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Abstract 

 

Vortex-induced vibration (VIV) of cylindrical structures is a classical topic within 

fluid-structure interaction (FSI). In offshore engineering, it often causes the fatigue 

of slender structures, such as risers, mooring lines and pipelines. Detailed 

understanding of this FSI phenomenon and an efficient prediction of such self-

excited and self-sustained oscillations are required for the reliable estimation of the 

fatigue damage and the development of VIV suppression techniques. 

 

Over the past few decades, VIV has been extensively studied and the majority of the 

existing publications in the literature are experiments or semi-empirical modelling. In 

contrast, FSI simulations by combining high-fidelity computational fluid dynamics 

(CFD) and computational structural dynamics (CSD) solvers have received less 

attention. The main objective of this thesis is to investigate VIV of elastically 

mounted rigid cylinders and flexible cylinders using fully three-dimensional (3D) 

FSI simulations. Apart from important VIV aspects, such as response amplitude, 

response frequency and fatigue damage etc., the present research is also focussed on 

the aspects which have not been fully addressed by previous studies such as 

correlation lengths and time-dependent 3D flow structures. 

 

Two-degree-of-freedom (2DOF) VIV of an elastically mounted circular cylinder 

with varying in-line (IL) to cross-flow (CF) natural frequency ratios (f* = fnx/fny) is 

first studied using a 3D CFD approach. Numerical simulation is carried out for a 

constant mass ratio m* = 2 at a fixed Reynolds number Re = 500. The reduced 

velocity Vr ranges from 2 to 12. Three natural frequency ratios are considered, i.e., f* 

= 1, 1.5 and 2. The structural damping is set to zero to maximise the response of the 

cylinder. The main objective of the first study is to investigate the effect of f* on the 

2DOF VIV responses and the 3D characteristics of the flow. It is discovered that 

there is a significant increase in the vibration amplitude and the peak amplitude shifts 

to a higher reduced velocity when f* increases from 1 to 2. A single-peak cross-flow 

response is observed for the identical in-line and cross-flow mass ratios when f* = 2. 

Dual resonance is found to exist over the range of f* studied. The preferable 
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trajectories of the cylinder in the lock-in range are counterclockwise figure-eight 

orbits, whereas clockwise orbits primarily occur in the initial branch. The number of 

clockwise orbits decreases as f* increases from 1 to 2. Oblique figure-eight 

trajectories appear at Vr = 6, 7 and 8 when f* = 1. The third harmonic component 

which is observed in the lift fluctuation increases with f*. The correlation decreases 

in the lock-in range and reaches its minimum value around the transition region 

between the lock-in and post-lock-in ranges. Three vortex shedding modes (2S, P + S 

and 2P) appear in the present simulation. A dominant P + S mode is associated with 

the oblique figure-eight trajectories. Variation of vortex shedding flows along the 

cylinder is observed leading to the poor correlation of the sectional lift forces. 

 

Then, a numerical investigation of VIV of a vertical riser subject to uniform and 

linearly sheared currents is presented. The model vertical riser tested at the 

MARINTEK by ExxonMobil is considered. The predicted numerical results are in 

good agreement with the experimental data. It is found that the dominant mode 

numbers, the maximum root mean square amplitudes, the dominant frequencies and 

the fatigue damage indices increase with the flow velocity. Dual resonance is found 

to occur at most of the locations along the riser. At some locations along the riser, a 

third harmonic frequency component is observed in the CF response and a frequency 

component at the CF response frequency is found in the IL response apart from the 

frequency component at twice the CF response frequency. The majority of the vortex 

shedding shows a clear 2S pattern, whereas a 2P mode is observed near the position 

where the maximum vibration amplitude appears. The higher IL fatigue damage in 

the second study emphasises the importance of the IL fatigue damage analysis 

especially in the design of low flow velocity or low mode number applications. 

 

The third study is on VIV of two tandem flexible cylinders at different spacing ratios 

(Sx/D) at a fixed Reynolds number Re = 500 using a two-way FSI method. The main 

objective is to investigate the effect of spacing on the hydrodynamic interactions and 

the VIV responses of these cylinders. It is found that the responses of the two tandem 

flexible cylinders are similar to the classical VIV responses when Sx/D is small. Once 

Sx/D is large enough for the vortices to be completely detached from the upstream 
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cylinder, the response of the upstream cylinder is similar to the typical VIV response 

whereas the downstream cylinder undergoes wake-induced vibration (WIV). The 

characteristics of the response of the downstream cylinder in the present study are 

similar to those of the first two response regimes. The third response regime is not 

observed for the flexible downstream cylinder with both ends fixed. The two changes 

in the phase relation between the cross-flow displacements of the two tandem 

flexible cylinders are discovered to be linked with the initial-upper branch transition 

and the upper-lower branch transition, respectively. The correlation lengths of the 

two tandem flexible cylinders decrease significantly in the transition range between 

the upper and lower branches. Three vortex shedding modes (2S, P + S and 2P) have 

been identified in the present study. It is found that the upper-branch 2P mode is 

associated with large-amplitude vibration of the upstream cylinder and the P + S 

mode is related to large-amplitude vibration of the downstream cylinder for Sx/D = 

3.5 and 5. On the other hand, the lower-branch 2P mode leads to small-amplitude 

vibration of the downstream cylinder in the post-lock-in range at Sx/D = 2.5. The 

relative phase shifts of the sectional lift coefficients on different spanwise cross 

sections can be attributed to the variation of the vortex shedding flow along the 

flexible cylinders and these phase shifts result in poor phasing between the forces 

and the displacements which is related to the decrease of the correlation lengths. 
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Chapter 1 Introduction 

 

“A journey of a thousand miles begins with a single step.” 

- Lao Tzu 

 

1.1 Background 

 

1.1.1 Deep-Sea Carbon Dioxide Sequestration 

 

One of the most pressing technical and economic challenges of our time is how to 

supply the world with sufficient energy for its economic growth without affecting the 

Earth’s climate. If fossil fuels remain the dominant energy source of the 21st century, 

then stabilising the concentration of atmospheric carbon dioxide (CO2) will require 

developing the capability to capture CO2 from the combustion of fossil fuels and 

store it safely away from the atmosphere (Lackner, 2002). 

 

It has been shown that deep-sea sediments might be able to provide a virtually 

unlimited and permanent reservoir for CO2 captured from fossil fuel combustion 

(House et al., 2006). When CO2 is injected below the ocean floor at an ocean depth 

larger than 3000 m, the high pressure and low temperature will keep it below a layer 

of more buoyant pore fluid. Hydrate formation will also impede the upward flow of 

CO2 as it cools along the geothermal gradient. The unique environmental conditions 

make the deep-sea sediments perfect for CO2 sequestration. 

 

Two solutions have been proposed for deep-sea CO2 sequestration. Ozaki et al. 

(2013) proposed shuttle-type shipping and operation for CO2 injection from the ship 

to the well (Fig. 1.1(a)). Another solution was proposed by Shell UK Limited and 

SSE Generation Limited (Spence et al., 2014). As shown in Fig. 1.1(b), they are 

going to deliver the world’s first full-scale carbon capture and storage (CCS) project 

in Scotland. The CO2 emissions from Peterhead Power station will be transported by 

existing and newly-built pipelines to the depleted Goldeneye platform and the CO2 

will be injected through the existing production riser into the depleted gas reservoir. 
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(a) 

 

(b) 

Fig. 1.1 Solutions to deep-sea CO2 sequestration: (a) conceptual view of proposed ship-based CCS 

featuring shuttle ship equipped with injection facilities (Ozaki et al., 2013) and (b) CO2 injection in 

depleted gas field (Pershad and Slater, 2007). 

 

In either method, CO2 needs to be transported through flexible riser pipes. These 

riser pipes usually have lengths ranging from several hundred metres to several 

thousand metres. One of their key features is the large length-to-diameter ratio (L/D). 

Furthermore, the pipes used for CO2 transport are often made of lightweight, high-
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elasticity composite materials. From fluid-structure interaction (FSI) point of view, 

they suffer from larger lock-in ranges, which makes these pipes more vulnerable to 

vortex-induced vibration (VIV). 

 

 

Fig. 1.2 Worldwide progression of water depth capabilities for offshore drilling and production 

(Barton et al., 2015). 

 

 

Fig. 1.3 Deepwater system types (Barton et al., 2015). 

 

1.1.2 Deepwater Oil/Gas Exploitation 

 

The last decades have been marked by a considerable development of offshore oil 

and gas activities. Because of an increasing energy demand and technological 

innovations, drilling activities extended and moved into deep and ultra-deep water 

areas. In convention, deepwater is defined as water depths greater than or equal to 

1000 feet (305 m) and ultra-deep water is defined as water depths greater than or 

equal to 5000 feet (1524 m). Fig. 1.2 shows the progression of water depth 

capabilities for offshore drilling and production (Barton et al., 2015). It can be seen 
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that during the past few decades, the water depth has increased dramatically from 

several hundred metres in the 1970s to more than 3000 m in 2015. There are seven 

different types of drilling rigs currently in use offshore around the world.  

 

1. Fixed platforms: Fixed platforms consist a tall, steel structure that supports a 

deck with space for drilling rigs, production facilities and crew quarters. They 

are anchored to the seabed. The maximum water depth they can drill to is 

about 520 m. 

 

2. Jack-up rigs: Jack-up rigs can be moved around, and the legs are then 

lowered to the seabed and locked into place. They can only be placed in 

relatively shallow waters with water depths less than 200 m. 

 

3. Compliant-tower rigs: Compliant-tower rigs are very similar to fixed 

platforms. Both types are anchored to the seabed with work places above the 

water surface. However, the compliant-tower rigs are taller and narrower, and 

can operate up to 1000 m below the water surface. 

 

4. Floating production systems: Floating production systems are the most 

common rigs used in the Gulf of Mexico. These rigs are buoyant with the 

bulks of them floating above the water surface. They can operate anywhere 

from 200 to 2000 m below the water surface. 

 

5. Tension-leg platforms: Tension-leg platforms consist of a floating structure, 

held in place by tendons that run down to the seabed. These rigs can drill 

anywhere from 200 to 1200 m below the water surface. 

 

6. Subsea systems: Subsea systems are actually wellheads, which sit on the 

seabed and extract oil straight from the ground.  
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7. Spar platforms: Spar platforms use a large cylinder to support the deck. Most 

spar platforms are used up to water depths of 1000 m, but new technology 

can extend them to function up to 3500 m. 

 

Schematics of different types of deepwater systems are given in Fig. 1.3 with jack-up 

rigs being excluded due to the fact that they are usually operated in relatively shallow 

waters. 

 

 

Fig. 1.4 Different categories of riser systems (Brany et al., 2015). 

 

 

(a) (b) (c) (d) (e) (f) 

Fig. 1.5 Commonly used riser configurations: (a) top tension risers and steel catenary risers, (b) top 

tension risers, (c) steel lazy wave riser, (d) hybrid steel catenary, belly wave, and lazy wave risers, (e) 

flexible risers with disconnectable turret, and (f) free standing hybrid riser (Brany et al., 2015). 

 

One of the key components of deepwater oil and gas exploitation is the riser system. 

A riser system is essentially conductor pipes connecting floaters on the surface and 

the wellheads at the seabed. Two kinds of subsea production systems are used in 
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deepwater fields, i.e., dry tree systems and wet tree systems. In dry tree systems, 

trees are located on or close to the platform, whereas wet trees can be anywhere in a 

field in terms of cluster, template, or tie-back methods. Different categories of the 

riser systems are summarised in Fig. 1.4. Fig. 1.5 shows some commonly used riser 

configurations in offshore drilling and production. Similar to the flexible riser pipes 

used in CO2 sequestration, the drilling/production risers often possess large L/D 

although metallic pipes with larger diameters are tended to be used in deepwater 

oil/gas exploitation operations. Nevertheless, VIV is one of the major design issues 

for all deepwater riser systems. 

 

1.2 Objectives of the Thesis 

 

VIV of cylindrical structures has been extensively studied by various researchers 

over the past few decades. Comprehensive reviews can be found in Blevins (1977), 

Williamson and Govardhan (2004), Gabbai and Benaroya (2005), Sumer and 

Fredsøe (2006), Bearman (2011), Wu et al. (2012), Païdoussis et al. (2014) and 

Triantafyllou et al. (2016). The majority of the existing publications on VIV are 

experiments or semi-empirical modelling. Previous computational fluid dynamics 

(CFD) studies on VIV are mainly two-dimensional (2D). Three-dimensional (3D) 

FSI simulations of VIV of cylindrical structures are still quite limited. Therefore, the 

main objectives of this thesis are to develop 3D numerical models for FSI simulation 

of rigid and flexible structures and use the developed models to investigate VIV of 

cylindrical structures. Apart from the important aspects of the VIV phenomenon, the 

present research is focussed on the aspects which have not been fully addressed by 

previous studies such as the correlations and the 3D wake structures. 3D FSI 

simulations can provide more comprehensive force measurements than experiments 

and semi-empirical modelling. Furthermore, the flow visualisation techniques make 

it possible to analyse the time dependent 3D wake structures which are difficult to 

obtain and so far to date, have not been measured in experiments. Therefore, it is 

expected that the 3D modelling in this thesis could provide more detailed insights 

into the mechanism of VIV of rigid and flexible cylinders. 
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Owing to the complexity of the vortex hydrodynamics, the intrinsic mechanism of 

the structure, the overall elasto-hydro nonlinearities and the influence of several 

mechanical/physical parameters, modelling VIV remains a challenging theme and 

there are many topics worth investigating. Of course, it is impossible for one single 

thesis to cover every aspect within the scope of the VIV phenomenon, but efforts 

have been made to select the topics with both theoretical and practical significance. 

Among the various different topics, the following three are selected for research in 

the present thesis. 

 

 In the first study, 3D numerical simulation of two-degree-of freedom (2DOF) 

VIV of an elastically mounted circular cylinder is conducted with the purpose 

of investigating the effect of the natural frequency ratio on the 2DOF VIV 

response and the 3D flow structures of a rigid cylinder. 

 

 The 3D numerical simulation of VIV of a vertical riser in the second study is 

mainly focussed on the effect of incoming flow conditions on the VIV 

response of the riser and addressing the importance of in-line fatigue damage 

in low flow velocity or low mode number applications. 

 

 The third study is a 3D numerical investigation of VIV of two flexible 

circular cylinders in tandem arrangement at different spacing ratios. The main 

objective is to numerically study the effect of spacing on the hydrodynamic 

interactions and VIV responses of the two flexible cylinders arranged in 

tandem. 

 

1.3 An Outline of the Thesis 

 

This thesis can be seen as seven chapters assembled logically to meet the objectives 

defined in Section 1.2 and the outline of the thesis is as follows. The background of 

the research on VIV of cylindrical structures and the objectives of the thesis are 

provided in Chapter 1.  The intrinsic nature of flow past stationary cylinders and the 

fundamental mechanisms of the VIV phenomenon together with previous studies on 
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topics relevant to this thesis are reviewed in Chapter 2. Chapter 3 outlines the 

detailed numerical methods for FSI simulation of VIV of rigid and flexible 

cylindrical structures. Chapter 4 to Chapter 6 form the core of the thesis. A three-

dimensional numerical simulation of 2DOF VIV of a circular cylinder with varying 

natural frequency ratios is given in Chapter 4. In Chapter 5, a large eddy simulation 

of VIV of a vertical riser in uniform and linearly sheared currents is presented. The 

effect of spacing on the VIV of two tandem flexible cylinders is investigated in 

Chapter 6 and this thesis is concluded in Chapter 7. 
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Chapter 2 Critical Review 

 

“Study the past, if you would divine the future.” 

-Confucius 

 

2.1 Flow around Stationary Cylinders 

 

2.1.1 Flow around a Stationary Cylinder  

 

2.1.1.1 Flow Separation and Mechanism of Vortex Shedding 

 

When fluid flow approaches a bluff cylinder, due to the high stagnation pressure at 

its leading edge, the developing boundary layer is impelled about both sides of the 

cylinder. Depending on the Reynolds number, which is defined as 

 Re
VD


   (2.1) 

where D is the diameter of the cylinder, V is the freestream velocity and ν is the 

kinematic viscosity of the fluid, the flow around the cylinder can be classified into 

different regimes. Fig. 2.1 summarises different flow regimes around a smooth 

circular cylinder (Sumer and Fredsøe, 2006). When Re < 5, the flow attaches to the 

cylinder surface and no separation occurs. With the increase of Re, due to the 

adverse pressure gradients imposed by the divergent geometry of the flow 

environment, the pressure forces gradually become insufficient to force the boundary 

layers around the back side of the cylinder. Then, the boundary layers separate from 

each side of the cylinder surface and form two free shear layers in the wake. The 

separation first appears when Re becomes 5. A sketch of flow separation is shown in 

Fig. 2.2.  

 

For the range of 5 < Re < 40, a pair of symmetric vortices forms in the wake of the 

cylinder. With a further increase of Re, the two symmetric vortices become unstable 

as the result of the small disturbances. Consequently, one vortex will grow larger 

than the other if Re > 40. As shown in Fig. 2.3, when the larger vortex (Vortex A) 
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becomes strong enough, it will draw the opposing vortex (Vortex B) across the wake. 

The approach of vorticity of the opposite sign will cut off the supply of vorticity of 

Vortex A from its boundary layer and this is the instant where Vortex A is shed. 

Upon shedding of Vortex A, it becomes a free vortex and is then convected 

downstream by the flow. 

 

(a) 

 

No separation. 

Creeping flow 
Re < 5 

(b) 

 

A fixed pair of  

symmetric vortices 
5 < Re < 40 

(c) 

 

Laminar vortex street 40 < Re < 200 

(d) 

 

Transition to turbulence in the wake 200 < Re < 300 

(e) 

 

Wake completely turbulent. 

A: Laminar boundary layer separation 

300 < Re < 3  105 

Subcritical 

(f) 

 

A: Laminar boundary layer separation 

B: Turbulent boundary layer separation; 

but boundary layer laminar 

3  105 < Re < 3.5  105 

Critical (Lower Transition) 

(g) 

 

B: Turbulent boundary layer separation; 

the boundary layer partly laminar partly 

turbulent 

3.5  105 < Re < 1.5  106 

Supercritical 

(h) 

 

C: Boundary layer completely turbulent 

at one side 

1.5  106 < Re < 4  106 

Upper transition 

(i) 

 

C: Boundary layer completely turbulent 

at two sides 

Re > 4  106 

Transcritical 

Fig. 2.1 Regimes of flow around a smooth circular cylinder (Sumer and Fredsøe, 2006). 
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Fig. 2.2 A sketch of flow separation (Sumer and Fredsøe, 2006). 

 

 
 

(a) (b) 

Fig. 2.3 Mechanism of vortex shedding (Sumer and Fredsøe, 2006). 

 

Following the shedding of Vortex A, a new vortex will be formed on the same side 

of the cylinder, namely Vortex C as shown in Fig. 2.3(b). Vortex B will now play the 

same role as Vortex A, resulting in the detachment and the shedding of Vortex B. In 

this continuous manner, the vortices are shed alternatively from either side of the 

cylinder at a certain frequency. Consequently, the wake has an appearance of a 

vortex street as shown in Fig. 2.4. The frequency at which the alternative vortices are 

shed, fv can be normalised with the flow velocity V and the cylinder diameter D to 

form the so-called Strouhal number. 

 St vf D

V
   (2.2) 

 

2.1.1.2 Flow Regimes and the Strouhal Number 

 

Since the flow around a smooth cylinder is governed by Re, St can on dimensional 

grounds be seen  to be  a  function of Re. Fig. 2.5 presents the variation of St with Re.  
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Fig. 2.4 Vortex street behind a circular cylinder at Re = 150. 

 

The report of St starts from Re = 40. As it is illustrated in Fig. 2.1(a) and (b), for Re 

< 40, the vortices are attached to the cylinder and there is no vortex shedding. For 40 

< Re < 200, the vortex street is laminar and the vortex shedding is essentially 2D. In 

this range, St increases linearly with Re. The transition in the wake region occurs 

when 200 < Re < 300. Two discontinuities are observed in St in the experimental 

data by Williamson (1992). The dislocation of the vortices leads to the first 

discontinuity as the flow changes from 2D to Mode A (see Fig. 2.6(a)). The second 

discontinuity occurs as the flow transits from Mode A to Mode B as illustrated in Fig. 

2.6(b). For 300 < Re < 3  105, the wake is completely turbulent whereas the 

boundary layer over the cylinder surface remains laminar. This regime is known as 

the subcritical flow regime where St is almost constant at St ≈ 0.2. With a further 

increase of Re, the flow enters the critical regime (3  105 < Re < 3.5  105). In the 

critical regime, the boundary layer separation is turbulent on one side of the cylinder 

and laminar on the other side. The next flow regime is the so-called supercritical 

flow regime where 3.5  105 < Re < 1.5  106. In this regime, the boundary layer on 

both sides of the cylinder is turbulent at the separation points. This results in a delay 

in the boundary-layer separation where the separation points move downstream. This 

means the vortices would interact at a faster rate. Therefore, a dramatic increase of St 

from 0.2 to 0.45 is seen in this regime. The Strouhal number experiences another 

discontinuity when Re reaches the value of 1.5  106. At this Re, transition to 

turbulence in one of the boundary layers has been completed (Fig. 2.1(h)). The 

boundary layer on one side of the cylinder is completely turbulent and that on the 

other side is partly laminar and partly turbulent. The asymmetric situation causes the 

formation of the lee-wake vortices and it prevails over the whole upper transition 



14 

 

regime (1.5  106 < Re < 4  106). The regular vortex shedding is re-established in 

the transcritical flow regime where St takes the value of 0.25 – 0.3. 

 

 

Fig. 2.5 Strouhal number for a smooth cylinder: : (Williamson, 1989), ---: (Roshko, 1961), and ●: 

(Schewe, 1983). 

 

  

(a) (b) 

Fig. 2.6 Mode A and B three-dimensional vortex shedding. (a) Mode A represents the inception of 

streamwise vortex loops and (b) Mode B represents the formation of finer-scale streamwise vortex 

pairs (Williamson, 1992). 

 

2.1.1.3 Hydrodynamic Forces 
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Fig. 2.7 shows the pressure distributions in one vortex shedding cycle at Re = 150 

obtained from CFD simulation. Fig. 2.8 depicts the time histories of the 

hydrodynamic force coefficients corresponding to the same simulation. 

 

The uneven and asymmetric pressure distributions between the front and back sides 

of the cylinder along with the friction effects of viscosity result in a mean drag force 

(FDmean). On the other hand, the alternatively shed vortices lead to a periodically 

changing pressure field and cause the oscillating drag and lift forces (F’
D and F’

L). 

The mean drag coefficient (CDmean) and the oscillating drag and lift coefficients (C’
D 

and C’
L) are defined as follows. 
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where ρ is the fluid density and L is the length of the cylinder. 

 

  

t = 0 t = 0.25T 

  

t = 0.5T t = 0.75T 

Fig. 2.7 Pressure distributions in one vortex shedding cycle at Re = 150. 

 

Fig. 2.9 shows the variation of CDmean and the root mean square (rms) values of 

oscillating drag and lift coefficients (CDrms and CLrms) with Re. It can be seen that 
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CDmean decreases monotonously with Re until Re reaches the value of about 300. 

However, from this Re onwards, CDmean reaches a constant value of approximately 

1.2 and it nearly remains constant in the subcritical range. When Re increases to the 

value 3  105, a dramatic change occurs in CDmean with its value decreasing abruptly. 

This phenomenon is called the drag crisis. In this regime, the laminar boundary layer 

separates near the shoulder of the cylinder. The separated shear layer undergoes 

transition to a turbulent state and reattaches to the surface of the cylinder, leading to 

the formation of a laminar separation bubble (LSB). The reattached turbulent 

boundary layer separates further downstream. As a result, the wake is narrower and 

base suction pressure higher, leading to the drag crisis. CDmean increases as the flow 

regime is changed from the supercritical to upper-transition and then attains a 

constant value of about 0.5 as Re is further increased to transcritical values (namely 

Re > 4.5  106). The fluctuating drag and lift coefficients are very low in the 

supercritical range due to the large separation angles.  

 

 

Fig. 2.8 Time histories of the drag and lift coefficients at Re = 150. 

 

2.1.2 Flow around Two Stationary Cylinders in Tandem Arrangement 

 

2.1.2.1 Flow Patterns 

 

Compared to the flow around a single circular cylinder, the flow around multiple-

cylinder configurations is less well studied and understood due to the fact that it 

involves complex interactions between the shear layers, vortices, wakes and Kármán 

vortex streets. One of the idealised arrangements of the cylinders which have 



17 

 

received the most study is the tandem configuration as shown in Fig. 2.10. An 

additional geometric parameter, the centre-to-centre spacing between the two tandem 

cylinders Sx is introduced to describe the system. The spacing is usually expressed in 

nondimensional form as the spacing ratio Sx/D. 

 

 

Fig. 2.9 Variation of the mean drag coefficient and rms values of fluctuating drag and lift coefficients 

(Sumer and Fredsøe, 2006). 

 

 

Fig. 2.10 A sketch of two stationary cylinders in tandem arrangement. 

 

The pioneering studies on the classification of the flow patterns around two tandem 

stationary cylinders by Igarashi (1981, 1984) identified eight different flow patterns 

as shown in Fig. 2.11(a). Igarashi’s map of the flow patterns in Re – Sx/D space is 

shown in Fig. 2.11(b). Following the approach of Zdravkovich (1987), the flow 

patterns in Fig. 2.11 can be subdivided into three basic types of wake interference 

behaviours. When the two cylinders are placed in very close proximity, the two 

cylinders behave as a single body. The separated shear layers from the upstream 

cylinder wrap around the downstream cylinder without reattaching onto its surface 

and form a single Kármán vortex street in the wake. This regime is referred to as the 
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“extended-body regime” by Xu and Zhou (2004) and Zhou and Yiu (2006). At 

intermediate Sx/D, the separated shear layers from the upstream cylinder reattach 

onto the surface of the downstream cylinder. When the spacing between the 

cylinders increases beyond a critical spacing (Sx/D)cr, vortex shedding occurs in the 

gap region between the two cylinders so that the wake behind the cylinders is a 

combination of the wakes of the two cylinders. This regime is termed as the “binary 

vortex regime” by Papaioannou (2004) or “co-shedding regime” by Xu and Zhou 

(2004) and Zhou and Yiu (2006). 

 

A 
 

B 
 

C 
 

D 
 

E 

 

F 
 

(a) 

 

(b) 

Fig. 2.11 (a) Classification of flow patterns for two tandem circular cylinders and (b) map of flow 

patterns in the Re – Sx/D space (Igarashi, 1981).  

 

2.1.2.2 Reynolds number effects 

 

The critical spacing is particularly sensitive to Re, and from the various studies in the 

literature, its value varies from 3 to 5. It is noted that the critical spacing ratio 

behaviour closely follows the Reynolds number sensitivity of the vortex formation 

length (Fig. 2.12) (Ljungkrona and Sundén, 1993). Also contributing to the Reynolds 
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number effects is the behaviour of the shear layers from the upstream cylinder and 

the development of shear layer instability (Kelvin – Helmholtz) vortices (Lin et al., 

2002). Within the reattachment regime, the small-scale shear-layer instability 

vortices buffet the surface of the downstream cylinder. From Fig. 2.11 and Fig. 2.12, 

the trend in the experimental data is towards a larger critical spacing ratio at low Re. 

 

 

Fig. 2.12 Reynolds number sensitivity of the vortex formation length lf/D for a single circular cylinder 

and the critical spacing ratio (Ljungkrona and Sundén, 1993). 

 

 

Fig. 2.13 Strouhal number data for two tandem stationary cylinders as a function of spacing ratio: ○, 

Re = 1.2  103; □, Re = 2.9  103; , Re = 7  103; , Re = 4.2  104; solid line, Re = 2.2  104 (Xu 

and Zhou, 2004). 

 

2.1.2.3 Strouhal Number  

 

The most extensive set of Strouhal number data for two tandem stationary cylinders 

is that of Xu and Zhou (2004), for a wide range of Re (Re = 800 – 4.2  104) and 
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spacing ratios (Sx/D = 1 – 15). The relationship between St and spacing ratio is 

shown in Fig. 2.13.  

