array(crew, vessel, weeks) of integer

ag_board, ag_depart: array(roles, weeks) of integer

previous: integer

next_change: integer

more_previous: integer

back_count: integer

start_in_role: array(roles) of integer

work_resource_zero: array(crew) of integer

rest_resource_zero: array(crew) of integer

ag_work_zero: array(roles) of integer

group_max_work, group_min_rest, emp_min_rest: integer

overall_max_work: integer

start_duration: array(roles) of integer

end-declarations

forall(c in crew) do

forall(r in roles, w in weeks) initial(c,r,w) := 0

work_resource_zero(c) := 0

rest_resource_zero(c) := 0

end-do

forall(r in roles) do

forall(w in weeks) ag_initial(r,w) := 0

start_duration(r) := 0

638

end-do

overall_max_work := 0

forall(g in group) do

! First, need to know duty lengths:

! writeln; writeln("Allocate assignments for Group ",g,":")

if(group_type(g) = "Norway") then

group_max_work := 2

group_min_rest := 4

emp_min_rest := 4

elif(group_type(g) = "Singapore") then

group_max_work := 10

group_min_rest := 5

emp_min_rest := 5

elif(group_type(g) = "Other") then

forall(r in roles_in_group(g)) do

if(vessel_location(role_on_vessel(r)) = "Europe")

then

group_max_work := 4

group_min_rest := 4

else

group_max_work := 5

group_min_rest := 5

end-if

end-do

emp_min_rest := 4

else

group_max_work := 0

group_min_rest := 0

end-if

! writeln("\tMax work: ",group_max_work,"\tMin rest: ",

group_min_rest); writeln

if(group_max_work > overall_max_work) then

overall_max_work := group_max_work

end-if

! Can now determine the starting duration for each of the roles

index := 0

previous := 0

forall(r in roles_in_group(g)) do

index := index + 1

639

if(index = 1) then

start_duration(r) := integer(group_max_work * random

)

previous := start_duration(r);

! writeln("\tStart duration for role ",r," is ",

start_duration(r)," weeks")

else

if(previous < (group_max_work / 2)) then

start_duration(r) := previous + integer(

group_max_work / 2);

! writeln("\tStart duration for role ",r," is

",start_duration(r)," weeks")

else

start_duration(r) := previous - integer(

group_max_work / 2);

! writeln("\tStart duration for role ",r," is

",start_duration(r)," weeks")

end-if

end-if

end-do

! writeln

! Determine the order in which the crew in each ’group’ will work

their tasks

forall(i in 1..3) shipcrew(i) := 0

allocated := 0

if(group_type(g) = "Other") then

if(getsize(crew_in_group(g)) > 0) then

forall(c in crew_in_group(g)) do

if(allocated = 0) then

rand_no := random

if(rand_no < 0.5) then

shipcrew(1) := c;

! writeln("\tEmployee ",c," is

crew number 1")

allocated := allocated + 1

else

shipcrew(2) := c;

! writeln("\tEmployee ",c," is

crew number 2")

allocated := allocated + 1

640

end-if

else

if(shipcrew(1) = 0) then

shipcrew(1) := c;

! writeln("\tEmployee ",c," is

crew number 1")

allocated := allocated + 1

else

shipcrew(2) := c;

! writeln("\tEmployee ",c," is

crew number 2")

allocated := allocated + 1

end-if

end-if

end-do

end-if

else

if(getsize(crew_in_group(g)) > 0) then

forall(c in crew_in_group(g)) do

if(allocated = 0) then

rand_no := random

if(rand_no < (1/3)) then

shipcrew(1) := c;

! writeln("\tEmployee ",c," is

crew number 1")

allocated := allocated + 1

else

if(rand_no < (2/3)) then

shipcrew(2) := c;

! writeln("\tEmployee ",

c," is crew number

2")

allocated := allocated +

1

else

shipcrew(3) := c;

! writeln("\tEmployee ",

c," is crew number

3")

allocated := allocated +

1

end-if

641

end-if

else

if(allocated = 1) then

rand_no := random

if(rand_no < 0.5) then

if(shipcrew(1) = 0) then

shipcrew(1) := c

;

! writeln("\

tEmployee ",c

," is crew

number 1")

allocated :=

allocated + 1

else

shipcrew(2) := c

;

! writeln("\

tEmployee ",c

," is crew

number 2")

allocated :=

allocated + 1

end-if

else

if(shipcrew(3) = 0) then

shipcrew(3) := c

;

! writeln("\

tEmployee ",c

," is crew

number 3")

allocated :=

allocated + 1

else

shipcrew(2) := c

;

! writeln("\

tEmployee ",c

," is crew

number 2")

allocated :=

allocated + 1

642

end-if

end-if

else

forall(i in 1..3 | shipcrew(i)

= 0) shipcrew(i) := c;

! forall(i in 1..3 | shipcrew(i

) = c) writeln("\tEmployee

",c," is crew number ",i

,"*")

end-if

end-if

end-do

end-if

end-if

! writeln

! ... and now define the initial (un-disrupted) solution:

previous := 0

index := 0

forall(r in roles_in_group(g)) do

index := index + 1

start_in_role(r) := 0

if(index = 1) then

previous := previous +1

else

forall(j in roles_in_group(g) | r <> j) do

if(start_duration(j) > start_duration(r))

then

previous := 2

else

previous := 3

end-if

end-do

end-if

! Calcualte ALL relevant ’rest_resource_zero’ values...

more_previous := previous

if(start_duration(r) = 0) then

if(shipcrew(more_previous) > 0) then

643

rest_resource_zero(shipcrew(more_previous))

:= emp_min_rest;

! writeln("\t(Employee ",shipcrew(

more_previous)," requires ",

rest_resource_zero(shipcrew(more_previous

))," periods of rest as at time zero)")

end-if

end-if

back_count := group_max_work - start_duration(r)

while(back_count < emp_min_rest) do

if(more_previous > 1) then

more_previous := more_previous - 1

else

if(group_type(g) = "Other") then

more_previous := 2

else

more_previous := 3

end-if

end-if

if(shipcrew(more_previous) > 0) then

rest_resource_zero(shipcrew(more_previous))

:= emp_min_rest - back_count;

! writeln("\t(Employee ",shipcrew(

more_previous)," requires ",

rest_resource_zero(shipcrew(more_previous

))," periods of rest as at time zero)")

end-if

back_count := back_count + group_max_work

end-do

! Assign the relevant ’work_resource_zero’ values

if(shipcrew(previous) > 0) then

work_resource_zero(shipcrew(previous)) := (

group_max_work - start_duration(r))

else

ag_work_zero(r) := (group_max_work - start_duration(

r))

end-if

644

! ... and now make the initial assignments:

start_in_role(r) := shipcrew(previous);

! writeln("\tEmployee ",shipcrew(previous)," is in role ",r

," at the start of the planning period")

next_change := start_duration(r) + 1;

! writeln("\t\tNext crew change will take place ahead of

time window ",next_change)

time_count := 1

while(time_count < no_of_weeks) do

if(time_count < next_change) then

if(shipcrew(previous) > 0) then

initial(shipcrew(previous), r,

time_count) := 1;

! writeln("\t\tEmployee ",shipcrew(

previous)," works in role ",r," in

time window ",time_count)

else

ag_initial(r, time_count) := 1;

! writeln("\t\tAn AGENCY employee

works in role ",r," in time window

",time_count)

end-if

else

if(shipcrew(previous) > 0) then

depart(shipcrew(previous),

role_on_vessel(r), time_count) :=

1;

! writeln("\t\tEmployee ",shipcrew(

previous)," leaves vessel ",

role_on_vessel(r)," ahead of time

window ",time_count)

else

ag_depart(r, time_count) := 1;

! writeln("\t\tAn AGENCY employee

leaves role ",r," ahead of time

window ",time_count)

end-if

645

if(group_type(g) = "Other") then

if(previous = 2) then

previous := 1

else

previous := previous +1

end-if

else

if(previous = 3) then

previous := 1

else

previous := previous +1

end-if

end-if

if(shipcrew(previous) > 0) then

board(shipcrew(previous),

role_on_vessel(r), time_count) :=

1;

! writeln("\tEmployee ",shipcrew(

previous)," boards vessel ",

role_on_vessel(r)," ahead of time

window ",time_count)

initial(shipcrew(previous), r,

time_count) := 1;

! writeln("\t\tEmployee ",shipcrew(

previous)," works in role ",r," in

time window ",time_count)

else

ag_board(r, time_count) := 1;

! writeln("\tAn AGENCY employee boards

role ",r," ahead of time window

",time_count)

ag_initial(r, time_count) := 1;

! writeln("\t\tAn AGENCY employee

works in role ",r," in time window

",time_count)

end-if

next_change := next_change + group_max_work;

! writeln("\t\tNext crew change will take

place ahead of time window ",next_change)

end-if

646

time_count := time_count + 1

end-do

! writeln

end-do

end-do

! writeln; writeln("----------------------------------"); writeln

!--

! Generate employee availabilities:

declarations

days = 0..(7*no_of_weeks)

available_day: array(crew,days) of integer

available_week: array(crew,weeks) of integer

! ill_given_prev_fit: real

! ill_given_prev_ill: real

time_reduction: real

end-declarations

! write("\t ")

! forall(w in weeks) do

! write("| Week ")

! if(w < 10) then write(" "); end-if

! write(w," ")

! end-do

! write("\n")

! write("\t 0")

! forall(w in weeks) do

! forall(i in 1..7) do

! if(i = 1) then write("|")

! else write(" ")

! end-if

! write(i)

! end-do

! end-do

! write("\n")

forall(c in crew) do

! write(c,"\t")

rand_no := random

if(rand_no < 0.008) then

available_day(c,0) := 0;

! write(" X")

647

else

available_day(c,0) := 1;

! write(" a")

end-if

forall(d in days | d > 0) do

time_reduction := 0

if(use_time_reduction = TRUE) then

if(d > 28) then

time_reduction := (d-28)/((7*no_of_weeks)-28)

end-if

end-if

rand_no := random

if(available_day(c,d-1) = 1) then

if(rand_no < ill_given_prev_fit*(1-time_reduction))

then

available_day(c,d) := 0;

! write(" X")

else

available_day(c,d) := 1;

! write(" a")

end-if

else

if(rand_no < ill_given_prev_ill*(1-time_reduction))

then

available_day(c,d) := 0;

! write(" X")

else

available_day(c,d) := 1;

! write(" a")

end-if

end-if

end-do

! write("\n")

forall(w in weeks) do

available_week(c,w) := 1

forall(d in 1..7) do

if(available_day(c, (7*(w-1) + d)) = 0) then

available_week(c,w) := 0

end-if

648

end-do

end-do

end-do

!--

! Generate costs and fixed-contract terms:

declarations

work_change_cost: array(crew, roles, weeks) of real

board_change_cost, depart_change_cost: array(crew, vessel, weeks)

of real

ag_work_change_cost: array(roles, weeks) of real

ag_board_change_cost, ag_depart_change_cost: array(roles, weeks) of

real

delta = 1..(overall_max_work)

ext_change_cost: array(delta, crew, roles, weeks) of real

disruption_factor: real

under_rate, over_rate: array(crew) of real

current_undertime, current_overtime, exp_worktime: array(crew) of

real

current_worktime: array(crew) of real

g_weeks: real

end-declarations

forall(w in weeks) do

forall(v in vessel, c in crew) do

board_change_cost(c,v,w) := 0

if(board(c,v,w) = 0) then

if(crew_continent(c) = "European") then

if(vessel_location(v) = "Europe") then

board_change_cost(c,v,w) := 3

649

elif(vessel_location(v) = "Africa" or

vessel_location(v) = "USA") then

board_change_cost(c,v,w) := 6

else board_change_cost(c,v,w) := 8

end-if

elif(crew_continent(c) = "North American") then

if(vessel_location(v) = "USA") then

board_change_cost(c,v,w) := 4

elif(vessel_location(v) = "Brazil" or

vessel_location(v) = "Europe") then

board_change_cost(c,v,w) := 6

else board_change_cost(c,v,w) := 9

end-if

elif(crew_continent(c) = "Asian" or crew_continent(c

) = "Australasian") then

if(vessel_location(v) = "AsiaPac") then

board_change_cost(c,v,w) := 4

else board_change_cost(c,v,w) := 9

end-if

else board_change_cost(c,v,w) := 9

end-if

else

if(crew_continent(c) = "European") then

if(vessel_location(v) = "Europe") then

board_change_cost(c,v,w) := -2

elif(vessel_location(v) = "Africa" or

vessel_location(v) = "USA") then

board_change_cost(c,v,w) := -5

else board_change_cost(c,v,w) := -7

end-if

elif(crew_continent(c) = "North American") then

if(vessel_location(v) = "USA") then

board_change_cost(c,v,w) := -3

elif(vessel_location(v) = "Brazil" or

vessel_location(v) = "Europe") then

board_change_cost(c,v,w) := -5

else board_change_cost(c,v,w) := -8

end-if

elif(crew_continent(c) = "Asian" or crew_continent(c

) = "Australasian") then

if(vessel_location(v) = "AsiaPac") then

board_change_cost(c,v,w) := -3

650

else board_change_cost(c,v,w) := -8

end-if

else board_change_cost(c,v,w) := -8

end-if

if(w < 5) then

board_change_cost(c,v,w) := board_change_cost

(c,v,w)/2

end-if

end-if

depart_change_cost(c,v,w) := 0

if(depart(c,v,w) = 0) then

if(crew_continent(c) = "European") then

if(vessel_location(v) = "Europe") then

depart_change_cost(c,v,w) := 3

elif(vessel_location(v) = "Africa" or

vessel_location(v) = "USA") then

depart_change_cost(c,v,w) := 6

else depart_change_cost(c,v,w) := 8

end-if

elif(crew_continent(c) = "North American") then

if(vessel_location(v) = "USA") then

depart_change_cost(c,v,w) := 4

elif(vessel_location(v) = "Brazil" or

vessel_location(v) = "Europe") then

depart_change_cost(c,v,w) := 6

else depart_change_cost(c,v,w) := 9

end-if

elif(crew_continent(c) = "Asian" or crew_continent(c

) = "Australasian") then

if(vessel_location(v) = "AsiaPac") then

depart_change_cost(c,v,w) := 4

else depart_change_cost(c,v,w) := 9

end-if

else depart_change_cost(c,v,w) := 9

end-if

else

if(crew_continent(c) = "European") then

if(vessel_location(v) = "Europe") then

depart_change_cost(c,v,w) := -2

651

elif(vessel_location(v) = "Africa" or

vessel_location(v) = "USA") then

depart_change_cost(c,v,w) := -5

else depart_change_cost(c,v,w) := -7

end-if

elif(crew_continent(c) = "North American") then

if(vessel_location(v) = "USA") then

depart_change_cost(c,v,w) := -3

elif(vessel_location(v) = "Brazil" or

vessel_location(v) = "Europe") then

depart_change_cost(c,v,w) := -5

else depart_change_cost(c,v,w) := -8

end-if

elif(crew_continent(c) = "Asian" or crew_continent(c

) = "Australasian") then

if(vessel_location(v) = "AsiaPac") then

depart_change_cost(c,v,w) := -3

else depart_change_cost(c,v,w) := -8

end-if

else depart_change_cost(c,v,w) := -8

end-if

if(w < 5) then

depart_change_cost(c,v,w) :=

depart_change_cost(c,v,w)/2

end-if

end-if

end-do

forall(r in roles) do

forall(c in crew) do

work_change_cost(c,r,w) := 0

if(contract_type(c) = "Permanent") then

work_change_cost(c,r,w) := 1

else

if(crew_nation(c) = "NORWAY") then

if(initial(c,r,w) = 1) then

work_change_cost(c,r,w) := -90

else

652

work_change_cost(c,r,w) := 100

end-if

else

if(initial(c,r,w) = 1) then

work_change_cost(c,r,w) := -60

else

work_change_cost(c,r,w) := 70

end-if

end-if

end-if

if(w < 5) then

if(work_change_cost(c,r,w) > 0) then

work_change_cost(c,r,w) :=

disruption_factor_near*

work_change_cost(c,r,w)

elif(work_change_cost(c,r,w) < 0) then

work_change_cost(c,r,w) := (1/

disruption_factor_near)*

work_change_cost(c,r,w)

end-if

elif(w < no_of_weeks) then

if(work_change_cost(c,r,w) > 0) then

work_change_cost(c,r,w) :=

disruption_factor_long*

work_change_cost(c,r,w)

elif(work_change_cost(c,r,w) < 0) then

work_change_cost(c,r,w) := (1/

disruption_factor_long)*

work_change_cost(c,r,w)

end-if

end-if

forall(d in delta) do

ext_change_cost(d,c,r,w) := 0

if(d = 5 and vessel_location(role_on_vessel(r

)) = "Europe") then

if(legal_entity(c) <> "Subsea7 Contr (

Norway) AS" and legal_entity(c) <>

"Subsea 7 (Sing) PTE-GEC") then

653

if(contract_type(c) = "

Permanent") then

ext_change_cost(d,c,r,w)

:= 0.5

else

if(crew_nation(c) = "

NORWAY") then

ext_change_cost(

d,c,r,w) :=

50

else

ext_change_cost(

d,c,r,w) :=

35

end-if

end-if

end-if

end-if

end-do

end-do

ag_board_change_cost(r,w) := 0

if(ag_board(r,w) = 0) then

ag_board_change_cost(r,w) := 2

else

if(w > 4) then

ag_board_change_cost(r,w) := -2

else

ag_board_change_cost(r,w) := -1

end-if

end-if

ag_depart_change_cost(r,w) := 0

if(ag_depart(r,w) = 0) then

ag_depart_change_cost(r,w) := 2

else

if(w > 4) then

ag_depart_change_cost(r,w) := -2

else

ag_depart_change_cost(r,w) := -1

654

end-if

end-if

ag_work_change_cost(r,w) := 0

if(ag_initial(r,w) = 0) then

ag_work_change_cost(r,w) := 200

else

ag_work_change_cost(r,w) := -180

end-if

if(ag_work_change_cost(r,w) > 0) then

ag_work_change_cost(r,w) := agency_penalty*

ag_work_change_cost(r,w)

elif(ag_work_change_cost(r,w) < 0) then

ag_work_change_cost(r,w) := (1/agency_penalty)*

ag_work_change_cost(r,w)

end-if

end-do

end-do

! Fixed contract terms:

forall(c in crew | contract_type(c) = "Permanent") under_rate(c) := 70

forall(c in crew | contract_type(c) = "Permanent") do

if(legal_entity(c) = "Subsea7 Contr (Norway) AS") then over_rate(c)

:= 500

elif(legal_entity(c) = "Subsea 7 Norway") then over_rate(c) := 500

elif(crew_nation(c) = "Norway") then over_rate(c) := 120

else over_rate(c) := 70

end-if

end-do

g_weeks := 26

forall(c in crew | contract_type(c) = "Permanent") do

exp_worktime(c) := 26 - sum(r in roles, w in weeks)(initial(c,r,w))

end-do

forall(c in crew | contract_type(c) = "Permanent") do

655

current_worktime(c) := exp_worktime(c) + sum(r in roles, w in weeks

)(initial(c,r,w)*available_week(c,w))

end-do

forall(c in crew | contract_type(c) = "Permanent") do

current_undertime(c) := 0

current_overtime(c) := 0

if(current_worktime(c) < 26) then

current_undertime(c) := 26 - current_worktime(c)

end-if

if(current_worktime(c) > 26) then

current_undertime(c) := current_worktime(c) - 26

end-if

end-do

!--

! Print dataset into output file:

declarations

on_vessel: boolean

ag_number: integer

end-declarations

fopen(OUTFILE, F_OUTPUT)

writeln("! Dataset generated for time-windows formulation based on

real data on Subsea 7 Captains.")

writeln

writeln("! Parameters used:")

writeln

writeln("! -> Probability employee ill given previously fit:\t",

ill_given_prev_fit)

writeln("! -> Probability employee ill given previously ill:\t",

ill_given_prev_ill)

if(use_time_reduction = TRUE) then writeln("! -> Time-reduction of

probabilities:\t\t\tON")

else writeln("! -> Time-reduction of probabilities:\t\t\tOFF")

end-if

writeln

writeln("! -> Disruption factor for near tasks:\t\t\t",

disruption_factor_near)

656

writeln("! -> Disruption factor for more distant tasks:\t\t",

disruption_factor_long)

writeln("! -> Agency crew penalty:\t\t\t\t",agency_penalty)

writeln

writeln("!---")

writeln

writeln

writeln("WEEKS_TO_PLAN: ",no_of_weeks)

writeln

writeln

write("REG_EMP : [")

forall(c in crew) write(" ’",crew_label(c),"’ ")

write("] \n")

writeln

write("GUARANTEED: [")

forall(c in crew | contract_type(c) = "Permanent") write(" ’",

crew_label(c),"’")

write("] \n")

writeln

writeln

writeln("VESSELS: [")

forall(v in vessel | required(v) > 0) write(" ’",vessel_name(v),"’

")

write("] \n")

writeln

writeln("ROLES: [")

forall(v in vessel | required(v) > 0) do

index := 0

write("(’",vessel_name(v),"’) [")

forall(r in vessel_roles(v)) do

index := index + 1

write(" ’",vessel_label(v),"-")

if(index < 10) then write("0"); end-if

write(index,"’ ")

end-do

write("] \n")

end-do

write("] \n")

writeln

writeln

write("under_rate:\t[")

forall(c in crew | contract_type(c) = "Permanent") write(round(

under_rate(c)),"\t")

657

write("]\nover_rate:\t[")

forall(c in crew | contract_type(c) = "Permanent") write(round(

over_rate(c)),"\t")

write("]\ng_weeks:\t[")

forall(c in crew | contract_type(c) = "Permanent") write(g_weeks,"\

t")

write("]\nexp_worktime:\t[")

forall(c in crew | contract_type(c) = "Permanent") write(

exp_worktime(c),"\t")

write("]\n")

writeln

writeln

writeln("required: [")

forall(r in roles) do

forall(w in weeks) write(" 1")

write("\n")

end-do

write("]\n")

writeln

writeln

writeln("eligable: [")

forall(c in crew) do

forall(r in roles) do

forall(w in weeks) do

write(" ",available_week(c,w))

end-do

end-do

write("\n")

end-do

forall(r in roles, w in weeks) write(" 1")

write("] \n")

writeln

writeln

writeln("starting: [")

forall(c in crew) do

forall(v in vessel | required(v) > 0) do

on_vessel := FALSE

forall(r in vessel_roles(v)) do

if(start_in_role(r) = c) then

on_vessel := TRUE

end-if

end-do

if(on_vessel = TRUE) then write(" 1")

658

else write(" 0")

end-if

end-do

write("\n")

end-do

forall(v in vessel | required(v) > 0) do

ag_number := 0

forall(r in vessel_roles(v)) do

if(start_in_role(r) = 0) then

ag_number := ag_number + 1

end-if

end-do

write(" ",ag_number)

end-do

write("] \n")

writeln

write("ag_starting: [")

forall(r in roles) do

if(start_in_role(r) = 0) then write(" 1")

else write(" 0")

end-if

end-do

write("] \n")

writeln

writeln

writeln

write("work_zero: [")

forall(c in crew) write(" ",work_resource_zero(c))

writeln("]")

write("rest_zero: [")

forall(c in crew) write(" ",rest_resource_zero(c))

writeln("]")

writeln

write("max_work: [")

forall(c in crew) do

if(legal_entity(c) = "Subsea7 Contr (Norway) AS") then write

(" 2")

elif(legal_entity(c) = "Subsea 7 (Sing) PTE-GEC") then write

(" 10")

else write(" 5")

end-if

end-do

write("] \n")

659

write("min_rest: [")

forall(c in crew) do

if(legal_entity(c) = "Subsea7 Contr (Norway) AS") then write

(" 4")

elif(legal_entity(c) = "Subsea 7 (Sing) PTE-GEC") then write

(" 5")

else write(" 4")

end-if

end-do

write("] \n")

writeln

writeln

write("ag_work_zero: [")

forall(r in roles) write(" ",ag_work_zero(r))

write("] \n")

write("ag_max_work: [")

forall(r in roles) do

forall(g in group) do

if(r in roles_in_group(g)) then

if(group_type(g) = "Norway") then write(" 2")

elif(group_type(g) = "Singapore") then write

(" 10")

else write(" 5")

end-if

end-if

end-do

end-do

write("] \n")

writeln

writeln

writeln("!---")

writeln("! Data on current schedule:")

writeln

writeln("cur_allocate: [")

forall(c in crew) do

forall(r in roles) do

forall(w in weeks) write(" ",initial(c,r,w)*

available_week(c,w))

end-do

write("\n")

end-do

forall(r in roles) do

forall(w in weeks) write(" ",ag_initial(r,w))

660

end-do

write("] \n")

writeln

writeln

writeln("cur_board: [")

forall(c in crew) do

forall(v in vessel | required(v) > 0) do

forall(w in weeks) write(" ",board(c,v,w))

end-do

write("\n")

end-do

write("] \n")

writeln

writeln

writeln("cur_depart: [")

forall(c in crew) do

forall(v in vessel | required(v) > 0) do

forall(w in weeks) write(" ",depart(c,v,w))

end-do

write("\n")

end-do

write("] \n")

writeln

writeln

writeln("cur_ag_rboard: [")

forall(r in roles) do

forall(w in weeks) write(" ",ag_board(r,w))

write("\n")

end-do

write("] \n")

writeln

writeln

writeln("cur_ag_rdepart: [")

forall(r in roles) do

forall(w in weeks) write(" ",ag_depart(r,w))

write("\n")

end-do

write("] \n")

writeln

writeln

write("cur_undertime: [")

forall(c in crew | contract_type(c) = "Permanent") write(

current_undertime(c),"\t")

661

write("]\n")

write("cur_overtime: [")

forall(c in crew | contract_type(c) = "Permanent") write(

current_overtime(c),"\t")

write("]\n")

writeln

writeln

writeln("cur_long_work: [")

forall(d in delta) do

forall(c in crew) do

forall(r in roles, w in weeks) write(" 0")

write("\n")

end-do

forall(r in roles, w in weeks) write(" 0")

write("\n")

writeln

end-do

write("]\n")

writeln

writeln

writeln("!---")

writeln("! Cost of changes:")

writeln

writeln("board_chng_cost: [")

forall(c in crew) do

forall(v in vessel | required(v) > 0) do

forall(w in weeks) write(board_change_cost(c,v,w),"\

t")

end-do

write("\n")

end-do

write("] \n")

writeln

writeln("depart_chng_cost: [")

forall(c in crew) do

forall(v in vessel | required(v) > 0) do

forall(w in weeks) write(depart_change_cost(c,v,w)

,"\t")

end-do

write("\n")

end-do

write("] \n")

writeln

662

writeln

writeln("ag_board_chng_cost: [")

forall(r in roles) do

forall(w in weeks) write(ag_board_change_cost(r,w),"\t")

write("\n")

end-do

write("] \n")

writeln

writeln("ag_depart_chng_cost: [")

forall(r in roles) do

forall(w in weeks) write(ag_depart_change_cost(r,w),"\t")

write("\n")

end-do

write("] \n")

writeln

writeln

writeln("work_chng_cost: [")

forall(c in crew) do

forall(r in roles) do

forall(w in weeks) write(work_change_cost(c,r,w),"\t

")

end-do

write("\n")

end-do

forall(r in roles) do

forall(w in weeks) write(ag_work_change_cost(r,w),"\t")

end-do

write("] \n")

writeln

writeln

writeln

writeln("extension_chng_cost: [")

forall(d in delta) do

forall(c in crew) do

forall(r in roles) do

forall(w in weeks) write(ext_change_cost(d,c,

r,w),"\t")

end-do

write("\n")

end-do

forall(r in roles, w in weeks) write(" 0")

write("\n")

writeln

663

end-do

write("]\n")

writeln

writeln

fclose(F_OUTPUT)

end-procedure

!---

!forall(ins in INSTANCES) do

!

! OUTFILE := instance_name(ins)

! writeln("Instance: ",instance_name(ins)); writeln

!

! ! Parameters to be varied for various data sets:

! ill_given_prev_fit := ill_given_fit(ins)

! ill_given_prev_ill := ill_given_ill(ins)

!

! use_time_reduction := use_TR(ins)

!

! disruption_factor_near := DF_near(ins)

! disruption_factor_long := DF_long(ins)

! agency_penalty := AG_pen(ins)

!

MAIN_PROG

! writeln; writeln("---");

writeln; writeln

!end-do

end-model

E.2.2 Cost-minimization algorithm

Here we give the code used to solve the Time-Windows problem using the Cost-Minimization

approach described in section 6.3.1. This was implemented using the FICO Xpress soft-

ware.

664

model ModelName

uses "mmxprs", "mmsystem"; !gain access to the Xpress-Optimizer solver

! Recovery-type problem version of the time windows formulation, intended to be

more realistic.

! As before, this program aims to solve the problem directly from this

formulation.

parameters

DATE = "27-11-14"

PARAMETERFILE = "batch-input-parameters.dat"

end-parameters

declarations

InstanceName: string

end-declarations

initializations from PARAMETERFILE

InstanceName

end-initializations

DATAFILE := InstanceName+"\\Time-Windows - Captains - "+InstanceName+".txt"

OUTPUTFILE := InstanceName+"\\Logfile - TW-recovery - 2mins - "+InstanceName+" -

"+DATE+".txt"

SUMMARYFILE := "Results - TW-recovery - 2mins - "+DATE+".txt"

!SOLUTIONFILE := InstanceName+"\\Best direct soln - "+InstanceName+" - "+DATE+".

txt"

! Forces the program to stop after given length of time

setparam("XPRS_maxtime",-120) ! Use this for the two-minute time-limit...

! setparam("XPRS_maxtime",-3600) ! ... or this for the one-hour time-limit

declarations

status: array({XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH}) of string !

Used to indicate the solution status of the probelm

REG_EMP: set of string ! Regular employee names / numbers (ie not

Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

665

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which

will require cover, divided by vessels

ALL_ROLES: set of string ! List of all roles

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real !

Data relating to over/undertime payments for employees

end-declarations

initializations from DATAFILE

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

under_rate over_rate g_weeks exp_worktime

end-initializations

ALL_EMP := REG_EMP + {"AGENCY"}

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

declarations

TIME = 1..WEEKS_TO_PLAN ! Time index

allocate: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar ! Variable for

allocating employee to role during given time period

board, depart: array(REG_EMP, VESSELS, TIME) of mpvar ! =1 if employee

boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer value for agency crew

ag_rboard, ag_rdepart: array(ALL_ROLES, TIME) of mpvar ! =1 if agency

crew starts / ends working on a role in given time period, 0 otherwise

undertime, overtime: array(GUARANTEED) of mpvar !

Variables to calculate the amount of under/overtime carried out by

employee

work_total, rest_total: array(REG_EMP, TIME) of mpvar ! Used to track

the consecutive working time / rest period requirements of each

employee

ag_work_total: array(ALL_ROLES, TIME) of mpvar ! Used to

track the consecutive working time of the agency employees

board_chng_cost, depart_chng_cost: array(REG_EMP, VESSELS, TIME) of real !

Costs of CHANGES TO employees boarding / leaving vessel

666

ag_board_chng_cost, ag_depart_chng_cost: array(ALL_ROLES, TIME) of real !

Costs of CHANGES TO agency employees boarding / leaving for a given

role

work_chng_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given

role at a given time

required: array(ALL_ROLES, TIME) of integer ! =1 if

role r is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can

carry out role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is

on board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

ag_starting: array(ALL_ROLES) of integer ! =1 if

agency employee is in role r at time 0, =0 otherwise

work_zero, rest_zero: array(REG_EMP) of integer ! initial values

of work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial

value of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum

on working time, minimum on resting time

ag_max_work: array(ALL_ROLES) of integer ! maximum

on working time for agency crew, possibly different for each role

overall_regular_max_work: integer

overall_agency_max_work: integer

overall_max_work: integer

! Added for the recovery problem:

! - the details of the current roster...

cur_allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer

cur_board, cur_depart: array(REG_EMP, VESSELS, TIME) of integer

cur_ag_rboard, cur_ag_rdepart: array(ALL_ROLES, TIME) of integer

cur_undertime, cur_overtime: array(GUARANTEED) of real

! ... and the ’change’ variables...

chng_allocate: array(ALL_EMP, ALL_ROLES, TIME) of mpvar

chng_board, chng_depart: array(REG_EMP, VESSELS, TIME) of mpvar

chng_ag_rboard, chng_ag_rdepart: array(ALL_ROLES, TIME) of mpvar

chng_undertime, chng_overtime: array(GUARANTEED) of mpvar

end-declarations

initializations from DATAFILE

667

board_chng_cost depart_chng_cost work_chng_cost

ag_board_chng_cost ag_depart_chng_cost

required eligable starting ag_starting

work_zero rest_zero

max_work min_rest ag_max_work

cur_allocate cur_board cur_depart cur_ag_rboard cur_ag_rdepart

cur_undertime cur_overtime

end-initializations

overall_regular_max_work := max(e in REG_EMP) max_work(e)

overall_agency_max_work := max(r in ALL_ROLES) ag_max_work(r)

if(overall_regular_max_work > overall_agency_max_work) then

overall_max_work := overall_regular_max_work

else

overall_max_work := overall_agency_max_work

end-if

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate(e,r,t))

end-if

end-do

declarations

lambda = 1..overall_max_work

! Index used for number of consecutive

weeks

long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of mpvar ! Used to

indicate if a special bonus / penalty payment relating to consecutive

time at sea is required

extension_chng_cost: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real !

Cost of CHANGES TO an employee working on board a vessel for longer

than usual

!Added for recovery problem - detail of current roster, and change

variable

cur_long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of integer

chng_long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of mpvar

end-declarations

initializations from DATAFILE

668

extension_chng_cost cur_long_work

end-initializations

!--

declarations

Total_cost: linctr

All_covered: dynamic array(ALL_ROLES, TIME) of linctr

No_overlap: array(REG_EMP, TIME) of linctr

Board_constr: array(REG_EMP, VESSELS, TIME) of linctr

Depart_constr: array(REG_EMP, VESSELS, TIME) of linctr

AG_board_vs_depart: array(ALL_ROLES, TIME) of linctr

Calc_undertime: array(GUARANTEED) of linctr

Calc_overtime: array(GUARANTEED) of linctr

Work_count: array(REG_EMP, TIME) of linctr

Long_work_count: dynamic array(lambda, REG_EMP, ALL_ROLES, TIME) of linctr

AG_work_count: array(ALL_ROLES, TIME) of linctr

AG_work_reset: array(ALL_ROLES, TIME) of linctr

AG_long_work: dynamic array(lambda, ALL_ROLES, TIME) of linctr

Rest_count: array(REG_EMP, TIME) of linctr

Rest_reset: array(REG_EMP, TIME) of linctr

Rest_vs_work: array(REG_EMP, TIME) of linctr

! Added for recovery problem - constraints to link change, current and new

values:

Update_allocate: array(ALL_EMP, ALL_ROLES, TIME) of linctr

Update_board: array(REG_EMP, VESSELS, TIME) of linctr

Update_depart: array(REG_EMP, VESSELS, TIME) of linctr

Update_ag_rboard: array(ALL_ROLES, TIME) of linctr

Update_ag_rdepart: array(ALL_ROLES, TIME) of linctr

Update_long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of linctr

Update_undertime: array(GUARANTEED) of linctr

Update_overtime: array(GUARANTEED) of linctr

end-declarations

Total_cost := (sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost(e,v,t)

*chng_board(e,v,t)) + (depart_chng_cost(e,v,t)*chng_depart(e,v,t))) +

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r

,t)*chng_ag_rboard(r,t)) + (ag_depart_chng_cost(r

,t)*chng_ag_rdepart(r,t))) +

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)((

work_chng_cost(e,r,t)*chng_allocate(e,r,t)) + sum

669

(l in lambda)((extension_chng_cost(l,e,r,t)*

chng_long_work(l,e,r,t)))) +

sum(e in GUARANTEED)((under_rate(e)*chng_undertime(e

))+ (over_rate(e)*chng_overtime(e))))

forall(r in ALL_ROLES, t in TIME | required(r,t) > 0) do

create(All_covered(r,t))

All_covered(r,t) := sum(e in ALL_EMP)(eligable(e,r,t)*allocate(e,r,t)) =

required(r,t)

end-do

forall(e in REG_EMP, t in TIME) No_overlap(e,t) := sum(r in ALL_ROLES) allocate(e

,r,t) <= 1

forall(e in REG_EMP, v in VESSELS) Board_constr(e,v,1) := board(e,v,1) >= sum(r

in ROLES(v))(allocate(e,r,1)) - starting(e,v)

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) Board_constr(e,v,t) :=

board(e,v,t) >= sum(r in ROLES(v))(allocate(e,r,t)) - sum(r in ROLES(v))(

allocate(e,r,(t-1)))

forall(e in REG_EMP, v in VESSELS) Depart_constr(e,v,1) := depart(e,v,1) >=

starting(e,v) - sum(r in ROLES(v))(allocate(e,r,1))

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) Depart_constr(e,v,t) :=

depart(e,v,t) >= sum(r in ROLES(v))(allocate(e,r,(t-1))) - sum(r in ROLES(v)

)(allocate(e,r,t))

forall(r in ALL_ROLES) AG_board_vs_depart(r,1) := ag_rboard(r,1) - ag_rdepart(r

,1) = allocate("AGENCY",r,1) - ag_starting(r)

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) AG_board_vs_depart(r,t) :=

ag_rboard(r,t) - ag_rdepart(r,t) = allocate("AGENCY",r,t) - allocate("AGENCY

",r,(t-1))

forall(e in GUARANTEED) Calc_undertime(e) := undertime(e) >= g_weeks(e) - (

exp_worktime(e) + sum(r in ALL_ROLES, t in TIME)(allocate(e,r,t)))

forall(e in GUARANTEED) Calc_overtime(e) := overtime(e) >= (exp_worktime(e) + sum

(r in ALL_ROLES, t in TIME)(allocate(e,r,t)))- g_weeks(e)

forall(e in REG_EMP) Work_count(e,1) := work_total(e,1) >= work_zero(e) + sum(r

in ALL_ROLES)(allocate(e,r,1)) - max_work(e)*(1-(sum(r in ALL_ROLES)(allocate

(e,r,1))))

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN) Work_count(e,t) := work_total(e,t) >=

work_total(e,(t-1)) + sum(r in ALL_ROLES)(allocate(e,r,t)) - max_work(e)

670

*(1-(sum(r in ALL_ROLES)(allocate(e,r,t))))

forall(l in lambda, e in REG_EMP, r in ALL_ROLES | exists(long_work(l,e,r,1))) do

create(Long_work_count(l,e,r,1))

Long_work_count(l,e,r,1) := max_work(e)*long_work(l,e,r,1) >= work_zero(e)

- max_work(e)*(1-allocate(e,r,1)) + allocate(e,r,1) - (l-1)

end-do

forall(l in lambda, e in REG_EMP, r in ALL_ROLES, t in 2..WEEKS_TO_PLAN | exists(

long_work(l,e,r,t))) do

create(Long_work_count(l,e,r,t))

Long_work_count(l,e,r,t) := max_work(e)*long_work(l,e,r,t) >= work_total(e

,(t-1)) - max_work(e)*(1-allocate(e,r,t)) + allocate(e,r,t) - (l-1)

end-do

forall(r in ALL_ROLES) AG_work_count(r,1) := ag_work_total(r,1) >= ag_work_zero(r

) + allocate("AGENCY",r,1) - ag_max_work(r)*ag_rdepart(r,1)

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) AG_work_count(r,t) := ag_work_total

(r,t) >= ag_work_total(r,(t-1)) + allocate("AGENCY",r,t) - ag_max_work(r)*

ag_rdepart(r,t)

forall(r in ALL_ROLES, t in TIME) AG_work_reset(r,t) := ag_work_total(r,t) >=

allocate("AGENCY",r,t)

forall(l in lambda, r in ALL_ROLES, t in TIME | exists(long_work(l,"AGENCY",r,t))

) do

create(AG_long_work(l,r,t))

AG_long_work(l,r,t) := ag_max_work(r)*long_work(l,"AGENCY",r,t) >=

ag_work_total(r,t) - (l-1)

end-do

forall(e in REG_EMP) Rest_count(e,1) := rest_total(e,1) >= rest_zero(e) - (1-(sum

(r in ALL_ROLES)(allocate(e,r,1))))

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN) Rest_count(e,t) := rest_total(e,t) >=

rest_total(e,(t-1)) - (1-(sum(r in ALL_ROLES)(allocate(e,r,t))))

forall(e in REG_EMP, t in TIME) Rest_reset(e,t) := rest_total(e,t) >= (min_rest(e

)-1)*(sum(v in VESSELS)(depart(e,v,t)))

forall(e in REG_EMP) Rest_vs_work(e,1) := min_rest(e)*(1-(sum(r in ALL_ROLES)(

allocate(e,r,1)))) >= rest_zero(e)

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN) Rest_vs_work(e,t) := min_rest(e)*(1-(

sum(r in ALL_ROLES)(allocate(e,r,t)))) >= rest_total(e,(t-1))

! Added for recovery problem - linking change to current variables:

671

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) do

if(exists(allocate(e,r,t)) = true) then

if(cur_allocate(e,r,t) = 0) then Update_allocate(e,r,t) :=

chng_allocate(e,r,t) = allocate(e,r,t)

else Update_allocate(e,r,t) := chng_allocate(e,r,t) = cur_allocate(

e,r,t) - allocate(e,r,t)

end-if

else

Update_allocate(e,r,t) := chng_allocate(e,r,t) = cur_allocate(e,r,t

)

end-if

end-do

forall(e in REG_EMP, v in VESSELS, t in TIME) do

if(cur_board(e,v,t) = 0) then Update_board(e,v,t) := chng_board(e,v,t) =

board(e,v,t)

else Update_board(e,v,t) := chng_board(e,v,t) = cur_board(e,v,t) - board(e

,v,t)

end-if

end-do

forall(e in REG_EMP, v in VESSELS, t in TIME) do

if(cur_depart(e,v,t) = 0) then Update_depart(e,v,t) := chng_depart(e,v,t)

= depart(e,v,t)

else Update_depart(e,v,t) := chng_depart(e,v,t) = cur_depart(e,v,t) -

depart(e,v,t)

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(cur_ag_rboard(r,t) = 0) then Update_ag_rboard(r,t) := chng_ag_rboard(r,

t) = ag_rboard(r,t)

else Update_ag_rboard(r,t) := chng_ag_rboard(r,t) = cur_ag_rboard(r,t) -

ag_rboard(r,t)

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(cur_ag_rdepart(r,t) = 0) then Update_ag_rdepart(r,t) := chng_ag_rdepart

(r,t) = ag_rdepart(r,t)

else Update_ag_rdepart(r,t) := chng_ag_rdepart(r,t) = cur_ag_rdepart(r,t)

- ag_rdepart(r,t)

end-if

672

end-do

forall(l in lambda, e in ALL_EMP, r in ALL_ROLES, t in TIME) do

if(exists(long_work(l,e,r,t)) = true) then

if(cur_long_work(l,e,r,t) = 0) then Update_long_work(l,e,r,t) :=

chng_long_work(l,e,r,t) = long_work(l,e,r,t)

else Update_long_work(l,e,r,t) := chng_long_work(l,e,r,t) =

cur_long_work(l,e,r,t) - long_work(l,e,r,t)

end-if

else

Update_long_work(l,e,r,t) := chng_long_work(l,e,r,t) =

cur_long_work(l,e,r,t)

end-if

end-do

forall(e in GUARANTEED) Update_undertime(e) := chng_undertime(e) = undertime(e) -

cur_undertime(e)

forall(e in GUARANTEED) Update_overtime(e) := chng_overtime(e) = overtime(e) -

cur_overtime(e)

! finally, whether vessels are binary, integer, non-negative, or free:

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(allocate(e,r,t)))

allocate(e,r,t) is_binary

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) chng_allocate(e,r,t) is_binary

forall(l in lambda, e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(long_work(l,

e,r,t))) long_work(l,e,r,t) is_binary

forall(l in lambda, e in ALL_EMP, r in ALL_ROLES, t in TIME) chng_long_work(l,e,r

,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) board(e,v,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) chng_board(e,v,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) depart(e,v,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) chng_depart(e,v,t) is_binary

forall(r in ALL_ROLES, t in TIME) ag_rboard(r,t) is_binary

forall(r in ALL_ROLES, t in TIME) chng_ag_rboard(r,t) is_binary

forall(r in ALL_ROLES, t in TIME) chng_ag_rdepart(r,t) is_binary

forall(r in ALL_ROLES, t in TIME) ag_rdepart(r,t) is_binary

forall(e in GUARANTEED) undertime(e) >= 0

forall(e in GUARANTEED) chng_undertime(e) is_free

673

forall(e in GUARANTEED) overtime(e) >= 0

forall(e in GUARANTEED) chng_overtime(e) is_free

forall(e in REG_EMP, t in TIME) work_total(e,t) >= 0

forall(e in REG_EMP, t in TIME) rest_total(e,t) >= 0

prog_starttime := gettime ! get the time so that at the end, running

time can be calculated

fopen(OUTPUTFILE, F_OUTPUT)

setparam("XPRS_verbose",true)

minimize(Total_cost)

fclose(F_OUTPUT)

prog_endtime := gettime

prog_runtime := prog_endtime - prog_starttime

!---

! Calculate some stats about the current instance:

a := 0 ! number of agency-covered tasks in the

initial schedule

u := 0 ! number of un-covered tasks in the initial

schedule

changes_to_reg := 0 ! number of changes to regular employees in the (

best) solution

changes_to_AG := 0 ! number of changes to agency employees in the (best

) solution

number_of_AG := 0 ! number of times agency employees are utilised in

the (best) solution

forall(r in ALL_ROLES, t in TIME) do

x := 0

forall(e in REG_EMP) do

if(cur_allocate(e,r,t) = 1) then

x := x + 1

end-if

changes_to_reg := changes_to_reg + round(getsol(chng_allocate(e,r,t

)))

end-do

if(cur_allocate("AGENCY",r,t) = 1) then

x := x + 1

a := a + 1

674

end-if

changes_to_AG := changes_to_AG + round(getsol(chng_allocate("AGENCY",r,t))

)

number_of_AG := number_of_AG + round(getsol(allocate("AGENCY",r,t)))

if(x = 0) then u := u + 1

end-if

end-do

status::([XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH])["Optimum found","

Unfinished","Infeasible","Unbounded","Failed\t"]

! Print results to the result summary file

fopen(SUMMARYFILE, F_APPEND)

write(InstanceName)

write("\t",prog_runtime,"\t",status(getprobstat))

write("\t",getobjval,"\t",getparam("XPRS_bestbound"))

write("\t\t",(sum(r in ALL_ROLES, t in TIME) required(r,t)),"\t",u,"\t",a)

write("\t",changes_to_reg,"\t",changes_to_AG,"\t",number_of_AG)

write("\n")

fclose(F_APPEND)

! Print solution to a solution file, as it might be useful for comparison when

looking at heuristics

!fopen(SOLUTIONFILE, F_OUTPUT)

! writeln("Solution for ",InstanceName)

! writeln("\tfound using default Xpress solution settings, with maximum time

1 hour")

! writeln("\twritten in representation proposed for carrying out heuristics

.")

! writeln

! writeln("Prob status: ",status(getprobstat))

! writeln("Running time: ",prog_runtime)

! writeln("Soln value: ",getobjval)

! writeln("Best bound: ",getparam("XPRS_bestbound"))

! writeln

! writeln

! forall(e in REG_EMP) do

! write(e,":\t[")

! forall(t in TIME) do

! working := FALSE

! forall(r in ALL_ROLES) do

675

! if(getsol(allocate(e,r,t)) > 0.9) then

! write("’’",r,"’’")

! working := TRUE

! end-if

! end-do

! if(working = FALSE) then

! avail := FALSE

! forall(r in ALL_ROLES) do

! if(eligable(e,r,t) = 1) then

! avail := TRUE

! end-if

! end-do

! if(avail = FALSE) then

! write("’’*unav*’’")

! else

! write("’’*rest*’’")

! end-if

! end-if

! if(t < WEEKS_TO_PLAN) then

! write(",\t")

! end-if

! end-do

! write("]\n")

! end-do

! writeln

! write("Agency crew: {")

! forall(r in ALL_ROLES, t in TIME) do

! if(getsol(allocate("AGENCY",r,t)) > 0.9) then

! write(" (’’",r,"’’,",t,") ")

! end-if

! end-do

! write("} \n")

!

!fclose(F_OUTPUT)

end-model

E.2.3 Change-minimization algorithm

Here we give the code used to solve the Time-Windows problem using the Change-Minimization

algorithm described in section 6.3.2. This was implemented using the FICO Xpress soft-

676

ware.

model ModelName

uses "mmxprs", "mmsystem"; !gain access to the Xpress-Optimizer solver

! Recovery-type problem version of the time windows formulation, intended to be

more realistic.

! As before, this program aims to solve the problem directly from this

formulation.

!--

! Since I have been trying to solve the TB model with the minimal number of

changes, should also

! investigate doing similar with the TW model

!--

parameters

DATE = "28-11-14"

PARAMETERFILE = "batch-input-parameters.dat"

overall_limit = 120

iteration_limit = 30

end-parameters

declarations

InstanceName: string

end-declarations

initializations from PARAMETERFILE

InstanceName

end-initializations

DATAFILE := InstanceName+"\\Time-Windows - Captains - "+InstanceName+".txt"

OUTPUTFILE := InstanceName+"\\Logfile - TW Min Change - 2mins - "+InstanceName+"

- "+DATE+".txt"

SUMMARYFILE := "Results - TW Min Change - 2mins - "+DATE+".txt"

!SOLUTIONFILE := InstanceName+"\\Best direct soln - "+InstanceName+" - "+DATE+".

txt"

! Forces the program to stop after given length of time

677

setparam("XPRS_verbose",true)

!setparam("XPRS_maxtime",-600)

!setparam("XPRS_miprelstop",0.05)

!setparam("XPRS_covercuts",50)

!setparam("XPRS_gomcuts",10)

prog_starttime := gettime ! get the time so that at the end, running

time can be calculated

declarations

status: array({XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH}) of string !

Used to indicate the solution status of the probelm

REG_EMP: set of string ! Regular employee names / numbers (ie not

Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which

will require cover, divided by vessels

ALL_ROLES: set of string ! List of all roles

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real !

Data relating to over/undertime payments for employees

end-declarations

initializations from DATAFILE

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

under_rate over_rate g_weeks exp_worktime

end-initializations

ALL_EMP := REG_EMP + {"AGENCY"}

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

declarations

TIME = 1..WEEKS_TO_PLAN ! Time index

allocate: dynamic array(ALL_EMP, ALL_ROLES, TIME) of mpvar ! Variable for

allocating employee to role during given time period

678

board, depart: array(REG_EMP, VESSELS, TIME) of mpvar ! =1 if employee

boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer value for agency crew

ag_rboard, ag_rdepart: array(ALL_ROLES, TIME) of mpvar ! =1 if agency

crew starts / ends working on a role in given time period, 0 otherwise

! undertime, overtime: array(GUARANTEED) of mpvar !

Variables to calculate the amount of under/overtime carried out by employee

undertimevar, overtimevar: array(GUARANTEED) of mpvar

undertime, overtime: array(GUARANTEED) of real

work_total, rest_total: array(REG_EMP, TIME) of mpvar ! Used to track

the consecutive working time / rest period requirements of each

employee

ag_work_total: array(ALL_ROLES, TIME) of mpvar ! Used to

track the consecutive working time of the agency employees

board_chng_cost, depart_chng_cost: array(REG_EMP, VESSELS, TIME) of real !

Costs of CHANGES TO employees boarding / leaving vessel

ag_board_chng_cost, ag_depart_chng_cost: array(ALL_ROLES, TIME) of real !

Costs of CHANGES TO agency employees boarding / leaving for a given

role

work_chng_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given

role at a given time

required: array(ALL_ROLES, TIME) of integer ! =1 if

role r is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can

carry out role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is

on board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

ag_starting: array(ALL_ROLES) of integer ! =1 if

agency employee is in role r at time 0, =0 otherwise

work_zero, rest_zero: array(REG_EMP) of integer ! initial values

of work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial

value of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum

on working time, minimum on resting time

ag_max_work: array(ALL_ROLES) of integer ! maximum

on working time for agency crew, possibly different for each role

overall_regular_max_work: integer

overall_agency_max_work: integer

679

overall_max_work: integer

! Added for the recovery problem:

! - the details of the current roster...

cur_allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer

cur_board, cur_depart: array(REG_EMP, VESSELS, TIME) of integer

cur_ag_rboard, cur_ag_rdepart: array(ALL_ROLES, TIME) of integer

cur_undertime, cur_overtime: array(GUARANTEED) of real

! ... and the ’change’ variables...

chng_allocate: array(ALL_EMP, ALL_ROLES, TIME) of mpvar

chng_board, chng_depart: array(REG_EMP, VESSELS, TIME) of mpvar

chng_ag_rboard, chng_ag_rdepart: array(ALL_ROLES, TIME) of mpvar

chng_undertime, chng_overtime: array(GUARANTEED) of mpvar

best_change: array(ALL_EMP, ALL_ROLES, TIME) of integer

best_chng_board, best_chng_depart: array(REG_EMP, VESSELS, TIME) of

integer

best_chng_ag_rboard, best_chng_ag_rdepart: array(ALL_ROLES, TIME) of

integer

best_new_sched: array(ALL_EMP, ALL_ROLES, TIME) of integer

best_chng_undertime, best_chng_overtime: array(GUARANTEED) of real

end-declarations

initializations from DATAFILE

board_chng_cost depart_chng_cost work_chng_cost

ag_board_chng_cost ag_depart_chng_cost

required eligable starting ag_starting

work_zero rest_zero

max_work min_rest ag_max_work

cur_allocate cur_board cur_depart cur_ag_rboard cur_ag_rdepart

cur_undertime cur_overtime

end-initializations

overall_regular_max_work := max(e in REG_EMP) max_work(e)

overall_agency_max_work := max(r in ALL_ROLES) ag_max_work(r)

if(overall_regular_max_work > overall_agency_max_work) then

overall_max_work := overall_regular_max_work

else

overall_max_work := overall_agency_max_work

end-if

680

forall(r in ALL_ROLES, t in TIME) do

if(required(r,t) > 0) then

forall(e in ALL_EMP | eligable(e,r,t) = 1) create(allocate(e,r,t))

end-if

end-do

declarations

lambda = 1..overall_max_work

! Index used for number of consecutive

weeks

long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of mpvar ! Used to

indicate if a special bonus / penalty payment relating to consecutive

time at sea is required

extension_chng_cost: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real !

Cost of CHANGES TO an employee working on board a vessel for longer

than usual

!Added for recovery problem - detail of current roster, and change

variable

cur_long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of integer

chng_long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of mpvar

best_chng_long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of integer

end-declarations

initializations from DATAFILE

extension_chng_cost cur_long_work

end-initializations

!--

declarations

TOTAL_COST: real

COST_FIRST: real

PREV_COST: real

COST_LIMIT: real

cost_constr: linctr

NO_CHANGES_BEST: real

NO_CHANGES_FIRST: real

CHANGE_LIMIT: real

681

iteration: integer

terminate: boolean

percentage: real

integral: boolean

solution: boolean

any_infeas: boolean

lower_bound: real

new_limit_ok: boolean

Big_M: real

iter_time_limit: integer

! UTreq, OTreq: array(GUARANTEED) of mpvar

OTind: array(GUARANTEED) of mpvar

undertime_second_constr, overtime_second_constr: array(GUARANTEED) of

linctr

undertime_third_constr, overtime_third_constr: array(GUARANTEED) of linctr

!Total_cost: linctr

NO_CHANGES: linctr

All_covered: dynamic array(ALL_ROLES, TIME) of linctr

No_overlap: array(REG_EMP, TIME) of linctr

Board_constr: array(REG_EMP, VESSELS, TIME) of linctr

Depart_constr: array(REG_EMP, VESSELS, TIME) of linctr

AG_board_vs_depart: array(ALL_ROLES, TIME) of linctr

Calc_undertime: array(GUARANTEED) of linctr

Calc_overtime: array(GUARANTEED) of linctr

Work_count: array(REG_EMP, TIME) of linctr

Long_work_count: dynamic array(lambda, REG_EMP, ALL_ROLES, TIME) of linctr

AG_work_count: array(ALL_ROLES, TIME) of linctr

AG_work_reset: array(ALL_ROLES, TIME) of linctr

AG_long_work: dynamic array(lambda, ALL_ROLES, TIME) of linctr

Rest_count: array(REG_EMP, TIME) of linctr

Rest_reset: array(REG_EMP, TIME) of linctr

Rest_vs_work: array(REG_EMP, TIME) of linctr

! Added for recovery problem - constraints to link change, current and new

values:

Update_allocate: array(ALL_EMP, ALL_ROLES, TIME) of linctr

Update_board: array(REG_EMP, VESSELS, TIME) of linctr

Update_depart: array(REG_EMP, VESSELS, TIME) of linctr

Update_ag_rboard: array(ALL_ROLES, TIME) of linctr

682

Update_ag_rdepart: array(ALL_ROLES, TIME) of linctr

Update_long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of linctr

Update_undertime: array(GUARANTEED) of linctr

Update_overtime: array(GUARANTEED) of linctr

end-declarations

Big_M := 366

iter_time_limit := iteration_limit

lower_bound := 0

any_infeas := false

status::([XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH])["Optimum found","

Unfinished","Infeasible","Unbounded","Failed"]

!Total_cost := (sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost(e,v,t

)*chng_board(e,v,t)) + (depart_chng_cost(e,v,t)*chng_depart(e,v,t))) +

! sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r

,t)*chng_ag_rboard(r,t)) + (ag_depart_chng_cost(r,t)*chng_ag_rdepart(r,t))) +

! sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)((

work_chng_cost(e,r,t)*chng_allocate(e,r,t)) + sum(l in lambda)((

extension_chng_cost(l,e,r,t)*chng_long_work(l,e,r,t)))) +

! sum(e in GUARANTEED)((under_rate(e)*chng_undertime(e

))+ (over_rate(e)*chng_overtime(e))))

NO_CHANGES := sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)(chng_allocate(e,r,t))

forall(r in ALL_ROLES, t in TIME | required(r,t) > 0) do

create(All_covered(r,t))

All_covered(r,t) := sum(e in ALL_EMP)(eligable(e,r,t)*allocate(e,r,t)) =

required(r,t)

end-do

forall(e in REG_EMP, t in TIME) No_overlap(e,t) := sum(r in ALL_ROLES) allocate(e

,r,t) <= 1

forall(e in REG_EMP, v in VESSELS) Board_constr(e,v,1) := board(e,v,1) >= sum(r

in ROLES(v))(allocate(e,r,1)) - starting(e,v)

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) Board_constr(e,v,t) :=

board(e,v,t) >= sum(r in ROLES(v))(allocate(e,r,t)) - sum(r in ROLES(v))(

allocate(e,r,(t-1)))

683

forall(e in REG_EMP, v in VESSELS) Depart_constr(e,v,1) := depart(e,v,1) >=

starting(e,v) - sum(r in ROLES(v))(allocate(e,r,1))

forall(e in REG_EMP, v in VESSELS, t in 2..WEEKS_TO_PLAN) Depart_constr(e,v,t) :=

depart(e,v,t) >= sum(r in ROLES(v))(allocate(e,r,(t-1))) - sum(r in ROLES(v)

)(allocate(e,r,t))

forall(r in ALL_ROLES) AG_board_vs_depart(r,1) := ag_rboard(r,1) - ag_rdepart(r

,1) = allocate("AGENCY",r,1) - ag_starting(r)

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) AG_board_vs_depart(r,t) :=

ag_rboard(r,t) - ag_rdepart(r,t) = allocate("AGENCY",r,t) - allocate("AGENCY

",r,(t-1))

forall(e in GUARANTEED) do

Calc_undertime(e) := undertimevar(e) >= g_weeks(e) - (exp_worktime(e) +

sum(r in ALL_ROLES, t in TIME)(allocate(e,r,t)))

undertime_second_constr(e) := undertimevar(e) <= g_weeks(e) - (

exp_worktime(e) + sum(r in ALL_ROLES, t in TIME)(allocate(e,r,t))) +

Big_M*(1-OTind(e))

undertime_third_constr(e) := undertimevar(e) <= Big_M*OTind(e)

Calc_overtime(e) := overtimevar(e) >= (exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate(e,r,t)))- g_weeks(e)

overtime_second_constr(e) := overtimevar(e) <= (exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate(e,r,t)))- g_weeks(e) + Big_M*OTind(e)

overtime_third_constr(e) := - Big_M*(1-OTind(e))

OTind(e) is_binary

end-do

forall(e in REG_EMP) Work_count(e,1) := work_total(e,1) >= work_zero(e) + sum(r

in ALL_ROLES)(allocate(e,r,1)) - max_work(e)*(1-(sum(r in ALL_ROLES)(allocate

(e,r,1))))

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN) Work_count(e,t) := work_total(e,t) >=

work_total(e,(t-1)) + sum(r in ALL_ROLES)(allocate(e,r,t)) - max_work(e)

*(1-(sum(r in ALL_ROLES)(allocate(e,r,t))))

forall(l in lambda, e in REG_EMP, r in ALL_ROLES | exists(long_work(l,e,r,1))) do

create(Long_work_count(l,e,r,1))

Long_work_count(l,e,r,1) := max_work(e)*long_work(l,e,r,1) >= work_zero(e)

- max_work(e)*(1-allocate(e,r,1)) + allocate(e,r,1) - (l-1)

end-do

forall(l in lambda, e in REG_EMP, r in ALL_ROLES, t in 2..WEEKS_TO_PLAN | exists(

long_work(l,e,r,t))) do

684

create(Long_work_count(l,e,r,t))

Long_work_count(l,e,r,t) := max_work(e)*long_work(l,e,r,t) >= work_total(e

,(t-1)) - max_work(e)*(1-allocate(e,r,t)) + allocate(e,r,t) - (l-1)

end-do

forall(r in ALL_ROLES) AG_work_count(r,1) := ag_work_total(r,1) >= ag_work_zero(r

) + allocate("AGENCY",r,1) - ag_max_work(r)*ag_rdepart(r,1)

forall(r in ALL_ROLES, t in 2..WEEKS_TO_PLAN) AG_work_count(r,t) := ag_work_total

(r,t) >= ag_work_total(r,(t-1)) + allocate("AGENCY",r,t) - ag_max_work(r)*

ag_rdepart(r,t)

forall(r in ALL_ROLES, t in TIME) AG_work_reset(r,t) := ag_work_total(r,t) >=

allocate("AGENCY",r,t)

forall(l in lambda, r in ALL_ROLES, t in TIME | exists(long_work(l,"AGENCY",r,t))

) do

create(AG_long_work(l,r,t))

AG_long_work(l,r,t) := ag_max_work(r)*long_work(l,"AGENCY",r,t) >=

ag_work_total(r,t) - (l-1)

end-do

forall(e in REG_EMP) Rest_count(e,1) := rest_total(e,1) >= rest_zero(e) - (1-(sum

(r in ALL_ROLES)(allocate(e,r,1))))

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN) Rest_count(e,t) := rest_total(e,t) >=

rest_total(e,(t-1)) - (1-(sum(r in ALL_ROLES)(allocate(e,r,t))))

forall(e in REG_EMP, t in TIME) Rest_reset(e,t) := rest_total(e,t) >= (min_rest(e

)-1)*(sum(v in VESSELS)(depart(e,v,t)))

forall(e in REG_EMP) Rest_vs_work(e,1) := min_rest(e)*(1-(sum(r in ALL_ROLES)(

allocate(e,r,1)))) >= rest_zero(e)

forall(e in REG_EMP, t in 2..WEEKS_TO_PLAN) Rest_vs_work(e,t) := min_rest(e)*(1-(

sum(r in ALL_ROLES)(allocate(e,r,t)))) >= rest_total(e,(t-1))

! Added for recovery problem - linking change to current variables:

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) do

if(exists(allocate(e,r,t)) = true) then

if(cur_allocate(e,r,t) = 0) then Update_allocate(e,r,t) :=

chng_allocate(e,r,t) = allocate(e,r,t)

else Update_allocate(e,r,t) := chng_allocate(e,r,t) = cur_allocate(

e,r,t) - allocate(e,r,t)

end-if

else

685

Update_allocate(e,r,t) := chng_allocate(e,r,t) = cur_allocate(e,r,t

)

end-if

end-do

forall(e in REG_EMP, v in VESSELS, t in TIME) do

if(cur_board(e,v,t) = 0) then Update_board(e,v,t) := chng_board(e,v,t) =

board(e,v,t)

else Update_board(e,v,t) := chng_board(e,v,t) = cur_board(e,v,t) - board(e

,v,t)

end-if

end-do

forall(e in REG_EMP, v in VESSELS, t in TIME) do

if(cur_depart(e,v,t) = 0) then Update_depart(e,v,t) := chng_depart(e,v,t)

= depart(e,v,t)

else Update_depart(e,v,t) := chng_depart(e,v,t) = cur_depart(e,v,t) -

depart(e,v,t)

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(cur_ag_rboard(r,t) = 0) then Update_ag_rboard(r,t) := chng_ag_rboard(r,

t) = ag_rboard(r,t)

else Update_ag_rboard(r,t) := chng_ag_rboard(r,t) = cur_ag_rboard(r,t) -

ag_rboard(r,t)

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(cur_ag_rdepart(r,t) = 0) then Update_ag_rdepart(r,t) := chng_ag_rdepart

(r,t) = ag_rdepart(r,t)

else Update_ag_rdepart(r,t) := chng_ag_rdepart(r,t) = cur_ag_rdepart(r,t)

- ag_rdepart(r,t)

end-if

end-do

forall(l in lambda, e in ALL_EMP, r in ALL_ROLES, t in TIME) do

if(exists(long_work(l,e,r,t)) = true) then

if(cur_long_work(l,e,r,t) = 0) then Update_long_work(l,e,r,t) :=

chng_long_work(l,e,r,t) = long_work(l,e,r,t)

else Update_long_work(l,e,r,t) := chng_long_work(l,e,r,t) =

cur_long_work(l,e,r,t) - long_work(l,e,r,t)

686

end-if

else

Update_long_work(l,e,r,t) := chng_long_work(l,e,r,t) =

cur_long_work(l,e,r,t)

end-if

end-do

forall(e in GUARANTEED) Update_undertime(e) := chng_undertime(e) = undertimevar(e

) - cur_undertime(e)

forall(e in GUARANTEED) Update_overtime(e) := chng_overtime(e) = overtimevar(e) -

cur_overtime(e)

! finally, whether vessels are binary, integer, non-negative, or free:

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(allocate(e,r,t)))

allocate(e,r,t) is_binary

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) chng_allocate(e,r,t) is_binary

forall(l in lambda, e in ALL_EMP, r in ALL_ROLES, t in TIME | exists(long_work(l,

e,r,t))) long_work(l,e,r,t) is_binary

forall(l in lambda, e in ALL_EMP, r in ALL_ROLES, t in TIME) chng_long_work(l,e,r

,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) board(e,v,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) chng_board(e,v,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) depart(e,v,t) is_binary

forall(e in REG_EMP, v in VESSELS, t in TIME) chng_depart(e,v,t) is_binary

forall(r in ALL_ROLES, t in TIME) ag_rboard(r,t) is_binary

forall(r in ALL_ROLES, t in TIME) chng_ag_rboard(r,t) is_binary

forall(r in ALL_ROLES, t in TIME) chng_ag_rdepart(r,t) is_binary

forall(r in ALL_ROLES, t in TIME) ag_rdepart(r,t) is_binary

forall(e in GUARANTEED) undertimevar(e) >= 0

forall(e in GUARANTEED) chng_undertime(e) is_free

forall(e in GUARANTEED) overtimevar(e) >= 0

forall(e in GUARANTEED) chng_overtime(e) is_free

forall(e in REG_EMP, t in TIME) work_total(e,t) >= 0

forall(e in REG_EMP, t in TIME) rest_total(e,t) >= 0

!--

687

!writeln

!writeln("Original schedule has roles carried out as follows:")

!forall(t in TIME) write("\tWeek ",t)

!write("\n")

!forall(r in ALL_ROLES) do

! write(r)

! forall(t in TIME) do

! if(required(r,t) = 0) then

! write("\t (n/a)")

! else

! covered := FALSE

! forall(e in ALL_EMP) do

! if(cur_allocate(e,r,t) = 1) then

! write("\t",e)

! covered := TRUE

! end-if

! end-do

! if(covered = FALSE) then write("\t*TBC*"); end-if

! end-if

! end-do

! write("\n")

!end-do

!writeln

!writeln

!