 

When the cylinders behave as a single bluff body at small Sx/D, St is initially higher 

than the single-cylinder value but decreases rapidly with increasing Sx/D. The higher 

shedding frequency for the extended-body regime is a reflection of the shorter vortex 

formation length when the cylinders are placed very close together (Zdravkovich, 

1977). At the boundary between the extended-body and reattachment regimes (e.g., 

Pattern G shown in Fig. 2.11(b)), two dominant frequencies (Strouhal numbers) may 

be found (Igarashi, 1981, 1984; Ljungkrona et al., 1991). A slower decrease of St 

occurs during the reattachment regime as Sx/D increases, and St becomes lower than 

the value for a single cylinder. The lower shedding frequency reflects a “stabilisation” 

of the flow field by the presence of the downstream cylinder.  

 

 

Fig. 2.14 Mean drag coefficient data for two tandem stationary cylinders in cross-flow as function of 

spacing ratio: ○, upstream cylinder, Re = 6.5  104 (Alam et al., 2003); ○, downstream cylinder, Re = 

6.5  104 (Alam et al., 2003); □, upstream cylinder (Biermann and Herrnstein, 1934); □, downstream 

cylinder (Biermann and Herrnstein, 1934); , downstream cylinder (Zdravkovich and Pridden, 1977).  

 

A discontinuous jump in St occurs at critical spacing, as St suddenly increases from a 

low value to a high value. The existence of bistable flow patterns at the boundary 

between the reattachment and binary vortex regimes (e.g., Patterns E and E’ shown 

in Fig. 2.11(b)) means that over a small range of spacing ratio two dominant 

frequencies are found. Within the binary vortex regime, the same St value is 
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measured behind both cylinders and the value of St slowly increases and approaches 

the single-cylinder value as Sx/D increases.  

 

2.1.2.4 Hydrodynamic Forces 

 

The complexity of CDmean for the upstream and downstream cylinders is shown in Fig. 

2.14. For the upstream cylinder, CDmean is typically lower than the single-cylinder 

value in the extended-body and reattachment regimes due to the stabilisation effect 

of the downstream cylinder. There is a slow decrease in CDmean with increasing Sx/D 

until the end of the reattachment regime. After the critical spacing, where the flow 

suddenly transitions to the binary vortex regime, CDmean jumps to a higher value close 

to that of a single cylinder.  

 

 

Fig. 2.15 Definition sketch for cross-flow vibrations. 

 

In the extended-body and reattachment regimes, CDmean of the downstream cylinder 

is negative (and may reach zero drag at a given value of Sx/D, depending on Re) 

indicating this cylinder experiences a thrust force. A discontinuous jump from a 

small negative CDmean to a larger positive value occurs as the flow jumps from 

reattachment regime to the binary vortex regime. At increasingly large spacing ratios, 

CDmean values for the cylinder will eventually approach the single-cylinder value. 

Since CDmean of the downstream cylinder is for the most part negative when Sx/D < 

(Sx/D)cr, and positive for Sx/D > (Sx/D)cr, the critical spacing has also been termed the 

‘drag inversion’ spacing (Carmo et al., 2010a, b). 
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2.2 Vortex-Induced Vibration of Cylinders 

 

As discussed in the previous section, the vortex shedding process gives rise to 

oscillatory drag and lift which, if the cylinder is elastically mounted or flexible, can 

result in VIV.  

 

2.2.1 Nondimensional Variables Influencing One-Degree-of-Freedom VIV 

 

2.2.1.1 Reduced Velocity 

 

In VIV analysis, the freestream velocity V is commonly reported in nondimensional 

form using the natural frequency of the system fn and it is called the reduced velocity 

(Gabbai and Benaroya, 2005). 

 r

n

V
V

f D
   (2.6) 

 

A simple interpretation of Vr would be viewing it as the ratio of the wave length of 

the cylinder trajectory λ to the diameter D if the cylinder is subject to a fluid flow 

with a constant velocity V as illustrated in Fig. 2.15. The wave length of the periodic 

motion of the cylinder will be 

  1/V f   (2.7) 

where f is the oscillation frequency. Therefore, 

 r

V
V

D fD


    (2.8) 

 

It is obvious that Vr plays an extremely important role with respect to the vortex 

motion around the cylinder which would apparently determine the excitation range 

of the vibration.  

 

Fig. 2.16(b) shows the frequency response of an elastically mounted rigid cylinder 

subject to one-degree-of-freedom (1DOF) cross-flow (CF) VIV (Khalak and 
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Williamson, 1997b). When Vr is low, the oscillation frequency (foy) follows the 

stationary-cylinder Strouhal frequency (fv) until it approaches the natural frequency 

of the cylinder. From this point on, with a further increase of Vr, foy deviates from fv 

and the ratio of the oscillation frequency to the natural frequency of the cylinder 

(foy/fny) remains constant. The synchronisation between the oscillation frequency and 

the vortex shedding frequency is known as the lock-in phenomenon and this 

corresponding range of Vr in which the cylinder undergoes large-amplitude vibration 

is referred to as the lock-in range (Williamson and Govardhan, 2004). Beyond the 

lock-in range, foy returns to fv. 

 

  

(a) (b) 

Fig. 2.16 1DOF VIV responses of a cylinder: (a) amplitude response and (b) frequency response. 

 

2.2.1.2 Mass Ratio 

 

The mass ratio of a circular cylinder is given by 

 
*

21

4

m
m

D L

   (2.9) 

where m is the mass of the cylinder. It influences both the amplitude and frequency 

responses. Fig. 2.16(a) shows the amplitude responses of cylinders with a low mass 

ratio m* = 2.4 (Khalak and Williamson, 1997b) and a high mass ratio m* = 248 (Feng, 

1968). It can be seen that the amplitude response changes from two branches to three 

branches as a result of decreasing m* and the additional branch with large-amplitude 

vibration is known as the upper branch. Regarding the frequency response, for high 
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m*, foy/fny remains close to unity (Feng, 1968). However, when m* is low, the cylinder 

oscillates at a distinctly high frequency. In the case of m* = 2.4 in Fig. 2.16, foy/fny = 

1.4. Experimentally, the departure of foy/fny from unity, through the lock-in range was 

shown by Moe and Wu (1990), Khalak and Williamson (1999) and Gharib et al. 

(1998).  

 

Previous studies by Williamson and Govardhan (2004) and Blevins and Coughran 

(2009) revealed that as m* decreases the range of Vr over which there are large-

amplitude vibrations widens. The experimental results of Govardhan and Williamson 

(2002, 2004) showed that in each VIV system there existed a critical mass ratio 

below which the lock-in range would extend to infinity. Fig. 2.17 shows the effect of 

m* on the lock-in range of CF VIV of an elastically mounted rigid cylinder presented 

by Govardhan and Williamson (2000) in which the end of synchronisation yielded a 

good collapse of data onto a single curve fit based on: 

 
end of synchronisation

*

*
9.25

0.54

a
r

m C
V

m





  (2.10) 

where Ca is the potential added mass coefficient assumed to be unity for a circular 

cylinder. Eq. (2.10) indicates the existence of a critical mass ratio m*
cr = 0.54. 

 

 

Fig. 2.17 Effect of m* on the cross-flow VIV of an elastically mounted rigid cylinder (Govardhan and 

Williamson, 2000). 

 

2.2.1.3 Damping Ratio 
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Damping can be interpreted as the energy dissipation from a vibrating system. In 

classic vibration analysis, it is considered to be a force proportional to velocity which 

opposes the motion of the structure. The structural damping coefficient is usually 

denoted by c. Depending on the relation between c and the critical damping 

2crc km , a vibrating system can be classified as under damped, critically damped 

or over damped (c < ccr, c = ccr and c > ccr, respectively). Normalising the damping 

coefficient with 2 km  results in the so-called damping ratio ζ given by 

 
2r

c c

c km
     (2.11) 

 

  

(a) (b) 

 

(c) 

Fig. 2.18 Effect of damping ratio on the cross-flow VIV of a rigid cylinder with m* = 5.4: (a) 

amplitude response, (b) frequency response and (c) mean drag coefficient (Blevins and Coughran, 

2009). 

 

The effect of the damping ratio on VIV has been reported by various researchers 

(Klamo et al., 2006; Williamson and Govardhan, 2004). Blevins and Coughran 
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(2009) examined the effect of damping ratio on the amplitude response, frequency 

response and the mean drag coefficient of a rigid cylinder with m* = 5.4 undergoing 

cross-flow (CF) VIV. As illustrated in Fig. 2.18(a), the increasing ζ leads to lower 

oscillation amplitudes and the variation of ζ can result in the alternation of the 

amplitude response from three branches to two branches. Fig. 2.18(c) shows that the 

mean drag coefficient follows the same trend as the amplitude response, i.e., the 

mean drag coefficient amplifies when the amplitude of VIV oscillation increases. 

 

2.2.2 Nondimensional Variables Influencing Two-Degree-of-Freedom VIV 

 

Since the fundamental mechanism of two-degree-of-freedom (2DOF) VIV is the 

same as that of CF VIV, the same parameters must also control 2DOF VIV. In 

addition to the parameters mentioned in Section 2.2.1, having different natural 

frequencies in the IL and CF directions results in a new parameter known as the 

natural frequency ratio f* which is defined as f* = fnx/fny. The importance of f* stems 

from the following reasons. First, the excitation frequencies in the IL and CF 

directions are not the same. The frequency of the lift force fluctuations is fv and the 

drag force oscillates at a frequency of 2fv. Therefore, the different natural frequency 

ratios lead to simultaneous or non-simultaneous IL and CF resonance conditions. 

Moreover, the real engineering structures can possess multiple frequency ratios. In 

this section, the effects of m*, ζ and f* on 2DOF VIV of a circular cylinder are 

discussed. Based on the conventions in previous studies by Dahl et al. (2006), Dahl 

et al. (2010), Bao et al. (2012) and Srinil et al. (2013), Vr in 2DOF system is defined 

as Vr = V/fnyD. 

 

2.2.2.1 Mass Ratio 

 

In one of the most influential and pioneering studies on 2DOF VIV, Jauvtis and 

Williamson (2004) found that the effect of the in-line (IL) degree of freedom on the 

CF vibration was surprisingly small when m* ≥ 6. In contrast, recent studies revealed 

dramatic changes in the fluid-structure interaction if m* < 6 (Blevins and Coughran, 

2009; Dahl et al., 2006, 2007; Dahl et al., 2010; Jauvtis and Williamson, 2004). The 
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changes include a new amplitude response branch (super-upper branch) characterised 

by a maximum IL vibration amplitude of Axm/D ≈ 0.3 and a maximum CF vibration 

amplitude as large as Aym/D ≈ 1.5 as shown in Fig. 2.19. Jauvtis and Williamson 

(2004) also examined the critical mass ratio for their 2DOF VIV experimental setup. 

Their results showed that for an elastically mounted rigid cylinder free to vibrate in 

both the IL and CF directions, the critical mass ratio is m*
cr = 0.52, which is 

comparable to 0.54 of a 1DOF VIV system by Govardhan and Williamson (2000). 

 

 

Fig. 2.19 Two-degree of freedom VIV response (Jauvtis and Williamson, 2004). 

 

2.2.2.2 Damping Ratio 

 

Apart from the effect of ζ on 1DOF VIV, Blevins and Coughran (2009) also 

investigated the effect of ζ on 2DOF VIV of an elastically mounted rigid cylinder 

with m* = 5.4. The corresponding results are shown in Fig. 2.20. The comparison 

between Fig. 2.18 and Fig. 2.20 shows that higher CF vibration amplitudes are 

attained when the cylinder is free to oscillate in both the IL and CF directions. 

Similar to m*, the effect of the IL degree of freedom becomes predominant as ζ 

decreases. The results also illustrate the excitation of the third IL lock-in range 

coinciding with the CF lock-in range when ζ < 0.02. At very low damping ζ = 0.002, 

the super-upper branch is observed.  

 

2.2.2.3 Natural Frequency Ratio 
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For 2DOF VIV of an elastically mounted rigid cylinder, f* is one of the influential 

physical parameters. The effect of f* on 2DOF VIV was experimentally studied by 

Dahl et al. (2006), Dahl (2008) and Dahl et al. (2010). In their experimental setup, 

the mass ratios in the IL and CF directions were different (i.e., mx
* ≠ my

*). 

 

  

(a) (b) 

  

(c) (d) 

Fig. 2.20 Effect of the damping ratio on the 2DOF VIV of a rigid cylinder with m* = 5.4: (a) IL 

amplitude response, (b) CF amplitude response, (c) CF frequency response and (d) mean drag 

coefficient (Blevins and Coughran, 2009). 

 

Dahl (2008) observed multiple vortex shedding modes accompanied with large third 

harmonics in the lift force. A peak-to-peak IL vibration amplitude of 1.2D was 

reported in his thesis. Dahl et al. (2006) showed a two-peak CF amplitude response 

when f* approached 2, which was also noticed by Sarpkaya (1995). Dahl et al. (2010) 

highlighted different orbital trajectories in the subcritical and supercritical Re ranges 

(1.5  104 < Re < 6  104 and 3.2  105 < Re < 7.1  105) and described the 

occurrence of figure-eight trajectories as a representation of dual resonance. Under 
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dual resonance, the cylinder vibrates at frequencies near the fv in the CF direction and 

2fv in IL direction, respectively. In addition, a large third harmonic component was 

observed in the lift force. 

 

2.2.3 Modes of vortex formation 

 

There has been some debate concerning the vortex formation modes that might be 

associated with the different response branches as outlined in Govardhan and 

Williamson (2000). For the high mass-damping case, there is some flow visualisation 

from Brika and Laneville (1993) to suggest that the initial branch is associated with 

the 2S mode (2 single vortices formed per cycle), while the lower branch comprises 

the 2P mode (2 pairs of vortices formed per cycle).  

 

 

Fig. 2.21 Initial-branch vorticity plots, showing the 2S mode (Govardhan and Williamson, 2000). 

 

The low mass-damping CF VIV study by Govardhan and Williamson (2000) shows 

that the initial branch clearly exhibits the classical 2S vortex formation mode as 

shown in Fig. 2.21. The dynamics of the concentrate regions of vorticity follow a 

pattern similar to what is found in a classical von Kármán vortex street. The upper-

branch sequences in Fig. 2.22 demonstrate quite a different wake mode, which is, in 

essence, a 2P mode. As the body is moving downward, the lower counterclockwise 

vorticity concentration, which forms due to the roll-up of the lower shear layer, is 

deformed and split into two parts. The upper part forms a weak counterclockwise 
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vortex beside the much stronger clockwise vortex, thus forming a vortex pair. A 

similar process of deforming and splitting, for a clockwise vortex, is seen as the body 

moves upwards, forming a second vortex pair in the cycle of motion. However, the 

second vortex of each vortex pair is rapidly weakened by the relatively stronger first 

vortex. The 2P mode of wake formation for the lower branch is shown in Fig. 2.23. 

Again one finds deformation, stretching and splitting of the main vorticity 

concentrations, which lead to the formation of vortex pairs. However, the second 

vortex of each pair is now considerably stronger than the equivalent second vortex in 

the upper-branch 2P mode in Fig. 2.22 with almost equal vortex strength to the first 

vortex in the vortex pair. 

 

 

Fig. 2.22 Upper-branch vorticity plots, showing the 2P mode (Govardhan and Williamson, 2000). 

 

The appearance of the super-upper branch in 2DOF VIV of low mass-damping 

structures in Jauvtis and Williamson (2004), would suggest that there is a 

corresponding vortex formation mode. The vorticity plots in Fig. 2.24 shows a 2T 

vortex shedding mode which comprises two triplets of vortices per cycle. In this 

mode, it can be observed that Vortices 1 and 2 in Fig. 2.24(a), comprising a counter-

rotating vortex pair which can be compared directly to the vortex pair of the 2P mode 

in Fig. 2.22(a) at the same phase of the cyclic body motion. The major difference at 

this point in the cycle, for the 2T mode, appears to be the third principal vortex 

(labelled 3) which is generated in addition to the classical vortex pair.  
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Fig. 2.23 Lower-branch vorticity plots, showing the 2P mode (Govardhan and Williamson, 2000). 

 

 

Fig. 2.24 Supper-upper branch vorticity plots, showing the 2T mode (Jauvtis and Williamson, 2004). 

 

Apart from the aforementioned vortex shedding modes (2S, 2P and 2T), there are 

also other modes being observed in free vibrations of cylindrical structures, such as 

the P + S mode which is characterised by a single vortex and a vortex pair formed 

per cycle. As shown in Fig. 2.25, the counterclockwise vorticity concentration is 

deformed and split into two parts when the cylinder moves upward. The lower 

counterclockwise vortex forms a vortex pair with the clockwise vortex. In contrast to 

the 2P mode, the deforming and splitting process is not applicable to the clockwise 



32 

 

vortex, which results in the upper counterclockwise vortex being shed as a single 

vortex. The P + S mode was usually identified in forced vibration experiments 

(Griffin and Ramberg, 1974; Zdero et al., 1995) and numerical simulations 

(Blackburn and Henderson, 1996; Meneghini and Bearman, 1995). It recently has 

also been detected in free vibration studies by Singh and Mittal (2005), Bao et al. 

(2012) and Gedikli and Dahl (2014). 

 

 

Fig. 2.25 Vorticity plots showing the P + S mode (Gedikli and Dahl, 2014). 

 

2.2.4 Review of Previous Studies on VIV of Cylindrical Structures 

 

In the following sections, some of the previous studies related to the scenarios which 

are going to be investigated in this thesis are summarised. The review is mainly 

focussed on CFD studies while some representative experimental as well as semi-

empirical modelling investigations are also included. 

 

2.2.4.1 VIV of an Elastically Mounted Rigid Circular Cylinder 

 

The preponderance of existing publications have focussed on 1DOF CF motion of an 

elastically mounted rigid circular cylinder (Facchinetti et al., 2004; Farshidianfar and 

Zanganeh, 2010; Govardhan and Williamson, 2000; Khalak and Williamson, 1999; 

Sarpkaya, 1995). Nevertheless, several recent experimental studies have revealed the 

significant effect of the IL degree of freedom on the VIV response especially when 

m* < 6 (Blevins and Coughran, 2009; Dahl et al., 2006, 2007; Dahl et al., 2010; 

Jauvtis and Williamson, 2004). Furthermore, studies by Vandiver and Jong (1987), 

Tognarelli et al. (2004) and Wang and Xiao (2016) have proven that the IL VIV can 

contribute as much, or even higher, fatigue damage than the CF VIV to the structures 
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because of the doubled oscillation frequency. Therefore, the number of studies being 

conducted on 2DOF VIV continues to grow (Bai and Qin, 2014; Kang and Jia, 2013; 

Srinil and Zanganeh, 2012; Srinil et al., 2013; Wu et al., 2016; Zanganeh and Srinil, 

2014). 

 

The majority of the aforementioned studies are experiments or semi-empirical 

modelling. Apart from those studies, there have also been an increasing number of 

studies on VIV of an elastically mounted circular cylinder based on CFD tools. The 

greater part of previous CFD studies were conducted using 2D models. Guilmineau 

and Queutey (2004) presented their simulation results of 1DOF VIV of a circular 

cylinder, the response of which was well captured in the initial and lower branches. 

However, the response in the upper branch did not correspond with the experimental 

results. Singh and Mittal (2005) studied the hysteresis behaviour of 2DOF VIV at 

low Reynolds numbers. In their study, hysteresis was observed at both the low- and 

high-ends of the lock-in range and they also observed the P + S vortex shedding 

mode in free vibration for the first time. Leontini et al. (2006) investigated the 

branching behaviour of 1DOF VIV at Re = 200. Two response branches similar to 

the upper and lower branches at higher Re were discovered in their numerical study. 

The 2D and 3D flow behaviours were also ascertained to have similarities which 

suggested that the 3D flow branching behaviour has its genesis in the 2D flow. Lucor 

and Triantafyllou (2008) performed 2D simulation of 2DOF VIV of a circular 

cylinder in a wide range of in-line to cross-flow natural frequency ratios (f* = fnx/fny). 

They observed that the vibration amplitude increases and the peak amplitude shifts to 

a higher Vr as f* increases. Zhao and Cheng (2011) simulated 2DOF VIV of a 

circular cylinder by solving the 2D Reynolds-averaged Navier-Stokes (RANS) 

equations and reproduced the 2T vortex shedding mode and the response in the 

super-upper branch.  

 

It was found that the flow in the wake of a circular cylinder is 3D when the Reynolds 

number exceeds 200 (Williamson, 1988, 1989). Therefore, a series of 3D CFD 

studies on VIV of a circular cylinder have been conducted. Lucor et al. (2005) 

presented results of a direct numerical simulation (DNS) of 1DOF VIV and found 
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that there existed a sharp drop in the spanwise correlation of the wake and forces in 

the region of Vr around the mode transition between the upper and lower branches. 

Pontaza and Chen (2006) employed large eddy simulation (LES) and overset 

(Chimera) grids to study 2DOF VIV of a circular cylinder with low structural mass 

and damping at Vr = 6 and Re = 105. A response characterised by a figure-eight 

pattern was observed and the vortex shedding exhibited a 2S mode. Saltara et al. 

(2011) used detached eddy simulation (DES) to simulate 1DOF VIV of a circular 

cylinder with a low mass-damping parameter at Re = 104. In general, their simulation 

results agreed with the experimental results of Khalak and Williamson (1997a), 

however, the vibration amplitudes and force coefficients were overpredicted for Vr > 

6. Kondo (2012), who examined the different excitation mechanisms in the IL and 

CF directions based on the numerical results from a 3D computation, captured the 

first and second excited vibrations of the IL direction in the Vr range of Vr = 1.7 – 3.5 

with a low Scruton number (Sc = 4πmζ/(ρD2), where ζ is the structural damping 

ratio). Navrose and Mittal (2013) investigated the transition of responses of 2DOF 

VIV in the three branches and noted that the cylinder responses and force 

coefficients exhibited beats in the initial branch. The initial-upper branch transition 

was found to be hysteretic and intermittency was observed in the transition between 

the upper and lower branches. Zhao et al. (2014) studied the transition from 2D to 

3D for 1DOF VIV of a circular cylinder. In their study, the three-dimensionality of 

the flow appeared to be strongest in the upper branch and weakest in the initial 

branch. Additionally, the 2S and 2P vortex shedding modes were acknowledged as 

coexisting in the upper branch which led to the strong variation of the lift coefficient 

along the span. Gsell et al. (2016) simulated 2DOF VIV of a circular cylinder at Re = 

3900 with direct numerical simulation of the 3D Navier-Stokes equations. The 

predicted structural responses and forces were consistent with the experimental 

results reported by Jauvtis and Williamson (2004). The numerical results of their 

study confirmed the large-amplitude VIV and the shape of the responses. The IL to 

CF oscillation frequency ratio was equal to 2 and it was also found that the phase 

difference between the IL and CF motions varied across the lock-in range. 
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The most common scenario for 2DOF VIV is that the IL and CF natural frequencies 

are identical (i.e., fnx = fny). However, it has been previously stressed that cylindrical 

offshore structures, such as risers, mooring lines and pipelines usually possess an 

infinite number of natural frequencies in different directions (Srinil et al., 2007; 

Srinil and Rega, 2007). Therefore, it is of practical interest to study 2DOF VIV with 

varying f*; particularly, when f* = 2, where perfect 2DOF resonance may occur due 

to the fact that the fluctuating drag oscillates at a frequency twice that of the 

fluctuating lift. Sarpkaya (1995) and Dahl et al. (2006) observed two-peak CF 

responses with unequal mass ratios in the IL and CF directions (mx
* ≠ my

*) and f* 

around 2. The orbital trajectories and dual resonance of 2DOF VIV of a circular 

cylinder with varying f* were further investigated by Dahl et al. (2010) in subcritical 

and supercritical Reynolds number ranges. Under dual resonance, the IL to CF 

oscillation frequency ratio was found to be fox/foy ≈ 2 and a third harmonic 

component was observed in the lift force. A more practical case with mx
* = my

* and 

varying f* has also been investigated. Srinil et al. (2013) experimentally and 

numerically studied the 2DOF VIV of a circular cylinder with low mass-damping 

and varying f*. In their study, figure-eight orbital motions were observed for a wide 

range of Vr values indicating the occurrence of dual resonance. A flattened single-

peak upper branch similar to the experimental results of Assi et al. (2009) was 

observed when f* approaches 2 in their study. Bao et al. (2012) performed a 2D CFD 

simulation of the 2DOF VIV of a circular cylinder with mx
* = my

* and varying f* at 

Re = 150. They indicated that dual resonance existed over a wide range of f*. A third 

harmonic frequency component was also observed in the lift fluctuation. Multiple 

small peaks occurred in the cross-flow response amplitudes of the cylinder when f* = 

2.  

 

2.2.4.2 VIV of a Single Flexible Cylinder 

 

As riser pipes often possess L/D of the order of 103 (Chaplin et al., 2005), many 

experiments have been carried out on deepwater risers with large L/D (Chaplin et al., 

2005; Gao et al., 2015; Gu et al., 2013; Huang et al., 2011b; Lie and Kaasen, 2006; 

Tognarelli et al., 2004; Tognarelli et al., 2008; Trim et al., 2005; Vandiver et al., 
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2009; Vandiver et al., 2006). These experiments investigated flexible riser VIV 

responses under different flow conditions and some also assessed the effectiveness of 

VIV suppression techniques, such as using helical strakes, which weaken the 

intensity of vortices and reduce the fluid force by disrupting the spatial correlation of 

vortices by gradually changing the flow separation angle in the longitudinal direction. 

Better insights into some important VIV aspects (i.e., response amplitude, dominant 

mode, dominant frequency and fatigue damage etc.) were obtained from these 

experiments and thus provided some good benchmarks for verifying numerical 

prediction models.  

 

Apart from the various experimental investigations, there have been a number of 

CFD studies on VIV of flexible cylinders. 

 

Willden and Graham (2001) used a quasi-three-dimensional (Q3D) method to 

simulate the transverse vibration of an L/D = 100 cylinder subject to a sheared inflow 

at low Reynolds numbers. A high tension was applied to the cylinder so that the 

fundamental mode would be excited. A maximum amplitude of 0.36D was found at 

L/D = 44 which was slightly below the midpoint of the cylinder span. The results 

also showed that the majority of the shedding frequencies along the cylinder were 

modified towards the natural frequency and a significant spanwise correlation was 

observed.  

 

Meneghini et al. (2004) and Yamamoto et al. (2004) presented the numerical 

simulations of long marine risers with L/D up to 4600 with Q3D discrete vortex 

method (DVM). In their simulations, the riser tended to select a vibration mode 

which could keep the reduced velocity in the range of 4 ≤ Vr ≤ 7 where the energy 

was transferred from the fluid to the structure. Visualisations of the wake indicated a 

hybrid mode of vortex shedding along the span with a 2S mode being found in 

regions of small amplitudes, changing to a 2P mode in regions of larger amplitudes. 

 

The simulations described above were based on Q3D method with several 2D strips 

over the length of the riser. However, Q3D simulations have many shortcomings, 



37 

 

e.g., 3D vortex structures cannot be treated correctly and straked risers and variations 

in the angle of attack cannot be studied directly. Therefore, a series of fully 3D 

numerical simulations emerged. 

 

Newman and Karniadakis (1997) simulated VIV of an infinitely long flexible cable 

at Re = 100 and Re = 200 with a spectral/hp element method. Both the standing wave 

and travelling wave responses were realised. It was found that an interwoven pattern 

of vorticity was associated with a standing wave cable response while oblique vortex 

shedding was produced by a travelling wave cable response. A mixed standing 

wave/travelling wave response together with chevron-like vortex shedding was 

found to be related to a sheared inflow. 

 

Evangelinos and Karniadakis (1999) studied VIV of an infinitely long flexible 

cylinder at Re = 1000. The structure’s bending stiffness was varied to obtain 

different responses. The authors found that the modulated travelling wave motion of 

a free-free beam or cable led to a mixed response consisting of oblique and parallel 

shedding. In the case of structures with pinned endpoints, a standing wave response 

was obtained with lace-like flow structures.  

 

Holmes et al. (2006) and Menter et al. (2006) investigated riser VIV with fully 3D 

finite element method (FEM) and finite volume method (FVM), respectively. Both 

of the simulations used relatively coarse meshes with high element aspect ratios and 

the results were in good agreement with the experimental data by Trim et al. (2005) 

and Chaplin et al. (2005), respectively. 

 

Constantinides and Oakley (2008) compared their CFD results with the data obtained 

in the field experiments by Jhingran and Vandiver (2007). The results were able to 

match the experimental data. Both the first and third harmonic components were well 

captured. The authors emphasised the importance of the third harmonic component 

in fatigue damage analysis due to the fact that it produced strains of the same order 

of magnitude as the first harmonic component and had a frequency of three times the 

first harmonic component, which returned roughly three times more fatigue damage. 
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Huang et al. (2009, 2011a) performed finite-analytic Navier-Stokes (FANS) 

simulations on three different risers with L/D ranging from 482 to 3350. The 

simulation results showed good agreement with the experimental data by Lehn (2003) 

and Trim et al. (2005) and the numerical results using other commercial software by 

Holmes et al. (2006). It was observed in their simulations that the VIV of a long riser 

tended to have more than one dominant modes. The dominant modes could be 

sensitive to the incoming flow velocity profile and the riser tension. The CF VIV was 

influenced by the IL deflection. Vortex shedding showed a 2S pattern and the CF 

VIV demonstrated higher harmonic responses.  

 

Bourguet et al. (2011a, b, c, 2012, 2013, 2015) did a series of fundamental studies on 

VIV of long flexible cylinders. Their research revealed some important flexible 

cylinder VIV mechanisms, such as the occurrence of lock-in, the orbital trajectories 

which dominate the wake-body resonance, the phasing mechanisms between the IL 

and CF VIV and the validity of the independence principle (IP) applied to VIV. 

 

2.2.4.3 VIV of Two Elastically Mounted Circular Cylinders in Tandem Arrangement 

 

Some experimental studies have been conducted to investigate the interference 

between two rigid circular cylinders undergoing VIV. Hover and Triantafyllou 

(2001), Assi et al. (2010) and Assi et al. (2013) considered the effect of the upstream 

cylinder wake on the response of the downstream cylinder. In their investigations, 

the upstream cylinder was stationary whilst the downstream cylinder was elastically 

mounted and free to vibrate in the CF direction only. In Hover and Triantafyllou 

(2001), the downstream cylinder was placed at 4.75D behind the upstream cylinder 

and the Reynolds number was Re = 3  104. Large-amplitude galloping response was 

observed for the downstream cylinder. The results also indicated that the frequency 

lock-in began at a low reduced velocity which was nearly the same as a single 

cylinder and its range extended to a Vr of at least 17. A phase change in the lift force, 

which was typically associated with the frequency lock-in, occurred at higher Vr. The 

force spectra suggested that the shedding from the upstream cylinder was not 
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affected by motions of the downstream cylinder. Assi et al. (2010) elaborated the 

excitation mechanism of wake-induced vibration (WIV) of the downstream cylinder. 

The Reynolds number in their study was up to 3  104. They suggested that the WIV 

of the downstream cylinder was excited by the unsteady vortex-structure interactions 

between the body and the upstream wake. In a recent research by Assi et al. (2013), 

the authors investigated how the cylinder responded to the vortex-structure 

interactions excitation. They introduced the concept of wake stiffness and concluded 

that it was the wake stiffness phenomenon that defined the character of the WIV 

response. Zdravkovich (1985) studied VIV of two elastically mounted rigid cylinders 

in tandem arrangement with different centre-to-centre spacing ratios (Sx/D) in the Re 

range of 104 – 105. It was observed that for a very small Sx/D up to 1.1, the two 

cylinders acted as a single body. With a slight increase of Sx/D up to 1.6, the shear 

layers from the upstream cylinder reattached onto the downstream cylinder. A 

bistable regime was found when Sx/D varied from 2.5 to 4, which indicated the 

minimum spacing required for the upstream cylinder to have regular vortex shedding. 

In this regime, the oscillation amplitudes of the upstream cylinder were larger than 

those of the downstream cylinder. For Sx/D larger than 4, the response of the 

upstream cylinder was smaller and less regular than that of the downstream cylinder. 

 

Apart from the experiments, there have also been a number of numerical studies on 

VIV of two tandem cylinders. The majority of existing numerical studies were 3D 

and focussed on 1DOF CF motions of rigid cylinders. Carmo et al. (2011) conducted 

2D numerical simulations of the flow around two tandem circular cylinders at Re = 

150. The upstream cylinder was fixed and the downstream cylinder was free to 

vibrate in the transverse direction. Sx/D was varied from 1.5 to 8. Compared to an 

isolated cylinder, the downstream cylinder was found to have higher maximum 

amplitudes and wider lock-in ranges. The vibration amplitudes for higher Vr beyond 

the lock-in range were very significant. Carmo et al. (2013) investigated VIV of a 

cylinder which was completely free to move in the cross-flow direction (i.e., with no 

spring or damper attached to it) subject to the wake of an identical stationary cylinder. 

A fixed spacing ratio Sx/D = 4 was considered and Re varied from 100 to 645. Three 

different regimes were identified in their 2D simulations. A monotonically 
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decreasing amplitude with increasing Re was observed in the first regime (90 ≤ Re ≤ 

165). The second regime was characterised by significant scatter in the vibration 

amplitude and its range is from Re ≈ 180 to Re = 360. Gradual transition between the 

second and third regimes took place for 360 ≤ Re ≤ 405. The third regime extended 

up to the highest Re tested. The amplitude was found to grow monotonically with Re.  

Zhao (2013) presented the results of VIV of two rigidly coupled circular cylinders in 

tandem arrangement with four spacing ratios ranging from 1.5 to 6 at Re = 150. The 

results showed that the gap between the two cylinders had a significant effect on the 

response. When two rigidly coupled tandem cylinders were subject to VIV, the 

critical spacing for vortex shedding from the upstream cylinder was significantly 

smaller than that for two tandem stationary cylinders. The vortex shedding from the 

upstream cylinder took place at Sx/D = 2 in the lock-in range and the lock-in range 

was found to be narrower than that of a single cylinder for Sx/D = 1.4 and 2, and 

wider for Sx/D = 4 and 6. Ding et al. (2017) used 2D unsteady RANS equations with 

the Spalart-Allmaras turbulence model to study the effect of tandem spacing on VIV 

of two cylinders with passive turbulence control in the Re range of 30000 – 100000. 

The spacing between the cylinders varied from 2D to 6D. The numerical simulation 

successfully predicted all the ranges of responses including VIV and galloping. 

Furthermore, the results agreed well with the experimental measurements. The 

influence of the downstream cylinder on the amplitude and frequency responses of 

the upstream cylinder was found to be negligible when the spacing is larger than 2D. 

A rising trend of the vibration amplitude of the downstream cylinder was observed in 

all the cases when 2  104 < Re < 3  105. The galloping branch merged with the 

VIV upper branch for spacing larger than 3D. Vortex structures showed significant 

variation in different flow regimes. 

 

2DOF VIV of two tandem rigid cylinders has also been studied using 2D numerical 

simulations. Papaioannou et al. (2008) studied the effect of spacing on VIV of two 

rigid cylinders in tandem arrangement. The computations were carried out for Sx/D in 

the range of 2.5 – 5 at Re = 160. It was observed that the range of the response 

region of the upstream cylinder became wider with the decrease of Sx/D. The 

synchronisation curve shifted on the Vr axis depending on the spacing. There was an 
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increase in the maximum vibration amplitude of the downstream cylinder when the 

cylinders were brought to the spacing corresponding to the reattachment regime in 

the stationary system. Prasanth and Mittal (2009) investigated VIV of two circular 

cylinders in tandem arrangement with Sx/D = 5.5 at Re = 100 using a 2D stabilised 

FEM. Vr ranged from 2 to 15. The downstream cylinder was found to undergo large-

amplitude vibrations in both the IL and CF directions. Lock-in and hysteresis were 

observed for both the upstream and downstream cylinders. The large-amplitude 

vibrations of the downstream cylinder were maintained even beyond the lock-in 

range. The phase difference between the cross-flow displacement and the lift force 

went through an 180̊ jump in the middle of the synchronisation regimes of both 

cylinders. The flow regime was divided into five sub-regimes based on the phase 

difference and the flow patterns. Bao et al. (2012) studied the 2DOF VIV of two 

tandem cylinders with varying natural frequency ratios at Re = 150 by solving the 2D 

incompressible Navier-Stokes equations using a characteristic-based-split FEM. The 

spacing between the two cylinders was 5D. They found that the in-line response of 

the downstream cylinder was more sensitive to the natural frequency ratio than that 

in the transverse direction. As dual resonance was excited, the vortex shedding of the 

upstream cylinder in the tandem arrangement might show a P + S pattern, which 

strongly suppressed the vortex shedding of the downstream cylinder. 

 

Compared to the popularity of 2D numerical studies, 3D numerical simulations of 

VIV of two tandem cylinders have received less attention. Carmo et al. (2011) 

compared the 3D numerical simulation results of VIV of a rigid cylinder exposed to 

an upstream stationary cylinder wake at Re = 300 with their 2D simulation results at 

Re = 150. For all the configurations investigated, they observed that the 3D results 

follow the same trend as the 2D results. However, the flow field was strongly 3D for 

most of the configurations. Therefore, they concluded that 3D simulations were 

strictly necessary in order to obtain accurate values of forces or structural response. 

Carmo et al. (2013) carried out 3D numerical simulations with the same parameters 

as their 2D calculations in the same study. The results showed that the variation of 

amplitude within the Re range tested was very small. The oscillation frequency of the 

downstream cylinder and the shedding frequency of the upstream cylinder were 
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constant and had the same value throughout the entire Re range. The amplitudes 

observed in the 3D results are smaller than those observed in the 2D results for the 

same Re which, according to the authors, was caused by the weakening of the 

spanwise vortices. 

 

2.2.4.4 VIV of Two Flexible Cylinders in Tandem Arrangement 

 

The interference between two tandem flexible cylinders undergoing VIV has also 

been investigated. Brika and Laneville (1997, 1999) investigated VIV of a long 

flexible circular cylinder immersed in the wake of an identical stationary cylinder. 

Sx/D between the two cylinders ranged from 7 to 25 and Re ranged from 5000 to 

27000. It was found that the response of the flexible cylinder was no longer 

hysteretic and showed a single branch with a wider synchronisation region which 

decreased with the increase of the spacing between the two cylinders. The onset of 

the synchronisation shifted to higher Vr compared to the case of an isolated cylinder. 

Brika and Laneville (1997) also considered the case in which both cylinders were 

allowed to vibrate. In that case, the response of the downstream cylinder became 

hysteretic. Huera-Huarte and Bearman (2011) and Huera-Huarte and Gharib (2011) 

experimentally studied the vortex- and wake-induced vibrations of two tandem 

flexible cylinders with near and far wake interferences in a Re range up to 12000. It 

was found that the responses of both cylinders showed classical VIV resonance when 

Vr was close to the typical lock-in reduced velocities. When Sx/D is small, the 

maximum vibration amplitude of the upstream cylinder is higher than that of the 

downstream cylinder and the maximum vibration amplitude of the upstream cylinder 

increased with the decrease in spacing. For a large Sx/D, the response of the 

downstream cylinder exhibited non-classical VIV resonance with large amplitudes at 

high reduced velocities. 

 

Numerical studies on VIV of two tandem flexible cylinders have rarely been reported 

in the literature. Chen et al. (2013) simulated VIV and WIV for two vertical risers in 

tandem and side-by-side arrangements at Re = 8400 using an unsteady RANS 

numerical method in conjunction with a Chimera domain decomposition approach 
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with overset grids. The IL and CF responses of the risers were calculated using a 

tensioned beam motion equation. For two vertical risers in tandem arrangement, the 

vortex street was suppressed between the risers and there was a reattachment of the 

shear layers to the downstream riser when Sx/D = 3. When Sx/D increased to 4, a 

vortex street started to appear in the gap between the risers with intermittent 

reattachment of shear layers on the downstream riser surface. In general, the 

computed vortex patterns and dynamic responses of the risers were in good 

agreement with experimental data. González et al. (2015) presented the results of 

their numerical simulation attempts for the experimental campaigns on a tandem 

arrangement of flexible cylinders by Huera-Huarte et al. (2014) at Re = 16000. The 

numerical simulation qualitatively reproduced the physical phenomena. However, 

the numerical model oversimplified the mechanical complexity of the flexible 

cylinder and the application of the axial tensions caused the numerical instability of 

the computation. Therefore, the authors suggested that future research was required 

in order to make a quantitative comparison with the experimental data. 

 

2.3 Concluding Remarks 

 

In this chapter, a broad review has been made on the fundamentals of flow past 

stationary and vibrating cylinders and existing publications on topics relevant to this 

thesis. From the critical review of previous studies, the following gaps in the 

literature have been identified. 

 

1. The majority of existing publications on VIV of cylindrical structures are 

experiments or semi-empirical modelling. Compared to the popularity of 

these two methods, FSI simulations by coupling computational structural 

dynamics (CSD) solvers to high-fidelity CFD solvers have received less 

attention.  

 

2. Existing FSI simulations on VIV of cylindrical structures are mainly 2D. 3D 

numerical simulations are still quite limited. 
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3. Most of the previous studies on VIV of cylindrical structures are devoted to 

the response of the cylinder and the 2D flow behaviour. Detailed information 

about the correlation lengths and the transient 3D wake structures is rarely 

reported.  

 

4. Previously, it was widely believed that increasing the amplitude of motion 

increases the spanwise correlation. However, the fact is that there exists a 

sharp drop in the spanwise correlation in the transition region between the 

upper and lower branches, which does not diminish the response of the 

cylinder. This fact has not been fully addressed. 

 

5. 1DOF VIV of an elastically mounted rigid circular cylinder has been widely 

studied during the past few decades. There have been several studies on 

2DOF VIV of a rigid cylinder; however, most of these studies focussed 

predominantly on the case of fnx = fny with fewer studies on the more practical 

case with varying f*. 

 

6. A large number of riser analysis tools are designed to account only for CF 

bending. However, when only a few lower modes are participating in the 

response, IL fatigue damage can be significant. The importance of the IL 

fatigue damage in low flow velocity or low mode number applications has 

not been properly emphasised. 

 

7. There have been several numerical studies on the effect of spacing on VIV of 

two elastically mounted circular cylinders in tandem arrangement. However, 

there is no systematic numerical study on the effect of spacing on VIV of two 

tandem flexible cylinders.  

 

Therefore, the main chapters of this thesis are aimed at filling the gaps listed above 

using 3D FSI simulations. 
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Chapter 3 Numerical Methods 

 

“Be stubborn about your goals, and flexible about your methods.” 

-Anonymous 

 

3.1 Flow Model 

 

3.1.1 Navier-Stokes Equations 

 

The governing equations for the flow in Chapter 4 and Chapter 6 are the unsteady 

incompressible Navier-Stokes equations. The Arbitrary Lagrangian-Eulerian (ALE) 

scheme is adopted to solve the governing equations in a moving mesh system. The 

Navier-Stokes equations in the ALE scheme are expressed as 
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where xi (x1 = x, x2 = y, x3 = z) represents the Cartesian coordinate, ui is the fluid 

velocity component in the xi-direction, t is the time, ȗi is the grid velocity component 

in the xi-direction, ρ is the fluid density, p is the pressure and ν is the kinematic 

viscosity of the fluid. 

 

The governing equations are discretised using an element-based FVM (ANSYS Inc., 

2013a). Rhie-Chow interpolation (Rhie and Chow, 1982) is used to obtain the 

pressure-velocity coupling on collocated grids. A second-order backward Euler 

scheme is adopted for the temporal discretisation and a high resolution scheme is 

used as the convection scheme. Detailed information about the numerical schemes 

can be found in Section 3.4.  

 

3.1.2 Large Eddy Simulation Wall-Adapted Local Eddy-Viscosity (WALE) Model 
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The flow field around the riser in Chapter 5 is modelled by solving the unsteady, 

incompressible Navier-Stokes equations in conjunction with the large eddy 

simulation (LES) wall-adapted local eddy-viscosity (WALE) model (Nicoud and 

Ducros, 1999). The ALE scheme is also employed to deal with the moving boundary 

of the riser. The ALE form of the filtered Navier-Stokes equations in the Cartesian 

coordinate system is expressed as 
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where (x1, x2, x3) = (x, y, z) are the Cartesian coordinates, an overbar denotes that the 

variable is a filtered variable, ui is the velocity component in the xi-direction, ȗi is the 

grid velocity component in the xi-direction, p is the pressure, t is the time, ρ is the 

fluid density, ν is the kinematic viscosity of the fluid and τij is the subgrid-scale stress 

defined by 

 i jij i ju u u u     (3.5) 

 

Based on the Boussinesq’s approximation 

 2
3

ij

ij kk sgs ijS


  
 

   
 
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where δij is the Kronecker symbol. The isotropic part of the subgrid-scale stresses τkk 

is not modelled, but added to the filtered static pressure. 
ijS  is the rate-of-strain 

tensor for the resolved scale defined by 
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The eddy-viscosity is computed by 
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The model constant Cw is chosen as 0.325. The filter-width is taken as the local grid 

size, i.e.,  
1/3

x y z     . d

ijS  denotes the traceless symmetric part of the square of 

the velocity gradient tensor: 

  2 2 21 1

2 3

d

ij ij ji ij kkS g g g     (3.9) 

where 2

ij ik kjg g g , /ij i jg u x   . The tensor d

ijS  can be rewritten in terms of the 

strain-rate and vorticity tensors: 

  
1

3

d

ij ik kj ik kj ij mn mn mn mnS S S S S        (3.10) 

where the vorticity tensor is given by 
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  (3.11) 

 

The main advantages of the LES WALE model are the capability of reproducing the 

laminar to turbulent transition and the design of the model to return the correct wall-

asymptotic y+3-variation of the subgrid-scale viscosity (ANSYS Inc., 2013a). 

 

Similar to the previous section, the governing equations are discretised using the 

element-based FVM (ANSYS Inc., 2013a), Rhie-Chow interpolation (Rhie and 

Chow, 1982) is used to obtain pressure-velocity coupling on collocated grids and the 

second-order backward Euler scheme is adopted for the temporal discretisation. A 

bounded central difference scheme is used as the convection scheme. One may refer 

to Section 3.4 for the detailed numerical schemes. 

 

3.2 Near-Wall Treatment for Turbulent Flows past Cylinders 

 

Turbulent flows could be significantly affected by the presence of walls where the 

viscosity-affected regions have large gradients in the solution variables. Hence, 

successful prediction of wall bounded turbulent flows is partly determined by the 

accurate presentation of the near-wall region. Similarly, for turbulent flows past 

circular cylinders, the accurate calculation of the separation point, which affect the 
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prediction of flow parameters such as drag coefficient and Strouhal number (Young 

and Ooi, 2004), also depends on the proper modelling of the near-wall region. 

 

3.2.1 Law of the Wall 

 

Central issues of wall bounded turbulent flows are the forms of the mean velocity 

profiles and the friction laws, which describe the shear stress exerted by the fluid on 

the wall. Close to the wall, the flow is affected by viscous effects and the mean flow 

velocity depends on several parameters as formulised below: 

  , , , wu f y      (3.12) 

where y is the distance from the wall, ρ is the fluid density, μ is the dynamic viscosity 

of the fluid and τw is the wall shear stress. 

 

Nondimensionalising ū with the friction velocity /f wu    gives 
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Eq. (3.13) contains the definitions of two important dimensionless parameters, u+ and 

y+. The relationship between them is called ‘Law of the Wall’, which represents the 

different layers of the near-wall region as shown in Fig. 3.1.  

 

 

Fig. 3.1 Subdivisions of the near-wall region.  
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The near-wall region has larger gradients in the solution variables, and momentum 

and other scalar transports occur most vigorously. From Fig. 3.1, it can be observed 

that the inner layer is made up of three zones (with their corresponding wall y+), 

namely the: 

 

 Viscous sublayer (y+ < 5): viscous stresses dominate the flow; 

 Buffer layer (5 < y+ < 30): viscous and turbulent stresses are of similar 

magnitude; 

 Log-law region (y+ > 30 to 60): turbulent stresses dominate. 

 

The wall y+ is a nondimensional distance similar to local Reynolds number, often 

used in CFD to describe how coarse or fine a mesh for a particular flow. The most 

desirable values of y+ are close to the lower bound (y+ ≈ 30) for wall functions while 

y+ ≈ 1 for near-wall modelling.  

 

3.2.2 Near-Wall Treatment 

 

There are two approaches to modelling the near-wall region (i.e., wall functions and 

near-wall modelling). The first approach uses semi-empirical formulae (wall 

functions) to bridge the viscosity-affected region (viscous sublayer and buffer layer) 

between the wall and the fully-turbulent region, which means the viscous sublayer 

and buffer layer are not resolved. The use of wall functions obviates the need to 

modify the turbulence models to account for the presence of the wall, while in the 

second approach the turbulence models are modified to enable the viscosity-affected 

region to be directly resolved with a mesh all the way to the wall. The second 

approach is normally termed as the near-wall modelling approach. 

 

The wall function approach substantially saves computational resources in most high 

Reynolds number wall-bounded flows and is popular because it is economical, robust 

and can be reasonably accurate. It can be a practical option for the near-wall 

treatment of industrial flow simulations. However, the wall function approach 

becomes less reliable when the flow conditions depart too much from the ideal 
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conditions underlying the wall functions. One example of limitations of the wall 

function approach is for flows with severe pressure gradients leading to boundary 

layer separations. 

 

One needs to carefully consider the ramification of using wall functions for the flow 

with separations, although wall functions together with near wall coarse mesh can be 

employed, often with some success, to reduce the cost of LES for wall-bounded 

flows (Catalano et al., 2003).  Rodi (1997) questioned the validity of wall function 

approach for separated flows by comparing the effect of different near-wall 

treatments on the simulation results of flows around bluff bodies. The wall function 

approach or a two-layer approach in which the viscous layer is resolved was adopted 

for the RANS models. It was found that a considerable improvement can be obtained 

by the RANS models combined with two-layer approach resolving the near-wall 

region. In his studies, the LES with wall models were also used to simulate the flow 

around bluff bodies and simulation results were compared with the results obtained 

from RANS models as well as experimental data. Overall, significantly better 

predictions were obtained by LES methods, but the discrepancies from the 

experiments still existed, which could originate from insufficient resolution near the 

side walls of the bluff body. 

 

The near-wall modelling approach is adopted in this thesis where the mesh in the 

boundary layer is fine enough to resolve the viscous sublayer. To guarantee fine 

enough mesh in the near-wall region, values of wall y+ ≤ 1 are much desirable. 

 

3.3 Courant Number and Time-Step Size Selection 

 

The Courant number is of fundamental importance for transient flows. For a one-

dimensional (1D) grid, it is defined by: 

 
V t

Co
x





  (3.14) 

where V is the flow velocity, t is the time-step size and x is the mesh size. The 

Courant number calculated in ANSYS CFX is a multidimensional generalisation of 
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this expression where the velocity and length scales are based on the mass flow into 

the control volume and the dimension of the control volume. 

 

For explicit CFD methods, the time-step size should be chosen such that the Courant-

Friedrichs-Lewy (CFL) condition is satisfied (i.e., Co ≤ Comax). The detailed values 

of Comax depend on the particular scheme, but it is usually of order unity. As an 

implicit code, ANSYS CFX does not require the Courant number to be small for 

stability. However, for some transient calculations (for example, LES), one may need 

the Courant number to be ≤ 1 in order to accurately resolve transient details. In order 

to ensure that the numerical results are independent of the time-step size, a time-step 

size dependency test is carried out before performing parametric simulations in each 

study. 

 

3.4 Numerical Schemes 

 

3.4.1 Transient Term 

 

The general discrete approximation of the transient term for the nth time step is: 
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With the second order backward Euler scheme, the start and end of time step values 

are respectively approximated as: 
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When these values are substituted into Eq. (3.15), the resulting discretisation is: 
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3.4.2 Control Volume Gradients 

 

The Gauss’ divergence theorem is used to evaluate control volume gradients: 

 

  
1

ip
ipV

    n   (3.19) 

where Δn is the outward surface vector at the integration point ip. This requires that 

 is evaluated at integration points using finite-element shape functions. 

 

3.4.3 Convective Term 

 

The convective term requires the integration point values of  to be approximated in 

terms of the nodal values of . The convective schemes can be cast in the form: 

 
ip up      r   (3.20) 

where up is the value at the upwind node, and Δr is the vector from the upwind node 

to the ip. Particular choices for β and  yield different schemes as described below. 

 

3.4.3.1 First Order Upwind Differencing Scheme 

 

A value of β = 0 yields a first order upwind difference scheme. This scheme is very 

robust, but it will introduce diffusive discretisation errors that tend to smear steep 

spatial gradients. 

 

3.4.3.2 High Resolution Scheme 

 

The high resolution scheme uses a special nonlinear recipe for β at each node, 

computed to be as close to 1 as possible without introducing new extrema. The 

convective flux is then evaluated using the values of β and  from the upwind node. 

The recipe for β is based on the boundedness principles used by Barth and Jespersen 

(1989). This methodology involves first comping a min and max at each node using a 

stencil involving adjacent nodes (including the node itself). Next, for each integration 
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point around the node, the following equation is solved for β to ensure that it does 

not undershoot min or overshoot max: 

 
ip up      r   (3.21) 

 

The nodal value for β is taken to be the minimum value of all integration point values 

surrounding the node. The value of β is also not permitted to exceed 1. 

 

3.4.3.3 Central Difference Scheme 

 

With the central difference scheme, β is set to 1 and  is set to the local element 

gradient. An alternative interpretation is that ip is evaluated using the tri-linear shape 

functions: 

  , ,ip n ip ip ip n

n

N s t u    (3.22) 

 

The resulting scheme is also second-order-accurate. 

 

3.4.3.4 Bounded Central Difference Scheme 

 

The central differencing scheme described above is an ideal choice in view of its low 

numerical diffusion. However, it often leads to unphysical oscillations in the solution 

fields. In order to avoid these oscillations, the bounded central difference scheme can 

be used as the convective scheme. 

 

The bounded central difference scheme is essentially based on the normalised 

variable diagram approach (Leonard, 1991) together with the convection 

boundedness criterion (Jasak et al., 1999). It uses the central difference scheme 

wherever possible, but blends to the first-order upwind scheme when the convection 

boundedness criterion is violated. 

 

3.4.4 Diffusion Term 
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Following the standard finite-element approach, shape functions are used to evaluate 

spatial derivatives for all the diffusion terms. For example, for a derivative in the x-

direction at the ip: 
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The summation is over all the shape functions for the element. The Cartesian 

derivatives of the shape functions can be expressed in terms of their local derivatives 

via the Jacobian transformation matrix: 
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  (3.24) 

 

The shape function gradients can be evaluated at the actual location of each 

integration point (that is, true tri-linear interpolation), or at the location where each ip 

surface intersects the element edge (that is, linear-linear interpolation). The latter 

formulation improves solution robustness at the expense of locally reducing the 

spatial order-accuracy of the discrete approximation. 

 

3.4.5 Pressure Gradient Term 

 

The surface integration of the pressure gradient in the momentum equations involves 

evaluation of the expression: 

  ip ip
p n   (3.25) 

 

The value of pip is evaluated using the shape functions: 
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As with the diffusion terms, the shape function used to interpolate p can be evaluated 

at the actual location of each integration point (that is, true tri-linear interpolation), or 

at the location where each ip surface intersects the element edge (that is, linear-linear 

interpolation). 

 

3.5 Structural Dynamic Model 

 

3.5.1 Rigid Structures 

 

According to Zhao and Cheng (2011), the 2DOF motion of an elastically mounted 

circular cylinder in Chapter 4 can be described as 

 i i i i i i im x c x K x F     (3.27) 

where x1 = x and x2 = y are the cylinder displacements in the x- and y-directions, 

respectively. mi, ci, Ki and Fi are the mass, damping coefficient, structural stiffness 

and hydrodynamic force in the xi-direction, respectively. Eq. (3.27) is integrated by 

using a Newmark integration scheme with a second-order accuracy (Hughes, 1987). 