!writeln("... and crew assigned to roles as follows:")

!forall(t in TIME) write("\tWeek ",t)

!write("\n")

!forall(e in REG_EMP) do

! write(e)

! forall(t in TIME) do

! working := FALSE

! forall(r in ALL_ROLES) do

! if(cur_allocate(e,r,t) = 1) then

! write("\t",r)

! working := TRUE

! end-if

! end-do

! if(working = FALSE) then

! avail := FALSE

! forall(r in ALL_ROLES) do

! if(eligable(e,r,t) = 1) then avail := TRUE

! end-if

688

! end-do

! if(avail = FALSE) then write("\t*unav*")

! else write("\t")

! end-if

! end-if

! end-do

! write("\n")

!end-do

!writeln

!writeln

!--

!--

fopen(OUTPUTFILE, F_OUTPUT)

writeln

writeln("---")

writeln

setparam("XPRS_maxtime", -iter_time_limit)

minimize(NO_CHANGES)

writeln

writeln("---")

writeln

!fclose(F_OUTPUT)

integral := true

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) do

if(isintegral(chng_allocate(e,r,t)) = false) then integral := false; end-

if

if(isintegral(allocate(e,r,t)) = false) then integral := false; end-if

end-do

writeln(status(getprobstat))

if(integral = false) then writeln("No integer solution found"); end-if

writeln

solution := false

if(getprobstat = XPRS_OPT OR (getprobstat = XPRS_UNF and integral = true)) then

solution := true

689

TOTAL_COST := (sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost

(e,v,t)*getsol(chng_board(e,v,t))) + (depart_chng_cost(e,v,t)*getsol(

chng_depart(e,v,t)))) +

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r

,t)*getsol(chng_ag_rboard(r,t))) + (

ag_depart_chng_cost(r,t)*getsol(chng_ag_rdepart(r

,t)))) +

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)((

work_chng_cost(e,r,t)*getsol(chng_allocate(e,r,t)

)) + sum(l in lambda)((extension_chng_cost(l,e,r,

t)*getsol(chng_long_work(l,e,r,t))))) +

sum(e in GUARANTEED)((under_rate(e)*getsol(

chng_undertime(e)))+ (over_rate(e)*getsol(

chng_overtime(e)))))

COST_FIRST := TOTAL_COST

NO_CHANGES_FIRST := getobjval

NO_CHANGES_BEST := getobjval

CHANGE_LIMIT := 2*getobjval

forall(t in TIME) do

forall(e in ALL_EMP) do

forall(r in ALL_ROLES) do

if(getsol(chng_allocate(e,r,t)) > 0.7) then

best_change(e,r,t) := 1

else best_change(e,r,t) := 0; end-if

if(getsol(allocate(e,r,t)) > 0.7) then

best_new_sched(e,r,t) := 1

else best_new_sched(e,r,t) := 0; end-if

forall(l in lambda) do

if(getsol(chng_long_work(l,e,r,t)) > 0.7)

then best_chng_long_work(l,e,r,t) := 1

else best_chng_long_work(l,e,r,t) := 0; end-

if

end-do

if(e not in REG_EMP) then

if(getsol(chng_ag_rboard(r,t)) > 0.7) then

best_chng_ag_rboard(r,t) := 1

else best_chng_ag_rboard(r,t) := 0; end-if

690

if(getsol(chng_ag_rdepart(r,t)) > 0.7) then

best_chng_ag_rdepart(r,t) := 1

else best_chng_ag_rdepart(r,t) := 0; end-if

end-if

end-do

if(e in REG_EMP) then

forall(v in VESSELS) do

if(getsol(chng_board(e,v,t)) > 0.7) then

best_chng_board(e,v,t) := 1

else best_chng_board(e,v,t) := 0; end-if

if(getsol(chng_depart(e,v,t)) > 0.7) then

best_chng_depart(e,v,t) := 1

else best_chng_depart(e,v,t) := 0; end-if

end-do

end-if

end-do

end-do

end-if

current_time := gettime

iteration := 1

writeln

writeln("Iterations: ",iteration)

writeln("Total run time: ",current_time - prog_starttime)

writeln

terminate := false

percentage := 0.81

while(terminate = false) do

if(getprobstat = XPRS_OPT OR (getprobstat = XPRS_UNF and integral = true))

then

writeln("\tThe total number of changes is: ",getobjval)

writeln("\tand the total cost of this solution is ",TOTAL_COST)

writeln

PREV_COST := TOTAL_COST

new_limit_ok := false

while(new_limit_ok = false) do

if(PREV_COST > 0) then

COST_LIMIT := (1-percentage)*PREV_COST

elif(PREV_COST < 0) then

691

COST_LIMIT := (1+percentage)*PREV_COST

else

COST_LIMIT := -10

end-if

if(any_infeas = true and COST_LIMIT < lower_bound) then

percentage := 2*(percentage/3)

else new_limit_ok := true

end-if

end-do

writeln("Set cost limit to ",COST_LIMIT)

cost_constr := (sum(e in REG_EMP, v in VESSELS, t in TIME)((

board_chng_cost(e,v,t)*chng_board(e,v,t)) + (depart_chng_cost(e

,v,t)*chng_depart(e,v,t))) +

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r

,t)*chng_ag_rboard(r,t)) + (ag_depart_chng_cost(r

,t)*chng_ag_rdepart(r,t))) +

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)((

work_chng_cost(e,r,t)*chng_allocate(e,r,t)) + sum

(l in lambda)((extension_chng_cost(l,e,r,t)*

chng_long_work(l,e,r,t)))) +

sum(e in GUARANTEED)((under_rate(e)*chng_undertime(e

))+ (over_rate(e)*chng_overtime(e)))) <=

COST_LIMIT

writeln("... and re-solve")

writeln

writeln("---")

writeln

setparam("XPRS_maxtime", -iter_time_limit)

minimize(NO_CHANGES)

writeln

writeln("---")

writeln

integral := true

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) do

if(isintegral(chng_allocate(e,r,t)) = false) then integral

:= false; end-if

if(isintegral(allocate(e,r,t)) = false) then integral :=

false; end-if

end-do

writeln(status(getprobstat))

692

if(integral = false) then writeln("No integer solution found"); end

-if

if(getprobstat = XPRS_INF) then

any_infeas := true

lower_bound := COST_LIMIT

writeln("New lower bound on solution value = ",lower_bound)

end-if

writeln

if(getprobstat = XPRS_OPT OR (getprobstat = XPRS_UNF and integral =

true)) then

TOTAL_COST := (sum(e in REG_EMP, v in VESSELS, t in TIME)((

board_chng_cost(e,v,t)*getsol(chng_board(e,v,t))) + (

depart_chng_cost(e,v,t)*getsol(chng_depart(e,v,t)))) +

sum(r in ALL_ROLES, t in TIME)((

ag_board_chng_cost(r,t)*getsol(

chng_ag_rboard(r,t))) + (

ag_depart_chng_cost(r,t)*getsol(

chng_ag_rdepart(r,t)))) +

sum(e in ALL_EMP, r in ALL_ROLES, t in

TIME)((work_chng_cost(e,r,t)*

getsol(chng_allocate(e,r,t))) +

sum(l in lambda)((

extension_chng_cost(l,e,r,t)*

getsol(chng_long_work(l,e,r,t)))))

+

sum(e in GUARANTEED)((under_rate(e)*

getsol(chng_undertime(e)))+ (

over_rate(e)*getsol(chng_overtime(

e)))))

NO_CHANGES_BEST := getobjval

forall(t in TIME) do

forall(e in ALL_EMP) do

forall(r in ALL_ROLES) do

if(getsol(chng_allocate(e,r,t)) > 0.7)

then best_change(e,r,t) := 1

else best_change(e,r,t) := 0; end-if

if(getsol(allocate(e,r,t)) > 0.7) then

best_new_sched(e,r,t) := 1

693

else best_new_sched(e,r,t) := 0; end-

if

forall(l in lambda) do

if(getsol(chng_long_work(l,e,r,

t)) > 0.7) then

best_chng_long_work(l,e,r,t

) := 1

else best_chng_long_work(l,e,r,

t) := 0; end-if

end-do

if(e not in REG_EMP) then

if(getsol(chng_ag_rboard(r,t))

> 0.7) then

best_chng_ag_rboard(r,t) :=

1

else best_chng_ag_rboard(r,t)

:= 0; end-if

if(getsol(chng_ag_rdepart(r,t))

> 0.7) then

best_chng_ag_rdepart(r,t)

:= 1

else best_chng_ag_rdepart(r,t)

:= 0; end-if

end-if

end-do

if(e in REG_EMP) then

forall(v in VESSELS) do

if(getsol(chng_board(e,v,t)) >

0.7) then best_chng_board(e

,v,t) := 1

else best_chng_board(e,v,t) :=

0; end-if

if(getsol(chng_depart(e,v,t)) >

0.7) then best_chng_depart

(e,v,t) := 1

else best_chng_depart(e,v,t) :=

0; end-if

end-do

end-if

end-do

end-do

694

end-if

else

if(iteration = 1 or percentage < 0.06) then

terminate := true

else

writeln

writeln("No solution found")

new_limit_ok := false

percentage := 2*(percentage/3)

while(new_limit_ok = false) do

if(PREV_COST > 0) then

COST_LIMIT := (1-percentage)*PREV_COST

elif(PREV_COST < 0) then

COST_LIMIT := (1+percentage)*PREV_COST

else

COST_LIMIT := -1

end-if

if(any_infeas = true and COST_LIMIT < lower_bound)

then percentage := 2*(percentage/3)

else new_limit_ok := true

end-if

end-do

writeln("Set cost limit to ",COST_LIMIT)

cost_constr := (sum(e in REG_EMP, v in VESSELS, t in TIME)((

board_chng_cost(e,v,t)*chng_board(e,v,t)) + (

depart_chng_cost(e,v,t)*chng_depart(e,v,t))) +

sum(r in ALL_ROLES, t in TIME)((

ag_board_chng_cost(r,t)*chng_ag_rboard(r,

t)) + (ag_depart_chng_cost(r,t)*

chng_ag_rdepart(r,t))) +

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)

((work_chng_cost(e,r,t)*chng_allocate(e,r

,t)) + sum(l in lambda)((

extension_chng_cost(l,e,r,t)*

chng_long_work(l,e,r,t)))) +

sum(e in GUARANTEED)((under_rate(e)*

chng_undertime(e))+ (over_rate(e)*

chng_overtime(e)))) <= COST_LIMIT

writeln("... and re-solve")

695

writeln

writeln("---")

writeln

setparam("XPRS_maxtime", -iter_time_limit)

minimize(NO_CHANGES)

writeln

writeln("---")

integral := true

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) do

if(isintegral(chng_allocate(e,r,t)) = false) then

integral := false; end-if

if(isintegral(allocate(e,r,t)) = false) then

integral := false; end-if

end-do

writeln(status(getprobstat))

if(integral = false) then writeln("No integer solution found

"); end-if

if(getprobstat = XPRS_INF) then

any_infeas := true

lower_bound := COST_LIMIT

writeln("New lower bound on solution value = ",

lower_bound)

end-if

writeln

if(getprobstat = XPRS_OPT OR (getprobstat = XPRS_UNF and

integral = true)) then

TOTAL_COST := (sum(e in REG_EMP, v in VESSELS, t in

TIME)((board_chng_cost(e,v,t)*getsol(chng_board(e

,v,t))) + (depart_chng_cost(e,v,t)*getsol(

chng_depart(e,v,t)))) +

sum(r in ALL_ROLES, t in TIME)

((ag_board_chng_cost(r,t)*

getsol(chng_ag_rboard(r,t))

) + (ag_depart_chng_cost(r,

t)*getsol(chng_ag_rdepart(r

,t)))) +

sum(e in ALL_EMP, r in

ALL_ROLES, t in TIME)((

work_chng_cost(e,r,t)*

696

getsol(chng_allocate(e,r,t)

)) + sum(l in lambda)((

extension_chng_cost(l,e,r,t

)*getsol(chng_long_work(l,e

,r,t))))) +

sum(e in GUARANTEED)((

under_rate(e)*getsol(

chng_undertime(e)))+ (

over_rate(e)*getsol(

chng_overtime(e)))))

NO_CHANGES_BEST := getobjval

forall(t in TIME) do

forall(e in ALL_EMP) do

forall(r in ALL_ROLES) do

if(getsol(chng_allocate(e,r,t))

> 0.7) then best_change(e,

r,t) := 1

else best_change(e,r,t) := 0;

end-if

if(getsol(allocate(e,r,t)) >

0.7) then best_new_sched(e,

r,t) := 1

else best_new_sched(e,r,t) :=

0; end-if

forall(l in lambda) do

if(getsol(chng_long_work

(l,e,r,t)) > 0.7)

then

best_chng_long_work(

l,e,r,t) := 1

else best_chng_long_work

(l,e,r,t) := 0; end-

if

end-do

if(e not in REG_EMP) then

if(getsol(chng_ag_rboard

(r,t)) > 0.7) then

best_chng_ag_rboard(

r,t) := 1

697

else best_chng_ag_rboard

(r,t) := 0; end-if

if(getsol(

chng_ag_rdepart(r,t)

) > 0.7) then

best_chng_ag_rdepart

(r,t) := 1

else

best_chng_ag_rdepart

(r,t) := 0; end-if

end-if

end-do

if(e in REG_EMP) then

forall(v in VESSELS) do

if(getsol(chng_board(e,v

,t)) > 0.7) then

best_chng_board(e,v,

t) := 1

else best_chng_board(e,v

,t) := 0; end-if

if(getsol(chng_depart(e,

v,t)) > 0.7) then

best_chng_depart(e,v

,t) := 1

else best_chng_depart(e,

v,t) := 0; end-if

end-do

end-if

end-do

end-do

end-if

end-if

end-if

iteration := iteration + 1

current_time := gettime

writeln

writeln("Iterations: ",iteration)

writeln("Total run time: ",current_time - prog_starttime)

writeln

if(current_time - prog_starttime >= overall_limit) then

698

terminate := true

writeln("Running time > ",overall_limit," seconds --> terminate")

writeln

elif(current_time - prog_starttime > (overall_limit - iteration_limit))

then

iter_time_limit := floor(overall_limit - (current_time -

prog_starttime))+1

writeln("Time limit approaching - set next iteration time limit to

",iter_time_limit," seconds.")

writeln

end-if

end-do

!--

!--

forall(e in GUARANTEED) do

undertime(e) := g_weeks(e) - (exp_worktime(e) + sum(r in ALL_ROLES, t in

TIME)(best_new_sched(e,r,t)))

overtime(e) := (exp_worktime(e) + sum(r in ALL_ROLES, t in TIME)(

best_new_sched(e,r,t)))- g_weeks(e)

if(undertime(e) < 0) then undertime(e) := 0; end-if

if(overtime(e) < 0) then overtime(e) := 0; end-if

best_chng_undertime(e) := undertime(e) - cur_undertime(e)

best_chng_overtime(e) := overtime(e) - cur_overtime(e)

end-do

TOTAL_COST := (sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost(e,v,t)

*best_chng_board(e,v,t)) + (depart_chng_cost(e,v,t)*best_chng_depart(e,v,t)))

+

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r,t)*

best_chng_ag_rboard(r,t)) + (ag_depart_chng_cost(r,t)*

best_chng_ag_rdepart(r,t))) +

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)((work_chng_cost

(e,r,t)*best_change(e,r,t)) + sum(l in lambda)((

extension_chng_cost(l,e,r,t)*best_chng_long_work(l,e,r,t

)))) +

699

sum(e in GUARANTEED)((under_rate(e)*best_chng_undertime(e))+

(over_rate(e)*best_chng_overtime(e))))

if(solution = true) then

writeln("Final solution contains ",NO_CHANGES_BEST," changes")

writeln

writeln("Total cost is: ",TOTAL_COST,", comprising:")

writeln("\tWrk: ",sum(e in REG_EMP, r in ALL_ROLES, t in TIME)(

work_chng_cost(e,r,t)*best_change(e,r,t)))

writeln("\tLWk: ",sum(e in REG_EMP, r in ALL_ROLES, t in TIME, l in lambda

)(extension_chng_cost(l,e,r,t)*best_chng_long_work(l,e,r,t)))

writeln("\tAgW: ",sum(r in ALL_ROLES, t in TIME)(work_chng_cost("AGENCY",r

,t)*best_change("AGENCY",r,t)))

writeln("\tAgL: ",sum(r in ALL_ROLES, t in TIME, l in lambda)(

extension_chng_cost(l,"AGENCY",r,t)*best_chng_long_work(l,"AGENCY",r,t

)))

writeln("\tBrd: ",sum(e in REG_EMP, v in VESSELS, t in TIME)(

board_chng_cost(e,v,t)*best_chng_board(e,v,t)))

writeln("\tDpt: ",sum(e in REG_EMP, v in VESSELS, t in TIME)(

depart_chng_cost(e,v,t)*best_chng_depart(e,v,t)))

writeln("\tAgB: ",sum(r in ALL_ROLES, t in TIME)(ag_board_chng_cost(r,t)*

best_chng_ag_rboard(r,t)))

writeln("\tAgD: ",sum(r in ALL_ROLES, t in TIME)(ag_depart_chng_cost(r,t)*

best_chng_ag_rdepart(r,t)))

writeln("\tUTm: ",sum(e in GUARANTEED)(under_rate(e)*best_chng_undertime(e

)))

writeln("\tOTm: ",sum(e in GUARANTEED)(over_rate(e)*best_chng_overtime(e))

)

else

writeln("NO FEASIBLE SOLUTION WAS FOUND")

end-if

!writeln

!writeln("Solution is to make the following changes:")

!

!

!writeln

!forall(e in REG_EMP) do

! changes := FALSE

! writeln(e,":")

! forall(t in TIME) do

! forall(v in VESSELS) do

700

! if(best_chng_board(e,v,t) > 0.9) then

! changes := TRUE

! if(cur_board(e,v,t) = 1) then writeln(" - no longer

boards ",v," in advance of week ",t)

! else writeln(" - will now board ",v," in advance of

week ",t)

! end-if

! end-if

! if(best_chng_depart(e,v,t) > 0.9) then

! changes := TRUE

! if(cur_depart(e,v,t) = 1) then writeln(" - no longer

leaves ",v," in advance of week ",t," (i.e. following week ",t-1,")")

! else writeln(" - will now leave ",v," in advance of

week ",t," (i.e. following week ",t-1,")")

! end-if

! end-if

! end-do

! forall(r in ALL_ROLES) do

! if(best_change(e,r,t) > 0.9) then

! changes := TRUE

! if(cur_allocate(e,r,t) = 1) then writeln(" - no

longer carries out role ",r," during week ",t)

! else writeln(" - will now carry out role ",r,"

during week ",t)

! end-if

! end-if

! end-do

! end-do

! if(changes = FALSE) then writeln(" - no changes"); end-if

! writeln

!end-do

!

!writeln("Agency crew:")

!changes := FALSE

!forall(t in TIME) do

! forall(v in VESSELS) do

! forall(r in ROLES(v)) do

! if(best_chng_ag_rboard(r,t) > 0.9) then

! changes := TRUE

! if(cur_ag_rboard(r,t) = 1) then writeln(" - no

longer boards ",v," in advance of week ",t)

! else writeln(" - will now board ",v," in advance of

week ",t)

701

! end-if

! end-if

! if(best_chng_ag_rdepart(r,t) > 0.9) then

! changes := TRUE

! if(cur_ag_rdepart(r,t) = 1) then writeln(" - no

longer leaves ",v," in advance of week ",t," (i.e. following week ",t-1,")")

! else writeln(" - will now leave ",v," in advance of

week ",t," (i.e. following week ",t-1,")")

! end-if

! end-if

! end-do

! end-do

! forall(r in ALL_ROLES) do

! if(best_change("AGENCY",r,t) > 0.9) then

! changes := TRUE

! if(cur_allocate("AGENCY",r,t) = 1) then writeln(" - no

longer carries out role ",r," during week ",t)

! else writeln(" - will now carry out role ",r," during week

",t)

! end-if

! end-if

! end-do

!end-do

!if(changes = FALSE) then writeln(" - no changes"); end-if

!writeln

!writeln

!

!

!

!writeln("---")

!writeln

!writeln("Roles are now carried out as follows:")

!forall(t in TIME) write("\tWeek ",t)

!write("\n")

!forall(r in ALL_ROLES) do

! write(r)

! forall(t in TIME) do

! if(required(r,t) = 0) then

! write("\t (n/a)")

! else

! forall(e in ALL_EMP) do

! if(best_new_sched(e,r,t) = 1) then

! write("\t",e)

702

! end-if

! end-do

! end-if

! end-do

! write("\n")

!end-do

!writeln

!writeln

!

!writeln("Crew are now assigned to roles as follows:")

!forall(t in TIME) write("\tWeek ",t)

!write("\n")

!forall(e in REG_EMP) do

! write(e)

! forall(t in TIME) do

! not_work := 1

! forall(r in ALL_ROLES) do

! if(best_new_sched(e,r,t) = 1) then

! write("\t",r)

! not_work := 0

! end-if

! end-do

! if(not_work = 1) then

! avail := FALSE

! forall(r in ALL_ROLES) do

! if(eligable(e,r,t) = 1) then avail := TRUE

! end-if

! end-do

! if(avail = FALSE) then write("\t*unav*")

! else write("\t(rest)")

! end-if

! end-if

! end-do

! write("\n")

!end-do

!writeln("... with any non-covered roles assigned to AGENCY crew when necessary

.")

!writeln

!writeln

prog_endtime := gettime

prog_runtime := prog_endtime-prog_starttime

writeln

703

writeln("Running time:\t",prog_runtime)

fclose(F_OUTPUT)

!--

a := 0 ! number of agency-covered tasks in the initial schedule

u := 0 ! number of un-covered tasks in the initial schedule

changes_to_reg := 0 ! number of changes to regular employees in the (

best) solution

changes_to_AG := 0 ! number of changes to agency employees in the (best

) solution

number_of_AG := 0 ! number of times agency employees are utilised in

the (best) solution

forall(r in ALL_ROLES, t in TIME) do

x := 0

forall(e in REG_EMP) do

if(cur_allocate(e,r,t) = 1) then

x := x + 1

end-if

changes_to_reg := changes_to_reg + best_change(e,r,t)

end-do

if(cur_allocate("AGENCY",r,t) = 1) then

x := x + 1

a := a + 1

end-if

changes_to_AG := changes_to_AG + best_change("AGENCY",r,t)

number_of_AG := number_of_AG + best_new_sched("AGENCY",r,t)

if(x = 0) then u := u + 1

end-if

end-do

! Print results to the result summary file

fopen(SUMMARYFILE, F_APPEND)

write(InstanceName)

write("\t",prog_runtime,"\t",iteration,"\t")

if(solution = true) then

write("\t",NO_CHANGES_BEST,"\t",TOTAL_COST)

write("\t",NO_CHANGES_FIRST,"\t",COST_FIRST,"\t")

else

write("\t n/a \t n/a \t n/a \t n/a \t")

end-if

704

if(any_infeas = true) then write(lower_bound); else write("n/a"); end-if

write("\t\t",(sum(r in ALL_ROLES, t in TIME) required(r,t)),"\t",u,"\t",a)

write("\t",changes_to_reg,"\t",changes_to_AG,"\t",number_of_AG)

write("\n")

fclose(F_APPEND)

end-model

E.2.4 Task-Based Approximation algorithm

Here we give the code used to solve the Time-Windows problem by using the Task-Based

formulation as an approximation, as described in section 6.4.1. This was implemented

using the FICO Xpress software.

model TBApproximation

uses "mmxprs", "mmsystem" !gain access to the Xpress-Optimizer solver

! Programme to create a Task-Based approximation from a Time-Windows dataset

parameters

DATE = "25-02-14"

PARAMETERFILE = "batch-input-parameters-2.dat"

end-parameters

declarations

InstanceName: string

end-declarations

initializations from PARAMETERFILE

InstanceName

end-initializations

DATAFILE := InstanceName+"\\Time-Windows - Captains - "+InstanceName+".txt"

LOGFILE := InstanceName+"\\Logfile - TBApprox - "+InstanceName+" - "+DATE+".txt"

SUMMARYFILE := "Results - TBApprox - "+DATE+".txt"

SOLUTIONFILE := InstanceName+"\\TBApprox soln - "+InstanceName+" - "+DATE+".txt"

COLLATEDSOLUTIONS := "Task-Based Approx - Reformatted Solutions\\TBApprox soln -

"+InstanceName+" - "+DATE+".txt"

705

! Set parameters relating to running time and acceptable optimality gap:

setparam("XPRS_maxtime", -120)

!setparam("XPRS_miprelstop",0.05)

! Set parameters for numbers of Cover and Gomory cuts to apply:

!setparam("XPRS_covercuts",1000)

!setparam("XPRS_gomcuts",1000)

prog_starttime := gettime ! get the time so that at the end, running

time can be calculated

!--

! Declare and read in all Time-Windows Data...

declarations

REG_EMP: set of string ! Regular employee names / numbers (ie not

Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

GUARANTEED: set of string ! Set of employees on guaranteed days

contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which

will require cover, divided by vessels

ALL_ROLES: set of string ! List of all roles

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real !

Data relating to over/undertime payments for employees

end-declarations

initializations from DATAFILE

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

under_rate over_rate g_weeks exp_worktime

end-initializations

ALL_EMP := REG_EMP + {"AGENCY"}

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

declarations

TIME = 1..WEEKS_TO_PLAN ! Time index

706

board_chng_cost, depart_chng_cost: array(REG_EMP, VESSELS, TIME) of real !

Costs of CHANGES TO employees boarding / leaving vessel

ag_board_chng_cost, ag_depart_chng_cost: array(ALL_ROLES, TIME) of real !

Costs of CHANGES TO agency employees boarding / leaving for a given

role

work_chng_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given

role at a given time

required: array(ALL_ROLES, TIME) of integer ! =1 if

role r is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can

carry out role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is

on board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

ag_starting: array(ALL_ROLES) of integer ! =1 if

agency employee is in role r at time 0, =0 otherwise

work_zero, rest_zero: array(REG_EMP) of integer ! initial values

of work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial

value of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum

on working time, minimum on resting time

ag_max_work: array(ALL_ROLES) of integer ! maximum

on working time for agency crew, possibly different for each role

overall_regular_max_work: integer

overall_agency_max_work: integer

overall_max_work: integer

! Added for the recovery problem:

! - the details of the current roster...

cur_allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer

cur_board, cur_depart: array(REG_EMP, VESSELS, TIME) of integer

cur_ag_rboard, cur_ag_rdepart: array(ALL_ROLES, TIME) of integer

cur_undertime, cur_overtime: array(GUARANTEED) of real

end-declarations

initializations from DATAFILE

board_chng_cost depart_chng_cost work_chng_cost

ag_board_chng_cost ag_depart_chng_cost

required eligable starting ag_starting

707

work_zero rest_zero ag_work_zero

max_work min_rest ag_max_work

cur_allocate cur_board cur_depart cur_ag_rboard cur_ag_rdepart

cur_undertime cur_overtime

end-initializations

overall_regular_max_work := max(e in REG_EMP) max_work(e)

overall_agency_max_work := max(r in ALL_ROLES) ag_max_work(r)

if(overall_regular_max_work > overall_agency_max_work) then

overall_max_work := overall_regular_max_work

else

overall_max_work := overall_agency_max_work

end-if

declarations

lambda = 1..overall_max_work ! Index used for number of consecutive

weeks

extension_chng_cost: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real !

Cost of CHANGES TO an employee working on board a vessel for longer

than usual

!Added for recovery problem - detail of current roster, and change

variable

cur_long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of integer

end-declarations

initializations from DATAFILE

extension_chng_cost cur_long_work

end-initializations

!--

! Declare and calculate first group of Task-Based quantities...

declarations

EMP: set of string ! Employee names / numbers

DAYS_TO_PLAN: integer

JOBS_TO_PLAN: integer

task_length, init_len, add_tasks: array(ALL_ROLES) of integer

end-declarations

708

EMP := REG_EMP

DAYS_TO_PLAN := WEEKS_TO_PLAN * 7

! Number of Jobs can be calculated using starting, boarding / departing and

working data

! and using the assumption that all ’tasks’ for a given role will be the

same length

JOBS_TO_PLAN := 0

forall(v in VESSELS) do

forall(r in ROLES(v)) do

current_emp := ""

task_length(r) := 0

init_len(r) := 0

add_tasks(r) := 0

forall(e in REG_EMP) do

if(starting(e,v) = 1) then

if(cur_depart(e,v,1) = 0) then

current_emp := e

init_len(r) := work_zero(e)

else

forall(f in REG_EMP) do

if(cur_board(f,v,1) = 1) then

current_emp := f

init_len(r) := 0

end-if

end-do

if(current_emp = "") then

if(cur_ag_rboard(r,1) = 1) then

current_emp := "AGENCY"

init_len(r) := 0

! else

! writeln("ERROR \t role ",r)

end-if

end-if

end-if

end-if

end-do

if(current_emp = "") then

if(ag_starting(r) = 1) then

if(cur_ag_rdepart(r,1) = 0) then

current_emp := "AGENCY"

init_len(r) := ag_work_zero(r)

709

else

forall(f in REG_EMP) do

if(cur_board(f,v,1) = 1) then

current_emp := f

init_len(r) := 0

end-if

end-do

if(current_emp = "") then

if(cur_ag_rboard(r,1) = 1) then

current_emp := "AGENCY"

init_len(r) := 0

! else

! writeln("ERROR \t role ",r)

end-if

end-if

end-if

end-if

end-if

if(current_emp <> "AGENCY") then

if(max_work(current_emp) = 2 or max_work(current_emp) = 10)

then

task_length(r) := max_work(current_emp)

else

departed := FALSE

task_length(r) := init_len(r)

forall(t in TIME) do

if(departed = FALSE) then

if(cur_depart(current_emp,v,t) = 1)

then

departed := TRUE

else

task_length(r) := task_length(r

) + 1

end-if

end-if

end-do

end-if

else

if(ag_max_work(r) = 2 or ag_max_work(r) = 10) then

task_length(r) := ag_max_work(r)

else

departed := FALSE

710

task_length(r) := init_len(r)

forall(t in TIME) do

if(departed = FALSE) then

if(cur_ag_rdepart(r,t) = 1) then

departed := TRUE

else

task_length(r) := task_length(r

) + 1

end-if

end-if

end-do

end-if

end-if

! writeln

! writeln("Role: ",r,"\tTask lengths: ",task_length(r),"\tInitial

length: ",init_len(r))

! From this information, can calculate the number of tasks on board

if(10*integer((WEEKS_TO_PLAN + init_len(r))/task_length(r)) = 10*((

WEEKS_TO_PLAN + init_len(r))/task_length(r))) then

! writeln("\tCase 1: ",10*integer((WEEKS_TO_PLAN + init_len(r)

)/task_length(r))," = ",10*((WEEKS_TO_PLAN + init_len(r))/task_length(r)))

add_tasks(r) := integer((WEEKS_TO_PLAN + init_len(r))/

task_length(r))

else

! writeln("\tCase 2: ",10*integer((WEEKS_TO_PLAN + init_len(r)

)/task_length(r))," < ",10*((WEEKS_TO_PLAN + init_len(r))/task_length(r)))

add_tasks(r) := integer((WEEKS_TO_PLAN + init_len(r))/

task_length(r)) +1

end-if

JOBS_TO_PLAN := JOBS_TO_PLAN + add_tasks(r)

! writeln("\t=> ",add_tasks(r)," tasks in total.")

end-do

end-do

!writeln

!writeln("number of jobs:\t",JOBS_TO_PLAN)

!writeln

!--

! Can now declare and calculate remaining Task-Based quantities...

711

declarations

JOB = 1..JOBS_TO_PLAN

eligible: array(EMP, JOB) of real ! = 1 if employee can carry out a job,

0 otherwise

AG_eligible: array(JOB) of real ! eligibility of agency crew

change_cost: array(EMP, JOB) of real ! The cost of an employee carrying

out a job

AG_change_cost: array(JOB) of real ! Cost details for agency crew

start_time, duration: array(JOB) of real

rest_duration_list: set of integer

REST_NUMBER: integer

initial: array(EMP, JOB) of real ! = 1 if employee is currently

allocated to a task, 0 otherwise

AG_initial: array(JOB) of real

tb_under_rate, tb_over_rate, current_excess, g_days, tb_exp_worktime:

array(GUARANTEED) of real

work_resource_zero, rest_resource_zero: array(EMP) of real

initial_rest_required: array(EMP) of real

! In order to convert back into TimeWindow formulation, need to record:

role_covered: array(JOB) of string

pre_assign_cost: array(ALL_EMP) of real

pre_chng_Utime, pre_chng_Otime: array(GUARANTEED) of real

end-declarations

! Can start by calculating contract conditions, in particular the fixed contracts

! NOTE: min rest and max work are IDENTICAL, and therefore not altered

forall(e in GUARANTEED) do

tb_under_rate(e) := (under_rate(e))/7

tb_over_rate(e) := (over_rate(e))/7

g_days(e) := 7*g_weeks(e)

tb_exp_worktime(e) := 7*exp_worktime(e)

current_excess(e) := (over_rate(e)*cur_overtime(e)) + (under_rate(e)*

cur_undertime(e))

pre_chng_Utime(e) := 0

pre_chng_Otime(e) := 0

end-do

! Next, initial resource values:

forall(e in EMP) do

work_resource_zero(e) := work_zero(e)

712

if(rest_zero(e) = min_rest(e)) then

rest_resource_zero(e) := 1

initial_rest_required(e) := 0

else

rest_resource_zero(e) := 0

initial_rest_required(e) := rest_zero(e)

end-if

end-do

! Calculate various quantities relating to the ’tasks’

! ie: start time, duration, eligability, initial allocation, costs

forall(e in ALL_EMP) pre_assign_cost(e) := 0

job_number := 0

forall(v in VESSELS) do

forall(r in ROLES(v)) do

timecount := 0

while(timecount < WEEKS_TO_PLAN) do

job_number := job_number +1

! identify starting time and duration

start_time(job_number) := 7*timecount

role_covered(job_number) := r

timeindex := timecount

if(timecount = 0) then

if((task_length(r) - init_len(r)) < WEEKS_TO_PLAN)

then

duration(job_number) := task_length(r) -

init_len(r)

!;writeln("(Task start: ",timecount,"\tTask

length ",task_length(r)," - Initial

length ",init_len(r)," < Horizon length

",WEEKS_TO_PLAN)

timecount := timecount + (task_length(r) -

init_len(r))

else

duration(job_number) := WEEKS_TO_PLAN

!;writeln("(Task start: ",timecount,"\tTask

length ",task_length(r)," - Initial

713

length ",init_len(r)," >= Horizon length

",WEEKS_TO_PLAN)

timecount := timecount + WEEKS_TO_PLAN

end-if

else

if(timecount + task_length(r) > WEEKS_TO_PLAN) then

duration(job_number) := WEEKS_TO_PLAN -

timecount

!;writeln("(Task start: ",timecount,"\tTask

length ",task_length(r)," + start time ",

timecount," > Horizon length ",

WEEKS_TO_PLAN)

timecount := timecount + (WEEKS_TO_PLAN -

timecount)

else

duration(job_number) := task_length(r)

!;writeln("(Task start: ",timecount,"\tTask

length ",task_length(r)," + start time ",

timecount," <= Horizon length ",

WEEKS_TO_PLAN)

timecount := timecount + task_length(r)

end-if

end-if

duration(job_number) := 7*duration(job_number)

!;writeln("Task ",job_number,"\tRole: ",r,"\tStart: ",

start_time(job_number),"\tDuration: ",duration(

job_number),"\tEnd at: ",start_time(job_number)+duration

(job_number))

!writeln

! identify each employee’s eligibility to carry out this

task

! NOTE - assume if an employee is unavailable for ONE part

of the task,

! then they are unavailable for ALL parts of the task.

forall(e in EMP) do

eligible(e,job_number) := 1

forall(t in (timeindex+1)..timecount) do

if(eligable(e,r,t) = 0) then

eligible(e,job_number) := 0

end-if

714

end-do

end-do

AG_eligible(job_number) := 1

forall(t in (timeindex+1)..timecount) do

if(eligable("AGENCY",r,t) = 0) then

AG_eligible(job_number) := 0

end-if

end-do

! identify which employee (if any) is initially assigned to

this task

inital_found := false

timesearch := timeindex

if(init_len(r) > 0 and start_time(job_number) = 0) then

if((sum(e in REG_EMP) starting(e,v)) + ag_starting(r

) > 0) then

forall(e in REG_EMP) do

initial(e,job_number) := starting(e,v)

end-do

AG_initial(job_number) := starting("AGENCY",v

)

initial_found := true

end-if

end-if

while(inital_found = false and timesearch < timecount) do

timesearch := timesearch + 1

if((sum(e in REG_EMP) cur_board(e,v,timesearch)) +

cur_ag_rboard(r,timesearch) > 0) then

forall(e in REG_EMP) do

initial(e,job_number) := cur_board(e,v

,timesearch)

end-do

AG_initial(job_number) := cur_ag_rboard(r,

timesearch)

initial_found := true

end-if

if((sum(e in ALL_EMP) cur_allocate(e,r,timesearch))

> 0) then

forall(e in REG_EMP) do

715

initial(e,job_number) := cur_allocate(

e,r,timesearch)

end-do

AG_initial(job_number) := cur_allocate("

AGENCY",r,timesearch)

initial_found := true

end-if

end-do

! identify the cost of changing an employees assignment to

each task

! OR, if an initially assigned employee is ineligable

then cancel this assignment and calculate the pre-

assigned cost

forall(e in EMP) do

change_cost(e,job_number) := 0

if(initial(e,job_number) = 0 or eligible(e,

job_number) = 1) then

if(start_time(job_number) = 0 and starting(e,

v) = 1) then

change_cost(e,job_number) :=

change_cost(e,job_number) +

depart_chng_cost(e,v,1)

work_len := init_len(r)

else

change_cost(e,job_number) :=

change_cost(e,job_number) +

board_chng_cost(e,v,(timeindex+1))

work_len := 0

end-if

! writeln("for t = ",timeindex+1," to ",

timecount,"...")

forall(t in (timeindex+1)..timecount) do

work_len := work_len + 1

if(t = WEEKS_TO_PLAN and initial(e,

job_number) = 1) then

change_cost(e,job_number) :=

change_cost(e,job_number) -

work_chng_cost(e,r,t)

716

change_cost(e,job_number) :=

change_cost(e,job_number) -

extension_chng_cost(

work_len,e,r,t)

pre_assign_cost(e) :=

pre_assign_cost(e) +

work_chng_cost(e,r,t) +

extension_chng_cost(

work_len,e,r,t)

! writeln("Pre-assignment cost (

work): employee ",e,"\tRole ",r,"\tWeek ",t,"\tTask ",job_number,"\tCOST: ",

work_chng_cost(e,r,t))

! writeln("Pre-assignment cost (

extd): employee ",e,"\tRole ",r,"\tWeek ",t,"\tTask ",job_number,"\tCOST: ",

extension_chng_cost(work_len,e,r,t))

if(e in GUARANTEED) then

if(cur_undertime(e) +

pre_chng_Utime(e) >

0) then

current_excess(e

) :=

current_excess

(e) -

under_rate(e)

pre_chng_Utime(e

) :=

pre_chng_Utime

(e) - 1

pre_assign_cost(

e) :=

pre_assign_cost

(e) -

under_rate(e)

! writeln("Pre-

assignment cost (NUTm): employee ",e,"\tRole ",r,"\tWeek ",t,"\tTask ",

job_number,"\tCOST: ", - under_rate(e))

else

current_excess(e

) :=

current_excess

(e) +

over_rate(e)

717

pre_chng_Otime(e

) :=

pre_chng_Otime

(e) + 1

pre_assign_cost(

e) :=

pre_assign_cost

(e) +

over_rate(e)

! writeln("Pre-

assignment cost (OTme): employee ",e,"\tRole ",r,"\tWeek ",t,"\tTask ",

job_number,"\tCOST: ",over_rate(e))

end-if

end-if

else

change_cost(e,job_number) :=

change_cost(e,job_number) +

work_chng_cost(e,r,t)

! writeln("emp: ",e,"\tjob: ",

job_number,"\ttime: ",t," \twork_len: ",work_len)

change_cost(e,job_number) :=

change_cost(e,job_number) +

extension_chng_cost(

work_len,e,r,t)

end-if

end-do

if(initial(e,job_number) = 0) then

if(timecount < WEEKS_TO_PLAN) then

change_cost(e,job_number) :=

change_cost(e,job_number) +

depart_chng_cost(e,v,

timecount+1)

end-if

else

if(timecount < WEEKS_TO_PLAN - 1) then

change_cost(e,job_number) :=

change_cost(e,job_number) +

depart_chng_cost(e,v,

timecount+1)

elif(timecount = WEEKS_TO_PLAN - 1)

then

718

change_cost(e,job_number) :=

change_cost(e,job_number) -

depart_chng_cost(e,v,

timecount+1)

pre_assign_cost(e) :=

pre_assign_cost(e) +

depart_chng_cost(e,v,

timecount+1)

! writeln("Pre-assignment cost (

dprt): employee ",e,"\tVess ",v,"\tWeek ",timecount+1,"\tTask ",job_number,"\

tCOST: ",depart_chng_cost(e,v,timecount+1))

end-if

end-if

else

if(start_time(job_number) > 0 or starting(e,v

) = 0) then

pre_assign_cost(e) := pre_assign_cost(

e) + board_chng_cost(e,v,(

timeindex+1))

! writeln("Pre-assignment cost (Nbrd):

employee ",e,"\tVess ",v,"\tWeek ",timeindex+1,"\tTask ",job_number,"\tCOST:

",board_chng_cost(e,v,(timeindex+1)))

elif(start_time(job_number) = 0 and starting(

e,v) = 1) then

pre_assign_cost(e) := pre_assign_cost(

e) + depart_chng_cost(e,v,1)

! writeln("Pre-assignment cost (dprt):

employee ",e,"\tVess ",v,"\tWeek 1\tTask ",job_number,"\tCOST: ",

depart_chng_cost(e,v,1))

end-if

if(start_time(job_number) = 0 and starting(e,

v) = 1) then

work_len := init_len(r)

else

work_len := 0

end-if

forall(t in (timeindex+1)..timecount) do

work_len := work_len + 1

if(eligable(e,r,t) = 1 and t <

WEEKS_TO_PLAN) then

719

pre_assign_cost(e) :=

pre_assign_cost(e) +

work_chng_cost(e,r,t)

pre_assign_cost(e) :=

pre_assign_cost(e) +

extension_chng_cost(

work_len,e,r,t)

! writeln("Pre-assignment cost (

Nwrk): employee ",e,"\tRole ",r,"\tWeek ",t,"\tTask ",job_number,"\tCOST: ",

work_chng_cost(e,r,t))

! writeln("Pre-assignment cost (

Next): employee ",e,"\tRole ",r,"\tWeek ",t,"\tTask ",job_number,"\tCOST: ",

extension_chng_cost(work_len,e,r,t))

if(e in GUARANTEED) then

if(cur_overtime(e) +

pre_chng_Otime(e) >

0) then

current_excess(e

) :=

current_excess

(e) -

over_rate(e)

pre_chng_Otime(e

) :=

pre_chng_Otime

(e) - 1

pre_assign_cost(

e) :=

pre_assign_cost

(e) -

over_rate(e)

! writeln("Pre-

assignment cost (NOTm): employee ",e,"\tRole ",r,"\tWeek ",t,"\tTask ",

job_number,"\tCOST: ", - over_rate(e))

else

current_excess(e

) :=

current_excess

(e) +

under_rate(e)

pre_chng_Utime(e

) :=

pre_chng_Utime

720

(e) + 1

pre_assign_cost(

e) :=

pre_assign_cost

(e) +

under_rate(e)

! writeln("Pre-

assignment cost (UTme): employee ",e,"\tRole ",r,"\tWeek ",t,"\tTask ",

job_number,"\tCOST: ",under_rate(e))

end-if

end-if

end-if

end-do

if(timecount < WEEKS_TO_PLAN - 1) then

pre_assign_cost(e) := pre_assign_cost(

e) + depart_chng_cost(e,v,

timecount+1)

! writeln("Pre-assignment cost (Ndpt):

employee ",e,"\tVess ",v,"\tWeek ",timecount+1,"\tTask ",job_number,"\tCOST:

",depart_chng_cost(e,v,timecount+1))

end-if

initial(e,job_number) := 0

end-if

end-do

AG_change_cost(job_number) := 0

if(start_time(job_number) = 0 and ag_starting(r) = 1) then

work_len := init_len(r)

if(init_len(r) = 0) then

AG_change_cost(job_number) := AG_change_cost(

job_number) + ag_board_chng_cost(r,(

timeindex+1))

else

if(AG_initial(job_number) = 1 or

cur_ag_rdepart(r,1) = 1) then

AG_change_cost(job_number) :=

AG_change_cost(job_number) +

ag_depart_chng_cost(r,1)

721

else

AG_change_cost(job_number) :=

AG_change_cost(job_number) -

ag_depart_chng_cost(r,1)

pre_assign_cost("AGENCY") :=

pre_assign_cost("AGENCY") +

ag_depart_chng_cost(r,1)

! writeln("Pre-assignment cost (dprt):

Agency employee \tRole ",r,"\tWeek 1\tTask ",job_number,"\tCOST: ",

ag_depart_chng_cost(r,1))

end-if

end-if

else

AG_change_cost(job_number) := AG_change_cost(

job_number) + ag_board_chng_cost(r,(timeindex+1))

work_len := 0

end-if

forall(t in (timeindex+1)..timecount) do

work_len := work_len + 1

if(t = WEEKS_TO_PLAN and AG_initial(job_number) = 1)

then

AG_change_cost(job_number) := AG_change_cost(

job_number) - work_chng_cost("AGENCY",r,t

)

AG_change_cost(job_number) := AG_change_cost(

job_number) - extension_chng_cost(

work_len,"AGENCY",r,t)

pre_assign_cost("AGENCY") := pre_assign_cost

("AGENCY") + work_chng_cost("AGENCY",r,t)

+ extension_chng_cost(work_len,"AGENCY",

r,t)

! writeln("Pre-assignment cost (work): Agency

employee \tRole ",r,"\tWeek ",t,"\tTask ",job_number,"\tCOST: ",

work_chng_cost("AGENCY",r,t))

! writeln("Pre-assignment cost (extd): Agency

employee \tRole ",r,"\tWeek ",t,"\tTask ",job_number,"\tCOST: ",

extension_chng_cost(work_len,"AGENCY",r,t))

else

AG_change_cost(job_number) := AG_change_cost(

job_number) + work_chng_cost("AGENCY",r,t

)

722

AG_change_cost(job_number) := AG_change_cost(

job_number) + extension_chng_cost(

work_len,"AGENCY",r,t)

end-if

end-do

if(AG_initial(job_number) = 0) then

if(timecount < WEEKS_TO_PLAN) then

AG_change_cost(job_number) := AG_change_cost(

job_number) + ag_depart_chng_cost(r,

timecount+1)

end-if

else

if(timecount < WEEKS_TO_PLAN - 1) then

AG_change_cost(job_number) := AG_change_cost(

job_number) + ag_depart_chng_cost(r,

timecount+1)

elif(timecount = WEEKS_TO_PLAN - 1) then

AG_change_cost(job_number) := AG_change_cost(

job_number) - ag_depart_chng_cost(r,

timecount+1)

pre_assign_cost("AGENCY") := pre_assign_cost

("AGENCY") + ag_depart_chng_cost(r,

timecount+1)

! writeln("Pre-assignment cost (dprt): Agency

employee \tRole ",r,"\tWeek ",timecount+1,"\tTask ",job_number,"\tCOST: ",

ag_depart_chng_cost(r,timecount+1))

end-if

end-if

end-do

end-do

end-do

writeln

! Must modify the eligibility values to account for the fact that

! if an employee starts on a vessel and is then removed from performing the

subsequent task

! then they must take a REST prior to performing any other task.

! AND that if an employee is mid-rest period at the start of the planning horizon

723

! then they must be ineligable for any tasks overlapping their remaining

rest period.

forall(e in REG_EMP) do

forall(v in VESSELS) do

forall(r in ROLES(v)) do

if(starting(e,v) = 1 and init_len(r) > 0) then

forall(j in JOB) do

if(role_covered(j) in ROLES(v)) then

if(start_time(j) > 0 and start_time(j)

<= 7*min_rest(e)) then

eligible(e,j) := 0

end-if

else

if(start_time(j) <= 7*min_rest(e))

then

eligible(e,j) := 0

end-if

end-if

end-do

end-if

end-do

end-do

if(initial_rest_required(e) > 0) then

forall(j in JOB | start_time(j) <= 7*(initial_rest_required(e)-1))

do

eligible(e,j) := 0

end-do

end-if

end-do

split_time_1 := gettime

!--

!--

!--

! Now all the data quantities have been defined, must calculate the other

secondary information, as

! per the Task-Based model as implemented before.

724

!--

! Firstly define ’rest’ tasks such that they start directly after each work task

has ended

! (subject to them finishing before the time-window ends)

rest_duration_list := {}

forall(i in EMP) rest_duration_list += {7*min_rest(i)}

declarations

rest_start_list: array(rest_duration_list) of set of real

end-declarations

REST_NUMBER := 0

forall(j in JOB, r in rest_duration_list) do

if start_time(j) + duration(j) < (DAYS_TO_PLAN - r + 1) then

rest_start_list(r) += {start_time(j) + duration(j)}

end-if

end-do

forall(r in rest_duration_list) REST_NUMBER := REST_NUMBER + getsize(

rest_start_list(r))

declarations

REST = 1..REST_NUMBER

rest_start_time, rest_duration: array(REST) of real

work_content_work_arc, rest_content_work_arc: array(JOB) of real

work_content_rest_arc, rest_content_rest_arc: array(REST) of real

end-declarations

index := 0

forall(r in rest_duration_list) do

forall(s in rest_start_list(r)) do

index := index + 1

rest_start_time(index) := s

rest_duration(index) := r

end-do

end-do

!--

! Can now define work and rest content for work and rest arcs

forall(j in JOB) do

work_content_work_arc(j) := duration(j)

rest_content_work_arc(j) := 1

725

end-do

forall(r in REST) do

work_content_rest_arc(r) := -DAYS_TO_PLAN

rest_content_rest_arc(r) := -1

end-do

!--

! Next we will generate the sets C_beta of overlapping tasks

declarations

beta: integer

time_points: set of real

time_points_ordered: list of real

NUMBER_OF_POINTS: integer

min_time: real

beta_index: range

overlap_set_work, overlap_set_rest: dynamic array(beta_index) of set of

integer

current_set_work, current_set_rest: set of integer

end-declarations

time_points := {}

forall(j in JOB) do

time_points += {start_time(j)}

time_points += {start_time(j) + duration(j)}

end-do

forall(j in REST) do

time_points += {rest_start_time(j)}

time_points += {rest_start_time(j) + rest_duration(j)}

end-do

time_points_ordered := []

NUMBER_OF_POINTS := getsize(time_points)

forall(i in 1..NUMBER_OF_POINTS) do

min_time := DAYS_TO_PLAN

forall(p in time_points) do

if(p < min_time) then min_time := p; end-if

end-do

time_points_ordered += [min_time]

time_points -= {min_time}

end-do

726

current_set_work := {}

current_set_rest := {}

beta := 1

constraint_required := FALSE

add_constraint := FALSE

forall(t in time_points_ordered) do

! check to see if another constraint is required

forall(j in JOB | start_time(j) + duration(j) = t) add_constraint := TRUE

forall(j in REST | rest_start_time(j) + rest_duration(j) = t)

add_constraint := TRUE

! if so, we create an ’overlap set’ and add the current contents to it

if(constraint_required = TRUE AND add_constraint = TRUE) then

create(overlap_set_work(beta))

create(overlap_set_rest(beta))

overlap_set_work(beta) := current_set_work

overlap_set_rest(beta) := current_set_rest

beta := beta + 1

add_constraint := FALSE

constraint_required := FALSE

end-if

! remove these tasks from the current set

forall(j in JOB | start_time(j) + duration(j) = t) current_set_work -= {j}

forall(j in REST | rest_start_time(j) + rest_duration(j) = t)

current_set_rest -= {j}

! if there are new tasks starting at this point, add them to the current

set and

! indicate that a contraint will now be required again

forall(j in JOB | start_time(j) = t) do

constraint_required := TRUE

current_set_work += {j}

end-do

forall(j in REST | rest_start_time(j) = t) do

constraint_required := TRUE

current_set_rest += {j}

end-do

end-do

!--

! Define Ordered Task Set B (of ALL tasks - work, rest)

!writeln("Define the ordered task set of ALL tasks")

727

declarations

order_index = 1..(JOBS_TO_PLAN + REST_NUMBER)

ordered_task_number: array(order_index) of integer

ordered_task_work, ordered_task_rest: array(order_index) of integer

work_unproc, rest_unproc: set of integer

work_proc, rest_proc: set of integer

b: integer

end-declarations

forall(j in JOB) work_unproc += {j}

forall(j in REST) rest_unproc += {j}

b := 0

forall(i in 1..(JOBS_TO_PLAN + REST_NUMBER)) do

min_time := DAYS_TO_PLAN

forall(j in work_unproc) do

if(start_time(j) < min_time) then min_time := start_time(j); end-if

end-do

forall(j in rest_unproc) do

if(rest_start_time(j) < min_time) then min_time := rest_start_time(

j); end-if

end-do

work_proc := {}

forall(j in work_unproc) do

if(start_time(j) = min_time) then

b := b+1

ordered_task_number(b) := j

ordered_task_work(b) := 1

ordered_task_rest(b) := 0

work_proc += {j}

end-if

end-do

work_unproc -= work_proc

rest_proc := {}

forall(j in rest_unproc) do

if(rest_start_time(j) = min_time) then

b := b + 1

ordered_task_number(b) := j

ordered_task_work(b) := 0

ordered_task_rest(b) := 1

728

rest_proc += {j}

end-if

end-do

rest_unproc -= rest_proc

end-do

!--

!--

!--

! Now that all quantities have been defined, we can state all the contraints:

declarations

tb_undertime, tb_overtime: array(GUARANTEED) of mpvar

change: dynamic array(EMP, JOB) of mpvar

AG_change: dynamic array(JOB) of mpvar

new_sched: dynamic array(EMP, JOB) of mpvar

AG_new_sched: dynamic array(JOB) of mpvar

rest_new_sched: dynamic array(EMP, REST) of mpvar

work_resource, rest_resource: array(EMP, order_index) of mpvar

TOTAL_COST: linctr

job_cover_constr: array(JOB) of linctr

overlap_constr: array(EMP,beta_index) of linctr

work_resource_constr_1, rest_resrouce_constr_1: array(EMP) of linctr

work_resource_constr_b, rest_resource_constr_b: array(EMP, order_index) of

linctr

work_resource_bound_constr, rest_resource_bound_constr: array(EMP,

order_index) of linctr

undertime_constr, overtime_constr: array(GUARANTEED) of linctr

new_sched_constr: array(EMP, JOB) of linctr

AG_new_sched_constr: array(JOB) of linctr

status: array({XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH}) of string !

Used to indicate the solution status of the problem

end-declarations

! Must define the change and new_sched (ie y and z) variables ONLY for the

! tasks for which each crew member is eligible or are currently assigned

forall(j in JOB) do

forall(i in EMP) do

if (eligible(i,j) = 1) then

729

create(change(i,j))

create(new_sched(i,j))

end-if

end-do

if (AG_eligible(j) = 1) then

create(AG_change(j))

create(AG_new_sched(j))

end-if

end-do

! Must also define the rest ’new sched’ variables only if the duration

! is of suitable length for the employee’s minimum rest period

forall(r in REST, i in EMP) do

if(rest_duration(r) = 7*min_rest(i)) then

create(rest_new_sched(i,r))

! writeln("Rest task: ",r,"\tDuration: ",rest_duration(r),"\tEmployee

: ",i,"\tMinRest: ",min_rest(i),"\t=> Create variable")

end-if

end-do

! Objective:

TOTAL_COST := sum(i in EMP, j in JOB)(change_cost(i,j) * change(i,j)) + sum(j in

JOB)(AG_change_cost(j) * AG_change(j)) + sum(i in GUARANTEED)((tb_over_rate(i

) * tb_overtime(i)) + (tb_under_rate(i) * tb_undertime(i)) - current_excess(i

)) + sum(e in ALL_EMP) pre_assign_cost(e)

! Other constraints:

forall(j in JOB) job_cover_constr(j) := sum(i in EMP)(new_sched(i,j)) +

AG_new_sched(j) = 1

forall(i in EMP, a in beta_index) overlap_constr(i,a) := sum(j in

overlap_set_work(a))(new_sched(i,j)) + sum(j in overlap_set_rest(a))(

rest_new_sched(i,j)) <= 1

forall(i in EMP) do

! Revised version of inner part of this loop:

forall(o in order_index) do

if(o = 1) then

if(ordered_task_work(1) = 1) then

work_resource_constr_b(i,o) := 7*work_resource_zero(

i) + (new_sched(i,ordered_task_number(1)) *

730

work_content_work_arc(ordered_task_number(1))) <=

work_resource(i,1)

rest_resource_constr_b(i,o) := rest_resource_zero(i)

+ (new_sched(i,ordered_task_number(1)) *

rest_content_work_arc(ordered_task_number(1))) <=

rest_resource(i,1)

end-if

if(ordered_task_rest(1) = 1) then

work_resource_constr_b(i,o) := 7*work_resource_zero(

i) + (rest_new_sched(i,ordered_task_number(1)) *

work_content_rest_arc(ordered_task_number(1))) <=

work_resource(i,1)

rest_resource_constr_b(i,o) := rest_resource_zero(i)

+ (rest_new_sched(i,ordered_task_number(1)) *

rest_content_rest_arc(ordered_task_number(1))) <=

rest_resource(i,1)

end-if

else

if(ordered_task_work(o) = 1) then

work_resource_constr_b(i,o) := work_resource(i,(o-1)

) + (new_sched(i,ordered_task_number(o)) *

work_content_work_arc(ordered_task_number(o))) <=

work_resource(i,o)

rest_resource_constr_b(i,o) := rest_resource(i,(o-1)

) + (new_sched(i,ordered_task_number(o)) *

rest_content_work_arc(ordered_task_number(o))) <=

rest_resource(i,o)

end-if

if(ordered_task_rest(o) = 1) then

work_resource_constr_b(i,o) := work_resource(i,(o-1)

) + (rest_new_sched(i,ordered_task_number(o)) *

work_content_rest_arc(ordered_task_number(o))) <=

work_resource(i,o)

rest_resource_constr_b(i,o) := rest_resource(i,(o-1)

) + (rest_new_sched(i,ordered_task_number(o)) *

rest_content_rest_arc(ordered_task_number(o))) <=

rest_resource(i,o)

end-if

end-if

work_resource_bound_constr(i,o) := work_resource(i,o) <= 7*max_work

(i)

rest_resource_bound_constr(i,o) := rest_resource(i,o) <= 1

end-do

731

end-do

forall(i in GUARANTEED) undertime_constr(i) := tb_undertime(i) >= g_days(i) - (

tb_exp_worktime(i) + sum(j in JOB)(duration(j) * new_sched(i,j)))

forall(i in GUARANTEED) overtime_constr(i) := tb_overtime(i) >= (tb_exp_worktime(

i) + sum(j in JOB)(duration(j) * new_sched(i,j))) - g_days(i)

forall(i in EMP, j in JOB | eligible(i,j) = 1) do

if(initial(i,j) = 1) then new_sched_constr(i,j) := new_sched(i,j) =

initial(i,j) - change(i,j); end-if

if(initial(i,j) = 0) then new_sched_constr(i,j) := new_sched(i,j) =

initial(i,j) + change(i,j); end-if

change(i,j) is_binary

end-do

forall(j in JOB | AG_eligible(j) = 1) do

if(AG_initial(j) = 1) then AG_new_sched_constr(j) := AG_new_sched(j) =

AG_initial(j) - AG_change(j); end-if

if(AG_initial(j) = 0) then AG_new_sched_constr(j) := AG_new_sched(j) =

AG_initial(j) + AG_change(j); end-if

AG_change(j) is_binary

end-do

!--

! Now solve the problem and print the results:

fopen(LOGFILE, F_OUTPUT)

setparam("XPRS_verbose",true)

minimize(TOTAL_COST)

fclose(F_OUTPUT)

status::([XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB,XPRS_OTH])["Optimum found","

Unfinished","Infeasible","Unbounded","Failed"]

split_time_2 := gettime

!--

!--

732

!--

! Now convert this solution back to a Time-Windows solution:

declarations

allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer ! Variable for

allocating employee to role during given time period

board, depart: array(REG_EMP, VESSELS, TIME) of integer ! =1 if employee

boards / departs vessel in given time period, 0 otherwise

! or takes a non-negative integer value for agency crew

ag_rboard, ag_rdepart: array(ALL_ROLES, TIME) of integer ! =1 if

agency crew starts / ends working on a role in given time period, 0

otherwise

undertime, overtime: array(GUARANTEED) of integer !

Variables to calculate the amount of under/overtime carried out by

employee

work_total, rest_total: array(REG_EMP, TIME) of real ! Used to track

the consecutive working time / rest period requirements of each

employee

ag_work_total: array(ALL_ROLES, TIME) of real ! Used to

track the consecutive working time of the agency employees

chng_allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer

chng_board, chng_depart: array(REG_EMP, VESSELS, TIME) of integer

chng_ag_rboard, chng_ag_rdepart: array(ALL_ROLES, TIME) of integer

chng_undertime, chng_overtime: array(GUARANTEED) of integer

long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of integer ! Used to

indicate if a special bonus / penalty payment relating to consecutive

time at sea is required

chng_long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of integer

TW_COST: real

end-declarations

forall(v in VESSELS) do

forall(r in ROLES(v)) do

forall(j in JOB | role_covered(j) = r) do

tw_start := integer(start_time(j)/7)

tw_duration := integer(duration(j)/7)

733

forall(e in REG_EMP) do

if(tw_start = 0 and starting(e,v) = 1) then

if(getsol(new_sched(e,j)) > 0.9) then

work_time := integer(

work_resource_zero(e))

forall(t in (tw_start+1)..(tw_start+

tw_duration)) do

work_time := work_time + 1

allocate(e,role_covered(j),t)

:= 1

! long_work(work_time,e,r,t) := 1

! note, would prefer this description...

forall(l in 1..work_time) do

!

long_work(l,e,r,t) := 1

! but

this one fits TW

formulation properly

end-do

!

end-do

if(tw_start + tw_duration <

WEEKS_TO_PLAN) then

depart(e,v,(tw_start+

tw_duration+1)) := 1

end-if

else

depart(e,v,1) := 1

end-if

else

if(getsol(new_sched(e,j)) > 0.9) then

board(e,v, tw_start+1) := 1

work_time := 0

forall(t in (tw_start+1)..(tw_start+

tw_duration)) do

work_time := work_time + 1

allocate(e,role_covered(j),t)

:= 1

734

! long_work(work_time,e,r,t) := 1

! note, would prefer this description...

forall(l in 1..work_time) do

!

long_work(l,e,r,t) := 1

! but

this one fits TW

formulation properly

end-do

!

end-do

if(tw_start + tw_duration <

WEEKS_TO_PLAN) then

depart(e,v,(tw_start+

tw_duration+1)) := 1

end-if

end-if

end-if

end-do

if(tw_start = 0 and ag_starting(r) = 1) then

if(getsol(AG_new_sched(j)) > 0.9) then

if(ag_work_zero(r) = ag_max_work(r) or

init_len(r) = 0) then

ag_rdepart(r,1) := 1

ag_rboard(r,1) := 1

work_time := 0

else

work_time := integer(ag_work_zero(r))

end-if

forall(t in (tw_start+1)..(tw_start+

tw_duration)) do

work_time := work_time + 1

allocate("AGENCY",role_covered(j),t)

:= 1

! long_work(work_time,"AGENCY",r,t) := 1

! note, would prefer this description...

forall(l in 1..work_time) do

!

735

long_work(l,"AGENCY",r,t) := 1

! but this one fits TW

formulation properly

end-do

!

end-do

if(tw_start + tw_duration < WEEKS_TO_PLAN)

then

ag_rdepart(r,(tw_start+tw_duration+1))

:= 1

end-if

else

ag_rdepart(r,1) := 1

end-if

else

if(getsol(AG_new_sched(j)) > 0.9) then

ag_rboard(r,(integer(start_time(j)/7)+1)) :=

1

work_time := 0

forall(t in (tw_start+1)..(tw_start+

tw_duration)) do

work_time := work_time + 1

allocate("AGENCY",role_covered(j),t)

:= 1

! long_work(work_time,"AGENCY",r,t) := 1

! note, would prefer this description...

forall(l in 1..work_time) do

!

long_work(l,"AGENCY",r,t) := 1

! but this one fits TW

formulation properly

end-do

!

end-do

if(tw_start + tw_duration < WEEKS_TO_PLAN)

then

ag_rdepart(r,(tw_start+tw_duration+1))

:= 1

end-if

736

end-if

end-if

end-do

end-do

end-do

forall(e in GUARANTEED) do

if(g_weeks(e) > (exp_worktime(e) + sum(r in ALL_ROLES, t in TIME)(allocate

(e,r,t)))) then

undertime(e) := integer(g_weeks(e) - (exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate(e,r,t))))

overtime(e) := 0

else

overtime(e) := integer((exp_worktime(e) + sum(r in ALL_ROLES, t in

TIME)(allocate(e,r,t)))- g_weeks(e))

undertime(e) := 0

end-if

end-do

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) do

if(cur_allocate(e,r,t) = 0) then chng_allocate(e,r,t) := allocate(e,r,t)

else chng_allocate(e,r,t) := cur_allocate(e,r,t) - allocate(e,r,t)

end-if

end-do

forall(e in REG_EMP, v in VESSELS, t in TIME) do

if(cur_board(e,v,t) = 0) then chng_board(e,v,t) := board(e,v,t)

else chng_board(e,v,t) := cur_board(e,v,t) - board(e,v,t)

end-if

end-do

forall(e in REG_EMP, v in VESSELS, t in TIME) do

if(cur_depart(e,v,t) = 0) then chng_depart(e,v,t) := depart(e,v,t)

else chng_depart(e,v,t) := cur_depart(e,v,t) - depart(e,v,t)

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(cur_ag_rboard(r,t) = 0) then chng_ag_rboard(r,t) := ag_rboard(r,t)

else chng_ag_rboard(r,t) := cur_ag_rboard(r,t) - ag_rboard(r,t)

737

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(cur_ag_rdepart(r,t) = 0) then chng_ag_rdepart(r,t) := ag_rdepart(r,t)

else chng_ag_rdepart(r,t) := cur_ag_rdepart(r,t) - ag_rdepart(r,t)

end-if

end-do

forall(e in GUARANTEED) do

chng_undertime(e) := integer(undertime(e) - cur_undertime(e))

chng_overtime(e) := integer(overtime(e) - cur_overtime(e))

end-do

forall(l in lambda, e in ALL_EMP, r in ALL_ROLES, t in TIME) do

if(cur_long_work(l,e,r,t) = 0) then chng_long_work(l,e,r,t) := long_work(l

,e,r,t)

else chng_long_work(l,e,r,t) := cur_long_work(l,e,r,t) - long_work(l,e,r,t

)

end-if

end-do

TW_COST := (sum(e in REG_EMP, v in VESSELS, t in TIME)((board_chng_cost(e,v,t)*

chng_board(e,v,t)) + (depart_chng_cost(e,v,t)*chng_depart(e,v,t))) +

sum(r in ALL_ROLES, t in TIME)((ag_board_chng_cost(r

,t)*chng_ag_rboard(r,t)) + (ag_depart_chng_cost(r

,t)*chng_ag_rdepart(r,t))) +

sum(e in ALL_EMP, r in ALL_ROLES, t in TIME)((

work_chng_cost(e,r,t)*chng_allocate(e,r,t)) + sum

(l in lambda)((extension_chng_cost(l,e,r,t)*

chng_long_work(l,e,r,t)))) +

sum(e in GUARANTEED)((under_rate(e)*chng_undertime(e

))+ (over_rate(e)*chng_overtime(e))))

!--

! Should now check the Time-Windows version of the solution for Feasibility...

feasible := TRUE

738

!writeln("\tChecking Job Cover constraints...")

JCfeas := TRUE

forall(r in ALL_ROLES, t in TIME | required(r,t) > 0) do

if(sum(e in ALL_EMP)(eligable(e,r,t)*allocate(e,r,t)) <> required(r,t))

then

JCfeas := FALSE

! writeln("\tINFEASIBILITY detected - Job Cover constraint (",r,",",t

,")\t",sum(e in ALL_EMP)(eligable(e,r,t)*allocate(e,r,t))," <> ",required(r,t

))

end-if

end-do

if(JCfeas = FALSE) then

feasible := FALSE

!else

! writeln("\tJob Cover constraints feasible")

end-if

!writeln

!writeln("\tChecking Overlap constraints...")

OLfeas := TRUE

forall(e in REG_EMP, t in TIME) do

if(sum(r in ALL_ROLES) allocate(e,r,t) > 1) then

OLfeas := FALSE

! writeln("\tINFEASIBILITY detected - Overlap constraint (",e,",",t

,")\t",sum(r in ALL_ROLES) allocate(e,r,t)," > 1")

end-if

end-do

if(OLfeas = FALSE) then

feasible := FALSE

!else

! writeln("\tOverlap constraints feasible")

end-if

!writeln

!writeln("\tChecking Boarding constraints...")

Brdfeas := TRUE

forall(e in REG_EMP, v in VESSELS) do

if(board(e,v,1) < sum(r in ROLES(v))(allocate(e,r,1)) - starting(e,v))

then

Brdfeas := FALSE

739

! writeln("\tINFEASIBILITY detected - Boarding constraint (",e,",",v

,",1)\t",board(e,v,1)," < ",sum(r in ROLES(v))(allocate(e,r,1)) - starting(e,

v))

end-if

forall(t in 2..WEEKS_TO_PLAN) do

if(board(e,v,t) < sum(r in ROLES(v))(allocate(e,r,t)) - sum(r in

ROLES(v))(allocate(e,r,(t-1)))) then

Brdfeas := FALSE

! writeln("\tINFEASIBILITY detected - Boarding constraint (",e

,",",v,",",t,")\t",board(e,v,t)," < ",sum(r in ROLES(v))(allocate(e,r,t)) -

sum(r in ROLES(v))(allocate(e,r,(t-1))))

end-if

end-do

end-do

if(Brdfeas = FALSE) then

feasible := FALSE

!else

! writeln("\tBoarding constraints feasible")

end-if

!writeln

!writeln("\tChecking Departing constraints...")

Dprtfeas := TRUE

forall(e in REG_EMP, v in VESSELS) do

if(depart(e,v,1) < starting(e,v) - sum(r in ROLES(v))(allocate(e,r,1)))

then

Dprtfeas := FALSE

! writeln("\tINFEASIBILITY detected - Departing constraint (",e,",",v

,",1)\t",depart(e,v,1)," < ",starting(e,v) - sum(r in ROLES(v))(allocate(e,r

,1)))

end-if

forall(t in 2..WEEKS_TO_PLAN) do

if(depart(e,v,t) < sum(r in ROLES(v))(allocate(e,r,(t-1))) - sum(r

in ROLES(v))(allocate(e,r,t))) then

Dprtfeas := FALSE

! writeln("\tINFEASIBILITY detected - Departing constraint (",

e,",",v,",",t,")\t",depart(e,v,t)," < ",sum(r in ROLES(v))(allocate(e,r,(t-1)

)) - sum(r in ROLES(v))(allocate(e,r,t)))

end-if

end-do

end-do

if(Dprtfeas = FALSE) then

740

feasible := FALSE

!else

! writeln("\tDeparting constraints feasible")

end-if

!writeln

!writeln("\tChecking AG board/depart constraints...")

AGBDfeas := TRUE

forall(r in ALL_ROLES) do

if(ag_rboard(r,1) - ag_rdepart(r,1) <> allocate("AGENCY",r,1) -

ag_starting(r)) then

AGBDfeas := FALSE

! writeln("\tINFEASIBILITY detected - AG board/depart constraint (",r

,",1)\t",ag_rboard(r,1) - ag_rdepart(r,1)," <> ",allocate("AGENCY",r,1) -

ag_starting(r))

end-if

forall(t in 2..WEEKS_TO_PLAN) do

if(ag_rboard(r,t) - ag_rdepart(r,t) <> allocate("AGENCY",r,t) -

allocate("AGENCY",r,(t-1))) then

AGBDfeas := FALSE

! writeln("\tINFEASIBILITY detected - AG board/depart

constraint (",r,",",t,")\t",ag_rboard(r,t) - ag_rdepart(r,t)," <> ",allocate

("AGENCY",r,t) - allocate("AGENCY",r,(t-1)))

end-if

end-do

end-do

if(AGBDfeas = FALSE) then

feasible := FALSE

!else

! writeln("\tAG board/depart constraints feasible")

end-if

!writeln

!writeln("\tChecking Undertime constraints...")

UTfeas := TRUE

forall(e in GUARANTEED) do

if(undertime(e) < g_weeks(e) - (exp_worktime(e) + sum(r in ALL_ROLES, t in

TIME)(allocate(e,r,t)))) then

UTfeas := FALSE

! writeln("\tINFEASIBILITY detected - Undertime constraint (",e,")\t

",undertime(e)," < ",g_weeks(e) - (exp_worktime(e) + sum(r in ALL_ROLES, t in

741

TIME)(allocate(e,r,t))))

end-if

end-do

if(UTfeas = FALSE) then

feasible := FALSE

!else

! writeln("\tUndertime constraints feasible")

end-if

!writeln

!writeln("\tChecking Overtime constraints...")

OTfeas := TRUE

forall(e in GUARANTEED) do

if(overtime(e) < (exp_worktime(e) + sum(r in ALL_ROLES, t in TIME)(

allocate(e,r,t)))- g_weeks(e)) then

OTfeas := FALSE

! writeln("\tINFEASIBILITY detected - Overtime constraint (",e,")\t",

overtime(e)," < ",(exp_worktime(e) + sum(r in ALL_ROLES, t in TIME)(allocate(

e,r,t)))- g_weeks(e))

end-if

end-do

if(OTfeas = FALSE) then

feasible := FALSE

!else

! writeln("\tOvertime constraints feasible")

end-if

!writeln

!writeln("\tCalculating ’work_total’ values...")

forall(e in REG_EMP) do

work_total(e,1) := work_zero(e) + sum(r in ALL_ROLES)(allocate(e,r,1)) -

max_work(e)*(1-(sum(r in ALL_ROLES)(allocate(e,r,1))))

if(work_total(e,1) < 0) then

work_total(e,1) := 0

end-if

forall(t in 2..WEEKS_TO_PLAN) do

work_total(e,t) := work_total(e,(t-1)) + sum(r in ALL_ROLES)(

allocate(e,r,t)) - max_work(e)*(1-(sum(r in ALL_ROLES)(allocate

(e,r,t))))

if(work_total(e,t) < 0) then

work_total(e,t) := 0

742

end-if

end-do

end-do

!writeln("\t’work_total’ values calculated")

!writeln

!writeln("\tChecking Long Work constraints...")

LWfeas := TRUE

forall(l in lambda, e in REG_EMP, r in ALL_ROLES | exists(long_work(l,e,r,1))) do

! if(max_work(e)*long_work(l,e,r,1) < work_zero(e) + allocate(e,r,1) - (l-1)

) then

if(max_work(e)*long_work(l,e,r,1) < work_zero(e) - max_work(e)*(1-allocate

(e,r,1)) + allocate(e,r,1) - (l-1)) then

LWfeas := FALSE

! writeln("\tINFEASIBILITY detected - Long Work constraint (",l,",",e

,",",r,",1)\t",max_work(e)*long_work(l,e,r,1)," < ",work_zero(e) + allocate(e

,r,1) - (l-1))

! writeln("\tINFEASIBILITY detected - Long Work constraint (",l,",",e

,",",r,",1)\t",max_work(e),"*",long_work(l,e,r,1)," < ",work_zero(e)," - ",

max_work(e),"*",(1-allocate(e,r,1))," + ",allocate(e,r,1)," - (",l,"-1)")

end-if

forall(t in 2..WEEKS_TO_PLAN) do

! if(max_work(e)*long_work(l,e,r,t) < work_total(e,(t-1)) + allocate(

e,r,t) - (l-1)) then

if(max_work(e)*long_work(l,e,r,t) < work_total(e,(t-1)) - max_work(

e)*(1-allocate(e,r,t)) + allocate(e,r,t) - (l-1)) then

LWfeas := FALSE

! writeln("\tINFEASIBILITY detected - Long Work constraint (",

l,",",e,",",r,",",t,")\t",max_work(e)*long_work(l,e,r,t)," < ",work_total(e,(

t-1)) + allocate(e,r,t) - (l-1))

! writeln("\tINFEASIBILITY detected - Long Work constraint (",

l,",",e,",",r,",",t,")\t",max_work(e),"*",long_work(l,e,r,t)," < ",work_total

(e,(t-1))," - ",max_work(e),"*",(1-allocate(e,r,t))," + ",allocate(e,r,t)," -

(",l,"-1)")

end-if

end-do

end-do

if(LWfeas = FALSE) then

feasible := FALSE

!else

! writeln("\tLong Work constraints feasible")

end-if

743

!writeln

!writeln("\tCalculating Agency ’work_total’ values...")

forall(r in ALL_ROLES) do

ag_work_total(r,1) := ag_work_zero(r) + allocate("AGENCY",r,1) -

ag_max_work(r)*ag_rdepart(r,1)

if(ag_work_total(r,1) < allocate("AGENCY",r,1)) then

ag_work_total(r,1) := allocate("AGENCY",r,1)

end-if

forall(t in 2..WEEKS_TO_PLAN) do

ag_work_total(r,t) := ag_work_total(r,(t-1)) + allocate("AGENCY",r,

t) - ag_max_work(r)*ag_rdepart(r,t)

if(ag_work_total(r,t) < allocate("AGENCY",r,t)) then

ag_work_total(r,t) := allocate("AGENCY",r,t)

end-if

end-do

end-do

!writeln("\tAgency ’work_total’ values calculated")

!writeln

!writeln("\tChecking Agency Long Work constraints...")

AGLWfeas := TRUE

forall(l in lambda, r in ALL_ROLES, t in TIME | exists(long_work(l,"AGENCY",r,t))

) do

if(ag_max_work(r)*long_work(l,"AGENCY",r,t) < ag_work_total(r,t) - (l-1))

then

AGLWfeas := FALSE

! writeln("\tINFEASIBILITY detected - Agency Long Work constraint (",

l,",",r,",",t,")\t",ag_max_work(r)*long_work(l,"AGENCY",r,t)," < ",

ag_work_total(r,t) - (l-1))

end-if

end-do

if(AGLWfeas = FALSE) then

feasible := FALSE

!else

! writeln("\tAgency Long Work constraints feasible")

end-if

!writeln

!writeln("\tCalculating ’rest_total’ values...")

744

forall(e in REG_EMP) do

rest_total(e,1) := rest_zero(e) - (1-(sum(r in ALL_ROLES)(allocate(e,r,1))

)) !;if(e = "C-28") then writeln("rest_total(",e,",1)

:= ",rest_zero(e)," - (1-",(sum(r in ALL_ROLES)(allocate(e,r,1))),")")

; end-if

if(rest_total(e,1) < (min_rest(e)-1)*(sum(v in VESSELS)(depart(e,v,1))))

then

rest_total(e,1) := (min_rest(e)-1)*(sum(v in VESSELS)(depart(e,v,1)

)) !;if(e = "C-28") then writeln("

rest_total(",e,",1) < (",min_rest(e),"-1)*",(sum(v in VESSELS)(

depart(e,v,1)))," => reset, so rest_total(",e,",1) := (",

min_rest(e),"-1)*",(sum(v in VESSELS)(depart(e,v,1)))); end-if

end-if

forall(t in 2..WEEKS_TO_PLAN) do

rest_total(e,t) := rest_total(e,(t-1)) - (1-(sum(r in ALL_ROLES)(

allocate(e,r,t)))) !;if(e = "C-28") then writeln("rest_total

(",e,",",t,") := ",rest_total(e,(t-1))," - (1-",(sum(r in

ALL_ROLES)(allocate(e,r,t))),")"); end-if

if(rest_total(e,t) < (min_rest(e)-1)*(sum(v in VESSELS)(depart(e,v,

t)))) then

rest_total(e,t) := (min_rest(e)-1)*(sum(v in VESSELS)(depart

(e,v,t))) !;if(e = "C-28") then writeln

("rest_total(",e,",",t,") < (",min_rest(e),"-1)*",(sum(v

in VESSELS)(depart(e,v,t)))," => reset, so rest_total

(",e,",",t,") := (",min_rest(e),"-1)*",(sum(v in VESSELS

)(depart(e,v,t)))); end-if

end-if

end-do

end-do

!writeln("\t’rest_total’ values calculated")

!writeln

!writeln("\tChecking Rest vs Work constraints...")