The method relates displacements, velocities and accelerations from time step n to 

n+1: 

  1 11n n n n
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where xi is the displacement in the xi-direction, a dot denotes differentiation with 

respect to time and the superscripts represent the corresponding time step. Δt is the 

time-step size. β and γ are two real parameters which are directly linked to the 

accuracy and stability of the scheme. In the present simulation, β = 1/4 and γ = 1/2 

are chosen. The choice of the parameters corresponds to a trapezoidal rule with a 

second-order accuracy and unconditional stability. 

 

Eq. (3.28) and Eq. (3.29) can be rewritten as 
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Then the displacement in the xi-direction at time step n+1 can be expressed as  
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   (3.32) 

 

3.5.2 Flexible Structures 

 

According to Huang et al. (2011a), a top tension riser (Chapter 5) can be simplified 

as a tensioned beam whose lateral motion is described as  
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  (3.33) 

where E is the Young’s modulus, I is the moment of inertia, T is the top tension, L is 

the mass per unit length, c is the structural damping coefficient, z is the undeflected 

riser axis, x1 and x2 denote the IL and CF displacements, respectively and F1 and F2 

are the hydrodynamic forces in the IL and CF directions, respectively. For the above 

differential equation in the case of a pin-ended beam, the boundary conditions are: 

    0, 0, , 0i ix t x L t t     (3.34) 
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The two tandem flexible cylinders in Chapter 6 are modelled as beams with two 

fixed ends and free to vibrate in the transverse direction. The vibrations of the 

cylinders satisfy the Euler-Bernoulli beam theory. The transverse motions of the two 

flexible cylinders can be described as 
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where E is the Young’s modulus, I is the moment of inertia, L is the mass per unit 

length, c is the structural damping, z is the undeflected cylinder axis, y is the 

transverse displacement and Fy is the hydrodynamic force in the transverse direction. 

The boundary conditions for a beam fixed at the two ends are given by  

    0, 0, , 0y t y L t t     (3.37) 
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A finite element method is used to discretise the finite element analysis (FEA) 

models and the corresponding global equation system is given by 

 Mq +Cq + Kq = F   (3.39) 

where q is the nodal displacement vector and a dot denotes differentiation with 

respect to time. The global mass, damping and stiffness matrices (M, C and K) are 

the collective effects of the individual elements’ mass, damping and stiffness 

matrices (Me = ∫∫∫NTρsNdxdydz, Ce = ∫∫∫NTcNdxdydz and Ke = ∫∫∫BTEBdxdydz, where 

N is the matrix of shape functions, ρs is the structural density, B is the strain-

displacement matrix and E is the elasticity matrix) derived from the principle of 

virtual work. F is the hydrodynamic force vector. The governing equation is solved 

using the Hilber-Hughes-Taylor (HHT) method (Hilber et al., 1977) with a second-

order accuracy. 

 

3.6 Mesh Deformation 

 

To accommodate the motion of the cylinder, the displacement diffusion model 

(Wang and Xiao, 2016; Zhao and Cheng, 2011) for mesh motion is adopted. The 

displacements of the mesh points are calculated based on the following equation: 

   0iS     (3.40) 

where Si represents the displacements of the nodal points in the xi-direction, Γ is the 

mesh stiffness. Previous simulations by Wang and Xiao (2016) showed that Γ = 1/2 

with   being the control volume size could lead to satisfactory results. 
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3.7 Fluid-Structure Interaction 

 

3.7.1 Rigid Structures 

 

The 2DOF VIV of an elastically mounted circular cylinder can be solved using a 

staggered algorithm, i.e., the flow field and the dynamic response of the structure are 

solved successively at a given time step (Placzek et al., 2009). The solution 

procedures of the FSI problem within one time step are displayed in Fig. 3.2. 

 

 

Fig. 3.2 Flow chart of the FSI solution procedures for rigid structures within one time step. 

 

The Navier-Stokes equations are solved to obtain the forces on the cylinder. Then the 

forces are transferred to the structural dynamic model to obtain the displacements of 

the cylinder. The new mesh configuration is evaluated based on the displacements of 

the cylinder using Eq. (3.40) and the Navier-Stokes equations are solved on the new 
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mesh configuration. Such an FSI loop is repeated during each time step of the 

simulation. 

 

 

Fig. 3.3 Flow chart of two-way explicit FSI solution procedures for flexible structures within one time 

step. 

 

3.7.2 Flexible Structures 

 

A two-way explicit approach is utilised in the present FSI simulation, i.e., the fluid 

and solid equations are solved separately and there are no iterations between the fluid 

and solid fields within one time step. The flow chart of the two-way explicit FSI 

solution procedures for one time step is shown in Fig. 3.3. It can be seen that within 
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one time step, the flow equations are solved to obtain the forces on the flexible 

cylinders. Then the forces are interpolated to the structural mesh using the 

conservative interpolation and the structural dynamic equation is solved to obtain the 

quantities of motions of the flexible cylinders. After that, the displacements are 

interpolated to the fluid mesh with the profile preserving interpolation and the 

positions of the mesh points are calculated and updated using the displacement 

diffusion model in Eq. (3.40). The next time step begins with solving the flow 

equations on the updated mesh. The solvers follow the same FSI procedures until the 

last time step of the simulation. 
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Chapter 4 Three-Dimensional Numerical Simulation of 

Two-Degree-of-Freedom Vortex-Induced Vibration of a 

Circular Cylinder with Varying Natural Frequency Ratios 

 

“It is possible to imagine a four-dimensional space. I personally find it hard enough to 

visualise a three-dimensional space.” 

-Stephen Hawking 

 

2DOF VIV of an elastically mounted circular cylinder with varying IL to CF natural 

frequency ratios is studied using a 3D CFD approach. The numerical simulations are 

carried out for a constant mass ratio m* = 2 at a fixed Reynolds number Re = 500. 

The reduced velocity Vr ranges from 2 to 12. Three natural frequency ratios are 

considered, i.e., f* = 1, 1.5 and 2. The structural damping is set to zero to maximise 

the response of the cylinder. The main objective of this study is to investigate the 

effect of f* on the 2DOF VIV responses and the 3D characteristics of the flow. 

 

4.1 Problem Descriptions 

 

4.1.1 Simulation Parameters 

 

In the present study, 3D numerical simulation is conducted for an elastically mounted 

circular cylinder with diameter D and length L. The Reynolds number is defined as 

Re = VD/ν and a constant Reynolds number Re = 500 is adopted in the simulation. 

The choice of Re stems from several important considerations. First, at Re = 500, the 

flow around the cylinder is 3D and it can be modelled by directly solving the 3D 

Navier-Stokes equations with affordable computational efforts which also avoids the 

potential uncertainties that might be introduced by the utilisation of turbulence 

models. Second, the flow structures at low Re are more regular than those at high Re 

which is good for analysing the detailed wake structures and the three-dimensionality 

of the flow. More importantly, previous studies by Bao et al. (2012) and Leontini et 

al. (2006) revealed that VIV of rigid structures at low Re shares comparable response 
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features to that at high Re. Studies on 2DOF VIV at low Re are also of fundamental 

research interest from a flow physics point of view. 

 

Batcho and Karniadakis (1991) studied the flow past a circular cylinder at Re = 500 

with length-to-diameter ratios (L/D) of π and 2π and obtained sufficiently accurate 

results of the force coefficients. The L/D = 8 and 12 were used in the 3D simulation 

of the flow around two circular cylinders in tandem at Re ≤ 500 by Carmo et al. 

(2010a); in the present study, the L/D is also set to 12. As the wavelength of 

spanwise flow structures at Re = 500 is λz/D ≈ 1, the current spanwise length of 12D 

is believed to be sufficient for capturing the three-dimensionality of the flow at this 

Reynolds number. Furthermore, this L/D is also comparable to those used in some 

recent experimental studies on VIV of an elastically mounted circular cylinder 

(Jauvtis and Williamson, 2004; Kang and Jia, 2013; Sanchis et al., 2008; Srinil et al., 

2013; Stappenbelt et al., 2007). 

 

The cylinder is free to vibrate in both the IL and CF directions. The mass ratios of 

the cylinder in the IL and CF directions are set to be identical and take the value of 

mx
* = my

* = m* = 2. Such a low mass ratio is chosen because a dramatic change in the 

fluid-structure interactions of 2DOF VIV was observed by Jauvtis and Williamson 

(2004) when the mass ratio m* is less than 6. The mass ratios in the IL and CF 

directions are set to be identical, as the scenario in which mx
* = my

* is of more 

practical relevance to the real cylindrical offshore structures (Srinil et al., 2013). As 

the vibration amplitudes reported in previous CFD simulations at low Re (Bao et al., 

2012; Gsell et al., 2016; Lucor and Triantafyllou, 2008; Singh and Mittal, 2005) are 

relatively small compared to the amplitudes observed in experiments at higher Re 

(Blevins and Coughran, 2009; Dahl et al., 2006; Jauvtis and Williamson, 2004; Srinil 

et al., 2013), in order to maximise the vortex-induced response of the cylinder, the 

damping coefficients are set to zero by the various authors in their numerical 

simulations. Similarly, zero damping coefficients in the IL and CF directions are also 

adopted in the present study, i.e., cx = cy = c = 0. The reduced velocity is varied from 

2 to 12 with an increment of 1 and for each reduced velocity, three natural frequency 

ratios are considered, i.e., f* = 1, 1.5, and 2. 
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(a) 

 

(b) 

Fig. 4.1 (a) Computational domain and (b) computational mesh. 

 

4.1.2 Computational Domain and Boundary Conditions 

 

Fig. 4.1(a) shows the computational domain that is used in the present simulation. 

The size of the domain is 40D  20D  12D where D is the diameter of the cylinder. 

The cylinder is located at 10D downstream the inlet boundary and the origin of the 

Cartesian coordinate system is located at the centre of the bottom end of the cylinder. 

The computational mesh is displayed in Fig. 4.1(b). There are 120 nodes along the 

circumference of the cylinder and the minimum mesh size next to the cylinder 

surface in the radial direction is 0.001D. The boundary conditions for the governing 

equations are as follows. The surface of the cylinder is assumed to be a no-slip wall. 

The velocity at the inlet boundary is set to be the same as the freestream velocity. At 
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the outflow boundary, the gradients of the fluid velocity in the streamwise direction 

are set to zero and the pressure at the outflow boundary is given a reference value of 

zero. The free-slip boundary condition with the velocity in the direction normal to 

the boundary being zero is used on the two transverse boundaries and a periodic 

boundary condition is imposed on the top and bottom boundaries. At t = 0, the 

velocities and displacements of the cylinder are zero (x1 = x2 = 0 and ẋ1 = ẋ2 = 0). 

 

  

(a) (b) 

Fig. 4.2 Comparison of the present numerical results with numerical results by Navrose and Mittal 

(2013) for increasing Vr: (a) rms of in-line vibration amplitudes and (b) rms of cross-flow vibration 

amplitudes. 

 

4.1.3 Validation Test 

 

As there are no experimental data on 2DOF VIV of a circular cylinder at early 

subcritical Reynolds numbers available, the numerical results from the 3D CFD 

simulation of 2DOF VIV of a circular cylinder with m* = 10 and L/D = 4 at Re = 

1000 by Navrose and Mittal (2013) are used to verify the present numerical methods. 

For the purpose of making a reasonable comparison with the results for increasing Vr 

in their simulation, the Vr in the present validation test is also increased in small steps. 

Fig. 4.2(a) and (b) are the comparisons of the root mean square (rms) of the vibration 

amplitudes against Vr in the IL and CF directions, respectively. It shows that good 

agreement is achieved between the present results and those of Navrose and Mittal 

(2013). The maximum rms IL and CF vibration amplitudes predicted in both studies 

are Axrm/D ≈ 0.016 and Ayrm ≈ 0.5, respectively. This test case demonstrates that the 
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present numerical methods are capable of accurately predicting 2DOF VIV response 

of an elastically mounted circular cylinder at early subcritical Reynolds numbers. 

 

4.1.4 Mesh Dependency Study 

 

In order to quantify the dependency of the numerical results on the mesh density, 

numerical simulation of 2DOF VIV of a circular cylinder at f* = 2 and Vr = 6 is 

performed using three different meshes as summarised in Table 4.1 in which Nnode, 

Nelement, Δz, Δr and Nc represent the number of nodes, the number of elements, the 

mesh size in the spanwise direction, the minimum mesh size next to the cylinder 

surface in radial direction and the number of nodes along the circumference of the 

cylinder, respectively. Quantitative comparisons of the oscillation amplitudes (Ax/D, 

Ay/D), oscillation frequencies (fox/fny, foy/fny) and phase differences (θ) between the IL 

and CF displacements calculated from the different meshes are provided in Table 4.1. 

As observed in Table 4.1, the IL and CF oscillation frequencies predicted by the 

three meshes are identical. The differences in Ay/D and θ between Mesh 2 and Mesh 

3 are 1.4% and 0.2%, respectively. The maximum difference of 4.1% occurs in Ax/D 

between Mesh 2 and Mesh 3. The comparison among the results from the different 

meshes suggests that the mesh density of Mesh 2 is adequate for predicting accurate 

results of 2DOF VIV at Re = 500. 

 

Table 4.1 Comparison of the results from three different meshes. 

Mesh Nnode (M) Nelement (M) Δz/D Δr/D Nc Ax/D Ay/D fox/fny foy/fny θ (deg) 

1 0.37 0.39 0.2 0.002 96 0.408 0.818 1.875 0.937 341.140 

2 0.89 0.93 0.1 0.001 120 0.355 0.797 1.875 0.937 343.540 

3 2.27 2.34 0.05 0.001 160 0.341 0.786 1.875 0.937 344.300 

 

4.1.5 Time-Step Size Dependency Test 

 

A time-step size dependency test is conducted on Mesh 2 with three nondimensional 

time-step sizes (VΔt/D = 0.005, 0.002 and 0.001) for the same case as used in the 

mesh dependency study. The corresponding results are tabulated in Table 4.2. It 

shows that the maximum difference between VΔt/D = 0.005 and 0.002 is around 3.6% 
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and it decreases to approximately 1.5% between VΔt/D = 0.002 and 0.001. Therefore, 

the numerical results are independent of the time-step size when VΔt/D ≤ 0.002. In 

the consideration of computational efforts, VΔt/D = 0.002 is adopted for the 

simulation in this study.  

 

Table 4.2 Comparison of the results using different time-step sizes. 

VΔt/D Ax/D Ay/D fox/fny foy/fny θ (deg) 

0.005 0.368 0.819 1.875 0.937 342.560 

0.002 0.355 0.797 1.875 0.937 343.540 

0.001 0.350 0.808 1.875 0.937 343.870 

 

  

(a) (b) 

Fig. 4.3 Variation of the response amplitudes with the reduced velocity at different natural frequency 

ratios: (a) in-line response amplitudes and (b) cross-flow response amplitudes. 

 

4.2 Results and Discussions 

 

2DOF VIV of a circular cylinder with varying IL to CF natural frequency ratios (f* = 

1, 1.5 and 2) at an early subcritical Reynolds number Re = 500 is simulated in a 

reduced velocity range of Vr = 2 – 12. The effect of the natural frequency ratio on the 

2DOF VIV responses and the 3D flow features around the cylinder is examined.  

 

4.2.1 Response Amplitudes 
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Previous studies have shown that f* has a significant influence on the vibration 

amplitudes of the cylinder especially when f* is close to 2 (Bao et al., 2012; Dahl et 

al., 2006; Lucor and Triantafyllou, 2008; Sarpkaya, 1995). In this section, the effect 

of f* on the response amplitudes is explicated. Fig. 4.3 shows the variation of the 

dimensionless vibration amplitudes (Ax/D and Ay/D) with Vr at different f*. As 

observed in Fig. 4.3(a), the maximum IL amplitude (Axm/D) increases with the 

increase of f*. The peak IL amplitudes of f* = 1 and 1.5 appear at an identical reduced 

velocity Vr = 5 and take the values of Axm/D = 0.035 and 0.224, respectively. When f* 

increases to 2, Axm/D increases to 0.345 and shifts to a higher reduced velocity Vr = 6. 

As for the CF amplitudes, the amplitude curves of f* = 1 and 1.5 exhibit similar 

trends against Vr with a slight increase in the maximum cross-flow amplitude (Aym/D) 

from 0.634 to 0.695 when f* increases from 1 to 1.5. A dramatic increase in the CF 

amplitude is observed when f* increases to 2. Similar to Axm/D, Aym/D also shifts to a 

higher reduced velocity Vr = 7 and its value increases to Aym/D ≈ 1. The increase of 

vibration amplitude and the shift of the peak amplitude to a higher reduced velocity 

when f* varies from 1 to 2 were also observed in the 2D numerical simulation of 

Lucor and Triantafyllou (2008) at Re = 1000 and Bao et al. (2012) at Re = 150. 

 

The shapes of the response curves in the present study are qualitatively similar to 

those obtained from the 2D CFD simulation at Re = 150 by Bao et al. (2012) (Fig. 

4.4). The lock-in ranges of present results are wider than those in Bao et al. (2012) 

owing to the lower m* used in the present simulation. When f* = 2, multiple small 

peaks were observed by Bao et al. (2012) whereas the CF response at f* = 2 in the 

present simulation shows a single peak. In order to investigate the possible 

explanations for this discrepancy, a 2D simulation of 2DOF VIV of a circular 

cylinder with the same parameters as in Bao et al. (2012) is conducted at f* = 2 and 

the results are plotted in Fig. 4.4(c). As shown in Fig. 4.4(c), the CF response in the 

present 2D simulation also displays a single peak. It is thus speculated that the 

discrepancy can be attributed to the difference related to the stability of the numerical 

methods used for  solving  the structural  dynamic equations. In fact, Bao et al. (2012)  
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(a) 

  

(b) 

  

(c) 

Fig. 4.4 Comparison of amplitude response curves between the present simulation and Bao et al. 

(2012): (a) f* = 1, (b) f* = 1.5 and (c) f* = 2. 

 

used an explicit time integration method which is conditionally stable while the 

Newmark integration scheme used in the present study is unconditionally stable.  
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With mx
* ≠ my

*, Sarpkaya (1995) and Dahl et al. (2006) reported the observation of a 

two-peak CF response when f* approaches 2. However, the studies by Lucor and 

Triantafyllou (2008) and Srinil et al. (2013) with mx
* = my

* revealed a single-peak CF 

response. Srinil et al. (2013) attributed the single-peak CF response at f* ≈ 2 to the 

identical mass ratios in the IL and CF directions. The observation of the single-peak 

CF responses in the present 2D and 3D simulations when f* = 2 for identical IL and 

CF mass ratios is consistent with the conclusion by Srinil et al. (2013). 

 

As noted above, in the present 3D simulation, the vibration amplitude increases and 

the peak amplitude shifts to a higher reduced velocity when f* increases from 1 to 2, 

which is consistent with the numerical simulation results by Lucor and Triantafyllou 

(2008) at Re = 1000 and Bao et al. (2012) at Re = 150. Conversely, the change in the 

vibration amplitude as well as the shift of the peak amplitude when f* varies from 1 

to 2 in the experimental studies by Dahl et al. (2006) (Re = 11000 – 60000) and 

Srinil et al. (2013) (Re = 2000 – 50000) at higher Re are not obvious. Furthermore, 

compared to the maximum CF amplitudes around 1.5D in the experimental studies, 

the present maximum CF amplitudes are relatively small. The aforementioned 

differences in the amplitude responses indicate the possible influence of the 

Reynolds number on 2DOF VIV as suggested by Swithenbank et al. (2008). 

 

4.2.2 Response Frequencies 

 

The occurrence of dual resonance has been widely reported for 2DOF VIV by Dahl 

et al. (2010), Bao et al. (2012), Srinil and Zanganeh (2012), Srinil et al. (2013), 

Zanganeh and Srinil (2014) and Wang and Xiao (2016). Fig. 4.5 shows the variation 

of the normalised oscillation frequencies in the IL and CF directions (fox/fny and foy/fny) 

with the reduced velocity at different natural frequency ratios. According to the 

synchronisation between the response frequency and the natural frequency in Fig. 4.5, 

the lock-in ranges of the three different natural frequency ratios are identical, i.e., Vr 

= 5 – 10. The normalised oscillation frequencies in the IL and CF directions are 

almost constant within the lock-in range and are linear functions of the reduced 

velocity in the pre-lock-in (2 ≤ Vr < 5) and post-lock-in (10 < Vr ≤ 12) ranges. It can 
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be seen from Fig. 4.5 that the ratio of the IL oscillation frequency to the CF 

oscillation frequency is around 2 regardless of the natural frequency ratio. As 

explained by Dahl et al. (2010), under dual resonance, the cylinder vibrates at 

frequencies near the Strouhal frequency fv in the CF direction and 2fv in IL direction, 

respectively. The 2:1 IL to CF oscillation frequency ratio in the present study 

indicates that dual resonance exists over a wide range of the natural frequency ratios. 

 

  

(a) (b) 

Fig. 4.5 Variation of the response frequencies with the reduced velocity at different natural frequency 

ratios: (a) in-line response frequencies and (b) cross-flow response frequencies. 

 

  

(a) (b) 

Fig. 4.6 Time histories of the cylinder displacements and total lift and drag coefficients when f* = 1: (a) 

Vr = 3 and (b) Vr = 6. 
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The time histories of the total drag coefficient CD = Fx/(0.5ρV2DL), total lift 

coefficient CL = Fy/(0.5ρV2DL), IL and CF displacements (x/D and y/D) at Vr = 3 and 

6 when f* = 1 are illustrated in Fig. 4.6, which reveal the vibrations are regular at Vr = 

6 as compared to Vr = 3 where the beating phenomenon occurs. The beating 

phenomenon arises from off resonance vibrations of the system and the observed 

beating behaviour in the pre-lock-in range agrees with the observations of Al-Jamal 

and Dalton (2004) and Wu (2011) in their 2D CFD simulations as well as Navrose 

and Mittal (2013) and Zhao et al. (2014) in their 3D CFD simulations.  

 

 

(a) 

 

(b) 

Fig. 4.7 (a) Variation of the orbital trajectories with the reduced velocity at different natural frequency 

ratios and (b) variation of the phase differences between in-line and cross-flow displacements with the 

reduced velocity at different natural frequency ratios. 
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4.2.3 Orbital Trajectories 

 

Dahl et al. (2008) reported that the orbital shape of the cylinder is critical in defining 

the amplitude and frequency content of the hydrodynamic forces and according to 

Bourguet et al. (2013), the direction of the orbital motion is closely related to the 

energy transfer between the fluid and the structure. Therefore, it is of great 

significance to study the effect of the natural frequency ratio on the orbital 

trajectories of the cylinder. The variation of the orbital trajectories with the reduced 

velocity at different natural frequency ratios is displayed in Fig. 4.7(a). It can be 

observed that most of the orbital trajectories are of a figure-eight shape which is 

indicative of the 2:1 IL to CF oscillation frequency ratio. Therefore, the figure-eight 

trajectories are also the evidence of the occurrence of dual resonance (Dahl et al., 

2010). 

 

  

(a) (b) 

Fig. 4.8 Zoom-in view of orbital trajectories: (a) clockwise figure-eight trajectory at Vr = 3 and f* = 

1.5 and (b) oblique counterclockwise figure-eight trajectory at Vr = 6 and f* = 1. 

 

The orbit orientation of a trajectory is related to the phase difference (θ) between the 

IL and CF displacements. As elucidated by Huera-Huarte and Bearman (2009) and 

Bourguet et al. (2013), the phase difference can be defined as θ =θx - 2θy where θx 

and θy are phase angles of the IL and CF responses, respectively. According to 

Jauvtis and Williamson (2004), an orbital trajectory is counterclockwise when 0◦ ≤ θ 

< 90◦ or 270◦ < θ ≤ 360◦ and clockwise when 90◦ < θ < 270◦. Crescent shapes 
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correspond to θ = 90◦ or 270◦. The phase differences demonstrated in Fig. 4.7(b) 

highlight that most of the orbital trajectories are counterclockwise, i.e., the cylinder 

motion is counterclockwise at the top of the figure-eight motion. The exceptional 

clockwise trajectories are highlighted in red in Fig. 4.7(a) and a close-up of the 

orbital trajectory at Vr = 3 and f* = 1.5 is displayed in Fig. 4.8(a) revealing that the 

trajectory is of a clockwise figure-eight shape. 

 

  

(a) (b) 

Fig. 4.9 Amplitude spectra of displacements at Vr = 6 and f* = 1: (a) in-line displacement and (b) 

cross-flow displacement. 

 

It can be seen that clockwise orbital trajectories are mainly observed in the pre-lock-

in range and the number of clockwise trajectories decreases as f* increases from 1 to 

2. The counterclockwise direction is the predominant orbit orientation in the lock-in 

range. This observation agrees with the conclusion of Bourguet et al. (2011) that the 

flow excites the cylinder under the lock-in condition with a preferential IL versus CF 

motion phase difference corresponding to counterclockwise, figure-eight orbits. 

Oblique figure-eight trajectories similar to those reported by Kang and Jia (2013) and 

Gedikli and Dahl (2014) are observed at Vr  = 6, 7 and 8 when f* = 1 in the present 

study. Fig. 4.8(b) illustrates the oblique figure-eight trajectory at Vr = 6 and f* = 1. 

The amplitude spectra of the IL and CF displacements at Vr = 6 and f* = 1 are plotted 

in Fig. 4.9. Similar to other cases under dual resonance, the ratio of the dominant IL 

to CF oscillation frequencies in an oblique figure-eight trajectory is also around 2. 

However, for the IL displacement, apart from the dominant frequency component at 

twice the CF oscillation frequency (2foy), there is also a frequency component equal 
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to 1foy. The additional 1foy frequency component in the IL displacement leads to the 

asymmetry of the Lissajous figure. 

 

  

(a) (b) 

 

(c) 

Fig. 4.10 Variation of the hydrodynamic force coefficients with the reduced velocity at different 

natural frequency ratios: (a) mean drag coefficients, (b) rms of total drag coefficients and (c) rms of 

total lift coefficients. 

 

4.2.4 Hydrodynamic Forces 

 

When the cylinder is vibrating in two degrees of freedom, the IL vibration has 

significant effects on the hydrodynamic forces. Fig. 4.10 shows the variation of the 

total lift and drag coefficients with the reduced velocity. As observed in Fig. 4.10(a), 

the mean drag coefficient (CDmean) curves of f* = 1 and 1.5 nearly coincide, while an 

obvious increase in the mean drag coefficient is observed at f* = 2. The rms values of 

the oscillating drag coefficient (CDrms) show a remarkable jump at f* = 2 and Vr = 4. 

The peak CDrms reaches nearly three times as large as it is at f* = 1 and 1.5. The large 
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drag fluctuation agrees with the observations by Dahl et al. (2010) and Bao et al. 

(2012). Compared to the oscillating drag, the fluctuation of the rms values of the 

oscillating lift coefficient (CLrms) is less sensitive to f*. 

 

  

(a) (b) 

 

(c) 

Fig. 4.11 Amplitude spectra of the total lift coefficients: (a) f* = 1, (b) f* = 1.5 and (c) f* = 2. 

 

The time histories of the total lift and drag coefficients at Vr = 3 and 6 when f* = 1 

are shown in Fig. 4.6. Similar to the VIV responses, the beating phenomenon is also 

discernible in the hydrodynamic force coefficients at Vr = 3. The total lift coefficient 

time history makes evident that there is a third harmonic component in the total lift 

coefficient at Vr = 6. Fig. 4.11 shows the amplitude spectra of the total lift 

coefficients at different f*. It is apparent that for the three natural frequency ratios 

considered in the present study, there is a third harmonic component in the total lift 

coefficients in the lock-in range. The third harmonic forces were found to be 

associated with the counterclockwise motion of the cylinder by Dahl et al. (2010). 
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With the increase of the natural frequency ratio, the third harmonic component 

becomes larger. 

 

4.2.5 Effective Added Mass Coefficients 

 

It is observed in Fig. 4.5 that the IL to CF oscillation frequency ratio is always in the 

vicinity of 2 regardless of f*. The 2:1 oscillation frequency ratio at different f* is the 

consequence of the change in the effective added mass. According to Dahl et al. 

(2010), the oscillation frequency of the cylinder can be defined as follows. 

 
o

ea

K
f

m m



  (4.1) 

where mea is the effective added mass. The effective fluid added mass force changes 

the effective added mass of the system leading to the 2:1 oscillation frequency ratio, 

although f* may be distant from 2. Similar to the mass ratio m*, the effective added 

mass can be nondimensionalised as Cm = mea/(ρπD2L/4). The coefficient Cm 

represents a force coefficient due to vortex dynamics that is in phase with the 

acceleration of the cylinder.  

 

The effective added mass coefficients in the IL and CF directions (Cmx and Cmy) are 

determined based on the second harmonic component of the fluctuating drag and the 

first harmonic component of the lift as in Jauvtis and Williamson (2004). 
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where CD2 and x are the magnitude of the second harmonic component of the 

fluctuating drag coefficient and its phase angle with respect to the IL displacement, 

respectively. CL1 and y are the magnitude of the first harmonic component of total 

lift coefficient and its phase angle with respect to the CF displacement, respectively. 
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(a) (b) 

Fig. 4.12 Variation of the effective added mass coefficients with the reduced velocity at different 

natural frequency ratios: (a) in-line effective added mass coefficients and (b) cross-flow effective 

added mass coefficients. 

 

Fig. 4.12 demonstrates the variation of the effective added mass coefficients with the 

reduced velocity at different f*. According to Fig. 4.12(a), Cmx decreases with the 

increase of the reduced velocity. The decreasing trend is observed for all the three 

natural frequency ratios considered and it is also reflected by the increase of the 

oscillation frequency with the increase of Vr as shown in Fig. 4.5. A large deviation 

is observed for the Cmx curves at different f*. At f* = 1, most of the effective added 

mass coefficients are negative. In contrast, they become positive throughout the Vr 

range considered when f* = 2. Negative effective added mass coefficients in the IL 

direction with the lowest value being around -2 were also reported by Bao et al. 

(2012) in their 2D CFD study and in the reduced-order modelling by Zanganeh and 

Srinil (2014). In the CF direction, Cmy also decreases with the increase of the reduced 

velocity. However, unlike the Cmx curves, the Cmy curves at different f* show obvious 

overlap in the range of Vr considered. This seems reasonable because a larger 

variation of the IL added mass is required in order to drive the oscillation frequency 

ratio to 2 when f* is distant from 2. 

 

4.2.6 Correlation Lengths 

 

The three-dimensionality of the flow in the near wake of the cylinder which 

determines the fluctuations of the forces acting on the cylinder is measured by the 
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spanwise correlation length. Previous experimental and numerical studies indicated 

that there was a sharp drop in spanwise correlation at the end of the upper branch 

near the transition between the upper and the lower branches which does not 

diminish the response of the cylinder (Hover et al., 2004; Hover et al., 1998; Lucor 

et al., 2003, 2005; Zhao et al., 2014). In the present study, the autocorrelation 

function defined by Lucor et al. (2005) is used to quantify the correlation. The 

autocorrelation function is described as follows. 
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where CL(zi, tj) is taken to be the fluctuation of the original signal C*
L(zi, tj) from 

which its mean quantity is subtracted. The signal CL(zi, tj) is given by 
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The shift lk in Eq. (4.4) is prescribed to be 
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The correlation length LC is then computed by 
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Fig. 4.13 Variation of the correlation lengths with the reduced velocity at different natural frequency 

ratios. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 4.14 Contours of the sectional lift coefficients: (a) Vr = 3 and f* = 1, (b) Vr = 3 and f* = 2, (c) Vr = 

6 and f* = 1, (d) Vr = 6 and f* = 2, (e) Vr = 9 and f* = 1 and (f) Vr = 9 and f* = 2. 

 

Fig. 4.13 shows the variation of the nondimensional correlation length (LC/D) with Vr 

at different f*. At f* = 1, the maximum correlation length is witnessed at Vr = 2 while 

it shifts to Vr = 4 when f* = 1.5 and 2. In general, the correlation lengths are very 

large for low reduced  velocities in the pre-lock-in range which is an indication of the  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 4.15 Iso-surfaces of eigenvalue λ2 = -0.1 with the contours of the spanwise vorticity ωz on the iso-

surfaces: (a) Vr = 3 and f* = 1, (b) Vr = 3 and f* = 2, (c) Vr = 6 and f* = 1, (d) Vr = 6 and f* = 2, (e) Vr = 

9 and f* = 1 and (f) Vr = 9 and f* = 2. 

 

strong two-dimensionality of the flow. There is a drop in the correlation as Vr 

increases and the correlation lengths reach their minimum values at reduced 

velocities close to the transition region between lock-in and post-lock-in ranges. 
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Finally, the correlation increases for higher reduced velocities in the post-lock-in 

range. 

 

 
 

t = 0 

   

t = 0.25Toy 

   

t = 0.5Toy 

   

t = 0.75Toy 

   

 (a) (b) (c) 

Fig. 4.16 Contours of spanwise vorticity ωz at different instants of time in one cross-flow vibration 

cycle on three cross sections along the cylinder at Vr = 3 and f* = 1: (a) z/L = 0.25, (b) z/L = 0.5 and (c) 

z/L = 0.75. 

 

The variation of the lift coefficient along the span at Vr = 3, 6 and 9 for f* = 1 and 2 is 

examined by plotting the contours of the sectional lift coefficient (CL(z) = 

Fy(z)/(0.5ρV2D)) on the z – t plane. These three reduced velocities are selected in a 

way that Vr = 3 represents the cases with large correlation lengths. Vr = 6 is in 

proximity to the location where the maximum vibration amplitudes appear and Vr = 9 

is near the region where the correlation lengths approach their minimum values. As 

for the two natural frequency ratios, f* = 1 and 2 correspond to the most common 

case of 2DOF VIV and the scenario where perfect 2DOF resonance might occur, 
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respectively. Fig. 4.14 demonstrates that the lift distribution along the span is well 

organised at Vr = 3 for both f* = 1 and 2 revealing the 2D feature of the flow at Vr = 3. 

When Vr increases to 6, the variation of the lift coefficient along the span grows 

stronger. The sectional lift coefficient signals at different spanwise locations suffer 

relative phase shifts with each other which consequently results in the variation of 

the phase differences between the sectional lift coefficients and the CF displacement 

along the cylinder. The decrease in the spanwise correlation can be attributed to the 

poor phasing between the forces and the displacement (Lucor et al., 2003, 2005). 

With an increase in Vr to 9, the relative phase shifts among the sectional lift 

coefficient signals get more obvious leading to an even poorer correlation. The 

observation from the contours of CL(z) agrees with the conclusion drawn from the 

computed correlation lengths in Fig. 4.13. 

 

4.2.7 Vortex Shedding 

 

One of the objectives of this research is to study the effect of the natural frequency 

ratio on the vortex shedding of 2DOF VIV. The 3D vortex structures are defined 

using the λ2 method proposed by Jeong and Hussain (1995) in which λ2 is the second 

eigenvalue of the symmetric tensor S2 + Ω2. Here, S and Ω are the symmetric and 

antisymmetric parts of the velocity gradient tensor u. Fig. 4.15 shows the iso-

surfaces of λ2 = -0.1 at Vr = 3, 6 and 9 for f* = 1 and 2. The reasons for choosing the 

specific combinations of Vr and f* are provided in Section 4.2.6. The spanwise 

vorticity defined as ωz = ∂u2/∂x1 - ∂u1/∂x2 is plotted on the iso-surfaces. It can be 

observed that the wake flow is entirely 3D. The wake in the lock-in range is wider 

than that in the non-lock-in range. Among the three reduced velocities considered for 

either frequency ratio, the widest wake is observed at Vr = 6 which is near the 

reduced velocity where the maximum vibration amplitude appears. The variation of 

the flow in the lock-in range is also stronger than that in the non-lock-in range. The 

vortices in the spanwise direction can be clearly identified at Vr = 3 for both 

frequency ratios. The clearly-identified spanwise vortices indicate the strong two-

dimensionality of the flow at low reduced velocities. With the increases of Vr and f*, 

the variation of the spanwise vortices becomes stronger but they can still be 
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identified at Vr = 6 and f* = 1. However, it is hard to identify the spanwise vortices in 

the rest of the cases presented in Fig. 4.15. The changes in the spanwise vortices 

agree with the variation of the correlation lengths as shown in Fig. 4.13. 
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 (a) (b) (c) 

Fig. 4.17 Contours of spanwise vorticity ωz at different instants of time in one cross-flow vibration 

cycle on three cross sections along the cylinder at Vr = 3 and f* = 2: (a) z/L = 0.25, (b) z/L = 0.5 and (c) 

z/L = 0.75. 

 

In order to further examine the variation of the flow in the spanwise direction of the 

cylinder, the contours of the spanwise vorticity at four instants of time in one cycle (t 

= 0, 0.25Toy, 0.5Toy and 0.75Toy where Toy is the period of the CF vibration) are 

plotted. The corresponding transverse displacements at different time instants are: 

y/D = 0, y/D = Ay/D, y/D = 0 and y/D = -Ay/D, respectively. At each time instant 

considered, spanwise vorticity contours on three cross sections (z/L = 0.25, 0.5 and 

0.75) are presented to study the variation of the vortex shedding modes along the 

cylinder. The three cross sections are chosen in favour of those closer to the cylinder 
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ends to avoid the potential end effect of the periodic boundary condition employed 

on the two spanwise boundaries. 
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 (a) (b) (c) 

Fig. 4.18 Contours of spanwise vorticity ωz at different instants of time in one cross-flow vibration 

cycle on three cross sections along the cylinder at Vr = 6 and f* = 1: (a) z/L = 0.25, (b) z/L = 0.5 and (c) 

z/L = 0.75. 

 

Fig. 4.16 and Fig. 4.17 are the spanwise vorticity contours in one cycle on the three 

cross sections when Vr = 3 for f* = 1 and 2. By comparing the vorticity contours at 

different time instants on each cross section, it can be seen that the vortex shedding 

in both cases demonstrates a clear 2S pattern with two single vortices being formed 

in one cycle as described by Williamson and Roshko (1988). The vortex shedding 

flows on the different cross sections are nearly in phase with each other and the 

vortex shedding patterns are very similar indicating the strong two-dimensionality of 

the flow at low reduced velocities in the pre-lock-in range. Such vortex wake 
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structure leads to the well-organised distribution of the sectional lift force along the 

cylinder span at Vr = 3 as mentioned in Section 4.2.6. 
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 (a) (b) (c) 

Fig. 4.19 Contours of spanwise vorticity ωz at different instants of time in one cross-flow vibration 

cycle on three cross sections along the cylinder at Vr = 6 and f* = 2: (a) z/L = 0.25, (b) z/L = 0.5 and (c) 

z/L = 0.75. 

 

Fig. 4.18 shows the spanwise vorticity contours when Vr = 6 and f* = 1. As discussed 

in Section 4.2.3, the orbital trajectory of the cylinder, in this case, is of an oblique 

figure-eight shape. Therefore, it is anticipated that the wake of the cylinder would 

display asymmetry. It can be seen from Fig. 4.18 that the vortex shedding at z/L = 

0.25 and 0.5 exhibits a P + S mode where the cylinder sheds a single vortex and a 

vortex pair per cycle. The P + S mode was first identified in forced vibration 

experiments (Griffin and Ramberg, 1974; Zdero et al., 1995) and recently has also 

been observed in the free vibration studies by Singh and Mittal (2005), Bao et al. 
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(2012) and Gedikli and Dahl (2014). In spite of the P + S mode at z/L = 0.25 and 0.5, 

a 2S mode appears at z/L = 0.75. The dominant asymmetric P + S vortex shedding at 

Vr = 6 and f* = 1 is related to the additional 1foy frequency component in the IL 

motion and the oblique figure-eight trajectory. 
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 (a) (b) (c) 

Fig. 4.20 Contours of spanwise vorticity ωz at different instants of time in one cross-flow vibration 

cycle on three cross sections along the cylinder at Vr = 9 and f* = 1: (a) z/L = 0.25, (b) z/L = 0.5 and (c) 

z/L = 0.75. 

 

The vortex shedding along the cylinder at Vr = 6 and f* = 2 is displayed in Fig. 4.19. 

The vortex shedding at z/L = 0.25 and 0.75 is in a 2P mode with two pairs of vortices 

being formed per cycle. Evidence of the 2P vortex shedding mode in free vibration 

was first exhibited by Brika and Laneville (1993, 1995). For the 2P mode at z/L = 

0.25, the vortices are in pairs when they are shed from the cylinder. However, when 
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the vortex pairs progress downstream, they split into multiple small scale vortices. 

The present observation agrees qualitatively with the CFD results by Zhao et al. 

(2014). In contrast, the vortex pairs at z/L = 0.75 similar to the flow visualisation 

results in the experiment by Govardhan and Williamson (2000) are more stable. At 

z/L = 0.5, a P + S mode resembling that in Bao et al. (2012) is observed. 
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 (a) (b) (c) 

Fig. 4.21 Contours of spanwise vorticity ωz at different instants of time in one cross-flow vibration 

cycle on three cross sections along the cylinder at Vr = 9 and f* = 2: (a) z/L = 0.25, (b) z/L = 0.5 and (c) 

z/L = 0.75. 

 

In the instance where Vr = 9 and f* = 1 (Fig. 4.20), the vortex shedding at z/L = 0.25 

exhibits a P + S mode and a 2P mode is observed at z/L = 0.5 and 0.75. As for Vr = 9 

and f* = 2 as shown in Fig. 4.21, although two pairs of vortices are shed in one cycle 

on the three cross sections, the vortex shedding patterns on the different cross 

sections are noticeably different. 
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The discussions above can be summarised as follows. When Vr = 3 at f* = 1 and 2, 

the vortex shedding structures on the different cross sections are in phase and have 

similar 2S patterns, which leads to the well-organised distribution of the sectional lift 

force along the cylinder and relatively large correlation lengths. With the decrease of 

the spanwise correlation, variation of the vortex shedding patterns along the cylinder 

becomes obvious. This causes the relative phase shifts of the sectional lift coefficient 

signals at different spanwise locations as mentioned in Section 4.2.6 and 

consequently results in a poor phasing between the sectional lift forces and the CF 

displacement. According to Lucor et al. (2003, 2005), it is the poor phasing between 

the forces and the displacement that causes the decrease of the spanwise correlation. 

As for the dominant vortex shedding mode in the cases with poor spanwise 

correlation, it modifies from a P + S mode to a 2P mode when f* increases from 1 to 

2 at Vr = 6 and a 2P mode dominated vortex shedding is observed for both f* = 1 and 

2 at Vr = 9. 

 

4.3 Concluding Remarks 

 

The effect of the natural frequency ratio on two-degree-of-freedom vortex-induced 

vibration of an elastically mounted circular cylinder is numerically studied at Re = 

500 using a three-dimensional computational fluid dynamics method. A low mass 

ratio m* = 2 and zero structural damping are considered in the simulation. The 

reduced velocity ranges from 2 to 12 and the IL to CF natural frequency ratio varies 

from f* = 1 – 2 with an increment of 0.5. Based on the qualitative and quantitative 

analyses of the numerical results, the findings of this study may be laid out as 

follows. 

 

It is found that f* has a significant impact on the response amplitudes of the cylinder. 

In the present study, the maximum vibration amplitude increases and shifts to a 

higher reduced velocity when f* increases from 1 to 2. Where mx
* = my

*, a single 

peak CF response is observed for f* = 2. Dual resonance exists over a wide range of 

the natural frequency ratios with the oscillation frequency ratio being approximately 



91 

 

2 and most of the orbital trajectories having a figure-eight shape. The primary 

direction of the orbital trajectories in the lock-in range is counterclockwise. 

Clockwise orbits appear in the pre-lock-in range and the number of clockwise 

trajectories decreases as f* increases. 

 

CDmean and CDrms experience evident increases as f* approaches 2 while CLrms is not 

quite sensitive to f*. A third harmonic component is observed in total lift coefficient 

in the lock-in range. It is also found that with the increase of f*, the third harmonic 

component becomes larger. The large third harmonic forces are found to be related to 

the counterclockwise motion of the cylinder. At low Vr, the displacements and 

hydrodynamic forces exhibit beating features. In terms of the effective added mass 

coefficients, both Cmx and Cmy decrease with the increase of Vr. As the variation of 

Cmx required to drive the oscillation frequency ratio to 2 is larger when f* is distant 

from 2, the deviation in Cmx for different f* is more obvious than that in Cmy. 

 

Large correlation lengths are observed for low Vr in the pre-lock-in range which 

indicates the 2D characteristics of the flow. The spanwise correlation experiences a 

decrease as Vr increases and reaches its minimum value at Vr near the transition 

region between the lock-in and post-lock-in ranges where the three-dimensionality of 

the flow is strongest. The decrease of the correlation length is due to the poor 

phasing between the forces and the displacement. After the trough, the spanwise 

correlation begins to increase with increases of Vr in the post-lock-in range. 

 

The vortex shedding is also found to be related to f*. It is revealed that the wake in 

the lock-in range is wider than that in the non-lock-in range. The variation of the 

spanwise vortices is weaker when the correlation length is large. With the decrease 

of the spanwise correlation, it becomes more difficult to identify the spanwise 

vortices. In the present study, three vortex shedding modes are observed, i.e., 2S, P + 

S and 2P modes. A 2S mode is observed at Vr = 3 for both f* = 1 and 2. The vortex 

shedding structures on different spanwise cross sections are in phase with each other 

and the patterns are similar, which results in the strong correlation of the sectional lift 

coefficients at low Vr in the pre-lock-in range. At Vr = 6, variation of vortex shedding 
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modes along the cylinder is observed. When f* = 1, the vortex shedding is dominated 

by a P + S mode with a 2S mode appearing in the upper part of the cylinder. The 

asymmetric nature of the P + S mode is associated with the additional 1foy frequency 

component in the in-line motion and the oblique figure-eight trajectory. The 

dominant vortex shedding mode switches to a 2P mode when f* = 2 with a P + S 

mode being observed on the middle section of the cylinder. When Vr is further 

increased to 9, the dominant vortex shedding mode for both f* = 1 and 2 is a 2P mode 

with a P + S mode being found in the lower part of the cylinder at f* = 1. The 

variation of the sectional lift coefficients along the span is related to the variation of 

the vortex shedding flows. 

 

The research in this chapter leads to the journal paper ‘Three-dimensional numerical 

simulation of two-degree-of-freedom VIV of a circular cylinder with varying natural 

frequency ratios at Re = 500’ published in the Journal of Fluids and Structures. 
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Chapter 5 Large Eddy Simulation of Vortex-Induced 

Vibration of a Vertical Riser in Uniform and Linearly 

Sheared Currents 

 

“Turbulence is the most important unsolved problem of classical physics.” 

-Richard Feynman 

 

Combined IL and CF VIV of a vertical riser in uniform and linearly sheared currents 

is studied using a fully 3D CFD approach. The model vertical riser tested at the 

MARINTEK by ExxonMobil is considered. The model riser has a length-to-diameter 

ratio L/D = 481.5 and a mass ratio m* = 2.23. The structural damping is set to zero in 

the CFD simulation. A top tension T = 817 N is applied to the top end of the riser. 

The riser is pinned at both ends and free to move in both the IL (x) and CF (y) 

directions. A low flow velocity range is specially selected to cover the typical range 

where the IL fatigue damage is higher than the CF fatigue damage so that the 

importance of the IL fatigue damage can be addressed. 

 

5.1 Problem Descriptions 

 

5.1.1 Simulation Parameters 

 

In the present study, two types of flow conditions are considered for VIV of a 

vertical riser, i.e., uniform flow and linearly sheared flow. The model vertical riser 

tested at the MARINTEK by ExxonMobil (Lehn, 2003) is considered. The main 

parameters of the model riser are summarised in Table 5.1. The model riser has a 

length-to-diameter ratio L/D = 481.5 and a mass ratio m* = 2.23. The structural 

damping in this study is set to be zero. The physical configuration of a vertical riser 

subject to VIV is displayed in Fig. 5.1(a). The flow direction is parallel to the global 

x-axis. A top tension T = 817 N is applied to the top end of the riser. The riser is 

pinned at both ends and free to move in the IL and CF directions. Simulations are 

performed for four different test cases in the experiment, namely # 1103, # 1105, # 
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1201 and # 1205 with the same Reynolds numbers as in the experiments up to Re =  

7381. The incoming flow velocity and other parameters of the four cases are 

summarised in Table 5.2 and the corresponding velocity profiles are displayed in Fig. 

5.1(b). Detailed descriptions of the flow velocity profiles of the four cases are given 

as follows.  

 

Table 5.1 Properties of the vertical riser model. 

Properties  Values SI units 

L 9.63 m 

Do 20 mm 

tw 0.45 mm 

E 1.025 × 1011 N/m2 

T 817 N 

m* 2.23 - 

L/D 481.5 - 

 

  

(a) (b) 

Fig. 5.1 (a) Sketch of physical configurations and (b) Uniform and linearly sheared incoming flow 

velocity profiles. 
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The case # 1103 and the case # 1105 have uniform velocity profiles with V = 0.2 m/s 

and 0.42 m/s, respectively. Whereas the currents in the case # 1201 and the case # 

1205 are linearly sheared with the maximum velocities at the bottom end of the riser 

(z = 0) being Vmax = 0.2 m/s and Vmax = 0.42 m/s, respectively. In both cases, the 

minimum velocity at the top end of the riser (z = L) Vmin = 0.14Vmax. 

 

Table 5.2 Incoming flow velocity parameters of different cases. 

Case # Flow conditions Vmax (m/s) Vmin/Vmax 

1103 Uniform 0.2 1 

1105 Uniform 0.42 1 

1201 Linearly Sheared 0.2 0.14 

1205 Linearly Sheared 0.42 0.14 

 

Table 5.3 Eigenfrequencies for the vertical riser model. 

Mode  fn, string (Hz) fn, beam (Hz) Theoretical Value (Hz) FEA (Hz) Error 

1 1.77 0.24 1.79 1.7904 0.022% 

2 3.55 0.94 3.67 3.6725 0.068% 

3 5.32 2.12 5.73 5.7309 0.015% 

4 7.1 3.77 8.04 8.0373 0.034% 

5 8.87 5.89 10.65 10.649 0.0094% 

6 10.64 8.48 13.62 13.61 0.073% 

7 12.42 11.55 16.96 16.952 0.047% 

8 14.2 15.08 20.71 20.698 0.058% 

 

To estimate the eigenfrequencies for a vertical riser, it could be simplified as a 

tensioned beam with moment-free supports at both ends (Lie and Kaasen, 2006). The 

nth eigenfrequency for the tensioned beam, fn, t-beam can be expressed in terms of the 

eigenfrequencies for a tensioned string and a nontensioned beam (Weaver et al., 

1974). 

 
2 2

, , ,n t beam n string n beamf f f     (5.1) 
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(a) 

 

 

(b) (c) 

  

(d) (e) 

Fig. 5.2 (a) Computational domain, (b) computational mesh in the xy-plane, (c) mesh around the 

cylinder, (d) initial mesh and (e) mesh with riser deflection. 
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
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eigenfrequencies for a tensioned string without bending stiffness and a nontensioned 

beam of equal length L and mass per unit length L. 

 

Table 5.4 Eigenfrequencies of the vertical riser model: measured versus FEA results. 

Mode Measured (Hz) FEA (Hz) Error 

1st Mode CF 1.9 1.79 6.10% 

2nd Mode CF 3.9 3.67 6.30% 

3rd Mode CF 6.1 5.73 6.50% 

1st Mode IL 2.06 1.79 15.10% 

2nd Mode IL 3.95 3.67 7.60% 

3rd Mode IL 6.16 5.73 7.50% 

 

The eigenfrequencies of the foremost eight modes are calculated with Eq. (5.1) along 

with a modal analysis carried out using ANSYS. The results are tabulated in Table 

5.3. The eigenfrequencies from the modal analysis agree well with the corresponding 

theoretical values with all errors less than 0.1%. Table 5.4 shows the comparison of 

the eigenfrequencies of the first three modes in the IL and CF directions between the 

measured data in the experiment and the modal analysis results. It can be interpreted 

from the table that the measured IL and CF eigenfrequencies for each vibration mode 

are not identical. In contrast, due to inevitable simplifications of the FEA model, it is 

not able to replicate the unequal eigenfrequencies in the IL and CF directions and the 

discrepancies between the measured data and the modal analysis results are much 

larger than those between the theoretical values and modal analysis results as 

summarised in Table 5.3. 

 

5.1.2 Fluid Domain and Boundary Conditions 

 

Fig. 5.2(a) shows the computational domain for the CFD simulation of VIV of a 

vertical riser. The origin of the Cartesian coordinate system is located at the centre of 

the bottom end of the riser. The length of the domain is 40D with the riser being 

located  at  10D  downstream  the  inlet  boundary.  The  width  of  the  domain in the  
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(a) (b)  

Fig. 5.3 FEA mesh: (a) initial mesh and (b) mesh with riser deflection. 

 

transverse direction (y-direction) is 20D and the length of the riser is 481.5D. The 

computational mesh in the xy-plane and a zoom-in view of the mesh around the 

cylinder are shown in Fig. 5.2(b) and (c), respectively. There are 180 nodes along the 

circumference of the riser and the minimum mesh size next to the riser surface in the 

radial direction is 0.001D. The nondimensional mesh size next to the riser surface is 

found to be y+ < 1, where y+ is defined as y+ = ufy/ν with uf being the friction velocity 

and y being the distance to the nearest wall. The riser starts with a straight 

configuration (see Fig. 5.2(d)) and it deflects towards the current downstream after it 

is exposed to the different current profiles until its internal restoring force is 

sufficiently large to overcome the drag forces as shown in Fig. 5.2(e). The boundary 

conditions for the governing equations are as follows. The surface of the cylinder is 

assumed to be smooth, where no-slip boundary condition is employed. Apart from 

the no-slip boundary condition, the cylinder surface is also regarded as a fluid-solid 
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interface where the coupling data, i.e., forces and displacements are transferred. The 

inlet velocity boundary conditions are set to be the same as the freestream velocity. 

At the outflow boundary, the gradients of the fluid velocity in the streamwise 

direction are set to zero and the pressure at the outflow boundary is given a reference 

value of zero. On the two spanwise and the two transverse boundaries, the velocity in 

the direction normal to the boundary is zero.  

 

  

(a) (b) 

Fig. 5.4 Comparison of the rms amplitudes between different mesh systems with published data: (a) 

IL rms amplitudes and (b) CF rms amplitudes. 

 

5.1.3 Solid Domain and Boundary Conditions 

 

Fig. 5.3 shows the computational mesh for the finite element analysis (FEA) of the 

present FSI simulation. The scale of the FEA model has been modified in order to 

clearly view the deflection of the model. Fig. 5.3(a) is the initial FEA mesh without 

riser deflection and Fig. 5.3(b) is the FEA mesh with riser deflection. A 3D 20-node 

solid element which exhibits quadratic displacement behaviour is used for the 

discretisation of the finite element model. The spanwise direction of the riser finite 

element model is discretised using 250 segments, which is a typical resolution for 

riser global dynamic analysis (Huang et al., 2009). A top tension T = 817 N is 

applied to the top end of the riser. Both the top and bottom ends of the riser are 

pinned with zero rotational stiffness. The outer surface of the FEA model is also set 

to be a fluid-solid interface for data transfer. 
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Table 5.5 Mesh Dependency test results. 

 
Nnode (M) Δr/D Nc Nz Axrm/D Ayrm/D 

Mesh 1 0.626 0.001 180 30 0.118 0.781 

Mesh 2 1.043 0.001 180 50 0.125 0.805 

Mesh 3 2.087 0.001 180 100 0.128 0.823 

EXP - - - - 0.14 0.745 

Huang et al. (2011a) 1.480 ?? 182 50 ?? 0.833 

 

5.1.4 Mesh Dependency Study 

 

A multiblock structured mesh is used in the present CFD simulation. The meshing 

strategy is that a fine mesh is used in the xy-plane and a relatively coarse mesh is 

used in the spanwise direction. By using this strategy, it is possible to obtain 

reasonable results at the cost of sacrificing the resolution of small scale axial flow 

features. In order to ensure that the numerical results are independent of the grid size, 

a mesh dependency test is carried out. Three different meshes are used to simulate 

the case # 1105 and the results are compared with the experimental data by Lehn 

(2003) and the numerical results of Huang et al. (2011a). Table 5.5 shows the mesh 

characteristics, the maximum IL rms amplitude (Axrm/D) and the maximum CF rms 

amplitude (Ayrm/D) computed using the three mesh systems. Comparing with the 

experimental data, Axrm/D is slightly underpredicted while Ayrm/D is slightly 

overpredicted using the three meshes. The maximum difference of 5.93% occurs in 

the value of Axrm/D between Mesh 1 and Mesh 2 whereas the difference between 

Mesh 2 and Mesh 3 reduces to only 2.4%. In the meanwhile, the differences in the 

value of Ayrm/D between Mesh 1 and Mesh 2 and between Mesh 2 and Mesh 3 are 

3.07% and 2.24%, respectively. It can be concluded that the difference in the results 

predicted by Mesh 2 and Mesh 3 is within the acceptable range. The variation of rms 

amplitudes along the riser span in the IL and CF directions is displayed in Fig. 5.4. 