RvWfeas := TRUE

forall(e in REG_EMP) do

if(min_rest(e)*(1-(sum(r in ALL_ROLES)(allocate(e,r,1)))) < rest_zero(e))

then

RvWfeas := FALSE

! writeln("\tINFEASIBILITY detected - Rest vs Work constraint (",e

,",1)\t",min_rest(e)*(1-(sum(r in ALL_ROLES)(allocate(e,r,1))))," < ",

rest_zero(e))

end-if

745

forall(t in 2..WEEKS_TO_PLAN) do

if(min_rest(e)*(1-(sum(r in ALL_ROLES)(allocate(e,r,t)))) <

rest_total(e,(t-1))) then

RvWfeas := FALSE

! writeln("\tINFEASIBILITY detected - Rest vs Work constraint

(",e,",",t,")\t",min_rest(e)*(1-(sum(r in ALL_ROLES)(allocate(e,r,t))))," <

",rest_total(e,(t-1)))

! writeln("\tINFEASIBILITY detected - Rest vs Work constraint

(",e,",",t,")\t",min_rest(e),"*(1-",(sum(r in ALL_ROLES)(allocate(e,r,t))),")

< ",rest_total(e,(t-1)))

end-if

end-do

end-do

if(RvWfeas = FALSE) then

feasible := FALSE

!else

! writeln("\tRest vs Work constraints feasible")

end-if

!writeln

!writeln("\tChecking Variable Linking constraints...")

Linkfeas := TRUE

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) do

if(cur_allocate(e,r,t) = 0) then

if(chng_allocate(e,r,t) <> allocate(e,r,t)) then

Linkfeas := FALSE

! writeln("\tINFEASIBILITY detected - Link of allocate

variables (unspecified)")

end-if

else

if(chng_allocate(e,r,t) <> cur_allocate(e,r,t) - allocate(e,r,t))

then

Linkfeas := FALSE

! writeln("\tINFEASIBILITY detected - Link of allocate

variables (unspecified)")

end-if

end-if

end-do

forall(e in REG_EMP, v in VESSELS, t in TIME) do

if(cur_board(e,v,t) = 0) then

if(chng_board(e,v,t) <> board(e,v,t)) then

Linkfeas := FALSE

746

! writeln("\tINFEASIBILITY detected - Link of board variables

(unspecified)")

end-if

else

if(chng_board(e,v,t) <> cur_board(e,v,t) - board(e,v,t)) then

Linkfeas := FALSE

! writeln("\tINFEASIBILITY detected - Link of board variables

(unspecified)")

end-if

end-if

end-do

forall(e in REG_EMP, v in VESSELS, t in TIME) do

if(cur_depart(e,v,t) = 0) then

if(chng_depart(e,v,t) <> depart(e,v,t)) then

Linkfeas := FALSE

! writeln("\tINFEASIBILITY detected - Link of depart variables

(unspecified)")

end-if

else

if(chng_depart(e,v,t) <> cur_depart(e,v,t) - depart(e,v,t)) then

Linkfeas := FALSE

! writeln("\tINFEASIBILITY detected - Link of depart variables

(unspecified)")

end-if

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(cur_ag_rboard(r,t) = 0) then

if(chng_ag_rboard(r,t) <> ag_rboard(r,t)) then

Linkfeas := FALSE

! writeln("\tINFEASIBILITY detected - Link of AG board

variables (unspecified)")

end-if

else

if(chng_ag_rboard(r,t) <> cur_ag_rboard(r,t) - ag_rboard(r,t)) then

Linkfeas := FALSE

! writeln("\tINFEASIBILITY detected - Link of AG board

variables (unspecified)")

end-if

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(cur_ag_rdepart(r,t) = 0) then

747

if(chng_ag_rdepart(r,t) <> ag_rdepart(r,t)) then

Linkfeas := FALSE

! writeln("\tINFEASIBILITY detected - Link of AG depart

variables (unspecified)")

end-if

else

if(chng_ag_rdepart(r,t) <> cur_ag_rdepart(r,t) - ag_rdepart(r,t))

then

Linkfeas := FALSE

! writeln("\tINFEASIBILITY detected - Link of AG depart

variables (unspecified)")

end-if

end-if

end-do

forall(l in lambda, e in ALL_EMP, r in ALL_ROLES, t in TIME) do

if(cur_long_work(l,e,r,t) = 0) then

if(chng_long_work(l,e,r,t) <> long_work(l,e,r,t)) then

Linkfeas := FALSE

! writeln("\tINFEASIBILITY detected - Link of long work

variables (unspecified)")

end-if

else

if(chng_long_work(l,e,r,t) <> cur_long_work(l,e,r,t) - long_work(l,

e,r,t)) then

Linkfeas := FALSE

! writeln("\tINFEASIBILITY detected - Link of long work

variables (unspecified)")

end-if

end-if

end-do

forall(e in GUARANTEED) do

if(chng_undertime(e) <> undertime(e) - cur_undertime(e)) then

Linkfeas := FALSE

! writeln("\tINFEASIBILITY detected - Link of undertime variables (

unspecified)")

end-if

if(chng_overtime(e) <> overtime(e) - cur_overtime(e)) then

Linkfeas := FALSE

! writeln("\tINFEASIBILITY detected - Link of overtime variables (

unspecified)")

end-if

end-do

if(Linkfeas = FALSE) then

748

feasible := FALSE

!else

! writeln("\tVariable Linking constraints feasible")

end-if

!writeln

!writeln("\tChecking Status of Variables...")

Statfeas := TRUE

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) do

if(allocate(e,r,t) <> 0 and allocate(e,r,t) <> 1) then

Statfeas := FALSE

end-if

if(chng_allocate(e,r,t) <> 0 and chng_allocate(e,r,t) <> 1) then

Statfeas := FALSE

end-if

end-do

forall(l in lambda, e in ALL_EMP, r in ALL_ROLES, t in TIME) do

if(long_work(l,e,r,t) <> 0 and long_work(l,e,r,t) <> 1) then

Statfeas := FALSE

end-if

if(chng_long_work(l,e,r,t) <> 0 and chng_long_work(l,e,r,t) <> 1) then

Statfeas := FALSE

end-if

end-do

forall(e in REG_EMP, v in VESSELS, t in TIME) do

if(board(e,v,t) <> 0 and board(e,v,t) <> 1) then

Statfeas := FALSE

end-if

if(chng_board(e,v,t) <> 0 and chng_board(e,v,t) <> 1) then

Statfeas := FALSE

end-if

if(depart(e,v,t) <> 0 and depart(e,v,t) <> 1) then

Statfeas := FALSE

end-if

if(chng_depart(e,v,t) <> 0 and chng_depart(e,v,t) <> 1) then

Statfeas := FALSE

end-if

end-do

forall(r in ALL_ROLES, t in TIME) do

if(ag_rboard(r,t) <> 0 and ag_rboard(r,t) <> 1) then

Statfeas := FALSE

end-if

749

if(chng_ag_rboard(r,t) <> 0 and chng_ag_rboard(r,t) <> 1) then

Statfeas := FALSE

end-if

if(chng_ag_rdepart(r,t) <> 0 and chng_ag_rdepart(r,t) <> 1) then

Statfeas := FALSE

end-if

if(ag_rdepart(r,t) <> 0 and ag_rdepart(r,t) <> 1) then

Statfeas := FALSE

end-if

end-do

forall(e in GUARANTEED) do

if(undertime(e) < 0) then

Statfeas := FALSE

end-if

if(overtime(e) < 0) then

Statfeas := FALSE

end-if

end-do

forall(e in REG_EMP, t in TIME) do

if(work_total(e,t) < 0) then

Statfeas := FALSE

end-if

if(rest_total(e,t) < 0) then

Statfeas := FALSE

end-if

end-do

if(Statfeas = FALSE) then

feasible := FALSE

end-if

if(round(1000*TW_COST) = round(1000*getobjval)) then

equal_OFs := TRUE

else

equal_OFs := FALSE

end-if

prog_endtime := gettime

!--

!--

750

!--

! Print out details into results files...

! Calculate some stats...

TW_a := 0 ! number of agency-covered tasks in

the initial schedule

TW_u := 0 ! number of un-covered tasks in the

initial schedule

TW_changes_to_reg := 0 ! number of changes to regular employees in the (

best) solution

TW_changes_to_AG := 0 ! number of changes to agency employees in the (best

) solution

TW_number_of_AG := 0 ! number of times agency employees are utilised in

the (best) solution

forall(r in ALL_ROLES, t in TIME) do

x := 0

forall(e in REG_EMP) do

if(cur_allocate(e,r,t) = 1) then

x := x + 1

end-if

TW_changes_to_reg := TW_changes_to_reg + chng_allocate(e,r,t)

end-do

if(cur_allocate("AGENCY",r,t) = 1) then

x := x + 1

TW_a := TW_a + 1

end-if

TW_changes_to_AG := TW_changes_to_AG + chng_allocate("AGENCY",r,t)

TW_number_of_AG := TW_number_of_AG + allocate("AGENCY",r,t)

if(x = 0) then TW_u := TW_u + 1

end-if

end-do

TB_a := 0 ! number of tasks covered by agency in

initial schedule

TB_u := 0 ! number of un-covered tasks in the

initial schedule

TB_changes_to_reg := 0 ! number of changes to regular employees in the (

best) solution

TB_changes_to_AG := 0 ! number of changes to agency employees in the (best

) solution

TB_number_of_AG := 0 ! number of times agency employees are utilised in

the (best) solution

751

forall(j in JOB) do

x := 0

forall(i in EMP) do

if(initial(i,j) = 1) then

x := x + 1

end-if

TB_changes_to_reg := TB_changes_to_reg + round(getsol(change(i,j)))

end-do

if(AG_initial(j) = 1) then

x := x + 1

TB_a := TB_a + 1

end-if

TB_changes_to_AG := TB_changes_to_AG+ round(getsol(AG_change(j)))

TB_number_of_AG := TB_number_of_AG+ round(getsol(AG_new_sched(j)))

if(x = 0) then

TB_u := TB_u + 1

end-if

end-do

convert_1 := split_time_1 - prog_starttime

soln_time := split_time_2 - split_time_1

convert_2 := prog_endtime - split_time_2

total_time := prog_endtime - prog_starttime

fopen(SUMMARYFILE, F_APPEND)

write(InstanceName)

write("\t",convert_1,"\t",soln_time,"\t",convert_2,"\t",total_time)

write("\t",(sum(r in ALL_ROLES, t in TIME) required(r,t)),"\t",TW_u,"\t",

TW_a)

write("\t",(sum(e in ALL_EMP) pre_assign_cost(e)),"\t",JOBS_TO_PLAN,"\t",

TB_u,"\t",TB_a)

write("\t",status(getprobstat),"\t ",getobjval,"\t ",getparam("

XPRS_bestbound"))

write("\t",TB_changes_to_reg,"\t",TB_changes_to_AG,"\t",TB_number_of_AG)

write("\t",feasible,"\t",TW_COST,"\t",equal_OFs)

write("\t",TW_changes_to_reg,"\t",TW_changes_to_AG,"\t",TW_number_of_AG)

write("\n")

fclose(F_APPEND)

752

! Print solution to a solution file, so it can be used as an initial solution for

the heuristic procudure

fopen(SOLUTIONFILE, F_OUTPUT)

writeln("!Solution for ",InstanceName)

writeln("!\tfound using a Task-Based approximation of the the Time-Windows

problem")

writeln("!\twritten in representation proposed for carrying out heuristics

.")

writeln

writeln("!TB prob status: ",status(getprobstat))

writeln("!Feasible for TW? ",feasible)

writeln("!Total run time: ",total_time)

writeln("!TB soln value: ",getobjval)

writeln("!TW soln value: ",TW_COST)

writeln

write("!Roles are given in the following order:")

forall(r in ALL_ROLES) write("\t",r)

write("\n")

writeln

write("! Time: ")

forall(r in ALL_ROLES) do

forall(t in TIME) write(t,"\t")

end-do

write("\n")

writeln("taskbased_sol: [")

forall(e in REG_EMP) do

forall(r in ALL_ROLES) do

forall(t in TIME) do

if(allocate(e,r,t) > 0.9) then

write("\t1")

else

write("\t0")

end-if

end-do

end-do

write("\n")

end-do

forall(r in ALL_ROLES) do

forall(t in TIME) do

if(allocate("AGENCY",r,t) > 0.9) then

write("\t1")

else

753

write("\t0")

end-if

end-do

end-do

write("]\n")

fclose(F_OUTPUT)

fopen(COLLATEDSOLUTIONS, F_OUTPUT)

writeln("!Solution for ",InstanceName)

writeln("!\tfound using a Task-Based approximation of the the Time-Windows

problem")

writeln("!\twritten in representation proposed for carrying out heuristics

.")

writeln

writeln("!TB prob status: ",status(getprobstat))

writeln("!Feasible for TW? ",feasible)

writeln("!Total run time: ",total_time)

writeln("!TB soln value: ",getobjval)

writeln("!TW soln value: ",TW_COST)

writeln

write("!Roles are given in the following order:")

forall(r in ALL_ROLES) write(" \t ",r)

write("\n")

writeln

write("! Time: ")

forall(r in ALL_ROLES) do

forall(t in TIME) write(t,"\t")

end-do

write("\n")

writeln("taskbased_sol: [")

forall(e in REG_EMP) do

forall(r in ALL_ROLES) do

forall(t in TIME) do

if(allocate(e,r,t) > 0.9) then

write("\t1")

else

write("\t0")

end-if

end-do

end-do

write("\n")

end-do

754

forall(r in ALL_ROLES) do

forall(t in TIME) do

if(allocate("AGENCY",r,t) > 0.9) then

write("\t1")

else

write("\t0")

end-if

end-do

end-do

write("]\n")

fclose(F_OUTPUT)

end-model

E.2.5 Heuristic algorithm

Here we give the code used to improve existing solutions for the Time-Windows problem

using the Heuristic algorithm described in 6.5.5. This represents only the formal test

version of the algorithm, which was translated into C++ by fellow PhD student Seda Sucu

based on the heuristic code developed in FICO Xpress. The preliminary versions and

development process are discussed in section 6.5.3; however for simplicity we do not give

details of the preliminary Xpress implementations of the Heuristic algorithm here.

The C++ code is divided into several sub-programme files. We first give the main

programme of the algorithm, followed by the sub-programme files, and finally the ‘header’

files which are required by these.

E.2.5.1 Main programme

#include "Load_Data.h"

#include "trial.h"

#include "finish.h"

#include "initialise.h"

#include "feasibility_checking.h"

#include "cost.h"

#include "transferring_data.h"

#include "sort_listing.h"

#include "find_usables.h"

#include "tabu.h"

#include "swap_change_update.h"

#include "comparing.h"

#include "rand_kick.h"

755

#include "swapping.h"

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <conio.h>

#include <string>

#include <cstdlib>

#include <ctime>

#include <math.h>

#include <iostream>

#include <fstream>

#include <algorithm>

#include <iterator>

#include <vector>

#include <random>

#include <sstream>

using namespace std;

int same_best[51];

int required[13][25];

int eligible_gecici[325][49];

int eligible[13][25][49];

int starting[25][49];

int cur_allocate[13][25][49];

int current_alloc[325][49];

int current_board[325][48];

int cur_board[13][25][48];

int current_depart[325][48];

int cur_depart[13][25][48];

int cur_ag_rboard[13][25];

int cur_ag_rdepart[13][25];

float board_cost[325][48];

float board_chng_cost[13][25][48];

float depart_cost[325][48];

float depart_chng_cost[13][25][48];

float ag_board_chng_cost[13][25];

float ag_depart_chng_cost[13][25];

float workchange_cost[325][49];

float work_chng_cost[13][25][49];

int initial_solution[326][49];

int taskbased_sol[13][25][49];

int contract[45][4];

int under_rate[45];

int over_rate[45];

756

int g_weeks[45];

int exp_worktime[45];

int crew[48][4];

int work_zero[48];

int rest_zero[48];

int min_rest[48];

int max_work[48];

int ag_crew[25][3];

int ag_work_zero[25];

int ag_max_work[25];

int ag_starting[25];

float ext_chg_cost[325][490];

float ext_chg_cost_new[13][25][490];

float extension_chng_cost[13][25][49][10];

int guaranteed_workers[45][2];

int cur_undertime[45];

int cur_overtime[45];

int list_sol[8][13][48];

int best_sols[51][13][48];

int swaps_examined[48][48];

int ag_list_sol[8][13][25];

int ag_best_sols[51][13][25];

float total_cost[8];

float emp_cost[8][48];

int allocate_sol[8][13][25][49];

int cur_long_work[13][25][49][10];

int current_long_work[325][490];

int cur_long_work_new[13][25][490];

int chng_long_work[13][25][49][10];;

int long_work_sol[8][13][25][49][10];

int board_sol[8][13][25][48];

int depart_sol[8][13][25][48];

int undertime_sol[8][45];

int overtime_sol[8][45];

int chng_undertime[45];

int chng_overtime[45];

int chng_allocate[13][25][49];

int chng_board[13][25][48];

int chng_depart[13][25][48];

float ag_cost[8][13][25];

int ag_crewchange[8][13][25];

int ag_rboard_sol[8][13][25];

int ag_rdepart_sol[8][13][25];

757

int poss_ag_rboard[13];

int poss_ag_rdepart[13];

int poss_chng_ag_rboard[13];

int poss_chng_ag_rdepart[13];

int poss_ag_long_work[13][10];

int poss_chng_ag_long_work[13][10];

int chng_ag_rboard [13][25];

int chng_ag_rdepart [13][25];

int work_total[13][48];

int ag_work_total[13][25];

int rest_total[13][49];

int last_changed[48];

int order_number[48];

int current_list[13];

int roles[25];

int reserve_list_bkwd[13][25];

int reserve_list_fwd[13][25];

int tabu_sol[13][48];

int ag_tabu_sol[13][25];

int swappable_emp[48];

int problem_set[43];

int main()

{

string ext = ".txt";

string filename1, filename2, filename3, filename4, filename5;

int set_no, accept_rule, kick_rule, order_setting, no_enter,

initial_solution_type, fraction_settings;

double short_list_fraction;

problem_set[0]= 16 ;

problem_set[1]= 18 ;

problem_set[2]= 27 ;

problem_set[3]= 32 ;

problem_set[4]= 37 ;

problem_set[5]= 46 ;

problem_set[6]= 55 ;

problem_set[7]= 63 ;

problem_set[8]= 65 ;

problem_set[9]= 71 ;

problem_set[10]= 74 ;

problem_set[11]= 79 ;

problem_set[12]= 80 ;

problem_set[13]= 85 ;

758

problem_set[14]= 89 ;

problem_set[15]= 91 ;

problem_set[16]= 100 ;

problem_set[17]= 103 ;

problem_set[18]= 109 ;

problem_set[19]= 112 ;

problem_set[20]= 126 ;

problem_set[21]= 129 ;

problem_set[22]= 138 ;

problem_set[23]= 147 ;

problem_set[24]= 148 ;

problem_set[25]= 149 ;

problem_set[26]= 157 ;

problem_set[27]= 159 ;

problem_set[28]= 170 ;

problem_set[29]= 174 ;

problem_set[30]= 178 ;

problem_set[31]= 182 ;

problem_set[32]= 187 ;

problem_set[33]= 188 ;

problem_set[34]= 197 ;

problem_set[35]= 208 ;

problem_set[36]= 216 ;

problem_set[37]= 218 ;

problem_set[38]= 219 ;

problem_set[39]= 223 ;

problem_set[40]= 226 ;

problem_set[41]= 227 ;

problem_set[42]= 229 ;

problem_set[43]= 237 ;

int wrong_data;

initial_solution_type=0;

accept_rule=0;

kick_rule=0;

order_setting=0;

fraction_settings=0;

stringstream sk;

sk<<1;

string st3 = "C:\\Users\\xmb13210\\Desktop\\Problem_Sets\\Results\\All_Sets\\

Summary_of_results_All_Sets";

filename3= st3 + sk.str() + ext;

ofstream results(filename3);

string st5 = "C:\\Users\\xmb13210\\Desktop\\Problem_Sets\\Results\\One_Min\\

759

Summary_of_results_All_Sets_After_1_Min";

filename5=st5 + sk.str() + ext;

ofstream results_1min(filename5);

results<< "Set Number"<<" "<<"CPU Time"<<" "<<"Iteration"<<" "<<"

Initial Cost"<<" "<<"accept_rule"<<" "<<"kick_rule"<<" "<<"order_setting

"<<" "<<" initial_solution_type"<<" "<<"fraction_settings"<<" "<<"no_bkwd"<<"

"<<"no_fwd"<<" "<< "no_swap"<<" "<<"no_cand"<<" "<<"no_kick"<<" "<<"

no_infeas"<<" "<<"no_tabu"<<" "<<"total_cost(best) "<<" "<<"total_cost(

current) "<<" "<<"best_sol_time"<<" "<<"number_best"<<" "<<"changes_to_reg

"<<" "<<"changes_to_AG "<<" "<<"number_of_AG"<<’\n’;

results<<’\n’;

results_1min<< "Set Number"<<" "<<"CPU Time"<<" "<<"Iteration"<<" "<<"

Initial Cost"<<" "<<"accept_rule"<<" "<<"kick_rule"<<" "<<"order_setting

"<<" "<<" initial_solution_type"<<" "<<"fraction_settings"<<" "<<"no_bkwd"<<"

"<<"no_fwd"<<" "<< "no_swap"<<" "<<"no_cand"<<" "<<"no_kick"<<" "<<"

no_infeas"<<" "<<"no_tabu"<<" "<<"total_cost(best) "<<" "<<"total_cost(

current) "<<" "<<"best_sol_time"<<" "<<"number_best"<<" "<<"changes_to_reg

"<<" "<<"changes_to_AG "<<" "<<"number_of_AG"<<’\n’;

results_1min<<’\n’;

for (fraction_settings=1; fraction_settings<2; fraction_settings++) {

if(fraction_settings==0) {

short_list_fraction=(1.0/3.0);

}

else if(fraction_settings==1) {

short_list_fraction=1;

}

for(accept_rule=1;accept_rule<2; accept_rule++) {

for(kick_rule=2; kick_rule<3;kick_rule++) {

for(order_setting=0;order_setting<1; order_setting++) {

//ofstream results(filename3);

//results<<"Set Number"<<" "<<"Initial Cost"<<" "<<"accept_rule"<<" "<<"kick_rule

"<<" "<<"order_setting"<<" "<<" initial_solution_type"<<" "<<"

fraction_settings"<<" "<<"no_bkwd"<<" "<<"no_fwd"<<" "<< "no_swap"<<" "<<"

no_cand"<<" "<<"no_kick"<<" "<<"no_infeas"<<" "<<"no_tabu"<<" "<<"total_cost(

best) "<<" "<<"total_cost(current) "<<" "<<"best_sol_time"<<" "<<"number_best

"<<" "<<"changes_to_reg"<<" "<<"changes_to_AG "<<’\n’;

for(wrong_data=0; wrong_data<=43; wrong_data++) {

set_no=problem_set[wrong_data];

stringstream ss;

stringstream sm;

ss << set_no;

sm<< (fraction_settings*12)+(accept_rule*6)+(kick_rule*2)+(order_setting+1);

if(set_no<=9) {

760

string st1 = "C:\\Users\\xmb13210\\Desktop\\Problem_Sets\\Time_Windows\\Time-

Windows - Captains - Set R00";

filename1= st1 + ss.str()+ ext;

string st2 = "C:\\Users\\xmb13210\\Desktop\\Problem_Sets\\Task_Based\\TBApprox

soln - Set R00";

filename2= st2 + ss.str() + ext;

string st4 = "C:\\Users\\xmb13210\\Desktop\\Problem_Sets\\Results\\Set_by_Set\\

Cost_at_each_iteration_Set R00";

string st1a = "_Version";

filename4= st4 + ss.str() + st1a +sm.str() + ext;

}

if(set_no>=10 && set_no<=99) {

string st1 = "C:\\Users\\xmb13210\\Desktop\\Problem_Sets\\Time_Windows\\Time-

Windows - Captains - Set R0";

filename1= st1 + ss.str() + ext;

string st2 = "C:\\Users\\xmb13210\\Desktop\\Problem_Sets\\Task_Based\\TBApprox

soln - Set R0";

filename2= st2 + ss.str() + ext;

string st4 = "C:\\Users\\xmb13210\\Desktop\\Problem_Sets\\Results\\Set_by_Set\\

Cost_at_each_iteration_Set R0";

string st1a = "_Version";

filename4= st4 + ss.str() + st1a +sm.str() + ext;

}

if(set_no>=100 && set_no<=240) {

string st1 = "C:\\Users\\xmb13210\\Desktop\\Problem_Sets\\Time_Windows\\Time-

Windows - Captains - Set R";

filename1= st1 + ss.str() + ext;

string st2 = "C:\\Users\\xmb13210\\Desktop\\Problem_Sets\\Task_Based\\TBApprox

soln - Set R";

filename2= st2 + ss.str() + ext;

string st4 = "C:\\Users\\xmb13210\\Desktop\\Problem_Sets\\Results\\Set_by_Set\\

Cost_at_each_iteration_Set R";

string st1a = "_Version";

filename4= st4 + ss.str() + st1a +sm.str() + ext;

}

int week_last, role_last, emp_last;

int final_count, changes_to_reg , changes_to_AG, number_of_AG;

int rol_10, tabu, add_to_emp,prev_work,in_reserve_bkwd,in_reserve_fwd,

swap_block_latest, new_block, block_start, block_end, block_len, block_found,

task_extend, emp_extend,vessel_extend,emp_13, emp_usable,candidate_exist,

update_done, change_no,min_emp, min_no,order_rule,Statfeas, Linkfeas,RvWfeas,

AGLWfeas,LWfeas,AGBDfeas,UTfeas, OTfeas, Dprtfeas,Brdfeas,feasible;

int swap_task_extend, all_rest, swap_vessel, swap_new_block, weeks_10,

761

swap_allowed, too_early, swap_emp, swap_task, swap_block_start,

swap_block_end, swap_block_len, swap_find_time, swap_block_found,ag_swappable

, kick_task, random_length, random_time, kick_emp, random_task, random_emp,

kick_end, kick_start, kick_feas,sum_start_rand, new_best, emp_count,

role_count,summation_1, conflict_found_fwd,summation,extend_len_fwd,

to_check_tabu, length_count, rest_count, conflict_found_bkwd, extend_len_bkwd

, do_extend_bkwd, max_bkwd_extend, max_fwd_extend, do_extend_fwd, do_swap,

link_to_vessel,weeks_14, rol_14, swap_block_earliest, OLfeas, JCfeas,

transfer_sol_from, transfer_sol_to,iteration, overall_regular_max_work,

overall_agency_max_work,overall_max_work, lambda, reg_emp, all_emp,

guaranteed, vessels, weeks_to_plan, all_roles, best_index, last_kick_time,

added_t, to_calculate,consec_work, feas_crewchange, no_fwd,no_bkwd, no_swap,

no_cand, no_kick, no_tabu, no_infeas, terminate, no_nonreduce,best_sol_time,

number_best;

int no_AGLWfeas,no_LWfeas,no_UTfeas,no_OTfeas,no_JCfeas,no_OLfeas,no_Statfeas,

no_Linkfeas,no_RvWfeas, no_Brdfeas,no_Dprtfeas,no_AGBDfeas,count_20, boyut_20

, emp_10;

//end of declaration

float initial_cost, extend_cost_fwd, extend_cost_bkwd, swapping_cost,

candidate_cost, random ;

double time;

//declaring vectors

vector<int> emps_changed;

vector<int> ag_roles_changed;

vector<int> evaluate_crewchange;

vector<int> definite_crewchange;

vector<int> possible_crewchange;

vector<int>ordered_list;

vector<int>short_ordered_list;

vector<int>added_set;

vector<int>candidate_emps;

vector<int>emps_to_update;

//end of declaration

FILE *initial;

//FILE *results;

//FILE *results1;

//FILE *results2;

initial=fopen("C:\\Users\\xmb13210\\Desktop\\Problem_Sets\\initial_values.txt","r

");

fscanf(initial, "%d %d %d %d %d %d", ®_emp, &all_emp, &guaranteed, &vessels, &

weeks_to_plan, &all_roles);

deneme(filename1,ag_max_work,ag_work_zero,under_rate, over_rate, g_weeks,

exp_worktime, required, eligible, starting, ag_starting, work_zero, rest_zero

762

, min_rest, max_work, cur_allocate);

deneme2(filename1,cur_board, cur_depart, cur_ag_rboard, cur_ag_rdepart);

deneme3(filename1,cur_undertime, cur_overtime, current_long_work,

cur_long_work_new,cur_long_work);

deneme4(filename1,board_cost, board_chng_cost, depart_cost, depart_chng_cost,

ag_board_chng_cost, ag_depart_chng_cost);

deneme5(filename1,workchange_cost, work_chng_cost,ext_chg_cost, ext_chg_cost_new,

extension_chng_cost);

deneme6(filename2,initial_solution,taskbased_sol);

ofstream results_alter(filename4);

results_alter<< "Set Number: "<<set_no<<"\n";

results_alter<<"accept_rule: "<<accept_rule<<’\n’;

results_alter<<"kick_rule: "<<kick_rule<<’\n’;

results_alter<<"order_setting: "<<order_setting<<’\n’;

results_alter<<"initial_solution_type: "<<initial_solution_type<<’\n’;

results_alter<<"fraction_settings: "<<short_list_fraction<<’\n’;

results_alter<<"Iteration"<<" "<<"Current Cost"<<" "<< "Best Cost"<< ’\n’;

for (int i=0; i<25;i++) {

roles[i]=i;

}

clock_t start, end;

start = clock();

no_AGLWfeas=0;

no_LWfeas=0;

no_UTfeas=0;

no_OTfeas=0;

no_JCfeas=0;

no_OLfeas=0;

no_Statfeas=0;

no_Linkfeas=0;

no_RvWfeas=0;

no_Brdfeas=0;

no_Dprtfeas=0;

no_AGBDfeas=0;

random_time=0;

random_length=0;

kick_task=0;

random_task=0;

kick_emp=0;

random_emp=0;

random=0;

kick_start=0;

kick_end=0;

763

kick_feas=0;

sum_start_rand=0;

new_best=0;

emp_count=0;

role_count=0;

overall_regular_max_work=-1;

overall_agency_max_work=-1;

overall_max_work=-1;

lambda=-1;

best_index=51;

added_t=0;

feas_crewchange=1;

iteration=0;

feasible=1;

JCfeas=1;

OLfeas=1;

Brdfeas=1;

Dprtfeas=1;

UTfeas=1;

OTfeas=1;

AGBDfeas=1;

AGLWfeas=1;

LWfeas=1;

RvWfeas=1;

Linkfeas=1;

Statfeas=1;

no_fwd=0;

no_bkwd=0;

no_swap=0;

no_cand=0;

no_kick=0;

no_tabu=0;

no_infeas=0;

terminate=0;

iteration=0;

no_nonreduce=0;

best_sol_time=0;

number_best=1;

last_kick_time=0;

min_emp=0;

min_no=0;

change_no=0;

update_done=0;

764

candidate_exist=0;

vessel_extend=-1;

swap_block_earliest=-1;

swap_block_latest=-1;

task_extend=-1;

block_start=-1;

block_end=-1;

block_len=0;

emp_extend=-1;

new_block=0;

do_extend_bkwd=0;

max_bkwd_extend=0;

max_fwd_extend=0;

do_extend_fwd=0;

do_swap=0;

extend_cost_fwd=0;

extend_cost_bkwd=0;

swapping_cost=0;

extend_len_bkwd=0;

extend_len_fwd=0;

to_check_tabu=0;

prev_work=0;

add_to_emp=0;

tabu=0;

summation=0;

summation_1=0;

//accept_rule=0;

initialise_first(overall_regular_max_work, max_work, overall_agency_max_work,

ag_max_work, overall_max_work,lambda, reg_emp, all_roles); //calculating

lambda

initialise_second(weeks_to_plan, list_sol, best_index, best_sols, added_t,

swaps_examined, emps_changed, reg_emp, all_roles, taskbased_sol); //

emps_changed

initialise_third(weeks_to_plan, ag_list_sol, best_index, ag_best_sols,

ag_roles_changed, reg_emp, all_roles, taskbased_sol, required);//

ag_roles_changed

to_calculate=0;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

765

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

766

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

initial_cost=total_cost[0];

transfer_sol_from=0;

transfer_sol_to=1;

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

initialise_four(weeks_to_plan, ag_best_sols, reg_emp, all_roles, best_sols,

list_sol, ag_list_sol, last_changed);

no_enter=0;

while(terminate==0) {

iteration=iteration+1;

if(order_setting==0) {

if(no_nonreduce >= 1) {

order_rule=0;

}

else if((iteration - last_kick_time > 1) || (iteration > 1 && last_kick_time== 0)

) {

order_rule= 1;

}

else {

order_rule=2;

} }

else {

order_rule=2;

}

sort_employee_list(short_list_fraction, change_no, last_changed, min_emp,min_no,

order_rule, order_number, reg_emp, ordered_list, short_ordered_list,

added_set, iteration);

find_usable_1(update_done,candidate_exist,candidate_emps);

for(emp_usable=0;emp_usable<short_ordered_list.size() ;emp_usable++)

//for(emp_usable=0;emp_usable<48 ;emp_usable++)

{

767

emp_13=short_ordered_list[emp_usable];

//emp_13=emp_usable;

find_usable_2(weeks_to_plan,vessel_extend,emp_13,swap_block_earliest,update_done

, emp_extend, task_extend, block_start,block_end, block_len, block_found,

vessels, starting, work_zero, current_list, list_sol);

for(weeks_14=0;weeks_14<weeks_to_plan;weeks_14++) {

if(update_done==0) {

rol_14=current_list[weeks_14]; // AL - Have changed this from "rol_14=

current_list[emp_13]"

new_block=0;

if(block_found==0 && rol_14!=-1) // AL - Have changed this from "... &&

current_list[weeks_14]!=-1"

{

find_usable_3(roles,vessels, weeks_14, rol_14, current_list, new_block,

block_found, emp_extend,emp_13, task_extend, block_start, swap_block_earliest

,rest_zero, vessel_extend);

}

else if(block_found==1 && rol_14!=-1 && rol_14!=task_extend) {

find_usable_4(link_to_vessel, vessel_extend, rol_14, roles, task_extend);

if(link_to_vessel!=1)//error

{

find_usable_5(block_end, weeks_14,swap_block_latest, block_len, block_start);

if(task_extend!=-1) {

evaluate_block_new1(required, rest_zero, block_end, task_extend, emp_extend,

eligible, weeks_to_plan, extend_cost_fwd, extend_cost_bkwd, swapping_cost,

do_extend_bkwd, do_extend_fwd, do_swap, block_len, max_work, max_bkwd_extend,

max_fwd_extend);

if(max_bkwd_extend > 0) {

extend_len_bkwd=max_bkwd_extend;

while(do_extend_bkwd==0 && extend_len_bkwd>0) {

evaluate_block_new2(all_roles, reg_emp, weeks_to_plan, max_work,

conflict_found_bkwd, reserve_list_bkwd, in_reserve_bkwd, block_end,

task_extend, work_zero, length_count, emp_extend, rest_count, extend_len_bkwd

, emps_changed, ag_roles_changed, list_sol, ag_list_sol, min_rest);

evaluate_block_new3(to_check_tabu,all_roles, reg_emp, weeks_to_plan, max_work,

prev_work, add_to_emp, conflict_found_bkwd, reserve_list_bkwd,

in_reserve_bkwd, block_end, task_extend, work_zero, length_count, emp_extend,

rest_count, extend_len_bkwd, emps_changed, ag_roles_changed, list_sol,

ag_list_sol, eligible, rest_zero, min_rest);

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu==1) {

no_tabu=no_tabu+1;

768

}

else {

to_calculate=3;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

769

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

evaluate_block_new4(extend_cost_bkwd, total_cost, do_extend_bkwd, no_nonreduce,

emps_to_update, accept_rule, emps_changed);

if(total_cost[3]<total_cost[accept_rule]) {

update_swaps_and_changes(emps_to_update,swaps_examined,reg_emp, last_kick_time,

iteration, last_changed);

}

else {

evaluate_block_new5(emps_changed,candidate_emps, extend_cost_bkwd,

candidate_cost, candidate_exist, total_cost,transfer_sol_from,

transfer_sol_to, all_emp, reg_emp, all_roles, weeks_to_plan, lambda,

allocate_sol, long_work_sol, emp_cost, list_sol, board_sol, depart_sol,

undertime_sol, overtime_sol, ag_cost, ag_list_sol, ag_crewchange,

ag_rboard_sol, ag_rdepart_sol);

} }

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} }

if(do_extend_bkwd==0) {

extend_len_bkwd=extend_len_bkwd-1;

770

} } }

if(do_extend_bkwd==0) {

evaluate_block_new6(extend_len_fwd, max_fwd_extend, block_start, rest_zero,

emp_extend, summation, vessels, roles, task_extend, starting, min_rest,

eligible, required);

if(max_fwd_extend > 0) {

while(do_extend_fwd==0 && extend_len_fwd>0) {

evaluate_block_new7(extend_len_fwd, emps_changed, ag_roles_changed, reg_emp,

weeks_to_plan, list_sol, all_roles, ag_list_sol, reserve_list_fwd, emp_extend

,rest_count, in_reserve_fwd,task_extend, min_rest,conflict_found_fwd,

block_start);

evaluate_block_new8(rest_zero,starting,eligible, max_work,length_count,

to_check_tabu,summation_1,summation, prev_work,add_to_emp,extend_len_fwd,

emps_changed,ag_roles_changed, reg_emp, weeks_to_plan, list_sol, all_roles,

ag_list_sol, reserve_list_fwd, emp_extend, rest_count,in_reserve_fwd,

task_extend, min_rest,conflict_found_fwd,block_start);

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu==1) {

no_tabu=no_tabu+1;

}

else {

to_calculate=4;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

771

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

evaluate_block_new9(extend_cost_fwd, total_cost, do_extend_fwd, no_nonreduce,

emps_to_update, accept_rule, emps_changed);

if(total_cost[4]<total_cost[accept_rule]) {

772

update_swaps_and_changes(emps_to_update,swaps_examined,reg_emp, last_kick_time,

iteration, last_changed);

}

else {

evaluate_block_new10(emps_changed,candidate_emps, extend_cost_fwd,

candidate_cost, candidate_exist, total_cost,transfer_sol_from,

transfer_sol_to, all_emp, reg_emp, all_roles, weeks_to_plan, lambda,

allocate_sol, long_work_sol, emp_cost, list_sol, board_sol, depart_sol,

undertime_sol, overtime_sol, ag_cost, ag_list_sol, ag_crewchange,

ag_rboard_sol, ag_rdepart_sol);

} }

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} }

if(do_extend_fwd==0) {

extend_len_fwd=extend_len_fwd-1;

} } } }

if(do_extend_bkwd==0 && do_extend_fwd==0) {

if(block_start>=0) {

evaluate_swap1(ag_swappable, block_start, block_end, eligible, task_extend);

if(ag_swappable==1) {

for(rol_10=0;rol_10< all_roles;rol_10++) {

if(rol_10!=task_extend) {

evaluate_swap2(swap_allowed, too_early, do_swap, swap_emp, swap_task,

swap_block_start, swap_block_end, swap_block_len, swap_find_time,

swap_block_found);

for(weeks_10=0;weeks_10<weeks_to_plan;weeks_10++) {

if(do_swap==0) {

evaluate_swap3(weeks_10, rol_10,swap_block_start, swap_task, swap_emp,

swap_allowed, eligible , min_rest, starting, emp_extend, all_roles, summation

, summation_1, too_early, swap_new_block, swap_block_found, ag_list_sol,

swap_block_latest, swap_block_earliest);

if(swap_block_found ==1 && ag_list_sol[0][weeks_10][rol_10]==1) {

if(ag_crewchange[0][weeks_10][rol_10]==1) {

swap_block_end=weeks_10-1;

swap_block_len= (swap_block_end - swap_block_start) +1;

if(too_early ==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

773

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

774

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

775

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap4(weeks_10, swap_block_found, swap_block_len, swap_block_end,

swap_allowed, eligible, min_rest, too_early, emp_extend, swap_block_earliest,

starting, summation, summation_1, all_roles, swap_block_latest, do_swap,

swap_task,swap_block_start, rol_10);

}

else {

evaluate_swap5(swap_allowed, emp_extend, rol_10, weeks_10, swap_block_latest,

swap_block_found, eligible);

} }

else if(swap_block_found==1 && ag_list_sol[0][weeks_10][rol_10]==0) //25june

{

swap_block_end=weeks_10-1;

swap_block_len=(swap_block_end - swap_block_start) +1;

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend])

{ swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan,

list_sol, all_roles,ag_list_sol, emp_extend, block_start, swap_block_start,

min_rest, swap_block_end, swap_task, block_end, swap_emp,task_extend,

to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

776

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

777

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap6(swap_allowed, too_early, do_swap, swap_emp, swap_task,

swap_block_start, swap_block_end, swap_block_len, swap_block_found);

}

evaluate_swap7(swap_new_block, swap_block_found);

if((weeks_10==(weeks_to_plan-1)) && (swap_block_found==1)) {

evaluate_swap8(weeks_10, rol_10,swap_block_end, swap_block_start, swap_block_len

, swap_allowed, eligible,emp_extend);

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

778

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

779

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } } } } } }

if(do_swap==0) {

evaluate_swap9(swap_emp, swap_task, swap_block_start, block_start,

swap_block_end, block_end);

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

780

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

781

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

782

//part 2 ev_swap

evaluate_swap10(min_rest, work_zero, starting, all_roles, summation, summation_1

, eligible, task_extend, block_end, rest_zero, block_start, max_work,

block_len, reg_emp, swappable_emp, emp_extend);

// void evaluate_swap10(int min_rest_1[48], int work_zero_1[48],int starting_1

[25][49],int& weeks_10x,int all_roles_1,int summation_1, int summation_1x,int

eligible_1[13][25][48],int& task_extend_1,int& block_end_1,int rest_zero_1

[48],int& block_start_1,int max_work_1[48],int& block_len_1, int reg_emp_1,

int swappable_emp_1[48], int& emp_extend_1)

//part 2 ev_swap

boyut_20=ordered_list.size();

for(count_20=0;count_20<boyut_20; count_20++)

// for(emp_10=0;emp_10<reg_emp; emp_10++)

{

emp_10=ordered_list[count_20];

if(swappable_emp[emp_10]==1 && swaps_examined[emp_extend][emp_10]!=1) // AL -

Have changed this from "if(swappable_emp[emp_10]==0 &&..."

{

evaluate_swap11(swap_find_time, all_rest,swap_allowed, too_early,

swap_block_found, swap_block_len, do_swap, swap_emp, swap_vessel, swap_task,

swap_block_start, swap_block_end);

while(do_swap==0 && swap_find_time<weeks_to_plan) {

evaluate_swap12(swap_vessel,roles, swap_block_start, swap_emp, swap_task,

swap_allowed, eligible, min_rest, emp_extend, starting, all_roles, summation,

summation_1,too_early, swap_block_found,swap_new_block, all_rest,rol_10,

emp_10, list_sol, swap_block_earliest,swap_find_time, swap_block_latest);

if(swap_block_found==1 && rol_10!=-1) {

if(rol_10 !=swap_task) {

link_to_vessel=0;

evaluate_swap13(vessel_extend, roles,swap_task, swap_allowed, eligible, rol_10,

emp_extend, swap_vessel, link_to_vessel, swap_find_time, swap_block_latest,

swap_block_found);

if(link_to_vessel==-1) {

swap_block_end= swap_find_time-1;

swap_block_len = (swap_block_end - swap_block_start) +1;

if(too_early ==0 && swap_allowed ==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

783

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

784

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap14(swap_block_found, swap_block_len, swap_block_end, swap_vessel,

swap_allowed,eligible , min_rest, starting, emp_extend, roles, all_roles,

785

summation, summation_1, too_early, swap_find_time, swap_block_latest, do_swap

, swap_task_extend, rol_10, swap_block_start, swap_block_earliest);

} }

else {

evaluate_swap15(rol_10, swap_find_time, swap_block_latest, swap_block_found,

swap_allowed, eligible, emp_extend);

} }

else if(swap_block_found==1 && rol_10==-1) {

swap_block_end=swap_find_time-1;

swap_block_len= (swap_block_end - swap_block_start) +1;

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

786

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

787

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap16(swap_emp, swap_task, swap_vessel, swap_block_found, do_swap,

too_early, swap_allowed, swap_block_start, swap_block_end, swap_block_len);

}

evaluate_swap17(swap_new_block, swap_block_found);

if((swap_find_time==(weeks_to_plan-1)) && (swap_block_found==1)) {

evaluate_swap18(swap_block_start, swap_block_len, swap_block_end, swap_find_time,

swap_allowed, eligible, swap_find_time, rol_10);

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

788

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

789

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } }

swap_find_time++;

}

if(do_swap == 0 && all_rest==1) {

evaluate_swap19(swap_emp, emp_10, swap_task, swap_block_start, block_start,

swap_block_end, block_end);

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

790

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

791

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } } } }

evaluate_block_new13(do_swap, no_swap, do_extend_bkwd, transfer_sol_from, no_bkwd

, do_extend_fwd, no_fwd);

if(do_extend_bkwd==1 || do_extend_fwd==1 || do_swap ==1) {

check_tabu_2(transfer_sol_to, reg_emp,all_roles, weeks_to_plan, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

792

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

update_done=1;

compare_to_best(number_best, weeks_to_plan,all_roles, reg_emp, role_count ,

total_cost, new_best, same_best, emp_count, list_sol, best_sols, ag_list_sol,

ag_best_sols);

compare_to_best_2(best_sol_time,iteration, ag_best_sols,best_sols, number_best,

transfer_sol_from, transfer_sol_to, total_cost, all_emp, reg_emp, all_roles,

weeks_to_plan, lambda, allocate_sol, long_work_sol, emp_cost, list_sol,

board_sol, depart_sol, undertime_sol, overtime_sol,ag_cost, ag_list_sol,

ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

} }

else {

if(block_len< max_work[emp_13]) {

if(vessel_extend!=-1) {

task_extend=vessel_extend;

evaluate_block_new1(required, rest_zero, block_end, task_extend, emp_extend,

eligible, weeks_to_plan, extend_cost_fwd, extend_cost_bkwd, swapping_cost,

do_extend_bkwd, do_extend_fwd, do_swap, block_len, max_work, max_bkwd_extend,

max_fwd_extend);

if(max_bkwd_extend > 0) {

extend_len_bkwd=max_bkwd_extend;

while(do_extend_bkwd==0 && extend_len_bkwd>0) {

evaluate_block_new2(all_roles, reg_emp, weeks_to_plan, max_work,

conflict_found_bkwd, reserve_list_bkwd, in_reserve_bkwd, block_end,

task_extend, work_zero, length_count, emp_extend, rest_count, extend_len_bkwd

, emps_changed, ag_roles_changed, list_sol, ag_list_sol, min_rest);

evaluate_block_new3(to_check_tabu,all_roles, reg_emp, weeks_to_plan, max_work,

prev_work, add_to_emp, conflict_found_bkwd, reserve_list_bkwd,

in_reserve_bkwd, block_end, task_extend, work_zero, length_count, emp_extend,

rest_count, extend_len_bkwd, emps_changed, ag_roles_changed, list_sol,

ag_list_sol, eligible, rest_zero, min_rest);

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu==1) {

no_tabu=no_tabu+1;

}

else {

to_calculate=3;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

793

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

794

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

evaluate_block_new4(extend_cost_bkwd, total_cost, do_extend_bkwd, no_nonreduce,

emps_to_update, accept_rule, emps_changed);

if(total_cost[3]<total_cost[accept_rule]) {

update_swaps_and_changes(emps_to_update,swaps_examined,reg_emp, last_kick_time,

iteration, last_changed);

}

else {

evaluate_block_new5(emps_changed,candidate_emps, extend_cost_bkwd,

candidate_cost, candidate_exist, total_cost,transfer_sol_from,

transfer_sol_to, all_emp, reg_emp, all_roles, weeks_to_plan, lambda,

allocate_sol, long_work_sol, emp_cost, list_sol, board_sol, depart_sol,

undertime_sol, overtime_sol, ag_cost, ag_list_sol, ag_crewchange,

ag_rboard_sol, ag_rdepart_sol);

} }

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} }

if(do_extend_bkwd==0) {

extend_len_bkwd=extend_len_bkwd-1;

} } }

if(do_extend_bkwd==0) {

evaluate_block_new6(extend_len_fwd, max_fwd_extend, block_start, rest_zero,

emp_extend, summation, vessels, roles, task_extend, starting, min_rest,

eligible, required);

795

if(max_fwd_extend > 0) {

while(do_extend_fwd==0 && extend_len_fwd>0) {

evaluate_block_new7(extend_len_fwd, emps_changed, ag_roles_changed, reg_emp,

weeks_to_plan, list_sol, all_roles, ag_list_sol, reserve_list_fwd, emp_extend

,rest_count, in_reserve_fwd,task_extend, min_rest,conflict_found_fwd,

block_start);

evaluate_block_new8(rest_zero,starting,eligible, max_work,length_count,

to_check_tabu,summation_1,summation, prev_work,add_to_emp,extend_len_fwd,

emps_changed,ag_roles_changed, reg_emp, weeks_to_plan, list_sol, all_roles,

ag_list_sol, reserve_list_fwd, emp_extend, rest_count,in_reserve_fwd,

task_extend, min_rest,conflict_found_fwd,block_start);

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu==1) {

no_tabu=no_tabu+1;

}

else {

to_calculate=4;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

796

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

evaluate_block_new9(extend_cost_fwd, total_cost, do_extend_fwd, no_nonreduce,

emps_to_update, accept_rule, emps_changed);

if(total_cost[4]<total_cost[accept_rule]) {

update_swaps_and_changes(emps_to_update,swaps_examined,reg_emp, last_kick_time,

iteration, last_changed);

}

else {

evaluate_block_new10(emps_changed,candidate_emps, extend_cost_fwd,

797

candidate_cost, candidate_exist, total_cost,transfer_sol_from,

transfer_sol_to, all_emp, reg_emp, all_roles, weeks_to_plan, lambda,

allocate_sol, long_work_sol, emp_cost, list_sol, board_sol, depart_sol,

undertime_sol, overtime_sol, ag_cost, ag_list_sol, ag_crewchange,

ag_rboard_sol, ag_rdepart_sol);

} }

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} }

if(do_extend_fwd==0) {

extend_len_fwd=extend_len_fwd-1;

} } } }

if(do_extend_bkwd==0 && do_extend_fwd==0) {

if(block_start>=0) {

evaluate_swap1(ag_swappable, block_start, block_end, eligible, task_extend);

if(ag_swappable==1) {

for(rol_10=0;rol_10< all_roles;rol_10++) {

if(rol_10!=task_extend) {

evaluate_swap2(swap_allowed, too_early, do_swap, swap_emp, swap_task,

swap_block_start, swap_block_end, swap_block_len, swap_find_time,

swap_block_found);

for(weeks_10=0;weeks_10<weeks_to_plan;weeks_10++) {

if(do_swap==0) {

evaluate_swap3(weeks_10, rol_10,swap_block_start, swap_task, swap_emp,

swap_allowed, eligible , min_rest, starting, emp_extend, all_roles, summation

, summation_1, too_early, swap_new_block, swap_block_found, ag_list_sol,

swap_block_latest, swap_block_earliest);

if(swap_block_found ==1 && ag_list_sol[0][weeks_10][rol_10]==1) {

if(ag_crewchange[0][weeks_10][rol_10]==1) {

swap_block_end=weeks_10-1;

swap_block_len= (swap_block_end - swap_block_start) +1;

if(too_early ==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

798

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

799

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap4(weeks_10, swap_block_found, swap_block_len, swap_block_end,

swap_allowed, eligible, min_rest, too_early, emp_extend, swap_block_earliest,

800

starting, summation, summation_1, all_roles, swap_block_latest, do_swap,

swap_task,swap_block_start, rol_10);

}

else {

evaluate_swap5(swap_allowed, emp_extend, rol_10, weeks_10, swap_block_latest,

swap_block_found, eligible);

} }

else if(swap_block_found==1 && ag_list_sol[0][weeks_10][rol_10]!=1) {

swap_block_end=weeks_10-1;

swap_block_len=(swap_block_end - swap_block_start) +1;

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend])

{ swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan,

list_sol, all_roles,ag_list_sol, emp_extend, block_start, swap_block_start,

min_rest, swap_block_end, swap_task, block_end, swap_emp,task_extend,

to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

801

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

802

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap6(swap_allowed, too_early, do_swap, swap_emp, swap_task,

swap_block_start, swap_block_end, swap_block_len, swap_block_found);

}

evaluate_swap7(swap_new_block, swap_block_found);

if((weeks_10==(weeks_to_plan-1)) && (swap_block_found==1)) {

evaluate_swap8(weeks_10, rol_10,swap_block_end, swap_block_start, swap_block_len

, swap_allowed, eligible,emp_extend);

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

803

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

804

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } } } } } }

if(do_swap==0) {

evaluate_swap9(swap_emp, swap_task, swap_block_start, block_start,

swap_block_end, block_end);

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

805

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

806

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

//part 2 ev_swap

evaluate_swap10(min_rest, work_zero, starting, all_roles, summation, summation_1

, eligible, task_extend, block_end, rest_zero, block_start, max_work,

block_len, reg_emp, swappable_emp, emp_extend);

// void evaluate_swap10(int min_rest_1[48], int work_zero_1[48],int starting_1

[25][49],int& weeks_10x,int all_roles_1,int summation_1, int summation_1x,int

807

eligible_1[13][25][48],int& task_extend_1,int& block_end_1,int rest_zero_1

[48],int& block_start_1,int max_work_1[48],int& block_len_1, int reg_emp_1,

int swappable_emp_1[48], int& emp_extend_1)

//part 2 ev_swap

boyut_20=ordered_list.size();

//for(emp_10=0;emp_10<48; emp_10++)

for(count_20=0;count_20<boyut_20; count_20++) {

emp_10=ordered_list[count_20];

if(swappable_emp[emp_10]==1 && swaps_examined[emp_extend][emp_10]!=1) // AL -

Have changed this from "if(swappable_emp[emp_10]==0 &&..."

{

evaluate_swap11(swap_find_time, all_rest,swap_allowed, too_early,

swap_block_found, swap_block_len, do_swap, swap_emp, swap_vessel, swap_task,

swap_block_start, swap_block_end);

while(do_swap==0 && swap_find_time<weeks_to_plan) {

evaluate_swap12(swap_vessel,roles, swap_block_start, swap_emp, swap_task,

swap_allowed, eligible, min_rest, emp_extend, starting, all_roles, summation,

summation_1,too_early, swap_block_found,swap_new_block, all_rest,rol_10,

emp_10, list_sol, swap_block_earliest,swap_find_time, swap_block_latest);

if(swap_block_found==1 && rol_10!=-1) {

if(rol_10 !=swap_task) {

link_to_vessel=0;

evaluate_swap13(vessel_extend, roles,swap_task, swap_allowed, eligible, rol_10,

emp_extend, swap_vessel, link_to_vessel, swap_find_time, swap_block_latest,

swap_block_found);

if(link_to_vessel==-1) {

swap_block_end= swap_find_time-1;

swap_block_len = (swap_block_end - swap_block_start) +1;

if(too_early ==0 && swap_allowed ==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

808

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

809

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap14(swap_block_found, swap_block_len, swap_block_end, swap_vessel,

swap_allowed,eligible , min_rest, starting, emp_extend, roles, all_roles,

summation, summation_1, too_early, swap_find_time, swap_block_latest, do_swap

, swap_task_extend, rol_10, swap_block_start, swap_block_earliest);

} }

else {

evaluate_swap15(rol_10, swap_find_time, swap_block_latest, swap_block_found,

swap_allowed, eligible, emp_extend);

} }

810

else if(swap_block_found==1 && rol_10==-1) {

swap_block_end=swap_find_time-1;

swap_block_len= (swap_block_end - swap_block_start) +1;

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

811

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

812

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap16(swap_emp, swap_task, swap_vessel, swap_block_found, do_swap,

too_early, swap_allowed, swap_block_start, swap_block_end, swap_block_len);

}

evaluate_swap17(swap_new_block, swap_block_found);

if((swap_find_time==(weeks_to_plan-1)) && (swap_block_found==1)) {

evaluate_swap18(swap_block_start, swap_block_len, swap_block_end, swap_find_time,

swap_allowed, eligible, swap_find_time, rol_10);

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

813

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

814

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } }

swap_find_time++;

}

if(do_swap == 0 && all_rest==1) {

evaluate_swap19(swap_emp, emp_10, swap_task, swap_block_start, block_start,

swap_block_end, block_end);

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

815

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

816

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } } } }

evaluate_block_new13(do_swap, no_swap,do_extend_bkwd, transfer_sol_from, no_bkwd,

do_extend_fwd, no_fwd);

if(do_extend_bkwd==1 || do_extend_fwd==1|| do_swap ==1) {

check_tabu_2(transfer_sol_to, reg_emp,all_roles, weeks_to_plan, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

update_done=1;

compare_to_best(number_best, weeks_to_plan,all_roles, reg_emp, role_count ,

total_cost, new_best, same_best, emp_count, list_sol, best_sols, ag_list_sol,

817

ag_best_sols);

compare_to_best_2(best_sol_time,iteration, ag_best_sols,best_sols, number_best,

transfer_sol_from, transfer_sol_to, total_cost, all_emp, reg_emp, all_roles,

weeks_to_plan, lambda, allocate_sol, long_work_sol, emp_cost, list_sol,

board_sol, depart_sol, undertime_sol, overtime_sol,ag_cost, ag_list_sol,

ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

} } } }

//11 mayis

evaluate_block_new12(task_extend, rol_14, block_start, weeks_14,

swap_block_earliest, all_roles, roles, vessel_extend,block_end,block_len);

} }

else if(block_found==1 && rol_14 ==-1) {

find_usable_5(block_end, weeks_14,swap_block_latest, block_len, block_start);

if(task_extend!=-1) // AL - Have changed this from "if(task_extend==-1)"

{

evaluate_block_new1(required, rest_zero, block_end, task_extend, emp_extend,

eligible, weeks_to_plan, extend_cost_fwd, extend_cost_bkwd, swapping_cost,

do_extend_bkwd, do_extend_fwd, do_swap, block_len, max_work, max_bkwd_extend,

max_fwd_extend);

if(max_bkwd_extend > 0) {

extend_len_bkwd=max_bkwd_extend;

while(do_extend_bkwd==0 && extend_len_bkwd>0) {

evaluate_block_new2(all_roles, reg_emp, weeks_to_plan, max_work,

conflict_found_bkwd, reserve_list_bkwd, in_reserve_bkwd, block_end,

task_extend, work_zero, length_count, emp_extend, rest_count, extend_len_bkwd

, emps_changed, ag_roles_changed, list_sol, ag_list_sol, min_rest);

evaluate_block_new3(to_check_tabu,all_roles, reg_emp, weeks_to_plan, max_work,

prev_work, add_to_emp, conflict_found_bkwd, reserve_list_bkwd,

in_reserve_bkwd, block_end, task_extend, work_zero, length_count, emp_extend,

rest_count, extend_len_bkwd, emps_changed, ag_roles_changed, list_sol,

ag_list_sol, eligible, rest_zero, min_rest);

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu==1) {

no_tabu=no_tabu+1;

}

else {

to_calculate=3;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

818

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

819

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

evaluate_block_new4(extend_cost_bkwd, total_cost, do_extend_bkwd, no_nonreduce,

emps_to_update, accept_rule, emps_changed);

if(total_cost[3]<total_cost[accept_rule]) {

update_swaps_and_changes(emps_to_update,swaps_examined,reg_emp, last_kick_time,

iteration, last_changed);

}

else {

evaluate_block_new5(emps_changed,candidate_emps, extend_cost_bkwd,

candidate_cost, candidate_exist, total_cost,transfer_sol_from,

transfer_sol_to, all_emp, reg_emp, all_roles, weeks_to_plan, lambda,

allocate_sol, long_work_sol, emp_cost, list_sol, board_sol, depart_sol,

undertime_sol, overtime_sol, ag_cost, ag_list_sol, ag_crewchange,

ag_rboard_sol, ag_rdepart_sol);

} }

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} }

if(do_extend_bkwd==0) {

extend_len_bkwd=extend_len_bkwd-1;

} } }

if(do_extend_bkwd==0) {

evaluate_block_new6(extend_len_fwd, max_fwd_extend, block_start, rest_zero,

emp_extend, summation, vessels, roles, task_extend, starting, min_rest,

eligible, required);

if(max_fwd_extend > 0) {

while(do_extend_fwd==0 && extend_len_fwd>0) {

evaluate_block_new7(extend_len_fwd, emps_changed, ag_roles_changed, reg_emp,

820

weeks_to_plan, list_sol, all_roles, ag_list_sol, reserve_list_fwd, emp_extend

,rest_count, in_reserve_fwd,task_extend, min_rest,conflict_found_fwd,

block_start);

evaluate_block_new8(rest_zero,starting,eligible, max_work,length_count,

to_check_tabu,summation_1,summation, prev_work,add_to_emp,extend_len_fwd,

emps_changed,ag_roles_changed, reg_emp, weeks_to_plan, list_sol, all_roles,

ag_list_sol, reserve_list_fwd, emp_extend, rest_count,in_reserve_fwd,

task_extend, min_rest,conflict_found_fwd,block_start);

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu==1) {

no_tabu=no_tabu+1;

}

else {

to_calculate=4;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

821

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

evaluate_block_new9(extend_cost_fwd, total_cost, do_extend_fwd, no_nonreduce,

emps_to_update, accept_rule, emps_changed);

if(total_cost[4]<total_cost[accept_rule]) {

update_swaps_and_changes(emps_to_update,swaps_examined,reg_emp, last_kick_time,

iteration, last_changed);

}

else {

evaluate_block_new10(emps_changed,candidate_emps, extend_cost_fwd,

candidate_cost, candidate_exist, total_cost,transfer_sol_from,

transfer_sol_to, all_emp, reg_emp, all_roles, weeks_to_plan, lambda,

allocate_sol, long_work_sol, emp_cost, list_sol, board_sol, depart_sol,

822

undertime_sol, overtime_sol, ag_cost, ag_list_sol, ag_crewchange,

ag_rboard_sol, ag_rdepart_sol);

} }

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} }

if(do_extend_fwd==0) {

extend_len_fwd=extend_len_fwd-1;

} } } }

if(do_extend_bkwd==0 && do_extend_fwd==0) {

if(block_start>=0) {

evaluate_swap1(ag_swappable, block_start, block_end, eligible, task_extend);

if(ag_swappable==1) {

for(rol_10=0;rol_10< all_roles;rol_10++) {

if(rol_10!=task_extend) {

evaluate_swap2(swap_allowed, too_early, do_swap, swap_emp, swap_task,

swap_block_start, swap_block_end, swap_block_len, swap_find_time,

swap_block_found);

for(weeks_10=0;weeks_10<weeks_to_plan;weeks_10++) {

if(do_swap==0) {

evaluate_swap3(weeks_10, rol_10,swap_block_start, swap_task, swap_emp,

swap_allowed, eligible , min_rest, starting, emp_extend, all_roles, summation

, summation_1, too_early, swap_new_block, swap_block_found, ag_list_sol,

swap_block_latest, swap_block_earliest);

if(swap_block_found ==1 && ag_list_sol[0][weeks_10][rol_10]==1) {

if(ag_crewchange[0][weeks_10][rol_10]==1) {

swap_block_end=weeks_10-1;

swap_block_len= (swap_block_end - swap_block_start) +1;

if(too_early ==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

823

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

824

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap4(weeks_10, swap_block_found, swap_block_len, swap_block_end,

swap_allowed, eligible, min_rest, too_early, emp_extend, swap_block_earliest,

starting, summation, summation_1, all_roles, swap_block_latest, do_swap,

swap_task,swap_block_start, rol_10);

}

825

else {

evaluate_swap5(swap_allowed, emp_extend, rol_10, weeks_10, swap_block_latest,

swap_block_found, eligible);

} }

else if(swap_block_found==1 && ag_list_sol[0][weeks_10][rol_10]!=1) {

swap_block_end=weeks_10-1;

swap_block_len=(swap_block_end - swap_block_start) +1;

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend])

{ swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan,

list_sol, all_roles,ag_list_sol, emp_extend, block_start, swap_block_start,

min_rest, swap_block_end, swap_task, block_end, swap_emp,task_extend,

to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

826

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

827

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap6(swap_allowed, too_early, do_swap, swap_emp, swap_task,

swap_block_start, swap_block_end, swap_block_len, swap_block_found);

}

evaluate_swap7(swap_new_block, swap_block_found);

if((weeks_10==(weeks_to_plan-1)) && (swap_block_found==1)) {

evaluate_swap8(weeks_10, rol_10,swap_block_end, swap_block_start, swap_block_len

, swap_allowed, eligible,emp_extend);

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

828

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

829

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } } } } } }

if(do_swap==0) {

evaluate_swap9(swap_emp, swap_task, swap_block_start, block_start,

swap_block_end, block_end);

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

830

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

831

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

//part 2 ev_swap

evaluate_swap10(min_rest, work_zero, starting, all_roles, summation, summation_1

, eligible, task_extend, block_end, rest_zero, block_start, max_work,

block_len, reg_emp, swappable_emp, emp_extend);

// void evaluate_swap10(int min_rest_1[48], int work_zero_1[48],int starting_1

[25][49],int& weeks_10x,int all_roles_1,int summation_1, int summation_1x,int

eligible_1[13][25][48],int& task_extend_1,int& block_end_1,int rest_zero_1

[48],int& block_start_1,int max_work_1[48],int& block_len_1, int reg_emp_1,

int swappable_emp_1[48], int& emp_extend_1)

832

//part 2 ev_swap

boyut_20=ordered_list.size();

//for(emp_10=0;emp_10<48; emp_10++)

for(count_20=0;count_20<boyut_20; count_20++) {

emp_10=ordered_list[count_20];

if(swappable_emp[emp_10]==1 && swaps_examined[emp_extend][emp_10]!=1) // AL -

Have changed this from "if(swappable_emp[emp_10]==0 &&..."

{

evaluate_swap11(swap_find_time, all_rest,swap_allowed, too_early,

swap_block_found, swap_block_len, do_swap, swap_emp, swap_vessel, swap_task,

swap_block_start, swap_block_end);

while(do_swap==0 && swap_find_time<weeks_to_plan) {

evaluate_swap12(swap_vessel,roles, swap_block_start, swap_emp, swap_task,

swap_allowed, eligible, min_rest, emp_extend, starting, all_roles, summation,

summation_1,too_early, swap_block_found,swap_new_block, all_rest,rol_10,

emp_10, list_sol, swap_block_earliest,swap_find_time, swap_block_latest);

if(swap_block_found==1 && rol_10!=-1) {

if(rol_10 !=swap_task) {

link_to_vessel=0;

evaluate_swap13(vessel_extend, roles,swap_task, swap_allowed, eligible, rol_10,

emp_extend, swap_vessel, link_to_vessel, swap_find_time, swap_block_latest,

swap_block_found);

if(link_to_vessel==-1) {

swap_block_end= swap_find_time-1;

swap_block_len = (swap_block_end - swap_block_start) +1;

if(too_early ==0 && swap_allowed ==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

833

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

834

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap14(swap_block_found, swap_block_len, swap_block_end, swap_vessel,

swap_allowed,eligible , min_rest, starting, emp_extend, roles, all_roles,

summation, summation_1, too_early, swap_find_time, swap_block_latest, do_swap

, swap_task_extend, rol_10, swap_block_start, swap_block_earliest);

} }

else {

evaluate_swap15(rol_10, swap_find_time, swap_block_latest, swap_block_found,

swap_allowed, eligible, emp_extend);

} }

else if(swap_block_found==1 && rol_10==-1) {

swap_block_end=swap_find_time-1;

swap_block_len= (swap_block_end - swap_block_start) +1;

835

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

836

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

837

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap16(swap_emp, swap_task, swap_vessel, swap_block_found, do_swap,

too_early, swap_allowed, swap_block_start, swap_block_end, swap_block_len);

}

evaluate_swap17(swap_new_block, swap_block_found);

if((swap_find_time==(weeks_to_plan-1)) && (swap_block_found==1)) {

evaluate_swap18(swap_block_start, swap_block_len, swap_block_end, swap_find_time,

swap_allowed, eligible, swap_find_time, rol_10);

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

838

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

839

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } }

swap_find_time++;

}

if(do_swap == 0 && all_rest==1) {

evaluate_swap19(swap_emp, emp_10, swap_task, swap_block_start, block_start,

swap_block_end, block_end);

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

840

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

841

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } } } }

evaluate_block_new13(do_swap, no_swap,do_extend_bkwd, transfer_sol_from, no_bkwd,

do_extend_fwd, no_fwd);

if(do_extend_bkwd==1 || do_extend_fwd==1 || do_swap==1) {

check_tabu_2(transfer_sol_to, reg_emp,all_roles, weeks_to_plan, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

update_done=1;

compare_to_best(number_best, weeks_to_plan,all_roles, reg_emp, role_count ,

total_cost, new_best, same_best, emp_count, list_sol, best_sols, ag_list_sol,

ag_best_sols);

compare_to_best_2(best_sol_time,iteration, ag_best_sols,best_sols, number_best,

transfer_sol_from, transfer_sol_to, total_cost, all_emp, reg_emp, all_roles,

842

weeks_to_plan, lambda, allocate_sol, long_work_sol, emp_cost, list_sol,

board_sol, depart_sol, undertime_sol, overtime_sol,ag_cost, ag_list_sol,

ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

} }

else {

if(block_len <max_work[emp_13]) {

if(vessel_extend!=-1) {

task_extend=roles[vessel_extend];

evaluate_block_new1(required, rest_zero, block_end, task_extend, emp_extend,

eligible, weeks_to_plan, extend_cost_fwd, extend_cost_bkwd, swapping_cost,

do_extend_bkwd, do_extend_fwd, do_swap, block_len, max_work, max_bkwd_extend,

max_fwd_extend);

if(max_bkwd_extend > 0) {

extend_len_bkwd=max_bkwd_extend;

while(do_extend_bkwd==0 && extend_len_bkwd>0) {

evaluate_block_new2(all_roles, reg_emp, weeks_to_plan, max_work,

conflict_found_bkwd, reserve_list_bkwd, in_reserve_bkwd, block_end,

task_extend, work_zero, length_count, emp_extend, rest_count, extend_len_bkwd

, emps_changed, ag_roles_changed, list_sol, ag_list_sol, min_rest);

evaluate_block_new3(to_check_tabu,all_roles, reg_emp, weeks_to_plan, max_work,

prev_work, add_to_emp, conflict_found_bkwd, reserve_list_bkwd,

in_reserve_bkwd, block_end, task_extend, work_zero, length_count, emp_extend,

rest_count, extend_len_bkwd, emps_changed, ag_roles_changed, list_sol,

ag_list_sol, eligible, rest_zero, min_rest);

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu==1) {

no_tabu=no_tabu+1;

}

else {

to_calculate=3;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

843

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

844

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

evaluate_block_new4(extend_cost_bkwd, total_cost, do_extend_bkwd, no_nonreduce,

emps_to_update, accept_rule, emps_changed);

if(total_cost[3]<total_cost[accept_rule]) {

update_swaps_and_changes(emps_to_update,swaps_examined,reg_emp, last_kick_time,

iteration, last_changed);

}

else {

evaluate_block_new5(emps_changed,candidate_emps, extend_cost_bkwd,

candidate_cost, candidate_exist, total_cost,transfer_sol_from,

transfer_sol_to, all_emp, reg_emp, all_roles, weeks_to_plan, lambda,

allocate_sol, long_work_sol, emp_cost, list_sol, board_sol, depart_sol,

undertime_sol, overtime_sol, ag_cost, ag_list_sol, ag_crewchange,

ag_rboard_sol, ag_rdepart_sol);

} }

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} }

if(do_extend_bkwd==0) {

extend_len_bkwd=extend_len_bkwd-1;

} } }

if(do_extend_bkwd==0) {

evaluate_block_new6(extend_len_fwd, max_fwd_extend, block_start, rest_zero,

emp_extend, summation, vessels, roles, task_extend, starting, min_rest,

eligible, required);

if(max_fwd_extend > 0) {

while(do_extend_fwd==0 && extend_len_fwd>0) {

evaluate_block_new7(extend_len_fwd, emps_changed, ag_roles_changed, reg_emp,

weeks_to_plan, list_sol, all_roles, ag_list_sol, reserve_list_fwd, emp_extend

,rest_count, in_reserve_fwd,task_extend, min_rest,conflict_found_fwd,

block_start);

evaluate_block_new8(rest_zero,starting,eligible, max_work,length_count,

to_check_tabu,summation_1,summation, prev_work,add_to_emp,extend_len_fwd,

emps_changed,ag_roles_changed, reg_emp, weeks_to_plan, list_sol, all_roles,

ag_list_sol, reserve_list_fwd, emp_extend, rest_count,in_reserve_fwd,

845

task_extend, min_rest,conflict_found_fwd,block_start);

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu==1) {

no_tabu=no_tabu+1;

}

else {

to_calculate=4;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

846

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

evaluate_block_new9(extend_cost_fwd, total_cost, do_extend_fwd, no_nonreduce,

emps_to_update, accept_rule, emps_changed);

if(total_cost[4]<total_cost[accept_rule]) {

update_swaps_and_changes(emps_to_update,swaps_examined,reg_emp, last_kick_time,

iteration, last_changed);

}

else {

evaluate_block_new10(emps_changed,candidate_emps, extend_cost_fwd,

candidate_cost, candidate_exist, total_cost,transfer_sol_from,

transfer_sol_to, all_emp, reg_emp, all_roles, weeks_to_plan, lambda,

allocate_sol, long_work_sol, emp_cost, list_sol, board_sol, depart_sol,

undertime_sol, overtime_sol, ag_cost, ag_list_sol, ag_crewchange,

ag_rboard_sol, ag_rdepart_sol);

} }

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

847

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} }

if(do_extend_fwd==0) {

extend_len_fwd=extend_len_fwd-1;

} } } }

if(do_extend_bkwd==0 && do_extend_fwd==0) {

if(block_start>=0) {

evaluate_swap1(ag_swappable, block_start, block_end, eligible, task_extend);

if(ag_swappable==1) {

for(rol_10=0;rol_10< all_roles;rol_10++) {

if(rol_10!=task_extend) {

evaluate_swap2(swap_allowed, too_early, do_swap, swap_emp, swap_task,

swap_block_start, swap_block_end, swap_block_len, swap_find_time,

swap_block_found);

for(weeks_10=0;weeks_10<weeks_to_plan;weeks_10++) {

if(do_swap==0) {

evaluate_swap3(weeks_10, rol_10,swap_block_start, swap_task, swap_emp,

swap_allowed, eligible , min_rest, starting, emp_extend, all_roles, summation

, summation_1, too_early, swap_new_block, swap_block_found, ag_list_sol,

swap_block_latest, swap_block_earliest);

if(swap_block_found ==1 && ag_list_sol[0][weeks_10][rol_10]==1) {

if(ag_crewchange[0][weeks_10][rol_10]==1) {

swap_block_end=weeks_10-1;

swap_block_len= (swap_block_end - swap_block_start) +1;

if(too_early ==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

848

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

849

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap4(weeks_10, swap_block_found, swap_block_len, swap_block_end,

swap_allowed, eligible, min_rest, too_early, emp_extend, swap_block_earliest,

starting, summation, summation_1, all_roles, swap_block_latest, do_swap,

swap_task,swap_block_start, rol_10);

}

else {

evaluate_swap5(swap_allowed, emp_extend, rol_10, weeks_10, swap_block_latest,

swap_block_found, eligible);

} }

else if(swap_block_found==1 && ag_list_sol[0][weeks_10][rol_10]!=1)

{

swap_block_end=weeks_10-1;

850

swap_block_len=(swap_block_end - swap_block_start) +1;

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend])

{ swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan,

list_sol, all_roles,ag_list_sol, emp_extend, block_start, swap_block_start,

min_rest, swap_block_end, swap_task, block_end, swap_emp,task_extend,

to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

851

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

852

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap6(swap_allowed, too_early, do_swap, swap_emp, swap_task,

swap_block_start, swap_block_end, swap_block_len, swap_block_found);

}

evaluate_swap7(swap_new_block, swap_block_found);

if((weeks_10==(weeks_to_plan-1)) && (swap_block_found==1)) {

evaluate_swap8(weeks_10, rol_10,swap_block_end, swap_block_start, swap_block_len

, swap_allowed, eligible,emp_extend);

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

853

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

854

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } } } } } }

if(do_swap==0) {

evaluate_swap9(swap_emp, swap_task, swap_block_start, block_start,

swap_block_end, block_end);

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

855

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

856

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

//part 2 ev_swap

evaluate_swap10(min_rest, work_zero, starting, all_roles, summation, summation_1

, eligible, task_extend, block_end, rest_zero, block_start, max_work,

block_len, reg_emp, swappable_emp, emp_extend);

// void evaluate_swap10(int min_rest_1[48], int work_zero_1[48],int starting_1

[25][49],int& weeks_10x,int all_roles_1,int summation_1, int summation_1x,int

eligible_1[13][25][48],int& task_extend_1,int& block_end_1,int rest_zero_1

[48],int& block_start_1,int max_work_1[48],int& block_len_1, int reg_emp_1,

int swappable_emp_1[48], int& emp_extend_1)

//part 2 ev_swap

boyut_20=ordered_list.size();

//for(emp_10=0;emp_10<48; emp_10++)

for(count_20=0;count_20<boyut_20; count_20++) {

emp_10=ordered_list[count_20];

if(swappable_emp[emp_10]==1 && swaps_examined[emp_extend][emp_10]!=1) // AL -

857

Have changed this from "if(swappable_emp[emp_10]==0 &&..."

{

evaluate_swap11(swap_find_time, all_rest,swap_allowed, too_early,

swap_block_found, swap_block_len, do_swap, swap_emp, swap_vessel, swap_task,

swap_block_start, swap_block_end);

while(do_swap==0 && swap_find_time<weeks_to_plan) {

evaluate_swap12(swap_vessel,roles, swap_block_start, swap_emp, swap_task,

swap_allowed, eligible, min_rest, emp_extend, starting, all_roles, summation,

summation_1,too_early, swap_block_found,swap_new_block, all_rest,rol_10,

emp_10, list_sol, swap_block_earliest,swap_find_time, swap_block_latest);

if(swap_block_found==1 && rol_10!=-1) {

if(rol_10 !=swap_task) {

link_to_vessel=0;

evaluate_swap13(vessel_extend, roles,swap_task, swap_allowed, eligible, rol_10,

emp_extend, swap_vessel, link_to_vessel, swap_find_time, swap_block_latest,

swap_block_found);

if(link_to_vessel==-1) {

swap_block_end= swap_find_time-1;

swap_block_len = (swap_block_end - swap_block_start) +1;

if(too_early ==0 && swap_allowed ==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

858

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

859

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap14(swap_block_found, swap_block_len, swap_block_end, swap_vessel,

swap_allowed,eligible , min_rest, starting, emp_extend, roles, all_roles,

summation, summation_1, too_early, swap_find_time, swap_block_latest, do_swap

, swap_task_extend, rol_10, swap_block_start, swap_block_earliest);

} }

else {

evaluate_swap15(rol_10, swap_find_time, swap_block_latest, swap_block_found,

swap_allowed, eligible, emp_extend);

} }

else if(swap_block_found==1 && rol_10==-1) {

swap_block_end=swap_find_time-1;

swap_block_len= (swap_block_end - swap_block_start) +1;

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

860

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

861

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

862

evaluate_swap16(swap_emp, swap_task, swap_vessel, swap_block_found, do_swap,

too_early, swap_allowed, swap_block_start, swap_block_end, swap_block_len);

}

evaluate_swap17(swap_new_block, swap_block_found);

if((swap_find_time==(weeks_to_plan-1)) && (swap_block_found==1)) {

evaluate_swap18(swap_block_start, swap_block_len, swap_block_end, swap_find_time,

swap_allowed, eligible, swap_find_time, rol_10);

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

863

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

864

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } }

swap_find_time++;

}

if(do_swap == 0 && all_rest==1) {

evaluate_swap19(swap_emp, emp_10, swap_task, swap_block_start, block_start,

swap_block_end, block_end);

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

865

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

866

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } } } }

evaluate_block_new13(do_swap, no_swap,do_extend_bkwd, transfer_sol_from, no_bkwd,

do_extend_fwd, no_fwd);

if(do_extend_bkwd==1 || do_extend_fwd==1 || do_swap ==1) {

check_tabu_2(transfer_sol_to, reg_emp,all_roles, weeks_to_plan, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

update_done=1;

compare_to_best(number_best, weeks_to_plan,all_roles, reg_emp, role_count ,

total_cost, new_best, same_best, emp_count, list_sol, best_sols, ag_list_sol,

ag_best_sols);

compare_to_best_2(best_sol_time,iteration, ag_best_sols,best_sols, number_best,

transfer_sol_from, transfer_sol_to, total_cost, all_emp, reg_emp, all_roles,

weeks_to_plan, lambda, allocate_sol, long_work_sol, emp_cost, list_sol,

board_sol, depart_sol, undertime_sol, overtime_sol,ag_cost, ag_list_sol,

ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

} } } }

find_usables_6(block_found, block_start, block_end, block_len, emp_extend,

task_extend, vessel_extend);

867

}

find_usables_7(new_block,block_found);

if((weeks_14==(weeks_to_plan-1)) && block_found==1) {

find_usables_8(block_end, weeks_14, swap_block_latest, block_len, block_start);

if(task_extend!=-1) {

evaluate_block_new1(required, rest_zero, block_end, task_extend, emp_extend,

eligible, weeks_to_plan, extend_cost_fwd, extend_cost_bkwd, swapping_cost,

do_extend_bkwd, do_extend_fwd, do_swap, block_len, max_work, max_bkwd_extend,

max_fwd_extend);

if(max_bkwd_extend > 0) {

extend_len_bkwd=max_bkwd_extend;

while(do_extend_bkwd==0 && extend_len_bkwd>0) {

evaluate_block_new2(all_roles, reg_emp, weeks_to_plan, max_work,

conflict_found_bkwd, reserve_list_bkwd, in_reserve_bkwd, block_end,

task_extend, work_zero, length_count, emp_extend, rest_count, extend_len_bkwd

, emps_changed, ag_roles_changed, list_sol, ag_list_sol, min_rest);

evaluate_block_new3(to_check_tabu,all_roles, reg_emp, weeks_to_plan, max_work,

prev_work, add_to_emp, conflict_found_bkwd, reserve_list_bkwd,

in_reserve_bkwd, block_end, task_extend, work_zero, length_count, emp_extend,

rest_count, extend_len_bkwd, emps_changed, ag_roles_changed, list_sol,

ag_list_sol, eligible, rest_zero, min_rest);

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu==1) {

no_tabu=no_tabu+1;

}

else {

to_calculate=3;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

868

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

869

);

if(feasible==1) {

evaluate_block_new4(extend_cost_bkwd, total_cost, do_extend_bkwd, no_nonreduce,

emps_to_update, accept_rule, emps_changed);

if(total_cost[3]<total_cost[accept_rule]) {

update_swaps_and_changes(emps_to_update,swaps_examined,reg_emp, last_kick_time,

iteration, last_changed);

}

else {

evaluate_block_new5(emps_changed,candidate_emps, extend_cost_bkwd,

candidate_cost, candidate_exist, total_cost,transfer_sol_from,

transfer_sol_to, all_emp, reg_emp, all_roles, weeks_to_plan, lambda,

allocate_sol, long_work_sol, emp_cost, list_sol, board_sol, depart_sol,

undertime_sol, overtime_sol, ag_cost, ag_list_sol, ag_crewchange,

ag_rboard_sol, ag_rdepart_sol);

} }

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} }

if(do_extend_bkwd==0) {

extend_len_bkwd=extend_len_bkwd-1;

} } }

if(do_extend_bkwd==0) {

evaluate_block_new6(extend_len_fwd, max_fwd_extend, block_start, rest_zero,

emp_extend, summation, vessels, roles, task_extend, starting, min_rest,

eligible, required);

if(max_fwd_extend > 0) {

while(do_extend_fwd==0 && extend_len_fwd>0) {

evaluate_block_new7(extend_len_fwd, emps_changed, ag_roles_changed, reg_emp,

weeks_to_plan, list_sol, all_roles, ag_list_sol, reserve_list_fwd, emp_extend

,rest_count, in_reserve_fwd,task_extend, min_rest,conflict_found_fwd,

block_start);

evaluate_block_new8(rest_zero,starting,eligible, max_work,length_count,

to_check_tabu,summation_1,summation, prev_work,add_to_emp,extend_len_fwd,

emps_changed,ag_roles_changed, reg_emp, weeks_to_plan, list_sol, all_roles,

ag_list_sol, reserve_list_fwd, emp_extend, rest_count,in_reserve_fwd,

task_extend, min_rest,conflict_found_fwd,block_start);

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

870

if(tabu==1) {

no_tabu=no_tabu+1;

}

else {

to_calculate=4;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

871

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

evaluate_block_new9(extend_cost_fwd, total_cost, do_extend_fwd, no_nonreduce,

emps_to_update, accept_rule, emps_changed);

if(total_cost[4]<total_cost[accept_rule]) {

update_swaps_and_changes(emps_to_update,swaps_examined,reg_emp, last_kick_time,

iteration, last_changed);

}

else {

evaluate_block_new10(emps_changed,candidate_emps, extend_cost_fwd,

candidate_cost, candidate_exist, total_cost,transfer_sol_from,

transfer_sol_to, all_emp, reg_emp, all_roles, weeks_to_plan, lambda,

allocate_sol, long_work_sol, emp_cost, list_sol, board_sol, depart_sol,

undertime_sol, overtime_sol, ag_cost, ag_list_sol, ag_crewchange,

ag_rboard_sol, ag_rdepart_sol);

} }

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} }

872

if(do_extend_fwd==0) {

extend_len_fwd=extend_len_fwd-1;

} } } }

if(do_extend_bkwd==0 && do_extend_fwd==0) {

if(block_start>=0) {

evaluate_swap1(ag_swappable, block_start, block_end, eligible, task_extend);

if(ag_swappable==1) {

for(rol_10=0;rol_10< all_roles;rol_10++) {

if(rol_10!=task_extend) {

evaluate_swap2(swap_allowed, too_early, do_swap, swap_emp, swap_task,

swap_block_start, swap_block_end, swap_block_len, swap_find_time,

swap_block_found);

for(weeks_10=0;weeks_10<weeks_to_plan;weeks_10++) {

if(do_swap==0) {

evaluate_swap3(weeks_10, rol_10,swap_block_start, swap_task, swap_emp,

swap_allowed, eligible , min_rest, starting, emp_extend, all_roles, summation

, summation_1, too_early, swap_new_block, swap_block_found, ag_list_sol,

swap_block_latest, swap_block_earliest);

if(swap_block_found ==1 && ag_list_sol[0][weeks_10][rol_10]==1) {

if(ag_crewchange[0][weeks_10][rol_10]==1) {

swap_block_end=weeks_10-1;

swap_block_len= (swap_block_end - swap_block_start) +1;

if(too_early ==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

873

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

874

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap4(weeks_10, swap_block_found, swap_block_len, swap_block_end,

swap_allowed, eligible, min_rest, too_early, emp_extend, swap_block_earliest,

starting, summation, summation_1, all_roles, swap_block_latest, do_swap,

swap_task,swap_block_start, rol_10);

}

else {

evaluate_swap5(swap_allowed, emp_extend, rol_10, weeks_10, swap_block_latest,

swap_block_found, eligible);

} }

else if(swap_block_found==1 && ag_list_sol[0][weeks_10][rol_10]!=1) {

swap_block_end=weeks_10-1;

swap_block_len=(swap_block_end - swap_block_start) +1;

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend])

{ swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan,

875

list_sol, all_roles,ag_list_sol, emp_extend, block_start, swap_block_start,

min_rest, swap_block_end, swap_task, block_end, swap_emp,task_extend,

to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

876

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

877

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap6(swap_allowed, too_early, do_swap, swap_emp, swap_task,

swap_block_start, swap_block_end, swap_block_len, swap_block_found);

}

evaluate_swap7(swap_new_block, swap_block_found);

if((weeks_10==(weeks_to_plan-1)) && (swap_block_found==1)) {

evaluate_swap8(weeks_10, rol_10,swap_block_end, swap_block_start, swap_block_len

, swap_allowed, eligible,emp_extend);

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

878

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

879

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } } } } } }

if(do_swap==0) {

evaluate_swap9(swap_emp, swap_task, swap_block_start, block_start,

swap_block_end, block_end);

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

880

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

881

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

//part 2 ev_swap

evaluate_swap10(min_rest, work_zero, starting, all_roles, summation, summation_1

, eligible, task_extend, block_end, rest_zero, block_start, max_work,

block_len, reg_emp, swappable_emp, emp_extend);

// void evaluate_swap10(int min_rest_1[48], int work_zero_1[48],int starting_1

[25][49],int& weeks_10x,int all_roles_1,int summation_1, int summation_1x,int

eligible_1[13][25][48],int& task_extend_1,int& block_end_1,int rest_zero_1

[48],int& block_start_1,int max_work_1[48],int& block_len_1, int reg_emp_1,

int swappable_emp_1[48], int& emp_extend_1)

//part 2 ev_swap

boyut_20=ordered_list.size();

// for(emp_10=0;emp_10<reg_emp; emp_10++)

for(count_20=0;count_20<boyut_20; count_20++) {

emp_10=ordered_list[count_20];

if(swappable_emp[emp_10]==1 && swaps_examined[emp_extend][emp_10]!=1) // AL -

Have changed this from "if(swappable_emp[emp_10]==0 &&..."

{

evaluate_swap11(swap_find_time, all_rest,swap_allowed, too_early,

swap_block_found, swap_block_len, do_swap, swap_emp, swap_vessel, swap_task,

882

swap_block_start, swap_block_end);

while(do_swap==0 && swap_find_time<weeks_to_plan) {

evaluate_swap12(swap_vessel,roles, swap_block_start, swap_emp, swap_task,

swap_allowed, eligible, min_rest, emp_extend, starting, all_roles, summation,

summation_1,too_early, swap_block_found,swap_new_block, all_rest,rol_10,

emp_10, list_sol, swap_block_earliest,swap_find_time, swap_block_latest);

if(swap_block_found==1 && rol_10!=-1) {

if(rol_10 !=swap_task) {

link_to_vessel=0;

evaluate_swap13(vessel_extend, roles,swap_task, swap_allowed, eligible, rol_10,

emp_extend, swap_vessel, link_to_vessel, swap_find_time, swap_block_latest,

swap_block_found);

if(link_to_vessel==-1) {

swap_block_end= swap_find_time-1;

swap_block_len = (swap_block_end - swap_block_start) +1;

if(too_early ==0 && swap_allowed ==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

883

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

884

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap14(swap_block_found, swap_block_len, swap_block_end, swap_vessel,

swap_allowed,eligible , min_rest, starting, emp_extend, roles, all_roles,

summation, summation_1, too_early, swap_find_time, swap_block_latest, do_swap

, swap_task_extend, rol_10, swap_block_start, swap_block_earliest);

}

else {

evaluate_swap15(rol_10, swap_find_time, swap_block_latest, swap_block_found,

swap_allowed, eligible, emp_extend);

} }

else if(swap_block_found==1 && rol_10==-1) {

swap_block_end=swap_find_time-1;

swap_block_len= (swap_block_end - swap_block_start) +1;

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

885

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

886

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap16(swap_emp, swap_task, swap_vessel, swap_block_found, do_swap,

too_early, swap_allowed, swap_block_start, swap_block_end, swap_block_len);

}

evaluate_swap17(swap_new_block, swap_block_found);

887

if((swap_find_time==(weeks_to_plan-1)) && (swap_block_found==1)) {

evaluate_swap18(swap_block_start, swap_block_len, swap_block_end, swap_find_time,

swap_allowed, eligible, swap_find_time, rol_10);

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

888

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

889

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } }

swap_find_time++;

}

if(do_swap == 0 && all_rest==1) {

evaluate_swap19(swap_emp, emp_10, swap_task, swap_block_start, block_start,

swap_block_end, block_end);

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

890

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

891

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } } } }

evaluate_block_new13(do_swap, no_swap,do_extend_bkwd, transfer_sol_from, no_bkwd,

do_extend_fwd, no_fwd);

if(do_extend_bkwd==1 || do_extend_fwd==1 || do_swap ==1) {

check_tabu_2(transfer_sol_to, reg_emp,all_roles, weeks_to_plan, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

update_done=1;

compare_to_best(number_best, weeks_to_plan,all_roles, reg_emp, role_count ,

total_cost, new_best, same_best, emp_count, list_sol, best_sols, ag_list_sol,

ag_best_sols);

compare_to_best_2(best_sol_time,iteration, ag_best_sols,best_sols, number_best,

transfer_sol_from, transfer_sol_to, total_cost, all_emp, reg_emp, all_roles,

weeks_to_plan, lambda, allocate_sol, long_work_sol, emp_cost, list_sol,

board_sol, depart_sol, undertime_sol, overtime_sol,ag_cost, ag_list_sol,

ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

} }

else {

if(block_len < max_work[emp_13]) {

if(vessel_extend!=-1) {

task_extend=roles[vessel_extend];

evaluate_block_new1(required, rest_zero, block_end, task_extend, emp_extend,

eligible, weeks_to_plan, extend_cost_fwd, extend_cost_bkwd, swapping_cost,

892

do_extend_bkwd, do_extend_fwd, do_swap, block_len, max_work, max_bkwd_extend,

max_fwd_extend);

if(max_bkwd_extend > 0) {

extend_len_bkwd=max_bkwd_extend;

while(do_extend_bkwd==0 && extend_len_bkwd>0) {

evaluate_block_new2(all_roles, reg_emp, weeks_to_plan, max_work,

conflict_found_bkwd, reserve_list_bkwd, in_reserve_bkwd, block_end,

task_extend, work_zero, length_count, emp_extend, rest_count, extend_len_bkwd

, emps_changed, ag_roles_changed, list_sol, ag_list_sol, min_rest);

evaluate_block_new3(to_check_tabu,all_roles, reg_emp, weeks_to_plan, max_work,

prev_work, add_to_emp, conflict_found_bkwd, reserve_list_bkwd,

in_reserve_bkwd, block_end, task_extend, work_zero, length_count, emp_extend,

rest_count, extend_len_bkwd, emps_changed, ag_roles_changed, list_sol,

ag_list_sol, eligible, rest_zero, min_rest);

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu==1) {

no_tabu=no_tabu+1;

}

else {

to_calculate=3;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

893

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

evaluate_block_new4(extend_cost_bkwd, total_cost, do_extend_bkwd, no_nonreduce,

emps_to_update, accept_rule, emps_changed);

if(total_cost[3]<total_cost[accept_rule]) {

update_swaps_and_changes(emps_to_update,swaps_examined,reg_emp, last_kick_time,

iteration, last_changed);

894

}

else {

evaluate_block_new5(emps_changed,candidate_emps, extend_cost_bkwd,

candidate_cost, candidate_exist, total_cost,transfer_sol_from,

transfer_sol_to, all_emp, reg_emp, all_roles, weeks_to_plan, lambda,

allocate_sol, long_work_sol, emp_cost, list_sol, board_sol, depart_sol,

undertime_sol, overtime_sol, ag_cost, ag_list_sol, ag_crewchange,

ag_rboard_sol, ag_rdepart_sol);

} }

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} }

if(do_extend_bkwd==0) {

extend_len_bkwd=extend_len_bkwd-1;

} } }

if(do_extend_bkwd==0) {

evaluate_block_new6(extend_len_fwd, max_fwd_extend, block_start, rest_zero,

emp_extend, summation, vessels, roles, task_extend, starting, min_rest,

eligible, required);

if(max_fwd_extend > 0) {

while(do_extend_fwd==0 && extend_len_fwd>0) {

evaluate_block_new7(extend_len_fwd, emps_changed, ag_roles_changed, reg_emp,

weeks_to_plan, list_sol, all_roles, ag_list_sol, reserve_list_fwd, emp_extend

,rest_count, in_reserve_fwd,task_extend, min_rest,conflict_found_fwd,

block_start);

evaluate_block_new8(rest_zero,starting,eligible, max_work,length_count,

to_check_tabu,summation_1,summation, prev_work,add_to_emp,extend_len_fwd,

emps_changed,ag_roles_changed, reg_emp, weeks_to_plan, list_sol, all_roles,

ag_list_sol, reserve_list_fwd, emp_extend, rest_count,in_reserve_fwd,

task_extend, min_rest,conflict_found_fwd,block_start);

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu==1) {

no_tabu=no_tabu+1;

}

else {

to_calculate=4;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

895

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

896

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

evaluate_block_new9(extend_cost_fwd, total_cost, do_extend_fwd, no_nonreduce,

emps_to_update, accept_rule, emps_changed);

if(total_cost[4]<total_cost[accept_rule]) {

update_swaps_and_changes(emps_to_update,swaps_examined,reg_emp, last_kick_time,

iteration, last_changed);

}

else {

evaluate_block_new10(emps_changed,candidate_emps, extend_cost_fwd,

candidate_cost, candidate_exist, total_cost,transfer_sol_from,

transfer_sol_to, all_emp, reg_emp, all_roles, weeks_to_plan, lambda,

allocate_sol, long_work_sol, emp_cost, list_sol, board_sol, depart_sol,

undertime_sol, overtime_sol, ag_cost, ag_list_sol, ag_crewchange,

ag_rboard_sol, ag_rdepart_sol);

} }

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} }

if(do_extend_fwd==0) {

extend_len_fwd=extend_len_fwd-1;

} } } }

if(do_extend_bkwd==0 && do_extend_fwd==0) {

if(block_start>=0) {

evaluate_swap1(ag_swappable, block_start, block_end, eligible, task_extend);

if(ag_swappable==1) {

897

for(rol_10=0;rol_10< all_roles;rol_10++) {

if(rol_10!=task_extend) {

evaluate_swap2(swap_allowed, too_early, do_swap, swap_emp, swap_task,

swap_block_start, swap_block_end, swap_block_len, swap_find_time,

swap_block_found);

for(weeks_10=0;weeks_10<weeks_to_plan;weeks_10++) {

if(do_swap==0) {

evaluate_swap3(weeks_10, rol_10,swap_block_start, swap_task, swap_emp,

swap_allowed, eligible , min_rest, starting, emp_extend, all_roles, summation

, summation_1, too_early, swap_new_block, swap_block_found, ag_list_sol,

swap_block_latest, swap_block_earliest);

if(swap_block_found ==1 && ag_list_sol[0][weeks_10][rol_10]==1) {

if(ag_crewchange[0][weeks_10][rol_10]==1) {

swap_block_end=weeks_10-1;

swap_block_len= (swap_block_end - swap_block_start) +1;

if(too_early ==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

898

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

899

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap4(weeks_10, swap_block_found, swap_block_len, swap_block_end,

swap_allowed, eligible, min_rest, too_early, emp_extend, swap_block_earliest,

starting, summation, summation_1, all_roles, swap_block_latest, do_swap,

swap_task,swap_block_start, rol_10);

}

else {

evaluate_swap5(swap_allowed, emp_extend, rol_10, weeks_10, swap_block_latest,

swap_block_found, eligible);

} }

else if(swap_block_found==1 && ag_list_sol[0][weeks_10][rol_10]!=1) {

swap_block_end=weeks_10-1;

swap_block_len=(swap_block_end - swap_block_start) +1;

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend])

{ swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan,

list_sol, all_roles,ag_list_sol, emp_extend, block_start, swap_block_start,

min_rest, swap_block_end, swap_task, block_end, swap_emp,task_extend,

to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

900

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

901

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap6(swap_allowed, too_early, do_swap, swap_emp, swap_task,

swap_block_start, swap_block_end, swap_block_len, swap_block_found);

}

902

evaluate_swap7(swap_new_block, swap_block_found);

if((weeks_10==(weeks_to_plan-1)) && (swap_block_found==1)) {

evaluate_swap8(weeks_10, rol_10,swap_block_end, swap_block_start, swap_block_len

, swap_allowed, eligible,emp_extend);

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

903

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

904

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } } } } } }

if(do_swap==0) {

evaluate_swap9(swap_emp, swap_task, swap_block_start, block_start,

swap_block_end, block_end);

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

905

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

906

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

//part 2 ev_swap

evaluate_swap10(min_rest, work_zero, starting, all_roles, summation, summation_1

, eligible, task_extend, block_end, rest_zero, block_start, max_work,

block_len, reg_emp, swappable_emp, emp_extend);

// void evaluate_swap10(int min_rest_1[48], int work_zero_1[48],int starting_1

[25][49],int& weeks_10x,int all_roles_1,int summation_1, int summation_1x,int

eligible_1[13][25][48],int& task_extend_1,int& block_end_1,int rest_zero_1

[48],int& block_start_1,int max_work_1[48],int& block_len_1, int reg_emp_1,

int swappable_emp_1[48], int& emp_extend_1)

//part 2 ev_swap

boyut_20=ordered_list.size();

for(count_20=0;count_20<boyut_20; count_20++)

//for(emp_10=0;emp_10<48; emp_10++)

{

emp_10=ordered_list[count_20];

if(swappable_emp[emp_10]==1 && swaps_examined[emp_extend][emp_10]!=1) // AL -

Have changed this from "if(swappable_emp[emp_10]==0 &&..."

{

evaluate_swap11(swap_find_time, all_rest,swap_allowed, too_early,

swap_block_found, swap_block_len, do_swap, swap_emp, swap_vessel, swap_task,

swap_block_start, swap_block_end);

while(do_swap==0 && swap_find_time<weeks_to_plan) {

evaluate_swap12(swap_vessel,roles, swap_block_start, swap_emp, swap_task,

swap_allowed, eligible, min_rest, emp_extend, starting, all_roles, summation,

summation_1,too_early, swap_block_found,swap_new_block, all_rest,rol_10,

emp_10, list_sol, swap_block_earliest,swap_find_time, swap_block_latest);

907

if(swap_block_found==1 && rol_10!=-1) {

if(rol_10 !=swap_task) {

link_to_vessel=0;

evaluate_swap13(vessel_extend, roles,swap_task, swap_allowed, eligible, rol_10,

emp_extend, swap_vessel, link_to_vessel, swap_find_time, swap_block_latest,

swap_block_found);

if(link_to_vessel==-1) {

swap_block_end= swap_find_time-1;

swap_block_len = (swap_block_end - swap_block_start) +1;

if(too_early ==0 && swap_allowed ==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

908

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

909

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap14(swap_block_found, swap_block_len, swap_block_end, swap_vessel,

swap_allowed,eligible , min_rest, starting, emp_extend, roles, all_roles,

summation, summation_1, too_early, swap_find_time, swap_block_latest, do_swap

, swap_task_extend, rol_10, swap_block_start, swap_block_earliest);

} }

else {

evaluate_swap15(rol_10, swap_find_time, swap_block_latest, swap_block_found,

swap_allowed, eligible, emp_extend);

} }

else if(swap_block_found==1 && rol_10==-1) {

swap_block_end=swap_find_time-1;

swap_block_len= (swap_block_end - swap_block_start) +1;

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

910

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

911

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } }

evaluate_swap16(swap_emp, swap_task, swap_vessel, swap_block_found, do_swap,

too_early, swap_allowed, swap_block_start, swap_block_end, swap_block_len);

}

evaluate_swap17(swap_new_block, swap_block_found);

if((swap_find_time==(weeks_to_plan-1)) && (swap_block_found==1)) {

evaluate_swap18(swap_block_start, swap_block_len, swap_block_end, swap_find_time,

swap_allowed, eligible, swap_find_time, rol_10);

if(too_early==0 && swap_allowed==1) {

if(swap_block_len <= max_work[emp_extend]) {

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

912

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

913

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

914

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } }

swap_find_time++;

}

if(do_swap == 0 && all_rest==1) {

evaluate_swap19(swap_emp, emp_10, swap_task, swap_block_start, block_start,

swap_block_end, block_end);

swap_calc1(ag_roles_changed, emps_changed,reg_emp, weeks_to_plan, list_sol,

all_roles,ag_list_sol, emp_extend, block_start, swap_block_start, min_rest,

swap_block_end, swap_task, block_end, swap_emp,task_extend,to_check_tabu);

//swap calc part 1 finish

//swap calc part 2

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu ==1) // AL - Have changed this from "if(tabu ==0) "

{

no_tabu= no_tabu + 1;

}

else {

to_calculate=5;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

915

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

swap_calc3(emps_changed,no_nonreduce, swapping_cost, total_cost, accept_rule,

do_swap, emps_to_update, swaps_examined, reg_emp, last_kick_time, iteration,

last_changed);

swap_calc4(candidate_emps, swap_emp, emp_extend, candidate_cost, swapping_cost,

total_cost, accept_rule, candidate_exist, transfer_sol_from, transfer_sol_to,

916

all_emp, reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol,

long_work_sol, emp_cost, list_sol, board_sol, depart_sol, undertime_sol,

overtime_sol, ag_cost, ag_list_sol,ag_crewchange, ag_rboard_sol,

ag_rdepart_sol);

}

else {

no_infeas=no_infeas+1;

infeasibility(Statfeas,no_Statfeas,Linkfeas,no_Linkfeas,no_RvWfeas,RvWfeas,

AGLWfeas,LWfeas,no_AGLWfeas,no_LWfeas,UTfeas,OTfeas,no_UTfeas,no_OTfeas,

JCfeas,no_JCfeas,OLfeas, no_OLfeas,Brdfeas,Dprtfeas,AGBDfeas,no_Brdfeas,

no_Dprtfeas,no_AGBDfeas);

} } } } } } }

evaluate_block_new13(do_swap, no_swap,do_extend_bkwd, transfer_sol_from, no_bkwd,

do_extend_fwd, no_fwd);

if(do_extend_bkwd==1 || do_extend_fwd==1 || do_swap==1) {

check_tabu_2(transfer_sol_to, reg_emp,all_roles, weeks_to_plan, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

update_done=1;

compare_to_best(number_best, weeks_to_plan,all_roles, reg_emp, role_count ,

total_cost, new_best, same_best, emp_count, list_sol, best_sols, ag_list_sol,

ag_best_sols);

compare_to_best_2(best_sol_time,iteration, ag_best_sols,best_sols, number_best,

transfer_sol_from, transfer_sol_to, total_cost, all_emp, reg_emp, all_roles,

weeks_to_plan, lambda, allocate_sol, long_work_sol, emp_cost, list_sol,

board_sol, depart_sol, undertime_sol, overtime_sol,ag_cost, ag_list_sol,

ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

} } } } } } }

find_usables_9(update_done, emp_13,reg_emp, swaps_examined);

}

find_usables_10(tabu_sol, ag_tabu_sol, no_nonreduce, candidate_cost,

transfer_sol_from, transfer_sol_to, candidate_exist, update_done,

weeks_to_plan, reg_emp, all_roles, list_sol, ag_list_sol);

if(update_done==0 && candidate_exist==1) {

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

update_done=1;

no_cand=no_cand + 1;

917

compare_to_best(number_best, weeks_to_plan,all_roles, reg_emp, role_count ,

total_cost, new_best, same_best, emp_count, list_sol, best_sols, ag_list_sol,

ag_best_sols);

compare_to_best_2(best_sol_time,iteration, ag_best_sols,best_sols, number_best,

transfer_sol_from, transfer_sol_to, total_cost, all_emp, reg_emp, all_roles,

weeks_to_plan, lambda, allocate_sol, long_work_sol, emp_cost, list_sol,

board_sol, depart_sol, undertime_sol, overtime_sol,ag_cost, ag_list_sol,

ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

emps_to_update.clear();

emps_to_update.reserve(candidate_emps.size());

copy(candidate_emps.begin(),candidate_emps.end(),back_inserter(emps_to_update));

update_swaps_and_changes(emps_to_update,swaps_examined,reg_emp, last_kick_time,

iteration, last_changed);

}

end = clock();

time=(double)(end-start)/CLOCKS_PER_SEC;

finishing(update_done, terminate, iteration,time);

if(kick_rule==1) {

if((iteration - best_sol_time)>=4 && terminate == 0)

//if((iteration - best_sol_time)>=8 && terminate == 0)

{

if(last_kick_time==0 || ((last_kick_time > 0) && (iteration - last_kick_time) >=

20) || (total_cost[0]==total_cost[1] && no_nonreduce >= 1) || no_nonreduce >=

4)

//if(last_kick_time==0 || ((last_kick_time > 0) && (iteration - last_kick_time)

>= 40) || (total_cost[0]==total_cost[1] && no_nonreduce >= 1) || no_nonreduce

>= 8)

{

update_done=0;

while(update_done==0) {

kicking(emps_changed, ag_roles_changed, eligible, work_zero, min_rest, starting,

all_roles, sum_start_rand,rest_zero, kick_feas, kick_end, kick_start, random

,random_emp, reg_emp,kick_emp,random_task, all_roles, kick_task, max_work,

random_length, random_time, weeks_to_plan);

if(kick_feas==1) {

kicking2(min_rest, starting, rest_count, kick_emp, reg_emp, all_roles,

weeks_to_plan, ag_list_sol, kick_start, kick_end,kick_task, emps_changed,

ag_roles_changed, list_sol);

to_check_tabu= 7;

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu==1) {

no_tabu = no_tabu + 1;

918

}

else {

to_calculate=7;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

919

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

kicking3(all_roles, reg_emp, weeks_to_plan, tabu_sol, list_sol, ag_tabu_sol,

ag_list_sol);

transfer_sol_from=7;

transfer_sol_to=0;

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

last_kick_time=iteration;

update_done=1;

no_nonreduce=0;

compare_to_best(number_best, weeks_to_plan,all_roles, reg_emp, role_count ,

total_cost, new_best, same_best, emp_count, list_sol, best_sols, ag_list_sol,

ag_best_sols);

compare_to_best_2(best_sol_time,iteration, ag_best_sols,best_sols, number_best,

transfer_sol_from, transfer_sol_to, total_cost, all_emp, reg_emp, all_roles,

weeks_to_plan, lambda, allocate_sol, long_work_sol, emp_cost, list_sol,

board_sol, depart_sol, undertime_sol, overtime_sol,ag_cost, ag_list_sol,

ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

emps_to_update.clear(); // AL - Have added this line, to ensure

emps_to_update takes ONLY the values contained in emps_changed

emps_to_update.reserve(emps_changed.size());

copy(emps_changed.begin(),emps_changed.end(),back_inserter(emps_to_update));

920

update_swaps_and_changes(emps_to_update,swaps_examined,reg_emp, last_kick_time,

iteration, last_changed);

} } } }

no_kick=no_kick + 1;

//writeln("Running time so far: ",current_time - prog_starttime)

} } }

else if(kick_rule==2) {

//if((iteration - best_sol_time)>=4 && terminate == 0)

if((iteration - best_sol_time)>=8 && terminate == 0) {

//if(last_kick_time==0 || ((last_kick_time > 0) && (iteration - last_kick_time)

>= 20) || (total_cost[0]==total_cost[1] && no_nonreduce >= 1) || no_nonreduce

>= 4)

if(last_kick_time==0 || ((last_kick_time > 0) && (iteration - last_kick_time) >=

40) || (total_cost[0]==total_cost[1] && no_nonreduce >= 1) || no_nonreduce >=

8)

{

update_done=0;

while(update_done==0) {

kicking(emps_changed, ag_roles_changed, eligible, work_zero, min_rest, starting,

all_roles, sum_start_rand,rest_zero, kick_feas, kick_end, kick_start, random

,random_emp, reg_emp,kick_emp,random_task, all_roles, kick_task, max_work,

random_length, random_time, weeks_to_plan);

if(kick_feas==1) {

kicking2(min_rest, starting, rest_count, kick_emp, reg_emp, all_roles,

weeks_to_plan, ag_list_sol, kick_start, kick_end,kick_task, emps_changed,

ag_roles_changed, list_sol);

to_check_tabu= 7;

check_tabu(tabu, weeks_to_plan, reg_emp, all_roles, to_check_tabu, list_sol,

ag_list_sol, tabu_sol, ag_tabu_sol);

if(tabu==1) {

no_tabu = no_tabu + 1;

}

else {

to_calculate=7;

calc_cost1(all_roles,reg_emp, weeks_to_plan, list_sol, ag_list_sol, to_calculate,

total_cost);

calc_cost2(total_cost, starting, reg_emp, weeks_to_plan, all_roles,emps_changed,

emp_cost, allocate_sol, long_work_sol, lambda, board_sol, depart_sol,

undertime_sol, overtime_sol, consec_work,work_zero, list_sol, g_weeks,

exp_worktime);

calc_cost3(reg_emp, weeks_to_plan, all_roles,emps_changed, emp_cost,

allocate_sol, long_work_sol, lambda, board_sol, depart_sol, undertime_sol,

overtime_sol, chng_undertime, chng_overtime, cur_undertime, cur_overtime,

921

under_rate, over_rate, cur_allocate, chng_allocate, cur_board, chng_board,

board_chng_cost, cur_depart, chng_depart, depart_chng_cost, cur_long_work,

chng_long_work, extension_chng_cost,work_chng_cost);

calc_cost4(work_chng_cost, ag_max_work, ag_work_zero, consec_work,

feas_crewchange, to_calculate, iteration, weeks_to_plan, all_roles,

evaluate_crewchange, ag_roles_changed, definite_crewchange,

possible_crewchange, ag_cost, ag_crewchange, allocate_sol, ag_rboard_sol,

ag_rdepart_sol, long_work_sol, lambda, ag_starting, ag_list_sol,

cur_ag_rboard, poss_chng_ag_rboard, poss_ag_rboard, cur_ag_rdepart,

poss_chng_ag_rdepart, poss_ag_rdepart, ag_board_chng_cost,

ag_depart_chng_cost, poss_ag_long_work, cur_long_work, poss_chng_ag_long_work

, cur_allocate, chng_allocate, extension_chng_cost, chng_ag_rboard,

chng_ag_rdepart, chng_long_work);

calc_cost5(reg_emp,weeks_to_plan, all_roles,emp_cost, total_cost, ag_cost,

transfer_sol_from, transfer_sol_to, to_calculate);

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

JC_feas(feasible,JCfeas, all_emp, all_roles, weeks_to_plan, eligible,allocate_sol

,required);

Overlap_feas(emps_changed, feasible,OLfeas,all_emp, all_roles,weeks_to_plan,

allocate_sol);

BoardFeas(emps_changed, feasible, Brdfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, board_sol, starting);

DepartFeas(emps_changed, feasible, Dprtfeas, all_emp, all_roles, weeks_to_plan,

allocate_sol, depart_sol, starting);

AgBoardDepartFeas(ag_roles_changed, feasible, AGBDfeas, all_roles, weeks_to_plan,

allocate_sol, ag_rboard_sol, ag_rdepart_sol,ag_starting);

UnderOverFeas(emps_changed, feasible, UTfeas, OTfeas, all_emp, all_roles,

weeks_to_plan, undertime_sol, overtime_sol, g_weeks, exp_worktime,

allocate_sol);

LongWorkFeas(ag_roles_changed,emps_changed,AGLWfeas,LWfeas, lambda, feasible,

work_total, work_zero, reg_emp, all_roles, weeks_to_plan, allocate_sol,

max_work, long_work_sol, ag_work_total, ag_work_zero, ag_max_work,

ag_rdepart_sol);

RestFeas(emps_changed,feasible,RvWfeas, reg_emp, all_roles, weeks_to_plan,

depart_sol, rest_total, rest_zero,allocate_sol, min_rest);

LinkFeasiblity(lambda, ag_roles_changed,emps_changed, feasible, Linkfeas, reg_emp

, all_roles, weeks_to_plan, cur_allocate, chng_allocate, allocate_sol,

cur_board, chng_board, board_sol, cur_depart, chng_depart, depart_sol,

cur_ag_rboard, ag_rboard_sol, chng_ag_rboard, cur_ag_rdepart, ag_rdepart_sol,

chng_ag_rdepart, cur_long_work, chng_long_work, long_work_sol,

922

chng_undertime, undertime_sol, cur_undertime, chng_overtime, overtime_sol,

cur_overtime);

StatusFeasibility(lambda,ag_roles_changed,emps_changed,feasible,Statfeas,reg_emp

,all_roles, weeks_to_plan, allocate_sol, chng_allocate, chng_long_work,

long_work_sol, chng_board, board_sol, chng_depart, depart_sol, ag_rboard_sol,

chng_ag_rboard, ag_rdepart_sol, chng_ag_rdepart, undertime_sol, overtime_sol

);

if(feasible==1) {

kicking3(all_roles, reg_emp, weeks_to_plan, tabu_sol, list_sol, ag_tabu_sol,

ag_list_sol);

transfer_sol_from=7;

transfer_sol_to=0;

transfer_solution(transfer_sol_from, transfer_sol_to, total_cost, all_emp,

reg_emp, all_roles, weeks_to_plan, lambda, allocate_sol, long_work_sol,

emp_cost, list_sol, board_sol, depart_sol, undertime_sol, overtime_sol,

ag_cost, ag_list_sol, ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

last_kick_time=iteration;

update_done=1;

no_nonreduce=0;

compare_to_best(number_best, weeks_to_plan,all_roles, reg_emp, role_count ,

total_cost, new_best, same_best, emp_count, list_sol, best_sols, ag_list_sol,

ag_best_sols);

compare_to_best_2(best_sol_time,iteration, ag_best_sols,best_sols, number_best,

transfer_sol_from, transfer_sol_to, total_cost, all_emp, reg_emp, all_roles,

weeks_to_plan, lambda, allocate_sol, long_work_sol, emp_cost, list_sol,

board_sol, depart_sol, undertime_sol, overtime_sol,ag_cost, ag_list_sol,

ag_crewchange, ag_rboard_sol, ag_rdepart_sol);

emps_to_update.clear(); // AL - Have added this line, to ensure

emps_to_update takes ONLY the values contained in emps_changed

emps_to_update.reserve(emps_changed.size());

copy(emps_changed.begin(),emps_changed.end(),back_inserter(emps_to_update));

update_swaps_and_changes(emps_to_update,swaps_examined,reg_emp, last_kick_time,

iteration, last_changed);

} } } }

no_kick=no_kick + 1;

//writeln("Running time so far: ",current_time - prog_starttime)

} } }

results_alter<<iteration<<" "<<total_cost[0]<<" "<<total_cost[1] << ’\n’;

if((time>=60 && time>=61) && no_enter==0) {

no_enter=1;

changes_to_reg = 0; // number of changes to regular employees in the (

best) solution

changes_to_AG = 0; //number of changes to agency employees in the (best

923

) solution

number_of_AG = 0; // number of times agency employees are utilised in

the (best) solution

for(int e_last=0;e_last<48; e_last++) {

for(int job_last=0;job_last<25; job_last++) {

for(int week_last=0;week_last<12; week_last++) {

if(list_sol[1][week_last][e_last]==job_last && cur_allocate[week_last][job_last][

e_last]==0) {

changes_to_reg= changes_to_reg +1;

}

if(list_sol[1][week_last][e_last]!=job_last && cur_allocate[week_last][job_last][

e_last]==1) {

changes_to_reg=changes_to_reg +1;

} } } }

for(int job_last=0;job_last<25; job_last++) {

for(int week_last=0;week_last<12; week_last++) {

if(ag_list_sol[0][week_last][job_last]==1) {

number_of_AG=number_of_AG +1;

if(cur_allocate[week_last][job_last][48]==0) {

changes_to_AG=changes_to_AG +1;

} }

else {

if(cur_allocate[week_last][job_last][48]==1) {

changes_to_AG=changes_to_AG +1;

} } } }

results_1min<< "Set "<<set_no<<" "<<time<<" "<<iteration<<" "<<initial_cost

<<" "<< accept_rule<<" "<<kick_rule<<" "<<order_setting<<" "<<

initial_solution_type<<" "<<fraction_settings<<" "<<no_bkwd<<" "<<no_fwd<<"

"<<no_swap<<" "<<no_cand<<" "<<no_kick<<" "<<no_infeas<<" "<<no_tabu<<" "<<

total_cost[1]<<" "<<total_cost[0]<<" "<<best_sol_time<<" "<<number_best<<"

"<<changes_to_reg<<" "<<changes_to_AG<<" "<<number_of_AG<<’\n’;

} }

changes_to_reg = 0; // number of changes to regular employees in the (

best) solution

changes_to_AG = 0; //number of changes to agency employees in the (best

) solution

number_of_AG = 0; // number of times agency employees are utilised in

the (best) solution

for(int e_last=0;e_last<48; e_last++) {

for(int job_last=0;job_last<25; job_last++) {

for(int week_last=0;week_last<12; week_last++) {

if(list_sol[1][week_last][e_last]==job_last && cur_allocate[week_last][job_last][

e_last]==0) {

924

changes_to_reg= changes_to_reg +1;

}

if(list_sol[1][week_last][e_last]!=job_last && cur_allocate[week_last][job_last][

e_last]==1) {

changes_to_reg=changes_to_reg +1;

} } } }

for(int job_last=0;job_last<25; job_last++) {

for(int week_last=0;week_last<12; week_last++) {

if(ag_list_sol[0][week_last][job_last]==1) {

number_of_AG=number_of_AG +1;

if(cur_allocate[week_last][job_last][48]==0) {

changes_to_AG=changes_to_AG +1;

} }

else {

if(cur_allocate[week_last][job_last][48]==1) {

changes_to_AG=changes_to_AG +1;

} } } }

results<<"Set "<<set_no<<" "<<time<<" "<<iteration<<" "<<initial_cost<<"

"<< accept_rule<<" "<<kick_rule<<" "<<order_setting<<" "<<

initial_solution_type<<" "<<fraction_settings<<" "<<no_bkwd<<" "<<no_fwd<<"

"<<no_swap<<" "<<no_cand<<" "<<no_kick<<" "<<no_infeas<<" "<<no_tabu<<" "<<

total_cost[1]<<" "<<total_cost[0]<<" "<<best_sol_time<<" "<<number_best<<"

"<<changes_to_reg<<" "<<changes_to_AG<<" "<<number_of_AG<<’\n’;

} } } } }

results.close();

system("pause");

return 0;

}

E.2.5.2 ‘Calculate cost’ sub-programmes

#include "cost.h"

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <conio.h>

#include "string"

#include <cstdlib>

#include <ctime>

#include <math.h>

#include <iostream>

#include <fstream>

#include <algorithm>

925

#include <iterator>

#include <vector>

#include <random>

using namespace std;

void calc_cost1(int all_roles_1, int reg_emp_1, int weeks_to_plan_1, int

list_sol_1[8][13][48], int ag_list_sol_1[8][13][25], int& to_calculate_1,

float total_cost_1[8])

{

int emp_4,weeks_4, rol_4;

for(emp_4=0;emp_4<reg_emp_1;emp_4++)

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

list_sol_1[2][weeks_4][emp_4]=list_sol_1[to_calculate_1][weeks_4][emp_4];

}

for(rol_4=0;rol_4<all_roles_1;rol_4++)

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

ag_list_sol_1[2][weeks_4][rol_4]= ag_list_sol_1[to_calculate_1][weeks_4][rol_4];

}

total_cost_1[2]=0;

}

void calc_cost2(float total_cost_1[8],int starting_1[25][49],int reg_emp_1,int

weeks_to_plan_1, int all_roles_1,vector<int> &emps_changed_1, float

emp_cost_1[8][48], int allocate_sol_1[8][13][25][49], int long_work_sol_1

[8][13][25][49][10], int lambda_1,int board_sol_1[8][13][25][48], int

depart_sol_1[8][13][25][48],int undertime_sol_1[8][45], int overtime_sol_1

[8][45], int& consec_work_1, int work_zero_1[48],int list_sol_1[8][13][48],

int g_weeks_1[45], int exp_worktime_1[45])

{

int size_empschanged, count_4, emp_4, long_2, yes, weeks_4, rol_4, weeks_5, rol_5

;

int sum_allocation_vessels[48];

total_cost_1[2]=0;

size_empschanged=emps_changed_1.size();

for(emp_4=0;emp_4<reg_emp_1;emp_4++) {

yes=0;

count_4=0;

for(count_4=0; count_4<size_empschanged; count_4++) {

if(emp_4==emps_changed_1[count_4]) {

yes=1;

count_4=size_empschanged;

} }

if(yes==0) {

926

emp_cost_1[2][emp_4]=emp_cost_1[0][emp_4];

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

for(rol_4=0;rol_4<all_roles_1;rol_4++) {

allocate_sol_1[2][weeks_4][rol_4][emp_4]=allocate_sol_1[0][weeks_4][rol_4][emp_4

];

for(long_2=0;long_2<lambda_1;long_2++) {

long_work_sol_1[2][weeks_4][rol_4][emp_4][long_2]=long_work_sol_1[0][weeks_4][

rol_4][emp_4][long_2];

} }

for(rol_4=0;rol_4<all_roles_1;rol_4++) {

board_sol_1[2][weeks_4][rol_4][emp_4]=board_sol_1[0][weeks_4][rol_4][emp_4];

depart_sol_1[2][weeks_4][rol_4][emp_4]=depart_sol_1[0][weeks_4][rol_4][emp_4];

} }

if(emp_4>=3) {

undertime_sol_1[2][emp_4]=undertime_sol_1[0][emp_4];

overtime_sol_1[2][emp_4]=overtime_sol_1[0][emp_4];

} }

else if(yes==1) {

emp_cost_1[2][emp_4]=0;

consec_work_1=work_zero_1[emp_4];

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

for(rol_4=0;rol_4<all_roles_1;rol_4++) {

allocate_sol_1[2][weeks_4][rol_4][emp_4]=0;

for(long_2=0;long_2<lambda_1;long_2++) {

long_work_sol_1[2][weeks_4][rol_4][emp_4][long_2]=0;

}

if(list_sol_1[2][weeks_4][emp_4]==rol_4) {

allocate_sol_1[2][weeks_4][rol_4][emp_4]=1;

consec_work_1=consec_work_1+1;

for(long_2=0;long_2<consec_work_1;long_2++) {

long_work_sol_1[2][weeks_4][rol_4][emp_4][long_2]=1;

} } }

if(list_sol_1[2][weeks_4][emp_4]==-1) {

consec_work_1=0;

} }

for(rol_4=0;rol_4<all_roles_1;rol_4++) {

board_sol_1[2][0][rol_4][emp_4]=0;

depart_sol_1[2][0][rol_4][emp_4]=0;

if(allocate_sol_1[2][0][rol_4][emp_4] < starting_1[rol_4][emp_4]) {

depart_sol_1[2][0][rol_4][emp_4]=1;

}

else if(allocate_sol_1[2][0][rol_4][emp_4] > starting_1[rol_4][emp_4]) {

board_sol_1[2][0][rol_4][emp_4]= 1;

927

}

for(weeks_4=1;weeks_4<weeks_to_plan_1;weeks_4++) {

board_sol_1[2][weeks_4][rol_4][emp_4]=0;

depart_sol_1[2][weeks_4][rol_4][emp_4]=0;

if(allocate_sol_1[2][weeks_4][rol_4][emp_4]<allocate_sol_1[2][weeks_4-1][rol_4][

emp_4]) {

depart_sol_1[2][weeks_4][rol_4][emp_4]=1;

}

else if(allocate_sol_1[2][weeks_4][rol_4][emp_4]>allocate_sol_1[2][weeks_4-1][

rol_4][emp_4]) {

board_sol_1[2][weeks_4][rol_4][emp_4]= 1;

} } }

if(emp_4>=3) {

sum_allocation_vessels[emp_4]=0;

for(weeks_5=0;weeks_5<weeks_to_plan_1;weeks_5++)

for(rol_5=0;rol_5<all_roles_1;rol_5++) {

sum_allocation_vessels[emp_4]=allocate_sol_1[2][weeks_5][rol_5][emp_4]+

sum_allocation_vessels[emp_4];

}

if(g_weeks_1[emp_4-3]>(exp_worktime_1[emp_4-3] + sum_allocation_vessels[emp_4]))

{

undertime_sol_1[2][emp_4-3]=g_weeks_1[emp_4-3]- (exp_worktime_1[emp_4-3]+

sum_allocation_vessels[emp_4]);

overtime_sol_1[2][emp_4-3]=0;

}

else {

overtime_sol_1[2][emp_4-3]= (exp_worktime_1[emp_4-3] + sum_allocation_vessels[

emp_4])- g_weeks_1[emp_4-3];

undertime_sol_1[2][emp_4-3]= 0;

} } } } }

void calc_cost3(int reg_emp_1,int weeks_to_plan_1, int all_roles_1,vector<int> &

emps_changed_1, float emp_cost_1[8][48], int allocate_sol_1[8][13][25][49],

int long_work_sol_1[8][13][25][49][10], int lambda_1,int board_sol_1

[8][13][25][48], int depart_sol_1[8][13][25][48],int undertime_sol_1[8][45],

int overtime_sol_1[8][45], int chng_undertime_1[45], int chng_overtime_1[45],

int cur_undertime_1[45], int cur_overtime_1[45],int under_rate_1[45], int

over_rate_1[45], int cur_allocate_1[13][25][49], int chng_allocate_1

[13][25][49], int cur_board_1[13][25][48], int chng_board_1[13][25][48],

float board_chng_cost_1[13][25][48], int cur_depart_1[13][25][48], int

chng_depart_1[13][25][48], float depart_chng_cost_1[13][25][48],int

cur_long_work_1[13][25][49][10] ,int chng_long_work_1[13][25][49][10], float

extension_chng_cost_1[13][25][49][10],float work_chng_cost_1[13][25][49])

928

{

int yes,size_empschanged, count_4, emp_4, long_2, weeks_4, rol_4;

size_empschanged=emps_changed_1.size();

for(emp_4=0;emp_4<reg_emp_1;emp_4++) {

yes=0;

count_4=0;

for(count_4=0; count_4<size_empschanged; count_4++) {

if(emp_4==emps_changed_1[count_4]) {

yes=1;

count_4=size_empschanged;

} }

if(yes==1) {

if (emp_4>=3) {

chng_undertime_1[emp_4-3]= undertime_sol_1[2][emp_4-3]- cur_undertime_1[emp_4-3];

chng_overtime_1[emp_4-3]= overtime_sol_1[2][emp_4-3] - cur_overtime_1[emp_4-3];

emp_cost_1[2][emp_4]= emp_cost_1[2][emp_4] + (under_rate_1[emp_4-3]*

chng_undertime_1[emp_4-3]) + (over_rate_1[emp_4-3]*chng_overtime_1[emp_4-3]);

// under-over cost

}

for(rol_4=0;rol_4<all_roles_1;rol_4++)

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

if(cur_allocate_1[weeks_4][rol_4][emp_4]==0) {

chng_allocate_1[weeks_4][rol_4][emp_4]=allocate_sol_1[2][weeks_4][rol_4][emp_4];

}

else {

chng_allocate_1[weeks_4][rol_4][emp_4]=cur_allocate_1[weeks_4][rol_4][emp_4]-

allocate_sol_1[2][weeks_4][rol_4][emp_4];

}

emp_cost_1[2][emp_4]= emp_cost_1[2][emp_4]+ (work_chng_cost_1[weeks_4][rol_4][

emp_4]*chng_allocate_1[weeks_4][rol_4][emp_4]); // work_change

}

for(rol_4=0;rol_4<all_roles_1;rol_4++)

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

if(cur_board_1[weeks_4][rol_4][emp_4]==0) {

chng_board_1[weeks_4][rol_4][emp_4]=board_sol_1[2][weeks_4][rol_4][emp_4];

}

else {

chng_board_1[weeks_4][rol_4][emp_4]= cur_board_1[weeks_4][rol_4][emp_4]-

board_sol_1[2][weeks_4][rol_4][emp_4];

}

emp_cost_1[2][emp_4]= emp_cost_1[2][emp_4]+(board_chng_cost_1[weeks_4][rol_4][

emp_4]*chng_board_1[weeks_4][rol_4][emp_4]); //board_cost

}

929

for(rol_4=0;rol_4<all_roles_1;rol_4++)

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

if(cur_depart_1[weeks_4][rol_4][emp_4]==0) {

chng_depart_1[weeks_4][rol_4][emp_4]= depart_sol_1[2][weeks_4][rol_4][emp_4];

}

else {

chng_depart_1[weeks_4][rol_4][emp_4]= cur_depart_1[weeks_4][rol_4][emp_4] -

depart_sol_1[2][weeks_4][rol_4][emp_4];

}

emp_cost_1[2][emp_4]= emp_cost_1[2][emp_4] + (depart_chng_cost_1[weeks_4][rol_4][

emp_4]*chng_depart_1[weeks_4][rol_4][emp_4]); // depart

}

for(long_2=0;long_2<lambda_1;long_2++) {

for(rol_4=0;rol_4<all_roles_1;rol_4++) {

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

if(cur_long_work_1[weeks_4][rol_4][emp_4][long_2]== 0) {

chng_long_work_1[weeks_4][rol_4][emp_4][long_2]= long_work_sol_1[2][weeks_4][

rol_4][emp_4][long_2];

}

else {

chng_long_work_1[weeks_4][rol_4][emp_4][long_2]=cur_long_work_1[weeks_4][rol_4][

emp_4][long_2] -long_work_sol_1[2][weeks_4][rol_4][emp_4][long_2];

}

emp_cost_1[2][emp_4]= emp_cost_1[2][emp_4] + (extension_chng_cost_1[weeks_4][

rol_4][emp_4][long_2]*chng_long_work_1[weeks_4][rol_4][emp_4][long_2]); //

long_work

} } } } } }

void calc_cost31(int reg_emp_1,int weeks_to_plan_1, int all_roles_1,vector<int> &

emps_changed_1, float emp_cost_1[8][48], int allocate_sol_1[8][13][25][49],

int long_work_sol_1[8][13][25][49][10], int lambda_1,int board_sol_1

[8][13][25][48], int depart_sol_1[8][13][25][48],int undertime_sol_1[8][45],

int overtime_sol_1[8][45], int chng_undertime_1[45], int chng_overtime_1[45],

int cur_undertime_1[45], int cur_overtime_1[45],int under_rate_1[45], int

over_rate_1[45], int cur_allocate_1[13][25][49], int chng_allocate_1

[13][25][49], int cur_board_1[13][25][48], int chng_board_1[13][25][48],

float board_chng_cost_1[13][25][48], int cur_depart_1[13][25][48], int

chng_depart_1[13][25][48], float depart_chng_cost_1[13][25][48],int

cur_long_work_1[13][25][49][10] ,int chng_long_work_1[13][25][49][10], float

extension_chng_cost_1[13][25][49][10],float work_chng_cost_1[13][25][49])

{

int size_empschanged, count_4, emp_4, long_2, weeks_4, rol_4;

size_empschanged=emps_changed_1.size();

930

for(count_4=0; count_4<size_empschanged; count_4++) {

emp_4=emps_changed_1[count_4];

if (emp_4>=3) {

chng_undertime_1[emp_4-3]= undertime_sol_1[2][emp_4-3]- cur_undertime_1[emp_4-3];

chng_overtime_1[emp_4-3]= overtime_sol_1[2][emp_4-3] - cur_overtime_1[emp_4-3];

emp_cost_1[2][emp_4]= emp_cost_1[2][emp_4] + (under_rate_1[emp_4-3]*

chng_undertime_1[emp_4-3]) + (over_rate_1[emp_4-3]*chng_overtime_1[emp_4-3]);

// under-over cost

}

for(rol_4=0;rol_4<all_roles_1;rol_4++)

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

if(cur_allocate_1[weeks_4][rol_4][emp_4]==0) {

chng_allocate_1[weeks_4][rol_4][emp_4]=allocate_sol_1[2][weeks_4][rol_4][emp_4];

}

else {

chng_allocate_1[weeks_4][rol_4][emp_4]=cur_allocate_1[weeks_4][rol_4][emp_4]-

allocate_sol_1[2][weeks_4][rol_4][emp_4];

}

emp_cost_1[2][emp_4]= emp_cost_1[2][emp_4]+ (work_chng_cost_1[weeks_4][rol_4][

emp_4]*chng_allocate_1[weeks_4][rol_4][emp_4]); // work_change

}

for(rol_4=0;rol_4<all_roles_1;rol_4++)

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

if(cur_board_1[weeks_4][rol_4][emp_4]==0) {

chng_board_1[weeks_4][rol_4][emp_4]=board_sol_1[2][weeks_4][rol_4][emp_4];

}

else {

chng_board_1[weeks_4][rol_4][emp_4]= cur_board_1[weeks_4][rol_4][emp_4]-

board_sol_1[2][weeks_4][rol_4][emp_4];

}

emp_cost_1[2][emp_4]= emp_cost_1[2][emp_4]+(board_chng_cost_1[weeks_4][rol_4][

emp_4]*chng_board_1[weeks_4][rol_4][emp_4]); //board_cost

}

for(rol_4=0;rol_4<all_roles_1;rol_4++)

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

if(cur_depart_1[weeks_4][rol_4][emp_4]==0) {

chng_depart_1[weeks_4][rol_4][emp_4]= depart_sol_1[2][weeks_4][rol_4][emp_4];

}

else {

chng_depart_1[weeks_4][rol_4][emp_4]= cur_depart_1[weeks_4][rol_4][emp_4] -

depart_sol_1[2][weeks_4][rol_4][emp_4];

}

emp_cost_1[2][emp_4]= emp_cost_1[2][emp_4] + (depart_chng_cost_1[weeks_4][rol_4][

931

emp_4]*chng_depart_1[weeks_4][rol_4][emp_4]); // depart

}

for(long_2=0;long_2<lambda_1;long_2++) {

for(rol_4=0;rol_4<all_roles_1;rol_4++) {

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

if(cur_long_work_1[weeks_4][rol_4][emp_4][long_2]== 0) {

chng_long_work_1[weeks_4][rol_4][emp_4][long_2]= long_work_sol_1[2][weeks_4][

rol_4][emp_4][long_2];

}

else {

chng_long_work_1[weeks_4][rol_4][emp_4][long_2]=cur_long_work_1[weeks_4][rol_4][

emp_4][long_2] -long_work_sol_1[2][weeks_4][rol_4][emp_4][long_2];

}

emp_cost_1[2][emp_4]= emp_cost_1[2][emp_4] + (extension_chng_cost_1[weeks_4][

rol_4][emp_4][long_2]*chng_long_work_1[weeks_4][rol_4][emp_4][long_2]); //

long_work

} } } } }

void calc_cost4(float work_chng_cost_1[13][25][49],int ag_max_work_1[25], int

ag_work_zero_1[25], int &consec_work_1,int &feas_crewchange_1,int &

to_calculate_1,int &iteration_1, int weeks_to_plan_1, int all_roles_1,vector<

int> & evaluate_crewchange_1,vector<int> &ag_roles_changed_1, vector<int> &

definite_crewchange_1, vector<int> &possible_crewchange_1,float ag_cost_1

[8][13][25], int ag_crewchange_1[8][13][25],int allocate_sol_1

[8][13][25][49],int ag_rboard_sol_1[8][13][25], int ag_rdepart_sol_1

[8][13][25], int long_work_sol_1[8][13][25][49][10], int lambda_1, int

ag_starting_1[25], int ag_list_sol_1[8][13][25], int cur_ag_rboard_1[13][25],

int poss_chng_ag_rboard_1[13], int poss_ag_rboard_1[13], int cur_ag_rdepart_1

[13][25], int poss_chng_ag_rdepart_1[13], int poss_ag_rdepart_1[13],float

ag_board_chng_cost_1[13][25],float ag_depart_chng_cost_1[13][25],int

poss_ag_long_work_1[13][10], int cur_long_work_1[13][25][49][10], int

poss_chng_ag_long_work_1[13][10], int cur_allocate_1[13][25][49], int

chng_allocate_1[13][25][49], float extension_chng_cost_1[13][25][49][10], int

chng_ag_rboard_1[13][25], int chng_ag_rdepart_1[13][25],int chng_long_work_1

[13][25][49][10])

{

int weeks_5, long_2, weeks_4, number_to_run, size_agroleschanged, rol_4, yes,

count_4, boyut_3, onboard, equal, mn, equal_1, boyut_2, sayi, divide_number,

tracking_number, equal_2;

double y;

float crewchange_cost, min_crewchange_cost;

size_agroleschanged=ag_roles_changed_1.size();

for(rol_4=0;rol_4<all_roles_1;rol_4++) {

932

yes=1;

count_4=0;

for(count_4=0; count_4<size_agroleschanged; count_4++) {

if(rol_4==ag_roles_changed_1[count_4]) {

yes=0;

count_4=size_agroleschanged;

} }

if(yes==1) {

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

ag_cost_1[2][weeks_4][rol_4]=ag_cost_1[0][weeks_4][rol_4];

ag_crewchange_1[2][weeks_4][rol_4]=ag_crewchange_1[0][weeks_4][rol_4];

allocate_sol_1[2][weeks_4][rol_4][48]=allocate_sol_1[0][weeks_4][rol_4][48];

ag_rboard_sol_1[2][weeks_4][rol_4]=ag_rboard_sol_1[0][weeks_4][rol_4];

ag_rdepart_sol_1[2][weeks_4][rol_4]=ag_rdepart_sol_1[0][weeks_4][rol_4];

for(long_2=0;long_2<lambda_1;long_2++) {

long_work_sol_1[2][weeks_4][rol_4][48][long_2]=long_work_sol_1[0][weeks_4][rol_4

][48][long_2];

} } }

else if(yes==0) {

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

ag_cost_1[2][weeks_4][rol_4]=0;

}

if(ag_starting_1[rol_4]==1) {

onboard=1;

}

else {

onboard=0;

}

definite_crewchange_1.clear();

possible_crewchange_1.clear();

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

if(ag_list_sol_1[2][weeks_4][rol_4]==1) {

allocate_sol_1[2][weeks_4][rol_4][48]=1;

if(onboard==0) {

definite_crewchange_1.push_back(weeks_4);

}

else {

possible_crewchange_1.push_back(weeks_4);

}

onboard=1;

}

else {

allocate_sol_1[2][weeks_4][rol_4][48]=0;

933

if(onboard==1) {

definite_crewchange_1.push_back(weeks_4);

}

onboard=0;

} }

equal=1;

for(mn=0;mn<weeks_to_plan_1;mn++) {

if(ag_list_sol_1[2][mn][rol_4]!=ag_list_sol_1[1][mn][rol_4]) {

equal=0;

} }

if((equal==1) && (iteration_1>0)) // Dikkat 1

{

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

ag_crewchange_1[2][weeks_4][rol_4]= ag_crewchange_1[1][weeks_4][rol_4];

} }

else {

equal_1=1;

for(mn=0;mn<weeks_to_plan_1;mn++) {

if(ag_list_sol_1[2][mn][rol_4]!=ag_list_sol_1[0][mn][rol_4]) {

equal_1=0;

} }

if((to_calculate_1!=0) && (equal_1==1)) {

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

ag_crewchange_1[2][weeks_4][rol_4]=ag_crewchange_1[0][weeks_4][rol_4];

} }

else {

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

ag_crewchange_1[2][weeks_4][rol_4]=0;

}

if(possible_crewchange_1.size()==0) {

boyut_2=definite_crewchange_1.size();

for(weeks_5=0;weeks_5<boyut_2;weeks_5++)

for(weeks_4=0; weeks_4<weeks_to_plan_1; weeks_4++) {

if(weeks_4==definite_crewchange_1[weeks_5]) {

ag_crewchange_1[2][weeks_4][rol_4]=1;

} } }

else {

y=possible_crewchange_1.size();

number_to_run=pow(2.0, y);

for(sayi=1; sayi<=number_to_run; sayi++) {

divide_number=number_to_run;

tracking_number=sayi-1;

feas_crewchange_1=1;

934

crewchange_cost=0;

evaluate_crewchange_1.clear();

consec_work_1= ag_work_zero_1[rol_4];

boyut_3=possible_crewchange_1.size();

for(weeks_4=0; weeks_4<weeks_to_plan_1; weeks_4++) {

for(weeks_5=0;weeks_5<boyut_3;weeks_5++) {

if(weeks_4==possible_crewchange_1[weeks_5]) {

divide_number=divide_number/2;

if(tracking_number/divide_number < 1) {

poss_ag_rboard_1[weeks_4]=0;

poss_ag_rdepart_1[weeks_4]=0;

}

else {

evaluate_crewchange_1.push_back(weeks_4);

poss_ag_rboard_1[weeks_4]=1;

poss_ag_rdepart_1[weeks_4]=1;

tracking_number=tracking_number - divide_number;

consec_work_1=0;

}

if(cur_ag_rboard_1[weeks_4][rol_4]== 0) {

poss_chng_ag_rboard_1[weeks_4]= poss_ag_rboard_1[weeks_4];

}

else {

poss_chng_ag_rboard_1[weeks_4]= cur_ag_rboard_1[weeks_4][rol_4] -

poss_ag_rboard_1[weeks_4];

}

if(cur_ag_rdepart_1[weeks_4][rol_4]==0) {

poss_chng_ag_rdepart_1[weeks_4]= poss_ag_rdepart_1[weeks_4];

}

else {

poss_chng_ag_rdepart_1[weeks_4]= cur_ag_rdepart_1[weeks_4][rol_4]-

poss_ag_rdepart_1[weeks_4];

}

crewchange_cost= crewchange_cost + (ag_board_chng_cost_1[weeks_4][rol_4]*

poss_chng_ag_rboard_1[weeks_4]) + (ag_depart_chng_cost_1[weeks_4][rol_4]*

poss_chng_ag_rdepart_1[weeks_4]);

} }

for(long_2=0;long_2<lambda_1;long_2++) {

poss_ag_long_work_1[weeks_4][long_2]= 0;

}

if(allocate_sol_1[2][weeks_4][rol_4][48] ==1) {

consec_work_1=consec_work_1 +1;

if(consec_work_1 > ag_max_work_1[rol_4]) {

935

feas_crewchange_1=0;

}

else {

for(long_2=0;long_2<consec_work_1;long_2++) {

poss_ag_long_work_1[weeks_4][long_2]=1;

} } }

else {

consec_work_1=0;

}

for(long_2=0;long_2<lambda_1;long_2++) {

if(cur_long_work_1[weeks_4][rol_4][48][long_2]==0) {

poss_chng_ag_long_work_1[weeks_4][long_2]= poss_ag_long_work_1[weeks_4][long_2];

}

else {

poss_chng_ag_long_work_1[weeks_4][rol_4]= cur_long_work_1[weeks_4][rol_4][48][

long_2] - poss_ag_long_work_1[weeks_4][rol_4];

}

crewchange_cost= crewchange_cost + (extension_chng_cost_1[weeks_4][rol_4][48][

long_2]*poss_chng_ag_long_work_1[weeks_4][long_2]);

//ag_lw_cost=ag_lw_cost+(extension_chng_cost[weeks_4][rol_4][48][long_2]*

poss_chng_ag_long_work[weeks_4][long_2]);

} }

if(feas_crewchange_1==1) {

equal_2=1;

for(weeks_5=0;weeks_5<weeks_to_plan_1;weeks_5++) {

if(ag_crewchange_1[2][weeks_5][rol_4]==1) {

equal_2=0;

} }

boyut_2=definite_crewchange_1.size();

boyut_3=evaluate_crewchange_1.size();

if(equal_2==1) {

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

for(weeks_5=0;weeks_5<boyut_2;weeks_5++) {

if(weeks_4==definite_crewchange_1[weeks_5]) {

ag_crewchange_1[2][weeks_4][rol_4]=1;

} }

for(weeks_5=0;weeks_5<boyut_3;weeks_5++) {

if(weeks_4==evaluate_crewchange_1[weeks_5]) {

ag_crewchange_1[2][weeks_4][rol_4]=1;

} }

min_crewchange_cost=crewchange_cost;

} }

else {

936

if(crewchange_cost < min_crewchange_cost) {

boyut_2=definite_crewchange_1.size();

boyut_3=evaluate_crewchange_1.size();

for(weeks_5=0;weeks_5<weeks_to_plan_1;weeks_5++) {

ag_crewchange_1[2][weeks_5][rol_4]=0;

}

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

for(weeks_5=0;weeks_5<boyut_2;weeks_5++) {

if(weeks_4==definite_crewchange_1[weeks_5]) {

ag_crewchange_1[2][weeks_4][rol_4]=1;

} }

for(weeks_5=0;weeks_5<boyut_3;weeks_5++) {

if(weeks_4==evaluate_crewchange_1[weeks_5]) {

ag_crewchange_1[2][weeks_4][rol_4]=1;

} } }

min_crewchange_cost=crewchange_cost ;

} } } } } } }

consec_work_1=ag_work_zero_1[rol_4];

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

ag_rboard_sol_1[2][weeks_4][rol_4]= 0;

ag_rdepart_sol_1[2][weeks_4][rol_4]= 0;

if(ag_crewchange_1[2][weeks_4][rol_4]==1) {

consec_work_1=0;

if(weeks_4==0) {

if(ag_starting_1[rol_4] == 1) {

ag_rdepart_sol_1[2][weeks_4][rol_4]=1;

} }

else {

if(allocate_sol_1[2][weeks_4-1][rol_4][48]== 1) {

ag_rdepart_sol_1[2][weeks_4][rol_4]=1;

} }

if(allocate_sol_1[2][weeks_4][rol_4][48]== 1) {

ag_rboard_sol_1[2][weeks_4][rol_4]=1;

} }

for(long_2=0;long_2<lambda_1;long_2++) {

long_work_sol_1[2][weeks_4][rol_4][48][long_2]= 0;

}

if(allocate_sol_1[2][weeks_4][rol_4][48]== 1) {

consec_work_1= consec_work_1+1;

for(long_2=0;long_2<consec_work_1;long_2++) {

long_work_sol_1[2][weeks_4][rol_4][48][long_2]=1;

} }

else {

937

consec_work_1=0;

}

if(cur_allocate_1[weeks_4][rol_4][48]==0) {

chng_allocate_1[weeks_4][rol_4][48]=allocate_sol_1[2][weeks_4][rol_4][48];

}

else {

chng_allocate_1[weeks_4][rol_4][48]= cur_allocate_1[weeks_4][rol_4][48] -

allocate_sol_1[2][weeks_4][rol_4][48];

}

ag_cost_1[2][weeks_4][rol_4] =ag_cost_1[2][weeks_4][rol_4] + (work_chng_cost_1[

weeks_4][rol_4][48]*chng_allocate_1[weeks_4][rol_4][48]);

if(cur_ag_rboard_1[weeks_4][rol_4] == 0) {

chng_ag_rboard_1[weeks_4][rol_4]=ag_rboard_sol_1[2][weeks_4][rol_4];

}

else {

chng_ag_rboard_1[weeks_4][rol_4]= cur_ag_rboard_1[weeks_4][rol_4] -

ag_rboard_sol_1[2][weeks_4][rol_4];

}

ag_cost_1[2][weeks_4][rol_4]=ag_cost_1[2][weeks_4][rol_4] + (ag_board_chng_cost_1

[weeks_4][rol_4]*chng_ag_rboard_1[weeks_4][rol_4]);

if(cur_ag_rdepart_1[weeks_4][rol_4]== 0) {

chng_ag_rdepart_1[weeks_4][rol_4]=ag_rdepart_sol_1[2][weeks_4][rol_4];

}

else {

chng_ag_rdepart_1[weeks_4][rol_4]= cur_ag_rdepart_1[weeks_4][rol_4]-

ag_rdepart_sol_1[2][weeks_4][rol_4];

}

ag_cost_1[2][weeks_4][rol_4] =ag_cost_1[2][weeks_4][rol_4] + (

ag_depart_chng_cost_1[weeks_4][rol_4]*chng_ag_rdepart_1[weeks_4][rol_4]);

for(long_2=0;long_2<lambda_1;long_2++) {

if(cur_long_work_1[weeks_4][rol_4][48][long_2]==0) {

chng_long_work_1[weeks_4][rol_4][48][long_2]= long_work_sol_1[2][weeks_4][rol_4

][48][long_2];

}

else {

chng_long_work_1[weeks_4][rol_4][48][long_2]= cur_long_work_1[weeks_4][rol_4

][48][long_2]-long_work_sol_1[2][weeks_4][rol_4][48][long_2];

}

ag_cost_1[2][weeks_4][rol_4]=ag_cost_1[2][weeks_4][rol_4]+ (extension_chng_cost_1

[weeks_4][rol_4][48][long_2]*chng_long_work_1[weeks_4][rol_4][48][long_2]);

} } } } }

void calc_cost5(int reg_emp_1,int weeks_to_plan_1, int all_roles_1,float

938

emp_cost_1[8][48],float total_cost_1[8],float ag_cost_1[8][13][25],int &

transfer_sol_from_1, int &transfer_sol_to_1, int &to_calculate_1)

{

int emp_4, rol_4, weeks_4;

for(emp_4=0;emp_4<reg_emp_1;emp_4++) {

total_cost_1[2]=total_cost_1[2]+emp_cost_1[2][emp_4];

}

for(rol_4=0;rol_4<all_roles_1;rol_4++)

for(weeks_4=0;weeks_4<weeks_to_plan_1;weeks_4++) {

total_cost_1[2]=total_cost_1[2]+ag_cost_1[2][weeks_4][rol_4];

}

transfer_sol_from_1=2;

transfer_sol_to_1=to_calculate_1;

}

E.2.5.3 ‘Compare to best’ sub-programmes

#include "comparing.h"

void compare_to_best(int& number_best_1, int weeks_to_plan_1, int all_roles_1,

int reg_emp_1, int role_count_1 , float total_cost_1[8], int new_best_1,int

same_best_1[51],int emp_count_1,int list_sol_1[8][13][48], int best_sols_1

[51][13][48], int ag_list_sol_1[8][13][25], int ag_best_sols_1[51][13][25])

{

int weeks_1,emp_1,rol_1,x;

if(total_cost_1[0]==total_cost_1[1]) {

new_best_1=1;

x=0;

while(new_best_1==1 && x<number_best_1) {

//x=x+1; // AL - Have moved this to the end of the loop

same_best_1[x]=1;

emp_count_1=0;

while(same_best_1[x]==1 && emp_count_1<reg_emp_1) {

//emp_count=emp_count+1; // AL - Have moved this to the end of the loop

for(weeks_1=0;weeks_1<weeks_to_plan_1;weeks_1++) {

if(list_sol_1[0][weeks_1][emp_count_1]!=best_sols_1[x][weeks_1][emp_count_1]) {

same_best_1[x]=0;

} }

emp_count_1=emp_count_1+1; // AL - Have moved this from the beginning of

the loop

}

// AL - Have changed from "while(same_best[x]==!1 &&..."

role_count_1=0;

939

while(same_best_1[x]==1 && role_count_1<all_roles_1) {

//role_count=role_count+1; // AL - Have moved this to the end of the loop

for(weeks_1=0;weeks_1<weeks_to_plan_1;weeks_1++) {

if(ag_list_sol_1[0][weeks_1][role_count_1]!=ag_best_sols_1[x][weeks_1][

role_count_1]) // AL - Have changed this from "...ag_best_sols[x][weeks_1][

emp_count])"

{

same_best_1[x]=0;

} }

role_count_1=role_count_1+1; // AL - Have moved this from the beginning of the

loop

} // AL - Have changed this from "...&& role_count<reg_emp"

if(same_best_1[x]==1) {

new_best_1=0;

}

x=x+1; // AL - Have moved this from the beginning of the loop

}

if(new_best_1==1) {

number_best_1=number_best_1+1;

for(weeks_1=0;weeks_1<weeks_to_plan_1;weeks_1++)

for(emp_1=0;emp_1<reg_emp_1;emp_1++) {

best_sols_1[number_best_1-1][weeks_1][emp_1]=list_sol_1[0][weeks_1][emp_1]; //

AL - Have changed this from "best_sols[number_best][weeks_1][emp_1]..."