The IL and CF rms amplitudes and vibration modes predicted by the three meshes 

are quite similar and the maximum CF rms amplitudes predicted by Mesh 2 and 

Mesh 3 are in agreement with the numerical results of Huang et al. (2011a) with the 
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CF responses predicted by the two meshes showing better comparison with the 

experimental data in the upper part of the riser (z/L > 0.6) than the results of Huang 

et al. (2011a). Based on the discussions above and also taking into account the 

computational efforts, the simulations in this study are conducted with Mesh 2. As 

the present FEA mesh is able to predict the riser response with reasonable accuracy, 

the FEA mesh dependency study is not discussed in this study. 

 

Table 5.6 Comparison of maximum rms amplitudes between different time-step sizes and 

experimental data. 

 
Axrm/D Ayrm/D 

0.005 0.121 0.838 

0.002 0.125 0.805 

0.001 0.127 0.789 

EXP 0.14 0.745 

 

  

(a) (b) 

Fig. 5.5 Comparison of rms amplitudes between different time-step sizes and experimental data: (a) IL 

rms amplitudes and (b) CF rms amplitudes. 

 

5.1.5 Time-Step Size Dependency Test 

 

In order to evaluate the dependency of the numerical results on the time-step size, a 

time-step size dependency test is performed with Mesh 2. The same case used in the 

mesh dependency test  is considered.  Three  nondimensional time-step sizes are used  
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(a) 

  

  

(b) 
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(c) 

  

  

(d) 

Fig. 5.6 Comparison of the riser response envelopes: (a) # 1103, (b) # 1105, (c) # 1201 and (d) # 1205. 

 



105 

 

herein, i.e., Vt/D = 0.005, 0.002 and 0.001. Axrm/D and Ayrm/D predicted with the 

three nondimensional time-step sizes are provided in Table 5.6. According to the 

results, a maximum difference of 4.1% is observed between Vt/D = 0.005 and 0.002. 

The maximum difference between Vt/D = 0.002 and 0.001 reduces to 

approximately 2.03%. Fig. 5.5 illustrates the variation of rms amplitudes along the 

riser span in the IL and CF directions computed by different nondimensional time-

step sizes. The three nondimensional time-step sizes predict similar IL and CF rms 

amplitudes and vibration modes with almost negligible difference in the results 

between Vt/D = 0.002 and 0.001. In the consideration of computational efforts, 

Vt/D = 0.002 is used in the present study. 

 

5.2 Results and Discussions 

 

Numerical simulations are performed for VIV of a vertical riser in uniform and 

linearly sheared currents. The velocity profiles considered are uniform velocities V = 

0.2 m/s and 0.42 m/s and linearly sheared velocity profiles which can be described as 

Vprofile = (1 – 0.86z/L)Vmax where Vmax = 0.2 m/s and 0.42 m/s. Both the IL and CF 

VIV results are compared with the experimental data by Lehn (2003). 

 

5.2.1 Riser Dynamic Responses 

 

Fig. 5.6 shows the comparison of the envelopes of the IL and CF displacements 

between the present simulation and the experiment. It is clear that the present results 

are in good agreement with the experimental data in terms of the dominant modes. In 

the case # 1103, the IL and CF vibrations are dominated by the second mode and the 

first mode, respectively. When the uniform flow velocity increases to V = 0.42 m/s, 

the dominant modes in the IL and CF directions change to the third mode and the 

second mode, respectively. 

 

Similar to the uniform flow conditions, the dominant modes in the IL and CF 

directions in the two linearly sheared flow cases also change with the maximum flow 

velocity.  
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(a) 

  

(b) 

  

(c) 

  

(d) 

Fig. 5.7 The IL and CF motion evolution responses along the riser: (a) # 1103, (b) # 1105, (c) # 1201 

and (d) # 1205. 
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(a) 

  

(b) 

  

(c) 

  

(d) 

Fig. 5.8 Comparison of the rms amplitudes: (a) # 1103, (b) # 1105, (c) # 1201 and (d) # 1205. 
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In the present simulation, the variation of the dominant modes in the two linearly 

sheared flow cases is the same as that in the two uniform flow cases, i.e., the second 

mode and the first mode in the IL and CF directions for Vmax = 0.2 m/s transfer into 

the third mode and the second mode when Vmax increases to 0.42 m/s. 

 

One discrepancy is observed in the IL dominant mode in the case # 1201. The 

present numerical simulation predicts a second mode, whereas the dominant mode is 

the third mode in the experiment. The reasons for this discrepancy are given as 

follows. 

 

As an approximation, the IL response frequency may be estimated to be twice the CF 

response frequency. This implies that the IL mode number is twice the CF mode 

number for a tensioned string, whereas for a nontensioned beam it is lower, due to 

the quadratic relationship between n and frequency (Lie and Kaasen, 2006). 

According to Lehn (2003), the natural frequency of the riser is dominated by tension 

if T ≥ 4π2n2EI/L2. For the case # 1201 we discussed herein, the tension of the riser T 

= 817 N is larger than 4π2n2EI/L2 for n = 1, 2, and 3, therefore the natural frequencies 

of the first three modes are dominated by tension, which is also reflected in the 

modal analysis results in Table 5.3. Thus, in the FSI simulation, the behaviour of the 

riser would be similar to a tensioned string when it vibrates in low mode numbers (n 

≤ 3) with the IL dominant mode number being twice that in the CF direction. 

However, as shown in Table 5.4, there are some discrepancies between the measured 

eigenfrequencies and the modal analysis results. These discrepancies cause the 

difference in the IL oscillation frequency and hence the IL dominant mode between 

the present numerical results and the experimental data. Moreover, as shown in Fig. 

5.8(c), the IL vibration amplitudes of the riser in the case # 1201 are so small that the 

computed and the measured data may not be reliable, which can also contribute to 

the discrepancy in the IL dominant mode between the numerical simulation and the 

experimental test. 
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The IL and CF motion evolution responses along the riser predicted by the present 

FSI simulation are analysed in an effort to understand the riser dynamics. As shown 

in Fig. 5.7, the variation of the dominant mode shapes with the flow conditions 

agrees with the observations from Fig. 5.6. Under the uniform flow condition, the IL 

dominant mode changes from the second to the third mode and the CF dominant 

mode shifts from the first mode to the second mode when V increases from 0.2 m/s to 

0.42 m/s. The variation of the dominant modes in the two linearly sheared flow cases 

is the same as that in the two uniform flow cases when Vmax increases from 0.2 m/s to 

0.42 m/s. In most of the cases, the vibration of the riser exhibits a distinct standing 

wave response indicated by definite nodes and antinodes. An exception is observed 

for the case # 1105 where the CF vibration demonstrates a travelling wave response.  

 

5.2.2 Root Mean Square Amplitudes 

 

The rms amplitudes in the IL and CF directions (Axrms/D and Ayrms/D) are compared 

with the experimental data as shown in Fig. 5.8. The experimental data are plotted in 

dots for easy identification. In the case # 1103, the maximum IL rms amplitude is 

found near the top end of the riser with its value Axrm/D ≈ 0.13 being overpredicted in 

the present simulation. The numerical results in the CF direction are in good 

agreement with the experimental data. The maximum CF rms amplitude is Ayrm/D ≈ 

0.4. When the uniform flow velocity increases to V = 0.42 m/s, the maximum IL rms 

amplitude increases slightly to Axrm/D ≈ 0.14 and appears near the bottom end of the 

riser at z/L = 0.22. In contrast, the maximum CF rms amplitude increases 

dramatically to Ayrm/D ≈ 0.81 which is similar to the CF VIV amplitudes reported by 

Vandiver (1993) and Huera-Huarte and Bearman (2011). 

 

Fig. 5.8(c) and (d) show the comparison of the rms amplitudes between the present 

numerical simulation and the experiment for linearly sheared flow. Similar to the 

uniform flow conditions, the maximum IL and CF rms amplitudes also increase with 

the maximum velocity Vmax in the two linearly sheared flow cases. However, the 

maximum rms amplitudes in the two linearly sheared flow cases are much smaller 
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compared to those in the two uniform flow cases with Axrm/D ≈ 0.03 and Ayrm/D ≈ 

0.18 for Vmax = 0.2 m/s and Axrm/D ≈ 0.1 and Ayrm/D ≈ 0.31 for Vmax = 0.42 m/s. 

 

  

(a) 

  

(b) 

  

(c) 

  

(d) 

Fig. 5.9 Comparison of the displacement time histories at z/L = 0.22: (a) # 1103, (b) # 1105, (c) # 

1201 and (d) # 1205. 
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 CFD EXP 

(a) 

  

(b) 

  

(c) 

  

(d) 

  

Fig. 5.10 Comparison of the oscillation frequencies at z/L = 0.22: (a) # 1103, (b) # 1105, (c) # 1201 

and (d) # 1205. 

 

5.2.3 Displacement Time Histories and Oscillation Frequencies 
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Fig. 5.9 shows the comparison of the displacement time histories at z/L = 0.22 

between the present simulation and the experiment. In general, the numerical results 

are comparable with the experimental data. Because the onset of the vibration occurs 

randomly in the numerical simulation and the experiment, there are some phase 

differences between the numerical and experimental time histories. As there exist 

some discrepancies in the eigenfrequencies between the measured data and the modal 

analysis results, the comparison of the displacement time histories also shows some 

differences in the oscillation frequencies. 

 

Fig. 5.10 shows the comparison of the IL and CF oscillation frequencies at z/L = 0.22. 

The predicted results show good agreement with the experimental data. In the present 

simulation, the ratio of the IL oscillation frequency to the CF oscillation frequency is 

around two, which conforms to the scenario of dual resonance. It is also found from 

the present results that the IL and CF oscillation frequencies increase with the flow 

velocity. In the two uniform flow cases, the IL and CF oscillation frequencies 

increase from fox = 3.516 Hz and foy = 1.953 Hz to fox = 6.25 Hz and foy = 3.125 Hz 

when V increases from 0.2 m/s to 0.42 m/s. Similarly, in the two linearly sheared 

flow cases, the IL and CF oscillation frequencies increase from fox = 3.125 Hz and foy 

= 1.563 Hz to fox = 5.469 Hz and foy = 2.734 Hz when Vmax increases from 0.2 m/s to 

0.42 m/s. The predicted IL and CF oscillation frequencies in the two linearly sheared 

flow cases are slightly lower than those in the two uniform flow cases. A quantitative 

difference in the IL oscillation frequency between the present results and the 

experimental data is observed in the case # 1201 (Fig. 5.10(c)). The IL oscillation 

frequency in the present simulation is fox = 3.125 Hz while it is fox = 4.73 Hz in the 

experiment. The difference in the IL oscillation frequency leads to the discrepancy in 

the IL dominant mode as mentioned in Section 5.2.1. The possible reasons for the 

difference in the IL oscillation frequency might be due to the discrepancies in the 

eigenfrequencies between the experimental measurements and modal analysis 

computations and the small-amplitude vibrations in the IL direction. 

 

The predicted displacements and oscillation frequencies along the riser are further 

examined for all the cases. It is found that the motion at a single frequency and in a 
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single mode shape is typical for the CF response of the riser, and a third harmonic 

frequency component at three times the first harmonic frequency is observed in the 

CF response at some locations along the riser. 

 

Fig. 5.11(a) and (b) show the predicted displacements and oscillation frequencies 

along the riser in the case # 1103. The IL and CF responses have consistent dominant 

frequencies around 3.516 Hz and 1.953 Hz along the riser which correspond to the 

structure’s second mode and first mode, respectively. The 2:1 IL to CF oscillation 

frequency ratio indicates the occurrence of dual resonance. In addition, a third 

harmonic frequency component is observed in the CF response at some locations 

along the riser. 

 

Fig. 5.11(c) and (d) are the predicted displacements and oscillation frequencies along 

the riser in the case # 1201. The CF response is also consistent along the entire riser 

at a frequency of foy = 1.563 Hz and again a third harmonic frequency component is 

found in the CF response at some locations along the riser. It is notable that in this 

case, the IL response at some locations has appreciable contributions at both twice 

the CF response frequency and the CF response frequency itself. Similar IL response 

has also been reported by Tognarelli et al. (2004). 
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z/L = 0.33 

  

z/L = 0.22 

  

z/L = 0.11 

  

(d) 

Fig. 5.11 Displacements and oscillation frequencies along the riser: (a) displacement time histories (# 

1103), (b) oscillation frequencies (# 1103), (c) displacement time histories (# 1201) and (d) oscillation 

frequencies (#1201). 

 

5.2.4 Orbital Trajectories 

 

The predicted orbital trajectories at eight different positions along the riser span (z/L 

= 0.11, 0.22, 0.33, 0.44, 0.55, 0.66, 0.77 and 0.88) are compared with the 

experimental data in Fig. 5.12. The selected positions coincide with the locations of 

the accelerometers in the experiment. As can be seen from Fig. 5.12, most of the 

orbital trajectories are of a figure-eight shape indicating the occurrence of dual 

resonance where the IL and CF vibration frequencies have a ratio of two (Dahl et al., 

2010). Another interesting phenomenon is that most of the orbital trajectories are 

counterclockwise (CC), i.e., the cylinder  motion is counterclockwise at the top of the  
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(c) 

  

(d) 

Fig. 5.12 Comparison of the orbital trajectories at various positions: (a) # 1103, (b) # 1105, (c) # 1201 

and (d) # 1205. 
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figure-eight motion. The exceptional clockwise (C) trajectories are marked with 

letter “C” in Fig. 5.12. The upstream motion of the cylinder in the CC trajectory 

leads to a closer proximity of the cylinder and the recently shed vortices (Dahl et al., 

2007). According to Bourguet et al. (2011), the CC direction is the predominant orbit 

orientation in the lock-in region.  

 

  

(a) (b) 

  

(c) (d) 

Fig. 5.13 Vortex shedding under different current profiles: (a) # 1103, (b) # 1105, (c) # 1201 and (d) # 

1205. 

 

5.2.5 Vortex Shedding Modes 

 

Fig. 5.13 shows the vortex shedding at five different planes along the riser, i.e., z/L = 

0.11, 0.3, 0.49, 0.68 and 0.88 under different current profiles.  It can be seen from the  
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(d) 

Fig. 5.14 Comparison of the fatigue damage indices: (a) # 1103, (b) # 1105, (c) # 1201 and (d) # 1205. 
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vorticity contour plots that the majority of the vortex shedding shows a clear 2S 

pattern (two single vortices per cycle), whereas a 2P mode (two vortex pairs formed 

in each cycle of the body motion) is observed in the case # 1105 at z/L = 0.3 near the 

position z/L = 0.22 where the maximum vibration amplitude appears. The present 

observation agrees with the conclusions of Meneghini et al. (2004), Yamamoto et al. 

(2004) and Sun et al. (2012) for VIV of flexible risers that a 2S mode is found in 

regions of small amplitudes and a 2P mode is observed in regions of larger 

amplitudes. 

 

5.2.6 Fatigue Damage Indices 

 

One of the objectives to study flexible riser VIV is to assess the fatigue damage 

caused by the vibration, thus the fatigue damage index as defined by Tognarelli et al. 

(2004) is evaluated in this section. The damage index is defined as DI = fz,εε
3 where 

fz,ε is the zero-crossing frequency of the bending strain and ε is the rms strain. In the 

present simulation, the strain data in the IL and CF directions are obtained from 

ANSYS. The calculated fatigue damage indices are compared to the experimental 

data in Fig. 5.14. The comparison shows that the present numerical results are 

generally in good agreement with the experimental data. As shown in Fig. 5.14, the 

IL and CF fatigue damage indices increase with the flow velocity in all the cases 

considered. According to Section 5.2.3, the response frequencies in the case # 1105 

are slightly higher than those in the case # 1205, however, the fatigue damage indices 

in the case # 1105 are considerably higher than those in the case # 1205 in the lower 

part of the riser. That is because the large-amplitude vibration associated by the 2P 

vortex shedding mode produces significantly larger strains in the IL and CF 

directions. According to Tognarelli et al. (2004), the fatigue damage index is 

determined by the mode number, the response frequency and the response amplitude. 

As there are discrepancies in the IL dominant mode number and response frequency 

in the case # 1201 between the present numerical results and the experimental data, a 

discrepancy is also observed in the IL fatigue damage index. It is noteworthy that in 

all the four cases considered in the present simulation the IL fatigue damage is, in 

fact, higher than CF fatigue damage in the two low flow velocity cases, i.e., # 1103 
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and # 1201. It is only when the flow velocity or maximum flow velocity increases to 

0.42 m/s that the CF fatigue damage reaches the same order of magnitude as the IL 

fatigue damage. This finding agrees with the conclusion of Tognarelli et al. (2004). 

Although the present numerical simulation does not cover as many velocities as the 

experiment did, the available results have already suggested that, from a design point 

of view, the IL fatigue damage is not negligible especially for low flow velocity or 

low mode number applications such as pipeline spans or some drilling and 

production risers. 

 

5.3 Concluding Remarks 

 

VIV of a vertical riser in the uniform and linearly sheared currents is numerically 

studied using a fully 3D FSI simulation methodology. The results of a total of four 

cases are presented for two uniform flow profiles with V = 0.2 m/s and 0.42 m/s and 

two linearly sheared flow profiles with Vmax = 0.2 m/s and 0.42 m/s at the bottom end 

and Vmin/Vmax = 0.14. The predicted numerical results are in good agreement with the 

ExxonMobil vertical riser model test results. The overall comparison indicates that 

the present numerical method is reliable and capable of predicting reasonably 

accurate VIV responses of long risers subject to uniform currents and linearly 

sheared currents. In addition, with our numerical modelling, flow visualisation 

results which are hard to obtain in the experimental tests are provided. The main 

findings of the present study can be summarised as follows. 

 

The dynamic response of the riser is studied by examining the dominant modes, rms 

amplitudes, displacement time histories, dominant frequencies and orbital trajectories. 

It is found that the dominant mode numbers in the IL and CF directions increase with 

the flow velocity. The variation of the dominant modes in the two linearly sheared 

flow cases is the same as that in the two uniform flow cases. In terms of the rms 

amplitudes, the maximum IL and CF rms amplitudes are found to increase with the 

flow velocity under both flow conditions. However, the maximum rms amplitudes in 

the two linearly sheared flow cases are much smaller than those in the two uniform 

flow cases. In general, the IL response has a dominant frequency twice the CF 
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response frequency. Both the IL and CF oscillation frequencies increase with the 

flow velocity. In the meanwhile, the IL and CF oscillation frequencies in the two 

linearly sheared flow cases are slightly lower than those in the two uniform flow 

cases. The motion at a single frequency and in a single mode shape is typical for the 

CF response of the riser. A third harmonic CF frequency component is found at some 

locations along the riser. In certain cases, the IL response at some locations has 

appreciable contributions at both twice the CF response frequency and the CF 

response frequency itself. As for the orbital trajectories, most of the orbital 

trajectories are of a figure-eight shape indicating the occurrence of dual resonance 

and the majority of them are characterised by counterclockwise orbits.  

 

As vortex shedding is an important aspect of flexible riser VIV analysis, the vortex 

shedding modes at different slices along the riser span are studied. Two different 

vortex shedding modes are observed in the present simulation, i.e., 2S and 2P modes. 

A 2S mode is widely observed in most of the cases considered, whereas a 2P mode is 

found to be associated with the maximum amplitude. 

 

The fatigue damage due to VIV is analysed in the consideration of its significance in 

practical applications. It is found that the IL and CF fatigue damage indices increase 

with the flow velocity as a result of the increased mode number, the increased 

response frequency and the increased response amplitude. The larger-amplitude 

vibration associated by the 2P vortex shedding mode in the lower part of the riser in 

the case # 1105 produces significantly larger strains in the IL and CF directions 

leading to considerably higher fatigue damage indices. The IL fatigue damage is 

higher than the CF fatigue damage at low flow velocities in the cases # 1103 and # 

1201. The CF fatigue damage reaches the same order of magnitude as the IL fatigue 

damage in the cases # 1105 and # 1205. The results emphasise the importance of the 

IL fatigue damage especially for low flow velocity or low mode number applications.  

 

As this study mainly focusses on a low flow velocity range and only the uniform 

flow and linearly sheared flow cases are considered. Future research on riser VIV in 

a higher flow velocity range under more complex flow conditions is worthwhile. 
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Overall, the present numerical method is able to reasonably predict VIV response of 

a vertical riser under uniform and linearly sheared flow conditions and can be used as 

an alternative to the existing prediction models for deepwater riser VIV prediction. 

 

The output publication from this chapter is ‘Numerical simulation of vortex-induced 

vibration of a vertical riser in uniform and linearly sheared currents’ published in 

Ocean Engineering. 
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Chapter 6 The Effect of Spacing on the Vortex-Induced 

Vibrations of Two Tandem Flexible Cylinders 

 

“Two are better than one.” 

-Ecclesiastes 

 

VIV of two tandem flexible cylinders at three centre-to-centre spacing ratios (i.e., 

Sx/D = 2.5, 3.5 and 5) is studied at a fixed Reynolds number Re = 500 using a two-

way explicit FSI method. In the present study, two identical flexible cylinders fixed 

at both ends and free to vibrate in the CF direction are considered. The mass ratio 

and length-to-diameter ratio of the cylinders are m* = 10 and L/D = 12, respectively. 

In order to maximise the vortex-induced responses, the structural damping is set to 

zero. The main objective of the present work is to numerically study the effect of 

spacing on the hydrodynamic interactions and VIV responses of the two tandem 

flexible cylinders. Particular attention is paid to the aspects which have not been 

fully addressed by previous studies such as the correlation lengths and the time-

dependent 3D wake structures. 

 

6.1 Problem Descriptions 

 

6.1.1 Simulation Parameters 

 

VIV of two tandem flexible cylinders is investigated numerically. Two identical 

flexible cylinders with diameter D and length L are aligned in the direction of the 

flow in their rest positions. To simplify the problem, the vibrations of the cylinders 

are confined to the cross-flow direction. Similar simplifications have been adopted 

by previous researchers such as Evangelinos and Karniadakis (1999), Evangelinos et 

al. (2000) and Xie et al. (2012) to study VIV of a flexible cylinder. The length-to-

diameter ratio is L/D = 12, which allows the discretisation of the cylinder span with 

fine mesh to resolve the characteristics of the flow with acceptable computational 

efforts. Moreover, L/D = 12 is also comparable to the L/D values used by 

Evangelinos et al. (2000) and Xie et al. (2012) in their numerical studies. A moderate 
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mass ratio m* = 4m/ρπD2L = 10 is considered. The influence of the structural 

damping is mainly reflected in the maximum vibration amplitude and in order to 

maximise the vortex-induced responses of the flexible cylinders, the structural 

damping is set to zero. A fixed Reynolds number Re = 500 is adopted in the present 

simulation. The reduced velocity Vr = V/f1D ranges from 4 to 10. Here, f1 is the 

fundamental natural frequency (i.e., the first eigenfrequency) of the flexible cylinder 

and for a beam with two fixed ends, 
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present study, the bending stiffness EI is varied in each simulation to obtain the 

corresponding f1 of the desired Vr.  

 

 

Fig. 6.1 Variation of eigenfrequencies of the first three modes with Vr.  

 

Fig. 6.1 shows the variation of the eigenfrequencies of the first three vibration modes 

with Vr. It can be seen that, due to the quadratic relationship between the 

eigenfrequency of the nth mode fn and (n + 1/2), the gaps between the 

eigenfrequencies of two neighbouring vibration modes become narrower as Vr 

increases. In order to study the effect of spacing on the VIV of two tandem flexible 

cylinders, three different centre-to-centre spacing ratios are selected, i.e., Sx/D = 2.5, 

3.5, and 5 as in Papaioannou et al. (2008). These three spacing ratios are based on 

different regimes in the stationary system. Sx/D = 2.5 belongs to the reattachment 

regime where the shear layers from the upstream cylinder reattach onto the surface of 

the downstream cylinder; Sx/D = 5 represents the binary-vortex regime where the 

separated shear layers of the upstream cylinder roll up in the gap region and a binary 

vortex street is formed behind the downstream cylinder consisting of the interacting 
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wakes of the two cylinders and the spacing Sx/D = 3.5 is very close to the critical 

spacing of transition from the reattachment regime to the binary-vortex regime. 

 

  

(a) (b) 

 

(c) 

Fig. 6.2 Comparison of spanwise force coefficients: (a) mean drag coefficients, (b) rms drag 

coefficients and (c) rms lift coefficients; ―○―, upstream cylinder (Papaioannou et al., 2006); ―□―, 

downstream cylinder (Papaioannou et al., 2006); ●, upstream cylinder (present simulation); ■, 

downstream cylinder (present simulation). 

 

To confirm the flow regimes for the three spacing ratios predicted by the present 

methods, flow past two tandem stationary cylinders at Re = 500 was simulated and 

the hydrodynamic force coefficients (mean drag coefficient CDmean, rms drag 

coefficient CDrms and rms lift coefficient CLrms) were compared with the numerical 

results of Papaioannou et al. (2006) in Fig. 6.2. It can be seen that the present results 

are in good agreement with those of Papaioannou et al. (2006). The hydrodynamic 

force coefficients experience a jump at the critical spacing when the flow regime 

changes from reattachment to binary-vortex. This jump is more pronounced on the 
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hydrodynamic force coefficients of the downstream cylinder. Fig. 6.3 and Fig. 6.4 

show the 3D flow structures and the vortex shedding at z/L = 0.5 around two 

stationary cylinders in tandem arrangement. The present results agree with the 

descriptions of the different flow patterns for two tandem stationary cylinders by 

Igarashi (1981, 1984), Zdravkovich (1987), Papaioannou (2004), Xu and Zhou 

(2004), Zhou and Yiu (2006), Carmo et al. (2010a, 2010b) and Sumner (2010). 

 

 

  

(a) (b) 

  

(c) (d) 

Fig. 6.3 Iso-surfaces of the eigenvalue λ2 = -0.1 with the contours of the spanwise vorticity ωz on the 

iso-surfaces for stationary cylinders: (a) Sx/D = 2.5, (b) Sx/D = 3.5, (c) Sx/D = 5 and (d) single cylinder. 

 

6.1.2 Fluid Domain and Boundary Conditions 
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Fig. 6.5(a) shows the computational domain used in the CFD simulation. The origin 

of the Cartesian coordinate system is located at the centre of the bottom end of the 

upstream cylinder as shown in Fig. 6.5(a). The length of the computational domain is 

40D in the streamwise direction (x-direction) with the upstream cylinder located at 

10D downstream the inlet boundary. The width of the domain in the cross-flow 

direction (y-direction) is 20D and the computational domain size in the spanwise 

direction (z-direction) is set to the cylinder length which is 12D. The computational 

mesh for Sx/D = 5 used in the CFD simulation is shown in Fig. 6.5(b). The boundary 

conditions for the governing equations are as follows. The surfaces of the cylinders 

are assumed to be smooth, where no-slip boundary conditions are employed. Apart 

from the no-slip boundary conditions, the cylinder surfaces are also set to be fluid-

solid interfaces where force and displacement data are transferred. The inlet velocity 

boundary condition is set to be the same as the freestream velocity. At the outflow 

boundary, the gradients of the fluid velocity in the streamwise direction are set to 

zero and the pressure at the outflow boundary is given a reference value of zero. On 

the two transverse boundaries, the velocity in the direction normal to the boundary is 

zero and a periodic boundary condition is imposed on the top and bottom boundaries.  