}

for(weeks_1=0;weeks_1<weeks_to_plan_1;weeks_1++)

for(rol_1=0;rol_1<all_roles_1;rol_1++) {

ag_best_sols_1[number_best_1-1][weeks_1][rol_1]=ag_list_sol_1[0][weeks_1][rol_1];

// AL - Have changed this from "ag_best_sols[number_best][weeks_1][rol_1

]..."

} } } // AL - ’if current cost = best cost’ should end here

}

best_comparison.txt

1 of 15 items

best_comparison.txtcost_calculation.txtData_1.txtdeneme.txtevaluate_swap.

txtfeasibility.txtfinishing.txtinitialising.txtlist_sorting.txtmain.

txtrandom_kick.txttabu_control.txttransfer.txtupdating.txtusable_blocks.

txtDisplaying best_comparison.txt.

E.2.5.4 ‘Data’ sub-programmes

#include "Load_Data.h"

#include <stdio.h>

#include <stdlib.h>

940

#include <time.h>

#include <conio.h>

#include "string"

#include <cstdlib>

#include <ctime>

#include <math.h>

#include <iostream>

#include <fstream>

#include <algorithm>

#include <iterator>

#include <vector>

#include <random>

using namespace std;

void LoadRequired(int required_1[13][25])

{

int x, y;

ifstream file1("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\gerekli.txt");

if (!file1) {

cout << "Cannot open file1.\n";

return;

}

for (y = 0; y < 25; y++) {

for (x = 0; x < 13; x++) {

file1 >> required_1[x][y];

} }

file1.close();

}

void LoadEligible(int eligible_gecici_1[325][49], int eligible_1[13][25][49])

{

int x, y;

ifstream file2("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\skill.txt");

if (!file2) {

cout << "Cannot open file2.\n";

return;

}

for (y = 0; y < 49; y++) {

for (x = 0; x <325; x++) {

file2 >> eligible_gecici_1[x][y];

} }

int i,j,k,count;

count=1;

941

for(k=0;k<49;k++) {

j=0;

for(i=0;i<13;i++) {

eligible_1[i][j][k]=eligible_gecici_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

eligible_1[i-(13*j)][j][k]=eligible_gecici_1[i][k];

}

j++;

}

while(j<25);

};

file2.close();

}

void LoadStarting(int starting_1[25][49])

{

int x, y;

ifstream file3("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\start.txt");

if (!file3) {

cout << "Cannot open file3.\n";

return;

}

for (y = 0; y < 49; y++) {

for (x = 0; x < 25; x++) {

file3 >> starting_1[x][y];

} }

file3.close();

}

void LoadAlloc(int cur_allocate_1[13][25][49], int current_alloc_1[325][49])

{

int x, y;

ifstream file4("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\curr_allocate.txt");

if (!file4) {

cout << "Cannot open file4.\n";

return;

}

for (y = 0; y < 49; y++) {

for (x = 0; x <325; x++) {

file4 >> current_alloc_1[x][y];

942

} }

int i,j,k,count;

count=1;

for(k=0;k<49;k++) {

j=0;

for(i=0;i<13;i++) {

cur_allocate_1[i][j][k]=current_alloc_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

cur_allocate_1[i-(13*j)][j][k]=current_alloc_1[i][k];

}

j++;

}

while(j<25);

};

file4.close();

}

void LoadBoarding(int current_board_1[325][48], int cur_board_1[13][25][48])

{

int x, y;

ifstream file5("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\curr_board.txt");

if (!file5) {

cout << "Cannot open file5.\n";

return;

}

for (y = 0; y < 48; y++) {

for (x = 0; x <325; x++) {

file5 >> current_board_1[x][y];

} }

int i,j,k,count;

count=1;

for(k=0;k<48;k++) {

j=0;

for(i=0;i<13;i++) {

cur_board_1[i][j][k]=current_board_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

cur_board_1[i-(13*j)][j][k]=current_board_1[i][k];

943

}

j++;

}

while(j<25);

};

file5.close();

}

void LoadDeparting(int current_depart_1[325][48], int cur_depart_1[13][25][48])

{

int x, y;

ifstream file6("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\curr_depart.txt");

if (!file6) {

cout << "Cannot open file6.\n";

return;

}

for (y = 0; y < 48; y++) {

for (x = 0; x <325; x++) {

file6 >> current_depart_1[x][y];

} }

int i,j,k,count;

count=1;

for(k=0;k<48;k++) {

j=0;

for(i=0;i<13;i++) {

cur_depart_1[i][j][k]=current_depart_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

cur_depart_1[i-(13*j)][j][k]=current_depart_1[i][k];

}

j++;

}

while(j<25);

};

file6.close();

}

void LoadAgBoard(int cur_ag_rboard_1[13][25])

{

int x, y;

ifstream file7("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\curr_ag_rboard.txt")

944

;

if (!file7) {

cout << "Cannot open file7.\n";

return;

}

for (y = 0; y < 25; y++) {

for (x = 0; x < 13; x++) {

file7 >> cur_ag_rboard_1[x][y];

} }

file7.close();

}

void LoadAgDepart(int cur_ag_rdepart_1[13][25])

{

int x, y;

ifstream file8("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\curr_ag_rdepart.txt

");

if (!file8) {

cout << "Cannot open file8.\n";

return;

}

for (y = 0; y < 25; y++) {

for (x = 0; x < 13; x++) {

file8 >> cur_ag_rdepart_1[x][y];

} }

file8.close();

}

void LoadChangeCostBoard(float board_cost_1[325][48], float board_chng_cost_1

[13][25][48])

{

int x, y;

ifstream file9("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\boarding_change_cost

.txt");

if (!file9) {

cout << "Cannot open file9.\n";

return;

}

for (y = 0; y < 48; y++) {

for (x = 0; x <325; x++) {

file9 >> board_cost_1[x][y];

} }

int i,j,k,count;

945

count=1;

for(k=0;k<48;k++) {

j=0;

for(i=0;i<13;i++) {

board_chng_cost_1[i][j][k]=board_cost_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

board_chng_cost_1[i-(13*j)][j][k]=board_cost_1[i][k];

}

j++;

}

while(j<25);

};

file9.close();

}

void LoadChangeCostDepart(float depart_cost_1[325][48], float depart_chng_cost_1

[13][25][48])

{

int x, y;

ifstream file10("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\

departing_change_cost.txt");

if (!file10) {

cout << "Cannot open file10.\n";

return;

}

for (y = 0; y < 48; y++) {

for (x = 0; x <325; x++) {

file10 >> depart_cost_1[x][y];

} }

int i,j,k,count;

count=1;

for(k=0;k<48;k++) {

j=0;

for(i=0;i<13;i++) {

depart_chng_cost_1[i][j][k]=depart_cost_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

depart_chng_cost_1[i-(13*j)][j][k]=depart_cost_1[i][k];

946

}

j++;

}

while(j<25);

};

file10.close();

}

void LoadAgChangeBoard(float ag_board_chng_cost_1[13][25])

{

int x, y;

ifstream file11("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\

ag_board_change_cost.txt");

if (!file11) {

cout << "Cannot open file11.\n";

return;

}

for (y = 0; y < 25; y++) {

for (x = 0; x < 13; x++) {

file11 >> ag_board_chng_cost_1[x][y];

} }

file11.close();

}

void LoadAgChangeDepart(float ag_depart_chng_cost_1[13][25])

{

int x, y;

ifstream file12("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\

ag_depart_change_cost.txt");

if (!file12) {

cout << "Cannot open file12.\n";

return;

}

for (y = 0; y < 25; y++) {

for (x = 0; x < 13; x++) {

file12 >> ag_depart_chng_cost_1[x][y];

} }

file12.close();

}

void LoadWorkChangeCost(float workchange_cost_1[325][49], float work_chng_cost_1

[13][25][49])

{

947

int x, y;

ifstream file13("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\work_change_cost.

txt");

if (!file13) {

cout << "Cannot open file13.\n";

return;

}

for (y = 0; y < 49; y++) {

for (x = 0; x <325; x++) {

file13 >> workchange_cost_1[x][y];

} }

int i,j,k,count;

count=1;

for(k=0;k<49;k++) {

j=0;

for(i=0;i<13;i++) {

work_chng_cost_1[i][j][k]=workchange_cost_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

work_chng_cost_1[i-(13*j)][j][k]=workchange_cost_1[i][k];

}

j++;

}

while(j<25);

};

file13.close();

}

void LoadInitialSolution(int initial_solution_1[325][49],int taskbased_sol_1

[13][25][49])

{

int x, y;

ifstream file14("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\taskbasedsltn.txt")

;

if (!file14) {

cout << "Cannot open file14.\n";

return;

}

for (y = 0; y < 49; y++) {

for (x = 0; x <325; x++) {

file14 >>initial_solution_1[x][y];

948

} }

int i,j,k,count;

count=1;

for(k=0;k<49;k++) {

j=0;

for(i=0;i<13;i++) {

taskbased_sol_1[i][j][k]=initial_solution_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

taskbased_sol_1[i-(13*j)][j][k]=initial_solution_1[i][k];

}

j++;

}

while(j<25);

};

file14.close();

}

void LoadContract(int contract_1[45][4], int under_rate_1[45], int over_rate_1

[45], int g_weeks_1[45], int exp_worktime_1[45])

{

int x, y;

ifstream file15("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\contracted.txt");

if (!file15) {

cout << "Cannot open file15.\n";

return;

}

for (y = 0; y < 4; y++) {

for (x = 0; x < 45; x++) {

file15 >> contract_1[x][y];

} }

for (x = 0; x < 45; x++) {

under_rate_1[x]=contract_1[x][0];

over_rate_1[x]=contract_1[x][1];

g_weeks_1[x]=contract_1[x][2];

exp_worktime_1[x]=contract_1[x][3];

}

file15.close();

}

void LoadConst(int crew_1[48][4], int work_zero_1[48], int rest_zero_1[48], int

949

min_rest_1[48], int max_work_1[48])

{

int x, y;

ifstream file16("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\whole_crew.txt");

if (!file16) {

cout << "Cannot open file16.\n";

return;

}

for (y = 0; y < 4; y++) {

for (x = 0; x < 48; x++) {

file16 >> crew_1[x][y];

} }

for (x = 0; x < 48; x++) {

work_zero_1[x]=crew_1[x][0];

rest_zero_1[x]=crew_1[x][1];

min_rest_1[x]=crew_1[x][3];

max_work_1[x]=crew_1[x][2];

}

file16.close();

}

void LoadAgencyCrew(int ag_crew_1[25][3], int ag_work_zero_1[25], int

ag_max_work_1[25], int ag_starting_1[25])

{

int x, y;

ifstream file17("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\agency.txt");

if (!file17) {

cout << "Cannot open file17.\n";

return;

}

for (y = 0; y < 3; y++) {

for (x = 0; x <25; x++) {

file17 >> ag_crew_1[x][y];;

} }

for (x = 0; x < 25; x++) {

ag_work_zero_1[x]=ag_crew_1[x][0];

ag_max_work_1[x]=ag_crew_1[x][1];

ag_starting_1[x]=ag_crew_1[x][2];

}

file17.close();

}

void LoadExtChgCost(float ext_chg_cost_1[325][490],float ext_chg_cost_new_1

950

[13][25][490], float extension_chng_cost_1[13][25][49][10])

{

int x, y;

ifstream file18("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\extension_ch_cost.

txt");

if (!file18) {

cout << "Cannot open file18.\n";

return;

}

for (y = 0; y < 490; y++) {

for (x = 0; x <325; x++) {

file18 >>ext_chg_cost_1[x][y];

} }

int i,j,k;

for(k=0;k<490;k++) {

j=0;

for(i=0;i<13;i++) {

ext_chg_cost_new_1[i][j][k]=ext_chg_cost_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

ext_chg_cost_new_1[i-(13*j)][j][k]=ext_chg_cost_1[i][k];

}

j++;

}

while(j<25);

};

int l;

for(i=0;i<13;i++)

for(j=0;j<25;j++) {

l=0;

for(k=0;k<49;k++) {

extension_chng_cost_1[i][j][k][l]=ext_chg_cost_new_1[i][j][k];

}

l++;

do {

for(k=49*l;k<49*(l+1);k++) {

extension_chng_cost_1[i][j][k-(49*l)][l]=ext_chg_cost_new_1[i][j][k];

}

l++;

}

while(l<10);

951

};

file18.close();

}

void LoadOver_under(int guaranteed_workers_1[45][2], int cur_undertime_1[45], int

cur_overtime_1[45])

{

int x, y;

ifstream file19("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\current_time.txt");

if (!file19) {

cout << "Cannot open file19.\n";

return;

}

for (y = 0; y < 2; y++) {

for (x = 0; x < 45; x++) {

file19 >> guaranteed_workers_1[x][y];

} }

for (x = 0; x < 45; x++) {

cur_undertime_1[x]=guaranteed_workers_1[x][0];

cur_overtime_1[x]=guaranteed_workers_1[x][1];

}

file19.close();

}

void LoadCurLongWork(int cur_long_work_1[325][490],int cur_long_work_new_1

[13][25][490], int current_long_work_1[13][25][49][10])

{

int x, y;

ifstream file20("C:\\Users\\xmb13210\\Desktop\\data_sezgisel\\curr_long_work.txt

");

if (!file20) {

cout << "Cannot open file20.\n";

return;

}

for (y = 0; y < 490; y++) {

for (x = 0; x <325; x++) {

file20 >>cur_long_work_1[x][y];

} }

int i,j,k;

for(k=0;k<490;k++) {

j=0;

for(i=0;i<13;i++) {

cur_long_work_new_1[i][j][k]=cur_long_work_1[i][k];

952

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

cur_long_work_new_1[i-(13*j)][j][k]=cur_long_work_1[i][k];

}

j++;

}

while(j<25);

};

int l;

for(i=0;i<13;i++)

for(j=0;j<25;j++) {

l=0;

for(k=0;k<49;k++) {

current_long_work_1[i][j][k][l]=cur_long_work_new_1[i][j][k];

}

l++;

do {

for(k=49*l;k<49*(l+1);k++) {

current_long_work_1[i][j][k-(49*l)][l]=cur_long_work_new_1[i][j][k];

}

l++;

}

while(l<10);

};

file20.close();

}

E.2.5.5 ‘Deneme’ sub-programmes

#include "trial.h"

#include <string>

#include <iostream>

#include <fstream>

using namespace std;

void deneme(const std::string &filename,int ag_max_work_1[25],int ag_work_zero_1

[25],int under_rate_1[45], int over_rate_1[45], int g_weeks_1[45], int

exp_worktime_1[45], int required_1[13][25], int eligible_1[13][25][49], int

starting_1[25][49], int ag_starting_1[25], int work_zero_1[48], int

rest_zero_1[48], int min_rest_1[48], int max_work_1[48], int cur_allocate_1

[13][25][49])

953

{

int i,x,y;

int eligible_gecici_1[325][49];

int current_alloc_1[325][49];

string a[20];

char b[20];

ifstream input(filename);

if (!input) {

cout << "Cannot open file.\n"<<" "<<filename<<"\n";

return;

}

string line;

for(i=0;i<55;i++) {

getline(input, line);

// cout<<line<<’\n’;

}

input>>a[0];

input>>b[0];

for (x = 0; x < 45; x++) {

input>>under_rate_1[x];

}

input>>b[0];

input>>a[0];

input>>b[0];

for (x = 0; x < 45; x++) {

input>>over_rate_1[x];

}

input>>b[0];

input>>a[0];

input>>b[0];

for (x = 0; x < 45; x++) {

input>>g_weeks_1[x];

}

input>>b[0];

input>>a[0];

input>>b[0];

for (x = 0; x < 45; x++) {

input>>exp_worktime_1[x];

}

input>>b[0];

for(i=0;i<4;i++) {

getline(input, line);

//cout<<line<<’\n’;

954

}

for (y = 0; y < 25; y++) {

for (x = 0; x < 13; x++) {

input>> required_1[x][y];

} }

input>>b[0];

for(i=0;i<4;i++) {

getline(input, line);

// cout<<line<<’\n’;

}

for (y = 0; y < 49; y++) {

for (x = 0; x <325; x++) {

input >> eligible_gecici_1[x][y];

} }

int j,k,count;

count=1;

for(k=0;k<49;k++) {

j=0;

for(i=0;i<13;i++) {

eligible_1[i][j][k]=eligible_gecici_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

eligible_1[i-(13*j)][j][k]=eligible_gecici_1[i][k];

}

j++;

}

while(j<25);

};

input>>b[0];

for(i=0;i<4;i++) {

getline(input, line);

// cout<<line<<’\n’;

}

for (y = 0; y < 49; y++) {

for (x = 0; x < 25; x++) {

input>> starting_1[x][y];

} }

input>>b[0];

getline(input, line);

input>>a[0];

input>>b[0];

955

for (x = 0; x < 25; x++) {

input>>ag_starting_1[x];

}

input>>b[0];

for(i=0;i<3;i++) {

getline(input, line);

// cout<<line<<’\n’;

}

input>>a[0];

input>>b[0];

for (x = 0; x < 48; x++) {

input>> work_zero_1[x];

}

input>>b[0];

input>>a[0];

input>>b[0];

for (x = 0; x < 48; x++) {

input>>rest_zero_1[x];

}

input>>b[0];

getline(input, line);

input>>a[0];

input>>b[0];

for (x = 0; x < 48; x++) {

input>> max_work_1[x];

}

input>>b[0];

input>>a[0];

input>>b[0];

for (x = 0; x < 48; x++) {

input>> min_rest_1[x];

}

input>>b[0];

getline(input, line);

getline(input, line);

input>>a[0];

input>>b[0];

for (x = 0; x < 25; x++) {

input>>ag_work_zero_1[x];

}

input>>b[0];

input>>a[0];

input>>b[0];

956

for (x = 0; x < 25; x++) {

input>>ag_max_work_1[x];

}

input>>b[0];

for(i=0;i<6;i++) {

getline(input, line);

// cout<<line<<’\n’;

}

input>>a[0];

input>>b[0];

for (y = 0; y < 49; y++) {

for (x = 0; x <325; x++) {

input >> current_alloc_1[x][y];

} }

input>>b[0];

for(i=0;i<3;i++) {

getline(input, line);

// cout<<line<<’\n’;

}

count=1;

for(k=0;k<49;k++) {

j=0;

for(i=0;i<13;i++) {

cur_allocate_1[i][j][k]=current_alloc_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

cur_allocate_1[i-(13*j)][j][k]=current_alloc_1[i][k];

}

j++;

}

while(j<25);

};

input.close();

}

void deneme2(const std::string &filename,int cur_board_1[13][25][48], int

cur_depart_1[13][25][48], int cur_ag_rboard_1[13][25], int cur_ag_rdepart_1

[13][25])

{

int i,x,y,j,k,count;

int current_board_1[325][48];

957

int current_depart_1[325][48];

string a[20];

char b[20];

ifstream input(filename);

if (!input) {

cout << "Cannot open file.\n"<<" "<<filename<<"\n";

return;

}

string line;

for(i=0;i<263;i++) {

getline(input, line);

// cout<<line<<’\n’;

}

input>>a[0];

input>>b[0];

for (y = 0; y < 48; y++) {

for (x = 0; x <325; x++) {

input >> current_board_1[x][y];

} }

for(i=0;i<5;i++) {

getline(input, line);

// cout<<line<<’\n’;

}

count=1;

for(k=0;k<48;k++) {

j=0;

for(i=0;i<13;i++) {

cur_board_1[i][j][k]=current_board_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

cur_board_1[i-(13*j)][j][k]=current_board_1[i][k];

}

j++;

}

while(j<25);

};

for (y = 0; y < 48; y++) {

for (x = 0; x <325; x++) {

input >> current_depart_1[x][y];

} }

for(i=0;i<5;i++) {

958

getline(input, line);

// cout<<line<<’\n’;

}

count=1;

for(k=0;k<48;k++) {

j=0;

for(i=0;i<13;i++) {

cur_depart_1[i][j][k]=current_depart_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

cur_depart_1[i-(13*j)][j][k]=current_depart_1[i][k];

}

j++;

}

while(j<25);

};

for (y = 0; y < 25; y++) {

for (x = 0; x < 13; x++) {

input>> cur_ag_rboard_1[x][y];

} }

input>>b[0];

input>>a[0];

input>>b[0];

for (y = 0; y < 25; y++) {

for (x = 0; x < 13; x++) {

input>> cur_ag_rdepart_1[x][y];

} }

input.close();

}

void deneme3(const std::string &filename,int cur_undertime_1[45], int

cur_overtime_1[45], int cur_long_work_1[325][490],int cur_long_work_new_1

[13][25][490], int current_long_work_1[13][25][49][10])

{

int i,x,y,j,k,count;

string a[20];

char b[20];

ifstream input(filename);

if (!input) {

cout << "Cannot open file.\n"<<" "<<filename<<"\n";

return;

959

}

string line;

for(i=0;i<425;i++) {

getline(input, line);

// cout<<line<<’\n’;

}

input>>a[0];

input>>b[0];

for (x = 0; x < 45; x++) {

input>> cur_undertime_1[x];

}

input>>b[0];

input>>a[0];

input>>b[0];

for (x = 0; x < 45; x++) {

input>> cur_overtime_1[x];

}

input>>b[0];

for(i=0;i<3;i++) {

getline(input, line);

// cout<<line<<’\n’;

}

input>>a[0];

input>>b[0];

for (y = 0; y < 490; y++) {

for (x = 0; x <325; x++) {

input >>cur_long_work_1[x][y];

} }

for(k=0;k<490;k++) {

j=0;

for(i=0;i<13;i++) {

cur_long_work_new_1[i][j][k]=cur_long_work_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

cur_long_work_new_1[i-(13*j)][j][k]=cur_long_work_1[i][k];

}

j++;

}

while(j<25);

};

int l;

960

for(i=0;i<13;i++)

for(j=0;j<25;j++) {

l=0;

for(k=0;k<49;k++) {

current_long_work_1[i][j][k][l]=cur_long_work_new_1[i][j][k];

}

l++;

do {

for(k=49*l;k<49*(l+1);k++) {

current_long_work_1[i][j][k-(49*l)][l]=cur_long_work_new_1[i][j][k];

}

l++;

}

while(l<10);

};

input.close();

}

void deneme4(const std::string &filename,float board_cost_1[325][48], float

board_chng_cost_1[13][25][48], float depart_cost_1[325][48], float

depart_chng_cost_1[13][25][48], float ag_board_chng_cost_1[13][25], float

ag_depart_chng_cost_1[13][25])

{

int i,x,y,j,k,count;

string a;

char b;

ifstream input(filename);

if (!input) {

cout << "Cannot open file.\n"<<" "<<filename<<"\n";

return;

}

string line;

for(i=0;i<936;i++) {

getline(input, line);

// cout<<line<<’\n’;

}

input>>a;

input>>b;

for (y = 0; y < 48; y++) {

for (x = 0; x <325; x++) {

input >> board_cost_1[x][y];

} }

count=1;

961

for(k=0;k<48;k++) {

j=0;

for(i=0;i<13;i++) {

board_chng_cost_1[i][j][k]=board_cost_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

board_chng_cost_1[i-(13*j)][j][k]=board_cost_1[i][k];

}

j++;

}

while(j<25);

};

input>>b;

getline(input, line);

input>>a;

input>>b;

for (y = 0; y < 48; y++) {

for (x = 0; x <325; x++) {

input>> depart_cost_1[x][y];

} }

count=1;

for(k=0;k<48;k++) {

j=0;

for(i=0;i<13;i++) {

depart_chng_cost_1[i][j][k]=depart_cost_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

depart_chng_cost_1[i-(13*j)][j][k]=depart_cost_1[i][k];

}

j++;

}

while(j<25);

};

input>>b;

getline(input, line);

getline(input, line);

input>>a;

input>>b;

for (y = 0; y < 25; y++) {

962

for (x = 0; x < 13; x++) {

input>> ag_board_chng_cost_1[x][y];

} }

input>>b;

getline(input, line);

input>>a;

input>>b;

for (y = 0; y < 25; y++) {

for (x = 0; x < 13; x++) {

input>>ag_depart_chng_cost_1[x][y];

} }

input.close();

}

void deneme5(const std::string &filename,float workchange_cost_1[325][49], float

work_chng_cost_1[13][25][49], float ext_chg_cost_1[325][490],float

ext_chg_cost_new_1[13][25][490], float extension_chng_cost_1[13][25][49][10])

{

int i,x,y,j,k,count;

string a;

char b;

ifstream input(filename);

if (!input) {

cout << "Cannot open file.\n"<<" "<<filename<<"\n";

return;

}

string line;

for(i=0;i<1095;i++) {

getline(input, line);

// cout<<line<<’\n’;

}

input>>a;

input>>b;

for (y = 0; y < 49; y++) {

for (x = 0; x <325; x++) {

input>> workchange_cost_1[x][y];

} }

count=1;

for(k=0;k<49;k++) {

j=0;

for(i=0;i<13;i++) {

work_chng_cost_1[i][j][k]=workchange_cost_1[i][k];

}

963

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

work_chng_cost_1[i-(13*j)][j][k]=workchange_cost_1[i][k];

}

j++;

}

while(j<25);

};

input>>b;

for(i=0;i<3;i++) {

getline(input, line);

// cout<<line<<’\n’;

}

input>>a;

input>>b;

for (y = 0; y < 490; y++) {

for (x = 0; x <325; x++) {

input>>ext_chg_cost_1[x][y];

} }

for(k=0;k<490;k++) {

j=0;

for(i=0;i<13;i++) {

ext_chg_cost_new_1[i][j][k]=ext_chg_cost_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

ext_chg_cost_new_1[i-(13*j)][j][k]=ext_chg_cost_1[i][k];

}

j++;

}

while(j<25);

};

int l;

for(i=0;i<13;i++)

for(j=0;j<25;j++) {

l=0;

for(k=0;k<49;k++) {

extension_chng_cost_1[i][j][k][l]=ext_chg_cost_new_1[i][j][k];

}

l++;

do {

964

for(k=49*l;k<49*(l+1);k++) {

extension_chng_cost_1[i][j][k-(49*l)][l]=ext_chg_cost_new_1[i][j][k];

}

l++;

}

while(l<10);

};

input>>b;

input.close();

}

void deneme6(const std::string &filename,int initial_solution_1[326][49],int

taskbased_sol_1[13][25][49])

{ int i,x,y,j,k,count;

string a[20];

char b;

ifstream input(filename);

if (!input) {

cout << "Cannot open file.\n"<<" "<<filename<<"\n";

return;

}

string line;

for(i=0;i<13;i++) {

getline(input, line);

// cout<<line<<’\n’;

}

input>>a[0];

input>>b;

for (y = 0; y < 49; y++) {

for (x = 0; x <325; x++) {

input>>initial_solution_1[x][y];

} }

count=1;

for(k=0;k<49;k++) {

j=0;

for(i=0;i<13;i++) {

taskbased_sol_1[i][j][k]=initial_solution_1[i][k];

}

j++;

do {

for(i=13*j;i<13*(j+1);i++) {

taskbased_sol_1[i-(13*j)][j][k]=initial_solution_1[i][k];

}

965

j++;

}

while(j<25);

};

input>>b;

input.close();

}

E.2.5.6 ‘Evaluate swap’ sub-programmes

#include "swapping.h"

void swap_calc1(vector<int>& ag_roles_changed_1, vector<int>& emps_changed_1,int

reg_emp_1,int weeks_to_plan_1, int list_sol_1[8][13][48],int all_roles_1,int

ag_list_sol_1[8][13][25], int& emp_extend_1, int& block_start_1,int&

swap_block_start_1, int min_rest_1[48], int& swap_block_end_1, int&

swap_task_1, int& block_end_1, int& swap_emp_1,int& task_extend_1, int&

to_check_tabu_1)

{

int emp_9, weeks_9, rol_9;

emps_changed_1.clear();

ag_roles_changed_1.clear();

for(emp_9=0;emp_9<reg_emp_1;emp_9++)

for(weeks_9=0;weeks_9<weeks_to_plan_1;weeks_9++) {

list_sol_1[5][weeks_9][emp_9]=list_sol_1[0][weeks_9][emp_9];

}

for(rol_9=0;rol_9<all_roles_1;rol_9++)

for(weeks_9=0;weeks_9<weeks_to_plan_1;weeks_9++) {

ag_list_sol_1[5][weeks_9][rol_9]=ag_list_sol_1[0][weeks_9][rol_9];

}

for(weeks_9=0;weeks_9<weeks_to_plan_1;weeks_9++) {

list_sol_1[5][weeks_9][emp_extend_1]=-1;

}

emps_changed_1.push_back(emp_extend_1); // AL - Have added this new line

for(weeks_9=0;weeks_9<weeks_to_plan_1;weeks_9++) {

if((weeks_9 < block_start_1) && (weeks_9<swap_block_start_1)) {

if((swap_block_start_1 < block_start_1) && (weeks_9>= (swap_block_start_1 -

min_rest_1[emp_extend_1])) && (list_sol_1[0][weeks_9][emp_extend_1]!=-1)) {

list_sol_1[5][weeks_9][emp_extend_1]=-1;

ag_list_sol_1[5][weeks_9][list_sol_1[0][weeks_9][emp_extend_1]]=1; // AL - Have

changed this from "ag_list_sol[0][w][list_sol[0][weeks_9][emp_extend]]=1;"

ag_roles_changed_1.push_back(list_sol_1[0][weeks_9][emp_extend_1]);

}

966

else {

list_sol_1[5][weeks_9][emp_extend_1]=list_sol_1[0][weeks_9][emp_extend_1];

} }

else if((weeks_9>= swap_block_start_1) && (weeks_9<= swap_block_end_1)) {

list_sol_1[5][weeks_9][emp_extend_1]=swap_task_1;

if(list_sol_1[0][weeks_9][emp_extend_1]!=-1 && (weeks_9 < block_start_1 ||

weeks_9> block_end_1)) {

ag_list_sol_1[5][weeks_9][list_sol_1[0][weeks_9][emp_extend_1]]=1;

ag_roles_changed_1.push_back(list_sol_1[0][weeks_9][emp_extend_1]);

} }

else if(weeks_9 >= block_start_1 && weeks_9 <= block_end_1) {

list_sol_1[5][weeks_9][emp_extend_1]=-1;

}

else {

if((swap_block_end_1 > block_end_1) && (weeks_9<= (swap_block_end_1 + min_rest_1[

emp_extend_1])) && list_sol_1[0][weeks_9][emp_extend_1]!=-1) {

list_sol_1[5][weeks_9][emp_extend_1]=-1;

ag_list_sol_1[5][weeks_9][list_sol_1[0][weeks_9][emp_extend_1]]=1;

ag_roles_changed_1.push_back(list_sol_1[0][weeks_9][emp_extend_1]);

}

else {

list_sol_1[5][weeks_9][emp_extend_1]=list_sol_1[0][weeks_9][emp_extend_1]; //

AL - Have changed this from "...=1;"

} } }

if(swap_emp_1!=48) {

emps_changed_1.push_back(swap_emp_1);

for(weeks_9=0;weeks_9<weeks_to_plan_1;weeks_9++) {

list_sol_1[5][weeks_9][swap_emp_1]=-1;

if(weeks_9< block_start_1 && weeks_9<swap_block_start_1) {

if((block_start_1 < swap_block_start_1 || swap_task_1 == -1) && (weeks_9>= (

block_start_1 - min_rest_1[swap_emp_1])) && (list_sol_1[0][weeks_9][

swap_emp_1]!=-1)) // AL - Have changed this from "...&& list_sol[0][weeks_9][

emp_extend]!=-1)"

{

list_sol_1[5][weeks_9][swap_emp_1]=-1;

ag_list_sol_1[5][weeks_9][list_sol_1[0][weeks_9][swap_emp_1]]=1;

ag_roles_changed_1.push_back(list_sol_1[0][weeks_9][swap_emp_1]);

}

else {

list_sol_1[5][weeks_9][swap_emp_1]=list_sol_1[0][weeks_9][swap_emp_1]; // AL -

Have changed this from "...=1;"

} }

else if(weeks_9 >= block_start_1 && weeks_9 <= block_end_1) {

967

list_sol_1[5][weeks_9][swap_emp_1]=task_extend_1;

if(list_sol_1[0][weeks_9][swap_emp_1]!=-1 && (weeks_9< swap_block_start_1 ||

weeks_9> swap_block_end_1)) {

ag_list_sol_1[5][weeks_9][list_sol_1[0][weeks_9][swap_emp_1]]=1;

ag_roles_changed_1.push_back(list_sol_1[0][weeks_9][swap_emp_1]);

} }

else if(weeks_9 >= swap_block_start_1 && weeks_9<= swap_block_end_1) {

list_sol_1[5][weeks_9][swap_emp_1]=-1;

}

else {

if((block_end_1> swap_block_end_1|| swap_task_1==-1) && weeks_9 <= (block_end_1 +

min_rest_1[swap_emp_1]) && list_sol_1[0][weeks_9][swap_emp_1]!=-1) // AL -

Have changed this from "...&& list_sol[0][weeks_9][emp_extend]!=-1)"

{

list_sol_1[5][weeks_9][swap_emp_1]= -1;

ag_list_sol_1[5][weeks_9][list_sol_1[0][weeks_9][swap_emp_1]]= 1; // AL -

Have changed this from "ag_list_sol[5][w][list_sol[0][weeks_9][emp_extend]]=

1;"

ag_roles_changed_1.push_back(list_sol_1[0][weeks_9][swap_emp_1]); // AL -

Have changed this from "ag_roles_changed.push_back(list_sol[0][weeks_9][

emp_extend]);"

}

else {

list_sol_1[5][weeks_9][swap_emp_1]=list_sol_1[0][weeks_9][swap_emp_1]; // AL -

Have changed this from "list_sol[5][weeks_9][emp_extend]=list_sol[0][weeks_9

][emp_extend];"

} } } }

else {

for(weeks_9=block_start_1;weeks_9<=block_end_1;weeks_9++) // AL - Have changed

this from "...weeks_9<block_end;weeks_9++)"

{

if(weeks_9>=0) {

ag_list_sol_1[5][weeks_9][task_extend_1]=1;//dikkat 4

} }

ag_roles_changed_1.push_back(task_extend_1);

if(swap_task_1!=-1) {

for(weeks_9=swap_block_start_1;weeks_9<=swap_block_end_1;weeks_9++) {

ag_list_sol_1[5][weeks_9][swap_task_1]=0;

ag_roles_changed_1.push_back(swap_task_1);

} } }

to_check_tabu_1=5;

}

968

void evaluate_swap1(int& ag_swappable_1, int& block_start_1, int& block_end_1,

int eligible_1[13][25][49], int& task_extend_1)

{

int weeks_10xy;

ag_swappable_1=1;

for(weeks_10xy=block_start_1;weeks_10xy<block_end_1;weeks_10xy++) {

if(eligible_1[weeks_10xy][task_extend_1][48]< 1) {

ag_swappable_1=0;

} } }

void evaluate_swap2(int& swap_allowed_1,int& too_early_1, int& do_swap_1, int&

swap_emp_1, int& swap_task_1,int& swap_block_start_1,int& swap_block_end_1,

int& swap_block_len_1,int& swap_find_time_1, int& swap_block_found_1)

{

if(do_swap_1==0) {

swap_emp_1=-1;

swap_task_1=-1;

swap_block_start_1=-1;

swap_block_end_1=-1;

swap_block_len_1=0;

swap_find_time_1=-1;

swap_block_found_1=0;

too_early_1=0;

swap_allowed_1=1;

} }

void evaluate_swap6(int& swap_allowed_1,int& too_early_1, int& do_swap_1, int&

swap_emp_1, int& swap_task_1,int& swap_block_start_1,int& swap_block_end_1,

int& swap_block_len_1,int& swap_block_found_1)

{

swap_block_found_1=0;

if(do_swap_1==0) {

too_early_1=0;

swap_allowed_1=1;

swap_block_start_1=-1;

swap_block_end_1=-1;

swap_block_len_1=0;

swap_emp_1=-1;

swap_task_1=-1;

} }

void evaluate_swap3(int& weeks_10x, int& rol_10x,int& swap_block_start_1,int&

swap_task_1,int& swap_emp_1,int& swap_allowed_1,int eligible_1[13][25][49] ,

969

int min_rest_1[48],int starting_1[25][49], int& emp_extend_1, int all_roles_1

,int summation_1x, int summation_1y, int& too_early_1,int& swap_new_block_1,

int& swap_block_found_1, int ag_list_sol_1[8][13][25], int&

swap_block_latest_1, int& swap_block_earliest_1)

{

int rol_11;

swap_new_block_1=0;

if((swap_block_found_1==0 && ag_list_sol_1[0][weeks_10x][rol_10x]==1) &&

weeks_10x<= swap_block_latest_1) {

if(weeks_10x< swap_block_earliest_1) {

too_early_1=1;

}

///9 aralik

summation_1x=0;

summation_1y=0;

for(rol_11=0; rol_11<all_roles_1;rol_11++) {

if(rol_11==rol_10x) // AL - Have added this IF statement...

{

summation_1x=summation_1x+starting_1[rol_11][emp_extend_1];

}

else // AL - ... and have added this ’else’ in order to calculate "

summation_1" as well

{

summation_1y=summation_1y+starting_1[rol_11][emp_extend_1];

} }

if((summation_1x>0) && (weeks_10x>=1) && (weeks_10x< min_rest_1[emp_extend_1]))

// AL - Have changed this from "if((summation > 0 && weeks_10>=1) && (

weeks_10<= min_rest[emp_extend]))"

{

too_early_1=1;

}

if(summation_1y > 0 && weeks_10x< min_rest_1[emp_extend_1]) // AL - Have

added this statement which uses the calculated "summation_1" quantity

{

too_early_1=1;

}

if(eligible_1[weeks_10x][rol_10x][emp_extend_1] < 1) {

swap_allowed_1=0;

}

swap_new_block_1=1;

swap_emp_1=48;

swap_task_1=rol_10x;

swap_block_start_1=weeks_10x;

970

} }

void evaluate_swap4(int& weeks_10x, int& swap_block_found_1,int& swap_block_len_1

, int& swap_block_end_1,int& swap_allowed_1, int eligible_1[13][25][49],int

min_rest_1[48], int& too_early_1,int& emp_extend_1, int&

swap_block_earliest_1,int starting_1[25][49],int summation_1x, int

summation_1y, int all_roles_1, int& swap_block_latest_1, int& do_swap_1, int&

swap_task_1, int& swap_block_start_1, int& rol_10x)

{

int rol_11;

if(weeks_10x <= swap_block_latest_1 && do_swap_1==0) {

swap_task_1=rol_10x;

swap_block_start_1=weeks_10x;

summation_1x=0; // AL - Have added in clearing the values of "summation" and

"summation_1" as they were likely also caluclated earlier

summation_1y=0;

for(rol_11=0;rol_11<all_roles_1;rol_11++) {

if(rol_11==rol_10x) {

summation_1x=summation_1x+starting_1[rol_11][emp_extend_1];

}

else {

summation_1y=summation_1y+starting_1[rol_11][emp_extend_1];

} }

if(weeks_10x < swap_block_earliest_1) {

too_early_1=1;

// summation=0; // AL - Have removed this line - don’t think it is needed

here

}

else if ((summation_1x > 0) && (weeks_10x>= 1) && (weeks_10x < min_rest_1[

emp_extend_1])) // AL - Have changed this from "if (summation > 0 &&

weeks_10>= 2 && weeks_10<= min_rest[emp_extend])"

{

too_early_1=1;

}

else if(summation_1y > 0 && weeks_10x < min_rest_1[emp_extend_1]) // AL -

Have added this statement which uses the calculated "summation_1" quantity

{

too_early_1=1;

}

else {

too_early_1=0;

} // AL - The ’else’ part of the split ’else / if’ statement ends

here

971

if(eligible_1[weeks_10x][rol_10x][emp_extend_1]< 1) {

swap_allowed_1=0;

}

else {

swap_allowed_1=1;

}

swap_block_end_1=-1;

swap_block_len_1=0;

}

else {

swap_block_found_1=0;

} }

void evaluate_swap5(int& swap_allowed_1,int& emp_extend_1,int& rol_10x,int&

weeks_10x, int& swap_block_latest_1, int& swap_block_found_1, int eligible_1

[13][25][49])

{

if(weeks_10x> swap_block_latest_1) {

swap_block_found_1=0;

}

else {

if(eligible_1[weeks_10x][rol_10x][emp_extend_1] < 1) {

swap_allowed_1=0;

} } }

void evaluate_swap7(int& swap_new_block_1, int& swap_block_found_1)

{

if(swap_new_block_1==1) {

swap_block_found_1=1;

swap_new_block_1=0;

} }

void evaluate_swap8(int& weeks_10x, int& rol_10x,int& swap_block_end_1, int&

swap_block_start_1,int& swap_block_len_1,int& swap_allowed_1, int eligible_1

[13][25][49], int& emp_extend_1)

{

if(eligible_1[weeks_10x][rol_10x][emp_extend_1] < 1) {

swap_allowed_1=0;

}

swap_block_end_1=weeks_10x;

swap_block_len_1=(swap_block_end_1 - swap_block_start_1) +1;

}

972

void evaluate_swap9(int& swap_emp_1, int& swap_task_1, int& swap_block_start_1,

int& block_start_1, int& swap_block_end_1, int& block_end_1)

{

swap_emp_1=48;

swap_task_1=-1;

swap_block_start_1=block_start_1;

swap_block_end_1=block_end_1;

}

void evaluate_swap10(int min_rest_1[48], int work_zero_1[48],int starting_1

[25][49],int all_roles_1,int summation_1x, int summation_1y,int eligible_1

[13][25][49],int& task_extend_1,int& block_end_1,int rest_zero_1[48],int&

block_start_1,int max_work_1[48],int& block_len_1, int reg_emp_1, int

swappable_emp_1[48], int& emp_extend_1)

{

int emp_11, rol_11, weeks_100x;

for(emp_11=0;emp_11<reg_emp_1;emp_11++) {

swappable_emp_1[emp_11]=1;//10 aralik

if(emp_11==emp_extend_1) {

swappable_emp_1[emp_11]=0;

}

if(block_len_1 > max_work_1[emp_11]) {

swappable_emp_1[emp_11]=0;

}

if(block_start_1+1 <=rest_zero_1[emp_11]) // AL - Have changed this from "if(

block_start <= rest_zero[emp_10])"

{

swappable_emp_1[emp_11]=0;

}

// AL - Have added this quantity to take into account that "block_start" may be <

0, and so eligible will not be defined for this.

if(block_start_1 >=0) // I am assuming this would cause an

error when the programme is run - if it is able to handle the ’out of range’

index then

{ // no need to make this change.

//revised_start=block_start_1;

for (weeks_100x=block_start_1;weeks_100x<=block_end_1;weeks_100x++) // AL - Have

changed this from "for (weeks_10=block_start;weeks_10<=block_end;weeks_10++)"

- see above for reason

{

if(eligible_1[weeks_100x][task_extend_1][emp_11] < 1) {

swappable_emp_1[emp_11]=0;

} } }

973

summation_1x=0;

summation_1y=0;

for(rol_11=0;rol_11<all_roles_1;rol_11++) {

if(rol_11!=task_extend_1) {

summation_1x=summation_1x+starting_1[rol_11][emp_11];

}

else {// AL - Have added this ’else’ bracket so as to combine the two

calculations...

summation_1y=summation_1y+starting_1[rol_11][emp_11];

} }

if(summation_1x> 0 && (block_start_1+1 <= min_rest_1[emp_11])) // AL - Have

changed this from "...&& block_start <= min_rest..."

{

swappable_emp_1[emp_11]=0;

}

if(summation_1y> 0) {

if(block_start_1>=1 && block_start_1+1 <=min_rest_1[emp_11]) // AL - Have changed

this from "...&& block_start <= min_rest..."

{

swappable_emp_1[emp_11]=0;

}

if((block_start_1<= 0) && ((block_len_1 + work_zero_1[emp_11]) > max_work_1[

emp_11])) // AL - Have changed this from "if(block_start <= 0 &&..."

{

swappable_emp_1[emp_11]=0;

} } } }

void evaluate_swap11(int& swap_find_time_1, int& all_rest_1,int& swap_allowed_1,

int& too_early_1,int& swap_block_found_1, int& swap_block_len_1, int&

do_swap_1, int& swap_emp_1, int& swap_vessel_1, int& swap_task_1, int&

swap_block_start_1, int& swap_block_end_1)

{

if(do_swap_1==0) {

swap_emp_1=-1;

swap_task_1=-1;

swap_vessel_1=-1;

swap_block_start_1=-1;

swap_block_end_1=-1;

swap_block_len_1=0;

swap_find_time_1=0;

swap_block_found_1=0;

too_early_1=0;

swap_allowed_1=1;

974

all_rest_1=1;

} }

void evaluate_swap12(int& swap_vessel_1,int roles_1[25],int& swap_block_start_1,

int& swap_emp_1, int& swap_task_1,int& swap_allowed_1, int eligible_1

[13][25][49],int min_rest_1[48],int& emp_extend_1, int starting_1[25][49],int

all_roles_1, int summation_1x, int summation_1y, int& too_early_1,int&

swap_block_found_1,int& swap_new_block_1, int& all_rest_1,int& rol_10x, int&

emp_10x, int list_sol_1[8][13][48],int& swap_block_earliest_1, int&

swap_find_time_1, int& swap_block_latest_1)

{

int rol_11;

rol_10x=list_sol_1[0][swap_find_time_1][emp_10x];

if((rol_10x!=-1) && (swap_find_time_1 >= swap_block_earliest_1) && (

swap_find_time_1 <= swap_block_latest_1)) {

all_rest_1=0;

}

swap_new_block_1=0;

//}

if((swap_block_found_1==0) && (rol_10x!=-1) && (swap_find_time_1<=

swap_block_latest_1)) {

if(swap_find_time_1 <swap_block_earliest_1) {

too_early_1=1;

}

summation_1x=0;

summation_1y=0; // AL - Have moved this statement in from below...

for(rol_11=0;rol_11<all_roles_1;rol_11++) {

if(rol_11==rol_10x) {

summation_1x=summation_1x+starting_1[rol_11][emp_extend_1];

}

else // AL - ... and have added this ’else’ to combine the "summation_1"

calculation from below...

{

summation_1y=summation_1y+starting_1[rol_11][emp_extend_1];

}

}

if((summation_1x> 0) && (swap_find_time_1 >=1) && (swap_find_time_1 +1<=

min_rest_1[emp_extend_1])) // AL - Have changed this from "...swap_find_time

<= min_rest[emp_extend]) "

{

too_early_1=1;

}

if(summation_1y> 0 && swap_find_time_1 <min_rest_1[emp_extend_1]) // AL - Have

975

changed this from "...&& swap_find_time<= min_rest[emp_extend]) "

{

too_early_1=1;

}

if(eligible_1[swap_find_time_1][rol_10x][emp_extend_1]< 1) {

swap_allowed_1=0;

}

swap_new_block_1=1;

swap_emp_1=emp_10x;

swap_task_1=rol_10x; // AL - Have changed this from "swap_task=rol_11"

swap_block_start_1=swap_find_time_1;

for(rol_11=0;rol_11<all_roles_1;rol_11++) {

if(rol_10x==roles_1[rol_11]) {

swap_vessel_1=rol_11;

rol_11=all_roles_1;

} } } }

void evaluate_swap13(int& vessel_extend_1, int roles_1[25],int& swap_task_1, int&

swap_allowed_1,int eligible_1[13][25][49] ,int& rol_10x, int& emp_extend_1,

int& swap_vessel_1, int& link_to_vessel_1, int& swap_find_time_1, int&

swap_block_latest_1, int& swap_block_found_1)

{

if(swap_vessel_1!=-1) {

if(rol_10x==roles_1[vessel_extend_1]) {

link_to_vessel_1=1;

} }

if(link_to_vessel_1==1) {

if(swap_find_time_1 > swap_block_latest_1) {

swap_block_found_1=0;

}

else {

if(eligible_1[swap_find_time_1][rol_10x][emp_extend_1] < 1) {

swap_allowed_1=0;

}

else {

swap_task_1=rol_10x;

} } } }

void evaluate_swap14(int& swap_block_found_1,int& swap_block_len_1,int&

swap_block_end_1, int& swap_vessel_1,int& swap_allowed_1,int eligible_1

[13][25][49] ,int min_rest_1[48],int starting_1[25][49], int& emp_extend_1,

int roles_1[25],int all_roles_1,int summation_1x, int summation_1y,int&

too_early_1,int& swap_find_time_1, int& swap_block_latest_1, int& do_swap_1,

976

int& swap_task_extend_1, int& rol_10x, int& swap_block_start_1, int&

swap_block_earliest_1)

{

int rol_11;

if(swap_find_time_1 <= swap_block_latest_1 && do_swap_1==0) {

swap_task_extend_1=rol_10x;

swap_block_start_1=swap_find_time_1;

if(swap_find_time_1 < swap_block_earliest_1) {

too_early_1=1;

}

else // AL - Have had to split the ’else’ and ’if’ statements to incorporate

the calculations

{

summation_1x=0;

summation_1y=0;

for(rol_11=0;rol_11<all_roles_1;rol_11++) {

if(rol_10x==roles_1[rol_11]) {

summation_1x=summation_1x+starting_1[rol_11][emp_extend_1];

}

else // AL - Have combined the two parts of the calculation into the one loop

{

summation_1y=summation_1y+starting_1[rol_11][emp_extend_1]; // AL - Have

changed this from "...+starting[v][emp_extend]"

} }

if((summation_1x>0) && (swap_find_time_1>=1) && (swap_find_time_1+1<= min_rest_1[

emp_extend_1])) // AL - Have changed this from "...&& swap_find_time <=

min_rest[emp_extend]) "

{

too_early_1=1; // AL - Have changed this from "too_early=0;"

}

else if((summation_1y > 0) && (swap_find_time_1+1<=min_rest_1[emp_extend_1])) //

AL - Have changed this from "...&& swap_find_time <= min_rest[emp_extend]) "

{

too_early_1=1; // AL - Have changed this from "too_early=0;"

}

else {

too_early_1=0;

} } // AL - The ’else’ part of the split ’else / if’ statement ends

here

if(eligible_1[swap_find_time_1][rol_10x][emp_extend_1]<1) {

swap_allowed_1=0;

}

else {

977

swap_allowed_1=1;

}

for(rol_11=0;rol_11<all_roles_1;rol_11++) {

if(rol_10x ==roles_1[rol_11]) {

swap_vessel_1=rol_11;

} }

swap_block_end_1=-1;

swap_block_len_1=0;

}

else {

swap_block_found_1=0;

} }

void evaluate_swap15(int& rol_10x, int& swap_find_time_1, int&

swap_block_latest_1, int& swap_block_found_1, int& swap_allowed_1, int

eligible_1[13][25][49], int& emp_extend_1)

{

if(swap_find_time_1 > swap_block_latest_1) {

swap_block_found_1=0;

}

else {

if((swap_allowed_1==1) && (eligible_1[swap_find_time_1][rol_10x][emp_extend_1] <

1)) {

swap_allowed_1=0;

} } }

void evaluate_swap16(int& swap_emp_1, int& swap_task_1, int& swap_vessel_1, int&

swap_block_found_1, int& do_swap_1, int& too_early_1, int& swap_allowed_1,

int& swap_block_start_1, int& swap_block_end_1, int& swap_block_len_1)

{

swap_block_found_1= 0;

if(do_swap_1==0) {

too_early_1=0;

swap_allowed_1=1;

swap_block_start_1=-1;

swap_block_end_1=-1;

swap_block_len_1=0;

swap_emp_1=-1;

swap_task_1=-1;

swap_vessel_1=-1;

} }

void evaluate_swap17(int& swap_new_block_1, int& swap_block_found_1)

978

{

if(swap_new_block_1==1) {

swap_block_found_1=1;

swap_new_block_1=0;

} }

void evaluate_swap18(int& swap_block_start_1, int& swap_block_len_1,int&

swap_block_end_1, int& swap_find_time_1, int& swap_allowed_1, int eligible_1

[13][25][49], int& rol_10x, int& emp_extend_1)

{

if(eligible_1[swap_find_time_1][rol_10x][emp_extend_1]< 1) {

swap_allowed_1=0;

}

swap_block_end_1=swap_find_time_1;

swap_block_len_1=(swap_block_end_1 - swap_block_start_1) +1;

}

void evaluate_swap19(int& swap_emp_1, int& emp_10x, int& swap_task_1, int&

swap_block_start_1, int& block_start_1, int& swap_block_end_1, int&

block_end_1)

{

swap_emp_1=emp_10x;

swap_task_1=-1;

swap_block_start_1=block_start_1;

swap_block_end_1=block_end_1;

}

E.2.5.7 ‘Feasibility check’ sub-programmes

#include "feasibility_checking.h"

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <conio.h>

#include "string"

#include <cstdlib>

#include <ctime>

#include <math.h>

#include <iostream>

#include <fstream>

#include <algorithm>

#include <iterator>

#include <vector>

979

#include <random>

using namespace std;

void JC_feas(int &feasible_1, int &JCfeas_1,int all_emp_1,int all_roles_1, int

weeks_to_plan_1, int eligible_1[13][25][49], int allocate_sol_1

[8][13][25][49], int required_1[13][25])

{

feasible_1=1;

int rol_3,weeks_3, emp_3;

int sum_product_eligable_allocate[13][25];

//--

// Job Cover constraints:

JCfeas_1= 1;

for(rol_3=0; rol_3<all_roles_1;rol_3++)

for(weeks_3=0;weeks_3<weeks_to_plan_1;weeks_3++) {

sum_product_eligable_allocate[weeks_3][rol_3]=0;

}

for(rol_3=0; rol_3<all_roles_1;rol_3++)

for(weeks_3=0;weeks_3<weeks_to_plan_1;weeks_3++)

for(emp_3=0; emp_3<all_emp_1;emp_3++) {

sum_product_eligable_allocate[weeks_3][rol_3]= sum_product_eligable_allocate[

weeks_3][rol_3]+ (eligible_1[weeks_3][rol_3][emp_3]* allocate_sol_1[2][

weeks_3][rol_3][emp_3]);

}

for(rol_3=0; rol_3<all_roles_1;rol_3++) {

for(weeks_3=0;weeks_3<weeks_to_plan_1;weeks_3++) {

if(required_1[weeks_3][rol_3]>=1) {

if(sum_product_eligable_allocate[weeks_3][rol_3]!= required_1[weeks_3][rol_3]) {

JCfeas_1=0;

} } } }

if(JCfeas_1==0) {

feasible_1=0;

}

}

void Overlap_feas(vector<int> &emps_changed_1,int &feasible_1, int &OLfeas_1,int

all_emp_1,int all_roles_1, int weeks_to_plan_1, int allocate_sol_1

[8][13][25][49])

{ int count_emps, weeks_3, rol_3, emp_3, size_emps_changed;

int sum_allocate_roles[13][49];

size_emps_changed=emps_changed_1.size();

if(feasible_1==1) {

OLfeas_1=1;

980

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

for(weeks_3=0;weeks_3<weeks_to_plan_1;weeks_3++) {

sum_allocate_roles[weeks_3][emp_3]=0;

for(rol_3=0; rol_3<all_roles_1;rol_3++) {

sum_allocate_roles[weeks_3][emp_3]=sum_allocate_roles[weeks_3][emp_3]+

allocate_sol_1[2][weeks_3][rol_3][emp_3];//float check here

if(sum_allocate_roles[weeks_3][emp_3]>1) {

OLfeas_1=0;

} } } }

if(OLfeas_1==0) {

feasible_1=0;

} } }

void BoardFeas(vector<int> &emps_changed_1,int &feasible_1, int &Brdfeas_1,int

all_emp_1,int all_roles_1, int weeks_to_plan_1, int allocate_sol_1

[8][13][25][49], int board_sol_1[8][13][25][48],int starting_1[25][49])

{

int count_emps, weeks_3, rol_3, emp_3, size_emps_changed;

int sum_allocate[13][25][49];

size_emps_changed=emps_changed_1.size();

//--

// Boarding constraints

if(feasible_1==1) {

Brdfeas_1=1;

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

for(weeks_3=0;weeks_3<weeks_to_plan_1;weeks_3++)

for(rol_3=0; rol_3<all_roles_1;rol_3++) {

sum_allocate[weeks_3][rol_3][emp_3]=allocate_sol_1[2][weeks_3][rol_3][emp_3];

}

for(rol_3=0; rol_3<all_roles_1;rol_3++) {

if(board_sol_1[2][0][rol_3][emp_3] < (sum_allocate[0][rol_3][emp_3] - starting_1[

rol_3][emp_3])) {

Brdfeas_1=0;

}

for(weeks_3=1;weeks_3<weeks_to_plan_1;weeks_3++) {

if(board_sol_1[2][weeks_3][rol_3][emp_3] < (sum_allocate[weeks_3][rol_3][emp_3] -

sum_allocate[weeks_3-1][rol_3][emp_3])) {

Brdfeas_1=0;

} } } }

if(Brdfeas_1==0) {

feasible_1=0;

981

} } }

void DepartFeas(vector<int> &emps_changed_1,int &feasible_1, int &Dprtfeas_1,int

all_emp_1,int all_roles_1, int weeks_to_plan_1, int allocate_sol_1

[8][13][25][49], int depart_sol_1[8][13][25][48],int starting_1[25][49])

{

// Departing constraints

int count_emps, weeks_3, rol_3, emp_3, size_emps_changed;

int sum_allocate[13][25][49];

size_emps_changed=emps_changed_1.size();

if(feasible_1==1) {

Dprtfeas_1= 1;

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

for(weeks_3=0;weeks_3<weeks_to_plan_1;weeks_3++)

for(rol_3=0; rol_3<all_roles_1;rol_3++) {

sum_allocate[weeks_3][rol_3][emp_3]=allocate_sol_1[2][weeks_3][rol_3][emp_3];

}

for(rol_3=0; rol_3<all_roles_1;rol_3++) {

if(depart_sol_1[2][0][rol_3][emp_3]<(starting_1[rol_3][emp_3]- sum_allocate[0][

rol_3][emp_3])) {

Dprtfeas_1=0;

}

for(weeks_3=1;weeks_3<weeks_to_plan_1;weeks_3++) {

if(depart_sol_1[2][weeks_3][rol_3][emp_3]<(sum_allocate[weeks_3 - 1][rol_3][emp_3

]- sum_allocate[weeks_3][rol_3][emp_3])) {

Dprtfeas_1=0;

} } } }

if(Dprtfeas_1==0) {

feasible_1=0;

} } }

void AgBoardDepartFeas(vector<int> &ag_roles_changed_1,int &feasible_1, int &

AGBDfeas_1,int all_roles_1, int weeks_to_plan_1, int allocate_sol_1

[8][13][25][49], int ag_rboard_sol_1[8][13][25],int ag_rdepart_sol_1

[8][13][25],int ag_starting_1[25])

{

int count_roles, weeks_3, rol_3, size_ag_roles_changed;

size_ag_roles_changed=ag_roles_changed_1.size();

//--

//Agency board / depart constraints

if(feasible_1==1) {

AGBDfeas_1=1;

982

for(count_roles=0; count_roles<size_ag_roles_changed; count_roles++) {

rol_3=ag_roles_changed_1[count_roles];

if((ag_rboard_sol_1[2][0][rol_3]-ag_rdepart_sol_1[2][0][rol_3]) != (

allocate_sol_1[2][0][rol_3][48] - ag_starting_1[rol_3])) {

AGBDfeas_1=0;

}

for(weeks_3=1;weeks_3<weeks_to_plan_1;weeks_3++) {

if((ag_rboard_sol_1[2][weeks_3][rol_3] - ag_rdepart_sol_1[2][weeks_3][rol_3])!=

(allocate_sol_1[2][weeks_3][rol_3][48] - allocate_sol_1[2][weeks_3-1][rol_3

][48])) {

AGBDfeas_1=0;

} } }

if(AGBDfeas_1==0) {

feasible_1=0;

} } }

void UnderOverFeas(vector<int> &emps_changed_1,int &feasible_1, int &UTfeas_1,

int &OTfeas_1,int all_emp_1,int all_roles_1, int weeks_to_plan_1,int

undertime_sol_1[8][45],int overtime_sol_1[8][45],int g_weeks_1[45], int

exp_worktime_1[45],int allocate_sol_1[8][13][25][49])

{

int count_emps, weeks_3, rol_3, emp_3, size_emps_changed;

int sum_allocate_roles[13][49];

int sum_allocation_vessels[49];

size_emps_changed=emps_changed_1.size();

for(emp_3=0;emp_3<all_emp_1;emp_3++) {

for(weeks_3=0;weeks_3<weeks_to_plan_1;weeks_3++) {

sum_allocate_roles[weeks_3][emp_3]=0;

} }

for(emp_3=0;emp_3<all_emp_1;emp_3++) {

for(weeks_3=0;weeks_3<weeks_to_plan_1;weeks_3++) {

for(rol_3=0; rol_3<all_roles_1;rol_3++) {

sum_allocate_roles[weeks_3][emp_3]=sum_allocate_roles[weeks_3][emp_3]+

allocate_sol_1[2][weeks_3][rol_3][emp_3];//float check here

} } }

for(emp_3=0;emp_3<all_emp_1;emp_3++) {

sum_allocation_vessels[emp_3]=0;

}

for(emp_3=0;emp_3<all_emp_1;emp_3++) {

for(weeks_3=0;weeks_3<weeks_to_plan_1;weeks_3++) {

sum_allocation_vessels[emp_3]=sum_allocate_roles[weeks_3][emp_3]+

sum_allocation_vessels[emp_3];

} }

983

if(feasible_1==1) {

UTfeas_1=1;

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

if(emp_3>=3) {

if(undertime_sol_1[2][emp_3-3] < (g_weeks_1[emp_3-3] - (exp_worktime_1[emp_3-3]

+sum_allocation_vessels[emp_3]))) {

UTfeas_1=0;

} } }

if(UTfeas_1==0) {

feasible_1=0;

} }

//--

// Overtime

if(feasible_1==1) {

OTfeas_1=1;

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

if(emp_3>=3) {

if(overtime_sol_1[2][emp_3-3] < ((exp_worktime_1[emp_3-3] +sum_allocation_vessels

[emp_3]) - g_weeks_1[emp_3-3])) {

OTfeas_1=0;

} } }

if(OTfeas_1==0) {

feasible_1=0;

} } }

void LongWorkFeas(vector<int> &ag_roles_changed_1,vector<int> &emps_changed_1,int

&AGLWfeas_1,int &LWfeas_1,int lambda_1, int &feasible_1, int work_total_1

[13][48], int work_zero_1[48], int reg_emp_1,int all_roles_1, int

weeks_to_plan_1,int allocate_sol_1[8][13][25][49], int max_work_1[48],int

long_work_sol_1[8][13][25][49][10],int ag_work_total_1[13][25], int

ag_work_zero_1[25], int ag_max_work_1[25], int ag_rdepart_sol_1[8][13][25])

{

int count_roles,rol_3, weeks_3, emp_3, size_emps_changed,count_emps, long_1,

size_ag_roles_changed;

int sum_allocate_roles[13][48];

for(emp_3=0;emp_3<reg_emp_1;emp_3++) {

for(weeks_3=0;weeks_3<weeks_to_plan_1;weeks_3++) {

sum_allocate_roles[weeks_3][emp_3]=0;

} }

for(emp_3=0;emp_3<reg_emp_1;emp_3++) {

for(weeks_3=0;weeks_3<weeks_to_plan_1;weeks_3++) {

984

for(rol_3=0; rol_3<all_roles_1;rol_3++) {

sum_allocate_roles[weeks_3][emp_3]=sum_allocate_roles[weeks_3][emp_3]+

allocate_sol_1[2][weeks_3][rol_3][emp_3];//float check here

} } }

size_emps_changed=emps_changed_1.size();

// Long work constraints

// - Calculate work resource values

if(feasible_1==1) {

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

work_total_1[0][emp_3]= work_zero_1[emp_3] + sum_allocate_roles[0][emp_3]-

max_work_1[emp_3]*(1-sum_allocate_roles[0][emp_3]);

if(work_total_1[0][emp_3] < 0) {

work_total_1[0][emp_3]=0;

}

for(weeks_3=1;weeks_3<weeks_to_plan_1;weeks_3++) {

work_total_1[weeks_3][emp_3] = work_total_1[weeks_3-1][emp_3] +

sum_allocate_roles[weeks_3][emp_3]- (max_work_1[emp_3]*(1-sum_allocate_roles[

weeks_3][emp_3]));

if(work_total_1[weeks_3][emp_3] < 0) {

work_total_1[weeks_3][emp_3]=0;

} } }

// - Check constraints

LWfeas_1=1;

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

for(long_1=0;long_1<lambda_1;long_1++)

for(rol_3=0;rol_3<all_roles_1;rol_3++) {

if(long_work_sol_1[2][0][rol_3][emp_3][long_1]==1) {

if((max_work_1[emp_3]*long_work_sol_1[2][0][rol_3][emp_3][long_1])<(work_zero_1[

emp_3] -(max_work_1[emp_3]*(1-allocate_sol_1[2][0][rol_3][emp_3]))+

allocate_sol_1[2][0][rol_3][emp_3]-(long_1))) {

LWfeas_1=0;

} }

for(weeks_3=1;weeks_3<weeks_to_plan_1;weeks_3++) {

if(long_work_sol_1[2][weeks_3][rol_3][emp_3][long_1]==1) {

if((max_work_1[emp_3]*long_work_sol_1[2][weeks_3][rol_3][emp_3][long_1]) <(

work_total_1[weeks_3-1][emp_3]-(max_work_1[emp_3]*(1-allocate_sol_1[2][

weeks_3][rol_3][emp_3])) + allocate_sol_1[2][weeks_3][rol_3][emp_3]-(long_1))

) {

LWfeas_1=0;

} } } } }

if(LWfeas_1==0) {

985

feasible_1=0;

} }

//--

// Agency Long work constraints

// - Calculate agency work resource values

if(feasible_1==1) {

size_ag_roles_changed=ag_roles_changed_1.size();

for(count_roles=0; count_roles<size_ag_roles_changed; count_roles++) {

rol_3=ag_roles_changed_1[count_roles];

ag_work_total_1[0][rol_3]= ag_work_zero_1[rol_3] + allocate_sol_1[2][0][rol_3

][48]- (ag_max_work_1[rol_3]*ag_rdepart_sol_1[2][0][rol_3]);

if(ag_work_total_1[0][rol_3] <allocate_sol_1[2][0][rol_3][48]) {

ag_work_total_1[0][rol_3]=allocate_sol_1[2][0][rol_3][48];

}

for(weeks_3=1;weeks_3<weeks_to_plan_1;weeks_3++) {

ag_work_total_1[weeks_3][rol_3]= ag_work_total_1[weeks_3-1][rol_3] +

allocate_sol_1[2][weeks_3][rol_3][48] - (ag_max_work_1[rol_3]*

ag_rdepart_sol_1[2][weeks_3][rol_3]);

if(ag_work_total_1[weeks_3][rol_3] <allocate_sol_1[2][weeks_3][rol_3][48]) {

ag_work_total_1[weeks_3][rol_3]= allocate_sol_1[2][weeks_3][rol_3][48];

} } }

// - Check constraints

AGLWfeas_1=1;

for(count_roles=0; count_roles<size_ag_roles_changed; count_roles++) {

rol_3=ag_roles_changed_1[count_roles];

for(long_1=0;long_1<lambda_1;long_1++)

for(weeks_3=0;weeks_3<weeks_to_plan_1;weeks_3++) {

if(long_work_sol_1[2][weeks_3][rol_3][48][long_1]==1) {

if((ag_max_work_1[rol_3]*long_work_sol_1[2][weeks_3][rol_3][48][long_1])< (

ag_work_total_1[weeks_3][rol_3]-(long_1))) {

AGLWfeas_1=0;

} } } }

if(AGLWfeas_1==0) {

feasible_1=0;

} } }

void RestFeas(vector<int> &emps_changed_1,int &feasible_1,int &RvWfeas_1,int

reg_emp_1,int all_roles_1, int weeks_to_plan_1,int depart_sol_1

[8][13][25][48],int rest_total_1[13][49], int rest_zero_1[48],int

allocate_sol_1[8][13][25][49],int min_rest_1[48])

{

int rol_3, weeks_3, emp_3, size_emps_changed,count_emps;

size_emps_changed=emps_changed_1.size();

986

int sum_depart[13][48];

int sum_allocate_roles[13][48];

for(emp_3=0;emp_3<reg_emp_1;emp_3++) {

for(weeks_3=0;weeks_3<weeks_to_plan_1;weeks_3++) {

sum_allocate_roles[weeks_3][emp_3]=0;

} }

for(emp_3=0;emp_3<reg_emp_1;emp_3++) {

for(weeks_3=0;weeks_3<weeks_to_plan_1;weeks_3++) {

for(rol_3=0; rol_3<all_roles_1;rol_3++) {

sum_allocate_roles[weeks_3][emp_3]=sum_allocate_roles[weeks_3][emp_3]+

allocate_sol_1[2][weeks_3][rol_3][emp_3];//float check here

} } }

if(feasible_1==1) {

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

for(weeks_3=0;weeks_3<weeks_to_plan_1;weeks_3++) {

sum_depart[weeks_3][emp_3]=0;

for(rol_3=0;rol_3<all_roles_1;rol_3++) {

sum_depart[weeks_3][emp_3]=sum_depart[weeks_3][emp_3]+depart_sol_1[2][weeks_3][

rol_3][emp_3];

} }

rest_total_1[0][emp_3]= rest_zero_1[emp_3] - (1-sum_allocate_roles[0][emp_3]);

if(rest_total_1[0][emp_3] < ((min_rest_1[emp_3]-1)*sum_depart[0][emp_3])) {

rest_total_1[0][emp_3]= (min_rest_1[emp_3]-1)*sum_depart[0][emp_3];

}

for(weeks_3=1;weeks_3<weeks_to_plan_1;weeks_3++) {

rest_total_1[weeks_3][emp_3]= rest_total_1[weeks_3-1][emp_3] - (1-

sum_allocate_roles[weeks_3][emp_3]);

if(rest_total_1[weeks_3][emp_3] < ((min_rest_1[emp_3]-1)*sum_depart[weeks_3][

emp_3])) {

rest_total_1[weeks_3][emp_3]= (min_rest_1[emp_3]-1)*sum_depart[weeks_3][emp_3];

} } }

// - Check constraints

RvWfeas_1=1;

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

if(min_rest_1[emp_3]*(1-sum_allocate_roles[0][emp_3]) < rest_zero_1[emp_3]) {

RvWfeas_1=0;

}

for(weeks_3=1;weeks_3<weeks_to_plan_1;weeks_3++) {

if(min_rest_1[emp_3]*(1-sum_allocate_roles[weeks_3][emp_3]) < rest_total_1[

weeks_3-1][emp_3]) {

RvWfeas_1=0;

987

} } }

if(RvWfeas_1==0) {

feasible_1=0;

} } }

void LinkFeasiblity(int lambda_1,vector<int> &ag_roles_changed_1,vector<int> &

emps_changed_1,int &feasible_1,int &Linkfeas_1,int reg_emp_1,int all_roles_1,

int weeks_to_plan_1,int cur_allocate_1[13][25][49],int chng_allocate_1

[13][25][49], int allocate_sol_1[8][13][25][49],int cur_board_1[13][25][48],

int chng_board_1[13][25][48], int board_sol_1[8][13][25][48],int cur_depart_1

[13][25][48], int chng_depart_1[13][25][48], int depart_sol_1[8][13][25][48],

int cur_ag_rboard_1[13][25], int ag_rboard_sol_1[8][13][25], int

chng_ag_rboard_1[13][25], int cur_ag_rdepart_1[13][25], int ag_rdepart_sol_1

[8][13][25], int chng_ag_rdepart_1[13][25], int cur_long_work_1

[13][25][49][10], int chng_long_work_1[13][25][49][10], int long_work_sol_1

[8][13][25][49][10], int chng_undertime_1[45], int undertime_sol_1[8][45],

int cur_undertime_1[45], int chng_overtime_1[45], int overtime_sol_1[8][45],

int cur_overtime_1[45])

{

int count_roles,rol_3, week_3, emp_3, size_emps_changed,count_emps, long_1,

size_ag_roles_changed;

size_emps_changed=emps_changed_1.size();

if(feasible_1==1) {

Linkfeas_1=1;

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

for(rol_3=0;rol_3<all_roles_1;rol_3++)

for(week_3=0;week_3<weeks_to_plan_1;week_3++) {

if(cur_allocate_1[week_3][rol_3][emp_3]== 0) {

if(chng_allocate_1[week_3][rol_3][emp_3]!=allocate_sol_1[2][week_3][rol_3][emp_3

]) {

Linkfeas_1=0;

} }

else {

if(chng_allocate_1[week_3][rol_3][emp_3]!=(cur_allocate_1[week_3][rol_3][emp_3] -

allocate_sol_1[2][week_3][rol_3][emp_3])) {

Linkfeas_1=0;

} } } }

emp_3=48;

size_ag_roles_changed=ag_roles_changed_1.size();

for(count_roles=0; count_roles<size_ag_roles_changed; count_roles++) {

rol_3=ag_roles_changed_1[count_roles];

for(week_3=0;week_3<weeks_to_plan_1;week_3++) {

988

if(cur_allocate_1[week_3][rol_3][emp_3]== 0) {

if(chng_allocate_1[week_3][rol_3][emp_3]!=allocate_sol_1[2][week_3][rol_3][emp_3

]) {

Linkfeas_1=0;

} }

else {

if(chng_allocate_1[week_3][rol_3][emp_3]!=(cur_allocate_1[week_3][rol_3][emp_3] -

allocate_sol_1[2][week_3][rol_3][emp_3])) {

Linkfeas_1=0;

} } } }

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

for(rol_3=0;rol_3<all_roles_1;rol_3++)

for(week_3=0;week_3<weeks_to_plan_1;week_3++) {

if(cur_board_1[week_3][rol_3][emp_3] == 0) {

if(chng_board_1[week_3][rol_3][emp_3] != board_sol_1[2][week_3][rol_3][emp_3]) {

Linkfeas_1=0;

} }

else {

if(chng_board_1[week_3][rol_3][emp_3] !=(cur_board_1[week_3][rol_3][emp_3] -

board_sol_1[2][week_3][rol_3][emp_3])) {

Linkfeas_1=0;

} } } }

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

for(rol_3=0;rol_3<all_roles_1;rol_3++)

for(week_3=0;week_3<weeks_to_plan_1;week_3++) {

if(cur_depart_1[week_3][rol_3][emp_3] == 0) {

if(chng_depart_1[week_3][rol_3][emp_3]!=depart_sol_1[2][week_3][rol_3][emp_3]) {

Linkfeas_1=0;

} }

else {

if(chng_depart_1[week_3][rol_3][emp_3]!=(cur_depart_1[week_3][rol_3][emp_3]-

depart_sol_1[2][week_3][rol_3][emp_3])) {

Linkfeas_1=0;

} } } }

for(count_roles=0; count_roles<size_ag_roles_changed; count_roles++) {

rol_3=ag_roles_changed_1[count_roles];

for(week_3=0;week_3<weeks_to_plan_1;week_3++) {

if(cur_ag_rboard_1[week_3][rol_3] == 0) {

if(chng_ag_rboard_1[week_3][rol_3]!=ag_rboard_sol_1[2][week_3][rol_3]) {

Linkfeas_1=0;

} }

989

else {

if(chng_ag_rboard_1[week_3][rol_3]!=(cur_ag_rboard_1[week_3][rol_3] -

ag_rboard_sol_1[2][week_3][rol_3])) {

Linkfeas_1=0;

} } } }

for(count_roles=0; count_roles<size_ag_roles_changed; count_roles++) {

rol_3=ag_roles_changed_1[count_roles];

for(week_3=0;week_3<weeks_to_plan_1;week_3++) {

if(cur_ag_rdepart_1[week_3][rol_3] == 0) {

if(chng_ag_rdepart_1[week_3][rol_3]!=ag_rdepart_sol_1[2][week_3][rol_3]) {

Linkfeas_1=0;

} }

else {

if(chng_ag_rdepart_1[week_3][rol_3]!=(cur_ag_rdepart_1[week_3][rol_3] -

ag_rdepart_sol_1[2][week_3][rol_3])) {

Linkfeas_1=0;

} } } }

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

for(long_1=0;long_1<lambda_1;long_1++)

for(week_3=0;week_3<weeks_to_plan_1;week_3++)

for(rol_3=0;rol_3<all_roles_1;rol_3++) {

if(cur_long_work_1[week_3][rol_3][emp_3][long_1] == 0) {

if(chng_long_work_1[week_3][rol_3][emp_3][long_1] != long_work_sol_1[2][week_3][

rol_3][emp_3][long_1]) {

Linkfeas_1=0;

} }

else {

if(chng_long_work_1[week_3][rol_3][emp_3][long_1]!=(cur_long_work_1[week_3][rol_3

][emp_3][long_1] - long_work_sol_1[2][week_3][rol_3][emp_3][long_1])) {

Linkfeas_1=0;

} } } }

emp_3=48;

for(count_roles=0; count_roles<size_ag_roles_changed; count_roles++) {

rol_3=ag_roles_changed_1[count_roles];

for(long_1=0;long_1<lambda_1;long_1++)

for(week_3=0;week_3<weeks_to_plan_1;week_3++) {

if(cur_long_work_1[week_3][rol_3][emp_3][long_1] == 0) {

if(chng_long_work_1[week_3][rol_3][emp_3][long_1] != long_work_sol_1[2][week_3][

rol_3][emp_3][long_1]) {

Linkfeas_1=0;

} }

else {

990

if(chng_long_work_1[week_3][rol_3][emp_3][long_1]!=(cur_long_work_1[week_3][rol_3

][emp_3][long_1] - long_work_sol_1[2][week_3][rol_3][emp_3][long_1])) {

Linkfeas_1=0;

} } } }

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

if(emp_3>=3) {

if(chng_undertime_1[emp_3-3] !=(undertime_sol_1[2][emp_3-3] - cur_undertime_1[

emp_3-3])) {

Linkfeas_1=0;

}

if(chng_overtime_1[emp_3-3] !=(overtime_sol_1[2][emp_3-3] - cur_overtime_1[emp_3

-3])) {

Linkfeas_1=0;

} } }

if(Linkfeas_1== 0) {

feasible_1 = 0;

} } }

void StatusFeasibility(int lambda_1,vector<int> &ag_roles_changed_1,vector<int> &

emps_changed_1,int &feasible_1,int &Statfeas_1,int reg_emp_1,int all_roles_1,

int weeks_to_plan_1, int allocate_sol_1[8][13][25][49],int chng_allocate_1

[13][25][49], int chng_long_work_1[13][25][49][10], int long_work_sol_1

[8][13][25][49][10], int chng_board_1[13][25][48], int board_sol_1

[8][13][25][48], int chng_depart_1[13][25][48], int depart_sol_1

[8][13][25][48], int ag_rboard_sol_1[8][13][25], int chng_ag_rboard_1

[13][25], int ag_rdepart_sol_1[8][13][25], int chng_ag_rdepart_1[13][25], int

undertime_sol_1[8][45], int overtime_sol_1[8][45])

{

int count_roles,rol_3, week_3, emp_3, size_emps_changed,count_emps, long_1,

size_ag_roles_changed;

size_emps_changed=emps_changed_1.size();

//--

// Status of variables

if(feasible_1==1) {

Statfeas_1=1;

for(week_3=0;week_3<weeks_to_plan_1;week_3++) {

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

for(rol_3=0;rol_3<all_roles_1;rol_3++) {

if((allocate_sol_1[2][week_3][rol_3][emp_3]!=0) && (allocate_sol_1[2][week_3][

rol_3][emp_3]!=1)) {

Statfeas_1=0;

991

}

if((chng_allocate_1[week_3][rol_3][emp_3]!=0) && (chng_allocate_1[week_3][rol_3][

emp_3]!=1)) {

Statfeas_1=0;

}

for(long_1=0;long_1<lambda_1;long_1++) {

if((long_work_sol_1[2][week_3][rol_3][emp_3][long_1]!=0) && (long_work_sol_1[2][

week_3][rol_3][emp_3][long_1]!=1)) {

Statfeas_1=0;

}

if((chng_long_work_1[week_3][rol_3][emp_3][long_1]!=0) && (chng_long_work_1[

week_3][rol_3][emp_3][long_1]!=1)) {

Statfeas_1=0;

} } } }

emp_3=48;

size_ag_roles_changed=ag_roles_changed_1.size();

for(count_roles=0; count_roles<size_ag_roles_changed; count_roles++) {

rol_3=ag_roles_changed_1[count_roles];

if((allocate_sol_1[2][week_3][rol_3][emp_3]!=0) &&(allocate_sol_1[2][week_3][

rol_3][emp_3]!=1)) {

Statfeas_1=0;

}

if((chng_allocate_1[week_3][rol_3][emp_3]!=0) && (chng_allocate_1[week_3][rol_3][

emp_3]!=1)) {

Statfeas_1=0;

}

for(long_1=0;long_1<lambda_1;long_1++) {

if((long_work_sol_1[2][week_3][rol_3][emp_3][long_1]!=0) && (long_work_sol_1[2][

week_3][rol_3][emp_3][long_1]!=1)) {

Statfeas_1=0;

}

if((chng_long_work_1[week_3][rol_3][emp_3][long_1]!=0) && (chng_long_work_1[

week_3][rol_3][emp_3][long_1]!=1)) {

Statfeas_1=0;

} } } }

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

for(rol_3=0;rol_3<all_roles_1;rol_3++)

for(week_3=0;week_3<weeks_to_plan_1;week_3++) {

if((board_sol_1[2][week_3][rol_3][emp_3]!=0)&&(board_sol_1[2][week_3][rol_3][

emp_3]!=1)) {

Statfeas_1=0;

}

992

if((chng_board_1[week_3][rol_3][emp_3]!=0) && (chng_board_1[week_3][rol_3][emp_3

]!=1)) {

Statfeas_1=0;

}

if((depart_sol_1[2][week_3][rol_3][emp_3]!=0) &&(depart_sol_1[2][week_3][rol_3][

emp_3]!= 1)) {

Statfeas_1=0;

}

if((chng_depart_1[week_3][rol_3][emp_3]!=0) && (chng_depart_1[week_3][rol_3][

emp_3]!= 1)) {

Statfeas_1=0;

} } }

for(count_roles=0; count_roles<size_ag_roles_changed; count_roles++) {

rol_3=ag_roles_changed_1[count_roles];

for(week_3=0;week_3<weeks_to_plan_1;week_3++) {

if((ag_rboard_sol_1[2][week_3][rol_3]!= 0) && (ag_rboard_sol_1[2][week_3][rol_3

]!=1)) {

Statfeas_1=0;

}

if((chng_ag_rboard_1[week_3][rol_3]!=0) && (chng_ag_rboard_1[week_3][rol_3]!= 1))

{

Statfeas_1=0;

}

if((chng_ag_rdepart_1[week_3][rol_3]!=0) && (chng_ag_rdepart_1[week_3][rol_3]!=1)

) {

Statfeas_1=0;

}

if((ag_rdepart_sol_1[2][week_3][rol_3]!=0) && (ag_rdepart_sol_1[2][week_3][rol_3

]!=1)) {

Statfeas_1=0;

} } }

for(count_emps=0; count_emps<size_emps_changed; count_emps++) {

emp_3=emps_changed_1[count_emps];

if(emp_3>=3) {

if(undertime_sol_1[2][emp_3-3] < 0) {

Statfeas_1=0;

}

if(overtime_sol_1[2][emp_3-3] < 0) {

Statfeas_1=0;

} } } } }

void infeasibility(int &Statfeas_1, int &no_Statfeas_1,int &Linkfeas_1,int &

no_Linkfeas_1,int &no_RvWfeas_1 ,int &RvWfeas_1,int &AGLWfeas_1,int &LWfeas_1

993

, int &no_AGLWfeas_1,int &no_LWfeas_1, int &UTfeas_1, int &OTfeas_1, int &

no_UTfeas_1, int &no_OTfeas_1,int &JCfeas_1, int &no_JCfeas_1, int &OLfeas_1,

int &no_OLfeas_1, int &Brdfeas_1, int &Dprtfeas_1, int &AGBDfeas_1, int &

no_Brdfeas_1, int &no_Dprtfeas_1, int &no_AGBDfeas_1)

{

if(JCfeas_1==0) {

no_JCfeas_1=no_JCfeas_1+1;

}

else if(OLfeas_1==0) {

no_OLfeas_1=no_OLfeas_1+1;

}

else if(Brdfeas_1==0) {

no_Brdfeas_1=no_Brdfeas_1+1;

}

else if(Dprtfeas_1==0) {

no_Dprtfeas_1=no_Dprtfeas_1+1;

}

else if(AGBDfeas_1==0) {

no_AGBDfeas_1=no_AGBDfeas_1+1;

}

else if(UTfeas_1==0) {

no_UTfeas_1=no_UTfeas_1+1;

}

else if(OTfeas_1==0) {

no_OTfeas_1=no_OTfeas_1+1;

}

else if(AGLWfeas_1==0) {

no_AGLWfeas_1=no_AGLWfeas_1+1;

}

else if(LWfeas_1==0) {

no_LWfeas_1=no_LWfeas_1+1;

}

else if(RvWfeas_1==0) {

no_RvWfeas_1=no_RvWfeas_1+1;

}

else if(Linkfeas_1==0) {

no_Linkfeas_1=no_Linkfeas_1+1;

}

else if(Statfeas_1==0) {

no_Statfeas_1=no_Statfeas_1+1;

}

else {

no_JCfeas_1=no_JCfeas_1;

994

no_Statfeas_1=no_Statfeas_1;

no_Linkfeas_1=no_Linkfeas_1;

no_RvWfeas_1=no_RvWfeas_1;

no_OLfeas_1=no_OLfeas_1;

no_AGLWfeas_1=no_AGLWfeas_1;

no_OTfeas_1=no_OTfeas_1;

no_UTfeas_1=no_UTfeas_1;

no_Brdfeas_1=no_Brdfeas_1;

} }

E.2.5.8 ‘Finishing’ sub-programme

#include "finish.h"

void finishing(int &update_done_1, int &terminate_1, int &iteration_1, double&

time_1)

{

if(update_done_1==0) {

terminate_1=1;

}

else {

//current_time=gettime;

/*if(iteration_1==50)

{

terminate_1=1;

}*/

/*else

{

if(time_1 >= 650) {

terminate_1=1;

} }*/

if(time_1 >= 120) {

terminate_1=1;

} } }

E.2.5.9 ‘Initialise’ sub-programme

#include "initialise.h"

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <conio.h>

#include "string"

995

#include <cstdlib>

#include <ctime>

#include <math.h>

#include <iostream>

#include <fstream>

#include <algorithm>

#include <iterator>

#include <vector>

#include <random>

using namespace std;

void initialise_first(int overall_regular_max_work_1, int max_work_1[48], int

overall_agency_max_work_1, int ag_max_work_1[25], int overall_max_work_1,int&

lambda_1, int reg_emp_1, int all_roles_1)

{

int emp_17, rol_17;

for(emp_17=0;emp_17<reg_emp_1;emp_17++) {

if(overall_regular_max_work_1<= max_work_1[emp_17]) {

overall_regular_max_work_1=max_work_1[emp_17];

} }

for(rol_17=0;rol_17<all_roles_1;rol_17++) {

if(overall_agency_max_work_1<=ag_max_work_1[rol_17]) {

overall_agency_max_work_1=ag_max_work_1[rol_17];

} }

if(overall_regular_max_work_1>=overall_agency_max_work_1) {

overall_max_work_1=overall_regular_max_work_1;

}

else {

overall_max_work_1=overall_agency_max_work_1;

}

lambda_1=overall_max_work_1;

}

void initialise_second(int weeks_to_plan_1, int list_sol_1[8][13][48], int

best_index_1, int best_sols_1[51][13][48], int& added_t_1, int

swaps_examined_1[48][48], vector<int> &emps_changed_1, int reg_emp_1, int

all_roles_1, int taskbased_sol_1[13][25][49])

{

int emp_17, weeks_17, emp_18, index_17, rol_17;

emps_changed_1.clear();

for(emp_17=0;emp_17<reg_emp_1;emp_17++) {

for(weeks_17=0; weeks_17<weeks_to_plan_1;weeks_17++) {

list_sol_1[0][weeks_17][emp_17]=-1;

996

list_sol_1[1][weeks_17][emp_17]=-1;

for(index_17=0;index_17<best_index_1;index_17++) {

best_sols_1[index_17][weeks_17][emp_17]=-1;

}

added_t_1=0;

for(rol_17=0;rol_17<all_roles_1;rol_17++) {

if(added_t_1==0 && taskbased_sol_1[weeks_17][rol_17][emp_17]==1) {

list_sol_1[0][weeks_17][emp_17]=rol_17;

list_sol_1[1][weeks_17][emp_17]=rol_17;

added_t_1=1;

} }

if(added_t_1==0) {

list_sol_1[0][weeks_17][emp_17]=-1;

list_sol_1[6][weeks_17][emp_17]=-1;

} }

emps_changed_1.push_back(emp_17);

for(emp_18=0;emp_18<reg_emp_1;emp_18++) {

swaps_examined_1[emp_17][emp_18]=0;

} } }

void initialise_third(int weeks_to_plan_1, int ag_list_sol_1[8][13][25], int

best_index_1, int ag_best_sols_1[51][13][25], vector<int> &ag_roles_changed_1

, int reg_emp_1, int all_roles_1,int taskbased_sol_1[13][25][49], int

required_1[13][25])

{

int sum_task_based[13][25];

int emp_17, weeks_17, index_17, rol_17;

ag_roles_changed_1.clear();

for(rol_17=0; rol_17<all_roles_1;rol_17++)

for(weeks_17=0;weeks_17<weeks_to_plan_1;weeks_17++) {

sum_task_based[weeks_17][rol_17]=0;

}

for(rol_17=0; rol_17<all_roles_1;rol_17++)

for(weeks_17=0;weeks_17<weeks_to_plan_1;weeks_17++)

for(emp_17=0; emp_17<reg_emp_1; emp_17++) {

sum_task_based[weeks_17][rol_17]=sum_task_based[weeks_17][rol_17]+taskbased_sol_1

[weeks_17][rol_17][emp_17];

}

for(rol_17=0; rol_17<all_roles_1;rol_17++) {

for(weeks_17=0;weeks_17<weeks_to_plan_1;weeks_17++) {

ag_list_sol_1[0][weeks_17][rol_17]=0;

ag_list_sol_1[1][weeks_17][rol_17]=0;

for(index_17=0;index_17<best_index_1;index_17++) {

997

ag_best_sols_1[index_17][weeks_17][emp_17]=0;

}

if(required_1[weeks_17][rol_17]>=1) {

if(sum_task_based[weeks_17][rol_17]==0) {

ag_list_sol_1[0][weeks_17][rol_17]=1;

ag_list_sol_1[1][weeks_17][rol_17]=1;

} } }

ag_roles_changed_1.push_back(rol_17);

} }

void initialise_four(int weeks_to_plan_1,int ag_best_sols_1[51][13][25], int

reg_emp_1,int all_roles_1,int best_sols_1[51][13][48], int list_sol_1

[8][13][48], int ag_list_sol_1[8][13][25],int last_changed_1[48])

{

int emp_17, weeks_17, rol_17;

for(emp_17=0;emp_17<reg_emp_1;emp_17++)

for(weeks_17=0;weeks_17<weeks_to_plan_1;weeks_17++) {

best_sols_1[0][weeks_17][emp_17]=list_sol_1[1][weeks_17][emp_17];

}

for(rol_17=0;rol_17<all_roles_1;rol_17++)

for(weeks_17=0; weeks_17<weeks_to_plan_1;weeks_17++) {

ag_best_sols_1[0][weeks_17][rol_17]=ag_list_sol_1[1][weeks_17][rol_17];

}

for(emp_17=0;emp_17<reg_emp_1;emp_17++) {

last_changed_1[emp_17]=0;

} }

E.2.5.10 ‘Random kick’ sub-programmes

#include "rand_kick.h"

void kicking(vector<int>& emps_changed_1, vector<int>& ag_roles_changed_1, int

eligible_1[13][25][49],int work_zero_1[48], int min_rest_1[48], int

starting_1[25][49], int all_roles_1, int sum_start_rand_1, int rest_zero_1

[48], int &kick_feas1, int &kick_end_1, int &kick_start_1, float &random_1,

int &random_emp_1, int reg_emp_1, int &kick_emp_1, int &random_task_1, int

all_roles1, int &kick_task_1, int max_work1[48], int &random_length_1, int &

random_time1, int weeks_to_plan_1)

{

int rol_randomkick1, weeks_randomkick1;

emps_changed_1.clear();

ag_roles_changed_1.clear();

998

random_1= ((float) rand() / (RAND_MAX)); // AL - Have removed "+1" from here...

random_emp_1= (reg_emp_1*random_1);

//random_emp_1=6;// AL - ... and from here

kick_emp_1 = random_emp_1;

random_1= ((float) rand() / (RAND_MAX)); // AL - Similarly, "+1" removed from

here...

random_task_1= all_roles1*random_1; // AL - ... and here

kick_task_1 = random_task_1;

//kick_task_1=2;// AL - Similar to random_task...

random_1= ((float) rand() / (RAND_MAX));

random_length_1= (max_work1[kick_emp_1]*random_1) + 1;

//random_length_1=2; // AL - Keep "+1" - assume this gives a lenrgh between 1 and

max_work(e)

random_1= ((float) rand() / (RAND_MAX)); // AL - "+1" removed here...

random_time1= ((weeks_to_plan_1 - (random_length_1-1))*random_1); // AL -

... and here

//random_time1=4;

kick_start_1=random_time1;

kick_end_1=random_time1 + random_length_1 - 1;

kick_feas1=1;

if(kick_start_1 < rest_zero_1[kick_emp_1]) // AL - Have changed this from "<="

{

kick_feas1=0;

}

sum_start_rand_1=0;

for(rol_randomkick1=0; rol_randomkick1<all_roles_1; rol_randomkick1++) {

if(rol_randomkick1!=kick_task_1) {

sum_start_rand_1=sum_start_rand_1+starting_1[rol_randomkick1][kick_emp_1];

} }

if(sum_start_rand_1 > 0 && kick_start_1 <= min_rest_1[kick_emp_1]) // AL - Have

changed this from "if(starting[rol_randomkick][kick_emp]> 0 ..."

{

kick_feas1=0;

}

if(starting_1[kick_task_1][kick_emp_1]> 0) {

if(kick_start_1 >= 1 && kick_start_1 < min_rest_1[kick_emp_1]) // AL - Have

changed this from "if(kick_start >= 2 && kick_start <= min_rest[kick_emp])"

{

kick_feas1=0;

}

if(kick_start_1 <= 0 && ((random_length_1 + work_zero_1[kick_emp_1]) > max_work1[

kick_emp_1])) // AL - Have changed this from "if(kick_start <= 1..."

{

999

kick_feas1=0;

} } // AL - Close bracket added here

for(weeks_randomkick1=kick_start_1; weeks_randomkick1<= kick_end_1;

weeks_randomkick1++) // AL - Have changed this from "weeks_randomkick<

kick_end"

{

if(eligible_1[weeks_randomkick1][kick_task_1][kick_emp_1]==0) {

kick_feas1=0;

} } }

void kicking2(int min_rest_1[48],int starting_1[25][49] ,int &rest_count_1, int &

kick_emp1,int reg_emp1,int all_roles1,int weeks_to_plan1, int ag_list_sol_1

[8][13][25], int &kick_start_1, int &kick_end_1, int &kick_task_1, vector<int

>& emps_changed_1, vector<int>& ag_roles_changed_1, int list_sol_1

[8][13][48])

{

int rol_randomkick1, weeks_randomkick1, emp_randomkick1;

for(rol_randomkick1=0; rol_randomkick1<all_roles1; rol_randomkick1++)

for(weeks_randomkick1=0; weeks_randomkick1<weeks_to_plan1; weeks_randomkick1++)

// AL - Have changed this from "for(weeks_randomkick=kick_start;

weeks_randomkick< kick_end; weeks_randomkick++)"

{

ag_list_sol_1[7][weeks_randomkick1][rol_randomkick1]= ag_list_sol_1[0][

weeks_randomkick1][rol_randomkick1];

}

//for(weeks2_randomkick=kick_start;weeks2_randomkick<=kick_end; weeks2_randomkick

++) // AL - Have removed this line...

for(weeks_randomkick1= kick_start_1; weeks_randomkick1<=kick_end_1;

weeks_randomkick1++) {

if(ag_list_sol_1[7][weeks_randomkick1][kick_task_1]==1) // AL - Have

changed this from "if(ag_list_sol[7][weeks2_randomkick][kick_task]==1)"

{

ag_list_sol_1[7][weeks_randomkick1][kick_task_1]=0; // AL - Have changed

this from "ag_list_sol[7][weeks2_randomkick][kick_task]=0;"

ag_roles_changed_1.push_back(kick_task_1);

} }

for(emp_randomkick1=0; emp_randomkick1<reg_emp1; emp_randomkick1++) {

for(weeks_randomkick1=0; weeks_randomkick1<weeks_to_plan1; weeks_randomkick1++) {

list_sol_1[7][weeks_randomkick1][emp_randomkick1]=-1;

}

if(emp_randomkick1!=kick_emp1) {

//kick_count=0; // AL - Can ignore ’kick_count’, and use the count of weeks

instead

1000

rest_count_1=0;

if(starting_1[kick_task_1][emp_randomkick1] > 0) {

if(kick_start_1 ==1) {

rest_count_1= min_rest_1[emp_randomkick1];

} }

for(weeks_randomkick1=0; weeks_randomkick1<weeks_to_plan1; weeks_randomkick1++) {

if(weeks_randomkick1==kick_start_1-1 && list_sol_1[0][weeks_randomkick1][

emp_randomkick1]== kick_task_1) // AL - This replaces the above ’if’

statement

{

list_sol_1[7][weeks_randomkick1][emp_randomkick1]=list_sol_1[0][weeks_randomkick1

][emp_randomkick1];

rest_count_1= min_rest_1[emp_randomkick1];

}

else if(weeks_randomkick1==kick_start_1) // AL - Have changed this from

"else if(kick_count ==kick_start)"

{

if(list_sol_1[0][weeks_randomkick1][emp_randomkick1]==kick_task_1) {

list_sol_1[7][weeks_randomkick1][emp_randomkick1]= -1;

emps_changed_1.push_back(emp_randomkick1);

rest_count_1= rest_count_1 - 1;

}

else {

list_sol_1[7][weeks_randomkick1][emp_randomkick1]= list_sol_1[0][

weeks_randomkick1][emp_randomkick1];

rest_count_1= 0;

} }

else if((weeks_randomkick1>kick_start_1) && (weeks_randomkick1 <= kick_end_1)) //

AL - Have changed this from "else if(kick_count > kick_start && kick_count

<= kick_end)"

{

if(list_sol_1[0][weeks_randomkick1][emp_randomkick1]== kick_task_1) {

list_sol_1[7][weeks_randomkick1][emp_randomkick1]= -1;

emps_changed_1.push_back(emp_randomkick1);

rest_count_1= rest_count_1 - 1;

}

else if(list_sol_1[0][weeks_randomkick1][emp_randomkick1]!=-1) {

if(rest_count_1 > 0) {

list_sol_1[7][weeks_randomkick1][emp_randomkick1]=-1;

ag_list_sol_1[7][weeks_randomkick1][list_sol_1[0][weeks_randomkick1][

emp_randomkick1]]=1; // AL - Have changed this from "ag_list_sol[7][

kick_count][list_sol[0][weeks_randomkick][emp_randomkick]]=0;"

ag_roles_changed_1.push_back(list_sol_1[0][weeks_randomkick1][emp_randomkick1]);

1001

rest_count_1= rest_count_1 - 1;

}

else {

list_sol_1[7][weeks_randomkick1][emp_randomkick1]=list_sol_1[0][weeks_randomkick1

][emp_randomkick1];

} }

else {

list_sol_1[7][weeks_randomkick1][emp_randomkick1]=list_sol_1[0][weeks_randomkick1

][emp_randomkick1];

rest_count_1=rest_count_1-1;

} }

else if((weeks_randomkick1 > kick_end_1) && (list_sol_1[0][weeks_randomkick1][

emp_randomkick1]!=-1) && (rest_count_1> 0)) // AL - Have changed this from "

else if(kick_count > kick_end &&..."

{

list_sol_1[7][weeks_randomkick1][emp_randomkick1]=-1;

ag_list_sol_1[7][weeks_randomkick1][list_sol_1[0][weeks_randomkick1][

emp_randomkick1]]=1; // AL - Have changed this from "ag_list_sol[7][

kick_count][list_sol[0][weeks_randomkick][emp_randomkick]]=1;"

ag_roles_changed_1.push_back(list_sol_1[0][weeks_randomkick1][emp_randomkick1]);

rest_count_1 = rest_count_1- 1;

}

else {

list_sol_1[7][weeks_randomkick1][emp_randomkick1]=list_sol_1[0][weeks_randomkick1

][emp_randomkick1];

} } // AL - Have added this to end ’do’ loop from above

}

else {

emps_changed_1.push_back(emp_randomkick1);

//kick_count=0; // AL - As above, do not need ’kick_count’, as we

can use ’weeks_randomkick’ in loop instead...

//forall(j in list_sol("current",e)) do

for(weeks_randomkick1=0; weeks_randomkick1<weeks_to_plan1; weeks_randomkick1++)

// AL - ... so have added this loop...

{

//kick_count=kick_count + 1; // AL - ... and we can remove this line

if(weeks_randomkick1 < (kick_start_1 - min_rest_1[emp_randomkick1])) // AL -

Have changed this from "if(kick_count < kick_start - min_rest[emp_randomkick

]) "

{

list_sol_1[7][weeks_randomkick1][emp_randomkick1]=list_sol_1[0][weeks_randomkick1

][emp_randomkick1];

}

1002

else if(weeks_randomkick1< kick_start_1) // AL - Have changed this from

"else if(kick_count < kick_start) "

{

list_sol_1[7][weeks_randomkick1][emp_randomkick1]=-1;

if(list_sol_1[0][weeks_randomkick1][emp_randomkick1]!=-1) {

ag_list_sol_1[7][weeks_randomkick1][list_sol_1[0][weeks_randomkick1][

emp_randomkick1]]=1; // AL - Have changed this from "ag_list_sol[7][

kick_count][..."

ag_roles_changed_1.push_back(list_sol_1[0][weeks_randomkick1][emp_randomkick1]);

} }

else if(weeks_randomkick1 <= kick_end_1) // AL - Have changed this from

"else if(kick_count <= kick_end) "

{

list_sol_1[7][weeks_randomkick1][emp_randomkick1]=kick_task_1;

if((list_sol_1[0][weeks_randomkick1][emp_randomkick1] !=-1) && (list_sol_1[0][

weeks_randomkick1][emp_randomkick1]!= kick_task_1))

{

ag_list_sol_1[7][weeks_randomkick1][list_sol_1[0][weeks_randomkick1][

emp_randomkick1]]=1; // AL - Have changed this from "ag_list_sol[7][

kick_count][..."

ag_roles_changed_1.push_back(list_sol_1[0][weeks_randomkick1][emp_randomkick1]);

} }

else if(weeks_randomkick1 <= (kick_end_1 + min_rest_1[emp_randomkick1])) //

AL - Have changed this from "else if(kick_count <=..."

{

list_sol_1[7][weeks_randomkick1][emp_randomkick1]=-1;

if(list_sol_1[0][weeks_randomkick1][emp_randomkick1]!=-1) {

ag_list_sol_1[7][weeks_randomkick1][list_sol_1[0][weeks_randomkick1][

emp_randomkick1]]=1; // AL - Have changed this from "ag_list_sol[7][

kick_count][..."

ag_roles_changed_1.push_back(list_sol_1[0][weeks_randomkick1][emp_randomkick1]);

} } // AL - Have added a close-bracket here

else {

list_sol_1[7][weeks_randomkick1][emp_randomkick1]=list_sol_1[0][weeks_randomkick1

][emp_randomkick1];

} } } } }

void kicking3(int all_roles_1, int reg_emp_1,int weeks_to_plan_1, int tabu_sol_1

[13][48], int list_sol_1[8][13][48], int ag_tabu_sol_1[13][25], int

ag_list_sol_1[8][13][25])

{

int emp_randomkick1, weeks_randomkick1, rol_randomkick1;

for(emp_randomkick1=0; emp_randomkick1<reg_emp_1; emp_randomkick1++)

1003

for(weeks_randomkick1=0; weeks_randomkick1< weeks_to_plan_1; weeks_randomkick1

++) // AL - Have changed this from "for(weeks_randomkick=kick_start;

weeks_randomkick< kick_end; weeks_randomkick++)"

{

tabu_sol_1[weeks_randomkick1][emp_randomkick1]=list_sol_1[0][weeks_randomkick1][

emp_randomkick1];

}

for(weeks_randomkick1=0; weeks_randomkick1< weeks_to_plan_1; weeks_randomkick1

++) // AL - Have changed this from "for(weeks_randomkick=kick_start;

weeks_randomkick< kick_end; weeks_randomkick++)"

for(rol_randomkick1=0; rol_randomkick1<all_roles_1; rol_randomkick1++) {

ag_tabu_sol_1[weeks_randomkick1][rol_randomkick1]= ag_list_sol_1[0][

weeks_randomkick1][rol_randomkick1];

} }

E.2.5.11 ‘Sort employee list’ sub-programme

#include "sort_listing.h"

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <conio.h>

#include "string"

#include <cstdlib>

#include <ctime>

#include <math.h>

#include <iostream>

#include <fstream>

#include <algorithm>

#include <iterator>

#include <vector>

#include <random>

using namespace std;

void sort_employee_list(float short_list_fraction_1, int& change_no_1, int

last_changed_1[48],int min_emp_1,int min_no_1, int& order_rule_1, int

order_number_1[48], int reg_emp_1, vector<int>& ordered_list_1, vector<int>&

short_ordered_list_1,vector<int>& added_set_1, int& iteration_1)

{

int count_sort;

int emp_sort, emp2_sort, yes_sort, boyut_5;

if(order_rule_1>=3) {

order_rule_1=2;

1004

}

for (emp_sort=0;emp_sort<reg_emp_1;emp_sort++) {

order_number_1[emp_sort]= rand()%(10000-0 + 1) + 0;

//order_number_1[emp_sort]= emp_sort;

}

ordered_list_1.clear();

short_ordered_list_1.clear();

added_set_1.clear();

for (emp_sort=0;emp_sort<reg_emp_1;emp_sort++) {

min_no_1= 10000;

if(order_rule_1==0) {

change_no_1=iteration_1;

}

else {

change_no_1=0;

}

min_emp_1=-1;

for (emp2_sort=0;emp2_sort<reg_emp_1;emp2_sort++) {

boyut_5=added_set_1.size();

yes_sort=1;

for(count_sort=0; count_sort<boyut_5;count_sort++) {

if(added_set_1[count_sort]==emp2_sort) {

yes_sort=0;

} }

if(yes_sort==1) {

if(((order_rule_1==0) && (last_changed_1[emp2_sort] < change_no_1)) ||((

order_rule_1==1) && (last_changed_1[emp2_sort]> change_no_1))) {

change_no_1=last_changed_1[emp2_sort];

min_no_1=order_number_1[emp2_sort];

min_emp_1=emp2_sort;

}

else if(((order_rule_1==0) && (last_changed_1[emp2_sort]==change_no_1)) || ((

order_rule_1==1) && (last_changed_1[emp2_sort]==change_no_1)) || (

order_rule_1==2)) {

if(order_number_1[emp2_sort] < min_no_1) {

min_no_1=order_number_1[emp2_sort];

min_emp_1=emp2_sort;

} } } }

if(short_ordered_list_1.size() < ((short_list_fraction_1*reg_emp_1) - 1)) {

short_ordered_list_1.push_back(min_emp_1);

}

ordered_list_1.push_back(min_emp_1);

added_set_1.push_back(min_emp_1);

1005

} }

E.2.5.12 ‘Tabu check’ sub-programmes

#include "tabu.h"

void check_tabu(int& tabu_1,int weeks_to_plan_1, int reg_emp_1, int all_roles_1,

int& to_check_tabu_1, int list_sol_1[8][13][48], int ag_list_sol_1

[8][13][25],int tabu_sol_1[13][48], int ag_tabu_sol_1[13][25])

{

int weeks_2, emp_count, role_count;

tabu_1=1;

emp_count=0;

while(tabu_1==1 && emp_count<reg_emp_1) {

for(weeks_2=0;weeks_2<weeks_to_plan_1;weeks_2++) {

if(list_sol_1[to_check_tabu_1][weeks_2][emp_count]!=tabu_sol_1[weeks_2][emp_count

]) {

tabu_1=0;

} }

emp_count=emp_count+1;

}

role_count=0;

while(tabu_1==1 && role_count<all_roles_1) {

for(weeks_2=0;weeks_2<weeks_to_plan_1;weeks_2++) {

if(ag_list_sol_1[to_check_tabu_1][weeks_2][role_count]!=ag_tabu_sol_1[weeks_2][

role_count]) {

tabu_1=0;

} }

role_count=role_count+1;

} }

void check_tabu_2(int &transfer_sol_to_1,int reg_emp_1, int all_roles_1, int

weeks_to_plan_1, int list_sol_1[8][13][48], int ag_list_sol_1[8][13][25],int

tabu_sol_1[13][48], int ag_tabu_sol_1[13][25])

{

int emp_2, rol_2, weeks_2;

for(emp_2=0; emp_2<reg_emp_1; emp_2++)

for(weeks_2=0;weeks_2<weeks_to_plan_1;weeks_2++) {

tabu_sol_1[weeks_2][emp_2]=list_sol_1[0][weeks_2][emp_2];

}

for(rol_2=0; rol_2<all_roles_1;rol_2++)

for(weeks_2=0;weeks_2<weeks_to_plan_1;weeks_2++) {

ag_tabu_sol_1[weeks_2][rol_2]=ag_list_sol_1[0][weeks_2][rol_2];

1006

}

transfer_sol_to_1=0;

}

E.2.5.13 ‘Transfer’ sub-programmes

#include "transferring_data.h"

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <conio.h>

#include "string"

#include <cstdlib>

#include <ctime>

#include <math.h>

#include <iostream>

#include <fstream>

#include <algorithm>

#include <iterator>

#include <vector>

#include <random>

using namespace std;

void transfer_solution(int& transfer_sol_from_1, int& transfer_sol_to_1, float

total_cost_1[8], int all_emp_1, int reg_emp_1, int all_roles_1, int

weeks_to_plan_1, int lambda_1, int allocate_sol_1[8][13][25][49], int

long_work_sol_1[8][13][25][49][10], float emp_cost_1[8][48], int list_sol_1

[8][13][48], int board_sol_1[8][13][25][48], int depart_sol_1[8][13][25][48],

int undertime_sol_1[8][45], int overtime_sol_1[8][45],float ag_cost_1

[8][13][25],int ag_list_sol_1[8][13][25],int ag_crewchange_1[8][13][25], int

ag_rboard_sol_1[8][13][25], int ag_rdepart_sol_1[8][13][25])

{

int emp_trnsfr_sol,rol_trnsfr_sol,weeks_trnsfr_sol, l_trnsfr_sol;

if((transfer_sol_to_1<=7 && transfer_sol_to_1>=0) && (transfer_sol_from_1<=7 &&

transfer_sol_from_1>=0)) {

total_cost_1[transfer_sol_to_1]=total_cost_1[transfer_sol_from_1];

for(emp_trnsfr_sol=0; emp_trnsfr_sol<all_emp_1; emp_trnsfr_sol++)

for(rol_trnsfr_sol=0;rol_trnsfr_sol<all_roles_1;rol_trnsfr_sol++)

for(weeks_trnsfr_sol=0;weeks_trnsfr_sol<weeks_to_plan_1;weeks_trnsfr_sol++) {

allocate_sol_1[transfer_sol_to_1][weeks_trnsfr_sol][rol_trnsfr_sol][

emp_trnsfr_sol]=allocate_sol_1[transfer_sol_from_1][weeks_trnsfr_sol][

rol_trnsfr_sol][emp_trnsfr_sol];

}

1007

for(emp_trnsfr_sol=0; emp_trnsfr_sol<all_emp_1; emp_trnsfr_sol++)

for(rol_trnsfr_sol=0;rol_trnsfr_sol<all_roles_1;rol_trnsfr_sol++)

for(weeks_trnsfr_sol=0;weeks_trnsfr_sol<weeks_to_plan_1;weeks_trnsfr_sol++)

for(l_trnsfr_sol=0;l_trnsfr_sol<lambda_1;l_trnsfr_sol++) {

long_work_sol_1[transfer_sol_to_1][weeks_trnsfr_sol][rol_trnsfr_sol][

emp_trnsfr_sol][l_trnsfr_sol]=long_work_sol_1[transfer_sol_from_1][

weeks_trnsfr_sol][rol_trnsfr_sol][emp_trnsfr_sol][l_trnsfr_sol];

}

for(emp_trnsfr_sol=0; emp_trnsfr_sol<reg_emp_1; emp_trnsfr_sol++) {

emp_cost_1[transfer_sol_to_1][emp_trnsfr_sol]=emp_cost_1[transfer_sol_from_1][

emp_trnsfr_sol];

}

for(emp_trnsfr_sol=0; emp_trnsfr_sol<reg_emp_1; emp_trnsfr_sol++)

for(weeks_trnsfr_sol=0;weeks_trnsfr_sol<weeks_to_plan_1;weeks_trnsfr_sol++) {

list_sol_1[transfer_sol_to_1][weeks_trnsfr_sol][emp_trnsfr_sol]=list_sol_1[

transfer_sol_from_1][weeks_trnsfr_sol][emp_trnsfr_sol];

}

for(emp_trnsfr_sol=0; emp_trnsfr_sol<reg_emp_1; emp_trnsfr_sol++)

for(rol_trnsfr_sol=0;rol_trnsfr_sol<all_roles_1;rol_trnsfr_sol++)

for(weeks_trnsfr_sol=0;weeks_trnsfr_sol<weeks_to_plan_1;weeks_trnsfr_sol++) {

board_sol_1[transfer_sol_to_1][weeks_trnsfr_sol][rol_trnsfr_sol][emp_trnsfr_sol]=

board_sol_1[transfer_sol_from_1][weeks_trnsfr_sol][rol_trnsfr_sol][

emp_trnsfr_sol];

depart_sol_1[transfer_sol_to_1][weeks_trnsfr_sol][rol_trnsfr_sol][emp_trnsfr_sol

]=depart_sol_1[transfer_sol_from_1][weeks_trnsfr_sol][rol_trnsfr_sol][

emp_trnsfr_sol];

}

for(emp_trnsfr_sol=3; emp_trnsfr_sol<reg_emp_1; emp_trnsfr_sol++) {

undertime_sol_1[transfer_sol_to_1][emp_trnsfr_sol-3]=undertime_sol_1[

transfer_sol_from_1][emp_trnsfr_sol-3];

overtime_sol_1[transfer_sol_to_1][emp_trnsfr_sol-3]=overtime_sol_1[

transfer_sol_from_1][emp_trnsfr_sol-3];

}

for(rol_trnsfr_sol=0;rol_trnsfr_sol<all_roles_1;rol_trnsfr_sol++)

for(weeks_trnsfr_sol=0;weeks_trnsfr_sol<weeks_to_plan_1;weeks_trnsfr_sol++) {

ag_cost_1[transfer_sol_to_1][weeks_trnsfr_sol][rol_trnsfr_sol]=ag_cost_1[

transfer_sol_from_1][weeks_trnsfr_sol][rol_trnsfr_sol];

ag_list_sol_1[transfer_sol_to_1][weeks_trnsfr_sol][rol_trnsfr_sol]=ag_list_sol_1[

transfer_sol_from_1][weeks_trnsfr_sol][rol_trnsfr_sol];

ag_crewchange_1[transfer_sol_to_1][weeks_trnsfr_sol][rol_trnsfr_sol]=

ag_crewchange_1[transfer_sol_from_1][weeks_trnsfr_sol][rol_trnsfr_sol];

ag_rboard_sol_1[transfer_sol_to_1][weeks_trnsfr_sol][rol_trnsfr_sol]=

ag_rboard_sol_1[transfer_sol_from_1][weeks_trnsfr_sol][rol_trnsfr_sol];

1008

ag_rdepart_sol_1[transfer_sol_to_1][weeks_trnsfr_sol][rol_trnsfr_sol]=

ag_rdepart_sol_1[transfer_sol_from_1][weeks_trnsfr_sol][rol_trnsfr_sol];

} }

transfer_sol_to_1=-1;

transfer_sol_from_1=-1;

}

void evaluate_block_new5(vector<int>& emps_changed_1, vector<int>&

candidate_emps_1, float& extend_cost_bkwd_1, float &candidate_cost_1, int &

candidate_exist_1, float total_cost_1[8],int &transfer_sol_from_1, int &

transfer_sol_to_1, int all_emp_1, int reg_emp_1, int all_roles_1, int

weeks_to_plan_1, int lambda_1, int allocate_sol_1[8][13][25][49], int

long_work_sol_1[8][13][25][49][10], float emp_cost_1[8][48], int list_sol_1

[8][13][48], int board_sol_1[8][13][25][48], int depart_sol_1[8][13][25][48],

int undertime_sol_1[8][45], int overtime_sol_1[8][45],float ag_cost_1

[8][13][25],int ag_list_sol_1[8][13][25],int ag_crewchange_1[8][13][25], int

ag_rboard_sol_1[8][13][25], int ag_rdepart_sol_1[8][13][25])

{

int boyut_100;

if((candidate_exist_1==0) || (total_cost_1[3]<total_cost_1[6])) {

candidate_exist_1=1;

transfer_sol_from_1=3;

transfer_sol_to_1=6;

transfer_solution(transfer_sol_from_1, transfer_sol_to_1,total_cost_1,all_emp_1,

reg_emp_1, all_roles_1, weeks_to_plan_1,lambda_1,allocate_sol_1,

long_work_sol_1, emp_cost_1, list_sol_1, board_sol_1, depart_sol_1,

undertime_sol_1, overtime_sol_1, ag_cost_1, ag_list_sol_1, ag_crewchange_1,

ag_rboard_sol_1, ag_rdepart_sol_1);

candidate_cost_1=extend_cost_bkwd_1;

for(boyut_100=0; boyut_100<emps_changed_1.size(); boyut_100++) {

candidate_emps_1.push_back(emps_changed_1[boyut_100]);

} } }

void evaluate_block_new10(vector<int>& emps_changed_1, vector<int>&

candidate_emps_1, float& extend_cost_fwd_1, float &candidate_cost_1, int &

candidate_exist_1, float total_cost_1[8],int &transfer_sol_from_1, int &

transfer_sol_to_1, int all_emp_1, int reg_emp_1, int all_roles_1, int

weeks_to_plan_1, int lambda_1, int allocate_sol_1[8][13][25][49], int

long_work_sol_1[8][13][25][49][10], float emp_cost_1[8][48], int list_sol_1

[8][13][48], int board_sol_1[8][13][25][48], int depart_sol_1[8][13][25][48],

int undertime_sol_1[8][45], int overtime_sol_1[8][45],float ag_cost_1

[8][13][25],int ag_list_sol_1[8][13][25],int ag_crewchange_1[8][13][25], int

ag_rboard_sol_1[8][13][25], int ag_rdepart_sol_1[8][13][25])

1009

{

int boyut_100;

if((candidate_exist_1==0) || (total_cost_1[4]<total_cost_1[6])) {

candidate_exist_1=1;

transfer_sol_from_1=4;

transfer_sol_to_1=6;

transfer_solution(transfer_sol_from_1, transfer_sol_to_1,total_cost_1,all_emp_1,

reg_emp_1, all_roles_1, weeks_to_plan_1,lambda_1,allocate_sol_1,

long_work_sol_1, emp_cost_1, list_sol_1, board_sol_1, depart_sol_1,

undertime_sol_1, overtime_sol_1, ag_cost_1, ag_list_sol_1, ag_crewchange_1,

ag_rboard_sol_1, ag_rdepart_sol_1);

candidate_cost_1=extend_cost_fwd_1;

for(boyut_100=0; boyut_100<emps_changed_1.size(); boyut_100++) {

candidate_emps_1.push_back(emps_changed_1[boyut_100]);

} } }

void compare_to_best_2(int &best_sol_time_1, int &iteration_1, int ag_best_sols_1

[51][13][25], int best_sols_1[51][13][48], int &number_best_1, int &

transfer_sol_from_1, int &transfer_sol_to_1, float total_cost_1[8], int

all_emp_1, int reg_emp_1, int all_roles_1, int weeks_to_plan_1, int lambda_1,

int allocate_sol_1[8][13][25][49], int long_work_sol_1[8][13][25][49][10],

float emp_cost_1[8][48], int list_sol_1[8][13][48], int board_sol_1

[8][13][25][48], int depart_sol_1[8][13][25][48], int undertime_sol_1[8][45],

int overtime_sol_1[8][45],float ag_cost_1[8][13][25],int ag_list_sol_1

[8][13][25],int ag_crewchange_1[8][13][25], int ag_rboard_sol_1[8][13][25],

int ag_rdepart_sol_1[8][13][25])

{

int weeks_1, emp_1, rol_1;

if(total_cost_1[0]<total_cost_1[1]) {

transfer_sol_from_1=0;

transfer_sol_to_1=1;

transfer_solution(transfer_sol_from_1, transfer_sol_to_1,total_cost_1,all_emp_1,

reg_emp_1, all_roles_1, weeks_to_plan_1,lambda_1,allocate_sol_1,

long_work_sol_1, emp_cost_1, list_sol_1, board_sol_1, depart_sol_1,

undertime_sol_1, overtime_sol_1, ag_cost_1, ag_list_sol_1, ag_crewchange_1,

ag_rboard_sol_1, ag_rdepart_sol_1);

number_best_1=1;

for(weeks_1=0;weeks_1<weeks_to_plan_1;weeks_1++)

for(emp_1=0;emp_1<reg_emp_1;emp_1++) {

best_sols_1[0][weeks_1][emp_1]=list_sol_1[1][weeks_1][emp_1]; // AL - Have

changed this from "best_sols[1][weeks_1][emp_1]..."

}

for(weeks_1=0;weeks_1<weeks_to_plan_1;weeks_1++)

1010

for(rol_1=0;rol_1<all_roles_1;rol_1++) {

ag_best_sols_1[0][weeks_1][rol_1]=ag_list_sol_1[1][weeks_1][rol_1]; // AL -

Have changed this from "ag_best_sols[1][weeks_1][rol_1]..."

}

best_sol_time_1=iteration_1;

} }

void swap_calc4(vector<int>& candidate_emps_1, int& swap_emp_1,int& emp_extend_1,

float& candidate_cost_1, float& swapping_cost_1,float total_cost_1[8], int&

accept_rule_1, int& candidate_exist_1, int& transfer_sol_from_1, int&

transfer_sol_to_1, int all_emp_1, int reg_emp_1, int all_roles_1, int

weeks_to_plan_1, int& lambda_1, int allocate_sol_1[8][13][25][49], int

long_work_sol_1[8][13][25][49][10], float emp_cost_1[8][48], int list_sol_1

[8][13][48], int board_sol_1[8][13][25][48], int depart_sol_1[8][13][25][48],

int undertime_sol_1[8][45], int overtime_sol_1[8][45],float ag_cost_1

[8][13][25],int ag_list_sol_1[8][13][25],int ag_crewchange_1[8][13][25], int

ag_rboard_sol_1[8][13][25], int ag_rdepart_sol_1[8][13][25])

{

if(total_cost_1[5]>= total_cost_1[accept_rule_1]) {

if(candidate_exist_1 ==0 || total_cost_1[5]< total_cost_1[6]) {

candidate_exist_1=1;

transfer_sol_from_1=5;

transfer_sol_to_1=6;

transfer_solution(transfer_sol_from_1, transfer_sol_to_1, total_cost_1 ,

all_emp_1, reg_emp_1, all_roles_1, weeks_to_plan_1, lambda_1, allocate_sol_1,

long_work_sol_1, emp_cost_1, list_sol_1, board_sol_1, depart_sol_1,

undertime_sol_1, overtime_sol_1, ag_cost_1, ag_list_sol_1 ,ag_crewchange_1,

ag_rboard_sol_1, ag_rdepart_sol_1);

candidate_cost_1=swapping_cost_1;

candidate_emps_1.clear(); // AL - Have added this new line...

candidate_emps_1.push_back(emp_extend_1); // AL - ... so that following

this line, "emp_extend" is the ONLY entry in the set "candidate_emps"

if(swap_emp_1!=48) {

candidate_emps_1.push_back(swap_emp_1);

} } } }

E.2.5.14 ‘Updating’ sub-programmes

#include "swap_change_update.h"

void update_swaps_and_changes(vector<int>& emps_to_update_1,int swaps_examined_1

[48][48], int reg_emp_1, int& last_kick_time_1, int& iteration_1, int

last_changed_1[48])

1011

{

int emp_300, emp_301, emp_302, emp_303, in_emps_to_update, boyut_1;

boyut_1=emps_to_update_1.size();

for(emp_300=0; emp_300<boyut_1; emp_300++) {

emp_301=emps_to_update_1[emp_300];

for(emp_302=0; emp_302<reg_emp_1; emp_302++) // AL - These lines equate to

{ // ’swaps_examined(e) := {}’

swaps_examined_1[emp_301][emp_302]=0; // (where ’e’ is now ’emp_301’)

} //

for(emp_302=0; emp_302<reg_emp_1; emp_302++) //

{ //

in_emps_to_update=0; //

for(emp_303=0; emp_303<boyut_1; emp_303++) // AL - The lines equate to

{ // ’forall(f in REG_EMP | f not in

emps_to_update)’

if(emps_to_update_1[emp_303]==emp_302) // (where ’f’ is now ’emp_302’)

{

in_emps_to_update=1;

} }

if(in_emps_to_update==0) {

if(swaps_examined_1[emp_302][emp_301]==1) {

swaps_examined_1[emp_302][emp_301]=0; // AL - equates to ’swaps_examined(f) -= {e

}’

} // (Note, no ’if’ required - just ensure it equals zero)

} } }

if(last_kick_time_1==iteration_1) {

for(emp_301=0; emp_301<reg_emp_1; emp_301++) {

last_changed_1[emp_301]=iteration_1;

} }

else {

for(emp_300=0; emp_300<boyut_1; emp_300++) //

{

emp_301=emps_to_update_1[emp_300];

last_changed_1[emp_301] =iteration_1;

} } }

void swap_calc3(vector<int>& emps_changed_1,int& no_nonreduce_1,float&

swapping_cost_1, float total_cost_1[8], int& accept_rule_1, int& do_swap_1,

vector<int>& emps_to_update_1,int swaps_examined_1[48][48], int reg_emp_1,

int& last_kick_time_1, int& iteration_1, int last_changed_1[48])

{

swapping_cost_1=total_cost_1[5] - total_cost_1[0];

if(total_cost_1[5]< total_cost_1[accept_rule_1]) {

1012

do_swap_1=1;

no_nonreduce_1=0;

emps_to_update_1.clear(); // AL - Have added this line, further to

conversation on 06/02/15

emps_to_update_1.reserve(emps_changed_1.size());

copy(emps_changed_1.begin(),emps_changed_1.end(), back_inserter(emps_to_update_1)

);

update_swaps_and_changes(emps_to_update_1,swaps_examined_1, reg_emp_1,

last_kick_time_1, iteration_1, last_changed_1);

} }

E.2.5.15 ’Usable blocks’ sub-programmes

#include "find_usables.h"

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <conio.h>

#include "string"

#include <cstdlib>

#include <ctime>

#include <math.h>

#include <iostream>

#include <fstream>

#include <algorithm>

#include <iterator>

#include <vector>

#include <random>

using namespace std;

void evaluate_block_new1(int required_1[13][25],int rest_zero_1[48], int&

block_end_1, int& task_extend_1,int& emp_extend_1,int eligible_1[13][25][49],

int weeks_to_plan_1,float& extend_cost_fwd_1,float& extend_cost_bkwd_1, float

& swapping_cost_1, int& do_extend_bkwd_1, int& do_extend_fwd_1, int&

do_swap_1, int& block_len_1, int max_work_1[48],int& max_bkwd_extend_1, int&

max_fwd_extend_1)

{

int weeks_12,weeks_13;

extend_cost_fwd_1=0;

extend_cost_bkwd_1=0;

swapping_cost_1=0;

do_extend_bkwd_1=0;

do_extend_fwd_1=0;

1013

do_swap_1=0;

if((max_work_1[emp_extend_1]-block_len_1) > 0) {

max_bkwd_extend_1=max_work_1[emp_extend_1] - block_len_1;

max_fwd_extend_1= max_work_1[emp_extend_1] - block_len_1;

}

else {

max_bkwd_extend_1=0;

max_fwd_extend_1=0;

}

if(max_bkwd_extend_1 > weeks_to_plan_1 - block_end_1-1) {

max_bkwd_extend_1= weeks_to_plan_1 -1-block_end_1;

}

if(max_bkwd_extend_1> 0) {

weeks_13=max_bkwd_extend_1;

for(weeks_12=1;weeks_12<=weeks_13;weeks_12++) {

if(eligible_1[block_end_1+weeks_12][task_extend_1][emp_extend_1]==0|| required_1

[block_end_1+weeks_12][task_extend_1]==0) {

if(max_bkwd_extend_1>= weeks_12) {

max_bkwd_extend_1= weeks_12-1;

} } } }

if(block_end_1==-1 && rest_zero_1[emp_extend_1]> 0) // AL - Have changed

this from "if(block_end ==0..."

{

max_bkwd_extend_1= 0;

} }

void evaluate_block_new2(int all_roles_1, int reg_emp_1, int weeks_to_plan_1, int

max_work_1[48], int& conflict_found_bkwd_1, int reserve_list_bkwd_1[13][25],

int& in_reserve_bkwd_1, int& block_end_1, int& task_extend_1, int

work_zero_1[48], int& length_count_1,int &emp_extend_1,int& rest_count_1, int

& extend_len_bkwd_1, vector<int>& emps_changed_1,vector<int>&

ag_roles_changed_1, int list_sol_1[8][13][48], int ag_list_sol_1[8][13][25],

int min_rest_1[25])

{

int weeks_6,rol_6,emp_6;

emps_changed_1.clear();

ag_roles_changed_1.clear();

for(emp_6=0;emp_6<reg_emp_1;emp_6++)

for(weeks_6=0;weeks_6<weeks_to_plan_1;weeks_6++) {

list_sol_1[3][weeks_6][emp_6]=list_sol_1[0][weeks_6][emp_6];

}

for(rol_6=0;rol_6<all_roles_1;rol_6++)

for(weeks_6=0;weeks_6<weeks_to_plan_1;weeks_6++) {

1014

ag_list_sol_1[3][weeks_6][rol_6]=ag_list_sol_1[0][weeks_6][rol_6];

reserve_list_bkwd_1[weeks_6][rol_6]=0; // AL - Have changed this from "=-1", so

as to make this an array of 0-1 variables

}

for(weeks_6=0;weeks_6<weeks_to_plan_1;weeks_6++) {

list_sol_1[3][weeks_6][emp_extend_1]=-1;

}

emps_changed_1.push_back(emp_extend_1);

rest_count_1=0; // AL - Have added this line...

length_count_1=work_zero_1[emp_extend_1]; // AL - ... and this

line...

in_reserve_bkwd_1=0; // AL - ... and also this line.

for(weeks_6=0;weeks_6<weeks_to_plan_1;weeks_6++) {

if(weeks_6<=block_end_1) {

list_sol_1[3][weeks_6][emp_extend_1]=list_sol_1[0][weeks_6][emp_extend_1];

if(list_sol_1[0][weeks_6][emp_extend_1]==-1) {

length_count_1=0;

}

else {

length_count_1=length_count_1+1;

} }

else if(weeks_6<=(block_end_1+extend_len_bkwd_1)) {

list_sol_1[3][weeks_6][emp_extend_1]=task_extend_1;

length_count_1=length_count_1+1;

if((list_sol_1[0][weeks_6][emp_extend_1]!=task_extend_1) && (list_sol_1[0][

weeks_6][emp_extend_1]!=-1)) {

reserve_list_bkwd_1[weeks_6][list_sol_1[0][weeks_6][emp_extend_1]]=1;

in_reserve_bkwd_1=in_reserve_bkwd_1+1;

} }

else {

if((list_sol_1[0][weeks_6][emp_extend_1]!=-1) && (rest_count_1<min_rest_1[

emp_extend_1] || length_count_1>max_work_1[emp_extend_1])) {

list_sol_1[3][weeks_6][emp_extend_1]=-1;

reserve_list_bkwd_1[weeks_6][list_sol_1[0][weeks_6][emp_extend_1]]=1; // AL -

Have added this line

in_reserve_bkwd_1=in_reserve_bkwd_1+1;

length_count_1=0;

rest_count_1=rest_count_1+1;

}

else {

list_sol_1[3][weeks_6][emp_extend_1]=list_sol_1[0][weeks_6][emp_extend_1];

if(list_sol_1[0][weeks_6][emp_extend_1]==-1) {

rest_count_1=rest_count_1+1;

1015

length_count_1=0;

}

else {

length_count_1=length_count_1+1;

} } } }

conflict_found_bkwd_1=0;

for(weeks_6=1;weeks_6<=extend_len_bkwd_1;weeks_6++) {

if(ag_list_sol_1[3][block_end_1+weeks_6][task_extend_1]==1) {

conflict_found_bkwd_1=conflict_found_bkwd_1+1;

ag_list_sol_1[3][block_end_1+weeks_6][task_extend_1]=0;

ag_roles_changed_1.push_back(task_extend_1);

} }

for(weeks_6=0;weeks_6<weeks_to_plan_1;weeks_6++)

for(rol_6=0;rol_6<all_roles_1;rol_6++) {

if(reserve_list_bkwd_1[weeks_6][rol_6]==1) {

if(ag_list_sol_1[3][weeks_6-1][rol_6]==1) {

ag_list_sol_1[3][weeks_6][rol_6]=1;

ag_roles_changed_1.push_back(rol_6);

reserve_list_bkwd_1[weeks_6][rol_6]=0;

in_reserve_bkwd_1=in_reserve_bkwd_1-1;

} } } }

void evaluate_block_new3(int &to_check_tabu_1, int all_roles_1, int reg_emp_1,

int weeks_to_plan_1, int max_work_1[48], int& prev_work_1, int& add_to_emp_1,

int& conflict_found_bkwd_1, int reserve_list_bkwd_1[13][25], int&

in_reserve_bkwd_1, int& block_end_1, int& task_extend_1, int work_zero_1[48],

int& length_count_1,int &emp_extend_1,int& rest_count_1, int&

extend_len_bkwd_1, vector<int>& emps_changed_1,vector<int>&

ag_roles_changed_1, int list_sol_1[8][13][48], int ag_list_sol_1[8][13][25],

int eligible_1[13][25][49], int rest_zero_1[25], int min_rest_1[25])

{ int emp_6, weeks_6, rol_6;

for(emp_6=0;emp_6<reg_emp_1;emp_6++) {

if(emp_6!=emp_extend_1) {

if((conflict_found_bkwd_1< extend_len_bkwd_1) || (in_reserve_bkwd_1>0)) {

for(weeks_6=0; weeks_6<weeks_to_plan_1; weeks_6++) {

list_sol_1[3][weeks_6][emp_6]=-1;

}

rest_count_1=0;

length_count_1=work_zero_1[emp_6];

add_to_emp_1=-1; // AL - Have changed this from "add_to_emp=0;"

if(work_zero_1[emp_6]>0) {

prev_work_1=1;

rest_count_1=0;

1016

}

else {

prev_work_1=0;

rest_count_1=min_rest_1[emp_6]- rest_zero_1[emp_6];

}

for(weeks_6=0; weeks_6<weeks_to_plan_1; weeks_6++) // AL - Have removed the

line "for(rol_6=0;rol_6<all_roles;rol_6++)", and replaced with the ’for all

weeks’ loop from above

{

//if(list_sol[0][weeks_6][emp_6]==rol_6) // AL - Have removed this. Not sure

where it came from.

//{

if(weeks_6<=block_end_1) {

list_sol_1[3][weeks_6][emp_6]=list_sol_1[0][weeks_6][emp_6];

if(list_sol_1[0][weeks_6][emp_6]!=-1) {

length_count_1=length_count_1+1;

prev_work_1=1;

rest_count_1=0;

}

else {

length_count_1=0;

prev_work_1=0;

rest_count_1=rest_count_1+1;

} }

else {

if(list_sol_1[0][weeks_6][emp_6]==-1) {

if(add_to_emp_1!=-1) {

list_sol_1[3][weeks_6][emp_6]=add_to_emp_1;

emps_changed_1.push_back(emp_6);

length_count_1=length_count_1+1;

reserve_list_bkwd_1[weeks_6][add_to_emp_1]=0;

in_reserve_bkwd_1=in_reserve_bkwd_1-1;

rest_count_1=0;

prev_work_1=1;

if(weeks_6<weeks_to_plan_1-1) {

if((length_count_1>=max_work_1[emp_6]) || (eligible_1[weeks_6+1][add_to_emp_1][

emp_6]<1) || (reserve_list_bkwd_1[weeks_6+1][add_to_emp_1]==0)) // AL - Have

changed this from "...reserve_list_bkwd[weeks_6][add_to_emp!=1])"

{

add_to_emp_1=-1;

} }

else {

add_to_emp_1=-1;

1017

} }

else {

list_sol_1[3][weeks_6][emp_6]=list_sol_1[0][weeks_6][emp_6];

length_count_1=0;

rest_count_1=rest_count_1+1;

prev_work_1=0;

} }

else {

if((list_sol_1[0][weeks_6][emp_6]==task_extend_1) && (weeks_6<=(block_end_1+

extend_len_bkwd_1))) // AL - Have changed this from "if(rol_6==task_extend &&

emp_6<=..."

{

conflict_found_bkwd_1=conflict_found_bkwd_1+1;

list_sol_1[3][weeks_6][emp_6]=-1;

emps_changed_1.push_back(emp_6);

length_count_1=0;

rest_count_1=rest_count_1+1;

prev_work_1=0;

}

else {

if((prev_work_1==0) && (rest_count_1<min_rest_1[emp_6])) {

list_sol_1[3][weeks_6][emp_6]=-1;

ag_list_sol_1[3][weeks_6][list_sol_1[0][weeks_6][emp_6]]=1; // AL - Have

changed this from "...[list_sol[3][weeks_6][emp_6]]=1;"

ag_roles_changed_1.push_back(list_sol_1[0][weeks_6][emp_6]); // AL - Have changed

this from "...(list_sol[3][weeks_6][emp_6]);"

rest_count_1=rest_count_1+1;

}

else {

list_sol_1[3][weeks_6][emp_6]=list_sol_1[0][weeks_6][emp_6]; // AL - Have changed

this from "list_sol[3][weeks_6][emp_6]=list_sol[3][weeks_6][emp_6];"

length_count_1=length_count_1+1;

rest_count_1=0;

prev_work_1=1;

if(weeks_6<weeks_to_plan_1-1) {

if((length_count_1<max_work_1[emp_6]) && (eligible_1[weeks_6+1][list_sol_1[0][

weeks_6][emp_6]][emp_6]==1) && (reserve_list_bkwd_1[weeks_6+1][list_sol_1[0][

weeks_6][emp_6]]==1)) // AL - Have changed this from "if(length_count<=

max_work[emp_6]-1 && eligible[weeks_6+1][rol_6][emp_6]==1 &&

reserve_list_bkwd[weeks_6+1][rol_6]==1)"

{

add_to_emp_1=list_sol_1[0][weeks_6][emp_6]; // AL - Have changed this from

"add_to_emp=rol_6;"

1018

}

else {

add_to_emp_1=-1;

} }

else {

add_to_emp_1=-1;

} } } } } } } } }

for(rol_6=0;rol_6<all_roles_1;rol_6++)

for(weeks_6=0;weeks_6<weeks_to_plan_1;weeks_6++) {

if(reserve_list_bkwd_1[weeks_6][rol_6]==1) // AL - Have changed this from

"...!=-1)"

{

ag_list_sol_1[3][weeks_6][rol_6]=1;

ag_roles_changed_1.push_back(rol_6);

} }

to_check_tabu_1=3;

}

void evaluate_block_new4(float& extend_cost_bkwd_1, float total_cost_1[8], int &

do_extend_bkwd_1, int &no_nonreduce_1, vector<int>&emps_to_update_1, int&

accept_rule_1, vector<int>& emps_changed_1)

{

extend_cost_bkwd_1=total_cost_1[3]-total_cost_1[accept_rule_1];

if(total_cost_1[3]<total_cost_1[accept_rule_1]) // AL - Have changed this from

"if(total_cost[3]<total_cost[0])"

{

do_extend_bkwd_1=1;

no_nonreduce_1=0;

emps_to_update_1.clear();

emps_to_update_1.reserve(emps_changed_1.size());

copy(emps_changed_1.begin(),emps_changed_1.end(),back_inserter(emps_to_update_1))

;

} }

void evaluate_block_new6(int &extend_len_fwd_1,int &max_fwd_extend_1, int &

block_start_1, int rest_zero_1[48], int& emp_extend_1, int summation_1, int

vessels_1, int roles_1[25], int& task_extend_1, int starting_1[25][49],int

min_rest_1[48], int eligible_1[13][25][49], int required_1[13][25])

{ int rol_13, weeks_13, weeks_12;

if(max_fwd_extend_1 > block_start_1 - rest_zero_1[emp_extend_1]) {

max_fwd_extend_1=block_start_1- rest_zero_1[emp_extend_1]; // AL - Have

changed this from "...=block_start - rest_zero[emp_extend] - 1"

}

1019

summation_1=0;

for(rol_13=0;rol_13<vessels_1;rol_13++) {

if(task_extend_1!=roles_1[rol_13]) {

summation_1=summation_1+ starting_1[rol_13][emp_extend_1];

} }

if(summation_1> 0) {

if(max_fwd_extend_1 > (block_start_1 - min_rest_1[emp_extend_1])) {

max_fwd_extend_1=block_start_1 - min_rest_1[emp_extend_1];

} }

if(max_fwd_extend_1> 0) {

summation_1=0;

for(rol_13=0;rol_13<vessels_1;rol_13++) {

if(task_extend_1==roles_1[rol_13]) {

summation_1=summation_1+starting_1[rol_13][emp_extend_1];

} }

weeks_13=max_fwd_extend_1;

for(weeks_12=1;weeks_12<=weeks_13;weeks_12++) {

if(max_fwd_extend_1 >= weeks_12) {

if(summation_1 > 0 && (block_start_1 - weeks_12)> 0 && (block_start_1 - weeks_12

< min_rest_1[emp_extend_1])) {

max_fwd_extend_1= weeks_12-1;

}

if(eligible_1[block_start_1-weeks_12][task_extend_1][emp_extend_1]==0 ||

required_1[block_start_1-weeks_12][task_extend_1]==0) {

max_fwd_extend_1=weeks_12 -1;

} } } }

extend_len_fwd_1=max_fwd_extend_1;

}

void evaluate_block_new7(int &extend_len_fwd_1,vector<int>& emps_changed_1,

vector<int>& ag_roles_changed_1, int reg_emp_1, int weeks_to_plan_1, int

list_sol_1[8][13][48], int all_roles_1, int ag_list_sol_1[8][13][25], int

reserve_list_fwd_1[13][25], int &emp_extend_1, int &rest_count_1,int &

in_reserve_fwd_1,int &task_extend_1, int min_rest_1[48], int &

conflict_found_fwd_1, int &block_start_1)

{ int emp_7, rol_7, weeks_7, rol_40;

emps_changed_1.clear();

ag_roles_changed_1.clear();

for(emp_7=0;emp_7<reg_emp_1;emp_7++)

for(weeks_7=0;weeks_7<weeks_to_plan_1;weeks_7++) {

list_sol_1[4][weeks_7][emp_7]=list_sol_1[0][weeks_7][emp_7];

}

1020

for(rol_7=0;rol_7<all_roles_1;rol_7++)

for(weeks_7=0;weeks_7<weeks_to_plan_1;weeks_7++) {

ag_list_sol_1[4][weeks_7][rol_7]=ag_list_sol_1[0][weeks_7][rol_7];

reserve_list_fwd_1[weeks_7][rol_7]=0;

}

for(weeks_7=0;weeks_7<weeks_to_plan_1;weeks_7++) {

list_sol_1[4][weeks_7][emp_extend_1]=-1;

}

rest_count_1=0;

//length_count=work_zero[emp_extend]; // AL - Have removed this line. Don’t see

that it’s needed here

in_reserve_fwd_1=0; // AL - Have changed this from "

in_reserve_bkwd=0"

for(weeks_7=weeks_to_plan_1-1; weeks_7>=0;weeks_7--) {

rol_40 = list_sol_1[0][weeks_7][emp_extend_1]; // AL - Have added this line. "

rol_40" is essentially "j" from the Xpress programme

if(weeks_7>=block_start_1) {

list_sol_1[4][weeks_7][emp_extend_1]=rol_40; // AL - Have changed this from "

reverse_new_list[weeks_7][emp_extend]=reverse_current_list[weeks_7][

emp_extend];"

}

else if(weeks_7>=(block_start_1-extend_len_fwd_1)) // AL - Have changed this from

"...weeks_7<=block_start..."