 

 

  

(a) (b) 

  

(c) (d) 

Fig. 6.4 Spanwise vorticity contours ωz for stationary cylinders at z/L = 0.5: (a) Sx/D = 2.5, (b) Sx/D = 

3.5, (c) Sx/D = 5 and (d) single cylinder. 
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(a) 

 

(b) 

Fig. 6.5 (a) Computational domain and (b) computational mesh in the CFD simulation. 

 

 

 

(a) (b) 

Fig. 6.6 Computational mesh in the FEA simulation at Sx/D = 5: (a) initial configuration and (b) mesh 

after deflections. 
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6.1.3 Solid Domain and Boundary Conditions 

 

A 3D 20-node solid element which exhibits quadratic displacement behaviour is used 

for the discretisation of the FEA models of the flexible cylinders. The element is 

defined by 20 nodes having three degrees of freedom per node: translations in the 

nodal x-, y- and z-directions (ANSYS Inc., 2013b). Fig. 6.6(a) and (b) show the finite 

elements of the two tandem flexible cylinders for Sx/D = 5 in the initial configuration 

and after deflections, respectively. In the solid domain, the surfaces of the cylinders 

are also set to be fluid-solid interfaces for data transfer. 

 

 

Fig. 6.7 Comparison of vibration amplitudes of a single flexible cylinder with m* = 10, L/D = 12 at Re 

= 1000: ○, Xie et al. (2012); ●, present simulation. 

 

6.1.4 Validation Test 

 

The FSI solver has been used in our previous study (Wang and Xiao, 2016) to 

investigate VIV of a vertical riser with L/D = 481.5 in uniform and linearly sheared 

currents and the numerical results were compared with the ExxonMobil vertical riser 

model test results obtained at the MARINTEK by Lehn (2003). The numerical 

results were in good agreement with the experimental data. In the present study, 

further investigations on cross-flow VIV of a single flexible cylinder with m* = 10, 

L/D = 12 and two fixed ends at Re = 1000 were conducted using the present 

numerical methods and the results are compared with the numerical results by Xie et 

al. (2012) in Fig. 6.7. It demonstrates that the present numerical methods are capable 



135 

 

of accurately predicting VIV responses of flexible cylinders at early subcritical 

Reynolds numbers. 

 

Table 6.1 CFD mesh dependency test results. 

CFDM Nc r/D z/D Ay/D CDmean CDrms CLrms 

1 80 0.002 0.2 0.7443 1.5975 0.2501 0.1717 

2 120 0.001 0.1 0.7480 1.6127 0.2449 0.1661 

3 160 0.0005 0.05 0.7524 1.6039 0.2482 0.1638 

 

Table 6.2 FEA mesh dependency test results. 

FEAM Nz Ay/D CDmean CDrms CLrms 

1 15 0.7515 1.5964 0.2421 0.1673 

2 30 0.7480 1.6127 0.2449 0.1661 

3 60 0.7480 1.6076 0.2453 0.1652 

 

6.1.5 Mesh Dependency Test 

 

According to a series of publications on 3D numerical simulations of VIV of an 

elastically mounted circular cylinder (Zhao and Cheng, 2011, 2014; Zhao et al., 

2014), the important mesh parameters in the CFD simulation are the number of 

nodes along the circumference of the cylinder Nc, the minimum mesh size next to the 

cylinder surface in the radial direction r and the mesh size in the spanwise direction 

of the cylinder z. Similarly, the important mesh parameter in the FEA of the present 

FSI simulations is the number of segments along the cylinder span Nz. In order to 

evaluate the dependency of the numerical results on the CFD mesh parameters, 

simulations were carried out for VIV of a single flexible cylinder with m* = 10 and 

L/D = 12 at Vr = 6 and Re = 500 with three different CFD mesh systems while using 

the same FEA mesh with Nz = 30. The results computed using the different CFD 

meshes are tabulated in Table 6.1. As shown in the table, the maximum difference of 

3.36% occurs in the value of the spanwise rms lift coefficient CLrms between CFDM1 

and CFDM2, whereas the maximum difference between CFDM2 and CFDM3 

reduces to 1.4%. It can be concluded that the combination of Nc = 120, r = 0.001D 

and z = 0.1D is sufficient for the CFD simulation of VIV of flexible cylinders in the 

present study. Then, CFDM2 was used to study the dependency of the numerical 
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results on the FEA mesh parameter. Three FEA meshes are generated with Nz = 15, 

30 and 60. The comparison of the results computed with different FEA mesh 

parameters is shown in Table 6.2. The maximum difference between FEAM1 and 

FEAM2 is observed in the spanwise rms drag coefficient CDrms and takes the value of 

1.14%. In contrast, the maximum difference between FEAM2 and FEAM3 is 0.55% 

which appears in CLrms. Based on the FEA mesh dependency test results, Nz = 30 is 

used in the present study. 

 

6.1.6 Time-Step Size Dependency Test 

 

Based on the mesh dependency test results in Section 6.1.5, the mesh parameters of 

CFDM2 and FEAM2 are used in the time-step size dependency test to simulate the 

same case as the mesh dependency test with the purpose of eliminating the effect of 

the time-step size on the numerical results. The three nondimensional time-step sizes 

considered in the time-step size dependency test are Vt/D = 0.005, 0.002 and 0.001, 

respectively and the detailed results are summarised in Table 6.3. By analysing the 

results, the maximum difference between Vt/D = 0.005 and 0.002 is nearly 4.3% 

which is observed in CLrms. The comparison of the results using Vt/D = 0.002 and 

0.001 shows a maximum difference of 1.2% in CDrms. Therefore, Vt/D = 0.002 is 

used for the FSI simulation in the present study. 

 

Table 6.3 Comparison of the results using different time-step sizes. 

Vt/D Ay/D CDmean CDrms CLrms 

0.005 0.732 1.634 0.2365 0.159 

0.002 0.748 1.6127 0.2449 0.1661 

0.001 0.7468 1.6093 0.2421 0.1667 

 

6.2 Results and Discussions 

 

Numerical simulation was performed for VIV of two tandem flexible cylinders with 

three different spacing ratios (Sx/D = 2.5, 3.5 and 5) at an early subcritical Reynolds 

number Re = 500 in a reduced velocity range Vr = 4 – 10. The results are compared 

with those of a single flexible cylinder to investigate the effect of spacing on the 
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hydrodynamic interactions and the VIV responses of the two tandem flexible 

cylinders. 

 

   

   

   

(a) (b) (c) 

Fig. 6.8 Variation of modal amplitudes with Vr: (a) single flexible cylinder, (b) upstream cylinder and 

(c) downstream cylinder. ○, single flexible cylinder; □, tandem, Sx/D = 2.5; ◊, tandem, Sx/D = 3.5; ∆, 

tandem, Sx/D = 5. 

 

6.2.1 Dominant Modes 

 

In order to investigate the dominant modes of the flexible cylinders and the 

contributions of each vibration mode to the overall dynamic responses, the modal 

amplitudes are computed using the same modal decomposition method as in Huera-

Huarte and Bearman (2009, 2011). The modal analysis is based on the fact that the 

cylinder response can be expressed in matrix form as a linear combination of its 

modes. 

      , Mz t z ty Φ y   (6.1) 
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(a) 

  

(b) (c) 

  

(d) (e) 

  

(f) (g) 

Fig. 6.9 Instantaneous nondimensional deflections of the flexible cylinders at Vr = 6: (a) single 

flexible cylinder, (b) upstream cylinder, Sx/D = 2.5, (c) downstream cylinder, Sx/D = 2.5, (d) upstream 

cylinder, Sx/D = 3.5, (e) downstream cylinder, Sx/D = 3.5, (f) upstream cylinder, Sx/D = 5 and (g) 

downstream cylinder, Sx/D = 5. 
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(a) 

  

(b) (c) 

  

(d) (e) 

  

(f) (g) 

Fig. 6.10 Instantaneous nondimensional deflections of the flexible cylinders at Vr = 10: (a) single 

flexible cylinder, (b) upstream cylinder, Sx/D = 2.5, (c) downstream cylinder, Sx/D = 2.5, (d) upstream 

cylinder, Sx/D = 3.5, (e) downstream cylinder, Sx/D = 3.5, (f) upstream cylinder, Sx/D = 5 and (g) 

downstream cylinder, Sx/D = 5. 
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where Φ = [1, 2, …, n] is the displacement modal-shape matrix which is built by 

stacking the nondimensional mode shapes normalised to be 1 at its maximum as 

columns. y(z, t) = [y1(z1, t), y2(z2, t), …, yn(zn, t)] is the computed displacement 

matrix whose row vectors are the time series of the computed displacements along 

the cylinder. yM(t) is the modal contribution matrix containing the time series of each 

mode’s contribution to the overall response as the row vectors yM(t) = [yM1(t), 

yM2(t), …, yMn(t)]. We have 

      1 ,M t z z ty Φ y   (6.2) 

 

Fig. 6.8 shows the variation of the modal amplitudes of the first three modes with Vr. 

It can be seen from the figure that the dominant mode in most of the cases is the first 

mode. The contribution of the second mode is relatively small compared to that of 

the first mode at low Vr but it increases gradually with the increase of Vr. At Vr = 10, 

the modal amplitude of the second mode overtakes that of the first mode for a single 

flexible cylinder and for the two tandem flexible cylinders, the contribution of the 

second mode becomes comparable with that of the first mode except for the 

downstream cylinder at Sx/D = 5. This is because the difference in the 

eigenfrequencies of the first and second modes is small at Vr = 10 and the oscillation 

frequencies of the cylinders are in between the bandwidths of the two vibration 

modes. As for the contribution of the third mode, it remains small throughout the Vr 

range considered. Fig. 6.9 shows the instantaneous nondimensional deflections of the 

flexible cylinders at Vr = 6. As shown in Fig. 6.9, all the vibrations at Vr = 6 

demonstrate clear first mode characteristics. The instantaneous nondimensional 

deflections of the flexible cylinders at Vr = 10 are presented in Fig. 6.10. It can be 

seen that the vibration of a single flexible cylinder is dominated by the second mode. 

Meanwhile, the vibrations of the two tandem flexible cylinders at Vr = 10 are not as 

regular as those at Vr = 6. The irregularity in the vibrations of the two tandem 

flexible cylinders is due to the fact that contributions of the first and the second 

modes are comparable at Vr = 10. 
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z/L = 0.9 

  

z/L = 0.8 

  

z/L = 0.7 

  

z/L = 0.6 

  

z/L = 0.5 

  

z/L = 0.4 

  

z/L = 0.3 

  

z/L = 0.2 

  

z/L = 0.1 

  

 (a) (b) 

Fig. 6.11 Displacement time histories on different cross sections along two tandem flexible cylinders 

at Sx/D = 5: (a) upstream cylinder and (b) downstream cylinder. ―, displacement signals; ―, 

envelopes of the signals; ---, mean values of the envelopes. 
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6.2.2 Response Amplitudes 

 

In Huera-Huarte and Bearman (2011), the authors calculated the envelopes of the 

displacements using the analytical  signals described by Pikovsky et al. (2001), based 

on the use of Hilbert transforms and used the mean values of the envelopes to 

represent the vibration amplitudes (Ay/D). The same technique is used in the present 

study to determine Ay/D of the flexible cylinders. Fig. 6.11 shows the time histories 

of the nondimensional displacements (y/D) on the different cross sections along the 

two tandem flexible cylinders when Sx/D = 5 and Vr = 6. The solid red lines are the 

envelopes of the signals and the dashed red lines represent the mean values of the 

envelopes inside the selected time window by which the sectional vibration 

amplitudes (Ay(z)/D) are denoted. Ay/D is determined by the maximum value of 

Ay(z)/D along each cylinder. Fig. 6.12 shows the variation of Ay/D with Vr for the two 

tandem flexible cylinders at different Sx/D. The results for a single flexible cylinder 

are also included for comparison. As the dominant mode in most of the cases 

considered in the present study is the first mode, the majority of Ay/D is observed at 

z/L = 0.5. The exceptions appear at Vr = 10 when the contribution of the second 

mode is of similar order of magnitude to that of the first mode. As shown in Fig. 6.10, 

for two tandem flexible cylinders, Ay/D appears around z/L = 0.4 and it shifts to z/L ≈ 

0.3 in the single flexible cylinder case where the second mode vibration dominates. 

In general, the Ay/D response curves in Fig. 6.12 are similar to the modal amplitude 

response curves of the first mode in Fig. 6.8 due to the fact that the first mode is the 

dominant mode in most of cases.  

 

The maximum vibration amplitudes (Aym/D) of the upstream cylinder for Sx/D = 3.5 

and 5 are observed at an identical reduced velocity Vr = 6 with a magnitude of Aym/D 

≈ 0.76 which is similar to Aym/D of a single flexible cylinder. As the spacing 

decreases to Sx/D = 2.5, Aym/D of the upstream cylinder increases to 0.87. The 

increase in Aym/D of the upstream cylinder with the decrease of Sx/D was also 

observed by Huera-Huarte and Bearman (2011) in their experimental study with Re 

up to 12000 and by Papaioannou et al. (2008) in their 2D numerical simulation at Re 
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= 160. Compared to the upstream cylinder, the effect of the hydrodynamic 

interactions between the two tandem flexible cylinders on the vibration amplitude 

responses of the downstream cylinder is more obvious. The maximum vibration 

amplitudes of the downstream cylinder for Sx/D = 3.5 and 5 are found to be similar 

(Aym/D ≈ 1). This is different from the results of Papaioannou et al. (2008) in which 

the maximum vibration amplitude of the downstream cylinder in the case Sx/D = 3.5 

is similar to that at Sx/D = 2.5. It is anticipated that this difference can be attributed to 

the difference in Re. Papaioannou et al. (2008) considered a relatively low Reynolds 

number Re = 160. In contrast, the Reynolds number in the present simulation is Re = 

500. According to Sumner (2010), the critical spacing (Sx/D)cr is particularly 

sensitive to the Reynolds number. Ljungkrona and Sundén (1993) reported that 

(Sx/D)cr at Re = 160 is around 4.54 and it decreases to (Sx/D)cr ≈ 3.7 when Re 

increases to 500. Therefore, Sx/D = 3.5 is further below (Sx/D)cr in the study of 

Papaioannou et al. (2008) than in the present study resulting in Aym/D at Sx/D = 3.5 

being similar to that at Sx/D = 2.5 in their study. 

 

  

(a) (b) 

Fig. 6.12 Variation of the vibration amplitudes with Vr for flexible cylinders: (a) upstream cylinder 

and (b) downstream cylinder. ―○―, single flexible cylinder; ---□---, tandem Sx/D = 2.5; ----, 

tandem, Sx/D = 3.5; , tandem, Sx/D = 5. 

 

In the present study, when Sx/D reduces to 2.5, Aym/D of the downstream cylinder 

increases to 1.1 and it shifts to a higher reduced velocity Vr = 7 due to the shielding 

effect of the upstream cylinder. When Vr = 8 – 10, for the three spacing ratios 

considered, the upstream cylinder shows a typical VIV response with very small 



144 

 

vibration amplitudes at high Vr. In terms of the downstream cylinder, a lower-branch 

VIV response is observed for Sx/D = 2.5 and 3.5 due to the fact that the vortices 

impinging on the downstream cylinder are connected to the shear layers of the 

upstream cylinder as illustrated by the spanwise vorticity (ωz = ∂u2/∂x1 - ∂u1/∂x2) 

contours in Fig. 6.24(a) and (b). In contrast, at Sx/D = 5, the completely detached 

vortices from the upstream cylinder in Fig. 6.24(c) cause the WIV of the downstream 

cylinder with large-amplitude vibration being maintained till the maximum Vr 

considered in the present study. Assi et al. (2013) classified the response of an 

elastically mounted downstream cylinder into three regimes: (i) before the vortex 

shedding frequency fv = the natural frequency of the cylinder fn, when the Strouhal 

number St = 0.2 is approaching fn, the Ay/D response resembles the typical VIV 

response; (ii) the second regime, between fv = fn and the equivalent natural frequency 

of the wake stiffness fw = fn, is marked by a steep slope in the Ay/D response curve 

and (iii) the third regime, beyond fw = fn is characterised by a change of the slope in 

the Ay/D response curve. According to their descriptions, the Ay/D response of the 

flexible downstream cylinder at Sx/D = 5 in Fig. 6.12 is similar to the first two 

regimes and the third regime is not observed in the present study. The possible 

reasons will be provided in Section 6.2.3. We also notice that the present Ay/D in the 

second regime shows a plateau instead of increasing monotonically with Vr as shown 

in the experimental results of Hover and Triantafyllou (2001), Assi et al. (2010) and 

Assi et al. (2013). This discrepancy can be attributed to the different treatments of Re 

between the present study and the experiments. In the present study, V and Re are 

fixed and EI is varied to obtain the desired Vr. In contrast, V, as well as Re, is usually 

increased in the experiment in order to increase Vr. Assi et al. (2013) concluded that 

the increasing trend of the vibration amplitude in WIV is a direct effect of Re rather 

than  Vr. Therefore, it is not surprising that the aforementioned difference in the Ay/D 

responses in the second regime exists between the present results and the 

experimental data. 

 

6.2.3 Response Frequencies 
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Spectral analysis is conducted for the time histories of the displacements after the 

eliminations of the transient responses. The oscillation frequencies (foy) are 

determined by the frequencies associated with the prominent peaks of the y/D 

amplitude spectra and then normalised using f1. Fig. 6.13 shows the comparison of 

the nondimensional oscillation frequencies (foy/f1) between two tandem flexible 

cylinders and a single flexible cylinder. Based on the synchronisation between foy and 

f1, the lock-in range of the single flexible cylinder in terms of Vr is from 4 to 7. In the 

lock-in range, foy locks into f1 of the flexible cylinder. As Vr increases beyond the 

lock-in range, foy follows the Strouhal line. It can be seen that frequency response of 

a single flexible cylinder is similar to that of an elastically mounted circular cylinder 

reported by Zhao et al. (2014) and Govardhan and Williamson (2000). For two 

tandem flexible cylinders, the lock-in ranges for Sx/D = 2.5 and 3.5 are identical (i.e., 

Vr = 4 – 8). When Sx/D increases to 5, the lock-in range of the upstream cylinder 

changes to Vr = 5 – 8. The synchronisation of the downstream cylinder also starts at 

Vr = 5. However, it extends to the maximum Vr considered in the present simulation. 

The foy/f1 response of the flexible downstream cylinder at Sx/D = 5 in Fig. 6.13 is 

similar to the first two regimes described by Assi et al. (2013), i.e., in the first regime, 

foy follows the Strouhal line; and in the second regime, foy remains rather close to f1. 

As mentioned in the previous section, the third regime characterised by foy = fw is not 

observed for the flexible downstream cylinder with two fixed ends in the present 

simulation. The reasons are as follows: unlike an elastically mounted rigid cylinder, a 

flexible cylinder has an infinite number of natural frequencies. In order for the third 

regime to occur, fw needs to dominate over all the natural frequencies of a flexible 

cylinder, which is unrealistic. In addition, for a flexible downstream cylinder with 

two fixed ends, the natural frequencies of two neighbouring vibration modes are so 

close that when fw surpasses the natural frequency of one mode, it is already within 

the bandwidth of the next mode. Therefore, it is expected that, with the increase of Vr, 

the response of the present flexible downstream cylinder will repeat the first two 

regimes for the different vibration modes.  

 

Unlike the single flexible cylinder, foy of the two tandem flexible cylinders in the 

post-lock-in range deviates from the Strouhal line, which reveals the effect of 



146 

 

hydrodynamic interactions on foy of the two tandem flexible cylinders. It should also 

be noted that foy of the downstream cylinder in the post-lock-in range is the same as 

the corresponding foy of the upstream cylinder for Sx/D = 2.5 and 3.5. This is related 

to the aforementioned fact that the vortices rolling up in the gap region between the 

two cylinders are still connected to the upstream cylinder through the shear layers 

when they impinge on the downstream cylinder. Consequently, for configurations 

with Sx/D = 2.5 and 3.5, the oscillation frequencies of the two cylinders in the post-

lock-in range are identical. 

 

  

(a) (b) 

Fig. 6.13 Variation of oscillation frequencies with Vr for flexible cylinders: (a) upstream cylinder and 

(b) downstream cylinder. ------, St = 0.2; ―○―, single flexible cylinder; ---□---, tandem Sx/D = 2.5; -

---, tandem, Sx/D = 3.5; , tandem, Sx/D = 5. 

 

 

Fig. 6.14 Variation of phase differences  between the cross-flow displacements at z/L = 0.5 of the 

two tandem flexible cylinders in the time range of t = 100 – 115 s with Vr: ---□---, tandem Sx/D = 2.5; 

----, tandem, Sx/D = 3.5; , tandem, Sx/D = 5. 
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6.2.4 Phase Differences between Displacements of Two Tandem Flexible Cylinders 

 

In this section, the phase differences () between the cross-flow displacements at z/L 

= 0.5 of the two tandem flexible cylinders are analysed. The instantaneous phase 

difference (t) can be determined by using the concept of the analytical signal 

(Pikovsky et al., 2001), based on Hilbert transforms. In the present study, (t) is 

calculated for the cases with two cylinders vibrating at an identical frequency in the 

time range of t = 100 – 115 s when the responses of the two cylinders are in their 

steady states. In addition, (t) at Vr = 4 is excluded as the motions of the cylinders 

are so small that the computed (t) is not reliable. In all the cases considered, (t) 

fluctuates around a constant value within the selected time range. Therefore,  is 

represented by the mean value of (t). Fig. 6.14 illustrates the variations of  with Vr 

for the three spacing ratios considered in the present study. In Fig. 6.14, positive  

means that y/D of the upstream cylinder leads that of the downstream cylinder and 

negative  indicates that y/D of the upstream cylinder lags that of the downstream 

cylinder. Based on the changes in the sign of , it can be concluded that, for each of 

the three spacing ratios, the phase relation between the displacements of the two 

tandem flexible cylinders changes twice over the Vr range considered. At Vr = 5,  is 

negative (i.e., y/D of the upstream cylinder lags that of the downstream cylinder) for 

Sx/D = 2.5 and 5 and it becomes positive (i.e., y/D of the upstream cylinder leads that 

of the downstream cylinder) when Vr increases to 6. With the increase of Vr, the sign 

of  experiences a second change, taking place in the range of Vr = 7 – 8. As for Sx/D 

= 3.5, the Vr ranges associated with the two changes of the phase relation are the 

same as those of the other two spacing ratios, whereas the variations in phase relation 

are opposite. According to the discussion above, the two phase relation changes 

occur at reduced velocities corresponding to the left of the upper branch and the 

transition region between the upper and lower branches, respectively. Therefore, it 

can be speculated that the transitions from one mode of response to another (i.e., 

from the initial branch to the upper branch and from the upper branch to the lower 

branch) might have some bearing on the variations of the phase relation between the 

cross-flow displacements of the two flexible cylinders. Nevertheless, qualitative and 
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quantitative differences in the variations of  with Vr are observed for different 

spacing ratios reflecting that the phase difference between the cross-flow 

displacements of the two tandem flexible cylinders depends on Vr and Sx/D. This 

conclusion agrees with that of Laneville and Brika (1999) drawn from their wind 

tunnel test on VIV of two tandem flexible cylinders.  

 

  

(a) (b) 

  

(c) (d) 

Fig. 6.15 Variation of total force coefficients with Vr for flexible cylinders: (a) CDmean of the upstream 

cylinder, (b) CDmean of the downstream cylinder, (c) CLrms of the upstream cylinder and (d) CLrms of the 

downstream cylinder. ―○―, single flexible cylinder; ---□---, tandem Sx/D = 2.5; ----, tandem, 

Sx/D = 3.5; , tandem, Sx/D = 5. 

 

6.2.5 Hydrodynamic Forces 

 

The total drag and lift coefficients are defined as CD = Fx/(0.5ρV2DL) and CL = 

Fy/(0.5ρV2DL), respectively. Here, Fx and Fy represent the total in-line and cross-

flow hydrodynamic forces computed by summing the dot product of the pressure and 
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viscous forces with the specified force vector over the cylinder surface. Fig. 6.15(a) 

and (b) show the variation of the mean drag coefficients (CDmean) with Vr. The 

constant horizontal lines indicate the values of each cylinder in the stationary system 

for each Sx/D. At Vr = 4, the vibration amplitudes of both cylinders for the three 

spacing ratios considered are very small. The flow around the two tandem flexible 

cylinders in Fig. 6.21 at each Sx/D are essentially similar to that around two tandem 

stationary cylinders in Fig. 6.6. Therefore, the mean drag coefficients of both 

cylinders are close to the values corresponding to the stationary system. Similar to 

the single flexible cylinder case, the mean drag coefficients of both cylinders reach 

their maximum values at reduced velocities where the maximum vibration 

amplitudes appear. For Vr in the post-lock-in range, the values of CDmean of the 

upstream cylinder at the three spacing ratios nearly coincide with each other. 

Overlaps in the CDmean response curves of the downstream cylinder are observed for 

Sx/D = 3.5 and 5 when Vr ≥ 5. 

 

Fig. 6.15(c) and (d) present the variation of the rms values of the oscillating lift 

coefficients (CLrms) with Vr. It shows that the CLrms response curve of the upstream 

cylinder at Sx/D = 5 resembles that of a single flexible cylinder indicating the 

negligible effect of the downstream cylinder on the upstream cylinder when Sx/D = 5. 

The maximum CLrms values of the upstream cylinder for the three spacing ratios 

considered appear at an identical reduced velocity Vr = 5. The CLrms of the upstream 

cylinder attains a common value when Vr is large enough that the response of the 

upstream cylinder is very small for Sx/D = 3.5 and 5. This is observed because the 

oscillations corresponding to those reduced velocities are still large enough to allow 

vortices to form in the gap region. Similar CLrms values of the two cylinders are 

observed at Vr = 4 for Sx/D = 2.5 and 3.5. The flow patterns in these two cases are 

essentially similar, namely the shear layers from the upstream cylinder reattach onto 

the surface of the downstream cylinder forming a single Kármán vortex street behind 

the downstream cylinder (Fig. 6.21(a) and (b)). However, large discrepancies take 

place in the CLrms response of the upstream cylinder between Sx/D = 2.5 and the other 

two spacing ratios for Vr = 6 – 9, which reflects that for Sx/D = 2.5 the oscillations at 

those reduced velocities are not large enough for the vortex shedding flow in the gap 



150 

 

region to get fully developed. As shown in Fig. 6.15(d), the CLrms responses of the 

downstream cylinder for all the three spacing ratios are quite different from each 

other and from that of the single flexible cylinder, which highlights the fact that the 

wake behind the downstream cylinder is a combination of the interacting wakes of 

the two cylinders. 

 

  

(a) (b) 

Fig. 6.16 Variation of correlation lengths with Vr for flexible cylinders: (a) upstream cylinder and (b) 

downstream cylinder. ―○―, single flexible cylinder; ---□---, tandem Sx/D = 2.5; ----, tandem, 

Sx/D = 3.5; , tandem, Sx/D = 5. 

 

6.2.6 Correlation Lengths 

 

The three-dimensionality of the flow in the near wake of the cylinder which 

determines the fluctuations of the forces acting on the cylinder is measured by the 

spanwise correlation length. Previous experimental and numerical studies on VIV of 

an elastically mounted circular cylinder indicated that there was a sharp drop in the 

spanwise correlation at the end of the upper branch near the transition between the 

upper and the lower branches, which does not diminish the response of the cylinder 

(Hover et al., 2004; Hover et al., 1998; Lucor et al., 2003, 2005; Zhao et al., 2014). 

In the present study, the autocorrelation function as defined in Lucor et al. (2005) is 

used to quantify the correlation. The autocorrelation function is described as follows. 
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where CL(zi, tj) is taken to be the fluctuation of the original signal CL
*(zi, tj) from 

which its mean quantity is subtracted. The signal CL(zi, tj) is given by 

      *
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1
, , ,
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The shift lk in Eq. (6.3) is prescribed to be 

 kl k l k dz     with / zdz l N  and 0,1,2,
2

zN
k

 
   

  (6.5) 

 

The correlation length LC is then computed by 
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Fig. 6.16 shows the variation of the nondimensional correlation lengths (LC/D) with 

Vr for flexible cylinders. In general, LC/D is quite large for low Vr around 4 or 5, 

representing the initial branch or the left of the upper branch. The large LC/D is 

indicative of the strong two-dimensionality of the flow at low Vr. As Vr increases, 

there is a drop in LC/D and it reaches its minimum value between Vr = 6 and 7, close 

to the transition region between the upper and lower branches. Finally, LC/D 

increases for higher Vr corresponding to the lower branch of response. Lucor et al. 