{

if(rol_40!=task_extend_1) // AL - Have changed this from "if(

reverse_current_list[weeks_7][emp_extend]!=task_extend)"

{

list_sol_1[4][weeks_7][emp_extend_1]=task_extend_1; // AL - Have changed

this from "reverse_new_list[weeks_7][emp_extend]=task_extend;"

if(rol_40!=-1) // AL - Have changed this from "if(reverse_current_list[

weeks_7][emp_extend]!=-1)"

{

reserve_list_fwd_1[weeks_7][rol_40]=1; // AL - Have changed from from "

reserve_list_fwd[weeks_7][reverse_current_list[weeks_7][emp_extend]]=1;"

in_reserve_fwd_1=in_reserve_fwd_1+1;

} } }

else {

if(rol_40!=-1 && rest_count_1 <min_rest_1[emp_extend_1]) // AL - Have changed

this from "if(reverse_current_list[weeks_7][emp_extend]!=-1 &&..."

{

list_sol_1[4][weeks_7][emp_extend_1]=-1; // AL - Have changed this from

"reverse_new_list[weeks_7][emp_extend]=-1;"

reserve_list_fwd_1[weeks_7][rol_40]=1; // AL - Have changed this from "

1021

reserve_list_fwd[weeks_7][reverse_current_list[weeks_7][emp_extend]]=1;"

in_reserve_fwd_1=in_reserve_fwd_1+1;

ag_roles_changed_1.push_back(rol_40); // AL - Have changed this from "

ag_roles_changed.push_back(reverse_current_list[weeks_7][emp_extend]);"

rest_count_1=rest_count_1+1;

}

else {

list_sol_1[4][weeks_7][emp_extend_1] = rol_40; // AL - Have changed this from

"reverse_new_list[weeks_7][reverse_current_list[weeks_7][emp_extend]]=1;"

if(rol_40==-1) // AL - Have changed this from "if(

reverse_current_list[weeks_7][emp_extend]==-1)"

{

rest_count_1=rest_count_1+1;

} } } }

emps_changed_1.push_back(emp_extend_1);

conflict_found_fwd_1=0;

for(weeks_7=1;weeks_7<=extend_len_fwd_1;weeks_7++) {

if(ag_list_sol_1[4][block_start_1-weeks_7][task_extend_1]==1) {

conflict_found_fwd_1=conflict_found_fwd_1+1;

ag_list_sol_1[4][block_start_1-weeks_7][task_extend_1]=0; // AL - Have

changed this from "...[block_end+weeks_7]..."

ag_roles_changed_1.push_back(task_extend_1);

} }

for(rol_7=0;rol_7<all_roles_1;rol_7++)

for(weeks_7=0;weeks_7<weeks_to_plan_1;weeks_7++) {

if(reserve_list_fwd_1[weeks_7][rol_7]==1) {

if(ag_list_sol_1[4][weeks_7+1][rol_7]==1) {

ag_list_sol_1[4][weeks_7][rol_7]=1;

ag_roles_changed_1.push_back(rol_7);

reserve_list_fwd_1[weeks_7][rol_7]=0; // AL - Have changed this from

"removed.push_back(weeks_7);"

in_reserve_fwd_1=in_reserve_fwd_1-1;

} } } }

void evaluate_block_new8(int rest_zero_1[48], int starting_1[25][49], int

eligible_1[13][25][49], int max_work_1[48], int &length_count_1,int &

to_check_tabu_1, int &summation_1x, int &summation_x, int &prev_work_1,int &

add_to_emp_1, int &extend_len_fwd_1,vector<int>& emps_changed_1, vector<int>&

ag_roles_changed_1, int reg_emp_1, int weeks_to_plan_1, int list_sol_1

[8][13][48], int all_roles_1, int ag_list_sol_1[8][13][25], int

reserve_list_fwd_1[13][25], int &emp_extend_1, int &rest_count_1,int &

in_reserve_fwd_1,int &task_extend_1, int min_rest_1[48], int &

conflict_found_fwd_1, int &block_start_1)

1022

{

int rol_44, emp_7, weeks_7, rol_7;

for(emp_7=0;emp_7<reg_emp_1;emp_7++) {

if(emp_7!=emp_extend_1) {

if((conflict_found_fwd_1< extend_len_fwd_1) || (in_reserve_fwd_1>0)) // AL - Have

changed this from "if(conflict_found_bkwd< ..."

{

rest_count_1=min_rest_1[emp_7];

length_count_1=0;

add_to_emp_1=-1; // AL - Have changed this from "add_to_emp=0;" to

try to be consistent. Other ’strings’ equal to "" in Xpress are given as

’=-1’ in the C++ prog.

prev_work_1=0;

for(weeks_7=weeks_to_plan_1-1; weeks_7>= 0; weeks_7--) // AL - Have added this

start of loop here, rather than above

{

list_sol_1[4][weeks_7][emp_7]=-1;

rol_44 = list_sol_1[0][weeks_7][emp_7]; // AL - As before, no need to use the

reversed lists here, and "rol_44" has been added to make the notation easier

to change

if(weeks_7>= block_start_1) // AL - Have changed this from

"if(12-weeks_7>= block_start)"

{

list_sol_1[4][weeks_7][emp_7]=rol_44; // AL - Have changed this from "

reverse_new_list[weeks_7][emp_7]=reverse_current_list[weeks_7][emp_7];"

if(rol_44!=-1) // AL - Have changed this from "if(reverse_current_list[

weeks_7][emp_7]!=-1)"

{

prev_work_1=1;

length_count_1=length_count_1+1;

}

else {

prev_work_1=0;

length_count_1=0;

} }

else {

if(rol_44==-1) // AL - Have changed this from "if(reverse_current_list[

weeks_7][emp_7]==-1)"

{

if(add_to_emp_1!=-1) // AL - Have changed this from "if(add_to_emp==0)"

{

list_sol_1[4][weeks_7][emp_7]=add_to_emp_1; // AL - Have changed

this from "reverse_new_list[weeks_7][add_to_emp]=1;"

1023

emps_changed_1.push_back(emp_7); // AL - Have changed

this from "emps_changed.push_back(add_to_emp);

length_count_1= length_count_1 + 1;

reserve_list_fwd_1[weeks_7][add_to_emp_1]=0;

in_reserve_fwd_1= in_reserve_fwd_1-1;

prev_work_1=1; // AL - Have changed this from "prev_work=0;

rest_count_1=0;

if(weeks_7>= 1) {

if((length_count_1 >= max_work_1[emp_7]) || (eligible_1[weeks_7-1][add_to_emp_1][

emp_7] < 1) || (reserve_list_fwd_1[weeks_7-1][add_to_emp_1]==0) || (weeks_7

<= rest_zero_1[emp_7])) // AL - Have changed this from "...reserve_list_fwd[

weeks_7-1][add_to_emp]==-1 || weeks_7-1 <=..."

{

add_to_emp_1=-1;

}

else {

summation_x=0;

summation_1x=0; // AL - Have added this here so that both ’

summations’ can be calculated in the same loop...

for(rol_7=0;rol_7<all_roles_1;rol_7++) {

if(rol_7!=add_to_emp_1) {

summation_x=summation_x+starting_1[rol_7][emp_7];

}

else // AL - ...so have also added this ’else’...

{

summation_1x=summation_1x+starting_1[rol_7][emp_7]; // AL - ... and this

line.

} }

if((summation_x > 0 && weeks_7 <= min_rest_1[emp_7])|| ((summation_1x > 0) && (

weeks_7>= 2) && (weeks_7<= min_rest_1[emp_7]))) // AL - Have changed this

from "if((summation > 0 && time_count-1 <= min_rest[emp_7])|| (summation_1 >

0 && 12-weeks_7-1>= 2 && 12-weeks_7-1<= min_rest[emp_7])) "

//

{

add_to_emp_1=-1;

} } }

else {

add_to_emp_1=-1;

} }

else {

list_sol_1[4][weeks_7][emp_7] = rol_44; // AL - Have changed this from

"reverse_new_list[weeks_7][emp_7]=reverse_current_list[weeks_7][emp_7];"

length_count_1=0;

1024

rest_count_1=rest_count_1+ 1;

prev_work_1=0;

} }

else {

if((rol_44==task_extend_1) && (weeks_7>= (block_start_1 - extend_len_fwd_1))) //

AL - Have changed this from "if(reverse_current_list[weeks_7][emp_7] ==

task_extend && 12-weeks_7>= block_start - extend_len_fwd)"

{

conflict_found_fwd_1= conflict_found_fwd_1 + 1;

list_sol_1[4][weeks_7][emp_7]=-1; // AL - Have changed this from "

reverse_new_list [weeks_7][emp_7]=-1;"

emps_changed_1.push_back(emp_7);

length_count_1= 0;

rest_count_1= rest_count_1 + 1;

prev_work_1=0;

}

else {

if(prev_work_1==0 && rest_count_1 < min_rest_1[emp_7]) {

list_sol_1[4][weeks_7][emp_7]=-1; // AL - Have changed this from "

reverse_new_list [weeks_7][emp_7]=-1;"

ag_list_sol_1[4][weeks_7][rol_44]=1; // AL - Have changed this from "

ag_list_sol[4][12-weeks_7][reverse_current_list[weeks_7][emp_7]]=1;"

ag_roles_changed_1.push_back(rol_44); // AL - Have changed this from "

ag_roles_changed.push_back(reverse_current_list[weeks_7][emp_7]);"

rest_count_1=rest_count_1 + 1;

}

else {

list_sol_1[4][weeks_7][emp_7]=rol_44; // AL - Have changed this from "

reverse_new_list [weeks_7][emp_7]=reverse_current_list[weeks_7][emp_7];"

length_count_1=length_count_1 + 1;

rest_count_1=0;

prev_work_1=1;

if(weeks_7> 0) // AL - Have changed this from "if(12-weeks_7> 1)"

{

if((length_count_1< max_work_1[emp_7]) && (eligible_1[weeks_7-1][rol_44][emp_7] >

0) && (reserve_list_fwd_1[weeks_7-1][rol_44]==1) && (weeks_7 > rest_zero_1[

emp_7])) // AL - Have changed this from "if(length_count < max_work[emp_7]

&& eligible[12-weeks_7-1][reverse_current_list[weeks_7][emp_7]][emp_7] > 0 &&

reserve_list_fwd[weeks_7-1][emp_7]==reverse_current_list[weeks_7][emp_7] &&

12-weeks_7-1 > rest_zero[emp_7])"

{

summation_x=0;

summation_1x=0; // AL - Have added this so we can calculate both ’summations

1025

’ in the one loop...

for(rol_7=0;rol_7<all_roles_1;rol_7++) {

if(rol_7!=add_to_emp_1) {

summation_x=summation_x+starting_1[rol_7][emp_7];

}

else // AL - ... so have also added this ’else’...

{

summation_1x=summation_1x+starting_1[rol_7][emp_7]; // AL - ... and also this

command

} }

if((summation_x< 1 || weeks_7 > min_rest_1[emp_7]) && (summation_1x < 1 ||

weeks_7-1==0 || weeks_7 > min_rest_1[emp_7])) // AL - Have changed this

from "if((summation < 1 || 12-weeks_7-1 > min_rest[emp_7]) && (summation_1 <

1 || 12-weeks_7-1 == 1 || 12-weeks_7-1 > min_rest[emp_7]))"

{

add_to_emp_1= rol_44; // AL - Have changed this from "add_to_emp = -1;"

}

else {

add_to_emp_1= -1;

} }

else {

add_to_emp_1=-1;

} }

else {

add_to_emp_1=-1;

} } } }

} // AL - Have added this close bracket to end the ’else’ for "if(

weeks_7>= block_start)"...

} // AL - ... and this one to end the ’for all weeks 12 to 0’ loop

} } }

for(rol_7=0;rol_7<all_roles_1;rol_7++)

for(weeks_7=0;weeks_7<weeks_to_plan_1;weeks_7++) {

if(reserve_list_fwd_1[weeks_7][rol_7]==1) // AL - Have changed this from

"...[weeks_7][rol_7]!=-1)"

{

ag_list_sol_1[4][weeks_7][rol_7]=1;

ag_roles_changed_1.push_back(rol_7);

} }

to_check_tabu_1=4;

}

void evaluate_block_new9(float& extend_cost_fwd_1, float total_cost_1[8], int &

do_extend_fwd_1, int &no_nonreduce_1, vector<int>&emps_to_update_1, int&

1026

accept_rule_1, vector<int>& emps_changed_1)

{

extend_cost_fwd_1=total_cost_1[4]-total_cost_1[0];

if(total_cost_1[4]<total_cost_1[accept_rule_1]) // AL - Have changed

this from "if(total_cost[3]<total_cost[0])"

{

do_extend_fwd_1=1;

no_nonreduce_1=0;

emps_to_update_1.clear();

emps_to_update_1.reserve(emps_changed_1.size());

copy(emps_changed_1.begin(),emps_changed_1.end(),back_inserter(emps_to_update_1))

;

} }

void evaluate_block_new11(float& swapping_cost_1, float total_cost_1[8], int &

do_swap_1, int &no_nonreduce_1, vector<int>&emps_to_update_1, int&

accept_rule_1, vector<int>& emps_changed_1)

{

swapping_cost_1=total_cost_1[4]-total_cost_1[accept_rule_1];

if(total_cost_1[5]<total_cost_1[accept_rule_1]) // AL - Have changed

this from "if(total_cost[3]<total_cost[0])"

{

do_swap_1=1;

no_nonreduce_1=0;

emps_to_update_1.clear();

emps_to_update_1.reserve(emps_changed_1.size());

copy(emps_changed_1.begin(),emps_changed_1.end(),back_inserter(emps_to_update_1))

;

} }

void evaluate_block_lasting(int no_swap_1, int do_swap_1,int ag_list_sol_1

[8][13][25], int list_sol_1[8][13][48], int tabu_sol_1[13][48], int

ag_tabu_sol_1[13][25], int all_roles_1, int reg_emp_1, int weeks_to_plan_1,

int &do_extend_bkwd_1,int &do_extend_fwd_1, int &transfer_sol_from_1, int &

transfer_sol_to_1, int &no_bkwd_1, int &no_fwd_1)

{

int weeks_12, emp_12, rol_12;

if(do_extend_bkwd_1==1) {

transfer_sol_from_1=3;

no_bkwd_1=no_bkwd_1+1;

}

else if(do_extend_fwd_1==1) {

transfer_sol_from_1=4;

1027

no_fwd_1=no_fwd_1+1;

}

else if(do_swap_1==1) {

transfer_sol_from_1=5;

no_swap_1=no_swap_1+1;

}

if(do_extend_bkwd_1==1 || do_extend_fwd_1== 1 || do_swap_1 ==1) {

for(weeks_12=0;weeks_12<weeks_to_plan_1;weeks_12++) {

for(emp_12=0;emp_12<reg_emp_1;emp_12++) {

tabu_sol_1[weeks_12][emp_12]=list_sol_1[0][weeks_12][emp_12];

}

for(rol_12=0;rol_12<all_roles_1;rol_12++) {

ag_tabu_sol_1[weeks_12][rol_12]= ag_list_sol_1[0][weeks_12][rol_12];

} } // AL - Have added this bracket in order to end the ’for all weeks’ loop

here, rather than below

transfer_sol_to_1=0;

} }

void evaluate_block_new12(int &task_extend_1, int &rol_14x, int &block_start_1,

int &weeks_14x, int &swap_block_earliest_1, int all_roles_1, int roles_1[25],

int &vessel_extend_1, int &block_end_1, int &block_len_1)

{

int rol_16;

task_extend_1=rol_14x; // AL - Have changed this from "task_extend=rol_15"

block_start_1=weeks_14x;

swap_block_earliest_1=weeks_14x;

for(rol_16=0; rol_16<all_roles_1;rol_16++) {

if(roles_1[rol_16]==task_extend_1) {

vessel_extend_1=task_extend_1;

rol_16=all_roles_1;

} }

block_end_1=-1;

block_len_1=0;

}

void evaluate_block_new13(int &do_swap_1, int &no_swap_1,int &do_extend_bkwd_1,

int &transfer_sol_from_1, int &no_bkwd_1, int &do_extend_fwd_1, int &no_fwd_1

)

{

if(do_extend_bkwd_1==1) {

transfer_sol_from_1=3;

no_bkwd_1= no_bkwd_1 + 1;

}

1028

else if(do_extend_fwd_1==1) {

transfer_sol_from_1=4;

no_fwd_1=no_fwd_1 + 1;

}

else if(do_swap_1==1) {

transfer_sol_from_1=5;

no_swap_1=no_swap_1 + 1;

} }

void find_usable_1(int &update_done_1, int &candidate_exist_1,vector<int>&

candidate_emps_1)

{

update_done_1=0;

candidate_exist_1=0;

candidate_emps_1.clear();

}

void find_usable_2(int weeks_to_plan_1, int &vessel_extend_1, int &emp_13x, int &

swap_block_earliest_1,int &update_done_1, int &emp_extend_1, int &

task_extend_1, int &block_start_1, int &block_end_1, int &block_len_1, int &

block_found_1, int vessels_1, int starting_1[25][49], int work_zero_1[48],int

current_list_1[13], int list_sol_1[8][13][48])

{

int rol_14, weeks_14;

if(update_done_1==0) {

emp_extend_1=-1;

task_extend_1=-1;

block_start_1=-1;

block_end_1=-1;

block_len_1=0;

block_found_1=0;

for(rol_14=0;rol_14<vessels_1;rol_14++) {

if(starting_1[rol_14][emp_13x]==1) {

block_found_1=1; // AL - Have changed this from "block_found=0"

emp_extend_1=emp_13x;

block_start_1=0-work_zero_1[emp_13x];

swap_block_earliest_1=0;

vessel_extend_1=rol_14;

rol_14=vessels_1;

}

if(block_found_1==0) {

vessel_extend_1=-1;

} } }

1029

for(weeks_14=0;weeks_14<weeks_to_plan_1;weeks_14++) {

current_list_1[weeks_14]=list_sol_1[0][weeks_14][emp_13x];

} }

void find_usable_3(int roles_1[25],int vessels_1, int &weeks_14x, int &rol_14x,

int current_list_1[13], int &new_block_1, int &block_found_1, int &

emp_extend_1, int &emp_13x, int &task_extend_1, int &block_start_1, int &

swap_block_earliest_1, int rest_zero_1[48], int &vessel_extend_1)

{

int rol_15;

new_block_1=1;

emp_extend_1=emp_13x;

task_extend_1=rol_14x;

block_start_1=weeks_14x;

if(weeks_14x==0) // AL - Have changed this from "if(weeks_14==1)"

{

swap_block_earliest_1= 0; // AL - Have changed this from "

swap_block_earliest= 1"

}

else if(weeks_14x <= rest_zero_1[emp_13x]) // AL - Have changed this from "... if

(weeks_14-1 <=..."

{

swap_block_earliest_1=weeks_14x;

}

else {

swap_block_earliest_1=weeks_14x-1;

}

for(rol_15=0;rol_15<vessels_1;rol_15++) {

if(rol_14x==roles_1[rol_15]) {

vessel_extend_1=rol_15;

rol_15=vessels_1;

} } }

void find_usable_4(int &link_to_vessel_1, int &vessel_extend_1, int &rol_14x, int

roles_1[25], int &task_extend_1)

{

link_to_vessel_1=0;

if(vessel_extend_1!=-1) {

if(rol_14x==roles_1[vessel_extend_1]) {

link_to_vessel_1=1;

} }

if(link_to_vessel_1==1) {

task_extend_1=rol_14x;

1030

} }

void find_usable_5(int &block_end_1, int &weeks_14x, int &swap_block_latest_1,

int &block_len_1, int &block_start_1)

{

block_end_1=weeks_14x-1;

swap_block_latest_1=weeks_14x;

block_len_1=(block_end_1 - block_start_1)+1;

}

void find_usables_6(int &block_found_1, int &block_start_1, int &block_end_1, int

&block_len_1, int &emp_extend_1, int &task_extend_1, int &vessel_extend_1)

{

block_found_1=0;

block_start_1=-1;

block_end_1=-1;

block_len_1=0;

emp_extend_1=-1;

task_extend_1=-1;

vessel_extend_1=-1;

}

void find_usables_7(int &new_block_1, int &block_found_1)

{

if(new_block_1==1) {

block_found_1=1;

new_block_1=0;

} }

void find_usables_8(int &block_end_1, int &weeks_14x, int &swap_block_latest_1,

int &block_len_1, int &block_start_1)

{

block_end_1=weeks_14x;

swap_block_latest_1=weeks_14x;

block_len_1=(block_end_1 - block_start_1) +1;

}

void find_usables_9(int &update_done_1, int &emp_13x, int reg_emp_1, int

swaps_examined_1[48][48])

{

int emp_14;

if(update_done_1==0) {

for(emp_14=0; emp_14<reg_emp_1;emp_14++) {

1031

if(emp_14!=emp_13x) {

swaps_examined_1[emp_13x][emp_14]=1;

} } } }

void find_usables_10(int tabu_sol_1[13][48], int ag_tabu_sol_1[13][25], int &

no_nonreduce_1, float& candidate_cost_1,int& transfer_sol_from_1,int&

transfer_sol_to_1, int &candidate_exist_1, int &update_done_1, int

weeks_to_plan_1, int reg_emp_1, int all_roles_1, int list_sol_1[8][13][48],

int ag_list_sol_1[8][13][25])

{

int weeks_14, rol_14, emp_13;

if(update_done_1==0 && candidate_exist_1==1) {

for(emp_13=0;emp_13<reg_emp_1;emp_13++)

for(weeks_14=0;weeks_14<weeks_to_plan_1;weeks_14++) {

tabu_sol_1[weeks_14][emp_13]=list_sol_1[0][weeks_14][emp_13];

}

for(rol_14=0;rol_14<all_roles_1;rol_14++)

for(weeks_14=0;weeks_14<weeks_to_plan_1;weeks_14++) {

ag_tabu_sol_1[weeks_14][rol_14]=ag_list_sol_1[0][weeks_14][rol_14];

}

if(candidate_cost_1 < 0) {

no_nonreduce_1=0;

}

else {

no_nonreduce_1=no_nonreduce_1+1;

}

transfer_sol_from_1=6;

transfer_sol_to_1=0;

} }

E.2.5.16 File ‘comparing.h’

void compare_to_best(int& number_best_2, int weeks_to_plan_2, int all_roles_2,

int reg_emp_2, int role_count_2 , float total_cost_2[8], int new_best_2,int

same_best_2[51],int emp_count_2,int list_sol_2[8][13][48], int best_sols_2

[51][13][48], int ag_list_sol_2[8][13][25], int ag_best_sols_2[51][13][25]);

E.2.5.17 File ‘cost.h’

#include <vector>

using namespace std;

1032

void calc_cost1(int all_roles_2,int reg_emp_2, int weeks_to_plan_2, int

list_sol_2[8][13][48], int ag_list_sol_2[8][13][25], int& to_calculate_2,

float total_cost_2[8]);

void calc_cost2(float total_cost_2[8],int starting_2[25][49],int reg_emp_2,int

weeks_to_plan_2, int all_roles_2, vector<int> &emps_changed_2, float

emp_cost_2[8][48], int allocate_sol_2[8][13][25][49], int long_work_sol_2

[8][13][25][49][10], int lambda_2,int board_sol_2[8][13][25][48], int

depart_sol_2[8][13][25][48],int undertime_sol_2[8][45], int overtime_sol_2

[8][45], int& consec_work_2, int work_zero_2[48],int list_sol_2[8][13][48],

int g_weeks_2[45], int exp_worktime_2[45]);

void calc_cost3(int reg_emp_2,int weeks_to_plan_2, int all_roles_2,vector<int> &

emps_changed_2, float emp_cost_2[8][48], int allocate_sol_2[8][13][25][49],

int long_work_sol_2[8][13][25][49][10], int lambda_2,int board_sol_2

[8][13][25][48], int depart_sol_2[8][13][25][48],int undertime_sol_2[8][45],

int overtime_sol_2[8][45], int chng_undertime_2[45], int chng_overtime_2[45],

int cur_undertime_2[45], int cur_overtime_2[45],int under_rate_2[45], int

over_rate_2[45], int cur_allocate_2[13][25][49], int chng_allocate_2

[13][25][49], int cur_board_2[13][25][48], int chng_board_2[13][25][48],

float board_chng_cost_2[13][25][48], int cur_depart_2[13][25][48], int

chng_depart_2[13][25][48], float depart_chng_cost_2[13][25][48],int

cur_long_work_2[13][25][49][10] ,int chng_long_work_2[13][25][49][10], float

extension_chng_cost_2[13][25][49][10], float work_chng_cost_2[13][25][49]);

void calc_cost31(int reg_emp_2,int weeks_to_plan_2, int all_roles_2,vector<int> &

emps_changed_2, float emp_cost_2[8][48], int allocate_sol_2[8][13][25][49],

int long_work_sol_2[8][13][25][49][10], int lambda_2,int board_sol_2

[8][13][25][48], int depart_sol_2[8][13][25][48],int undertime_sol_2[8][45],

int overtime_sol_2[8][45], int chng_undertime_2[45], int chng_overtime_2[45],

int cur_undertime_2[45], int cur_overtime_2[45],int under_rate_2[45], int

over_rate_2[45], int cur_allocate_2[13][25][49], int chng_allocate_2

[13][25][49], int cur_board_2[13][25][48], int chng_board_2[13][25][48],

float board_chng_cost_2[13][25][48], int cur_depart_2[13][25][48], int

chng_depart_2[13][25][48], float depart_chng_cost_2[13][25][48],int

cur_long_work_2[13][25][49][10] ,int chng_long_work_2[13][25][49][10], float

extension_chng_cost_2[13][25][49][10], float work_chng_cost_2[13][25][49]);

void calc_cost4(float work_chng_cost_2[13][25][49],int ag_max_work_2[25], int

ag_work_zero_2[25], int &consec_work_2,int &feas_crewchange_2,int &

to_calculate_2,int &iteration_2, int weeks_to_plan_2, int all_roles_2, vector

<int> & evaluate_crewchange_2,vector<int> &ag_roles_changed_2, vector<int> &

definite_crewchange_2, vector<int> &possible_crewchange_2,float ag_cost_2

[8][13][25], int ag_crewchange_2[8][13][25],int allocate_sol_2

[8][13][25][49],int ag_rboard_sol_2[8][13][25], int ag_rdepart_sol_2

[8][13][25], int long_work_sol_2[8][13][25][49][10], int lambda_2, int

ag_starting_2[25], int ag_list_sol_2[8][13][25], int cur_ag_rboard_2[13][25],

1033

int poss_chng_ag_rboard_2[13], int poss_ag_rboard_2[13], int cur_ag_rdepart_2

[13][25], int poss_chng_ag_rdepart_2[13], int poss_ag_rdepart_2[13],float

ag_board_chng_cost_2[13][25],float ag_depart_chng_cost_2[13][25],int

poss_ag_long_work_2[13][10], int cur_long_work_2[13][25][49][10], int

poss_chng_ag_long_work_2[13][10], int cur_allocate_2[13][25][49], int

chng_allocate_2[13][25][49], float extension_chng_cost_2[13][25][49][10], int

chng_ag_rboard_2[13][25], int chng_ag_rdepart_2[13][25],int chng_long_work_2

[13][25][49][10]);

void calc_cost5(int reg_emp_2,int weeks_to_plan_2, int all_roles_2,float

emp_cost_2[8][48],float total_cost_2[8],float ag_cost_2[8][13][25],int &

transfer_sol_from_2, int &transfer_sol_to_2, int &to_calculate_2);

E.2.5.18 File ‘feasibility checking.h’

#include <vector>

using namespace std;

void JC_feas(int &feasible_2, int &JCfeas_2,int all_emp_2,int all_roles_2, int

weeks_to_plan_2, int eligible_2[13][25][49], int allocate_sol_2

[8][13][25][49], int required_2[13][25]);

void Overlap_feas(vector<int> &emps_changed_2,int &feasible_2, int &OLfeas_2,int

all_emp_2,int all_roles_2, int weeks_to_plan_2, int allocate_sol_2

[8][13][25][49]);

void BoardFeas(vector<int> &emps_changed_2,int &feasible_2, int &Brdfeas_2,int

all_emp_2,int all_roles_2, int weeks_to_plan_2, int allocate_sol_2

[8][13][25][49], int board_sol_2[8][13][25][48],int starting_2[25][49]);

void DepartFeas(vector<int> &emps_changed_2,int &feasible_2, int &Dprtfeas_2,int

all_emp_2,int all_roles_2, int weeks_to_plan_2, int allocate_sol_2

[8][13][25][49], int depart_sol_2[8][13][25][48],int starting_2[25][49]);

void AgBoardDepartFeas(vector<int> &ag_roles_changed_2,int &feasible_2, int &

AGBDfeas_2,int all_roles_2, int weeks_to_plan_2, int allocate_sol_2

[8][13][25][49], int ag_rboard_sol_2[8][13][25],int ag_rdepart_sol_2

[8][13][25],int ag_starting_2[25]);

void UnderOverFeas(vector<int> &emps_changed_2,int &feasible_2, int &UTfeas_2,

int &OTfeas_2,int all_emp_2,int all_roles_2, int weeks_to_plan_2,int

undertime_sol_2[8][45],int overtime_sol_2[8][45],int g_weeks_2[45], int

exp_worktime_2[45], int allocate_sol_2[8][13][25][49]);

void LongWorkFeas(vector<int> &ag_roles_changed_2,vector<int> &emps_changed_2,int

&AGLWfeas_2,int &LWfeas_2,int lambda_2, int &feasible_2, int work_total_2

[13][48], int work_zero_2[48], int reg_emp_2,int all_roles_2, int

weeks_to_plan_2,int allocate_sol_2[8][13][25][49], int max_work_2[48],int

long_work_sol_2[8][13][25][49][10],int ag_work_total_2[13][25], int

ag_work_zero[25], int ag_max_work[25], int ag_rdepart_sol[8][13][25]);

1034

void RestFeas(vector<int> &emps_changed_2,int &feasible_2,int &RvWfeas_2,int

reg_emp_2,int all_roles_2, int weeks_to_plan_2,int depart_sol_2

[8][13][25][48],int rest_total_2[13][49], int rest_zero_2[48],int

allocate_sol_2[8][13][25][49],int min_rest_2[48]);

void LinkFeasiblity(int lambda_2, vector<int> &ag_roles_changed_2,vector<int> &

emps_changed_2,int &feasible_2,int &Linkfeas_2,int reg_emp_2,int all_roles_2,

int weeks_to_plan_2,int cur_allocate_2[13][25][49],int chng_allocate_2

[13][25][49], int allocate_sol_2[8][13][25][49],int cur_board_2[13][25][48],

int chng_board_2[13][25][48], int board_sol_2[8][13][25][48],int cur_depart_2

[13][25][48], int chng_depart_2[13][25][48], int depart_sol_2[8][13][25][48],

int cur_ag_rboard_2[13][25], int ag_rboard_sol_2[8][13][25], int

chng_ag_rboard_2[13][25], int cur_ag_rdepart_2[13][25], int ag_rdepart_sol_2

[8][13][25], int chng_ag_rdepart_2[13][25], int cur_long_work_2

[13][25][49][10], int chng_long_work_2[13][25][49][10], int long_work_sol_2

[8][13][25][49][10], int chng_undertime_2[45], int undertime_sol_2[8][45],

int cur_undertime_2[45], int chng_overtime_2[45], int overtime_sol_2[8][45],

int cur_overtime_2[45]);

void StatusFeasibility(int lambda_2,vector<int> &ag_roles_changed_2,vector<int> &

emps_changed_2,int &feasible_2,int &Statfeas_2,int reg_emp_2,int all_roles_2,

int weeks_to_plan_2, int allocate_sol_2[8][13][25][49],int chng_allocate_2

[13][25][49], int chng_long_work_2[13][25][49][10], int long_work_sol_2

[8][13][25][49][10], int chng_board_2[13][25][48], int board_sol_2

[8][13][25][48], int chng_depart_2[13][25][48], int depart_sol_2

[8][13][25][48], int ag_rboard_sol_2[8][13][25], int chng_ag_rboard_2

[13][25], int ag_rdepart_sol_2[8][13][25], int chng_ag_rdepart_2[13][25], int

undertime_sol_2[8][45], int overtime_sol_2[8][45]);

void infeasibility(int &Statfeas_2, int &no_Statfeas_2,int &Linkfeas_2,int &

no_Linkfeas_2,int &no_RvWfeas_2 ,int &RvWfeas_2,int &AGLWfeas_2,int &LWfeas_2

, int &no_AGLWfeas_2,int &no_LWfeas_2, int &UTfeas_2, int &OTfeas_2, int &

no_UTfeas_2, int &no_OTfeas_2,int &JCfeas_2, int &no_JCfeas_2, int &OLfeas_2,

int &no_OLfeas_2, int &Brdfeas_2, int &Dprtfeas_2, int &AGBDfeas_2, int &

no_Brdfeas_2, int &no_Dprtfeas_2, int &no_AGBDfeas_2);

E.2.5.19 File ‘find usables.h’

#include <vector>

using namespace std;

void find_usable_1(int &update_done_2, int &candidate_exist_2,vector<int>&

candidate_emps_2);

void find_usable_2(int weeks_to_plan_2, int &vessel_extend_2, int &emp_13y, int &

swap_block_earliest_2,int &update_done_2, int &emp_extend_2, int &

task_extend_2, int &block_start_2, int &block_end_2, int &block_len_2, int &

block_found_2, int vessels_2, int starting_2[25][49],int work_zero_2[48],int

1035

current_list_2[13], int list_sol_2[8][13][48]);

void find_usable_3(int roles_2[25],int vessels_2, int &weeks_14y, int &rol_14y,

int current_list_2[13], int &new_block_2, int &block_found_2, int &

emp_extend_2, int &emp_13y, int &task_extend_2, int &block_start_2, int &

swap_block_earliest_2, int rest_zero_2[48], int &vessel_extend_2);

void find_usable_4(int &link_to_vessel_2, int &vessel_extend_2, int &rol_14y, int

roles_2[25], int &task_extend_2);

void find_usable_5(int &block_end_2, int &weeks_14y, int &swap_block_latest_2,

int &block_len_2, int &block_start_2);

void evaluate_block_new1(int required_2[13][25],int rest_zero_2[48], int&

block_end_2, int &task_extend_2,int& emp_extend_2,int eligible_2[13][25][49],

int weeks_to_plan_2,float& extend_cost_fwd_2,float& extend_cost_bkwd_2, float

& swapping_cost_2, int& do_extend_bkwd_2, int& do_extend_fwd_2, int&

do_swap_2, int& block_len_2, int max_work_2[48],int& max_bkwd_extend_2, int&

max_fwd_extend_2);

void evaluate_block_new2(int all_roles_2, int reg_emp_2, int weeks_to_plan_2, int

max_work_2[48], int& conflict_found_bkwd_2, int reserve_list_bkwd_2[13][25],

int& in_reserve_bkwd_2, int& block_end_2, int& task_extend_2, int

work_zero_2[48], int& length_count_2,int &emp_extend_2,int& rest_count_2, int

& extend_len_bkwd_2, vector<int>& emps_changed_2,vector<int>&

ag_roles_changed_2, int list_sol_2[8][13][48], int ag_list_sol_2[8][13][25],

int min_rest_2[25]);

void evaluate_block_new3(int &to_check_tabu_2,int all_roles_2, int reg_emp_2, int

weeks_to_plan_2, int max_work_2[48], int& prev_work_2, int& add_to_emp_2,

int& conflict_found_bkwd_2, int reserve_list_bkwd_2[13][25], int&

in_reserve_bkwd_2, int& block_end_2, int& task_extend_2, int work_zero_2[48],

int& length_count_2,int &emp_extend_2,int& rest_count_2, int&

extend_len_bkwd_2, vector<int>& emps_changed_2,vector<int>&

ag_roles_changed_2, int list_sol_2[8][13][48], int ag_list_sol_2[8][13][25],

int eligible_2[13][25][49], int rest_zero_2[25], int min_rest_2[25]);

void evaluate_block_new4(float& extend_cost_bkwd_2, float total_cost_2[8], int &

do_extend_bkwd_2, int &no_nonreduce_2, vector<int>&emps_to_update_2, int&

accept_rule_2, vector<int>& emps_changed_2);

void update_swaps_and_changes(vector<int>& emps_to_update_2,int swaps_examined_2

[48][48], int reg_emp_2, int& last_kick_time_2, int& iteration_2, int

last_changed_2[48]);

void evaluate_block_new6(int& extend_len_fwd_2,int& max_fwd_extend_2, int&

block_start_2, int rest_zero_2[48], int& emp_extend_2, int summation_2, int

vessels_2, int roles_2[25], int& task_extend_2, int starting_2[25][49],int

min_rest_2[48], int eligible_2[13][25][49], int required_2[13][25]);

void evaluate_block_new7(int &extend_len_fwd_2,vector<int>& emps_changed_2,

vector<int>& ag_roles_changed_2, int reg_emp_2, int weeks_to_plan_2, int

list_sol_2[8][13][48], int all_roles_2, int ag_list_sol_2[8][13][25], int

1036

reserve_list_fwd_2[13][25], int &emp_extend_2, int &rest_count_2,int &

in_reserve_fwd_2,int &task_extend_2, int min_rest_2[48], int &

conflict_found_fwd_2, int &block_start_2);

void evaluate_block_new8(int rest_zero_2[48],int starting_2[25][49],int

eligible_2[13][25][49],int max_work_2[48],int &length_count_2,int &

to_check_tabu_2, int &summation_1y, int &summation_y, int &prev_work_2,int &

add_to_emp_2, int &extend_len_fwd_2,vector<int>& emps_changed_2, vector<int>&

ag_roles_changed_2, int reg_emp_2, int weeks_to_plan_2, int list_sol_2

[8][13][48], int all_roles_2, int ag_list_sol_2[8][13][25], int

reserve_list_fwd_2[13][25], int &emp_extend_2, int &rest_count_2,int &

in_reserve_fwd_2,int &task_extend_2, int min_rest_2[48], int &

conflict_found_fwd_2, int &block_start_2);

void evaluate_block_new9(float& extend_cost_fwd_2, float total_cost_2[8], int &

do_extend_fwd_2, int &no_nonreduce_2, vector<int>&emps_to_update_2, int&

accept_rule_2, vector<int>& emps_changed_2);

void evaluate_block_new12(int &task_extend_2, int &rol_14y, int &block_start_2,

int &weeks_14y, int &swap_block_earliest_2, int all_roles_2, int roles_2[25],

int &vessel_extend_2, int &block_end_2, int &block_len_2);

void find_usables_6(int &block_found_2, int &block_start_2, int &block_end_2, int

&block_len_2, int &emp_extend_2, int &task_extend_2, int &vessel_extend_2);

void find_usables_7(int &new_block_2, int &block_found_2);

void find_usables_8(int &block_end_2, int &weeks_14y, int &swap_block_latest_2,

int &block_len_2, int &block_start_2);

void find_usables_9(int &update_done_2, int &emp_13y, int reg_emp_2, int

swaps_examined_2[48][48]);

void find_usables_10(int tabu_sol_2[13][48], int ag_tabu_sol_2[13][25], int &

no_nonreduce_2, float& candidate_cost_2,int& transfer_sol_from_2,int&

transfer_sol_to_2, int &candidate_exist_2, int &update_done_2, int

weeks_to_plan_2, int reg_emp_2, int all_roles_2, int list_sol_2[8][13][48],

int ag_list_sol_2[8][13][25]);

void evaluate_block_new13(int &do_swap_2, int &no_swap_2,int &do_extend_bkwd_2,

int &transfer_sol_from_2, int &no_bkwd_2, int &do_extend_fwd_2, int &no_fwd_2

);

E.2.5.20 File ‘finish.h’

void finishing(int &update_done_2, int &terminate_2, int &iteration_2, double &

time_2);

E.2.5.21 File ‘initialise.h’

#include <vector>

using namespace std;

1037

void initialise_first(int overall_regular_max_work_2, int max_work_2[48], int

overall_agency_max_work_2, int ag_max_work_2[25], int overall_max_work_2,int&

lambda_2, int reg_emp_2, int all_roles_2);

void initialise_second(int weeks_to_plan_2, int list_sol_2[8][13][48], int

best_index_2, int best_sols_2[51][13][48], int& added_t_2, int

swaps_examined_2[48][48],vector<int> &emps_changed_2, int reg_emp_2, int

all_roles_2, int taskbased_sol_2[13][25][49]);

void initialise_third(int weeks_to_plan_2, int ag_list_sol_2[8][13][25], int

best_index_2, int ag_best_sols_2[51][13][25], vector<int> &ag_roles_changed_2

, int reg_emp_2, int all_roles_2,int taskbased_sol_2[13][25][49], int

required_2[13][25]);

void initialise_four(int weeks_to_plan_2,int ag_best_sols_2[51][13][25], int

reg_emp_2,int all_roles_2,int best_sols_2[51][13][48], int list_sol_2

[8][13][48], int ag_list_sol_2[8][13][25],int last_changed_2[48]);

E.2.5.22 File ‘load data.h’

// Load_Data.h

void LoadRequired(int arr_1[13][25]);

void LoadEligible(int arr_1[325][49], int arr_2[13][25][49]);

void LoadStarting(int arr_1[25][49]);

void LoadAlloc(int arr_1[13][25][49], int arr_2[325][49]);

void LoadBoarding(int arr_1[325][48], int arr_2[13][25][48]);

void LoadDeparting(int arr_1[325][48], int arr_2[13][25][48]);

void LoadAgBoard(int arr_1[13][25]);

void LoadAgDepart(int arr_1[13][25]);

void LoadChangeCostBoard(float arr_1[325][48], float arr_2[13][25][48]);

void LoadChangeCostDepart(float arr_1[325][48], float arr_2[13][25][48]);

void LoadAgChangeBoard(float arr_1[13][25]);

void LoadAgChangeDepart(float arr_1[13][25]);

void LoadWorkChangeCost(float arr_1[325][49], float arr_2[13][25][49]);

void LoadInitialSolution(int arr_1[325][49],int arr_2[13][25][49]);

void LoadContract(int arr_1[45][4], int arr_2[45], int arr_3[45], int arr_4[45],

int arr_5[45]);

void LoadConst(int arr_1[48][4], int arr_2[48], int arr_3[48], int arr_4[48], int

arr_5[48]);

void LoadAgencyCrew(int arr_1[25][3], int arr_2[25], int arr_3[25], int arr_4

[25]);

void LoadExtChgCost(float ext_chg_cost_2[325][490],float ext_chg_cost_new_2

[13][25][490],float extension_chng_cost_2[13][25][49][10]);

void LoadOver_under(int guaranteed_workers_2[45][2], int cur_undertime_2[45], int

cur_overtime_2[45]);

1038

void LoadCurLongWork(int cur_long_work_2[325][490],int cur_long_work_new_2

[13][25][490], int current_long_work_2[13][25][49][10]);

E.2.5.23 File ‘rand kick.h’

#include <vector>

#include <random>

using namespace std;

void kicking(vector<int>& emps_changed_2, vector<int>& ag_roles_changed_2, int

eligible_2[13][25][49],int work_zero_2[48], int min_rest_2[48], int

starting_2[25][49], int all_roles_2, int sum_start_rand_2, int rest_zero_2

[48], int &kick_feas2, int &kick_end_2, int &kick_start_2, float &random_2,

int &random_emp_2, int reg_emp_2, int &kick_emp_2, int &random_task_2, int

all_roles2, int &kick_task_2, int max_work2[48], int &random_length_2, int &

random_time2, int weeks_to_plan_2);

void kicking2(int min_rest_2[48],int starting_2[25][49] ,int &rest_count_2, int &

kick_emp2,int reg_emp2,int all_roles2,int weeks_to_plan2, int ag_list_sol_2

[8][13][25], int &kick_start_2, int &kick_end_2, int &kick_task_2, vector<int

>& emps_changed_2, vector<int>& ag_roles_changed_2, int list_sol_2

[8][13][48]);

void kicking3(int all_roles_2, int reg_emp_2,int weeks_to_plan_2, int tabu_sol_2

[13][48], int list_sol_2[8][13][48], int ag_tabu_sol_2[13][25], int

ag_list_sol_2[8][13][25]);

E.2.5.24 File ‘sort listing.h’

#include <vector>

using namespace std;

void sort_employee_list(float short_list_fraction_2, int& change_no_2, int

last_changed_2[48],int min_emp_2,int min_no_2, int& order_rule_2, int

order_number_2[48], int reg_emp_2, vector<int>& ordered_list_2, vector<int>&

short_ordered_list_2,vector<int>& added_set_2, int& iteration_2);

E.2.5.25 File ‘swap change update.h’

#include <vector>

#include <iterator>

using namespace std;

void update_swaps_and_changes(vector<int>& emps_to_update_2,int swaps_examined_2

[48][48], int reg_emp_2, int& last_kick_time_2, int& iteration_2, int

last_changed_2[48]);

1039

void swap_calc3(vector<int>& emps_changed_2,int& no_nonreduce_2,float&

swapping_cost_2, float total_cost_2[8], int& accept_rule_2, int& do_swap_2,

vector<int>& emps_to_update_2,int swaps_examined_2[48][48], int reg_emp_2,

int& last_kick_time_2, int& iteration_2, int last_changed_2[48]);

E.2.5.26 File ‘swapping.h’

#include <vector>

using namespace std;

void swap_calc1(vector<int>& ag_roles_changed_2, vector<int>& emps_changed_2,int

reg_emp_2,int weeks_to_plan_2, int list_sol_2[8][13][48],int all_roles_2,int

ag_list_sol_2[8][13][25], int& emp_extend_2, int& block_start_2,int&

swap_block_start_2, int min_rest_2[48], int& swap_block_end_2, int&

swap_task_2, int& block_end_2, int& swap_emp_2,int& task_extend_2, int&

to_check_tabu_2);

void evaluate_swap1(int& ag_swappable_2, int& block_start_2, int& block_end_2,

int eligible_2[13][25][49], int& task_extend_2);

void evaluate_swap2(int& swap_allowed_2,int& too_early_2, int& do_swap_2, int&

swap_emp_2, int& swap_task_2,int& swap_block_start_2,int& swap_block_end_2,

int& swap_block_len_2,int& swap_find_time_2, int& swap_block_found_2);

void evaluate_swap6(int& swap_allowed_2,int& too_early_2, int& do_swap_2, int&

swap_emp_2, int& swap_task_2,int& swap_block_start_2,int& swap_block_end_2,

int& swap_block_len_2,int& swap_block_found_2);

void evaluate_swap3(int& weeks_20x, int& rol_20x,int& swap_block_start_2,int&

swap_task_2,int& swap_emp_2,int& swap_allowed_2,int eligible_2[13][25][49] ,

int min_rest_2[48],int starting_2[25][49], int& emp_extend_2, int all_roles_2

,int summation_2, int summation_2x, int& too_early_2,int& swap_new_block_2,

int& swap_block_found_2, int ag_list_sol_2[8][13][25], int&

swap_block_latest_2, int& swap_block_earliest_2);

void evaluate_swap4(int& weeks_20x, int& swap_block_found_2,int& swap_block_len_2

, int& swap_block_end_2,int& swap_allowed_2, int eligible_2[13][25][49],int

min_rest_2[48], int& too_early_2,int& emp_extend_2, int&

swap_block_earliest_2,int starting_2[25][49],int summation_2, int

summation_2x, int all_roles_2, int& swap_block_latest_2, int& do_swap_2, int&

swap_task_2, int& swap_block_start_2, int& rol_20x);

void evaluate_swap5(int& swap_allowed_2,int& emp_extend_2,int& rol_20x,int&

weeks_20x, int& swap_block_latest_2, int& swap_block_found_2, int eligible_2

[13][25][49]);

void evaluate_swap7(int& swap_new_block_2, int& swap_block_found_2);

void evaluate_swap8(int& weeks_20x, int& rol_20x,int& swap_block_end_2, int&

swap_block_start_2,int& swap_block_len_2,int& swap_allowed_2, int eligible_2

[13][25][49], int& emp_extend_2);

1040

void evaluate_swap9(int& swap_emp_2, int& swap_task_2, int& swap_block_start_2,

int& block_start_2, int& swap_block_end_2, int& block_end_2);

void evaluate_swap10(int min_rest_2[48], int work_zero_2[48],int starting_2

[25][49],int all_roles_2,int summation_2, int summation_2x,int eligible_2

[13][25][49],int& task_extend_2,int& block_end_2,int rest_zero_2[48],int&

block_start_2,int max_work_2[48],int& block_len_2, int reg_emp_2, int

swappable_emp_2[48], int& emp_extend_2);

void evaluate_swap11(int& swap_find_time_2, int& all_rest_2,int& swap_allowed_2,

int& too_early_2,int& swap_block_found_2, int& swap_block_len_2, int&

do_swap_2, int& swap_emp_2, int& swap_vessel_2, int& swap_task_2, int&

swap_block_start_2, int& swap_block_end_2);

void evaluate_swap12(int& swap_vessel_2,int roles_2[25],int& swap_block_start_2,

int& swap_emp_2, int& swap_task_2,int& swap_allowed_2, int eligible_2

[13][25][49],int min_rest_2[48],int& emp_extend_2, int starting_2[25][49],int

all_roles_2, int summation_2, int summation_2x, int& too_early_2,int&

swap_block_found_2,int& swap_new_block_2, int& all_rest_2,int& rol_20x, int&

emp_20x, int list_sol_2[8][13][48],int& swap_block_earliest_2, int&

swap_find_time_2, int& swap_block_latest_2);

void evaluate_swap13(int& vessel_extend_2, int roles_2[25],int& swap_task_2, int&

swap_allowed_2,int eligible_2[13][25][49] ,int& rol_20x, int& emp_extend_2,

int& swap_vessel_2, int& link_to_vessel_2, int& swap_find_time_2, int&

swap_block_latest_2, int& swap_block_found_2);

void evaluate_swap14(int& swap_block_found_2,int& swap_block_len_2,int&

swap_block_end_2, int& swap_vessel_2,int& swap_allowed_2,int eligible_2

[13][25][49] ,int min_rest_2[48],int starting_2[25][49], int& emp_extend_2,

int roles_2[25],int all_roles_2,int summation_2, int summation_2x,int&

too_early_2,int& swap_find_time_2, int& swap_block_latest_2, int& do_swap_2,

int& swap_task_extend_2, int& rol_20x, int& swap_block_start_2, int&

swap_block_earliest_2);

void evaluate_swap15(int& rol_20x, int& swap_find_time_2, int&

swap_block_latest_2, int& swap_block_found_2, int& swap_allowed_2, int

eligible_2[13][25][49], int& emp_extend_2);

void evaluate_swap16(int& swap_emp_2, int& swap_task_2, int& swap_vessel_2, int&

swap_block_found_2, int& do_swap_2, int& too_early_2, int& swap_allowed_2,

int& swap_block_start_2, int& swap_block_end_2, int& swap_block_len_2);

void evaluate_swap17(int& swap_new_block_2, int& swap_block_found_2);

void evaluate_swap18(int& swap_block_start_2, int& swap_block_len_2,int&

swap_block_end_2, int& swap_find_time_2, int& swap_allowed_2, int eligible_2

[13][25][49], int& rol_20x, int& emp_extend_2);

void evaluate_swap19(int& swap_emp_2, int& emp_20x, int& swap_task_2, int&

swap_block_start_2, int& block_start_2, int& swap_block_end_2, int&

block_end_2);

1041

E.2.5.27 File ‘tabu.h’

void check_tabu(int& tabu_2,int weeks_to_plan_2, int reg_emp_2, int all_roles_2,

int& to_check_tabu_2, int list_sol_2[8][13][48], int ag_list_sol_2

[8][13][25],int tabu_sol_2[13][48], int ag_tabu_sol_2[13][25]);

void check_tabu_2(int &transfer_sol_to_2,int reg_emp_2, int all_roles_2, int

weeks_to_plan_2, int list_sol_2[8][13][48], int ag_list_sol_2[8][13][25],int

tabu_sol_2[13][48], int ag_tabu_sol_2[13][25]);

E.2.5.28 File ‘transferring data.h’

//transfer

#include <vector>

using namespace std;

void transfer_solution(int& transfer_sol_from_2, int& transfer_sol_to_2, float

total_cost_2[8], int all_emp_2, int reg_emp_2, int all_roles_2, int

weeks_to_plan_2, int lambda_2, int allocate_sol_2[8][13][25][49], int

long_work_sol_2[8][13][25][49][10], float emp_cost_2[8][48], int list_sol_2

[8][13][48], int board_sol_2[8][13][25][48], int depart_sol_2[8][13][25][48],

int undertime_sol_2[8][45], int overtime_sol_2[8][45],float ag_cost_2

[8][13][25],int ag_list_sol_2[8][13][25],int ag_crewchange_2[8][13][25], int

ag_rboard_sol_2[8][13][25], int ag_rdepart_sol_2[8][13][25]);

void evaluate_block_new5(vector<int>& emps_changed_2, vector<int>&

candidate_emps_2, float& extend_cost_bkwd_2, float &candidate_cost_2, int &

candidate_exist_2, float total_cost_2[8],int &transfer_sol_from_2, int &

transfer_sol_to_2, int all_emp_2, int reg_emp_2, int all_roles_2, int

weeks_to_plan_2, int lambda_2, int allocate_sol_2[8][13][25][49], int

long_work_sol_2[8][13][25][49][10], float emp_cost_2[8][48], int list_sol_2

[8][13][48], int board_sol_2[8][13][25][48], int depart_sol_2[8][13][25][48],

int undertime_sol_2[8][45], int overtime_sol_2[8][45],float ag_cost_2

[8][13][25],int ag_list_sol_2[8][13][25],int ag_crewchange_2[8][13][25], int

ag_rboard_sol_2[8][13][25], int ag_rdepart_sol_2[8][13][25]);

void evaluate_block_new10(vector<int>& emps_changed_2, vector<int>&

candidate_emps_2, float& extend_cost_fwd_2, float &candidate_cost_2, int &

candidate_exist_2, float total_cost_2[8],int &transfer_sol_from_2, int &

transfer_sol_to_2, int all_emp_2, int reg_emp_2, int all_roles_2, int

weeks_to_plan_2, int lambda_2, int allocate_sol_2[8][13][25][49], int

long_work_sol_2[8][13][25][49][10], float emp_cost_2[8][48], int list_sol_2

[8][13][48], int board_sol_2[8][13][25][48], int depart_sol_2[8][13][25][48],

int undertime_sol_2[8][45], int overtime_sol_2[8][45],float ag_cost_2

[8][13][25],int ag_list_sol_2[8][13][25],int ag_crewchange_2[8][13][25], int

ag_rboard_sol_2[8][13][25], int ag_rdepart_sol_2[8][13][25]);

1042

void compare_to_best_2(int &best_sol_time_2, int &iteration_2, int ag_best_sols_2

[51][13][25],int best_sols_2[51][13][48], int &number_best_2,int&

transfer_sol_from_2, int& transfer_sol_to_2, float total_cost_2[8], int

all_emp_2, int reg_emp_2, int all_roles_2, int weeks_to_plan_2, int lambda_2,

int allocate_sol_2[8][13][25][49], int long_work_sol_2[8][13][25][49][10],

float emp_cost_2[8][48], int list_sol_2[8][13][48], int board_sol_2

[8][13][25][48], int depart_sol_2[8][13][25][48], int undertime_sol_2[8][45],

int overtime_sol_2[8][45],float ag_cost_2[8][13][25],int ag_list_sol_2

[8][13][25],int ag_crewchange_2[8][13][25], int ag_rboard_sol_2[8][13][25],

int ag_rdepart_sol_2[8][13][25]);

void evaluate_block_new14(vector<int>& emps_changed_2, vector<int>&

candidate_emps_2, float& extend_cost_fwd_2, float &candidate_cost_2, int &

candidate_exist_2, float total_cost_2[8],int &transfer_sol_from_2, int &

transfer_sol_to_2, int all_emp_2, int reg_emp_2, int all_roles_2, int

weeks_to_plan_2, int lambda_2, int allocate_sol_2[8][13][25][49], int

long_work_sol_2[8][13][25][49][10], float emp_cost_2[8][48], int list_sol_2

[8][13][48], int board_sol_2[8][13][25][48], int depart_sol_2[8][13][25][48],

int undertime_sol_2[8][45], int overtime_sol_2[8][45],float ag_cost_2

[8][13][25],int ag_list_sol_2[8][13][25],int ag_crewchange_2[8][13][25], int

ag_rboard_sol_2[8][13][25], int ag_rdepart_sol_2[8][13][25]);

void swap_calc4(vector<int>& candidate_emps_2, int& swap_emp_2,int& emp_extend_2,

float& candidate_cost_2, float& swapping_cost_2,float total_cost_2[8], int&

accept_rule_2, int& candidate_exist_2, int& transfer_sol_from_2, int&

transfer_sol_to_2, int all_emp_2, int reg_emp_2, int all_roles_2, int

weeks_to_plan_2, int& lambda_2, int allocate_sol_2[8][13][25][49], int

long_work_sol_2[8][13][25][49][10], float emp_cost_2[8][48], int list_sol_2

[8][13][48], int board_sol_2[8][13][25][48], int depart_sol_2[8][13][25][48],

int undertime_sol_2[8][45], int overtime_sol_2[8][45],float ag_cost_2

[8][13][25],int ag_list_sol_2[8][13][25],int ag_crewchange_2[8][13][25], int

ag_rboard_sol_2[8][13][25], int ag_rdepart_sol_2[8][13][25]);

E.2.5.29 File ‘trial.h’

#include <string>

#include <iostream>

void deneme(const std::string &file_name,int ag_max_work_2[25],int ag_work_zero_2

[25],int under_rate_2[45], int over_rate_2[45], int g_weeks_2[45], int

exp_worktime_2[45], int required_2[13][25], int eligible_2[13][25][49], int

starting_2[25][49], int ag_starting_2[25], int work_zero_2[48], int

rest_zero_2[48], int min_rest_2[48], int max_work_2[48], int cur_allocate_2

[13][25][49]);

void deneme2(const std::string &file_name,int cur_board_2[13][25][48], int

cur_depart_1[13][25][48], int cur_ag_rboard_2[13][25], int cur_ag_rdepart_2

1043

[13][25]);

void deneme3(const std::string &file_name,int cur_undertime_2[45], int

cur_overtime_2[45], int cur_long_work_2[325][490],int cur_long_work_new_2

[13][25][490], int current_long_work_2[13][25][49][10]);

void deneme4(const std::string &file_name,float board_cost_2[325][48], float

board_chng_cost_2[13][25][48], float depart_cost_2[325][48], float

depart_chng_cost_2[13][25][48], float ag_board_chng_cost_2[13][25], float

ag_depart_chng_cost_2[13][25]);

void deneme5(const std::string &file_name,float workchange_cost_2[325][49], float

work_chng_cost_2[13][25][49], float ext_chg_cost_2[325][490],float

ext_chg_cost_new_2[13][25][490], float extension_chng_cost_2[13][25][49][10])

;

void deneme6(const std::string &file_name,int initial_solution_2[326][49],int

taskbased_sol_2[13][25][49]);

E.2.6 Heuristic initial solution algorithm

Here we give the code used to solve the Time-Windows problem using the Heuristic initial

solution algorithm described in section 6.6. This was implemented using the FICO Xpress

software.

model ModelName

uses "mmxprs", "mmsystem"; !gain access to the Xpress-Optimizer solver

! Recovery-type problem for the time-windows formulation,

! attempting to find a (good??) initial solution using a heuristic method

parameters

DATE = "21-08-15"

PARAMETERFILE = "batch-input-parameters.dat"

end-parameters

declarations

InstanceName: string

end-declarations

initializations from PARAMETERFILE

InstanceName

end-initializations

1044

DATAFILE := InstanceName+"\\Time-Windows - Captains - "+InstanceName+".txt"

OUTPUTFILE := InstanceName+"\\Logfile - Heuristic Initial Sol - "+InstanceName+"

- "+DATE+".txt"

SUMMARYFILE := "Results - Heuristic Initial Sol - "+DATE+".txt"

SOLUTIONFILE := InstanceName+"\\Heuristic Initial soln - "+InstanceName+" - "+

DATE+".txt"

COLLATEDSOLUTIONS := "Heuristic Initial solutions\\Heuristic Initial soln - "+

InstanceName+" - "+DATE+".txt"

prog_starttime := gettime

!--

!--

! declare the basic values

declarations

REG_EMP: set of string ! Regular employee names / numbers (ie not Agency)

ALL_EMP: set of string ! Lables for ALL crew (including Agency)

GUARANTEED: set of string ! Set of employees on guaranteed days contracts

VESSELS: set of string ! Labels / names of vessels

WEEKS_TO_PLAN: integer ! Length of planning horizon in weeks

ROLES: array(VESSELS) of set of string ! Labels for the roles which will

require cover, divided by vessels

ALL_ROLES: set of string ! List of all roles

EMP_NO: integer

ROLE_NO: integer

SOL_TYPE: set of string

end-declarations

initializations from DATAFILE

REG_EMP GUARANTEED VESSELS WEEKS_TO_PLAN ROLES

end-initializations

SOL_TYPE := {"initial", "current", "fixed", "eval", "trial"}

! calculate the set of all employees, and declare the rest of the Time-Windows

variables

ALL_EMP := REG_EMP + {"AGENCY"}

1045

ALL_ROLES := {}

FORALL (v in VESSELS) ALL_ROLES += ROLES(v)

EMP_NO := getsize(REG_EMP)

ROLE_NO := getsize(ALL_ROLES)

declarations

emp_count, role_count: integer

number_vacant: integer

TIME = 1..WEEKS_TO_PLAN ! Time index

board_chng_cost, depart_chng_cost: array(REG_EMP, VESSELS, TIME) of real ! Costs

of CHANGES TO employees boarding / leaving vessel

ag_board_chng_cost, ag_depart_chng_cost: array(ALL_ROLES, TIME) of real ! Costs

of CHANGES TO agency employees boarding / leaving for a given role

work_chng_cost: array(ALL_EMP, ALL_ROLES, TIME) of real

! (Direct) Costs of CHANGES TO employees working a given role at a

given time

required: array(ALL_ROLES, TIME) of integer ! =1 if role r

is required at time t, =0 otherwise

eligable: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i can carry out

role r at time t, =0 otherwise

starting: array(ALL_EMP, VESSELS) of integer ! =1 if emp i is on

board vessel k at time 0, =0 otherwise

! or takes a non-negative integer value for agency crew

ag_starting: array(ALL_ROLES) of integer ! =1 if agency

employee is in role r at time 0, =0 otherwise

work_zero, rest_zero: array(REG_EMP) of integer ! initial values of

work_total and rest_total at time zero

ag_work_zero: array(ALL_ROLES) of integer ! initial value

of work total for agency crew task by task

max_work, min_rest: array(REG_EMP) of integer ! legal maximum on

working time, minimum on resting time

ag_max_work: array(ALL_ROLES) of integer ! maximum on

working time for agency crew, possibly different for each role

exp_worktime, g_weeks, under_rate, over_rate: array(GUARANTEED) of real ! Data

relating to over/undertime payments for employees

! Added for the recovery problem - the details of the current roster...

cur_allocate: array(ALL_EMP, ALL_ROLES, TIME) of integer

1046

cur_board, cur_depart: array(REG_EMP, VESSELS, TIME) of integer

cur_ag_rboard, cur_ag_rdepart: array(ALL_ROLES, TIME) of integer

cur_undertime, cur_overtime: array(GUARANTEED) of real

end-declarations

initializations from DATAFILE

board_chng_cost depart_chng_cost work_chng_cost

ag_board_chng_cost ag_depart_chng_cost

required eligable starting ag_starting

work_zero rest_zero

max_work min_rest ag_max_work ag_work_zero

under_rate over_rate g_weeks exp_worktime

cur_allocate cur_board cur_depart cur_ag_rboard cur_ag_rdepart

cur_undertime cur_overtime

end-initializations

emp_count := 0

forall(e in REG_EMP) do

emp_count := emp_count + 1

emp_array(emp_count) := e

end-do

role_count := 0

forall(r in ALL_ROLES) do

role_count := role_count + 1

role_array(role_count) := r

end-do

! Calculate the parameters for the Long Work variables, and declare these

overall_regular_max_work := max(e in REG_EMP) max_work(e)

overall_agency_max_work := max(r in ALL_ROLES) ag_max_work(r)

if(overall_regular_max_work > overall_agency_max_work) then

overall_max_work := overall_regular_max_work

else

overall_max_work := overall_agency_max_work

end-if

declarations

lambda = 1..overall_max_work

! Index used for number of consecutive weeks

1047

extension_chng_cost: array(lambda, ALL_EMP, ALL_ROLES, TIME) of real ! Cost of

CHANGES TO an employee working on board a vessel for longer than usual

cur_long_work: array(lambda, ALL_EMP, ALL_ROLES, TIME) of integer !Added

for recovery problem - detail of current roster, and change variable

end-declarations

initializations from DATAFILE

extension_chng_cost cur_long_work

end-initializations

! The rest of these declarations are required for the Heuristics:

declarations

! The initial solution:

taskbased_sol: array(ALL_EMP, ALL_ROLES, TIME) of integer ! =1 if emp i carries

out role r at time t in the task-based soltion, =0 otherwise

! Relating to main programme:

iteration: integer

update_done: boolean

modified: boolean

candidate_exist: boolean

! Relating to the various solutions which must be recorded:

transfer_sol_to, transfer_sol_from: string

emp_cost: array(SOL_TYPE, REG_EMP) of real

ag_cost: array(SOL_TYPE, ALL_ROLES) of real

total_cost: array(SOL_TYPE) of real

emp_changes: array(SOL_TYPE, REG_EMP) of real

ag_changes: array(SOL_TYPE, ALL_ROLES) of real

total_changes: array(SOL_TYPE) of real

ag_crewchange: array(SOL_TYPE, ALL_ROLES) of set of integer

allocate_sol: array(SOL_TYPE, ALL_EMP, ALL_ROLES, TIME) of integer

board_sol, depart_sol: array(SOL_TYPE, REG_EMP, VESSELS, TIME) of integer

ag_rboard_sol, ag_rdepart_sol: array(SOL_TYPE, ALL_ROLES, TIME) of integer

undertime_sol, overtime_sol: array(SOL_TYPE, GUARANTEED) of integer

long_work_sol: array(SOL_TYPE, lambda, ALL_EMP, ALL_ROLES, TIME) of integer

1048

vacant_sol: array(ALL_ROLES, TIME) of integer

! Relating to calculating the costs:

emps_changed: set of string

roles_changed: set of string

ag_roles_changed: set of string

to_calculate: string

to_check: string

working_at_t: boolean

agency_used: boolean

work_total, rest_total: array(REG_EMP, TIME) of real ! Used to track the

consecutive working time / rest period requirements of each employee

ag_work_total: array(ALL_ROLES, TIME) of real ! Used to track

the consecutive working time of the agency employees

chng_allocate: array(SOL_TYPE, ALL_EMP, ALL_ROLES, TIME) of integer

chng_board, chng_depart: array(SOL_TYPE, REG_EMP, VESSELS, TIME) of integer

chng_ag_rboard, chng_ag_rdepart: array(SOL_TYPE, ALL_ROLES, TIME) of integer

chng_undertime, chng_overtime: array(SOL_TYPE, GUARANTEED) of integer

chng_long_work: array(SOL_TYPE, lambda, ALL_EMP, ALL_ROLES, TIME) of integer

! Required for calculating the least-cost Agency crew movements:

divide_number, tracking_number: real

definite_crewchange, possible_crewchange, evaluate_crewchange: set of integer

crewchange_cost, min_crewchange_cost: real

poss_ag_rboard, poss_ag_rdepart: array(TIME) of integer

poss_chng_ag_rboard, poss_chng_ag_rdepart: array(TIME) of integer

poss_ag_long_work, poss_chng_ag_long_work: array(lambda, TIME) of integer

! Relating to the identification and manipulation of the working blocks:

emp_before, emp_after: string

assign_emp_before, assign_emp_after: boolean

count_before, count_after: integer

task_vacant: string

vessel_vacant: string

block_found: boolean

1049

new_block: boolean

block_start, earliest: integer

block_end, latest: integer

block_len: integer

feasible: boolean

candidate_cost: real

candidate_emp: string

! Relating to determining the order in which employees are examined:

emp_order_number: array(REG_EMP) of real

role_order_number: array(ALL_ROLES) of real

emp_ordered_list: list of string

role_ordered_list: list of string

emp_added_set: set of string

role_added_set: set of string

min_no: real

min_emp: string

min_role: string

final_cost: real

final_changes: real

final_vacant: real

final_iters: real

final_time: real

final_feasible: string

final_solution: array(ALL_EMP, ALL_ROLES, TIME) of integer

end-declarations

!--

!--

procedure transfer_solution

! transfer all solution details from one solution type to another (eg when the ’

candidate’ becomes new ’current’ solution

if(transfer_sol_from in SOL_TYPE and transfer_sol_to in SOL_TYPE) then

1050

total_cost(transfer_sol_to) := total_cost(transfer_sol_from)

total_changes(transfer_sol_to) := total_changes(transfer_sol_from)

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) do

allocate_sol(transfer_sol_to,e,r,t) := allocate_sol(transfer_sol_from,e,r,t)

!; if(r = "Orio-01" and e = "C-45") then writeln("Transfering

allocate solution (",e,",",r,",",t,") = ",allocate_sol(transfer_sol_from,e,r,

t)," from ",transfer_sol_from," to ",transfer_sol_to); end-if

chng_allocate(transfer_sol_to,e,r,t) := chng_allocate(transfer_sol_from,e,r,t)

!; if(r = "Orio-01" and e = "C-45") then writeln("Transfering

change allocate (",e,",",r,",",t,") = ",chng_allocate(transfer_sol_from,e,r,t

)," from ",transfer_sol_from," to ",transfer_sol_to); end-if

forall(l in lambda) do

long_work_sol(transfer_sol_to,l,e,r,t) := long_work_sol(transfer_sol_from,l,e,r,t

) !; if(l = 1 and e = "C-23" and t > 10) then writeln("Set long work (",

transfer_sol_to,",",l,",",e,",",r,",",t,") = long work (",transfer_sol_from

,",",l,",",e,",",r,",",t,") = ",long_work_sol(transfer_sol_to,l,e,r,t)); end-

if

chng_long_work(transfer_sol_to,l,e,r,t) := chng_long_work(transfer_sol_from,l,e,r

,t)

end-do

end-do

forall(e in REG_EMP) do

emp_cost(transfer_sol_to,e) := emp_cost(transfer_sol_from,e)

emp_changes(transfer_sol_to,e) := emp_changes(transfer_sol_from,e)

forall(t in TIME, v in VESSELS) do

board_sol(transfer_sol_to,e,v,t) := board_sol(transfer_sol_from,e,v,t)

chng_board(transfer_sol_to,e,v,t) := chng_board(transfer_sol_from,e,v,t)

depart_sol(transfer_sol_to,e,v,t) := depart_sol(transfer_sol_from,e,v,t)

chng_depart(transfer_sol_to,e,v,t) := chng_depart(transfer_sol_from,e,v,t)

end-do

if(e in GUARANTEED) then

undertime_sol(transfer_sol_to,e) := undertime_sol(transfer_sol_from,e)

chng_undertime(transfer_sol_to,e) := chng_undertime(transfer_sol_from,e)

overtime_sol(transfer_sol_to,e) := overtime_sol(transfer_sol_from,e)

chng_overtime(transfer_sol_to,e) := chng_overtime(transfer_sol_from,e)

end-if

end-do

forall(r in ALL_ROLES) do

ag_cost(transfer_sol_to,r) := ag_cost(transfer_sol_from,r)

ag_changes(transfer_sol_to,r) := ag_changes(transfer_sol_from,r)

1051

ag_crewchange(transfer_sol_to,r) := ag_crewchange(transfer_sol_from,r)

forall(t in TIME) do

ag_rboard_sol(transfer_sol_to,r,t) := ag_rboard_sol(transfer_sol_from,r,t)

chng_ag_rboard(transfer_sol_to,r,t) := chng_ag_rboard(transfer_sol_from,r,t)

ag_rdepart_sol(transfer_sol_to,r,t) := ag_rdepart_sol(transfer_sol_from,r,t)

chng_ag_rdepart(transfer_sol_to,r,t) := chng_ag_rdepart(transfer_sol_from,r,t)

end-do

end-do

else

writeln("ERROR - incorrect option selected for transfer")

end-if

transfer_sol_to := ""

transfer_sol_from := ""

end-procedure

!--

!--

procedure calculate_cost

writeln("Costs may have changed for ",getsize(emps_changed)," regular employees:

",emps_changed)

writeln("Costs may have changed for agency in ",getsize(ag_roles_changed)," roles

: ",ag_roles_changed)

writeln

if(to_calculate in SOL_TYPE) then

! REQUIRED? forall(e in REG_EMP) list_sol("eval",e) :=

list_sol(to_calculate,e)

! REQUIRED? forall(r in ALL_ROLES) ag_list_sol("eval",r)

:= ag_list_sol(to_calculate,r)

total_cost("eval") := 0

total_changes("eval") := 0

forall(e in REG_EMP) do

if(e not in emps_changed) then

1052

emp_cost("eval",e) := emp_cost("current",e) !;

writeln("Emp ",e," cost is same as current = ",emp_cost("eval",e))

emp_changes("eval",e) := emp_changes("current",e)

forall(t in TIME) do

forall(r in ALL_ROLES) do

allocate_sol("eval",e,r,t) := allocate_sol("current",e,r,t)

!; if(r = "Orio-01" and e = "C-45") then writeln

("Transfering allocate solution (",e,",",r,",",t,") = ",allocate_sol("current

",e,r,t)," from ’current’ to ’eval’"); end-if

chng_allocate("eval",e,r,t) := chng_allocate("current",e,r,t)

forall(l in lambda) do

long_work_sol("eval",l,e,r,t) := long_work_sol("current",l,e,r,t)

!; if(l = 1 and e = "C-23" and t > 10) then writeln("Set long

work (’eval’,",l,",",e,",",r,",",t,") = long work (’current’,",l,",",e,",",r

,",",t,") = ",long_work_sol("eval",l,e,r,t)); end-if

chng_long_work("eval",l,e,r,t) := chng_long_work("current",l,e,r,t)

end-do

end-do

forall(v in VESSELS) do

board_sol("eval",e,v,t) := board_sol("current",e,v,t)

chng_board("eval",e,v,t) := chng_board("current",e,v,t)

depart_sol("eval",e,v,t) := depart_sol("current",e,v,t)

chng_depart("eval",e,v,t) := chng_depart("current",e,v,t)

end-do

end-do

if(e in GUARANTEED) then

undertime_sol("eval",e) := undertime_sol("current",e)

chng_undertime("eval",e) := chng_undertime("current",e)

overtime_sol("eval",e) := overtime_sol("current",e)

chng_overtime("eval",e) := chng_overtime("current",e)

end-if

else

emp_cost("eval",e) := 0

!; writeln("Emp ",e," cost

must be recalculated, now = ",emp_cost("eval",e))

emp_changes("eval",e) := 0

consec_work := work_zero(e)

!; if(e = "C-15") then

writeln("(Emp ",e," starts with work zero = ",work_zero(e),")"); end-if

1053

forall(t in TIME) do

working_at_t := false

forall(r in ALL_ROLES) do

forall(l in lambda) long_work_sol("eval",l,e,r,t) := 0

!; if(e = "C-23" and t > 10) then writeln("Set long work (’eval’,1,",e

,",",r,",",t,") = 0"); end-if

if(allocate_sol(to_calculate,e,r,t) = 1) then

allocate_sol("eval",e,r,t) := 1

!; if(r = "Orio-01" and e = "C-45") then writeln("

Allocate solution (",e,",",r,",",t,") = ",allocate_sol(to_calculate,e,r,t),",

so setting = 1 for ’eval’"); end-if

working_at_t := true

consec_work := consec_work +1

!; if(e = "C-15") then writeln("(Emp ",e," is working at

time ",t,", so consec work = ",consec_work,")"); end-if

forall(l in 1..consec_work) long_work_sol("eval",l,e,r,t) := 1 !; if(e =

"C-23" and t > 10) then writeln("Set long work (’eval’,1,",e,",",r,",",t,")

= 1"); end-if

else

allocate_sol("eval",e,r,t) := 0

!; if(r = "Orio-01" and e = "C-45") then writeln("

Allocate solution (",e,",",r,",",t,") = ",allocate_sol(to_calculate,e,r,t),",

so setting = 0 for ’eval’"); end-if

end-if

end-do

if(working_at_t = false) then

consec_work := 0

!; if(e = "C-15") then writeln("(

Emp ",e," NOT working at time ",t,", so consec work = ",consec_work,")"); end

-if

end-if

end-do

forall(v in VESSELS) do

board_sol("eval",e,v,1) := 0

depart_sol("eval",e,v,1) := 0

if((sum(r in ROLES(v)) allocate_sol("eval",e,r,1)) < starting(e,v)) then

depart_sol("eval",e,v,1) := 1

elif((sum(r in ROLES(v)) allocate_sol("eval",e,r,1)) > starting(e,v)) then

board_sol("eval",e,v,1) := 1

1054

end-if

forall(t in TIME | t > 1) do

board_sol("eval",e,v,t) := 0

depart_sol("eval",e,v,t) := 0

if((sum(r in ROLES(v)) allocate_sol("eval",e,r,t)) < (sum(r in ROLES(v))

allocate_sol("eval",e,r,t-1))) then

depart_sol("eval",e,v,t) := 1

elif((sum(r in ROLES(v)) allocate_sol("eval",e,r,t)) > (sum(r in ROLES(v))

allocate_sol("eval",e,r,t-1))) then

board_sol("eval",e,v,t) := 1

end-if

end-do

end-do

! Add costs:

if(e in GUARANTEED) then

if(g_weeks(e) > (exp_worktime(e) + sum(r in ALL_ROLES, t in TIME)(allocate_sol("

eval",e,r,t)))) then

undertime_sol("eval",e) := integer(g_weeks(e) - (exp_worktime(e) + sum(r in

ALL_ROLES, t in TIME)(allocate_sol("eval",e,r,t))))

overtime_sol("eval",e) := 0

else

overtime_sol("eval",e) := integer((exp_worktime(e) + sum(r in ALL_ROLES, t in

TIME)(allocate_sol("eval",e,r,t)))- g_weeks(e))

undertime_sol("eval",e) := 0

end-if

chng_undertime("eval",e) := integer(undertime_sol("eval",e) - cur_undertime(e))

chng_overtime("eval",e) := integer(overtime_sol("eval",e) - cur_overtime(e))

emp_cost("eval",e) := emp_cost("eval",e) + (under_rate(e)*chng_undertime("eval",e

)) + (over_rate(e)*chng_overtime("eval",e)) !; if((under_rate(e)*

chng_undertime(e)) + (over_rate(e)*chng_overtime(e)) <> 0) then writeln("Emp

",e,", UT & OT costs: ",(under_rate(e)*chng_undertime(e)) + (over_rate(e)*

chng_overtime(e))); end-if

end-if

forall(r in ALL_ROLES, t in TIME) do

if(cur_allocate(e,r,t) = 0) then chng_allocate("eval",e,r,t) := allocate_sol("

eval",e,r,t) !; if(r = "

Orio-01" and e = "C-45") then writeln("Current allocate (",e,",",r,",",t,") =

",cur_allocate(e,r,t),", so for ’eval’ set change allocate = allocate

solution = ",chng_allocate("eval",e,r,t)); end-if

1055

else chng_allocate("eval",e,r,t) := cur_allocate(e,r,t) - allocate_sol("eval",e,r

,t) !; if(r = "

Orio-01" and e = "C-45") then writeln("Current allocate (",e,",",r,",",t,") =

",cur_allocate(e,r,t),", so for ’eval’ set change allocate = current

allocate - allocate solution = ",chng_allocate("eval",e,r,t)); end-if

end-if

emp_cost("eval",e) := emp_cost("eval",e) + (work_chng_cost(e,r,t)*chng_allocate("

eval",e,r,t)) !; if((work_chng_cost(

e,r,t)*chng_allocate(e,r,t)) <> 0) then writeln("Emp ",e,", work change costs

: ",(work_chng_cost(e,r,t)*chng_allocate(e,r,t))); end-if

emp_changes("eval",e) := emp_changes("eval",e) + chng_allocate("eval",e,r,t)

end-do

forall(v in VESSELS, t in TIME) do

if(cur_board(e,v,t) = 0) then chng_board("eval",e,v,t) := board_sol("eval",e,v,t)

else chng_board("eval",e,v,t) := cur_board(e,v,t) - board_sol("eval",e,v,t)

end-if

emp_cost("eval",e) := emp_cost("eval",e) + (board_chng_cost(e,v,t)*chng_board("

eval",e,v,t)) !; if((

board_chng_cost(e,v,t)*chng_board(e,v,t)) <> 0) then writeln("Emp ",e,",

board change costs: ",(board_chng_cost(e,v,t)*chng_board(e,v,t))); end-if

end-do

forall(v in VESSELS, t in TIME) do

if(cur_depart(e,v,t) = 0) then chng_depart("eval",e,v,t) := depart_sol("eval",e,v

,t)

else chng_depart("eval",e,v,t) := cur_depart(e,v,t) - depart_sol("eval",e,v,t)

end-if

emp_cost("eval",e) := emp_cost("eval",e) + (depart_chng_cost(e,v,t)*chng_depart("

eval",e,v,t)) !; if((

depart_chng_cost(e,v,t)*chng_depart(e,v,t)) <> 0) then writeln("Emp ",e,",

depart change costs: ",(depart_chng_cost(e,v,t)*chng_depart(e,v,t))); end-if

end-do

forall(l in lambda, r in ALL_ROLES, t in TIME) do

if(cur_long_work(l,e,r,t) = 0) then chng_long_work("eval",l,e,r,t) :=

long_work_sol("eval",l,e,r,t)

else chng_long_work("eval",l,e,r,t) := cur_long_work(l,e,r,t) - long_work_sol("

eval",l,e,r,t)

end-if

emp_cost("eval",e) := emp_cost("eval",e) + (extension_chng_cost(l,e,r,t)*

chng_long_work("eval",l,e,r,t)) !; if((

extension_chng_cost(l,e,r,t)*chng_long_work(l,e,r,t)) <> 0) then writeln("Emp

1056

",e,", longwork change costs: ",(extension_chng_cost(l,e,r,t)*chng_long_work

(l,e,r,t))); end-if

end-do

end-if

end-do

forall(r in ALL_ROLES) do

if(r not in ag_roles_changed) then

ag_cost("eval",r) := ag_cost("current",r)

!; writeln("Ag Role ",r," cost is same as current

= ",ag_cost("eval",r))

ag_changes("eval",r) := ag_changes("current",r)

ag_crewchange("eval",r) := ag_crewchange("current",r)

forall(t in TIME) do

allocate_sol("eval","AGENCY",r,t) := allocate_sol("current","AGENCY",r,t)

chng_allocate("eval","AGENCY",r,t) := chng_allocate("current","AGENCY",r,t)

forall(l in lambda) do

long_work_sol("eval",l,"AGENCY",r,t) := long_work_sol("current",l,"AGENCY",r,t)

chng_long_work("eval",l,"AGENCY",r,t) := chng_long_work("current",l,"AGENCY",r,t)

end-do

ag_rboard_sol("eval",r,t) := ag_rboard_sol("current",r,t)

chng_ag_rboard("eval",r,t) := chng_ag_rboard("current",r,t)

ag_rdepart_sol("eval",r,t) := ag_rdepart_sol("current",r,t)

chng_ag_rdepart("eval",r,t) := chng_ag_rdepart("current",r,t)

end-do

else

ag_cost("eval",r) := 0

!; writeln("Ag Role ",r," cost

must be recalculated, now = ",ag_cost("eval",r))

ag_changes("eval",r) := 0

if(ag_starting(r) = 1) then

onboard := true

else

onboard := false

end-if

1057

possible_crewchange := {}

definite_crewchange := {}

forall(t in TIME) do

if(allocate_sol(to_calculate,"AGENCY",r,t) = 1) then

allocate_sol("eval","AGENCY",r,t) := 1

if(onboard) = FALSE then

definite_crewchange += {t}

else

possible_crewchange += {t}

end-if

onboard := TRUE

else

allocate_sol("eval","AGENCY",r,t) := 0

if(onboard) = TRUE then

definite_crewchange += {t}

end-if

onboard := FALSE

end-if

end-do

ag_crewchange("eval",r) := {}

!; writeln("Evaluating solution <> best

or current solution for agency for role ",r)

if(possible_crewchange = {}) then

forall(p in definite_crewchange) ag_crewchange("eval",r) += {p} !;

writeln("\tPossible crewchange set is empty, so crewchange set = ",

ag_evaluating_crewchange(r))

else

number_to_run := 2^(getsize(possible_crewchange))

!; writeln("\tPossible crewchange set = ",possible_crewchange

,"\t=> must examine ",number_to_run," combinations...")

forall(x in 1..integer(number_to_run)) do

divide_number := number_to_run

tracking_number := x-1

feas_crewchange := true

crewchange_cost := 0

evaluate_crewchange := {}

consec_work := ag_work_zero(r)

forall(t in TIME) do

if(t in possible_crewchange) then

1058

divide_number := divide_number/2

if(tracking_number/divide_number < 1) then

poss_ag_rboard(t) := 0

poss_ag_rdepart(t) := 0

else

evaluate_crewchange += {t}

poss_ag_rboard(t) := 1

poss_ag_rdepart(t) := 1

tracking_number := tracking_number - divide_number

consec_work := 0

end-if

if(cur_ag_rboard(r,t) = 0) then

poss_chng_ag_rboard(t) := poss_ag_rboard(t)

else

poss_chng_ag_rboard(t) := cur_ag_rboard(r,t) - poss_ag_rboard(t)

end-if

if(cur_ag_rdepart(r,t) = 0) then

poss_chng_ag_rdepart(t) := poss_ag_rdepart(t)

else

poss_chng_ag_rdepart(t) := cur_ag_rdepart(r,t) - poss_ag_rdepart(t)

end-if

crewchange_cost := crewchange_cost + (ag_board_chng_cost(r,t)*poss_chng_ag_rboard

(t)) + (ag_depart_chng_cost(r,t)*poss_chng_ag_rdepart(t))

end-if

forall(l in lambda) poss_ag_long_work(l,t) := 0

if(allocate_sol("eval","AGENCY",r,t) = 1) then

consec_work := consec_work +1

if(consec_work > ag_max_work(r)) then

feas_crewchange := false

else

forall(l in 1..consec_work) poss_ag_long_work(l,t) := 1

end-if

else

consec_work := 0

end-if

forall(l in lambda) do

1059

if(cur_long_work(l,"AGENCY",r,t) = 0) then

poss_ag_chng_long_work(l,t) := poss_ag_long_work(l,t)

else

poss_ag_chng_long_work(l,t) := cur_long_work(l,"AGENCY",r,t) - poss_ag_long_work(

l,t)

end-if

crewchange_cost := crewchange_cost + (extension_chng_cost(l,"AGENCY",r,t)*

poss_ag_chng_long_work(l,t))

end-do

end-do

if(feas_crewchange = true) then

if(ag_crewchange("eval",r) = {}) then

forall(p in definite_crewchange) ag_crewchange("eval",r) += {p}

forall(p in evaluate_crewchange) ag_crewchange("eval",r) += {p}

min_crewchange_cost := crewchange_cost

!; writeln("\t\tCombination ",evaluate_crewchange," is first feasible one\tCost =

",crewchange_cost)

else

if(crewchange_cost < min_crewchange_cost) then

ag_crewchange("eval",r) := {}

forall(p in definite_crewchange) ag_crewchange("eval",r) += {p}

forall(p in evaluate_crewchange) ag_crewchange("eval",r) += {p}

min_crewchange_cost := crewchange_cost

!; writeln("\t\tCombination ",evaluate_crewchange," gives an improvement \tCost =

",crewchange_cost)

! else

! writeln("\t\tCombination

",evaluate_crewchange," is not an improvement\tCost = ",crewchange_cost)

end-if

end-if

! else

! writeln("\t\tCombination ",

evaluate_crewchange," is infeasible")

end-if

end-do

! writeln("\tBest solution is to have crewchange set =

",ag_evaluating_crewchange(r))

end-if

1060

consec_work := ag_work_zero(r)

forall(t in TIME) do

ag_rboard_sol("eval",r,t) := 0

ag_rdepart_sol("eval",r,t) := 0

if(t in ag_crewchange("eval",r)) then

consec_work := 0

if(t = 1) then

if(ag_starting(r) = 1) then

ag_rdepart_sol("eval",r,t) := 1

end-if

else

if(allocate_sol("eval","AGENCY",r,t-1) = 1) then

ag_rdepart_sol("eval",r,t) := 1

end-if

end-if

if(allocate_sol("eval","AGENCY",r,t) = 1) then

ag_rboard_sol("eval",r,t) := 1

end-if

end-if

forall(l in lambda) long_work_sol("eval",l,"AGENCY",r,t) := 0

if(allocate_sol("eval","AGENCY",r,t) = 1) then

consec_work := consec_work +1

forall(l in 1..consec_work) long_work_sol("eval",l,"AGENCY",r,t) := 1

else

consec_work := 0

end-if

if(cur_allocate("AGENCY",r,t) = 0) then chng_allocate("eval","AGENCY",r,t) :=

allocate_sol("eval","AGENCY",r,t)

else chng_allocate("eval","AGENCY",r,t) := cur_allocate("AGENCY",r,t) -

allocate_sol("eval","AGENCY",r,t)

end-if

ag_cost("eval",r) := ag_cost("eval",r) + (work_chng_cost("AGENCY",r,t)*

chng_allocate("eval","AGENCY",r,t)) !; if((

work_chng_cost("AGENCY",r,t)*chng_allocate("AGENCY",r,t)) <> 0) then writeln

("Ag Role ",r,", work change costs: ",(work_chng_cost("AGENCY",r,t)*

chng_allocate("AGENCY",r,t))); end-if !; if

(r = "Ospr-01" and to_calculate = "current") then writeln("In time period ",t

1061

,", allocate = ",allocate_sol("eval","AGENCY",r,t)," => change = ",

chng_allocate("AGENCY",r,t)," => added cost = ",work_chng_cost("AGENCY",r,t)

,"*",chng_allocate("AGENCY",r,t)); end-if

ag_changes("eval",r) := ag_changes("eval",r) + chng_allocate("eval","AGENCY",r,t)

if(cur_ag_rboard(r,t) = 0) then chng_ag_rboard("eval",r,t) := ag_rboard_sol("eval

",r,t)

else chng_ag_rboard("eval",r,t) := cur_ag_rboard(r,t) - ag_rboard_sol("eval",r,t)

end-if

ag_cost("eval",r) := ag_cost("eval",r) + (ag_board_chng_cost(r,t)*chng_ag_rboard

("eval",r,t)) !; if((

ag_board_chng_cost(r,t)*chng_ag_rboard(r,t)) <> 0) then writeln("Ag Role ",r

,", board change costs: ",(ag_board_chng_cost(r,t)*chng_ag_rboard(r,t))); end

-if

!; if(r = "Ospr-01" and to_calculate = "current") then writeln("In

time period ",t,", board = ",ag_rboard_sol("eval",r,t)," => change = ",

chng_ag_rboard(r,t)," => added cost = ",ag_board_chng_cost(r,t),"*",

chng_ag_rboard(r,t)); end-if

if(cur_ag_rdepart(r,t) = 0) then chng_ag_rdepart("eval",r,t) := ag_rdepart_sol("

eval",r,t)

else chng_ag_rdepart("eval",r,t) := cur_ag_rdepart(r,t) - ag_rdepart_sol("eval",r

,t)

end-if

ag_cost("eval",r) := ag_cost("eval",r) + (ag_depart_chng_cost(r,t)*

chng_ag_rdepart("eval",r,t)) !; if((

ag_depart_chng_cost(r,t)*chng_ag_rdepart(r,t)) <> 0) then writeln("Ag Role ",

r,", depart change costs: ",(ag_depart_chng_cost(r,t)*chng_ag_rdepart(r,t)));

end-if

!; if(r = "Ospr-01" and to_calculate = "current") then writeln("In

time period ",t,", depart = ",ag_rdepart_sol("eval",r,t)," => change = ",

chng_ag_rdepart(r,t)," => added cost = ",ag_depart_chng_cost(r,t),"*",

chng_ag_rdepart(r,t)); end-if

forall(l in lambda) do

if(cur_long_work(l,"AGENCY",r,t) = 0) then chng_long_work("eval",l,"AGENCY",r,t)

:= long_work_sol("eval",l,"AGENCY",r,t)

else chng_long_work("eval",l,"AGENCY",r,t) := cur_long_work(l,"AGENCY",r,t) -

long_work_sol("eval",l,"AGENCY",r,t)

end-if

ag_cost("eval",r) := ag_cost("eval",r) + (extension_chng_cost(l,"AGENCY",r,t)*

chng_long_work("eval",l,"AGENCY",r,t)) !; if((extension_chng_cost(l,"AGENCY

",r,t)*chng_long_work(l,"AGENCY",r,t)) <> 0) then writeln("Ag Role ",r,",

1062

longwork change costs: ",(extension_chng_cost(l,"AGENCY",r,t)*chng_long_work(

l,"AGENCY",r,t))); end-if !; if(r = "Ospr-01" and to_calculate = "current")

then writeln("In time period ",t," for l = ",l,", long work = ",long_work_sol

("eval",l,"AGENCY",r,t)," => change = ",chng_long_work(l,"AGENCY",r,t)," =>

added cost = ",extension_chng_cost(l,"AGENCY",r,t),"*",chng_long_work(l,"

AGENCY",r,t)); end-if

end-do

end-do

end-if

end-do

! CALCULATE TOTALS

total_cost("eval") := (sum(e in REG_EMP) emp_cost("eval",e)) + (sum(r in

ALL_ROLES) ag_cost("eval",r))

total_changes("eval") := (sum(e in REG_EMP) emp_changes("eval",e)) + (sum(r in

ALL_ROLES) ag_changes("eval",r))

writeln("Cost for ",to_calculate," solution is:\t\t",total_cost("eval"))

writeln("Number of changes in this solution is:\t",total_changes("eval"))

if(to_calculate <> "trial") then writeln("\t(Number of vacant roles:\t",

number_vacant,")"); end-if

transfer_sol_from := "eval"

transfer_sol_to := to_calculate

transfer_solution

else

writeln("ERROR - incorrect option selected for evaluation")

end-if

writeln

writeln("--")

writeln

end-procedure

!--

!--

1063

! Define initial solution array values

procedure initialise

number_vacant := 0

forall(r in ALL_ROLES, t in TIME) do

vacant_sol(r,t) := 1

forall(e in ALL_EMP) do

allocate_sol("initial", e, r, t) := 0 !; if(r = "Orio-01" and e = "C-45")

then writeln("Initialising - set allocate sol (’initial’,",e,",",r,",",t,") =

0"); end-if

allocate_sol("current", e, r, t) := 0 !; if(r = "Orio-01" and e = "C-45")

then writeln("Initialising - set allocate sol (’current’,",e,",",r,",",t,") =

0"); end-if

allocate_sol("fixed",e,r,t) := 0 !; if(r = "Orio-01" and e = "C

-45") then writeln("Initialising - set allocate sol (’fixed’,",e,",",r,",",t

,") = 0"); end-if

if(eligable(e,r,t) = 1) then

if(cur_allocate(e,r,t) = 1) then

allocate_sol("initial", e, r, t) := 1 !; if(r = "Orio-01" and e = "C-45")

then writeln("eligable and current allocate (",e,",",r,",",t,") = 1, so set

allocate sol (’initial’,",e,",",r,",",t,") = 1"); end-if

allocate_sol("current", e, r, t) := 1 !; if(r = "Orio-01" and e = "C-45")

then writeln("eligable and current allocate (",e,",",r,",",t,") = 1, so set

allocate sol (’current’,",e,",",r,",",t,") = 1"); end-if

vacant_sol(r,t) := 0

end-if

else

allocate_sol("fixed",e,r,t) := 1 !; if(r = "Orio-01" and

e = "C-45") then writeln("eligable (",e,",",r,",",t,") = 0, so set allocate

sol (’fixed’,",e,",",r,",",t,") = 1"); end-if

end-if

end-do

if(vacant_sol(r,t) = 1) then number_vacant := number_vacant + 1

end-if

end-do

emps_changed := {}

roles_changed := {}

ag_roles_changed := {}

1064

forall(e in REG_EMP) emps_changed += {e}

forall(r in ALL_ROLES) ag_roles_changed += {r}

writeln

writeln("Original schedule has roles carried out as follows:")

forall(t in TIME) write("\tWeek ",t)

write("\n")

forall(r in ALL_ROLES) do

write(r)

forall(t in TIME) do

if(required(r,t) = 0) then

write("\t (n/a)")

else

covered := FALSE

forall(e in ALL_EMP) do

if(cur_allocate(e,r,t) = 1) then

write("\t",e)

covered := TRUE

end-if

end-do

if(covered = FALSE) then write("\t*TBC*"); end-if

end-if

end-do

write("\n")

end-do

writeln

writeln

writeln("... and crew assigned to roles as follows:")

forall(t in TIME) write("\tWeek ",t)

write("\n")

forall(e in REG_EMP) do

write(e)

forall(t in TIME) do

working := FALSE

forall(r in ALL_ROLES) do

if(cur_allocate(e,r,t) = 1) then

write("\t",r)

working := TRUE

end-if

end-do

if(working = FALSE) then

1065

avail := FALSE

forall(r in ALL_ROLES) do

if(eligable(e,r,t) = 1) then avail := TRUE

end-if

end-do

if(avail = FALSE) then write("\t*unav*")

else write("\t")

end-if

end-if

end-do

write("\n")

end-do

writeln

writeln

writeln("And the following assigned to agency:")

agency_used := false

forall(r in ALL_ROLES) do

if(sum(t in TIME) (cur_allocate("AGENCY",r,t)) > 0) then

agency_used := true

write("Role ",r," in week(s): ")

forall(t in TIME) do

if(cur_allocate("AGENCY",r,t) = 1) then write(t," "); end-if

end-do

write("\n")

end-if

end-do

if(agency_used = false) then writeln("\t(none)"); end-if

writeln

writeln("--")

writeln

writeln("Number vacant = ",number_vacant,", consisting of:")

forall(r in ALL_ROLES, t in TIME) do

if(vacant_sol(r,t) = 1) then writeln("\tRole ",r," in Week ",t); end-if

end-do

writeln

writeln("--")

writeln

end-procedure

1066

!--

!--

procedure show_updates

writeln

writeln("Solution for the following roles has been updated as shown:")

forall(t in TIME) write("\tWeek ",t)

write("\n")

forall(r in roles_changed) do

write(r)

forall(t in TIME) do

if(required(r,t) = 0) then

write("\t (n/a)")

else

covered := FALSE

forall(e in ALL_EMP) do

if(allocate_sol("current",e,r,t) = 1) then

write("\t",e)

covered := TRUE

end-if

end-do

if(covered = FALSE) then write("\t*TBC*"); end-if

end-if

end-do

write("\n")

end-do

writeln

writeln

if(emps_changed = {}) then

writeln("(No regular crew have had their assignments updated)")

else

writeln("... and the following crew have had assignments updated as shown:")

forall(t in TIME) write("\tWeek ",t)

write("\n")

forall(e in emps_changed) do

write(e)

forall(t in TIME) do

working := FALSE

forall(r in ALL_ROLES) do

if(allocate_sol("current",e,r,t) = 1) then

1067

write("\t",r)

working := TRUE

end-if

end-do

if(working = FALSE) then

avail := FALSE

forall(r in ALL_ROLES) do

if(eligable(e,r,t) = 1) then avail := TRUE

end-if

end-do

if(avail = FALSE) then write("\t*unav*")

else write("\t")

end-if

end-if

end-do

write("\n")

end-do

writeln

end-if

writeln

if(ag_roles_changed = {}) then

writeln("(Assignments have not changed for agency crew)")

else

writeln("And agency assignments to the following roles have changed as shown:")

agency_used := false

forall(r in ag_roles_changed) do

if(sum(t in TIME) (allocate_sol("current","AGENCY",r,t)) > 0) then

agency_used := true

write("Role ",r," in week(s): ")

forall(t in TIME) do

if(allocate_sol("current","AGENCY",r,t) = 1) then write(t," "); end-if

end-do

write("\n")

end-if

end-do

if(agency_used = false) then writeln("\t(none)"); end-if

end-if

writeln

writeln("--")

writeln

end-procedure

1068

!--

!--

procedure initial_feas_check

writeln("Carry out preliminary checks on feasibility:")

emps_changed := {}

roles_changed := {}

ag_roles_changed := {}

update_done := false

forall(e in REG_EMP, v in VESSELS) do

if(starting(e,v) > 0) then

forall(r in ALL_ROLES) do

if(r not in ROLES(v) or (r in ROLES(v) and eligable(e,r,1) < 1)) then

forall(t in 1..min_rest(e)) do

if(allocate_sol("current",e,r,t) = 1) then

update_done := true

writeln(" -> remove employee ",e," from role ",r," at time ",t)

allocate_sol("current",e,r,t) := 0

vacant_sol(r,t) := 1

number_vacant := number_vacant + 1

emps_changed += {e}

roles_changed += {r}

end-if

allocate_sol("fixed",e,r,t) := 1

end-do

end-if

end-do

end-if

end-do

writeln

if(update_done = false) then

writeln("No changes were necessary at this point")

writeln

1069

writeln("--")

writeln

else

writeln("Recalculate costs:")

writeln

to_calculate := "current"

calculate_cost

show_updates

end-if

end-procedure

!--

!--

procedure repair_vacancies

writeln("Block detail:\tstart: ",block_start,"\t end: ",block_end,"\t length: ",

block_len)

writeln(" --> repair this block")

writeln

! First we find the employees who work before and after the block:

emp_before := "none"

emp_after := "none"

update_done := FALSE

forall(e in ALL_EMP) do

if(block_start > 1) then

if(allocate_sol("current",e,task_vacant,block_start-1) = 1) then emp_before := e;

end-if

end-if

if(block_end < WEEKS_TO_PLAN) then

if(allocate_sol("current",e,task_vacant,block_end+1) = 1) then emp_after := e;

end-if

end-if

end-do

writeln("Employee in role in previous period: ",emp_before)

writeln("Employee in role in subsequent period: ",emp_after)

1070

writeln

! Now we look to repair this infeasibility

emps_changed := {}

roles_changed := {}

ag_roles_changed := {}

assign_emp_before := false

assign_emp_after := false

! Can we assign the employee before or after?

if(block_len = WEEKS_TO_PLAN) then

writeln("Role is vacant across entire planning horizon - fill with agency crew")

forall(t in TIME) do

allocate_sol("current","AGENCY",task_vacant,t) := 1

allocate_sol("fixed","AGENCY",task_vacant,t) := 1

vacant_sol(task_vacant,t) := 0

number_vacant := number_vacant -1

end-do

roles_changed += {task_vacant}

ag_roles_changed += {task_vacant}

update_done := true

elif(block_end = WEEKS_TO_PLAN and emp_before <> "none") then

writeln("Role is vacant at end of planning horizon")

if(emp_before = "AGENCY") then assign_emp_before := true

elif(block_len < max_work(emp_before)) then

if(long_work_sol("current",max_work(emp_before)-block_len+1,emp_before,

task_vacant,block_start-1) = 0) then

if(sum(t in block_start..block_end, r in ALL_ROLES)(allocate_sol("current",

emp_before,r,t)) < 1) then

if(sum(t in block_start..block_end)(eligable(emp_before,task_vacant,t)*(1-

allocate_sol("fixed",emp_before,task_vacant,t))) = block_len) then

assign_emp_before := true

end-if

end-if

end-if

end-if

1071

elif(block_start = 1 and emp_after <> "none") then

writeln("Role is vacant at start of planning horizon")

if(emp_after = "AGENCY") then assign_emp_after := true

elif(rest_zero(emp_after) = 0) then

if(sum(t in block_start..block_end, r in ALL_ROLES)(allocate_sol("current",

emp_after,r,t)) < 1) then

if(sum(t in block_start..block_end)(eligable(emp_after,task_vacant,t)*(1-

allocate_sol("fixed",emp_after,task_vacant,t))) = block_len) then

assign_emp_after := true

end-if

end-if

end-if

else

writeln("Role is occupied at both start and end of planning horizon")

if(emp_before <> "AGENCY" and emp_before <> "none") then

if(block_len <= max_work(emp_before)) then

if(long_work_sol("current",max_work(emp_before)-block_len+1,emp_before,

task_vacant,block_start-1) = 0) then

if(sum(t in block_start..block_end, r in ALL_ROLES)(allocate_sol("current",

emp_before,r,t)) < 1) then

if(sum(t in block_start..block_end)(eligable(emp_before,task_vacant,t)*(1-

allocate_sol("fixed",emp_before,task_vacant,t))) = block_len) then

assign_emp_before := true

end-if

end-if

end-if

end-if

end-if

if(assign_emp_before = false and emp_after <> "none") then

if(emp_after = "AGENCY") then assign_emp_after := true

else

if(block_start <= min_rest(emp_after)) then

if(rest_zero(emp_after) < block_start and sum(t in 1..block_end, r in ALL_ROLES)(

allocate_sol("current",emp_after,r,t)) < 1) then

if(sum(t in block_start..block_end)(eligable(emp_after,task_vacant,t)*(1-

allocate_sol("fixed",emp_after,task_vacant,t))) = block_len) then

assign_emp_after := true

end-if

end-if

1072

else

if(sum(t in block_start-min_rest(emp_after)..block_end, r in ALL_ROLES)(

allocate_sol("current",emp_after,r,t)) < 1) then

if(sum(t in block_start..block_end)(eligable(emp_after,task_vacant,t)*(1-

allocate_sol("fixed",emp_after,task_vacant,t))) = block_len) then

assign_emp_after := true

end-if

end-if

end-if

end-if

end-if

if(assign_emp_after = false and emp_before = "AGENCY") then assign_emp_before :=

true

end-if

if(assign_emp_after = false and assign_emp_before = false) then

writeln("--> Cannot cover task by either previous or subsequent employee")

writeln(" => Look at removing shortest period employee")

count_after := 0

working_at_t := true

forall(t in block_end+1..WEEKS_TO_PLAN) do

if(working_at_t = true) then

if(allocate_sol("current",emp_after,task_vacant,t) = 1 and allocate_sol("fixed",

emp_after,task_vacant,t) = 0) then

count_after := count_after + 1

else

working_at_t := false

end-if

end-if

end-do

count_before := 0

working_at_t := true

forall(t in 1..block_start-1) do

if(working_at_t = true) then

if(allocate_sol("current",emp_before,task_vacant,block_start-t) = 1 and

allocate_sol("fixed",emp_before,task_vacant,block_start-t) = 0) then

count_before := count_before + 1

else

working_at_t := false

1073

end-if

end-if

end-do

! if(block_len <= count_before and block_len <= count_after

and (block_len < count_before or block_len < count_after)) then

if(block_len <= 2 or count_before <= 2 or count_after <= 2 or (block_len +

count_before) <= 4 or (block_len + count_after) <= 4) then

if(count_before < count_after and count_before > 0) then

writeln(" ---> Employee before has shorter working period (",count_before," to ",

count_after,")")

forall(t in TIME) do

if(t >= block_start-count_before and t <= block_start-1) then

allocate_sol("current",emp_before,task_vacant,t) := 0 !;

if(task_vacant = "Orio-01" and emp_before = "C-45") then writeln("Set

allocate sol (’current’,",emp_before,",",task_vacant,",",t,") = 0"); end-if

allocate_sol("fixed",emp_before,task_vacant,t) := 1

!; if(task_vacant = "Orio-01" and emp_before = "C-45") then writeln("

Set allocate sol (’fixed’,",emp_before,",",task_vacant,",",t,") = 1"); end-if

vacant_sol(task_vacant,t) := 1

number_vacant := number_vacant + 1

elif(t <= rest_zero(emp_before) or (block_start-count_before = 1 and t <=

min_rest(emp_before))) then

forall(r in ALL_ROLES) do

if(allocate_sol("current",emp_before,r,t) = 1) then

allocate_sol("current",emp_before,r,t) := 0

allocate_sol("fixed",emp_before,r,t) := 1

vacant_sol(r,t) := 1

number_vacant := number_vacant + 1

roles_changed += {r}

end-if

end-do

end-if

end-do

emps_changed += {emp_before}

roles_changed += {task_vacant}

update_done := true ! consider update to be done - can be filled at next

iteration

elif(count_after > 0) then

1074

writeln(" ---> Employee before does not have shorter working period (",

count_before," to ",count_after,")")

forall(t in block_end+1..block_end+count_after) do

allocate_sol("current",emp_after,task_vacant,t) := 0 !;

if(task_vacant = "Orio-01" and emp_after = "C-45") then writeln("Set

allocate sol (’current’,",emp_after,",",task_vacant,",",t,") = 0"); end-if

allocate_sol("fixed",emp_after,task_vacant,t) := 1

!; if(task_vacant = "Orio-01" and emp_after = "C-45") then writeln("

Set allocate sol (’fixed’,",emp_after,",",task_vacant,",",t,") = 1"); end-if

vacant_sol(task_vacant,t) := 1

number_vacant := number_vacant + 1

end-do

emps_changed += {emp_after}

roles_changed += {task_vacant}

update_done := true ! consider update to be done - can be filled at next

iteration

end-if

else

writeln(" ---> No removal will take place - block length not short enough, nor

periods before and after (",count_before," and ",count_after,")")

end-if

end-if

end-if

! If we can assign the employee before or after:

if(assign_emp_before = true) then

writeln("-> Can assign employee from previous period, being ",emp_before)

forall(t in block_start..block_end) do

allocate_sol("current",emp_before,task_vacant,t) := 1 !;

if(task_vacant = "Orio-01" and emp_before = "C-45") then writeln("Set

allocate sol (’current’,",emp_before,",",task_vacant,",",t,") = 1"); end-if

allocate_sol("fixed",emp_before,task_vacant,t) := 1

!; if(task_vacant = "Orio-01" and emp_before = "C-45") then writeln("

Set allocate sol (’fixed’,",emp_before,",",task_vacant,",",t,") = 1"); end-if

vacant_sol(task_vacant,t) := 0

number_vacant := number_vacant -1

end-do

roles_changed += {task_vacant}

1075

if(emp_before = "AGENCY") then

ag_roles_changed += {task_vacant}

else

emps_changed += {emp_before}

forall(t in block_end+1..block_end+min_rest(emp_before) | t <= WEEKS_TO_PLAN) do

forall(r in ALL_ROLES) do

if(allocate_sol("current",emp_before,r,t) = 1) then

allocate_sol("current",emp_before,r,t) := 0

allocate_sol("fixed",emp_before,r,t) := 1

vacant_sol(r,t) := 1

number_vacant := number_vacant + 1

roles_changed += {r}

end-if

end-do

end-do

end-if

elif(assign_emp_after = true) then

writeln("-> Can assign employee from subsequent period, being ",emp_after)

forall(t in block_start..block_end) do

allocate_sol("current",emp_after,task_vacant,t) := 1 !;

if(task_vacant = "Orio-01" and emp_after = "C-45") then writeln("Set

allocate sol (’current’,",emp_after,",",task_vacant,",",t,") = 1"); end-if

allocate_sol("fixed",emp_after,task_vacant,t) := 1

!; if(task_vacant = "Orio-01" and emp_after = "C-45") then writeln("

Set allocate sol (’fixed’,",emp_after,",",task_vacant,",",t,") = 1"); end-if

vacant_sol(task_vacant,t) := 0

number_vacant := number_vacant -1

end-do

roles_changed += {task_vacant}

if(emp_after = "AGENCY") then

ag_roles_changed += {task_vacant}

else

emps_changed += {emp_after}

consec_work := block_len

forall(t in block_end+1..WEEKS_TO_PLAN) do

if(allocate_sol("current",emp_after,task_vacant,t) = 1) then

1076

if(consec_work = max_work(emp_after)) then

allocate_sol("current",emp_after,task_vacant,t) := 0 !;

if(task_vacant = "Orio-01" and emp_after = "C-45") then writeln("Set

allocate sol (’current’,",emp_after,",",task_vacant,",",t,") = 0"); end-if

allocate_sol("fixed",emp_after,task_vacant,t) := 1

!; if(task_vacant = "Orio-01" and emp_after = "C-45") then writeln("

Set allocate sol (’fixed’,",emp_after,",",task_vacant,",",t,") = 1"); end-if

vacant_sol(task_vacant,t) := 1

number_vacant := number_vacant +1

else

consec_work := consec_work + 1

end-if

else

consec_work := 0

end-if

end-do

end-if

elif(update_done = false) then

writeln("-> cannot assign employee from previous or subsequent period...")

candidate_exist := false

candidate_cost := 0

candidate_emp := ""

forall(e in emp_ordered_list | e <> emp_before and e <> emp_after) do

emps_changed := {}

roles_changed := {}

ag_roles_changed := {}

earliest := block_start - min_rest(e)

if(earliest < 1) then earliest := 1; end-if

latest := block_end + min_rest(e)

if(latest > WEEKS_TO_PLAN) then latest := WEEKS_TO_PLAN; end-if

if(sum(t in earliest..block_end, r in ALL_ROLES)(allocate_sol("current",e,r,t)) <

1 and block_len <= max_work(e)) then

if(sum(t in block_start..block_end)(eligable(e,task_vacant,t)*(1-allocate_sol("

fixed",e,task_vacant,t))) = block_len) then

if(rest_zero(e) < block_start) then

if((block_start > 1 and (sum(v in VESSELS)(starting(e,v)) < 1 or block_start >

min_rest(e))) or (work_zero(e) <= max_work(e) - block_len and sum(v in

VESSELS | task_vacant not in ROLES(v))(starting(e,v)) < 1)) then

1077

if(latest = WEEKS_TO_PLAN or sum(t in block_end+1..latest, r in ALL_ROLES)(

allocate_sol("fixed",e,r,t)*allocate_sol("current",e,r,t)) < 1) then

writeln("--> could assign employee ",e," - evaluate cost of doing this:")

transfer_sol_from := "current"

transfer_sol_to := "trial"

transfer_solution

forall(t in TIME) do

if(t >= block_start and t <= block_end) then

allocate_sol("trial",e,task_vacant,t) := 1

!; if(task_vacant = "Orio-01" and e = "C-45") then writeln("Set allocate sol (’

trial’,",e,",",task_vacant,",",t,") = 1"); end-if

elif(t > block_end and t <= block_end + min_rest(e)) then

forall(r in ALL_ROLES) allocate_sol("trial",e,r,t) := 0

!; if(e = "C-45") then writeln("Set allocate sol (’trial’,",e,",Orio-01,",t,") =

0"); end-if

end-if

end-do

emps_changed += {e}

to_calculate := "trial"

calculate_cost

if(candidate_exist = false) then

candidate_exist := true

candidate_emp := e

candidate_cost := total_cost("trial")

else

if(total_cost("trial") < candidate_cost) then

candidate_emp := e

candidate_cost := total_cost("trial")

end-if

end-if

end-if

end-if

end-if

end-if

end-if

end-do

if(candidate_exist = false) then

1078

candidate_exist := true

candidate_emp := "AGENCY"

else

writeln("--> could assign AGENCY employee - evaluate cost of doing this:")

transfer_sol_from := "current"

transfer_sol_to := "trial"

transfer_solution

emps_changed := {}

roles_changed := {}

ag_roles_changed := {}

forall(t in block_start..block_end) allocate_sol("trial","AGENCY",task_vacant,t)

:= 1

ag_roles_changed += {task_vacant}

to_calculate := "trial"

calculate_cost

if(total_cost("trial") < candidate_cost) then

candidate_emp := "AGENCY"

candidate_cost := total_cost("trial")

end-if

end-if

if(candidate_exist = FALSE or candidate_emp not in ALL_EMP) then

writeln("ERROR - NO CANDIDATE FOUND")

else

emps_changed := {}

roles_changed := {}

ag_roles_changed := {}

writeln("-> Select employee ",candidate_emp," to fill vacancy")

forall(t in block_start..block_end) do

allocate_sol("current",candidate_emp,task_vacant,t) := 1

!; if(task_vacant = "Orio-01" and candidate_emp = "C-45") then writeln

("Set allocate sol (’current’,",candidate_emp,",",task_vacant,",",t,") = 1");

end-if

allocate_sol("fixed",candidate_emp,task_vacant,t) := 1

!; if(task_vacant = "Orio-01" and candidate_emp = "C-45") then writeln

1079

("Set allocate sol (’fixed’,",candidate_emp,",",task_vacant,",",t,") = 1");

end-if

vacant_sol(task_vacant,t) := 0

number_vacant := number_vacant -1

end-do

roles_changed += {task_vacant}

if(candidate_emp = "AGENCY") then

ag_roles_changed += {task_vacant}

else

emps_changed += {candidate_emp}

consec_work := block_len

forall(r in ALL_ROLES) do

forall(t in TIME) do

if(t > block_end and t <= block_end + min_rest(candidate_emp)) then

if(allocate_sol("current",candidate_emp,r,t) = 1) then

allocate_sol("current",candidate_emp,r,t) := 0 !; if(r =

"Orio-01" and candidate_emp = "C-45") then writeln("Set allocate sol (’

current’,",candidate_emp,",",r,",",t,") = 0"); end-if

allocate_sol("fixed",candidate_emp,r,t) := 1 !; if(r =

"Orio-01" and candidate_emp = "C-45") then writeln("Set allocate sol (’fixed

’,",candidate_emp,",",r,",",t,") = 0"); end-if

vacant_sol(r,t) := 1

number_vacant := number_vacant +1

roles_changed += {r}

end-if

end-if

end-do

end-do

end-if

end-if

end-if

writeln("... and now calculate cost:")

writeln

to_calculate := "current"

calculate_cost

1080

show_updates

end-procedure

!--

!--

procedure find_vacancies

forall(j in role_ordered_list) do

! Look for ’blocks’ which require repairing

task_vacant := ""

vessel_vacant := ""

block_start := 0

block_end := 0

block_len := 0

block_found := FALSE

modified := false

forall(t in TIME) do

new_block := FALSE

if(modified = false and block_found = FALSE and vacant_sol(j,t) = 1) then

new_block := TRUE

task_vacant := j

block_start := t

forall(v in VESSELS, k in ROLES(v)) do

if(j = k) then

vessel_vacant := v

end-if

end-do

writeln("Start of block - role ",task_vacant," (vessel: ",vessel_vacant,") is

vacant from time ",block_start)

writeln

! elif(block_found = TRUE and vacant_sol(r,t) = 1) then DO NOTHING

elif(modified = false and block_found = TRUE and vacant_sol(j,t) = 0) then

block_end := t-1

1081

block_len := (block_end - block_start) +1

repair_vacancies

modified := true

! and reset...

block_found := FALSE

block_start := 0

block_end := 0

block_len := 0

task_vacant := ""

vessel_vacant := ""

end-if

if(new_block = TRUE) then

block_found := TRUE

new_block := FALSE

end-if

! if we are at the end of the planning period, conclude any remaining blocks

if(modified = false and t = WEEKS_TO_PLAN and block_found = TRUE) then

block_end := t

block_len := (block_end - block_start) +1

repair_vacancies

modified := true

end-if

end-do

end-do

end-procedure

!--

!--

procedure check_feasibility

feasible := TRUE

1082

if(to_check in SOL_TYPE) then

! Job Cover constraints

JCfeas := TRUE

forall(r in ALL_ROLES, t in TIME | required(r,t) > 0) do

if(sum(e in ALL_EMP)(eligable(e,r,t)*allocate_sol("eval",e,r,t)) <> required(r,t)

) then

JCfeas := FALSE

writeln("\tINFEASIBILITY detected - Job Cover constraint (",r,",",t,")\t",sum(e

in ALL_EMP)(eligable(e,r,t)*allocate_sol("eval",e,r,t))," <> ",required(r,t))

end-if

end-do

if(JCfeas = FALSE) then feasible := FALSE; end-if

! Overlap constraints

if(feasible = true) then

OLfeas := TRUE

forall(e in emps_changed, t in TIME) do

if(sum(r in ALL_ROLES) allocate_sol("eval",e,r,t) > 1) then

OLfeas := FALSE

writeln("\tINFEASIBILITY detected - Overlap constraint (",e,",",t,")\t",sum(r in

ALL_ROLES) allocate_sol("eval",e,r,t)," > 1")

end-if

end-do

if(OLfeas = FALSE) then feasible := FALSE; end-if

end-if

! Boarding constraints

if(feasible = true) then

Brdfeas := TRUE

forall(e in emps_changed, v in VESSELS) do

if(board_sol("eval",e,v,1) < sum(r in ROLES(v))(allocate_sol("eval",e,r,1)) -

starting(e,v)) then

Brdfeas := FALSE

writeln("\tINFEASIBILITY detected - Boarding constraint (",e,",",v,",1)\t",

board_sol("eval",e,v,1)," < ",sum(r in ROLES(v))(allocate_sol("eval",e,r,1))

- starting(e,v))

end-if

forall(t in 2..WEEKS_TO_PLAN) do

if(board_sol("eval",e,v,t) < sum(r in ROLES(v))(allocate_sol("eval",e,r,t)) - sum

(r in ROLES(v))(allocate_sol("eval",e,r,(t-1)))) then

Brdfeas := FALSE

1083

writeln("\tINFEASIBILITY detected - Boarding constraint (",e,",",v,",",t,")\t",

board_sol("eval",e,v,t)," < ",sum(r in ROLES(v))(allocate_sol("eval",e,r,t))

- sum(r in ROLES(v))(allocate_sol("eval",e,r,(t-1))))

end-if

end-do

end-do

if(Brdfeas = FALSE) then feasible := FALSE; end-if

end-if

! Departing constraints

if(feasible = true) then

Dprtfeas := TRUE

forall(e in emps_changed, v in VESSELS) do

if(depart_sol("eval",e,v,1) < starting(e,v) - sum(r in ROLES(v))(allocate_sol("

eval",e,r,1))) then

Dprtfeas := FALSE

writeln("\tINFEASIBILITY detected - Departing constraint (",e,",",v,",1)\t",

depart_sol("eval",e,v,1)," < ",starting(e,v) - sum(r in ROLES(v))(

allocate_sol("eval",e,r,1)))

end-if

forall(t in 2..WEEKS_TO_PLAN) do

if(depart_sol("eval",e,v,t) < sum(r in ROLES(v))(allocate_sol("eval",e,r,(t-1)))

- sum(r in ROLES(v))(allocate_sol("eval",e,r,t))) then

Dprtfeas := FALSE

writeln("\tINFEASIBILITY detected - Departing constraint (",e,",",v,",",t,")\t",

depart_sol("eval",e,v,t)," < ",sum(r in ROLES(v))(allocate_sol("eval",e,r,(t

-1))) - sum(r in ROLES(v))(allocate_sol("eval",e,r,t)))

end-if

end-do

end-do

if(Dprtfeas = FALSE) then feasible := FALSE; end-if

end-if

! Agency board / depart constraints

if(feasible = true) then

AGBDfeas := TRUE

forall(r in ag_roles_changed) do

if(ag_rboard_sol("eval",r,1) - ag_rdepart_sol("eval",r,1) <> allocate_sol("eval

","AGENCY",r,1) - ag_starting(r)) then

AGBDfeas := FALSE

writeln("\tINFEASIBILITY detected - AG board/depart constraint (",r,",1)\t",

ag_rboard_sol("eval",r,1) - ag_rdepart_sol("eval",r,1)," <> ",allocate_sol("

eval","AGENCY",r,1) - ag_starting(r))

1084

end-if

forall(t in 2..WEEKS_TO_PLAN) do

if(ag_rboard_sol("eval",r,t) - ag_rdepart_sol("eval",r,t) <> allocate_sol("eval

","AGENCY",r,t) - allocate_sol("eval","AGENCY",r,(t-1))) then

AGBDfeas := FALSE

writeln("\tINFEASIBILITY detected - AG board/depart constraint (",r,",",t,")\t",

ag_rboard_sol("eval",r,t) - ag_rdepart_sol("eval",r,t)," <> ",allocate_sol("

eval","AGENCY",r,t) - allocate_sol("eval","AGENCY",r,(t-1)))

end-if

end-do

end-do

if(AGBDfeas = FALSE) then feasible := FALSE; end-if

end-if

! Undertime constraints

if(feasible = true) then

UTfeas := TRUE

forall(e in emps_changed | e in GUARANTEED) do

if(undertime_sol("eval",e) < g_weeks(e) - (exp_worktime(e) + sum(r in ALL_ROLES,

t in TIME)(allocate_sol("eval",e,r,t)))) then

UTfeas := FALSE

writeln("\tINFEASIBILITY detected - Undertime constraint (",e,")\t",undertime_sol

("eval",e)," < ",g_weeks(e) - (exp_worktime(e) + sum(r in ALL_ROLES, t in

TIME)(allocate_sol("eval",e,r,t))))

end-if

end-do

if(UTfeas = FALSE) then feasible := FALSE; end-if

end-if

! Overtime constraints

if(feasible = true) then

OTfeas := TRUE

forall(e in emps_changed | e in GUARANTEED) do

if(overtime_sol("eval",e) < (exp_worktime(e) + sum(r in ALL_ROLES, t in TIME)(

allocate_sol("eval",e,r,t)))- g_weeks(e)) then

OTfeas := FALSE

writeln("\tINFEASIBILITY detected - Overtime constraint (",e,")\t",overtime_sol("

eval",e)," < ",(exp_worktime(e) + sum(r in ALL_ROLES, t in TIME)(allocate_sol

("eval",e,r,t)))- g_weeks(e))

end-if

end-do

if(OTfeas = FALSE) then feasible := FALSE; end-if

end-if

1085

! Long Work constraints

if(feasible = true) then

! First, calculate work resource values:

forall(e in emps_changed) do

work_total(e,1) := work_zero(e) + sum(r in ALL_ROLES)(allocate_sol("eval",e,r,1))

- max_work(e)*(1-(sum(r in ALL_ROLES)(allocate_sol("eval",e,r,1))))

if(work_total(e,1) < 0) then

work_total(e,1) := 0

end-if

forall(t in 2..WEEKS_TO_PLAN) do

work_total(e,t) := work_total(e,(t-1)) + sum(r in ALL_ROLES)(allocate_sol("eval",

e,r,t)) - max_work(e)*(1-(sum(r in ALL_ROLES)(allocate_sol("eval",e,r,t))))

if(work_total(e,t) < 0) then

work_total(e,t) := 0

end-if

end-do

end-do

LWfeas := TRUE

forall(l in lambda, e in emps_changed, r in ALL_ROLES | exists(long_work_sol("

eval",l,e,r,1))) do

if(max_work(e)*long_work_sol("eval",l,e,r,1) < work_zero(e) - max_work(e)*(1-

allocate_sol("eval",e,r,1)) + allocate_sol("eval",e,r,1) - (l-1)) then

LWfeas := FALSE

! writeln("\tINFEASIBILITY detected - Long Work constraint (",l,",",e

,",",r,",1)\t",max_work(e)*long_work_sol("eval",l,e,r,1)," < ",work_zero(e) +

allocate_sol("eval",e,r,1) - (l-1))

writeln("\tINFEASIBILITY detected - Long Work constraint (",l,",",e,",",r,",1)\t

",max_work(e),"*",long_work_sol("eval",l,e,r,1)," < ",work_zero(e)," - ",

max_work(e),"*",(1-allocate_sol("eval",e,r,1))," + ",allocate_sol("eval",e,r

,1)," - (",l,"-1)")

end-if

forall(t in 2..WEEKS_TO_PLAN) do

if(max_work(e)*long_work_sol("eval",l,e,r,t) < work_total(e,(t-1)) - max_work(e)

*(1-allocate_sol("eval",e,r,t)) + allocate_sol("eval",e,r,t) - (l-1)) then

LWfeas := FALSE

! writeln("\tINFEASIBILITY detected - Long Work constraint (",

l,",",e,",",r,",",t,")\t",max_work(e)*long_work_sol("eval",l,e,r,t)," < ",

work_total(e,(t-1)) + allocate_sol("eval",e,r,t) - (l-1))

writeln("\tINFEASIBILITY detected - Long Work constraint (",l,",",e,",",r,",",t

,")\t",max_work(e),"*",long_work_sol("eval",l,e,r,t)," < ",work_total(e,(t-1)

)," - ",max_work(e),"*",(1-allocate_sol("eval",e,r,t))," + ",allocate_sol("

1086

eval",e,r,t)," - (",l,"-1)")

end-if

end-do

end-do

if(LWfeas = FALSE) then feasible := FALSE; end-if

end-if

! Agency Long Work constraints

if(feasible = true) then

! First, calculate Agency work resource values

forall(r in ag_roles_changed) do

ag_work_total(r,1) := ag_work_zero(r) + allocate_sol("eval","AGENCY",r,1) -

ag_max_work(r)*ag_rdepart_sol("eval",r,1)

if(ag_work_total(r,1) < allocate_sol("eval","AGENCY",r,1)) then

ag_work_total(r,1) := allocate_sol("eval","AGENCY",r,1)

end-if

forall(t in 2..WEEKS_TO_PLAN) do

ag_work_total(r,t) := ag_work_total(r,(t-1)) + allocate_sol("eval","AGENCY",r,t)

- ag_max_work(r)*ag_rdepart_sol("eval",r,t)

if(ag_work_total(r,t) < allocate_sol("eval","AGENCY",r,t)) then

ag_work_total(r,t) := allocate_sol("eval","AGENCY",r,t)

end-if

end-do

end-do

AGLWfeas := TRUE

forall(l in lambda, r in ag_roles_changed, t in TIME | exists(long_work_sol("eval

",l,"AGENCY",r,t))) do

if(ag_max_work(r)*long_work_sol("eval",l,"AGENCY",r,t) < ag_work_total(r,t) - (l

-1)) then

AGLWfeas := FALSE

writeln("\tINFEASIBILITY detected - Agency Long Work constraint (",l,",",r,",",t

,")\t",ag_max_work(r)*long_work_sol("eval",l,"AGENCY",r,t)," < ",

ag_work_total(r,t) - (l-1))

end-if

end-do

if(AGLWfeas = FALSE) then feasible := FALSE; end-if

end-if

! Rest vs Work constraints

if(feasible = true) then

! First, calculate rest resource values

forall(e in emps_changed) do

1087

rest_total(e,1) := rest_zero(e) - (1-(sum(r in ALL_ROLES)(allocate_sol("eval",e,r

,1)))) !;if(e = "C-37") then writeln("rest_total(",e,",1)

:= ",rest_zero(e)," - (1-",(sum(r in ALL_ROLES)(allocate(e,r,1))),")"); end-

if

if(rest_total(e,1) < (min_rest(e)-1)*(sum(v in VESSELS)(depart_sol("eval",e,v,1))

)) then

rest_total(e,1) := (min_rest(e)-1)*(sum(v in VESSELS)(depart_sol("eval",e,v,1)))

!;if(e = "C-37") then writeln("rest_total(",e,",1)

< (",min_rest(e),"-1)*",(sum(v in VESSELS)(depart(e,v,1)))," => reset, so

rest_total(",e,",1) := (",min_rest(e),"-1)*",(sum(v in VESSELS)(depart(e,v,1)

))); end-if

end-if

forall(t in 2..WEEKS_TO_PLAN) do

rest_total(e,t) := rest_total(e,(t-1)) - (1-(sum(r in ALL_ROLES)(allocate_sol("

eval",e,r,t)))) !;if(e = "C-37") then writeln("rest_total(",e,",",t,") := ",

rest_total(e,(t-1))," - (1-",(sum(r in ALL_ROLES)(allocate(e,r,t))),")"); end

-if

if(rest_total(e,t) < (min_rest(e)-1)*(sum(v in VESSELS)(depart_sol("eval",e,v,t))

)) then

rest_total(e,t) := (min_rest(e)-1)*(sum(v in VESSELS)(depart_sol("eval",e,v,t)))

!;if(e = "C-37") then writeln("rest_total(",e,",",t,") <

(",min_rest(e),"-1)*",(sum(v in VESSELS)(depart(e,v,t)))," => reset, so

rest_total(",e,",",t,") := (",min_rest(e),"-1)*",(sum(v in VESSELS)(depart(e,

v,t)))); end-if

end-if

end-do

end-do

RvWfeas := TRUE

forall(e in emps_changed) do

if(min_rest(e)*(1-(sum(r in ALL_ROLES)(allocate_sol("eval",e,r,1)))) < rest_zero(

e)) then

RvWfeas := FALSE

writeln("\tINFEASIBILITY detected - Rest vs Work constraint (",e,",1)\t",min_rest

(e)*(1-(sum(r in ALL_ROLES)(allocate_sol("eval",e,r,1))))," < ",rest_zero(e))

end-if

forall(t in 2..WEEKS_TO_PLAN) do

if(min_rest(e)*(1-(sum(r in ALL_ROLES)(allocate_sol("eval",e,r,t)))) < rest_total

(e,(t-1))) then

RvWfeas := FALSE

! writeln("\tINFEASIBILITY detected - Rest vs Work constraint

(",e,",",t,")\t",min_rest(e)*(1-(sum(r in ALL_ROLES)(allocate(e,r,t))))," <

",rest_total(e,(t-1)))

1088

writeln("\tINFEASIBILITY detected - Rest vs Work constraint (",e,",",t,")\t",

min_rest(e),"*(1-",(sum(r in ALL_ROLES)(allocate_sol("eval",e,r,t))),") < ",

rest_total(e,(t-1)))

end-if

end-do

end-do

if(RvWfeas = FALSE) then feasible := FALSE; end-if

end-if

! Variable linking constraints

if(feasible = true) then

Linkfeas := TRUE

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | e in emps_changed or (e = "

AGENCY" and r in ag_roles_changed)) do

if(cur_allocate(e,r,t) = 0) then

if(chng_allocate("eval",e,r,t) <> allocate_sol("eval",e,r,t)) then

Linkfeas := FALSE

writeln("\tINFEASIBILITY detected - Link of allocate variables (",e,",",r,",",t

,")")

end-if

else

if(chng_allocate("eval",e,r,t) <> cur_allocate(e,r,t) - allocate_sol("eval",e,r,t

)) then

Linkfeas := FALSE

writeln("\tINFEASIBILITY detected - Link of allocate variables (",e,",",r,",",t

,")")

end-if

end-if

end-do

forall(e in emps_changed, v in VESSELS, t in TIME) do

if(cur_board(e,v,t) = 0) then

if(chng_board("eval",e,v,t) <> board_sol("eval",e,v,t)) then

Linkfeas := FALSE

writeln("\tINFEASIBILITY detected - Link of board variables (",e,",",v,",",t,")")

end-if

else

if(chng_board("eval",e,v,t) <> cur_board(e,v,t) - board_sol("eval",e,v,t)) then

Linkfeas := FALSE

writeln("\tINFEASIBILITY detected - Link of board variables (",e,",",v,",",t,")")

end-if

end-if

end-do

forall(e in emps_changed, v in VESSELS, t in TIME) do

1089

if(cur_depart(e,v,t) = 0) then

if(chng_depart("eval",e,v,t) <> depart_sol("eval",e,v,t)) then

Linkfeas := FALSE

writeln("\tINFEASIBILITY detected - Link of depart variables (",e,",",v,",",t,")

")

end-if

else

if(chng_depart("eval",e,v,t) <> cur_depart(e,v,t) - depart_sol("eval",e,v,t))

then

Linkfeas := FALSE

writeln("\tINFEASIBILITY detected - Link of depart variables (",e,",",v,",",t,")

")

end-if

end-if

end-do

forall(r in ag_roles_changed, t in TIME) do

if(cur_ag_rboard(r,t) = 0) then

if(chng_ag_rboard("eval",r,t) <> ag_rboard_sol("eval",r,t)) then

Linkfeas := FALSE

writeln("\tINFEASIBILITY detected - Link of AG board variables (",r,",",t,")")

end-if

else

if(chng_ag_rboard("eval",r,t) <> cur_ag_rboard(r,t) - ag_rboard_sol("eval",r,t))

then

Linkfeas := FALSE

writeln("\tINFEASIBILITY detected - Link of AG board variables (",r,",",t,")")

end-if

end-if

end-do

forall(r in ag_roles_changed, t in TIME) do

if(cur_ag_rdepart(r,t) = 0) then

if(chng_ag_rdepart("eval",r,t) <> ag_rdepart_sol("eval",r,t)) then

Linkfeas := FALSE

writeln("\tINFEASIBILITY detected - Link of AG depart variables (",r,",",t,")")

end-if

else

if(chng_ag_rdepart("eval",r,t) <> cur_ag_rdepart(r,t) - ag_rdepart_sol("eval",r,t

)) then

Linkfeas := FALSE

writeln("\tINFEASIBILITY detected - Link of AG depart variables (",r,",",t,")")

end-if

end-if

end-do

1090

forall(l in lambda, e in ALL_EMP, r in ALL_ROLES, t in TIME | e in emps_changed

or (e = "AGENCY" and r in ag_roles_changed)) do

if(cur_long_work(l,e,r,t) = 0) then

if(chng_long_work("eval",l,e,r,t) <> long_work_sol("eval",l,e,r,t)) then

Linkfeas := FALSE

writeln("\tINFEASIBILITY detected - Link of long work variables (",l,",",e,",",r

,",",t,")")

end-if

else

if(chng_long_work("eval",l,e,r,t) <> cur_long_work(l,e,r,t) - long_work_sol("eval

",l,e,r,t)) then

Linkfeas := FALSE

writeln("\tINFEASIBILITY detected - Link of long work variables (",l,",",e,",",r

,",",t,")")

end-if

end-if

end-do

forall(e in emps_changed | e in GUARANTEED) do

if(chng_undertime("eval",e) <> undertime_sol("eval",e) - cur_undertime(e)) then

Linkfeas := FALSE

writeln("\tINFEASIBILITY detected - Link of undertime variables (",e,")")

end-if

if(chng_overtime("eval",e) <> overtime_sol("eval",e) - cur_overtime(e)) then

Linkfeas := FALSE

writeln("\tINFEASIBILITY detected - Link of overtime variables (",e,")")

end-if

end-do

if(Linkfeas = FALSE) then feasible := FALSE; end-if

end-if

! Status of variables

if(feasible = true) then

Statfeas := TRUE

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME | e in emps_changed or (e = "

AGENCY" and r in ag_roles_changed)) do

if(allocate_sol("eval",e,r,t) <> 0 and allocate_sol("eval",e,r,t) <> 1) then

Statfeas := FALSE; end-if

if(chng_allocate("eval",e,r,t) <> 0 and chng_allocate("eval",e,r,t) <> 1) then

Statfeas := FALSE; end-if

forall(l in lambda) do

if(long_work_sol("eval",l,e,r,t) <> 0 and long_work_sol("eval",l,e,r,t) <> 1)

then Statfeas := FALSE; end-if

1091

if(chng_long_work("eval",l,e,r,t) <> 0 and chng_long_work("eval",l,e,r,t) <> 1)

then Statfeas := FALSE; end-if

end-do

end-do

forall(e in emps_changed, v in VESSELS, t in TIME) do

if(board_sol("eval",e,v,t) <> 0 and board_sol("eval",e,v,t) <> 1) then Statfeas

:= FALSE; end-if

if(chng_board("eval",e,v,t) <> 0 and chng_board("eval",e,v,t) <> 1) then Statfeas

:= FALSE; end-if

if(depart_sol("eval",e,v,t) <> 0 and depart_sol("eval",e,v,t) <> 1) then Statfeas

:= FALSE; end-if

if(chng_depart("eval",e,v,t) <> 0 and chng_depart("eval",e,v,t) <> 1) then

Statfeas := FALSE; end-if

end-do

forall(r in ag_roles_changed, t in TIME) do

if(ag_rboard_sol("eval",r,t) <> 0 and ag_rboard_sol("eval",r,t) <> 1) then

Statfeas := FALSE; end-if

if(chng_ag_rboard("eval",r,t) <> 0 and chng_ag_rboard("eval",r,t) <> 1) then

Statfeas := FALSE; end-if

if(chng_ag_rdepart("eval",r,t) <> 0 and chng_ag_rdepart("eval",r,t) <> 1) then

Statfeas := FALSE; end-if

if(ag_rdepart_sol("eval",r,t) <> 0 and ag_rdepart_sol("eval",r,t) <> 1) then

Statfeas := FALSE; end-if

end-do

forall(e in emps_changed | e in GUARANTEED) do

if(undertime_sol("eval",e) < 0) then Statfeas := FALSE; end-if

if(overtime_sol("eval",e) < 0) then Statfeas := FALSE; end-if

end-do

forall(e in emps_changed, t in TIME) do

if(work_total(e,t) < 0) then Statfeas := FALSE; end-if

if(rest_total(e,t) < 0) then Statfeas := FALSE; end-if

end-do

if(Statfeas = FALSE) then

writeln("\tINFEASIBILITY detected - status of variables (unspecified)")

feasible := FALSE

end-if

end-if

if(feasible = FALSE) then

writeln("Error detected - the solution evaluated is infeasible")

! no_infeas := no_infeas +1

else

1092

writeln("(Suggested solution is feasible)")

end-if

else

writeln("ERROR - incorrect option selected for evaluation")

end-if

end-procedure

!--

!--

procedure sort_employee_list

forall(e in REG_EMP) emp_order_number(e) := random

emp_ordered_list := []

emp_added_set := {}

forall(x in REG_EMP) do

min_no := 1

min_emp := ""

forall(e in REG_EMP | e not in emp_added_set) do

if(emp_order_number(e) < min_no) then

min_no := emp_order_number(e)

min_emp := e

end-if

end-do

emp_ordered_list += [min_emp]

emp_added_set += {min_emp}

end-do

writeln("Employee list sorted as follows: ",emp_ordered_list)

writeln

end-procedure

!--

!--

1093

procedure sort_role_list

forall(r in ALL_ROLES) role_order_number(r) := random

role_ordered_list := []

role_added_set := {}

forall(x in ALL_ROLES) do

min_no := 1

min_role := ""

forall(r in ALL_ROLES | r not in role_added_set) do

if(role_order_number(r) < min_no) then

min_no := role_order_number(r)

min_role := r

end-if

end-do

role_ordered_list += [min_role]

role_added_set += {min_role}

end-do

writeln("Role list sorted as follows: ",role_ordered_list)

writeln

end-procedure

!--

!--

!

! MAIN PROGRAMME

fopen(OUTPUTFILE, F_OUTPUT)

run_starttime := gettime

writeln

initialise

writeln("Calculate cost of solution at start:")

writeln

1094

to_calculate := "initial"

calculate_cost

transfer_sol_from := "initial"

transfer_sol_to := "current"

transfer_solution

initial_feas_check

sort_employee_list

sort_role_list

writeln

writeln("--")

writeln

iteration := 0

while(number_vacant > 0 and iteration <= 20) do

find_vacancies

writeln("--")

writeln("--")

writeln(" END OF ITERATION ",iteration)

writeln("--")

writeln("--")

writeln

iteration := iteration + 1

end-do

! FINAL SOLUTION

writeln

writeln("FINAL SOLUTION IS AS FOLLOWS:")

forall(t in TIME) write("\tWeek ",t)

write("\n")

forall(r in ALL_ROLES) do

write(r)

forall(t in TIME) do

if(required(r,t) = 0) then

write("\t (n/a)")

else

covered := FALSE

forall(e in ALL_EMP) do

if(allocate_sol("current",e,r,t) = 1) then

write("\t",e)

1095

covered := TRUE

end-if

end-do

if(covered = FALSE) then write("\t*TBC*"); end-if

end-if

end-do

write("\n")

end-do

writeln

writeln

writeln("... with crew assigned to roles as follows:")

forall(t in TIME) write("\tWeek ",t)

write("\n")

forall(e in REG_EMP) do

write(e)

forall(t in TIME) do

working := FALSE

forall(r in ALL_ROLES) do

if(allocate_sol("current",e,r,t) = 1) then

write("\t",r)

working := TRUE

end-if

end-do

if(working = FALSE) then

avail := FALSE

forall(r in ALL_ROLES) do

if(eligable(e,r,t) = 1) then avail := TRUE

end-if

end-do

if(avail = FALSE) then write("\t*unav*")

else write("\t")

end-if

end-if

end-do

write("\n")

end-do

writeln

writeln

writeln("And the following assigned to agency:")

agency_used := false

forall(r in ALL_ROLES) do

if(sum(t in TIME) (allocate_sol("current","AGENCY",r,t)) > 0) then

1096

agency_used := true

write("Role ",r," in week(s): ")

forall(t in TIME) do

if(allocate_sol("current","AGENCY",r,t) = 1) then write(t," "); end-if

end-do

write("\n")

end-if

end-do

if(agency_used = false) then writeln("\t(none)"); end-if

writeln

writeln

! ... and check feasibility:

forall(e in REG_EMP) emps_changed += {e}

forall(r in ALL_ROLES) ag_roles_changed += {r}

to_check := "current"

check_feasibility

writeln

writeln("--")

writeln

run_endtime := gettime

final_cost := total_cost("current")

final_changes := total_changes("current")

final_vacant := number_vacant

final_iters := iteration

final_time := run_endtime - run_starttime

if(feasible = true) then final_feasible := "YES"

else final_feasible := "NO"

end-if

forall(e in ALL_EMP, r in ALL_ROLES, t in TIME) final_solution(e,r,t) :=

allocate_sol("current",e,r,t)

writeln("Solution cost: ",final_cost)

writeln("No of changes: ",final_changes)

writeln("No of vacancies: ",final_vacant)

writeln

writeln("No of iterations: ",final_iters)

1097

writeln("Running time: ",final_time)

prog_endtime := gettime

prog_runtime := prog_endtime - prog_starttime

writeln

writeln("Total running time: ",prog_runtime)

fclose(F_OUTPUT)

fopen(SUMMARYFILE, F_APPEND)

write(InstanceName)

write("\t",prog_runtime)

write("\t",final_cost,"\t",final_changes)

write("\t",final_iters,"\t",final_time)

write("\t",final_vacant,"\t",final_feasible)

write("\n")

fclose(F_APPEND)

! Print solution to a solution file, so it can be used as an initial solution for

the heuristic procudure

fopen(SOLUTIONFILE, F_OUTPUT)

writeln("!Solution for ",InstanceName)

writeln("!\tfound using a the Heuristic Initial solution algorithm and")

writeln("!\twritten in representation proposed for carrying out heuristics.")

writeln

writeln("!Feasible for TW? ",final_feasible)

writeln("!Total run time: ",final_time)

writeln("!Solution value: ",final_cost)

writeln

write("!Roles are given in the following order:")

forall(r in ALL_ROLES) write("\t",r)

write("\n")

writeln

write("! Time: ")

forall(r in ALL_ROLES) do

forall(t in TIME) write(t,"\t")

end-do

write("\n")

writeln("heur_init_sol: [")

forall(e in REG_EMP) do

forall(r in ALL_ROLES) do

forall(t in TIME) do

if(allocate_sol("current",e,r,t) > 0.9) then

1098

write("\t1")

else

write("\t0")

end-if

end-do

end-do

write("\n")

end-do

forall(r in ALL_ROLES) do

forall(t in TIME) do

if(allocate_sol("current","AGENCY",r,t) > 0.9) then

write("\t1")

else

write("\t0")

end-if

end-do

end-do

write("]\n")

fclose(F_OUTPUT)

fopen(COLLATEDSOLUTIONS, F_OUTPUT)

writeln("!Solution for ",InstanceName)

writeln("!\tfound using a the Heuristic Initial solution algorithm and")

writeln("!\twritten in representation proposed for carrying out heuristics.")

writeln

writeln("!Feasible for TW? ",final_feasible)

writeln("!Total run time: ",final_time)

writeln("!Solution value: ",final_cost)

writeln

write("!Roles are given in the following order:")

forall(r in ALL_ROLES) write("\t",r)

write("\n")

writeln

write("! Time: ")

forall(r in ALL_ROLES) do

forall(t in TIME) write(t,"\t")

end-do

write("\n")

writeln("heur_init_sol: [")

forall(e in REG_EMP) do

forall(r in ALL_ROLES) do

forall(t in TIME) do

1099

if(allocate_sol("current",e,r,t) > 0.9) then

write("\t1")

else

write("\t0")

end-if

end-do

end-do

write("\n")

end-do

forall(r in ALL_ROLES) do

forall(t in TIME) do

if(allocate_sol("current","AGENCY",r,t) > 0.9) then

write("\t1")

else

write("\t0")

end-if

end-do

end-do

write("]\n")

fclose(F_OUTPUT)

end-model

1100