(2005) conducted a 3D numerical study on 1DOF VIV of an elastically mounted 

circular cylinder and observed similar variation trends of LC/D with Vr. For two 

tandem stationary cylinders, Wu et al. (1994) noticed that when the two cylinders 

were close together (Sx/D < 3), the downstream cylinder suppressed the shedding of 

the upstream vortices resulting in the large correlation lengths of the upstream 

cylinder. As the turbulence intensity and three-dimensionality of the impinging flow 

on the downstream cylinder were weak, high spanwise correlation was also observed 

for the downstream cylinder. For two tandem flexible cylinders undergoing VIV, in 

most of the cases, the correlation lengths of the two flexible cylinders at Sx/D = 2.5 

are larger than those for Sx/D = 3.5 and 5, which agrees with the conclusion of Wu et 

al. (1994) drawn from two tandem stationary cylinders. With the increase of Sx/D, 

the suppression effect of the downstream  cylinder  on  the  upstream vortex shedding  
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Vr = 5 Vr = 6 Vr = 8 

   

   

(a) 

   

   

(b) 

   

   

(c) 

Fig. 6.17 Contours of sectional lift coefficients and sectional displacements of flexible cylinders: (a) 

single flexible cylinder, (b) upstream cylinder at Sx/D = 3.5 and (c) downstream cylinder at Sx/D = 3.5. 
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diminishes gradually, which leads to similar variations of the upstream cylinder 

correlation lengths for Sx/D = 3.5 and 5 when Vr ≥ 5. However, as the level and form 

of the velocity perturbation introduced by the presence of the upstream cylinder 

depend on the distance between the two cylinders (Wu et al., 1994), discrepancies in 

the correlation lengths of the downstream cylinder are observed for Sx/D = 3.5 and 5. 

 

 

  

(a) (b) 

  

(c) (d) 

Fig. 6.18 Iso-surfaces of the eigenvalue λ2 = -0.1 with the contours of the spanwise vorticity ωz on the 

iso-surfaces for flexible cylinders at Vr = 4: (a) Sx/D = 2.5, (b) Sx/D = 3.5, (c) Sx/D = 5 and (d) single 

flexible cylinder. 

 

The variations of the lift coefficients and the displacements along the span at Vr = 5, 

6 and 8 are examined by plotting the contours of the sectional lift coefficients (CL(z) 
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= Fy(z)/(0.5ρV2D), in which the sectional force in the cross-flow direction Fy(z) is 

obtained by summing up the dot product of the pressure and viscous forces with the 

specified force vector over a circular cross section) and the sectional displacements 

(y(z)/D) on the z – t plane.  The choice of  the three reduced velocities stems from the  

 

 

  

(a) (b) 

  

(c) (d) 

Fig. 6.19 Iso-surfaces of the eigenvalue λ2 = -0.1 with the contours of the spanwise vorticity ωz on the 

iso-surfaces for flexible cylinders at Vr = 6: (a) Sx/D = 2.5, (b) Sx/D = 3.5, (c) Sx/D = 5 and (d) single 

flexible cylinder. 

 

following considerations. Vr = 5 represents the large correlation lengths on the left of 

the upper branch. Vr = 6 is near the region where the correlation lengths approach 

their minimum values and Vr = 8 stands for the large correlation lengths in the lower 

branch. The results for a single flexible cylinder and two tandem flexible cylinders 
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when Sx/D = 3.5 are given in Fig. 6.17. It can be seen that, for the single flexible 

cylinder and the two tandem flexible cylinders, when LC/D is large, the distributions 

of CL(z) and y(z)/D are well organised. The phase differences between CL(z) and 

y(z)/D along the cylinder in each high correlation case are very regular. In contrast, 

when the correlation is low, CL(z) signals at different spanwise locations suffer from 

relative phase shifts despite the fact that y(z)/D signals along the cylinder are nearly 

in phase. This is caused by the variation of the phase differences between CL(z) and 

y(z)/D along the cylinder. The poor phasing between CL(z) and y(z)/D leads to the 

decrease of the spanwise correlation (Lucor et al., 2005). 

 

 

  

(a) (b) 

  

(c) (d) 

Fig. 6.20 Iso-surfaces of the eigenvalue λ2 = -0.1 with the contours of the spanwise vorticity ωz on the 

iso-surfaces for flexible cylinders at Vr = 10: (a) Sx/D = 2.5, (b) Sx/D = 3.5, (c) Sx/D = 5 and (d) single 

flexible cylinder. 
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6.2.7 Vortex Shedding 

 

One of the objectives of the present study is to investigate the vortex shedding of two 

tandem flexible cylinders undergoing VIV. The λ2 method by Jeong and Hussain 

(1995) is used to describe the 3D vortex structures in which λ2 is the second 

eigenvalue of the symmetric tensor S2 + Ω2. Here S and Ω are the symmetric and 

antisymmetric parts of the velocity gradient tensor u. Fig. 6.18- Fig. 6.20 present 

the iso-surfaces of λ2 = -0.1 at Vr = 4, 6 and 10. The iso-surfaces are coloured by ωz. 

It can be observed that the wake flow is totally 3D. The variation of the flow in the 

spanwise direction is stronger in the cases with smaller correlation lengths. Our 

previous discussions reveal that the hydrodynamic coefficients of the two tandem 

flexible cylinders at Vr = 4 are close to those of two tandem stationary cylinders. 

Therefore, it is expected that the 3D vortex structures of the two tandem flexible 

cylinders at this Vr should be similar to those of two tandem stationary cylinders. It 

can be seen from Fig. 6.18 that the 3D vortex structures of the flexible cylinders at Vr 

= 4 does share similar features to that of the corresponding stationary system for each 

Sx/D in Fig. 6.5. As shown in Fig. 6.18, when Sx/D = 2.5 and 3.5, the shear layers 

from the upstream cylinder reattach onto the surface of the downstream cylinder. 

When Sx/D increases to 5, vortex shedding occurs in the gap region between the two 

cylinders and the wake behind the downstream cylinder is a combination of the 

wakes of the two cylinders. Fig. 6.19 presents the 3D vortex structures of the flexible 

cylinders at Vr = 6. Compared to the results in Fig. 6.18, the variation of the flow in 

the spanwise direction becomes stronger in most of the cases apart from the upstream 

cylinder at Sx/D = 2.5. In the cases of Sx/D = 2.5 and 3.5 as shown in Fig. 6.19(a) and 

(b), the oscillations of the two tandem flexible cylinders provide extra time and space 

for the separated shear layers from the upstream cylinder to roll up into vortices. 

When Vr increases to 10, the correlation of the spanwise vortices of the flexible 

cylinders in most of the cases becomes higher than that at Vr = 6 except for the 

upstream cylinder at Sx/D = 2.5. It is worth noting that although the vibration 

amplitudes of the two tandem flexible cylinders for Sx/D = 2.5 and 3.5 are quite small 

at Vr = 10, the shear layers from the upstream cylinder still roll up. 
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z/L = 0.25 z/L = 0.5 z/L = 0.75 

   

(a) 

   

(b) 

   

(c) 

   

(d) 

Fig. 6.21 Contours of spanwise vorticity ωz on three different cross sections along the flexible 

cylinders at Vr = 4: (a) Sx/D = 2.5, (b) Sx/D = 3.5, (c) Sx/D = 5 and (d) single flexible cylinder. 

 

The contours of ωz on three different cross sections, i.e., z/L = 0.25, 0.5 and 0.75 are 

plotted in order to examine the variation of the flow in the spanwise direction of the 

flexible cylinders. The three cross sections are chosen in favour of those closer to the 

cylinder ends to avoid the potential end effect of the periodic boundary condition 

employed on the two spanwise boundaries. Fig. 6.21 shows ωz contours of the 

flexible  cylinders on  the  three  cross  sections  when  Vr = 4.  The  vortex  shedding  
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z/L = 0.25 z/L = 0.5 z/L = 0.75 

   

(a) 

   

(b) 

   

(c) 

   

(d) 

Fig. 6.22 Contours of spanwise vorticity ωz on three different cross sections along the flexible 

cylinders at Vr = 6: (a) Sx/D = 2.5, (b) Sx/D = 3.5, (c) Sx/D = 5 and (d) single flexible cylinder. 

 

patterns are qualitatively similar to those in Fig. 6.6 for stationary cylinders. When 

Sx/D = 2.5 and 3.5, the shear layers from the upstream cylinder reattach onto the 

surface of the downstream cylinder. At Sx/D = 5, vortex shedding occurs in the gap 

region between the two cylinders and a binary vortex street forms behind the 

downstream cylinder. The vortex shedding demonstrates a clear 2S pattern with two 

single vortices being formed in one cycle as described by Williamson and Roshko 
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(1988). As Vr increases to 6 (Fig. 6.22), the wake flow behind the flexible cylinders 

becomes wider. Vortices are formed behind the upstream cylinder in the gap region 

and these upstream vortices interact with the shear layers of the downstream cylinder 

when they impinge on the surface of the downstream cylinder. Variation of the 

vortex shedding modes along the cylinders is observed. The vortex shedding exhibits 

a 2S mode at z/L = 0.25 and 0.75 where the vibration amplitudes are small. With the 

increase of the vibration amplitudes towards the middle sections of the cylinders (z/L 

= 0.5), a 2P vortex shedding mode with two pairs of vortices being formed per cycle 

is observed behind the upstream cylinder. Brika and Laneville (1993, 1995) were the 

first to show evidence of the 2P vortex shedding mode in free vibration. The 2P 

mode at Vr = 6 in the present study is qualitatively similar to the 2P mode in the 

upper branch found by Govardhan and Williamson (2000) and Jauvtis and 

Williamson (2004), in which one vortex of each vortex pair is weaker than the other. 

This upper-branch 2P mode is associated with the large-amplitude vibration of the 

upstream cylinder. For the downstream cylinder, a 2S mode is observed at Sx/D = 2.5, 

whereas the vortex shedding for Sx/D = 3.5 and 5 shows a P + S mode where the 

cylinder sheds a single vortex and a vortex pair per cycle. Fig. 6.23 shows the vortex 

shedding on the middle sections of the two tandem flexible cylinders at different time 

instants in one vibration cycle when Vr = 6 for Sx/D = 3.5 and 5. It can be seen that a 

single vortex and a vortex pair are shed from the downstream cylinder when it moves 

to its positive and negative peaks, respectively, which confirms the P + S vortex 

shedding. Although the P + S mode is usually observed in forced vibration 

experiments (Griffin and Ramberg, 1974; Zdero et al., 1995), it has also been 

identified in free vibration studies at reduced velocities around the maximum 

vibration amplitude for an elastically mounted cylinder at low Re (Bao et al., 2012; 

Singh and Mittal, 2005) as well as a flexible cylinder undergoing low mode number 

vibrations (Gedikli and Dahl, 2014). Therefore, the large-amplitude vibration of the 

downstream cylinder when Sx/D = 3.5 and 5 is related to the P + S vortex shedding 

mode. The variation of the vortex shedding patterns along the cylinders causes the 

relative phase shifts of CL(z) which subsequently leads to the decrease of the 

spanwise correlation. The ωz contours on three different sections along the flexible 

cylinders at Vr = 10 are displayed in Fig. 6.24. The shear layers from the upstream 
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cylinder are observed to roll up for Sx/D = 2.5 and 3.5 despite the vibration 

amplitudes of the two tandem flexible cylinders are quite small at Vr = 10. This 

confirms the observation from the 3D vortex structures as shown in Fig. 6.20. When 

Sx/D = 2.5, the vortex shedding patterns of the downstream cylinder vary from a 2S 

mode at z/L = 0.25 and 0.75 to a lower-branch 2P mode at z/L = 0.5. Unlike the 

upper-branch 2P mode observed at Vr = 6, the two vortices in each vortex pair of the 

lower-branch 2P mode at Vr = 10 have almost equal strength, thus the small-

amplitude vibration of the downstream cylinder at Sx/D = 2.5 is related to the lower-

branch 2P mode. A 2S vortex shedding mode is observed for the rest of the cases in 

Fig. 6.24. 

 

 
 

t = 0T 

  

t = 0.25T 

  

t = 0.5T 

  

t = 0.75T 

  

 (a) (b) 

Fig. 6.23 Contours of spanwise vorticity ωz on the middle sections of the two tandem flexible 

cylinders at different time instants in one vibration cycle when Vr = 6: (a) Sx/D = 3.5 and (b) Sx/D = 5. 
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z/L = 0.25 z/L = 0.5 z/L = 0.75 
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(c) 

   

(d) 

Fig. 6.24 Contours of spanwise vorticity ωz on three different cross sections along the flexible 

cylinders at Vr = 10: (a) Sx/D = 2.5, (b) Sx/D = 3.5, (c) Sx/D = 5 and (d) single flexible cylinder. 

 

6.3 Concluding Remarks 

 

The effect of spacing on the cross-flow vortex-induced vibrations of two tandem 

flexible cylinders is numerically studied at Re = 500 using a two-way fluid-structure 

interaction method. A moderate mass ratio m* = 10, a length-to-diameter ratio L/D = 

12 and zero structural damping are considered in the simulation. The reduced 
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velocity ranges from 4 to 10 in which the flexible cylinders mainly vibrate in the first 

mode. Three spacing ratios (Sx/D = 2.5, 3.5 and 5) are examined. Based on the 

numerical results, the effect of spacing on the hydrodynamic interactions and the 

VIV responses of the two tandem flexible cylinders is investigated. In particular, the 

aspects which are rarely reported in previous studies such as the correlation lengths 

and the three-dimensional flow structures of two tandem flexible cylinders are 

provided. The conclusions are summarised as follows. 

 

The upstream cylinder shows a classical VIV response for the three spacing ratios 

considered. As the vortices impinging on the downstream cylinder are still connected 

to the shear layers of the upstream cylinder in the cases of small spacing ratios, the 

response of the downstream cylinder is also similar to a typical VIV response. When 

the spacing between the two tandem flexible cylinders is large enough for the 

vortices to be shed from the upstream cylinder, the downstream cylinder undergoes 

WIV with large amplitudes at high reduced velocities and an extended lock-in range. 

However, in contrast to an elastically mounted downstream cylinder whose response 

can be divided into three regimes, only the first two regimes appear in the present 

study. The third response regime is not observed due to the fact that the flexible 

downstream cylinder with two fixed ends has an infinite number of natural 

frequencies and the natural frequencies of two neighbouring vibration modes are 

very close. As a constant Re is used in the present study, a flattened amplitude 

response is observed in the second response regime of the downstream cylinder.  

 

It is found that there exist two changes of the phase relation between the cross-flow 

displacements of the two tandem flexible cylinders. The reduced velocity ranges 

associated with the phase relation changes correspond to the left of the upper branch 

and the transition between the upper and lower branches, respectively. Thus, the 

variations of phase relation between the cross-flow displacements of the two tandem 

flexible cylinders are presumed to be related to the transitions from the initial branch 

to the upper branch and from the upper branch to the lower branch. It is also found 

that the phase differences between the cross-flow displacements of the two tandem 

flexible cylinders are different for different reduced velocities and spacing ratios. 
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At very low reduced velocities when the vibration amplitudes of the two tandem 

flexible cylinders are small, the flow around the two tandem flexible cylinders is 

essentially similar to that around two tandem stationary cylinders. Consequently, the 

hydrodynamic force coefficients are close to the values corresponding to the 

stationary system. The effect of the downstream cylinder on the upstream cylinder is 

nearly negligible for large spacing ratios and for small spacing ratios, the oscillations 

in the classical VIV resonance range are not large enough for the vortex shedding to 

get fully developed in the gap region. For two vibrating flexible cylinders in tandem 

arrangement, the wake behind the downstream cylinder consists of the interacting 

wakes of the two cylinders.  

 

The variation of the correlation lengths of the two tandem flexible cylinders with the 

reduced velocity roughly follows that of an elastically mounted circular cylinder. In 

particular, the correlation lengths experience a sharp drop at reduced velocities 

around the mode transition between the upper and lower branches. For small spacing 

ratios, the presence of the downstream cylinder suppresses the three-dimensionality 

of the upstream flow resulting in the large correlation lengths of the upstream 

cylinder and the resulting weak turbulence intensity and three-dimensionality of the 

upstream flow consequently lead to high spanwise correlation of the downstream 

cylinder. Large correlation lengths are found to be associated with regular phase 

differences between the sectional lift forces and sectional displacements along the 

cylinder, whereas the decrease of the spanwise correlation is attributed to the poor 

phasing between the forces and the displacements. 

 

The flow around two tandem flexible cylinders subject to VIV is totally three-

dimensional. The flow in the spanwise direction suffers stronger variations when the 

correlation is poor. In the case with spacing ratios corresponding to the reattachment 

regime of two tandem stationary cylinders, the large-amplitude vibrations of the two 

tandem flexible cylinders in the resonance range provide the time and space for the 

vortices to roll up in the gap. The wake in the lock-in range is found to be wider than 

that in the non-lock-in range. 2S, 2P and P + S vortex shedding modes are identified 
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in the present study. The upper-branch 2P mode with one vortex being stronger than 

the other in each vortex pair is found to be associated with the large-amplitude 

vibration of the upstream cylinder in the lock-in range and the P + S mode is related 

to the large-amplitude vibration of the downstream cylinder for Sx/D = 3.5 and 5. In 

contrast, the lower-branch 2P mode with two equal-strength vortices in each vortex 

pair leads to the lower-branch response of the downstream cylinder at high reduced 

velocity at Sx/D = 2.5. Variation of the vortex shedding modes in the spanwise 

direction is observed in the cases with poor spanwise correlation. 

 

Overall, the present results confirmed various important conclusions obtained from 

previous experimental studies. Meanwhile, they also highlighted some new aspects 

such as the disappearance of the third response regime for a flexible downstream 

cylinder with two fixed ends at large spacing ratios, and also the transitions between 

different response branches (i.e., between the initial branch and the upper branch and 

between the upper branch and the lower branch) may explain the changes in the 

phase relation between the cross-flow displacements of the two flexible cylinders in 

tandem arrangement. Furthermore, the correlation lengths and the 3D flow structures 

which are difficult to obtain in the experimental studies are provided. 

 

As the present study is one of the first few numerical investigations on VIV of two 

tandem flexible cylinders, there are also some limitations. The Reynolds number 

used in the numerical simulations is fixed which leads to the consequence that the 

monotonically increasing amplitude in the second response regime of the flexible 

downstream cylinder at large spacing ratios was not observed. Another limitation in 

terms of the Reynolds number is that the present study is focussed on a low Reynolds 

number regime. The maximum vibration amplitudes will be larger if a higher 

Reynolds number range is considered. The Reynolds number also influences the 

critical spacing of the two tandem flexible cylinders. The responses of the two 

tandem flexible cylinders, especially when Sx/D = 3.5 might change if the Reynolds 

number is different. Moreover, the vibrations of the two tandem flexible cylinders in 

the present study are confined in the cross-flow direction. As we considered a 

moderate mass ratio, the effect of the in-line degree of freedom on the maximum 
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vibration amplitudes may not be very pronounced. However, the in-line motion may 

have an impact on other aspects of the VIV responses of the two tandem flexible 

cylinders as it will change the gap between the two cylinders when they vibrate. 

Given the limitations of the present study, future research on coupled in-line and 

cross-flow VIV of two tandem flexible cylinders in a higher Re range is worthwhile. 

 

A journal paper based on the investigations in this chapter titled ‘The effect of 

spacing on the vortex-induced vibrations of two tandem flexible cylinders’ has been 

published in Physics of Fluids. 
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Chapter 7 Conclusions and Future Work 

 

“A conclusion is simply the place where you got tired of thinking.” 

-Dan Chaon 

 

Vortex-induced vibration (VIV) of rigid and flexible circular cylinders is 

investigated using three-dimensional (3D) fluid-structure interaction (FSI) 

simulations. The numerical results in this thesis are compared with published 

numerical as well as experimental data. Different aspects of the VIV phenomenon 

are examined with particular attention being paid to the aspects which have not been 

fully addressed by previous studies such as the correlation lengths and the time-

dependent 3D wake structures. 

 

7.1 Conclusions 

 

The main outcomes of the thesis are summarised as follows. 

 

7.1.1 Three-Dimensional Numerical Simulation of Two-Degree-of-Freedom 

Vortex-Induced Vibration of a Circular Cylinder with Varying Natural Frequency 

Ratios 

 

Two-degree-of-freedom (2DOF) VIV of an elastically mounted cicular cylinder with 

varying natural frequency ratios (f*) is studied numerically. The fluid flow around the 

cylinder is modelled by solving the 3D unsteady incompressible Navier-Stokes 

equations and the structural vibrations of the cylinder are computed by 2DOF 

oscillators. The aim of this study is to investigate the effect of f* on the 2DOF VIV 

responses and the 3D characteristics of the flow. The numerical results show that the 

vibration amplitude of the cylinder increases significantly and the peak amplitude 

shifts to a higher reduced velocity when f* increases from 1 to 2. As identical in-line 

(IL) and cross-flow (CF) mass ratios are considered, the CF response at f* = 2 shows 

a single peak. Dual resonance is observed for the range of f* examined in this study. 

It is found that the cylinder prefers to move in counterclockwise figure-eight patterns 
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in the lock-in range while oblique figure-eight trajectories are observed in the lock-in 

range of f* = 1. The third harmonic component in the lift coefficient increases with 

the increase of f*. A decrease in the spanwise correlation occurs in the lock-in range 

and the minimum correlation length appears near the transition region between the 

lock-in and post-lock-in ranges. The 2S, P + S and 2P vortex shedding modes are 

observed in the present study. The oblique figure-eight trajectories are associated 

with a dominant P + S mode. The poor correlation of the sectional lift forces can be 

attributed to the variation of vortex shedding flow along the cylinder. 

 

7.1.2 Large Eddy Simulation of Vortex-Induced Vibration of a Vertical Riser in 

Uniform and Linearly Sheared Currents 

 

Numerical simulation is performed for VIV of a vertical riser subject to uniform and 

linearly sheared currents. The flow model is 3D unsteady incompressible Navier-

Stokes equations in conjunction with the large eddy simulation (LES) wall-adapted 

local eddy-viscosity (WALE) model. A finite element model is built to simulate the 

ExxonMobil model vertical riser tested at the MARINTEK. Good agreement 

between the numerical results and the experimental data is achieved. The results 

show that the dominant mode numbers, the maximum root mean square amplitudes, 

the dominant frequencies and the fatigue damage indices increase with the flow 

velocity. It is found that dual resonance occurs at most of the locations along the riser. 

There is a third harmonic frequency component in the CF response at some locations 

along the riser. A frequency component at the CF response frequency appears in the 

IL response in certain cases together with the frequency component at twice the CF 

response frequency normally observed in the IL response. The vortex shedding 

mainly shows a 2S pattern and a 2P mode is found to be associated with the 

maximum vibration amplitude. One of the important findings of the present research 

is that it proves that it is incorrect to assume because the IL VIV response amplitude 

is small, the fatigue damage due to IL motion is small relative to the cross-flow 

damage. The present results show that the IL fatigue damage can be higher than that 

in the CF direction at low flow velocity as the accumulation of the fatigue damage is 

a function of the mode number and frequency of response. In the cases considered, 
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the mode number and frequency of the IL direction can be on the order of twice the 

mode number and frequency of the CF direction. The higher IL fatigue damage in 

these scenarios can be important for low flow velocity or low mode number 

applications. 

 

7.1.3 The Effect of Spacing on the Vortex-Induced Vibrations of Two Tandem 

Flexible Cylinders 

 

In this research, the effect of spacing on the VIV of two tandem flexible cylinders is 

investigated using 3D FSI simulations. A finite element solver for the structural 

dynamics of the two tandem flexible cylinders is coupled to the unsteady 

incompressible flow solver. Classical VIV responses are observed for the two 

tandem flexible cylinders when the spacing ratio (Sx/D) is small. When Sx/D is large 

enough for completely detached vortices from the upstream cylinder, the response of 

the upstream cylinder resembles the typical VIV response while the downstream 

cylinder exhibits wake-induced vibration (WIV) response. For flexible downstream 

cylinders with two fixed ends in the present study, the response of the flexible 

downstream cylinder is similar to the first two response regimes of the rigid 

downstream cylinder classified by Assi et al. (2013). It is found that the changes in 

the phase relation between the cross-flow displacements of the two tandem flexible 

cylinders are related to the transitions from one mode of response to another. There 

exist sharp drops in the correlation lengths of the two tandem flexible cylinders in the 

transition range between the upper and lower branches. Three vortex shedding modes 

are identified in the present research, i.e., 2S, P + S and 2P modes. The upper-branch 

2P vortex shedding mode contributes to the large-amplitude vibration of the 

upstream cylinder and the P + S mode is associated with the large-amplitude 

vibration of the downstream cylinder for Sx/D = 3.5 and 5. In contrast, the small-

amplitude vibration of the downstream cylinder in the post-lock-in range at Sx/D = 

2.5 is the result of the lower-branch 2P mode. The variation of the vortex shedding 

flow along the flexible cylinders leads to the relative phase shifts of the sectional lift 

coefficients on different spanwise cross sections. The relative phase shifts of the 

sectional lift coefficients on different spanwise cross sections are the cause of poor 
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phasing between the forces and displacements related to the decrease of the 

correlation lengths. 

 

7.2 Recommendations for Future Research 

 

Fully 3D FSI simulation of VIV of rigid and flexible cylindrical structures is a 

relatively new research area. Due to the complexity of the problem and the limited 

time and computing resources available, the studies in this thesis inevitably have 

some limitations and there are other interesting areas which can be further 

investigated. Therefore, the following research topics are suggested for future 

research. 

 

1. The Reynolds numbers (Re) in the present studies are relatively low which 

results in the maximum attainable amplitude and the vibration mode number 

being lower than the experimental results in higher Re regimes. Thus, 

numerical simulations of VIV of cylindrical structures at higher Re can be 

studied. Such a study can be beneficial for VIV prediction in high Re and 

high mode number applications. 

 

2. The structural damping is neglected in this thesis. The prediction of the VIV 

response of cylindrical structures can be improved by taking into account the 

effect of damping. A reasonable mathematical model for the nonlinear 

damping is very important in deepwater riser VIV prediction. 

 

3. The IL degree of freedom of the two tandem flexible cylinders can be 

considered in the future study. As a moderate mass ratio is used in the present 

research, the effect of the IL degree of freedom on the maximum vibration 

amplitudes may not be very pronounced. However, the IL motion may have 

an impact on other aspects of the VIV responses of the two tandem flexible 

cylinders as it will change the gap between the two cylinders. More 

importantly, for cylindrical structures in offshore engineering with low mass 

ratios, the IL degree of freedom can cause a dramatic change in the FSI. 
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4. The numerical simulations on VIV of flexible cylinders presented in this 

thesis are all performed for vertical configurations. The numerical methods 

can be developed and applied to steel catenary risers (SCRs). Apart from the 

analyses conducted for vertical layouts, the influence of changing flow 

direction and its effect on the in-plane and out-of-plane oscillations of SCRs 

can be investigated. 

 

5. The present FSI model can provide reliable and accurate predictions of VIV 

of rigid and flexible circular cylinder subject to uniform and linearly sheared 

flow. The offshore structures are usually exposed to ocean waves as well. 

Hence, the effect of ocean waves can be taken into account as this will result 

in more realistic replication of environmental conditions. 

 

6. VIV of cylindrical structures caused by external flow is investigated in this 

thesis. In offshore engineering, another cause of the fatigue damage of the 

flowlines, risers and subsea jumpers is the internal slug flow-induced 

vibration (FIV). The combined external flow VIV and the internal slug FIV is 

of great practical importance and is suggested for further study. 

 

7. Recent research has confirmed a new type of VIV in risers, purely caused by 

vessel motion. Vessel motion-induced VIV occurs because the riser is 

exposed to the equivalent oscillating current due to its own motions relative 

to the still water. Preliminary results indicate that vessel motion-induced VIV 

is quite different from ocean current-induced VIV and is characterised by 

distinct time-varying features. Therefore, another proposed future study can 

be numerical simulation of vessel motion-induced VIV of marine risers. 
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